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The dominant model for interpreting brain imaging experiments, which we refer to
as the Standard Cognitive Model (SCM), assumes that the brain is organized in
support of mental processes that control behavior. However, functional neuroimaging
experiments of cognitive tasks have not shown clear anatomic segregation between
mental processes originally proposed by this model. This failing has been blamed on
limitations in imaging technology and non-linearity in the brain’s implementation of these
processes. However, the validity of the underlying cognitive models used to describe the
brain has rarely been questioned or directly tested against imaging results. We propose
an alternative model of brain function, that we term the Non-cognitive Behavioral Model
(NBM), which correlates observed human behavior directly with measured brain activity
without making assumptions about intervening cognitive processes. Our model derives
from behavioral psychology but is extended to include brain activity, in addition to
behavior, as observables. A further extension is the role of neuroplasticity, as opposed
to innate cognitive processes, in developing the brain’s support of cognitive behavior.
We present the theoretical basis with which the SCM maps cognitive processes onto
functional magnetic resonance and positron emission tomography images and compare
and contrast with the NBM. We also describe how the NBM can be used experimentally
to study how the brain supports behavior. Two applications are presented that support
the usefulness of the NBM. In one, the NBM use of the total functional imaging signal (not
just the differences between states) provides a stronger correlation of neural activity with
the behavioral state of consciousness than the SCM approach in both anesthesia and
coma. The second example reviews studies of facial and object recognition that provide
evidence for the NBM proposal that neuroplasticity and experience play key roles
in the brain’s support of recognition and other behaviors. The conclusions regarding
neuroplasticity are then generalized to explain the incomplete functional segregation
observed in the application of the SCM to neuroimaging.

Keywords: functional magnet resonance imaging, cognitive psychology, neuroenergetics, behavioral psychology,
consciousness, object recognition
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INTRODUCTION

The ability of imaging to measure reliable, physical chemical
properties of neural activity in the brain during a person’s
behavior created a revolutionary opportunity for psychology.
With these new techniques, neural activity was recognized as a
novel observable in the study of behavior. While measurements
of animal and human behavior previously had been the most
reliable observation upon which an understanding of brain
function could be built, the reliability of measuring neural
activity offered by brain imaging studies is now certainly as
trustworthy. Functional magnetic resonance imaging (fMRI),
magnetic resonance spectroscopy (MRS), and positron emission
tomography (PET) measure the energy consumed by neural
activity through glucose and oxygen consumption evaluated
by coupled parameters of blood flow and volume. Oxidative
glucose metabolism (measured by fMRI and PET) quantitatively
tracks both neural electrical activity and glutamate/GABA
neurotransmitter release (Rothman et al., 2011; Hyder et al.,
2013a,b; Yu et al., 2017).

These and other available measurements of brain functional
activity (e.g., EEG, MEG) bear upon a question often asked in
psychology as to the role of an individual’s internal processes
in behavior. The role of internal processes in psychology
became prominent 60 years ago when behaviorism, the then
popular version of psychology, was severely challenged for
having ignored the inner workings of the person by having
insisted that only observable behavior could be the source
of scientifically valid information. Particularly influential were
Noam Chomsky’s criticisms of behaviorism for having neglected
internal processes during the development of language, which
he claimed specifically needed contributions beyond measureable
external influences and behavior (Chomsky, 1959). Chomsky
(1971) proposed that psychology must include innate, internal
mental processes, a position that has dominated the field ever
since. Subsequently many others introduced models of cognition
based on underlying mental processes. The most extreme version
of this theory treats the processes, referred to as mental modules
as totally isolatable both in terms of information processing and
as implemented in the brain, (Cosmides, 1980; Fodor, 1983).
However, although such an extreme degree of independence
is rarely present in theories today at least some degree of
separability of cognitive processes is almost always assumed
(Gazzaniga and Mangun, 2014).

The measurement of direct brain correlates of innate internal
mental processes remained elusive until the late 1980s with the
introduction of PET functional imaging (Phelps et al., 1979; Fox
et al., 1986) and soon after fMRI (Tank et al., 1992). The initial
PET studies looked for functional segregation within the brain
initially in the tradition of localizationist pioneers such as Broca,
Weirnicke, etc. who, based on brain lesions, assigned different
brain regions to language and other functions (for a review, see
Friston, 2005 and references therein). The formal application of
cognitive psychology to functional neuroimaging was introduced
by Posner and Raichle (1994) and Posner and Raichle (1998)
using an approach based upon the subtractive method introduced
in the previous century by Donders (1969) which compared

response times as a function of task complexity. The method was
soon introduced into the SPM statistical methodology by Friston
(1997) and Frackowiak et al. (2004; Ashburner, 2012). Although
since that time there have been many different statistical and
experimental approaches applied to functional imaging almost
all share the assumption that the brain supports pre defined
cognitive processes that depend on a degree of functional
segregation. We refer to models assuming underlying cognitive
processes, derived from cognitive psychology, as the Standard
Cognitive Model (SCM).

Despite the continued extraordinary growth of fMRI,
which has transcended the initial psychological and
neurological applications to move into the social sciences
(e.g., neuroeconomics) and popular culture (Satel and Lilienthal,
2013), there has been increasing concern about the disagreements
between expectations of cognitive theories and experimental
fMRI data (e.g., Friston et al., 1996; Shulman, 1996; McGonigle
et al., 2000; Poldrack, 2006; Friston, 2009; Gonzalez-Castillo
et al., 2012). In particular clear functional segregation of
cognitive processes has been elusive. Most of this criticism has
focused on technical issues such as imaging quality and statistical
analysis, with additional work focusing on interactions between
regions and non-linearity between cognitive processes and the
brain’s support of them (Price and Friston, 2007; Friston and
Price, 2011). In contrast there has been very little criticism
of the psychological assumptions embedded in the studies
(Shulman, 1996; Shulman and Rothman, 1998; Uttal, 2001;
Suhler and Churchland, 2011; Shulman et al., 2014). Shulman
(1996) proposed that the use of fMRI to localize brain regions
to previously determined mental processes was premature and
the opportunity to use functional neuroimaging to develop and
test new theories was being neglected. In subsequent papers,
we further elaborated this criticism using specific examples
from the literature in which the expectations of clear functional
segregation of cognitive processes were not being met by a
modular brain (Shulman, 1996; Shulman and Rothman, 1998;
van Eijsden et al., 2009). However, the goal of using functional
neuroimaging to localize or find the patterns of activity that
support assumed mental processes if anything has become
more dominant. A recent survey of the literature from 2007
through 2011 by Tressoldi et al. (2012) found that only 11% of
fMRI studies actually tested cognitive theories, the rest being
used only for localization of the assumed processes. Of the
11% only a few met the criteria they set for rigorous testing of
models (Tressoldi et al., 2012). Although testing of cognitive
theories is not the sole value of neuroimaging studies the
relatively few papers with this goal support our contention
that assuming the brain has anatomical representations
of cognitive concepts has rarely been questioned in
imaging studies.

The question of whether the brain supports separable
cognitive processes would be moot if fMRI studies showed
consistent reproducible localizations that could be assigned to
specific cognitive processes independent of context. However,
as has been pointed out this expectation has not been met
(e.g., Shulman, 1996; van Eijsden et al., 2009). The majority of
approaches to address this problem have looked at modifying
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the statistical methods by which brain regions associated with
cognitive processes are localized (Friston et al., 1996; Price and
Friston, 2007) as well as broadening the criteria of functional
segregation to accept a considerable amount of anatomical
overlap between regions supporting different concepts. We have
taken a different approach and instead have proposed that the
underlying psychological assumptions regarding the cognitive
structure of the brain used in designing and analyzing functional
neuroimaging experiments need to be re-examined (Shulman
et al., 2009, 2014, Shulman, 2013). To explore alternatives to the
top down SCM approach we have proposed that neuroimaging
data of brain activities should be directly correlated with
behavioral observations without assuming underlying separable
mental processes.

The primary goal of this paper is to explicate and
formalize this approach, which we refer to as the Non-
cognitive Behavioral Model (NBM) to allow its broader use in
designing and interpreting functional neuroimaging studies. We
start by describing assumptions that underly the application
of cognitive theories to functional neuroimaging (see the
section “Basic Structure of Standard Cognitive Models (SCM)
and Their Application to Functional Neuroimaging”). The
lack of agreement of functional neuroimaging data with the
expectations of finding functionally segregated support of
cognitive processes is described along with the modifications
of the SCM assumptions of how the brain supports cognitive
concepts to obtain better agreement with experimental data.
In Section “The Non-cognitive Behavioral Model (NBM),” we
describe the NBM and compare and contrast it with the
SCM. Key differences include no assumptions in NBM of
underlying cognitive processes, the incomplete separability of
brain activity and behavior, and the importance of neuroplasticity
and experience in determining patterns of brain activity. Another
key difference, specific to neuroimaging, is that the total as
opposed to the difference in the functional neuroimaging
signal is analyzed. In Section “Application of the NBM to
Studies Determining Neural Correlates of Consciousness,” we
compare the NBM and SCM approaches for localizing neural
correlates of consciousness from imaging data. The NBM
approach of looking for correlations between the total activity
of all brain regions and the measured behavior, provides
stronger correlations than between brain regions proposed by
cognitive theories to support consciousness and the average
cortical activity.

