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The more we investigate the principles of motion learning in biological systems, the

more we reveal the central role that body morphology plays in motion execution. Not

only does anatomy define the kinematics and therefore the complexity of possible

movements, but it now becomes clear that part of the computation required for motion

control is offloaded to body dynamics (a phenomenon referred to as “Morphological

Computation.”) Consequentially, a proper design of body morphology is essential to carry

out meaningful simulations on motor control of robotic and musculoskeletal systems.

The design should not be fixed for simulation experiments beforehand, but is a central

research aspect in every motion learning experiment that requires continuous adaptation

during the experimental phase. We herein introduce a plugin for the 3D modeling suite

Blender that enables researchers to design morphologies for simulation experiments

in, particularly but not restricted to, the Neurorobotics Platform. We include design

capabilities for both musculoskeletal bodies, as well as robotic systems in the Robot

Designer. Thereby, we hope to not only foster understanding of biological motions

and enabling better robot designs, but enabling true Neurorobotic experiments that

may consist of biomimetic models such as tendon-driven robot as a mix of both or a

transition between both biology and technology. This plugin helps researchers design

and parameterize models with a Graphical User Interface and thus simplifies and speeds

up the overall design process.

Keywords: simulation, neurorobotics, design, biomimetic robots, muscles, biomechanics, embodied AI

1. INTRODUCTION

The term Morphological Computation (Müller and Hoffmann, 2017) describes the principle of
computations required for motion execution that are not implemented in a dedicated (electronic)
controller but executed by the kinematics andmorphology of the body itself. Awell studied example
for morphology facilitating control can be found in the passive dynamic walker (McGeer, 1990;
Müller and Hoffmann, 2017), that locomotes smoothly down a slope without any computational
unit and no energy input except gravitation. This principle posits that body morphology not only
contributes to the execution of motions, but also that body design is a crucial determinant of
behavioral capabilities of a given agent. Furthermore, several studies suggest that themorphological
designmay even have a decisive effect on cognition and herebymay influence thinking and problem
solving (Pfeifer, 2000; Pfeifer and Bongard, 2006). At the very least, kinematics, dynamics, and
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geometry / anatomy enable or constrain actions that an agent
is able to execute, as they mediate any intelligent interaction
of an agent with its surrounding world. In a robotic view, the
kinematic structure defines the workspace, actuators and sensors
enable interaction with the environment in terms of action and
perception.

The aforementioned constraints, computations, and influence
of the morphology that impact the overall agent capabilities
emphasize the importance of proper and thoughtful body design
for (energy-) efficient and functionally capable agents. Therefore,
we herein introduce the Robot Designer, a plugin for the 3D
modeling suite Blender (Community, 2018) to facilitate the
design of musculoskeletal, as well as robotic body models for
simulation-based experiments. We propose a graphical user
interface (GUI) with a range of tools for kinematics, dynamics,
geometries, sensors, and muscles to promote easy and fast
design and parameterization of agent bodies. Additionally,
environmental setups can be generated. Models can be
exported/imported in community standard formats such as
SDFormat and .osim and are directly compatible with the
Neurorobotics Platform (NRP) as a framework for embodied
motion learning experiments. With the Robot Designer we
introduce the first morphology design tool that integrates
capabilities for both biological and robotic morphologies.

The Robot Designer is an ongoing Open Source project
published under GPLv2 license in the BlenderRobotDesigner
repository 1 of the Neurorobotics group in the Human Brain
Project. Research in Artificial Intelligence and neural learning in
the brain can largely benefit from this plugin as it helps building
virtual environments for training data collection in simulation as
well as opening the possibility to connect in silico brain models to
musculoskeletal bodies, that cannot be built in the physical world,
respectively.

In this article, we will introduce the State of the Art in robot
design tools, and the Neurorobotics Platform as the central
simulation as a prominent example on Neurorobotics simulation
suite. We will then introduce the architecture and workflow
building robot models with the Robot Designer before we go in
depth into the various design steps and capabilities. Finally, we
will present several examples of models created with the help
of our plugin including robotic, musculoskeletal and biomimetic
systems.

2. STATE OF THE ART

Simulation of the physical world has become ever more
sophisticated in the past years in terms of computation of
complex kinematic chains, computation performance for large
3D environments and photorealistic rendering. Improvements
in simulation software have been matched by a strong increase
in computational power available locally or on demand in
highly parallel cloud computing instances. Robotic Machine
Learning applications requiring large amounts of training data
have grown rapidly and therefore robot simulation has attracted

1https://github.com/HBPNeurorobotics/BlenderRobotDesigner

great interest while simultaneously stimulating the expression of
many requirements.

Several simulation suites exist that are build for dedicated
purposes; a comprehensive review of physics simulators can be
found in Collins et al. (2021). The design and parameterization
of virtual agents and environments, however, remains a tedious
and time-consuming process. This is one reason why models
and environments are usually provided within benchmark
experiments and often are not modified by the actual users after
release. Popular examples can be found in the field of Artificial
Intelligence with the OpenAI gym environments (Brockman
et al., 2016) and the NIPS learning to run challenge (Brockman
et al., 2016).

Working with predefined models and environments
eliminates the ability for users to exploit the full potential of
intelligent body design that itself supports fast and efficient
learning. In order to offer guided model design and easier
parameterization while at the same time enabling a co-design
process of morphology model along with the cognitive module,
user-friendly design tools are necessary.

In this chapter, we introduce existing tools and conventions
for simulation model design that we utilize for the Robot
Designer or are related to our work. We also present the
Neurorobotics Platform as an embodied learning suite wherein
our exported models can be used.

2.1. Related Tools
The most basic and yet popular approach for model
parameterization still is editing respective values in the
model XML description. In order to generate a new model
from scratch, one usually uses mesh files (commonly .dae
or .stl file format) that originate from CAD software (e.g.,
CATIA, Autodesk, SolidWorks), or mesh generation with 3D
modeling tools such as Blender and Maya, or other editing tools
that specialize on specific model types (e.g., MakeHuman for
human avatars). For some CAD design tools the community
has developed plugins that support SDF or URDF (can be
converted to SDF using Gazebo) export functionalities [e.g.,
SDFusion for AutoDesk Fusion 360 (Roboy development team,
2021), FreeCAD RobotCreator Workbench (Fosselius, 2017)
and sw_urdf_exporter for SolidWorks (StephenBrawner, 2021)].
Most of them are inofficial though, and parameters that go
beyond geometry and kinematics still need to be added manually
later on. Many simulators include GUI elements to inspect or
edit model parameters (e.g., Gazebo, Opensim). Gazebo also
includes a dedicated model editor to build up models using
existing mesh files or adapting existing models. Usually, a mix of
manual XML editing, use of specialized tools for mesh editing,
and use of available simulator user interfaces is utilized, and
users build up their own custom pipelines with a mix of preferred
tools.

The tool most similar to our plugin is the Phobos project
(von Szadkowski and Reichel, 2020), that combines robot model
parameterization, as well as sophisticated mesh editing in a single
framework and is also implemented as a Blender plugin. The
graphical user interface is optimized for robotic design, users
can adapt all relevant parameters via GUI elements, and models
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can be exported/imported in URDF, SDF, and SMURF format.
Phobos implements similar functionalities as the Robot Designer,
the main differences being that we split the GUI in multiple
tabs that represent and hereby structure the design process, as
well as our focus on Neurorobotic models with support for
musculoskeletal simulations.

The first iterations of the NRP RobotDesigner were initially
developed under the name OpenGRASP RobotEditor
(Leon et al., 2010) from 2008-2012 at the Humanoids
and Intelligence Systems Lab (HIS) at the Institute for
Anthropomatics and Robotics (IAR) of the Karlsruhe
Institute of Technology in the context of the European
GRASP project (Leon et al., 2010) as part of the OpenGRASP
software.

The RobotEditor software focused on robotic design
capabilities, as the support for valid models in Collada v1.5
data 3D asset exchange format had large support from
the industry. It was later rewritten to comply with the
programming interface of newer Blender versions (>2.69);
support for sensors matching motion capture data for the
Simox robot simulator (Vahrenkamp et al., 2012) was also
added. The Robot Designer was initially forked from the
RobotEditor project. Many features were added or optimized;
in particular its main focus was shifted from pure robotic to
Neurorobotic model design and direct compliance with the
NRP.

2.2. Blender
Blender (Community, 2018) is an open source and feature
rich suite for 3D modeling licensed under GPL. It includes
tools for modeling, animation, rendering, compositing and
motion tracking, video editing and 2D animation. Additionally,
models can be rigged and it integrates a physics engine for
simulation. A major strength of Blender is its open Python
programming interface with integrated terminal and scripting
that allows users to automate model design and easily write
custom scripts and plugins. Blender provides all necessary
tools for 3D mesh design suitable for Neurorobotic models.
The Robot Designer extends the build in datatypes for robot
and musculoskeletal modeling and its import and export. The
plugin is integrated into Blenders plugin framework and is
regularly updated to newer blender software versions, currently
Blender version 2.82. Figure 1 shows theGraphical User Interface
of Blender 2.82, on the right you can see the expanded
Robot Designer Plugin that is subdivided into multiple tab
sessions.

2.3. SDFormat
The Simulation Description Format (SDF) (Open Source
Robotics Foundation, 2020) is a standardized XML description
for models and environments in 3D simulations. It is specifically
designed for robotic simulations that include environments,
objects, and robot actors. The description format specifies
kinematics, dynamics, and geometries of models that can be
extended with sensors, actuators, and animations. General
properties of the physics engine, environmental conditions,
such as gravity and lighting and many others parameters

can be specified; one or multiple passive objects and active
robotic agents can be integrated. Mesh configurations can be
linked as Collada (.dae) or STL files. SDFormat is particularly
used for, but not limited to, the robotic simulator Gazebo
(Koenig and Howard, 2004) that is widely used in the robotic
community.

2.4. The Neurorobotics Platform
The Neurorobotics Platform (Knoll et al., 2016; Falotico et al.,
2017; Albanese et al., 2020) is a simulation framework for
embodied neural simulations that is developed in the framework
of the Human Brain Project. At its core, spiking neural networks
can be interconnected via so-called Transfer Functions with
robotic or musculoskeletal simulation models interacting in
virtual environments. With this approach, learning in neural
networks can be studied in the context of a closed Perception-
Cognition-Action loop (Vernon et al., 2015). The open source
platform itself is built upon existing community tools, such
as NEST (Gewaltig and Diesmann, 2007) for spiking neural
networks, Gazebo (Koenig and Howard, 2004) and OpenSim
(Delp et al., 2007) for body physics simulation, and ROS
(Stanford Artificial Intelligence Laboratory et al., 2021) as
communication interface. The platform can be installed locally
but is also offered as a service on supercomputing cluster
resources via browser login. Overall the platform aims to
support understanding of embodiment for neural learning.
Biologically plausible or artificial neural networks can be easily
interfaced with musculoskeletal systems and robotic models,
thereby supporting the study of transfer learning from biological
to artificial agents and vice versa. The platform comes with a
set of tools to implement, run and analyze embodied learning
experiments: Robot and Environment Designer, browser-based
Graphical User Interface for interactive experiment execution,
plotting and spike train widgets for analysis, as well as a Virtual
Coach for scripted (batch) experiment execution.

The Robot Designer has been introduced as a tool alongside
this suite of tools within the NRP in (Falotico et al., 2017)
in order to design and optimize simulation models. Since
its introduction many improvements and adaptations have
been made, in particular the support for biomimetic and
musculoskeltal models.

In this article, we describe the Robot Designer in detail
and introduce the evolved architecture, workflow and tools.
Our plugin has been tested with NRP version 3.1 and will be
continuously adapted for compatibility with future versions.

3. PLUGIN ARCHITECTURE

The Robot Designer is implemented as a plugin in the 3D
modeling suite Blender. Thereby, the capabilities of Blender can
be utilized in order to design, e.g., geometries and add textures.
At the time of writing of the present report, the supported
version is Blender 2.8; continuous improvements will adapt the
plugin for future releases. The installation instructions and a
respective installation script for the Robot Designer in Blender
can be found in the Readme description of the referenced
GitHub repository. Descriptions in this article refer to the Robot

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2022 | Volume 16 | Article 8567276

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Feldotto et al. The Neurorobotics Platform Robot Designer

FIGURE 1 | Graphical User Interface (GUI) of the 3D modeling suite Blender. The Robot Designer is implemented as a plugin to extend the design tools for robot and

musculoskeletal modeling, specifically it can be expanded from the menu as shown in the top-right area of the figure.

Designer plugin version 3.2, additional screenshots from Robot
Designer 3.1 (Blender 2.7) demonstrate the consistent workflow
we establish with ongoing plugin development. With the Robot
Designer models can be extended with robot andmusculoskeletal
specific characteristics. Properties include defining kinematics,
dynamics and geometries, adding sensors and muscles and
importing/exporting models in simulator-specific formats. With

this integrative setup, users have the ability to build models

from scratch by designing meshes and then building up the
kinematic structure within a single framework. Figure 2 shows
the graphical user interface of the Robot Designer Plugin. The

user is guided through the design process by section tabs on
the top from left to right. The Robot Designer is built upon

Blender built-in functionalities and parameters where possible. In

particular, it uses the built in rigging functionalities and extends
and adds parameters as well as tools where necessary.

The plugin itself is structured into the following sub-folders,

as it has been introduced in the RobotEditor project:

• core.
• export.
• interface.
• operators.
• properties.
• resources.

The listed components contain: Implementations for plugin
registration (“core,”) import and export functionalities (“export,”)
the graphical user interface (“interface,”) operator functions
that implement the various design tools of the Robot Designer
(“operators,”) global and specific parameters (“properties,”)
as well as additional resources (such as a created logfile)
(“resources.”) Generally, the plugin is separated in frontend
(interface) and backend (operators) functionalities. Inside the
“properties” folder, global properties, as well as separate files
holding properties specific to objects and segments exist.
Properties are registered to the scene (*global) or to dedicated
Blender objects, respectively. Hereby, existing Blender objects
are extended in our plugin with parameters specific to robot or
musculoskeletal modeling.

The Robot Designer “core” implements a general plugin
manager that is responsible for registration of the plugin
in Blender, as well as operators and properties to the
Blender namespace. Additionally, it holds the general plugin
configuration. The “core” is mostly original from the RobotEditor
and implements base classes for the graphical user interface, in
particular a collapsible box and info box template. Similarly,
a base class for operators is implemented that adds pre- and
postconditions implemented as decorator functions. Through
this mechanism, proper function of operators is ensured,
e.g. the given function is only executed if a specific object
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FIGURE 2 | Robot Designer Graphical User Interface: The user interface is subdivided into separate sections, which guide the user through the dedicated steps in the

design process and can be selected via tabs on the top line. Sections include: Robot, Segments, Geometries, Sensors, Muscles, Files, World.

is selected that is to be modified e.g. an armature when
editing the robot or a mesh editing a geometry. A property
handler for single properties and property groups wraps factory
functions, adding not only getter and setter functions but
also search functionalities. Lastly, the core implements logging

to a logfile, adding functions that retrieves and formats the
callstack.

For the plugin we make use of as most Blender properties,
types and data objects as possible. In many cases, Blender
objects are utilized to maintain common 3D modification and
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visualization using the Blender tools. Re-usingmeshes and curves
as Robot Designer objects we add a property to the object that
contains a tag indicating our intended purpose and thus can
easily search for and sort objects in the Robot Designer.

4. MODEL DESIGN WORKFLOW

With the Robot Designer, existing robot models can either be
imported and adapted, or new models fully created from scratch.
The general workflow is depicted in Figure 3 and is implemented
in various tabs of the graphical user interface: users are guided
through the design process and can walk through it selecting
the offered tabs from left to right. Models are created with
geometrymeshes that can be imported from e.g. CAD software or
manually designed in Blender utilizing the numerous modeling
tools available. By utilizing elements of the plugins Graphical
User Interface, links, joints, dynamics, controllers (Section 5),
geometries, collisions (Section 6), and sensors (Section 7) can all
be defined. For musculoskeletal models, a dedicated muscle tab
helps define and parameterize muscle objects (Section 8).

After adding model metadata in the “files” section of the
GUI, a model folder can be exported of the model description
(model.config), model definition according to SDFormat
(model.sdf), muscle definition in OpenSim specification
(muscles.osim), as well as the referenced collision and visual
meshes. The robot model can be directly imported into the NRP
and simulated; without muscles, the exported model can also be
used in every simulator that can handle the SDF format.

On the bottom part of Figure 4 a potential workflow is shown
that goes from CAD design via Robot Designer parameterization
to the final model simulated in the Neurorobotics Platfom. A
video tutorial showcasing the design of a basic model as well as
the graphical definition of muscles on a skeleton can be found in
Feldotto (2017). Additionally, world files can be generated with
environmental parameters for gravity and lighting, as well as one
or multiple (robot) model instances (see Section 9).

5. RIGID BODIES

New model instances can be created, and existing instances
selected, in the “Robot” tab. Here, the general 3D location,
supported physics engine and the composition of links is defined.
Afterwards, in the “Segments” section, kinematics, dynamics and
controllers are specified as follows:

• Kinematics

Every model consists of one or multiple segments that are
interconnected via fixed or moving joints. This kinematic
chain can be configured either in Euler angles [x, y, z,α,β , γ ]
(Euler, 1968) or according to the Denavit-Hartenberg
convention [θ , d,α, a] (Hartenberg and Denavit, 1964). Users
can assign the desired joint type from a list of types such
as fixed, prismatic or revolute, while static objects may be
connected to the world with a fixed joint.

• Dynamics

Physics properties can be specified as mass, center of mass
and inertia matrix individually for every segment. If the

material making up the links can be taken to be homogeneous
and its density can be provided, the center of mass and inertia
can be calculated automatically based on the mesh geometry.
Additional dynamic parameters include static and dynamic
friction coefficients.

• Controllers

The Robot Designer supports PID controllers with
proportional, integral and derivative parameters for every
joint. These control parameters are exported as a general
controller plugin shipped with the NRP in order to control
every joint individually via ROS interface.

For every model selected, the kinematic chain is visualized
as a linked graph in the 3D scene and inertia boxes can be
visualized as translucent purple boxes, like in Gazebo. For
the implementation of robotic links, we rely on the rigging
functionalities of Blender: the kinematic chain is implemented
as Blender armature (bpy.types.Armatures), that is extended
with robot specific properties such as the Euler and Denavit-
Hartenberg parameters. Inertia boxes are empty Blender objects
for visualization and easy manipulation in the scene, again
extended with the inertia matrix and weight properties.

6. GEOMETRIES

Next to the model kinematics, geometry plays an essential
role, not only for visualization, but first and foremost in
the computations of the interactions of a model with its
surrounding environment. With the Robot Designer plugin all
model geometries are implemented as Blender meshes that are
tagged with an extended property in order to indicate their
role for the given model. With the “Geometries” section tab the
user can adjust the general properties for location, orientation,
scaling and attach/detach geometries to the respective model
links. For most physics engines, such as Gazebo, two separate
geometries can be assigned per link. Collision meshes used for
collision detection by the physics engine are typically a simplified
version of the visual geometry; any increase in the complexity
of these collision meshes entails an increase in computation
time. The Robot Designers provides GUI buttons to enable easy
addition of basic collision shapes (box, cylinder, sphere), as well
as autogeneration of the convex hull of any visual geometry.
Additionally, the vertex count per mesh can be reduced easily via
a GUI button, for a single or all model meshes, in order to adjust
the tradeoff of simplification and granularity for optimal physics
engine performance and model behavior, respectively. In order
to speed up the design process, many tools can be applied either
to a single geometry or to all geometries of the selected model
instance.

7. SENSORS

Complementary to the control and actuation of body limbs,
agents are endowed with perceptual capabilities through a variety
of sensors. Here, the Gazebo and ROS communities offer a wide
variety of sensor plugins that can be added to the model SDF
description. Within the Robot Designer “Sensors” section, sensor
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FIGURE 3 | Robot Designer Workflow: The user can create a new model either by designing custom meshes from scratch or by importing an existing geometry, e.g.,

from CAD software. With the Robot Designer, all specifications relevant for robots and musculoskeletal models can be added and modified, ranging from kinematics,

dynamics and geometries to sensors and muscles. Finally, the model description files are exported. The bottom part visualizes an exemplary workflow from CAD

design via model preparation with the Robot Designer in Blender and finally its simulation in the Neurorobotics Platform.

instances can be added to the model graphically by clicking
the desired 3D position in the scene. Afterwards the sensor is
added to a specific model link, and sensor-specific parameters
can be adjusted in the GUI. Camera sensors build up on Blender
cameras, and are extended with specific properties that can
be specified in the SDFormat. Since all sensor and controller
plugins are specified as (ROS-) Gazebo plugins, new types and
customized plugins can later be easily added in the introduced
framework. Support for import and export of sensors and plugins
will be implemented soon.

8. MUSCLES

The Neurorobotics Platform integrates the framework for
muscle dynamics and pathpoint simulation from OpenSim into
the “Simbody” physics engine in Gazebo in order to enable
simulation of musculoskeletal systems and “classical” rigid-
body robots within the same environment. Additionally, this
integration allows the simulation of biomimetic robots that
exhibit some degree of mechanical compliance, e.g., joints
connecting rigid links but controlled with muscle-like actuators
such as the Myorobotics framework (Marques et al., 2013).
The Robot Designer provides graphical tools to easily define
pathways and parameters for muscle or muscle-like actuators,
thus enabling future research on biomechanics, soft robotics, etc.

8.1. Path and Attachment Points
An arbitrary number of muscles can be defined as a set of
pathpoints (attachment points or via-points defining the muscle
routing). Pathpoints are added by selecting a 3D position with
the mouse cursor and approving with a GUI button. The exact
location can afterwards be refined using the listed coordinates,
and the connected link selected via drop-down menu. For
this graphical manipulation, we implemented every muscle as
Blender curve data object that is visualized in the 3D scene. Every
muscle pathpoint is defined as a point on the underlying spline
and can therefore be edited using the common 3D tools. As such,
a muscle is a curve object, tagged with a custom property as
a Robot Designer muscle and extended with specific properties
such as muscle type and respective parameters to be modified in
the GUI. An operator is implemented in order to calculate the
length of the muscle automatically via a dedicated button.

Figure 4 shows muscles defined on a biological rodent
skeleton, as well as the corresponding graphical user interface
with generated muscle pathpoints and chosen parameters. Color
coding indicates the various muscle types.

8.2. Wrapping Surfaces
OpenSim supports wrapping surfaces for muscles that do not
follow a straight line but rather adapt and wrap to the skeletal
surface. In the “muscles” section of the GUI, basic shapes (sphere,
cylinder) can be added to the scene, attached to a segment
and parameterized accordingly, whereas the process of mesh
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FIGURE 4 | Musculoskeletal Model Design: Muscles are defined for a biological rodent model. Using the GUI and scene interaction, muscles can be specified with an

arbitrary number of pathpoints by clicking the desired locations directly on the 3D model. All generated points are listed in the GUI and the exact location can be

adjusted. Afterwards, muscle parameters such as muscle type, length and maximal force can be specified.

assignment to the body model can be done in a manner similar to
basic collision geometries. Wrapping objects are Blender meshes
tagged as wrapping object, they are color coded in the 3D view
for visualization and graphical adaptation.

9. WORLDS

In the study of embodied intelligence, the agent’s body
is important, but only inasmuch it enables interactions
with the environment. In particular, by closing the action-
cognition-perception loop, an agent can proactively change
the environment with actions mediated by the body, thereby
perceiving new sensory states the nature of which essentially
depends on the environment. We, therefore, implemented a
dedicated user interface section that enables the user to assemble
environments by adding body models that can be either actuated
robots or static objects such as a walls, shelves and books.
Finally, the environment can be customized adding lights and
adapting parameters such as gravity. This parameterization
is particularly interesting for simulation to reality transfer of
neural network applications, as randomization of such settings
may cover a multitude of possible real world states. A Robot
Designer world is implemented as a Blender empty object
that sets the reference frame. It is extended with various
parameters for the environment (e.g., gravity, wind), general
physics engine parameters (e.g., max_step_size, real_time_factor,
real_time_update_rate, max_contacts) and simulation engine
(e.g., ODE, SimBody, OpenSim) specific parameters for contacts
and friction. The world object holds a list of referenced models as
custom properties.

10. IMPORT AND EXPORT

Robot Designer models are particularly designed for, but
not limited to, simulation in the Neurorobotics Platform;
therefore, import/export functionalities are added accordingly.
Models generated by the Robot Designer can be exported and
imported in the SDFformat, linked geometries are exported
as collada (.dae) mesh files. Technically, the exporter walks
trough the armature from root to all branched links recursively
and conglomerates the SDF specified parameters, both from
the original Blender properties and from the custom Robot
Designer properties that are assigned by the user. The SDFormat
description does not itself contain an explicit graph description,
but rather every link is defined with its parent and child.
Therefore, importing a model from SDF first the link without
parent or “world” as parent is found and then again recursively
all child links are imported. As a result of this process, Blender
objects are created in the 3D scene and the element specific
properties are assigned to these objects. All geometries are
exported in a dedicated mesh folder using the Blender Collada
exporter and referenced in the SDF description. Additionally,
where relevant, an OpenSim (.osim) file is generated holding
the muscle description. For this purposes all muscle objects
assigned to the given model are searched and exported as XML
objects. Alongside every muscle, any referenced wrapping object
is exported as well by adding its position, size and orientation
parameters to the .osim description. Optionally, configurations
for the ROS (tested with ROS Noetic) graphical user interface
framework “RQt” (Thomas, Dirk and Scholz, Dorian and Blasdel,
Aaron, 2016) can be exported. These include the configuration
of plots for the rqt_multiplot package (Kaestner, Ralf, 2016),
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FIGURE 5 | Example Robot Designer models: With the Robot Designer plugin, musculoskeletal models based on biological principles, or biomimetic robots exploiting

biological characteristics, as well as classical robot models can be designed. From top left to bottom right: Musculoskeletal rodent model with skeleton and muscles,

biomimetic robotic arm built from the modular Myorobotics toolkit with tendon actuators, humanoid robot Baxter, Schunk robotic arm with multiple grippers. In order

to simplify the design process, visual cues are used and can be enabled optionally: orange lines indicate the kinematic tree, muscle colors indicate different muscle

types, translucent purple boxes visualize the physics inertia. The user interface is kept consistent for Blender 2.7 and 2.8 (Baxter model).

for sensory data (joint position, velocity, effort and/or muscle
length, lengthening speed, force) as XML description file, and
the YAML file description of GUI sliders provided by the
rqt_ez_publihser package (Ogura, Takashi, 2016) in order to send
commands to joint controllers andmuscle actuators interactively.
An additional model configuration file is generated for metadata
such as author name and model description, and a thumbnail
image showing the robot after applying Blender’s rendering is
exported alongside the model files.

The overall package of exported files describing rigid body
or musculoskeletal models can be used directly in simulations
running in the Neurorobotics Platform. Musculoskeletal models
can also be simulated with the standalone Gazebo version
shipped with the NRP that supports the OpenSim physics engine,
models without muscles in standard Gazebo with different
physics engines. Additionally, parts of the exportedmodels might
be used in other simulators as well. The exported SDFormat
description of rigid body models can be simulated in any other
framework supporting SDF, the .osim muscle description file can
be reused in the OpenSim simulator. Model simulation has been
tested with SDFormat 6.0 (SDF protocol 1.6) in Gazebo 9 and

OpenSimDocument version 30000 supported by OpenSim 3.2,
respectively.

11. EXAMPLE MODELS

The design capabilities provided by the Robot Designer plugin
allow users to create a variety of simulation models. In particular,
different model types can be created that range from classical
robots, musculoskeletal models, and biomimetic robots as a mix
of both. Figure 5 shows a selection of generated models that are
generated or can be edited with our plugin: a musculoskeletal
rodent model with several graphically defined muscles, a
biomimetic robotic arm built with the Myorobotics toolkit and
actuated with muscle-like tendon actuators, the humanoid robot
“Baxter,” a Schunk robotic arm with different types of grippers.

Various additional color-coded 3D visualizations can be
enabled throughout the design process. For example, colors
indicate different muscle types on the rodent model, while the
Baxter robot is visualized with its inertia boxes in translucent
purple. The various design tools are aligned with simulation
capabilities in the Neurorobotics Platform, and therefore form
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FIGURE 6 | Model simulation in the Neurorobotics Platform: The musculoskeletal rodent model and experiment platform setup were modeled or adapted and

aggregated with the Robot Designer. After exporting the model, it was simulated in the Neurorobotics Platform, and individual muscles could be controlled

independently via ROS topics (active: red, inactive: blue).

a strong asset for morphological design of agents for embodied
simulation. Several models and environments available in the
Neurorobotics Platform have been designed utilizing the Robot
Designer plugin. As an example for the synergistic potential
of both rigid body simulation fitted with muscles, in a recent
paper (Mascaro et al., 2020) a rodent model has been set up
using the Robot Designer for a stroke rehabilitation experiment.
Figure 6 shows the rodent model adapted with additional
muscles, a lickometer and an enhanced joystick controller for
a 3D manipulation experiment, that were added using the
Robot Designer. First, the kinematic structure and physical
properties were defined, then muscle path and attachment

points were designed and fine-tuned using the graphical
user interface.The image shows the final simulation in the
Neurorobotics Platform.

12. CONCLUSION

In this article, we have described the features of the Robot
Designer plugin integrated into the 3D modeling suite Blender,
which enables users to create and parameterize robot and
musculoskeletal simulation models. In this process, users can
exploit the capabilities for mesh editing of Blender, as well as
robot- and muscle-specific features provided by our plugin in
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a single framework. We introduced tools for kinematic and
dynamics definition, as well as mesh adaptation and optimization
for both visual appearance and physics simulation. The plugin
described herein provides a user-friendly and graphic centric
approach for simulation model design. Its tool suite enables
building better models, and also helps users to faster and
more easily adapt model parameters for studying the impact of
morphology on motion learning. The support of both robotic
and musculoskeletal models in the Neurorobotics Platform and
the Robot Designer enables users to investigate novel designs
and control strategies for biomimetic robots that combine
characteristics from both classical rigid robots and muscle-like
actuators. The capabilities of the plugin for model export and
import were specifically designed to align with the Neurorobotics
Platform. However, because it relies on community-standard
model description and muscle specifications, the Robot Designer
may also be used outside of the ecosystem of the Neurorobotics
Platform, with Gazebo or OpenSim standalone, for example. The
Robot Designer code is open source (GNU GPL license) and
the project will be continued considering user contributions and
requests.

To the best of our knowledge, we here demonstrate the first
modeling suite that integrates both robot and musculoskelal
modeling in a single design framework. The support of muscle
descriptions is a key feature that distinguishes our approach from
existing tools such as the Phobos robotic design plugin. The
graphical user interface aims to support a straightforward design
process of simulation models, a process which still is often done
by manually changing description files.

The Robot Designer can play an important role in current
research fields of embodied neuroscience and biomimetic
robots and will, therefore, be enhanced driven on future
research requests. In future improvements, we will add
support for sensor import/export and additional functionalities
such as modularization with a library of morphology parts
that can enhance but also hasten body design. Besides the
improvement of the Robot Designer itself, further developments
will also provide an enhanced interface to the Neurorobotics
Platform which will allow scripted adaption of morphologies
throughout experimental epochs, and/or experiments that
generate optimized morphologies based on evolutionary
development.

The Robot Designer can play an important role in current
research fields of embodied neuroscience and biomimetic robots
and will therefore be enhanced driven on future research
requests. In future improvements, we will add support for
sensor import/export and additional functionalities such as

modularization with a library of morphology parts that can
enhance but also hasten body design.

Besides the improvement of the Robot Designer itself,
further developments will also provide an enhanced interface
to the Neurorobotics Platform which will allow scripted
adaption of morphologies throughout experimental epochs,
and/or experiments that generate optimized morphologies based
on evolutionary development.
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With the increasing demand for the dexterity of robotic operation, dexterous manipulation

of multi-fingered robotic hands with reinforcement learning is an interesting subject

in the field of robotics research. Our purpose is to present a comprehensive review

of the techniques for dexterous manipulation with multi-fingered robotic hands, such

as the model-based approach without learning in early years, and the latest research

and methodologies focused on the method based on reinforcement learning and its

variations. This work attempts to summarize the evolution and the state of the art in

this field and provide a summary of the current challenges and future directions in a way

that allows future researchers to understand this field.

Keywords: dexterous manipulation, multi-fingered robotic hand, reinforcement learning, learn from

demonstration, sim2real

INTRODUCTION

Robotics has been a topic of interest for researchers for decades, and dexterous manipulation is
one of the hottest these days. Although some simple tasks in the industrial environment have been
solved, we also wish the robot can help us in some unstructured environments such as the domestic
environment (e.g., helping blind people with daily routines) and some dangerous environments
(e.g., nuclear decommissioning). Hence, the ability to operate with the dexterity of the robot is
necessary. There are several definitions of dexterous manipulation problem, among which the
one proposed by Bicchi (2000) is thorough and widely accepted: dexterous manipulation is the
capability of changing the position and orientation of themanipulated object from a given reference
configuration to a different one, arbitrarily chosen within the hand workspace.

In a structured environment where the shape of the objects is unaltered, the simple gripper is
sufficient for simple tasks such as the pick-and-place task, and the gripper has more advantages in
these tasks on account of its low price, easy control, and strong robustness. However, the dexterity
of parallel claws is limited and they are not adapted to various objects and tasks. One solution is
designing specific end-effectors for different objects and tasks. In a structured environment, this
method is effective, but when facing a complex unstructured environment where one robot needs
to deal with a lot of tasks and one robot needs to carry different end-effectors for different tasks,
it is unpractical. Also, someone people argued that a dexterous arm with a simple gripper may
be sufficient (Ma and Dollar, 2011). They pointed out that in some cases where the hand is for
simple grasping and the arm is for manipulation, a dexterous arm with a simple gripper is sufficient
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and appropriate for many manipulation tasks. However, for
some complex tasks such as in-hand manipulation, a simple
gripper is not sufficient and a multi-fingered dexterous hand
is, therefore, necessary. Figure 1 shows the typical tasks of
dexterous manipulation with multi-fingered robotic hands
including pouring (Qin et al., 2021), dexterous grasping (Li
et al., 2014), object relocation (Rajeswaran et al., 2018), and
so on, which are difficult or impossible to be accomplished by
simple manipulators.

A dexterous hand can greatly improve dexterity and increase
the workspace of the system. Additionally, the application of the
dexterous hand can reduce the energy required for the task due
to the lower feedback gains required as opposed to a full arm.

FIGURE 1 | Typical tasks of dexterous manipulation with a multi-fingered hand. (A) Relocation, (B) Reorientation & Relocation, (C) Tool use, (D) Door opening, (E)

Valve turning, (F) In-hand manipulation, (G) Screwing, (H) Dexterous manipulation, and (I) Pouring.

When mentioning a dexterous manipulator, the first thing
that comes to mind is the human hand. Even some philosophers
deem that it is the dexterity of the human hand that leads
to human intelligence. Therefore, it is no surprise that most
robot hands designed for dexterous manipulation are similar to
the human hand in both shape and structure. The past several
decades have seen the emergence of many dexterous multi-
fingered hands. In 1984, the Center for Engineering Design at
the University of Utah, and the Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology designed the
UTAH/MIT hand with three fingers and a thumb aiming at
machine dexterity (Jacobsen et al., 1986), and later HIT developed
the DLR/HIT Hand II (Liu et al., 2008). Also, there are some
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TABLE 1 | Typical dexterous hands.

Name TriFinger

(Wüthrich et al.,

2021)

Dclaw (Zhu H.

et al., 2018)

Utah/MIT

(Jacobsen et al.,

1986)

Allegro (Allegro

hand)

Shadow (Shadow

Hand, 2005)

DLR/HIT II (Liu

et al., 2008)

Picture

Fingers 3 3 4 4 5 5

DoF 9 9 16 16 24 15

commercial products such as the Shadow Hand (2005) and
SimLab (Allegro hand). Apart from the dexterous humanoid
robotic hands, some simpler robotic manipulators with fewer
fingers and a lower dimension of freedom (DoF) are also designed
for better robustness and lower price (Zhu H. et al., 2018;
Wüthrich et al., 2021). Some common multi-fingered robotic
hands and some important parameters are shown in Table 1.
However, up to now, the dexterity of the human hand is still
unparalleled and it is scarcely possible to emulate the level of
its functionality.

The current applications of robotic hands in the factories still
use traditional engineering and analysis techniques. Typically,
some robots with simple end-effectors are widely used in the
manufacturing industry for packaging and palletizing. Similarly,
agricultural robotic hands with several end-effectors and painting
robotics are good examples for the application of robotic
hands in the structured industry environment. Although the
dexterous manipulation problem has been studied extensively,
the application of the learning-base methods in this review
still remain at the laboratory level, which is not sufficient for
unstructured environment such as businesses and homes.

Although the mechanical design of smart manipulators has
improved greatly, the actual dexterity of the robotic hands is
far inferior to that of the human hand. On the one hand, lots
of sensors and actuators of the human hand makes it almost
impossible to design a robotic hand which is similar to the
human hand (Billard, 2019), and on the other hand, the control
of the robotic hand to realize dexterous manipulation is still an
urgent problem to solve. Before 2000, the approach was based
on the kinematics and dynamics of manipulating an object with
the fingertips dominating the area. This approach requires the
complete information of the manipulator kinematics, dynamics,
interaction forces, high-fidelity tactile, and/or joint position
sensors available on-board the robot. However, the accurate
model of the environment and the object is not or partly available
in the real world. Moreover, even though the information
is available, the algorithm must change as the object or the
manipulator changes. Hence, in the real world, the model-based
approach has certain limitations.

Recently, the power of artificial intelligence has attracted
the attention of many researchers. Deep learning has even
reached a level that exceeds that of humans in certain fields,

such as computer vision, so the robot can extract generalized
features autonomously (LeCun et al., 2015; Duan et al., 2021;
Wei et al., 2021, 2022; Li et al., 2022). Deep learning is
better at classification and prediction problems and so on. But
the application of deep learning is still short of the entire
system model. In contrast, reinforcement learning (RL) is
more suitable for dealing with the sequential decision problem.
Therefore, the combination of deep learning and reinforcement
learning called deep reinforcement learning is proposed to realize
more complicated problems involving perception and decision
making. Dexterous manipulation is a typical decision-making
problem, so deep reinforcement learning, as it were, dominated
the area in recent years. However, the application of deep
reinforcement learning to dexterous manipulation has some
disadvantages. First, the sparse reward makes the training hard,
and for complex tasks, it is time-consuming and the requirement
of computing power is high. Furthermore, deep reinforcement
learning requires many samples obtained by trial and error,
which are nearly unavailable in a robotic system. To solve this
problem, besides the improvement of the RL algorithm, usually
two solutions are considered: learning from demonstration and
transferring the policy learned in simulation to reality. These two
approaches will greatly enhance the efficiency of the algorithm.

There are already several works reviewing the robot
manipulation domain (Billard, 2019; Cui and Trinkle, 2021),
reinforcement learning for the robot (Hua et al., 2021; Zhang
and Mo, 2021), and dexterous manipulation only (Prattichizzo
et al., 2020). However, as far as we know, a survey focusing on
dexterous manipulation with multi-fingered robotic hands with
reinforcement learning has never been presented before. Here,
we present a review of this domain including the method based
on dynamic analysis in the earlier years and the reinforcement
learning-based method in recent years. Although the method
based on reinforcement learning is the core of this paper, we think
the method based on dynamic analysis is necessary for readers to
understand the dexterous manipulation problem.

The main contribution of this paper is presenting a state-of-
the-art review focused on the dexterous manipulation problem
of multi-fingered robotic hands with reinforcement learning.
The paper first reviews the model-based approach without
learning including the basic modeling, planning, and control.
Further, the methods based on deep reinforcement learning,
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FIGURE 2 | Overall presentation of this work.

FIGURE 3 | Method based on an accurate model of multi-fingered hand and object.

reinforcement learning from demonstration, and transfer
learning from simulation to reality are summarized and analyzed
thoroughly. Finally, challenges and future research directions
are proposed. The main topics discussed in this article are
shown in Figure 2.

The rest of this article is organized as follows. After this
introductory section, in Section Dexterous Manipulation
for Multi-Fingered Robotic Hand Based on Modeling,

Planning, and Control, we introduce the basic theory of
dexterous manipulation including the model of the multi-
fingered robotic hands and the object and the model-based

approach for dexterous manipulation. Section Dexterous
Manipulation for Multi-Fingered Robotic Hands With
Reinforcement Learning focuses on the dexterous manipulation
with reinforcement learning, including the application of
reinforcement learning, the combination of reinforcement
learning, and learning from demonstration and deploying the
learned policy in simulation to the real world. At the same
time, we also discuss the characteristics of the approaches
mentioned in this paper. Section Challenges and Future
Research Directions describes the current limiting factors in
manipulation and look forward to the further development of
dexterous manipulation.

DEXTEROUS MANIPULATION FOR
MULTI-FINGERED ROBOTIC HAND BASED
ON MODELING, PLANNING, AND
CONTROL

The dexterous problem can be described as determining the
contact points and the forces/torques that should be exerted
upon the object and planning a trajectory to control the end-
effector to accomplish a specific task. In this section, we will
introduce the basic theories of dexterous manipulation including
the models of contacts, positions, forces, and velocities; motion
planning and the control framework for dexterous manipulation.
The progress of the model-based approach including modeling,
dexterous motion planning, and control are depicted in Figure 3.

Modeling of Multi-Fingered Robotic Hands
and Objects
Usually, an object-centered point of view is adopted for
describing the dexterous manipulation problem. The
formulations are in terms of the object to be manipulated,
how it should behave, and what forces should be exerted upon
it. Therefore, the relationship of the desired forces/torques on
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the object and the required contact forces and the relationship
of the required contact forces and the joint torques is required.
Typically, the model of contact between the object and the
fingertip can be seen as point-contact and the model of the
robotic hand can be seen as a set of kinematic chains consisting
of links connected by joints. The most popular method for
formulating the forward kinematics of robots is the D-Hmethod.
Specifically, four D-H parameters are used for the transformation
between two co-ordinate systems. More details about the D-H
convention and the point-contact model can be seen in (Spong
et al., 2006) and (Okamura et al., 2000), respectively.

In addition to maintaining the contacts during the
manipulation process, rolling and sliding may sometimes
occur during manipulation. Although sliding in some tasks is
not allowed, the sliding mode is necessary when exploring an
unknown object or changing the pose of a grasp to maintain
control of the object. More details about rolling and sliding
can be seen in Montana (1988) and Kao and Cutkosky (1992),
respectively. However, sliding is rarely considered in the early
years due to lack of reliable tactile sensors to keep track of the
contact locations on the fingertips and indicate the onset of slip.

Dexterous Motion Planning of
Multi-Fingered Robotic Hand
Typically, the dexterous manipulation problem can be
divided into two parts, namely initial grasp planning and
trajectory optimization which will be discussed, respectively, in
this subsection.

Grasp Planning of Multi-Fingered Robotic Hands
To deal with dexterous manipulation, the first thing to be
considered is stable grasping. Grasping generally consists of two
phases: a planning phase and a holding phase. In the planning
phase, the finger contact point locations are decided and the
object is grasped stably in the holding space. Two important
problems are considered for the two phases accordingly:
the selection of feasible locations of contact and optimal
contact forces.

Selection of Feasible Locations of Contact
Two important concepts describing the stability of a given
grasp are force-closure and form-closure. We refer the readers
to Bicchi (1995) for more details about force-closure and
form-closure. However, force-closure is only the bottom-most
condition to satisfy and not enough for a stable and desired
grasp. Furthermore, in a specific task, there would be many
configurations that achieve force-closure, so the problem that
which one should be adopted is very important. Being on the
safer side, an intuitive measurement is to apply less force on
the object, resulting in a better grasp effect. The first one who
proposed this idea was Kirkpatrick et al. (1992), and Ferrari
and Canny (1992) improved it later. Similarly, for different
consideration factors, a few metrics were proposed, such as task-
oriented metrics (Hsu et al., 1988), eigenvalue decomposition-
based metric (Bruyninckx et al., 1998), and metrics considering
different issues (Lin and Burdick, 1999; Lin et al., 2000; Roa
and Suárez, 2009). However, getting optimal contact locations

through appropriate metrics and optimization methods is
difficult due to that the quality measure is typically a non-convex
(and non-linear) function. Besides the optimization approach,
some researchers used a knowledge-based approach (Cutkosky,
1989; Stansfield, 1991) to get a suitable grasp.

Selection of Optimal Contact Forces
To generate a great grasp, we should plan not only the locations
of the contact points but also the force exerted to the object on
the contact. In early works, the friction constraint was linearized
and the coefficient of friction was estimated conservatively to
avoid instability and considering the problem as a non-linear
programming problem (Nakamura et al., 1989; Nahon and
Angeles, 1991; Al-Gallaf and Warwick, 1995). However, such
methods are offline, and considering the problem in a non-linear
context was also proposed for online implementation (Buss et al.,
1996). These computed forces are then used in the low-level
force servo mechanism to produce a desired force behavior in
the object.

Trajectory Optimization for Dexterous Manipulation

With a Multi-Fingered Robotic Hand
For relatively simple tasks, the contact points remain the same
during the manipulation, so after getting the desired grasp
configuration and contact forces, the task can be achieved by
controlling the robot arm. However, for more complex tasks such
as in-hand manipulation, one grasp is not sufficient. Therefore, a
trajectory of grasps which links the initial grasp and the desired
grasp is required.

The methods proposed in the dexterous manipulation
problem are typically derived from the legged locomotion
problem. However, the methods used in the legged locomotion
are not suitable for hand movement control due to the high
dimensions of the search space. A representative work proposed
by Mordatch et al. (2012a) is an extension of contact-invariant
optimization (CIO) (Mordatch et al., 2012b) which was used
for character animation originally. However, the CIO is an
offline method and time-consuming. In practice, online planning
(or Model-Predictive Control) is more desirable (Kumar et al.,
2014), where a trajectory of the control signal is optimized
and the joint space trajectories are obtained through inverse
kinematic (IK). For solving (Sundaralingam and Hermans,
2017) the in-grasp manipulation problem more directly, get
a joint space trajectory without the process of IK. However,
this approach requires maintaining the contacts, which is only
a part of the whole dexterous manipulation process. With
this in mind, Sundaralingam and Hermans (2018) presented a
planner for reorientation of the object through finger gaiting
and in-grasp manipulation alternately. Similarly, Chen C. et al.
(2021a) proposed TrajectoTree, a method based on contact-
implicit trajectory optimization (CITO). Unlike the optimization
method, the concept of motion primitives is also accepted widely
(Chen C. et al., 2021b; Yoneda et al., 2021). The phase of
motion planning is the core of dexterous manipulation. However,
only under certain assumptions can these approaches work,
such as assuming that the shape and mass of the object are
known and the contacts remain during the manipulation process
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(Sundaralingam and Hermans, 2017). Also, some approaches
can only be applied to planar objects (Chen C. et al., 2021a).
At the same time, most of these methods are only tested in
simulation. From what has been discussed above, the approaches
based on trajectory optimization have many limitations for
achieving dexterous manipulation with multi-fingered robotic
hands in the real world.

The Control of Multi-Fingered Robotic
Hand for Dexterous Manipulation
The control of multi-fingered robotic hands for dexterous
manipulation can typically be divided into three levels. The
high-level control includes grasp planning and motion planning
which have been discussed thoroughly. The middle-level control,
which is relatively unpopular compared to the other two levels,
includes event detections and phases transitions. Hence, only a
few researchers focus on this problem (Johansson and Westling,
1991; Eberman and Salisbury, 1994; Hyde et al., 1997; Hyde and
Cutkosky, 1998).

The low-level control is a primary part of the dexterous
manipulation problem and has received a lot of attention.
Trajectory tracking in free space and precise force control in
constrained space should be both taken into consideration.
During tracking in free space, position control is enough because
the robot hand does notmake contact with the object at this stage.
During the contact stage, position control and force control are
both important for precise force. Taking both position control
and force control into account, several control algorithms were
put forward such as simple hybrid position/force control which
is widely used (Raibert and Craig, 1981; Xiao et al., 2000),
impedance control (Hogan, 1984), and the combination of hybrid
position/force control and impedance control (Anderson and
Spong, 1988). The impedance control can solve the problem
of discontinuity by the change of the control mode, so it has
attracted much attention of researchers (Goldenberg, 1988; Kelly
and Carelli, 1988; Kelly et al., 1989). The combination can
furthermore be considered as the distinction between force-
controlled subspaces and position-controlled subspaces.

DEXTEROUS MANIPULATION FOR
MULTI-FINGERED ROBOTIC HANDS WITH
REINFORCEMENT LEARNING

Given that the complete model of the objects and robotic
hand is difficult to obtain in an unstructured environment
and programming robots require a high degree of expertise,
the methods mentioned above are not sufficient for a more
complicated environment and tasks. The development of
machine learning, especially reinforcement learning, provides
new solutions to the problem of dexterous manipulation with
multi-fingered robotic hands. The whole progress of solving
dexterous manipulation with reinforcement learning is shown in
Figure 4. In this section, we will discuss dexterous manipulation
with reinforcement learning and its variations.

Reinforcement Learning
The reinforcement learning problem is a kind of machine
learning algorithm which learns mapping environment state to
action and obtaining the maximum cumulative reward in the
process of interaction with the environment. Q-learning is a
traditional solution to the problem, however, it is not sufficient
for more complicated problems today due to the high cost of
solving the q-valued function with lots of states and actions.
The combination of deep learning and reinforcement learning
called deep reinforcement learning (DRL) was proposed for more
complicated problems and it dominates the area now.

The method can be divided into the model-based method and
model-free method, the difference between the two is whether a
predictive model is used. The earliest model-based algorithm is
Dyna (Sutton, 1990), where the model is learned by data from
the real world and both the data from the real world and the
learned model are used in the training process. There are some
other model-based algorithms such as PILCO (Deisenroth and
Rasmussen, 2011), M-PGPE (Mori et al., 2013), PEGASUS (Ng
and Jordan, 2013), GPS (Levine and Abbeel, 2014), VPN (Oh
et al., 2017), MVE (Feinberg et al., 2018), STEVE (Buckman
et al., 2019), and MBPO (Janner et al., 2019). On the contrary,
in the model-free method, the agent learns the strategy directly
by interacting with the environment. The comparison between
the model-based method and model-free method can be seen
in Table 2. According to the characteristic of the model-based
method and model-free method, the selection between the
model-basedmethod andmodel-freemethod is a crucial problem
and should be taken into account.

Reinforcement learning also can be divided into three types
according to the variables iterated in the learning process: value-
based method, policy-based method, and actor-critic method.
In the value-based method, the value function is learned and
the policy is determined by a greedy strategy or a strategy.
Deep Q-learning (DQN) (Mnih et al., 2015) and its variations
(van Hasselt et al., 2015; Schaul et al., 2016; Wang et al.,
2016) are typical model-free value-based method. Although
DQN and its variants have achieved excellent performance in
discrete action space problems such as video games, and even
defeated human players by overwhelming advantage in some
games, they cannot cope with the continuous action space
problems that exist in many actual production and life such as
dexterous manipulation.

Different from the value-based approach, the policy is
straightly optimized in policy-based algorithms. REINFORCE
(Williams, 1992) is a monumental algorithm which provides the
state transition model-independent algorithm theoretically and
becomes the starting point of many algorithm improvements.
It plays a pioneering role in the algorithm system of policy
gradient series represented by TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017). However, although TRPO
and PPO algorithms have excellent hyperparameter performance
and have gained attention in academic research as typical
on-policy algorithms, many samples under the current policy
need to be sampled for training and to ensure algorithm
convergence each time the policy is updated. Therefore, the
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FIGURE 4 | Dexterous manipulation with a multi-fingered hand through reinforcement learning (part of this picture comes from [89]).

algorithms have low sampling efficiency and need a large amount
of computational force to support, which greatly limits the
popularization of the algorithms in the application field. A survey
of the classification and corresponding comparison between the
advantages and disadvantages of RLmethods is shown inTable 2.
Furthermore, a more detailed comparison between typical value-
based algorithms and policy-based algorithms can be seen in
Table 3.

As we listed in Table 2, an important problem of the policy-
based method is high variance and the combination of the value-
based method and a policy-based method called the actor-critic
method can solve this problem to some extent. The state-of-the-
art algorithms at present are all under the actor-critic framework.
The typical RL algorithms under the actor-critic framework are
summarized in Table 4.

The actor-critic algorithm is mostly off-policy and can solve
the problem of sampling efficiency through experience replay.
However, the coupling of the policy update and value evaluation
results in the lack of stability of the algorithm, especially the
sensitivity to hyperparameters. In the actor-critic algorithm, it
is very difficult to adjust parameters, and the algorithm is also
difficult to reproduce. When it is promoted to the application
field, the robustness of the algorithm is also one of the most

TABLE 2 | Classification and corresponding advantages and disadvantages of the

RL methods.

Classification Advantages Disadvantages

Value-based RL 1. Easy to implement

2. High sample

utilization

1. Poor performance in

tasks of discontinuous

and large state space

2. High bias

Policy-based RL 1. Easier to converge

2. More directly

1. Easy to converge to local

optimum

2. High variance

Model-based RL 1. More data efficient

2. Faster convergence

1. Model accuracy has a

big impact on learning

tasks

Model-free RL 1. Easier to implement

2. No need of prior

knowledge

1. Demanding much data

3. High risk of damage

concerning core issues. Commonly, the data of reinforcement
learning are often incomplete, so we refer the readers to the
following literature (Shang et al., 2019; Luo et al., 2020; Wu D.
et al., 2020; Wu et al., 2020; Liu et al., 2021) for more details.
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TABLE 3 | Comparison between typical value-based algorithms and policy-based algorithms.

Algorithm Main characteristic Value-based/

policy-based

Limitations

DQN (Mnih et al., 2015) Approximating the optimal Q-value function with a deep

convolutional neural network. Target-network and Experience

replay

Value-based

Only capable of handling discrete

and low-dimensional action

spaces

Double DQN (van Hasselt et al., 2015) Two networks are used for dealing with the overestimation

problem of DQN

Value-based

DQN with prioritized experience

replay (Schaul et al., 2016)

Experience replay with priority is used to increase the learning

utilization rate of samples and increase exploration

Value-based

Dueling DQN (Wang et al., 2016) V(s)+A(s, a) is used to replace Q(s, a) to alleviate the

overestimation problem of DQN

Value-based

REINFORCE (Williams, 1992) The starting point of policy gradient algorithms Policy-based
Low efficiency and high

variance
TRPO (Schulman et al., 2015) Finding the right step size to stably improve the policy Policy-based

PPO (Schulman et al., 2017) An advanced version of TRPO which is easier to implement Policy-based

TABLE 4 | Summary of typical algorithms under the actor-critic framework.

Method Main characteristic Off-policy/

On-policy

A3C (Mnih et al.,

2016)

Adopting asynchronous training

framework

On-policy

DDPG (Lillicrap

et al., 2015)

Able to deal with continuous space of

action issues

Off-policy

TD3 (Fujimoto

et al., 2018)

An advanced version of DDPG solving

the problem of overestimation in

actor-critic and addressing variance

Off-policy

SAC (Haarnoja

et al., 2018)

Adopting Maximum Entropy Model to

improve the robustness of the algorithm

and speed up training

Off-policy

Dexterous Manipulation With
Multi-Fingered Robotic Hands Using RL
From Scratch
The success in various complex tasks such as reorienting
an object (Open et al., 2019), tool use (Rajeswaran et al.,
2018), and playing the piano (Xu et al., 2021) has shown the
power of reinforcement learning for dexterous manipulation.
For dealing with the dexterous manipulation problem under
the framework of RL, the problem is usually modeled as
a Markov decision process (MDP), where the states can
be the combination of internal states and external states,
and the action is typically the motor commands. In a
simulation, the states are available, however the needed
elements for states cannot be obtained directly. Under that
condition, visual sensors and tactile sensors are usually used
for inferring the state or using the raw sensor data as the
state (Katyal et al., 2016). The easiest way to think of is to
train the agent from scratch. The basic process of learning
dexterous manipulation by RL from scratch is depicted in
Figure 5.

Although learning-based methods are appealing to roboticists
for dealing with the dexterous manipulation problem, the need
for large amounts of data has always been a major obstacle to
the development of robotics. Hence, most researchers focused on

enhancing the sample efficiency but from various angles. Some
of the researchers focus on the algorithm itself and test only
in simulation (Popov et al., 2017; Haarnoja et al., 2019; Omer
et al., 2021). Popov et al. (2017) decouples the update from the
frequency of interaction and trades off between the exploration

and the exploitation by defining certain starting states and
shaping reward effortfully. Haarnoja et al. (2019) improved the

SAC for accelerating training and improving stability. Omer
et al. (2021) present MPC-SAC combining the Model-Predictive

Control (MPC) which is an offline learning method with online
planning, which can be seen as a model-based RL method.
Similarly, model-based methods are also adopted in (Kumar

et al., 2016; Nagabandi et al., 2020). Different approximators such
as time-varying linear-Gaussian (Kumar et al., 2016) and deep
neural network (Nagabandi et al., 2020) are used, respectively.

Moreover, the combination of local trajectory optimization and

RL is also attractive (Lowrey et al., 2019; Charlesworth and
Montana, 2021). Fakoor et al. (2020) centered around the
instability problem in RL and reduced the complexity in the
famous state-of-the-art RL algorithms. Some researchers also pay

attention to the problem of sparse reward which is a common
hindrance in RL causing sample inefficiency. To this end, HER
is a widely used algorithm which learns from failures and can
be combined with any RL algorithm. Li S. et al. (2019) just

incorporate HER in the hierarchical RL framework to achieve the
complex Rubik’s cube task. The introduction of HER in RL can

also be seen in (He et al., 2020; Huang et al., 2021).
Besides the problem of sample inefficiency, generalization is

another major obstacle yet to be bordered. As a rule, multi-task
RL is a popular concept to the researchers in autonomous
robots (Hausman et al., 2018; He and Ciocarlie, 2021; Huang
et al., 2021). Considering the inefficient exploration caused by
the high DoF of the dexterous robotic hand, which means
the high dimension of action space, He and Ciocarlie (2021)
proposed a lower-dimensional synergy space and multi-task
policy. In contrast to exploring in the raw action space with
high dimension, exploring in the synergy space can improve the
efficiency in exploring new environments or learning new tasks.
Similarly, Hausman et al. (2018) presented embedding space
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FIGURE 5 | Basic process of learning dexterous manipulation by RL from scratch (part of this picture comes from Open et al., 2019).

to the same end. What is different is that Huang et al. (2021)
focused on one task on various objects other than different tasks.
With the help of a well-designed object representation andmulti-
task framework, the manipulation of 70 different objects can be
realized by one policy model achieving similar or better results
than single-task oracles. The success of this work is a big step
toward making robotic hands intelligent.

