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Editorial: Proceedings of the 2021
Indiana O’Brien Center Microscopy
Workshop
Kenneth W. Dunn1*, Andrew M. Hall 2 and Bruce A. Molitoris 1

1Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States, 2Institute of Anatomy, University of
Zurich, Zurich, Switzerland
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Editorial on the Research Topic

Proceedings of the 2021 Indiana O’Brien Center Microscopy Workshop

In June of 2021, the NIH P-30 funded Indiana O’Brien Center for Advanced Renal Microscopic
Analysis held its eighth advanced microscopy workshop. Presented every two years since the
Center’s inception in 2002, the goal of the workshop is to provide renal investigators with hands-
on training and encourage the application of exciting new techniques of microscopy and image
analysis to the study of kidney disease. Held in Indianapolis, Indiana in the spring the workshop is
designed around a model of 4–5 days of morning lectures followed by afternoon hands-on
laboratory exercises in confocal microscopy, multiphoton intravital microscopy and digital image
analysis. However, due to concerns about the safety of participants during the Covid-19
pandemic, the workshop was held online in 2021. While the switch precluded the hands-on
laboratory experiences that were an important part of previous workshops, the virtual format had
a silver lining as it facilitated participation by a broad range of microscopy experts from around
the world and allowed for more attendees. As a consequence, the workshop featured lectures and
demonstrations from four members of the Indiana O’Brien Center and from a stellar field of 20
leaders in the field of microscopy and was viewed by hundreds of attendees from around
the world.

The meeting proceedings are presented in this volume of Frontiers in Physiology. Each day had a
unique theme underscoring new developments, and their applications, in areas critical for the
advancement of microscopy. Specifically designed to catalyze interactions between the four speakers
of each day, the meeting offered a unique view of the evolving fields and input into utilization,
challenges and future advances expected. Each presenter was asked to contribute a mini-review to
this issue and ten agreed.

The first day of the workshop consisted of an overview of the imaging research and development
being conducted by the Indiana O’Brien Center. Bruce Molitoris described how intravital
multiphoton microscopy has advanced our understanding of kidney physiology and
pathophysiology. Tarek Ashkar presented new methods of 3D tissue cytometry that he has
developed to elucidate the mechanisms of kidney disease from animal tissues and human
biopsies. Michael Eadon introduced novel approaches to spatial transcriptomics, providing
unique insights into localized transcriptional responses to kidney injury. Ken Dunn described
methods of digital image analysis that the Indiana O’Brien Center has developed to support
quantitative studies of living animals and fixed human and animal tissues. Finally, Seth Winfree
presented a description and tutorial on the use of the Volumetric Tissue Exploration and Analysis
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software, a unique software tool that he developed that provides a
complete, interactive workflow solution to tissue cytometry.
Perspectives on all five of these topics are included in this volume.

The second day of the workshop was devoted to the new field
of large-scale tissue cytometry, an exciting new technique capable
of providing a census of every cell and its physiological state in
millimeter-scale tissue samples. Bernd Bodenmiller (Zurich,
Switzerland) and Lloyd Cantley (Yale, United States) presented
examples of how they have applied the technique of quantitative
imaging mass cytometry to the study of cancer and kidney
disease, respectively. Jeffrey Spraggins (Vanderbilt,
United States) described how he has combined imaging mass
spectrometry, multiplexed fluorescence microscopy and clinical
microscopy to characterize the human kidney for the NIH
Human Biomolecular Atlas Program. Michael Gerner
(Washington, United States) presented a powerful new
integrated approach that he has developed, combining
methods of tissue clearing, multiplexed fluorescence
microscopy and quantitative image analysis to characterize
immune cell microenvironments throughout entire organs.
Perspectives from Drs. Cantley and Spraggins are included in
this volume.

The third day of the workshop was focused on advances in
digital image analysis, a critical aspect of biological
microscopy that has become increasingly challenging as the
scale and complexity of biological microscopy has grown.
Carolina Wahlby (Uppsala, Sweden) and Peter Horvath
(Szeged, Hungary) presented an overview of the unique
challenges of image analysis in biological microscopy and
the solutions developed by their laboratories. David van Valen
(Caltech, United States) and Pinaki Sarder (Buffalo,
United States) described how they have developed and
applied methods of machine learning to improve the
quality and power of image analysis in research and
pathology. Contributions from Drs. Wahlby and Sarder are
included in this volume.

The last day of the workshop featured lectures on new
approaches to high-content transcriptomic imaging and
efficient large-scale imaging achieved by light-sheet
microscopy. Joakim Lundeberg (SciLifeLab, Stockholm,
Sweden), Jamie Marshall (Broad Inst., United States) and
Yodai Takei (Caltech, United States) described how new
techniques of spatial transcriptomics can be used to
characterize gene transcription in the spatial context of tissues
to better understand human disease. Jonathan Liu (Washington,
United States) and Denise Marciano (Texas Southwestern,
United States) demonstrated how new methods of light-sheet

microscopy facilitate the efficient collection of enormous tissue
volumes, extending the power of microscopy as a tool in research
and pathology. An overview of Dr. Marshall’s presentation is
included in this volume.

The unique confluence of imaging experts assembled at
the 2021 O’Brien Center Workshop provided participants
with an outstanding overview of clever new approaches
that have profoundly extended the scale and scope of
biological microscopy. They also pointed the way to how
we address the challenges to fully realize the potential of
this rich data, including software designed for interactive
exploration of massive, complex image volumes, methods
of automated image analysis supporting reproducible
quantitative analysis, and methods of data analysis
designed to help researchers explore and detect latent
patterns in highly-multiplexed spatial data. Over the
course of the workshop, a consistent theme
emerged–each of these solutions was developed through
a collaboration between experts from disparate,
complementary fields, including microscopy, molecular
biology, chemistry, computer science, signal processing,
machine learning and data analytics. In this sense, the
meeting demonstrated the potential of inter-disciplinary
science at its best. The editors hope readers find this
volume stimulating and look forward to seeing where
these collaborations lead in the future.
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Digital Image Analysis Tools
Developed by the Indiana O’Brien
Center
Kenneth W. Dunn*

Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States

The scale and complexity of images collected in biological microscopy have grown
enormously over the past 30 years. The development and commercialization of
multiphoton microscopy has promoted a renaissance of intravital microscopy, providing
a window into cell biology in vivo. New methods of optical sectioning and tissue
clearing now enable biologists to characterize entire organs at subcellular resolution.
New methods of multiplexed imaging support simultaneous localization of forty or
more probes at a time. Exploiting these exciting new techniques has increasingly
required biomedical researchers to master procedures of image analysis that were
once the specialized province of imaging experts. A primary goal of the Indiana O’Brien
Center has been to develop robust and accessible image analysis tools for biomedical
researchers. Here we describe biomedical image analysis software developed by the
Indiana O’Brien Center over the past 25 years.

Keywords: image analysis, volume rendering, segmentation, tissue cytometry, intravital microscopy, image
registration

INTRODUCTION

Over the past 200 years, biological microscopy has evolved from a largely descriptive technique,
documented with pictures and verbal descriptions, into a legitimately quantitative research
approach. This evolution was fueled by the widespread deployment of digital detectors in the
1980s and digital computers in the 1990s. As biological microscopy became “digital,” biologists
increasingly found themselves having to train themselves in methods of digital image analysis
in order to visualize and analyze their imaging studies. The past 20 years have witnessed an
extraordinary explosion in the development of methods of biological microscopy, extending its
scope, scale, complexity and resolution. Realizing the vast potential of these techniques has required
that biomedical researchers master increasingly challenging methods of image and data analysis,
methods that are generally well outside the realm of their training. Over the course of the Indiana
O’Brien Center’s existence [see review in Dunn et al. (2021)], we have encountered multiple
cases where necessary software tools either do not exist or require an inordinately high level of
expertise. A primary goal of the Indiana O’Brien Center has been to develop robust image analysis
tools that are accessible to biomedical researchers lacking specialized image analysis experience.
Examples of image analysis software developed by the Center are listed in Table 1, and described
in detail below.
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TABLE 1 | Software developed by the Indiana O’Brien Center.

Software Application References Availability

Voxx 3D volume rendering for personal computers Clendenon et al., 2002. Am J Physiol Cell Physiol.
282:C213-218

http://web.medicine.iupui.edu/ICBM/
software

IMART Motion correction for time-series and 3D
intravital microscopy images

Dunn et al., 2014. Intravital. 3:e28210 Lorenz et al., 2012. J
Microsc. 245:148-160

http://web.medicine.iupui.edu/ICBM/
software

STAFF Near-continuous measurement of
microvascular velocity in 2D networks

Clendenon et al., 2019b. Microvasc Res. 123:7-13 Clendenon
et al., 2019a. J Vis Exp

https://github.com/icbm-iupui/STAFF

VTEA Interactive exploration of large-scale images
and image data for quantitative tissue cytometry

Winfree et al., 2017b. J Am Soc Nephrol. 28:2108-2118
Winfree et al., 2017a.Transl Res. 189:1-12

https://github.com/icbm-iupui/
volumetric-tissue-exploration-analysis

DeepSynth Segmentation of nuclei in three-dimensional
microscopy images

Dunn et al., 2019. Sci Rep. 9:18295 Ho et al., 2017. IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW):834-842 Fu et al., 2017. IEEE 14th
International Symposium on Biomedical Imaging (ISBI
2017):704-708

ace@ecn.purdue.edu

INTERACTIVE VISUALIZATION OF
THREE-DIMENSIONAL IMAGE
VOLUMES – VOXX SOFTWARE

The optical sectioning provided by confocal, and later
multiphoton and lightsheet microscopy opened the door
to three-dimensional (3D) microscopy. However, when the
Indiana O’Brien Center collected its first multiphoton excitation
fluorescence image volumes in 2001 visualizing these volumes
was challenging. Commonly available software provided
static anaglyphs, or sequences of projections, but interactive
visualization was limited to scrolling through sequential
planes. “Real-time volume rendering” was then an expensive
option, requiring costly workstations and surprisingly costly
software. However, the rapid growth of video gaming profoundly
changed the landscape of computer technology development,
moving volume-rendering from a niche scientific market to
an enormous consumer market. Jeff Clendenon, a computer
engineer in the Indiana O’Brien Center recognized that the
graphics capabilities that were once found only on expensive
workstations had been reproduced in affordable graphics
processors found in personal computers. He proceeded to
develop the ground-breaking Voxx scientific volume rendering
software, which put real-time volume rendering into the hands
of nearly anyone with a personal computer (Clendenon et al.,
2002). Voxx (Figure 1A) provides 3D renderings of an image
volume (maximum projection or alpha-blending), that update
in real-time as the user moves the volume around using a
mouse, essentially reproducing the experience of rotating an
actual 3D object in space. The ability to interactively manipulate
the volume is critical to fully exploring a complex image
volume. Voxx also supports the ability to export individual
images, or to save a volume rendering sequence as a video
for presentations. Over the years since Voxx was released,
a variety of volume visualization tools have been developed,
both free (e.g., ImageJ) and commercial (e.g., Imaris and
Amira). However, because of its unique flexibility and capability,
Voxx remains a compelling choice, particularly among free
software solutions. Voxx continues to be a mainstay tool of
the Indiana O’Brien Center and, as of the time of writing,

has been cited in over 100 papers and downloaded more than
6000 times1.

CORRECTING MOTION ARTIFACTS IN
INTRAVITAL MICROSCOPY – IMAGE
MOTION ARTIFACT REDUCTION TOOL
SOFTWARE

Intravital microscopy has been a core technology of the Indiana
O’Brien Center since its inception, and a long-standing goal of the
Center has been to promote and facilitate intravital microscopy as
a powerful tool for understanding the function of the kidney in
health and disease. In our first forays into intravital microscopy
we immediately discovered that tissue motion, derived primarily
from respiration, represented a significant challenge to high
resolution in vivo imaging. Subsequent studies of liver, pancreas,
lymph nodes, and lung demonstrated that tissue motion was a
general problem for intravital microscopy of visceral organs. In
contrast to the brain, which can be effectively immobilized using
stereotaxic devices attached to the skull, visceral organs move
relatively freely in the living animal so that imaging at sub-cellular
resolution depends upon methods immobilizing tissue to micron
precision. We have since developed robust and reproducible
methods for mounting the kidney and other internal organs of
rat and mice on the stage of an inverted microscope stage in a
way that immobilizes the organ without compromising function
(Dunn et al., 2018). Even so, there are occasions when tissue
motion cannot be controlled, resulting in studies that cannot be
quantified or occasionally, even interpreted.

The problem of tissue motion can be addressed at capture, by
gating image collection to avoid respiratory motion [see review
in Soulet et al. (2020)], an approach that can be augmented
for three-dimensional images, by digital reconstruction
(Vladymyrov et al., 2020). For time series studies corrupted
by relatively few distorted images, the problem of motion
artifacts can be addressed by simply discarding distorted images,
or portions of images (Soulet et al., 2013). To address the problem

1http://web.medicine.iupui.edu/ICBM/software
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FIGURE 1 | Examples of image processing software developed by the Indiana O’Brien Center. (A) Screenshot of Voxx volume visualization software showing the
rendered volume, and interactive windows for selecting rendering method, adjusting view and channel palette settings, selecting between multiple volumes, limiting
the volume to be displayed, and setting parameters for video outputs. (B) Example of IMART image registration. Left – first of a series of images collected over time
from the kidney of a living rat. Vertical line indicates region used to generate YT images (two-dimensional images that show the image of a single line, oriented
vertically over time, and oriented horizontally). Right – YT images from the original time series, after rigid registration and after rigid and non-rigid registration. (C)
Example of STAFF microvascular velocity measurements. Top – Series of images collected at the rate of 97.5 frames per second from the liver of a living rat following
injection of a fluorescent dextran. Bottom – map of velocities measured over time in which time is presented as a third dimension. (D) Comparison of nuclear
segmentation results obtained from a 3D volume of mouse intestine (left), using DeepSynth (middle) or CellProfiler (right). Images shown in panels (B–D) are modified
from previous publications (Dunn et al., 2014, 2019; Clendenon et al., 2019b) and used with permission.

of pervasive image distortion in time series and 3D intravital
microscopy, the students from the laboratory of Edward Delp,
a Purdue University investigator of the Digital Image Analysis

Core of the Indiana O’Brien Center developed novel software
to retrospectively correct intravital microcopy images that were
compromised by motion artifacts. Based upon an algorithm that
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seeks to minimize the differences between images, the Image
Motion Artifact Reduction Tool (IMART) software can be used
to correct motion artifacts in sequences of images collected over
time or in three dimensions (Lorenz et al., 2012; Dunn et al.,
2014). Unlike other image registration solutions, IMART can
be used to correct for both linear (rigid) translations occurring
between sequential frames as well as non-linear (warping)
distortions occurring within each frame, distortions that are
unique to intravital microscopy (Figure 1B). IMART software,
which has been downloaded by more than 100 laboratories, has
been used to remove motion artifacts from intravital microscopy
images collected from the rodent lung and kidney (Presson et al.,
2011; Hato et al., 2017), enabling quantitative analysis that would
have otherwise been impossible.

CONTINUOUS MEASUREMENT OF
MICROVASCULAR FLOW ACROSS
ENTIRE OPTICAL SECTIONS – STAFF
SOFTWARE

Historically, one of the most common applications of intravital
microscopy has been the measurement of microvascular flow.
The procedure typically involves measuring the displacement
of cells or particles in a series of images collected over time
from a capillary segment. Cells can be identified either by
fluorescent labeling or as shadows in the lumen of the capillary
labeled with a fluorescent fluid probe. The velocity of the
cells or particles can then be measured either by manually
tracking individual cells or by measuring angles in time-distance
kymographs. In either case, the process is laborious enough
that velocities are typically measured for only a few vascular
segments and only for a very brief interval of time. While accurate
measurements can be generated in this way, they are susceptible
to the spatial and temporal variability that is characteristic of
microvascular flow.

To address this problem, the Indiana O’Brien Center
worked Sherry Clendenon of the Indiana Biocomplexity
Institute to develop an approach for continuous measurement
of microvascular flow across entire microscope fields.
Using time series images collected by high-speed intravital
microscopy, STAFF (Spatial Temporal Analysis of Fieldwise
Flow) automatically generates kymographs for each vascular
segment in the field, which are then used to generate a
complete map of microvascular velocity in each segment
across the entire field (Clendenon et al., 2019b; Figure 1C).
This approach gives STAFF the unique ability to measure
microvascular velocities across entire fields at a temporal
resolution on the scale of seconds. Analyses of images collected
from the livers of mice demonstrated surprising variability
in microvascular flow, with striking differences in flow rates
between adjacent sinusoids, and numerous occasions when
flow would suddenly stop and later restart. To encourage wide-
spread use, STAFF was developed as a freely available plugin
to ImageJ and its use is thoroughly described in a JOVE video
(Clendenon et al., 2019a).

IMAGE AND DATA EXPLORATION FOR
LARGE SCALE TISSUE CYTOMETRY –
VOLUMETRIC TOOL FOR EXPLORATION
AND ANALYSIS SOFTWARE

The development of automated microscope systems has enabled
researchers to image the distribution of multiple probes at
subcellular resolution in centimeter-scale tissue samples. These
large and complex image volumes have spurred the development
of “tissue cytometry,” an image analysis technique capable
of providing complete characterizations of the distribution,
interactions and physiology of every cell in an organ (Gerner
et al., 2012; Coutu et al., 2017; Halse et al., 2018). However, tissue
cytometry represents a relatively new domain of image analysis so
that quantitative analysis has largely been accomplished using a
combination of custom and/or expensive image analysis software.

To address the need for an accessible solution to tissue
cytometry, Seth Winfree, a member of the Indiana O’Brien
Center developed VTEA (Volumetric Tool for Exploration and
Analysis) (Winfree et al., 2017a,b), a unique software tool that
provides a complete integrated workflow supporting every step
in tissue cytometry, from segmentation, through classification
and quantitation to data analysis via a simple, interactive user
interface. A fundamental strength of VTEA is that, by integrating
image and data analysis into a single software platform, VTEA
expedites and encourages the process of discovery, an exciting
aspect of large-scale tissue cytometry. Whereas most imaging
studies are predicated on tests of hypotheses, tissue cytometry
is typically conducted on images whose size and complexity is
such that they contain enormous amounts of additional, latent
information that may be apparent only upon exploration. VTEA
provides a seamless pipeline between image and data analysis
so that the user can, for example, quickly identify specific
cell populations in the data space, using either supervised or
unsupervised strategies, and visualize their distributions and
relations to other cells in the image space. Conversely, the user
can also identify interesting regions or cell populations in an
image and explore the nature of the cells in these regions in the
data space, using either scatterplots or tSNE plots.

VTEA has become a critical tool in the quantitative analysis
of tissues by members of the Indiana O’Brien Center and
beyond, unlocking the promise of tissue cytometry as tool
for biomedical research and discovery. There are several
powerful software tools currently available to support tissue
cytometry, for example, the Cytomapper and Histocat software
developed by the Bodenmiller laboratory (Schapiro et al.,
2017; Eling et al., 2020), the Xit software developed by
the Schroeder lab (Coutu et al., 2018) and the CytoMAP
software developed by the Gerner lab (Stoltzfus et al., 2020).
However, none incorporate the entire workflow of image
processing, quantitation, visualization, and data analysis into
a single continuous bidirectional platform that so effectively
encourages exploration and analysis refinement. VTEA-based
tissue cytometry has made critical contributions to studies of
the processes underlying kidney stone formation conducted as
part of a NIH-funded program project (Makki et al., 2020;
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Winfree et al., 2020) and represents a cornerstone technology
of the Indiana University contributions to the Kidney Precision
Medicine Project (Winfree et al., 2017a, 2018; El-Achkar et al.,
2021; Ferkowicz et al., 2021). Developed as a plug-in to ImageJ,
VTEA is freely available online.

ONLINE IMAGE VISUALIZATION AND
ANALYSIS – DISTRIBUTED AND
NETWORKED ANALYSIS OF
VOLUMETRIC IMAGE DATA HIGH
PERFORMANCE IMAGE ANALYSIS
SYSTEM

Capable of defining the distribution of multiple molecular
species at subcellular resolution over regions spanning the
full extent of the cortex and medulla, large-scale microscopy
image volumes are enormously rich in potential information.
However, extracting this information is challenging, not only
because of the unique challenges of 3D image analysis, but also
because the size and complexity of these image volumes are
incompatible with resources available to most researchers. Large-
scale image data places an enormous burden on computer and
network infrastructure. A four- channel image volume, collected
at subcellular resolution to a depth of 100 microns from a
5 × 6 mm region requires nearly 200 gigabytes of digital storage
space. A complete study, which might involve comparison of
multiple conditions, each with a reasonable number of replicates,
could thus easily involve tens of terabytes of data. Managing
data of this magnitude requires extensive and sophisticated
computer hardware and network infrastructure beyond that
available at most institutions. And the challenges of visualizing
and quantifying 3D images, discussed previously, become much
larger in image volumes of this scale.

To encourage the application of large-scale tissue cytometry
by a broader range of investigators, the Indiana O’Brien
Center has a developed an approach to large-scale microscopy
that both removes most of these challenges. The O’Brien
Center 3D Tissue Imaging Core provides a service whereby
samples sent to the Center are imaged using one of the
confocal or multiphoton microscopes of the Indiana Center
for Biological Microscopy, and the resulting data archived at
Indiana University, thus eliminating an investigator’s need for
extensive storage and network capabilities. The resulting images
are also uploaded to a powerful online server system, the
DINAVID (Distributed and Networked Analysis of Volumetric
Image Data) high performance image analysis system. Hosted
by Indiana University and developed by the laboratories of
Edward Delp at Purdue and Paul Salama at IUPUI, the DINAVID
system is designed to provide remote users throughout the
world with an intuitive interface to their image data, supporting
interactive visualization, quantitative analysis, and exploration.
The DINAVID system is continuously updated with new tools
as they are developed by the O’Brien Center Digital Image
Analysis Core, including novel methods of 3D segmentation, as
described below.

NUCLEAR SEGMENTATION USING A
CONVOLUTIONAL NEURAL NETWORK
TRAINED IN SYNTHETIC DATA –
DEEPSYNTH SEGMENTATION
SOFTWARE

Tissue cytometry is formally similar to flow cytometry, except
that whereas in flow cytometry the sample is passed through
a detector, in tissue cytometry, the detector is passed over the
sample. However, unlike flow cytometry, where individual cells
are physically separated from one another for quantification,
tissue cytometry is complicated by the need for image analysis
techniques to distinguish individual cells that are packed into
a tissue. The process of distinguishing individual cells, cell
“segmentation” is the critical first step in tissue cytometry. In
the absence of membrane markers to delineate cell boundaries,
individual cells are typically distinguished by their nuclei. Cells
are then classified into specific cell types based upon the presence
of specific markers in the regions surrounding each nucleus.

Numerous approaches have been developed to segment nuclei
in two-dimensional images, supporting automated analysis of
thin tissue sections and cells grown in culture. Historically, these
approaches have been based upon traditional, morphological
image processing operations but increasingly, investigators
are demonstrating that deep-learning techniques frequently
provide results that are more accurate (Caicedo et al., 2019a,b).
Moreover, unlike morphological techniques that typically need
to be tuned to the specific characteristics of each image,
deep-learning techniques generally provide results that are
robust across different images. However, that robustness is
typically obtained only when the network is provided with
a large amount high-quality “training” data – a library of
images that have been manually annotated that are used by
the network to “learn” the qualities of nuclei. As manual
annotation is a laborious process, training is typically the rate-
limiting step in the application of deep-learning techniques
to segmentation. The barrier of manual annotation has
been addressed in various ways, including side-stepping the
annotation process and training networks using publicly available
annotated datasets (Caicedo et al., 2019a; Stringer et al.,
2021), using crowd-sourcing to annotate images (Moen et al.,
2019), or using transfer learning, a process in which a
network trained on a large amount of data is refined using
a much smaller dataset (Zaki et al., 2020). Interested readers
are directed to a recently published review of open-source,
deep-learning software for segmentation of biological images
(Lucas et al., 2021).

Segmentation of nuclei in three-dimensional tissues is
significantly more challenging, in part because of the relatively
poor axial resolution of optical microscopy. Accordingly,
techniques for segmentation of nuclei in three-dimensional
tissues are much less developed, seriously limiting biologists’
ability to quantitatively analyze three-dimensional image
volumes. As with two-dimensional segmentation, deep-
learning represents an exciting approach to segmentation
of three-dimensional images. However, the already tedious
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task of generating training data is even more onerous in
three dimensions. As with two-dimensional data, network
performance depends upon annotation of hundreds, if not
thousands of nuclei. Extending segmentation to three dimensions
means that each nucleus must be manually annotated in multiple
focal planes, including those collected from the top and bottom
boundaries that are especially difficult to reproducibly delineate.

The Digital Image Analysis Core of the Indiana O’Brien
Center addressed this problem by developing DeepSynth, a
convolutional neural network trained on synthetic images,
essentially eliminating the tedious task of manual annotation
(Fu et al., 2017; Ho et al., 2017, 2018; Dunn et al., 2019). As
compared with 3D segmentation software based upon traditional
morphological segmentation techniques, DeepSynth provides
segmentations that are more accurate, particularly for challenging
image volumes (Figure 1D). A second benefit of the DeepSynth
approach is that the quality of segmentations are more consistent
throughout large image volumes. At the time of writing, the
DeepSynth software, which is freely available from the O’Brien
website, has been downloaded by 18 laboratories.

FUTURE DIRECTIONS OF THE DIGITAL
IMAGE ANALYSIS CORE OF THE
INDIANA O’BRIEN CENTER

The Digital Image Analysis Core is dedicated to the development
of image analysis software to further the research of renal
investigators. An overarching theme of the core is that the
images of biological microscopy are rich in information, and
extracting that information depends upon hands-on exploration
and analysis by biologists who are not necessarily experts in
digital image analysis. Thus image analysis software should be
accessible, interactive, and user-friendly. Going forward, the
core will continue to improve and refine deep learning-based
methods of image segmentation by implementing more accurate
models of synthetic data, e.g., by incorporating models of
objective lens point-spread functions. The core is also working on

methods to address the spatial variability in segmentation quality
that we observe in large, three-dimensional image volumes.
Insofar as segmentation is fundamental to image quantification,
spatial variability in segmentation quantity directly impacts the
reliability of tissue cytometry. Since it is impractical to measure
segmentation quality at every point in a large image volume,
methods are needed to estimate segmentation quality and to
convert these estimates into confidence maps that can be used
to inform interpretation of cytometry measurements. Finally, the
core is also exploring how deep learning can be expanded into
additional aspects of image analysis in tissue cytometry, including
noise reduction, spectral deconvolution and cell classification.
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Using Imaging Mass Cytometry to 
Define Cell Identities and 
Interactions in Human Tissues
Vijayakumar R. Kakade *†, Marlene Weiss † and Lloyd G. Cantley *

Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States

In the evolving landscape of highly multiplexed imaging techniques that can be applied 
to study complex cellular microenvironments, this review characterizes the use of imaging 
mass cytometry (IMC) to study the human kidney. We provide technical details for antibody 
validation, cell segmentation, and data analysis specifically tailored to human kidney 
samples, and elaborate on phenotyping of kidney cell types and novel insights that IMC 
can provide regarding pathophysiological processes in the injured or diseased kidney. 
This review will provide the reader with the necessary background to understand both 
the power and the limitations of IMC and thus support better perception of how IMC 
analysis can improve our understanding of human disease pathogenesis and can 
be integrated with other technologies such as single cell sequencing and proteomics to 
provide spatial context to cellular data.

Keywords: imaging mass cytometry, kidney, highly multiplexed imaging, kidney-MAPPS, cell phenotype,  
in situ imaging

INTRODUCTION

The predominant methods for cell identification during the pathological analysis of formalin-
fixed paraffin-embedded (FFPE) samples from human renal core biopsy tissues include cell 
morphology and immunohistochemistry or immunofluorescence (IF). The limited amount of 
tissue obtained from renal biopsy confines the type of analysis performed, preventing extensive 
analysis at the molecular and cellular level. Thus, most analyses are descriptive, with few efforts 
to provide quantitative information about the tubular, stromal, and nonresident cell populations 
in disease states (Kretzler et  al., 2002; Zhang and Parikh, 2019). Single-cell RNA sequencing 
and single nucleus RNA sequencing have markedly increased the depth of information gained 
from a single biopsy, but lack the spatial information needed to determine cell proximity and 
cell–cell interactions (Rost et  al., 2017; Cippà et  al., 2018; Wu et  al., 2018, 2019; Lake et  al., 
2019; Deleersnijder et  al., 2021). The large numbers of distinct cell populations and complex 
cellular arrangement of the human kidney make it particularly difficult to adequately analyze 
without high-resolution spatial information. To provide that spatial information on such a large 
number of cells, several platforms for multiplexed imaging have recently been developed, including 
serial immunofluorescence staining, staining with DNA-barcoded antibodies (CODEX, CO-Detection 
by indEXing), and staining with metal-tagged antibodies [multiplexed ion beam imaging (MIBI) 
and imaging mass cytometry (IMC)]. For a detailed comparison of the strengths and weaknesses 
of these technologies, please see the comprehensive review by Baharlou et  al. (2019).
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IMAGING MASS CYTOMETRY

Imaging mass cytometry (IMC) is a powerful analytical platform 
in which a high-resolution laser is combined with a mass 
cytometer that permits mass spectrometry-based, spatially 
preserved high-dimensional analysis of intact FFPE and frozen 
tissues at a resolution of 1  μm2 per pixel (Giesen et  al., 2014; 
Bodenmiller, 2016; Guo et  al., 2020). In IMC, a cocktail of 
validated antibodies against defined protein epitopes, each of 
which is covalently bound to a unique rare-earth metal, is 
hybridized on a tissue section. Pulsed ablation of 1  μm2 spots 
with a UV laser is performed, with the vaporized tissue analyzed 
by a mass spectrometer to identify the combination of heavy 
metals present in that 1  μm2 region. The quantity of each metal 
present at each 1  μm2 coordinate is used to reconstruct an 
artificial multilayer image of the initial tissue. Currently IMC 
can be  employed for imaging up to 42 markers on a single 
section of tissue. The absence of endogenous signal for the heavy 
metals results in a very low background and improved signal-
to-noise ratio, making IMC particularly appealing as compared 
to fluorescence-based antibody imaging (Zhang et  al., 2018).