In Section “fMRI Studies of Facial and Object Recognition,”
recent studies on the fMRI responses to faces in the
fusiform gyrus support the important role of experience
and neuroplasticity in the development of brain responses. In
Section “Application of the NBM to Study Cognitive Behaviors,”
we generalize the NBM approach and point out the potential
key role of neuroplasticity in explaining both similarities
and differences between and within individuals performing
ostensibly the same behavior. In Section “Epistemological Basis
of the NBM,” we describe the epistemological basis of the NBM.
We conclude by suggesting how NBM provides a useful approach
for studying the brain support of cognitive and other behaviors
without assuming an underlying cognitive theory.

BASIC STRUCTURE OF STANDARD
COGNITIVE MODELS (SCM) AND THEIR
APPLICATION TO FUNCTIONAL
NEUROIMAGING

The standard methodology used in interpreting functional
neuroimaging experiments is based on the assumption, from
cognitive psychology, that the brain supports cognitive and other
behaviors by integrative processing of separate mental processes.
The brain has regions dedicated to supporting these processes,
referred to as functional segregation (Frackowiak et al., 2004).
The actual behavior that takes place is the result of the functional
integration of these separate cognitive processes (Friston, 2005;
Price and Friston, 2007), for a comprehensive description of
modern cognitive theories, see Gazzaniga and Mangun (2014).
For the example of memory, there are different cognitive
processes supporting long term, short term, and working
memory, and within these grosser processes many sub-processes
have been proposed (Baddeley and Hitch, 1974; Goldman-Rakic,
1995; Wager and Smith, 2003; Roth and Courtney, 2007; Jonides
et al., 2008; Shulman, 2013, chapter 5; Gazzaniga and Mangun,
2014; Shulman et al., 2014).

The concept of the brain supporting separable cognitive
processes has been criticized primarily from a philosophical
perspective (e.g., Fodor, 2000; Suhler and Churchland,
2011). However, in neuroimaging it is broadly accepted
with the caveat that the brain’s implementation of cognitive
processes may involve considerable overlap and non-linearity
(Friston et al., 1996; Friston and Price, 2011). We briefly
describe below a common strategy for using the SCM in
functional neuroimaging, primarily in order to emphasize
how hypothesized mental processes and sub processes are
integral to the experimental design and the interpretation of
functional neuroimaging data. We then discuss the limitations
that have been found in assigning cognitive processes to
unique patterns of brain activity using neuroimaging and
the approaches being taken within the SCM paradigm for
addressing them. In Section “The Non-cognitive Behavioral
Model (NBM),” we describe the NBM as an alternate approach
for addressing structure function relationships by dropping
cognitive processes as a starting assumption and instead taking a
bottom up approach.

Localization of Mental Processes by
Functional Neuroimaging
A schematic diagram of how the brain is assumed to be
functionally organized in the SCM is shown in Figure 1. There
are three fundamental components: measured behavior at the
top level, mental processes supported by brain activity at an
intermediate level and regional brain neuronal activity at the
lowest level. The interaction of the environment with the subject
(including any sensory stimulation or psychological tasks given
to them during the imaging studies) is shown as a lower level
input to the brain although the actual situation is more complex
including feedback from the subject’s own responses as well as any
internal behavior. Brain neuronal activity is organized to support
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FIGURE 1 | Schematic of the Standard Cognitive Model (SCM). Schematic
diagram of the standard model underlying the large majority of functional
neuroimaging studies especially as applied to complex behaviors involving
cognition and emotion, which we refer to as the SCM. N localized regions of
the brain (B1 to Bn) are organized to support m cognitive processes (P1 to
Pm). The actual number and function of the theorized cognitive processes as
well as the details of their interconnections depend on the specific model
used. The cognitive process abstraction allows cognitive behavior to be
studied at the level of information processing without reference to how
specifically the brain supports it (similar to a computational algorithm not
depending upon the computer hardware it is implemented on) (Baddeley and
Hitch, 1974; Fodor, 1983; Pinker, 1997). In early functional neuroimaging
experiments it was assumed that the brain was organized such that there was
sufficient functional segregation to allow a 1 to 1 mapping between discrete
brain regions and specific processes (e.g., between B1 and P1).
Subsequently due to disagreements found between functional neuroimaging
data the assumption of 1:1 mapping this assumption was relaxed allowing
linear and non-linear interactions between different brain regions in supporting
specific cognitive processes (e.g., between B1, B2, and B7 in their support of
P1 and the modulation of their activity if other processes are active) (Friston
et al., 1996). Experimental variables are the input to the subject being studied
(referred to broadly as Environment but in many studies consisting primarily of
an investigator presenting tasks or stimuli to the subject). Measurements are
observable behavior and the pattern of brain neuronal activity, usually
differential activity in a region relative to some other state, determined from
functional neuroimaging.

these mental processes and are assumed to have some degree of
functional segregation although considerable interaction between
regions may be incorporated (Friston et al., 1996). The functional
integration of the outputs of the cognitive processes leads to
behavior or perception.

In a typical experiment a subject in an MRI or PET scanner
will perform a variety of tasks (e.g., remembering lists of words)
and/or be exposed to stimuli designed to differentially activate
cognitive processes. The functional neuroimaging signal (in
response to an experimental input j) for each voxel is described
in analysis packages as a sum of the imaging signal contributions
from the region used to support the mental processes engaged
to perform the task. However, the relationship between the
signal, the neuronal activity underlying it, and how much of
the neuronal activity is supporting a cognitive process, is usually
left undefined.

In order to clarify these relationships we express the total
neuronal activity (Nij) induced in a voxel or region i (see
Figure 1) by a task j as the sum of the neuronal activity within
that voxel supporting each separate mental process Xk (see also

the previous description in Shulman et al., 2014).

Nij = boXo+
∑
k=1

bijkXk (1)

The value of Xk is nominally set to 1 (see the GLM example
below). The actual value of these constants cannot be derived
from a bottom up approach so that the relationship between
the cognitive process and regional neuronal activity supporting
it is entirely empirical. If a cognitive process k is not supported
by brain activity in voxel i during task j then bijk = 0. The
term boXo refers to neuronal activity assumed to not support
any cognitive process. This activity is usually assumed to be
equal to the neuronal activity in the voxel when no cognitive
task is being performed, and is often referred to as the resting
state activity. As described below quantitative imaging studies
have found that the size of the term boXo is generally an order
of magnitude larger than the incremental activity believed to
support cognitive processes.

The relationship between the imaging signal and neuronal
activity for fMRI is highly dependent on experimental
methodology as well as neurophysiological couplings between
blood flow, glucose oxidation, and neuronal signaling during the
task (Hoge et al., 1999; Hyder and Rothman, 2012). However,
in order to focus on the relationship between neuronal activity
and the imaging signal we will assume that the imaging method
can be corrected for vascular and metabolic response functions
and calibrated such that there is a direct relationship between
neuronal activity (e.g., number of spikes per second in an
ensemble or number of neurotransmitter quanta released)
and the signal measured and equation 1 can be used. These
corrections have been performed for fMRI and PET CMRglc
measurements of energy consumption1 (Sibson et al., 1998;
Hyder et al., 2013a,b).

Localization of Mental Processes Using
Linear Models
In the original PET and fMRI functional neuroimaging studies
the series of equations that can be generated from equation 2
were solved through a method sometimes referred to as cognitive
subtraction. The primary assumption of cognitive subtraction
was based upon the concept in cognitive psychology of pure
insertion (Donders, 1969) – that separable mental processes
exist and to a first order are not influenced by the activity of
other mental processes. Cognitive subtraction was replaced by
the use of general linear models (Friston et al., 1996; Friston,
1997) in order to provide a valid statistical framework for

1It has been shown by comparison to electrical recording and 13C MRS
measurements of glutamate and GABA release and recycling that over a wide
interval neuronal activity is proportional to the incremental energy that the brain
needs above non-signaling processes (Sibson et al., 1998; Hyder et al., 2013a,b).
Therefore methods such as FDG-PET and calibrated fMRI have the potential of
providing quantitative maps of neuronal signaling (e.g., Stender et al., 2015, 2016).
In order to not obscure the relationships between brain activity and behavior due to
issues regarding the veracity with which neuronal signaling is tracked by imaging
we assume in this paper (except where stated otherwise) that imaging is providing
whole brain maps of neuronal signaling (or the difference in signaling between two
states as with fMRI).
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assessing the certainty with which the imaging results supported
localization of brain activity. Subsequently there has been a
move away from linear models which have been criticized (see
the section “Explanations for the Lack of Clear Functional
Segregation in Cognitive Neuroimaging”) primarily on the
grounds that it assumes linearity in how the brain supports
cognitive processes (Friston et al., 1996; Poldrack, 2006; Price and
Friston, 2007). We briefly describe the general linear model below
as used in functional neuroimaging below using the mathematical
framework introduced above in order to clarify the neuronal basis
of both the subsequent modifications within the SCM and how it
differs from the NBM description.