The previously mentioned works were only tested in a
simulation where data were easy to get, however, a great
performance in simulation cannot guarantee the performance.
Furthermore, the elements required for representing the state
are not available in the real world, so sensors are necessary
for representing the state. As a rule, the visual sensor is the
main consideration. For instance, Haarnoja et al. (2019) adopted
the raw image as a representation of the state. Experiences
implicate that the introduction of tactile information can
effectively improve the sample efficiency for training and the
performance in dexterous manipulation tasks (Melnik et al.,
2019). van Hoof et al. (2015) used the tactile sensor data
and introduced the non-parametric relative entropy policy
(NPREPS), which is well-suited to the sensor data. Falco et al.
(2018) used the visual sensor and tactile sensor together. The
visual sensor is used for representing the state in the RL
process and the tactile sensor acts as feedback in a low-level
reactive control aiming at avoiding slipping. Also, training on
a real robotic hand usually costs time and requires human
intervention. To alleviate the problem, Gupta et al. (2021)
proposed a reset-free reinforcement learning algorithm. They
pointed out that the learning of multi-task and sequencing
them appropriately can solve the problem naturally. The
algorithm achieved great performance both in simulation and the
real world.

All the details of the above works are listed in Table 5,
including the specific method, the environment (e.g., simulation
or real world or from simulation to real world), the manipulator,
sensors utilized, and the tasks.

Dexterous Manipulation With
Multi-Fingered Robotic Hands Using
Reinforcement Learning From
Demonstration
Apart from improvement on the RL algorithm, some researchers
were inspired by the way learners paid attention to learning

from demonstrations, which is also called imitation learning.
An intuitive idea is following the expert demonstrations in
a supervised way, namely behavior cloning. However, the
policy depends on the expert data too much in this way.
Another common method in imitation learning is inverse
reinforcement learning where the reward function is learned.
The introduction of demonstration data in reinforcement
learning is an effective approach for enhancing the sample
efficiency and the generalization performance in behavior
cloning only.

The sources of demonstrations can be kinesthetic teaching,
teleoperation (Zahlner S. et al., (n.d.); Handa et al., 2019;
Li T. et al., 2019; Li et al., 2020), raw video, and so
on. The problem of learning from demonstration has been
studied a lot in recent years and a comprehensive survey
can be seen in Ramírez et al. (2021). Ramírez et al. (2021)
divided the use of the demonstrations into two types of
knowledge: prior knowledge and online knowledge. In the
case of the former, the demonstration data were stored before
the RL process and acted as source of knowledge such as
being added to the reward function for bringing the policy
closer to the demonstration. In the case of the latter, the
demonstrations are used occasionally to provide a trajectory. The
process of the two types of combination can are depicted in
Figure 6.

Here we follow the same sort of classification and go further
into the application in dexterous manipulation with multi-
fingered robotic hands. In the first class, the demonstrations
can be utilized in various ways. For instance, a kinesthetic
demonstration is adopted as the desired position trajectory
as prior knowledge to get an initial force profile and then
optimized through RL (Kalakrishnan et al., 2011). Prieur
et al. (2012) decomposed the whole dexterous manipulation
problem into a sequence of canonical-grasp-type identified
in the humans. Although the introduction of human
motion helps the problem, the motion of the robot is
limited to these grasp types. Conversely, an “object-centric”
demonstration which only demonstrated the motion of the
object was adopted due to the special end-effector used in
the work of Gupta et al. (2016). Also, the demonstrations
can be used to per-train an initial policy (Rajeswaran et al.,
2018; Alakuijala et al., 2021). For further improving the
sample efficiency, Alakuijala et al. (2021) adopted residual
reinforcement learning.
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TABLE 5 | Overview of the dexterous manipulation solved by RL from scratch.

References Method Manipulator Sensors Environment Tasks

Popov et al. (2017) Improved DDPG Jaco arm - Simulation only Lego assembly

Fakoor et al. (2020) DDPG++ ADROIT hand - Simulation only Door opening

He and Ciocarlie (2021) DisoSyn (based on

PPO)

Shadow hand - Simulation only Multi-tasks

Huang et al. (2021) DDPG+HER+Multi-

task

learning

Shadow hand - Simulation only In-hand rotation

Katyal et al. (2016) DQN Modular Prosthetic

Limb (MPL)

- Simulation only In-hand manipulation

Li S. et al. (2019) DDPG+HER Shadow hand - Simulation only Solving a 2*2*2 Rubik’s

Cube

Omer et al. (2021) MPC-SAC Dclaw and Shadow

hand

- Simulation only Valve-turning and

manipulating a cube

He et al., 2020
Soft HER Shadow hand - Simulation only Hand manipulate block and

others

Xu et al. (2021) SAC Allegro hand tactile sensors Simulation only Playing piano

Kumar et al. (2016) RL with linear-Gaussian

controllers

(model-based RL)

Adroit platform pressure sensors

and piston length

sensors

Simulation and

real robot

Hand positioning and object

manipulation

van Hoof et al. (2015) NPREPS (van Hoof

et al., 2015)

An under-actuated

compliant robot hand

Tactile sensor Real world Rolling an object between

fingertips

Nagabandi et al. (2020) PDDM (model-based

RL)

Shadow hand Camera tracker Real world Baoding balls

Haarnoja et al. (2019) SAC Dclaw Visual sensor Real world Valve rotation

Zhu H. et al. (2018) TNPG Dclaw and Allegro

Hand

- Real world Valve Rotation and Door

opening

Gupta et al. (2021) MTRF D’Hand - Real world Pipe insertion and In-hand

manipulation

FIGURE 6 | Two types of combination of RL and demonstration.

The demonstration data also can be stored to provide
an auxiliary part in the reward function. Considering the
state-action pairs trajectories are not available all the time,
Radosavovic et al. (2020) proposed State-Only Imitation
Learning (SOIL) where an inverse model is also learned to

infer the action for the demonstrated state. An important
work combining reinforcement learning and imitation learning
is generative adversarial imitation learning (GAIL), which is
used widely in the domain of dexterous manipulation (Zhu
Y. et al., 2018) DexMV (Qin et al., 2021). Orbik et al.

Frontiers in Neurorobotics | www.frontiersin.org 10 April 2022 | Volume 16 | Article 86182525

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu and Wang Dexterous Manipulation for Multi-Fingered Robotic Hands

(2021) adopted the inverse reinforcement learning method
and improved the original algorithm to the problem that the
learned rewards are strongly inclined to the demonstrated
actions using statistical tools for random sample generation and
reward normalization.

In the second class, the demonstrations are usually stored

in the replay buffer and act as online knowledge to provide
guidance. Jeong et al. (2021) used a set of waypoints (pose)
tracking controllers as a suboptimal expert. The demonstration
data were used in the exploration process occasionally by
intertwining with the online interaction data. And, the
combination of the exploration strategy and the Relative Entropy

Q-Learning (REQ) algorithm called REQfSE outperformed the
DDPG from demonstrations (DDPGfD) (Vecerik et al., 2018)
and MPOfD (Jeong et al., 2019) on several tasks, such as single-

arm stacking in the simulation environment. Garcia-Hernando
et al. (2020) used the imperfect estimated hand pose as a
demonstration. The action was combined between the hand
pose estimation from inverse kinematics (IK) and the output
of the residual policy network for imitating the hand pose in

the real world more accurately. Because of its sheer volume and
availability, a raw video is an appealing form of demonstration
data. DexMV (Qin et al., 2021) just adopted this idea. They
estimated the hand-object pose from raw video and used the
estimation as demonstration data to learn robust policy with
imitation learning. This work is a great beginning for further
research in dexterous manipulation or any other vision-based
research related to imitation learning.

According to the analysis previously, a summary of the works
in this section is listed in Table 6.

Dexterous Manipulation From Simulation
to Real Robotics
Benefiting from the parallel and powerful computations,
collecting data in simulators is easier and safer than that in
the real world. Therefore, learning in simulation and then
transferring the learned policy to a real robot is appealing
to researchers. However, the discrepancies between simulation
and real robot make the transformation challenging, which are
generally called “reality gaps” including dynamics differences
of engines, and so on. Transforming the policy directly to
the real world may cause various consequences, the lesser of
which is a decline in success and the more serious of which
is the instability of the system that may destroy the robotic
hands or the environment. Hence, closing the reality gap is
the main issue when mentioning the sim-to-real problem. For
narrowing the gap, some researchers focused on building higher
fidelity simulators such as MuJoCo (Todorov et al., 2012),
PyBullet (Coumans and Bai, 2016), and Gazebo (Koenig and
Howard, 2004). However, it is generally accepted that the
improvement of simulators will not bridge the gap completely.
The typical approaches for bridging the reality gap in the
domain of dexterous manipulation with multi-fingered robotic
hands with RL are depicted in Figure 7 and the application
of these approaches in this domain will be introduced in the
following part.

The sim-to-real problem is not unique to the field of
reinforcement learning or dexterous manipulation, but general
problem in machine learning. The main approaches widely
used for closing the reality gap are system identity, domain
randomization, and transfer learning including domain
adaptation and progressive networks. However, on account
of that the models of multi-fingered robotic hands and the
complex environment are impossible to be accurately built in
the simulators. The simplest system identity method is not
desirable and other approaches must be considered. Instead of
building an accurate model of the real world in system identity,
the main idea of domain randomization is to randomize the
simulation with disturbance. The elements can be randomized
and include many aspects which can be roughly divided into
parts visual randomization and dynamic randomization. For
instance, the randomization of lighting, textures of the object,
and the positions of the cameras belong to visual randomization,
and the randomization of surface friction coefficients, the contact
model, and the object mass belong to dynamics randomization.
Through exposure to various environments, the learner trained
in simulation can adapt to a wide range of environments. So
for the learner, the real world is just a disturbed environment.
More details of the sim-to-real problem can be seen in Zhu et al.
(2021).

The idea of randomization is widely adopted in the sim-
to-real problem of dexterous manipulation (Allshire et al.,
2021). For instance, in the work of Zhu H. et al. (2018), only
visual randomizations were adopted for zero-shot transfer from
simulation to reality. Unlike learning policies robust to senses
with high variation mentioned before, Kumar et al. (2019)
focused on the variation of object appearance and geometry
such as object mass, friction coefficients between the fingers
and object, PD gains of the robot, and damping coefficients
of the robot joints. Visual sensing is used to abstract away
the uncertainties into a succinct set of geometric features and
tactile sensors are adopted to compensate for the inaccurate
approximation. After training in the simulation, a zero-shot
transfer is achieved on the real robot for a grasping task.
Similarly, the idea of randomization of friction, object mass, and
object scale was also adopted by Allshire et al. (2021), where the
training process was carried out in IsaacGym (Liang et al., 2018).
The notable work accomplished by OpenAI (Andrychowicz et al.,
2020) also adopted the approach of domain randomization to
transfer the policy learned in the MuJoCo simulator to a real
Shadow hand. Apart from visual randomizations and physics
randomizations, a lot of other randomizations were adopted.
Through extensive randomizations, the learned policy got a great
performance in the real robot system without any fine-tuning.
The success of this work demonstrates that the gap between the
simulation and reality can be narrowed to a usable level. Later,
they improved the algorithm to solve a more complicated task of
solving a Rubik’s cube (Open et al., 2019). The concept of domain
randomization was also considered, however, they improved it
for a better format, namely automatic domain randomization
(ADR). The main improvement compared to classic domain
randomization lies in the automatic change of the distribution
ranges leaving out tedious manual tunning. Furthermore, unlike
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TABLE 6 | Overview of the dexterous manipulation solved by RL with a demonstration.

References Method Manipulator Sensors Environment Form of

demonstration

Tasks

Qin et al. (2021) DexMV Adroit Hand - Simulation only Raw video Relocating, pouring

and placing inside

Zhu H. et al., 2018
DAPG Dclaw and Allegro

Hand

- Real robot kinesthetic

teaching

Valve Rotation, Valve

Rotation and Door

opening

Orbik et al. (2021) IRL Adroit Hand - Simulation only CyberGlove Object relocation, tool

use, in-hand

manipulation and door

opening

Rajeswaran et al.

(2018)

DAPG Adroit hand - Simulation only CyberGlove Object relocation, tool

use, in-hand

manipulation and door

opening

Gupta et al. (2016) Learning from

demonstrations

algorithm based

on the GPS

RBO Hand 2 Phase space

Impulse system

Real robot LED marker

tracking the

motion of the

object

demonstrated by

human

Turning a valve,

pushing beads on an

abacus, and grasping a

bottle from a table

Jeong et al. (2021) REQfSE Bimanual Shadow

Hand

- Simulation only Waypoint

controllers

LEGO stacking

Alakuijala et al. (2021) RRLfD Adroit Hand - Simulation only Script or a

previously trained

RL agent

Object relocation, tool

use, in-hand

manipulation and door

opening

Radosavovic et al.

(2020)

SOIL Adroit Hand - Simulation only virtual reality

headset and a

motion capture

glove

Object relocation, tool

use, in-hand

manipulation and door

opening

FIGURE 7 | Category of approaches for sim-to-real in this domain.
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TABLE 7 | Overview of the dexterous manipulation from simulation to reality.

References RL Sim2Real Manipulator Simulator Sensor Task

Andrychowicz et al. (2020) PPO Domain

randomization

Shadow hand MuJoCo physics

engine (Todorov

et al., 2012)

3D tracking

system and RGB

cameras

Manipulating a

block

Open et al. (2019) PPO Automatic domain

randomization

Shadow hand MuJoCo physics

engine (Todorov

et al., 2012)

3D tracking

system and RGB

cameras

Solving a Rubik’s

cube

Zhu Y. et al. (2018) A method based

on

GAIL(IL)+PPO(RL)

Domain

randomization

Jaco arm MuJoCo physics

engine (Todorov

et al., 2012)

RGB cameras Block lifting and

stacking

Kumar et al. (2019) Contextual RL

(PPO)

Domain

randomization

Allegro hand - RGB cameras and

Tactile sensor

Grasping

Allshire et al. (2021) PPO Domain

randomization

TriFinger IsaacGym RGB cameras In-hand

manipulation

Rusu et al. (2017) A3C Progressive net Jaco arm MuJoCo physics

engine (Todorov

et al., 2012)

RGB cameras Reaching to a

visual target

Fernandes Veiga et al.

(2020)

Hierarchical

control (RL+

tactile feedback

control)

Hierarchical RL Allegro hands PyBullet Coumans

and Bai (2016)

simulation

environment

Tactile sensor In-hand

manipulation

fixed distribution ranges in classic domain randomization, the
distribution ranges are allowed to change in ADR instead.

The intuition of transfer learning is leveraging the data from
a source domain where the data are abundant and sufficient
to help learn a robust policy in the target domain with little
data. The progressive network proposed by Deepmind (Rusu
et al., 2016) is a unique structure of a neural network with
the ability to use the knowledge of the previous task for the
new task without catastrophic forgetting. Later, they adopted
this idea for robot manipulation (Rusu et al., 2017). Also,
some researchers focused on the RL algorithm itself such as
hierarchical decomposition RL (Fernandes Veiga et al., 2020)
to bridge the reality gap. Considering that the privileged
state information is not available in reality, researchers usually
used rendered pictures as observation (Open et al., 2019;
Andrychowicz et al., 2020). However, the accurate privileged
state information in a simulator can accelerate the training
process and get a better policy. An idea of teacher-student
training which transfers the better teacher policy to a student
policy that only uses sensory inputs was adopted in (Chen
et al., 2021) for accelerating the training process in real
world. A summary of the works in this section is listed in
Table 7.

CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Although the methods mentioned in this paper already solved
part of the dexterous manipulation problems, we are still a long
way from making the robotic hands as dexterous as human
hands. And the complexity of the multi-fingered robotic hand
system, such as uncertain models, dimensional disaster has
restricted the development of RL in dexterous manipulation with

multi-fingered robotic hand domain. In general, the challenges
the community is facing in this domain are as follows:

• Sample inefficiency: The demand of more data limits the tasks
which can be solved by RL from scratch to a narrow scope.

• Tradeoff between exploration and exploitation: Through
exploration, the robot can get more information about the
environment, but random behavior may not get rewards
in tasks with sparse rewards, which would not make the
algorithm converge. On the other hand, exploitation gives
more knowledge about the environment to make the best
decision, but the deficiency of information may lead to a
locally optimal solution. Therefore, two questions should be
answered: how to explore efficiently and effectively and when
to transition from exploration to exploitation.

• Choosing of suitable manipulator: High stiffness improves
precision but lacks flexibility and may damage the
environment, whereas low stiffness (i.e., soft robotic
fingers) improves robustness but suffers from inaccuracy.
Furthermore, there is a tradeoff between dexterity and
control simplicity.

• Reality gap: Despite the methods such as domain
randomization mitigating the gap to the extent of one-
shot transferring, the reality gap is also a problem that cannot
be ignored.

• High cost of time and resources: A long time is required
for obtaining a robust policy in terms of large-scale
experiments. Furthermore, the multi-fingered robotic hands
are so expensive and fragile that maintaining and repairing
these robotic hands costs much. The immense requirement
keeps such success at the laboratory level.

• Poor generalization ability: In general, the learned policy only
fits to the specific task and robot, generalizing the policy to
different robotic hands and tasks remains challenging.
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• Hardware limitations: The high demands on the sensors makes
it challenging to achieve the dexterity of a human hand.
Moreover, the rigid plastic and metal components of the
current robotic hands are the main reasons for the lack of
dexterity. Although a variety of commercial products are
available, their touch sensors are rigid and their placement is
limited to the fingertips and along the limb segments, which is
not desirable.

• Complex manipulation is still unavailable: Although some
simple tasks such as pick-and-place, throwing, sliding,
pivoting, and pushing can be done, some more complex tasks,
especially those that change the shape of objects (cutting,
crushing) are unavailable. A model of the deformation and
advanced perception to monitor the changes is required.

To meet the challenges and accelerate the process of robotic
hands intelligence, the future directions for researchers can be
summarized below:

� More advanced simulators: Although some great simulators
can be as fast as realistic or even faster in many cases, the
existing simulators have certain limitations for emulating
some elements of the environment. The more advanced the
simulators are, the better performance in transferring the
policy learned in simulation to reality. Furthermore, more
manipulation scenarios are more desirable.

� Fusion of sensors: For more accurate information about
the system, the visual sensing information used widely in
the previous works is not sufficient, so multimodal sensory
signals which include, but are not limited to, tactile and
temperature signals should be used to represent the state of
the system.

� Improvement of the algorithm: The rewards in the existing
algorithms are typically designed carefully and only simple
tasks such as reaching and pushing can be accomplished with
sparse rewards. For this problem, informed exploration may
be helpful. Furthermore, the adaptation to the variations of
both the robot variations and variations in the environment is
essential for working gracefully. Therefore, more sophisticated
methodologies must be found for dealing with these problems
and accelerating the training process.

� Semantic understanding: Learning to understand the
environment and the task and following the human order are
also vital skills for a robot to work with more intelligence. For
a given order from voice or other forms, a robot should know
what to do and how to do the task.

� Improvement of robotic hands: Although there have been
many robotic hands in this domain, the limited dexterity of the
simple end-effector and the fragility and characteristics that

are not conducive to controlling the complex dexterous multi-
fingered hands hinder the development of the domain. The
tradeoff of the dexterity and the complexity of control should
be balanced.

� Manipulation in media such as water or oil: The existing
successful examples of dexterous manipulation are all
in the air. However, for some special tasks, such as
underwater operation, the ability to manipulate in the water
is especially important.

� Deeper study in basic theoretical: Currently, the model of soft
point-contact and stability rules for both point contacts and
surface contacts, which are vital for modeling the system,
are not available. Although the model is not essential for
a learning-based approach, the emphasis on theory may be
conducive for a better simulator.

CONCLUSION

In this paper, we present a brief overview of the reinforcement
learning solutions for dexterous manipulation, focusing
mainly on reinforcement learning, reinforcement learning
from demonstration, and transfer learning from simulation to
reality. The application of reinforcement learning in dexterous
manipulation with the multi-fingered robotic hand is mostly
hampered by the high cost of collecting sufficient data for a great
policy. At present, the common and effective ways for mitigating
data inefficiency issues are learning from demonstration and
transferring the learned policy in simulation to the real world.
However, compared with the tasks that humans can handle
easily, what the multi-fingered robotic hands can do is still
very limited. Despite this, we believe that the reinforcement
learning-based solution can do a lot as the research goes further.
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INTRODUCTION

Rehabilitation robotics, prosthetics, and assistive robotics are a hard business—especially,
controlling a rehabilitation robot or a prosthesis is difficult, not only because the user needs to learn
to use the device and, possibly, re-learn to use his own body, but also because designing, building,
and testing the related control system is difficult. How can a person with no hands, or with severely
reduced mobility, let the device know-how and when to grasp, stand, or help perform a reaching
movement? Whenever the user’s residual ability permits it, an appealing solution, consisting of
gathering signals from (intent detection, ID) and stimulating (somatosensory feedback, SF), the
peripheral nervous system (PNS), in order to build a bidirectional human-machine, interfaces
fostering a deep, synergistic connexion between user and machine (Beckerle et al., 2018).

Now, one of the major hurdles in this field is the generally bad quality of the signals one is
interested in gathering and using. Signals coming from the PNS of an impaired user are, per se,
less stable, reliable, and repeatable than those obtained by able-bodied subjects; moreover, signals
gathered in controlled conditions, e.g., while the user sits in a laboratory, can differ dramatically
from those the same user produces while trying to perform the same actions in real life (Jiang
et al., 2012), hampering the translational potential of research. This problem is being tackled by
introducing machine learning able to progressively couple with the user over time (Hahne et al.,
2015), allowing for direct, continuous, and sustained interaction with him (Nowak et al., 2018) and
by shifting the focus from off-line lab testing to early deployment on end-users in the clinics. There
is, however, a second major inherent problem: PNS signals are hard to find. Either we try and build
a direct connection to the nerves and/or the muscles (invasive approaches) or we listen to their
surface manifestation (non-invasive approaches). Invasiveness means better signals at the price of
surgery, to various levels of discomfort for the patient; non-invasiveness is user-friendly and won’t
violate bodily integrity but yields less clear distorted signals. So, we face a trade-off between the
quality of the signals and the quality of user life.

As electronics are more and more integrated with the body, however, more acceptable
minimally invasive surgery and permanent implants appear, and their safety and reliability grow.
So, eventually, tighter physical integration of man and machine could become tolerable and
desirable. In a recent perspective paper, (Farina et al., 2021) concur that, at least in prosthetics,
where PNS signal processing is the main means to achieve control, osseointegration, targeted
muscle reinnervation, and implanted sensors and stimulators are majorly way ahead toward high-
performance bionic limbs. One of the messages of the paper is that as technology advances and
brings us closer to the biological integration of man and machine, invasive or minimally invasive
approaches becomemore andmore appealing, to the point of, eventually, overcoming non-invasive
ones and becoming standard.

In this short paper, on the other hand, I argue that PNS non-invasive techniques for both
ID and SF will still be indeed preferable in the mid-term. Given the technological advancements
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we are witnessing in the fields of bodily surface sensing
and stimulation, the advantages non-invasive techniques enjoy
will still constitute an unsurmountable gap at least in the
decade to come. I first talk about non-invasive versus invasive
techniques in intent detection (the feed-forward path, section
Intent Detection), then in somatosensory feedback (the feedback
path, section Somatosensory Feedback), and finally I draw some
concluding remarks (section Discussion).

INTENT DETECTION

Control of motorised prostheses via “neural” signals started in
the 50s, when two surface electromyography (sEMG) sensors
were used to determine the speed of opening/closing of a
mechanical one-degree-of-freedom gripper (Fougner et al.,
2012). This has remained the clinical standard till the mid-2000s,
when multi-fingered prosthetic hands started to appear, calling
for a more refined form of control, relying on classification
(machine learning) applied to sEMG. Despite the promising
perspective of the idea though, still, today there are only two
commercial ID systems based upon the classification of sEMG:
the Complete Control by Coapt Engineering1 and the MyoPlus
by Ottobock2, thus, relying on 6-8 single sensors and basic
classification. This is not surprising; in general, given the huge
variety of daily-living situations, the “one-shot” pattern matching
(data collection/model building/control) is unfit for the task
(Nowak et al., 2018).Moreover, PNS surfacemethods, to different
degrees, all suffer from sensor displacement caused by donning
and doffing, short- and mid-term changes in the morphology
of the body, variations in skin impedance, and sensor lift-off
(Merletti et al., 2011). The reduced number of sensors that can be
embedded in a prosthetic socket is usually insufficient to provide
a proper view of muscular activity in the residual limb, and
alternative approaches such as pressure sensing and ultrasound
scanning are still in the academic prototyping phase (Castellini
et al., 2014).

More invasive approaches, on the other hand, promise to
provide more focussed, clearer signals, and, as the technology
of man-machine integration advances, their appeal increases
(Farina et al., 2021). PNS invasive techniques entail different
degrees of invasiveness, from the injection of miniaturised EMG
sensors into the muscles (Weir et al., 2009) to osseointegration
(Ortiz-Catalan et al., 2014) and targeted muscle reinnervation
(Aszmann et al., 2015); depending on the severity of the
impairment then, patients might agree to stand surgery.

Nevertheless, besides the absence of surgery, surface ID
approaches rely on technology requiring (almost) no direct
interfacing to biological tissue. Improving surface sensing means
achieving higher resolution, both in time and in space, and
pushing on miniaturisation; and to achieve this, no complex
biological interfaces are needed. To me, this means that,
for a long time to come, the non-invasive approaches will
still maintain a technological advantage over invasive ones.

1https://coaptengineering.com
2https://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-

overview/myo-plus/myo-plus.html

High-density wearable sEMG arrays comprising ∼120 sensors
sampled at 2 kHz have recently appeared (e.g., the MuoviPro
by OTBioelettronica3), as well as ultraminiaturised ultrasound
scanning devices, whose transducer array fits in the size of a coin
(Fournelle et al., 2021). Both systems deliver an unprecedented
precision, both in time and space, in the detection of residual
muscle activity.

To sum up, high-density surface approaches, coupled with
“life-long” interactive machine learning, are not limited to the
one-shot schema (Castellini et al., 2015; Beckerle et al., 2018)
and shall overcome the problems that are typically associated to
non-invasiveness (low density and unreliability in time) at no
additional burden for the user. For this reason, I argue, they will
still represent the methods of choice in the short- and mid-term.

SOMATOSENSORY FEEDBACK

Similar remarks hold, in my opinion, as far as SF is concerned.
By SF in this specific framework mechanical or electrical signals
are provided to the user’s somatosensory system, which relates
to the status of the rehabilitation device and/or the environment
(Beckerle et al., 2018). SF enables closed-loop human control
of rehab- and assistive devices: through repeated, stable and
identifiable patterns of SF stimulation, corresponding to actions
of the device, the user increases the sense of agency (being in
control) and ownership (being a part of the self) over it, leading
to embodiment and—at least, this is the current opinion in the
community—reciprocal adaptation and optimal control (Hahne
et al., 2015). The goal is to provide a rich set of feelings to
the user, both in terms of the type of feeling (touch, pressure,
temperature, texture, etc.) and of its intensity, responsiveness,
and appropriateness. At the same time, the stimulator and
control system must be as small, lightweight, and low-power as
possible (Došen et al., 2017).

Given these goals and despite the spectacular advancements
appearing in the scientific literature in the past years, invasive
SF is still far from being clinically applicable. Although
experiments are reported, in which direct electrical stimulation
of peripheral nerves has enabled users to discriminate several
tens of spatially stable sensations, such implants are mostly
temporary (remarkable exceptions to this are reported, e.g., in
Petrini et al., 2019; Ortiz-Catalan et al., 2020), and involve
complex surgical procedures; also, nociception seems to be a
non-negligible associated issue (Davis et al., 2016). Non-invasive
SF, on the other hand, has recently evolved from bulky sets
of a few vibrotactile/mechano-tactile actuators to hundreds of
high-density electrical stimulators. Electro-tactile stimulation
(ECS), for example, works by injecting small electrical currents
across the skin, thereby not affecting muscle contractions,
and maintaining compatibility with sensing techniques for
intent detection (e.g., sEMG, see Došen et al., 2017). High-
density integrated ECS delivers highly differentiated stimuli,
both qualitatively and quantitatively, at essentially no additional
psychological burden for the user (Dideriksen et al., 2022;
Isaković et al., 2022). In my opinion, any advantage delivered

3https://www.otbioelettronica.it/component/sppagebuilder/?view=page&id=150
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by direct connection to the afferent nerves, e.g., cuff or intra-
fascicular electrodes [and there is ample evidence for their
effectiveness, see for instance (D’Anna et al., 2019; Petrini et al.,
2019)], needs to face an inevitable acceptance gap; moreover,
here, too, as it was the case for ID, the technologies involved
in ECS vs. invasive techniques belong to two different levels
of maturity.

DISCUSSION

This work has concentrated on prosthetics; nevertheless, in
my opinion, similar remarks apply to rehabilitation robotics—
to a lesser extent, indeed, but in an important way. The
usage of ID and SF in the management of rehabilitation
exoskeletons, exo-suits, and virtual reality environments is
still in its infancy, since robotic therapies for, e.g., stroke
survivors and patients with SCI are still largely based upon
repetitive motions, not initiated by the patients (if not via
verbal interaction with a therapist). Here, PNS interfacing is
a second-class denizen, although progress in this direction
is being made (Lobo-Prat et al., 2014; Sullivan et al., 2017),
since, as opposed to the case of prosthetics, patients in
rehabilitation are supposed to engage in their therapy only
for a limited amount of time and already suffer from
neural conditions. For these reasons, it seems to me that
ID/SF techniques in rehabilitation should be kept even
more non-invasive.

Non-invasive techniques for sensing and stimulation in
prosthetics have clear advantages over invasive ones; both in
terms of their immediate applicability, but also in perspective,
since they do not need direct interfacing with the nervous system.

This is just my informed opinion, and this paper is not meant

as a survey, and, for sure, does not exhaustively cover the field;
so, my statement may be challenged or even overturned in a
few years. Still, the technological advancement of non-invasive
techniques is faster, and I believe that their advantage over
invasive techniques will remain significant for at least one decade;
they will still be preferable to invasive ones. Of course, as the
technology of invasive techniques progresses, too, there could
be a point in the future at which they will be as convenient as
non-invasive ones. Mixing invasive and non-invasive techniques
could, at that point, be an interesting option to take out the best of
both worlds, for instance, coupling ultrasound-based ID and SF
are given by implanted stimulators (a thorough review, providing
a unified view of such techniques, is found in Shokur et al., 2021).
A life-long adaptive form of machine learning will be needed, just
as it is today, to reach optimal control of any reha- or assistive
device. If it is true that more good data is better, it is also true that
data from impaired users change in time, whatever the source of
data is, and in that case, a strategy to determine which data to
use or to emphasise will be needed. True adaptation to the user
should provide this possibility.
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With the advance in algorithms, deep reinforcement learning (DRL) offers solutions to

trajectory planning under uncertain environments. Different from traditional trajectory

planning which requires lots of effort to tackle complicated high-dimensional problems,

the recently proposed DRL enables the robot manipulator to autonomously learn

and discover optimal trajectory planning by interacting with the environment. In this

article, we present state-of-the-art DRL-based collision-avoidance trajectory planning for

uncertain environments such as a safe human coexistent environment. Since the robot

manipulator operates in high dimensional continuous state-action spaces, model-free,

policy gradient-based soft actor-critic (SAC), and deep deterministic policy gradient

(DDPG) framework are adapted to our scenario for comparison. In order to assess our

proposal, we simulate a 7-DOF Panda (Franka Emika) robot manipulator in the PyBullet

physics engine and then evaluate its trajectory planning with reward, loss, safe rate,

and accuracy. Finally, our final report shows the effectiveness of state-of-the-art DRL

algorithms for trajectory planning under uncertain environments with zero collision after

5,000 episodes of training.

Keywords: reinforcement learning, neural networks, trajectory planning, collision avoidance, uncertain

environment, robotics

1. INTRODUCTION

Multi-Degree-of-Freedom (Multi-DOF) robotic arm is widely used in a variety of automation
scenarios, including the automotive industry, equipment fabrication, food industry, health care,
and agriculture. In the past, Multi-DOF robotic arms usually operated in isolated, structured
environments, and tasks that need to adapt to actual conditions are often done by humans. Human-
Robot Collaboration (HRC) combines the flexibility of humans and the efficiency of robots, making
manufacturing more flexible and productive (Vysocky and Novak, 2016). However, it is a challenge
for traditional motion planning algorithms to define a safe, collision-free HRC system, since all its
parameters are established based on a specific environment which makes it difficult to adapt new
workspace. Probability Road Map (PRM) and Rapidly-exploring Random Tree (RRT) for instance,
are not suitable for dynamics environments, since they require higher real-time performance of
algorithms to deal with dynamic obstacles, i.e., they need to construct a real-time mapping of
obstacles in the configuration space so as to plan a collision-free path, which is very computationally
expensive (Adiyatov and Varol, 2017; Kurosu et al., 2017; Wei and Ren, 2018; Wittmann et al.,
2020; Jiang et al., 2021; Liu et al., 2021). Another common approach, potential field (PF), has
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less computation and better real-time control compared to PRM
and RRT, however, it often gets stuck in the local minimum, and
has limited performance when the obstacles are in the vicinity of
the target (Flacco et al., 2012; Lu et al., 2018, 2021; Xu et al., 2018;
Melchiorre et al., 2019; Zhou et al., 2019). Therefore, finding an
efficient, safe, and flexible motion planning algorithm is required.
Reinforcement learning (RL) paves an alternative way to solve
these challenges, especially in many high-dimensional tasks or
games, RL can exhibit its outperformance. In DeepMind, it is
even thought to be enough to reach general AI (Shanahan et al.,
2020).

Recently, deep RL, which leverages neural networks as
function approximation, has been proven its effectiveness in
many different kinds of high complexity of robotic control tasks.
Joshi et al. (2020) shows multiple RGB images with double-
deep Q-learning can reach over 80% success rate in different
grasping tasks without training on a large dataset. In Gu et al.
(2017), the robot learns to complete a door opening task with
DDPG and Normalized Advantage Function algorithm (NAF)
with only a few hours of training. Another example shown
in Haarnoja et al. (2018a) with soft Q-learning a robot can
learn how to stack Lego blocks together within 2 h of policy
training. Therefore, we carry out an idea, using the DRL-based
method to tackle complex trajectory planning under uncertain
environments. However, deep RL still faces some challenges: (1)
defining an appropriate reward function is not straightforward,
especially dealing with high dimensional problems, it is easy to
obtain the result we incentivize instead of what we intended.
(2) In simple tasks, normally an RL agent can discover an
optimal policy in a short period, however when encountering
complex tasks it may take a few million training steps to
achieve the desired result. (3) It is hard to prevent an RL agent
from overfitting, to overcome this problem an agent should be
trained on a large distribution of environments, but it’s very
computationally expensive.

In this article, collision-free trajectory planning under
uncertain environments is tackled with state-of-the-art DRL
algorithms. Since the robotic systems are high dimensional
and the state, action space is continuous, model-free Deep
Neural Networks (DNN) approaches for Q- and policy-function
approximations are used, which has shown its effectiveness in
Amarjyoti (2017). Moreover, we expect our approaches to be
more suitable for continuous and stochastic environments as well
as to have higher sample efficiency and stability, we leverage
a combined version, actor-critic based network, which updates
the policy network for better action choices also updates the
value network for more precise evaluation on policy at each step
(Sutton and Barto, 2018). The primary contributions of this paper
are summarized as follows:

• Construct an appropriate dense reward function that includes
distance-to-goal reward and distance between obstacles
reward, and the weight between both rewards is tuned by
comparing the performance across different random seeds,
in order to make sure the robot manipulator can follow
the goal as long as possible, while also avoid collision with
dynamic obstacles.

• Build an uncertain environment in a physics engine to
simulate a human coexistent environment and apply state-
of-the-art DRL algorithms to 7-DOF robots. Then compare
the accuracy, safe rate, and reward of two model-free, policy
gradient-based algorithms, SAC, and DDPG.
• To further improve learning efficiency and stability, the state

space of goal and obstacles are set to relative position and
velocity instead of absolute so that the RL agent can learn the
correlation between the end-effector and obstacles as well as
the goal, as shown in Section 4.

The rest of the article is structured as follows. Section 2
discusses the study related to the traditional trajectory planning
method. Section 3 presents our method and its workflow. Section
4 demonstrates our experiment setup and evaluation of our
proposed approaches. Section 5 gives the conclusion of this
article and future study.

2. RELATED STUDY

There are currently some possible solutions to trajectory
planning and obstacle avoidance. With its probability
completeness and exploration efficiency, the RRT has been
widely applied in Multi-DOF manipulator’s collision-free
trajectory planning. Adiyatov and Varol (2017) introduced
RRT Fixed Nodes Dynamic (RRT*FND), with the procedures
of Reconnect and Regrow in the RRT*FND algorithm, the
manipulator can repair the path with an average of 300 ms when
encountering an invalid path caused by a dynamic obstacle. Wei
and Ren (2018) proposed an improved RRT algorithm, called
Smoothly RRT (S-RRT), to generate a smoother path and more
stable motion when avoiding obstacles which have shown better
exploring speed and exploring efficiency than Basic-RRT and Bi-
RRT. In a dual-arm robot pick-and-place environment, Kurosu
et al. (2017) regard one of the robot arms as a dynamic obstacle,
leveraging the RRT algorithm to effectively avoid collision with
another arm during pick-and-place tasks. Although RRT-based
algorithm has shown its robustness in either dynamic or static
obstacles avoidance, constantly, and randomly moving obstacles
avoidance, still requires more research.

Another common approach for collision avoidance trajectory
planning is the artificial potential field (APF). This method
leverages the PF force of attraction for reaching the goal and
repulsion for avoiding obstacles. Xu et al. (2018) leverage a
similar algorithm to APF, called velocity potential field (VPF), to
avoid collision with a static/dynamic obstacle and a collaborative
robot arm. They use the velocity of the robot instead of the
distance in APF to avoid suffering from local minima problems
when attractive and repulsive forces/velocities confront each
other on the same line. Flacco et al. (2012) leverage a simple
version of APF, a repulsive vector, generated by the distance to
estimate obstacles velocity for collision avoidance. Melchiorre
et al. (2019) also leverage the repulsive vector with the distance
calculated from the point cloud and have also shown its
effectiveness in avoiding collision with static/dynamic obstacles.
However, the PF has limited performance when encountering
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two obstacles that are placed too close to each other. For example,
if the goal is in-between or behind two close obstacles, the robot
will neglect the goal and turn away.

The other approach is PRM, which takes random samples
from the configuration space of the robot and finds a collision-
free path between the start and goal nodes. Liu et al. (2021)
proposed a Grid-Local PRM that combined a mapping model,
sampling strategies, lazy collision detection, and a single local
detection method. This proposed method can implement for
dynamic path planning for static/dynamic obstacle avoidance.
Wittmann et al. (2020) introduce the Obstacle-related Sampling
Rejection Probabilistic Roadmap planner (ORSR-PRM). They
leverage PRM for trajectory planning and PF for obstacle
avoidance in real-time. Similar to the PF method, the probability
of generating nodes in between narrow passages is very small, and
hence, no path will be planned through the gap.

To overcome the above problem in traditional path planning
methods, we proposed another method. Instead of finding a
path in configuration space or tackling complicated optimization
problems, we leverage the model-free DRL method that allowed
the manipulator to autonomously learn optimal collision-free
trajectory planning in an uncertain environment.

3. METHODS

The four essential parts of RL are policy, reward function, value
function, and model of the environment. With the idea that
an intelligent agent should learn to take a sequence of actions
that will lead to maximizing cumulative rewards interacting
with the environment. Hence, the agent should exploit what it
has experienced in order to obtain rewards, but also explore in
order to make better action decisions in the future (Sutton and
Barto, 2018). The Basic RL problem is modeled as the Markov
decision process (MDP) with elements St , At , P(St+1|St ,At), γ ,
R(St+1|St ,At), where t represents timestep, St and St+1 represent
the current state and next state, respectively, At stands for the
current action, P(St+1|St ,At) stands for the transition probability
of being in St+1 when taking action At in the current state St ,
and γ ∈ [0, 1) represents discount factor which determines
the importance of future rewards, R(St+1|St ,At) represents the
immediate reward received after transitioning from the current
state St to the next state St+1, due to the taken action At . In MDP,
we assume that the transition probability (or the probability of
moving to the next state St+1) depends on the current state St
and the decision action At . But given St and At , it is conditionally
independent of all previous states and actions.

3.1. Deep Reinforcement Learning
In the case of complex systems such as robotic systems, the
explicit model of the dynamics in the environment associated
with MDP, i.e., transition probability function, is often not
available or difficult to define. Therefore, a model-free-based
method is required. Q-learning is one of the most important
breakthroughs in RL also known as the off-policy Temporal

Difference (TD) control algorithm, defined by

Q(St ,At)←− Q(St ,At)

+ α[Rt+1 + γ max
a

Q(St+1, a)− Q(St ,At)],
(1)

where St and At are state and action in timestep t, respectively. α
stands for learning rate. Rt+1 is the obtained immediate reward
due to the taken action At . a represents the action that has a
maximum Q-value from the state St+1. The optimal action-value
function can be directly approximated by the learned action-
value function Q, which dramatically simplified the analysis of
the algorithm and has been proven for convergence (Sutton and
Barto, 2018).

In traditional Q-learning, we utilize Q-table to help track
states, actions, and corresponding expected rewards. However,
for continuous action and state-space such as robotic systems,
it is infeasible to build up a large table. Therefore, we need a
function approximation for the action-value function Q and a
DNN is one of the efficient and easy techniques to approximate a
non-linear function. However, RL with DNN is pretty unstable,
the weights of the network can oscillate or diverge due to the
high correlation between actions and states. To overcome this
issue, we need to leverage two important techniques, Experience
Replay, and Target Network. By Experience Replay, the agent’s
experience at each time step will be stored in replay memory as
the tuple (St ,At ,Rt+1, St+1), and when the replay memory size
is equal to or bigger than a mini-batch size, we then uniformly
sample the memory randomly for a mini-batch of experience
and use this to learn off-policy, in order to break the correlation
(Lin, 1992). Moreover, to make training more stable, a target
network is used for calculating the estimate of optimal future
value max

a
Q(St+1, a) in the Bellman equation, and hence, the loss

function can be defined as

L(θ) = {[Rt+1 + γ max
a

Q(St+1, a; θtarget)]

− Q(St ,At; θprediction)}
2,

(2)

where θprediction are prediction network’s weights updated in every
iteration, whereas θtarget are the target network’s weights, which
are not trained but periodically synchronized with the parameters
of the prediction Q-network.

3.2. The Proposed DRL-Based Trajectory
Planning for Uncertain Environments
In this section, we define the setup for the DRL framework, such
as the state space S , the action spaceA, and the reward function.

3.2.1. State Space
In our experiment the robot manipulator, we used is 7-
DOF, therefore, if we set joint positions and velocity as the
observations, the learning efficiency of the agent is quite low
(Henderson et al., 2018) or may even be unable to find the
optimal trajectory. To overcome this issue, we instead use the
end-effector position pe and velocity ṗe then calculate inverse
kinematic (IK) to control joint position.Moreover, we use relative
position and velocity to the end-effector instead of obstacles or
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FIGURE 1 | The comparison of two different observation spaces set up in the first environment. Both are using soft actor-critic (SAC) and with the same

hyperparameters setting. The orange line is the result using relative position and velocity in observation space, whereas the blue line is using position and velocity. (A)

The safe rate (defined in Section 4.2) of different observation spaces. (B) The accuracy (defined in Section 4.2) of different observation spaces. Each episode

corresponds to 100 time steps.

FIGURE 2 | The comparison between different power (n) of the exponential decay function. (A) The safe rate (defined in Section 4.2) of three different power (n) of the

exponential decay function. (B) The accuracy (defined in Section 4.2) of three different power (n) of the exponential decay using an exponential moving average for

better visualization. The two figures show that n = 35 has better learning efficiency, safe rate, and accuracy.

FIGURE 3 | The comparison between different weights of reward RO. (A) The safe rate (defined in Section 4.2) of three different weights of reward RO. (B) The

accuracy (defined in Section 4.2) of three different weights of reward RO using an exponential moving average for better visualization. The two figures show that

c2 = 15 has better learning efficiency, safe rate, and accuracy.
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the goal position p̄o/p̄t and velocity ˙̄po / ˙̄pt , which has shown
faster convergence and higher stability in Figure 1. The above
information is assumed known and obtained from the sensor.
Furthermore, to increase learning efficiency, we constrain the
manipulator in a specific workspace, and hence, the robot will
only explore its reachable area and the area with the goal nearby.
The State-space S is hence defined as

S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}. (3)

3.2.2. Action Space
As we mentioned in section A, we set the end-effector position
as the observation for better learning efficiency. Therefore, we
can reduce the dimension of actions from seven dimensions to
three dimensions with fixed orientations. The action space A is

defined as

A = {1x, 1y, 1z}, (4)

where 1x,1y,1z are bounded between −0.1 and 0.1 such that
we can avoid sudden movements of the robotic arm in every time
step due to excessive output of the action.

3.2.3. Reward Function
The reward function mixes reward variables into a single output
value and provides feedback for an agent to learn what we
incentive. In our case, we expect the robot to follow the goal
as long as possible while avoiding dynamic obstacles. Therefore,
we define the reward function by a weighted sum of two
terms: First, the distance between the end-effector and the goal.
Second, the closest distance between the robot manipulator and

FIGURE 4 | Reward function on the planar section of the workspace. (A) The 3D plot of the reward function. (B) Contour plot of reward function.

FIGURE 5 | The behavior of the manipulator with respect to the distance(m) in one of the episodes (100-time steps). (A) Distance between robot and obstacles as

well as the target (first scenario). (B) Distance between robot and obstacles as well as the target (second scenario).
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obstacles. Moreover, we use negative a reward over a positive
so that the robot will try its best to avoid penalties and,
hence, can learn as quickly as possible. The reward function is

defined as

R = −c1RT − c2RO, (5)

FIGURE 6 | From left to right, first, the robot learns to reach the goal. Second, avoid collisions with dynamic obstacles. Third, keep reaching the goal.

FIGURE 7 | Performance comparison of SAC and Deep Deterministic Policy Gradient (DDPG) algorithm in the first environment. (A) Accuracy of different algorithms

shown in error bar line graph. (B) A safe rate of different algorithms in the error bar line graph. (C) The cumulative reward for each episode. (D) Loss for each episode.

Each episode corresponds to 100 time steps.
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where RT is the reward obtained from the distance
between the end-effector and the goal using Euclidean
distance (m),

RT =
1

2
d2T , (6)

where dT is the Euclidean distance between the end-
effector and the goal. The reward RO is obtained from
the closest distance (m) between the robot manipulator
and obstacles,

RO = (
a

a+ dO
)n, (7)

where dO is the closest distance from the obstacles computed by
PyBullet. a is set to 1, in order to avoid the denominator equaling
zero when a collision happens. The power of exponential decay
function n = 35 and the weights c2 = 15 are determined
by using trial and error. We set c1 as a fixed value of 500
and tune the parameters n and c2 by evaluating the safe rate,
accuracy, and learning efficiency, as shown in Figures 2, 3

(Since DDPG is more sensitive to parameters, we use DDPG
for comparison; Haarnoja et al., 2018b). In order to show our
reward function has a maximum, we plot our reward function
on the planar section of the workspace, as shown in Figure 4.
Moreover, since the dynamic/static goal and dynamic obstacles
are on the same x-y plane, it can be demonstrated in 3D space

instead of 4D for better visualization. As it can be observed
from Figure 4, the reward decreases as the robot’s end-effector
moves toward obstacles and increases as it moves toward the
goal, and when the end-effector reaches the goal point, the
reward is maximum. The behavior of the robot manipulator
in two environments is also shown in Figure 5. The distance
between the end-effector and goal diminishes as the robot
approaches the goal and when obstacles are close to the body
of the robot, the robot backs off until obstacles move away from
the manipulator.

3.2.4. Deep Deterministic Policy Gradient
Deep deterministic policy gradient (DDPG), introduced in
Lillicrap et al. (2015), is an actor-critic, model-free algorithm
based on the deterministic policy gradient that can operate
over continuous action spaces. Traditionally, in policy gradient-
based algorithms the policy function is always stochastic, i.e.,
it is modeled as a probability distribution over actions given
the current state. In DDPG, the policy function is instead
modeled as a deterministic decision. However, this may lead to
a low exploration issue, and hence, they add additive noise to
the deterministic action to explore the environment, which is
represented as:

µ′(St) = µ(St|θ
µ
t )+N , (8)

FIGURE 8 | Performance comparison of SAC and DDPG algorithm in the second environment. (A) Accuracy of different algorithms shown in error bar line graph. (B)

A safe rate of different algorithms in the error bar line graph. (C) The cumulative reward for each episode. (D) Loss for each episode. Each episode corresponds to

100 time steps.
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Algorithm 1 | DDPG-based trajectory planning.

Input: batch size: B, target smoothing coefficient τ , discount
factor: γ , number of training episode: M, timesteps of each
episode: T
Randomly initialize Q network Q(S,A|θQ) and policy network
µ(S|θµ) with weights θQ and θµ

Initialize target Q network Q′ and target policy network µ′ with

weights θQ
′

← θQ, θµ
′

← θµ

Initialize replay buffer D← φ

Input: A set of observation state S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}
Output: A set of optimal policyA = {1x,1y,1z}

for episode = 1,M do

Initialize a random noiseN for action exploration
Receive initial observation state S1
for t = 1, T do

Select action At = µ(St|θ
µ)+Nt according to the

current policy and exploration noise
Execute action At and observe reward Rt and
observe new state St+1

Store transition (St ,At ,Rt , St+1) in D
Sample a random minibatch of B transitions
(Si,Ai,Ri, Si+1) from D

Set yi = Ri + γQ
′[Si+1,µ

′(Si+1|θ
µ′ )|θQ

′

]
Update critic by minimizing the loss:
L = 1

B

∑
i[yi − Q(Si,Ai|θ

Q)]2

Update the actor policy using the sampled policy
gradient: ∇θµ J ≈
1
B

∑
i ∇AQ(S,A|θ

Q)|S=Si ,A=µ(Si)∇θµµ(S|θ
µ)|Si

Update the target networks:

θQ
′

←− τθQ + (1− τ )θQ
′

θµ
′

←− τθµ + (1− τ )θµ
′

end for

end for

where µ(St)
′ and N are the exploration policy and additive

noise, here, use an Ornstein-Uhlenbeck process. µ(St|θ
µ
t ) and

θ
µ
t are the output action and parameters of the actor-network.
Moreover, the traditional target networks are updated with the
parameters of the trained networks every couple of thousand
steps, which may cause big differences between the two updates.
Therefore, they introduced a soft target update, which is actually
better to make the target networks slowly track the trained
networks, by updating their parameters after each update of the
trained network using a sliding average for both the actor and
the critic:

θ ′ ←− τθ + (1− τ )θ ′, with τ ≪ 1, (9)

where θ and θ ′ represent parameters for the actor- or critic-
network and the target actor- or target critic-network. τ is the
target smoothing coefficient. The Experience Replay mentioned
in Section A is also used here to store past trajectories and
provides samples of them to perform gradient updates for better
learning efficiency. The detailed pseudo algorithm of DDPG-
based trajectory planning is shown in Algorithm 1.

3.2.5. Soft Actor-Critic
Similar to DDPG, soft actor-critic (SAC) introduced in Haarnoja
et al. (2018b), is also an actor-critic, model-free algorithm that
can operate over continuous action spaces, but is based on the
stochastic policy by maximizing the expected reward of the actor
while maximizing entropy, i.e., achieve the goal while acting as
randomly as possible. Hence, the general maximum entropy can
be represented as:

J(π) =

T∑

t=0

E(St ,At)∼ρπ [r(St ,At)+ αH(π(·|St))], (10)

where ρπ and H(π(·|st)) are the policy and the entropy. α is the
temperature parameter for determining the relative importance
of the entropy term against the reward, and hence controls
the stochasticity of the optimal policy. Since SAC is an off-
policy algorithm, the Experience Replay is also used to improve
the learning efficiency. Moreover, in order to decrease the
changes between two updates, the soft target update technique
in Equation (4) is also applied. In Haarnoja et al. (2018b),
they also compare with some other on-policy DRL algorithms,
such as TRPO (Schulman et al., 2015), PPO (Schulman et al.,
2017), or A3C (Mnih et al., 2016), and has shown its higher
sample efficiency. Compare with DDPG, it also has lower
hyperparameter sensitivity and higher stability, which is also
our case shown in Section 4. The detailed pseudo algorithm of
SAC-based trajectory planning is shown in Algorithm 2.

4. EXPERIMENT AND RESULTS

In this section, we show that DDPG and SAC can learn
optimal trajectory planning for dynamic obstacles collision
avoidance. For the evaluation, we compare two different
DRL algorithms with safe rate, accuracy, and reward in two
different environments.

4.1. Environment Setup
In our experiment, we applied the proposed collision avoidance
DDPG and SAC algorithm on a 7-DOF manipulator (Panda
from Franka Emika) simulated in a PyBullet physics engine
and leveraged the RL toolkit Gym. The environment setup
contains a manipulator, a table, a green sphere goal, and three
black sphere obstacles, as shown in Figure 6. Moreover, we
constructed two environments for the evaluation, either a static
goal and dynamic obstacles or a dynamic goal and dynamic
obstacles. Besides, in order to make sure our model can learn
under uncertainty, the starting positions of the goal and three
obstacles are uniformly and randomly sampled in a specific
range, and the goal moving areas are constrained in the robot’s
reachable area.

4.2. Evaluation
We evaluate different DRL algorithms in two defined scenarios
with the safe rate, accuracy, reward, and loss. Each episode
corresponds to 100 time steps, i.e., the robot has to reach the goal
and avoid collision within 100 time steps. The safe rate represents
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Algorithm 2 | SAC-based trajectory planning.

Input: batch size: B, target smoothing coefficient τ , discount
factor: γ , number of training episode: M, timesteps of each
episode: T
Randomly initialize Q network Q1, Q2, policy network π and
value network V with weights θ1, θ1, φ and ψ .
Initialize target Q networks Q′1 and Q′2, target value network V ′

with weights θ ′1 ← θ , θ ′2 ← θ and ψ ′ ← ψ

Initialize replay buffer D
Input: A set of observation state S = {pe, ṗe, p̄t , ˙̄pt , p̄o, ˙̄po}
Output: A set of optimal policyA = {1x,1y,1z}

for episode = 1,M do

Receive initial observation state S1
for t = 1, T do

Select action At ∼ πφ(At|St)
Execute action At and observe reward Rt and
observe new state St+1

Store transition (St ,At ,Rt , St+1) in D
Sample a random minibatch of B transitions
(Si,Ai,Ri, Si+1) from D

Update V by minimizing the mean squared error:
∇ψ JV (ψ) =

1
B

∑
i ∇ψVψ (Si)[Vψ (Si)

−minj=1,2 Qθ ′j (Si,Ai)+ logπφ(Ai|Si)]

Update Q by minimizing the soft Bellman residual:
∇θ1,2 JQ(θ1,2) = ∇θ1,2

1
B

∑
i

{[Qθ1 (Si,Ai)− αR(Si,Ai)− γVψ ′ (Si+1)]
2
−

[Qθ2 (Si,Ai)− αR(Si,Ai)− γVψ ′ (Si+1)]
2
}

Update π by minimizing the expected KL-
divergence:
∇φJπ (φ) = ∇φ

1
B

∑
i[logπφ(Ai|Si)−

minj=1,2 Qθ ′j (Si,Ai)]

Update the target value networks:
ψ ′ ←− τψ + (1− τ )ψ ′

end for

end for

the number of time steps without collision divided by 100 time
steps (one episode),

Safe rate =
number of timesteps without collision

100 timesteps
. (11)

The accuracy stands for a success rate of keeping a distance
between the target within 0.05 m while far away from obstacles,
and 0.12 m while avoiding collision with obstacles (the radius of
obstacles is 0.1 m), therefore, it is not possible to obtain 100% of
accuracy, since it also includes time steps from the rest position
to the target. The accuracy is set as,

Accuracy =
number of timesteps that succeed

100 timesteps
. (12)

The two algorithms’ performances were evaluated in two
different environments using the same set of parameters

respectively, such as learning rate, number of hidden layers, target
smoothing coefficient. The environment settings considered for
the experiments are (1) dynamic goal and dynamic obstacles:
the starting position of both goal and obstacles are uniformly
and randomly sampled in a specific range for each episode,
and moving with constant speed. (2) fixed goal and dynamic
obstacles: the obstacles remain in the same setting as the first one,
but with a fixed goal sampled randomly for each episode.

In each experiment, the safe rate, accuracy, reward, and
loss per episode have been traced during the training process
and compared after 10,000 episodes of 100 time steps each.
The result of the two environments is shown in Figures 7, 8.
From both Figures 7C,D, 8C,D it can be observed that both
algorithms’ cumulative reward converges to their maximum
value, and the losses do not have significant reductions, i.e.,
the robot has learned a stable optimal trajectory planning
under an uncertain environment. Moreover, both Figures 7A,
8A show that SAC performs much more consistently, efficiently,
and higher accuracy, whereas deterministic policy-based DDPG
exhibits high variability between episodes and less stable.
Furthermore, both Figures 7B, 8B demonstrate that SAC can
learn a collision free trajectory with 100% of safe rate within
6,000 episodes, while DDPG still cannot guarantee to reach a
100% of safe rate within 10,000 episodes. Similar results are also
corroborated in Gu et al. (2016) and Haarnoja et al. (2018b). The
reason for that is because the interplay between the deterministic
actor-network and the Q-function makes DDPG unstable and
sensitive to hyperparameters, especially for complex and high-
dimensional tasks, however, DDPG still shows its effectiveness
in both scenarios. Overall, the performance of the stochastic
policy-based SAC is more stable and consistent when dealing
with complex tasks.

5. CONCLUSION AND FUTURE STUDY

In this article, we presented two state-of-the-art off-policy
DRL approaches that can be used to discover optimal
trajectory planning under an uncertain environment. Especially,
stochastic policy-based SAC can achieve an average of 82%
of accuracy in the first scenario and 79% in the second,
moreover, with lower variability between episodes and zero
collision after 5,000 episodes. The results show the clear
potential of the proposed approaches in the application of an
uncertain environment, such as HRC scenarios. The future
study will transfer the trained model from a simulation
environment to real physical robotic manipulators and transfer
the learning skill from simulation to the real environment with
visual sensing.
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The growing interest in neurorobotics has led to a proliferation of heterogeneous

neurophysiological-based applications controlling a variety of robotic devices. Although

recent years have seen great advances in this technology, the integration between human

neural interfaces and robotics is still limited, making evident the necessity of creating a

standardized research framework bridging the gap between neuroscience and robotics.

This perspective paper presents Robot Operating System (ROS)-Neuro, an open-source

framework for neurorobotic applications based on ROS. ROS-Neuro aims to facilitate

the software distribution, the repeatability of the experimental results, and support the

birth of a new community focused on neuro-driven robotics. In addition, the exploitation

of Robot Operating System (ROS) infrastructure guarantees stability, reliability, and

robustness, which represent fundamental aspects to enhance the translational impact of

this technology. We suggest that ROS-Neuro might be the future development platform

for the flourishing of a new generation of neurorobots to promote the rehabilitation, the

inclusion, and the independence of people with disabilities in their everyday life.