APPLICATIONS OF IMC

IMC has been used to characterize malignancies, yielding 
information about the identity, number of, and spatial relationships 
between immune and resident cells (Giesen et  al., 2014; 
Bodenmiller, 2016; Bertocchi et  al., 2021; Li et  al., 2021). IMC 
has also been applied in infectious and autoimmune diseases 
research and in drug profiling. The 1  μm2 resolution provides 
the ability to identify basic subcellular localization of antigens 
(nucleus vs. cytoplasm), while the large number of antibodies 
that can be simultaneously analyzed supports both cell identification 
and cell activation state determination. The technique can therefore 
be employed to identify cellular markers that provide fundamental 
tissue architectural layout, as well as secondary cellular responses 
such as protein modifications, signaling pathway activation, cell 
injury states, and cell proliferation. IMC allows immune cell 
markers to be  investigated in both healthy and diseased tissues 
with their distribution pattern and proximity to tissue resident 
cells spatially mapped (Giesen et  al., 2014; Catena et  al., 2020; 
Garcia-Melchor et  al., 2021; Patel et  al., 2021). Analysis of 
functional markers generates information on disease states and 
can potentially be  used to identify biomarkers. Importantly, the 
linearity of the mass spectrometry detection of the heavy metals 
conjugated to each antibody provides a quantitative assessment 
of the relative expression levels for the respective antigens, allowing 
researchers to detect changes not just in cell numbers and 
localization, but also in cell differentiation and signaling pathway 
activation. This quantitative information, assigned to each pixel 

of the generated image, supports a more objective, machine-
based evaluation of the tissue that is less subject to observer bias.

IMC has been employed to characterize disease pathophysiology 
by providing enhanced molecular profiling of biological tissues. 
With that aim, several research groups have focused on the 
pathogenesis of type 1 diabetes. Through analysis of 1,581 islets 
from 12 human donors and eight type 1 diabetic patients, using 
a panel of antibodies targeted against 35 biomarkers, Damond 
et  al. (2019) found that beta cell destruction is preceded by a 
beta cell marker loss and by recruitment of cytotoxic and helper 
T cells. Similarly, using a panel of 33 antibodies and quantifying 
pancreatic exocrine cells, islet cells, immune cells, and stromal 
components, Wang et al. (2019) demonstrated a dramatic change 
in islet architecture, endocrine cell number, and immune cell 
number in pancreatic sections from type 1 diabetic patients. 
This study also demonstrated a molecular change indicating 
altered cell identity and dysregulated cellular protein expression 
in the histopathology of type 1 diabetes. The described ability 
to detect and quantify protein-level alterations in cells was reflected 
in a separate study of neuronal changes in postmortem samples 
from patients with Parkinson’s disease. Using IMC analysis with 
a panel of antibodies targeting subunits of all five mitochondrial 
oxidative phosphorylation complexes, Chen et  al. (2021) found 
a widespread decrease in expression of all complexes in Parkinson’s 
neurons as compared to control cases. An IMC study of tissue 
samples from patients with multiple sclerosis characterized a 
pool of immune cells including macrophages adjacent to regions 
of demyelinization and multiple subsets of T and B cells, delineating 
the cellular makeup of the immune response during exacerbations 
of disease (Ramaglia et  al., 2019). Identifying markers to 
characterize the pathogenesis of different disease entities allows 
hypothesis generation for further research. Additionally, IMC 
contributes to deciphering of so far unknown targets relevant 
to signaling pathways involved in disease pathogenesis.

IMC has also been used to further characterize hepatitis 
B virus-associated liver disease and most recently, COVID-
19-associated organ manifestations including lung disease (Wang 
et  al., 2020; Zhang et  al., 2020; Melms et  al., 2021; Rendeiro 
et  al., 2021), brain injury (Schwabenland et  al., 2021), and 
small intestinal infection (Lehmann et  al., 2021). Allam et  al. 
(2021) analyzed tonsillitis samples, while at the same time 
introducing a new algorithm to explore spatial relationships 
in diverse multiplexed tissue imaging data. In these publications, 
the corresponding antibody panels reflected potentially relevant 
signaling pathways in addition to immune cell composition 
and cross talk.

The ability of IMC to characterize both structural cells and 
trafficking immune cells has been important for its use in 
characterizing the tumor microenvironment and treatment effects 
or pharmacodynamics, respectively. IMC can provide: (i) a means 
to investigate the cellular heterogeneity of the tumor 
microenvironment and understanding of cancer progression and 
resistance to current therapies (Ijsselsteijn et  al., 2019; Elaldi 
et  al., 2021); (ii) a basis for supporting efficacy and target 
engagement validation studies in drug discovery (Bouzekri et al., 
2019); (iii) discovery of new biomarkers (Martinez-Morilla et al., 
2021); (iv) potential novel drug targets; and (v) improved 

Abbreviations: IMC, Imaging mass cytometry; FFPE, Formalin-fixed paraffin-
embedded; IF, Immunofluorescence; Kidney-MAPPS, Kidney-multiplexed antibody 
based profiling with preservation of spatial context; AQP1, Aquaporin-1; AQP2, 
Aquaporin-2; CK7, Cytokeratin-7; DCT, Distal convoluted tubule; KIM-1, Kidney 
injury molecule-1; DGF, Delayed graft function.
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implementation of already established therapeutics (Carvajal-
Hausdorf et  al., 2019; Kankeu Fonkoua et  al., 2021). These 
analyses include relevant cell populations and interactions, 
surrogates of cancer cell states, and immune cell markers. 
IMC-based analysis of the tumor microenvironment can potentially 
provide prognostic information predictive of disease outcome.

APPLICATION OF IMC IN THE HUMAN 
KIDNEY

Currently there are three publications showing IMC analysis of 
human kidney tissue (Singh et  al., 2019; Wang et  al., 2020; 
Avigan et al., 2021) and one publication analyzing murine kidney 
tissue (Brähler et  al., 2018). The first analysis of kidney tissue 
by IMC was published by our group and characterized the cellular 
composition of the human kidney, comprising tubular, stromal, 
glomerular, and non-resident cells such as immune cells (Singh 
et  al., 2019). The underlying hypothesis for the project was the 
relevance of interaction between kidney-resident and immune 
cells for homeostasis and disease development. The study (Singh 
et al., 2019) included the description of a machine learning-based 
analysis pipeline termed Kidney-MAPPS (Multiplexed Antibody 
based Profiling with Preservation of Spatial context) for unbiased 
pixel classification using Ilastik (Berg et  al., 2019), nuclear-based 
cell segmentation using CellProfiler (McQuin et  al., 2018), and 
clustering/neighborhood analysis using HistoCAT (Schapiro et al., 
2017). In this approach, four different stacks of pseudocolored 
tiff images generated from the IMC data are subjected to pixel 
classification using Ilastik in order to create probability images 
representing nuclei, tubular, endothelial, and interstitial/glomerular 
cell types. The machine learning algorithm assigns a probability 
for the respective cell type to each pixel by differentiating between 
signal and background in each data set. Analysis in CellProfiler 
creates the sequential cell segmentation on the probability images 
and generates a unified mask. Cells are identified based on the 
presence of a nucleus as the primary object, followed by 
segmentation of the specific cell type (tubular, endothelial, and 
interstitial) to delineate the borders of each individual cell. Finally, 
processing in HistoCAT overlays the unified mask on the raw 
data from IMC, allowing multiplexed data analysis by unbiased 
clustering using the PhenoGraph algorithm, a nearest-neighbor-
based clustering approach. Individual cell phenotypes are assigned 
to each cell in an unsupervised manner based on the combinatorial 
expression of the canonical cell identification markers, supporting 
classification and quantification of each cell type. Figure 1 provides 
a graphic overview of the steps that are used for the Kidney-
MAPPS analysis pipeline.

IMC and the Kidney-MAPPS pipeline were successfully 
applied to 16 pathologist-verified, histopathologically normal 
FFPE human kidney samples (five from living donors, 11 from 
carefully selected, banked tumor-remote nephrectomy samples) 
to quantitatively characterize the cellular makeup of the reference 
human kidney (Singh et  al., 2019). The antibodies that were 
employed by Singh et  al. (2019) listed in Table  1, were first 
validated using a combination of literature search of single-cell 
expression data, in vitro cell expression, morphologic features 

identified by a pathologist, and cell co-localization of more 
than one cell-specific marker. Kidney-MAPPS was then employed 
to successfully generate a two-dimensional quantitative atlas of 
22 distinct cell populations that were identified in the normal 
human kidney. In addition to well-characterized parts of the 
tubule, interstitium, and glomerulus, the analysis revealed several 
cell populations that had not yet been described. A population 
of megalin (low), aquaporin-1 (AQP1)+, aquaporin-2 (AQP2)−, 
cytokeratin-7 (CK7)+ tubular cells in the medulla were assigned 
to represent the thin descending limb of the loop of Henle. 
A cluster of megalin+, AQP1+, vimentin+ cells was suggestive 
of an injured, fibrotic, or regenerative cell type, while CK7+, 
AQP2+ cells were felt to represent principal cells. Moreover, 
the analysis identified cells in connecting tubular segments with 
morphologically larger diameter than the distal convoluted tubule 
(DCT) as calbindin+, CK7+, AQP2+ transition cells between the 
DCT and collecting duct. The Kidney-MAPPS protocol accurately 
identified, quantified, and localized ~92% of all cells in the 
human kidney, and quality control measures for validity and 
reproducibility of unsupervised analysis of data showed no 
significant differences in the manual vs. Kidney-MAPPS assigned 
phenotypes, out of over 10,000 cells scored (Singh et  al., 2019). 
Further, the reproducibility analysis of Kidney-MAPPS yielded 
highly consistent quantitative results when adjacent sections of 
the same tissue were analyzed and showed no qualitative 
decrement in staining intensity in FFPE samples banked for 
>9 years. Tissue analysis on regions corresponding to the original 
region of interest with a new, identical antibody cocktail 4 months 
later also led to robust results (Singh et  al., 2019).

Our group further expanded the application of IMC and 
the Kidney-MAPPS analysis pipeline to analyze pre-implant 
kidney biopsy samples from deceased donor kidneys that 
were pre-identified as being at high risk for delayed graft 
function (DGF) following implantation as compared to living 
donor kidneys that were low risk for subsequent DGF (Avigan 
et  al., 2021). The results showed that the high-risk deceased 
donor kidneys exhibited a highly significant reduction in 
tubular cells, and specifically proximal tubule cells, as compared 
to living donor kidneys. Of note, this decrease in tubular 
cell numbers did not reflect failure to successfully detect 
nuclei or failure to assign cell identity in the deceased donor 
kidney tissue, but rather a quantitative reduction of the number 
of tubular cells present per area analyzed. Moreover, consistent 
with our previous study (Singh et  al., 2019), 99.5 ± 4.6% of 
tubular cells were correctly identified by the Kidney-MAPPS 
pipeline compared with manual adjudication, indicating that 
identification of kidney cell populations is not impaired 
between reference and injured tissues. Intriguingly, the study 
uncovered a small population of megalin(low), vimentin+ 
proximal tubular cells exclusively in deceased donor tissue 
that was surrounded by macrophage-rich infiltrates and 
co-expressed markers of injury and proliferation, kidney injury 
molecule 1 (KIM-1) and Ki67, respectively (Avigan et  al., 
2021). This is consistent with animal data showing that 
alternatively activated macrophages directly surround the 
proliferating proximal tubule S3 segment tubular cells during 
the week after kidney injury (Huen et  al., 2015). Moreover, 
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this cell population potentially plays a role in tubular repair 
because KIM-1 has been shown to be  protective in models 
of ischemia reperfusion injury and renal transplantation (Lee 

et al., 2018; Al-Bataineh et al., 2021). These results demonstrate 
that IMC can provide spatially accurate data regarding 
biologically important cell–cell interactions.

A

B

D

E F G

C

FIGURE 1 | Representative Kidney-MAPPS analysis of healthy human kidney tissue for identification of resident cell populations. (A) Pseudocolored image of a 
region of interest analyzed by IMC. The depicted colors correspond to the markers listed on the image. AQP1, aquaporin-1; UMOD, uromodulin; bCatenin, 
β-Catenin; CK7, cytokeratin-7; and ERG, ETS-related gene. (B,C) Probability images for nuclei (B) and tubular cells (C), created using the Ilastik software. 
(D) Segmentation mask generated in CellProfiler overlaid on a pseudocolored image created in HistoCAT. Highlighted markers were selected in order to represent 
the tissue structure analogous to (A) while allowing visibility of the cell segmentation. (E) tSNE plot showing different cell types/clusters identified through 
PhenoGraph analysis of three representative healthy kidney samples in HistoCAT. PT, proximal tubule; DCT, distal convoluted tubule; TAL, thick ascending limb; 
Podo, podocytes; CD, collecting duct; Endo, endothelial cells (non-glomerular); and Endo(G), glomerular endothelial cells. (F,G) Quantification of the cell types 
identified in (E) as a percentage of the total number of cells (F) and the number of cells per mm2 area (G). Bars show the mean ± SD. n = 3.
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IMC has also been applied to COVID-19 patient kidney 
samples in a study that analyzed immune cell infiltration and 
proinflammatory cytokine responses in specified organs of three 
COVID-19 patients. Compared to human healthy control 
kidneys, IMC analysis showed a higher count of CD11b+ 

macrophages, CD11c+ dendritic cells, and CD19+ B cells in 
two of the COVID-19 patient kidney samples (Wang et  al., 
2020). The antibodies that were used in this study are also 
listed in Table  1. By comparing the immune cell profiles and 
cytokines in the kidney to other organs, the authors suggested 

TABLE 1 | List of antibodies used on human kidney tissue.

Antigen Target Species Clone Metal Dilution Supplier References

DNA intercalator Nucleus N/A N/A 191Ir/193Ir 1:1000 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

Histone H3 Nucleus Rabbit D1H2 176Yb 1:600 Fluidigm Singh et al., 2019
β-Catenin Tubular epithelium Mouse D13A1 165Ho 1:250 Fluidigm Avigan et al., 2021
β-Catenin Tubular epithelium Mouse D10Ab 147Sm 1:500 Fluidigm Singh et al., 2019
Megalin Proximal tubule Mouse 10D5.1 174Yb 1:250 EMD millipore Avigan et al., 2021
Aquaporin-1 Proximal tubule Rabbit EPR11588 173Yb 1:2000 Abcam Singh et al., 2019; 

Avigan et al., 2021
Uromodulin Thick ascending limb Rat 774056 151Eu 1:1600 R&D Systems Singh et al., 2019; 

Avigan et al., 2021
Calbindin Distal convoluted 

tubule
Mouse 401025 142Nd 1:400 ThermoFisher Singh et al., 2019; 

Avigan et al., 2021
Aquaporin-2 Collecting duct 

(principal cells)
Rabbit EPR21080 172Yb 1:300 Abcam Singh et al., 2019; 

Avigan et al., 2021
Cytokeratin-7 Connecting tubule, 

collecting duct
Mouse RCK105 164Dy 1:150 Fluidigm Singh et al., 2019; 

Avigan et al., 2021
CD31 Endothelial cells Mouse JC/70A 149Sm 1:100 Abcam Singh et al., 2019; 

Avigan et al., 2021
WT1 Podocytes Rabbit 6F-H2 209Bi 1:25 ThermoFisher Singh et al., 2019
Nestin Podocytes Mouse 196908 146Nd 1:200 Fluidigm Singh et al., 2019; 

Avigan et al., 2021
aSMA Smooth muscle cells Mouse 1A4 141Pr 1:1600 Fluidigm Singh et al., 2019; 

Avigan et al., 2021
Vimentin Fibroblasts, pericytes, 

mesangium, 
podocytes

Mouse RV202 150Nd 1:500 Abcam Avigan et al., 2021

Vimentin Fibroblasts, pericytes, 
mesangium, 
podocytes

Rabbit D21H3 143Nd 1:400 Fluidigm Singh et al., 2019

Collagen IV Basement membrane, 
fibrosis

Mouse 1042 166Er 1:200 ThermoFisher Singh et al., 2019; 
Avigan et al., 2021

Renin Juxtaglomerular cells Rabbit EPR20693 171Yb 1:1000 Abcam Singh et al., 2019; 
Avigan et al., 2021

CD68 Macrophages Mouse KP1 159Tb 1:600 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD66b Granulocytes Mouse 80H3 152Sm 1:200 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD3 T cells Mouse Polyclonal 170Er 1:80 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD4 Helper T cells Rabbit EPR6855 155Gd 1:100 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD8a Cytotoxic T cells Mouse 144B 162Dy 1:100 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD20 B cells Mouse H1 161Dy 1:100 Fluidigm Singh et al., 2019; 
Avigan et al., 2021

CD11b Granulocytes, 
monocytes/
Macrophages

Rabbit EPR1344 149Sm 1:50 Fluidigm Wang et al., 2020

CD11c Dendritic cells Rabbit Polyclonal 154Sm 1:50 Fluidigm Wang et al., 2020
CD14 Monocytes/

Macrophages
Rabbit EPR3653 144Nd 1:50 Fluidigm Wang et al., 2020

CD19 B cells Rat 6OMP31 142Nd 1:50 Fluidigm Wang et al., 2020
CD56 NK cells Mouse RNL-1 152Sm 1:50 Abcam Wang et al., 2020
KIM-1 Kidney epithelial injury Mouse 219211 160Gd 1:75 R&D Systems Avigan et al., 2021
Ki-67 Proliferation Mouse B56 168Er 1:100 Fluidigm Avigan et al., 2021
TNFalpha Injury Rabbit Polyclonal 160Gd 1:50 Abcam Wang et al., 2020
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a tissue-specific immune response to COVID-19 that might 
lead to differential sensitivities of resident cell populations to 
the COVID-19 infection and subsequent therapies.

DISCUSSION

IMC is a powerful platform for high-dimensional multiplexed 
parallel analysis of dozens of proteins localized in intact tissue, 
providing single-cell resolution while preserving the spatial 
relationship and morphological features. Its capacity to quantify 
>40 markers renders IMC a useful technique in the clinical 
setting where tissue quantities from patient biopsies can be very 
limited. The ability to use banked FFPE sections without signal 
attenuation and with the same data outcome as freshly procured 
tissue also helps with the pathophysiologic study of diseases 
for which there are few patient samples available. An additional 
advantage of IMC as compared to IF is that there is no 
endogenous autofluorescence to negatively impact the signal-
to-noise ratio. In terms of sensitivity, IMC can successfully 
detect a lower limit of approximately 50 copies of an epitope 
per 1  μm2 laser pulse (Hartmann and Bendall, 2020).

Limitations include the resolution that presently is at 1 μm2, 
meaning that subcellular organelles such as mitochondria, 
endoplasmic reticulum, and vacuoles cannot be  resolved and 
that areas of cell overlap can make pixel classification and cell 
segmentation less accurate. The effect this infers on marker 
expression must be  kept in mind when assigning a certain 
phenotype to a cell. In addition, the acquisition of data is 
time-consuming, taking 2 h to ablate 1  m2 area of interest, 
and approximately 10% of analyzed IMC regions did not yield 
analyzable data in the study by Singh et  al. (2019).

IMC can be  easily complemented by other conventional as 
well as highly multiplexed technologies. For example, Catena 
et al. (2018) developed a method to perform H&E counterstaining 
on IMC samples, allowing basic structural analysis of the tissue 
prior to IMC interrogation. By conjugating RNAscope probes 
to heavy metals rather than fluorophores, IMC can be  used 
to simultaneously detect RNA and protein expression on the 
same tissue sample. Using this approach, unique cell identifiers 
that lack appropriate antibodies can be multiplexed with protein 
detection in single cells in situ, allowing correlation between 
transcriptional signatures and spatial context (Schulz et  al., 
2018). This helps gather additional information, i.e., on host–
pathogen interactions when a pathogen is only detectable through 

RNA expression. Focusing on kidney analysis, the validated 
antibody panel together with the analysis pipeline and quantitative 
data on the makeup of cells in healthy kidney by Singh et  al. 
(2019) provides a framework and reference cohort for future 
studies of diseased kidneys. The discovery of new cell types 
using these combined approaches will help us better understand 
and characterize the complexity of kidney tissue.

In summary, IMC can be  applied to almost any tissue as 
long as the antibodies employed are appropriately validated 
and tested, and provides a unique ability to both detect and 
quantify multiple target antigens on a single archived or fresh 
tissue sample. We  have found this to be  particularly useful in 
the human kidney, which has historically presented many 
challenges to researchers due to its combination of cellular and 
architectural complexity. The ability to combine IMC with other 
tissue interrogation techniques such as single-cell RNA sequencing 
promises to further increase our understanding of the cellular 
changes that underlie kidney disease states, and thus identify 
appropriate interventions in a patient-specific manner.

AUTHOR CONTRIBUTIONS

VK and MW contributed equally to this work and wrote and 
edited the manuscript. LC oversaw and contributed to writing 
and editing the manuscript. All authors contributed to the 
article and approved the submitted version.

FUNDING

This study was supported by DK126815 and AG067335 awards 
to LC and KPMP Opportunity pool award (U2CDK114886) 
to VK and LC. Additional support came from the German 
Research Foundation to MW (WE6653/1-1).

ACKNOWLEDGMENTS

We thank Indiana O’Brien Center for Advanced Microscopic 
Analysis, Indiana Clinical and Translational Sciences Institute, 
Indianapolis, Indiana, for covering the costs of the publication. 
We thank our funding sources, including the National Institute 
of Diabetic and Digestive and Kidney Diseases and KPMP (to 
LC) and the German Research Foundation (to MW).

 

REFERENCES

Al-Bataineh, M. M., Kinlough, C. L., Mi, Z., Jackson, E. K., Mutchler, S. M., 
Emlet, D. R., et al. (2021). KIM-1-mediated anti-inflammatory activity is 
preserved by MUC1 induction in the proximal tubule during ischemia-
reperfusion injury. Am. J. Physiol. Ren. Physiol. 321, F135–F148. doi: 10.1152/
ajprenal.00127.2021

Allam, M., Hu, T., Cai, S., Laxminarayanan, K., Hughley, R. B., and Coskun, A. F. 
(2021). Spatially visualized single-cell pathology of highly multiplexed protein 
profiles in health and disease. Commun. Biol. 4:632. doi: 10.1038/
s42003-021-02166-2

Avigan, Z. M., Singh, N., Kliegel, J. A., Weiss, M., Moeckel, G. W., and 
Cantley, L. G. (2021). Tubular cell dropout in preimplantation deceased 
donor biopsies as a predictor of delayed graft function. Transplant. Direct 
7:e716. doi: 10.1097/TXD.0000000000001168

Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N., and Patrick, E. 
(2019). Mass cytometry imaging for the study of human diseases-applications 
and data analysis strategies. Front. Immunol. 10:2657. doi: 10.3389/
fimmu.2019.02657

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., 
et al. (2019). Ilastik: interactive machine learning for (bio)image analysis. 
Nat. Methods 16, 1226–1232. doi: 10.1038/s41592-019-0582-9

18

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1152/ajprenal.00127.2021
https://doi.org/10.1152/ajprenal.00127.2021
https://doi.org/10.1038/s42003-021-02166-2
https://doi.org/10.1038/s42003-021-02166-2
https://doi.org/10.1097/TXD.0000000000001168
https://doi.org/10.3389/fimmu.2019.02657
https://doi.org/10.3389/fimmu.2019.02657
https://doi.org/10.1038/s41592-019-0582-9


Kakade et al. Imaging Mass Cytometry in Human Tissues

Frontiers in Physiology | www.frontiersin.org 7 December 2021 | Volume 12 | Article 817181

Bertocchi, A., Carloni, S., Ravenda, P. S., Bertalot, G., Spadoni, I., Lo Cascio, A., 
et al. (2021). Gut vascular barrier impairment leads to intestinal bacteria 
dissemination and colorectal cancer metastasis to liver. Cancer Cell 39,  
708.e11–724.e11. doi: 10.1016/j.ccell.2021.03.004

Bodenmiller, B. (2016). Multiplexed epitope-based tissue imaging for discovery 
and healthcare applications. Cell Syst. 2, 225–238. doi: 10.1016/j.cels.2016.03.008

Bouzekri, A., Esch, A., and Ornatsky, O. (2019). Multidimensional profiling 
of drug-treated cells by imaging mass cytometry. FEBS Open Bio 9, 1652–1669. 
doi: 10.1002/2211-5463.12692

Brähler, S., Zinselmeyer, B. H., Raju, S., Nitschke, M., Suleiman, H., Saunders, B. T., 
et al. (2018). Opposing roles of dendritic cell subsets in experimental GN. 
J. Am. Soc. Nephrol. 29, 138–154. doi: 10.1681/ASN.2017030270

Carvajal-Hausdorf, D. E., Patsenker, J., Stanton, K. P., Villarroel-Espindola, F., 
Esch, A., Montgomery, R. R., et al. (2019). Multiplexed (18-Plex) measurement 
of signaling targets and cytotoxic T cells in trastuzumab-treated patients 
using imaging mass cytometry. Clin. Cancer Res. 25, 3054–3062. doi: 
10.1158/1078-0432.CCR-18-2599

Catena, R., Montuenga, L. M., and Bodenmiller, B. (2018). Ruthenium counterstaining 
for imaging mass cytometry. J. Pathol. 244, 479–484. doi: 10.1002/path.5049

Catena, R., Özcan, A., Kütt, L., Plüss, A., Consortium, I., Schraml, P., et al. 
(2020). Highly multiplexed molecular and cellular mapping of breast cancer 
tissue in three dimensions using mass tomography. bioRxiv.