General Linear Model (GLM) in Functional
Neuroimaging
The concept of cognitive subtraction has largely been performed
using statistical packages based upon a mathematical description
called the General Linear Model (GLM) which was formally
introduced into functional neuroimaging by Friston et al.
(1996) and Friston (1997). It remains a major method used
for the analysis of fMRI studies although as discussed below
many modifications as well as alternate methods are now in
use. We briefly describe its application here in order to help
illustrate the differences between the underlying assumptions
and experimental applications and analyses of the SCM with the
NBM described in the Section “The Non-cognitive Behavioral
Model (NBM).”

In a standard implementation of a GLM to functional
neuroimaging the relationship between the signal in voxel i
during task j (Nij) and the underlying cognitive processes (Xk)
is assumed to be linear (e.g., the value of bijk in equation
1 is a constant). Furthermore, the brain activity supporting
the different cognitive processes do not interact. Therefore the
individual terms can be isolated through fitting for the values bijk
provided that enough different tasks/stimuli (j) are performed.

As an example of this procedure a simplified working memory
model based on the pioneering work of Baddeley and Hitch
(1974), consisting of a phonological loop (PL), visual sketch pad
(VS), and central processor (CP) is shown in Figure 2. If the goal
of the experiment is to locate where these processing modules the
system is modeled, using a procedure referred to as the design
matrix as consisting of three cognitive processes XCP, XPL, XVS.
The imaging signal time course is then measured during three
(or more) tasks, with the focus being on the time intervals where
the contribution from each process is approximately constant.
As an example the first imaging measurement is made during
an auditory task involving the PL, the second during a task that
activates the visual spatial sketch pad but not using the PL and
the third during a task that does not activate the visual scratch
pad. The signal measured during each task is then modeled with
the following series of linear series of equations (equations 2–4)
along with an error term ej.

Task 1 Ni1 = b0Xo + bi11XCP + bi12XPL + bi13XVS + e1 (2)

Task 2 Ni1 = boXo + bi21XCP + 0+ bi23XVS+e2 (3)

Task 3 Ni1 = boXo + bi31XCP + bi32XPL + 0+ e3 (4)

FIGURE 2 | Schematic of the Baddeley and Hitch (1974) model of working
memory. In their model working memory consists of a central processor (CP)
that performs manipulation of data stored in a visual spatial sketch pad (VS) or
a phonological loop (PL). By performing appropriate functional imaging studies
the locations in the brain that support these processing modules (N1, N2, N3)
can be identified provided that the assumptions in the SCM hold (see the
section “Explanations for the Lack of Clear Functional Segregation in
Cognitive Neuroimaging”). The resting state neuronal activity is not shown in
the diagram since it has been normalized out of the imaging data. However,
later functional neuroimaging studies found that these same brain regions are
also recruited to support behavioral tasks hypothesized to be unrelated to
working memory processes. The violation of the original assumptions about
functional segregation of mental processes in the brain has led to the
broadening of the assumption to allow a region to support multiple processes
(Friston et al., 1996) as well as the introduction of additional processes to
better fit behavioral (and sometimes imaging) data such as the concept of
attention (A) which was found to activate similar regions in the frontal lobes as
working memory tasks (see Shulman, 1996). In an SCM analysis the individual
processing modules, N1, N2, or N3 are the experimental parameters to be
varied when seeking reproducible correlations between the behavioral
components and the brain regions assigned to the same processing module.
The difference between these experimental parameters and those that would
be used for testing the NBM model are discussed in Section “The
Non-cognitive Behavioral Model (NBM).”

Since the neuronal activity supporting a process is assumed
to be constant the series of equations above can be solved
using standard statistical matrix methods (Friston, 1997) for the
constants bijk allowing the regional neuronal support of each
process to be localized along with an estimate of the uncertainty
in the assignment.

The determination of the coefficients is further simplified by
the assumption that only the change measured in the imaging
signal (and underlying neuronal activity) during a task or
stimulus is relevant for supporting cognitive processes (Morcum
and Fletcher, 2007). There are many methods for removing this
signal, but the most commonly used equate it to the resting
state (or baseline) signal when the subject receives no stimulation
or performs tasks (see the section “Explanations for the Lack
of Clear Functional Segregation in Cognitive Neuroimaging”),
which is equivalent to removing the term boXo in equation 1.

Explanations for the Lack of Clear
Functional Segregation in Cognitive
Neuroimaging
Since the initial cognitive neuroimaging studies of Posner and
Raichle (1994) and Posner and Raichle (1998) there has been
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a general expectation that functional segregation of mental
processes would be found in the brain. However, there have been
a large number of reports in which reproducibility and degree of
functional segregation within and between subjects for the same
task has not been high (Friston et al., 1996; McGonigle et al.,
2000; Otzenberger et al., 2005) particularly for cognitive but also
for sensory tasks. Despite this problem studies that find different
spatial responses assigned to the same function or similar spatial
patterns of activation assigned to the same function have rarely
led to questioning of the fundamental cognitive concepts being
localized in the brain (for specific examples, see references in
Shulman, 1996, 2013; Shulman et al., 2007; van Eijsden et al.,
2009). Instead they have been mainly attributed to limitations
in the imaging methods and incomplete functional segregation,
and linearity, in how the brain implements cognitive processes
(Friston et al., 1996; McGonigle et al., 2000; Gonzalez-Castillo
et al., 2012). We briefly describe some of the main concerns in
this section and how they have been addressed by others in the
field. In Section “The Non-cognitive Behavioral Model (NBM),”
we describe our alternative proposal that the assumption that the
brain supports separable mental processes that can be described
in terms of information processing as in cognitive psychology
needs to be examined critically.

Influence of Resting State Neuronal Activity on the
Functional Neuroimaging
During the initial decade of PET and fMRI functional
neuroimaging it was widely believed that despite the brain being
energetically very expensive (approximately 20% of the body’s
oxygen consumption at rest) neuronal signaling activity was not
energetically costly. This conclusion was based on several lines of
evidence including measurements suggesting low energy costs of
action potentials extrapolated to the human brain (Creutzfeldt,
1975), findings from PET of a very small energetic cost for
cortical activation due to preferential use of glycolysis (Fox et al.,
1986), as well as the concept of a large metabolic pool and
small neurotransmitter/functional metabolic pool in neurons. As
expressed in a review from that period (Raichle, 1998).

“These results suggested that the additional metabolic requirements
associated with the increased neuronal activity might be supplied
largely through glycolysis alone.”

Due to the low energy yield of glycolysis it was inferred that
only a few percent of the energy supporting the brain was devoted
to supporting neuronal signaling (see Hyder et al., 2013a for more
recent calculations of the energy derived from glycolysis versus
glucose oxidation). Therefore the large resting state imaging
signals, whether CBF, CMRO2, or CMRglc (which except under
intense sensory activation is tightly coupled to CMRO2), were not
considered to reflect neuronal activity since they were primarily
considered to be supporting the brain’s non-signaling activities.

The concept of the majority of the brains energy not directly
supporting function was challenged in 1998 with the finding,
using 13C MRS, that approximately 80% of cortical neuronal
energy in the resting state was directly supporting neuronal
signaling, as measured quantitatively with glutamate/glutamine
cycling (Sibson et al., 1998). Subsequently this result has been

replicated repeatedly and extended to GABAergic signaling and
glial metabolism (Yu et al., 2017) in animals and humans as
well as to independent electrical measurements of signaling
(Hyder and Rothman, 2010; Hyder et al., 2011, 2013a). In
addition multiple studies have shown that it is consistent with
measurements of signaling and energetics at the cellular level
when scaled up to whole cortex (Atwell and Laughlin, 2001;
Yu et al., 2017). In 2001 Raichle et al. (2001) showed that
PET measurements of the oxygen extraction fraction and fMRI
measurements of deactivations were consistent with a high
resting state level of neuronal activity relative to the fluctuations
during tasks. In addition to providing localized signals during a
task it was soon proposed that these changes were coordinated
during the resting state by networks specialized for specific
functions such as the default mode (Gusnard and Raichle,
2001). Similarly, Stark and Squire (2001) proposed high baseline
activity as the explanation for paradoxical results found in
neuroimaging studies of the mesial temporal lobe. In a recent
review of imaging studies of brain function Raichle (2015) has
proposed that the efficient brain use of the total energy supports
signaling which clears up the previous questions on whether the
presence of a high baseline signaling was regional (Raichle, 2010;
Hyder et al., 2013a).

The high resting state neuronal activity (boXo in equation 1)
(and associated neuroimaging signal would still not impact task
based fMRI if the neuronal activity induced by a task or stimulus
could be treated as being independent, as per the assumptions of
linear models (Morcum and Fletcher, 2007). However, initially
in animal models (Hyder et al., 2002; Zhu et al., 2009) and
more recently in humans it has been shown that the increment
or decrement measured during a task or stimulus is strongly
dependent on the magnitude of the baseline neuronal activity
(Uludag et al., 2004; Pasley et al., 2007; Hyder and Rothman,
2011). A similar dependence of the magnitude and pattern of
fMRI fluctuations during the resting state upon the baseline
neuronal activity measured by PET has recently been reported
(Riedl et al., 2014; Aiello et al., 2015; Marchitelli et al., 2018).