Keywords: ROS, ROS-Neuro, neural interface, brain-machine interface, neurorobotics

1. INTRODUCTION

The last few years have seen a growing interest in the topic of neural human-machine
interfaces as a novel—potentially groundbreaking—interactionmodality between users and robotic
devices. In these interfaces, neurophysiological signals are acquired in real-time [e.g., from
electroencephalography (EEG) or from electromyography (EMG)], processed with minimum
delay, and translated into commands for the external actuators. Based on this workflow, researchers
have demonstrated the feasibility and the potentiality of this innovation, in particular for those
people suffering from severe motor disabilities (Kennedy and Bakay, 1998; Hochberg et al., 2012;
Aflalo et al., 2015; Chaudhary et al., 2016; Tonin andMillán, 2021). For instance, the latest advances
in the brain-machine interface (BMI) showed the possibility to exploit brain signals (acquired with
invasive or non-invasive techniques) to control telepresence robots, powered wheelchairs, robotic
arms, and upper/lower-limb exoskeletons (Iez et al., 2010; Leeb et al., 2013, 2015; Liu et al., 2017,
2018; Edelman et al., 2019). In parallel, systems relying on residual motor functions demonstrated
that EMG signals can be re-interpreted and used to precisely drive robotic arms in amputees (Farrell
andWeir, 2008; Castellini et al., 2009; Cipriani et al., 2011; Borton et al., 2013; Parajuli et al., 2019),
to initiate the walking pattern in lower-limb exoskeletons (Sylos-Labini et al., 2014; De Luca et al.,
2019) or to support reaching and grasping tasks with upper-limb exoskeletons (Batzianoulis et al.,
2017, 2018; Betti et al., 2018).
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However, despite such an emerging and promising trend,
the full potential of the field is still unrevealed. Among the
multifaceted and multidisciplinary aspects belonging to the
neurorobotics challenge, herein we propose an engineering
perspective on the development of neural driven robotic devices.
In this regard, we highlight three current drawbacks that
are conceptually and technically narrowing the field: first, the
community suffers from the lack of a common development
platform to spread the latest advances, to consolidate prototypes,
and to compare results among different research groups. Second,
there has been an abundance of home-made solutions that
inevitably led to a heterogeneity of technical approaches to the
same problems and to an absence of standards, making the
reuse of already developed and well-tested code problematic.
Finally, recent research trends keep considering robotic devices
asmere passive actuators of users’ intentions bymostly neglecting
the potential benefits of including robotic artificial intelligence
in the decoding workflow. Furthermore, we speculate that
the lack of technical tools (e.g., a common development
ecosystem) might also conceptually affect the direction of the
current neurorobotics research by slowing down the necessary
integration between neural interfaces and robotics. It is worth
mentioning that a variety of open-source platforms already
exists in the neurorobotics field to acquire, process, and decode
neurophysiological signals (e.g., LSL, BCI2000, OpenViBE, TOBI
Common Implementation Platform, BioSig, BCILAB, BCI++,
xBCI, BF++, PMW, and VETA Brunner et al., 2012; Stegman
et al., 2020). Although each software has specific features and
advantages, they only partially face all the aforementioned
challenges. Furthermore, to the best of our knowledge, neither
of them explicitly targets the integration of robotic platforms nor
do they provide out-of-the-box solutions to directly interact with
external devices.

In the current scenario, we firmly believe in the urgency of
a common and open-source research framework for the future
development of the neurorobotic field. Hence, we spotlight Robot
Operating System (ROS)-Neuro, the first middleware explicitly
devised to treat the multidisciplinary facets of neurorobotics with
the same level of importance, to promote a holistic approach to
the field, and to foster the research of a new generation of neural
driven robotic devices.

2. ROS-NEURO MIDDLEWARE

2.1. Overview
ROS-Neuro has been designed to represent the first open-source
neurorobotic middleware that places human neural interfaces
and robotic systems at the same conceptual and implementation
level. ROS-Neuro is an extension of ROS that for many years
is considered the standard platform for robotics (Quigley et al.,
2009). One of the strengths of ROS is its modularity and the
possibility for different research groups to develop stand-alone
components all relying on the same standard communication
infrastructure. A similar requirement is a cornerstone for
the workflow of any closed-loop neural interface where—
for instance—acquisition, processing, and decoding methods
should run in parallel in order to provide a continuous/discrete

control signal to drive the robotic device. ROS-Neuro not only
exploits such modular design but also provides several standard
interfaces to acquire neurophysiological signals from different
commercial devices to process EEG and EMG signals with
traditional methods and to classify data with common machine
learning algorithms. As in the case of ROS, the aim of ROS-
Neuro is to allow the development of neurorobotic applications
among different research groups as well as the possibility to
easily compare heterogeneous methodological approaches and
to rely and evaluate solutions proposed by others. This is
guaranteed by its multi-process architecture where several stand-
alone executables can coexist and can communicate through
the provided network infrastructure. Moreover, each of these
processes can be easily exchanged between research groups with
the only requirement of sharing the same interface. The concept
of ROS-Neuro has been introduced for the first time in Beraldo
et al. (2018b) and in the following years, authors implemented
and carefully tested packages to acquire, record, process, and
visualize EEG and EMG data (Tonin et al., 2019; Beraldo et al.,
2020). The aim of this contribution is to present ROS-Neuro to
the community by providing a description of its main features
and potentialities.

2.2. Abstraction, Modularity, and Parallel
Architecture
Robotic applications and human neural interfaces share several
similarities in the technical and implementation workflow. As
robotics is traditionally based on the interactions between
perception and planning and action, neural interfaces
rely on the acquisition, processing, and classification
closed-loop where the human plays the twofold role of
generating the input signals and monitoring (as well as
adapting to) the results of the decoding. Tonin and Millán
(2021). ROS-Neuro generalizes such an architecture by
providing modules to gather neurophysiological signals
(rosneuro_acquisition package), to record the
acquired data (rosneuro_recorder), to process and
decode it (rosneuro_buffers, rosneuro_filters,
rosneuro_processing), and to finally infer the intention of
the user (rosneuro_decisionmaking). As in the case of the
packages available in the ROS ecosystem, thesemodules represent
generic interfaces that neither depends on specific hardware
devices nor on particular processing methods. For instance,
rosneuro_acquisition package is designed to work with
plugins that can support different EEG/EMG devices and that
can be independently developed (and shared) by any research
group according to their needs. However, it is worth mentioning
that ROS-Neuro already provides plugins that interface with
the most used commercial acquisition systems (e.g., g.Tec,
BioSemi, ANTNeuro, Cognionics). Similarly, packages like
rosneuro_buffers and rosneuro_filters implement
widely commonly used methods to process neural data such
as spatial filters, DC removal algorithms, and windowing that
can be easily extended and integrated with custom solutions
provided by researchers. Table 1 lists the acquisition systems
(hardware devices and software platforms) compatible with
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TABLE 1 | List of acquisition devices and platforms currently compatible with the rosneuro_acquisition package and the file formats supported by the

rosneuro_recorder.

Hardware Company Driver Plugin Status

rosneuro_acquisition

BioSemi ActiveTwo BioSemi free rosneuro::EGDDevice Tested

MindWave Headsets Neurosky free rosneuro::EGDDevice Untested

Bittium NeurOne Bittium free rosneuro::EGDDevice Untested

g.USBamp g.Tec proprietary rosneuro::EGDDevice Tested

g.NEEDaccess g.Tex proprietary rosneuro::EGDDevice Untested

BitBrain EEG BitBrain proprietary rosneuro::EGDDevice Untested

DSI-24 Wearable Sensing proprietary rosneuro::EGDDevice Tested

CGX Quick-20 Cognionics proprietary rosneuro::EGDDevice Tested

eego sport and mylab AntNeuro proprietary rosneuro::EGDDevice Tested

Ultracortex Mark IV OpenBCI free rosneuro::LSLDevice Tested

LabStreaming layer / free rosneuro::LSLDevice Tested

Tobi Interface A / free rosneuro::EGDDevice Untested

General data format (GDF) file / free rosneuro::EGDDevice Tested

BioSemi data format (BDF) file / free rosneuro::EGDDevice Tested

File format Company Driver Status

rosneuro_recorder

General data format (GDF) / free Tested

BioSemi data format (BDF) BioSemi free Tested

Filter Type Class Status

rosneuro_filters

DC removal Temporal rosneuro::Dc<T> Tested

Common Average Reference Spatial rosneuro::Car<T> Tested

Laplacian derivation Spatial rosneuro::Laplacian<T> Tested

Blackman Windowing rosneuro::Blackman<T> Tested

Flattop Windowing rosneuro::Flattop<T> Tested

Hamming Windowing rosneuro::Hamming<T> Tested

Hann Windowing rosneuro::Hann<T> Tested

Buffer Type Class Status

rosneuro_buffers

RingBuffer FIFO rosneuro::RingBuffer<T> Tested

Application Type Status

rosneuro_visualizer

neuroviz Temporal scope Tested

The table also provides the filters and buffers available in the rosneuro_filters and rosneuro_buffers packages. It is worth noticing that both filters and buffers can be

easily concatenated via configuration file [please refer to FilterChain in Robot Operating System (ROS)]. Finally, neuroviz application is listed—the electroencephalography

(EEG)/electromyography (EMG) scope provided by the rosneuro_visualizer package. In the last column, Untested status means that the related hardware is technically supported

by the plugin but it was not possible to test it.

ROS-Neuro and the supported file formats to store the acquired
data. Furthermore, the filters, buffers, and the application scope
provided by ROS-Neuro are reported.

Another feature of ROS-Neuro is the possibility to
conveniently implement parallel pipelines with the minimum
developing effort. This is of particular interest for many
emerging aspects of hybrid neural interfaces. On the one hand,

these interfaces are designed to simultaneously acquire, process,
and fuse together heterogeneous neurophysiological signals from
several sources [e.g., EEG, EMG, electrooculography (EOG)] in
order to improve the robustness of the whole system (Müller-
Putz et al., 2011). On the other, they can rely on different
processing workflows to decode concurrent tasks performed by
the user. In both cases, ROS-Neuro already exploits the ROS
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optimized communication infrastructure and it can rely on
built-in solutions to synchronize and align data streams from
different processes (e.g., hardware-based trigger) (Bilucaglia
et al., 2020). This enormously facilitates the implementation of
interfaces where—for instance—multiple acquisition processes
are instantiated to simultaneously gather EEG and EMG signals
(Figure 1). Then, specific processing may be applied to EEG
in order to decode the intention of the user to reach an object
with a robotic arm or an upper-limb exoskeleton; at the same
time, residual muscular activity may be exploited to distinguish
the type of grasping. Furthermore, brain signals can be also
analyzed in conjunction with environmental information in
order to recognize potential erroneous actions performed by
the neuroprosthesis.

2.3. Standard Messages and
Communication
The rapid growth of the neurorobotics field, and in particular, of
human neural interfaces has led to the heterogeneity of technical
solutions. In this scenario, one of the main limitations of current
developing frameworks is the custom approaches to sharing
information between the different modules composing the
closed-loop implementation of neural interfaces. Traditionally,
each research group relies on its own data structures to
represent neurophysiological data and custom-made network
infrastructures to implement the communication between the
several processing steps. Such a lack of a common approach
strongly downplays the impact of the technology by limiting the
possibility to share developing tools, to exploit solutions already
implemented, and to replicate results achieved by different
research groups.

ROS-Neuro provides standard messages to exchange data
structures between the modules usually implemented within
neurorobotics applications. Moreover, messages are available
to all modules by the ROS network infrastructure-based peer-
to-peer communication mechanisms. Data acquired by the
rosneuro_acquisition is streamed as NeuroFrame
messages within the ecosystem (Figure 1), where several
modules can subscribe to the stream at the same time
and concurrently process the messages in order to extract
and decode heterogeneous features from neurophysiological
signals. Similarly, the output of the decoder is translated into
NeuroPrediction messages that can be exploited to directly
control the robotic application or to be further processed.
Furthermore, it is worth mentioning that ROS allows to quickly
extend the interface of any message without the need for coding
in order to handle specific, application-related requirements.
As a consequence, ROS-Neuro not only offers the possibility
to conveniently compare different methodological approaches
even during closed-loop operations but also to effortlessly
distribute implementation solutions among different research
groups with the only requirement of providing the standard
message interface.

2.4. Robotic Devices
The straightforward integration between neural interfaces and
external actuators is the most evident advantage of ROS-Neuro

middleware. Traditionally, the inclusion of robotic devices has
been considered a pure technical challenge, and thus, a variety
of home-made solutions has been adopted to deliver the output
of the neural interface to the robot ecosystem. However, the
drawback of this approach is twofold: first, from an engineering
perspective, custom solutions are often not optimized and
efficient with the consequence of an increased risk of technical
faults. Second, the communication stream between neural
interfaces and robotic devices is usually limited to a single uni-
dimensional control signal. This definitely narrows the research
on new human-machine interaction (HMI) modalities and the
introduction of bidirectional communication with the robot to
enhance the robustness and the reliability of the whole system.
For instance, a robot’s intelligence may provide information
about the operational context to the neural interface in order to
modulate the velocity of the decoder response, thus facilitating
the control or preventing the delivery of an erroneous command
according to the current situation. Thus, the level of autonomy of
the neurorobotic device may be changed in the case, for example,
a smart wheelchair crosses a narrow passage or a robotic hand
attempts to grasp an unusual-shaped object (Figure 1).

By construction, ROS-Neuro explicitly provides such a
common and bidirectional communication between the neural
interface workflow and the robotic intelligence by exploiting
the ROS ecosystem and the several packages already available
in the ROS community. Furthermore, the reliability and
robustness of the communication is guaranteed by the ROS
network infrastructure by reducing the likelihood of technical
shortcomings and malfunctions.

3. EVALUATION OF ROS-NEURO: THE
CYBATHLON EVENT

ROS-Neuro has been evaluated by using different hardware
devices (e.g., a variety of commercial EEG/EMG amplifiers and
various robotic platforms Beraldo et al., 2018a,b, 2020; Tonin
et al., 2019) during several experiments. In all cases, ROS-Neuro
demonstrated its flexibility, reliability, and robustness. However,
the most critical stress test for ROS-Neuro has been the usage
for the Cybathlon events (Wolf and Riener, 2018). Cybathlon is
the first neurorobotic championship where several international
teams from all over the world competed in different disciplines:
from races with lower and upper limb prostheses to races with
wheelchairs and exoskeletons. The ultimate goal of Cybathlon
is to foster the research and development of daily-life solutions
for people with disabilities. In this context, one of the most
challenging disciplines was the BCI Race1 where pilots with a
severe motor disability (i.e., inclusion criteria ASIA-C) exploited
a non-invasive BMI to control an avatar on the screen during a
virtual race. Authors participated in the Cybathlon BCI Series
2019 and the Cybathlon 2020 Global Edition with theWHi Team
composed of researchers from the University of Padua (Italy).
In these periods and in the related longitudinal training of the
pilot, ROS-Neuro has been extensively used and tested. In both

1https://cybathlon.ethz.ch/en/event/disciplines/bci
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FIGURE 1 | A schematic representation of a hybrid, multi-process implementation of a neural interface with Robot Operating System (ROS)-Neuro. Two acquisition

systems are used in parallel to acquire (and record) EEG and EMG data (blue and cyan boxes). An additional interface can be added to record the data stream from

the LSL device (dashed cyan box). Data is made available in the eeg/neurodata and emg/neurodata communication channels as NeuroFrame messages to all

the other modules. In the example, four different workflows work in parallel (green boxes) to detect resting state, motion intention, to monitor the behavior of the

system from EEG signals, and to classify residual muscular activity from EMG data. An additional processing module can be added by exploiting the ROS-Neuro

MATLAB interface (dashed green box). The output of the processing workflows is published as NeuroPrediction messages in the prediction/*/raw. A

decision making module (purple box) reads the predicted outputs and generates a proper control signal for the robotic device. Such a signal can be also used to

provide feedback to the user. In parallel, computer vision algorithms and ROS navigation packages (red and yellow boxes) not only take care of controlling the robot

but also provide environmental information for the EEG workflows (red and blue arrows).

editions, the WHi Team won the gold medal by awarding the
race records. Most importantly, ROS-Neuro was confirmed to
be reliable and robust during the whole training and, especially,
in the demanding conditions of the event. Neither technical
faults nor difficulties or glitches during the interface with the
official Cybathlon infrastructure (for connecting to the virtual
race) have been reported. We speculate that the efficiency, the
flexibility, and the performance of ROS-Neuro were one of the
key reasons (among others) for the success of the WHi Team at
the Cybathlon.

4. DISCUSSION

Recent evidence in literature highlighted the importance of
reconsidering the current approach to neurorobotics in order
to enhance the reliability of neural driven robotic devices, and
thus, foster the translational impact and the daily usage of the
technology (Perdikis et al., 2018; Perdikis and Millán, 2020;

Tonin and Millán, 2021). In particular, the research community
started following a more holistic approach by investigating the
mutual interactions between the actors of the system, i.e., the
user, the decoder, and the robotic device. For instance, several
studies have demonstrated the key role of mutual learning
between user and decoder to facilitate the acquisition of BMI
skills and enhance the reliability of BMI-driven devices (Perdikis
and Millán, 2020). Similarly, it has been shown that a neural
interface explicitly designed to promote the interaction between
user and robotic intelligence can support a more natural
and efficient control of the device (Tonin et al., 2020). In
this scenario, we speculate that ROS-Neuro might offer the
technical counterpart of this new research direction by not
only allowing to develop the neural interface workflow and
the robotic intelligence within the same ecosystem but also by
guaranteeing high performance and strong robustness of the
whole application.

Although we previously pinpointed ROS-Neuro features with
respect to the current platforms available in the community,
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it is worth mentioning that it should not be considered a
direct competitor. Indeed, ROS-Neuro represents uniqueness
in the neurorobotics field with the explicit aim of integrating
neural interfaces and robotics by exploiting the advantages
of both fields. Furthermore, current development frameworks
to acquire neural signals can easily be included in the
ROS-Neuro infrastructure, for instance, plugin to connect
LSL is already implemented and available in the public
repository to incorporate external information streams into the
ROS-Neuro ecosystem.

ROS-Neuro is distributed as an open-source project, and it
is available on GitHub2. As in the case of ROS, the success
of ROS-Neuro strictly depends on the creation of a wide
community disseminating the latest developments and including
the multidisciplinary needs of the different research groups. It is
our opinion that ROS-Neuro represents the only way to achieve a
robust and flexible ecosystem, to review and evaluate alternative
approaches, and, finally, to boost neurorobotics technology.
ROS-Neuro supports the development of packages in C++
and Python, and we acknowledge that this might hinder the
approach to the platform, especially if researchers are used
to working with GUI-based software (e.g., OpenVibe). For
this reason, ROS-Neuro already provides a MATLAB interface
(rosneuro_matlab) in order to facilitate the integration
with toolboxes widely spread in the community and to mitigate
the effort of those people not used to such programming
languages. Nevertheless, we consider that this is a small price
to pay in comparison with the advantages in terms of reliability,
performance, and integration that ROS-Neuro can offer.

Finally, the current version of ROS-Neuro is fully based
on ROS 1 LTS (ROS Noetic Ninjemys)3, and thus, it works
on Ubuntu Linux operating systems only. However, in a few
years, the community started the development of ROS 2 that—

2https://github.com/rosneuro
3https://www.ros.org/

among several changes—is the first multi-platform version of
ROS (i.e., on Ubuntu Linux, MacOS, and Windows 10). The
transition of ROS-Neuro from ROS 1 to ROS 2 has already been
scheduled to expand the base of potential users of ROS-Neuro.
Nevertheless, the effort to develop and maintain both versions
can be demanding, and it would be beneficial to have the support
of the whole community.

In conclusion, we firmly believe that ROS-Neuro might be the
future development platform for neurorobotics. Furthermore, as
in the case of ROS, it might represent the starting point for
the creation of a flourishing research community to foster the
translational impact of neurorobotics technology.
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Recurrent neural networks (RNNs) have been proved very successful at modeling

sequential data such as language or motions. However, these successes rely on the

use of the backpropagation through time (BPTT) algorithm, batch training, and the

hypothesis that all the training data are available at the same time. In contrast, the

field of developmental robotics aims at uncovering lifelong learning mechanisms that

could allow embodiedmachines to learn and stabilize knowledge in continuously evolving

environments. In this article, we investigate different RNN designs and learning methods,

that we evaluate in a continual learning setting. The generative modeling task consists

in learning to generate 20 continuous trajectories that are presented sequentially to the

learning algorithms. Each method is evaluated according to the average prediction error

over the 20 trajectories obtained after complete training. This study focuses on learning

algorithms with low memory requirements, that do not need to store past information to

update their parameters. Our experiments identify two approaches especially fit for this

task: conceptors and predictive coding. We suggest combining these two mechanisms

into a new proposed model that we label PC-Conceptors that outperforms the other

methods presented in this study.

Keywords: predictive coding, continual learning, Reservoir Computing (RC), recurrent neural networks (RNN),

conceptors

1. INTRODUCTION

Continual learning is a branch of machine learning aiming at equipping learning agents with the
ability to learn incrementally without forgetting previously acquired knowledge. The continual
learning setting typically involves several separate tasks where we assume data to be independent
and identically distributed. The learning algorithm is confronted with each source of data (i.e., each
task) sequentially. After a set amount of time on a task, training switches to a new task. This process
is repeated until the learning algorithm has been confronted with all tasks.

Learning methods based on iterative updates of model parameters, such as the backpropagation
algorithm, can be performed sequentially as new data becomes available. However, these methods
might suffer from the problem known as catastrophic forgetting (McCloskey and Cohen, 1989)
if the distribution of the data they process evolves over time. When adapting to the new task,
they automatically overwrite the model parameters that were optimized according to the previous
tasks. This is an important issue since it prevents artificial neural networks from being trained
incrementally.
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In this study, we focus on the problem of learning a repertoire
of trajectories. As such, the training examples in each task
are sequences that the learning algorithm has to generate
from a discrete input (i.e., the index of the sequence). We
study different Recurrent Neural Network (RNN) designs and
learning algorithms for this continual learning task. We limit our
comparison to models with low memory requirements and, thus,
impose that at each time step t, the neural network computations
and learning can only access the currently available quantities.
In our case, these quantities are the currently hidden variables of
the models, and the target output x∗t provided by the data set.
Consequently, learning methods based on BPTT do not qualify
for this criterion, as they need to store in memory the past
activations of the RNN hidden states to compute gradients. The
advantage of models fitting this criterion is that they could in
principle be implemented on dedicated hardware reproducing
the neural network architecture, with no need for an external
memory storing past inputs and activations.

To avoid confusion about the use of the word “online,”
we rather talk about continual learning to refer to the task
temporality, and talk about online learning to refer to the
sequence (the training example) temporality. The models studied
in this section are thus trained both in a continual learning
setting, since the different target trajectories are provided
sequentially to the agent, and using online learning mechanisms
since the algorithms for learning do not rely on a memory of past
activations. The article is structured as follows: in Section 2, we
review methods that have been proposed to mitigate the problem
of catastrophic forgetting in artificial neural networks, as well as
learning algorithms that can be performed online. In Section 3,
we describe the experimental setting and the different algorithms,
and present the obtained results in Section 4. Finally, in Section
5, we discuss our results in order to identify the online learning
mechanisms for RNNs most suited for the continual learning of
a repertoire of sequences.

2. RELATED WORK

There exists a large spectrum of methods to mitigate catastrophic
forgetting in continual learning settings. Regularization methods
typically aim at limiting forgetting by constraining learning with,
e.g., sparsity constraints, early stopping, or identified synaptic
weights that should not be overwritten. For instance, in Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017), the
update rule contains a regularization term that pulls the synaptic
weights toward the optimal weights found for previous tasks,
with a strength depending on the estimated importance of each
synaptic weight.

Another approach is to rely on architecture modifications
when new tasks are presented, for instance by freezing some
of the previously learned weights (Mallya et al., 2018), or by
adding new neurons and synaptic connections to the model
(Li and Hoiem, 2017). Finally, rehearsal (Rebuffi et al., 2017)
and generative replay (Shin et al., 2017) methods rely on saving
examples or modeling past tasks for future use. By inserting
training examples from the previous tasks, either saved or

replayed, into the current task, these methods allow to retrain on
those data points and thus limiting catastrophic forgetting.

In this study, we compare learning algorithms with low
memory requirements in a continual learning setting. As such,
we disregard approaches such as rehearsal and generative replay
and only consider some simple regularization or architectural
techniques to improve the performance of sequence memory
models in a continual learning setting.

Many alternatives to BPTT have been investigated in the past
decades, often with the goal of avoiding the problems known
as exploding and vanishing gradients that can arise when using
this learning algorithm (Pascanu et al., 2013). Here, we study
two alternative approaches, namely, learning with evolution
strategies, and Reservoir Computing (RC) (Verstraeten et al.,
2007; Lukosevicius and Jaeger, 2009).

Using evolution strategies allows for learning RNNparameters
without having to rely on past activations. The success of a certain
parameter configuration can be measured online, for instance
by comparing the network’s output at each time step t with the
target output. Then, this score is used as the fitness measure to be
minimized by evolution. Following this approach, Schmidhuber
et al. (2005) and Schmidhuber et al. (2007) co-evolve different
groups of neurons in a Long Short-Term Memory (LSTM)
network. A similar approach is used by Pitti et al. (2017), where
the fitness measure is used to directly optimize the inputs of
an RNN.

Completely avoiding the problem of learning recurrent
weights, a family of approaches has emerged in parallel with the
field of computational neurosciences in the form of Liquid State
Machines (Maass et al., 2002), and from the field of machine
learning in the form of Echo State Networks (ESN) (Jaeger, 2001).
These models, later brought together under the label of Reservoir
Computing (Verstraeten et al., 2007; Lukosevicius and Jaeger,
2009), discards the difficulties of learning recurrent weights by
instead developing techniques to find relevant initializations of
these parameters.

Typically, the recurrent connections are set in order for the
RNN to exhibit rich non-linear (and sometimes self-sustained)
dynamics, that are decoded by a learned readout layer. If the
dynamics of the RNN activation are complex enough (e.g., they
do not converge too rapidly toward a point attractor or limit cycle
attractor), various output sequences can be decoded from those.
Training RC models then come down to learning the weights of
the readout layer, which is an easier optimization problem that
can be tackled with several algorithms. This output layer can, e.g.,
be trained using stochastic gradient descent, without the need for
BP. The FORCE algorithm (Sussillo and Abbott, 2009) improves
this learning by running an iterative estimate of the correlation
matrix of the hidden state activations.

Another interesting learningmechanism is presented in Jaeger
(2014a,b) under the name of Conceptors. This method exploits
the fact that the hidden state dynamics triggered by an input
pattern is typically bounded to a certain subspace of lower
dimension. By identifying the subspace for each possible input
pattern, it is possible to decorrelate the training of each target
trajectory by focusing learning on the readout connections that
come from the corresponding hidden state subspace (called
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Conceptor). This method allows training a sequence memory
where the learning of a new pattern has limited interference with
already learned ones.

Finally, the Predictive Coding (PC) theory (Rao and Ballard,
1999; Clark, 2013) also provides learning rules that do not
rely on past activations. According to PC, prediction error
neurons are intertwined with the neural generative model and
encode at each layer the discrepancy between the top-down
prediction and the current representation. It has been shown
that this construction allows propagating the output prediction
error information back into the generative model and even
approximates the backpropagation algorithm (Whittington and
Bogacz, 2017; Millidge et al., 2020).

Taking inspiration from the PC theory, we propose several
models that integrate prediction error neurons into a simple
RNN design. These prediction error neurons transport the error
information from the output layer to the hidden layer, which
provides a local target that can be used to learn the recurrent
and input weights. We label the resulting models PC-RNN (for
Predictive Coding Recurrent Neural Network). In Appendix A,
we show how these models can be derived from the application
of gradient descent on a quantity called variational free-energy
expressed according to different generative models. The resulting
models slightly deviate from other approaches such as the Parallel
Temporal Coding Network (P-TNCN) described in Ororbia et al.
(2020), and the original PC model presented in Rao and Ballard
(1997), which suggests learning feedback weights responsibly
for the bottom-up computations instead of copying the forward
weights, as performed in the proposed models.

There have been other evaluations of continual learning
methods applied to RNNs (Sodhani et al., 2020; Cossu et al.,
2021b), some even focusing on ESNs (Cossu et al., 2021a). While
these studies compare many continual learning techniques, they
do not consider the online learning constraint, and almost
exclusively focus on sequence classification tasks. In contrast,
this study investigates continual learning methods that can be
used online, applied to the incremental learning of a repertoire
of trajectories.

3. MATERIALS AND METHODS

In this section, we detail our experimental setting as well as the
different models that we use for the comparative study.

3.1. Experimental Setting
Each RNN model is trained sequentially on p sequence
generation tasks. The p sequences to be learned are sampled
from a data set of motion capture trajectories of dimension 62.
Each point x∗t describes a body configuration, as represented in
Figure 1. These trajectories were obtained from the CMUMotion
Capture Database. We make a distinction between the validation
set used to optimize the hyperparameters of each model, and
the test set, used to measure the performance of each model.
In our experiments, the validation set is composed of p = 15
trajectories of a subject (#86 in the database) practicing various
sports. The test set is composed of p = 20 trajectories of a subject

FIGURE 1 | Three body configurations taken from a trajectory capturing a

jump motion.

(#62 in the database) performing construction work (screwing,
hammering, etc.).

We also measure the performance of each model on a
different test set of p = 20 simple 2D trajectories corresponding
to handwritten letters taken from the UCI Machine Learning
Repository (Dua and Graff, 2019). All trajectories are resampled
to last for 60 time steps. These data sets were chosen since they
represent potential use cases of themodels presented in this work.
For instance, the proposed continual learning algorithms could
be used to incrementally train a robot manipulator to perform
certain motor trajectories.

We assume that the model knows when a transition between
two tasks occurs, and provide to the RNN the current task index
k as a one-hot vector input of dimension p. Otherwise, this
distributional shift could, e.g., be automatically detected through
a significant increase of the prediction error.

The end goal of this experiment is to identify online learning
mechanisms for RNNs that extend properly to the continual
learning case. The RNN architectures typically comprise three
types of weight parameters to be learned: the output weights, the
recurrent weights, and the input weights. As such, we split our
analysis into three comparisons focusing on the learningmethods
for each type of parameter.

For each learning mechanism, we perform an optimization
of hyperparameters using Bayesian optimization with Gaussian
processes and Matern 5/2 Kernel, similarly to the RNN encoding
capacity comparative analysis performed in Collins et al. (2016).

This method tries to approximate the function P → f (P)
that associates a scoring function with a certain hyperparameter
configuration P. This approximation is estimated based on
points

(
(P0, f (P0)), (P1, f (P1)), · · ·

)
sampled sequentially by the

optimizer. The function used by the optimizer to guide its
sampling process is called acquisition function. Here, we used
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an expected improvement acquisition function, meaning that
at each iteration, the optimizer samples the point P which
is most likely to improve the current estimated maximum
of the function f . Compared to exhaustive hyperparameter
optimization methods such as random search or grid search,
this method is expected to converge faster and to better
configurations. To perform this hyperparameter optimization
we used the gp_minimize function from the scikit-optimize
library in python.

The hyperparameters of the models are optimized in
order to minimize the final average prediction error on
the p target sequences of the validation set. For each
model, the hyperparameters to optimize are the learning rates
associated with the input, recurrent, and output weights, as
well as some other coefficients specific to certain learning
algorithms. The score function associates each hyperparameter
configuration with a real-valued score computed as the
negative logarithm of the average prediction error at the end
of training.

With the hyperparameter configurations we obtain, we
perform for each model 10 seeds of training in the continual
learning setting to measure their performances. The final average
prediction error on the p sequences can be used to evaluate and
compare the different learning mechanisms.

3.2. Benchmark Models
The models for this benchmark were chosen in order to identify
the relevant mechanisms for training RNNs in a continual
learning setting. As already said, we also limit this analysis to
learning algorithms that can be performed online, i.e., without
relying on past activations. For each set of weights, we compare
the different models listed in Table 1.

3.2.1. Output Weights
For the learning of the output weights of RNNs, denoted
Wo, we compared four learning methods, applied to the
simple RNN architecture represented in Figure 2. All methods
share the same architecture, and do not provide any learning
mechanism for the recurrent weights. At each time step, the
hidden state and output prediction are obtained with the
following equations:

ht = (1−
1

τ
)ht−1 +

1

τ
Wr · tanh(ht−1) (1)

xt = Wo · tanh(ht) (2)

where τ is a time constant controlling the velocity of the hidden
state dynamics.

The four methods differ with regard to the learning
mechanism applied to the output weights. First, output weights
can be learned using standard stochastic gradient descent. In the
RNN models we consider, the prediction xt is not re-injected
into the recurrent computations. As such, the output weights
gradients can be computed using only the target signal x∗t , the
prediction xt , and the hidden state ht . These computations do
not involve the backpropagation of a gradient through time and

TABLE 1 | Summary of the models used in our benchmark.

Weights Model

Output weights ESN (Widrow-Hoff)

Conceptors

EWC

ESN + GR

Recurrent weights PC-RNN-V

P-TNCN

PC-RNN-Hebb

Input weights PC-RNN-HC-A

PC-RNN-HC-M

PC-RNN-HC-A-RS

PC-RNN-HC-M-RS

FIGURE 2 | Simple RNN model.

thus qualify as an online learning method. This first learning rule,
also known as the Widrow-Hoff learning rule is expressed as:

Wo ←Wo + λǫx,t · tanh(ht)
⊺ (3)

where λ is the learning rate of the output weights, and ǫx,t is the
prediction error on the output layer, i.e., the difference x∗t − xt .

The second learning mechanism that we study is stochastic
gradient descent aided by Conceptors (Jaeger, 2014a,b).
Mathematically, this method can be implemented using only
online computations. The Conceptor C associated with some
input can be defined as the matrix corresponding to a soft
projection on the subspace where the hidden state dynamics lie
when stimulated with this input. The softness of this projection
is controlled by a positive parameter α called the aperture. This
matrix C can be computed using the hidden state correlation
matrix R estimated online based on the hidden state dynamics:

C = R · (R+ α−2I)−1 (4)

Rt+1 =
(
1−

1

t + 1

)
Rt +

1

t + 1

(
ht · h

⊺

t

)
(5)

In a continual learning setting, for each new task, we can compute
the Conceptor corresponding to the complement of the subspace
where the previously seen hidden states lie, as I − C. This
Conceptor is used to project the new hidden states into a subspace
orthogonal to the subspace in which lie the previously seen
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hidden states. Learning is then performed only on the synaptic
weights involving the components of this subspace:

Wo ←Wo + λǫx,t ·

((
I− C

)
· tanh(ht)

)
⊺

(6)

As shown in Equation 4, low values of α induce a Conceptor
matrix close to 0, leading to a projection matrix (I − C) close to
the identity. On the opposite, high values of α induce a conceptor
matrix close to the identity matrix, leading to a hard projection
hindering learning.

The third learning mechanism that we study is the Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) algorithm
applied to the output weights of the RNN. On each task k, we
can compute the Fischer information matrix Fk, where each
coefficient Fk,i measures the importance of the synaptic weight
Wo,i:

Fk,i =

T∑

t=1

(
∇Wo,i‖xt − x

∗

k,t‖
2
2

)2
(7)

where x∗
k,t

denotes the target at time t for the task k. Then, on a

new task k′, EWC minimizes the following loss function for each
synaptic weightWo,i:

L(Wo,i) = Lk′ (Wo,i)+
∑

k<k′

β

2
Fk,i(Wo,i −W∗k,i)

2 (8)

where Lk′ denotes the loss for task k′ without EWC
regularization, β is a hyperparameter controlling the importance
of the new task with regard to previous tasks, and W∗

k,i
denotes

the i-th component of the optimal synaptic weights W∗
k
learned

on task k. We optimize this loss function using gradient descent
on the synaptic weights Wo, and obtain the following learning
rule:

Wo ←Wo + λǫx,t · tanh(ht)
⊺

−λβ

[( ∑

k<k′

Fk

)
⊙Wo −

∑

k<k′

Fk ⊙W
∗

k

]
(9)

We can observe that the second line pullsWo toward the optimal
output weights found for previous tasks, weighted by coefficients
measuring the importance of each synaptic weight. In terms of
memory requirements, we need to store the sum of the Fischer
matrices, as well as the sum of previous optimal synaptic weights
weighted by the fisher matrices.

Finally, we also experiment with Generative Replay (GR) as a
continual learning technique mitigating catastrophic forgetting.
Since each individual task consists precisely in learning to
generate the task data (the trajectory), the learned generative
model can directly be used to provide samples of the previous
tasks.We apply this technique to the simple ESNmodel described
beforehand. At each new task k′, we create a copy of the model
trained on the tasks k < k′. This copy is used to generate
samples {x1, xT} that should be close to the previous tasks’
trajectories. During training on the task k′, the ESN is also trained
in parallel to predict these replayed trajectories, which mitigates
catastrophic forgetting.

3.2.2. Recurrent Weights
For the learning of the recurrent weights, we compare three
learningmethods inspired by PC. All threemodels share the same
architecture, represented in Figure 3. On top of the top-down
computations predicting the output xt , these models include
bottom-up computations updating the value of the hidden state,
and providing a prediction error signal on the hidden layer:

ǫx,t = x
∗

t − xt (10)

h
∗

t = ht + αxWb · ǫx,t (11)

ǫh,t = h
∗

t − ht (12)

where αx is an update rate that weights the importance of bottom-
up information for the estimation of ht .

In fact, the three models we compare propose the same update
rule for the recurrent weights, they will only differ in their
definition of the feedback weights, which impacts the recurrent
weights update. The learning rule for the recurrent weights is
based on the hidden state at time t and the prediction error on
the hidden state layer at time t + 1, according to the following
equation:

Wr ←Wr + λrǫh,t+1 · tanh(h
∗

t )
⊺ (13)

where λr is the learning rate of the recurrent weights.
The difference between the three models lies in the

computation of h∗t+1. In the first model, that we label PC-RNN-
V (for Vanilla), this bottom-up computation is done using the
transposed of the top-down weights used for prediction. This
results in a direct minimization of VFE, as shown in Appendix A.
In the two other models, these feedback and bottom-up weights
are instead learned. In the original PC model described in Rao
and Ballard (1997), it was proposed to learn these feedback
weights using the same rule as Equation 3 (up to a transpose to
match the feedback weights shape):

Wb ←Wb + λ tanh(ht) · ǫ
⊺

x,t (14)

This learning rule ensures that with random initializations, but
enough training time, the feedback weights converge to the
transposed forward weights. Since this learning rule is a copy of
the Hebbian rule used in Equation 3, we call PC-RNN-Hebb the

FIGURE 3 | PC-RNN-V model.
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RNNmodel using this method. The last model, inspired by the P-
TNCN (Ororbia et al., 2020), implements a different learning rule
for the feedback weights, described by the following equation:

Wb ←Wb − λb
(
ǫh,t − ǫh,t−1

)
· ǫ

⊺

x,t (15)

The model presented in Ororbia et al. (2020) also implements an
additional term in the learning rule for the recurrent and output
weights, on top of the rules explained here. This additional term
led our experiments to worse results. For this reason, we do not
provide more details about this rule and turn it off during the
experiments shown below.

3.2.3. Input Weights
Finally, we compare four methods to learn RNN input weights.
All methods share the same representation, displayed in
Figure 4. This architecture was derived following the principle
of free-energy minimization (Friston and Kilner, 2006), using
a generative model that features a latent variable called hidden
causes and labeled c. Similarly to hidden states, hidden causes are
hidden variables that can be dynamically inferred by the PC-RNN
network. However, contrary to the hidden state variable, hidden
causes are not dynamic: in the absence of prediction error the
value of the hidden causes is stationary ct = c0. The derivations
of these models are summarized in Appendix A. The resulting
architecture takes as input an initial value for the hidden causes
and predicts an output sequence while dynamically updating the
hidden states and hidden causes. During training, this input is the
one-hot encoded index of the current task c0 = k.

The four models differ according to two dimensions: whether
they use evolution strategies to estimate the input weights, and
according to the implementation of the influence of the input
onto the hidden state dynamics. This influence can be either
additive or multiplicative, the additive scheme is based on the
following equation:

ht = (1−
1

τ
)h∗t−1 +

1

τ

(
Wr · tanh(h

∗

t−1)+W i · ct−1

)
(16)

FIGURE 4 | PC-RNN-HC model.

The multiplicative scheme is based on the following equation:

ht = (1−
1

τ
)h∗t−1

+

1

τ
W

⊺

f
·

((
Wp · tanh(h

∗

t−1)
)
⊙ (W i · ct−1)

)
(17)

where we have introduced new synaptic weights Wp and W f ,
that replace the recurrent weights of the additive version.
This reparameterization is used to reduce the total number of
parameters of the multiplicative RNN, as already used in Annabi
et al. (2021a,b).

We label these two models, respectively, PC-RNN-HC-A and
PC-RNN-HC-M, the HC suffix standing for Hidden Causes and
the A and M suffixes standing for Additive and Multiplicative.
The differences between the additive and multiplicative models
also impact the bottom-up update rule for ct . However, in our
experiments, we always turn off this mechanism by using an
update rate equal to zero.

In these two first methods, the learning rules for the input
weights follow the PC theory and attempt at minimizing the
prediction error on the hidden layer. The learning rule used for
the PC-RNN-HC-A model is the following:

W i ←W i + λiǫh,t+1 · c
⊺

t (18)

For the PC-RNN-HC-M model, we obtain the following rule:

W i ←W i + λi

((
Wp · tanh(h

∗

t )
)
⊙

(
W f · ǫh,t+1

))
· c

⊺

t (19)

The third and fourth methods that we study are respectively
based on the PC-RNN-HC-A and PC-RNN-HC-M, but
instead use random search to optimize the weights W i. Our
implementation of this random search is inspired by the learning
algorithm proposed in Pitti et al. (2017):

δi ∼ N (0, σ 2
Id2

h
) (20)

‖ǫx,i‖2 ← simulate(W i + δi) (21)

W i ←W i + δisign(‖ǫx,i−1‖2 − ‖ǫx,i‖2) (22)

where the function sign associates −1 to negative values and
1 to positive values. At each training iteration i, the algorithm
samples a noise matrix δi that is added to the input weights
of the RNN. After generation, the difference between the old
and new average norm of the prediction error ‖ǫx,i−1‖2 −
‖ǫx,i‖2 is used as a measure of success of the addition of
δi and weights the update of W i. Since this algorithm only
relies on an average of the prediction error over the predicted
sequences, that can be computed iteratively, it qualifies as an
online learning algorithm.

In summary, we have identified four learning algorithms
for output weights, three learning algorithms for recurrent
weights, and four learning algorithms for input weights. To
connect the proposed methods to the classification of continual
learning methods presented above, we could categorize the
Conceptors method as a regularization method, and the
fact that new tasks are associated with new inputs to the
RNN in the shape of hidden causes, as an architecture
modification method.
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FIGURE 5 | Score estimation of the hyperparameter optimizer with regard to the learning rate λ and the coefficient β, for the EWC model.

4. RESULTS

4.1. Hyperparameter Optimization
The source code for the experiments presented in this section
is available on GitHub1. It contains our implementation of the
different models as well as the hyperparameter optimization
method. In Appendix B, we provide the optimal hyperparameters
found for each model.

We start by showing an example of a hyperparameter
optimization in Figure 5, which was performed on the EWC
model with dh = 300. The optimized hyperparameters are the
learning rate of the output weights, λ, and the coefficient β .
After trying 200 hyperparameter configurations, the optimizer
can estimate the score for all the configurations within the given
range of values. These figures display the evolution of the score
estimation according to λ using the optimal value for β , and
according to β using the optimal value for λ. We can see that
the function according to β monotonically decreases, while the
function according to λ increases steadily before dropping once
we attain values of the learning rate that no longer sustain
convergence of the gradient descent.

In this case, the hyperparameter optimization has found
that the EWC regularization does not improve the final score,
and suggests using the lowest possible value for the coefficient
β . When β increases, the regularization mitigates catastrophic
forgetting but prevents proper learning of new tasks.

For all the results presented below, we perform optimization
of the hyperparameters following the same protocol.

4.2. Output Weights
In Figure 6, we represent the average prediction error over 10
seeds for the continual learning of 20 sequential patterns obtained
on the test set, with the hyperparameters found using the protocol
described before. The vertical dashed lines in these figures
delimit each of the training tasks. The colored lines represent the
individual prediction error for each of the 20 sequence patterns
(averaged over the 10 seeds). Finally, the black line represents the

1https://github.com/sino7/continual_online_learning_rnn_benchmark

average prediction error over all the sequence patterns (averaged
over the 10 seeds).

During each task (for each colored line), we can observe that
one of the individual prediction errors decreases rapidly, while
the other prediction errors only slightly change. Once the training
task corresponding to a certain sequence pattern k is over, the
prediction error associated with this pattern tends to increase.
The better learning mechanism is the one that can limit this
undesirable forgetting of previously learned sequence patterns.
We can observe in Figure 6 the Conceptors learning mechanism
limits forgetting compared to the standard stochastic gradient
descent rule used in our ESN model.

At first, it can be surprising that for each individual
task, the corresponding prediction error reaches a lower
value for the Conceptors model than for the ESN model.
In terms of learning rules, the ESN model could potentially
learn each pattern with better accuracy by increasing the
learning rate. However, the hyperparameter optimizer
has estimated that an increased learning rate would be
detrimental to the complete continual learning task.
Indeed, increasing the learning rate might improve the
learning on every individual task, but it would also lead to
more forgetting throughout the complete task. It is only
because the Conceptors learning mechanisms naturally
limit forgetting that the hyperparameter optimized “allows”
a higher learning rate and, thus, better learning on each
individual task.

We can also observe that the prediction error level that

is reached during each individual task using the Conceptors

model seems to increase throughout the complete task. We

suppose that this is a consequence of further learning being

prevented on synaptic connections associated with previous

tasks’ associated Conceptors. When a large number of individual
tasks are over, learning is limited to synapses corresponding
to a subspace of the hidden state space not belonging to any
of the previous Conceptors. Decreasing the aperture α would
allow better learning of the late tasks, but at the detriment of an
increased forgetting of the early tasks.
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FIGURE 6 | Continual learning results with the ESN model (left) and the Conceptors model (right). We represent the average prediction error over 10 seeds, for the

continual learning of 20 sequential patterns, obtained on the first test set. The colored lines correspond to the prediction error on each individual task, and the black

line corresponds to the prediction error averaged on all tasks. The 20 tasks are delimited by the dashed gray lines.

FIGURE 7 | Comparison between the four learning methods for the output

weights on the first test set. The 20 tasks are delimited by the dashed gray

lines.

Figure 7 compiles these previous figures to compare the
average prediction error using the four learning mechanisms for
output weights. At the end of the training, we can see that the
Conceptors model and generative replay achieve a significantly
lower prediction error than the ESN using the standard stochastic
gradient descent rule and the EWC regularization for the learning
of the output weights.

As explained in the last section, the hyperparameters found
for EWC correspond to a configuration where the regularization
is almost removed, and the EWC model, thus, has the same
performance as the ESN model.

The generative replay strategy outperforms all other
approaches, but at the cost of a longer training time. Indeed, at
each task k, the model is trained on (k − 1) replayed trajectories
on top of the current trajectory. For all models, we have limited
the number of training iterations on each task, which induces
an unfair advantage for generative replay in our experiments.

TABLE 2 | Average prediction error after training on all p tasks.

Validation Test 1 Test 2

Model (MOCAP, (MOCAP, (Handwriting,

p = 15) p = 20) p = 20)

ESN 0.90 ± 0.07 1.37 ± 0.14 0.71 ± 0.04

EWC 0.90 ± 0.09 1.35 ± 0.15 0.69 ± 0.05

Conceptors 0.31 ± 0.02 0.52 ± 0.04 0.27 ± 0.02

ESN + GR 0.29 ± 0.01 0.39 ± 0.01 0.22 ± 0.01

PC-RNN-V 0.87 ± 0.09 1.41 ± 0.14 0.79 ± 0.10

P-TNCN 0.90 ± 0.08 1.42 ± 0.18 0.71 ± 0.05

PC-RNN-Hebb 0.90 ± 0.07 1.41 ± 0.10 0.73 ± 0.05

PC-RNN-HC-A 0.74 ± 0.09 1.28 ± 0.22 0.59 ± 0.04

PC-RNN-HC-M 0.81 ± 0.04 1.32 ± 0.09 0.77 ± 0.05

PC-RNN-HC-A-RS 0.90 ± 0.08 1.39 ± 0.15 0.77 ± 0.05

PC-RNN-HC-M-RS 0.93 ± 0.06 1.38 ± 0.10 0.72 ± 0.05

PC-Conceptors 0.28 ± 0.01 0.36 ± 0.02 0.18 ± 0.01

Bold value indicates the best performance in each group of models.

For this reason, we do not include this technique in the
remaining comparisons.

The results obtained with these models on the three data sets
(validation set and two test sets) are provided in Table 2, together
with the results for the learning of recurrent and input weights,
discussed in the next sections.

4.3. Recurrent Weights
In this second experiment, we compare the PC-RNN-V
with two variants using learning rules for the feedback
weights instead of using the transposed feedforward weights.
These three learning methods in the end provide different
update rules for the recurrent weights of the RNN. The
results of this second comparative analysis are provided in
Table 2.
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FIGURE 8 | Comparison between the three learning methods for the input

weights. The PC-RNN-V model, where no learning is performed on the input

weights, is also displayed as a baseline. The 20 tasks are delimited by the

dashed gray lines.

We can see that none of the three models brings any
significant improvement compared with the ESN, which is
exactly the same model without any learning occurring on the
recurrent weights. In terms of hyperparameters, only the PC-
RNN-V has an optimal learning rate for recurrent weights that
does not correspond to the lowest value authorized during
hyperparameter optimization. This means that for both P-TNCN
and PC-RNN-Hebb models, the hyperparameter optimizer has
estimated that training the recurrent weights only hinders the
final prediction error. For the PC-RNN-V model, a slight
improvement was found in the validation set using the learning
rule for recurrent weights, but this improvement does not
transfer to the two test sets.

We can conclude based on these results that recurrent weights
learning in a continual learning setting is difficult andmight often
lead to more catastrophic forgetting.

4.4. Input Weights
Figure 8 displays the results obtained with the four learning
mechanisms for input weights, and the ESN as a baseline. We
use the ESN as a baseline to measure the improvement brought
by the learning in the input layer. The results of the validation set
and other test sets are displayed in Table 2.

These results suggest that the learning methods using random
search (RS suffix) perform poorly compared to the corresponding
learning rules relying on the propagation of error using PC.
The two models using random search perform similarly to the
baseline ESN model. This observation is surprising since the W i

weights in PC-RNN-HC-A/M architectures are directly factored
according to each individual task. Indeed, during the task k, we
can limit learning on the k-th column of the W i weights, since
these are the only weights that influence the RNN trajectory.
Consequently, training this layer should not cause any additional
forgetting, and thus should only bring improvements over the
baseline ESN model. Since the two models using random search
did not bring any improvement, we suppose that this is due
to the limited number of iterations allowed for the training on

FIGURE 9 | PC-Conceptors model.

FIGURE 10 | Continual learning results using the PC-Conceptors. We

represent the average prediction error over 10 seeds, for the continual learning

of 20 sequential patterns, using the PC-RNN-HC-A model with Conceptors.

The colored lines correspond to the prediction error on each individual task,

and the black line corresponds to the prediction error averaged on all tasks.

The 20 tasks are delimited by the dashed gray lines.

each individual task. We observed that in general training with
random search as in the INFERNO model (Pitti et al., 2017)
needed many more iterations than gradient-based methods.

The PC-RNN-HC-A/M models trained using the PC-based
learning rules still showed some significant improvement
compared with the ESN baseline, with the PC-RNN-HC-Amodel
performing slightly better than the PC-RNN-HC-M model. This
experiment allows us to conclude that the learning rule for input
weights proposed by the PC-RNN-HC-A model is the most
suited to a continual learning setting.

4.5. Combining Conceptors and Hidden
Causes
Finally, we can inquire whether these different learning
mechanisms combine well with each other. We implement
the Conceptors learning rule on the output weights of a PC-
RNN-HC-A model, a new model that we label PC-Conceptors,
as represented in Figure 9. Figure 10 displays the prediction
error on each individual task as well as the average prediction
error throughout learning, using this model. Interestingly,
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FIGURE 11 | Comparison between the ESN, the Conceptors model, the

PC-RNN-HC-A model, and the PC-Conceptors model on the first test set. The

20 tasks are delimited by the dashed gray lines.

virtually no forgetting seems to happen during learning, as the
individual prediction errors plateau after decreasing during the
corresponding individual tasks.

Additionally, the hyperparameter optimizer in this case
recommended using the lowest possible value for the recurrent
weights learning rate. This suggests that the recurrent weights
learning negatively interferes with the Conceptors model.
The Conceptors model might be sensible for recurrent
weight learning, since this could turn the previously learned
Conceptors into obsolete descriptors of the corresponding
hidden state trajectories.

We compare these results with the ESN, Conceptors and
PC-RNN-HC-A models in Figure 11, which confirms that this
combination of learning methods seems to provide the RNN
model best suited for online continual learning.

5. DISCUSSION

Overall, this study suggests that regularization methods such as
Conceptors, and architectural methods, as proposed in the PC-
RNN-HC architectures, can help design RNNmodels with online
learning rules suitable for continual learning.

Additionally, we have found that combining Conceptors-
based learning for the output weights with PC-based learning

for the input weights further improves the model precision.
In future study, it would be interesting to investigate whether
the combination of these two mechanisms could be improved.
Especially, the learning of the input weights is only driven by
the minimization of the prediction error on the recurrent layer.
This could be improved by integrating an orthogonality criterion
to the learning rule: if the input weights are optimized in order
to decorrelate the different hidden state trajectories, it could
facilitate the learning of the output weights.

The models we have proposed also suffer from another
limitation that should be addressed in future work. The models
were trained using as input the current task index, which is
information that might not be available in realistic lifelong
learning settings. The model should be able to detect a
distributional shift when it occurs and adapt its learning rules
based on these events.
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In their book “How the Body Shapes the Way We Think: A New View of Intelligence,”

Pfeifer and Bongard put forth an embodied approach to cognition. Because of this

position, many of their robot examples demonstrated “intelligent” behavior despite limited

neural processing. It is our belief that neurorobots should attempt to follow many of these

principles. In this article, we discuss a number of principles to consider when designing

neurorobots and experiments using robots to test brain theories. These principles are

strongly inspired by Pfeifer and Bongard, but build on their design principles by grounding

them in neuroscience and by adding principles based on neuroscience research. Our

design principles fall into three categories. First, organisms must react quickly and

appropriately to events. Second, organisms must have the ability to learn and remember

over their lifetimes. Third, organisms must weigh options that are crucial for survival. We

believe that by following these design principles a robot’s behavior will bemore naturalistic

and more successful.

Keywords: adaptive behavior, embodiment, learning, memory, neuromodulation, value

1. INTRODUCTION

Neurorobotics is a powerful tool for testing brain theories and increasing our understanding of
neuroscience. The robot controller is modeled after some aspect of the nervous system. Unlike
human or other animal studies, the neuroroboticist has access to every aspect of this artificial brain
during the lifetime of the agent. Therefore, the neuroroboticist can analyze and perturb the nervous
system in ways that a neuroscientist cannot with present recording technology. Not only can a
neurorobot be tested under laboratory conditions that are similar to those of an animal experiment
in order to provide direct comparisons, but it can also be tested in more natural conditions to see
how these brain functions might respond to real-world situations.

The actions of a neurorobot are embedded in its environment. By choosing an appropriate
morphology, simple mechanical designs can perform complex functions by taking advantage of
environmental features, thus alleviating slow, power-hungry nervous systems from having to make
these calculations. This is known as morphological computation (Pfeifer and Bongard, 2006).
Neurorobot designs can be degenerate, that is, they can contain multiple systems capable of
performing the same functions (Edelman and Gally, 2001). In this way the agent can still survive in
the environment should one system fail. Similar to many mobile operating systems, neurorobot
computation can follow the brain architecture by having multiple processes run in parallel in
an event-driven manner, continuously responding to concurrent events. These ideas have roots
in behavior-based robots (Brooks, 1991; Arkin, 1998) and the design of neuromorphic hardware
(Merolla et al., 2014; Davies et al., 2018).
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To adapt to a changing environment a neurorobot must be
able to learn, store and recall information. Memory systems in
neurorobotics are particularly applicable in spatial memory for
navigation and contextual memory for learning representations
of the environment (Milford et al., 2016; Gaussier et al., 2019;
Hwu et al., 2020). Success within dynamic environments, such
as the real-world, requires the processing of risk, reward, and
uncertainty by some notion of value and the ability to adapt
(Oudeyer and Kaplan, 2007; Krichmar, 2008; Merrick, 2017).
Through such systems, neurorobots are able to predict future
events and adapt to changes in the environment.

The world is full of trade-offs and changing needs that
require us to make choices. Incorporating behavioral trade-offs
into neurorobots such as reward vs. punishment, invigorated
vs. withdrawn activity, expected vs. unexpected uncertainty for
attention, exploration vs. exploitation of choices, foraging for
food vs. defending one’s territory, coping with stress vs. keeping
calm, and social interaction vs. solitary restraint can lead to
interesting behavior in neurorobotics (Canamero et al., 2006;
Hiolle et al., 2012; Krichmar, 2013; Lones et al., 2018). Many
of these trade-offs are regulated by the neuromodulators and
hormone levels in the brain.

In this article, we present a set of principles to take into
consideration when designing neurorobots. They fall into three
categories: 1) Embodiment and reactions, 2) Adaptive behavior,
learning and memory, and 3) Behavioral trade-offs. Following
these design principles can make neurorobots more naturalistic
and more interesting. Many of the ideas put forth in this article
are based on material from our forthcoming book (Hwu and
Krichmar, 2022).

2. EMBODIMENT AND REACTIONS -
RESPONDING TO THE HERE AND NOW

In this first set of neurorobotic design principles, we focus
on what (Pfeifer and Bongard, 2006) called the “here and
now.” These design principles are grounded in neuroscience
and are focused on processes that respond to events. Even
without learning and memory, these processes lead to flexible,
adaptive behavior.

2.1. Embodiment
Brains do not work in isolation; they are closely coupled with the
body acting in its environment (Chiel and Beer, 1997). Biological
organisms perform morphological computation; that is, certain
processes are performed by the body that would otherwise be
performed by the brain (Pfeifer and Bongard, 2006). Moment-
to-moment action can be handled at the periphery by the body,
sensors, actuators, and reflexes at the spinal cord level. This
allows the central nervous system, which is slower and requires
more processing than the body or peripheral nervous system, to
predict, plan, and adapt by comparing its internal models with
current information from the body (Shadmehr and Krakauer,
2008; Hickok et al., 2011).