Chen, C., Mcdonald, D., Blain, A., Sachdeva, A., Bone, L., Smith, A. L. M., 
et al. (2021). Imaging mass cytometry reveals generalised deficiency in 
OXPHOS complexes in Parkinson's disease. NPJ Parkinsons Dis. 7:39. doi: 
10.1038/s41531-021-00182-x

Cippà, P. E., Sun, B., Liu, J., Chen, L., Naesens, M., and Mcmahon, A. P. 
(2018). Transcriptional trajectories of human kidney injury progression. JCI 
Insight 3:e123151. doi: 10.1172/jci.insight.123151

Damond, N., Engler, S., Zanotelli, V. R. T., Schapiro, D., Wasserfall, C. H., 
Kusmartseva, I., et al. (2019). A map of human type 1 diabetes progression 
by imaging mass cytometry. Cell Metab. 29, 755.e5–768.e5. doi: 10.1016/j.
cmet.2018.11.014

Deleersnijder, D., Callemeyn, J., Arijs, I., Naesens, M., Van Craenenbroeck, A. H., 
Lambrechts, D., et al. (2021). Current methodological challenges of single-
cell and single-nucleus RNA-sequencing in glomerular diseases. J. Am. Soc. 
Nephrol. 32, 1838–1852. doi: 10.1681/ASN.2021020157

Elaldi, R., Hemon, P., Petti, L., Cosson, E., Desrues, B., Sudaka, A., et al. 
(2021). High dimensional imaging mass cytometry panel to visualize the 
tumor immune microenvironment contexture. Front. Immunol. 12:666233. 
doi: 10.3389/fimmu.2021.666233

Garcia-Melchor, E., Cafaro, G., Macdonald, L., Crowe, L. A. N., Sood, S., 
Mclean, M., et al. (2021). Novel self-amplificatory loop between T cells and 
tenocytes as a driver of chronicity in tendon disease. Ann. Rheum. Dis. 80, 
1075–1085. doi: 10.1136/annrheumdis-2020-219335

Giesen, C., Wang, H. A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., 
et al. (2014). Highly multiplexed imaging of tumor tissues with subcellular 
resolution by mass cytometry. Nat. Methods 11, 417–422. doi: 10.1038/nmeth.2869

Guo, N., Van Unen, V., Ijsselsteijn, M. E., Ouboter, L. F., Van Der Meulen, A. E., 
Chuva, D. E., et al. (2020). A 34-marker panel for imaging mass cytometric 
analysis of human snap-frozen tissue. Front. Immunol. 11:1466. doi: 10.3389/
fimmu.2020.01466

Hartmann, F. J., and Bendall, S. C. (2020). Immune monitoring using mass 
cytometry and related high-dimensional imaging approaches. Nat. Rev. 
Rheumatol. 16, 87–99. doi: 10.1038/s41584-019-0338-z

Huen, S. C., Huynh, L., Marlier, A., Lee, Y., Moeckel, G. W., and Cantley, L. G. 
(2015). GM-CSF promotes macrophage alternative activation after renal 
ischemia/reperfusion injury. J. Am. Soc. Nephrol. 26, 1334–1345. doi: 10.1681/
ASN.2014060612

Ijsselsteijn, M. E., Van Der Breggen, R., Farina Sarasqueta, A., Koning, F., 
Miranda, D. E., and N.,  (2019). A 40-marker panel for high dimensional 
characterization of cancer immune microenvironments by imaging mass 
cytometry. Front. Immunol. 10:2534. doi: 10.3389/fimmu.2019.02534

Kankeu Fonkoua, L. A., Chakrabarti, S., Sonbol, M. B., Kasi, P. M., Starr, J. S., 
Liu, A. J., et al. (2021). Outcomes on anti-VEGFR-2/paclitaxel treatment 
after progression on immune checkpoint inhibition in patients with metastatic 
gastroesophageal adenocarcinoma. Int. J. Cancer 149, 378–386. doi: 10.1002/
ijc.33559

Kretzler, M., Cohen, C. D., Doran, P., Henger, A., Madden, S., Gröne, E. F., 
et al. (2002). Repuncturing the renal biopsy: strategies for molecular diagnosis 
in nephrology. J. Am. Soc. Nephrol. 13, 1961–1972. doi: 10.1097/01.
ASN.0000020390.29418.70

Lake, B. B., Chen, S., Hoshi, M., Plongthongkum, N., Salamon, D., Knoten, A., 
et al. (2019). A single-nucleus RNA-sequencing pipeline to decipher the 
molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 
10:2832. doi: 10.1038/s41467-019-10861-2

Lee, J. Y., Ismail, O. Z., Zhang, X., Haig, A., Lian, D., and Gunaratnam, L. 
(2018). Donor kidney injury molecule-1 promotes graft recovery by regulating 
systemic necroinflammation. Am. J. Transplant. 18, 2021–2028. doi: 10.1111/
ajt.14745

Lehmann, M., Allers, K., Heldt, C., Meinhardt, J., Schmidt, F., Rodriguez-Sillke, Y., 
et al. (2021). Human small intestinal infection by SARS-CoV-2 is characterized 
by a mucosal infiltration with activated CD8(+) T cells. Mucosal Immunol. 
14, 1381–1392. doi: 10.1038/s41385-021-00437-z

Li, R., Lin, Y., Wang, Y., Wang, S., Yang, Y., Mu, X., et al. (2021). Characterization 
of the tumor immune microenvironment in lung squamous cell carcinoma 
using imaging mass cytometry. Front. Oncol. 11:620989. doi: 10.3389/
fonc.2021.757135

Martinez-Morilla, S., Villarroel-Espindola, F., Wong, P. F., Toki, M. I., Aung, T. N., 
Pelekanou, V., et al. (2021). Biomarker discovery in patients with 
immunotherapy-treated melanoma with imaging mass cytometry. Clin. Cancer 
Res. 27, 1987–1996. doi: 10.1158/1078-0432.CCR-20-3340

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., 
Karhohs, K. W., et al. (2018). CellProfiler 3.0: next-generation image processing 
for biology. PLoS Biol. 16:e2005970. doi: 10.1371/journal.pbio.2005970

Melms, J. C., Biermann, J., Huang, H., Wang, Y., Nair, A., Tagore, S., et al. 
(2021). A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 
114–119. doi: 10.1038/s41586-021-03569-1

Patel, J., Maddukuri, S., Li, Y., Bax, C., and Werth, V. P. (2021). Highly 
multiplexed mass cytometry identifies the immunophenotype in the skin 
of dermatomyositis. J. Investig. Dermatol. 141, 2151–2160. doi: 10.1016/j.
jid.2021.02.748

Ramaglia, V., Sheikh-Mohamed, S., Legg, K., Park, C., Rojas, O. L., Zandee, S., 
et al. (2019). Multiplexed imaging of immune cells in staged multiple sclerosis 
lesions by mass cytometry. elife 8:e48051. doi: 10.7554/eLife.48051

Rendeiro, A. F., Ravichandran, H., Bram, Y., Chandar, V., Kim, J., Meydan, C., 
et al. (2021). The spatial landscape of lung pathology during COVID-19 
progression. Nature 593, 564–569. doi: 10.1038/s41586-021-03475-6

Rost, S., Giltnane, J., Bordeaux, J. M., Hitzman, C., Koeppen, H., and Liu, S. D. 
(2017). Multiplexed ion beam imaging analysis for quantitation of protein 
expression in cancer tissue sections. Lab. Investig. 97, 992–1003. doi: 10.1038/
labinvest.2017.50

Schapiro, D., Jackson, H. W., Raghuraman, S., Fischer, J. R., Zanotelli, V. R. 
T., Schulz, D., et al. (2017). histoCAT: analysis of cell phenotypes and 
interactions in multiplex image cytometry data. Nat. Methods 14, 873–876. 
doi: 10.1038/nmeth.4391

Schulz, D., Zanotelli, V. R. T., Fischer, J. R., Schapiro, D., Engler, S., Lun, X. K., 
et al. (2018). Simultaneous multiplexed imaging of mRNA and proteins 
with subcellular resolution in breast cancer tissue samples by mass cytometry. 
Cell Syst. 6, 25.e5–36.e5. doi: 10.1016/j.cels.2017.12.001

Schwabenland, M., Salié, H., Tanevski, J., Killmer, S., Lago, M. S., Schlaak, A. E., 
et al. (2021). Deep spatial profiling of human COVID-19 brains reveals 
neuroinflammation with distinct microanatomical microglia-T-cell interactions. 
Immunity 54, 1594.e11–1610.e11. doi: 10.1016/j.immuni.2021.06.002

Singh, N., Avigan, Z. M., Kliegel, J. A., Shuch, B. M., Montgomery, R. R., 
Moeckel, G. W., et al. (2019). Development of a 2-dimensional atlas of the 
human kidney with imaging mass cytometry. JCI Insight 4:e129477. doi: 
10.1172/jci.insight.129477

Wang, Y. J., Traum, D., Schug, J., Gao, L., Liu, C., Atkinson, M. A., et al. 
(2019). Multiplexed in situ imaging mass cytometry analysis of the human 
endocrine pancreas and immune system in type 1 diabetes. Cell Metab. 29, 
769.e4–783.e4. doi: 10.1016/j.cmet.2019.01.003

Wang, C., Xu, J., Wang, S., Pan, S., Zhang, J., Han, Y., et al. (2020). Imaging 
mass cytometric analysis of postmortem tissues reveals dysregulated immune 
cell and cytokine responses in multiple organs of COVID-19 patients. Front. 
Microbiol. 11:600989. doi: 10.3389/fmicb.2020.600989

19

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1016/j.ccell.2021.03.004
https://doi.org/10.1016/j.cels.2016.03.008
https://doi.org/10.1002/2211-5463.12692
https://doi.org/10.1681/ASN.2017030270
https://doi.org/10.1158/1078-0432.CCR-18-2599
https://doi.org/10.1002/path.5049
https://doi.org/10.1038/s41531-021-00182-x
https://doi.org/10.1172/jci.insight.123151
https://doi.org/10.1016/j.cmet.2018.11.014
https://doi.org/10.1016/j.cmet.2018.11.014
https://doi.org/10.1681/ASN.2021020157
https://doi.org/10.3389/fimmu.2021.666233
https://doi.org/10.1136/annrheumdis-2020-219335
https://doi.org/10.1038/nmeth.2869
https://doi.org/10.3389/fimmu.2020.01466
https://doi.org/10.3389/fimmu.2020.01466
https://doi.org/10.1038/s41584-019-0338-z
https://doi.org/10.1681/ASN.2014060612
https://doi.org/10.1681/ASN.2014060612
https://doi.org/10.3389/fimmu.2019.02534
https://doi.org/10.1002/ijc.33559
https://doi.org/10.1002/ijc.33559
https://doi.org/10.1097/01.ASN.0000020390.29418.70
https://doi.org/10.1097/01.ASN.0000020390.29418.70
https://doi.org/10.1038/s41467-019-10861-2
https://doi.org/10.1111/ajt.14745
https://doi.org/10.1111/ajt.14745
https://doi.org/10.1038/s41385-021-00437-z
https://doi.org/10.3389/fonc.2021.757135
https://doi.org/10.3389/fonc.2021.757135
https://doi.org/10.1158/1078-0432.CCR-20-3340
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1038/s41586-021-03569-1
https://doi.org/10.1016/j.jid.2021.02.748
https://doi.org/10.1016/j.jid.2021.02.748
https://doi.org/10.7554/eLife.48051
https://doi.org/10.1038/s41586-021-03475-6
https://doi.org/10.1038/labinvest.2017.50
https://doi.org/10.1038/labinvest.2017.50
https://doi.org/10.1038/nmeth.4391
https://doi.org/10.1016/j.cels.2017.12.001
https://doi.org/10.1016/j.immuni.2021.06.002
https://doi.org/10.1172/jci.insight.129477
https://doi.org/10.1016/j.cmet.2019.01.003
https://doi.org/10.3389/fmicb.2020.600989


Kakade et al. Imaging Mass Cytometry in Human Tissues

Frontiers in Physiology | www.frontiersin.org 8 December 2021 | Volume 12 | Article 817181

Wu, H., Kirita, Y., Donnelly, E. L., and Humphreys, B. D. (2019). Advantages of 
single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types 
and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32. doi: 
10.1681/ASN.2018090912

Wu, H., Malone, A. F., Donnelly, E. L., Kirita, Y., Uchimura, K., 
Ramakrishnan, S. M., et al. (2018). Single-cell transcriptomics of a human 
kidney allograft biopsy specimen defines a diverse inflammatory response. 
J. Am. Soc. Nephrol. 29, 2069–2080. doi: 10.1681/ASN.2018020125

Zhang, Y., Gao, Y., Qiao, L., Wang, W., and Chen, D. (2020). Inflammatory response 
cells during acute respiratory distress syndrome in patients with coronavirus 
disease 2019 (COVID-19). Ann. Intern. Med. 173, 402–404. doi: 10.7326/L20-0227

Zhang, W. R., and Parikh, C. R. (2019). Biomarkers of acute and chronic kidney 
disease. Annu. Rev. Physiol. 81, 309–333. doi: 10.1146/annurev-physiol-020518-114605

Zhang, Y., Wang, Y., Cao, W.-W., Ma, K.-T., Ji, W., Han, Z.-W., et al. (2018). 
Spectral characteristics of autofluorescence in renal tissue and methods for 
reducing fluorescence background in confocal laser scanning microscopy. 
J. Fluoresc. 28, 561–572. doi: 10.1007/s10895-018-2217-4

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Kakade, Weiss and Cantley. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

20

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1681/ASN.2018090912
https://doi.org/10.1681/ASN.2018020125
https://doi.org/10.7326/L20-0227
https://doi.org/10.1146/annurev-physiol-020518-114605
https://doi.org/10.1007/s10895-018-2217-4
http://creativecommons.org/licenses/by/4.0/


fphys-12-809346 December 31, 2021 Time: 17:45 # 1

MINI REVIEW
published: 06 January 2022

doi: 10.3389/fphys.2021.809346

Edited by:
Bruce Molitoris,

Indiana University, United States

Reviewed by:
Christoph Kuppe,

RWTH Aachen University, Germany

*Correspondence:
Qingbo S. Wang

qingbow@broadinstitute.org
Anna Greka

agreka@broadinstitute.org
Jamie L. Marshall

jmarshal@broadinstitute.org

Specialty section:
This article was submitted to

Renal and Epithelial Physiology,
a section of the journal
Frontiers in Physiology

Received: 04 November 2021
Accepted: 26 November 2021

Published: 06 January 2022

Citation:
Noel T, Wang QS, Greka A and

Marshall JL (2022) Principles
of Spatial Transcriptomics Analysis:
A Practical Walk-Through in Kidney
Tissue. Front. Physiol. 12:809346.
doi: 10.3389/fphys.2021.809346

Principles of Spatial Transcriptomics
Analysis: A Practical Walk-Through
in Kidney Tissue
Teia Noel1, Qingbo S. Wang2,3,4,5* , Anna Greka1,6* and Jamie L. Marshall1*

1 Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States, 2 Program in Medical
and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, United States, 3 Program in Bioinformatics
and Integrative Genomics, Harvard Medical School, Boston, MA, United States, 4 Analytic and Translational Genetics Unit,
Massachusetts General Hospital, Boston, MA, United States, 5 Department of Statistical Genetics, Graduate School
of Medicine, Osaka University, Osaka, Japan, 6 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA, United States

Spatial transcriptomic technologies capture genome-wide readouts across biological
tissue space. Moreover, recent advances in this technology, including Slide-seqV2,
have achieved spatial transcriptomic data collection at a near-single cell resolution.
To-date, a repertoire of computational tools has been developed to discern cell type
classes given the transcriptomic profiles of tissue coordinates. Upon applying these
tools, we can explore the spatial patterns of distinct cell types and characterize how
genes are spatially expressed within different cell type contexts. The kidney is one
organ whose function relies upon spatially defined structures consisting of distinct
cellular makeup. Thus, the application of Slide-seqV2 to kidney tissue has enabled
us to elucidate spatially characteristic cellular and genetic profiles at a scale that
remains largely unexplored. Here, we review spatial transcriptomic technologies, as
well as computational approaches for cell type mapping and spatial cell type and
transcriptomic characterizations. We take kidney tissue as an example to demonstrate
how the technologies are applied, while considering the nuances of this architecturally
complex tissue.

Keywords: slide-seqV2, spatial transcriptomics, kidney spatial transcriptomics, slide-seq, kidney transcriptomics

APPLICATIONS OF SPATIAL TRANSCRIPTOMICS

Unbiased spatial transcriptomics adds in situ spatial context to single cell RNA data providing
a powerful tool to characterize the spatial location for whole transcriptome sequencing (10x
Genomics, 2007; Chen et al., 2015; Stegle et al., 2015; Ståhl et al., 2016; Rodriques et al.,
2019; Liao et al., 2021; Longo et al., 2021; Nature Methods, 2021; Stickels et al., 2021). This is
accomplished with two technologies, Spatial Transcriptomics (ST or Visium) and Slide-seqV2
(10x Genomics, 2007; Ståhl et al., 2016; Rodriques et al., 2019; Stickels et al., 2021). Other
technologies, such as MERFISH (targeted), GeoMxTM (targeted), DBiT-seq, and Stereo-seq (BGI),
allow for higher resolution, in some cases even subcellular, detection of RNA (Chen et al.,
2015, 2021; Liu et al., 2020; Zollinger et al., 2020; Su et al., 2021). However, they tend to
be more complex to implement. Both ST and Slide-seqV2 use uniquely barcoded beads with
Oligo(dT) to capture polyadenylated RNA. ST has a larger feature size (avg 1–10 cells per spot,
50 µm beads with 100 µm spacing between beads (10x Genomics, 2007) than Slide-seqV2
[avg 1–3 cells per spot, 10 µm beads (Rodriques et al., 2019; Stickels et al., 2021)] and thus
has relatively limited resolution compared to the near single cell resolution in Slide-seqV2.
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On the other hand, ST allows for profiling of a large area of tissue
(typically the entire cross section) while a single Slide-seqV2 array
only covers a 3 mm diameter of tissue so multiple arrays on serial
cryosections are needed to cover the entire tissue cross section.
The other advantage of ST is the ability to co-stain the same
tissue slice from which the spatial transcriptome is captured with
hematoxylin and eosin staining (H&E) for histology or targeted
antibodies. Slide-seqV2 and ST capture similar numbers of UMIs
across the same spot area (Stickels et al., 2021).

Human and mouse kidneys across health and disease
have been profiled with both ST and Slide-seqV2 (Raghubar
et al., 2020; Lake et al., 2021; Melo Ferreira et al., 2021).
Raghubar et al. (2020) used ST to examine spatial transcriptomic
differences between sex and species of human and mouse
kidney tissue revealing differences in gene expression correlating
with male versus female kidneys and human versus mouse
kidneys. Raghubar et al. (2020) used ST to characterize spatial
transcriptomics and in particular immune cell clusters in human
kidney tissue and mouse models of kidney tissue subjected to
ischemia/reperfusion injury and cecal ligation puncture (Melo
Ferreira et al., 2021). Raghubar et al. (2020) used both ST and
Slide-seqV2 to spatially define altered injury states and a fibrotic
niche in human kidney biopsies from healthy, acute kidney
injury (AKI), and chronic kidney disease (CKD) participants
(Lake et al., 2021).

Our group used Slide-seqV2 to develop a spatial
transcriptomic atlas of human and mouse kidney tissue in
health and disease (Marshall et al., 2021). We profiled two mouse
models of disease, early diabetic kidney disease (DKD, BTBR
ob/ob) and uromodulin autosomal dominant tubulointerstitial
kidney disease (ADTKD, UMOD-KI). The study also contains
nine human participants with both cortex and medulla biopsies,
one with early DKD and one with injury due to sustained
tumor compression. Slide-seqV2 revealed the spatial location
of LYVE1+ macrophages in human medulla with injury due
to sustained tumor compression. In mice with early DKD,
we revealed changes in the cellular organization of spatially
restricted glomeruli. In UMOD-KI mice, we identified the
spatial locations of diseased fibroblasts, macrophages, and
Trem2+macrophages as well as an upregulation of the unfolded
protein response (UPR) pathway in thick ascending limb (TAL)
tubules. These results altogether demonstrated the utility of
spatial transcriptomics technologies combined with downstream
computational analysis to uncover previously unknown human
and mouse kidney physiology. Throughout this review, we will
discuss such computational approaches for cell type mapping
as well as spatial cell type and transcriptomic characterizations
focusing on kidney tissue.

PREPROCESSING OF SPATIAL
TRANSCRIPTOMICS DATA

The Slide-seqV2 reads are first aligned and mapped to the
human or mouse reference transcriptome using tools such as
STAR aligner (Dobin et al., 2013). After standard quality control
protocols, including filtering based on the number of genes and

UMIs per bead, the Slide-seqV2 data is turned into an expression
matrix where rows correspond to beads and columns to genes.
Additionally, per bead, native spatial coordinates are preserved
across 2-D tissue space.

MAPPING THE CELL TYPE FROM
scRNA-SEQ DATA

The first step in the analysis of Slide-seqV2 data is to assign cell
type identities to each bead. Accurate cell type classification is
aided by external scRNA-seq datasets from published materials,
where cell types are already annotated (Halpern et al., 2017; Lake
et al., 2021; Subramanian et al., 2021). Different computational
techniques have been developed to perform such analysis. First,
we will focus on a method that was originally developed
(Rodriques et al., 2019), NMFreg. Since typical scRNA-seq data
is high dimensional (e.g., >10 thousands cells × >20 thousands
genes, where each cell is annotated with specific known cell
type), the scRNA-seq expression matrix is projected to a low-
dimensional basis of factors by selection of highly variable
genes followed by NMF (Lee and Seung, 1999). Choosing the
number of dimensions of the low-dimensional space is not trivial;
In the Slide-seq paper (Rodriques et al., 2019), the authors
evaluated different numbers of dimensions k to semi-manually
assign a value to the parameter (they showed that the biological
interpretation is roughly consistent across different ks). Every
factor is then assigned a unique cell type. To do so, for every
cell in the scRNA-seq data, the method computes a loading for
all factors, and assigns the cell the factor of maximum weight.
Since each cell was previously annotated with a cell type identity,
the cell type distribution for the cells assigned to each factor
can be calculated. Every factor is then assigned the cell type
of maximum count.

Having acquired a set of “metagene” factors for each cell type
category, the method next utilizes this set of features to map Slide-
seqV2 beads to cell types. Each bead’s gene expression profile is
approximated as a non-negative sum of the factors using non-
negative least square regression (NNLS). Since each factor can be
mapped to a unique cell type, the factor loading for each bead can
be converted to cell type loading. The cell type with highest load
is selected to define the cell type identity for each bead, and the
beads that do not have a single dimension with clearly highest
load (e.g., beads having uniform load over all the dimensions,
or having >1 dimensions with �0 load) are filtered out. More
recent developments of spatial transcriptomics cell type mapping
techniques will be discussed in the next chapter.

CELL TYPE IDENTIFICATION WITH
SEURAT TRANSFER LEARNING

A second approach for assigning cell type identities to beads is
Seurat’s transfer learning method (Stuart et al., 2019). Similar
to NMFreg, an scRNA-seq data set is utilized to elucidate cell
type labels in a spatial transcriptomics query data set. First,
the data of both the reference and the query are projected to
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a shared lower-dimensional space. Anchors are then defined
to map pairs of similar data points between the reference and
the query, based on the amount of shared overlap between
their respective neighborhoods. Next, weights are allocated to
each anchor in order to emphasize mappings between similar
biological states. The weights are based on the following criteria:
(1) The distance between the query bead and k nearest reference
neighbors and (2) The number of mutual nearest neighbors
between the query bead and reference cell. Finally, cell type
annotations from scRNA-seq are transferred along these anchors
to the spatial transcriptomics reference using a weighted voter
classifier (Kuncheva and Rodríguez, 2014). As a result of either
the NMFreg or Seurat transfer learning methodologies, not
only is each bead informed by a gene expression profile and
spatial location, but also its overarching cell type identity. In
Marshall et al. (2021), Seurat transfer learning presented higher
consistency with physiologically known structures than NMFreg
for all cell types in human tissue and in collecting ducts (CD),
vascular smooth muscle cells (vSMC), and distal tubules in mouse
tissue. An overview of mapped cell types in mouse and human
tissue is shown in Figure 1.

DECOMPOSING SPATIAL
TRANSCRIPTOMIC SPOTS INTO
MULTIPLE CELL TYPES

One caveat of many spatial transcriptomics methods, including
Slide-seqV2, is that data points are not necessarily representative
of single cells. Even in near single-cell resolution spatial
transcriptomic technologies such as Slide-seqV2, while data
points are about the size of a single cell, their fixed locations
may overlap with and capture mRNA from multiple cells. This is
particularly apparent when spatial transcriptomics technologies
are applied to kidney tissue, wherein the cell type landscape is
dense and complex (Chabardès-Garonne et al., 2003; Raghubar
et al., 2020). As a result, one collective shortcoming of methods
like NMFreg and Seurat transfer learning is that they assume
a one-to-one relationship between cell types and data points.
More recent approaches have tried to dissect the multifaceted cell
type profile of spatial transcriptomics spots, leading to a higher-
resolution understanding of cell type distributions across tissue
space. One method is RCTD, or robust cell type decomposition
(Cable et al., 2021). RCTD leverages a generalized linear model
for the total counts per gene on each data point. Specifically,
counts are assumed to be Poisson distributed with the rate
parameter being the product of the total molecules corresponding
to a query data point and a mixture metric representative of
the contribution of each gene to all cell types. In particular, one
component of the mixture metric is the weighted sum of the
average gene expression profiles per cell type (derived from a
scRNA-seq reference dataset). One notable asset of RCTD is that
it explicitly incorporates into its model platform effects that may
mask true biological signals. Ultimately the weights that best
fit the observed gene counts in a query data point indicate the
proportions of each cell type captured by this data point.

A second example of a method that is able to decompose
spatial transcriptomic spots into multiple cell types is SPOTLight
(Elosua-Bayes et al., 2021). SPOTLight follows the same
trajectory as NMFreg, using both NMF and NNLS at its essence,
but incorporates a more biologically driven initialization step and
additional NNLS step. First, SPOTLight learns a k-dimensional
set of factors (k = number of cell type categories) from a scRNA-
seq reference via NMF. While the initial factorization may be
chosen to be random, here, the authors chose to initialize the
matrices so that they encode gene markers for each cell type in the
first matrix, and cell type identities of cells in the second matrix.
NMF is then run to find the factorization of genes by factors
and factors by cells that best fits the scRNA-seq reference. An
initial round of NNLS derives the loadings of the basis of factors
defined in the previous step for every spatial transcriptomics spot.
A second round of NNLS formalizes the relationship between
spots and cell types as follows: First, it defines a matrix of factors
by cell types, where every column represents the median factor
profile per cell type (derived from the first NMF step). Second,
the spatial transcriptomic spots are decomposed into a weighted
combination of these cell type profiles.

In comparison to RCTD, SPOTlight does not account for
platform effects. On the other hand, RCTD has two modes:
doublet, which assumes a maximum of two cell types per
data point and full, which allows for >2 cell types. The
authors forewarn that performance is largely dictated by the
mode that the user opts for; in particular, full mode may be
subject to overfitting the data. In the context of the kidney,
which is complex and tightly structured, doublet mode is not
a safe assumption to make. On the other hand, SPOTlight
does not make this distinction and searches for the maximum
number of cell types, and its proven accuracy is based
on this framework.

Additional notable methods have been developed to increase
our confidence of both singular and multiple cell type calls per
spot. Confidence in cell type classifications can be hindered
by the sparse UMI-capture rate of spatial transcriptomic spots
in comparison to scRNA-seq. FIST addresses this issue by
imputing transcriptomes based on spatial relationships of data
points (Li Z. et al., 2021). SPICEMIX utilizes both intrinsic
transcriptomic information and the spatial relationships of
data points to infer cell type identities (Chidester et al.,
2021). Cell2Location utilizes a Bayesian model to predict cell
type identities (Kleshchevnikov et al., 2020). Lastly, CellDART
tackles the problem of identifying the cell type composition
of each spot by leveraging neural networks (Bae et al.,
2021).

SPATIAL CURATION OF CELL TYPE
IDENTITIES

The cell type identities assigned from the observed gene
expression markers through computational techniques is a noisy
estimate. For example, the set of mRNAs detected in a 2-D
plane might not be representative of the global distribution.
As a result, it is advantageous to have prior knowledge of the
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FIGURE 1 | Mapped cell types in human and mouse kidney tissue. In Slide-seqV2, a 10 µm cryosection of kidney tissue is melted onto an array containing 10 µm
beads which bind to messenger RNA. Once library preparation is complete, spatially barcoded cDNA corresponding to each bead is assigned a cell identity using
Seurat transfer learning. Example mouse, human cortex, and human medulla tissue with all cell types mapped are shown. Individual mappings of podocytes,
proximal tubules, and thick ascending limbs are shown for the mouse and human cortex arrays, while vascular smooth muscle, collecting duct principal cell, and
thick ascending limb are shown for the human medulla array. Scale bars = 500 µm.
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spatial distribution of cell types across cross-sectional tissue space
as a method of further filtering out noisy cell type calls. For
example, we know that podocytes occur solely within circular
structures called glomeruli (Garg, 2018), and distal convoluted
tubules (DCT) and principal cells of the collecting duct (CD-
PC) form tubular structures (McCormick and Ellison, 2015). In
our work, we have implemented automated methods to identify
and filter out isolated podocyte or distal tubule calls that do not
occur within these denser structures. Specifically, cell type calls
that have less than k nearest neighbors with the cell type identity
of interest are filtered out (Marshall et al., 2021).

Furthermore, we can use prior knowledge about the known
vicinity of multiple cell type classes to hone in on biologically
sensical cell type calls. For example, granular cells, macula densa,
and glomeruli are known to be adjacent to each other in a
structure called the juxtaglomerular apparatus (JGA)(Briggs and
Schnermann, 1996). The polygon encapsulating each of these
structures can be found and a filtration system can be set up
where only those within x units of each other are maintained.
Similarly, intercalated cells of the collecting duct (CD-IC) occur
within larger tubular structures made up of CD-PC (Rao et al.,
2019). Again, we can isolate instances of CD-IC that occur within
x units of the edge of any CD-PC structure.

Lastly, certain cell types are thought to occur only within
certain regions of tissue. In the kidney, two such regions are
the cortex and the medulla. Our prior knowledge (Kriz and
Kaissling, 2008) suggests that cell types belonging to glomerular
structures (i.e., podocytes, mesangial cells, and endothelial cells)
and proximal tubule cells occur only within the cortex. On the
other hand, DCT, CD-IC, CD-PC, and the thick ascending limb
(TAL) are enriched and form dense structures within the medulla.
We can use our knowledge of these distributions of cells across
the cortex and medulla to delineate the two regions, and further
filter cell types that are called in the unlikely zones.

Not only are cell type calls trusted based on the agreement
between their spatial distribution and known morphology of
kidney tissue, but we can also verify their identities by looking
at the relative expression of known cell type marker genes.
Furthermore, cell type proportions can be computed and
compared between Slide-seqV2 arrays and Hybridization Chain
Reaction (HCR) images (Choi et al., 2018; Marshall et al., 2021).