Although there have been attempts to incorporate resting
state activity into task/stimulus based functional neuroimaging
there is no generally accepted procedure and the large majority
of functional neuroimaging studies assume independence and
either regress the baseline out (see Mortensen et al., 2018)
or do not measure it as in fMRI. We note here that the
global signal normalized out in resting state and sometimes
task fMRI (Smith et al., 2013) is not a measure of the
average resting state activity but rather correlated fluctuations
in the low frequency fMRI difference signal across the entire
cerebral cortex.

Non-linearity in the Imaging Response, Regional
Interactions, and Networks
A key assumption in linear approaches is that the neuronal
activity change induced within a voxel by a mental process (and
the underlying signaling) is independent of the neuronal activity
within the same voxel (and other voxels) supporting other mental
processes. A range of studies have shown that this assumption can
be violated, for example in studies in which there are competing
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processes (Kastner et al., 1999; Reynolds and Desimone, 2003;
Friston, 2009). Friston et al. (1996) have proposed that non-linear
violations could be analyzed using a factorial approach in which
the signal is described as the sum of regionally specific activations
and regionally specific interactions between component mental
processes. While this approach can better fit experimental data
the assumptions of the validity of the cognitive models being
used were not questioned, but rather how the brain supports
those models:

“The point being made here is that although a cognitive
science model, describing the functions, may include serial
and additive elements the implementation of those functions
is not. Consequently the structure of the cognitive components
(functional model) and the brain’s physiological implementation
are not isomorphic and the mapping of one onto the other is
problematic” (Friston et al., 1996).

More recently Price and Friston (2007) proposed a
methodology by which neuroimaging could be used to help
better define cognitive models using an approach they refer to as
functional ontology, taking advantage of the interaction terms
between neuronal activity in different brain regions. This and
related work has been critiqued by Klein (2012) who argued
that due to the many mappings between the same regions of
the brain to different cognitive processes there is a need to
include context dependence in the approach. While we feel
these and related approaches to test and distinguish cognitive
theories using neuroimaging data should be commended they
differ from the NBM in that they largely focus on distinguishing
cognitive theories rather than taking a complete bottom up
approach in which theories of brain function are developed
with functional neuroimaging and behavioral measurements,
along with relevant neuroanatomical measurements, as the
starting point.

Following from the work showing regional interactions
network mapping has become an important area in functional
neuroimaging both during tasks and at rest (Biswal et al., 1995;
Hampson et al., 2006; Smith et al., 2013). However, in the majority
of cases the networks identified are still assigned to supporting
mental processes. Even for resting state fMRI the networks
identified are usually related to a cognitive process such as the
assignment of the default mode network (DMN) to the concept
of general awareness/consciousness In Section “Application
of the NBM to Studies Determining Neural Correlates of
Consciousness,” we describe studies in which the assignment of
the DMN to a consciousness module was found to not correlate
with the level of consciousness in coma patients as accurately as
the NBM proposal, based on analysis of the total PET imaging
signal during anesthesia, that total cortical activity was the best
neuronal correlate of consciousness.

THE NON-COGNITIVE BEHAVIORAL
MODEL (NBM)

The lack of a clear correspondence between the mental processes
in models from cognitive science and anatomical localization of
these processes by functional neuroimaging have led us to take a

different approach, the NBM, in which cognitive models are not
assumed from cognitive psychology but instead are empirically
derived from imaging and other direct measurements of brain
activity (Shulman et al., 2009, 2014; Shulman, 2013). In this
section, we formalize this approach and contrast it with the SCM
assumptions and methodology as applied to imaging.

Structure of the NBM
The NBM was developed from consideration of experimental
results (Shulman et al., 2014) and from philosophical
considerations on the psychological findings of Behaviorism
(Shulman, 2013). We list the major assumptions and components
of the model below.

Behaviorism as a Basis for NBM, the Absence of
Assumed Mental Processes
Behaviorism is a psychology which proposes that behavior is a
consequence or the effect of conditioning. Classical behaviorism
was criticized for neglecting the state of the brain which is
continuously engaging in internal behavior (for example the
Freudian unconscious and in the cognitive psychology view
the mental processes that compose SCM theories). We propose
that due to functional neuroimaging it is possible to directly
measure the internal activities of the brain, and therefore
there is no need to introduce theoretical, abstract mental
processes as an intermediate between inputs and behaviors. The
role of experiment in NBM is to seek empirical connections
between brain activity patterns developed by neuroplasticity
in response to reproducible behavior or training as opposed
to testing for brain regions that support predefined mental
processes that act as an intermediate stage between brain activity
and behavior.

This avoidance of mental concepts may be difficult to accept
because these generalizations are of considerable value in daily
life (e.g., concepts such as long term memory, attraction,
intention, etc.) where they are firmly accepted in what is
sometimes called “Folk Psychology.” The effort to define what
is meant by them and where they are supported in the brain
has been a principle goal of neuroscientific and philosophical
enquiry. However, in our opinion they have stood in the
way of the development of novel data driven approaches to
understanding how the brain supports behavior.

Neuroimaging Can Measure Patterns of Brain
Activities Supporting Behavior
This is an inference from the many neuroimaging results that
have shown that different behaviors are supported by different
patterns of brain activity. However, it is an open question
as to how reproducible these patterns are and how uniquely
they map to behaviors. To the extent they are reproducible
and generalizable across different behaviors it may be possible
for experiments to identify the necessary patterns of activity
needed, particularly for behaviors that have been reinforced
by repetition (see the sections “fMRI Studies of Facial and
Object Recognition” and “Application of the NBM to Study
Cognitive Behaviors”).
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Measured Behavior Is Defined Operationally as
Opposed to Being Based on Conceptual
Generalizations
In SCM studies, the behavioral tasks studied are usually classified
using concepts derived from cognitive psychology. In the NBM
model, behavior is described only in terms of the actions
performed. For example an NBM study of memory would
expose the subject to all types of tasks that involve retrieving
information. By contrast, in an SCM study the memory task
would be classified according to differences in the cognitive
processes they are hypothesized to contain such as working
memory (and its sub components), long term memory and
short term memory. This difference in parameters to be tested
experimentally is the main operational difference between NBM
and cognitive based models like SCM. Similarly, as described in
Section “Application of the NBM to Studies Determining Neural
Correlates of Consciousness,” when NBM approaches were used
to look for brain behavioral correlates of consciousness the state
of consciousness was defined by how the subject responded
to a standard list of simple questions about behavior from an
experienced anesthesiologist (Shulman et al., 2009, 2014; Stender
et al., 2015, 2016). This operational definition contrasts with the
approach in most SCM neuroimaging studies of consciousness
in which consciousness is defined in terms of cognitive concepts
such as self awareness.

For Behaviors to Be Considered the Same or Similar
They Require That the Associated Patterns of
Neuronal Activity Be Similar
In the NBM behaviors are considered the same or similar
only if both the measured behavior and the measured patterns
of brain activity are the same or similar. For example if the
brain pattern of activity differs between subjects performing the
same task then the behavior is different even if the behavioral
measurements are the same. In Section “Application of the
NBM to Study Cognitive Behaviors,” we argue that the poor
reproducibility of studies trying to pinpoint the locations in the
brain that support cognitive and other complex behaviors is
due to the tasks being performed differently between subjects.
The difference is due to the subject’s different life experiences,
and also due to feedback between behavior and brain during
the study. In other words, the behavior itself is continuously
modifying the patterns of brain activity supporting it due to
neurofeedback. In SCM the behavior is usually described as in
Figure 1 as deriving directly from brain activity via functionally
segregated regions supporting intermediate mental processes. In
contrast in the NBM there is a continuous interdependence of
brain activity and behavior as expressed by the back-and-forth
arrows in Figure 3.

The Definition of Behavior Includes Internal
Processes and Perception
Although not directly accessible by external behavioral
measurements the NBM definition of behavior, including
intrinsically internal processes such as silent reading, imagining,
and object recognition, are considered as behaviors in the
NBM. This inclusion differs from traditional behavioralism

FIGURE 3 | Schematic of the Non-cognitive Behavioral Model (NBM). The
figure shows a schematic diagram of the NBM. It differs from the SCM
primarily by not assuming that the brain is organized to support localized
cognitive and other separable mental processes. Brain support of behavior is
derived from direct analysis of brain total activity maps from neuroimaging.
The back and forth arrow between behavior and brain reflects their
interdependence in addition to their separate causal factors. Identifications of
both brain activity and behavior depend on their reproducibility and the
precision of measurements. Behavior and brain activity are separated by
measurements as opposed to the SCM view that behavior, arising from the
mind, forms the relationship between mental and behavioral states. Sections
“fMRI Studies of Facial and Object Recognition” and “Application of the NBM
to Study Cognitive Behaviors” present examples that use behavior and brain
measurements to understand whether apparently similar behavioral states are
actually similar (as opposed to being so assumed from brain models).
Neuroplasticity, in response to environmental experience, including training,
develops readily available neural support mechanisms for individual behaviors.
Due to the large variations in the experiences of individuals (see the section
“Application of the NBM to Study Cognitive Behaviors”) we expect significant
intersubject differences in neural activity (and the resultant functional
neuroimages), in the absence of reproducible behavior.

but is justified by imaging providing the ability to measure
internal behavior.