In biology, the morphology and behavior must fit within the
organism’s ecological niche. Therefore, the layout of its sensors

and actuators, their resolution and range are tuned to meet
the specific organism’s needs (Ziemke, 2003). As an example,
consider a toddler flailing his or her arms. The child’s arms more
easily move toward the front of the torso than the back. By chance
the toddler’s hand touches an object causing a reflexive grasping
motion. This leads to the fingers, wheremost of the tactile sensors
are located, touching the object. The child will then move this
hand in its easiest direction, which tends to be toward the face,
where a range of sensors for vision, olfaction, and taste receptors
reside. Comparing that with the embodiment and design of an
insect or a fish, it is clear that these design implementations are
specific to the organism’s niche. Attention to these environmental
details can provide guidance for the design of neurorobots. The
form of the organism’s body shapes its behavior and its brain
function. This requires a brain and body that is engaged with the
environment, which is what we should strive for in designing our
neurorobots.

For many tasks that we carry out with ease, our brains are
too slow to sense, process and move. For example, skiing down
a hill or catching a wave on a surfboard happens too fast for our
central nervous system to position the body appropriately. But
the form and compliance of the body can position itself properly
and adjust itself to perturbations without brain control. This is
morphological computation in action.

Trapping a soccer ball is another example of morphological
computation. In a RoboCup tournament, the Segway soccer
team from The Neurosciences Institute solved this difficult
sensorimotor problem with a very cheap design (Fleischer et al.,
2006). On a large playing field it was nearly impossible for the
robot to catch a fast-moving soccer ball, given that the Segway
was large and cumbersome and had a slow camera frame rate
and slow IR sensor refresh rate. Soccer balls would bounce off
the robot before it had a chance to respond. After much trial
and error, the team used plastic tubing that was fastened around
the robot’s body like a hula-hoop at just the right height (see
Figure 1). Any ball that was passed to the Segway robot was
trapped by the tubing, giving the robot time to use its camera and
IR proximity sensors to place the ball in its kicking apparatus. In
a sense, this is what humans do when playing soccer. They use
soft pliant materials angled appropriately to soften the impact of
a ball coming toward them. Many actions like these take place
without much thought (i.e., brain processing).

By putting more emphasis on designs that exploit the
environment, we can offload some of the control from the
cognitive robot’s central nervous system onto the body itself.
This should allow the robot to be more responsive to the
environment and more fluid in its actions. In addition, it frees
up the nervous system to put more emphasis on planning,
prediction, and error correction rather than reflexivemovements.
Too often cognitive neuroscientists forget that the body and
the peripheral nervous system are performing many vital,
moment-to-moment behaviors and tasks without central control.
Even functions that are thought to be purely mental have a
basis in embodiment. For example, it has been argued that
interactions in which a person needs to understand another
is an embodied process rather than an internal simulation
(Gallagher, 2001).
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FIGURE 1 | Video sequence showing robot capturing a soccer ball using morphological computation. A pliant plastic hoop around the Segway robot allowed trapped

the soccer ball, allowing the slower IR sensors and camera to confirm that a soccer ball was caught.

2.2. Efficiency Through Cheap Design
Cheap design means finding the simplest solution to the

challenge the robot is facing. One way to do this is by exploiting
the environment. For example, winged insects and fast swimming

fish exploit their environment by creating vortices with their wing
beats or fin movements, which causes additional thrust and more
energy to come out than the animal put in. Most of our touch

receptors are where we need them most, at our fingertips. It
would be wasteful to have this fine level of resolution on the back
of our hands or arms. This is what is meant by cheap.

For example, in legged locomotion, roboticists have put
much time and effort in creating robust controllers for legged
locomotion. The importance of the cheap design principle can

be observed when comparing the biped locomotion of passive
dynamic walking robots to sophisticated humanoid robots, such
as Honda’s Asimo or Aldebaran’s NAO. Passive dynamic walking
robots exploit gravity, friction, and the forces generated by their

swinging limbs (Collins et al., 2005). As a result, they require
very little energy or control to move (see Table 1). In contrast,
robots such as Asimo need complex control systems and long-
lasting batteries to achieve the same result. Although these
passive walkers are not necessarily biologically inspired, once the

engineers or artists implement a design that minimizes energy
expenditure, the gait looks very natural.

However, it should be stressed that passive dynamics and
morphological computation are not enough to support a
complete range of natural behaviors. Rather it frees up the system
from expending energy and computational resources on some
functions, while allowing it to concentrate on other functionality.

Saving energy is a recurring theme in biology since biological
organisms are under tight metabolic constraints (Beyeler et al.,
2019; Krichmar et al., 2019). However, there is a trade-off that
comes with efficiency. For example, it is more efficient to walk on
four legs, but then arms are not available for manual dexterity
and gestures, which is important for bipedal organisms. In a
complete system, passive control is closely coupled with spinal
cord reflexes, which in turn are in close communication with
motor cortex and other areas of the brain. These issues should
be taken into consideration when designing neurorobots.

It is not only the body that follows the principle of
cheap design: brains do as well. Biological systems are

TABLE 1 | Energy consumed during legged locomotion (Collins et al., 2005). Unit

weight per unit distance.

Agent Energy consumption

Asimo 3.23

Cornell biped 0.20

Humans 0.20

under extreme metabolic constraints and need to represent
information efficiently. Therefore, the nervous system must
encode information as cheaply as possible. The brain operates
on a mere 20 watts of power, approximately the same power
required for a ceiling fan operating at low speed (Krichmar
et al., 2019). Although being severely metabolically constrained
is at one level a disadvantage, evolution has optimized brains in
ways that lead to incredibly efficient representations of important
environmental features that are distinctly different from those
employed in current digital computers. The brain utilizes many
means to reduce its functional metabolic energy use. Indeed,
one can observe at every level of the nervous system strategies
to maintain high performance and information transfer while
minimizing energy expenditure.

At the neuronal coding level, the brain uses several strategies
to reduce neural activity without sacrificing performance. Neural
activity (i.e., the generation of an action potential, the return
to resting state, and synaptic processing) is energetically very
costly, and this drives the minimization of the number of spikes
necessary to encode the neural representation of a new stimulus.
Such sparse coding strategies appear to be ubiquitous throughout
the brain (Olshausen and Field, 2004; Beyeler et al., 2019).
Efficient coding reduces redundancies and rapidly adapts to
changes in the environment. At a macroscopic scale, the brain
saves energy by minimizing the wiring between neurons and
brain regions (i.e., number of axons) and yet still communicates
information at a high level of performance (Laughlin and
Sejnowski, 2003). Information transfer between neurons and
brain areas is preserved by a small-world network architecture,
which reduces signal propagation (Sporns, 2010). These energy-
saving ideas should be taken into consideration in constructing
neural controllers for robots, which like biological organisms
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have limited energy resources. Moreover, many of these strategies
could inspire newmethodologies for constructing power-efficient
artificial intelligence.

2.3. Sensory-Motor Integration
In the brain, the sensory and motor systems are tightly coupled.
An organism or robot may get new sensory information
that causes an action. Each action then creates new sensory
information. Neurorobots can take advantage of this tightly
coupled loop. For example, figure-ground segregation is a
difficult computer vision problem in which a scene of static
objects needs to be recognized from the background (e.g., a
small toy block sitting on a similarly colored table). However,
segmentation can be facilitated by sensorimotor integration in
a very natural way as was demonstrated in a robot experiment
by Fitzpatrick and Metta (2003). In their study, the robot’s hand
moved until it happened to hit the toy block, triggering motion
detector responses in its visual system. In this way the robot’s
motor system generated sensory information, both visual and
tactile, which led to the unexpected recognition of an object on
the table. In the nervous system, a copy of the action, called
a motor efference copy, is fed back to the brain. It creates an
expectation that can be used to error check the movement and
the expected sensory experience. Because hitting the toy creates a
violation of both tactile and visual sensory expectations, the toy
block is easily differentiated from the table.

It is important to emphasize howmuch the sensory andmotor
nervous systems are intertwined. Too often neuroscientists study
these systems separately, but they are highly interconnected and
work in concert. Although there are brain areas specialized
for sensing such as auditory cortex and visual cortex, and
there are areas of the brain devoted to action such as the
motor cortex, most of the cortex is associational and cannot be
called exclusively sensory or motor systems. These associational
cortical areas are highly interconnected and the delineation
between perception and action becomes blurred (Fuster, 2004).
The parietal cortex receives multimodal sensory inputs and is
important for planningmovements. Bymultimodal wemean that
the brain area receives more than one sense: auditory, olfactory,
taste, visual, touch, or vestibular. The frontal cortex also receives
multimodal inputs and is important for decisions, control of
actions, and action selection. These multimodal association areas
have direct influence on what we perceive and how we move.

2.4. Degeneracy
Degeneracy is the ability of elements that are structurally
different to perform the same function or yield the same
output (Edelman and Gally, 2001). To be fault tolerant and
flexible a system’s architecture should be designed such that
different subsystems have different functional processes and
there is an overlap of functionality between subsystems. In
this design, if any subsystem fails the overall system can still
function. This is different from redundancy, in which an identical
system copy is kept in case there is a system failure (e.g.,
redundant array of independent disk [RAID] computer memory
systems). Degeneracy appears throughout biology, from low-
level processes such as the genetic code and protein folding

to system-level processes such as behavioral repertoires and
language. For example, there are four nucleotide bases in DNA
(thymine, cytosine, adenine, and guanine). It takes three bases to
encode an amino acid, which is the building block of proteins.
This means that there are potentially 43 or sixty-four possible
combinations, but only twenty amino acids make up the proteins
found in the human body. In many cases, different triplets
encode the same amino acid. Therefore, the genetic code is
considered degenerate. As a result, the genetic code is fault
tolerant to mutations. The heterogeneity of neuron types within
and between brain regions, as well as between organisms is
another example of degeneracy. For instance, the nervous system
has numerous cell types which can be distinguished by their
anatomy, connectivity or firing behavior (Ascoli et al., 2007;
Wheeler et al., 2015). Furthermore, organisms like the nematode
C. Elegans have neurons that don’t fire action potentials (Sarma
et al., 2018). Despite this variability, these neuronal elements
communicate with sensors, actuators, and other brain regions
that have similar properties and often operate in the same
environment. At the other end of the biological spectrum is
communication. We have an almost infinite number of ways to
communicate the same message. The same message could be
communicated through voice, text, email, Morse code, gesture,
or facial expressions. Degeneracy and variability is not only
important to demonstrate for biological realism, it also leads to
robustness and fault tolerance when operating in noisy, dynamic
environments.

Degeneracy at multiple levels was nicely demonstrated by the
neurorobot Darwin X, which was used to demonstrate spatial and
episodic memory (Krichmar et al., 2005; Fleischer et al., 2007).
Darwin X solved a dry version of the Morris water maze and
a place-learning version of a plus maze (see Figure 2). In the
Morris water maze, a rat swims through murky water until it
finds a platform hidden beneath the surface. After several days
of exploration, the rat will swim directly to the platform from
any starting location. If the hippocampus is damaged, the rat
cannot learn the location of the platform. In the dry version, a
reflective piece of paper was the proxy for the platform. It was the
same color as the floor, so the robot could not see the platform
but it could “feel” when it was on the platform by means of a
downward-pointing light sensor.

Darwin X had an extensive model of the hippocampus
formation and its surrounding cortical regions. Similar to a
rodent, as the robot explored its environment, hippocampal
place cells emerged. In the Darwin X experiments, combinations
of place cells were used to plan routes to goals. The robot’s
behavior and neural activity were directly compared with rodent
experiments. Like the rat, place cells could be used to predict not
only the current location of the robot but also the location from
which the robot came and the location to which it was heading.
In the robot experiments, several levels of degeneracy emerged.

Degeneracy at the Neuronal Level
Because the neuroroboticists were able to track every neuron
in Darwin’s simulated nervous system, they were able to trace
the neuronal activity that led to hippocampal place activity.
Although hippocampal place activity was similar on different
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FIGURE 2 | Darwin X experiments for spatial and episodic memory. (A,B) Experimental setup for a dry version of the Morris water maze. Adapted from Krichmar et al.

(2005). (C,D) Experimental setup for for place learning with the plus maze. Adapted from Fleischer et al. (2007).

trials when the robot passed through the same location on the
same heading, the neuronal activity leading to that neuron’s place
activity on a given trial differed dramatically. That is, different
neural activation patterns led to the same hippocampal place cell
outcome.

Degeneracy at the Systems Level
Darwin X received sensory input from its camera (vision),
whiskers (somatosensory), compass (head direction), and laser
range finder (depth/distance). Darwin X’s spatial memory was
multimodal and degenerate. Even when one or more of its
sensory modalities were lesioned, Darwin X’s behavior and place
cell activity remained stable. Different sensory pathways led to
the same outcome of knowing where Darwin was located.

Degeneracy at the Behavioral Level
In the Morris maze task, nine different Darwin X subjects,
which consisted of the identical robots with slightly different
nervous systems due to variations in initial synaptic connection
probabilities, solved the same spatial navigation task in unique
ways. Some subjects bounced off the “red” wall to the hidden
platform, some bounced off the “blue” wall, and others went
directly toward the platform location. The proficiency of each
subject differed as well. Some were better learners than others.
However, despite their idiosyncrasies they all shared the same
outcome of solving this task.

2.5. Multitasking and Event-Driven
Processing
Cognitive scientists tend to study the brain in a serialized fashion

by focusing on one subsystem at a time, be it a type of memory or

a specific perceptual effect. But intelligence emerges from many

processes operating in parallel and driven by events.We (humans
and other organisms) are multitaskers, and to multitask we must

do things in parallel. The brain is the ultimate event-driven,
parallel computer. There is no overarching clock as in computer
architectures. Rather the brain responds to events when
they happen. Therefore, neurorobots should have a multitask

design that responds to multiple, asynchronous events in a
timely manner.

Neurons throughout the brain are responding simultaneously

to multiple events. Although the different parts of the brain may
be acting somewhat independently, they are highly interactive.

The sensory system is telling the motor systemwhat it senses, and
the motor system is telling the sensory system what its last action
was. This brain analogy can be extended to the whole organism,
in which control is parallel, asynchronous, and spatiotemporally
matched with the real world.

A classic way of studying cognitive science was a serial
process of “sense, think, and act,” which guided many artificial
intelligence robot designs. In response to this, Rodney Brooks
and Ron Arkin developed behavior-based robots that responded
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asynchronously to events (Brooks, 1991; Arkin, 1998). There
are parallels between the subsumption architecture’s layered
hierarchical design and the nervous system. Neuroscientist Larry
Swanson proposed a basic plan for the nervous system that
somewhat follows this design; a four-component functional
systems model with a motor system controlling behavior and
visceral functions (i.e., internal organs and bodily functions),
whose output is a function of activity in sensory, cognitive, and
behavioral state systems, with feedback throughout (Swanson,
2007). It should be noted that in this view the central nervous
system is only one component. Areas that regulate basic
behaviors and internal monitoring are subcortical.

Correlates of the subsumption architecture can be observed
in the brain’s structure. Prescott et al. (1999) suggested
that the hierarchical, layered subsumption architecture could
describe the neural mechanisms of defense for the rat. For
example, the lower levels were reactive and included withdrawal,
startling, and freezing. The higher levels subsumed the lower
levels by suppressing behavior or predicting outcomes through
conditioning. Sensory input provides stimuli that can trigger
behavioral responses. Another example involves self-monitoring
systems in the nervous system (Chiba and Krichmar, 2020).
Figure 3 shows an overview of this architecture with brain
systems on the left and the corresponding robot control systems
on the right. There is low-level control for sensor processing and
motor reflexes. The autonomic nervous system may subsume
these lower levels to maintain homeostasis or adapt set points.
Higher levels can set states or context that may shape responses.

Multitasking and event-driven processing is prevalent in
current technology due in part to the ubiquity of real-time
and embedded systems. Most modern computing devices,
including smartphones, desktop computers, onboard automotive
computers and entertainment systems, have parallel processes
to handle asynchronous events. Neuromorphic computing
architectures developed by researchers andmajor chip companies
such as IBM and Intel are asynchronous and highly parallel, and
they are composed of many computing units that act like neurons
(Merolla et al., 2014; Davies et al., 2018). This architectural
design also follows the Efficiency through Cheap Design principle
described in Section 2.2. Neuromorphic hardware architectures
use orders of magnitude less power than conventional computing
by not relying on a synchronous clock and using spiking elements
(Krichmar et al., 2019). A neuron uses most of its energy when it
fires an action potential and when an action potential is processed
at the synapse. Because neurons do not fire often (in the typical
range of 10–100 Hz), the nervous system is in low-power mode
between spikes. This idea was not lost on most neuromorphic
hardware designers. Furthermore, communication bandwidth
is reduced because information is sent only when there is a
spike event.

3. ADAPTIVE BEHAVIOR - LEARNING AND
MEMORY

Adaptation requires learning and remembering what was learned
so that it can be applied in the future. Motivation is a key driver

of learning. Motivators take many forms, which are called value
systems. Another key aspect of adaptive behavior is the ability
to predict future events. This requires building up a memory of
expectations and the ability to adjust when expectations do not
meet the current situation.

3.1. Learning and Memory
Unlike artificial systems, our brains allow us to learn quickly,
incrementally, and continuously. With just a few presentations of
something new, we can learn to recognize an object or situation
or even learn a new skill. When we learn something new, we do
not forget what we have learned previously. Moreover, we can
take what we learn from one situation and apply it to another.
On the other hand, artificial learning systems struggle under
these situations, suffer from catastrophic forgetting of previous
learning when something new is learned, and have difficulties
generalizing learning from one task to another.

A brain region important for learning and memory is the
hippocampus. The hippocampus is necessary to learn new
memories and to consolidate those new experiences into long-
term memories that can last a lifetime. The hippocampus can
rapidly learn new autobiographical and semantic information,
sometimes in the first experience (i.e., one-shot learning).
Over time, this information becomes consolidated in the
rest of the brain. Having a rapid learning system that can
interact with a slower long-term storage area, which has been
called complementary learning systems (McClelland et al.,
1995; Kumaran et al., 2016), is thought to be the means
by which our brains overcome catastrophic forgetting (i.e.,
forgetting previously learned information when learning new
information). This aligns with another memory model, known as
the hippocampal indexing theory (Teyler and DiScenna, 1986),
which states that memories in the form of neocortical activation
patterns are stored as indices in the hippocampus that are later
used to aid recall. Although this may be an oversimplification, the
notion that the hippocampus andmedial temporal lobe integrates
multimodal information from the neocortex makes sense and is
backed by experimental evidence.

Our memories have context, and this contextual information
can help us generalize when we encounter novel yet similar
situations. In the literature this is called a schema, which is
the memory of a set of items or actions bound together by a
common context (van Kesteren et al., 2012). For example, if you
are in a restaurant, you expect to see tables, chairs, a menu,
waiters, and so forth. If you go to a new restaurant, that common
context information can be used to rapidly consolidate the novel
information into the restaurant schema. This requires mental
representations that are flexible enough to learn tasks in new
contexts and yet stable enough to retrieve and maintain tasks in
old contexts (Carpenter and Grossberg, 1987). Tse et al. (2007)
demonstrated this by training rats on different schemas, which
were collections of associations between different foods and their
locations in an enclosure. They found that the rats were able to
learn new information quickly if it fit within a familiar schema.
Additionally, the rats were able to learn new schemas without
forgetting previous ones. The hippocampus was necessary for
learning schemas and any new information matching a schema.
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FIGURE 3 | Schematic for self-monitoring systems in biology and in engineering. On the left are terms and regions derived from neuroscience. On the right are terms

adapted from autonomous robots but could be applied to many embedded systems. Blue: low-level sensory processing and motor control. Green: homeostasis,

maintenance, and monitoring. Orange: high-level planning, adapting, and goal-driven behavior. Adapted from Chiba and Krichmar (2020).

A subsequent study showed increased plasticity in the medial
prefrontal cortex (mPFC) when information was consistent with
a familiar schema (Tse et al., 2011). However, the hippocampus
was not necessary to recall thesememories, even after a short time
period (e.g., 48 h). This challenged the idea of complementary
learning systems because new information could rapidly be
consolidated in cortical memory under these conditions.

The Tse et al. (2007) schema experiment was replicated with
a neural network model based on interactions between the
hippocampus and the mPFC (Hwu and Krichmar, 2020), and
later tested on a robot required to create and utilize a schema
(Hwu et al., 2020). A contextual pattern of objects and locations
projected to the mPFC, in which each individual neuron encoded
a different schema. The ventral hippocampus (vHPC) and dorsal
hippocampus (dHPC) created triplet indices of schema, object,
and location. The vHPC and dHPC drove activity that eventually
activated a place cell through a winner-take-all process in the
action network. This action neuron caused the robot to go to
that location in search of the cued object. Contrastive Hebbian
learning (CHL) was used to make the association between
schema, object, and location. CHL utilizes oscillatory epochs,
in which the duration depends on the familiarity and novelty
of information, to learn associations. This assimilation of new
information has similarities to adaptive resonance theory or ART
(Grossberg, 2013). The model contained neuromodulators to
encode novelty and familiarity. For example, if an object is novel
and the context is unfamiliar, a new schema must be learned.
However, if an object is novel and the context is familiar, the
object can be added to an existing schema.

The schema model was embedded on the Human Support
Robot (HSR) from Toyota (Yamamoto et al., 2018) and given

the task of finding and retrieving objects in a classroom and a
break room. In a trial, the robot was prompted to retrieve an
object, which required prior knowledge of the schema to which
the object belonged and the location of the object. This caused the
robot to navigate toward a location, recognize the object, grasp
the object, and then return the object to its starting location.

In the first experiment, the HSR was placed in a room with
typical classroom items (e.g., apple, bottle, computer mouse,
book). Figure 4A shows the performance of the HSR retrieving
classroom items. With each trial the number of correct places
recalled increased and the time to retrieve an item decreased.
After training and testing in the classroom, an original item was
replaced by a novel item (Exp 1b in Figure 4A). Although the
object was novel, the HSR knew it belonged in the classroom
and was able to quickly consolidate this new information into the
existing classroom schema.

In the second experiment, the HSR was placed in a room with
typical break room items (e.g., apple, cup, banana, microwave
oven). After training and testing, the classroom schema was
tested again to see if the robot was able to maintain performance
of prior tasks. As with the classroom, Figure 4B shows that the
robot was able to learn this new break room schema without
forgetting objects’ locations in the classroom (CR in Figure 4B).

In the third experiment, the HSR was tested to see whether
schemas could help with the retrieval of items that it was never
explicitly trained to retrieve. If the HSR was cued with a book, it
searched for the book on the desk in the classroom because books
are likely to be found in a classroom schema (see Figure 5A). If
the HSR was cued by showing it a banana, the HSR searched for
the banana in the break room first rather than in the classroom
(see Figure 5B).

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 88251871

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Krichmar and Hwu Neurorobot Design Principles

FIGURE 4 | Performance on neurobotic schema experiments. The blue lines show the activation of the correct location neuron for a cued object. The red lines show

the retrieval times. (A) Experiment 1. Performance in the classroom schema (Exp 1a) and retrieval of novel object (Exp 1b). (B) Experiment 2. Performance in the

breakroom schema. CR denotes performance when returned to classroom. Novel denotes retrieval of a novel object. Adapted from Hwu et al. (2020).

FIGURE 5 | Cuing the robot on objects it had not retrieved before. Top: The robot was shown a banana. The robot then went to the break room to pick up the banana

and navigated to the drop-off location to deposit it. Bottom: Heat map of action layer during experiment 3. (A) Cued to retrieve a book. (B) Cued to retrieve a banana.

Adapted from Hwu et al. (2020).

The neurorobotic schema experiments showed how
context is tied to spatial representations via hippocampal
interaction with the mPFC. Moreover, it demonstrates

how ideas from memory models in the brain may improve
robotic applications and issues in artificial intelligence, such
as catastrophic forgetting and lifelong learning. A robot

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 88251872

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Krichmar and Hwu Neurorobot Design Principles

that has contextual memory could have applications for
assistive technologies.

3.2. Value Systems
Robots should be equipped with a value system that constitutes
a basic assumption of what is good and bad for its health
and well-being. A value system facilitates the capacity of a
biological brain to increase the likelihood of neural responses
to an external phenomenon (Merrick, 2017). The combined
effects of perception, experience, reasoning, and decision making
contribute to the development of values in animals. Value can
also be thought of as a measure of the effort one is willing to
expend to obtain reward or to avoid punishment.

In addition to rewards and punishment, intrinsic motivation
can be considered as a value system (Oudeyer and Kaplan, 2007).
This can take the form of seeking novelty, fun, play or curiosity,
that is, obtaining value for its own sake rather than to satisfy some
need. For example, Oudeyer and colleagues created a robotic
playground where a Sony AIBO dog with a motivation to explore
and learn new things learned to manipulate objects (Oudeyer
et al., 2007). The robot first spent time in situations that were
easy to learn and then shifted its attention progressively to more
difficult situations, avoiding situations in which nothing could be
learned.

Neuromodulators are thought to act as the brain’s value
systems (Krichmar, 2008). Neuromodulators are chemicals that
signal important environmental or internal events. They cause
organisms to adapt their behavior through long-lasting signals to
broad areas of the nervous system. Neuromodulators in the brain
influence synaptic change (i.e., learning and memory) to satisfy
global needs according to value.

To shape behavior, cognitive robots should have an innate
value system to tell the robot that something was of value
and trigger the appropriate reflexive behavior. From this
experience the agent can learn which stimuli were predictive
of that value and try to maximize the acquisition of good
value while minimizing the acquisition of bad value. Many of
these value-based robots employ models of the dopaminergic
neuromodulatory system to shape behavior (Sporns and
Alexander, 2002; Cox and Krichmar, 2009; Fiore et al., 2014;
Chou et al., 2015).

Besides the dopaminergic reward system, there are multiple
neuromodulators signal different value types (Doya, 2002;
Krichmar, 2008). The serotonergic system is involved in
harm aversion or impulsiveness (Miyazaki et al., 2018). The
noradrenergic system signals oddball or unexpected events (Yu
and Dayan, 2005). The cholinergic system is thought to increase
attention to important features and at the same time to decrease
the allocation of attention to distractors (Yu and Dayan, 2005).
Acetylcholine and noradrenaline could be thought to signal
intrinsic value by allocating attention and triggering learning
(Avery and Krichmar, 2017). These systems interact with each
other through direct and indirect pathways, and they all respond
strongly to novelty by sending broad signals to large areas of the
brain to cause a change in network dynamics resulting in decisive
action.

Introducing saliency into the environment can lead to
attentional signaling. For example, the robot CARL was
designed to test a computational framework for applying
neuromodulatory systems to the control of autonomous robots
(Cox and Krichmar, 2009). The framework was based on the
following premises (Krichmar, 2008): (1) the common effect
of the neuromodulatory systems is to drive an organism to be
decisive when environmental conditions call for such actions
and allow the organism to be more exploratory when there
are no pressing events; and (2) the main difference between
neuromodulatory systems is the environmental stimuli that
activate them. In the experiment, two out of four objects
were salient, and CARL learned the appropriate action for
each (see Figure 6). Unexpectedly, a strong attentional bias
toward salient objects, along with ignoring the irrelevant objects,
emerged through its experience in the real world. The selective
attention could be observed both in CARL’s behavior and in
CARL’s simulated brain. These neurorobotic experiments showed
how phasic neuromodulation could rapidly focus attention on
important objects in the environment by increasing the signal-
to-noise ratio (SNR) of neuronal responses. The model further
suggested that phasic neuromodulation amplifies sensory input
and increases competition in the neural network by gating
inhibition.

The neuromodulatory system also regulates attention
allocation and response to unexpected events. Using the Toyota
Human Support Robot (Yamamoto et al., 2018), the influence of
the cholinergic (ACh) system and noradrenergic (NE) systems
on goal-directed perception was studied in an action-based
attention task (Zou et al., 2020). In this experiment, a robot
was required to attend to goal-related objects (the ACh system)
and adjust to the change of goals in an uncertain domain (the
NE system). Four different actions (i.e., eat, work-on-computer,
read, and say-hi) were possible in the experiment and each
of them was associated with different images of objects. For
example, the goal action “eat" might result in attention to objects
such as apple or banana, whereas the action “say-hi" should
increase attention to a person. During the experiment, the goal
action changed periodically and the robot needed to select
the action and object that it thought the user wanted on the
basis of prior experience. The ACh system tracked the expected
uncertainty about which goal was valid, and the NE system
signaled unexpected uncertainty when goals suddenly changed
(Yu and Dayan, 2005). High ACh activity levels allocated
attention to different goals. Phasic NE responses caused a rapid
shift in attention and a resetting of prior goal beliefs. The model
demonstrated how neuromodulatory systems can facilitate
rapid adaptation to change in uncertain environments. The
goal-directed perception was realized through the allocation of
the robot’s attention to the desired action/object pair. Figure 7
shows the robot deciding which object to bring to the user.
The bottom of Figure 7 shows views from the robot’s camera
as it correctly guesses that the user’s goal is to eat. Its top-down
attention system finds an appropriate object, which is an apple in
this case.

One problem that remains unsolved in neurorobotics is that
these artificial value systems are dissociated from the agent’s
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FIGURE 6 | CARL robot in colored panel task. The panels could flash any of six different colors. One color, green, signaled positive value. Another color, red, signaled

negative value. The remaining colors were neutral. Positive and negative signals were transmitted from the panel to a receiver on the bottom of CARL. (A) CARL

during an approach or find response. The panels on the right show strong neuronal activity in its simulated green visual area, the dopaminergic system (VTA), and the

find motor neurons. (B) CARL during a withdrawal or flee response. The panels on the right show strong neuronal activity in its simulated red visual area, the

serotonergic system (raphe), and the flee motor neurons. Adapted from Cox and Krichmar (2009).

body. Real pain, hunger, thirst, and fatigue drive a true value
system. Without this connection to body-dependent drives, an
artificial value system does not signal the immediacy of the agent’s
need and lacks to some degree the ability to shape the agent’s
behavior. It would be interesting to tie something like the robot’s
battery level to its hunger value. With faster-charging batteries
or better solar cells this might be possible. An interesting step
in this direction is the work on self-monitoring systems that
can recognize drops in their performance, adapt their behavior,
and recover. For example, Cully et al. (2015) developed a novel
method for adapting gaits on a hexapod robot. In a sense, the
robot controller had a memory of potential gaits. If one or more
of the robot’s legs were damaged, the robot would detect the
damage, “imagine” different ways of moving, and then choose
the new gait that it thought would work best under the new
circumstances. In this way, the robot knew something was wrong
and was able to adapt its behavior quickly without intervention.

3.3. Prediction
Predicting outcomes and planning for the future is a hallmark of
cognitive behavior. Much of the cortex is devoted to predicting
what we will sense or the outcome of a movement or what series
of actions will lead to big payoffs. Thus, a neurorobot should
strive to have these predictive capabilities. Through prediction
and active inference, agents anticipate future sensory input based
on prior experience. This minimizes free energy by predicting
future outcomes so that they minimize the expenditures required
to deal with unanticipated events (Friston, 2010). The idea

of minimizing free energy has close ties to many existing

brain theories, such as Bayesian brain, Predictive Coding, cell
assemblies, Infomax, and the theory of neuronal group selection

(Edelman, 1993; Rao and Ballard, 1999; Friston, 2010). In the
theory of neuronal group selection (Edelman, 1993), plasticity

is modulated by value. Value systems control which neuronal
groups are selected and which actions lead to evolutionary fitness;
that is, they predict outcomes that lead to positive value and

avoid negative value. In this sense predicting value is inversely
proportional to surprise.

Prediction is crucial for fitness in a complex world and

a fundamental computation in cortical systems (George and
Hawkins, 2009; Clark, 2013; Richert et al., 2016). It requires
the construction and maintenance of an internal model. In a

similar fashion, model-based reinforcement learning builds an
internal model made up of the likelihood and expected value for

transitions between states (Solway and Botvinick, 2012).
Prediction has been useful in developing robot controllers.

For example, in a humanoid robot experiment it was shown that
having a predictive model helped the robot make appropriate
reactive and proactive arm gestures (Murata et al., 2014). In the
proactive mode the robot’s actions were generated on the basis
of top-down intentions to achieve intended goals. In the reactive
mode the robot’s actions were generated by bottom-up sensory
inputs in unpredictable situations. In another robot experiment
the combination of model-based and model-free reinforcement
learning was used in a sorting task (Renaudo et al., 2015). The
robot had to push cubes on a conveyor belt. The model-based
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FIGURE 7 | Toyota Human Support Robot implementation for the goal-driven

perception model, including the top-down attentional search process for a

guessed action “eat” based on three different real indoor views, to select the

highest attention region for bottom-up object prediction. Adapted from Zou

et al. (2020).

system improved performance by maintaining a plan from one
decision to the next. However, the experiments suggested that the
model-free system scales better under certain conditions andmay
be better in the face of uncertainty.

Jun Tani’s group has developed several predictive robot
controllers using recurrent neural networks (Tani, 2016; Ahmadi
and Tani, 2019; Chame et al., 2020). For example, they trained
a hierarchy of continuous time recurrent neural networks
(CTRNN) to learn different movements. Learning was achieved
via backpropagation through time (BPTT), a means to apply
an error signal to a sequence of neural activities. A teacher
guided a humanoid Sony QRIO robot through different
behavioral tasks. The CTRNNs received visual information and
proprioceptive joint angles from the humanoid robot. Important
to the learning were the different timescales of the CTRNNs.
Slower higher-level CTRNNs sent predictions to the faster
lower-level CTRNN units. Prediction errors from the lower
levels were propagated to the higher levels for adjustments.
Movements that appeared repeatedly were segmented into

behavioral primitives. These primitives were represented in
fast context dynamics in a form that was generalized across
object locations. On the other hand, the slow context units
appeared to be more abstract in nature, representing sequences
of primitives in a way that was independent of the object
location. Tani (2016) speculated that this prediction multiple
timescale hierarchy had similarities to the cortex. Fast responding
motor primitives can be found in the primary motor cortex,
and the slower prefrontal cortex sends top-down predictions
to the primary motor cortex. Similarly, the primary visual
cortex sends sensory information and prediction errors to the
slower parietal cortex, which sends top-down predictions for
the primary visual cortex. In this group’s recent work, they
show the potential for prototyping robotics agents, modeled after
active inference from the free energy principle theory (Friston,
2010), for human-robot interaction and socially assistive
robotics (Chame et al., 2020).

4. BEHAVIORAL TRADE-OFFS -
CONTEXTUAL DECISION-MAKING

Biological organisms need to consider many trade-offs
to survive. These trade-offs regulate basic needs such as
whether to forage for food, which might expose oneself to
predators, or hide in one’s home, which is safer but does
not provide sustenance. These trade-offs can be cognitive as
in introverted or extroverted behavior. Interestingly, many
of these trade-offs are regulated by chemicals in our brain
and body, such as neuromodulators or hormones. These
modulatory areas monitor and regulate environmental events.
They send broad signals to the brain that can dramatically
change behaviors, moods, decisions, etc. The brain can
control these modulatory and hormonal systems by setting a
context or making an adjustment when there are prediction
errors (Chiba and Krichmar, 2020).

We discuss the neuroscience behind the trade-offs
and neurorobots that incorporate these trade-offs. We
consider these behavioral trade-offs to be neurorobotic
design principles. By applying them to neurorobots,
we may realize behavior that is more interesting and
more realistic.

4.1. Reward vs. Punishment
Dopaminergic neurons have phasic responses that match quite
well with a reward prediction error signal used to shape behavior
(Schultz et al., 1997). What about punishment? One model
suggested that tonic serotonin tracked the average punishment
rate and that tonic dopamine tracked the average reward rate
(Daw et al., 2002). They speculated that a phasic serotonin
signal might report an ongoing prediction error for future
punishment. It has been suggested that the serotonergic and
dopaminergic systems activate in opposition for goal-directed
actions (Boureau and Dayan, 2011). This trade-off between
reward and punishment can be quite nuanced when invigoration
of activity can lead to rewards and punishment can lead to
inaction.
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4.2. Invigorated vs. Withdrawn
The dopamine and serotonin systems also regulate a trade-off
between invigorated novelty seeking and withdrawn risk-averse
behavior. It has been suggested that serotonin modulates the
desire to withdraw from risk, which can take place in social
interactions or in foraging for food (Tops et al., 2009). One can
imagine that too much withdrawal from society could lead to
symptoms of depression.

Consider the open-field test that is used to measure anxiety
in rodents (Fonio et al., 2009). Usually, when a mouse is placed
in an unfamiliar open area it will first stay near the borders of
the environment in which it might be concealed. The mouse
may hide in a nest area if available. After some time the mouse
decides the environment is safe and becomes curious. The mouse
will then proceed to explore the environment by moving more
and investigating the middle of the area. Serotonin levels can
alter this behavior. For example, Heisler et al. (1998) showed that
mice with increased serotonin spent less time in the center of the
open-field arena. In contrast, cocaine, which increases the level
of dopamine, increased locomotive activity and the exploration
of novel objects (Carey et al., 2008).

A neurorobot experiment took this trade-off into
consideration by modeling the interactions between the
serotonergic and dopaminergic systems (Krichmar, 2013).
Figure 8 shows the experimental setup and behaviors. A neural
network controlled the behavior of an autonomous robot and
tested in the open-field paradigm. When simulated serotonin
levels were high, sensory events led to withdrawn anxious
behavior such as wall following and finding its nest (i.e., the
robot’s charging station). When simulated dopamine levels were
high, sensory events led to curious behavior such as locomotion
to the middle of the enclosure or exploring a novel object.

The robot responded appropriately to sensory events in
its environment. Novel objects resulted in its exploring the

environment, and stressful events caused the robot to seek safety.
When the environment was unfamiliar, serotonergic activity
dominated, resulting in anxious behavior such asWallFollow and
FindHome actions. However, once the robot had become more
familiar with its environment (approximately 60 s into the trial)
DA levels were higher and there was more curious or exploratory
behavior. At approximately 120 s into the trial, there was an
unexpected light event due to flashing the lights on and off, which
resulted in a phasic 5-HT response and a longer tonic increase
in 5-HT. This caused the robot to respond with withdrawn or
anxious behavior until approximately 210 s into the trial when
a pair of object events triggered exploration of the center of the
environment. Specifically, tonic levels of 5-HT had decayed, and
the object events caused an increase in DA levels triggering a
change in behavioral state (see Figure 9A). Figure 9B shows the
proportion of curious behavior (OpenField and ExploreObject)
and anxious behavior (FindHome and WallFollow) for five
experimental trials. Each bar was the average proportion of
time spent in either curious (green bars) or anxious (red bars)
behaviors. The error bar denoted the standard error. Figure 9C
shows the behavior time-locked to the light event. The light event,
which occurred at approximately the halfway point in the trial,
was introduced to cause a stress response. After the light event,
the neurorobot’s behavior rapidly switched to anxious behavior
until roughly 60 s later when it became curious again. Variation
occurred due to different times of the light event and random
variations in other sensory events.

Similar to the rodent experiments, changing the serotonin
and dopamine levels affected the robot’s behavior. Increasing the
tonic serotonin levels in the model caused the robot to respond
to a stressful event such as a bright light to stay near the walls
or its charging station indefinitely. Increasing the tonic DA levels
resulted in more curiosity and risk taking. In effect, it took more
risks by venturing into the middle of the environment during

FIGURE 8 | Neurorobotic experimental setup for invigorated and withdrawn behavior. Experiments were run on an iRobot Create. (A) Robot arena. The picture in the

middle was a novel object for the robot to explore. (B) Wall follow behavior. (C) Find home behavior. Finding the robot’s docking station. (D) Open field behavior. (E)

Explore object behavior. Adapted from Krichmar (2013).
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FIGURE 9 | Neurorobot results for invigorated and withdrawn behavior. (A) A representative example of behavioral and neural responses in a single trial. The x-axis

shows time progression of the trial in seconds. The subplot for “Behavioral State” denotes the state of the robot across time. The subplots for “State Neurons,”

“Events,” “ACh/NE,” and “Neuromodulatory Neurons” show neural activity over the trial with pseudocolors ranging from dark blue (no activity) to bright red (maximal

activity). The subplot for “Tonic Neuromodulation” denotes the level of tonic activation contributing to DA and 5-HT neurons. (B) Proportion of time in Curious

(ExploreObject and OpenField) and Anxious (FindHome and WallFollow) behavior, averaged over 5 trials. Error bars represent standard error. (C) Similar to B except

the behaviors were time-locked to the Light event. Adapted from Krichmar (2013).
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or right after the stressful light event. Despite the simplicity
of the neural network model, the robot’s behavior looked quite
natural and similar to that of a mouse in the same situation.
Since the neuroroboticist was able to precisely control the
neuromodulation activity, the experiment could shed light on
neurological issues such as anxiety, depression, and obsessive
compulsive disorders.

4.3. Expected Uncertainty vs. Unexpected
Uncertainty
The world is full of uncertainty with which we must cope in
our daily lives. Sometimes the uncertainty is expected, forcing
us to increase our concentration on a task. Other times the
uncertainty is unexpected, forcing us to divert our attention.
How we deal with these types of uncertainty can be thought
of as a behavioral trade-off. Once again, neuromodulators
influence this trade-off of how we apply our attention. Yu
and Dayan (2005) suggested that cholinergic neuromodulation
tracks expected uncertainty (i.e., the known unreliability in
the environment), and noradrenergic neuromodulation tracks
unexpected uncertainty (i.e., observations that violate prior
expectations) The basal forebrain, where cholinergic neurons
reside, encodes the uncertainty of prior information and this
can modulate attention to different features. The locus coeruleus,
where noradrenergic neurons reside, is involved in cognitive
shifts in response to novelty. When there are strong violations
of expectations, locus coeruleus activity may induce a “network
reset” that causes a reconfiguration of neuronal activity that
clears the way to adapt to these changes (Bouret and Sara,
2005). In modeling and in experimental work, it has been shown
that the cholinergic system mediates uncertainty seeking (Naude
et al., 2016; Belkaid and Krichmar, 2020). Uncertainty seeking
is especially advantageous in situations when reward sources
are uncertain. The trade-off between expected and unexpected
uncertainty can also be observed in how we apply our attention
(Avery et al., 2012). Top-down attention or goal-driven attention,
which ramps up our attention to look for something, is related
to expected uncertainty. Bottom-up or stimulus-driven attention
occurs when a surprise or unexpected uncertainty diverts our
attention.

The Toyota HSR neurorobot experiment discussed in
Section 3.2 and shown in Figure 7 explored this trade-off
between expected and unexpected uncertainty by modeling the
cholinergic and noradrenergic system ability to regulate attention
(Zou et al., 2020). Because the user’s goals could be uncertain,
simulated cholinergic neurons tracked how likely the user would
be to choose any of these goals (i.e., expected uncertainty). When
the user interacting with the robot changed their goals (i.e.,
unexpected uncertainty), the noradrenergic system in the model
responded by resetting prior beliefs and rapidly adapting to the
new goal. Figure 10 shows how the robot correctly guessed the
user’s goals, which then drove attention to the object associated
with the goal (e.g., eat leads to attention to an apple or orange).
Note how quickly the noradrenergic (NE) system responded
to goal changes, which led to the cholinergic system (ACh)
increasing attention to objects related to the new goal. In this

way, the robot was able to monitor a trade-off between the known
and unknown uncertainties in the world to rapidly respond to
the user’s changing needs. Similar to the example in the schema
experiments described in Section 3.1, such goal-driven attention
could provide benefits for assistive robot technologies.

4.4. Exploration vs. Exploitation
During decision making or information gathering, there exists
a trade-off between exploration and exploitation in which it
is sometimes best to explore new options and other times
it is best to exploit opportunities that have paid off in the
past. A framework was presented in which neuromodulation
controlled the exploration/exploitation trade-off (Aston-Jones
and Cohen, 2005). When neuromodulators have tonic activity,
the animal’s behavior is exploratory and somewhat arbitrary.
However, when the neuromodulator has a burst of phasic activity,
the animal is decisive and exploits the best potential outcome at
the given time. The CARL robot described in Section 3.2 (see
Figure 6) incorporated tonic and phasic neuromodulation (Cox
and Krichmar, 2009). When there was tonic neuromodulation,
the robot randomly explored its environment by looking at
different colored panels. If one of the colors became salient due
to a reward or punishment signal, the robot’s neuromodulatory
systems responded with a phasic burst of activity. This
phasic neuromodulation caused a rapid exploitative response
to investigate the colored panel. It also triggered learning to
approach positive-value objects and avoid negative-value objects.

4.5. Foraging vs. Defending
Hormones are chemical messengers in the body that can
affect the brain and other organs. They regulate a number of
bodily functions such as body temperature, thirst, hunger, and
sleep. Like neuromodulators, hormones can be triggered by
environmental events and can broadly change neural activity.
For example, the hormone orexin regulates hunger levels. This
can lead to a behavioral trade-off in which animals foraging for
food are less willing to defend a territory (Padilla et al., 2016).
Foraging for food may cause an animal to leave its nest exposed
to predators. However, defending one’s territory requires energy
expenditure, which if prolonged requires food for replenishment.

Hormones can be modeled and embodied in robots to
explore interesting naturalistic tradeoffs (Canamero, 1997). For
example, Cañamero’s group modeled hormones that tracked a
robot’s health (Lones et al., 2018); one hormone was related to
the battery level, and another hormone monitored the robot’s
internal temperature, which was related to how much the robot
moved and the climate of its environment. The robot’s tasks
were to maintain health and gather food resources, which might
require aggressive action. This neurorobotics study demonstrated
how maintaining health requires behavioral trade-offs. Searching
for food increased the robot’s internal temperature and reduced
the robot’s battery level. Being aggressive to obtain food also
reduced battery levels. However, not searching for food would
lead to starvation. Modeling the secretion and decay of hormones
allowed the robot to maintain a comfortable energy and internal
temperature level and at times led to an aggressive behavior
of pushing objects away to get at food resources. However,
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FIGURE 10 | Expected and unexpected uncertainty neuromodulation in neurorobot experiment. Top chart. Robot’s response to guess the user’s goal. Center chart.

Noradrenergic (NE) neuron activity level. Bottom chart. Cholinergic (ACh) neuron activity level. There was an ACh neuron for each potential goal. Adapted from Zou

et al. (2020).

as the environments became more complex an epigenetic
system, which monitored and controlled the hormones, became
necessary for the robot’s comfort level to be maintained
satisfactorily. Their epigenetic system acted in a similar way
to the hypothalamus, a subcortical brain region that regulates
many of our bodily functions. Their experiments showed that
an epigenetic mechanism significantly and consistently improved
the robot’s adaptability and might provide a useful general
mechanism for adaptation in autonomous robots.

4.6. Stress vs. Calm
In his book Why Zebras Don’t Get Ulcers, Robert Sapolsky
describes how a zebra, which is calmly grazing, responds when
it encounters a lion (Sapolsky, 2004). The zebra quickly runs
away from this stressful situation. Once clear of danger, the
zebra is calm again. This fight-or-flight response is mediated by
the stress hormones known as glucocorticoids, which increase
blood flow and awareness. However, this stress response does
come at the expense of regulating long-term health and short-
termmemory (Chiba and Krichmar, 2020). Unlike zebras, people
sometimes remain in a constant state of stress due to elevated
glucocorticoids, which can cause damage to the hippocampus
and memory.

Although there has been little work to date on neurorobots
that regulate their stress level, downregulation of behavior could
be useful for autonomous systems far from power sources, which
might have a stress-like response to carry out a mission and then
switch to a low-power calm mode after the mission has been
accomplished. In an interesting paradigm that explores the stress
vs. calm trade-off, experiments have shown that rats appear to
be capable of empathy and prosocial behavior (Ben-Ami Bartal
et al., 2011). In one study a rat was trapped in a cage and clearly
stressed. Another rat observing this behavior became stressed,
too. The observing rat, feeling bad for its trapped friend, found a
lever that opened the cage and released the trapped rat. This study
suggested that rats can feel another’s pain (i.e., feel empathy) and
are willing to act on the other’s behalf (i.e., can be prosocial).

In a robotic variation of the empathy experiment, a rat
was trapped in a cage interacted with two different robots,
one of which was helpful and opened the cage and the
other of which was uncooperative and ignored the trapped rat
(Quinn et al., 2018). Interestingly, the rat remembered who
its robot friends were. When the helpful robot was trapped,
the rat freed that robot but did not free the robot that
was uncooperative. This could have implications for rescue
robotics. A robot that can identify and relieve stress or
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anxiety could have applications for robotic caretakers or for
disaster relief.

4.7. Social vs. Solitary
Hormones can regulate a trade-off between social bonding and
independence. Estrogen, progesterone, oxytocin, and prolactin
can influence a number of neural systems to ensure maternal
nurturing, bonding, and protection of young (Rilling and Young,
2014). In particular, oxytocin has been shown to regulate social
and paternal bonding (Young and Wang, 2004). An interesting
example of oxytocin’s effect on bonding has been observed in
voles. Whereas, prairie voles are polygamous and the male does
not assist in the nurturing of young pups, meadow voles are
monogamous and both parents participate in the pup rearing.
Interestingly, meadow voles have more oxytocin receptors than
prairie voles. Furthermore, inhibiting oxytocin prevents pair
bonding in meadow voles (Young and Wang, 2004). However,
social bonding requires devoting energy to another, possibly at
the expense of one’s own health. Therefore, it could be argued that
there should be a balance between social and solitary behavior.

Neurorobot experimenters have investigated the balance
between social and solitary behavior. By simulating social
hormones, Cañamero’s group investigated attachment bonds
between a robot and a “caregiver” (Canamero et al., 2006;
Hiolle et al., 2009, 2012). Although they did not explicitly model
oxytocin, their system did simulate the type of bonding observed
between a parent and a child. The robot found a good balance
between asking the caregiver for help and learning on its own.
Too much interaction with a caregiver led to stress and rejection
by the robot. Not enough interaction with a caregiver resulted
in isolation. As with humans, a proper balance is important for
learning and development.

5. DISCUSSION

In this article, we discussed a number of principles to consider
when designing neurorobots and experiments using robots to test
brain theories. These principles are strongly inspired by Pfeifer
and Bongard’s design principles for intelligent agents. We build
upon these design principles by grounding them in neurobiology
and by adding principles based on neuroscience research. We
highlight the importance in neurorobotics for designing systems
that are reactive, adaptive, predictive, able to manage behavioral
tradeoffs, and capable of learning from experience.

As summarized in Figure 11, the principles fall into three
broad categories: 1) Embodiment and reactions. These are
reactive, reflexive and rapid responses. They are often carried
out without involving the central nervous system. Rather they
emerge through the body’s interaction with the environment
or are handled by the peripheral nervous system and reflex
arcs involving the spinal cord. They can have short-term
adaptive properties and lead to behavioral repertoires. 2)
Adaptive behavior. Biological organisms have the ability to
learn continually over the lifetime of the organism. A major
property of the brain is its plasticity. In particular, hippocampal
interactions with the cortex lead to long-term contextual
memory. Neuromodulatory systems can signal value, which

shapes learning and triggers adaptive behavior. Another hallmark
of the brain is its ability to predict outcomes. This requires the
construction, maintenance and updating of memory systems. 3)
Behavioral trade-offs. To survive in a dynamic world, organisms
must make decisions based on their needs and environmental
context. Oftentimes, these needs are a trade-off between opposing
motivations (e.g, taking a risk for a reward vs. playing it safe
to avoid punishment). These trade-offs can lead to interesting
behavior. Many of these trade-offs are regulated by sub-cortical
neuromodulator and hormone levels.

5.1. Importance of Low-Level Processes
and Model Organisms
Although the examples in this article focused primarily on
vertebrates, the principles could be applied to modeling other
organisms. Studies of the insect visual system have led to
elegant, efficient solutions for robot navigation that could
be deployed on neuromorphic hardware (Galluppi et al.,
2014; Schoepe et al., 2021). The emphasis on vertebrates
and especially the mammalian brain has been data-driven
in part. There are numerous studies of rodents, non-human
primates and humans that have provided modelers with
anatomical, behavioral, and neurophysiological data to make
their simulations more biologically accurate. However, the
complexity of these organisms and their brains makes holistic
modeling difficult. A promising avenue may be to study
organisms that have less complex brains and behaviors. Recent
work on model organisms such as drosophila and the nematode
C. Elegans are providing rich data sets for neuroboticists (Sarma
et al., 2018; Scheffer et al., 2020). The OpenWorm project (Sarma
et al., 2018) provides the biological data and the simulation
tools, including a robotics sub-project, to create interesting
neurorobots that followmany of the design principles introduced
here.

There is a tendency in neurorobotics, which is a subarea
of cognitive robotics (Cangelosi and Asada, 2022), to model
cognitive functions such as attention, decision-making, planning,
etc. Although modeling human cognition may be an ultimate
goal for the field, many of the design principles introduced here
concentrate on low-level processes such as how the body shapes
behavior, motivations, homeostatic control of body functions
to name a few. As we emphasized in this paper and in Chiba
and Krichmar (2020), many of these processes are driven by
sub-cortical brain regions and neurochemicals. Their interaction
with the environment and bodily functions lead to interesting
behavior that could be described as cognitive. Early examples
of neurorobots and behavior-based robots demonstrated that
intelligent behavior could arise from interactions between the
robot and the environment without complex nervous systems
or control systems (Braitenberg, 1986; Brooks, 1991; Holland,
2003). More work needs to be done to first build a foundation
of these low-level processes, upon which higher-order cognitive
processes can be added. Moreover, each cognitive model should
carefully choose an appropriate level of abstraction and state
assumptions about the lower level processes that support
the model.
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FIGURE 11 | Summary of neurorobot design principles.

5.2. Next Steps and Future Directions
The principles of neurorobotics introduced here can address
major challenges facing artificial intelligence and robotics
research. In general, neurorobotics explores these challenges
in embodied settings, providing a fresh perspective that
extends beyond simulations and algorithms performed on
computers. Neurorobotics incorporates features of the brain
that may begin to address lifelong continual learning, efficient
computing, operating on scarce knowledge, and human-
computer interaction.

We expect that new neuroscience discoveries will further
inform neurorobots, and vice versa. Progress in learning
and memory may lead to applications capable of continual
learning. Advances in our understanding of multimodal sensory
systems may be incorporated into neurorobotics that not
only classify but also understand the meaning of what they
are perceiving. Given the recent achievements of artificial
intelligence, hybrid systems combining machine learning and
deep learning with neurorobotic design principles could lead to
interesting applications in autonomous driving, assistive robots,
and manufacturing.

In the intermediate term, we believe that neurobiological
concepts in learning and memory, navigation, decision making,
social behavior, and more, will have found their way into
practical applications. Progress in neuromorphic computing and

algorithms will lead to applications that can run at the edge
with little human intervention. This may lead to advances in
search and rescue robots and in robots capable of autonomously
exploring unknown environments such as the deep sea or
extraterrestrial planets.

In the long-term we hope that neurorobotics will achieve
more general intelligence rather than being designed for specific
tasks. In fact the delineation between conventional robotics and
neurorobotics may be blurred, with all robots possessing some
neurobiologically inspired aspects. With the rapid advances in
computing and other technologies, it is hard to predict far
into the future. However, we do believe that neurorobotics and
cognitive machines, in some form, will seamlessly be a part of
our everyday lives.

6. CONCLUSION

In closing, we believe that neurorobots that follow many
of the design principles discussed in this article will have
more interesting, naturalistic behavior. This not only
allows the robot to be a better model for understanding
the complex behaviors observed in biology, it also
could lead to better robots that show more intelligence
and that are more natural in their interactions with
other agents.
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Rodent Head Direction Calibrated
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Maintaining a stable estimate of head direction requires both self-motion (idiothetic)

information and environmental (allothetic) anchoring. In unfamiliar or dark environments

idiothetic drive can maintain a rough estimate of heading but is subject to inaccuracy,

visual information is required to stabilize the head direction estimate. When learning to

associate visual scenes with head angle, animals do not have access to the ‘ground truth’

of their head direction, and must use egocentrically derived imprecise head direction

estimates. We use both discriminative and generative methods of visual processing to

learn these associations without extracting explicit landmarks from a natural visual scene,

finding all are sufficiently capable at providing a corrective signal. Further, we present

a spiking continuous attractor model of head direction (SNN), which when driven by

idiothetic input is subject to drift. We show that head direction predictions made by the

chosen model-free visual learning algorithms can correct for drift, even when trained on

a small training set of estimated head angles self-generated by the SNN. We validate

this model against experimental work by reproducing cue rotation experiments which

demonstrate visual control of the head direction signal.

Keywords: spiking neural network, pyNEST, head direction, predictive coding, localization, continuous attractor

1. INTRODUCTION

As we move through the world we see, touch, smell, taste and hear the environment around us.
We also experience a sense of our own self-motion through our vestibular system, which enables
us to keep balance and to maintain an internal estimate of our location and heading—pose—in the
world. Any drift in pose estimate incurred through the integration of self-motion cues alone (as we
walk with our eyes closed for example) is quickly corrected when we open our eyes and recognize
familiar features in the environment. This approach to self-localization has been adopted in many
fields of engineering that require an accurate and persistent pose estimate to operate effectively,
such as mobile robots and augmented reality devices.

The relative contributions of self-motion (idiothetic) and external sensory cues (allothetic) to
the firing properties of ‘spatial cells’ in rodents has been extensively investigated in neuroscience
(see below for review). The integration of idiothetic cues provides the animal with a rapid and
constant estimate of pose. This estimate not only aids navigation in the absence of allothetic
cues, but is also a learning scaffold to associate pose with novel visual scenes. This second
function has received little attention in prior models which often use the ground truth pose
of a learning mobile agent to associate sensory view rather than the drift prone estimate
provided from idiothetic cues. In mobile robotics this problem is addressed in the research field
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known as Simultaneous Localization AndMapping (SLAM) with
myriad solutions proposed, each with their own advantages and
limitations based on environmental, sensory and computational
constraints. In this study we are interested in modeling how this
problem has been solved in the mammalian brain.

The problem of accumulative error in idiothetic cue
integration implies that head direction estimates from early
explorations of a novel environment should be more reliable
than later explorations. Therefore, earlier experiences of an
environment should be used to learn associations between
heading and visual scenes, to correct for drift as the animal later
explores the same environment. From a learning perspective this
puts constraints on the size and richness of training sets. This
bi-directional learning problem is investigated here through a
series of controlled experiments using a simulated mobile robot
within a virtual environment. Our contribution is to model the
head direction cell system using populations of spiking neurons,
translating angular head velocity cues into a spike encoded
representation of head direction. To anchor head directions to
allothetic cues, we have trained three different model-free visual
learning algorithms: Convolutional Neural Network (CNN),
Variational Auto-Encoder (VAE) and Predictive Coding Network
(PCN), to associate distal natural visual scenes with the spike
based representation of head direction. We demonstrate that all
three models are capable of correcting the drift in pose estimate
from purely idiothetic cue integration evenwhen trained on small
self-generated training sets. This is evaluated further through cue
conflict experiments to reveal similar characteristics of the model
performance as recorded in rodents. The primary motivation
for this work is toward a deeper understanding of the complete
head direction system of the rodent through the integration of
components modeled at different levels of abstraction; namely,
spiking neural attractor network models, deep learning based
generative and discriminative models, and simulated robotic
embodiment. However, the integration of models at multiple
levels of abstraction also provides a framework for how energy
efficient neuromorphic hardware components (Krichmar et al.,
2019) can be usefully integrated into mobile robotic applications
in the near future. We contend that to fully exploit this
biologically inspired computing paradigm requires continued
biomimetic study of fundamental neuroscience as epitomized in
the field of neurorobotics.