DOWNSTREAM ANALYSES

Once cell type identities are well-defined across spatial
transcriptomic data, the spatial distribution of data points
can be explored at two levels: (1) cell types and (2) gene
expression profiles within certain cell types. In terms of the
former, we can simply ask what the cell type composition looks
like in a tissue section at large, or in the medulla or cortex regions.
Furthermore, we may be interested in the neighborhoods of
certain cell types. That is, what cell types often neighbor a cell
type of interest. In our work, we target cell type neighborhoods
of Trem2+ and LYVE1+macrophages using k nearest neighbors
(Marshall et al., 2021). Lastly, we can look at the morphology of
cell type structures. Utilizing computational geometry (Gillies

et al., 20071; Bellock et al., 2021), we can compute the convex
hull or alpha shape of the coordinates of cell types, and compute
the area of these polygons. We can then ask if, on average,
these metrics shift across groupings of arrays (e.g., healthy and
diseased samples).

The full potential of spatial transcriptomics arises when we
look into the spatial distribution of cell types, paired with their
gene expression profiles. Searching for spatially non-random
distributions of gene expression can be done independent of
cell type information, but it is hard to distinguish gene hits
that are simply markers for cell types, which themselves are
characterized by distinct spatial organization. For this reason, it
is useful to look for spatially non-random genes within specific
cell types. Several methods currently exist that accomplish this
task of discovering spatially non-random genes. In the first
Slide-seq paper (Rodriques et al., 2019), the authors presented
a permutation-based approach, which compares the distribution
of randomly selected beads (while accounting for the total
number of transcripts for each bead) with the distribution
of beads expressing the specific gene of interest. They also
defined spatially overlapping/anticorrelating gene pairs, regional
gene enrichment and other interpretable measures using similar
permutation based methods, to tackle important biological
questions such as quantification and visualization of local
transcriptional responses to injury. It is notable, however, that
the permutation processes they used were time-consuming and
included manual downstream filtering.

Another study introduces SPARK (Sun et al., 2020), which
utilizes a generative, generalized linear model, argued to be more
statistically robust and computationally efficient than preceding
methods. It assumes that gene counts can be modeled by an
over dispersed Poisson distribution, where the rate parameter is
dictated by a non-spatial component (weighted sum of covariates,
including batch information, cell-cycle information etc.), and
a spatial component, dictated by either a gaussian distribution
(representative of a localized gene expression pattern) or periodic
distribution. Each component has a different variance, and
the method addresses the null hypothesis that the variance
of the spatial component is 0. The SPARK developers argue
that a generative statistical model is far more efficient than
permutation-based approaches.

Another unique advantage of coupling gene expression data
with spatial information is inferring cell interactions. Previously,
cell interactions were drawn from scRNA-seq, identifying ligand-
receptor co-expression across cell type pairs (Cabello-Aguilar
et al., 2020; Lu et al., 2021). However, there was no way of
knowing if identified signaling was truly occurring between cell
types in close vicinity to each other. With the onset of new
spatial transcriptomics technologies, new methods have been
developed to increase our confidence in identifying signaling
between cell types by accounting for spatial information. Giotto
looks for coexpression of ligand-receptor pairs, specifically within
cell types in close vicinity to each other (Dries et al., 2021b),
while MESSI is a method that uses multi-task learning to

1Gillies, S., et al. (2007). Shapely: Manipulation and Analysis of Geometric Objects.
Available online at: https://github.com/shapely/shapely/blob/main/CITATION.txt
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predict response genes to intracellular and intercellular signals,
considering expression from neighboring cells (Li D. et al., 2021).

CONCLUSION

In this manuscript, we have reviewed the biological and
computational basis of spatial transcriptomics analysis, with an
example of cell type mapping and downstream applications in
kidney tissue. Spatial transcriptomics technologies are evolving
at a rapid pace and extending beyond transcriptomics into
metabolomics and proteomics (Lundberg and Borner, 2019;
Ganesh et al., 2021; Yuan et al., 2021). The integration of unbiased
spatial omics technologies will provide a powerful set of tools
to characterize disease processes in intact tissue (Dries et al.,
2021a). We hope that these technologies will not only develop
data rich atlases of healthy and diseased tissues, but also provide
a platform for advances in the fundamental understanding of
disease mechanisms and highlight new therapeutic targets.
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While it is impossible to deny the performance gains achieved through the incorporation 
of deep learning (DL) and other artificial intelligence (AI)-based techniques in pathology, 
minimal work has been done to answer the crucial question of why these algorithms 
predict what they predict. Tracing back classification decisions to specific input features 
allows for the quick identification of model bias as well as providing additional information 
toward understanding underlying biological mechanisms. In digital pathology, increasing 
the explainability of AI models would have the largest and most immediate impact for the 
image classification task. In this review, we detail some considerations that should be made 
in order to develop models with a focus on explainability.

Keywords: digital pathology, deep learning, artificial intelligence, explainability, interpretability, machine learning, 
image analysis

INTRODUCTION

In recent years, the use of artificial intelligence (AI) to classify, segment, and otherwise gain 
new understanding of medical data has experienced rapid growth. The incorporation of AI 
in histopathology has great potential, providing pathologists with the ability to quickly render 
diagnoses for patients in a reproducible, objective, and time-efficient manner. Recent technological 
advances including the growing popularity of histology slide digitization and accessibility of 
high-powered computational resources have given rise to a field now referred to as digital 
pathology (Al-Janabi et  al., 2012; Bera et  al., 2019; Niazi et  al., 2019). While the field of 
digital pathology has benefited from the advances made in more general domains of AI, it 
is important to remember the unique considerations that must be  made when attempting to 
understand biological mechanisms. Leveraging domain knowledge held by the medical community 
is crucial in the development of AI-powered frameworks with a far-reaching impact on 
patient outcomes.

One of the best areas to study the impact of explainability is for the task of histopathological 
image classification (Holzinger et al., 2017; Pocevičiūtė et al., 2020). In current practice, pathologists 
looking at biopsy images synthesize available information based on their decades of education 
and experience in order to make diagnostic decisions. If a pathologist is asked to explain what 
specifically influenced their decision, they are able to indicate specific areas of the slide that 
contain lesions, cellular characteristics, or staining intensity variations that they know are associated 
with a particular disease. This interpretation by pathologists is the “gold standard” of an explainable 
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histology system. However, this kind of patient-pathologist 
consultation is a rare occurrence in current practice despite 
demonstrated patient interest, particularly in cases of life-changing 
diagnosis (Gutmann, 2003; Manek, 2012; Lapedis et  al., 2019). 
By incorporating AI-driven pipelines into their workflow, 
pathologists can greatly increase both the efficiency of diagnoses 
and their quantitative support. Complex computational models 
designed to tackle uncertainty through continuous exposure to 
diverse sets of data and intensive pathologist involvement 
represent a growing area of personalized medicine. Integrating 
prior medical knowledge with modern data science is the 
fundamental goal of Explainable AI, a major focus of this review.

Explainable AI is far from a novel concept in the machine 
learning (ML) community (Goebel et  al., 2018; Tosun et  al., 
2020a,b). While the presentation of new approaches for post-
hoc explainers of deep convolutional neural networks (CNNs) 
is outside of the scope of this review, there are a few simple 
steps that can increase the interpretability and explainability 
of an AI-driven study (Figure  1). These steps include as: 
selection of representative units at appropriate scales, extracting 
quantitative features to discriminate informative units, and 
aggregating information on the whole slide image (WSI) level 
in order to generate patient-level conclusions.

The rest of this review will be organized following the above 
steps, with a focus on presenting the benefits and drawbacks 
of specific approaches in the current literature.

DEFINING REPRESENTATIVE UNITS

The inherent structure of data for medical ML tasks is hierarchical, 
consisting of multiple levels of resolution and detail (Figure 1). 

At the highest level, of course, is the patient. Within each 
patient, we  have the results of tests, biopsies, and scans that 
give pathologists a look into the state of the patient’s health. 
In some cases, the results of genetic tests are also available 
which provide even finer scale information at the level of the 
DNA. Integrating information from lower-levels in order to 
make conclusions on the patient-level can be  readily handled 
within a multi-instance learning (MIL) framework (Dietterich 
et  al., 1997). The original example case of MIL given by 
Dietterich et  al. describes a locked door for which there are 
several key rings available which might contain the correct 
key (Dietterich et al., 1997). Assuming the forgetful key master 
only knows which key rings contain keys that fit that door, 
we can use MIL to learn characteristics of keys on the positively 
labeled key rings from which predictions can be  drawn for 
subsequent key rings. In the context of histology slides, WSIs 
from each patient are treated as the key rings (“bags” in MIL 
terminology) where the keys (“instances” in MIL terminology) 
are either individual pixels, patches with much smaller spatial 
dimensions than the full image, or annotated sub-structures 
within the image (Campanella et  al., 2019; Hao et  al., 2019; 
Diao et  al., 2021; Lu et  al., 2021). In digital pathology, how 
these instances are defined can markedly impact how the 
decisions made by a network can be  interpreted in a 
biological context.

Unlike traditional image classification datasets like ImageNet 
or MS COCO, histology datasets contain images that are 
substantially larger in pixel dimensions (Deng et  al., 2009; Lin 
et  al., 2014). It is not unusual for WSIs to reach into the 
gigapixel dimensions, often with only a small fraction of input 
pixels containing tissue. Gilbertson et  al. found that prior to 
employing JPG2000 compression, a WSI system could output 

A B

FIGURE 1 | Defining representative units. (A) Internal hierarchy of medical data. Each tier represents an increasing complexity or resolution of underlying biological 
units.  At the base of this pyramid is shown the two different methods for defining representative units in a particular study. (B) Consequences of using a 
patch-based instance definition include the partitioning of functional sub-units across multiple patches.
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as much as 2.7 GB of imaging data per square centimeter 
(Foran et  al., 1997; Gilbertson et  al., 2006). In order to enable 
DL-based analyses using data from WSIs, it is necessary to 
load each training image into the computer’s memory. Hardware 
memory constraints prevent the use of entire WSIs from being 
used as individual training examples. A common approach 
used by digital pathology researchers to circumvent memory 
limitations when using WSIs in conjunction with DL algorithms 
is to break up the image into patches of equal spatial dimensions. 
These patches typically contain sections of tissue between 40 
and 250 kilopixels (0.01–0.625 mm2 with 0.5 μm/pixel resolution). 
While several existing works have achieved impressive 
performance treating these image patches as instances, 
we contend that the highest amount of explainability is obtained 
by instead using biologically relevant sub-compartments. Breaking 
the image into functional sub-units as opposed to arbitrarily 
assigned blocks has a better chance of conveying the biological 
relevance of each input object than when it is mixed in with 
other structures (Figure  1). Returning to the analogy of the 
key rings and the locked door, if our key ring contained 
thousands of keys, we  can imagine that more is learned about 
what key will unlock the door when we  focus on extracting 
features from each of these keys individually instead of the 
different parts of multiple keys grouped together.

Previous studies have been carried out with this principle 
in mind. Diao et al. trained a pair of CNNs to segment specific 
cell types and tissue regions from which they calculated 
quantitative features (Diao et  al., 2021). This process allowed 
them to trace back their model predictions to specific cell or 
tissue types which allowed for simple localization of informative 
regions (Diao et  al., 2021). Similarly, another study by Wang 
et  al. developed a CNN to segment tumor regions from lung 
adenocarcinoma slides from which a set of 22 morphological 
features were used in order to predict survival probability 
(Wang et  al., 2018). In both examples, CNNs were trained 
using pathologist annotations to efficiently generate datasets 
of specific cell and tissue types. By smartly selecting representative 
sub-compartments within large WSIs, model explainability is 
substantially increased in this study.

QUANTITATIVE FEATURE EXTRACTION

After selecting representative sub-units within a WSI, the next 
step in the pipeline should be  to derive a way to compare 
these sub-units in order to assess the influence of treatment 
or disease in each of the provided groups. The decision of 
what type of features to extract from image data can have a 
substantial impact on the interpretability of the final results.

Standard DL approaches utilize latent features, defined as 
the pooled output of many convolutional filters, in order to 
classify images (Figure  2). The benefits of using this approach 
are that researchers are able to generate an arbitrarily large 
number of fine-grained features which have been shown to 
be  highly discriminative. However, the way in which a 
computational model looks at image data and how a pathologist 
looks at image data differ immensely. Pathologists are trained 

to seek out particular lesions or cellular abnormalities that are 
known to be  prognostic markers. When going through a WSI, 
pathologists record whether or not specific lesions were observed 
and at what frequency. Limitations with this kind of information 
include the requirement of an expert observer in order to properly 
catalog which results in a much larger amount of time needed 
per slide compared to fully computational methods. Furthermore, 
the semi-quantitative or qualitative nature of this kind of 
information can have a negative impact on inter-rater agreement.

The middle ground between the above two categories of 
features is referred to as hand-engineered features, which include 
sets of quantitative measures to describe the size, shape, texture, 
color, and proximity for given objects in images (Figure  2). 
These features can either directly relate to known morphological 
changes that are associated with disease, e.g., glomerular area 
in diabetic nephropathy, or indirectly examining qualitative 
attributes, such as the loss of mesangial matrix (mesangiolysis) 
through the calculation of several texture and color features. 
The specificity of hand-engineered features can also be modified 
to focus on sub-regions within each image through the use of 
additional segmentation methods. Color deconvolution, first 
proposed by Ruifrok et  al. for the separation of 
immunohistochemically stained compartments, allows for the 
efficient segmentation of areas according to their biological 
properties (Ruifrok and Johnston, 2001). Studies, such as those 
by Yu et  al. and Zhan et  al., make use of an open-source 
software known as CellProfiler to quickly generate a large 
number of these hand-engineered features (Kamentsky et  al., 
2011; Yu et  al., 2016; Zhang et  al., 2019). CellProfiler provides 
the user with a wide variety of segmentation tools in a user-
friendly interface for repeatable application to large image datasets 
(Kamentsky et al., 2011). More problem-specific feature extraction 
pipelines can incorporate existing domain knowledge as they 
condense the total amount of features to those that are known 
to be  informative for that particular task (Ginley et  al., 2019).

EXPANDING PREDICTIONS TO THE 
PATIENT LEVEL

After creating a quantitative understanding of features captured 
in each representative unit from a WSI, it now becomes necessary 
to understand the influence of each one of those units in the 
broader context of the patient. Modeling the contributions of 
each sub-unit on the final classification is a popular problem 
in the field of MIL and it is important that the manner in 
which instances are combined be  interpretable to pathologists. 
Classical MIL techniques, such as Expectation Maximization-
Diverse Density (EM-DD) and Axis-Parallel Rectangles, have 
demonstrated significant performance in defining bag-level 
distributions of data given feature values for weakly supervised 
tasks (Dietterich et al., 1997; Zhang and Goldman, 2001; Foulds 
and Frank, 2010; Carbonneau et al., 2018). Modern MIL approaches 
in digital pathology are designed to aggregate high dimensional 
features that are used by DL algorithms (Cosatto et  al., 2013; 
Campanella et  al., 2019; Sudharshan et  al., 2019; Yao et  al., 
2020). Due to the stereological nature of renal biopsies, where 
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it is not feasible to sample the entire kidney tissue, it is often 
the case where a small area of pixels contributes highly to the 
final WSI diagnosis. To best mimic this natural decision making 
procedure, some researchers have been incorporating recurrent 
neural networks (RNNs) and attention-based methods to iteratively 
learn to select informative regions from which patient-level 
conclusions are drawn. Campanella et  al. employed an RNN 
that combined the influences of the most “suspicious” patches 
in order to render a diagnosis (Campanella et  al., 2019). The 
most “suspicious” patches consisted of those with the highest 
ranked tumor probability by a prior CNN classifier. By using 
this method, authors were able to trace back their model’s 
diagnostic predictions to a subset of image regions containing 
patches with the highest probability of belonging to the tumor 
class. Ginley et  al. also demonstrated the efficacy of an RNN 
to aggregate handcrafted feature values for renal glomeruli 
presented as a sequence within each renal biopsy (Ginley et  al., 
2019). For their work, they were more interested in determining 
the most influential hand-engineered features as opposed to 
most influential glomeruli, which they determined using a 
sequential dropout procedure for each feature to measure predictive 
value. Attention modules were incorporated into a CNN 
architecture by Ilse et  al. in order to differentially weight input 
patch influences on image class prediction (Ilse et  al., 2018). 
Integrating how patient-level conclusions are deduced from large 
input images ensures that the result is both accurate 
and interpretable.

INCORPORATING BIOLOGICAL 
INTERPRETABILITY

Strict criteria for network interpretability ensure that the model 
correctly assesses a candidate WSI based on etiologic features 
that can be  interpreted by pathologists. To accomplish this, 
computational scientists must ensure that the networks they design 
are not only able to accurately diagnose biopsies, but also allow 
for the isolation and characterization of informative regions. This 
characterization process should account for the inherently 
hierarchical nature of medical data to allow for quick determination 
of important areas in the slide at multiple levels of magnification. 

By incorporating these considerations, computational networks 
can better mimic the “gold standard” of diagnostic explainability.

Methods that seek to determine the focus of Neural Network 
(NN) models after training are referred to as “post-hoc” attention. 
This includes popular methods, such as saliency maps, 
deconvolutional networks, Grad-CAM, and DeepLIFT (Zeiler 
et  al., 2010; Simonyan et  al., 2013; Selvaraju et  al., 2017; 
Shrikumar et al., 2017; Figure 3). While the internal operations 
vary, the output of each of these methods is a pixel-wise 
importance value for a specific classification output that is 
typically displayed as a heatmap overlaid on a tissue region. 
In addition to being a valuable tool for explaining the decisions 
made by a CNN, the authors of Grad-CAM also demonstrated 
how output heatmaps can be  used as weak localization cues 
in a weakly supervised segmentation task (Selvaraju et  al., 
2017). When paired together with instance definition of functional 
sub-units, post-hoc techniques like Grad-CAM can be powerful 
tools in translating network predictions to approachable 
visual displays.

DISCUSSION

Throughout this review, we  have assessed different works for 
their ability to provide users with sufficient levels of 
interpretability. In the field of digital pathology, interpretability 
is a critical feature of model design to ensure consistency and 
quality of patient treatment. Previous work by a mixture of 
institutions (academic, commercial, and regulatory) has 
highlighted concerns where AI algorithms have either introduced 
or mirrored systemic biases in their calculations (Minssen et al., 
2020; Mehrabi et  al., 2021). Without providing guidance to 
computational models that is based on prior knowledge, the 
model is forced to establish its own set of criteria that is not 
interpretable to a human observer. Through the incorporation 
of careful instance definition and hand-engineered features, 
the quality of algorithms using histopathological data can 
be  elevated to the point that they are trusted for a greater 
range of applications. Model trust, reliability, and robustness 
require careful domain-specific considerations to be  made so 
that data are appropriately processed to generate explainable 
results (Table  1).

FIGURE 2 | Extracting quantitative features. Different types of quantitative features extracted from images in order to make classifications using ML algorithms.
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TABLE 1 | Glossary of terms.

Acronym used Full expansion Definition

DL Deep Learning A sub-field of Machine Learning and Artificial Intelligence where the final predicted value given an input is the result of the 
aggregation of information from many intermediary layers.

AI Artificial Intelligence A simulation of human intelligence by computers in order to solve complex problems.

ML Machine Learning Often used interchangeably with Artificial Intelligence, Machine Learning describes a set of algorithms wherein a 
computer learns to solve problems by analyzing input samples and their corresponding labels.

CNN Convolutional Neural 
Network

A type of Machine Learning algorithm commonly used to classify images. Many image filters are compounded to extract 
information from images using convolution.

WSI Whole Slide Image A digitized image of a histology slide captured at full-resolution.

MIL Multi-Instance 
Learning

A branch of Machine Learning dealing with data that is organized into groups.

EM-DD Expectation 
Maximization-Diverse 
Density

A Multi-Instance Learning algorithm developed to extract characteristics of groups that best separate individual units into 
their respective groups.

RNN Recurrent Neural 
Network

A type of Machine Learning algorithm commonly used to analyze sequences of data.

NN Neural Network A type of Machine Learning algorithm mimicking the flow of information between neurons in the brain.

A
B

C

FIGURE 3 | Incorporating biological interpretability. (A) Input glomerulus image to a CNN trained to predict severity of progression of diabetic nephropathy 
according to Tervaert criteria. (B) Grad-CAM output indicating relative influence of pixels in each region within the original image. (C) Colormap for Grad-CAM 
heatmap illustrating degree of influence of a particular region on the decision of a network.
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The kidney is composed of heterogeneous groups of epithelial, endothelial, immune, and 
stromal cells, all in close anatomic proximity. Spatial transcriptomic technologies allow 
the interrogation of in situ expression signatures in health and disease, overlaid upon a 
histologic image. However, some spatial gene expression platforms have not yet reached 
single-cell resolution. As such, deconvolution of spatial transcriptomic spots is important 
to understand the proportion of cell signature arising from these varied cell types in each 
spot. This article reviews the various deconvolution strategies discussed in the 2021 
Indiana O’Brien Center for Microscopy workshop. The unique features of Seurat transfer 
score methodology, SPOTlight, Robust Cell Type Decomposition, and BayesSpace are 
reviewed. The application of normalization and batch effect correction across spatial 
transcriptomic samples is also discussed.

Keywords: spatial transcriptomics, visium gene expression, single nuclear RNA sequencing, nephron, 
acute kidney injury, biopsy specimen

INTRODUCTION

Spatial transcriptomics was selected as Nature’s Method of the year in 2020 (Marx, 2021). As 
presented at the 2021 O’Brien Center for Microscopy workshop, Spatial Transcriptomics (ST) 
represents a powerful tool to reveal in situ transcript expression associated with histopathologic 
features. Countless examples of ST in the development of human tissue atlases are available, 
identifying key features in breast cancer (Wu et  al., 2021), Alzheimer’s progression (Navarro 
et  al., 2020), and cardiovascular development (Asp et  al., 2019). In the kidney, ST has been 
applied to understand the regional expression differences in sepsis and ischemia reperfusion 
injury murine models (Janosevic et al., 2021; Melo Ferreira et al., 2021). A significant limitation 
of some ST techniques is their resolution. For example, Visium Spatial Gene Expression (VSGE) 
platform has a spot size of 55 μm and resolution of 100 μm, which invariably encompasses 
multiple cells within a single spot. Cell atlases of the kidney now include annotation of over 
100 different cell types and cell states from a diverse pool of epithelial, stromal, and endothelial 
cells (Lake et  al., 2021). These classes of cell types align very well with the underlying histology 
of the human kidney (Melo Ferreira et  al., 2021). The 55 μm spot size is approximately the 
size of a cross sectional proximal tubule and will often capture elements of the signature from 
neighboring peritubular capillaries, dendritic cells, and other stromal cells. To better appreciate 
the contribution of less represented cell types to a spot’s signature, strategies can be  employed 
to deconvolute the proportion of signature arising in a spot using single cell and single nuclear 
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RNA sequencing (sc/snRNAseq) cluster identities. This brief 
review outlines the unique features of several deconvolution 
tactics discussed in the O’Brien center workshop. Normalization 
and batch effect correction across ST samples are also discussed.

DECONVOLUTION TECHNIQUES

An example of the output from four deconvolution techniques 
is provided in Figure 1. A human deceased donor nephrectomy 
without evidence of kidney disease was scored to fit the capture 
area of the Visium slide and a high-resolution image of the 

Hematoxylin and Eosin (H + E) stained tissue was taken with 
a Keyence BZ-X810 microscope as mosaics of 10× fields and 
stitched (1A). The histological image of the nephrectomy had 
the glomeruli identified and a magnified region is provided. 
The tissue was permeabilized and mRNA was captured in 
barcoded spots that allowed downstream informatic localization 
of each read after sequencing. The resulting expression of 
NPHS2 (1B) is concentrated over the outlined glomeruli. Due 
to its 55 μm diameter, each spot generally covered multiple 
cell types. Below we present four methods designed to deconvolute 
the constituents of each spot. As a reference, we use a publicly 
available human kidney snRNAseq dataset (Lake et  al., 2019).

FIGURE 1 | Deconvolution techniques in spatial transcriptomics. (A) H + E image of a human nephrectomy sample, (B) NPHS2 (podocin gene) expression localizes 
over glomeruli. (C) Seurat deconvolution in the same nephrectomy field. (D) Magnified field of H + E image. (E) Cell type identity legend. (F) Zoomed image of the 
Seurat deconvolution. (G) SPOTlight deconvolution. (H) Robust cell type decomposition deconvolution. (I) BayesSpace Deconvolution. (J) Zoomed field of 
SPOTlight deconvolution. (K) Zoomed field of RCTD. (L) Zoomed field of BayesSpace. Each spot is 55 μm in diameter.
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SEURAT

Seurat is a popular tool to process sc/snRNAseq and ST 
data, with extensive documentation and support from several 
other analysis packages. In its version 3, Seurat introduced 
an anchor methodology to integrate multiple datasets (Stuart 
et  al., 2019) that was further adapted to transfer single-cell 
cluster information to ST. This procedure results in a transfer 
score and the highest score can be  used to label the spots. 
Alternatively, the relative scores can be  displayed in a pie 
chart including the components of cell signature arising 
from multiple single-cell clusters (1C). In the example 
provided, the more prominent scores in the glomeruli spots 
are derived from the podocyte, glomerular capillary 
endothelial cell, and mesangial cell clusters. In the magnified 
region, glomeruli are surrounded by enriched areas of various 
proximal tubule (PT), distal convoluted tubule (DCT), and 
collecting duct (CD) cell signatures, as expected. The Seurat 
pipeline for ST analysis is still under development. For 
example, version 3.6.3 presents remarkable agreement between 
the snRNAseq cell type signatures and the underlying kidney 
histopathology, with the expected proportion of cell signature 
correlating strongly with the quantitative proportions of 
cells in the histology (Lake et al., 2021; Melo Ferreira et al., 
2021). However, we  have noted reduced alignment between 
the histology and snRNAseq cluster identity in Seurat 
version 4.

SPOTLIGHT

The SPOTlight deconvolution method uses a negative matrix 
factorization regression algorithm to define topics as distributions 
of gene expression across cell types in the reference dataset. 
Those topics are then used to define the cell type composition 
of spots and is directly related to cell type expression profiles 
(Elosua-Bayes et al., 2021). The results are given in proportions, 
which are easily interpretable. Its source code was adapted to 
display deconvolution results in three of the four methods 
discussed in this review. In the example nephrectomy 
(Figure  1G), endothelial cell type signatures, both afferent and 
efferent arterioles (AEA) and descending vasa recta (DVR), 
dominated the mapping in the tissue, including spots overlaying 
glomerular histology. Other expected cell types, such as 
podocytes, glomerular capillary endothelial cells, and mesangial 
cells, contributed to the cell signature in a disproportionately 
smaller degree than the underlying histopathology would suggest. 
The macrophage signature also contributed to a large proportion 
of spots in the tubulointerstitium and across the tissue. This 
methodology may require further adjustment of parameters 
for the kidney because so many distinct functional structures 
(glomerulus, PT, DCT, etc.) are located in close proximity to 
each other. In the example provided, the technique identified 
a greater proportion of signature from components that are 
broadly distributed across the whole kidney (like endothelial 
cells and macrophages) rather than specific localized cell types 
(like podocytes or DCT cells). However, SPOTlight provides 

several tools to evaluate and correct the deconvolution method, 
and with adjustments, the alignment between the histology 
and snRNAseq cluster identity can be  improved.

ROBUST CELL TYPE DECOMPOSITION

Robust cell type decomposition (RCTD; Cable et  al., 2021) 
also defines cell type transcriptomic profiles. This approach 
considers each spot as a mixture of cells and fits a statistical 
model to determine each spot composition. Our results 
(Figure 1H) show a large contribution of endothelial cell types 
[afferent arteriole (AEA), DVR] in the glomerular spots, with 
podocytes and the glomerular capillary endothelial cells 
represented to a lesser extent. A very minor contribution is 
observed from the mesangial cell cluster. Across the nephrectomy, 
the contribution of proximal tubules to the signature is 
disproportionately low compared to the histology and the 
collecting duct signature is minor dominant. RCTD potentially 
performs better on other ST technologies (like slideSEQ) where 
more than two cell types are rarely seen underlying a single 
spot (Stickels et  al., 2021). The deconvolution method in the 
algorithm is designed to report the confidence of doublets or 
singlets underlying a spot.

BAYESSPACE

The BayesSpace method approaches deconvolution differently 
than the three previous examples. Instead of deconvoluting 
the cell types of each spot, it aims to increase the spatial 
resolution by interpolating the expression between spots 
(Zhao et  al., 2021). This method applies an unsupervised 
clustering algorithm to the data that requires an a priori 
definition of the number of clusters. It then interpolates 
expression and defines those clusters in higher resolution. 
As an example, we  present the interpolated expression of 
NPHS2 (Figure  1I). The expression interpolation could 
be  useful to predict gene expression in smaller structures. 
The interpolated clusters would be  an excellent target to 
apply cell type decomposition algorithms. However, the Seurat, 
SPOTlight, and RCTD methods are not currently compatible 
with BayesSpace because these methods would require either 
raw counts or method-specific normalized expression to 
integrate with BayesSpace.