Context and Experience Plays a Key Role in How the
Brain Supports Behavior Through Neuroplasticity and
Other Low Level Mechanisms
In the SCM the components of high level cognitive processes
are assumed to be generally present in all individuals, which
justifies image and behavioral measurement averaging across
individuals. This approach has been criticized for not taking
context and individual experience into account (Shulman, 1996;
Poldrack, 2006; Klein, 2012). The brain support of behavior
depends upon context and individual experience acting through
neuronal learning mechanisms. These mechanisms are shared
between individuals but differences in their life experiences and
specific task related training (e.g., object recognition as discussed
in section “fMRI Studies of Facial and Object Recognition”)
may cause substantial differences in how the brain supports
the behavior and even in the nature of the behavior itself
to the subject.
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Description of the Neuroimaging Signal
in the NBM Formalism
In the NBM the neuronal activity in voxel i during behavior j (Nij)
cannot be decomposed into separate linear contributions as in
equation 1. If it is possible to describe the brain functionally based
on the postulates of the NBM the signal in a voxel i during task j
is described by a generalized function (eq. 5):

Nij = Fi(T+ t) (5)

Note that ‘rest’ is also considered a behavior (or state) so there is
no separation between task and resting state imaging signals. The
time variable T refers to the life history prior to the application
of the task j in the study. The experiences acquired during the
subject’s life history influence the brain’s pattern of neuronal
activity supporting a behavior based upon neuroplasticity. In
addition it determines the state of the brain at the time of the
study (an extreme example of a state difference is a subject who
is asleep in the scanner during the task. However, it is likely
that much smaller state differences can significantly influence the
brain’s response).

Although, we have expressed the response here in terms of
a function to clarify the differences with the SCM we do not
know whether such a function actually can be found or even
exists. Ultimately only experimentation and insights into brain
organization and function at lower levels of description than the
psychological level applied to most neuroimaging studies may be
able to answer this question.

Experimental Application of the NBM
The NBM approach is in some ways conceptually similar to early
electrical mapping and neuroimaging studies of Hubel (1988)
and Zeki (1993) of the brain response to sensory stimulation.
The identification of the functions supported by specific brain
sub regions (e.g., columns in the primary visual cortex) was
determined through trial and error in the exposure to a wide
range of stimuli. While these studies identified microscopic level
modularity (e.g., specific columns to edge detection, rotations,
color detection, etc.) the functions of these regions were not
assumed in advance, but were identified by experiment.

To apply this approach to cognitive neuroimaging requires
that a range of behaviors be performed and the patterns of brain
activity measured. We describe the result functionally in equation
6 to facilitate comparison with the SCM.

Nij = Fij(T+ t)+ e(t) (6)

Behaviors (including internal behaviors such as perceptions) are
not pre classified but rather tested for similarity based upon the
consistency between the patterns of brain activity they induce. As
described in Section “Application of the NBM to Study Cognitive
Behaviors” this approach can potentially be used to determine
which behaviors are related and how closely (through similarly
of patterns of activity) as well as which regions are most directly
involved in supporting a behavior The ability to statistically
compare images without an underlying cognitive model does
not present a novel challenge for imaging analysis. A wide
range of methods already exist for testing pattern similarity

in images (e.g., Kriegeskorte et al., 2008; Huth et al., 2016;
Yourganov et al., 2014).

In order to illustrate more concretely the difference between
the SCM approach we describe the application of the NBM
to study working memory in comparison to that described
in the Section “Basic Structure of Standard Cognitive Models
(SCM) and Their Application to Functional Neuroimaging” and
Figure 2 as applied to the working memory model of Baddeley
and Hitch (1974). The fundamental difference is that no cognitive
process or processes for working memory would be assumed and
used to design the memory tasks presented to the subject. Instead
the subject would be presented different tasks in which memory
would be operationally defined as involving performing recall
or recognition of previously presented information (e.g., a list
of words) in which parameters such as modality, time between
presentation, task performance, and manipulation of presented
information would be varied. The spatial and temporal pattern of
the total neuronal activity (at a voxel level) would be measured
for each memory task as well as the performance (behavior) of
the subject. No normalization to take out resting state neuronal
activity would be performed as in the SCM approach (the boXo
term in eq. 1).

The results from the imaging of different memory tasks within
a subject would then be compared using pattern analysis to assess
the degree of similarity in the brain’s response. As described in
Section “Application of the NBM to Study Cognitive Behaviors”
it may be possible to form classifications based upon the brain
activity and behavior or tasks that are more or less similar.
Based on these classifications, and assuming that results between
subjects are sufficiently similar despite differences in their life
history, it may be possible through further study to determine
mechanisms (particularly through integration of results from
different levels of study).

APPLICATION OF THE NBM TO STUDIES
DETERMINING NEURAL CORRELATES
OF CONSCIOUSNESS

There is an extensive history of studies attempting to identify
neuronal correlates of consciousness (Kulli and Koch, 1991). As
applied to neuroimaging these studies largely have focused on
identifying the location of brain region(s) that support the mental
processes responsible for the conscious state. This localization is
based on the differential activity between these regions and the
average activity of the total cortex, as expressed in terms of the
PET CMRglc signal. In 2009, we analyzed previous experimental
results from PET CMRglc studies of anesthesia using an early
form of our NBM model (Shulman et al., 2009). We expand our
analysis here using the NBM as described in this paper and apply
it to new results that directly tested our conclusions.

The data initially analyzed were PET CMRglc images of
human subjects at different levels of anesthesia and behavior.
There have been multiple attempts, discussed below, to come
up with an SCM based identification of specific brain regions,
previously assigned to behavioral concepts like awareness, that
support the state of consciousness. These studies identified the
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role in consciousness contributed by these regions based on
their showing a greater drop in the imaging signal during
anesthesia than the average of the entire cerebral cortex. However,
no consensus had been reached in these studies as to the
anatomical localization of these cognitive components assigned
to consciousness. By contrast an NBM analysis (Shulman et al.,
2009) concluded that the best correlate with the behavior of a
person in the state of consciousness was the total global cortical
neuronal activity (as assessed from PET CMRglc). We describe
below the differences between the SCM and NBM analysis to
illustrate how the differences between the models adopted ab
initio can lead to fundamentally different conclusions of how the
brain supports behavior. We then describe a recent study of the
clinically defined minimally conscious state (MCS) that directly
compared the SCM and NBM predictions.

Although, we recognize that the studies of consciousness
(often referred to as looking for correlates of consciousness)
analyzed here do not follow the standard SCM experimental
procedure in fMRI of within subject design they constitute a
substantial body of research using both metabolic based imaging
(fMRI, PET) and EEG/MEG based imaging. Furthermore they
provide a clear test of the NBM proposal that the total imaging
signal contains critical information on brain function and cannot
be normalized away based on SCM assumptions regarding the
separability of brain activity [see the section “Basic Structure
of Standard Cognitive Models (SCM) and Their Application to
Functional Neuroimaging”].

Description of Anesthesia Studies
Several laboratories (Alkire et al., 1995; Alkire, 2008; Katoh
et al., 2000; Schlunzen et al., 2010) had performed PET
neuroimaging studies on unconscious humans under surgical
levels of anesthesia and in coma (Laureys et al., 2002, 2004)
because of its clinical importance. In the anesthesia studies,
subjects were studied both in the awake state and at various levels
of anesthesia that reduced the average cortical (and sub cortical)
energy consumption down to ∼50% of basal values, the level
used for surgery. At different levels of anesthesia (and associated
reduced CMRglc) subjects were assessed to be in a decreased
state of consciousness based on their responses to questions and
physical stimuli that are frequently used by anesthesiologists in
clinical practice. Unconscious state cortical gray matter CMRglc
was relatively uniform. Subsequent quantitative analysis has
shown that the variations from the mean are no more than 10%
(Hyder et al., 2013a).

Comparison of NBM and SCM
Interpretations of the Anesthesia Results
Definitions of Consciousness
In the studies, where an SCM analysis was performed
the behavior was defined in psychological terms in which
consciousness was assumed to be a mental process that supported
concepts such as self awareness. In contrast, in the NBM analysis
the state of consciousness was identified by its behavior which
was the ability of the subjects to respond to questions or physical
stimuli from the anesthesiologist well enough to be classified as

in the state of consciousness by standard metrics in the field. No
attempt was made to relate the ability to respond to underlying
cognitive descriptions of consciousness. The differences between
the SCM conception of consciousness as a mental process
conducted by functionally segregated brain regions and the NBM
definition of it as a behavioral state of the subject altered the
interpretation of the imaging results as described below.

Assignment of the Location of Consciousness Using
the SCM and NBM Paradigms
Based on the SCM assumptions mental processes supporting
consciousness were localized by looking for the regions that in
the anesthetized state had the lowest level of FDG uptake relative
to the average FDG uptake across the entire cortex. The large
drop in global cerebral activity in all regions was assumed to
not impact consciousness (and therefore was normalized away).
This approach led to the brain support of the consciousness
process being assigned, in different studies, to the thalamus,
precuneus, inferior frontal lobe, and more recently the DMN
(Alkire et al., 1995; Katoh et al., 2000; Laureys et al., 2004; Alkire,
2008). The variation in regional assignment is not surprising
given that the regional fluctuations relative to the normalized
global average imaging signal being at most 10% which is on the
order of uncertainties in the imaging signal (Shulman et al., 2009;
Hyder et al., 2013a).