1.1. Rodent Head Direction Cell System
Neural correlates of position (O’Keefe, 1976; Hafting et al., 2005),
environmental boundaries (Lever et al., 2009), heading (Taube
et al., 1990), speed (Kropff et al., 2015) and numerous other
spatial measures (see Grieves and Jeffery, 2017 for review) have
been extensively studied in the rodent brain and remain an
active topic in neuroscience research. Of these, head direction
(HD) cells—cells which exhibit high firing rates only in small
arcs of head angle—appear simplest, and have been a popular
target for modeling. Head direction cells have also been identified
in regions homologous to the rodent hippocampus in birds
(Ben-Yishay et al., 2021), fish (Vinepinsky et al., 2020), and
insects (Kim et al., 2017). Strikingly in Drosophila these cells are

arranged as a ring in the Ellipsoid Body, and have properties of a
continuous attractor.

Most models of head direction use a continuous attractor,
where a sustained bump of activity centered on the current
heading is formed and maintained through interactions between
excitatory and inhibitory cells. Many rely on recurrent excitatory
collaterals between cells in the Lateral Mammillary Nuclei (LMN;
Zhang, 1996; Page and Jeffery, 2018), however anatomical data
show no evidence of this type of connection (Boucheny et al.,
2005). Although head direction cells have been found in many
brain regions, including Anterior Thalamic Nuclei (ATN; Taube,
1995), Retrosplenial cortex (Cho and Sharp, 2001), Lateral
Mammillary nuclei (LMN; Stackman and Taube, 1998) and
Dorsal Tegmental Nucleus (DTN; Sharp et al., 2001; see Yoder
et al., 2011 for review), generation of the head direction signal
is thought to be in the reciprocal connection between LMN
and DTN (Blair et al., 1999; Bassett and Taube, 2001). As the
DTN sends mainly inhibitory connections to the LMN, attractor
networks exploiting connections between two populations of
cells appear more biologically plausible (Boucheny et al., 2005;
Song and Wang, 2005).

1.2. Control of HD by Self-Motion Cues
Self-motion cues can be derived directly from the vestibular
system but also from optic flow and motor efference copy.
Disrupting vestibular input to head direction cells abolishes
spatial firing characteristics and impacts behaviors which rely
on heading (Yoder and Taube, 2009, 2014). Cells sensitive to
Angular Head Velocity (AHV) have been recorded in several
regions including the DTN (Bassett and Taube, 2001; Sharp
et al., 2001). These cells are either sensitive to AHV in a single
direction (clockwise or anticlockwise; asymmetric AHV cells)
or the magnitude of AHV regardless of direction (symmetric
AHV cells). Methods of moving the bump of activity on
the ring attractor to follow head movement rely mainly on
asymmetric AHV input. Bump movement is achieved either
through imbalance between two populations of cells in the
attractor network (Boucheny et al., 2005; Bicanski and Burgess,
2016), or via conjunctive cells which fire strongly as a function of
both AHV and head direction (Sharp et al., 2001; McNaughton
et al., 2006). However, using imprecise self-motion cues in the
absence of vision results in drift in the preferred firing direction
of head direction cells (Stackman et al., 2003).

1.3. Visual Control of HD
Although HD cells still show some directional sensitivity in the
absence of visual cues or novel environments (Goodridge and
Taube, 1995; Taube and Burton, 1995; Goodridge et al., 1998;
Stackman et al., 2003), vision is clearly an important factor
for stabilizing the head direction system. During development,
head direction cells have much sharper tuning curves after eye
opening (Tan et al., 2015), but may use other types of allothetic
information, such as tactile exploration of corners of the
environment with whiskers, to stabilize head direction before eye
opening (Bassett et al., 2018). Even in unfamiliar environments,
visual information helps to stabilize head direction, suggesting
ongoing learning of visual landmarks (Yoder et al., 2011). In
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familiar environments, the preferred firing directions of head
direction cells become entrained to visual features and will
follow these cues over self-motion signals (Taube and Burton,
1995). When environmental cues are rotated, preferred firing
directions of many cells also rotate through the same angle,
resulting in “bilateral” preferred firing directions; Page and Jeffery
(2018) suggest these bilateral cells may be useful for assessing
the stability of environmental landmarks. Some head direction
cells won’t follow these big conflicts in cue location, suggesting
multiple populations of head direction cells that are more or
less strongly controlled by allothetic input (Dudchenko et al.,
2019). This visual control of head direction begins at the LMN
(Yoder et al., 2015), stabilizing the head direction signal at its
origin. Both the postsubiculum (PoS) and retrosplenial cortex
(RSC) are likely candidates for delivering this visual information
to the LMN (Taube et al., 1990; Vann et al., 2009). Head directions
cells (or compass neurons) have also been shown to follow visual
information in Drosophila (Fisher et al., 2019). In this case
visual inputs onto compass neurons are inhibitory, and plasticity
between cells encoding visual features and compass cells has been
directly observed (Kim et al., 2019).

There are two main methods of using visual information to
control the head direction bump position. The first is to use
visual information to fine tune the model of AHV through a
learning mechanism, whether that be by detecting error between
the estimated head angle and the expected head angle based on
the visual cue (Kreiser et al., 2020), or using a combination of
strategic behavior and landmark tracking to match the AHV
model to themovement of the cue within the visual field (Stratton
et al., 2011). The secondmethod is to influence the head direction
bump position directly by exploiting the attractor dynamics
and injecting current into the new bump position. This could
simply use Gaussian inputs into the ring attractor at determined
positions (Song and Wang, 2005), or by representing features
in multiple “landmark bearing cells,” learning the association
between head angle and visible features, and feeding back
expected head direction onto the head direction cells (Yan et al.,
2021). A combination of these two methods of visual control is
probably the answer to accounting for environmental or body
changes in the real world; in this study we begin with directly
influencing the bump position.

1.4. Models of Visual Input
In models of head direction stabilized by visual input, the visual
data used is often contrived. For example, adopting “visual cells”
that fire at specific head angles without any real visual data (Song
and Wang, 2005) and assume visual processing is performed
somewhere upstream. Where true vision is used (captured by
cameras), one or more cues positioned in the environment, such
as colored panels (Yan et al., 2021) or LEDs (Kreiser et al.,
2020), are identified, mapped to a “visual cell,” and learning
mechanisms associate this cue with a head angle (Bicanski and
Burgess, 2016). Natural visual scenes aremuchmore complex and
information rich than bold homogenous cues, with this richness
making real-world landmark identification more difficult. The
question remains, how does a visual scene become useful for

maintaining head angle? In this work we use natural scenes,
projected onto a sphere around a simulated robot (see Figure 1.
We assume this visual information is distal and invariant to
translation. We show that both generative and discriminative
model-free learning algorithms can be used to predict head angle
from natural visual information and correct for drift in a spiking
continuous attractor model of head direction cells, without the
need to identify specific landmarks in the environment.

1.5. On the Discriminative-Generative
Dichotomy
Machine Learning approaches broadly draw from two paradigms.
The first is a discriminative paradigm; models which aim
to partition the incoming data samples along meaningful
boundaries, often building a hierarchy of increasingly abstract
representations or increasingly broad sub-spaces, extracting
meaning through a bottom-up feedforward process. An example
would be Decision Trees, which learn to partition data
through recursive splitting on the data space by simple if-else
rules (Breiman et al., 1984).

The second is a generative paradigm, which approaches the
problem in the opposite direction. A generative model, often
also a probabilistic model, aims to instead learn the capability
of generating appropriate data samples like the training data in
the appropriate contexts. Like a discriminative model, it tries to
uncover abstract features in the data, but instead incorporates
this into a model of latent features, refining its hypotheses about
the underlying causes of the sensory data it is receiving. An
example would be Gaussian Mixture Models, which model the
problem space as a family of Gaussians with different parameter
values (Reynolds, 2009).

Although details between each model vary considerably, the
broad trend is that discriminative models are faster than their
generative counterparts, but can only work within the bounds of
the data they are provided. With the data space’s dimensionality
being potentially unlimited, this still provides a huge amount of
capability, but a training set that does not adequately reflect the
data space can lead to nonsensical outputs. Generative models,
on the other hand, typically tend to be slower to categorize and
slower to learn. However, by generating samples from a model
of latent causes of the data, they are not limited by their inputs
and can produce very different predictions from the data they
are provided. For the case of well-defined and well-bounded
problems, this is often surplus to requirements, but for many
situations, such as with unfamiliar or incomplete data, this can
be beneficial.

Many algorithms make use of elements of both. For
example, the Variational Autoencoder (Kingma and Welling,
2014) has hidden layers that extract features from the
data in a discriminative way, and use these features to
train a multidimensional Gaussian space, the output of
which is decoded by another discriminative layer stack to
produce a sensible reconstruction of the input. A Generative
Adversarial Network (Goodfellow et al., 2014) takes this
even further, using a generative and discriminative network
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FIGURE 1 | The WhiskEye robot used to capture visual and odometry data sets, as it moved within the simulated environment of the NeuroRobotics Platform. The

natural scenery (a panorama of the Chinese Garden in Stuttgart) was projected onto the inside surface of a sphere, surrounding a platform on which WhiskEye can

move. The behaviours expressed by WhiskEye during capture of the data sets analysed in this study are referred to as (A) rotating, (B) circling, and (C) random walk.

in a collaborative competition to produce ever-better data
samples. In neuroscience, particularly regarding the visual
system, aspects of cortical function have been explained as
both a discriminative and generative model, with exactly where
and how these approaches synthesize together an active area
of research (di Carlo et al., 2021); neural codes originally
found in hippocampal work have been hypothesized as a
unifying computational principle (Yu et al., 2021); see also
Hawkins et al. (2019).

In this study we remain agnostic to the debate, instead
choosing to evaluate a mix of generative and discriminative
algorithms for generating predictive head direction signals
from allothetic (visual) cues. As a purely generative model, a
Predictive Coding Network based on MultiPredNet (Pearson
et al., 2021), originally from Dora et al. (2018); as a hybrid
model, a modification of the JMVAE from Suzuki et al. (2017);
and as a purely discriminative model, a Convolutional Neural
Network (Lecun and Bengio, 1997).

2. METHODS

2.1. Experimental Apparatus
WhiskEye is a rat-inspired omnidrive robot, with RGB cameras

in place of eyes and an array of active whisker-like tactile
sensors as shown in Figure 1. In this study only the visual

frames from the left camera were considered. A simulated model

of WhiskEye was integrated into the Human Brain Project’s
NeuroRobotics Platform (NRP) as part of prior work (Knowles

et al., 2021; Pearson et al., 2021). The NRP integrates robot
control and simulation tools, such as ROS and Gazebo, with

neural simulators, such as NEST (Falotico et al., 2017). By
running these in a synchronized way on a single platform,
simulated robots can interact live with simulated neuron models,
allowing for experiments with biomimetic and bio-inspired
systems. Behaviors can also be specified in more controlled ways
using the familiar ROS framework, whilst capturing data from
both the robot and neural simulators for off-line analysis.
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Using the NRP allows arbitrary visual scenes to be constructed
within the environment. The visual scene in this experiment
consisted of a concrete-textured floor for WhiskEye to move
on; surrounded by an invisible collision mesh to contain the
robot in the environment; and with an outer sphere to display
the background. The sphere was made large enough so that
translation had no perceptible effect on the visual scene; barring
the concrete floor, all visual cues could be considered distal.
Within this environment, WhiskEye executed three different
behaviors: rotating on the spot, circling around the center of the
environment and a random walk (illustrated in Figures 1A–C).
This provided the odometry and visual data with which to
validate the performance of each model.

2.2. Spiking Neural Network Model of Head
Direction Cell System
The Head Direction system model is a spiking neural network
(SNN) model written in pyNEST (2.18; Eppler et al., 2009). All
cells are simulated using pyNEST’s standard leaky integrate-and-
fire neuron model (iaf_psc_alpha) which uses alpha-function
shaped synaptic currents. The simulation timestep was set to
0.1 ms for high accuracy with synaptic delay of 0.1 ms. The
network is composed of four equally sized rings of neurons: 180
Lateral Mammillary Nuclei (LMN) cells, 180 Dorsal Tegmental
Nuclei (DTN) cells, 180 clockwise conjunctive cells and 180
anticlockwise conjunctive cells. Constant input current of 450
pA to all LMN neurons results in spontaneous firing at a rate of
50 spikes per second prior to inhibitory input from the DTN. A
summary of the model can be found in Table 1.

Attractor dynamics emerge through reciprocal connections
between cells in the excitatory LMN population and inhibitory
DTN population. Each LMN cell e connects to a subset of
DTN neurons with declining synaptic strength as a function
of distance (Figure 2A). Reciprocal inhibitory connections from
each DTN cell i to LMN cells are arranged with synaptic strength
decreasing as a function of distance offset by a constant (µ). This
arrangement provides inhibitory input to the cells surrounding
the most active LMN cell, producing a single stable bump
of activity.

LMN and DTN cells are arranged as rings for the purpose
of defining synaptic strength based on distance; this gives the
attractor network periodic boundaries. Distances between cells
are found (D), accounting for the wrap around of the ring. Then
synaptic weight from each LMN neuron to DTN neuron (Wexc),
and return connections from DTN neurons to LMN neurons
(Winh) are defined as follows:

d1 =

∣∣∣∣
e

Nex
−

i

Nin

∣∣∣∣

d2 =

∣∣∣∣
e

Nex
−

i

Nin
− 1

∣∣∣∣

d3 =

∣∣∣∣
e

Nex
−

i

Nin
+ 1

∣∣∣∣

TABLE 1 | Summary of the spiking neural network written using pyNEST.

Model Summary

Neuron model Standard pyNEST Leaky integrate-and-fire neuron

model

Synapse model static_synapse does not support any kind of

plasticity.

Plasticity -

Topology Populations arranged as rings

Measurements Spikes from LMN population

Populations

Name Size N

LMN Nex 180

DTN Nin 180

CW conjunctive Nex 180

ACW conjunctive Nex 180

Connectivity

LMN to DTN Wexc = bexcexp
(

1
2

−D2

σ2

)
where σ = 0.12 and bexc =

4000

DTN to LMN Winh = binhexp
(

1
2

−(D−µ)2

σ2

)
where σ = 0.12 and µ =

0.5 and binh = 450

LMN to CW conj One to one, w = 660

LMN to ACW conj One to one, w = 660

CW conj to LMN c[i] to e[i + 1], w = 169

ACW conj to LMN c[i] to e[i − 1], w = 169

Input

AHV input One step_current_generator per conjunctive cell

population connected to all cells in the population.

Allothetic input One step_current_generator per cell in the LMN

population connected one to one. Delivers current

matching the prediction from the PCN, VAE or CNN.

D = min{d1, d2, d3}

Wexc = bexcexp

(
1

2

−D2

σ 2

)

Winh = binhexp

(
1

2

−(D− µ)2

σ 2

)

where e and i are the index of the excitatory and inhibitory cell,
respectively.Nex andNin are the total number of cells in each ring.
bexc and bexc are the base weight between the two populations. µ
= 0.5 and σ = 0.12, which determine the position of the center
of the peak, and the width of the peak, respectively.

In the absence of input from the two conjunctive cell
populations, the bump of activity maintained by the attractor
network remains stationary. The initial position of the activity
bump is produced by applying a 300 pA step current for 100 ms
to a nominal LMN cell.

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 86701989

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stentiford et al. Landmark Free Head Direction Calibration

FIGURE 2 | An overview of the SNN model of head direction, the information flows and experimental setup of this study. Visual data from WhiskEye (dark green arrow)

and the estimated head angle from the SNN (light green arrows) are used to train one of several model-free learning algorithms (black box). Once trained, these

algorithms return head direction predictions (represented as the activity in the array of light blue neurons) that are mapped one-to-one with HD cells in the LMN ring

(dark blue neurons) to correct for drift in the spiking HD ring attractor model. (A) Excitatory and inhibitory projections between the LMN and DTN respectively for the

current most active cell (green neuron). Attractor dynamics emerge from this connectivity to maintain the bump in a stable position in the absence of idiothetic input.

(B) Connectivity between anticlockwise conjunctive cells (black neurons) and head directions cells offset by one cell anticlockwise. With coincident head direction and

angular velocity input (yellow arrow) these cells drive the bump clockwise around the ring. (C) Connectivity between clockwise conjunctive cells (white neurons) and

head directions cells.

In order to track head direction based on the Angular
Head Velocity (AHV) the two populations of conjunctive cells
are connected one to one with a LMN cell, shifted one cell
clockwise or anticlockwise from the equivalently positioned
neuron (Figures 2B,C). Angular velocity of the head was
determined by taking the first derivative of the head position
captured from the simulated WhiskEye at a rate of 50 Hz, taking
the difference in head angle at each time step. Positive values
indicated anticlockwise head movements and negative values
indicated clockwise head movements. AHV was converted to
current (IV ) using the following formula:

IV = (θt+1 − θt) · S+ Imin

where θ is the head angle (radians) from the ROS topic
published by the robot, Imin = 150 pA, and S = 3500. A
step current generator supplies this current to the respective
conjunctive cell population. LMN cells also connect one to
one with the equivalent conjunctive cell in both the clockwise
and anticlockwise populations. Spiking activity occurs in the
conjunctive cells with coincident AHV and LMN spiking input.

Conjunctive cell input causes movement of the attractor network
activity bump to follow head movement.

2.2.1. Allothetic Correction
Head direction predictions from the visual learning models
trained on Laplacian shaped representations of head direction
(see below), are mapped one to one onto the respective head
direction cells. Negative values in predictions are removed by
adding the smallest value in the dataset, then prediction values
are scaled by a factor of 10 and supplied to the HD network as
a direct current injection. This simple method allows predictions
which are smaller in magnitude to have less impact on the bump
location. However, imprecise predictions, that may have multiple
peaks or a broader shape, will lead to current input intomore cells
compared to a perfectly reconstructed Laplacian.

2.2.2. Analysis of Network Output
To compare the spiking network bump position to the ground
truth, the most active cell in each 40 ms time window is found.
The difference between the estimated head angle and the ground
truth was used to show how accumulation of drift over time, with
total error measured as Root Mean Squared Error (RMSE). To
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illustrate drift in the estimated head angle, the preferred firing
direction was plotted using firing rate as a function of head
angle in polar tuning curves. The ground truth head direction
at each spike time was collected into bins (6◦) for the first and the
third minute, to show changes in preferred firing direction over
time. Differences between idiothetic only and the three correction
methods were compared using a one-way ANOVA combined
with the Tukey HSD post-hoc test. A synthetic set of random
uniform predictions, of the same shape and scale as the true
predictions, were used to show that reductions in drift were not
due to arbitrary current input. Statistical tests were performed
using SPSS statistics software.

2.2.3. Artificial Cue Rotation
To investigate the control of allothetic cues over the head
direction cell signal, we reproduced cue rotation experiments
used in rodent studies (Taube and Burton, 1995). To supply
current as if environmental cues were rotated by 90◦, the
predictions were manipulated by taking either the first 45 or
135 prediction values and shifting them to the end of the 180
element prediction, producing an artificial rotation. This rotation
was applied for 30 s after 1 min of standard predictions.

2.3. Model-Free Learning Algorithms
Applied to Allothetic Cue Recall
2.3.1. Dataset Preprocessing
Each dataset from WhiskEye contained both image data and
head direction data. The image data processing was fairly simple,
flattening each (width = 80, height = 45) RGB image into a
single 10,800 long vector. The head direction data was more
involved, being processed as follows:

• Head angle data was recorded at a much higher frequency
of 50 Hz rather than the 5 Hz image data. It was therefore
subsampled to match the timestamps of the image data.

• Head angle at each timestep from the odometry file was
mapped to the 180 cell LMN structure. For example, a head
angle of 120◦ would become a one-hot vector with the max at
cell 60.

• In the case of the Spiking Neural Network Estimate, the most
active cell in a given 40 ms window was chosen as the active
cell for the head direction vector.

• A set of Laplacian distributions was created with means being
the active cell of each head direction vector. The Laplacian
was chosen over the conventional Gaussian as it lead to better
performance overall for the three networks.

• These were rescaled so that the max value for each was 1.

2.3.2. Predictive Coding Network
This network was a modified version of the MultiPredNet
(Pearson et al., 2021) which was developed for visuo-tactile
place recognition. Here the 3 modules that made up the original
network (visual, tactile and multisensory modules) were re-
purposed as visual, head-direction and multisensory modules.
Compared to the conventional feedforward architectures of other

TABLE 2 | Model parameters and dataset details for PCN, VAE and CNN.

Parameter
Values

PCN VAE CNN

Visual input size 10,800 10,800 10,800

Visual hidden layers shape [1,000, 300] [1,000, 300] [32(3,3), 64(3,3)]

Odometry input/output size 180 180 180

MSI layer shape 100 [50, 50] N/A

Training epochs 200 5,000 50

Full set size 3,000 3,000 3,000

Single set size 390 390 390

SNN estimate size 390 390 390

Test set size 3,000 3,000 3,000

Validation set size N/A 2,000 2,000

Learning rule Hebbian Backprop Backprop

Optimiser N/A SGD Adam

PCN training epochs are low due to number of inner ‘cause epochs’ (50 for training,

500 for inference) that increase training time, though are strictly a modification of the

learning rule rather than extra training epochs. Note that the visual layers for the CNN

are 2D Convolution Layers with the kernel shape in brackets. Training epochs vary but all

networks were trained to convergence with a single epoch consisting of the entirety of the

data for that dataset variant (full, single or SNN estimate). Validation data was taken from

a separate set of data gathered with the WhiskEye Rotating behaviour. Hebbian learning

is as per Dora et al. (2018), Backpropagation as per Chollet (2015).

algorithms, the PCN relies on feedback connections toward the
input data. For each sample, the PCN outputs a prediction from
its latent layer that passes through the nodes of the hidden
layers to the input later. The weights between each pair of layers
transform the prediction from the upper layer into a prediction
of the lower layer’s activity. At each layer, the prediction from
the layer above is compared to the activity at the current layer
and the difference (error) calculated. Weights between layers
are then updated locally according to their prediction errors.
This eliminates the need for end-to-end backpropagation and
increases bio-plausiblity. Several network topologies were trialed;
the best performing network had direct odometry input into the
multimodal latent layer, hence the lack of hidden layers in that
stream (see Table 2 for summary).

2.3.3. Multi-Modal Variational Autoencoder
Based on the Suzuki et al. (2017) Joint Multimodal Variational
Autoencoder, the VAE works by compressing inputs via hidden
layers of decreasing size, encoding inputs into a bifurcated joint
multimodal latent space representing the means and variances
of Gaussians. These means and variances are used to generate
normally distributed random variables, which are then passed
through an expanding set of hidden layers to decode the latent
Gaussian output into the same shape and structure as the input
data. This encoder-decoder system is trained via conventional
error backpropagation, comparing the decoded output to the
‘ground truth’ input and adjusting weights accordingly, with the
addition of a KL-Divergence term to penalize divergence from a
µ = 0 Gaussian. As with PCN, the best performing network had
no hidden layers between odometry input and the latent layers, so
these were removed from both the encoder and decoder halves of
the network.
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2.3.4. Convolutional Neural Network
As a discriminative network, the CNN handles the task by
training its weights so that a given visual input produces the
corresponding correct head direction estimate Similarly, unlike
the other two networks, the CNN has no latent space to condition
and operates purely as a encoder, transforming visual scenes to
their appropriate head direction output, with weights updated
using conventional backpropagation. It is also the only network
that is designed specifically for processing images, with strong
spatial priors implicit in the way it processes visual scenes,
analyzing small areas of the image in parallel via convolutions
to produce translation-invariant image features. As the problem
exists within a small, bounded space in both the visual and
odometry domains for this experiment, the larger benchmark
CNNs—AlexNet (Keshavarzi et al., 2021), ResNets (He et al.,
2016) etc.—were not required. Instead, a lightweight, purpose-
built CNN was created.

3. RESULTS

3.1. Head Direction Cell Like Firing
Properties
Cells in the LMN, DTN and conjunctive cell populations all
showed directional firing specificity as observed in the rodent

brain. Figure 3A shows firing rate as a function of head
direction from the equivalent cell in each of the LMN, DTN
and conjunctive cell rings. The preferred firing direction of
these cells is taken at the peak firing rate, and the directional
firing range is the total range of angles each cell fires over. The
average directional firing range of cells in the LMN was 59.3 ±

0.63◦, DTN 275.7 ± 0.69◦ and conjunctive cells 59.2 ± 0.63◦

(Figure 3B). This is consistent with the directional firing range of
DTN head direction cells in rodents (109.43± 6.84◦; Sharp et al.,
2001) being greater than the directional firing range of LMN
head direction cells (83.4◦; Taube et al., 1990). Figure 3C shows
firing rate as a function of angular head velocity for an example
conjunctive cell that has similar form to asymmetric AHV cells
recorded in the DTN (Bassett and Taube, 2001).

3.2. Preferred Firing Direction of Cell Drift
With Only Idiothetic Drive
Ring attractor dynamics which emerge from reciprocal
connections between LMN and DTN cells maintain a stable
bump of activity centered on the current estimate of head
direction. When movement of the bump is driven only by
idiothetic angular velocity input from the two conjunctive cell
rings, the preferred direction of head direction cells drifted over
time. Figure 4A shows the ground truth (black) and estimated

FIGURE 3 | Cells from the DTN, LMN and conjunctive cell populations show HD-like firing characteristics. (A) Preferred head angle of one DTN, LMN and conjunctive

cell expressed as firing rate as a function of head angle, showing strong directional selectivity in the LMN and conjunctive cell and broader directional selectivity in the

DTN cell. (B) Histogram of the directional firing range of cells in each population, showing broader directional firing in DTN cells. (C) Firing rate as a function of angular

head velocity (AHV) from one example conjunctive cell.
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FIGURE 4 | Plots showing drift in the head direction estimate over time. (A) Ground truth head angle (black) and the estimated head angle (blue) from the SNN as the

WhiskEye rotates on the spot. Over time the estimate gets further from the ground truth. (B) Error measured as the magnitude of the difference between the estimated

angle and ground truth increases over time. (C) Preferred firing directions of three cells (red, orange and green) in the first vs third minute of the simulation, showing a

change in preferred firing direction for all three cell of approximately 70◦.

head direction (blue) over time when the WhiskEye robot
rotates on the spot. The difference between the ground truth and
estimate grows over time (Figure 4B), ending with a maximum
difference of 94.5◦ after 3 min (RMSE = 58.4◦). Firing rate as a
function of time for 3 LMN cells in the first minute vs the third
minute are shown in Figure 4C. The shift in preferred direction
of these head direction cells from the first minute to the third
minute was 51.3 ± 10.4◦. However, the RMSE over the first full
revolution was fairly low (5.2◦).

3.3. Predicting Head Direction Using
Model-Free Learning Algorithms
Rodents use allothetic information, such as vision, to counter
this drift in head estimate. This requires forming associations
between visual scenes and the current head angle, so that the
estimated head angle can be corrected when this visual scene is
experienced again. Ground truth head direction is not available in
biology to form associations between visual scenes and heading.
As drift in the head direction estimate (RMSE) is minimal
during the first rotation (Figure 4), even when only idiothetic
information is available, these early head direction estimates
could be used for training the model-free learning algorithms.

This would be a much smaller training set; to test the viability of
using a such a reduced training set, we first used a single rotation
of the ground truth.

This gave us three datasets to train on:

• Full Set - the full 3 min run of ground truth data
• Reduced Set - a single rotation of ground truth data
• SNN Estimate - a single rotation of idiothetic data

Head direction predictions made by three models trained
on head direction/vision pairs are not equally structured. As
seen in Figure 5, the discriminative CNN is far superior
at generating a smooth Laplacian reconstruction, closely
approximating the ground truth equivalent for all three
variant datasets. The VAE reconstructions consisted of many
competing peaks of varying heights, whilst the PCN shows
qualities of both, maintaining a Laplacian-esque area of the
distribution with noise increasing after a certain distance from
ground truth head direction. Both generative models showed
a noticeable degradation in the structure of their predictions
on the smaller datasets; this is most apparent with the VAE,
which suffered further degradation when trained with the
SNN estimate.
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FIGURE 5 | Representative reconstructions of head direction predictions inferred by each algorithm (orange) at a given ground truth head direction (blue). The shaded

difference between the two curves illustrates magnitude of the RMSE, which is inversely proportional to the quality of the reconstruction.

Figure 6 shows the reconstruction error (mean RMSE) for
binned views of the visual scene taken from WhiskEye during
the rotating behavior. Although there are variations in the error,
the performance remains nominally uniform for all head angles,
suggesting that the models are not favoring particular features for
head direction estimate.

Figure 7 shows the overall reconstruction error (mean RMSE)
for all datasets and scenarios. For all three models, reconstruction
error was noticeably increased by a reduction in dataset quality,
but the absolute error remains small. Both the reduced dataset
and the SNN estimates were comparable in their error values,
demonstrating that the internally generated estimates of the SNN
model are a suitable substitute for ground truth odometry as a
teaching signal, provided the dataset (and therefore accumulated
drift) is small. Further to this, it demonstrates the effectiveness
of all three methods, and thus their representative paradigms, at
performing this task with limited data.

3.4. Drift Reduction Using Head Direction
Predictions as Allothetic Input
The predictions generated by the PCN, VAE, and CNN trained on
the full dataset were converted into one-to-one current inputs to
LMN cells to correct for drift using visual information. Figure 8
shows the ground truth head direction, idiothetic only estimate
and the corrected estimate for 3 example datasets (rotation, a
random walk, and circling), with the respective error over time.
In each case, the corrected head direction estimate (pink) is
much closer to the ground truth (black) than the estimate using

idiothetic input only (blue), which drifts over time. Across all
five random walk datasets, corrective input from the PCN, VAE
and CNN all significantly reduced drift (one way ANOVA with
Tukey HSD post-hoc testing: PCN p = 0.001; VAE p < 0.001;
CNN p < 0.001, Table 3). The smallest error after corrections
was achieved using predictions made by the CNN, which had
the lowest reconstruction error. Even thoughVAE predictions are
imprecise, it still performs comparably to the othermethods. This
may be due to current inputs onto HD cells far from the active
bump having less influence due to the attractor dynamics; only
current inputs close to the bump location have strong influence
over bump position. Although the drift was large for the circling
dataset (RMSE = 558.6◦), all three methods successfully corrected
for this drift. This was the biggest reduction in error for all
three model-free learning algorithms (difference in RMSE: PCN
549.5◦, VAE 555.2◦, CNN 556.3◦).

3.5. Drift Reduction Using a Reduced
Training Set
The PCN, VAE, and CNN were trained using a single
rotation of ground truth head directions, and the same
method used to convert the predictions into current input
to the head direction cells. In all cases, the RMSE between
ground truth and the estimate head direction was reduced.
Across all five random walk datasets, corrective input from
the PCN, VAE and CNN all significantly reduced drift (one
way ANOVA with Tukey HSD post-hoc testing: PCN p =

0.001; VAE p = 0.002; CNN p < 0.001, Table 3). Once
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FIGURE 6 | Reconstruction error for different viewpoints of the environment taken from the rotating test dataset. The reconstruction error for each 30◦ arc of view is

represented as a point with radial distance equal to the RMSE between the ground truth Laplacian and each model’s reconstruction (PCN, VAE and CNN trained

using each of the training sets). The panorama depicts the view of the robot as it rotates on the spot, with associated angular head direction labeled in register with

the error polar plots above.

FIGURE 7 | Reconstruction error (RMSE) for each model, during each behaviour, trained on each training set. The Random Walks columns represent the mean of the

5 Random Walk datasets, with error bars indicating the standard error.

again the largest error reductions were achieved using CNN
predictions. The VAE corrections were the least helpful,
reflecting the larger reconstruction error when training on the
reduced dataset.

3.6. Drift Reduction Using SNN Estimate as
Training Set
As the reduction in drift was comparable when the full 3 min
ground truth and a single revolution were used as training sets,
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FIGURE 8 | (Left) Plots showing estimated head angle from the SNN with idiothetic drive only (blue), the corrected estimated head angle from the SNN which also

receives allothetic input from the PCN (pink), and ground truth head angle (black). (Right) The difference between each estimate and the ground truth as also shown.

Examples are shown from the (A) rotating, (B) random walk 1, and (C) circling datasets. In all cases, the allothetic correction results in minimised drift and the

corrected estimate and ground truth are almost indistiguishable. As the PCN, VAE and CNN produce similar reductions in drift, only the PCN plots are shown.

TABLE 3 | RMSE (degrees) of the difference between the estimated head direction from the model and the ground truth using only idiothetic drive, and with corrections

from the PCN, VAE or CNN trained on each of the three training sets.

Full set RMSE (◦) Reduced set RMSE (◦) SNN estimate RMSE (◦)

Ideo only PCN VAE CNN PCN VAE CNN PCN VAE CNN

Rotation 69.64◦ 9.41◦ 3.44◦ 2.68◦ 9.41◦ 8.35◦ 2.31◦ 6.73◦ 6.99◦ 2.71◦

Circling 558.81◦ 9.58◦ 3.72◦ 2.24◦ 14.21◦ 9.44◦ 2.47◦ 14.21◦ 14.86◦ 2.49◦

Random 1 63.33◦ 7.02◦ 5.47◦ 4.24◦ 8.64◦ 15.70◦ 4.32◦ 9.02◦ 15.98◦ 3.22◦

Random 2 58.18◦ 6.39◦ 4.71◦ 4.17◦ 8.73◦ 10.74◦ 4.64◦ 9.03◦ 18.97◦ 3.73◦

Random 3 126.90◦ 7.25◦ 6.35◦ 2.61◦ 9.27◦ 18.47◦ 2.88◦ 10.21◦ 16.50◦ 4.05◦

Random 4 203.09◦ 16.83◦ 13.21◦ 12.34◦ 14.36◦ 18.49◦ 10.62◦ 14.89◦ 16.83◦ 12.34◦

Random 5 65.03◦ 7.09◦ 5.91◦ 3.35◦ 8.72◦ 12.08◦ 3.49◦ 8.42◦ 15.83◦ 3.57◦

we trained each of the model-free learning algorithms on a
single revolution of the estimated head direction produced by the
spiking model.

Similar to the drift reduction seen for the previous two
training sets, drift was reduced by all three models trained
on each of the datasets. Across all five random walk datasets,
corrective input from the PCN, VAE and CNN all significantly
reduced drift (one wayANOVAwith TukeyHSD post-hoc testing:
PCN p = 0.001; VAE p = 0.002; CNN p < 0.001, Table 3).
The CNN produced the best error reduction, ahead of the PCN
and then the VAE, reflecting the reconstruction error of their

predictions. With each decrease in training set quality from
full ground truth, first to single revolution ground truth and
then to single revolution estimated head direction, the average
error across the random walks increased for both the PCN
and VAE, remaining stable only for the CNN. Figure 9 shows
a summary of drift reduction by all three model-free learning
algorithms trained on the full, reduced and SNN estimate
training sets. Compared to head direction estimates which rely
only on idiothetic input, or randomly generated predictions,
all methods and training sets produced a significant reduction
in drift.
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FIGURE 9 | Summary of drift reduction for each of the model-free learning algorithms and training sets across all 5 random walk datasets. Compared to idiothetic

input only and random predictions, drift is significantly reduced for all three methods trained on full, single and SNN estimate training sets. Bar plot shows average

error (degrees) ± standard error.

3.7. Cue Rotation
Head direction cells in rodents have been shown to follow
environmental cues over their idiothetic estimate of heading,
even when those cues are rotated within the environment
(Taube and Burton, 1995; Yoder et al., 2015). To replicate a
cue rotation experiment using the WhiskEye rotating behavior,
we provided unaltered allothetic predictions from each of the
model-free learning algorithms for the first minute, then rotated
90◦ either clockwise or anticlockwise for 30 s before returning
to unaltered allothetic predictions. Figure 10 shows the head
direction estimate against the ground truth, with the error
for clockwise (Figure 10A) and anti-clockwise (Figure 10B)
rotations of the allothetic input from the PCN, VAE and CNN
trained on the full ground truth. The green line shows an offset
of 90◦, which is the rotation of the cue and the value the error is
expected to reach.

For both clockwise and anti-clockwise rotations, the
PCN and VAE input strongly control the bump position.
After a short delay, the bump position moves the full 90◦,
error between ground truth and the estimate reaching
the green line. When the rotation is removed the bump
continues to follow the allothetic input after a delay. Some
drift may be required before the allothetic input can gain
control over the bump position, resulting in a delay. In the
case of the CNN, only when the idiothetic drive and the
rotation were in the same direction (Figure 10B) could the
allothetic input control the bump position strongly enough
to complete the full rotation. Because the allothetic and
idiothetic input are provided simultaneously, the bump is
more likely to move when both of these pull the bump in
the same direction around the ring rather than compete with
each other.

The CNN has consistently the lowest reconstruction error of
all three methods (Figure 5), producing predictions with a sharp
Laplacian peak. This prediction shape results in current input to
a small number of cells at a precise position, and produces the
most accurate head direction estimate. This is likely because the
amount of drift between each allothetic correction is small, and
the bump does not need to be moved far. Noisier predictions
from the VAE and PCN result in current injection to more
cells, making it less accurate for drift correction but more able
to move the bump large distances, as in this cue conflict case.
These data suggest a refined Laplacian peak is not the most
effective prediction shape for strong allothetic control over the
head direction estimate. In all cases, the current magnitude used
was high enough to correct for drift without impairing idiothetic
control. By varying the amount of current supplied, allothetic
input could have stronger or weaker control over the bump
position regardless of prediction shape.

4. DISCUSSION

With these experiments we have shown that, like head direction
cells recorded in rodents, a spiking continuous attractor model
of head direction cells driven purely by self-motion (idiothetic)
information is subject to drift. Taking inspiration from a number
of previous studies (Boucheny et al., 2005; Song andWang, 2005;
Shipston-Sharman et al., 2016), we exploit reciprocal excitatory
and inhibitory connections between the LMN and DTN to
produce attractor dynamics which maintain a bump of activity
at the estimated head angle.

Drift is thought to be caused by imprecise self-motion cues,
but may also be due to inaccuracies in the model of angular head
velocity (AHV). Variability within environments or the body,
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FIGURE 10 | Plots showing corrected estimated head angle (pink) compared the ground truth (black) during the artificial cue rotation experiments. The blue block

indicates the period of cue rotation either clockwise (A) or anticlockwise (B); the expected rotation (90◦) is indicated with a green line on the error plot. In both

clockwise and anticlockwise rotations, corrections by the PCN and the VAE move the bump to the rotated position after a delay. The CNN fails to pull the bump

contrary to the direction of bump movement.

such as injury (or in robots; inaccuracy in the odometry data
due to wheel slip), make maintaining a precise model of AHV
at all times unlikely. A prominent limitation of the experimental
apparatus is that the odometry from the robot being collected
from a simulated embodiment is not subject to inaccuracies.
However, the stochastic nature of a spiking model limits the
resolution and range of angular velocities which can be accurately
represented by a single neuron, this can be seen clearly in the
large drift accrued during the circling dataset where head angle
changes very slowly. Using a population code rather than single
cells may allow for a finer resolution of AHVs which can be
represented in spikes, and contribute to reducing drift.

In rodents, drift in the preferred firing directions of head
direction cells is seen mainly in the dark or when brain regions
providing allothetic input are lesioned (primarily visual; Yoder
et al. 2015), indicating these data are essential for stabilizing
the head direction signal. Using predictions from three different
model-free learning algorithms, we directly influenced the bump
position, minimizing drift. In some previous models of drift
correction, allothetic information contributes to calibrating the
model of AHV, rather than using allothetic input to directly
change the bump position. Kreiser et al. (2020) refine the AHV
model by detecting error between the estimated head angle
and learnt positions of landmarks, and altering firing properties
of AHV cells. Stratton et al. (2011) suggest a role for specific
behaviour patterns for learning new landmarks and calibrating

the AHV model. We show that predictions made after training
on the estimated head angle from the SNN during a single
revolution—a specific behavior—can be used to successfully
correct for drift.

Entrainment of the head direction signal to visual
information has been seen in cue rotation studies, where
external environmental cues are rotated in the environment
and a corresponding rotation is observed in the preferred
firing direction of the head direction cells. These large changes
in bump location are better solved by influencing the bump
position directly, rather than updating the AHV model. By
rotating the allothetic predictions, we have replicated shifts in
the bump position to match the rotation of the environment.
As AHV cell firing also shows some refinement when visual
information is available (Keshavarzi et al., 2021), going forward
a combination of optimizing the AHV model and direct bump
movement could be used.

A Laplacian-shaped input centered on the current HD was
used to train the three model-free learning algorithms. The CNN
reproduced this shape in its prediction whereas the VAE and
PCN produced broader, more Gaussian-like predictions. The
CNN consistently produced the most precise head direction
predictions even for the small SNN estimate training set. This
suggests a trivial learning problem for the CNN, likely because
the range of possible distal views observed by the robot is
small and bounded; the same frames used for training are
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likely to be reobserved as the robot rotates. However, even
with less precise predictions the PCN and VAE can reduce drift
significantly, likely due to the attractor dynamics dampening
current inputs far from the bump location. The artificial cue
conflict experiments revealed a precise Laplacian distribution not
to be suitable as a corrective signal due to the limited number
of cells current is injected into, and therefore the limited power
of this input to influence the bump location. In contrast, the
broader predictions made by the PCN and the VAE were able to
better control the bump position; refining the shape and strength
of the prediction would likely change the allothetic control
over the bump. Two populations of head direction cell have
been identified in rodents, those more controlled by allothetic
input and others more strongly controlled by idiothetic input
(Dudchenko et al., 2019); we can see how by varying the strength
or shape of allothetic input to the network, these two cell types
may emerge.

In previous work, correcting drift with the aid of visual
information has either assumed visual processing upstream and
provided correction based on the ground truth (Song and Wang,
2005), or learnt the orientation of arbitrary features, such as
LEDs or colored panels (Kreiser et al., 2020; Yan et al., 2021).
Here we show that corrective signals can be generated by
learning associations between natural visual scenes and a self
generated representation of heading, without identifying specific
environmental landmarks. However, we recognize that including
advanced visual processing and feature extraction may be useful
for online learning mechanisms to determine the reliability of
visual input. This type of corrective allothetic signal is presumed
to come from the postsubiculum; lesions of this region lead to
more drift than seen for control animals in the dark (Yoder et al.,
2015). This suggests that this region may be contributing more
than just visual correction, but also other sensory modalities. In
this paper, we have focused on the calibration of head direction
estimate by visual inputs; an intriguing direction for future
work would be the inclusion of other allothetic information,
such as tactile or olfactory. In visually ambiguous environments,
conflicting visual cues may cause the HD estimate to become less
accurate. Olfaction has great potential for detecting loop closures,
as rodents leave scent trails as the explore environments (Peden
and Timberlake, 1990), which can tell them if and how long ago
they visited a position. A recent study in mice has shown that
blind animals can use olfactory information to correct for drift in
the head direction estimate (Asumbisa et al., 2022).

All of the methods in this paper currently require batch
learning of head direction-image pairs, however, as rodents
continue to move within environments, they must continually
learn and refine associations between head angle and visual
scenes. Learning to place less weight on unreliable cues, such as
the position of the sun, which may initially appear as a useful
landmark but becomes unstable with time (Knight et al., 2014),
is key to reliable correction of head angle in dynamic natural
environments. The next step is to adapt these model-free learning
algorithms to learn continuously and adapt their predictions as
the robot explores its environment.

The three trained models, despite their differences in
reconstruction error, are all good candidates for generating

allothetic corrections for the SNN. Although some scenarios such
as cue conflicts show weakness of overly-precise estimates as by
the CNN, this is not a fault of the model itself; the robustness of
the PCN andVAE predictions to cue conflicts shows that learning
to minimize the RMSE from a Laplacian ground truth signal
is not ideal for the task at hand, and that better performance
could be gained by training to a broader distribution (such as a
Gaussian).

Where differences do lie is in their applicability to more
complex experimental setups. The environment the data is
gathered from is simple in structure despite the complexity
of the visual scene; there are no proximal cues to obscure
the environment and sensory input is limited to vision.
Previous studies have shown non- visual and multimodal
examples of CNNs (Ma et al., 2015; Dauphin et al., 2017)
and VAE architectures (Suzuki et al., 2017) can perform
well. Both, however, have issues with scaling: the multimodal
CNN requiring many stacked networks working together,
and multimodal VAEs requiring many intermediate uni-
modal latent spaces to perform the task successfully. It is
an open question as to how well PCNs will scale into
more than 2 modalities and whether they will run into
similar scaling issues as the VAEs. However, its method
of operation and learning rule are bio-plausible, with local
learning making it the best candidate for implementation
as a spiking model. Furthermore, prior work has already
shown that a PCN can use tactile information to inform
localization (Pearson et al., 2021).

This work has raised many important questions. How
robust are these model-free learning approaches to a changing
world, particularly with multiple environments, visually and
potentially tactually distinct from each other? How can these
be trained in a sequential manner, as an animal would
experience them, whilst avoiding the catastrophic forgetting
of earlier environments? Can the bio-plausibility of this
system be increased by making the learning fully online,
and is the SNN estimate of head direction reliable for
long enough to train one of these algorithms to produce
useful corrections? The experimental apparatus developed
and used in this study are well placed to address these
questions.

5. CONCLUSION

Idiothetic control of the head direction system is especially
important in new, ambiguous or dark environments; allothetic
control increases the accuracy of the head direction estimate
and may help refine idiothetic control or make large corrections
after a period of drift. We have shown that natural visual
scenes, without identifying specific landmarks, can be used to
predict the current head angle by training three model-free
learning algorithms; this on a limited and imprecise training
set of estimated head angles, produced by a spiking continuous
attractor model of the head direction cell system, driven by
idiothetic inputs from robot odometry. Predictions from all three
methods were equally valuable in minimizing drift.
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The rapid control of a sonar-guided vehicle to pursue a goal while avoiding obstacles has

been a persistent research topic for decades. Taking into account the limited field-of-view

of practical sonar systems and vehicle kinematics, we propose a neural model for

obstacle avoidance that maps the 2-D sensory space into a 1-D motor space and

evaluates motor actions while combining obstacles and goal information. A two-stage

winner-take-all (WTA) mechanism is used to select the final steering action. To avoid

excessive scanning of the environment, an attentional system is proposed to control

the directions of sonar pings for efficient, task-driven, sensory data collection. A mobile

robot was used to test the proposed model navigating through a cluttered environment

using a narrow field-of-view sonar system. We further propose a spiking neural model

using spike-timing representations, a spike-latency memory, and a “race-to-first-spike”

WTA circuit.

Keywords: attention, winner-take-all, bat echolocation, neural model, spike latency, collision avoidance, robotics

INTRODUCTION

Traveling through an environment toward a goal without colliding with obstacles is one of
many essential abilities for animals to survive. Animals are often able to detect obstacles using
different types of sensors to quickly decide on the motions to avoid them. In addition, animals
are often observed to orient their heads in different directions to gather sensory information
needed for obstacle avoidance. In the world of robotics, there have historically been two extreme
philosophical starting points in the approach to solving this problem: rigorous path planning
assuming accurate and extensive sensing (Latombe, 2012) and fast reflexive behaviors based
on minimal and unsophisticated sensing (Braitenberg, 1986). Clearly, there is an expansive
world of algorithms lying between these two extremes. Path planning algorithms calculate routes
between starting and goal points, requiring extensive knowledge of the environment and accurate
localization. These are appropriate when a tremendous amount of relevant knowledge about the
world is available and optimal paths are desired. In contrast, reflexive algorithms simply steer the
creature away from obstacles upon detection with very little latency (Milde et al., 2017). Although
reflexive behaviors are well-suited to a creature traveling quickly through an unknown or changing
sparse environment, even mildly cluttered environments can produce inappropriate movements.
Philosophically, obstacles should not determine the direction in which a creature should move,
rather they should simply indicate where the creature should not go. The question is then, “given
the information about multiple sensed obstacles and the target location, how do we combine them
to select a good path?”
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Echolocating bats are excellent examples of creatures that
possess such a capability. They predominantly use ultrasonic
echoes to perceive their surroundings and fly through dense
forests in complete darkness with ease. During their hunt for
flying insects or other prey, they can avoid obstacles while
homing in on their prey at the same time. Big brown bats
(Eptesicus fuscus), using sonar calls that last 2–3ms, send out
sonar pulses to detect obstacles at a rate of up to 90Hz and have
been shown to fly amongst obstacles at a flight speed of 2–5 m/s
in indoor environments (Sändig et al., 2014). Big brown bats are
also observed to turn their heads to ping in different directions
to gather sensory information while flying in a field of obstacles
(Surlykke et al., 2009). Understanding how biological systems can
deftly transform the storm of sensory information into motor
actions to pursue a goal while avoiding obstacles has long been
a goal for engineers and neuroscientists.

Sonar has several advantages compared to other sensing
domains (e.g., vision, LIDAR, or infrared sensors) commonly
utilized in animals or robot systems. For example, sonar has the
capability of penetrating smoke or fog where LIDAR, infrared
sensors or cameras can struggle. Sonar also works in all light
conditions, whereas it can often be difficult for LIDAR and
infrared sensors to work in bright lighting, and cameras often
struggle to work in complete darkness. Regardless of the sensing
modality, once obstacles have been detected, there are many
proposed approaches to this local obstacle-avoidance problem
for a robot or a vehicle. One popular set of approaches is
based on vector summation. In these approaches, obstacles create
repulsive force fields and goals create attractive force fields. The
summation of these forces steers the vehicle along a safe path
without colliding with obstacles. Some specific implementations
are APF (Artificial Potential Fields) (Khatib, 1986; Lyu and Yin,
2019; Rostami et al., 2019; Shin and Kim, 2021) and VFF (Vector
Field Force) (Borenstein and Koren, 1989). These algorithms are
effective and interesting in their computational simplicity and
mathematical elegance. They have problems such as the vehicle
being trapped in local minima, although recent modifications
have been proposed (Rostami et al., 2019) to solve the local
minima problem. As mentioned earlier, however, we believe that
obstacles should not turn the vehicle in any particular direction
but only indicate where it should not go.

Other approaches to navigation on a planar floor divide
the surroundings of the vehicle into angular sectors and
transform them into a polar histogram. In this histogram, the
proximity of obstacles in each sector is represented and the next
direction in which to steer is calculated based on the values
of the histogram. These approaches include VFH (Vector Field
Histogram) (Borenstein and Koren, 1991; Wu et al., 2020), its
extension VFH+ (Vector Field Histogram Plus) (Ulrich and
Borenstein, 1998) and the “Openspace” algorithm (Horiuchi,
2009). These approaches are good for local maneuvering but are
centered in the sensory domain and do not generally consider
vehicle kinematics. There are also velocity methods that map
the Cartesian space into the velocity space that represents the
linear and angular velocities of the vehicle, then calculate the next
movement of the vehicle in the velocity space. These methods
are suitable for differential or holonomic vehicles because a

point in the velocity space corresponds to a velocity that is
directly executable on the vehicle. The algorithm evaluates a
range of possible velocities in the velocity space according to an
objective function that includes criteria such as speed, distances
of the obstacles, or goal direction. Some specific implementations
include CVM (Curvature Velocity Method) (Simmons, 1996;
Molinos et al., 2014), DWA (Dynamic Window Approach)
(Fox et al., 1997), and its recent extension DW4DO (Dynamic
Window for Dynamic Obstacles) (Molinos et al., 2019).

There are collision avoidance algorithms that rely on
deliberate planning (Aggarwal and Kumar, 2020; Yasin et al.,
2020). In these algorithms, an optimal or near-optimal path with
collision-free routes is calculated based on an environmental map
that the vehicle senses and updates. These algorithms typically
assume extensive, accurate maps over which long trajectories
are tested sequentially, requiring both significant computational
resources and memory as well as fast, accurate sensing. To
address the high computational complexity of these algorithms,
several optimization methods have been developed. In Pérez-
Carabaza et al. (2019), a minimal time search algorithm with
ant colony optimization is used to calculate the optimal path
under communication-related constraints. The algorithm in Bry
and Roy (2011) incrementally constructs a graph of trajectories
while efficiently searching over candidate paths, resulting in a
search tree in belief space that converges to the optimal path.
Using this algorithm, aggressive flight of a fixed-wing air vehicle
in an unstructured 3D environment was demonstrated (Bry et al.,
2012). Maintaining and updating a metrically correct spatial
map, however, is difficult to implement in a biologically plausible
neural system.

The Openspace algorithm proposed in Horiuchi (2009)
provides a neuromorphic VLSI implementation of the sensory-
oriented histogram approach with a latency-based, spiking neural
network, giving insights into how a biological system might
implement sonar-based navigation. The Openspace algorithm
seeks to find the most desirable straight-line direction of travel to
avoid obstacles (Figure 1) while a bat is traveling on a 2-D plane.
It divides the area in front into a number of steering directions,
evaluates their desirability, and selects the winning direction with
the maximum evaluation. It combines different inputs (a goal
direction and detected obstacles) into a decision function to
determine the steering decision. To physically travel precisely in
the selected direction, however, a bat must be capable of making
extremely sharp turns. In practice, a flying bat can only rotate
gradually to the desired direction. This produces an overshoot
that will require ongoing corrections that lead to a mismatch
between the selected path and the actual path the bat flies on.
In contrast, our proposed algorithm, the Curved Openspace
Algorithm, projects the sensory-based obstacle data into “motor
coordinates” before comparing motor choices similar to the
velocity approaches (Simmons, 1996; Fox et al., 1997; Molinos
et al., 2014). For a flying bat, this could mean selecting different
turning radii (i.e., circular trajectories) as illustrated in Figure 2.

Another limitation of the original Openspace algorithm is
the assumption that the bat has a wide field-of-view (FOV)
that covers all directions with the same effective range, thus
localizing all obstacles in front of the animal with a single sonar
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FIGURE 1 | The Openspace algorithm of Horiuchi (2009). (Left) An echolocating bat that is attempting to fly to the goal (filled star) while avoiding two obstacles (filled

circle). (Right) The evaluation pattern consists of a constant plus a wide low-amplitude Gaussian (Goal input) with two dips created by the suppression from the two

obstacles. A winner-take-all (WTA) function selects the direction with the highest evaluation (filled bin). The dashed line indicates the default evaluation with no obstacle

present.

FIGURE 2 | An illustration of motor choices, sonar field of view (FOV) and groupings of the motor choices. Selecting different motor choices results in paths as circular

arcs with different radii (dotted lines). The sonar FOV (solid lines) is ellipsoidal and the bat can turn its head to ping in different directions. Five ping directions and 33

motor choices are shown. The colors along with the letters at the end of the paths indicate which groups (left, middle-left, middle, middle-right or right) the motor

choices belong to.

ping. A practical sonar system, however, has a limited field-of-
view whose detection range is angle-dependent due to the beam
patterns of both the sonar transmitter and the receivers, resulting
in an ellipsoidal FOV (Figure 2). For big brown bats, the half-
power beamwidth (the angular width of the beam pattern at
the 3 dB cutoff points) of their emitted ultrasonic signal at 35–
40 kHz is∼56–80 degrees (Ghose andMoss, 2003; Gaudette et al.,
2014). In the simulations shown here, a Gaussian-shaped FOV
with a standard deviation of 30 degrees was used, resulting in a

half-maximum width of 70.7 degrees. This limited FOV means
that a bat will need to sequentially probe different directions
to make good steering choices, which is time-consuming and
leads to choices based on old data. Although engineered systems
frequently employ continuous side-to-side scanning, this is not
observed in echolocating bats flying through a field of obstacles.
For a well-defined task like steering toward a goal, when a clear
path toward the goal is detected, no scanning is needed. In this
paper, we propose a novel neural model to find a collision-free
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FIGURE 3 | The system structure of the proposed model. After a sonar ping,

the sensory input updates the evaluation memory. The evaluation memory,

representing the risk of each path, inhibits the action selection layer. The

direction of the current ping excites the action selection layer to encourage

selecting paths with the most recent information. The goal input represents the

direction of the goal and excites the action selection layer. The action selection

layer then selects the winning path with a winner-take-all (WTA) function and

the winning path drives the head movement of the bat to direct its next ping in

the associated direction. In the meantime, the recency memory checks if the

sensory information on the winning path is recent. If so, the winning path

drives the bat to turn its body and fly on it.

path using attentional search to guide the movement of sensors.
The selected paths correspond to the natural curvature of
bat flight.

The Curved Openspace neural model, like the original
Openspace algorithm, combines echoes from a 2-D (azimuth and
range) sonar to create an evaluation for each of the different
motor actions under consideration. Due to the limited field-of-
view of the sonar, a memory is needed to hold these evaluation
values as the sonar interrogates different directions. To avoid
excessive scanning, we introduce an attentional system that
integrates information about a goal direction and stored action
evaluations to determine where (or if) to turn the sonar for the
next ping. Instead of constructing and updating an expensive
2-D map about all the obstacles in the memory of a bat, we
can build a significantly simpler system by collapsing the 2-D
sensory map into a 1-D evaluation memory among different
motor action choices. Each motor action represents an arc of
travel through the environment and its evaluation represents how
risky it is. Having the evaluation memory to combine sensory
inputs across head turns enables an action selection layer to select
the most desirable path using a winner-take-all (WTA) function.
Unlike the immediate motor response of the original Openspace
algorithm with each sonar ping, the action selection (WTA) layer

only provides preliminary decisions that are further processed
before making a final decision. It should be noted that although
the proposed model is described with a sonar system, it can work
with any type of input sensor without significant changes to the
structure of the model.

We describe the neural model in detail in Section The Curved
Openspace Neural Model and we propose a spiking neural model
in section spike-latency neural model that takes advantage of
the inherent time representation that originates in the sonar. In
section experiment results, we show the simulation results of
the proposed model in a dense forest where we collect statistics
and investigate the effects of different features and parameters,
and we show the simulation of the spiking neural model with
comparable performance. We also validated the use of the model
on an inexpensive mobile robot with a limited-FOV sonar in a
“pipe forest.”

THE CURVED OPENSPACE NEURAL

MODEL

The purpose of the Curved Openspace model is to generate a
series of motor actions driven by a realistic sonar system to guide
a bat-like agent to a goal location while avoiding obstacles on a
2-D plane.

The bat first localizes obstacles inside its field of view and
sends the information to the evaluation memory (Figure 3) via
a mapping that reflects different motor actions. The evaluation
memory then combines new information with previous results to
provide an evaluation of the risk along the trajectories of different
motor choices. It suppresses the action selection layer with a
Gaussian-shaped projection of inhibition. The action selection
layer is excited by the goal input and uses a WTA function
to calculate the most desirable motor choice. To fine-tune the
action selection, other inputs, such as winner hysteresis and
ping-direction bias, are added. Following the WTA, a “recency”
condition is used to decide if the selection of the winning
motor action (i.e., path) was based on recent information. If
so, the bat is confident that the path is clear and executes the
winning motor action. If the sonar has not sampled the winning
motor action’s direction recently, the bat will then ping in that
direction, but will not execute the winning motor choice until
it has.