NORMALIZATION AND BATCH 
CORRECTION

In an effort to create a spatially anchored atlas of the kidney, 
analysis of multiple ST samples is invariably expected. On the 
VSGE platform, four samples are run in parallel on a single 
slide which can lead to batch effects between slides. Furthermore, 
variations in sample quality can lead to downstream differences 
in the number of reads mapped to exons in each spot. Differences 
in permeabilization time, RNA quality, tissue thickness, and 
tissue sources all contribute to the between sample variability. 
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In sc/snRNAseq, technical variations are reduced through 
normalization and batch correction, typically through programs, 
such as ComBat-seq, Harmony, Liger, and Seurat 3 (Welch 
et  al., 2018; Korsunsky et  al., 2019; Stuart et  al., 2019; Zhang 
et  al., 2020).

To normalize and batch correct ST data, we  provide an 
example of the regularized negative binomial regression 
normalization technique, known as SCTransform (Hafemeister 
and Satija, 2019). To showcase its utility in human samples, 
nine samples across 3 batches were merged via the merge 
function and normalized or batch-corrected via SCTransform. 
Without normalization and batch correction, the ST samples 
exhibited inconsistent expression of the house-keeping genes 
ACTB and GAPDH, demonstrating a potential need for 
normalization when comparing across samples (Figure  2). 
Normalization with SCTransform yielded more comparable 
gene expression of ACTB and GAPDH across samples. The 
inclusion of batch as a variable in the SCTransform tool revealed 
only a minor additional improvement in gene expression 
alignment compared to normalization without a distinct batch 
effect variable. This indicates that technical variation in our 
samples can be  modeled by sequencing depth alone. Together, 

these results suggest SCTransform may be  a useful tool for 
removing intersample technical variation in ST datasets.

CONCLUSION

This brief review presents the result of four common 
deconvolution techniques and a common normalization 
procedure applied to the human kidney, as discussed in the 
2021 O’Brien Center for Microscopy workshop. The VSGE 
platform facilitates direct mapping of expression signatures over 
a H + E stained image. While every organ is different, the 
kidney has many small, functionally distinct parts of the 
nephron, all lying in close proximity to each other. Thus, 
deconvolution of larger spot sizes is essential to mapping the 
ST signatures. Further, normalization and batch effect correction 
are important because an atlas must integrate data from multiple 
sources. The results of the deconvolution methods varied 
considerably, even when interrogating the same field of tissue. 
Some methods yielded signatures approximating the underlying 
histology and others emphasized less abundant cell types. No 
judgment has been made as to whether the cell type proportions 

A B C

D E F

FIGURE 2 | Normalization and batch correction of spatial transcriptomic samples. (A) Uncorrected GAPDH expression across samples. (B) Normalized GAPDH 
expression with SCTransform. (C) Normalization and batch correction were performed by adding a batch as a variable in SCTransform. (D) Uncorrected expression 
of ACTB. (E) Normalized expression of ACTB. (F) Batch-corrected expression of ACTB. Sample A is batch 1, samples B–E are batch 2, and samples F–I are batch 3.
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of a spot signature should parallel the histologic cell type 
distribution or whether certain cell types may have an outsized 
influence on the signature. Differences may arise from how 
each technique handles cell type heterogeneity or variation in 
expression. Further, performance can vary based on the fine-
tuning of parameters; thus, this review is not intended to 
compare of each method’s value. Instead, it merely provides 
an example of the diversity of possible results, depending on 
the approach selected.
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Interpreting tissue architecture plays an important role in gaining a better understanding

of healthy tissue development and disease. Novel molecular detection and imaging

techniquesmake it possible to locatemany different types of objects, such as cells and/or

mRNAs, andmap their location across the tissue space. In this review, we present several

methods that provide quantification and statistical verification of observed patterns in

the tissue architecture. We categorize these methods into three main groups: Spatial

statistics on a single type of object, two types of objects, and multiple types of objects.

We discuss the methods in relation to four hypotheses regarding the methods’ capability

to distinguish random and non-random distributions of objects across a tissue sample,

and present a number of openly available tools where these methods are provided. We

also discuss other spatial statistics methods compatible with other types of input data.

Keywords: transcriptomics, spatial statistics, gene expression, tissue analysis, tissue organization, niches

1. INTRODUCTION

A range of new imaging-based methods make it possible to explore the architecture of tissue
samples both at the transcriptomics and proteomics level. Multiplexed in situ RNA detection
methods (Ke et al., 2013; Shah et al., 2016; Codeluppi et al., 2018; Moffitt et al., 2018; Wang
et al., 2018; Eng et al., 2019) map mRNA molecules at sub-cellular resolution, and multiplex
immunohistochemical staining (Parra et al., 2019), make it possible to detect and identify a large
number of different cell types in the same tissue sample, enabling the discovery of their functional
role inside the tissue architecture (Grün and van Oudenaarden, 2015; Svensson et al., 2018). The
first step toward further interpretation of the data is detection and decoding, or classification, of
each individual object; in this case resulting in maps of the locations of either specific mRNA
molecules or cells.

One of the key challenges in fully exploiting this type of spatially resolved data is the availability
of appropriate computational methods. The second step in interpretation is to be able to quantify
relationships and patterns in an unbiased and reproducible way, and provide confidence measures
for observed patterns as compared to a more randomized organization. This is often referred to as
spatial statistics.

In this mini-review, we focus on spatial statistics applicable to tissue data independent of image
resolution. We start with the assumption that each observed object has a unique position in 2D
tissue space, and is assigned a specific type (e.g., cell type or mRNA species). Further, we assume
that we also want to take the tissue context, and distribution of other objects, into consideration.

Objects can then be presented either as dots, a graph, a density map, or spatially binned counts in
tissue space, as illustrated in Figures 1A–D. In the dot representation (Figure 1A), a different color
would typically be used for each species. In a graph representation (Figure 1B), neighboring objects
are connected. These connections can be restricted to fulfill criteria, such as a maximum number
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FIGURE 1 | Schematic representations of objects, such as cells or mRNAs, in microscopy images, where each dot represents an object, and the color reflects the

object type (where gray is an unspecified type). (A) Simple representation, where each dot has a specific location in 2D tissue space. (B) The same data represented

as a graph, where each dot is a node, and nodes are connected based on a maximum distance criterion. (C) Dots can also be represented by a probability density

map, where warmer colors represent more dense dots, or (D) as counts in fixed spatial bins. Here, bins are squares and warmer colors represent higher object counts

per bin. Spatial statistics are used to prove four different hypothesis (with the top row representing the random case): (H1) Visualization of hypothesis H1: Objects of

type A (green) are non-randomly distributed. (H2) Visualization of hypothesis H2: Objects of type A (green) are non-randomly distributed as compared to the

distribution of other objects (gray) in the same tissue sample. (H3) Visualization of hypothesis H3: Objects of type A (green) and B (blue) are non-randomly distributed

in relation to one another within the distribution of other objects (gray) in the same tissue sample. (H4) Visualization of hypothesis H4: There are groups of object types

(multiple colors in “niches”) that are non-randomly distributed within the tissue sample.

of connections or distance, reflecting a hypothesis on amaximum
distance for interaction. The density map representation
(Figure 1C) translates the object distribution into a probability
map, where high values represent high object concentrations,
but the exact spatial location of objects is lost. Finally, different
types of binning can be applied (Figure 1D), providing a lower-
resolution map with counts of objects per bin.

We review methods that explore the null hypotheses of
randomness for either a single type of objects, pairs of
objects, or multiple types of objects. We have created a set
of synthetic images describing different scenarios of object
distributions within a tissue section, illustrating that the question
of randomness is often relative. We first explore a single type of
objects, as shown in Figure 1H1, and propose the hypothesisH1:
Objects of type A are non-randomly distributed. In a biological
context this could be, e.g., quantifying the distribution of immune

cells in the presence or absence of an infection. If we take the
tissue context (all objects of other types) into account, as shown
in Figure 1H2, the hypothesis becomes H2: Objects of type A
are non-randomly distributed as compared to the distribution of
other objects in the same tissue sample. In a biological context
this could be, e.g., distribution of a certain cell type in tumor and
stroma areas of a tissue. Next, we consider two types of objects,
and their potential interaction or repulsion. This is illustrated in
Figure 1H3, and the hypothesis is H3: Objects of type A and B
are non-randomly distributed in relation to one another within
the distribution of other objects in the same tissue sample. In
a biological context the question could, e.g., be whether cancer
cells interact with endothelial cells or not. Finally, if there are
multiple types of objects, we may want to see if certain groups
of objects tend to coincide and form so-called ’niches’ of unique
combinations of objects in the tissue, as shown in Figure 1H4.
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In this case, we pose hypothesis H4: There are groups of object
types (‘niches’) that are non-randomly distributed within the
distribution of other objects in the tissue sample. This could
be used for finding mRNAs that are co-expressed, where niches
would then correspond to different cell types (Partel andWählby,
2020).

In the following review, we group different spatial statistics
methods according to what types of tissue patterns they
investigate, and also summarize and discuss their theoretical
ability to answer the four hypotheses we pose above.

2. SPATIAL STATISTICS ON A SINGLE
TYPE OF OBJECT

In this section, we describe methods which are capable to
test hypothesize H1 (non-random distribution) and H2 (non-
random distribution, compared to other objects). The input data
can be described as points in space determining the presence of
an object. The main idea is to identify and characterize spatially
variable objects.

2.1. Ripley’s Function
Ripley’s function (Ripley, 1976) measures whether objects with
discrete positions in space (see Figure 1A) follow random,
dispersed, or clustered patterns. For each object, the function
counts how many other objects of the same type appear within
a given distance. Subsequently, the object counts are averaged
over the whole dataset and the number is compared with
the number of objects one would expect to find based on a
completely spatially random pattern (null hypothesis). If the
average number of objects found within the given distance is
greater than for a random distribution, the dataset is clustered
(see green dots in Figure 1H1-down). If the number is smaller,
the dataset is dispersed. Ripley’s K function is generally calculated
at multiple distances allowing detection of pattern distributions
at multiple scales. For example, at short distances, the objects
may be clustered, while at long distances, objects may be
dispersed. This method can be used to test hypothesis H1
(non-random distribution).

2.2. Newman’s Assortativity
Newman’s assortativity (Newman, 2002) evaluates spatial
organization using a graph (see Figure 1B) as input. The
principle is to count existing connections between objects of
the same category and compare these counts to the number
of connections expected at random object distribution (null
hypothesis). This method can be used to test hypothesis H1.
Figure 1H1-up shows no significant difference in the number
of connections compared to a random distribution. However,
Figure 1H1-down indicates that there would be a significant
difference in the number of connections than under the null
hypothesis. The difference between Ripley’s function and
Newman’s assortativity is that Ripley’s forms an overall cluster
analysis providing various evaluations using various distances
while Newman’s tests the dataset as one object determining
clustered patterns. However, the graph structure in Newman’s
assortativity provides more flexibility since graph connections

can be created by different techniques, such as k-nearest
neighbors or Delaunay triangulation.

2.3. Centrality Scores
Centrality scores (Everett and Borgatti, 1999) are based on
computational analysis to show object patterns in a graph
representation (see Figure 1B). This provides awareness of
complicated relations in large graphs. Figure 1H2 can be used as
an example where green dots represent one object type (group
members, e.g., immune cells) and gray dots represent members
of all the other object types (non-group members, e.g., all types
of tumor cells). This method can be used to test hypothesis
H2. There are four different centrality scores: Group degree

centrality is interpreted as a ratio of non-group members (gray)
that are connected to group members (green). Higher values
reveal random distribution. Lower values indicate more grouped
objects. This measure helps to identify crucial clusters in a
graph.Group closeness centrality computes how close the group
(green) is to the non-group members (gray). It is defined as the
amount of non-group members (gray) divided by the sum of
all distances from the group (green) to all non-group members
(gray). Higher values reveal random distribution. Lower values
indicate more grouped objects. Group betweenness centrality

calculates the quantity of shortest paths connecting two non-
group members (gray) while passing through the group (green).
This can be thought of as a measure of cell infiltration. Average
clustering coefficient measures how likely the group members
favor to cluster together.

3. SPATIAL STATISTICS ON TWO TYPES
OF OBJECTS

In this section, we describe methods capable of testing hypothesis
H3: objects of types A and B are non-randomly distributed in
relation to one another within the distribution of other objects
in the same tissue sample. The main idea is to identify if different
types of objects are closer thanwhat would be expected by chance.
It is worth noting that physical closeness is no guarantee for
interaction, but a non-random pattern may indicate involvement
in similar processes.

3.1. Cluster Co-occurrence Ratio
Cluster co-occurrence ratio (Tosti et al., 2021) describes co-
occurrence of two types of objects in the tissue. It measures
the probability that an object of type A appears in a given
distance from an object of type B by taking the ratio between
occurrences of object type A within a distance from object
type B and occurrences of object type A within a distance
from object type B at random (null hypothesis). It is computed
across multiple distances across the tissue area. It measures
the probability that an object of type A appears in a given
distance from conditioned object type B. Figure 1H3-up shows
example of low cluster co-occurrence ratio and Figure 1H3-
down shows example of high cluster co-occurrence ratio within a
short distance.
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3.2. Neighborhood Enrichment Test
Neighborhood enrichment test (Schapiro et al., 2017) identifies
two non-randomly distributed objects types in relation to one
another. The first step is to create a graph (see Figure 1B).
Then two object types are selected (A and B) and the count of
connections between A and B object types (nAB) is compared
to random permutations of the objects (null hypothesis). The
random configuration is set by keeping the object locations
and reshuffling the object identities. Based on these estimates,
expected means (µAB) and standard deviations (σAB) are
calculated for each pair in the randomized dataset. Subsequently,
a Z-score is calculated as, ZAB =

nAB−µAB
σAB

. The Z-score
indicates if an object type pair is over-represented (positive
Z-score, see Figure 1H3-down) or over-depleted (negative Z-
score, see Figure 1H3-up) in the connectivity graph. The
difference between cluster co-occurrence ratio and neighborhood
enrichment test is that cluster co-occurrence ratio evaluates
various distances when determining if two objects types are in
relation to one another while neighborhood enrichment test
examines the dataset as one object determining object relation.
However, the graph structure in Neighborhood enrichment test
again provides flexibility since graph connections can be created
by different techniques.

3.3. Object-Object Correlation Analysis
Object-Object Correlation Analysis (Stoltzfus et al., 2020)
investigates the correlation of different object types within
neighborhoods over the tissue. A neighborhood is a composition
of objects inside a circular area. The neighborhoods’ locations are
uniformly allocated in a grid pattern throughout the space. The
next step is to calculate the Pearson correlation coefficient of two
types of objects within the neighborhoods. This method reveals
which types of objects are associated with each other or unrelated
to each other. Figure 1D shows an example of this neighborhood
representation. The idea is to create this representation of two
object types and then estimate the correlation coefficient across
all overlapping neighborhoods.

4. SPATIAL STATISTICS ON MULTIPLE
TYPES OF OBJECTS

In this section, we describe methods which are capable to test
hypothesis H4 (existence of “niches”). The input data can be
described as points in space determining the presence of the
object types. The main idea is to identify if there are reoccurring
spatial patterns, or ’niches’ of objects, in the tissue.

4.1. Spatial Co-expression Patterns
Spatial co-expression patterns (Dries et al., 2021) identify robust
patterns of object types that follow correlated spatial expression
arrangements throughout the tissue. The first step is to smooth
the object expression over the space by averaging in a grid
or k-nearest neighbor technique. This results in a one density
map for every object type as illustrated in Figure 1C. The
next step is to calculate the Pearson correlation coefficient of
the pair combinations of all object types (e.i., density maps).
Subsequently, similarly co-expressed object types are clustered

together into modules, and averaging them creates meta-object
types to represent the similarly co-expressed object types.

4.2. Spage2vec
Spage2vec (Partel and Wählby, 2020) analyzes the spatial
heterogeneity of complex patterns of objects. The input data
is a graph (see Figure 1B), and it uses a graph representation
learning technique based on a graph neural network (GNN).
During training, the GNN learns the topological structure of each
object’s local neighborhood. It does not require labeled training
data, but learns to find re-occurring patterns by comparing
to a randomization of the data. After training, the observed
patterns are summarized in a lower-dimensional embedding
space that encapsulates high-dimensional information about
each object’s neighborhood. The last step is to cluster the
multidimensional space using an unsupervised classification
method (i.e., Leiden, Traag et al., 2019). Clusters represent
combinations of object types that can be identified as specific
domain types or ‘niches’. Figure 1H4-down shows an example,
where different neighborhood compositions were identified as
different niches. The types of discovered niches can be further
identified by correlation between the object composition of the
niches and e.g., in the case of in situ sequencing data an external
dataset of scRNA-seq signatures. The approach has also been
applied to detect niches in multiplex fluorescence microscopy
data of tissue micro arrays (Solorzano et al., 2021).

4.3. Spot-Based Spatial Cell-Type Analysis
by Multidimensional mRNA Density
Estimation (SSAM)
SSAM (Park et al., 2021) was defined to identify tissue niches
in transcriptomics data. The first step is to create probability
maps of the object types. Kernel Density Estimation (KDE) with
a Gaussian kernel is applied to every object type resulting in a
density map for each object type (see Figure 1C). Then all the
images are put into a stack creating a multi-channel image where
each pixel is a vector describing the local expression profile.
Next, group type signatures are computed by clustering using
Louvain (Blondel et al., 2008) or DBSCAN (Ester et al., 1996),
and outliers (vectors far from their cluster medoid) are removed.
The cluster centroids represent the group-type signatures. The
third step is to generate a group-type map. Each pixel in the
vector field is classified according to the maximum correlation
with the group-type signatures. The group-type signatures can
be taken from the previous step or an external dataset, such as
scRNA-seq. The fourth step is to identify the tissue niches with
definite group-type composition. The composition is computed
in a circular sliding window over the tissue and clustered by
agglomerative hierarchical clustering, merging highly correlating
clusters. Finally, each cluster represents a unique tissue niche, an
example can be seen in Figure 1H4-down where two different
niche types were found.

4.4. Vector Approach
Describing local neighborhoods as vectors of counts of object
types has been suggested in several publications under multiple
names (Stoltzfus et al., 2020; He et al., 2021; Salas et al., 2021).
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TABLE 1 | Overview of the methods’ functionality.

Object Method H1 H2 H3 H4 Toolbox

Single Ripley’s function yes no no no Squidpy, PySpacell, CytoMap

Newman’s assortativity yes no no no PySpacell

Centrality scores no yes no no Squidpy

Two Cluster co-occurrence ratio no no yes no Squidpy

Neighborhood enrichment test no no yes no Giotto, Matisse, Squidpy, histoCAT

Object-Object Correlation Analysis no no yes no CytoMap

Multiple Spatial co-expression patterns no no yes yes Giotto

Spage2vec no no no yes Spage2vec

SSAM no no no yes SSAM

Vector approach no no no yes CytoMap, ClusterMap, Matisse

Here we refer to it as the vector approach. Its goal is to identify
similar neighborhoods across the tissue sample. The first step is
to define the neighborhoods. A neighborhood is a composition
of object types inside a fixed area. The neighborhoods’ locations
can be uniformly allocated in a grid pattern throughout the
space, constructed around each object from the dataset (Stoltzfus
et al., 2020), based on Density peak clustering (He et al., 2021),
or be defined by previously segmented tissue structures (Salas
et al., 2021). Next, each neighborhood is presented as a vector
containing counts of object types normalized, for example,
by dividing each object count by the sum of all counts in
the neighborhood (local normalization) or by dividing each
object count by the sum of all the counts in the sample
(global normalization). The normalized vectors are projected
to a multidimensional space followed by clustering to identify
niches. Examples of supervised clustering methods are common
methods such as k-means and hierarchical clustering, or more
advanced methods such as Self-Organizing Maps (Kohonen,
1982), Gaussian Distribution Model, or DBSCAN (Ester et al.,
1996). Other clustering possibilities are unsupervised approaches
such as Leiden (Traag et al., 2019) or Louvain (Blondel et al.,
2008).

5. TOOLBOXES

Several toolboxes simplifying spatial statistics are available.
Squidpy (Palla et al., 2021) includes four methods from
this review: Ripley’s function, Centrality scores, Cluster co-
occurrence ratio, and the Neighborhood enrichment test. The
toolbox PySpacell (Rose et al., 2019) includes methods such as
Ripley’s function andNewman’s assortativity. CytoMap (Stoltzfus
et al., 2020) includes Ripley’s function, Object-Object correlation
analysis and the Vector approach. Giotto focuses mostly on the
data consisting of coordinates and quantitative information on
multiple measurements per location, but also includes techniques
as such as the Neighborhood enrichment test and Spatial co-
expression patterns. The recently published Matisse (Salas et al.,
2021) includes the Neighborhood enrichment test and the Vector
approach. The toolbox histoCAT (Schapiro et al., 2017) includes
the Neighborhood enrichment test, and Clustermap (He et al.,
2021) includes the Vector approach. Table 1 summarizes these

toolboxes and lists the hypotheses that each of the methods is
capable of testing.

6. DISCUSSION

There aremany publishedmethods for spatial statistics. However,
they differ in the type of input data they can handle. In this
review, we focused on methods where the input data can
be described as points in 2D tissue space representing the
presence of different object types. Another type of input data
consists of coordinates and quantitative information on multiple
measurements per location, as in e.g., spatial transcriptomics
(Larsson et al., 2021). Spatial statistics for exploring this type
of data can focus on a single type of objects, with methods
such as Binary Spatial extracts (BinSpect, Dries et al., 2021),
Getis-Ord General G (Getis and Ord, 2010), Spatial pattern
recognition via kernels (SPARK, Sun et al., 2020), spatialDE
(Svensson et al., 2018), Trendsceek (Edsgärd et al., 2018), Geary’s
c (Geary, 1954) or Moran’s I (Moran, 1950). In the case of
more than a single type of object, there are other methods,
such as Spatially informed ligand-receptor pairing (Dries et al.,
2021), Object-Object Correlation Analysis (Stoltzfus et al., 2020)
and Spatial domain detection (Dries et al., 2021) that can be
applied for exploring co-locations, potential interactions and
niche discovery.

The methods mentioned above are also applicable on the
type of data we present in this paper (input data as points in
space determining the presence of the object types) but the data
would have to be pre-processed by transferring dots into spatially
binned counts for all object types, as exemplified for a single
object type in Figure 1D. With such a representation, spatial
resolution would be lost, but data could be analyzed by methods
such as Trendsceek and SPARK.

Many of the methods for analyzing multiple object types
include clustering as a final step of the analysis. Different
clustering algorithmsmight lead to different results when applied
to the same data, and should be carefully selected. It should
also be noted, that proving or disproving a hypothesis regarding
spatial statistics will depend on quality and amount of input data.
One should also keep in mind that a 2D section may not always
be a good representation of a true 3D structure such as an organ.
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The kidney functions through the coordination of approximately one million
multifunctional nephrons in 3-dimensional space. Molecular understanding of the
kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney
homogenate, but these approaches do not resolve cellular identity and spatial
context. Mass spectrometry analysis of isolated cells retains cellular identity but
not information regarding its cellular neighborhood and extracellular matrix. Spatially
targeted mass spectrometry is uniquely suited to molecularly characterize kidney
tissue while retaining in situ cellular context. This review summarizes advances in
methodology and technology for spatially targeted mass spectrometry analysis of
kidney tissue. Profiling technologies such as laser capture microdissection (LCM)
coupled to liquid chromatography tandem mass spectrometry provide deep molecular
coverage of specific tissue regions, while imaging technologies such as matrix assisted
laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile
regularly spaced tissue regions with greater spatial resolution. These technologies
individually have furthered our understanding of heterogeneity in nephron regions such
as glomeruli and proximal tubules, and their combination is expected to profoundly
expand our knowledge of the kidney in health and disease.

Keywords: mass spectrometry, kidney, proteomics, metabolomics, lipidomics, multimodal imaging, HuBMAP,
KPMP

INTRODUCTION

The kidney is a complex and vital organ that filters waste products from the blood, stabilizes
electrolyte and water content, and secretes essential hormones (Tryggvason and Wartiovaara, 2005;
Ferraro and Fuster, 2021). It functions through nuanced coordination of approximately one million
nephrons in 3-dimensional space. Nephrons can be further sub-divided into functional tissue
units (FTUs) including vasculature, ducts, tubules, and glomeruli, each with unique molecular
functions. FTUs are influenced by proximity to other structures and location within the organ.
Individual glomeruli and tubules vary in vascular architecture, molecular environment and drug

Abbreviations: MS, mass spectrometry; FTU, functional tissue unit; PT, proximal tubule; Glom, glomerular; CD, collecting
duct; microPOTS, microliter processing in one pot for trace samples; LCM, laser capture microdissection; microLESA,
micro, liquid extraction surface analysis; MALDI, matrix assisted laser desorption/ionization; DESI, desorption electrospray
ionization; IMS, imaging mass spectrometry.
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distributions (Kang et al., 2005; Postnov et al., 2015; Kafarov
et al., 2020). This heterogeneity is especially important in the
context of renal disease, which can uniquely impact individual
FTUs (Weening et al., 2004; Fogo, 2015; Aguayo-Mazzucato
et al., 2017). Traditionally, our molecular understanding of
renal disease comes from global transcriptomic, proteomic, and
metabolomic analyses of kidney lysates. These bulk analyses offer
deep and comprehensive molecular coverage and are invaluable
for sample profiling and disease biomarker identification (Mayer
et al., 2012). However, cell identity and spatial context are
lost when tissues are homogenized, and molecular changes at
the cellular or FTU level are diluted in bulk tissue analyses.
This can result in the lack of detection of inter-individual
and disease-associated variation, as well as inability to identify
rare cell populations. Molecular characterization of dissociated
cells provides cellular information lacking in bulk analyses
but does not retain spatial context (Koehler et al., 2020).
In addition, enzymatic dissociation of tissues can disrupt the
cellular environment and preclude analysis of extracellular
matrix molecules that can be relevant in fibrotic kidney disease
(Autengruber et al., 2012). Recently, spatially targeted mass
spectrometry (MS) technologies have emerged that provide a
deeper understanding of the role localized cell types, cellular
neighborhoods, and FTUs play in underlying pathomechanisms
(Autengruber et al., 2012; Ryan et al., 2019). Each of these MS
technologies has unique benefits and drawbacks for the study
of human organs. This review highlights the application and
potential of spatially targeted MS to illuminate the underlying
molecular drivers of kidney health and disease.

SPATIAL MASS SPECTROMETRY
TECHNOLOGIES

Spatially targeted MS technologies are characterized as either
profiling experiments, where a single spectral signature is
collected from a discrete cell type or FTU, or as imaging
experiments where MS data are collected from an array of
measurement locations (i.e., pixels) to visualize molecular
distributions in situ (Figure 1). Micro-liquid extraction surface
analysis (microLESA) is a profiling approach using a robotic
fluidic printer to deposit trypsin droplets to specific tissue regions
for surface protein digestion (Ryan et al., 2019; Guiberson et al.,
2021). Peptides are then recovered using a larger droplet and
subjected to liquid chromatography-tandem MS (LC-MS/MS)
for protein identification. Laser capture microdissection (LCM)
is also commonly employed in profiling experiments and
involves dissection of specific sample regions using a cutting
laser and subsequent collection into a sample tube using laser
propulsion. Collected regions can be analyzed individually or
pooled for protein, lipid, or small metabolite profiling (Datta
et al., 2015; Knittelfelder et al., 2018; Sigdel et al., 2020). Although
the achievable spatial resolution is limited, LCM can also be
integrated into quasi-imaging workflows by dissecting tissue
in a grid pattern in which each collected square becomes a
voxel (Piehowski et al., 2020). Each region can be subjected to
proteomic analysis using methods specialized for low sample

input such as nanodroplet processing in one pot for trace
samples (NanoPOTS), and voxels can be reconstructed to show
intensity variation throughout the sample (Zhu et al., 2018;
Piehowski et al., 2020).

Imaging mass spectrometry (IMS) is a powerful technology
to construct spatial maps of analytes without labeling and in
an untargeted manner (Caprioli et al., 1997; Gode and Volmer,
2013; Norris and Caprioli, 2013; Wu et al., 2013; Nilsson et al.,
2015; Spengler, 2015). The most common IMS methods use
soft ionization such as matrix-assisted laser desorption (MALDI)
and desorption electrospray ionization (DESI) (Roach et al.,
2010; Eberlin et al., 2011). In MALDI IMS workflows, tissue
samples are coated with a matrix that assists with desorption and
ionization of endogenous analytes (Franz and Michael, 2000).
The tissue surface is then ablated using a laser in a raster pattern,
where each laser spot produces a spectrum detecting hundreds
to thousands of ions (Caprioli et al., 1997; Norris and Caprioli,
2013; Spraggins et al., 2019; Martín-Saiz et al., 2021). Spectral
information from each laser spot (i.e., pixel) is reconstructed
to show relative analyte intensity and distribution throughout
the sample (Caprioli et al., 1997; Norris and Caprioli, 2013;
Spraggins et al., 2019; Martín-Saiz et al., 2021). DESI and nano-
DESI workflows use ambient liquid extraction of small tissue
regions at regularly spaced measurement regions followed by
introduction to a mass spectrometer inlet or primary capillary
for electrospray ionization (Roach et al., 2010; Eberlin et al.,
2011). MS data from sampled tissue coordinates can similarly
be reconstructed into spatial maps in DESI and nano-DESI
IMS workflows. Secondary-ion mass spectrometry (SIMS) has
achieved the highest spatial resolution to date, but the high
energy required for ionization limits the size of molecule that
can be analyzed, making this technique more widely applied for
analysis of elements and smaller biomolecules (<1,000 Da) rather
than larger lipids, peptides, and proteins (Wu and Odom, 1996;
Heeren et al., 2006; McDonnell et al., 2006).