In contrast, the NBM interpretation took into account the
entire imaging signal since there was no a priori reason to
distinguish the roles of different neuronal activities (i.e., total
neuronal activity versus regional variations in activity). It was
concluded (Shulman et al., 2009) that the averaged global drop
in cerebral neuronal activity, as inferred from CMRglc PET
measures of total energetics, was the best correlate of the state
of consciousness. This drop was much larger than differences
between the activity of different regions in either the conscious
or unconscious states.

Statistical Comparison of SCM and NBM
Predictions for Patients in the Minimally
Conscious State and Vegetative State
The prediction from the NBM analysis that the global brain
activity (as reflected in functional neuroimaging measurements
of total glucose or oxygen consumption), would reflect the state
of consciousness was recently tested in PET studies in a cohort of
41 patients in either a MCS or vegetative state (VS) as defined
by standard neurophysiological measurements of Disorders of
Consciousness (DOC) (Stender et al., 2015). Coma patients have
long presented a challenge for predicting which patients will
recover from the VS to reach consciousness and also whether the
degree of consciousness of MCS patients can be enhanced.

In their study, Stender et al. (2015) found that the global
CMRglc averaged 42% of control in the VS and 55% in the MCS.
Regression analysis showed very little difference between values
in several areas previously proposed to support consciousness
processes, the brain stem, thalamus, precuneus, and frontal
parietal cortex, and the global cortical activity, which explains
the poor reproducibility of previous studies using the SCM

Frontiers in Human Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 2813

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00028 March 8, 2019 Time: 16:32 # 11

Shulman and Rothman Non-cognitive Model for Interpreting Neuroimaging

approach of looking for regions of maximum difference. Overall
they concluded that total activity in the prefrontal lobe and
the entire cortex were able to accurately distinguish states of
consciousness. In a subsequent validation study that included
131 DOC patients (Stender et al., 2016). They reproduced these
findings and established that 42% of normal cortical CMRglc is
the minimal energetic requirement for conscious awareness.

Conclusions and Extension to the Study
of Different States of Consciousness
In neuroimaging studies of anesthesia, and independently
validated in coma, the identification of the total CMRglc signal
(primarily reflecting neuronal signaling) by the NBM as the
best correlate of consciousness was tested and confirmed in two
studies of coma patients in different states of consciousness. The
Stender studies found a somewhat better correlation with total
cortical activity of the frontal parietal cortex, but the total CMRglc
signal for both the global and frontal parietal cortex correlated
better than differences in activity between regions previously
assigned to selectively supporting consciousness.

A potential criticism of the NBM approach to interpreting
and designing functional neuroimaging studies of consciousness
is that it does not distinguish between different levels of
consciousness and SCM derived properties, such as self-
awareness, that are usually included in the definition of
consciousness when physical correlates are looked for Crick and
Koch (1990), Kulli and Koch (1991), Koch (2004). From an
experimental standpoint, an NBM based study could be done
by looking for correlations between images of brain activity
(using a variety of imaging methods) and the level of response
to any of a number of behavioral measures. Plots of the percent
correctness of answering typical verbal questions at different
levels of anesthesia (Katoh et al., 2000) have shown a non-
linear but monotonic correlation of anesthesia with the variables
responsible for the state of consciousness.

Although the global brain activity is the key parameter
correlating with being in the state of conscious the NBM does
not rule out that patterns of brain activity may vary at different
levels of conscious activity. In their 2015 paper, Stendor et al.
found that the standard deviation in the total cortical activity
increased as a percentage of the global average at higher states
of consciousness. This finding is consistent with MCS patients
often having the full range of sensory and cognitive abilities (e.g.,
language) although at a lower functioning level supporting a key
role for global cortical activity in specific behaviors (which in the
SCM is treated as independent of cortical activity).

In addition to resolving the questions evoked by the
term consciousness the NBM framing of research questions
in terms of observable behaviors and the identification of
an experimental parameter, the total global energy, which,
quantitatively measured, opens the door to novel experimental
studies. By allowing experimental results to define the parameters
of interest instead of insisting on fitting a cognitive model
the NBM promises to continue to provide novel insights into
consciousness. The important novelty of our approach is that we
identify a brain property when the person is in the behavioral

state of consciousness that changes when he or she leaves that
state. This along with analyzing the total brain activity within
brain regions has allowed a stronger correlate of consciousness
to be identified than the SCM interpretation which assumes that
a localized modular response varies with conscious behavior.
Future studies of the relationships between the global and
regional levels of brain activity at different levels of consciousness
(Kotoh) may reveal further insight into their interplay in
supporting specific conscious behaviors.

fMRI STUDIES OF FACIAL AND OBJECT
RECOGNITION

In this section, we assess whether the SCM assignment of the
fusiform gyrus (FG) region as supporting a facial recognition
process or module is a better explanation than the training
and neuroplasticity proposed in the NBM. Although these
studies were not performed using the NBM paradigm we
believe they provide important support for the importance of
neuroplasticity and personal experience in developing the brain’s
support of behavior.

The fusiform gyrus is a brain region intermediate between
visual and cognitive processing that has shown good image
reproducibility. Early functional imaging studies had identified
a facial recognition region in the FG by the difference between
the neuronal signal from faces right-side up and up-side down
(Allison et al., 1994; Puce et al., 1996). The differences in the
FG between up and down orientations of human faces gave a
reproducible fMRI difference signal leading to this locale being
defined as the fusiform face area (FFA) region. The ease of finding
this response to faces led to the assignment of this region of the
FG as “the FFA: a module in human extrastriate cortex specialized
for face perception” (Kanwisher et al., 1997). However, differing
from this interpretation, other studies showed that the FFA
responses that experts have learned to familiar objects (e.g., of
bird watchers to birds) supported a similar reproducible response
to familiar “non-face objects.” The similar responses in the
FFA of untrained persons to faces and of experts to familiar
objects have been interpreted either as the activations of innate
modules, consistent with the SCM (Kanwisher et al., 1997) or
as the effects of expertise developed from training, consistent
with the NBM, in which the FFA is part of a network tuned by
experience to individuate visually similar objects. Experiments
were performed that distinguish these two interpretations which
we review here.

Based on the convention of researchers in the field (e.g.,
Kanwisher et al., 1997) we refer to the mental process of facial
recognition in this section as a module. The term module based
on historic usage (see Fodor, 1983, 2000) refers to a mental
process that is almost completely isolated from other processes
(other than inputs and outputs) and is anticipated to have a
similar degree of isolation in its implementation by the brain.
Supporting this assumption for the fusiform gyrus, which is part
of the visual processing stream, a high (although not complete)
degree of modularity has been found in regions of the visual
cortex particularly V1.
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fMRI Studies of the Effect of Training on
the FFA Response
To clarify the experimental distinction between the two brain
models, studies aimed to distinguish whether the enhanced
neural response in the FG was due to an innate module for facial
recognition or due to the expertise created by training. Among
the early studies addressing this issue were fMRI experiments by
Gauthier et al. (1999) who compared the response to faces with
that to face-like objects called Greebles. In human subjects the
differences in fMRI images between up and down orientations
of a human face had given a reproducible difference signal in
the fusiform gyrus, leading to its assignment as a FFA The
Greebles were designed to differ from each other, with individuals
falling into classes based upon more prominent jaws and smaller
nose-regions. Subjects were tested on their ability to recognize
specific Greebles with differences between the ability of trained
and untrained subjects to distinguish between the right-side up
and upside down Greebles as a control. They measured fMRI
difference signals from human subjects trained to recognize
Greebles vs. signals from untrained controls to ascertain the
degree of expertise and then measured the difference signal by
subtracting the fMRI images from an upside down Greeble from
one when it was right side up. They hypothesized that if an FFA-
like activation arose with the development of expertise it would
be evidence that the region is not innately specialized to recognize
Greebles but rather is recruited through plasticity and experience.

In their original fMRI study (Gauthier et al., 1999) of
untrained humans, no reproducible differences were observed in
the FFA between the two orientations of the Greeble. However,
after subjects had been trained to recognize Greebles, the different
orientations of the Greebles gave fusiform gyrus activation
quite similar to those raised by faces. Additional experiments
to measure the difference signal from experts in identifying
other familiar objects, e.g., animals, automobiles and planes also
found activated regions in the FFA (Gauthier et al., 2000; Xu,
2005) The various objects, including Greebles, whose training
history was definitely known, activated the same FFA region
in experts as faces, leading to the conclusion that the response
to facial recognition was not different from the response from
experts who had been trained to recognize the objects. Therefore
the postulation of an innate facial recognition region, different
from the attributes of expertise, was not supported by the
data which showed that the response to faces was similar to
the response from experts trained to recognize familiar objects
(Gauthier et al., 1999).

Ultra High Resolution Studies of the FFA
Provide Further Support of a
Non-modular Interpretation
The findings of Gauthier et al. (1999) and others denying
the modular nature of object recognition were criticized (Tsao
et al., 2006) based on the resolution of the fMRI studies being
2 mm × 2 mm × 3 mm which, it was claimed, could lead to
regions specialized for only facial recognition overlapping with
other regions. To test this possibility studies were performed
by at higher spatial resolution (approximately 1 mm2 in plane).