In this model, it is assumed that the bat has a limited selection
of motor choices, which includes a straight path and several
curved paths (Figure 2). The straight path represents moving
straight forward, and the curved paths are circular arcs with
different radii consistent with the bat flying with a fixed turning
rate. The bat is limited to ping in five fixed directions with respect
to the body orientation (Figure 2). Depending on the portion
of a path that falls into the field of view of a ping direction,
individual paths are assigned to one of five view groups so that
each path is associated with a single ping direction (Figure 2).
We will refer to this neural model as the “analog” model when
comparing it to a different implementation in Section Spike-
Latency Neural Model.
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FIGURE 4 | (A) The definition of the zone of collision. The zone of collision is a disk around the bat with a radius equal to the sum of the radius of the bat and the

radius of the obstacle. With this definition, we can treat obstacles as points and the bat as a disk. The area where the obstacles are blocking the path (dashed line) is

defined as the blocking area (dotted line). (B) An example of the “blind zone” where the associated FOV cannot cover. Obstacles can disappear from the FOV and

move into the blind zone while still blocking the path. Taking the maximum value between the memory and the most recent evaluation can help the bat remember the

existence of the obstacle and steer away accordingly.

Zone of Collision
We define the radius of the bat to be its maximum wingspan and
we define the zone of collision to be a disk around the center
of the bat (Figure 4A). The bat is considered to collide with an
obstacle if the obstacle passes into the zone of collision. If the
minimum distance between an obstacle and a path is smaller than
the radius of the zone of collision, the obstacle is defined to be a
blocking obstacle since traveling on this path will eventually lead
to a collision. In this paper, the bat is modeled without flapping
wings and cannot perform agile maneuvers with wings to avoid
contact with obstacles as might occur in the real world.

Speed Control
The traveling speed of the bat is controlled according to a “speed
profile” that assigns a certain constant speed to each trajectory.
The speed along a path p is selected as

vp = VMAX · γp (1)

where VMAX is a constant maximum speed and γ is the speed
profile that varies from 0.0 to 1.0 for each path. Because the sonar
is only able to observe different distances along each trajectory,
the speed is adapted to normalize the risk for comparison across

a fixed amount of time (i.e., the time between sonar pings).
The straight, middle path has the longest observability and thus
supports the highest speed. Hence, the speed profile can be
calculated as

γp = Rp/RMAX (2)

where Rp is the length of path p in its associated FOV and
RMAX is the maximum distance that the sonar system can detect.
The speed profile aims to give the bat a constant reaction time
on each path between a blocking obstacle becoming detectable
and colliding with the bat. Intuitively, if the bat can detect
obstacles further into the future on a path, it should be more
comfortable with flying at a higher speed on that path. Sharp
turns, however, usually require the bat to fly at a lower speed
since the FOVs to the side only cover a short length of the path
and any detectable obstacles in the blocking area are already close
to the bat (Figure 2). Implementing the “speed profile” for speed
control reduces the chance of collision during sharp turns.

Evaluation Memory
The 1-D evaluation memory represents the collision risk of
different paths based on new and old sensory information. Each
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bin of the evaluation memory corresponds to a motor action
choice. The analog value of the memory represents “risk” that
combines the immediacy of avoidance and the concept of the
growing uncertainty of the locations of blocking obstacles due to
the movement of the bat. The immediacy of avoiding a blocking
obstacle j on a path p is represented as a function (f ).

fp
(
j
)
= EMAX ·

[
1−

rp
(
j
)
− RC

RMAX · γp

]
(3)

where EMAX is a constant representing the maximum value of fp.
rp

(
j
)
is the distance from the bat to a blocking obstacle j along

path p approximating the obstacle to be on the closest spot on
path p. RC is the radius of the zone of collision, and rp

(
j
)
− RC

represents the distance that the bat can travel along path p before
colliding with obstacle j. RMAX is the maximum distance that the
sonar system can detect and γp is the speed profile for path p.
According to Equation 1 and the relationship that rp

(
j
)
≤ Rp,

the second term in Equation 3 is smaller than 1, resulting in a
positive fp

(
j
)
. The second term indicates how long the bat can

travel on path p before colliding with a blocking obstacle j. A
closer blocking obstacle on a path with a higher speed profile will
result in a higher immediacy fp.

To evaluate the risk of a given motor action choice p (a path),
we use the following equation:

Ep(t) = max
[
Ep(t − 1t)− β(t − 1t) · Id − α(p) · Iinh,

New Previous Passive Directional

value value decay inhibition

min




∑

(jǫBp)

fp(j), EMAX









Summation of the immediacy

of avoidance (saturating) (4)

where

α(p) =






1, if path p is associated with the direction of the
current ping

0, otherwise
(5)

β(t) =

{
0, decay is halted
1, otherwise

where Ep(t) is the evaluated risk for a path p, and the new risk
is the maximum between a decayed memory and a saturating
summation of the immediacy of avoiding blocking obstacles.
β(t) represents a passive decay whose strength Id is a constant.
The passive decay represents the increasing uncertainty of the
location of obstacles with time and is updated at every time step
except when the bat enters a “scanning mode” and halts the
passive decay. α(p) is a binary value that becomes 1 when the
bat sends a ping and path p is associated with the direction of
the ping. It represents a directional inhibition where the strength
of the inhibition Iinh is a constant. Bp is a set of the obstacles
blocking path p and it defaults to an empty set when the bat does
not send out a sonar ping at time t, resulting in a summation
term of 0. This summation term represents “risk,” where obstacles

with higher immediacy of avoidance pose a higher risk and this
risk accumulates with every blocking obstacle along the path.
The risk is then saturated (using the minimum function) if it
gets higher than the maximum evaluation value EMAX. The final
evaluation value after the update is the larger of the decayed old
value and the new risk value computed from the objects currently
being sensed. Because the FOV that a path is associated with
cannot cover the whole blocking area of the path, a blocking
obstacle can disappear from the current field of view while still
being a threat (Figure 4B). The max function is thus used as a
more conservative assessment of risk between the memory and
what the sensory system is detecting. Essentially, the evaluation
memory is updated with new information if a sonar ping is sent at
time t, and the memory is kept with or without decay (depending
on β) when there is no sonar ping.

The evaluation memory allows the bat to combine path
evaluations gathered through several pings in different
directions. Since the bat is still moving while gathering
information, the stored memories can become outdated. By
default, the values of the evaluation memory decay quickly
over time to represent an increase in the ambiguity of obstacles
(constant “passive decay”). When the bat changes its ping
direction, the decay is temporarily halted until a motor choice
has been selected and executed. In this “attentional search mode,”
the bat pings rapidly in the different directions of interest to
minimize the distance traveled between pings and the loss of
accuracy in the memory due to movement.

When a sonar ping occurs, the evaluation memories of
the paths associated with the current ping direction are also
inhibited. This “directional inhibition” is shown as the term
α

(
p
)
· Iinh in Equation 4. Since the maximum function will keep

the previous evaluation memory if the bat did not detect any
obstacles blocking the path, the path might be more open than
what the memory suggests. The directional inhibition aims to
reduce the risk of a path in this scenario.

Action Selection Layer
In this model, collision avoidance is viewed as an attentional
search for good paths, combining parallel search within the field
of view of a single ping, but serial search across head movements
(Itti and Koch, 2000). The action selection layer combines the
collision risk calculation from the evaluation memory with goal
information and other biasing signals to create a desirability value
for each path (i.e., motor) choice. Having no obstacle on a path
will give that path a low risk value, resulting in a high desirability
in the WTA layer. Calculation of the desirability of each path
occurs after every sonar ping and can be described by

Dp = D0

(
p
)
+ G · e

−(p−pg)
2

σ2g
+ P · α(p)+H · e

−(p−ph)
2

σ2
h

Constant Goal Ping Direction Hysteresis

Bias input Bias

−W ·

N∑

pmem=1

Epmem · e
−(p−pmem )2

σ2m

Inhibition from

evaluation memory (6)
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The first term D0

(
p
)
is a positive constant bias that represents

default desirability. This term allows the evaluation to remain
positive even while being reduced by other terms. Besides, each
path could have a different bias term to incorporate additional
information about the desirability of individual paths due to
actuation limits or energy considerations. This was used in the
simulations described in section experiment results to discourage
sharp left or right turns. The coefficient G is the amplitude of
an additive Gaussian term with its center at pg and a standard
deviation of σg . This term provides a bias toward some motor
actions over others due to externally provided information about
a goal location. Themagnitude of excitation from the goal input is
much weaker in comparison to the inhibition from the evaluation
memory since the goal input only serves as a bias toward the goal
when different motor actions have similar risks levels. The third
term is an excitation term from the current ping direction that
biases the bat to select the path with the most recent information
when several paths have similar risks. α(p) is the binary value
defined in Equation 5 and P is the amplitude of the excitation.
The coefficient H is the amplitude of a Gaussian term that
produces hysteretic behavior, where ph is the path that the bat
is currently traveling on and σh is a constant that controls the
width of the Gaussian. This term prevents the bat from changing
paths erratically due to noise in the measurements or occupancy
calculations. The index pmem refers to the bins of the evaluation
memory that suppress the desirability with a subtractive Gaussian
term scaled with their values Epmem and an inhibition weight
of W. The width of the suppression is controlled by σm that
is kept constant. After the evaluation, the action selection layer
selects the path with the maximum desirability for head and
body control.

Motor Control
The action selection layer determines the direction in which the
head should be pointed (i.e., in the direction of the winning path).
If a head movement is needed, it will be performed. There are
two scenarios in which a path is selected. The first scenario is
when the path has a low risk value after the bat has pinged in
its direction. In this case, the bat will likely travel along this
path. The second scenario is that the bat has not pinged in the
direction of the winning path, and its desirability is high because
the default risk value in the evaluation memory is low. In this
situation, pinging in an unknown direction can help the bat
explore possible open paths.

For the bat to fly along a particular trajectory (i.e., execute a
motor action,) the path must be chosen by the action selection
layer and the sonar data evaluating that path must be fresh
(a.k.a., “recent”). If the selected path is based on old data, a head
movement (and a ping) is generated to obtain new data. Once
both criteria are satisfied, the output of the action selection layer
is allowed to change the bat’s trajectory. At the same time, the bat
exits “attentional searchmode” and begins allowing its evaluation
memory to decay. To keep track of data recency, each of the five
ping directions has a countdown timer called recency memory
that resets to a high value after a ping in its assigned direction.
The recency memory of a ping direction must exceed a certain
threshold for the bat to select paths associated with that direction.

Note that the bat continues to travel along its prior trajectory
until a new path (motor action) is selected for execution. An
example of the behavior of the proposed model is shown in
Figure 5.

When the desirability of the winning path is lower than a
certain threshold (i.e., no acceptable paths were detected), an
“emergency” is declared and the bat will do a sharp 180-degree
turn and travel in the opposite direction to the path it was
traveling on before the turn. It will also direct its next sonar ping
to the associated direction of the traveling path. This emergency
“turnaround” maneuver is vital in the simulation for the bat to
escape from the scenario where all paths are blocked by obstacles
(a.k.a., a trap). Bats in the real world often perform this by
using the vertical dimension to abruptly fly straight up, turn
around and fly back down in the opposite direction (similar to
the “hammerhead” maneuver in airplanes).

The Curved Openspace model was simulated in a dense forest
where we investigate the effects of different parameters in section
simulation of the analogmodel. Themodel was also implemented
on a mobile robot with a car-like steering mechanism in section
robot implementation. We show that the robot is able to travel in
a dense forest of plastic pipes without collision using a narrow-
FOV sonar system mounted on a head-turning servo motor.

SPIKE-LATENCY NEURAL MODEL

Although the analog model presented above can be implemented
using large populations of spiking neurons to simulate
(noisy) analog signal representations, spike-timing-based
signal representations often suggest very different neural
implementations with far fewer neurons. In this section, a
spiking neural network model using spike-timing to represent
signal values is described. As shown in Figure 6, its structure
consists of four main layers: a sensory layer that encodes the
2-D locations of obstacles, a memory layer that integrates and
stores the sensory information associated with different paths
(“Evaluation Memory”), an “Action Selection” layer that uses a
“race-to-first-spike” winner-take-all (WTA) mechanism to select
a path, and a “Motor” layer that implements the body steering
decision and head movements. Inputs to the spiking neural
model also include ping directions (head direction), a global
reset signal, goal direction input, and a ping onset signal.

The time at which a neuron fires a spike following an outgoing
echolocation pulse is affected by many variables. Echolocation is
foundationally based on the time-of-flight of sound to determine
the distance to objects, with the closest objects generating
echo signals first, producing a natural temporal coding scheme.
Additionally, echoes from a given object are louder if it is
closer. Interestingly, neurons commonly exhibit shorter latency
responses to larger magnitude signals. In this model, following
each sonar ping, sensory neurons will fire spikes with latencies
that reflect the immediacy of avoiding any detected obstacles.
The evaluation memory units integrate the sensory information
on different paths and store the integrated information as spike
latencies using a delay line and an array of latency memory
units, which will be described in detail in Section Evaluation
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FIGURE 5 | An example of the proposed neural model from sensory input to motor action selection. The environment, evaluation memory, values of the action

selection layer, ping direction and motor actions in two timesteps from the simulation are shown. A bat was flying in a field with 6 obstacles (filled circle) and a desired

destination (filled triangle in red). The circles of the obstacles are drawn with the size of the zone of collision to show the paths that they are blocking. The bat has a

limited selection of motor choices (dotted line) and each of the motor actions corresponds to a bin in the bar graphs below. At t = 0, it is assumed that the bat arrived

in the environment (i) with no prior information. It is also assumed that it was flying along a straight path (solid straight line) and it directed its first sonar ping to the front

(ellipsoidal FOV shown in solid line). With the first ping at t = 0, it detected three obstacles (filled circle in black) and updated its evaluation memory (ii). The evaluation

memory units suppressed the action selection layer with Gaussian projection of inhibition (iii) while the goal input imposed a wide Gaussian excitation (iv). Because the

bat sent out its sonar ping toward the front, the associated motor actions received excitations as shown in the ping direction bias (v). The action selection layer (vi)

selected the winning path (indicated with a red dot on top of the bar), which is gated by the recency memory (not shown). Because the winning path is associated with

the middle-left ping direction and the bat had not pinged in that direction recently, it turned its head to send the next sonar ping to the middle-left, did not execute the

winning path and entered the “scanning mode” that halted the passive decay on the evaluation memory. At the next timestep t = 1t, the bat pinged to the middle left

direction and updated the evaluation memory. The goal bias stayed the same while the ping direction bias changed to excite the paths associated with the middle left

direction. The action selection layer combined the information in the same way and selected a path as the winner. Since the winning path belongs to the middle-left

group and the bat just pinged in the same direction, the bat executed the winning path (solid line), exited the “scanning mode” and allowed the evaluation memory to

decay. Notice that with the proposed model, the bat only pinged in the directions of interest to find the most desirable path and did not need to do a full scan.

Memory. Because the stored signals are spike latencies, during
readout, the evaluation memory units must be able to re-generate
output spikes with the same latencies without sensory input. The
evaluation memory sends out spikes with the stored latencies to
the action selection layer, where the net desirability of different

paths is compared, and a “winner” is selected. The neuron that
fires the first spike in the action selection layer has the highest
desirability and inhibits all other neurons in the same layer to
prevent them from firing. The spike from the winning neuron is
then sent to the motor neurons that will orient the sonar head for
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FIGURE 6 | The spiking neural model of the Curved Openspace model. It mainly consists of four layers: a 2-D sensory layer encoding the locations of obstacles, a

memory layer storing the “risk” of different paths, an action selection layer that uses a “race-to-first-spike” WTA mechanism to select the winner and a motor layer that

controls the body and head movements. Only a portion of the connections in the group of middle-left ping direction are shown in this example for clarity. The sensory

layer consists of a 2-D sensory map in head frame (head map) and five sensory maps in body frame (body maps). The elliptical dashed lines around the maps represent

the field of view of the bat and the circles represent sensory neurons which fire when obstacles are detected in their locations. The number of neurons in each map is

reduced for clearer illustration. Each body map has an inhibitory neuron that inhibits all the neurons in the map when it fires a spike. The neurons in the head map

strongly excite the neurons in the same positions in each body map but only one of the body maps will not be inhibited by the inhibitory interneuron after a sonar ping,

depending on the ping direction. The neurons in the body maps make fixed excitatory connections (dash-dotted line) to the evaluation memory units if the represented

obstacles in their positions are blocking the paths. One example of the connections between the body maps and an evaluation memory unit is shown in red.

the appropriate ping direction (head motor neurons). The spike
is also sent to the body motor neurons that produce the turn rate
needed for the corresponding path. The body motor neurons,
however, will only be activated if the recency memory of the
associated ping direction is active. The gating from the recency
memory is implemented with a disinhibition mechanism. The
following sections describe each layer in detail.

Sensory Layer
In this neural implementation, the sensory layer (Figure 6) uses
a 2-D head map to represent the locations of obstacles and
converts the information from the head reference frame to the
body reference frame with several body maps. The neurons in
the head map make strong one-to-one excitatory connections to
the neurons with the same positions in all the body maps. The

Frontiers in Neurorobotics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 850013110

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wen and Horiuchi Sonar-Based Obstacle Avoidance Algorithm

number of body maps is the same as the number of possible
ping (i.e., head) directions and there is an inhibitory interneuron
for each body map that strongly inhibits all the neurons in the
map when it fires a spike. In this model, we define the spike
latency as the time between the outgoing sonar ping and the
first spike from a neuron. When the bat pings and detects an
obstacle, the neuron at the corresponding location in the head
map fires a spike with a latency close to the latency of the
echo. Depending on the direction of the sonar ping, only one
body map will be selected as active by inhibiting all other body
maps using the inhibitory interneurons. A spike from the head
map excites the corresponding neuron in the active body map
and causes it to fire a spike immediately. The spikes from the
active body map represent obstacles at certain locations in the
bat’s body frame. Because the Curved Openspace model uses
the distance along a curved path (not the radial distance which
is represented by the echo delay) to evaluate the risk value
(Equation 3), the latencies of the spikes from the active body
map are adjusted by adding extra latencies before the spikes are
sent to the evaluation memory. Whether or not an evaluation
memory unit takes synaptic inputs from neurons in the body
maps is determined by whether obstacles in their positions are
blocking the path that the evaluation memory unit represents.
If they are blocking the path, the spikes from the corresponding
neurons will be sent to the integrating neuron in the evaluation
memory, which will be described in detail in section evaluation
memory. The synaptic connections between the sensory layer and
the evaluation memory are fixed if the paths are fixed.

The Openspace algorithm in Horiuchi (2009) made clever use
of the natural latency of echoes as a representation of the straight-
line (i.e., radial) distance to obstacles. In the Curved Openspace
model, however, the immediacy of avoidance uses the distance
along a curved path (Equation 3). As described earlier, to adjust
the spike latency to reflect the immediacy correctly, each neuron
in the body map connects to a delay neuron (not shown in
Figure 6) that adds a constant latency specific to each position
before connecting to the evaluation memory. The added latency
for a connection between a sensory neuron j to the evaluation
memory of path p can be calculated as

1t
(
j, p

)
= TMAX ·

rp
(
j
)
− RC

RMAX · γp
− techo

(
j
)
+ TC (7)

where1t
(
j, p

)
is the added latency and techo

(
j
)
is the echo latency

from an obstacle represented by neuron j. techo
(
j
)
is constant for

each sensory neuron since each neuron represents a fixed location
on the body map. TMAX is the echo delay from an obstacle at
the maximum sensing distance RMAX and is the maximum echo

delay the sonar system can receive. The term
(rp(j)−RC)
(RMAX·γp)

is the

same term used in the immediacy function (Equation 3) that
represents the time before the bat collides with an obstacle at
the location of neuron j. rp

(
j
)
is the distance from the bat to a

blocking obstacle j along path p, RC is the radius of the zone of
collision, RMAX is the maximum distance that the sonar system
can detect and γp is the speed profile for path p. The term has a
value from 0 to 1, which makes the first term in Equation 7 have

a value between 0 and TMAX. TC is a small and constant delay to
keep 1t

(
j, p

)
positive. With the added latency, the spike latency

that arrives at the evaluation memory of path p from sensory
neuron j (if an obstacle is sensed) can be written as

tspk
(
j, p

)
= 1t

(
j, p

)
+ techo

(
j
)
= TMAX ·

rp
(
j
)
− RC

RMAX · γp
+ TC (8)

A closer blocking obstacle on a path with a higher speed
profile will result in a shorter spike latency, indicating a higher
immediacy of avoidance.

Evaluation Memory
The role of the evaluation memory (as described in Section
Evaluation Memory) is to hold the spatially integrated value of
immediacy along each path even when the sonar is interrogating
a different direction and does not receive new sonar information
for a given path. Given the spike latency representation, the
output of the evaluation memory unit is a spike with a latency
(following the sonar ping) that matches the previously observed
latency (when the sonar was receiving new data). Each evaluation
memory unit receives spikes with different latencies from the
sensory neurons along a path and integrates them into a spike
latency with the integrating neuron. An array of memory units
along with a delay line detects and stores the occurrence of a
spike at a particular latency and is then able to regenerate the
spike upon later activation. The neural circuit of each evaluation
memory unit is shown in Figure 7A.

An example of the mechanism of the integrating neuron is
shown in Figure 7B. The integrating neurons are integrate-and-
fire neurons and their membrane potentials simultaneously reset
when the bat pings (t = 0). Whenever the integrating neuron
receives a spike, a step-excitation current is turned on (for 20ms),
causing its membrane potential to rise. If the membrane potential
reaches a threshold, the integrating neuron fires a spike. The
spike latency is shorter when excitatory spikes arrive earlier
(representing stronger inputs). The excitatory currents from
different spikes are summated and can further reduce the latency
of the spike.

For an integrate-and-fire neuron with a membrane
capacitance Cmem0, a spike threshold Vth0, and n (where n ≥ 1)
step-excitation currents each with an amplitude of E0 activated
at time t1, t2, . . . , tn, the latency of the spike Teval is given by

Teval =
Cmem0Vth0 + E0 ·

∑n
i=1 ti

n · E0
(9)

assuming that t1 ≤ t2 ≤ · · · ≤ tn < Teval. Each input spike
that arrives before the output spike reduces the spike latency,
but the latency cannot be reduced below the latency of the first
input spike. The spike latency Teval represents the integration of
immediacy of avoidance with a saturation limit similar to the
second term in Equation 4, although the integration is different
from simple addition. If the integrating neuron receives one or
more spikes from the sensory layer, it will fire a spike with a
latency of Teval which resembles the evaluated risk of a path.
Different from the risk calculation in the analog model (Equation
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FIGURE 7 | (A) The structure of an evaluation memory unit. The integrating neuron combines the spike train from sensory neurons into a single spike with a latency

representing the risk of the corresponding path. The spike latency is then stored in an array of latency memory units. The memory can be reset by exciting the reset

neuron. The output neuron combines the spikes from latency memory units into a single spike train and sends it to the action selection layer. (B) The mechanism of

the integrating neuron. Each input spike triggers a step-excitation current that charges up the membrane potential Vmem and the currents from different sensory

neurons accumulate. A spike is fired when Vmem crosses a threshold. An input spike that arrives earlier will result in a shorter spike latency. Input spikes after the first

one also reduces the spike latency by increasing the charge speed.

4), here a smaller latency means a larger risk value. The latency of
the spike then needs to be stored in the evaluation memory.

An array of latency memory units and a delay line are used
to store the latency of the spike from the integrating neuron
and later generate a spike with the same latency when needed
without the original sensory inputs. As is shown in Figure 7A,
each evaluation memory unit has an array of latency memory
units while the delay line is shared among all the evaluation
memory units. The delay line is triggered by the onset of the
sonar ping, and it generates spikes with different latencies which
are sent to different latency memory units in different evaluation
memory units. In this neuralmodel, the delay line is implemented
as neurons connected in series with excitatory synapses and each
spike from the previous neuron causes the next neuron to fire
with a fixed delay. The delays between neurons in the delay line
affect the resolution of the latency memory.

As shown in Figure 7A, a latencymemory unit consists of four
neurons: two excitatory interneurons (A and B), a coincidence
detector (CD), and an inhibitory interneuron (INH) with tonic
excitatory input. Neurons A and B both take excitatory input
from a neuron in the delay line, but neuron B also takes inhibitory
input from neuron INH. Besides the tonic excitatory input,
neuron INH is strongly inhibited by the CD neuron and strongly
excited by a reset neuron. Without the input from the CD and
the reset neuron, neuron INH fires tonically and keeps neuron B
inhibited. The CD takes excitatory inputs from neuron A, neuron
B, and the integrating neuron. For a CD to fire a spike, two
spikes need to arrive at approximately the same time, meaning

that two out of the three neurons exciting the CD need to
fire simultaneously.

During the idle state before a sonar ping, neuron B is inhibited
by neuron INH. When the bat pings, the ping onset starts the
spike propagation in the delay line, and a spike with a certain
latency will be sent to neurons A and B. Neuron A will be excited
by the input spike and send a spike to the CD, whereas neuron
B will not fire because it is strongly inhibited by neuron INH.
At this point, only a spike from the integrating neuron with the
same latency as the spike from the delay line will be able to trigger
a spike from the CD. If this is the case, the CD will send a spike
to neuron INH and keep it from firing again for the duration of
the inhibitory synaptic input (around 300ms). If the bat pings
again while neuron INH is still inhibited, neurons A and B will
both fire and the CD will fire again even without the spike from
the integrating neuron. Since the CD fires again, neuron INH is
kept inhibited for another interval, allowing the next sonar ping
to cause neuron B to fire. Unless neuron INH is reset by the reset
neuron or the bat doesn’t ping for a long time, the memory of
the spike latency from the integrating neuron is maintained and
a spike with the same latency is reproduced after every sonar ping
without any further sensory inputs.

The CD also sends an excitatory spike to the output neuron
when it fires. The output neuron in each evaluation memory unit
fires a spike with very little delay whenever it receives spikes
from any of the latency memory units. Like an OR function, it
combines all of the spikes from the delay-tuned neurons into a
spike train. Due to the mechanism of the action selection layer,
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FIGURE 8 | The action selection layer is composed of two WTA layers: WTA

layer 1 and WTA layer 2. Both layers use a “race-to-first-spike” WTA

mechanism, where the first neuron to spike excites a recurrent inhibitory

neuron (RIN) to fire that suppresses other neurons within the layer from firing.

Because WTA layer 1 can produce multiple winners that represent significantly

different turning, WTA layer 2 is added to only allow the winners from the same

ping direction group to go to the motor layer. In WTA layer 2, neurons toward

the center (straighter paths) have a stronger synaptic connection from WTA

layer 1 (represented by thicker synapses in the figure), giving those paths

priority over paths toward the side (sharper turns).

however, as will be described later in Section Motor Layer, only
the latency of the first spike in the output spike train affects the
calculation of the desirability. In the scenario where an evaluation
memory unit with a stored spike latency receives new sensory
input, only the spike with the shorter latency is meaningful to
the next layer. Since a shorter spike latency represents a higher
risk value, this behavior is consistent with the description earlier
in Section Evaluation Memory that the final risk value is the
maximum value between the decayed old risk and the new risk
computed from the objects currently being sensed.

Action Selection Layer
The action selection layer consists of two WTA layers (Figure 8)
with a similar structure, and both of the layers use a “race-to-first-
spike” WTA mechanism to select the winning motor actions.

WTA layer 1 is similar to the temporal WTA circuit proposed
in Horiuchi (2009). It compares the desirability of different paths
using the latency of the spikes from the evaluation memory
layer and selects the most desirable path with a “race-to-first-
spike”WTAmechanism.WTA layer 1 consists of action selection
neurons with an integrate-and-fire mechanism, a recurrent
inhibitory interneuron (RIN), and a group of goal neurons
(Figure 8). The numbers of action selection neurons and goal
neurons are the same as the number of motor actions. The
action selection neurons in WTA layer 1 receive weak excitatory
input from the goal neurons that indicate the location of the
goal. Each goal neuron connects to the field of action selection
neurons with a Gaussian-shaped pattern of synaptic strengths
(not all the connections are shown in Figure 8 for clarity). Only
one of the goal inputs will fire a spike to indicate the path
that leads to the goal. This excitatory connection corresponds
to the Gaussian-shaped goal input in Equation 5 described
in section action selection layer. The action selection neurons

also receive weak excitatory input from the corresponding ping
direction neuron through a delay neuron (“Delay” in Figure 6).
Upon receiving a spike from the ping direction neuron, the
delay neuron fires a spike after some delay to the action
selection neurons associated with the same ping direction. This
excitatory connection corresponds to the ping direction bias
term in Equation 6. In addition to the connections from goal
and ping direction neurons, all the action selection neurons
receive passive excitatory currents that reflect the baseline
desirability of different paths, corresponding to the “Constant
Bias” term in Equation 6. This excitatory current could be either
from a neuron firing tonically or intrinsic membrane currents
(Häusser et al., 2004).

When a sonar ping is emitted, the ping onset neuron
simultaneously resets (i.e., strongly inhibit and then release) all of
the action selection neurons. The passive excitatory currents can
then be inversely expressed in the spike latency across the field of
neurons (Figure 9A). In the absence of other inputs, the neuron
that receives the strongest excitatory current will integrate to
the threshold first and is the winner, meaning that the motor
action with the largest constant bias will win. The excitatory
spikes from the goal and ping direction neurons increase the
membrane potential, thus decreasing the amount of charge that
the IF neurons need to reach the firing threshold and making
them more likely to win (Figure 9B).

Each evaluation memory unit is connected to all of the action
selection neurons through inhibitory synapses that activate a
long-lasting step-inhibition current if a spike arrives (not all
connections are shown in Figure 8 for clarity). The synapses
have a Gaussian distribution of synaptic strengths with the peak
centered on the synapse connecting the neurons representing the
same path. Different synaptic weights mean different amplitudes
of the activated inhibitory current. This way of connecting the
evaluation memory and the action selection layer corresponds
to the Gaussian inhibition term in Equation 5. The standard
deviation of the Gaussian distribution, however, is small (σc = 1
in the simulation) and in practice synapses 3σc away from the
center can be pruned without affecting the performance. The
inhibitory current from a synapse saturates when the synapse
receives a spike and any following spikes to the same synapse
will not increase the amplitude of the inhibitory current. The
saturating current from a synapse is the reason why only the
latency of the first spike from an evaluation memory unit affects
the computation of desirability.

The accumulated inhibitory currents from different synapses
slow the rate of charging of the action selection neuron and
the time to spike will increase as inhibitory inputs start earlier
(Figure 9C). Because the spike latency from the evaluation
memory is inversely related to the risk of different paths, a
path with a higher risk will result in an earlier activation of
inhibitory currents and thus increase the spike latency of the
action selection neurons. In combination with passive currents
and excitatory spikes from the goal and ping direction neurons,
the action selection neuron that fires the first spike indicates the
most desirable path.

For an action selection neuron with a membrane capacitance
Cmem, a spike threshold Vth, a passive excitatory current Iexc,
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FIGURE 9 | The temporal WTA mechanism with an integrate-and-fire neuron. The neuron fires a spike when its membrane potential reaches the threshold

(dash-dotted line). (A) Following a reset, increasing the passive excitatory currents increases the charging rate of the membrane potential and shortens the latency of

the spike. (B) A pulse of excitatory current increases the membrane potential, shortening the spike latency (dashed line). (C) A long-lasting step-inhibition current

increases the latency of the spike (dashed line) or prevents firing altogether. An inhibitory spike that arrives earlier produces a longer delay in firing.

a sum of injected charge from goal neurons Qgoal and ping
direction neurons Qdir, and n step-inhibitory currents activated
at time t1, t2, . . . , tn, the latency of the spike TWTA is given by

TWTA =

CmemVth − Qgoal − Qdir −
∑n

i=1 Ii · ti

Iexc −
∑n

i=1 Ii
(10)

where Ii is the amplitude of the inhibitory current activated
at time ti. It is assumed that t1 ≤ t2 ≤ · · · ≤ tn <

TWTA, meaning the spikes that arrive after the neuron fires
are ignored. It is also assumed that Iexc −

∑n
i=1 Ii > 0, or

else no spike is generated. As is shown in Equation 10, a
larger passive excitatory current decreases the spike latency by
increasing the denominator while stronger excitatory inputs from
goal and ping direction neurons decrease the latency by reducing
the numerator. Earlier arrival of inhibitory spikes (smaller ti)
increases the latency by increasing the numerator. Although
the amplitudes of the inhibitory currents Ii affect both the
denominator and the numerator, stronger inhibitions that arrive
at the same time still increase the spike latency. In a cluttered
environment where obstacles are blocking many paths, the sum
of the inhibitory currents could exceed the sum of excitatory
currents and prevent the neuron from firing a spike at all.

The first spike from the action selection neurons then causes
a recurrent inhibitory neuron (RIN) to fire which recurrently
inhibits every action selection neuron and prevents them from
firing. Due to the non-zero latency of the RIN and the slow
activation of inhibitory synapses, there is a delay between the
first spike from the action selection neuron and the start of the
recurrent inhibition. Because the passive excitatory current is
weak and the excitatory inputs are short, the time it takes for the
action selection neuron to fire a spike is much longer than the
delay of the recurrent inhibition. As a result, each of the action
selection neurons either fires a single spike or produces no spike
at all. However, any spikes that occur before the inhibition is
effective will pass through the WTA mechanism and multiple
winners can appear at the output. This behavior is similar to
the behavior of a k-WTA network which selects the k largest
values. Although k-WTA networks have been shown to be useful
in robot systems (Peng et al., 2021; Qi et al., 2021), having
multiple winners at the output of the WTA layer in our proposed
neural network could cause problems in both the head motor
layer and the body motor layer. In our model of the motor
layers, we assume that multiple activations of the motor neurons
would cause averaging of motor actions. While multiple winners
that encode nearby head directions and motor actions do not
necessarily cause problems, winners representing significantly
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different paths will. To solve the problem with multiple winners,
a second WTA layer (“WTA Layer 2” in Figure 8) is added to
ensure that the winners sent to the motor layer are within the
same ping direction group by eliminating some of the winners.

The structure of WTA layer 2 is the same as WTA layer 1
except for the input synapses. The action selection neurons in
WTA layer 2 take one-to-one excitatory connections from the
neurons in WTA layer 1. All of these connections are strong
enough to fire the excitatory neurons with a single spike, and
stronger synaptic connections produce spikes with shorter delays.
The synaptic strengths are the same for neurons within each of
the 5 ping direction groups but differ from group to group to
create 5 different delays. The values of the delays are designed
so that the minimal difference between delays is longer than the
delay of the recurrent inhibition. As a result, althoughWTA layer
2 can still produce multiple winners, it is guaranteed that the
winners are from the same ping direction group. The values of
the synaptic strengths decide the priority of each ping direction
group. It is beneficial in terms of safety and energy cost to
favor slow turns over sharp turns, so in this model, the synaptic
strengths in the middle group are set to be the highest, followed
by the middle-left group, the middle-right group, the left group
and then the right group.

Motor Layer
The function of the motor layer is to produce the motor actions
needed to orient the head of the bat (head motor layer) or to turn
the body (body motor layer) to follow a selected path.

Five head motor neurons representing five head (i.e., ping)
directions receive excitatory input from the neurons in the
action selection layer that are associated with the same ping
direction (Figure 6). Upon receiving a spike, a head motor
neuron becomes active and orients the head of the bat in the
associated ping direction for the next sonar ping, consistent
with the proposed attentional system described in Section Motor
Control. Because only the neurons in the same ping direction
group can win in the action selection layer, as described in Section
Action Selection Layer, nomore than one headmotor neuron will
be active at the same time.

Each body motor neuron is associated with a path, and when
it fires, it produces the correct body/wing changes to execute the
turn rate needed for its associated path. When multiple body
neurons are active, the bat is modeled to produce the averaged
turn rate and execute the averaged path, similar to the population
coding hypothesis seen in other animals (Lee et al., 1988). The
body motor neuron receives excitatory input from the action
selection neuron associated with the same path and inhibitory
input from an interneuron inhibited by the recency memory.
Each recency memory is associated with a ping direction, and
it is a decaying memory that stores the recency of its associated
ping direction. The recency memory becomes active when a ping
direction neuron fires, and it inhibits the interneuron for some
duration until decayed back to its inactive state. The duration
of the memory is decided by the duration of the excitation
from the ping direction neurons. In this scenario, the inhibited
interneuron can no longer inhibit body motor neurons and they
are allowed to fire upon receiving spike input from the action

selection layer. Through this disinhibition mechanism, a bat can
turn its body to follow a winning path only when it has recent
information in its associated ping direction.

In the situation where none of the action selection neurons
fire a spike in a certain time window after the outgoing ping, all
paths are undesirable for the bat to follow and the emergency
“turnaround” maneuver will be executed as described in Section
Motor Control. It is achieved by adding an “emergency” neuron
in the action selection layers with a fixed spike latency and
connecting it to a motor neuron responsible for the emergency
maneuver. The emergency neuron will be inhibited if any other
action selection neurons fire a spike before it does, creating a time
window where a path is good enough to follow.

EXPERIMENT RESULTS

Simulation of the Analog Model
We focus our simulation on the bat traveling in a field with
densely placed obstacles to test the capabilities and characteristics
of the analog model. 1,400 identical obstacles are placed
randomly in a 50 × 50m field with two-dimensional periodic
boundary conditions (Figure 10A). The objective of the bat is
to travel in the leftward direction without colliding with any
obstacles. We provided a dynamic goal input to drive the bat to
a goal destination at the left boundary (X = 0) with the same
vertical position (same Y coordinate) and updated it at each time
step according to the position of the bat. When the bat crosses
the left boundary, it will reappear at the right boundary with the
same orientation and speed before the crossing. An example of
the traveled path in a simulation is shown in Figure 10B and
it shows that the bat visited most of the viable paths instead of
repeatedly traveling on a few paths.

In the simulations, the bat used the accurate locations of the
obstacles whose centers were in the current FOV. The occlusion
of distant obstacles was not simulated. The FOV function
(detectable distance vs. relative angle to the head direction) used
in the simulation is a Gaussian distribution with σ = 30 with
a maximum distance RMAX = 5 m, resulting in a half-maximum
width of 70.7. For big brown bats, the half-power beamwidth (the
angular width of the beam pattern at the 3 dB cutoff points) of
their emitted ultrasonic signal at 35–40 kHz is 56 to 80 (Ghose
and Moss, 2003; Gaudette et al., 2014). Although the FOV of a
typical sonar system is not equivalent to the beampattern of the
emitted sound, we approximated them to be similar and designed
the FOV with a similar shape. The bat emitted sonar pings at a
maximum rate of 5Hz in the simulation with the exception in
section 4.1.4 where the maximum sensing rate is increased to test
its influence on the performance. Big brown bats can send out
sonar pulses to sense obstacles at a rate of up to 90Hz (Sändig
et al., 2014) and turn their heads to ping in a different direction in
<30ms (Surlykke et al., 2009). We used a much lower maximum
sensing rate in the simulation to push the limits of the model
and test its capabilities. It is assumed that there are no errors in
the steering action and the bat was able to follow the winning
path exactly.

Defining performance metrics for collision avoidance is
dubious because it must always be evaluated in the context of
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FIGURE 10 | (A) An example of the field with randomized locations of obstacles. One thousand four hundred obstacles (black circles) were placed in a 50 × 50m

area. The size of the obstacles shown in the figure is the size of the zone of collision (combination of the sizes of the bat and the obstacle). The space of the field can

be mapped onto a torus to simulate a bat traveling on an infinite plane as the bat can sense and travel through boundaries. (B) The paths that the bat traveled (blue

line) on the field. Although open areas were traveled more often by the bat, most of the viable paths were visited.

another movement-inducing behavior (e.g., goal-seeking) and
most comparisons are done between performance measures such
as path length and travel time. Furthermore, collision avoidance
performance is strongly correlated with the limitations of the
sensors. Comparisons to other algorithms are problematic if their
algorithms do not also use narrow-FOV sensors. Nonetheless, we
have defined a performance measure to understand the impact of
features and parameters in the proposed model. We use the goal-
seeking behavior and measure how long the bat can move toward
the goal without a collision. Specifically, the number of unique
obstacles that the bat detected, but did not collide with, is counted
as the number of avoided obstacles. Only unique obstacles were
counted because the bat could be trapped temporarily in a local
area and the obstacles around the bat should not be counted
more than once in this scenario. Whenever the bat crossed the
left boundary, the bat was considered to have entered a new
environment and all the obstacles could be counted again. The
simulation ends if one of the three scenarios happened: (1)
the bat collided with an obstacle; (2) the bat has not crossed
the left boundary in a long time (2,500 s) suggesting that it is
trapped; (3) the simulation has reached a time limit (250,000 s).
In the second and third scenarios, the simulation restarts with
a different random seed, and the number of avoided obstacles
is accumulated. Whenever the bat collided with an obstacle, the
accumulated number of avoided obstacles before the collision is
recorded and is considered as a sample.

Density of Obstacles
To test how the proposed model performed with different
densities of obstacles in the field, simulations were run with

different numbers of obstacles ranging from 500 to 1,700.
Because the simulated area was constant, changing the number
of obstacles in the 50 × 50m field is equivalent to changing
the density of obstacles. The simulation results are shown in
Figure 11A. As expected, the performance increased as the
density decreased.

Desirability Function
To test the effect of different terms in the desirability function
(Equation 6) under different maximum speed settings, we
compared the performance between a control configuration
of the proposed model across different speed settings (i.e.,
control group), a configuration without WTA hysteresis and
a configuration without ping direction bias (Figure 11B). The
control simulations used all the terms of the desirability function
described in Equation 6, while the group withoutWTA hysteresis
excluded the hysteresis term (H = 0) and the last group excluded
the ping direction bias term (P = 0). The average number
of avoided obstacles is calculated based on 200 samples under
different maximum speed (VMAX in Equation 1) settings and the
95% confidence intervals for each configuration are shown as
error bars in Figure 11B.

The group without WTA hysteresis had significantly worse
performance (p < 0.05) only at VMAX = 2 m/s compared to
the control group. Hysteresis is generally introduced in a WTA
layer to prevent the winner from oscillating between a few similar
candidates due to noise in the system. We believe that one of
the main reasons why WTA hysteresis did not have a significant
impact on the performance is because sensory or other noise is
not included in the simulation.
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FIGURE 11 | (A) The performance of the proposed model as a function of the number of obstacles in the field. The number of avoided obstacles increased,

approaching infinity, as the number of obstacles decreased. (B) The simulation results of the effect of different terms in the desirability function under different

maximum speed (VMAX ) settings. The control configuration included all the terms described in Equation 6 while the configuration without WTA hysteresis had H = 0

and the group without ping direction bias had P = 0. The group without WTA hysteresis had similar performance at most of the speed settings compared to the

control group, while the group without ping direction bias had significantly better performance at lower speeds (VMAX ≤ 1.25 m/s) and significantly worse performance

at higher speeds (VMAX ≥ 2 m/s). (C) The shape of different immediacy functions tested in the experiment. (D) The performance of the model with different immediacy

functions. The results from the “Steep” group and the “Squared” group showed that reducing the significance of distant obstacles negatively impacted the

performance across all speed settings, and thus indicated that distant obstacles were important to the decision-making process of the model. The comparison

between the control group and the “Flat” group showed that increasing the significance of distant obstacles could be beneficial at higher speed. (E) The effect on the

performance from changing the maximum rate of sonar pings. The performance not only was significantly increased with increased rate of pings but also declined

more slowly with the increase in the maximum speed.
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A comparison of performance shows that the group without
ping direction bias had significantly better performance (p <

0.05) than the control group when VMAX ≤ 1.25 m/s and has
significantly worse performance (p < 0.05) when VMAX ≥ 2m/s.
As mentioned in section action selection layer, the function
of the ping direction bias is to encourage the bat to select
the path with the most recent information when several paths
have similar risks. At low speeds, the evaluation memory of the
paths from different ping directions is relatively accurate and
adding the ping direction bias frequently prevents the bat from
selecting the actual “best” path, thus dropping the performance.
At high speeds, however, the evaluation memory may be wildly
inaccurate and selecting a slightly better path according to
the memory could be more dangerous than selecting a “good”
path with recent and accurate information. The results suggest
that features in the desirability function provide benefits in
different situations and adding a speed-dependent controller on
the weights of different features could help improve performance.

Immediacy Function
We tested and compared different functions representing the
immediacy of avoiding an obstacle. As a reminder, the immediacy
of avoiding a blocking obstacle j on a path p is represented as a
function (f ).

fp
(
j
)
= EMAX ·

[
1−

rp
′

(
j
)

RMAX0 · γp

]
(11)

where EMAX is a constant representing the maximum value of
fp and is set to 10 for all the different configurations in this
experiment. rp

′

(
j
)
is the distance that the bat can travel along

path p before colliding with a blocking obstacle j. The distance
is then normalized with the speed profile γp to represent the time
before colliding with the obstacle.

The results from this experiment are shown in Figures 11C,D.
The control group had the same function of Equation 11 with
RMAX0 = RMAX = 5 and it decreased linearly with the
distance to the obstacle normalized by the speed profile γp.
Because RMAX0 = RMAX, the immediacy function decreased to

0 when the normalized distance
rp

′(j)
γp

is 1, as described earlier.

The “Steep” group had RMAX0 = 3, thus creating a steeper
linearly-decreasing function compared to the control group. The
“Steep” function was rectified to 0 when it dropped below 0,
which means that more distant obstacles were simply ignored.
The “Flat” group had RMAX0 = 7, resulting in a flatter function
that included the contributions of a blocking obstacle even when
it was distant. As a tradeoff, the differences between obstacles
at different distances were reduced. The “Squared” group had a

function as fp
(
j
)
= EMAX ·

[
1−

rp
′(j)

(RMAX·γp)

]2
, which emphasizes

close obstacles without completely ignoring distant obstacles.
As shown in Figure 11D, the number of avoided obstacles

in the “Steep” group was significantly lower than all other
groups across all speed settings, followed by the “Squared” group
with the second-worst performance. It showed that throwing
away or reducing the significance of the information about
distant obstacles severely reduced performance, indicating that

the proposed model could make good use of this information in
its decision-making process. The “Flat” performed significantly
worse (p < 0.05) when 1.5 m/s≤ VMAX ≤ 2 m/s but performed
significantly better (p < 0.05) at speeds higher than 2 m/s.
Distant obstacles present a greater threat at higher speeds, thus
the steering decisions could benefit from emphasizing them. The
results suggest that adjusting the evaluation function accordingly
at different speed settings could improve performance.

Maximum Ping Rate
In the previous experiments, themaximum ping rate was set to be
5Hz. As mentioned before, echolocating bats can emit outgoing
sonar pings up to a rate of 90Hz (Sändig et al., 2014). In this
experiment, we increased the maximum rate of sonar pings to
10 and 20Hz to test its effect on the performance.

As shown in Figure 11E, the performance improved
significantly with increased ping rates. Increasing the ping rate
also helped their performance decline more slowly with the
increase in speed settings, indicated by a lower slope of 10 and
20Hz curves compared to that of the 5Hz curve. A higher rate
of pings allowed the bat to travel at a much higher speed while
maintaining its performance.

Spiking Neural Model Simulation
The proposed spiking neural model was implemented in Python
using a combination of Hodgkin–Huxley neurons (Hodgkin
and Huxley, 1952) and leaky integrate-and-fire (LIF) neurons.
The Hodgkin-Huxley model was applied to as many neurons
as possible to show the biological plausibility of the proposed
spiking neural network, and simpler LIF neuron models were
used to implement sensory neurons in the sensory layer,
integrating neurons in the evaluation memory and WTA
neurons in the action selection layer. The sensory neurons were
implemented in LIF neurons to speed up the simulation because
of their large number and their simple function (fire a spike upon
receiving a spike). Implementing them with the LIF neurons
does not change their function significantly compared to the
implementation with Hodgkin-Huxley neurons. The integrating
neurons and the WTA neurons used LIF models because their
function includes integrating input spikes over a longer time
interval (∼40ms). In total, there are 2,931 LIF neurons and 2,078
Hodgkin-Huxley neurons in the neural model.

The synaptic connections to the Hodgkin-Huxley neurons
were implemented with a time-dependent conductivity function
gsyn (t). The synaptic current is calculated as

Isyn (t) = gsyn (t) · [v (t) − Esyn] (12)

The reversal potential Esyn and the function gsyn (t) can be used
to describe different types of synapses. For excitatory synapses,
Esyn is set to 10mV whereas for inhibitory synapses, Esyn is set
to −70mV. In this simulation, an alpha function was used to
describe the synaptic conductance gsyn (t) as:

gsyn (t) = gsyn · (t − t0)(
e

τ
)e−

(t−t0)
τ · 2(t − t0) (13)

where τ is the time constant, gsyn is the maximum conductance,

t0 is the arrival time of a pre-synaptic spike and 2(t) is
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the Heaviside step function. The synaptic connections to LIF
neurons are simplified as current injections, Isyn_LIF (t), which are
described by a boxcar function as

Isyn_LIF (t) = Isyn · [2(t − t0) − 2(t − t0 − Tsyn)] (14)

where Isyn is the amplitude of the synaptic current and Tsyn is the
duration of the synaptic input.

Each sensory map in the sensory layer consists of 471
neurons representing locations of up to 25 ranges at 0.2-
meter increments (from 0.2 to 5m) and 31 angles at 4-degree
increments (from −60◦ to 60◦). Big brown bats (Eptesicus
fuscus) are shown to be able to discriminate range differences
as small as 1 cm (Simmons, 1973) and angular differences of
6◦ (Peff and Simmons, 1972), while other species such as the
greater spear-nosed bat (Phyllostomus hastatus) can differentiate
objects that are 4◦ apart. We used a relatively small number
of neurons to represent the range because a higher range
resolution significantly increased the total number of neurons
and slowed the simulation while not significantly improving
the performance of obstacle avoidance. The neurons that would
represent locations outside of the field-of-view of the sonar were
removed, thus the number of neurons in eachmap is smaller than
the total number of possible combinations of ranges and angles.
During the simulation, if an obstacle is within the sonar field-
of-view when the bat pings, the obstacle will cause the sensory
neuron with the closest receptive field in the head map to fire
a spike.

The simulation of the proposed spiking neural network was
implemented in Python and run on a CPU (Intel Xeon Cascade
Lake) with a time step of 0.02ms. A small time step was
needed to ensure the correct simulation of the Hodgkin-Huxley
neurons. The synaptic weights were fixed and calculated before
the start of the simulation. An example of the simulation is
shown in Figure 12. After the first sonar ping, the EM combined
information from the sensory layer and produced three groups
of spikes (blue dots in Figure 12B) whose latencies represent
the risk values of the paths that were blocked by the three
detected obstacles. Smaller latencies from the EM represent larger
risk values. The EM spikes with smaller latencies caused larger
delays in the firing of the WTA neurons (gray vertical lines),
making those paths less desirable and less likely to win in the
temporal WTA. Because several neurons in WTA layer 1 fired
simultaneously, there were multiple winners (red dots). The
biased WTA (layer 2) selected the winners that were closer to the
center and in the same ping direction group (black dots).

The spikes from the winners, which belong to the middle-left
group, caused the middle-left head motor neuron to fire a spike
(not shown). As a result, the bat turned its head to the middle-
left direction for the next sonar ping (right panel in Figure 12A).
Because the bat did not have recent sensory information in the
middle-left direction, no body motor neurons in the BML fired
and the bat kept its original trajectory. The bat also maintained
the memory of the spike latencies from the detected obstacles in
the EM.

After the second sonar ping at 200ms, the output neurons
in the EM fired spikes in response to the two newly detected

obstacles (EM neurons 4–5 and 11–13). At the same time, the
neurons reproduced the spike latencies from the previously
detected obstacles that were no longer in the field of view (EM
neurons 16–17 and 22–26). Because the three winners from the
action selection layer were all from the middle-left direction and
the bat had recent information in this direction, the BML neurons
fired spikes (green dots) and the bat executed the path averaged
from the fired BML neurons (right panel in Figure 12A).

The membrane potentials of the neurons in an activated
latency memory unit in this example are shown in Figure 12C

to demonstrate the mechanism of the evaluation memory. The A
neuron was excited by a delay line neuron (not shown) and fired
a spike with a fixed latency after every sonar ping. Although the B
neuron was excited by the same delay line neuron, it did not fire
after the first sonar ping because it was inhibited by the tonically
firing inhibitory interneuron (INH). Because a blocking obstacle
was detected after the first sonar ping, the integrating neuron
(INT) received a spike from the sensory layer and produced a
spike with a latency representing the immediacy of avoiding that
obstacle. When the spike from the INT neuron and the spike
from the A neuron arrived at the coincidence detector (CD)
neuron within 3ms of each other, the CD neuron fired a spike
which excited the output neuron of the evaluation memory unit.
The spike from the CD neuron also inhibited the INH neuron
and suppressed its firing for a long duration (∼150ms), releasing
neuron B from its inhibition.

After the second sonar ping, the B neuron fired a spike at the
same time as the A neuron because they were excited by the same
delay line neuron. The coincidence of the spikes from A and B
neurons caused the CD neuron to fire again and thus the same
spike latency was reproduced. The spike from the CD neuron
suppressed the INH neuron again and “extended” the latency
memory. In this example, because the bat made a motor decision
after the second sonar ping, all the latency memories were reset
by an excitatory spike to the INH neuron (“reset spike” in the
bottom panel in Figure 12C) that was strong enough to overcome
the previous inhibition from the CD neuron and caused the
INH neuron to start firing again. Once the INH neuron is firing,
the B neuron is suppressed, and the CD neuron will no longer
fire without the input from the INT neuron. Hence, the latency
memory is “erased.”

The neural network was also simulated in the same
environments used in the simulation of the analog model
described in Section Simulation of the Analog Model. One of
the simulation results is shown in Figure 13 where the bat
successfully reached the left boundary 4 times without colliding
with any obstacles.

Due to the complexity of the Hodgkin-Huxley model,
simulating the proposed spiking neural network on a CPU is
extremely slow (∼105 times slower than simulating the analog
version), and collecting enough data to do performance analysis
as in Section Simulation of the Analog Model is impractical
with the current implementation. The short simulation run
shown in Figure 13 took more than 5 days to complete.
A neuromorphic VLSI implementation, however, could vastly
improve the running speed of the proposed spiking neural
network and can allow it to run in real-time on a mobile
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FIGURE 12 | (A) The bat is in an environment with 6 obstacles (filled circle) and a desired destination (filled triangle in red) without prior information of the environment.

The environment is the same as the example given in Figure 5 for a clearer comparison between the analog model and the spiking neural model. It is assumed that it

was flying along a straight path (solid straight line) and it directed its first sonar ping to the front (ellipsoidal FOV shown in solid line). The circles of the obstacles are

drawn with the size of the zone of collision to show the paths that they are blocking. The bat has a limited selection of motor choices (dotted line, 33 in total) and each

of the motor actions corresponds to a neuron in the spike raster plot below. The bat sent the first sonar ping at t = 100ms and a second one at t = 200ms. The

detected obstacles (filled circle in black) from each of the sonar ping caused the corresponding sensory neurons to fire. (B) The spikes from the output neurons in the

evaluation memory (EM), the WTA neurons in the action selection layer and the neurons in the body motor layer (BML) were shown. The spike latency of each EM

neuron represents the “risk” value of a path, and the spike latency of each WTA neuron represents the desirability of a path. The neurons with smaller indices represent

paths to the left and the neurons with larger indices represent paths to the right. The spikes from an imaginary WTA layer 1 without recurrent inhibition are also plotted

(gray vertical line) for a better demonstration of the impact that the spikes from the EM had on the action selection layer. (C) The membrane potentials of the neurons

in the 9th latency memory unit (LMU) and the integrating neuron (INT) for path 24 are shown to demonstrate the working mechanism of the evaluation memory. The

integrating neuron was implemented as a LIF neuron (red curve) and the neurons in the LMU (neurons A, B, CD and INH) were implemented using Hodgkin-Huxley

model (blue curve).

platform. It is important to note that it is not necessary
to use the Hodgkin-Huxley model in the neural network
and it is only used to show the biological plausibility of
the network with more realistic neuron characteristics. The
proposed network can produce similar results using simpler
neural models.

Robot Implementation
We have implemented the analog version of the Curved
Openspace model on a mobile robot with a car-like steering

mechanism (Figure 14). The 3-D printed sonar head (white)
is mounted on a servo motor at the front of the vehicle
and has three vertically stacked sonar transducers, each facing
a different direction. To collect sensory data, the middle
transducer sends out a sonar ping and the echoes reflected from
objects are measured by all three transducers. The distances
to objects are measured using the time of flight of their
echoes, and the direction of each object is computed using
the relative amplitudes of the sonar echo. The custom sonar
transducer boards output a logarithmically-compressed envelope
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FIGURE 13 | An example of the bat traveling at a maximum speed of 2 m/s in

a dense forest using the proposed spiking neural model with a spike-timing

representation. One thousand four hundred obstacles (filled circles in blue)

were placed in a 50 × 50m area. The size of the obstacles shown in the figure

is the size of the zone of collision (combination of the sizes of the bat and the

obstacle). The parameters of the bat were kept the same as the parameters

used in the simulation of the analog model in section simulation of the analog

model, except for the maximum ping rate which was set to 10Hz in this

simulation. The field has two-dimensional periodic boundary conditions to

allow the bat to travel as if in an infinitely large space. A goal input is provided

to drive the bat to a goal destination at the left boundary (X = 0) with the same

vertical position (same Y coordinate). The paths that the bat traveled on the

field are shown as blue curves.

signal of echoes as an analog voltage. For each echo, the
peak voltage on each of the three transducers is recorded by
a microcontroller-based analog-to-digital converter (ADC). A
radial basis function (RBF) network is then used to map the
echoes to angles in the horizontal plane at 1-degree increments.
The RBF network was trained using a dataset consisting of 910
echoes from 91 different angles and 10 intensities (to simulate
different ranges).

The program sends out a sonar ping from the middle
transducer, waits for 3ms for the outgoing pulse to die out
before collecting sonar echoes and then uses the RBF network to
localize the detected obstacles. The goal input is provided in the
straight-forward direction initially and it can change according
to the movement of the robot to guide it toward the initial goal
direction. The risk values and the desirability of 15 different paths
are then calculated and a winning path along with the next ping
direction is executed. Finally, the program waits for the turning
of the head to finish before sending out a new sonar ping and
starts the cycle again. If no head movement is required, a sonar
ping is sent in the current ping direction immediately. Because
of the limited rotational speed of the head-turning servo, the
ping frequency varies from 3Hz when the head needs to turn

FIGURE 14 | The mobile robot on which the analog model is implemented.