Each of these strategies requires a trade-off between spatial
resolution and sensitivity, where methods approaching cellular
or subcellular resolution often detect fewer analytes. Sample
preparation and ionization methods also impact the molecular
class that can be analyzed. This continuum is especially notable
in spatially targeted MS, and researchers must use their judgment
to select the technology most suited to their experimental
goals (Figure 1).

PROTEOMICS

Proteomics offers direct information about downstream effects of
transcriptional and translational regulation on cellular function
and does not require extrapolation from transcript data (Gry
et al., 2009). MS-based proteomics provides an advantage
over antibody-based techniques in that it is untargeted, highly
multiplexed, and requires no a priori knowledge of antibody
targets. It also retains information about truncated and post-
translationally modified proteoforms that can be impacted by
renal disease (Yassine et al., 2016). Spatial proteomics is uniquely
advantageous since it can specifically assess protein regulation
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FIGURE 1 | Summary of spatial MS technologies and the trade-offs between spatial resolution and molecular coverage. Technologies are characterized based on
their spatial resolution from the level of anatomical structure (>500 µm), Functional Tissue Unit (FTU, ∼50–500 µm), cellular (∼10–50 µm), and subcellular
(<10 µm). Triangles indicate technologies for analysis of bulk or homogenate tissues, circles indicate profiling experiments, and rectangles indicate imaging
experiments. Methods for analyzing small metabolites, lipids, and proteins are shown in blue, purple, and green, respectively.

in individual kidney FTUs and cell types, and has been used to
show that adjacent nephrons vary at the proteomic level (Höhne
et al., 2018). Both profiling and imaging MS approaches have been
applied to the study of the kidney.

Spatial proteomics profiling experiments rely on the ability
to analyze increasingly small amounts of starting material,
requiring advances in sample preparation, chromatography, and
instrumentation. Protocols employing filters, magnetic beads, or
micro-volumes minimize sample loss by performing enzymatic
digestion in one tube or droplet (Hughes et al., 2014; Kulak et al.,
2014; Moggridge et al., 2018; Xu et al., 2019). NanoPOTS and
MicroPOTS have facilitated near-single cell proteomics and are
designed for low-input samples (Xu et al., 2019). Polished sample
tubes and mass-spectrometry compatible detergents additionally
minimize sample loss and the need for detergent removal (Norris
et al., 2003, 2005; Grzeskowiak et al., 2016). Ultra-low flow
chromatography and fractionation, and capillary electrophoresis
can improve protein separation and address the wide range of
protein concentrations found in biological samples (Waanders
et al., 2008; Aebersold and Mann, 2016; Greguš et al., 2020; Kelly,
2020; Xiang et al., 2020). Pairing these sample preparation and
separation techniques with high-resolution MS instrumentation
can further facilitate low-input proteomics analysis (Norris et al.,
2005). In addition, nanopore sequencing can now be used for
single-cell proteomics and will likely be integrated into low-input
proteomics workflows (Brinkerhoff et al., 2021).

These advances enabled multiple studies to characterize renal
FTU proteomes. The combination of LCM with low-loss sample
preparation and chromatography for LC-MS/MS proteomics has
been especially successful for analysis of kidney FTUs. Thousands
of proteins can be identified from single human or murine

glomeruli or 30–40 single microdissected cells (Waanders et al.,
2009; Sigdel et al., 2020). One study identified 67 proteins
only detected in glomeruli and 25 unique to proximal tubules,
with many additional proteins shared by both regions being
conserved housekeeping and cytoskeletal proteins (Sigdel et al.,
2020). Notably, this study found that proximal tubule proteins
comprised a greater fraction of the homogenate proteome than
glomerular proteins, and known glomerular markers such as
podocin, eva-1 homolog B, and claudin-5 could be identified in
dissected glomeruli but not in kidney homogenate (Guiberson
et al., 2021). This underscores the value of a spatially targeted
approach to study glomeruli (Sigdel et al., 2020). Another
LCM-based study investigated proteomic changes associated
with proteinuric kidney disease in glomeruli and tubules from
murine and human samples. This work implicated a suite of
proteins including lysosomal-associated membrane protein 1,
cathepsin proteases, albumin, and extracellular matrix proteins
in proteinuric kidney disease and proposed further research into
cathepsins as potential therapeutic targets (Höhne et al., 2018).
Analyses of single glomeruli and glomerular extracellular matrix
consistently identify cathepsin proteases and proteins associated
with vesicular transport and cellular component organization
as differentially abundant in diseased kidney tissue (Hobeika
et al., 2017; Höhne et al., 2018; Sigdel et al., 2020). Proteins
enriched in proximal tubules were consistently involved in solute
transport and small molecule metabolic processing, offering the
intriguing possibility of measuring corresponding differences in
metabolite abundance and localization (Hobeika et al., 2017;
Höhne et al., 2018). Taken together, spatially targeted proteomics
of kidney FTUs are invaluable to understanding renal FTU
heterogeneity.
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Imaging mass spectrometry is a powerful and complementary
technology to spatially map proteins and peptides in tissue
sections in an untargeted manner and with greater proteomic
coverage than antibody-based imaging (Caprioli et al., 1997).
Protein imaging requires minimal sample preparation and can
be used to visualize proteins under ∼60 kDa depending on MS
instrumentation (Chaurand et al., 2006; Norris and Caprioli,
2013). Although its spatial resolution is far superior to profiling-
based technologies, a large proportion of the proteome is not
available for analysis by this technique. In contrast, peptide
imaging provides better proteomic coverage but requires more
sample preparation and can suffer from delocalization during on-
tissue enzymatic digestion of endogenous proteins (Judd et al.,
2019). A major challenge for protein and peptide IMS is ion
identification. Most protein IMS experiments rely on exact mass
matching within a certain ppm error for identification. Recent
computational tools allow for high throughput matching of m/z
values with candidate identifications based upon intact mass and
spatial correlation (Guo et al., 2021). Thus, advances in sample
preparation, instrumentation, and computation are improving
the feasibility and interpretation of protein and peptide IMS.

Imaging mass spectrometry has been applied to image kidney
proteins and peptides, and has great potential as a tool for
biomarker discovery and disease characterization (Caprioli et al.,
1997; Lalowski et al., 2013; Jones et al., 2014; Casadonte et al.,
2015; Srinivasu et al., 2021). Protein IMS was used to identify
accumulated cortical transthyretin as a protein biomarker for
gentamicin-induced kidney toxicity, and to spatially characterize
angiotensin metabolism in murine kidneys (Meistermann et al.,
2006; Grobe et al., 2012). Peptide IMS was used to determine
that amyloid P component, apolipoprotein E, and vitronectin co-
localize with renal amyloid deposits in human biopsy samples
(Casadonte et al., 2015). Yet another study found differences in
localization of α-enolase peptides in rat kidneys after treatment
with nanoparticles commonly found in cosmetic and medical
products (Srinivasu et al., 2021). Peptide IMS signal can be
enhanced through secondary ionization (MALDI-2) and has
been used to show localization of hemoglobin subunit proteins,
glutathione-S-transferase, and pyruvate kinase to glomeruli,
cortex, and medulla, respectively (McMillen et al., 2021). These
IMS studies have benefited from the ability to visualize changes
in analyte localization in broad tissue areas, and have leveraged
microextraction or homogenate analyses with deeper proteomic
coverage to confirm protein identifications (Grobe et al., 2012).

SMALL MOLECULE METABOLOMICS

Mass spectrometry-based metabolomics is essential in basic and
clinical renal research (Abbiss et al., 2019). Here, metabolites
are defined as small (<1,000 Da) molecules such as amino
acids, nucleotides, mono- and disaccharides, and steroids that
can be hydrophilic, hydrophobic, or amphipathic (Bijlsma et al.,
2006). Liquid or gas chromatography-based metabolomics are
routinely used to assess aminoaciduria in clinical samples or
tissue homogenates (Rhee, 2018; Abbiss et al., 2019). Early work
on the kidney profiled patient samples for disease biomarkers and

resulted in the clinical tests now available to physicians (Cisek
et al., 2016; Luft, 2021). However, general metabolic markers
do not provide information about inter-nephron variation, and
there is a gap in understanding sources of metabolic dysfunction
on a spatial level and relating these to specific proteins. For
example, amino acid transporters have been found to differ in
proximal tubules within the same tissue section, implying that
solute transport may be performed differently among nephrons
and may be contributing uniquely to aminoaciduria and other
kidney dysfunctions (Höhne et al., 2018).

Imaging mass spectrometry is uniquely powerful for kidney
metabolomics because it is one of few methods that can spatially
map metabolites within tissue, since these molecules are not
amenable to antibody-based visualization (Prentice et al., 2017).
Metabolite IMS has been used to characterize drug distribution
in murine kidneys (Römpp et al., 2011), adenosine triphosphate
and monophosphate in diabetic murine kidneys (Miyamoto et al.,
2016), N-linked glycans in murine kidney (Gustafsson et al.,
2015), and is extensively reviewed in Prentice et al. (2017).
Metabolites can be routinely imaged with pixel sizes as small
as 10 µm and their detection can be enhanced by gas-phase
separation approaches such as trapped ion mobility separation
(TIMS) (Djambazova et al., 2020; Neumann et al., 2020). Small
metabolite IMS in human kidney samples was performed at
a spatial resolution of 20 µm and allowed for the detection
of >200 unique species using a timsTOF mass spectrometer
in qTOF mode only (i.e., without TIMS activated) and >350
species after applying TIMS (Neumann et al., 2020). This study
revealed unique distributions of metabolites including argininic
acid, acetylcarnitine, and choline in the cortex, medulla, and
renal pelvis, respectively (Neumann et al., 2020). Nano-DESI IMS
was similarly used to show localization of propionylcarnitine,
methylhistidine, sorbitol to the cortex, outer medulla, and
inner medulla, respectively (Bergman et al., 2019). Acylcarnitine
was shown to accumulate in the cortex of early-diabetic mice
(Bergman et al., 2019). These approaches illustrate the excellent
spatial resolution achievable by metabolite IMS and provide
robust methods to visualize these molecules that cannot routinely
be imaged using antibodies or affinity reagents. Future work
could integrate metabolomic analyses of isolated FTUs with IMS
to leverage the molecular coverage of the former with the spatial
resolution of the latter.

LIPIDOMICS

Lipids play crucial and diverse roles in the kidney from
establishment of cellular structure and stability to cell-cell
interactions (Kinnunen et al., 2012; Balla, 2013). Lipids are
metabolized in the kidney via receptor-mediated uptake of
plasma lipids in proximal tubules (Moestrup and Nielsen,
2005). Chronic renal disease is associated with abnormal lipid
metabolism, elevated apolipoprotein abundance, and elevated
plasma lipid levels (Trevisan et al., 2006). Oxidative stress and
insulin resistance have been implicated in lipid-mediated renal
damage, but the underlying genetic, proteomic, and metabolomic
mechanisms are not understood (Trevisan et al., 2006).
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FIGURE 2 | Nephron showing select molecular groups observed in the cortex, outer medulla, inner medulla, glomeruli (Glom), proximal tubules (PT), and collecting
ducts (CD). Molecular observations made using imaging mass spectrometry (MS) and profiling MS experiments are shown in rectangles and ovals, respectively.
Proteins, small metabolites, and lipids, are shown in green, blue, and purple text, respectively. Biological processes are indicated as follows: * Solute transport,
** Toxins and detoxification, 1 Lipid synthesis, modification, and metabolism, ± Mitochondrial energy metabolism, 9 Cell death regulation, θ Glucose metabolism
and diabetes.

Additionally, altered renal lipid distribution has been associated
with nephron dysfunction resulting from pathogen infection
(Perry et al., 2019), polycystic kidney disease (Ruh et al., 2013),
early diabetes and obesity (Miyamoto et al., 2016; Sugimoto et al.,
2016; Bergman et al., 2019), and kidney injury (Rao et al., 2016).
MS-based lipidomics globally characterizes how lipid class and
the molecular structure influence these processes, and is uniquely
informative in the context of renal disease.

Lipid IMS has been widely applied to the kidney
and is further reviewed in Miyamoto et al. (2016).
Gangliosides, sulfoglycosphingolipids, lysophospholipids,
and phosphatidylethanolamines, sphingolipids, and lysolipids
were shown to accumulate and spatially relocalize in the
kidney due to diabetic nephropathy and severe ischemic
injury in murine and porcine samples (Grove et al., 2014;
Miyamoto et al., 2016; van Smaalen et al., 2019). Two ether-
linked phospholipids were implicated as biomarkers for acute
kidney injury in a murine model using sequential window
acquisition of all theoretical spectra (SWATH) lipidomics and
IMS (Rao et al., 2016). These phospholipids were shown to
accumulate in proximal tubules, supporting the combination of
profiling and imaging MS to characterize lipid abundance and
localization (Rao et al., 2016). Another study showed that the
ganglioside NeuGc-GM3, but not other ganglioside species, and
several lysophospholipids accumulated in glomeruli of diabetic
mice, while long-chain sulfoglycolipids accumulated in renal
tubules of diabetic mice (Grove et al., 2014). Amadori-modified

phosphatidylethanolamines were also detected in the renal cortex
of diabetic mice, providing insight into the metabolic impacts of
diabetes (Grove et al., 2014). Each of these approaches showed
profound redistribution of lipid species in response to renal
disease. To provide further insight into the lipidome and disease,
technologies are linking specific lipid species with kidney FTUs
based upon histology-informed segmentation of lipid IMS data
(Martín-Saiz et al., 2021). These studies illustrate the utility of
IMS to detect global lipidomic changes in disease and implicate
diverse lipid classes in normal kidney function and pathogenesis.

CONCLUSION AND PERSPECTIVE

Technological advancement fundamentally changes the scale
and strategy of scientific research. High-performance mass
spectrometry and spatial technologies have moved us into an
era of “big data” where the amount of molecular information
collected from a single sample would have been previously
inconceivable (Beckmann and Lew, 2016). To move beyond
simply collecting big data to comprehensive interpretation of
complex datasets, we assert that we are beginning an era
focused on “multimodal data integration.” Scientists will need
to cooperatively link and automatically mine large datasets
to understand intricate networks of cellular and molecular
interactions across vast spatial scales (e.g., anatomical regions
to single cells) and wide-ranging molecular classes (e.g., RNA,
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proteins, lipids, and metabolites). Multi-institutional consortia
are working to address this challenge by constructing molecular
atlases of human cells and organs that integrate imaging and
omics technologies using spatial anchors through common
coordinate frameworks and/or anatomical links (Abbasi, 2017;
Hu, 2019; Rozenblatt-Rosen et al., 2020; El-Achkar et al., 2021).
These consortia are prioritizing the establishment of broadly
accepted standards and quality control for data collection,
precise recording of biopsies and tissue sections locations within
intact organs, and recording thorough donor metadata data in
accessible and stable repositories (Lynch, 2008; Hu, 2019; El-
Achkar et al., 2021).

These large-scale kidney research projects are balancing
the application of established multi-omic technologies with
continued development of cutting-edge spatially targeted MS
approaches. Spatially targeted proteomics utilizing profiling
strategies has been more widely applied to the kidney than other
technologies, and therefore individual glomerular and tubule
proteomes are more well characterized (Betsholtz et al., 2007;
Höhne et al., 2018; Hoyer et al., 2019; Späth et al., 2019; Koehler
et al., 2020; Sigdel et al., 2020; Banki et al., 2021). Metabolomics
has been applied to patient samples and kidney homogenates
to great effect, and IMS has broadly characterized the spatial
distribution of select small metabolites (Abbiss et al., 2019;
Neumann et al., 2020; Zhang et al., 2020). Similarly, lipidomics
has been used to characterize kidney homogenates, and IMS has
generated spatial lipid maps (Rao et al., 2016; Lukowski et al.,
2020; Zhang et al., 2020; Martín-Saiz et al., 2021). The next
challenge will be to integrate these analytical modalities into
workflows combining multiple spatially targeted MS technologies
and to develop tools necessary to perform these analyses at scale
across statistically relevant numbers of samples. The integration
of these modalities in a systems-biology approach can provide
us with a more comprehensive understanding of kidney biology
(Figure 2; Mayer et al., 2012; Cisek et al., 2016; Rhee, 2018; Zhang
et al., 2018; Neumann et al., 2021a).

High performance computing and development of necessary
machine learning algorithms are playing an important role
in technology integration. In addition to combining spatially
targeted MS approaches, we anticipate that it will become more
common for these data to be combined with other advanced
molecular imaging technologies such as microscopy and spatial
transcriptomics. Examples of this have already demonstrated
integration of spatially targeted MS data with autofluorescence
microscopy and multiplexed immunohistochemistry approaches

such as imaging mass cytometry (IMC) and co-detection by
indexing (CODEX) to molecularly characterize and discover
markers for kidney FTUs and cell types (Patterson et al., 2018;
Singh et al., 2019; Martín-Saiz et al., 2021; Neumann et al.,
2021a,b). To enable these multimodal approaches, computational
tools are emerging that automatically annotate, integrate, and
mine molecular imaging data from orthogonal technologies
for unbiased data interpretation and identification of candidate
biomarkers (Van de Plas et al., 2015; Palmer et al., 2017; Vollnhals
et al., 2017; Balluff et al., 2019; Race et al., 2020; Martín-Saiz et al.,
2021; Tideman et al., 2021).

In summary, spatially targeted MS is a powerful set
of technologies for the discovery of molecular profiles of
critical FTUs and cell types in the kidney. As the field
matures, multimodal data integration will certainly become
more common requiring interdisciplinary, and often multi-
institutional collaborations bringing together researchers with
a wide array of expertise including cell biologists, pathologists,
analytical chemists, computer scientists, and mathematical
engineers. The application of this diverse set of expertise and
technological capabilities is expected to dramatically enhance
our understanding of the cellular and molecular makeup of the
kidney to personalize medical care and improve health outcomes.
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Advances in cellular and molecular interrogation of kidney tissue have ushered a new
era of understanding the pathogenesis of kidney disease and potentially identifying
molecular targets for therapeutic intervention. Classifying cells in situ and identifying
subtypes and states induced by injury is a foundational task in this context. High
resolution Imaging-based approaches such as large-scale fluorescence 3D imaging
offer significant advantages because they allow preservation of tissue architecture and
provide a definition of the spatial context of each cell. We recently described the
Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive
analysis, quantitation and semiautomated classification of labeled cells in 3D image
volumes. We also established and demonstrated an imaging-based classification using
deep learning of cells in intact tissue using 3D nuclear staining with 4′,6-diamidino-
2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in
analyzing 3D imaging of kidney tissue, and how combining machine learning with
cytometry is a powerful approach to leverage the depth of content provided by high
resolution imaging into a highly informative analytical output. Therefore, imaging a small
tissue specimen will yield big scale data that will enable cell classification in a spatial
context and provide novel insights on pathological changes induced by kidney disease.

Keywords: 3D imaging, cytometry analysis, kidney injury, artificial intelligence, deep learning

INTRODUCTION

Understanding the biology and function of an organ requires detailed assessment of various cells
and structures in the intact tissue environment (Asp et al., 2019; Stewart et al., 2019; Barwinska
et al., 2021). This is particularly needed for the kidney, an organ with complex architecture where
zonation of specialized cells and structures is directly linked with physiological function (Hato
et al., 2013; El-Achkar and Dagher, 2015; Berry et al., 2017; Barwinska et al., 2021; Ferkowicz
et al., 2021). Furthermore, disease states are associated with alteration in tissue architecture and
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changes in cell distribution, activity, and/or state (Wilson et al.,
2019; Lake et al., 2021; Muto et al., 2021). Technological
advancements such as single cell RNA sequencing that provide
high content information at the cell and molecular levels have
enhanced our ability to further classify cells into subtypes,
and study alterations in cell states, which could be linked to
disease pathogenesis and outcomes (Park et al., 2018; Lake et al.,
2019, 2021; Wilson et al., 2019; Menon et al., 2020). Innovative
approaches in high content and high-volume imaging of kidney
tissue are also rapidly evolving (Winfree et al., 2017a, 2018, 2021;
Singh et al., 2019; Black et al., 2021a,b; Ferkowicz et al., 2021; Lipp
et al., 2021; Liu et al., 2021; Melo Ferreira et al., 2021; Neumann
et al., 2021), and these advancements are urgently needed to: (1)
provide a platform of discovery based on imaging data, thereby
delivering a unique context within an intact tissue environment
and (2) anchor and interpret in situ emerging findings from
technologies that lose the spatial context (Winfree et al., 2021).
In the last decade, we saw an evolution of imaging kidney tissue
from a qualitative toward a highly quantitative science (Winfree
et al., 2017b, 2021; Singh et al., 2019; Martins et al., 2020;
Black et al., 2021a,b; Melo Ferreira et al., 2021; Neumann et al.,
2021). This progress has been enhanced by the advancements
in various modalities of microscopy that could perform high-
resolution large-scale imaging. The ability to image multiple
labels simultaneously (multiplexing) has significantly increased
the depth of content acquired (Singh et al., 2019; Woloshuk
et al., 2020; Ferkowicz et al., 2021; Melo Ferreira et al., 2021;
Neumann et al., 2021). Furthermore, imaging in all 3 dimensions
using optical sectioning has allowed faithful preservation of tissue
architecture and spatial context (Puelles et al., 2016; Klingberg
et al., 2017; Winfree et al., 2017b; Ferkowicz et al., 2021; Lake
et al., 2021; Liu et al., 2021). These advancements were catalyzed
by the availability of novel software tools that allow streamlined
image processing and quantitative analysis (Dao et al., 2016;
Winfree et al., 2017a; Czech et al., 2019; Stoltzfus et al., 2020).
These significant developments were discussed during the 2021
Indiana University O’Brien Center for Advanced Microscopy
Analysis workshop (Dunn et al., 2021).

In this mini-review we will focus on advancement in
large scale 3D imaging of kidney tissue and analysis using
tissue cytometry with the Volumetric Tissue Exploration and
Analysis (VTEA) software tool (Figure 1; Winfree et al.,
2017b; Ferkowicz et al., 2021). We will also discuss how
incorporating novel machine learning approaches and algorithms
with tissue cytometry has enhanced the ability to expand and
transform the analysis of image volumes toward discovery
(Winfree et al., 2021). Particularly, developing deep neural
networks that allow classification of cells independent of specific
labels will not only increase the power and usefulness of
cytometry in classifying cells based on imaging data (Woloshuk
et al., 2020), but will also enable unbiased and non-exhaustive
discovery of cell subtypes in situ. These novel subtypes can
then be visualized and mapped back in the image volumes,
which will allow biological interpretation. Therefore, this could
become a unique opportunity whereby the learning could
become interpretable. Furthermore, when large scale 3D imaging
is coupled with advanced computational tools that allow

processing of large image volumes, hundreds thousand cells
or more could be analyzed from a single tissue specimen,
thereby allowing the generation of big data from these
imaging experiments.

TISSUE CYTOMETRY

Tissue cytometry refers to the process of surveying all cells
within an image volume of a tissue, and transforming cells
into “analysis-ready” objects with associated variables based
on labels (such as fluorescence marker intensities) or spatial
parameters. Frequently, the nuclei are used as fiduciaries
for the cells because: (1) nuclear staining can be easily
incorporated into most experimental designs, and (2) nuclei can
be consistently segmented using several standard approaches
(Winfree et al., 2017b, 2021; Dunn et al., 2019). The segmented
nuclei representing individual cells could then be used in an
analytical pipeline that allows quantitative analysis based on
the various parameters associated with each cell. The simplest
form of analysis is a plot displaying 2 dimensions in the x
and y axis, where specific gates could be drawn based on a
threshold such as fluorescent label intensity (Figure 1). Two
key components of tissue cytometry are obtaining quantitative
measurements of the cell populations of interest and direct
visualization by mapping back the cells of interest into the
image volume. The latter allows on-the-spot validation of the
“choice” of cells (whether by direct gating or other methods) and
biological interpretation (particularly when specific distribution
patterns start to emerge). Multiple software tools (open-source
or commercial) have been developed to perform image analysis,
and can be used for tissue cytometry (Gerner et al., 2012;
Winfree et al., 2017a; Stoltzfus et al., 2020, 2021; Stirling et al.,
2021). We have described the VTEA tool (Winfree et al., 2017b),
which was applied specifically to perform tissue cytometry
on 3D image volumes of kidney tissue (Figure 1). Potential
advantages of VTEA include: open-source as a plugin to ImageJ,
a single platform that allows image processing, segmentation and
cytometry analysis, extensibility and easy incorporation of novel
computational approaches, leveraging existing ImageJ tools for
image analysis, interactive interplay between the image volume
and the analytical process used. We have used tissue cytometry
with VTEA in various settings such as to study the abundance
and distribution of epithelial and immune cells in the mouse
and human kidney (Winfree et al., 2017b; Ferkowicz et al.,
2021; Lake et al., 2021), understand the association of epithelial
and immune cells to injury in the setting of human acute and
chronic kidney disease and stone disease (Lake et al., 2021),
quantify and localize the activation of c-JUN in the mouse
kidney (Lafavers et al., 2019), study changes in lymphatics in
various models of kidney injury (Black et al., 2021a,b). Large
scale 3D imaging and tissue cytometry with VTEA is a key tissue
interrogation technology used by the Kidney Precision Medicine
Project (KPMP) consortium to extract cellular and molecular
information from kidney biopsies of patients with kidney disease
(De Boer et al., 2021; El-Achkar et al., 2021; Lake et al., 2021).
Therefore, the application of tissue cytometry in analyzing kidney
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FIGURE 1 | Volumetric Tissue Exploration and Analysis (VTEA) basic workflow. VTEA is a user-friendly platform that allows interactive exploration of image volume
(1) where image processing, segmentation, analysis and exploration could occur in a single workspace (2). In the analytical plot, each dot represents a cell with
various features. The simplest analysis is in the form of a 2D scatter plot displaying features on the x and y axis (3). Gates can be drawn to chose and quantify a
specific population of cells that can be directly visualized in the image volume (4). Conversely, regions of interest can be drawn in the image (5) to locate cells of
interest in the scatter plot (6). This process allows for an explorative interplay between the image and the analytical space. Red arrowhead shows different tabs
available in the workspace. Figure adapted and used with permission from Winfree et al. (2017b).

tissue is expanding, and has proven to be complementary to other
technologies that do not preserve the tissue architecture.

TISSUE CYTOMETRY AND MACHINE
LEARNING

Since multiple parameters can be extracted for each single
cell using high resolution multiplexed imaging, advancing the
analytical approach to take into account the effect of all
these parameters in thousands of cells becomes a big data
problem. It is then reasonable to incorporate machine learning
algorithms to help cluster, classify and visualize cell subtypes
into the analytical space. Indeed, the extensibility of VTEA to
incorporate available libraries of machine learning algorithms
is a significant development that enables a semi-automated
unsupervised classification of cells (Winfree et al., 2022). We
demonstrated that this approach could be useful in classifying
cells from reference kidney tissue (Woloshuk et al., 2020). In
addition, the ability to understand cell-cell and cell-structure

interactions could be enhanced by performing neighborhood
analysis, as implemented, for example in CytoMAP or VTEA
(Stoltzfus et al., 2020; Lake et al., 2021; Winfree et al., 2022).
We recently used VTEA to perform a cell centric neighborhood
analysis on >1.2 million cells from various kidney biopsies of
patients with kidney disease (Lake et al., 2021). This approach
uncovered spatial associations that were validated by other
transcriptomics-based technologies. One of the key advantages
of performing such cell-centric neighborhood analysis (percent
of cells within a distance from each cell) is the ability to merge
analysis from various specimens into one analytical space, since
such analysis is by default normalized (Lake et al., 2021).

Multiplexing various probes into one imaging experiment
offers significant advantages for cell classification based on
particular labels. For example, using highly multiplexed detection
such as imaging mass cytometry or co-detection by indexing
allows the classification of multiple cell subtypes (Singh et al.,
2019; Melo Ferreira et al., 2021; Neumann et al., 2021). However,
multiplexing has limitations, particularly in its application in 3D
and its practicality when kidney tissue is of limited availability
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FIGURE 2 | Unique nuclear staining signatures of various kidney cell types. DAPI staining alone reveals distinct signatures of chromatin condensation states and
nuclear morphology of (a) thick ascending limbs (TAL), (b) proximal tubules (PT), (c) collecting ducts (CD), (d) T-cells, (e) neutrophils, (f) eosinophils, and (g)
endothelial cells. Scale bar = 5 µm.