The initial high resolution studies provided ambiguous results
due to low signal to noise (Grill-Spector et al., 2006). However,
a subsequent study at 7T, which provided higher sensitivity,
showed conclusively that the same FFA region was activated by
both facial recognition and by an expert’s recognition of familiar
objects (McGugin et al., 2012). Hence, since the recognition
of familiar objects like automobiles, birds and Greebles, where
expertise was developed by training, were identical to the signals
from faces, the simplest conclusion was that faces, along with
these other familiar objects, led to the development of a region
in the FG of increased brain activity via training, not by an
innate FFA module existing for each of the familiar objects.
A further argument against an innate FFA is that cognitive
processes specializing in objects only in existence over the last
two centuries such as automobiles and planes could not have been
selected by evolution.

Localized Neuroimaging Responses Do
Not Imply Cognitive Processes: An
Alternate Explanation of Imaging
Evidence for Functional Segregation
Based Upon Neuroplasticity and Image
Averaging
Localized regions of activation in neuroimages, as found in
the FG studies, are often cited as evidence for underlying
separable cognitive processes. However, detailed examination
of the FG studies, discussed above, where well localized
imaging responses, albeit subject to the limitations described
in Sections “Basic Structure of Standard Cognitive Models
(SCM) and Their Application to Functional Neuroimaging”
and “The Non-cognitive Behavioral Model (NBM)” of SCM
experimental paradigms, are found when subjects have expertise
in recognition, have been shown to not support the presence
of an innate modular FFA. Instead localization and strength of
the neuroimaging response depend on expertise and training.
The question, however, remains regarding how do well localized
regions of enhanced (or decreased) neuronal activity arise
in an image.

Due to limitations in sensitivity for both PET and fMRI
the images obtained during tasks, particularly cognitive tasks,
must be repeated multiple times and added together. Often the
results from several subjects are added. As such, a reproducible
pattern of neuronal activity during a behavior will create a greater
average neuroimaging signal than less reproducible patterns even
if they are supported by similar overall amounts of neuronal
activity. The NBM hypothesizes that a reproducibile pattern of
brain activity in response to an input, results from repetition
leading to the pattern being selected for using brain mechanisms
for neuroplasticity.

Conclusions
Neuroimaging studies of object and facial recognition show a
dependence on expertise consistent with the NBM interpretation
that neuroplasticity and experience play a key role in how
the brain supports behavior. Expertise comes from recruitment
of regions within the FG (and other brain regions) that
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depend upon training and experience as opposed to being
an innate module. The ubiquity of facial recognition without
any training presumably reflected the many exposures to
faces at an early date thereby training people so that the
fMRI data are thereby consistent with the expectations of the
NBM. In Section “Application of the NBM to Study Cognitive
Behaviors,” we discuss how reproducible neuronal activity (and
the neuroimaging signals it is mapped by) develops through
experience and why sensory processing regions show much
higher reproducibility than cognitive regions.

We caution that the agreement with experiment depends
upon selecting results that, while they seem valid to us, must
be recognized as not uncontested. In addition all of the studies
described above were performed using the SCM framework
and were therefore designed to identify the location(s) of
a previously hypothesized mental process, whether from an
innate modular type structure or a similar structure derived
from experience. Within the framework of this paper, which
intends to describe the NBM model and its advantages in
interpreting specific experimental results, we cannot claim that
our presentation offers a balanced review of the many results
available from relevant brain imaging experiments. However, by
concentrating on experiments that have intended to distinguish
between modular and non-modular interpretations we hope to
have clarified the nature of the disagreement between SCM and
NBM and to show that the NBM interpretation of the Greeble
study as supporting reproducible training being the origin of FFA
localized brain activity.

APPLICATION OF THE NBM TO STUDY
COGNITIVE BEHAVIORS

In this section, we further address the question of how NBM
and other bottom up models can be used to study cognition
and other complex behaviors. This question was highlighted soon
after the discovery of fMRI in an interview with one of the
authors (Shulman, 1996), and is largely based upon the lack
of a direct theory of cognition (such as is embedded in the
SCM) being tested (Morcum and Fletcher, 2007). We describe
here a program for studying the brain/behavior relationship that
uses neuroimaging to identify neuronal mechanisms supporting
cognition based upon the similarity of patterns of brain activity
and directly taking into account context and the experiences
of the subjects.

The NBM as an Explanation for the Lack
of Unique Functional Segregation for
Supporting Different Cognitive
Processes
As described in Section “Basic Structure of Standard
Cognitive Models (SCM) and Their Application to Functional
Neuroimaging” neuroimaging studies using the SCM paradigm
have not found clear functional segregation of cognitive processes
which has been attributed to limitations in imaging reliability
as well as non-linearities and regional interactions in the brain’s

implementation of cognitive processes (Friston et al., 1996;
Price and Friston, 2007; Gonzalez-Castillo et al., 2012). In the
NBM, we propose that the lack of clear functional segregation
is a consequence of the brain not being organized to support
abstract cognitive processes as described by the SCM. Instead
the specific neuronal instantiations of behavior depends largely
upon training and experience acting upon mechanisms of
neuroplasticity. Due to the large variations in the experiences of
individuals patterns of neuronal activity supporting behaviors
will also exhibit large variations. Furthermore differences in an
individual’s history changes the context in which a behavior is
performed or interpreted. For example, the meaning of concepts
like patriotism, memory or beauty will vary considerably between
individuals, with different histories, so that the brain activity
induced by the same word will depend upon its context.

The higher reproducibility of the neuronal response to sensory
stimuli is driven by the reproducible training in sensory tasks
generated in everyday life, i.e., we all can accurately distinguish
red from blue and up from down. The specific brain responses
learned by early repetitive exposure to sensory stimuli show
high functional segregation in that they become sensitized to a
similar visual feature, e.g., moving lines or edges or red versus
blue. The easy transferability of specific sensory phenomena
relative to mental concepts is due to their being reproducibly
defined by environmental input. Psychological concepts like
working memory are not reproducible because they are not
uniformly defined between individuals nor in the same individual
in different contexts2.

How Mental Processes Can Be Studied
With the NBM
In NBM there is no equivalent to the traditional SCM
interpretation of neuroimages in which the brain is functionally
organized to support predefined mental processes. Instead
similarities in the pattern of brain activity determines whether
behaviors are related. For example suppose one wants, from an
NBM guided experiment, to know the brain activities needed
during a set of behaviors that can be described in somewhat
general behavioral terms as working memory. In the NBM there
is no definition of a concept of working memory that deploys the
same mental process in different behaviors. The behaviors could
be described as including something that could be called working
memory only if you were willing to sacrifice accuracy to obtain
such a generalization and were willing to overlook differences in
the brain activity supporting the behaviors.

2In contrast to the human studies, studies of non-human primates performing
cognitive tasks have been shown to give highly reproducible localized patterns of
activity after they were strongly trained to perform such tasks. These observations
(e.g., Goldman-Rakic, 1995) have encouraged neuroscientists to believe that
cognitive concepts like WM are represented in the brain in a neuroanatomically
reproducibile and well defined manner, despite functional neuroimaging studies
in humans showing poor localization (see the section “Basic Structure of Standard
Cognitive Models (SCM) and Their Application to Functional Neuroimaging”
and references therein). Our alternate interpretation is that observation of the
expected brain activities in non-human primates after such intense training, but
not in un-trained human subjects, argues against intrinsic functional segregation
of brain activity supporting the cognitive process of working memory. Instead the
functional segregation derives from repeated training and eventual selection of a
fixed neuronal pathway for supporting the behavior.
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In the NBM paradigm, behaviors traditionally assigned
to concepts such as memory would be studied using the
same approach as the studies of consciousness and object/face
recognition in Sections “Application of the NBM to Studies
Determining Neural Correlates of Consciousness” and “fMRI
Studies of Facial and Object Recognition.” In Section “fMRI
Studies of Facial and Object Recognition,” it was determined
from the images that the brain activity supporting expert object
recognition and face recognition in the FG were similar, implying
related neural mechanisms. Similarly, studies of “memory” would
involve having the subject perform a series of behaviors that
involve memory defined operationally as the ability to respond
to questions about previous knowledge. However, any conclusion
about whether the brain responses to the behaviors so defined
as memory are similar would depend upon neuroimaging
establishing that they use related neuronal mechanisms. The
problem that might remain is whether the brain implementation
has sufficient similarities between individuals to identify common
mechanisms. It might be that this definition of “memory” might
differ between individuals, given the same definition of behavior,
like the synonyms in a dictionary that invariably accompany
the definition of a term. In the SCM, mental processes often
are produced by words that encompass their activity but it is
unclear if the concepts embodied in words will be distinguished
at the level of neural mechanisms. The breakdown of memory
in SCM guided experiments into working memory and other
kinds of memory suggests that different kinds of kinds of memory
are distinguished and future work might be able to identify
more useful distinctions while acknowledging their uniqueness
as a consequence of the life experiences (external and internal)
of the individual.