The robot consists of a sonar head with three sonar transducers mounted on a

servo motor, a Raspberry Pi 3 running the analog model, an Arduino Uno

board controlling the rear wheel DC motors, a servo motor controlling the front

wheels with an Ackermann steering geometry, an Adafruit 16-channel servo

driver, and a lithium polymer (LiPo) battery. The sonar transducers are

custom-modified MaxBotix sonar transducers (piezo) that act as both a

speaker and a microphone. They resonate at 40 kHz and will only detect

signals near this frequency. The transmitted beam has a half-power

beamwidth of about 60◦. The top transducer points 45◦ to the right (from the

head’s point of view), the middle transducer points straight forward, and the

bottom transducer points 45◦ to the left. The trained radial basis function

(RBF) network and the analog version of the Curved Openspace model are

implemented in Python on a Raspberry Pi 3 mounted on the back of the robot.

The Raspberry Pi allows for wireless operation via WiFi and coordinates the

commands to a servo controller board (for sonar head pointing and steering)

and the powered rear drive wheels. The servo motor in the front of the vehicle

controls the turning rate of the vehicle using an Ackermann steering

mechanism. A given steering angle thus translates to a specific turning radius

of the vehicle and a lookup table is used during operation. Because of the

limited resolution of the steering motor, the total number of motor actions was

reduced from 33 to 15 in the robot implementation. The neural model controls

the speed of the vehicle by adjusting the power delivered to the rear wheel DC

motors using pulse-width modulation.

from one end to another, to 12Hz when no head movement
is required.

The mobile robot was tested in different forests of obstacles
and its positions were recorded in 3-dimensions using a Vicon R©

marker-based visual tracking system. The robot path and ping
directions of the robot in three different example forests are
shown in Figure 15. In the first configuration (Figure 15A),
when the robot did not detect any obstacles near the middle path,
it did not need to turn the head to other directions because the
goal direction was in the middle and the middle path was the
winner. As a result, most of the time the robot kept pinging down
the center. The sonar pings to the side were caused by errors in
the sonar RBF network that sometimes incorrectly localized side
obstacles to the center. In the second configuration (Figure 15B),
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FIGURE 15 | The path and ping directions of the robot during runs in three different forests. The obstacles (5 cm diameter PVC poles) are shown as black circles and

the size of the circle is the size of the zone of collision (size of the robot plus the size of the PVC poles). The path the robot took is shown as a solid black line and the

ping directions are shown as solid-colored lines pointing at the corresponding ping directions. (A) Robot running down a corridor formed by two lines of evenly

spaced obstacles. The ping directions in this run were mostly down the center (green solid lines). (B) The robot traveling in a forest composed of 21 obstacles placed

in a 1.8 × 1.8m area. The robot explored other paths more often by pinging in different directions in more cluttered areas, whereas it mainly pinged in the direction of

its current path in the more open areas. (C) The path of the robot in a denser forest consists of 21 obstacles in a 1.4 × 1.8m area.

the area around the starting point of the robot is more cluttered,
so the robot pinged around and explored different paths more
often. In the second half of the run, the robot entered amore open
area where it mostly pinged in the direction that it was traveling
in. A similar result can be observed in a denser forest example
(Figure 15C). The video recordings of the two runs shown in
Figures 15B,C are provided as Supplementary Materials.

Several problems can occur in a real sonar system compared
to the simulation. First, occlusion can happen when one object is
directly behind another object and the sonar system cannot detect
the far object accurately or at all. Another problem that can occur

are multi-path echoes where the sound is bouncing between
different objects, creating additional echoes with different delays
that might be erroneously interpreted as different objects. During
the testing of the robot, the problems mentioned above did not
create significant difficulties, given our simplified environment,
but we acknowledge that this might not be the case in complex
3D environments. One of the problems that we encountered,
however, was the near-field blind zone. Following an outgoing
ping, the highly resonant transducers will produce a decaying
signal that continues for some time, interfering with amplitude
measurements of echoes from nearby objects. Although objects

Frontiers in Neurorobotics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 850013122

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wen and Horiuchi Sonar-Based Obstacle Avoidance Algorithm

can be detected within this signal, amplitude measurements
for localization are not practical. Its range can be reduced
by lowering the intensity of the outgoing ping when the
robot is encountering close obstacles. Another problem that
we encountered was that in certain cases, the positions of the
obstacles calculated by the RBF network were inaccurate and
caused the robot to steer in an undesirable direction. The
incorrect motor actions were often quickly corrected in the
following sensor cycle once the positions of the obstacles were
accurately calculated and the incorrect memory was replaced by
the accurate sensory information.

DISCUSSION

This paper presents an obstacle avoidance neural model that
provides steering decisions to a sonar-guided “bat” to avoid
static obstacles while pursuing a goal. To achieve better matching
between the desired path and a path that the bat can realistically
follow, the Curved Openspace model projects the sensory-
based obstacle data into “motor space” before comparing motor
choices. Although the idea of selecting motor actions instead of
sensory directions has been proposed before (Simmons, 1996;
Fox et al., 1997), they used sensors with a wide field-of-view
and did not need to consider the question of how to gather
information efficiently over time. Taking into account the limited
field-of-view of an echolocating bat or a practical sonar system,
an attentional system is proposed to control the direction of
sonar pings in a time and energy efficient way where the bat
will ping in the most beneficial direction to guide its motor
action selection. The fact that the bat is moving while gathering
and integrating information introduces problems such as the
inaccuracy of old data. To alleviate the problem of inaccurate
memory, we designed an evaluation memory that decays old data
and a desirability function that incorporates both the information
about the goal and obstacles as well as the recency of the sensory
data. The presented simulations showed the effectiveness of
different configurations under different situations. Although the
proposed neural model is described as a model for sonar-guided
creatures or vehicles, it can be driven with other sensors such as
cameras or laser rangefinders.

The analog model was implemented in real-time on a car-
like robot with an active sonar system. The robot was tested in
multiple scenarios and the results showed that the analog model
works with real sonar sensory data. During these runs, the robot
would only turn its head and collect sensory data in non-traveling
directions when necessary, showing the efficiency of the proposed
attentional system. It is important to note that the point of the
robot implementation is to demonstrate that the proposed neural
model operates as expected with a real sonar and an inexpensive
robot in closed-loop behavior.

A spiking neural network using spike-timing representations
is also described in the paper. Instead of using a large population
of neurons to represent analog signals with spike rates, we
used spike-latency to represent signal values for computation.
Sonar systems inherently utilize a timing code where low echo

latency represents a close object and high echo latency represents
a distant one. Only a small adjustment on this latency is
required to translate this into the immediacy of avoidance
measure. Moreover, a sonar system will receive echoes from close
obstacles earlier than distant obstacles. This means that a creature
implemented with the proposed spiking neural model could
reduce the time to make a motor decision if it chooses to focus
only on closer obstacles in a cluttered environment. With the
“race-to-first-spike” WTA mechanism, an early decision can be
forced by increasing the passive excitatory input to further reduce
the time spent on decision-making if most of the computation
happens early. The presented simulations showed that the bat
running on the proposed neural network can navigate through
dense forests. The slow simulation speed of the neural network,
however, prevents the current simulation from running extensive
performance analyses and advocates for implementation on
neuromorphic VLSI hardware. Overall, the use of input spike
timing to modulate the efficacy of a synaptic connection can be
an effective mechanism that does not rely on increasing spike
rates or modulating synaptic strength. Although the Curved
Openspace model and its spiking neural model are proposed for
obstacle avoidance on a 2-D plane in this paper, it would not
be difficult for the neural model to operate in the 3-D world by
extending the motor actions to 3-D trajectories.
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Experience replay is widely used in AI to bootstrap reinforcement learning (RL) by

enabling an agent to remember and reuse past experiences. Classical techniques

include shuffled-, reversed-ordered- and prioritized-memory buffers, which have different

properties and advantages depending on the nature of the data and problem.

Interestingly, recent computational neuroscience work has shown that these techniques

are relevant to model hippocampal reactivations recorded during rodent navigation.

Nevertheless, the brain mechanisms for orchestrating hippocampal replay are still

unclear. In this paper, we present recent neurorobotics research aiming to endow

a navigating robot with a neuro-inspired RL architecture (including different learning

strategies, such as model-based (MB) and model-free (MF), and different replay

techniques). We illustrate through a series of numerical simulations how the specificities

of robotic experimentation (e.g., autonomous state decomposition by the robot, noisy

perception, state transition uncertainty, non-stationarity) can shed new lights on which

replay techniques turn out to be more efficient in different situations. Finally, we close

the loop by raising new hypotheses for neuroscience from such robotic models of

hippocampal replay.

Keywords: hippocampal replay, reinforcement learning, neurorobotics, model-based, model-free

1. INTRODUCTION

For a reinforcement learning (RL) agent (Lin, 1992; Sutton and Barto, 1998), experience replay
consists of storing in (episodic) memory a buffer containing a series of observations (i.e., a
quadruplet composed of the previous state, the action, the new state, and the reward) and
periodically replaying elements from this buffer to bootstrap learning during offline phases
(i.e., between phases where the agent acts and samples new observations in the real-world)
(Fedus et al., 2020).

Several important parameters have an impact on the performance of RL agents with experience
replay, such as the size of the memory buffer (Zhang and Sutton, 2017), the relative time spent
learning from replay vs. the time spent collecting new observations in the world (Fedus et al.,
2020), or whether to shuffle the memory buffer and uniformly sample elements from it or prioritize
elements as a function of their associated level of surprise (e.g., the absolute reward prediction error
associated to a given quadruplet observed from the environment) (Moore and Atkeson, 1993; Peng
and Williams, 1993; Schaul et al., 2015).

To our knowledge, these replay techniques have their origin in the 1990s, when Long-Ji Lin at
Carnegie Mellon University proposed solutions to enable RL reactive agents [i.e., model-free (MF)
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agents such as Q-learners Watkins, 1989] to bootstrap their
learning process in large dynamic (non-stationary) discrete
simulation environments (Lin, 1992). One of the investigated
solutions was to use the Dyna-Q architecture (Sutton, 1990) to
learn action models and use these models to sample hypothetical
actions. Another tested solution consisted of storing the agent’s
experience in a memory buffer and replaying it to bootstrap
learning. Interestingly, one of the main results was that the best
performance was obtained by reversing the order of the replay
buffer, what we will call backward replay (i.e., replaying first the
most recent observation, then the second-to-last one, and so on
until the oldest observation). This is because each time the buffer
contains a rewarding observation, replay leads to increasing the
value of the action performed in the previous state, followed
by replaying precisely that previous state at the next iteration
(because the buffer is in reverse order), and thus increasing the
value of the preceding action, and so on. As a consequence,
single processing of the memory buffer results in reward value
propagation from rewarding states along the whole sequence of
actions that the agents had experienced to get the reward.

In parallel, other researchers further investigated the efficiency
of model-based (MB) techniques to sample hypothetical actions
rather than replaying experienced actions from a memory buffer.
One example is prioritized sweeping and consists of replacing
uniform model sampling with a prioritization that depends on
the absolute value of the reward prediction error (Moore and
Atkeson, 1993; Peng and Williams, 1993). While MB methods
can be conceived as ways of planning, thus different from MF
learning, they can nevertheless be seen as an alternative way
to perform offline Q-value updates. Even further, there is a
mathematical equivalence between the sequence of Q-values
obtained with MB updates and with MF methods with replay
(van Seijen and Sutton, 2015). This is why throughout this
paper, we will discuss both model-based and model-free replay,
in the sense that they represent alternative offline reactivation
mechanisms to update action values. We will refer to model
sampling as Simulation Reactivations (SimR) and sampling from
a memory buffer asMemory Reactivations (MemR).

Strikingly, neuroscience research has found that the
mammalian brain also seems to perform some sort of
experience-dependent reactivations of neural activity, in
particular, in a part of the brain called the hippocampus (Wilson
and McNaughton, 1994). These reactivations occur either when
an animal is sleeping (Ji and Wilson, 2007) or during moments
of quiet wakefulness between trials of the task (Karlsson and
Frank, 2009). Most importantly, these reactivations play an
instrumental role in learning and memory consolidation,
since blocking these neural reactivations leads to impaired
learning performance (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010; Jadhav et al., 2012), while new memories can be
created by stimulating reward circuits during these reactivations
(De Lavilléon et al., 2015).

The computational neuroscience literature has recently
compared the different replay techniques from machine
learning with the properties of hippocampal replay recorded
experimentally (Pezzulo et al., 2017; Cazé et al., 2018; Mattar
and Daw, 2018; Khamassi and Girard, 2020). Interestingly,

the reactivation of a sequence of states experienced by the
animal during the task sometimes occurs in the same forward
order and sometimes in backward order (Foster and Wilson,
2006; Diba and Buzsáki, 2007). Nevertheless, a large part of
hippocampal reactivations occur in apparent random order, and
the underlying computational principle remains to be explained
(see for instance the proposal of Aubin et al., 2018). Moreover,
computational investigations recently found that prioritized
sweeping can also explain some properties of hippocampal
reactivations (Cazé et al., 2018; Mattar and Daw, 2018). But
it is not yet clear whether a single unified computational
principle can explain hippocampal replay or whether the brain
alternates between different types of replay (backward, shuffled,
prioritized/MF vs. MB) in different situations (sleep vs. quiet
wakefulness, depending on the difficulty of the task, the level of
noise/uncertainty).

Thus, a new field of neurorobotics research is currently
dedicated to integrating offline reactivations in the RL processes
to improve and speed them up. As mentioned above, this
focus on offline reactivations is both inspired by the machine
learning techniques created in the 90s and now commonly used
in DeepRL and by the neuroscience results on hippocampal
reactivations and the probable cohabitation of MB and MF
RL systems in the brain. With robotic applications as an
aim, these contributions need to bridge the gap between
perfectly controlled discrete state simulations and real embodied
robotics experiments in continuous environments. The goal
of this research is to understand which replay techniques
give the best learning performance in different situations
(constrained corridor-based vs. open maze environments;
non-stationary goal locations and maze configurations) and
whether robotic tests lead to different conclusions than
simple perfectly controlled simulations (physical vs. abstract
simulations, autonomous state decomposition by the robot,
noisy perception). For instance, a recent neural network-
based simulation of a rat maze task highlighted that shuffled
experience replay was required to break the data temporal
correlations to be able to learn a neural internal world model
(Aubin et al., 2018). Importantly, while neurorobotics research
during the last 20 years had already studied hippocampus
models for robot navigation (Arleo and Gerstner, 2000;
Fleischer et al., 2007; Dollé et al., 2008; Milford and Wyeth,
2010; Caluwaerts et al., 2012; Jauffret et al., 2015), to our
knowledge, the impact of different types of replay on the
performance of these models has only recently started to
be investigated.

In this paper, we illustrate this line of research by
presenting a series of numerical simulations of laboratory
mazes (used to study rat navigation in neuroscience) as
benchmark tasks for robotic learning. These simulations are
presented in order of increasing complexity toward real-world
robotic experiments. At each step of this presentation, we
simulate and compare different replay techniques in either
MF or MB RL agents. We discuss the properties of these
simulations, how they contribute to improving learning in
robots, and how they can also help generate predictions
for neuroscience.

Frontiers in Neurorobotics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 864380126

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Model-Based/Model-Free Replay

2. SIMULATION OF INDIVIDUAL REPLAY
STRATEGIES IN A PREDEFINED DISCRETE
STATE SPACE

In this section, we present a series of numerical simulations
in a simple deterministic maze task with predefined state
decomposition. The task mimics the multiple T-maze of Gupta
et al. (2010), where rats have to follow constrained corridors
and make binary decisions (go left or go right) at specific T-like
decision points (Figure 1A). This will enable us to first illustrate
the properties of different replay methods in the same conditions
as the perfectly controlled simulations usually performed in
computational neuroscience work. Then in the next sections, we
will study what happens in more openmazes where moreover the
robot will autonomously build its state decomposition.

The work presented in this section contains two main
differences from our previous computational neuroscience
simulations of the multiple T-maze task (Cazé et al., 2018;
Khamassi and Girard, 2020)1: (1) in previous work, following
experience replay techniques in machine learning, we had
allowed the agent to perform a series of replay iterations
after each action; here, because it would be energy- and time-
consuming for a robot to stop after each action, we allow the
simulated robot to perform replay only at the end of the trial,
while it is waiting for the next trial at the departure state;
(2) we had simulated a version of MB prioritized sweeping
where the memory buffer contained one element per state;
here, we test whether it is also efficient to have an element for
each (state,action) couple, thus filling the memory buffer with
multiple elements for the same state (as long as they represent
different actions).

2.1. Methods
We simulate the multiple T-maze task as a Markov decision
problem (MDP), where an agent visits discrete states s ∈ S ,
using a finite set of discrete actions a ∈ A. States represent
here unique locations in space, equally spaced on a square grid
(Figure 1A), a piece of information expected to be provided by
place cell activity in the hippocampus (O’Keefe and Dostrovsky,
1971). The actions allowed the agent to represent moves in the
four cardinal directions: north, south, east, and west. During the
first 100 trials, the reward will always be located on the left arm.
Then during the next 100 trials, the reward will be on the right
arm and the agent will have to adapt its decisions accordingly.

Here, we simulate three model-free RL algorithms and one
MB one: MF without replay, MF with backward replay, MF with
shuffled replay, and MB prioritized sweeping (Table 1).

For each Markovian state-action couple (s, a) in the
environment, MF-RL agents use Q-learning (Watkins, 1989) to
learn the Q-value of performing action a from state s, as follows:

Q(s, a)← Q(s, a)+ α[R(s, a)+ γ max
a′

Q(s′, a′)− Q(s, a)] (1)

1The updated code for these simulations is available at https://github.com/

MehdiKhamassi/RLwithReplay.

Where R(s, a) is the reward obtained from the environment when
performing (s, a), and s′ is the arrival state after executing action
a in state s.

At the next timestep, deciding which action to perform is
computed by drawing the next action a from a probability
distribution given by the softmax Boltzmann function applied to
the Q values:

P(a|s) =
eβQ(s,a)

∑
i∈A eβQ(s,i)

(2)

With A being the set of all the possible actions from state s
and β being the inverse temperature parameter that regulates
the compromise between exploration and exploitation: the closer
to zero, the more the differences between the Q-values will be
attenuated, and thus the more the selection will be uniform
(hence exploratory); conversely, large values (that can go up to
infinity) will enhance the contrast between the Q-values and will
thus favor exploitation of the largest one.

In MF-RL backward replay and MF-RL shuffled replay and
for all the other RL replay algorithms tested in this section and
the next one (Section 3), we enable the agent at each timestep
to store in a memory buffer the quadruplet describing the
current observation: the previous state s from which the agent
performed action a, the resulting state s′ and the scalar reward
r obtained from the environment (1 when the rewarding state
has been reached, 0 elsewhere). This memory buffer progressively
increases in size, timestep after timestep, but is limited by the
maximal size N (N being chosen to correspond to the number
of states in the environment, see Table 1). When the maximal
size has been reached, adding a new element to the buffer is
accompanied by throwing away the oldest element in it.

When the agent has finished the current trial and reaches the
departure state again, a replay phase is initiated where at each
replay iteration one element from the buffer is processed and the
corresponding Q-value is updated following Equation 1. This is
repeated until the sum of variations of Q-values over a window
of N replay iterations is below a certain replay threshold ǫ, which
indicates that the Q-values have converged and do not require to
be updated anymore.

In the MF-RL backward replay algorithm (Lin, 1992), at the
beginning of a new replay phase, we simply reverse the order of
elements in the buffer and then start to perform replay iterations
following the procedure explained above. In the MF-RL shuffled
replay algorithm, we simply shuffle the elements of the buffer
before starting the replay phase.

We also test an MB algorithm where the learning process
aims at building a world model, i.e., a model of how the
perceived world changes when actions are taken. This model
is conventionally composed of a transition function and a
reward function. The transition function T(s, a, s′) represents the
probability of observing s′ next if action a is taken while in
state s. In the present discrete case, it is built by storing the
number of times each (s, a, s′) triplet was encountered and by
dividing by the number of times (s, a) experienced, as shown in
the equation below:
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FIGURE 1 | (A) Discrete state-space simulations in the multiple T maze task (Cazé et al., 2018; Khamassi and Girard, 2020). The reward is on the left side for 100

trials and then shifted to the right side for the next 100 trials. In the present simulations, replay is only allowed in the departure state, before starting the next trial.

Despite this constraint, the figure shows that after only 3 trials (2 correct / 1 error), the MF-RL algorithm with backward replay has already learned a full gradient of

Q-values across the maze. (B) Comparison of the performance (reward rate) and computation time (Napierian logarithm of the number of iterations during replay

phases) for 4 different algorithms. The thick lines represent the average, and the area around represents the mean square error. The figure illustrates that MF-RL

without replay requires 60–70 trials to reach optimal performance and does not manage to adapt to the change in reward location within only 100 trials. All the other

algorithms perform similarly in terms of reward rate: fast increase in performance; brief drop in performance after the change in reward location; fast re-increase of

performance afterward. These algorithms mainly differ in the required duration of the replay phases: MF-RL with random replay and MF-RL with backward replay both

show a strong peak in the number of replay iterations after the change in goal location. The state-based version of MB-RL prioritized sweeping shows a smaller peak.

TABLE 1 | Algorithm parameters used to generate the results in this section.

MF no replay MF backward

replay

MF shuffled replay MB prioritized

sweeping

α 0.2 0.2 0.2 -

γ 0.99 0.99 0.99 0.99

β 3 3 3 3

ǫ - 0.001 0.001 0.001

N - 54 54 54

They have been taken from Cazé et al. (2018) without retuning. α is the model-free (MF)

learning rate. γ is the discount factor. β is the inverse temperature in the softmax for

decision-making (Equation 2). ǫ is the threshold for Q-values convergence during replay.

N is the maximal size of the episodic memory buffer.

T(s, a, s′) =
VN(s, a, s

′)

VN(s, a)
(3)

where VN(s, a) stands for the number of visits of state s when
action a is then chosen and VN(s, a, s

′) is the number of
transitions from state s to state s′, having performed action a. The
reward function R(s, a, s′) represents the average reward signal
experienced when effectively performing the (s, a, s′) transition.
For the MB-RL prioritized sweeping algorithm that we simulate
here (Moore and Atkeson, 1993; Peng and Williams, 1993), we
add to each element in the memory buffer the absolute reward
prediction error 1 measured when experiencing (s, a, s′, r) in
world. This 1 can also be seen as representing the magnitude
of change in Q(s, a) which resulted from this observation. The
memory buffer is sorted in decreasing order of 1, thus giving a
high priority to be replayed to elements representing surprising

events in the world that resulted in important revisions of Q-
values. In fact, Mattar and Daw (2018) have formally shown that
deriving the Expected Value of (Bellman) Backup (in other words
an expected value of doing a replay) leads to maximizing a gain
term which is higher for transitions that have been associated
with larger reward prediction errors (hence larger surprise) when
the agent was experiencing the real world.

During the replay phase of MB-RL prioritized sweeping, we
start by considering the first element (s, a) of the buffer with
the highest 1. We use the world model learned by the agent to
estimate the virtual reward r and arrival state s′, and then apply
one iteration of the Value Iteration algorithm (Sutton and Barto,
1998) to update the Q-value of (s, a), where k is all the possible
actions starting from the arriving state s′:

Q(s, a)← R(s, a)+ γ
∑

s′

T(s, a, s′)maxk∈AQ(s′, k) (4)

From Equation 4, we can compute the new 1 for the couple
(s, a) and reinsert it within the memory buffer with 1 as the
new priority level. Finally, we use the world-model to find
all possible predecessors of (s, a), i.e., couples (s′′, a′′), which
according to the model enable the agent to reach state s. Because
the predecessors of a given state s can be difficult to determine
in a stochastic world, Moore and Atkeson (1993) propose to
consider as predecessors all the states s′′ which have, at least
once in the history of the agent in the current task, performed
a one-step transition s′′ → s. The priority associated to a
predecessor s′′ can thus be the corresponding absolute prediction
error 1pred and determined in which position it will be inserted
in the memory buffer, as introduced by Peng and Williams
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(1993). The replay phase then continues by processing the next
element in the buffer with the highest priority level, and so on,
until one of the stop conditions described above is met. For the
sake of terminological clarification, what we call here a replay
phase for an MB algorithm corresponds to an inference phase.
This is because MB-RL prioritized sweeping does not replay
memorized past experience, but rather generates SimR through
model sampling combined with the value iteration algorithm
described above. Thus, to transpose from MF to MB, the replay
phase stop conditions described above, the size of the replay
budget N (which could also be called an inference budget in the
case ofMB) represents here amaximumnumber of iterations that
can be inserted in the prioritized memory buffer and replayed
through the value iteration algorithm.

2.2. Results
With the two changes that we made here compared (Cazé et al.,
2018; Khamassi and Girard, 2020) (i.e., (1) only allowing the
simulated robot to do replay at the end of the trial when reaching
the departure state and (2) storing distinct (state, action) couple
in the memory buffer forMB-RL prioritized sweeping rather than
a single element per state), we found consistent performance
results and only a difference in terms of a reduced computational
cost during replay phases, which we describe below.

Figure 1B shows that the three algorithms with replay (i.e.,
MF-RL backward replay, MF-RL shuffled replay, and MB-RL
prioritized sweeping) quickly reached the optimal reward rate of
1 at the beginning of learning and then experienced only a brief
drop in reward rate after the change in reward location at trial
#100. In contrast, MF-RL without replay took longer to reach
the optimal rate (approx. 60 trials) and then barely managed
to re-increase its reward rate within 100 trials after the change
in reward location. So, the first conclusion is that any replay
technique is equally useful in enabling fast learning in such a
simple maze task with predefined state decomposition.

The second interesting observation has to do with the
transient and nearly discrete increases in replay time that are
produced in responses to task changes (Figure 1B). All replay
techniques enable the agent to avoid spending time performing
replay during the majority of the task. They moreover show a
sharp increase in replay time after a change in reward location.
Importantly, this property was also true in our previous work
where replay was not restricted to the end of the trial but rather
allowed in any state of the task (Cazé et al., 2018). Thus, it is
interesting to note that such a way to generate replay events is
not only compatible with neurobiological data (Cazé et al., 2018;
Mattar and Daw, 2018) but also shows properties that could be
useful for autonomous robots: bursts of replay could be used by
the robot as a way to automatically detect new task conditions
(but here the robot does not need to explicitly label these events;
it just needs to adapt and maximize reward). The rest of the
time, the agent starts each new trial without pausing, as if not
showing any hesitation, similar to what is classically observed in
well-trained rats in similar tasks (Gupta et al., 2010).

In addition, it is interesting to compare the duration of replay
phases between the different replay techniques. While there is
no difference in the average number of replay iterations after

the change in reward location at trial #100 (Figure 1B), MB-RL
prioritized sweeping performs drastically fewer replay iterations
than MF-RL backward replay and MF-RL shuffled replay during
the initial learning phase (first 5-10 trials of the task). Now that
we restricted these algorithms to perform replay only at the end
of each trial, rather than after each action during the trial, MB-
RL prioritized sweeping performs even fewer replay iterations
than what we previously obtained in the same task (Cazé et al.,
2018), without affecting its reward rate. The new proposal to
restrict replay to the inter-trial interval thus seems promising
for real robots. In Dromnelle et al. (2020b) (where we had not
implemented any replay mechanism yet), the robot indeed took a
few seconds after each trial to go back to the departure state. This
short moment seems ideal to let the algorithm perform a replay
without affecting the performance of the robot during the trial.

In the next section, we keep these principles and compare the
same replay algorithms in a more open environment where the
robot autonomously learns to decompose the task into discrete
states, to verify that these algorithms still perform well under
these more realistic conditions.

3. SIMULATION OF INDIVIDUAL REPLAY
STRATEGIES WITH AN AUTONOMOUSLY
LEARNED STATE DECOMPOSITION

The neural activity of hippocampal place cells is often observed as
showing transients and increases after surprising events (Valenti
et al., 2018). During maze navigation, surprising events mostly
occur at locations in the environment that are associated with
positive or negative outcomes. From these locations, reverse
replay, in particular, could reinforce spatial learning by occurring
during awake periods, after the spatial experiences (Foster and
Wilson, 2006). They can potentially reinforce the surprising
experience by propagating the outcome of the event to states that
have been encountered by the animal on its way to the reward
or punishment site. Moreover, rewarding states are also very
likely to initiate replay activity in the hippocampus to enhance
the memory consolidation of novel information (Michon et al.,
2019). During these events, the reactivation of the hippocampus
neural activity is thought to be initiated by rewarding outcomes
to bind this positive unexpected experience to the events that
preceded it (Singer and Frank, 2009).

To study these and others phenomena related to spatial
navigation learning in rodents, one of the first and most relevant
experimental protocols is theMorris Water Maze (Morris, 1981).
In this work, rats were introduced to a circular pool with opaque
water and were removed from the pool only after reaching a
hidden platform, located just below the water surface. Even
though the rats could not see the platform, they were still able
to spatially localize it. This was found even in cases where their
starting point changed within the pool, thus indicating a robust
spatial memory.

In this section, the same MF-RL and MB-RL replay strategies
(MemR and SimR, Sections 1, 2) are tested in a more realistic
robotic set-up, where the discretization of the environment in
multiple Markovian states is autonomously performed by the
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robot.2 Similarly to the experiment in Section 2 and to what
has been experimentally observed by Foster and Wilson (2006),
the replay phase takes place once the agent has reached the
reward state to enable offline learning of Q-values, as previously
done by Mattar and Daw (2018). Neurobiologically, even though
Vicarious Trial and Error (VTE) plays an important role in
animals’ reasoning and decision-making (Tolman, 1939; Redish,
2016), it usually happens in uncertain moments, such as at
beginning of the experiment, at the decision points or surprising
spots (Cazé et al., 2018; Khamassi and Girard, 2020) and can
also be unconsciously constrained by the attempt to limit the
opportunity cost (Keramati et al., 2011).

This aspect is particularly crucial for the robotic experiment
because it allows the agent to spend the Inter Trial Interval
(ITI) updating the Q-table, based on a replay of its past
experience. Usually, this time interval does not require expensive
computations for the robot, since it does not need to take any
decision on its way back to the starting position, and by replaying
past experience, the learning speed could be enhanced without
losing important experimental time.

The addressed research question is whether MF-RL or
MB-RL replay strategies could enhance spatial learning for
artificial agents and robots. We found it interesting to first
test our proposed algorithm in a simulated version of an
experimental task (Morris, 1981) and eventually investigate
if there were any differences between replaying reverse
sequences of actions, random transitions, or the most
surprising transitions, similarly to what has been done in
Section 2.

Like in the previous section, the presented simulated
experiment investigates the role of diverse replay strategies
relative to a changing reward condition. Moreover, the aim is
also to investigate whether replays are relevant when transitions
between the states of the task are stochastic. These simulations
thus bring us to more realistic robotic experiments, in stochastic
and dynamical environments.

3.1. Materials and Methods
To study the implications of offline learning in spatial navigation,
from rodents’ behavior to robotics, we have first investigated
the role of two MF- and one MB-RL replay techniques (as in
Section 2) in a circular maze, consistent with the original Morris
water maze task (Morris, 1981) in terms of environment/robot
size ratio. The learning performances of the analyzed replay
techniques are discussed in two main conditions:

• A deterministic version of the task, where an action a
performed in a state s will always lead the robot to the same
arrival state s′ with probability 1.
• A stochastic version of the task, where performing action a in

state s is associated with non-null probabilities of arriving in
more than one state.

2The code for these simulations is available at https://github.com/esther-

poniatowski/Massi2022.

TABLE 2 | Algorithm parameters are used to generate the results in this section.

No replay MF backward

replay

MF shuffled replay MB prioritized

sweeping

α 0.8 0.8 0.8 0.8

γ 0.9 0.9 0.9 0.9

β 15 15 15 15

ǫ - 0.001 0.001 0.001

N - 90 90 90

α is the learning rate, optimized as shown in Figure 4 and Equation 6, and γ is the

discount factor. β is the inverse temperature in the softmax function for decision-making

(Equation 2), and its values were found by optimizing both the convergence time and the

performance of the tested algorithms. N is the maximal length of the episodic memory

buffer. This value was selected to replay the entire real experience during the first trials of

the experiment and to replay experiences from several past trials later in the simulation.

Finally, ǫ is the convergence threshold as for Sections 2 and Cazé et al. (2018).

3.1.1. Learning Algorithm and Replay
As in the previous series of simulations (Section 2), the
simulated agent is learning using either classical MF-
RL Q-learning (Watkins, 1989) (Equation 1) or MB-RL
prioritized sweeping learning (Moore and Atkeson, 1993;
Peng and Williams, 1993). The values of their parameters
(learning rate α and the discount factor γ ) are shown
in Table 2.

The first implementation of offline learning techniques that
we tested is the MF backward replay. Similar to the double
T-maze experiment in Section 2, the offline learning phase
happens once the agent has reached the reward state, which
indicates the end of a trial. During a trial, the Q-values Q(s, a)
of the state-action couple (s, a) are updated with Equation 1 and
once the rewarding state has been reached, they are updated
again in reverse order, starting from the reward state. These
backward sequences can be up to N updates long if the agent
has gained enough past experience and stored it in its memory
buffer. The reverse sequences are then replayed until the sum
of variations of Q-values over the last replay repetition is
below a certain replay threshold ǫ (Table 2). Given the size
of the environment (36 states), these N long backward replay
sequences can also involve experiences that happened during
the previous trials of the same agent (i.e., during the previous
attempts to get to the reward). In this way, the robot can
transfer the acquired knowledge through different trials and learn
more efficiently.

The second replay strategy that has been tested isMF shuffled
replay; in this case, in the ITI, the internal values Q(s, a) are
randomly ordered and then updated by Equation 1. As for
the MF backward replay, the memory buffer, that is accessible
to initiate the reactivations, keeps in memory the latest N
transitions (Table 2). Also, in this case, the agent can benefit
from the experience acquired during the latest trials and learn
to extract more general and useful knowledge from its recent and
uncorrelated past actions (because of shuffling). The ITI replay
phase lasts until the convergence of the sum of the Q-values
under an ǫ value given in Table 2.

As for Section 2, we compared the learning performance of
the above-explained MF replay strategies to an MB prioritized
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sweeping algorithm (Moore and Atkeson, 1993; Peng and
Williams, 1993). The implementation of the latter is the same as
described in Section 2.1, and the convergence criterion is reached
when the prioritized replay buffer, which can be maximum N
transitions long, is empty.

3.1.2. The Experimental Set-Up and Implementation
The simulated experimental set-up intends to replicate a Morris
water maze task: the agent is introduced in a new circular
environment, and it has to learn how to reach a particular
location associated with a positive reward (Morris, 1981). In our
set-up, the agent is a Turtlebot3 Burger, simulated with the Robot
Operating System (ROS) middleware and the Gazebo simulation
environment (Quigley et al., 2009). The watermaze is represented
as an empty circular arena surrounded by high walls (Figure 2B).

The robot discovers and defines the different discretized
areas in the maze by autonomously navigating within the
environment. Despite the odometry and the laser sensor being
installed on the robotic device, the acquired space representation
is allocentric. This is an emergent property of the automatic
clustering process when applied to robot sensor data in a
task where the robot can only move in a horizontal plane, as
found in previous neurorobotics work (Caluwaerts et al., 2012).
The robot, in fact, explores by selecting between 8 directions
of motion that are defined in the global reference frame of
the environment, and its current position and orientation are
also elaborated in the maze reference frame. This allocentric
description of the robot movements and the states of the maze
is possible thanks to a re-mapping of the relative position of
the robotic agent and the discretized states to the reference
coordinate system of the map. This is possible thanks to the
360 Laser Distance Sensor of the robotic platform, combined
with the use of a classical SLAM technique. Note that such
an allocentric space representation is not only compatible with
neurophysiology (hippocampal place cell activity) but can also
be combined with egocentric representations to account for
a variety of experimentally observed animal behaviors during
navigation tasks (Khamassi and Humphries, 2012). The discrete
MDP, presented in Figure 2A, is obtained thanks to a Rao-
Blackwellized particle filter that builds gridmaps from laser range
data (Grisetti et al., 2007). The simulated implementation of this
Simultaneous Location andMapping Algorithm (SLAM) on ROS
Gazebo is called GMapping.

This state decomposition process makes the robot able to
immediately create new states if necessary, but in our work,
the aim was to create the finest and most robust possible
discretization of the maze to be then employed in all the
simulation experiments where we tested the different replay
strategies. As observed by Khamassi (2007), Chaudhuri et al.
(2019), and Benchenane et al. (2010), rats could re-explore the
whole maze every day before doing a learning task and that
could reflect their need to rapidly acquire and stabilize a state
representation before starting an extra learning process.

For these reasons, the robot performs a long autonomous
exploration phase to acquire its state representation before
starting the learning phase. During the first 48-min-long
exploration in Gazebo, the SLAM algorithm estimates the current

robot coordinates, and whenever it is more than 15 cm further
away from any existing state, it creates a new state, whose
reference position is the current position. This results in a
Voronoi partition of the space, composed here of 36 states
(Figure 2A). This 15 cm state radius was chosen to be similar to
the robot footprint of 13,8 x 17,8 x 19,2 (L x W x H, cm). The
action space A instead contains 8 homogeneously distributed
directions of motion, defined with respect to the world reference
frame (same as for Section 4, Figure 8A, top right).

Then, we ran another free exploration of the arena by the
simulated Turtlebot3 robot to automatically learn the transition
probabilities p(s′|s, a) that can be approximated from randomly
executing different actions a in different states s and observing the
arrival state s′. This second free exploration phase was chosen to
be 5,357-action long, the same duration as for the results that will
be presented in Section 4. Lesaint et al. (2014) found that when
an agent was progressively learning its transition function during
the task, the RL model was better at accounting for rat behavior
than a model with a prior given transition function.

In practice, the transition probabilities autonomously learned
by the robot during free exploration in Gazebo is stochastic: the
same action a performed in the same state s can lead to more
than one state with non-null probabilities. For instance, moving
north from state #31 alternatively leads to states #0,5,6,16, and
even sometimes to state #31 itself when the robot initiated
its movement from the bottom part of this state (Figure 2A).
Such stochasticity results from several properties: (1) because
the states autonomously decomposed by the algorithm are not
evenly distributed; (2) because the experiments are performed
in a simulated physical environment, which includes frictions
between the robot’s wheels and the floor, and where the robot
sometimes moves too close to the walls, thus triggering its
obstacle-avoidance process, hence resulting in a different effect
of the same action performed without obstacle-avoidance.

The actual level of uncertainty of the stochastic version of the
task is displayed in Figure 10A, where each state s has an entropy
Henv(s) computed as in Equation 5, where A is the set of all the
possible actions a from state s, s′ are all the possible arrival states
from the original state s, and p(s′|s, a) is the probability that the
agent arrives in state s′ after starting from state s and performing
action a:

Henv(s) = max
a∈A

∑

s′

−p(s′|s, a) log2 p(s
′

|s, a) (5)

Finally, in order to obtain a deterministic version of the same
task from these autonomously learned transition probabilities
p(s′|s, a), for each (state,action) couple (s, a), we search for
the state s′ with the highest probability of arrival (i.e., s′ =
argmax

x∈S
[p(x|s, a)]), and set p(s′|s, a) = 1 while setting p(s′′|s, a) =

0 for all other states s′′(s′′ 6= s′). The deterministic version
of the task consists in fact the simplification of the interaction
between the robot and the environment, meaning that the
trajectories that the robot can cover in the same environment
are reduced. To quantify the simplification of the resulting MDP,
we have performed an analysis of the trajectories which have
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A

B

FIGURE 2 | Description of the experimental set-up. (A) Map of the discrete states of the maze, identified by the robot during the exploration of Gazebo. The initial

state and the two rewarding states are also highlighted. (B) The ROS Gazebo simulated Turtlebot 3 in the center of the circular environment.

been taken by the four different algorithms, in the two different
environments. We compute the pairwise Fréchet distance of
these trajectories to the optimal one, found by following a greedy
optimal policy. Figure 3 shows this analysis during the first
half of the experiment when the reward is fixed in state #22.
The results from this analysis show that, for all the adopted
strategies, in the stochastic environment (Figure 3B), the sparsity
of the trajectories around the optimal path is generally higher
compared to the same deterministic case Figure 3A). To assess
the difference among these distance distributions, we did a
Kruskal-Wallis H-test (Kruskal and Wallis, 1952)), finding
them significantly different from each of their corresponding
distribution of in the other environment. The conversion of the
environment in a deterministic MDP is then intrinsically limiting
the level of exploration of the agents, resulting in two very
different scenarios. However, it is very important to investigate
this transition, given our intent to study the role of RL replay
strategies in robotic navigation, from a theoretical to a more
realistic robotic outline.

To replicate a non-stationary task similar to the one in the
original experiment (Morris, 1981), we changed the reward
location from state #22 to state #4 at trial 25, and we tested the
learning performances of the agent with four different replay
strategies (no replay, MF backward replay, MF shuffled replay,
andMB prioritized sweeping) and in two different environments:
a deterministic and a stochastic version of the task.

3.2. Results
To assess the real contribution of the tested replay strategies to
the learning process of the described spatial navigation task, an
unbiased learning rate αbest has to be found. Since αbest could be
different depending on the unpredictability of the MDP which
simulates the task (i.e., deterministic or stochastic), we simulated

100 robotic agents performing 50 trials to get to the rewarding
states, for a set of uniformly distributed α values between 0 and 1
(Figure 4). For each value of α, we looked at the average value
action(α) along the trials, with action(α) being the number of
actions needed by the robot to get to the rewarding states. These
values are computed for both the deterministic (Figure 4A), the
stochastic worlds, considering the entirety of the experiment,
and the minimization of the sum of these two values is used to
identify the final αbest (Figure 4B and Table 2) as described in the
equation below:

αbest = argmin
α∈A

(actiondeterministic(α)+ actionstochastic(α)) (6)

whereA is the set of tested α values.
Once identified the most appropriate value for the learning

rate α, the following four replay conditions have been tested in
the task:

• MF-RL no replay
• MF-RL backward replay
• MF-RL shuffled replay
• MB-RL prioritized sweeping

and the other relevant parameters for the experiment are
described in Table 2.

The main results are shown in Figure 5. The four different
RL algorithms (no replay, backward replay, shuffled replay, and
prioritized sweeping) are compared in terms of the number
of model iterations to get to the rewarding state (Napierian
logarithm of the first, median, and third percentiles over the
behavior of 100 robotic agents). The task changes at trial #25
when the reward switches from state #22 to state #4 (Figure 2).
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FIGURE 3 | Analysis to investigate the level of the sparsity of the explored trajectories by the agent. The Fréchet distance has been computed for the first half of the

simulation. ** Stands for p-value lower than 0.001 and * for p-value lower than 0.05. (A) The extension of the Fréchet distance to the optimal trajectory in the

deterministic case for all the algorithms. (B) The same extension of Fréchet distance in the stochastic environment.

When the task is deterministic (Figure 5A), all three
RL algorithms with replay learn a short path to the reward
significantly faster than the MF-RL no replay learner
(Figures 5A,B, Trials 1-5). The same situation occurs when
the reward position is switched at trial #25, assessing the role of
RL replays in improving the speed of learning after such a task
change (Figures 5A,B, Trials 26-30). When the environment
is stochastic, the situation is similar and, in particular, the
prioritized sweeping algorithm is learning significantly faster
than the other replay strategies (Figure 5B, Trials 26-30)
reflecting the importance of an MB strategy (with MB replay) to
faster adapt to dynamical tasks, when the transition model is not
deterministic. This suggests that moving toward more complex
robotic tasks, MB-RL models of replay may be preferred, since
the higher information processing regarding the model of
the environment, at the beginning of the task, can save real
experimental time, when the robot would need to adapt later in
the experiment.

Moreover, the logarithmic scale makes it easier to notice that
the no replay agent, even if it is slower at the beginning of the
task, can converge to paths that are significantly shorter than
the one covered by the other strategies, before the change in
reward location (Figures 5A,B, Trials 20-25). In the stochastic
environment, in particular, the MB-RL prioritized sweeping
algorithm reinforces the experience of a sub-optimal path,
resulting in performance significantly different from the ones
obtained from the other two replay strategies (Figure 5B, Trials

20–25). This shows that, even if the stochastic environment leads
the MF-RL replay strategy to explore more the maze, the MB-
RL prioritized sweeping algorithm, that can learn the transition
model from the beginning of the task, is not subjected to this
“push” toward exploration and keeps reinforcing the shortest
path previously found.

Instead, in the second convergence phase (Trials 45–50),
we highlight the fact that the no replay agent is not showing
any more statistically better performances than all the replay
algorithms (Figures 5A,B, Trials 45–50). In the deterministic
case, it is still reaching the shortest path to the reward, but
the prioritized sweeping agent is also being significantly better
than the MF-RL shuffled replay strategy (Figure 5A Trials 45-
50). On the other hand, in the stochastic case, the MB-RL
prioritized sweeping’s knowledge of the environment makes it
attain performances that are compatible with the ones from
the no replay strategy. In this particular case, we can notice
that the replay strategies perform differently, with the shuffled
replay which performs worse than the other two replay strategies.
This re-adaptation phase gives to the agents the opportunity
for more exploration, in particular to the replay agents, which
have strongly reinforced their previous experienced trajectory to
maximize the reward and propagate this knowledge throughout
the environment. As already happened in the second learning
phase (Figure 5B, Trials 26–30), the MB-RL prioritized sweeping
algorithm significantly exceeds the performance of the other
replay algorithms and converges to a shorter path to the reward.
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FIGURE 4 | Performed analysis to find out the best learning rate α for all the replay strategies and the two environments (deterministic and stochastic). For different

values of α, the figure shows the first, median, and third percentile of the number of actions to get to the reward, over 100 agents completing the simulated

experiment over 50 trials. The average minimum number of model iterations to get to the reward is found for α equal to 0.8, and it was used for all the presented

experiments (Table 2). (A) Performances of the tested algorithms across the α values in the deterministic version of the maze. (B) Final selection of α considering the

mean performances between the deterministic and the stochastic version of the maze.

This gives insights into the need for a more consolidated
knowledge of the environment (and so of the interaction of
the agent with it) for adaptive tasks. As a consequence, we can
predict that animals would need to retrieve knowledge about
their experienced and learned model of the world to adapt more
efficiently to dynamic circumstances.

Following the results shown in Figure 5, we have further
investigated the learning and replay dynamics of the proposed
strategies. In Figure 6, the level of propagation of the Q-
values (Equation 1) over the environment is shown for the
different tested RL algorithms and for both the deterministic
(Figure 6A) and the stochastic (Figure 6B) environments. The
shown learning dynamics are representative of the different
strategies since they show the behavior of the individual which is
the closest to the median performances of all the 100 individuals
for each strategy.

In both cases (Figures 6A,B, Trials 1,2 and 25), the presence
of replay provides a drastically larger propagation of the Q-
values, starting from the first reward state (22). This explains
the significantly faster learning performances observed in the

algorithms with replay compared to theMF-RL no replay method.
In both environments, the no replay method is slower to learn,
but it explores more in the first trials (Trial 1 and 2) and that
leads it to generally find a shorter path to the reward location in
the end (Trial 25) compared to the other learning strategies (as
shown in Figure 5A and, Trials 20–25).

By comparing the two types of environments, we can
understand that the level of stochasticity of the MDP leads to
a more important exploration of the environment for all the
strategies (Figure 6B, looking at the explored trajectories and
the replayed transitions). This results in a larger propagation
of the Q-values in the maze, in particular, in the prioritized
sweeping algorithm. As in the deterministic case, the MB-RL
prioritized sweeping is replaying a broader range of transitions
after the first trial compared to the other strategies. With
this MB-RL replay strategy, the replay activity is led by the
surprise of the experienced events. This results in longer
replay phases at specific surprising moments of the task, for
instance after the first discovery of the reward location (at
trial 1 in Figure 6) and after the discovery of the changed
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FIGURE 5 | Performances of the simulated robot, learning the non-stationary task, and a post-hoc Wilcoxon-Mann-Whitney pairwise comparison test on the relevant

trial intervals among the different curves. The post-hoc test has been performed following a Kruskal-Wallis H-test (Kruskal and Wallis, 1952) to reject the null

hypothesis that the population median of all of the algorithms’ average performances was equal. ** Stands for p-value lower than 0.001 and * for p-value lower than

0.05. (A) Deterministic environment. (B) Stochastic environment.

rewarding state (at trial 26 in Figure 6). This happens in
both environments also thanks to the implementation of the
algorithm which examine also the predecessor of the surprising

state (Section 3.1.1) and to the acquired knowledge of the
environment (in particular in Trials 26, when the reward
position changes).
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FIGURE 6 | Learning dynamics of the most representative individual: covered trajectory and replay at some critical trials. Also, for each state s, the maxQ(s, ai ),

among all the ai , with i from 1 to 8 (Figure 8A, top right), is represented. The initial state and the reward state are also represented in the figure. (A) Experiments in the

deterministic MDP. (B) Experiments in the stochastic MDP.

In both environments, as expected from the previously
analyzed learning performance in Figure 5, there is no effective
difference in terms of Q-value propagation between MF-RL
backward replay and MF-RL shuffled replay. The explored
trajectories and the replay are also very similar, resulting in
not significantly different performances (Figure 5). These results,
which simulate a spatial learning experiment for rodents (Morris,
1981) in a robotic framework, suggest some first advantageous
properties of using replay-inspired strategies in neurorobotics.
Our results imply that MF-RL replays could be sufficient to speed
up learning and adaptation to non-stationarity (Figure 5, Trials
1–5 and 26–30), but MB-RL replay strategies could improve

the adaptability of the system even more, with a higher level
of stochasticity which often characterizes real robotic scenarios
(Figure 5, Trials 26–30).

The proposed models and experiments contribute to a deeper
understanding of the advantages and limitations of the existing
RL models of replay in such robotics tasks. This experimental
comparison, examining either a deterministic or stochastic
version of the same environment (which implies a significantly
different level of explored trajectories in the maze, see Figure 3)
was useful to observe that RL replay gives an important
contribution to a robotic spatial learning task, even if the model
of the robot-environment interaction is stochastic. Nevertheless,
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a good compromise between the exploration capability of MF
replay strategies and the adaptability of MB ones has not yet been
found within these experiments. The next section will illustrate
the performances of RL replay strategies in spatial learning when
they are tested in combination in an MF-MB RL hybrid learning
architecture in a more complex environment with obstacles,
higher stochasticity, and non-stationarity.

4. COMBINING MB AND MF REPLAY IN A
CHANGING ENVIRONMENT

Hippocampal replay has not only been interpreted as a memory
consolidation process from past experience (Foster and Wilson,
2006; Girardeau et al., 2009), putatively MF, but also as a possible
MB planning process that enables the mental simulation of
hypothetical actions (Gupta et al., 2010; Ólafsdóttir et al., 2018;
Khamassi and Girard, 2020). Along these lines, it has been argued
that model sampling can not only be used for planning but
also to update action values (van Seijen and Sutton, 2015; Cazé
et al., 2018; Mattar and Daw, 2018). Moreover, some sequences
of reactivated hippocampal neurons cannot be accounted for
as a simple MF reactivation of past experience, and rather
seem to represent creative combinations of past and experienced
trajectories which can only be accounted for by a MB process
(Gupta et al., 2010).

This suggests that both MFMemR and MB SimR are required
to account for the diversity of hippocampal replays. Importantly,
state-of-the-art models of RL processes in the mammalian brain
assume a co-existence of MB and MF processes (Daw et al., 2005;
Dollé et al., 2010, 2018; Keramati et al., 2011; Khamassi and
Humphries, 2012; Pezzulo et al., 2013; Collins and Cockburn,
2020). Hence, neurorobotics constitutes a promising research
area to study replay in robot control architectures that combine
MB and MF RL processes.

With the experiments presented in the two previous sections,
the complementary properties and performances of MF replay
and MB replay have been analyzed. In our presented tasks, RL
agents with MB replays tended to be slower to converge to
an optimal solution but eventually, they reached a faster path
to the reward location. On the other hand, the same agent
with MF replay learned faster but converged to a suboptimal
solution. In this section, in addition to pushing robot simulations
toward more complex environments with stochasticity and non-
stationarity, we want to examine the benefits of combining SimR
and MemR in a robot control architecture which includes both
MB and MF RL3. We thus investigate the effects of including
replay in the algorithm proposed in Dromnelle et al. (2020b),
which coordinates a MB and a MF RL expert within the decision
layer of a robot control architecture. Interestingly, this algorithm
had been previously tested in a navigation environment that
includes open areas, corridors, dead-ends, a non-stationary task
with changes in reward location, and a stochastic transition
function between states of the task. In these conditions, previous
results showed that the combination of MB and MF RL enables

3The code for these simulations is available at https://github.com/elimas9/

combining_MB_MF_replay.

to (1) adapt faster to task changes thanks to the MB expert
and (2) avoid the high computational cost of planning when
the MF expert has been sufficiently trained by observation of
MB decisions (Dromnelle et al., 2020b). Nevertheless, replay
processes have not been included in this architecture yet, and the
present paper is the opportunity to do it.

The results that we are going to illustrate and discuss in
the following subsections present the combination of SimR
and MemR as a critical resource to optimize the trade-off
between the increase in performance and the reduction of
computational cost in a hybrid MB-MF RL architecture when
solving a more complex non-stationary navigation task than the
two previous sections.

4.1. Materials and Methods
The robot control architecture proposed in Dromnelle et al.
(2020b) and also successfully applied to a simulated human-robot
interaction task in Dromnelle et al. (2020a) takes inspiration
from the mammalian brain’s ability to coordinate multiple neural
learning systems. Such ability is indeed considered to be key to
making animals able to show flexible behavior in a variety of
situations, to adapt to changes in the environment, while at the
same time minimizing computational cost and physical energy
(Renaudo et al., 2014). The proposed architecture in Figure 7 is
composed of a decision layer where a MF expert and a MB expert
compete to determine the next action of the system. Both experts
pass through three different phases: learning, inference, and
decision. A meta-controller (MC) determines which proposed
decision will be executed, following an arbitration criterion that
we describe below.

4.1.1. Model-Based Expert
The model-based algorithm is implemented to learn a transition
model T and a reward model R of the specific task. Thanks to
these two learned models, it can predict the consequences of a
given action several steps ahead and can adapt faster to non-
stationary environments. Yet these computations are very costly
(i.e., 1,000 times higher than the computations of the MF expert
in Dromnelle et al., 2020b).

During the learning process, the transition model and the
reward model are updated at each timestep after observing
the departure state s of the robot, the action a that it has
performed, the arrival state s′, and the scalar reward r that
this transition may have yielded. The transition model is
updated by estimating T(s, a, s′), the probability of arriving
in s′ from (s, a), considering the past Ttw actions (Table 3).
This probability is computed as already shown in Equation 3.
Besides, the reward model R(s, a, s′) is updated by considering
the most recent reward rt associated to the transition (s, a, s′),
multiplied by the probability of the transition itself in
Equation 3.

The inference process estimates the action-value function via
the value iteration algorithm (Sutton and Barto, 1998), and it
operates as an offline planning phase that is continuously called
every decision step, just before a decision is made by the agent
about which action to perform. The maximal duration of this
planning process can be determined either by setting a finite
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FIGURE 7 | Robot control architecture. The agent-environment interaction can be described by (1) the state and the reward, as perceptual information (continuous

arrows) from the environment, and (2) by the action (dashed lines) that the agent operates in the environment. The perceptual information is used by the model-free,

the model-based expert, and the meta-controller (in purple). Based on this information and memory of their previous performances, the meta-controller estimates the

entropy and computational cost of the experts, consistently with the criterion in Equation 13, and thus choose the expert that will be allowed to infer the probability

distribution of the next agent’s actions. This distribution, and the times consumed to compute it (dashed arrows), are then sent to the meta-controller. Different from

Dromnelle et al. (2020b), both experts here have a ’replay’ (reactivation) budget (limited or until convergence) that will affect both their performance and computation

time and thus impact the meta-controller’s arbitration. Here, shuffled memory reactivations (MemR) are integrated with the Q-learning algorithm of the MF expert, while

simulation reactivations (SimR) constitute the offline MB inference iterations in the value iteration algorithm of the MB expert.

budget for the number of transitions over which the agent will
evaluate its decision or by employing a convergence criterion
based on the sum of the absolute action-value function estimation
errors. More precisely, the planning terminates at iteration c if

∑

s,a

∣∣δcs,a
∣∣ < ǫMB where (7)

δcs,a =
∑

s′

p(s′|s, a)[Rcs,a + γV(s′)c]− Q(s, a)c (8)

Here, Rcs,a is the reward function of performing action a from
state s at the offline reactivation c and V(s′) is the value function
of the arriving state s′ at reactivation c, from state s and action a.
γ is the discount factor (Table 3).

Finally, the decision process chooses the next action to
be performed by the robot by converting the action-value
function into a probability distribution using a softmax function
(see Equation 2), with an exploration/exploitation trade-off
parameter β given in Table 3.

4.1.2. Model-Free Expert
The model-free algorithm does not learn any transition or
reward model of the task, in contrast to the MB expert. Rather,
it locally updates the current action-value function Q(s, a) at
each timestep. This property of the MF expert makes it save
computational cost, compared to the MB expert, at the expense
of slow adaptability to task changes, given the expert’s lack of
topological knowledge of the environment.

The inference process simply consists of reading from the Q-
table the line corresponding to swhich is then used by the decision
process. The latter chooses the next action from the Q-values,
also converted to a probability distribution with a β trade-off
parameter in Table 3.

For the MF-RL expert, the learning process is defined as a
tabular Q-learning algorithm in which the action-value function
Q(s, a) is updated according to Equation 1. Following the online
learning phase, shuffled replay is performed, using the (s, a, s′, r)
tuples experienced by the agent in a given time-window of past
transitions Rtw (Table 3). As for the MB expert, these offline
updates stop when either the maximal predefined budget is
exhausted or when the Q-values have converged. Since the MF
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TABLE 3 | Parameters used to generate the results in this section.

Model-based Model-free Meta-controller

α - 0.6 -

γ 0.95 0.9 -

β 50 50 50

ǫ 0.01 0.1 -

RB - 100 -

Rtw - 100 -

Ttw 30 - -

They are taken from Dromnelle et al. (2020b) as a starting point for this work. α is the

learning rate, γ is the discount factor, and β is the exploration/exploitation trade-off

parameter. For the MF expert, the converge threshold ǫ and replay constant RB have

been introduced to design the convergence criterion, while ǫ for the MB expert is the

same as in Dromnelle et al. (2020b). Rtw is the number of the last (s, a, s′, r) tuples that the

MF expert can replay. Ttw is the number of the last (s, a, s′, r) tuples considered to built

the transition model T for the MB expert.

expert does not know the transition probabilities of the task, a
convergence test is computed for every offline learning iteration

c as in Equation 9, where actcs,a = τ · actc−1s,a , with act
c̃s,a
s,a = RB

during the first time c̃s,a when that specific transition is selected
for replay and with act0s,a = 0. act is an activation function
defined for each couple (s, a), and it is 0 if (s, a) has not been
replayed before or otherwise it decays from RB (Table 3) along
the replay iterations c with a time constant τ (Equation 11).