(Winfree et al., 2021). In addition, using pre-specified labels
limits the potential of agnostic discovery of novel cell types and
subtypes based on imaging data. To circumvent these limitations,
we recently devised a deep learning approach to classify cells
based only on nuclear staining (Woloshuk et al., 2020). The
premise is based on the fact that nuclear staining has unique
features for each cell type (Figure 2) and its changes could
represent alterations in cell states (Gustafsdottir et al., 2013;
Eulenberg et al., 2017). Therefore, these studies are confined
within a biologically interpretable context (Woloshuk et al.,
2020). This work presented us also with a unique opportunity
to test several unexplored questions such as: is 2D enough or do
we need the information in 3D image volumes of nuclei? Can
we use classical machine learning classifiers that extract features
or do a deep neural network work better? Does the context of
the nucleus (i.e., neighboring nuclei) improve cell classification
accuracy? Our results showed that we could successfully classify
cells from human reference kidneys into eight different classes
based on machine learning approaches, but the highest accuracy
was achieved with a 3D deep neural network trained on 3D
image volume of nuclei with context (Woloshuk et al., 2020). Our
efforts are currently to extend this approach to kidney disease,
and use the 3D leaning network to uncover cell subtypes induced
by injury. This could be done by using various approaches.
For example, the features extracted by the 3D network from
the nuclear staining could be used to reclassify and visualize
cells using tissue cytometry. Importantly, novel machine learning
tools could be applied on these features to achieve non-exhaustive
learning and agnostically discover new cell subtypes that can be
further vetted using tissue cytometry. This will be discussed next.

LEVERAGING MACHINE LEARNING FOR
AGNOSTIC DISCOVERY

Agnostic discovery is the exploration process for the
identification and localization of novel kidney cell subtypes

induced by injury. In an agnostic discovery scenario, obtaining
labeled cell examples for the injury cell subtypes is a hard task
for many reasons: first, the nature of injury to the morphology
of kidney cells due to disease is unknown so accurate labeling
is difficult; second, we may not yet have a suitable marker for
such cells, which makes us unable to correctly label them using
cytometry; finally, due to lack of knowledge regarding the injury
it is even hard for us to know the definite count of number
of possible injury subtypes. While lack of labeled data makes
agnostic discovery a difficult task, recent advances in supervised
classification can help us in this regard (Figure 3).

In supervised classification, identifying novel classes (example:
novel injury states) for which no examples are available in the
training data (ground truth datasets used in training machine
learning classifier) has received wide-spread attention from
the machine learning community in recent years. There are
different approaches for solving such machine learning tasks.
Most prominent among these is called zero-shot learning (ZSL),
which is well studied by the deep learning community (Romera-
Paredes and Torr, 2015; Zhang and Saligrama, 2015). ZSL is
also becoming a promising direction in the medical domain. In
recent works, ZSL has been used in diagnosis and classification of
disease in chest radiographs (Hayat et al., 2021; Paul et al., 2021).
Bayesian non-exhaustive classification is another prominent
direction (Görür and Edward Rasmussen, 2010; Ben-Yosef and
Weinshall, 2018).

For zero-shot learning, the number of novel classes along
with side-information (also known as semantic information)
about all the classes needs to be provided upfront. During
training, the learning algorithm utilizes the side information
to compensate for the lack of labeled data for the unknown
class. Spatial neighborhood data around a cell can be used as
side-information. For instance, we expect that the concentration
of inflammatory immune cells (such as neutrophils or T-cells)
around injured kidney cells would be higher, and hence, such
side information will be relevant for classifying injured kidney
cell subclass instances. Another potential candidate for side
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FIGURE 3 | Agnostic discovery using machine learning and tissue cytometry. Proposed approach to use imaging data of cell nuclei in machine learning workflows
that allow non-exhaustive classification of new classes that could be visualized and further analyzed using tissue cytometry. Green arrows point to the two proposed
approaches: zero-shot and Bayesian non-exhaustive learning.

information is to use data from alternate modality, say, single cell
RNA sequencing and/or spatial transcriptomics data. Using such
data will not only help us identify novel kidney cells, but also will
provide more information regarding the pathways that control
the injury progression in the kidney cells over time. A challenge
of zero-shot learning is that it requires that the number of
novel classes is known during training time, which is often
not feasible for agnostic discovery. In that case, Bayesian non-
exhaustive classification can be used. Using Bayesian technique,
it learns some parametric probability distribution for the known
classes. During inference, it identifies instances which are far
away from the distribution of the known classes and create
a new class along with its probability distribution. Generally,
Dirichlet process Gaussian Mixture Model is used for non-
exhaustive classification (Görür and Edward Rasmussen, 2010;
Zhuang and Al Hasan, 2021). The challenge in Bayesian non-
exhaustive classification is that their performance becomes very
poor if the assumed data distribution does not follow the actual
data distribution.

CHALLENGES FOR IMAGE-BASED
CLASSIFICATION IN HUMAN KIDNEY
BIOPSIES

The novel imaging-based approaches discussed to characterize
cell types and subtypes in human kidney tissue specimens are
very promising. However, it is also important to discuss some
of the challenges and limitations that need to be addressed to

make these methodologies more robust and accessible. First,
variation in tissue processing practices and fixation may alter
the quality of the tissue and the downstream imaging data.
The effects of changes in tissue processing on the ability
to classify cells using tissue cytometry and machine learning
are unknown. Fortunately, collaborative studies (such as the
KPMP consortium) that are focused on interrogating kidney
tissue biopsy specimens are rigorously standardizing tissue
acquisition and processing, which would allow to set standards
and perform comparison with data acquired from archived
tissues originating from other sources (De Boer et al., 2021;
El-Achkar et al., 2021). Second, it is possible that some of
the changes in cell states that are induced by disease may not
be accompanied by significant alteration in nuclear activity or
morphology. Therefore, expanding classification strategies to
include another common marker that tracks changes in cell
morphology and activity in the cytoplasm such as F-actin will
likely increase the sensitivity and dynamic range of capturing
subtle changes in cell states. Finally, performing imaging and
data analysis is frequently limited to centers with appropriate
expertise and resources, which may limit accessibility to the
broader research community. Furthermore, the computational
breadth needed for data access, storage and transfer may also be a
restrictive factor. Therefore, increasing the accessibility of these
approaches by using and disseminating open-source software,
public imaging data repositories and accessible cloud-based
imaging visualization and analysis tools will provide reasonable
first steps to make these innovative tools more reachable by the
broader community.
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CONCLUSION AND FUTURE OUTLOOK

We highlighted in this mini-review advances in tissue cytometry
of kidney tissue, emphasizing novel analytical approaches
that transform imaging-based data into highly quantifiable
big data outputs that can also be used for discovery while
incorporating the richness of the spatial context. These advances
are crucial to understand kidney disease, which frequently
displays regional heterogeneity at the cellular and molecular
levels. Leveraging novel machine learning approaches will allow
unbiased discoveries such as novel cell types and subtypes
which are spatially anchored and linked to other features that
allow biological interpretation. In the future, we anticipate that
with relatively few labels, the combination of tissue cytometry
with machine learning will enable a form of enhanced “virtual
multiplexing,” which could classify most cell types in situ within
kidney tissue and allow the agnostic discovery of novel cell types

based on imaging. For the kidney, imaging and analyzing tissue
will certainly become a very important issue!
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Approaches for Cell Segmentation
and Analysis in Tissue
Seth Winfree*

Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States

Advanced image analysis with machine and deep learning has improved cell
segmentation and classification for novel insights into biological mechanisms. These
approaches have been used for the analysis of cells in situ, within tissue, and
confirmed existing and uncovered new models of cellular microenvironments in human
disease. This has been achieved by the development of both imaging modality specific
and multimodal solutions for cellular segmentation, thus addressing the fundamental
requirement for high quality and reproducible cell segmentation in images from
immunofluorescence, immunohistochemistry and histological stains. The expansive
landscape of cell types-from a variety of species, organs and cellular states-has
required a concerted effort to build libraries of annotated cells for training data and
novel solutions for leveraging annotations across imaging modalities and in some
cases led to questioning the requirement for single cell demarcation all together.
Unfortunately, bleeding-edge approaches are often confined to a few experts with the
necessary domain knowledge. However, freely available, and open-source tools and
libraries of trained machine learning models have been made accessible to researchers
in the biomedical sciences as software pipelines, plugins for open-source and free
desktop and web-based software solutions. The future holds exciting possibilities with
expanding machine learning models for segmentation via the brute-force addition of
new training data or the implementation of novel network architectures, the use of
machine and deep learning in cell and neighborhood classification for uncovering cellular
microenvironments, and the development of new strategies for the use of machine and
deep learning in biomedical research.

Keywords: machine learning, deep learning—artificial neural network, segmentation, classification,
neighborhoods, microenviroment, bio-imaging tools

INTRODUCTION

Image use in the biomedical sciences varies from demonstrative and representative to data for
quantitative interrogation. Quantitative analyses of tissue and cells, the basic building blocks in
biology, requires the accurate segmentation of cells or surrogates of cells and methods for classifying
cells and quantitative analysis of cell type, cell states and function. Cellular segmentation has been
an intense focus in biomedical image analysis for decades and has evolved from largely ad hoc
approaches to generalizable solutions (Meijering, 2012). The classification strategies for cell type
(e.g., immune cell, epithelium, stromal, etc.) and state (e.g., injured, repairing, dividing) have

Abbreviations: ML, machine learning; DL, deep learning; GUI, graphical user interface; API, application programming
interface.
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developed rapidly (Meijering, 2012, 2020; Meijering et al., 2016).
How different cell types organize into microenvironments or
neighborhoods is import for our understanding of pathogenesis
and biology. The identification and classification of these
neighborhood or microenvironments is of significant interest
to the bioimaging community (Allam et al., 2020; Stoltzfus
et al., 2020; Solorzano et al., 2021). This mini review will cover
the current state of quantitative analysis of tissues and cells in
imaging data, with a discussion of segmentation, classification,
and neighborhood analysis, specifically highlighting the
application of machine learning, including recent advancements,
challenges, and the tools available to the biomedical researchers.

SEGMENTATION

A cornucopia of segmentation approaches has been developed for
specific experimental situations, tissue types or cell populations
including clusters of cells, specific cell types, etc. (Meijering,
2012; Meijering et al., 2016). Often these approaches are built
as pipelines in image processing software, enabling the sharing
of segmentation methods (Berthold et al., 2007; de Chaumont
et al., 2012; Schindelin et al., 2012; Bankhead et al., 2017; McQuin
et al., 2018; Berg et al., 2019). A common approach is to first
differentiate foreground, the cell, from background in a semantic
segmentation step. Secondly, objects of interest in the image
are isolated, or instance segmentation, by identifying and then
splitting touching cells. Meijering outlined five fundamental
methods for segmentation: intensity thresholding (Otsu, 1979),
feature detection, morphologically based, deformable model
fitting and region accumulation or splitting (Meijering, 2012).
These methods are often combined sequentially. For instance,
cell segmentation might include semantic segmentation of a
foreground of all nuclei with pixel intensity, followed by a second
instance segmentation for identifying an individual nucleus using
a region accumulation approach like watershed (Beucher and
Lantuejoul, 1979). A common limitation is the ad hoc nature
of segmentation approaches: the applicability of a segmentation
method may be limited by constraints in the datasets including
differences in staining or imaging modality (fluorescence vs.
histology staining), artifacts in image capture (out-of-focus
light or uneven field illumination) or morphological differences
(spherical epithelial vs. more cylindrical muscle nuclei). These
constraints, and others, have limited the development of
generalizable segmentation algorithms.

Cell segmentation with machine learning is well established-
a popular approach is to perform semantic pixel segmentation
with a Random Forest Classifier (Hall et al., 2009; McQuin et al.,
2018; Berg et al., 2019). Segmentation with a Random Forest
Classifier, as with all machine learning approaches, requires
training data. In cell segmentation this is data that has been
annotated to indicate which pixels in images are foreground,
nuclei, vs. background. ilastik provides an intuitive and iterative
solution for generating training data with a GUI that allows a user
to: (1) highlight pixels to indicate nuclei vs. background-training
data, (2) test classification and segmentation, (3) repeat and
add or subtract highlighted pixels, to improve the classification
and segmentation. This process is powerful but can become

labor-intensive in different tissues where there may be a variety
of nuclei (e.g., shape, texture, size, clustering, etc.) in smooth
muscle, epithelium, endothelium, and immune cells in varying
densities and distributions. Unfortunately, while high quality cell
culture nuclei training datasets and tissue image datasets exist,
2D training data of nuclei in tissue is limited or fractured across
multiple repositories (Ljosa et al., 2012; Williams et al., 2017;
Ellenberg et al., 2018; Kume and Nishida, 2021). Furthermore,
while 3D electron microscopy data is readily available, 3D
fluorescence image or training datasets of nuclei is limited (Ljosa
et al., 2012; Iudin et al., 2016; El-Achkar et al., 2021; Lake
et al., 2021). The availability of training data is one of the most
significant barriers to the application of machine learning to
cell image segmentation (Ching et al., 2018). Fortunately, the
number of venues to share imaging datasets should not limit the
dissemination of training datasets as they are generated (Table 1,
Datasets and Repositories).

Recently, three novel approaches were developed to address
the dearth of segmentation training data for the variety of cell-
types and imaging modalities. The first, and most direct approach
has been the concerted effort of a number of groups including
the Van Valen and Lundberg laboratories to establish “human-in-
the-loop” pipelines and infrastructure of software and personnel,
including collaborative crowd sourcing, to generate ground
truth from imaging datasets (Sullivan et al., 2018; Moen et al.,
2019; Bannon et al., 2021). A limitation of this approach is
the requirement for on-going support for personnel; on-going
support is critical to long term success. To ease the generation of
high-quality training data with a “human-in-the-loop” approach,
methods have also been established around segmentation
refinement (Sullivan et al., 2018; Lutnick et al., 2019; Moen
et al., 2019; Govind et al., 2021; Lee et al., 2021). An alternative
to these brute-force approach has been to generate synthetic
training data by combining “blob” models of cells with real
images using generative adversarial networks (Dunn et al., 2019;
Wu et al., 2021). Further, to leverage training data across imaging
modalities NucleAIzer1 relies on style transfer with a generative-
adversarial-network to generate synthetic data using prior
training data from other modalities (fluorescence, histological
stains, or immunohistochemistry). Thus, this approach can
expand training data by mapping to a common modality, giving
a nearly general solution to segmentation across 2D imaging
modalities (Hollandi et al., 2020).

The on-going search for generalizable segmentation is an area
of active research in deep learning and is critical to establishing
rigorous and reproducible segmentation approaches. To this end,
a pipeline that requires little to no tuning on multiple datasets
and modalities was demonstrated recently (Waibel et al., 2021).
In the interim, the field will continue to make progress with
generalizable segmentation, existing approaches, networks, etc.
can provide the foundation for novel segmentation solutions. For
instance, deep learning approaches to address 2D and 3D cell
segmentation are often based on existing networks (Haberl et al.,
2018; Schmidt et al., 2018; Falk et al., 2019; Weigert et al., 2020;
Minaee et al., 2021; Stringer et al., 2021), using training data
augmentation (Moshkov et al., 2020), or transfer learning

1https://www.nucleaizer.org/
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TABLE 1 | End user accessibility of tools supporting machine and/or deep learning for bioimage analysis.

User Application Name Support or demonstrated Description Software
type

URL References

Classical learning Deep learning (DL)

Image data
resource (IDR)

Not determined Yes, ex. Idr0042 Tissue and cell images
with cell based training
datasets

Repository https://idr.openmicroscopy.org Williams et al., 2017

Broad bioimage
benchmark
collection

Yes Yes Cell images training
datasets

Repository https://bbbc.broadinstitute.org Ljosa et al., 2012

Cell image library Not determined CDeep3M Mulitmodal cell
images, linked to
CDeep3M for testing

Repository http://cellimagelibrary.org/
pages/datasets

NA

BioImageDbs Yes Yes R package and
repository for images

Bioconductor
package

https://kumes.github.io/
BioImageDbs/

Kume and Nishida,
2021

EMPIAR Yes, ex.
EMPIAR-10069

Yes, ex.
EMPIAR-10592

Electron microscopy
images

Repository https://www.ebi.ac.uk/
empiar/

Iudin et al., 2016

SciLifeLab Not determined Yes Scientific data, images
and figure

Repository https://www.scilifelab.se/
data/repository/

NA

BioImage Archive Yes Yes Archive of IDR and
EMPIAR

Repository https://www.ebi.ac.uk/
bioimage-archive/

Ellenberg et al.,
2018

DeepCell Kiosk Establishing a
cellwise dataset

Tool for segmentation
in the cloud

Web
interface

deepcell.org Moen et al., 2019

Cellpose Segmentation Tool for segmentation
in the cloud and
python GUI

Web
interface,
application

https://github.com/
MouseLand/cellpose

Stringer et al., 2021

NucleAIzer Transfer learning Tool for segmentation
in the cloud

Web
interface

www.nucleaizer.org Hollandi et al., 2020

CDeep3M Electron microscopy
segmentation

Multiple trained
networks for distinct
structures in EM
images

Web
interface,
model zoo

https://cdeep3m.crbs.
ucsd.edu/

Haberl et al., 2018

QuPath Feature design for
segmentation

Inference with
StarDist

ML segmentation with
GUI

Application,
plugin

qupath.github.io Bankhead et al.,
2017

DeepImageJ Inference in ImageJ
with BioImage.IO

Tool for inference on
the desktop

Plugin deepimagej.github.io/
deepimagej/

Gómez-de-Mariscal
et al., 2021

Ilastik Feature design for
segmentation

Interfaces with
BioImage.IO

Segmentation with GUI Application,
plugin

www.ilastik.org Berg et al., 2019

CellProfiler and
CellAnalyst

Feature design for
classification

Unet Segmentation Pipeline Based image
processing tool with
ML and DL support

Application cellprofiler.org Dao et al., 2016;
McQuin et al., 2018

StarDist Segmentation Python and Java
(ImageJ/FIJI) tool for
segmentation

Plugin https:
//github.com/stardist/stardist

Weigert et al., 2020

HistomicsML2 Model for training
and tools for
inference

Framework for training
and inference
on imaging data

Web
interface

https://histomicsml2.
readthedocs.io/

Lee et al., 2021

CSBDeep Image restoration,
segmentation

FIJI plugins and python
for image restoration
and segmentation

Python,
plugin

https://csbdeep.
bioimagecomputing.com/

Schmidt et al., 2018;
Weigert et al., 2020

CytoMAP Feature design for
neighborhoods

Cell classification and
neighborhood analysis
with GUI

Application gitlab.com/gernerlab/
cytomap/-/wikis/home

Stoltzfus et al., 2020

Volumetric tissue
exploration and
analysis

Feature design for
classification and
segmentation

Cell segmentation,
classification and
neighborhood analysis
with GUI

Plugin https://vtea.wiki Winfree et al., 2017

modelzoo.co Models for many
datatypes

Open source and
pretrained networks

Web
repository

modelzoo.co NA

InstantDL Segmentation and
classification

Broadly applicable
segmentation and
classification
framework

Python,
CoLab

https://github.com/marrlab/
InstantDL/

Waibel et al., 2021

BioImage.IO Models for
specifically for
bioimaging

DL networks for the
bioimaging community

Web
repository

bioimage.io NA

ZeroCostDL4Mic Training and
inference with
BioImage.IO

Tool for training and
inference in the cloud

Cloud based,
CoLab

github.com/HenriquesLab/
ZeroCostDL4Mic

von Chamier et al.,
2021

OpSeF DL network training
and inference

Python framework in
Jupyter notebooks

Python github.com/trasse/
OpSeF-IV

Rasse et al., 2020

Weka Extensive library of
classifiers and tools

ML frame work for
Java, Plugin for ImageJ

API,
application,
plugin

www.cs.waikato.ac.nz/
ml/weka/

Hall et al., 2009
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(Zhuang et al., 2021). Thus, until there is a generalizable solution,
new deep learning segmentation approaches can be developed
quickly by building on existing work with focused training
datasets specific to tissue, cell-type and imaging modality.

CLASSIFICATION

Using specific protein or structural markers is a common way to
determine cell-types in cytometry approaches like flow and image
cytometry. Image cytometry is complicated by defining which
pixels are associated with which cells. While a nuclear stain can be
used to identify the nucleus, membrane, and cytoplasmic markers
may be inconsistent across cell-types, cell-states, and tissues.
A common solution is to measure markers in pixels proximal
to segmented nuclei. These pixels can be defined by using a
limited cell-associated region-of-interest that wraps around an
existing nuclear segmentation or by performing a tessellation
with a Voronoi segmentation (Winfree et al., 2017; Goltsev et al.,
2018; McQuin et al., 2018).

The mean-fluorescence intensity (or other intensity measure,
mode, upper-quartile mean, etc.) of markers in cell-associated
segmented regions is frequently used for classification.
A common supervised approach is to perform a series of
sequential selections or gates based on marker intensities
like flow cytometry. This “gating strategy” can easily identify
specific cell-types with a predefined cell-type hierarchy. Cell
classification can be semi-automated with unsupervised or
semi-supervised machine learning using classifiers and clustering
approaches. Popular approaches include Bayesian and Random
Forest classifiers and clustering with k-means or graph based
community clustering like the Louvain algorithm (Hall et al.,
2009; Dao et al., 2016; McQuin et al., 2018; Phillip et al., 2021;
Solorzano et al., 2021). Importantly, analyzing highly multiplexed
image datasets, more than twenty markers, with a supervised
“gating” approach may prove intractable necessitating machine
learning approaches (Levine et al., 2015; Goltsev et al., 2018;
Neumann et al., 2021).

Deep learning has been broadly applied to classification of
images (Gupta et al., 2019). One of the strengths of a deep
learning classification approach, as with segmentation, is that it is
possible to start with a pretrained network-potentially reducing
training set sizes. For instance, in 2D image classification, a
convolutional neural network (CNN) like ResNet-50 initially
trained on natural images (e.g., animals, vehicles, plants, etc.) can
be retrained with a new label structure and training data that
might include, for instance, cell nuclei (Woloshuk et al., 2021).
Some deep learning models can further simplify workflows, like
regional-CNNs, performing both segmentation and classification
(Caicedo et al., 2019).

One image dataset that presents an interesting challenge
and unique opportunity in both segmentation and classification
is multiplexed fluorescence in situ hybridization (FISH).
These approaches can, through combinatorial labeling of
fluorophores, generate images of nearly all putative transcripts
(Coskun and Cai, 2016). Although a semantic and instance
segmentation approach can be used to identify and classify
cells using associated FISH probes (Littman et al., 2021), a

recent pixelwise-segmentation free approach has been proposed.
This approach organizes the detected FISH-probes into spatial
clusters using graphs from which signatures of cells and cell-
types are determined (Shah et al., 2016; Andersson et al., 2020;
Partel and Wählby, 2021).

MICROENVIRONMENTS AS
NEIGHBORHOODS

The classification of microenvironments in tissues informs our
understanding of the role of specific cells and structures in
an underlying biology. This has led to the development of
neighborhood analysis strategies that involve the segmentation
of groups of cells or structures which are then classified with
machine learning using neighborhood features such as cell-
type census and location (Stoltzfus et al., 2020; Solorzano
et al., 2021; Winfree et al., 2021). This process mirrors the
segmentation and classification of single cells by protein and
RNA markers where the types of cells or the distributions of
cell types in neighborhoods are the markers used to classify
the neighborhoods. The segmentation strategies for defining
neighborhoods usually rely on either regular sampling of a
tissue or cell centric approaches (e.g., distance from a cell or
the k-nearest neighborhoods) (Jackson et al., 2020; Stoltzfus
et al., 2020; Lake et al., 2021; Winfree et al., 2021). The
impact of neighborhood size and defining it variably and locally
(e.g., microenvironments may be different near arterioles vs.
microvasculature) are under explored avenues in the analysis of
cellular microenvironments in bioimaging datasets. Importantly,
further development of neighborhoods analyses is critical as it
has demonstrated mechanistic insight in human disease when
used with highly multiplexed chemical and fluorescence imaging
(Jackson et al., 2020; Schürch et al., 2020; Stoltzfus et al., 2021).

TECHNOLOGY AND TOOL
ACCESSIBILITY

Minimizing the exclusivity of segmentation and classification
advancements with the development of user accessible tools,
is critical to the democratization of image analysis. In the
above discussions of both segmentation and classification, most
researchers and developers paid careful attention to providing
tools for use by biomedical scientists. Example tools include web
interfaces, stand-alone applications, or plugins for open-source
image processing software (Table 1). These tools provide access to
users that are novices in image analysis, day-to-day practitioners
and super-users or developers across the three fundamental
tasks of cell segmentation, cell classification and neighborhood
analysis (Table 1). Furthermore, deep learning networks are
available through online repositories such as github.com and
modelzoo.co. An exciting development is the recent set of
publications that have defined one-stop-shops for deep learning
models and accessible tools for using and training existing deep
learning networks (Iudin et al., 2016; Berg et al., 2019; Rasse
et al., 2020; Gómez-de-Mariscal et al., 2021; von Chamier et al.,
2021, p. 4). This includes the integration of segmentation tools
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with online repositories of trained deep learning networks that
can be easily downloaded and tested on cells and modalities of
interest. With this added accessibility, there is a risk of misuse
and possible abuse. However, the ease of reproducibility may
outweigh this risk.

CONCLUSION

The bioimaging community has recognized for decades
that image data is more than a picture. Mining imaging
data collected in the biomedical sciences has blossomed in
the past 20 years, pushed by advancements in multiplexed
tissue labeling, image capture technologies, computational
capacity, and machine learning. It will be exciting to see the
next developments in image analysis with machine learning
approaches. Perhaps we will witness: (1) a fully generalizable

multidimensional cell segmentation approach; (2) novel
approaches to cell-segmentation independent of pixelwise
classification (as with some FISH data), or (3) new models
of neighborhoods to characterize cellular microenvironments
and niches. Furthermore, with web-based repositories to share
datasets and tools that are suitable for all levels of expertise,
these and other developments will be accessible to both experts,
practitioners, and researchers new to imaging and image analysis.
The broad accessibility of image data and tools could facilitate
the adoption of common and rigorous processes for meaningful
biological insight from image datasets across fields of study for so
much more than a picture.
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Intravital multiphoton microscopy has empowered investigators to study dynamic cell
and subcellular processes in vivo within normal and disease organs. Advances in
hardware, software, optics, transgenics and fluorescent probe design and development
have enabled new quantitative approaches to create a disruptive technology pioneering
advances in understanding of normal biology, disease pathophysiology and therapies.
Offering superior spatial and temporal resolution with high sensitivity, investigators can
follow multiple processes simultaneously and observe complex interactions between
different cell types, intracellular organelles, proteins and track molecules for cellular
uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique
has been utilized in the kidney to quantify multiple dynamic processes including capillary
flow, permeability, glomerular function, proximal tubule processes and determine the
effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue
penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue
clearing technology has virtually eliminated penetration issues for fixed tissue studies.
Use of multiphoton microscopy in preclinical animal models offers distinct advantages
resulting in new insights into physiologic processes and the pathophysiology and
treatment of diseases.

Keywords: proximal tubule, glomerular filtration, endocytosis, renal hemodynamics, fluorescent biomarkers

INTRODUCTION

Intravital multiphoton microscopy (MPM) of the kidney has been conducted for 20 years (Dunn
et al., 2002, 2021). During this time advances in optics, lasers, computer software and hardware
have led to more powerful systems having improvements in sensitivity and speed leading to a
wide variety of new techniques exploring questions in vivo that were before unapproachable.
Intravital multi-photon microscopy allows for visualization and quantification of dynamic cellular
processes in normal functioning and diseased cells in vivo. A wealth of fluorescent biomarkers
utilizing, blue, green, red, and far-red emitting fluorophores now allow four channels to be viewed
simultaneously in three dimensions (3D) over time resulting in four-dimensional data. This has
markedly increased the ability to observe and relate events involving multiple cell types and or
intracellular organelles. Several laboratories have pioneered approaches and taken advantage of
the many of these technological advances to study kidney physiology and pathophysiology (Dunn
et al., 2002). Our laboratory has been aided along the way by numerous scientific collaborations
and a NIH supported O’Brien Center for the past 20 years (Dunn et al., 2021). Table 1 lists
some of the processes that can be quantified. In particular, the ability to study, within the same
nephron, the interdependent roles of the glomerulus and proximal tubule (PT) simultaneously
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has been an exciting development for our laboratory. This
mini-review will highlight a number of the advantages,
techniques developed and utilized to quantify various aspects
of renal physiology, pathophysiology and drug therapies, and
will end indicating some of the existing limitations and
challenges to the field.