∑

s,a

δcs,aact
c
s,a < ǫMF where (9)

δcs,a = |Q(s, a)
c
− Q(s, a)c−1| (10)

The principle behind the design of this convergence criterion
is that the importance of each δs,a (Equation 10) starts as RB
and decreases over the offline learning iterations c, following the
decay constant τ (Equation 11). This strategy does not constrain
the number of needed replay iterations, because the agent would
still perform replays due to high

∑
s,a δcs,aact

c
s,a. Nevertheless, this

value will slowly decrease the need for more replay iterations
along with the offline learning phase. RB is a value representing
one of the possible replay budgets needed to obtain performances
that are comparable to the maximum amount of reward that the
expert can collect, thus not inhibiting the offline learning phase
when needed. Finally, the convergence threshold ǫMF is an order
of magnitude larger than ǫMB (Table 3 which is the same used
in Dromnelle et al., 2020b). The MF expert does not know the
probabilities contained in the transitions model in Equation 3
and for this reason, its convergence criterion is based on the
actual update of the action-value function Q(s, a). This means
that, in theMF case, the δcs,a are not multiplied by any probability,
derived from the world model, and thus their values will usually
be an order of magnitude larger than the δcs,a of the MB case,
multiplied instead by the probability of a given (s, a, s′, r) tuple.

τ = RB

√
ǫMF

RB
(11)

4.1.3. Meta-Controller
The meta-controller selects, which expert will take the control of
the next action, by following a specific criterion that is a trade-off
between the learning performances and the computational cost
of the inference process of the two agents and it is called Entropy
and Cost (EC) (Dromnelle et al., 2020b).

On the one hand, the quality of learning is computed by
Equation 12 where f (P(a|s,E, t) is a low-pass filtered action
probability distribution with a time constant τ = 0.67, previously
used as an indicator of the learning quality in humans (Viejo
et al., 2015).

Hexp(s,E, t) = −

|A|∑

a=0

f (P(a|s,E, t)) · log2 (f (P(a|s,E, t))) (12)

On the other hand, the cost of the process C(s,E, t) is the
computation time needed to perform the inference phase for the
expert E, at time t, and it is also filtered as the action probability
distribution above.

Eventually, the MC chooses which expert will take control of
the next decision by following the equation below (Dromnelle
et al., 2020b):

EX(s,E, t) = −(Hexp(s,E, t)+ κC(s,E, t)) (13)

EX(s,E, t) is the expertise value of the expert E, which is then
converted into a distribution of probabilities using a softmax
function. κ weights the impact of time in the criterion by
assigning greater importance to the computation time when the
entropy component Hexp(s,E, t) of the MF experts is low.

After applying Equation 13, the MC draws the winning expert
from the softmax of the distribution of their expertise EX(s,E, t)
(with a trade-off coefficient β shown in Table 3) and inhibits the
inference process of the expert that is not selected.

4.1.4. The Experimental Set-Up and Implementation
This new hybrid MB-MF RL architecture with replay is tested
in a dynamic navigation task where the robot has to learn how
to reach a unitary rewarding state. The task remains stationary
during the first 1,600 over 4,000 iterations and then the reward
is moved to another state (from state 18 to state 34, Figure 8).
In this experiment, an extra element of non-stationarity is
represented by the starting state of the robot being uniformly
selected with the same probability between state 0 and state
32 at the beginning of each trial (Figure 10). Different from
Dromnelle et al. (2020b), experiments where the reward is fixed
or where a new obstacle is introduced have not been performed
for this work.

First, the real Turtlebot autonomously navigates within the
environment using a SLAM Gmapping algorithm (Figure 8)
and creates a discrete map of the maze (38 Markovian states
are identified and shown in Figure 8A). This autonomous state
decomposition process is identical to the one used in the previous
experiment described in Section 3.1.2. The robot-environment
ratio is very similar to the one of the previous experiment in

Frontiers in Neurorobotics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 864380139

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Model-Based/Model-Free Replay

FIGURE 8 | Description of the experimental set-up. (A) Map of the discrete states of the maze. The eight-pointed star indicates the cardinal directions in which the

robot can move. These directions are the same used for the experiment in Section 3 (B) Photo of the real Turtlebot approaching the initial rewarding state 18,

highlighted in the figure. Adapted from Dromnelle et al. (2020b).

Section 3.1.2: the state radius is 35 cm, in this case, and the robot
size is 35,4 x 35,4 x 42 (L x W x H, cm).

Then, during a second free exploration phase, the robot learns
the transition model of the environment, that is, the probability
that the robot starts its move in one state s performs an action a
and arrives in another state s′. This second phase of the creation
of the transition model is also conducted as in Section 3, but with
the real robot in this case.

After these exploration phases, the subsequent experiments
involving a reward were performed in simulation to test the
impact of different parameters of the algorithm and study the
effect of replay on total performance and computation cost.
During these simulations, the agent experienced the MDP based
on the transition map that was empirically acquired with the real
robot (as was done in Dromnelle et al., 2020b).

Figure 10B shows the maximum level of uncertainty for each
of the 38 states of the environment. This uncertainty is computed
in the same way as for the other experiment in Equation 5, and
the transitions map is used to guide the robotic exploration in the
simulation environment.

The action space is also discrete and consists of 8 possible
cardinal directions equally distributed around the agent. Given
the discrete and probabilistic nature of the state and action
spaces, the transition model T(s, a, s′) (Equation 3) and
the reward model R(s, a) of the MB expert are probability
distributions.

4.2. Results
To evaluate the contribution of combining MB and MF replay in
terms of performance and computational cost, we tested several
algorithms. First, we are interested in simulating the two baseline
cases, pure MF and pure MB algorithms, and how they perform
with the respectiveMemR and SimR and limited budgets. Finally,
we want to test the combination of the two strategies by using
the criterion proposed in Dromnelle et al. (2020b), with either an
infinite or a limited reactivations budget. Here are the relevant
combinations of the same controller that we tested in this task:

• MF only agent, no replay
• MF only agent with MF replay (infinite replay budget)
• MF only agent with MF replay (budget: 200 replay iterations)
• MB only agent with MB replay (infinite inference budget)
• MB only agent with MB replay (budget: 200 inference

iterations)
• MB+MF agent with MB replay (infinite inference budget)
• MB+MF agent with MB budget (budget: 200 inference

iterations)
• MB+MF agent with MF replay (budget: 100 replay iterations)

and MB replay (budget: 100 inference iterations) (a fair
comparison with the previous cases because here the
reactivation buffer is split in a maximum of 100 iterations per
expert)

All the MB+MF agents use the EC coordination criterion
described in Section 4.1.3. This criterion was taken from
Dromnelle et al. (2020b) which showed that it allows for
advantageous coordination between MB and MF experts and
significantly reduces the computational cost of the inference
phase, without relevantly impacting the amount of gained
reward. Table 3 shows the values of the parameters that we used
for these experiments.

The speed of learning of all the above-listed agents was
impacted when the reward’s position changed at iteration #1600
(Figure 9A). It is interesting to notice that the MB - inference
budget 100 + MF - replay budget 100 agent, which exploited the
EC criterion with a limited budget for the two experts, shows
a faster increase in the cumulative reward compared to all the
other agents, from around actions #2500. As observed in the
previous experiment (Section 3), replay contributes to increasing
the speed of learning and by combining the action of both
MF and MB replay, it is possible to better account for both
adaptability and generalization, drastically leading to a steeper
accumulated reward over time slope of the proposed strategy,
without having the same growth on the computational cost
side (Figures 9A,B). Concerning the cumulative costs, Figure 9B
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FIGURE 9 | Overall performances of the different agents during their first 4,000 actions in the environment. The vertical black line highlights the trial when the reward

switch (1,600). (A) The dynamics of the reward’s accumulation. (B) The dynamics of the computational cost’s accumulation. (C) An overview of the algorithms’

position within a normalized reward × cost space. The central polygons represent the median of the performance over 50 simulated experiments. Cumulative rewards

and costs have been normalized considering that the MF medians of the cumulative rewards and costs correspond to 0 and that the MB medians of cumulative

rewards and cost correspond to 1.
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shows that it rapidly increases for the MB - inference budget
inf agent when the environment changed, and eventually, by
action #4000, its cumulative cost has doubled the ones of the
other agents.

Thus, considering the final overview of the performances
and computational costs in Figure 9C, deeper analyses and
comparisons of the tested algorithms can be presented. The
results are represented in terms of first, median, and third
percentiles over 50 experiments. The cumulative reward is
the amount of reward each agent has accumulated over the
entire experiment, which is composed of 4,000 iterations of the
learning, inference, and decision processes together (Section 4.1).
The cumulative inference cost represents the time (in seconds)
needed to perform the inference phase.

As expected, reward-wise, the best performing agent is the
pure MB, with an infinite inference budget (black triangle, on
the top-right, in Figure 9C). However, this agent is also the most
costly in terms of computation during the inference phase. This
issue can be partially fixed by reducing the MB replay budget
to 200 iterations (blue triangle, in Figure 9C). In this case, the
inference phase will be stopped either if the action values have
converged or if the number of inference iterations has reached
the maximal budget (in this case 200).

On the opposite side of the figure, the pure MF agent (pink
square, on the bottom-left, in Figure 9C) shows the minimum
cost of the entire set of experiments, but also the lowest
cumulative reward. Adding replay to the MF expert, with an
infinite replay budget (dark violet square in Figure 9C) or a 200-
iteration budget (light violet square in Figure 9C) doubles the
reward accumulation performance, with a limited increase in the
computational costs (compared to the MB costs), in particular
when adding the budget of 200 iterations.

From the results in Figure 9C, we can deduce that for both
the MF and the MB experts, most of the time, the number
of needed reactivations is in the same order of magnitude
as the proposed finite budget of 200 (since the cumulative
costs are comparable). As already shown in Dromnelle et al.
(2020b), with an MB expert with an infinite inference budget,
the coordination of MB and MF experts via the EC criterion
produces agents which are halfway between MB-only and MF-
only experts, regarding performances and costs (yellow diamond
in Figure 9C). Nevertheless, when limiting the MB inference
budget to 100 and adding the contribution of 100 replay
iterations for the MF expert (red diamond in Figure 9), the
cumulative reward increases, and the inference cost diminishes,
moving the performance of the agent closer to the optimal
point (star in Figure 9). Moreover, the arrows highlight the
progressions of the MF-only (pink), the MB-only (blue), and
the MB+MF (orange) agents. Looking in more detail, the
performance of the MF-only agents is improved by adding
a budget of 200 MF replays and on the other hand, the
performance of the MB-only agents is slightly decreased by
limiting the inference budget to 200 iterations, but the cumulative
computational cost is significantly decreased. Starting from the
performance obtained in Dromnelle et al. (2020b), in yellow
in the figure, we obtain similar performances but decrease the
computational cost when we limited the inference budget to 200

inference iterations for the MB expert, producing agents which
are halfway between MB-only and MF-only experts. After this
analysis, we have tested the combination of the two best strategies
tried so far: the MB expert with a limited inference budget and
the MF one with a limited replay budget and we have combined
them through the EC criterion (Equation 13). In this case, to
have the same total reactivations budget as the other tested
algorithm, we have shared the initial 200 reactivations budget to
100 SimR for theMB expert and 100MemR for theMF one.With
this combined replay effort, the overall performance reached an
optimal compromise between performance and cost since the
inference cost is substantially decreased while the cumulative
reward was significantly raised, compared to the results obtained
by Dromnelle et al. (2020b).

Given that the aim of each agent and its EC meta-
controller is composed of two objectives: (1) maximizing the
cumulative reward and (2) minimizing the cumulative inference
cost, we compute the pareto front (black dotted line in
Figure 9C), which represents the solutions that approximate
the set of all optimal trade-offs of the two given objectives.
As expected, the pure MB and MF experts are pareto optimal
solutions, very specialized in one of the two objectives, while
by reducing and splitting their budgets we can have agents
that interestingly converge closer to the OptimalPoint (star
in Figure 9C). To rank all the agents ag, the Chebyshev
distance (Cantrell, 2000) from their median performance to
the OptimalPoint is computed as shown in the following
equation:

Chebyschev distance (ag) = max
obj
| OptimalPointobj −median(agobj) |

(14)
where obj are the 2 normalized objectives of the solutions
space (cumulative inference costs and cumulative reward). The
computed Chebyshev distances are shown in Figure 9C, on the
side of each algorithm point, and show a clear picture concerning
the proposed solutions; the agent sharing the reactivations budget
between the MB and MF is the closest to the optimal point,
followed by the MB expert with limited SimR budget. MF with
MemR and MB + MF without MemR have very similar distances
to the optimal points, meaning that the contribution of the MB
expert is key to adapting to a dynamical environment, but the cost
of this computation can largely decrease just when it cooperates
with an MF agent with replay, that can learn faster also from the
Q-values update of the MB expert.

These results open new possibilities for the design of RL
control architectures in robotics.When dealing with probabilistic
environments, MF replay might focus mainly on rare and
not relevant transitions, leading to interesting exploration
and computational economy, but misguiding the memory
consolidation of relevant experience, when changes happen in
the task (as also seen in Section 3). When the transitions
model is stochastic, the combination of the computationally
competitive MF replay with the general knowledge of the
environment, acquired by MB replay, can bring artificial
agents and robots to better deal with a non-stationary
RL task.
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FIGURE 10 | Representation of the navigation environments for the previous experiments, Section 3 and Section 4, organized in, respectively, 36 and 38 discrete

Markovian states decomposed from the data acquired during the autonomous navigation of the robot, when no reward was present in the mazes. The initial and

reward states for the tasks are also highlighted in the figure. In these heatmaps, the lighter the color of the state, the greater the maximal entropy of that specific state,

according to Equation 5. The represented scale of entropy values (0.87–2.23 a.u.) has been selected to cover the whole range of the computed entropies. Moreover,

in both environments, the robots have navigated for 5357 actions. (A) In the case of the circular maze (Section 3), the navigation and the transition model are acquired

after simulated navigation on ROS Gazebo. (B) In the second experiment (Section 4), the navigation and the transition model are instead computed after the real robot

navigation, which generated a wider range of maximal entropy values, sometimes also very low due to the presence of walls that categorically constrained certain

states of the environment.

5. DISCUSSION

In this paper, our research question was whether RL strategies
using neuro-inspired replay methods, based on neuroscience
knowledge about the hippocampal replay, could improve the

speed and the adaptability of robotic agents engaged in spatial
navigation tasks. MF, MB, and no replay RL techniques were
compared in three simulated robotic experiments of increasing

complexity and realism. Our results showed that in all levels of
abstraction, the neurorobots learned the spatial task faster when

the replay was involved in the process, and more efficiently when
a MB method replay method was used. Conversely, we show
how a synergy between MB and MF replay methods can be more

effective in a more realistic and stochastic experimental setup.
The application of RL techniques to robotics requires coping

with some specificities of operating in the real world (Kober et al.,
2013). First, making actual movements in the real world takes
time, wares out the robotic platform, and also has the potential
of damaging it. Acquiring new data requires the robot to move,
and thus to incur those costs. Online learning processes therefore
have to be as much parsimonious on data use as possible. Second,
making decisions also takes time, especially when using limited
embedded computation systems, while operating in a dynamic
world may require the ability to react extremely rapidly to avoid
damage. Learning systems should thus be as computationally
cheap as possible. Finally, moving and computing both consume
the robot’s energy, which is always available in limited amounts.
This highlights the importance of developing robotic controllers
that can (1) maximize their learning capabilities over experience
and energy scarcity and (2) reduce the complexity of their

algorithm to meet the computational limitations of embedded
platforms.

All along with this paper, we have presented simulated
experiments (sometimes based on data like transition maps
first generated with a real robot) to investigate the possible
advantages of equipping neurorobots with offline learning
mechanisms inspired by hippocampal place cells’ reactivations.
These advantages are, first, to extract as much information
as possible from the already gathered data, and, by mixing
the multiple types of learning processes with the multiple
types of reactivations, to limit deliberation time, and to limit
the aforementioned costs intrinsic to robotics. Starting with
simpler and deterministic environments, as the double T-maze
experiment presented in Section 2, this research illustrates that
as the complexity of the state-action spaces increases, MB SimR
become more strategic for the learning capabilities of the agent
(Section 3). In Section 4, the combination of MF MemR and
MB SimR is presented as an interesting proposal to merge the
benefits of both techniques: prioritizing the MB expert when the
task requires more inference and generalization effectiveness to
be solved (for example facing non-stationarity), while on the
contrary giving priority to the MF expert when an effective
solution can be found relying only on recent experience.

When simulations increase in complexity, thus getting closer
to a real robotic experiment, the challenges regarding the internal
representation of the world (in particular the state-action space
and the reward) increase. As presented in Figure 10, where
the environments of the two last experiments (presented in
Sections 3, 4 respectively) are displayed in terms of maximum
entropy per state, it is visible that the transition probability
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matrix created by the navigation of the real robot (Figure 10B)
results in a representation of the environment which is less
homogeneous and more uncertain than the one learned with
the simulated robot (Figure 10A). Often, in mobile robotics,
localization may depend on a few sensory information, as in
the case of the mobile robots used in our experiments. Such
limited information is however fundamental for the acquisition
of a solid representation of the environment. For these reasons,
the entropy maps in Figure 10 reflect the nature of the two
mazes: the uncertainty is more homogeneous in the circular maze
(Figure 10A) since the environment is an open space which gives
the agent an even chance to end up visiting the neighboring
states. In contrast, the second environment (Figure 10B) is
longer in one dimension and presents inner walls that result
in a fuzzier level of uncertainty on the transitions model of
the environment.

Future works in this research direction would include the
comparison with the RL algorithms performing forward replays,
which are of crucial importance in standard rodents navigation
tasks, such as the multiple T-maze (Johnson and Redish,
2007). These forward-shifted spatial representations have been
demonstrated to happen largely at decision points to predict the
consequences of the next actions. Their effect has already been
successfully modeled in neurorobotics by Maffei et al. (2015),
where they implemented the extractions of relevant policies by
consulting memory. On the other hand, van Seijen and Sutton
(2015) argued that it is mathematically equivalent to update Q-
values in a MF way combined with replay and to update Q-values
in a MB way, given that the elements in the memory buffer, used
for replay, are the same than those used to build the model.
Moreover, RL-based replay strategies can also generate forward
replay events (Khamassi and Girard, 2020) and enable RL-based
models to still account for neurobiological data (Cazé et al., 2018;
Mattar and Daw, 2018).

In summary, this work presented new and crucial results
concerning the advantages and the limitations of different
RL-based replay techniques for robotics, gradually testing
them in more and more complex and realistic circumstances.
Additionally, this research paves the way for new studies on
the role of replays in neurorobotics, in particular, in spatial
navigation tasks where generalization effectiveness and time
efficiency are key.

Finally, the addition of RL techniques, inspired by
hippocampal replays, shows an improvement in the performance
of the presented navigation task, in particular, concerning the
exploitation of the past experience, knowledge propagation,
and as a consequence, the speed of learning. MB SimR
significantly contributed in the case of non-stationarity, but a
fruitful coordination with MF MemR became crucial in terms of
computational cost reduction. All these insights, found in robotic
experiments, implemented with different levels of abstraction,
can encourage new neuroscientific experimental protocols and
shed light on a better understanding of the phenomenon of
hippocampal replay.
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The constantly evolving human–machine interaction and advancement in

sociotechnical systems have made it essential to analyze vital human factors

such as mental workload, vigilance, fatigue, and stress by monitoring brain

states for optimum performance and human safety. Similarly, brain signals

have become paramount for rehabilitation and assistive purposes in fields

such as brain–computer interface (BCI) and closed-loop neuromodulation

for neurological disorders and motor disabilities. The complexity, non-

stationary nature, and low signal-to-noise ratio of brain signals pose significant

challenges for researchers to design robust and reliable BCI systems to

accurately detect meaningful changes in brain states outside the laboratory

environment. Di�erent neuroimaging modalities are used in hybrid settings

to enhance accuracy, increase control commands, and decrease the time

required for brain activity detection. Functional near-infrared spectroscopy

(fNIRS) and electroencephalography (EEG) measure the hemodynamic and

electrical activity of the brain with a good spatial and temporal resolution,

respectively. However, in hybrid settings, where both modalities enhance

the output performance of BCI, their data compatibility due to the huge

discrepancy between their sampling rate and the number of channels remains

a challenge for real-time BCI applications. Traditional methods, such as

downsampling and channel selection, result in important information loss

while making both modalities compatible. In this study, we present a novel

recurrence plot (RP)-based time-distributed convolutional neural network

and long short-term memory (CNN-LSTM) algorithm for the integrated

classification of fNIRS EEG for hybrid BCI applications. The acquired brain

signals are first projected into a non-linear dimension with RPs and fed into

the CNN to extract essential features without performing any downsampling.

Then, LSTM is used to learn the chronological features and time-dependence

relation to detect brain activity. The average accuracies achieved with

the proposed model were 78.44% for fNIRS, 86.24% for EEG, and 88.41%
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for hybrid EEG-fNIRS BCI. Moreover, the maximum accuracies achieved were

85.9, 88.1, and 92.4%, respectively. The results confirm the viability of the

RP-based deep-learning algorithm for successful BCI systems.

KEYWORDS

recurrence plots (RP), convolutional neural networks (CNN), timedistributional layers,

long-short term memory (LSTM), brain computer interface (BCI)

Introduction

Brain–computer interfaces (BCIs) have become an

indispensable element for individuals with disabilities. They

have become integral components of new medical applications

and have been increasingly applied in communication systems,

human–machine interfaces (Bai et al., 2020), and neurofeedback

applications (Mercado et al., 2021). BCI enables communication

between the human brain and the external computer/device

through generated brain commands, thereby avoiding the

peripheral nervous system (Antonietti et al., 2021). Moreover,

BCI is a neurofeedback method that can enhance the quality

of life of patients suffering from serious motor debilities due to

tetraplegia (Benaroch et al., 2021), stroke (Mane et al., 2020),

and other spinal cord injuries (Al-Taleb et al., 2019). BCI also

has applications in neurorehabilitation, communication and

control, motor therapy and recovery, brain monitoring, and

neuro-ergonomics (Asgher et al., 2020a,b; Mughal et al., 2021).

The BCI analyzes a biosignal measured from a healthy subject

to predict some intangible aspects of their cognitive state. This

process usually consists of three main steps: data acquisition

from the brain depending on the application and modality

chosen, interpretation or pre-processing data into commands,

and output to the computer to generate a command. Among

the three types of BCI, namely, reactive, active, and passive

BCI (pBCI), pBCI is an important research area that estimates

human emotions, cognition, intentions, and behavior based on

generated brain responses to different situations.

The demand for improved traditional BCI practices

has increased with advances in neuroimaging modalities.

Primary non-invasive neuroimaging modalities for BCI

include functional magnetic resonance imaging (fMRI),

electroencephalography (EEG), magnetoencephalography, and

functional near-infrared spectroscopy (fNIRS). Among them,

EEG and fNIRS are the foremost modalities in terms of cost and

manageability (Rahman et al., 2020; Rashid et al., 2020). EEG

measures brain activity by calculating the voltage fluctuations

from the action potentials of neurons, whereas fNIRS detects

brain activity related to hemodynamic response changes (Hong

and Zafar, 2018; Liu et al., 2021). Although invasive techniques

provide more accurate data than non-invasive techniques,

non-invasive modalities are more frequent and appreciated

in the research domain. Non-invasive recording techniques

for brain activity improve safety and reduce ethical concerns

(Burwell et al., 2017; Pham et al., 2018). Over time, various

non-invasive techniques have been used in studies. The most

commonly used are EEG, fNIRS, electrooculography, and fMRI

(Choi et al., 2017). The selection of a non-invasive modality

depends on many factors. Usually, the following parameters

are considered: cost, ease of use, and temporal and spatial

resolution, as needed by the application. Each modality offers

some advantages over the others, and there are always some

associated trade-offs; the pros of one modality compensate for

the cons of the other modality. Thus, hybrid approaches have

proven to be more efficient. Hybrid neuroimaging modalities

increase accuracy and offer a greater degree of reasonable

control (Hong and Khan, 2017; Khan and Hong, 2017; Hong

et al., 2018).

Researchers appreciate the use of low-cost neuroimaging

modalities (Hong et al., 2020). Modalities that offer convenience

for non-laboratory setups are also choices of interest. In this

regard, EEG and fNIRS are the most commonly used. Both

are portable and inexpensive compared to the alternatives.

Electrodes capture EEG signals due to variations in the current

generated by neurons due to postsynaptic activities (Sazgar and

Young, 2019). Several electrodes are placed on the subject’s

scalp for EEG data acquisition. Although EEG provides better

temporal resolution ranging up to ∼0.05 s, it provides a

spatial resolution of only ∼10mm (Puce and Hämäläinen,

2017; Fu et al., 2020). The contrasting comparison of the

temporal and spatial resolutions manifests trade-offs when

using the EEG modality. In contrast to EEG, fNIRS is an

optical imaging technique that measures light absorbance to

calculate concentration changes in oxy-hemoglobin and deoxy-

hemoglobin within the brain. Similar to EEG, fNIRS is cost-

effective and portable. However, unlike EEG, fNIRS provides

better spatial resolution. Moreover, fNIRS is less influenced by

electrical noise (Hasan et al., 2020; Ghafoor et al., 2022). As

evidenced by the comparison, fNIRS can compensate for the

trade-offs of EEG. Thus, the EEG and fNIRS hybrid method

serve as a breakthrough in neuroimaging (Ahn and Jun, 2017)

on theoretical grounds.

As fNIRS measures hemodynamic responses, there is

an innate delay in the measurement (Saeed et al., 2020).
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Various methods have been proposed to compensate for this

slow command generation. In this regard, a hybrid method

comprising EEG and fNIRS techniques can be used, which

proceeds by measuring the initial dip [i.e., at the onset of

neural firing, the oxygenated hemoglobin (HBO) level first

decreases] instead of the actual hemodynamic response (Hong

and Khan, 2017; Kamran et al., 2018). The other contrasting

difference between the two modalities is the rate at which

data are sampled. The EEG data acquisition rate is ∼10–

100 times faster than that of fNIRS. When the EEG and

fNIRS hybrid is used, it is common to downsample the

EEG data to make its processing compatible with that of

the fNIRS data (Khan and Hasan, 2020; Ortega et al., 2020).

Downsampling might discard some segments of valuable data.

As EEG signals are prone to electrical noise, fNIRS suffer from

physiological noise, instrumentation, and experimental errors.

The experimental errors may be spontaneous, unintentional

diversions from the intended protocol, such as motion artifacts

or changes in the light intensity in the ambiance. The motion

artifacts present in the data can be significantly reduced via

Wiener filtering-based methods (Jiang et al., 2019) or wavelet

analysis-based methods (Islam et al., 2021). Instrumentation

can also induce noise in the data, such as noise from the

hardware. However, these noise signals are high-frequency

components; thus, they can be eliminated using a low-pass

filter. Physiological noises can arise due to breathing activity

or heartbeats. Although these noises are unavoidable, many

methods have been reported to counter these noises; commonly

used techniques apply bandpass filters, parameter mapping,

and independent component analysis (Rejer and Cieszyński,

2019; Vourvopoulos et al., 2019;Wankhade and Chorage, 2021).

Denoising the data further removes data regions; thus, the

processed data are even smaller in magnitude than the raw

data. Therefore, the downsampling of the EEG data after pre-

processing to match the fNIRS data removes a considerable

amount of valuable information regarding brain activity.

Recurrence quantification analysis (RQA) of RP has become

popular in recent years for analyzing brain activity because brain

signals are both recurrent and dynamic. RP, in general terms,

is a non-linear evaluation method for recurrent and dynamic

signals. It is a visualization displaying the recurrent occurrences

of states x(n) of a time signal in phase space. RQA is an analysis

technique used to quantify the features of the constructed RP.

In the literature, RQA feature analysis has been used in EEG

signal detection of epilepsy and Alzheimer’s disease, coupling

and synchronization in EEG of epileptic discharge, and so on.

Cortical function during different sleep stages was also analyzed

using RP features. The RQA analysis showed that unique RPs

were extracted for different sleep stages (Parro and Valdo, 2018).

Several studies have also used artificial neural networks (ANNs)

(Torse et al., 2019) and support vector machines (SVMs)

(Houshyarifar and Amirani, 2017; Zhao et al., 2021) to classify

extracted RQA features. One study used a four-layer ANN for

different EEG channels to predict the onset of seizures using

RQA measures (Torse et al., 2019).

As machine learning (ML) has rapidly become a state-of-

the-art analysis tool, researchers have considered searching for

classification features (Park and Jung, 2021). The qualitative

aspects of these RPs can be used for classification. Moreover,

DNNs are highly efficient training classifiers, resulting in better

classification accuracy than ML classifiers (Sattar et al., 2021).

However, only a few studies that applied these algorithms in

BCI are available (Dehghani et al., 2021; Singh et al., 2021).

Only one study used a CNN for the binary classification

of epileptic seizures from EEG using RP as images (Gao

et al., 2020). The practical application of biological feedback

in BCI requires efficient and precise motor activity detection

and classification methods. These conventional quantification

and feature selection methods and simple ML classifiers

face several challenges when implementing real-time BCI.

Traditional feature engineering methods involve multiple

steps, such as feature extraction, feature selection, finding

suitable combinations for various features, and sometimes

dimensionality reduction from a comparatively small quantity

of data, thus leading to other problems such as overfitting and

bias (Asgher et al., 2020b). These inherent constraints hinder

adjustments by researchers. Therefore, the initial analysis steps,

namely, data mining and pre-processing, are time-consuming.

On the other hand, deep learning (DL) algorithms such

as CNNs can be employed in two ways for BCI applications:

altering or modifying the CNN algorithm architecture to

accommodate the one-dimensional time-series data obtained by

the modalities or transforming one-dimensional data into two-

dimensional (2D) data to be conveniently input to the CNN.

Deep neural networks (DNNs) and other traditional classifiers

have also been employed based on fNIRS and EEG signals to

recognize three different cognitive states (Huve et al., 2019;

Takahashi et al., 2021), electromyography signals classification

(Oh and Jo, 2021), control of wearable exoskeleton (Sun et al.,

2021), and other control applications (Kim et al., 2021; Li

et al., 2021; Yaqub et al., 2021). A similar approach has been

used for various other applications, such as controlling robots

(Huve et al., 2018), differentiating workloads by analyzing the

fNIRS signals, and using deep learning techniques. Shoeibi et al.

(2022) used an adaptive neuro-fuzzy interface to detect epileptic

seizures from EEG signals. The literature also demonstrates

the time-delay neural network for classification purposes.

Thyagachandran et al. (2020) used this approach to classify

EEG signals; however, the presented model was not sufficiently

deep to learn the hierarchical features of the EEG signal. The

research that resonated most with our present study is that of

Tanveer et al. (2019). The authors investigated deep learning-

based BCI to detect driver drowsiness. The output strength of

the selected channels was translated into color maps and fed

into the CNN classifier as an input. The output color maps

were obtained by linear mapping the values from the channel to
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the color intensity. Recent biosignal analysis techniques have a

higher inclination toward non-linear dynamics. One of the most

widely used methods is the recurrence plot (RP). The analysis

focuses on the repeatability of the time-series states and presents

the output in geometric structures, whose topology is analyzed

to estimate the characteristics of the dynamics (Nayak et al.,

2018; Acharya et al., 2019). In the literature, researchers have also

experimented with hybrid CNN-LSTM models for time-series

biological signal analysis to detect mental disorders. A study to

detect schizophrenia via EEG was carried out by Shoeibi et al.

(2021) using different ML and DL models, and a comparison

was made between applied algorithms based on their accuracy

percentage. Among all ML and DL algorithms, CNN-LSTM

proved the best architecture for diagnosing schizophrenia.

This study investigated the RP performance for EEG, fNIRS,

and hybrid EEG-fNIRS within a deep convolutional neural

network and a long short-term memory (CNN-LSTM) model

for neuroimaging brain data for BCI. The obtained RPs of

EEG and fNIRS were fed as images into the hybrid CNN-

LSTM network for classification. The initial hypothesis of this

study was that “The classification accuracy of Hybrid EEG-

fNIRS BCI will improve by incorporating all signal information

from both modalities using recurrence plots instead of using

traditional methods of downsampling EEG signals tomake them

compatible with fNIRS for hybrid BCI.” The main contributions

and novelty of our work are as follows:

(i) Implementing whole EEG and fNIRS signals, without any

information loss or downsampling, for Hybrid EEG-fNIRS

BCI using recurrence plots.

(ii) Implement the time-distributed CNN-LSTM model for

activity detection using EEG and fNIRS recurrence plots for

hybrid BCI.

Furthermore, to the best of the authors’ knowledge, time-

distributional (TD) layers were implemented in a network that

was not previously used in the BCI field.

The detailed methodology of this research, the dataset

used, RP formation from EEG and fNIRS datasets, and the

classification approach used for the four-class classification

of constructed RP are detailed in the following sections.

The related performance of RP in EEG-BCI, fNIRS-BCI, and

hybrid EEG-fNIRS-BCI is discussed, and the study’s conclusions

are provided.

Methodology

In this study, RP performance for EEG, fNIRS, and hybrid

EEG-fNIRS with the deep CNN-LSTM model was investigated

for neuroimaging brain data for BCI. RP transformed the time

series data into the phase space and provided an alternate

method to envisage the periodic nature of a time series

trajectory, that is, brain signal data in phase space. RPs of EEG

and fNIRS were constructed and used as images to feed the

hybrid time-distributed CNN-LSTM network for classification.

The detailed methodology is described in this section and

illustrated in Figure 1.

Dataset and experimental protocol

The research used an open-source meta-dataset. The data

were recorded at the Technische Universität Berlin (Shin et al.,

2018) and collected through three different paradigms from 26

healthy participants while focusing on cognitive tasks. Datasets

A, B, and C were chosen for the three different cognitive

tasks: n-back, discrimination response, and word generation,

respectively. On these grounds, the selected dataset was an

appropriate choice for research in the domain of hybrid BCI.

First, task A was performed, followed by tasks C and B. In

this study, only dataset A (n-back) was used. The entire n-back

dataset consisted of three sessions, and each session consisted

of three series: 0-back, 2-back, and 3-back tasks. The total

recording time for each series was 62 s. The initial 2 s were

dedicated to task illustration. The following 40 s were reserved

for the task performance (20 numbers displayed for 2 s each on

the screen), and the last 20 s were reserved for the rest period.

Thus, for every n-task, there were 180 trials. The experimental

protocol for the n-back dataset is shown in Figure 2.

Data acquisition

The EEG and fNIRS data were recorded simultaneously to

ensure that the data were synchronized, and a parallel port was

used to send the triggers. A BrainAmp EEG amplifier was used to

record the EEG data, and the sampling frequency was 1,000Hz.

A stretchable fabric cap was used to place the 30 active electrodes

to acquire data in frontal, motor cortex, parietal, and occipital

regions according to the internationally recognized 10–5 system

(Shin et al., 2018).

The fNIRS data were recorded at a sampling frequency of

10.4Hz via NIRScout (NIRx Medizintechnik GmbH, Berlin,

Germany). Sixteen electrodes, representing a combination

of sources with detectors, were positioned at the frontal

lobe, motor cortex, parietal lobe, and occipital lobe. The

optodes of the NIRS were fixed with EEG electrodes on the

same cap. The positioning of the electrodes and optodes is

illustrated in Figure 3 green circles: EEG electrodes, red circles:

NIRS optodes.

Data pre-processing and labeling

The EEG data were downsampled to 200Hz. A 6th-order

Butterworth bandpass filter with a passband frequency range
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FIGURE 1

Methodology of the study shows the construction of the hybrid EEG-fNIRS dataset using RPs and classification using time-distributed

CNN-LSTM.

FIGURE 2

Experiment paradigm of n-back tasks.

of 1–40Hz was used for filtering purposes. The acquired data

were first translated into oxy- and deoxy-hemoglobin intensity

variations to pre-process the fNIRS data. The conversions were

conducted using the modified Beer–Lambert law. The fNIRS

raw data were downsampled at 10Hz. As the fundamental

frequency of this dataset was very low, the downsampled data

were not fed into the Butterworth bandpass filter. Instead, the

data were low-pass filtered to avoid losing the fundamental

frequency component. The cutoff frequency of the filter was

chosen to be 0.2Hz. The data were acquired using MATLAB

R2013b software. Further processing was performed using

Python on Spyder in the Anaconda development environment.

After filtration, the dataset was labeled using the activity

time markers from the acquired continuous EEG and fNIRS

signals. Four classes, namely, 0-, 2-, and 3-back classes, and

one of the remaining states, were labeled concerning the

experimental protocol. After that, the labeled data were used for

RP construction.
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FIGURE 3

EEG and NIRS electrode positions according to the 10–5 system. Green dots represent EEG electrodes and red dots denote NIRS Optodes.

Recurrence plots

A recurrence plot (RP) is a contemporary technique

for analyzing non-linear data. This technique employs

the visualization of a square matrix whose elements

link to the dynamic state repetition. The ordered pair

of matrices corresponds to the specific timing of the

repetition. Recurrence analysis is a graphical technique

that aims to identify hidden recurring patterns (Ledesma-

Ramirez et al., 2020). To illustrate this idea, our desired

information is univariate time series data and that the data

under analysis are a subpart of the large n-dimensional

dataset. The topological rendering of the original n-

dimensional dataset can be obtained using a single

observable variable.

Thus, the embedded matrix, namely, xm, can be constructed

as follows:

[xmi = (xi, xi+d, xi+2d, ......., xi+(m−1)d)] (1)
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where xi is a scalar series, the dimension is represented by m,

and d is the delay. In case the condition

m ≥ 2n+ 1 (2)

is satisfied, the single output variable exhibits the potential

to recreate the entire system. Recreation heavily depends on

the sequence of the embedded matrix. The sequence can

be controlled by adequately choosing parameters m and d.

The asymmetric matrix of the Euclidean distances can also

be constructed by measuring the distance between pairs of

embedded vectors. These distances are translated into an

equivalent color, and each distance has a distinctive color. Thus,

an RP is a square assortment of pixels whose color depends on

the corresponding magnitude of values. The pixel coordinates

also carry useful information that is linearly related to the

location of the data in the original data matrix.

The use of ε is commonly employed in RPs. This ε is

referred to as the critical radius. Each value is compared with

the critical radius to check whether the pixel value is ≤ε; then,

the pixel is displayed as a darkened pixel. In other words, RP

is a visualization of a square recurrence matrix showing all the

instances of times at which a state of a non-linear system repeats;

the columns and axes of the recurrence matrix correspond to

specific time intervals. In technical terms, an RP shows every

time of a non-linear time signal from a dynamical system at

which its phase space trajectory spans approximately the same

area in the phase space. In graphical terms, this is a graph of

−→x (i) ≈ −→x (j) (3)

where i is on the horizontal axis, j is on the vertical axis,

and −→x is the phase space trajectory of the dynamical system.

Thus, a binary recurrence matrix is constructed using a specific

time window w = 5 s, where any two-time steps are separated

by the time interval ε = 0.1 and a step size of 10 in the

following manner:

R
(
i, j
)
=

{
1 if

∥∥−→x (i) − −→x (j)
∥∥

≤ ε

0 otherwise
(4)

where i and j are the horizontal and vertical time axes, i, j ǫ {t0,

t1. . . .t, . . . . tT}. The RP is a visualization of the recurrence matrix

with a black square of the lattice at coordinates (i, j) if R(i, j)= 1

and a white square if R(i, j)= 0.

Figure 4 shows the corresponding RPs constructed using the

fNIRS dataset for the 0-, 2-, and 3-back classes, and the rest state

for Subject 1.

After experimenting with different values for the parameters

of the RPs, ε = 0.1 and step size = 10 were adopted.

Figure 4 depicts the non-linear mapping of the acquired brain

signals to the new dimension through the RPs with the

selected parameters. Each subject’s RP data were split into

training and test datasets using 10-fold cross-validation before

performing classification to avoid overfitting and provide better

generalization. Moreover, the model performance was evaluated

based on the following performance metrics.

Accuracy

The accuracy of a classifier is the proportion of the total

number of correct predictions made by the classifier. If the

confusion matrix is given, accuracy is defined as:

Accuracy =

True Positives + True Negatives

Total Number of Samples

Precision

Precision or positive predictive value is the proportion of the

correctly predicted positive cases of all cases predicted positively

by a classifier. Given a confusion matrix, precision is defined as:

Precision =

True Positives

Total Number of Samples Predicted as Positive

Recall

Recall or sensitivity is the proportion of all actual positive

cases that were correctly predicted to be positive by a classifier.

Given a confusion matrix, recall is defined as:

Recall =

True Positives

Total Number of Actual Positive Samples

F1 score

The F1 score is the harmonic mean of precision and recall

values for a given classificationmodel. Given a confusionmatrix,

the F1 score is defined as:

Precision =

(
Precision−1

+ Recall−1

2

)
−1

Time distributed CNN-LSTM

A CNN is a multilayered neural network with architecture

to detect complex features in the data. Unlike traditional

multilayer perceptron architectures, CNN uses two operations

called “convolution” and “pooling” to reduce the image into

its essential features, which are used to understand and

classify it. CNNs are composed of basic building blocks, which
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FIGURE 4

RPs of fNIRS dataset. (A) 0-back, (B) 2-back, (C) 3-back, (D) rest.
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FIGURE 5

Inside a TD layer. RP input to two Conv2D layers, each with 16 filters, and ReLu as activation function, followed by a max pool and flatten layer.

FIGURE 6

Time-distributed CNN-LSTM network for classification of four-class mental workload using RPs of EEG and fNIRS dataset.

include the following: a convolutional layer with a filter or

kernel passed over an image; an activation layer that usually

has an activation function; a rectified linear unit (ReLU) to

introduce non-linearity that allows the network to train itself

through backpropagation; a pooling layer that downsamples

and reduces the size of the matrix and is focused on the most

prominent information in each feature of the image; and a

fully connected layer that outputs the different probabilities

associated with every label attached to the image. The label

with the highest probability is the classification decision. CNNs

are widely used in agriculture, self-driving vehicles, healthcare,

and surveillance. LSTM networks are recurrent neural networks

(RNNs) that use special and standard units. The special

units include the “memory cell,” which maintains information

in its memory for longer. LSTM has feedback connections,

unlike standard feed-forward neural networks; it can process

entire data sequences, including speech and video. LSTM is

widely used in speech recognition, handwriting recognition,

handwriting generation, music generation, language translation,

image captioning, and anomaly detection in intrusion detection

systems. A simple LSTM unit comprises a cell, input, output,

and forget gate. The cell remembers the information, whereas

the gates regulate the flow of information. LSTM networks

are modified forms of RNNs; they remember past data

in memory.

Over time, researchers have applied different architectures

and types of deep learning networks. Unlike images, text,

voice, and other widely used datasets, neuroimaging signals

are intrinsically different and have an important chronological

order. This chronological order dictates the flow of information

necessary to detect activities or actions. Examples of such

chronological order are the initial dip at the start of activity in
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FIGURE 7

Time-distributed CNN-LSTM network for classification of four-class mental workload using RPs of hybrid EEG-fNIRS dataset.

fNIRS signals and positive deflection in event-related potential

P300 signals in EEG. A novel CNN-LSTM network was

designed for this study. The network consists of one CNN

and one LSTM module combined with a dense layer. After

pre-processing, the data are fed into the CNN module; this

module consists of two convolutional layers, each with 16

filters and ReLU as the activation function, and one max-

pooling layer. CNNs are best known for their abilities of

feature extraction from 2D and 3D images. Considering the

data sequence used in the form of chronologically ordered

time windows, the relationship between two windows in a

given input should be detected. An LSTM layer enables the

network to use its memory and enhance its prediction. The

convoluted output from the CNN block is reshaped and

flattened before being fed into the LSTM layer. The layers

preceding the LSTM layers are wrapped inside a time-distributed

layer that allows their application to every temporal slice

of the input data. This time-distributed wrapper applies the

same instance of convolutional layers to each timestamp, such

that the same set of weights is used. After passing through

another dense layer, the LSTM layer terminates into the

output layer.

No researcher has exploited this chronological order using

time-distributed layers in deep learning models to the authors’

knowledge. The constructed RPs with a fixed window length

and an overlapping portion are fed into the network as images.

The different configurations of this proposed network for fNIRS,

EEG, and hybrid modalities are discussed in detail in the

Discussion section. The network architecture for the EEG and

fNIRS BCI and the details of the hyperparameters of the DL

model used, that is, several layers, dimensions, the number of

filters used in each layer, and the number of neurons, among

other details, are shown in Figure 7. Researchers have invested

tremendous efforts to determine the single best architecture

for deep learning neural networks, giving rise to the sub-

research field known as neural architecture search (NAS).

However, there is no definite answer regarding the optimal

neural architecture a priori. The number of neurons, number

of filters, number of layers, their combinations, dropout, and

max-pooling percentage remain the best hyperparameters. The

most viable approach seems to be using intuition and domain

knowledge to determine an initial guess for these parameters

and then iteratively shortlist them to obtain good values. In

this study, the NAS design process was as follows: a network

with a minimum number of parameters, a single convolutional

layer, a single LSTM layer, and one dense layer was created;

other hyperparameters were tuned; more layers were added, and

the network hyperparameters were tuned with a grid search

using the sklearn wrapper. We performed the above grid search

with sample data and chose the best-performing network for

EEG, fNIRS, and EEG+fNIRS datasets. However, this approach

resulted in input dimension mismatch because of the extra

number of features in the hybrid dataset compared to the single

modality datasets. We solved this problem by adding another

sequence module on top of the EEG network architecture and

wrapping it inside the TD layer, similar to the EEG network.

The later stages of a network-like dense layer, LSTM layer, and

the following layers remained the same; however, this strategy

solved the input dimensionality mismatch problem. Figures 5–7

show the network architecture of the study.
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TABLE 1 Performance evaluation metrices of fNIRS-BCI, EEG-BCI, and hybrid EEG-fNIRS-BCI.

S1 S2

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 81.32 81.00 80.66 80.53 81.12 82.20 80.35 80.72

EEG-BCI 85.11 85.41 84.87 84.66 86.34 86.44 86.01 86.00

Hybrid-BCI 89.63 90.09 89.26 89.45 86.78 87.19 86.13 85.90

S3 S4

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 77.25 77.80 76.56 76.59 71.74 72.15 70.70 70.52

EEG-BCI 86.53 87.01 86.15 86.11 85.60 85.87 84.76 84.47

Hybrid-BCI 88.33 88.41 88.09 87.91 86.66 86.88 86.61 86.58

S5 S6

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 70.57 71.26 69.75 69.82 76.74 78.70 75.79 76.08

EEG-BCI 89.31 89.33 89.05 89.01 85.55 85.22 84.92 84.76

Hybrid-BCI 91.79 92.01 91.36 91.37 89.81 89.57 89.39 89.28

S7 S8

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 score

fNIRS-BCI 77.74 78.53 77.28 76.90 82.44 82.82 82.15 82.10

EEG-BCI 89.00 89.44 88.79 88.84 82.14 82.53 81.89 81.98

Hybrid-BCI 92.28 92.57 92.27 92.28 83.32 83.15 82.76 82.35

S9 S10

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.40 80.98 79.83 79.84 80.14 80.38 79.52 79.59

EEG-BCI 88.76 89.25 88.61 88.51 84.06 84.70 84.00 84.01

Hybrid-BCI 90.62 90.61 90.28 90.38 87.40 87.90 87.45 87.25

S11 S12

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 score

fNIRS-BCI 79.16 79.67 78.34 78.27 77.18 76.65 76.37 75.85

EEG-BCI 83.93 84.09 83.50 83.53 89.75 89.89 89.56 89.59

Hybrid-BCI 86.71 86.88 86.54 86.51 91.35 91.45 91.18 91.13

S13 S14

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 75.15 75.39 74.22 74.16 77.00 79.12 75.66 76.23

EEG-BCI 89.63 89.92 89.10 88.51 87.84 87.57 87.36 87.26

Hybrid-BCI 91.91 92.11 91.73 91.68 89.93 89.90 89.72 89.57

(Continued)
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TABLE 1 Continued

S15 S16

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 74.64 75.56 73.45 73.47 78.66 79.20 77.80 77.71

EEG-BCI 86.35 87.24 85.97 85.51 82.33 82.61 81.48 81.59

Hybrid-BCI 87.34 87.46 86.76 86.64 83.50 83.59 83.33 82.99

S17 S18

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.27 80.60 79.60 79.75 81.76 82.07 81.48 81.48

EEG-BCI 87.77 87.88 87.78 87.60 89.68 89.92 89.62 89.49

Hybrid-BCI 92.16 92.83 91.69 91.81 93.58 93.67 93.66 93.56

S19 S20

Accuracy Precision Recall F-1 Score Accuracy Precision Recall f-1 Score

fNIRS-BCI 79.35 80.48 79.55 79.17 80.33 80.86 79.49 79.71

EEG-BCI 86.16 86.08 85.69 85.64 87.52 87.80 86.92 87.01

Hybrid-BCI 87.63 87.84 86.91 87.04 91.36 91.87 91.06 91.11

S21 S22

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 Score

fNIRS-BCI 74.21 75.29 72.88 73.14 82.37 83.42 81.60 81.96

EEG-BCI 87.89 88.04 87.64 87.46 79.91 80.76 78.72 78.81

Hybrid-BCI 89.75 89.95 89.44 89.33 81.65 82.46 81.05 81.11

S23 S24

Accuracy Precision Recall f-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 79.60 79.75 78.90 78.91 78.61 78.82 78.05 78.12

EEG-BCI 84.37 83.94 83.70 83.62 86.96 87.64 86.52 86.77

Hybrid-BCI 85.36 85.18 84.73 84.46 89.81 90.03 89.70 89.62

S25 S26

Accuracy Precision Recall F-1 score Accuracy Precision Recall F-1 score

fNIRS-BCI 80.27 80.77 79.40 79.47 81.45 81.72 80.56 80.58

EEG-BCI 84.43 85.21 83.81 83.86 85.17 85.15 84.18 84.30

Hybrid-BCI 84.92 85.63 84.57 84.52 85.17 85.62 84.48 84.16

Results

The time-distributed CNN-LSTM was used in this research

to classify four classes, namely, the three n-back activities

and the rest state from the fNIRS dataset acquired from

26 subjects. The data acquisition and initial pre-processing

included filtering EEG data using a zero-phase, low-pass, 6th-

order Butterworth filter. In the case of fNIRS, conversion of

light densities into changes in the concentrations of HbO

and HbR (hemodynamic response) was performed using the

modified Beer–Lambert law followed by a zero-phase, low-

pass, 6th-order Butterworth filter. After that, the data were
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FIGURE 8

Comparison of accuracies of fNIRS-based BCI, EEG-based BCI, and hybrid EEG-fNIRS-based BCI.

labeled along with outlier rejection and data normalization.

The window size selection in the hybrid EEG/fNIRS-based

BCI system is essential because hemodynamics response has

an inherent delay, which requires 0–10 s to complete after the

stimulus. In the literature, researchers have experimented with

different windows of varying lengths, such as 2–9, 2–7, and

3–7 s (Khan and Hong, 2017; Gaur et al., 2021). Generally,

the smaller the window size, the better the BCI performance

will be. After an initial investigation, a window size of 5 s

with 20% overlap was used for all BCIs. After that, the RPs

for segmented signals were constructed into a sequence of 5

s windows.

The deep learning algorithms were trained on a GTX

1060 graphic card with 3 GB VRAM and an Intel 6th

Gen Core i7-6700HQ processor with a 3.2-GHz frequency.

The Keras API was used with the TensorFlow backend

on Spyder in the Anaconda integrated development

environment. The average accuracy achieved for the four-

class classification was 78.4% for fNIRS, 86.44% for EEG,

and 88.41% for hybrid EEG-fNIRS BCI. The maximum

accuracies achieved were 82.4, 89.75, and 93.58%, respectively.

Table 1 summarizes the results of the 26 participants in

terms of their classification accuracies, precision, recall, and

F1 score for EEG-BCI, fNIRS-BCI, and Hybrid EEG-fNIRS

BCI. Figure 8 shows the average accuracies achieved by

these approaches.

Discussion

Researchers appreciate the use of low-cost neuroimaging

modalities. Modalities that offer convenience to non-laboratory

setups are also choices of interest. In this regard, EEG and

fNIRS are the most commonly used neuroimaging modalities.

Both are portable and inexpensive compared to fMRI. However,

EEG offers a spatial resolution of only ∼10mm (Puce and

Hämäläinen, 2017; Fu et al., 2020). The contrasting comparison

of the temporal and spatial resolutionsmanifests trade-offs when

using the EEG modality.

In contrast to EEG, fNIRS constructs functional

neuroimages of the brain by employing NIR light. As

fNIRS measures hemodynamic responses, there is an innate

delay in the measurement (Saeed et al., 2020). Various

methods have been proposed to compensate for this slow

command generation. In this regard, hybrid EEG-fNIRS can

be an option. However, the sampling frequencies of both

modalities are different, thus resulting in information loss.

Moreover, the most important objective of all studies conducted

on BCI is to enhance real-time classification accuracy and

reduce computational costs with multiple commands, thus

emphasizing the need to develop appropriate identification and

classification methods for real-time BCI (Phanikrishna et al.,

2021). Usually, multi-channel brain signal acquisitionmodalities

(i.e., EEG) analyze brain motor activity using different methods,
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TABLE 2 Comparison with other 4-class classification studies for BCI.

Authors
Brain acquisition modality Classes Subjects Methods Performance %

Ge et al. (2014) EEG 4 3 CSP and SVM 72.3, 73.2

Wang et al. (2014) EEG 4 9 ICA and SVM 71.8

Naeem et al. (2006) EEG 4 8 ICA and CSP Between 33 and 84

Our work fNIRS 4 26 Time distributed CNN-LSTM 78.44

Our work EEG 4 26 Time distributed CNN-LSTM 86.24

Our work Hybrid EEG-fNIRS 4 26 Time distributed CNN-LSTM 88.41

TABLE 3 Comparison with other 4-class hybrid classification studies for BCI with same dataset.

Authors
Brain acquisition modality Classes Subjects Methods Performance%

Saadati et al. (2020) EEG-fNIRS 4 26 DNN 87

Kwon et al. (2020) EEG-fNIRS 3 26 CSP 77.6

Our work Hybrid EEG-fNIRS 4 26 Time distributed CNN-LSTM 88.41

such as time and frequency feature analysis, event-related

synchronization-desynchronization analysis, common spatial

or temporal patterns, and spatial-spectral decomposition. Most

of these methods require high computational costs and are less

feasible to use for real-time BCI (Janapati et al., 2020). With

advances in brain signal acquisition modalities, the demands

for better signal processing and feature extraction have also

increased. Traditional methods of extracting useful information

from multi-channel brain signal acquisition modalities, such as

time and frequency analysis, event-related synchronization and

desynchronization analysis, and finding common spatial and

temporal patterns are computationally expensive and not very

feasible for real-time BCI applications. RQA of RP has become

popular in recent years for analyzing brain activity because

brain signals are both recurrent and dynamic. RQA is an

analysis technique used to quantify features of the constructed

RP. In the literature, RQA features have been used in EEG signal

detection of epilepsy and Alzheimer’s disease, coupling, and

synchronization in EEG of epileptic discharge. Cortical function

during different sleep stages was analyzed using RP features.

The RQA analysis showed that unique RPs were extracted for

different sleep stages (Parro and Valdo, 2018). Several studies

have also used SVM and ANNs to classify extracted RQA

features. One study used a four-layer ANN for different EEG

channels to predict the onset of seizures using RQA measures

(Torse et al., 2019).

Considering the complexity and computational cost

of DNNs, researchers have invested tremendous efforts to

determine the best architecture for deep learning neural

networks, giving rise to the sub-research field known as NAS.

However, there is no definite conclusion regarding the optimal

neural architecture a priori. The number of neurons, number

of filters, number of layers, their combinations, dropout, and

max-pooling percentage remain the best hyperparameters. The

most viable approach seems to be using intuition and domain

knowledge to determine an initial guess for these parameters

and then iteratively shortlist to obtain good values. In this

study, the NAS design process was as follows: a network with a

minimum number of parameters, a single convolutional layer,

a single LSTM layer, and one dense layer was created; other

hyperparameters were tuned; more layers were added, and the

network hyperparameters were tuned with a grid search using

the sklearn wrapper. We performed the above grid search with

sample data and chose the best-performing network for the

fNIRS dataset. Another advantage of using an RP with a DNN

is that it incorporates the entire signal and does not require

any extra steps, such as feature extraction and feature selection.

Moreover, it also minimizes extra pre-processing steps, such

as finding temporal or spatial features. The constructed RPs

of EEG and fNIRS were fed to the classification network

to detect the class of activity (0, 2-back, 3-back, or rest).

The classification network used was the time-distributed

CNN-LSTM. CNN is best known for feature extraction from

multidimensional images. In contrast, the RNN has an excellent

pattern recognition ability for input sequences. However,

CNN and RNN have stability issues due to either exploding or

vanishing gradients. An RNN variant was used to solve this issue

by using memory cells and LSTM. The highest classification

accuracy for four-class mental workload data for the BCI was

achieved using this network.

The study results indicate that using the hybrid modalities

for the classification of BCI results in higher accuracy than that
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of the single modality, along with an increase in the number of

commands and a reduction in detection time. Figure 8 shows

the comparison of the average accuracies achieved for all BCIs.

The results of our study have proven the initial hypothesis

that incorporating the entire EEG signal for hybrid EEG-

fNIRS BCI instead of downsampling will significantly increase

classification accuracy. The classification accuracies achieved

with our proposed methodology were the highest compared to

other classification methods for four-class EEG-based BCI and

other studies on the same dataset for four-class classification

for hybrid EEG-fNIRS. A comparison with relevant studies is

presented in Tables 2, 3, respectively. Moreover, implementing

the TD layers resulted in faster and easier computation. This

may prove to be a state-of-the-art algorithm in the present BCI

realm. The results show a promising future for the use of RPs

in real-time BCI. The proposed classification method can help

improve the accuracy of real-time BCI.

The limitations of our work are as follows: first, the

proposed methodology is computationally costly, and

substantial computational resources are required to train

and test deep learning models with large datasets because the

size of RP increases exponentially with the data size fed at

a time, as does the model complexity. Second, the proposed

algorithm has not yet been implemented for real-time BCI,

which leaves room for network improvement and optimization.

There are many potential applications for RPs in BCIs other

than EEG and fNIRS signals, as all biological signals constitute

dynamic time series data, and our study has validated the

successful implementation of RP for time-series data analysis.

In the future, further work can be conducted to explore and

experiment with new deep learning methods in computer vision

along with RPs, such as transformers and attention learning

for active channel selection for real-time BCI. Working in this

direction will help researchers mitigate nuances related to deep

learning algorithms in BCI.

Conclusion

This paper provides an inimitable time-distributed

convolutional neural network and long short-term memory

method for the integrated categorization of fNIRS-EEG for

hybrid BCI applications. The recorded brain signals are

first projected onto a non-linear dimension via RPs and

supplied into the CNN to extract critical characteristics

without downsampling. Then, LSTM is utilized to learn the

chronological properties and time-dependence relation to

identify brain activity. The average accuracy levels were 78.44%

for fNIRS, 86.24% for EEG, and 88.41% for hybrid EEG-fNIRS

BCI when using the suggested model. The findings support

the RP-based deep-learning algorithm’s suitability for effective

BCI applications.
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