We will start by giving an overview of the imaging set up used,
and some basics of what can be visualized and then proceed to
individual structural components of the nephron (Figure 1A).
The set up developed and utilized by our laboratory is shown
in Figure 1B. We prefer the inverted microscope as experience
has taught us that we can limit motion more thoroughly using
this approach. Maintaining body temperature, volume status and
appropriate anesthesia are essential to a successful study. We
usually have an IV infusion ongoing and also measure the arterial
blood pressure with a transducer to insure adequate hydration
and physiologic parameters. Maintaining adequate anesthesia,
but not too much, minimizes movement which is essential.
We prefer inhaled anesthetics as they allow for fine tuning of
the state of anesthesia. Figure 1C shows a low power view of
the outer cortex of a Munich Wistar Frömter rat revealing a
surface glomerulus surrounded by numerous tubules. Tubule
types such as proximal tubules are identified by their endogenous
autofluorescence and apical brush border membrane. Collecting
ducts and distal tubules are indistinguishable from each other
as they lack endogenous autofluorescence or any other visible
landmark and appear as large empty patches similar in size
to proximal tubules. Surrounding the tubules is the interstitial
space containing dendritic cells and other cell types, especially
during and following injury, and a network of peritubular
capillaries and erythrocytes and white blood cells appearing as
dark objects as they do not take up the fluorescent molecule
contained in the plasma. Large molecular weight fluorescent
molecules, that remain stable in the vasculature, are used
to demarcate vessels, evaluate permeability and localize the
interstitial space (Figure 1C). Figure 1 also shows a high
magnification micrograph of a shallow 5 µm, 3D reconstruction
of proximal tubule from the same series in Figure 1C. A 10 kDa
filtered blue dextran is seen in early endosomes in the sub-
apical region. The techniques and probes to be described have
allowed us to understand normal renal physiology, the effect
and pathophysiology of disease processes and the mechanisms of
effective therapies.

RENAL BLOOD FLOW DYNAMICS

Intravital MPM reveals a heterogeneous landscape of normal red
blood cell flow within the peritubular vasculature and glomerular
capillary loops. It has allowed important insights into ischemic
and septic injury to the microvasculature. Large molecular
weight fluorescent molecules create shadows of blood cells in
the vasculature and the velocity of these cells can be inferred
from the angles of these streaks in 2D images, or more accurately
from the angle of the streaks in kymographs derived from line
scans. This allows for assessment of red blood cell (RBC) flow
rates and the degree of white blood cell rolling and attachment

following ischemic injury and during sepsis (Dunn et al., 2002,
2021; Molitoris and Sandoval, 2005, 2011; Sharfuddin et al.,
2009; Sandoval and Molitoris, 2017; Sandoval et al., 2019). In
disease states red blood cells can stack together to form rouleaux
reducing their oxygen delivery capacity and resulting in partial
or complete peritubular capillary obstruction. These structures
are easily identified, often lodged behind adherent white blood
cells in the microvasculature, and can exit the kidney in the
venous outflow (Sharfuddin et al., 2009; Molitoris and Sandoval,
2011; Sharfuddin and Molitoris, 2011). They may lodge in other
microvascular beds in distant organs but the importance of this
has not been determined. This has been used extensively to
visualize and quantify the changes in peritubular capillary blood
flow rates and microvascular dropout following ischemic injury
(Basile, 2019).

Labeling White Blood Cells (WBC) nuclei using Hoechst
33342, and using distinctive nuclear morphology, gives a
qualitative idea of the number and types of WBC flowing freely
within the renal vasculature or found within the interstitium. In
disease or injury models activated WBCs adhere to or roll along
endothelial cells reducing flow (Sharfuddin et al., 2009; Molitoris
and Sandoval, 2011; Sharfuddin and Molitoris, 2011). This can be
visualized in the peritubular capillaries of S1 and S2 PT segments.
Unfortunately, due to limited depth penetration, the S3 segment
of PT cannot be visualized using intravital MPM. The S3 PT
nephron segment is known to suffer the greatest capillary injury
and microvascular dropout in ischemic models (Sharfuddin and
Molitoris, 2011; Basile, 2019).

Ratiometric imaging of two non-overlapping fluorescent
vascular dyes has been used in pre-clinical studies to determine
glomerular filtration rates in rats under physiologic and following
ischemic acute kidney injury (Yu et al., 2005; Wang et al.,
2010). The glomerular sieving coefficient (GSC) of a fluorescent
compound is the ratio of fluorescence in Bowman’s Space divided
by fluorescence in the glomerular capillary plasma. A small 5 kDa
dextran, with a GSC of 1.0 is rapidly and completely filtered
across glomerular capillaries, and a large dextran, 150 kDa, has
a very low GSC and is retained and stable in the vasculature. This
approach has been adapted to clinical studies to provide both
quantitative GFR and plasma volume determinations (Rizk et al.,
2018; Molitoris et al., 2019).

GLOMERULAR IMAGING

In MWF rats surface glomeruli are easily identified allowing the
dynamic aspects of glomerular capillary vessel diameter, RBC
flow rates, single nephron GFR, and permeability to be quantified
(Dunn et al., 2002, 2021; Sandoval et al., 2019). Of these different
parameters the measurement of glomerular permeability of
macromolecules is likely the most clinically important and
has created controversy in the literature. Previous methods to
quantify glomerular permeability were based on micropuncture
or urinary fractional clearance studies. These techniques compare
tubular lumen filtrate and urinary concentrations to plasma
concentrations, respectively. Unfortunately, there is no allowance
for PT mediated loss of material from the lumen due to tubular
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reabsorption via fluid phase or receptor mediated endocytosis
prior to the collection location (Russo et al., 2007a,b, 2009;
Sandoval et al., 2012; Sandoval and Molitoris, 2013; Wagner et al.,
2016a). Since the early S1 segment is primarily responsible for
albumin reabsorption, micropuncture studies often miss the most
endocytic S1 portion thus underestimating the amount of filtered
albumin due to the needle placement away from Bowman’s Space.
Thus, our MPM studies have shown the glomerular sieving
coefficients (GSCa) higher than most micropuncture studies,

in the 0.012–0.015 range (Sandoval et al., 2012; Sandoval and
Molitoris, 2013), while micropuncture studies have for the most
part found values in the 0.0005 range for MWF rats. A recent
micropuncture study did show a much higher GSCa (Hu et al.,
2016). Russo et al. (2007b, 2009) used Munich Wistar Simonsen
rats and found their GSCa was in the range of 0.025–0.030.
The reason for the GSCa differences in MWF and MWS has
not been investigated, but we have validated the high GSCa
in MWS rats. Interestingly, early streptozocin diabetic Munich

TABLE 1 | Potential uses of multiphoton microscopes in kidney processes.

Dynamic cell specific events: References

Cellular labeling and uptake

Cell type specific:

Epithelial Tanner et al., 2005; Ashworth et al., 2007; Sandoval and Molitoris, 2017; Dunn et al., 2021

Endothelial Dunn et al., 2002; Sutton et al., 2003; Molitoris and Sandoval, 2011; Desposito et al., 2021;
Gyarmati et al., 2021a

Glomerular labeling Hackl et al., 2013; Schiessl et al., 2020; Gyarmati et al., 2021a

Uptake site:

Apical Dunn et al., 2002, 2021; Sandoval et al., 2004, 2012; Sandoval and Molitoris, 2017

Basolateral Horbelt et al., 2007

Mechanism:

Endocytosis Dunn et al., 2002; Sandoval et al., 2004, 2019; Kalakeche et al., 2011; Wagner et al., 2016a;
Sandoval and Molitoris, 2017; Schuh et al., 2018

Carrier/transporter mediated Horbelt et al., 2007

Cell number Hackl et al., 2013; Schiessl et al., 2020; Gyarmati et al., 2021b

Pattern distribution Hackl et al., 2013; Schiessl et al., 2020; Shroff et al., 2021

Cellular distribution

Site specific intracellular organelle accumulation Weinberg and Molitoris, 2009; Hall et al., 2013

Cytosol accumulation Molitoris and Sandoval, 2006

Cell function

Endocytosis-quantitative analysis Sandoval and Molitoris, 2008, 2017; Schuh et al., 2018; Sandoval et al., 2019

Intracellular trafficking Sandoval et al., 2004, 2012; Molitoris and Sandoval, 2006; Sandoval and Molitoris, 2017

Transcytosis/exocytosis Sandoval et al., 2012

Renin secretion Schiessl et al., 2020

Dynamic structural/functional effects within the kidney:

Glomerular:

Size/volume Sandoval et al., 2019

Permeability Russo et al., 2007b; Nakano et al., 2012; Sandoval et al., 2012, 2014, 2019; Sandoval and
Molitoris, 2013, 2014, 2017; Schiessl and Castrop, 2013; Dickson et al., 2014; Schiessl et al.,

2015; Wagner et al., 2016a,b; Kidokoro et al., 2019; Gyarmati et al., 2021a

Fibrosis/Sclerosis Ranjit et al., 2016

snGFR Kang et al., 2006; Kidokoro et al., 2019

Afferent arteriole Kang et al., 2006; Hackl et al., 2013; Gyarmati et al., 2021b

Macula densa Shroff et al., 2021

Microvasculature:

Blood flow rate Molitoris and Sandoval, 2005; Sharfuddin et al., 2009; Sandoval and Molitoris, 2017; Sandoval
et al., 2019

Endothelial permeability Molitoris and Sandoval, 2011; Sandoval and Molitoris, 2017; Sandoval et al., 2019

WBC adherence/rolling/tissue invasion Sandoval and Molitoris, 2017; Sandoval et al., 2019

Vasoconstriction Kidokoro et al., 2019

Epithelial cell:

Cell injury in necrosis, apoptosis Dunn et al., 2002; Kelly et al., 2003; Ashworth et al., 2007; Kalakeche et al., 2011; Sandoval and
Molitoris, 2017

Surface membrane/blebbing Tanner et al., 2005; Ashworth et al., 2007

Tubular flow Ferrell et al., 2015
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FIGURE 1 | Visual resolving power of intravital multi-photon microscopy: a schematic of the renal architecture to subcellular resolution in proximal tubules.
(A) Shows a classic diagram of the kidney in cross-section (upper right), with an inset of the complete nephron (center), and glomerulus (left). (B) Shows a schematic
of the set-up used for 2-photon imaging. Placing the left exteriorized kidney onto a coverslip bottom dish on an inverted microscope is the most efficient way to
minimize motion artifact from breathing. The various heating elements shown are used to maintain the proper kidney and body temperature, which is monitored and
regulated. (C) Shows a single plane cross section with a glomerulus (glom) in the upper center and surrounding peritubular vasculature made visible using a large
150 kDa FITC dextran (green) retained in the plasma. Faint blue fluorescence in proximal tubule lumens (PT) and intense blue fluorescence in the lumen of collecting
ducts (CD) and distal tubules (DT) comes from a small rapidly filtered 10 kDa Cascade Blue dextran bolus administered earlier. In DT and CD segments water
removal concentrates the dextran intensifying the color. Three different mitochondrial dyes are seen in this image. Rhodamine 123 (yellow) predominantly labels the
mitochondria of proximal tubule cells (PT); the open S1 PT segment is seen juxtapose to the glomerulus on the left. Tetramethylrhodamine methyl ester (TMRM, red)
predominantly labels mitochondria in the distal tubules (DT) and collecting ducts (CD). Note the heterogenous labeling seen in the collecting ducts between the
intercalated and principal cells. Finally, rhodamine B hexyl ester (also red) labels circulating white blood cells (WBC), podocytes (podo) in the glomerulus, endothelial
cells (endo) see surrounding the peritubular vasculature, and a variety of cells in the interstitial space. Enlargements for the white blood cell and endothelial cell
staining with rhodamine B hexyl ester are immediately adjacent to the right of the image. Hoechst 33342 labels the nuclei of all cell types (blue-cyan) in this
micrograph (Bar = 20 µm). (D) Shows a high magnification micrograph of a shallow 5 µm, 3D reconstruction of proximal tubule from the same series in (C).
Endocytosis of the 10 kDa Cascade Blue dextran by the proximal tubule is seen accumulating at the sub-apical space in discrete blue vesicles (arrowheads). Note
the various sizes of endosomes the microscope can resolve (Bar = 20 µm).

Wistar Simonsen rats had no change in their GSCa, but showed
reduced PT reabsorption of filtered albumin and increased
urinary albumin (Russo et al., 2009).

Unfortunately, glomerular studies in mice are challenging as
glomeruli are rarely within 100 microns of the surface after
4 weeks of age in all mice strains (Schiessl et al., 2013). To
circumvent this challenge prolonged ureteral obstruction, or

the use of non-steroidal anti-inflammatory agents, have been
used to force glomeruli to the surface secondary to cortical
destruction. However, this approach is known to cause excessive
inflammation, fibrosis, and loss of proximal tubule (PT) structure
and function leaving interpretation of the results problematic
especially when studying a disease model (Chevalier et al., 2009;
Yang et al., 2010).
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To get accurate GSCa using MPM one must have the
necessary sensitivity to correct for measurement and subtraction
of background values (Yang et al., 2010; Sandoval et al., 2014;
Sandoval and Molitoris, 2014). Setting the background too high
lessens sensitivity and reduces the GSCa. This requires using the
full dynamic range of the system’s detectors and particularly the
correct offset or black level. Setting the black level for Bowman’s
Space to zero to eliminate all background signal, markedly
reduces detector sensitivity and distorts the results of the low
intensity signals (Sandoval et al., 2014; Sandoval and Molitoris,
2014). The old adage, your results are only as good as your
sensitivity holds in this situation.

PROXIMAL TUBULE ENDOCYTOSIS
AND TRANSCYTOSIS

Proximal tubules function to reabsorb filtered fluid, electrolytes
and macromolecules to prevent loss via urinary excretion.
They also function to “sense” the internal environment and
have immunologic surveillance capabilities (Hato et al., 2013).
Intravital MPM has played an important role in understanding
the processes involved, intracellular trafficking and catabolism of
the reabsorbed material (Molitoris and Sandoval, 2005; Horbelt
et al., 2007; Sandoval and Molitoris, 2008, 2017; Sandoval et al.,
2019). This has been particularly important for macromolecules
including therapeutic agents (Sandoval et al., 2004; Molitoris
and Sandoval, 2006; Molitoris et al., 2009; Kalakeche et al.,
2011). Kinetic studies with p53 fluorescent siRNA showed PT
endocytosis, cytosolic delivery and a short intracellular half-life
corresponding to the rate and duration of the synthesis of p53
(Molitoris et al., 2009).

Macromolecule reabsorption across the apical membrane
occurs via receptor mediated and fluid phase endocytosis,
Figure 1D. The Hall laboratory, using a tissue clearing technique
to allow for deeper MPM penetration in fixed tissue showed the
S1 segment uses receptor mediated endocytosis (RME) primarily
whereas the S2 and S3 segments primarily use the fluid phase
endocytosis (FPE; Schuh et al., 2018). Thereafter endocytic
trafficking sorts material into two main pathways, lysosomal
for catabolism and transcytosis for reclamation. Intravital MPM
has helped expand the investigative focus, beyond glomerular
dysfunction, to elucidate the role tubular injury plays in
proteinuric and albuminuric diseases previously thought to be
associated solely with damage to the filtration barrier (Sandoval
et al., 2012; Sandoval and Molitoris, 2013; Wagner et al., 2016a).
In quantifying uptake it is important not to saturate the intensity
of the endosomal pool (particularly lysosomes) as this will
underestimate the amount of the material therein (Sandoval and
Molitoris, 2008, 2014; Sandoval et al., 2014).

Careful consideration to the background fluorescence must
also be accounted for when quantifying uptake of any compound
into the lysosomal/endosomal pool. This value must be
subtracted from the raw images to determine true and meaningful
intensity values (Sandoval et al., 2019). We typically take three
background 3D volumes of proximal tubules at different laser
transmissivities prior to imaging, and calculate average intensity

values at each laser power to mathematically compensate for
saturating intensities. This generates intensity correction factors
between the different laser powers used to normalize background
subtracted images taken at different laser powers. Thresholding
is used to help correct for autofluorescence in lysosomes, and
is fluorophore channel specific (Sandoval and Molitoris, 2013;
Sandoval et al., 2019).

Transcytosis has not been extensively studied in PT cells
in vivo because it is difficult to characterize the amount of
transcytosis based on basolateral transport into the interstitial
space (Sandoval et al., 2012; Dickson et al., 2014). We observed
albumin transcytosis via both finger like projections and
vesicles from endosomal accumulations reaching basolateral
membranes of proximal tubules (Sandoval et al., 2012). This is
in agreement with FcRn mediated immunoglobulin transcytosis
in cultured cells (Ward et al., 2005). Transcytosis of albumin
was confirmed using molecular techniques, but the amount
of albumin undergoing transcytosis remains unknown (Tenten
et al., 2013). A potential role for PT sorting of glycated,
carbamylated and other potentially toxic albumins, mediated by
FcRn binding, for catabolism via lysosomal trafficking has been
proposed as a mechanism to rid the body of altered albumins
while preserving physiologic albumin for transcytosis (Dickson
et al., 2014; Wagner et al., 2016b; Yadav et al., 2021). Proximal
tubule transcytosis of folic acid and other vitamins is known to
occur (Sandoval et al., 2004). Transcytosis from the basolateral
membrane has also been demonstrated for PT cells using other
techniques (Hu et al., 2016).

MITOCHONDRIAL STRUCTURE AND
FUNCTION AND ASSOCIATED
PROCESSES

Mitochondrial structure and function can both be studied
using intravital MPM in multiple cell types simultaneously.
Multiple cell membrane permeable dyes can be used to determine
the mitochondrial potential and follow its loss during injury
(Weinberg and Molitoris, 2009; Hall et al., 2013). These
studies identified the relative resistance in cellular mitochondrial
potential to ischemia among the different tubular epithelial cells
and structural changes in PT mitochondria. Three different
mitochondrial dyes are used to label various cortical cells
(Figure 1C). Rhodamine 123 predominantly labels proximal
tubule cells, Tetramethylrhodamine methyl ester (TMRM), labels
the collecting ducts and distal tubule cells. However, increased
loading concentrations can cause accumulation in other tubule
types. A second red dye, Rhodamine B hexyl ester, is used to stain
mitochondria of endothelial cells, podocytes, circulating white
blood cells, and cells within the interstitial space. All three dyes
can be used simultaneously at lower loading concentrations, even
the two red dyes because of the disparate cell types they label (Hall
et al., 2013). The differences in cells labeling by each dye may
relate to the organic ion transport processes in each cell type.

Apoptosis is another intracellular process that can easily be
followed and quantified using MPM and can be differentiated
from necrosis using Hoechst 33342 and the vital dye propidium
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iodide (Dunn et al., 2002, 2021; Kelly et al., 2003). Bright
condensed staining along the edge of the nucleus, as well as bright
fragmented structures, are hallmark changes that occur during
apoptosis. Staining of nuclei with propidium iodide is indicative
of a necrotic cell with a compromised cell membrane as this dye
is membrane impermeant.

ALTERNATIVE METHODS OF PROBE
DELIVERY

While intravascular delivery remains the mainstay for delivering
fluorescent biomarkers to the kidney, a major advantage of MPM
is the ability to pair other techniques with it and observe the
subsequent process in vivo using a biomarker that cannot be
delivered via the vascular route. We have used micropuncture
techniques to deliver plasmids to fluorescently label cellular actin
structures (Tanner et al., 2005; Ashworth et al., 2007), deliver
fluorescently labeled bacteria to the lumen of PT cells to follow
growth, invasion and cellular responses of PT (Mansson et al.,
2007; Melican et al., 2011; Choong et al., 2012; Schulz et al.,
2018), to endothelium and WBC (Sutton et al., 2003; Molitoris
and Sandoval, 2011) and hydrodynamic delivery of genes to cells
throughout the kidney (Kolb et al., 2018). These techniques are
done just prior to imaging the animal or on the microscope stage
during imaging. The ability to follow the result in a small area of
cells eliminates the need to deliver the probe to the entire kidney.

CHALLENGES TO STUDYING THE
KIDNEY

Imaging the kidney intravitally has a number of challenges
that must be understood and minimized. The kidney has
reduced optical penetration, compared to the many tissues, due
to increased blood flow, cellular heterogeneity, and inherent
autofluorescence. This results in scattering and absorption of the
emitted light. This limits the depth of penetration allowing for
high sensitivity and resolution to less than 100 microns whereas
studies in brain can penetrate over a millimeter (Sandoval et al.,
2012; Sandoval and Molitoris, 2013). Figure 2 shows the effect of
imaging depth on sensitivity and resolution from 20 to 70 µm
utilizing two different wavelengths, 880 and 890 nm, even when
using the Linear Z-Compensation feature on the Leica Dive
Multi-Photon system. Orthogonal views, Figures 2A,B and single
plane images Figures 2C–F show the drop off in both sensitivity
and resolution regardless of the wavelength used. As we have
shown before, this drop off is greater for fluorophores emitting in
the green spectrum due to enhanced quenching by hemoglobin
(Sandoval et al., 2012; Sandoval and Molitoris, 2013).

Two approaches have recently been advanced to allow
for deeper penetration and visualization. Schuh et al. (2016)
using specialized longer wavelength excitation lasers and far-red
probes, demonstrated greater depth advantages when conducting
intravital 2 and 3-photon studies of the kidney. Adaptive
optics may also be able to improve the depth of penetration
by compensating for system and sample aberrations in the

excitation beam wavefront. This will improve the focus resulting
in higher intensities and improved spatial confinement at depth
(Ji, 2017). However, adaptive optics has not been applied to
imaging the kidney.

It is also more difficult to stabilize the kidney leading to
increased motion artifacts. These challenges and approaches to
minimize them have been carefully described previously (Dunn
et al., 2002, 2021; Sandoval and Molitoris, 2017; Sandoval et al.,
2019).

The use of fluorescent probes or biomarkers to delineate
aspects of glomerular filtration, peritubular capillary function
and tubular function in health and disease is critical but
not without challenges. For instance, commercially available
fluorescent dextrans all too often have a wide molecular weight
dispersion limiting their accurate characterization of processes
such as glomerular permeability (Sandoval et al., 2012; Sandoval
and Molitoris, 2013). We have solved this problem by first
obtaining a highly uniform dextran, with low MW dispersion,
and second by performing the fluorophore conjugation directly
(Sandoval et al., 2012; Sandoval and Molitoris, 2013, 2017).

Measurement of the fluorescence intensity of labeled
compounds is the basis for many quantitative studies including
glomerular permeability, PT reabsorption, co-localization
and many others. Quantitative intensity-based data analysis
requires strict attention to how instrument parameters and
sensitivity are managed to completely utilize the full dynamic
range of the system (Sandoval and Molitoris, 2013; Sandoval
et al., 2014, 2019). For example, if settings are not correct
the ratiometric intensities of the same compound in two
different compartments can vary by orders of magnitude.
Full dynamic range utilization requires system detectors
with correct offset, or black level settings, showing only a
few pixels in the image randomly flash as having values of
zero (Sandoval et al., 2014; Sandoval and Molitoris, 2014).
When acquiring background images setting all pixels to
zero, in an effort to remove background during acquisition,
decreases sensitivity thus reducing the ability to detect
low intensity values (Nakano et al., 2012; Schiessl and
Castrop, 2013; Sandoval and Molitoris, 2014; Schiessl et al.,
2015).

When studying a protein it is essential to make sure the
conjugation of the fluorophore does not alter its physiologic
binding and or function. For albumin we have found a 1:1 ratio
of protein to fluorophore and use of a multi-carbon spacer on
the fluorophore, maintains physiologic binding affinity (Wagner
et al., 2016a). Increasing the conjugation ratio often leads to
reduced function and altered kidney metabolism and vascular
clearance (Wagner et al., 2016a). Therefore, it is essential, but
often overlooked, to ask, and test if possible, whether the
labeled protein has the same biological properties as the native
protein before undertaking imaging studies (Wagner et al., 2016a;
Sandoval et al., 2019).

The answer to which animal model to use is primarily
dictated by the question being asked. Mice have several
advantages including a wealth of transgenic strains and many
strains with fluorescently labeled cells such as the Tie-2 mice
labeled endothelial cells. The relative ease of generating unique

Frontiers in Physiology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 82728073

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-827280 March 19, 2022 Time: 11:56 # 7

Molitoris et al. Multiphoton Microscopy of the Kidney

FIGURE 2 | Effect of imaging depth on image intensity and resolution: The same glomerulus in a strain of Munich Wistar Frömter rats, expressing the fluorescent
protein DS Red selectively in podocytes, was imaged from 20 to 70 microns from the surface using two different wavelengths, 880 (A,C,E) and 980 nm (B,D,F).
Oregon Green 488 labeled rat serum albumin (OG488-RSA) was injected I.V. and can be seen in the vasculature, proximal tubules, and glomerulus. To assure
illumination remained relatively constant from the upper to the lower optical sections in the image volume, the Linear Z-Compensation feature on the Leica Dive
Multi-Photon system was utilized. (A,B) Show orthogonal the Linear Z-Compensation feature on the Leica Dive Multi-Photon system X-Z projections of a 73 µm
micron volume, with the glomerular surface at the top of the image; note the 2nd harmonic excitation of collagen in the renal capsule (arrows, blue). These
orthogonal projections in show the degradation in resolution and intensity in the deeper portions of the tissue, due to light scattering of the emitted light. The S1
cross section from both excitation wavelengths can resolve small endosomes and tubular structures rich in OG488-RSA at the upper cross section at 30 µm. The
lower cross section of the same S1 has a hazier appearance, with only a few individual endosomes identifiable. Single plane images shown in (C–F) show the loss in
resolution and intensity of the individual endosomes in (E,F) (taken at 70 µm), as compared to (C,D) (taken at 30 µm). The loss in resolution at the lower depths
extends to small structures like endosomes and also includes losing the ability to discern circulating red blood cells in peritubular vessels and glomerular capillary
loops. The inability to clearly discern the boundaries of glomerular capillary loops or peritubular blood vessels and the general haze makes intensity based (such as
GSCs) or morphology based (such as RBC flow) analysis nearly impossible and greatly increases error and data variability (Bar = 20 µm).

transgenic mice has also been an important advantage. The Peti-
Peterdi laboratory has used this approach to follow endothelial
and glomerular epithelial regeneration using serial intravital
multi-photon microscopy (Hackl et al., 2013; Schiessl et al.,
2020; Desposito et al., 2021). These studies have shed light on

the dynamic alterations, spatial distribution and fate of single
renal cells or cell populations and their migration patterns in
the same tissue region over several days in response to various
stimuli. As delineated above, glomerular studies in mice are
challenging as glomeruli are rarely within 100 microns of the
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surface after 4 weeks of age in all mice strains (Schiessl et al.,
2013). Ureteral obstruction for 6–12 weeks, or non-steroidal anti-
inflammatory agents, have been used to induce surface glomeruli,
but this comes at the cost of tubular destruction, cortical atrophy
and fibrosis (Chevalier et al., 2009; Yang et al., 2010). This
same team of investigators have shown, in their recent studies,
deep glomeruli in mice can be imaged and both afferent and
efferent arteriolar RBC flow can be quantified (Gyarmati et al.,
2021a,b; Shroff et al., 2021). To do this they again used longer
wavelength light to visualize normal cortical depth glomeruli in
mice. However, resolution does suffer and not all processes can be
quantified at this depth. A recent study also shows mice glomeruli
may increase on the surface during progressive disease in a mouse
model of Alport’s Syndrome (Gyarmati et al., 2021b).

Another investigative team has used cortical resection to
expose subsurface glomeruli in mice. While necessary for
glomerular visualization, this approach resulted in a very high
GSC for albumin, the ratio of glomerular filtrate to capillary
albumin fluorescence, of 0.2–0.3, likely resulting form injury
induced by the resection (Kidokoro et al., 2019). We have chosen
to primarily study Munich Wistar Frömter rat strains (Simonsen
and Frömter) that have easily imaged surface glomeruli. The Peti-
Peterdi laboratory has developed a nice technique to quantify
single nephron GFR and renal blood flow in these rats (Kang
et al., 2006). The Frömter strain has up to three times more
than the Simonsen’s strain. Surface glomerular capillaries are
seen within Bowman’s Capsule, lack any autofluorescence, and
are surrounded by proximal tubules (Figures 2C,D). The rat
glomerulus consists of lobules and is about 100 microns in
diameter allowing full 3D studies to be conducted. Unfortunately,
the afferent arteriole usually lies at the bottom of the glomerulus
making studies of it difficult due to decreased resolution and
sensitivity at that cortical depth.

The S1 segment of the proximal tubule can be easily identified
having a direct opening into the glomerulus making identifying
and studying this unique and very endocytic segment easy (Dunn
et al., 2002; Molitoris and Sandoval, 2005, 2011; Yu et al., 2005;
Russo et al., 2007a; Sharfuddin et al., 2009; Wang et al., 2010;

Sharfuddin and Molitoris, 2011; Sandoval and Molitoris, 2013,
2017; Dickson et al., 2014; Rizk et al., 2018; Basile, 2019; Molitoris
et al., 2019; Sandoval et al., 2019). Being able to identify and
study the S1 segment of the proximal tubule is important
as this segment has the greatest capacity for endocytosis of
macromolecules. This includes filtered proteins, vitamins, drugs,
and endogenous and exogenous nephrotoxins. Differentiating
S1 from S2 PT can be done in mice based on endogenous
autofluorescence but not in rats (Kalakeche et al., 2011). We
have found that anionic and neutral dextrans are endocytosed
differently between S1 and S2 thus providing another way to
distinguish these PTs in rats.

CONCLUSION

In summary, intravital MPM can serve as an invaluable tool to
enhance the research objectives of many laboratories studying the
physiology, pathophysiology and therapy of the kidney, or any
organ that is accessible to exposure, placement and stabilization
for intravital MPM microscopy. Multiple aspects can be studied
individually and up to four fluorescent dyes can be visualized
and spectrally separated. Since these dyes localize differently
within tissue compartments, a greater number of cellular of
processes can be simultaneously studied than the number of
detector channels.
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