A potential limitation of the NBM approach is that the
variation within and between subjects will be too high in order
to find correlations, particularly given the limited signal to noise
of fMRI. The large majority of studies have been performed using
SCM paradigms in which there are significant constraints on the
data analysis in order to achieve statistical significance, albeit at
the cost of potentially forcing results to agree (see the section
“Basic Structure of Standard Cognitive Models (SCM) and Their
Application to Functional Neuroimaging” and references cited
within). However, with improvements in fMRI sensitivity it
has been possible to do relatively unconstrained analysis of the
pattern of brain response to visual tasks and find reproducibility
at least within subjects (Gonzalez-Castillo et al., 2012) as well as
in resting state fMRI (Smith et al., 2013) networks that contain
regions that have been assigned (albeit by an SCM approach)
to cognition. Ultimately, however, experiments will need to be
performed in order to answer the question of whether common
mechanisms can be identified using an assumption free approach
like the NBM.

The NBM in the Study of Consciousness
The SCM goal was to find a brain region activated during
the cognitive acts defined as consciousness. This goal has
failed, because of the SCM requirements first to find agreement
on the definition of “consciousness” and second to identify
the brain regions activated. These failings have been avoided

by planning and interpreting the search by NBM. In this
approach the behavior is identified by observing when the
subject in the state of consciousness while the brain region
to be associated with that behavior need not be localized.
We see here two advantages of the NBM method. To study
consciousness by an SCM type experiment means locating it
in a brain region, which also requires that it is necessary
to agree about the definition of the term. Since neuroscience
has been severely criticized by philosophers and others for
not being able to define consciousness (Nagel, 2016) efforts
by studies using the SCM to study consciousness would
only succeed if first there had been such a consensus and
second if it resulted in well defined functional segregation.
By contrast using the NBM experimental approach of direct
statistical correlation it was found that the strongest predictor of
consciousness was the total, global, energy consumption by the
brain when the person was identified by behavior as being in the
state of consciousness.

Conclusion
In conclusion, we propose that the brain’s support of cognitive
behavior is highly experience-dependent and sensitive to the
context of the study. As people have normally been trained
during their early years to recognize sensory stimuli their brains
will show similar patterns of neuronal activity when the same
stimuli are presented, and when summed will give reproducible
and well localized neuroimaging activity maps. Furthermore
once trained by such reproducible exposures the brain activity
will continue to be activated by the stimulus. However, as
generalized behaviors like remembering, calculating or paying
attention depend on their context and on the person’s history, the
neuronal activity needed to support them will vary and generally
will not yield highly reproducible functional neuroimages. Using
the neuroimaging activity maps as a guide, it is proposed by
NBM to identify behaviors that are supported by related brain
mechanisms. However, it is unlikely, based on present results,
that the degree of reproducibility required to support models will
be found in cognitive modules and therefore it is necessary to
look for empirical mechanisms to tighten the correlation between
brain activity and behavior.

EPISTEMOLOGICAL BASIS OF THE NBM

To the degree that NBM can find reliable relations between
observable behavior and brain patterns of neuronal activity, we
have fulfilled a goal of our modified behaviorism. Therefore,
we stop to ask what have we achieved? Does NBM have any
generalized importance beyond the knowledge that a certain
brain region responds to a certain person’s behavior? Does it tell
us anything of general usefulness or is it limited to the particular
experimental conditions from which we drew correlations? This
is the recurring question faced by all models of brain function
that are not based on conceptualizations of mental processes
attributed to behavior such as are offered by the SCM.

One of the most significant contributions to this problem
was offered by Charles Sanders Peirce in his extension of
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philosophical pragmatism (Peirce, 1958). Peirce suggested that
a unifying evaluation of such differing results could be found
by considering the consequences of these separate but similar
relationships upon human actions. In his method for identifying
the meaning of a pragmatist conclusion, Peirce proposed a
criterion for understanding the consequences of assigning a
generalized conceptualization to a well-defined behavior, which
we have extended to its correlation with a brain activation.
For Peirce the value of concepts behind behaviors like working
memory, free will or unselfishness was not to be determined
by how accurately they described the phenomenon, but rather
by the meaning they had for human affairs. His definition was
intended to return the term to scientific purview by defining
it in terms of scientific “thought” experiments as follows-
“Consider, what effects, that might conceivably have practical
bearings, we conceive the object of our conception to have.
Then, our conception of these effects is the whole of our
conception of the object” (Ibid, p. 192). This includes the
likelihood that a brain response for a somewhat generalized
act will include different brain responses reflecting the usage
allowed by the several synonyms of the term in a dictionary.
Since the meaning of a concept depends on the effects it
may have on humans, this definition has not assigned a
value to this meaning but has identified its usage in a
common expression.

As discussed by Craver (2007), we need some principled
and empirical way of saying when observable behaviors can be
correlated without previous assumptions of similarity. It is here
that Peirce’s turning to the possible effects of the understanding
of the behavior upon human actions, as the criterion of meaning,
rescues us from the criticism of having found only a subjective
result. In decomposing the behavior into little behavioral steps,
not into cognitive concepts, we might find linked brain correlates
of the jump, in brain neuronal activity. Furthermore unlike the
SCM there is not a starting assumption about mental processes
the brain is performing, instead there are details of behavior
that can be teased out which are ignored by assuming classes of
behaviors are similar. Furthermore by relating detailed behaviors
to the effects upon human activity following Peirce or upon the
correlated brain activity as proposed in NBM we would be on
the way to coordinating brain activations during a behavior, a
fundamental goal of neuroscience.

Although our proposal of an empirically based model of brain
function has not, to our knowledge, been previously generalized
from neuroimaging data, still specific, similar empirical models
have been proposed (Koch, 2017) by authors who previously
had leaned toward interpreting consciousness by modular-like

concepts (Koch, 2004). This move, linking conscious behavior
to a measurement of its electrical activity formally resembles
our NBM model rather than the many former studies of
consciousness that searched for a brain activity linked to a
cognitive concept. Tononi et al. (2016) propose that measuring
brain electrical activity after stimulating the brain with magnetic
pulses provides a reliable measurement of consciousness. They
proposed that an empirical level of brain activity, which
they obtained from comparison of conscious and unconscious
subjects, could be used to define consciousness.

In substituting correlations for causal relationships between
observed behavior and brain activities, Koch and Tononi’s
model, similar to our NBM and to Peirce’s proposal for future
experiments resembles the recent progress in machine learning
to find relationships between data and behavior without prior
hypotheses. The vast amount of data obtained even in a single
functional neuroimaging study in principle would be well suited
to this type of analysis. In addition this approach could be
integrated with models of brain function derived from bottom up
lower level models of brain circuitry and general informational
principles. Significant attempts have been made in these areas
that potentially could be integrated into modeling neuroimaging
studies (e.g., Bedau, 1997; van der Maas et al., 2006; Kitzbichler
et al., 2009; Hellyer et al., 2017). By taking advantage of the
developing methods of machine learning our empirical approach
to neuroimaging provides an exciting future for understanding
brain functions.
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Having an intention to act is commonly operationalized as the moment at which

awareness of an urge or decision to act arises. Measuring this moment has been

challenging due to the dependence on first-person reports of subjective experience

rather than objective behavioral or neural measurements. Commonly, this challenge is

met using (variants of) Libet’s clock method. In 2008, Matsuhashi and Hallett published

a novel probing strategy as an alternative to the clock method. We believe their probe

method could provide a valuable addition to the clock method because: it measures

the timing of an intention in real-time, it can be combined with additional (tactile, visual or

auditory) stimuli to create a more ecologically valid experimental context, and it allows the

measurement of the point of no return. Yet to this date, the probe method has not been

applied widely - possibly due to concerns about the effects that the probes might have

on the intention and/or action preparation processes. To address these concerns, a 2 ×

2 within-subject design is tested. In this design, two variables are manipulated: (1) the

requirement of an introspection report and (2) the presence of an auditory probe. Three

observables are measured that provide information about the timing of an intention to

act: (1) awareness reports of the subjective experience of having an intention, (2) neural

preparatory activity for action, and (3) behavioral data of the performed actions. The

presence of probes was found to speed upmean action times by roughly 300 ms, but did

not alter the neural preparation for action. The requirement of an introspection report did

influence brain signals: reducing the amplitude of the readiness potential and increasing

the desynchronization in the alpha and beta bands over the motor cortex prior to action

onset. By discussing the strengths and weaknesses of the probe method compared

to the clock method, we hope to demonstrate its added value and promote its use in

future research.

Keywords: action, awareness, EEG, ERD, intention, movement, probe, RP

1. INTRODUCTION

Having an intention to act is commonly operationalized as the moment at which awareness of an
urge or decision to act arises (Libet et al., 1983; Lau et al., 2007; Soon et al., 2008; Fried et al.,
2011; Tabu et al., 2015; Alexander et al., 2016). Measuring this moment has been challenging
due to the dependence on first-person reports of subjective experience rather than objective
behavioral or neural measurements (Wolpe and Rowe, 2014; Haggard, 2019). A popular method
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tomeasure the timing of an intention to act is the clockmethod of
Libet et al. (1983). This method instructs participants to look at a
clock and remember its configuration as soon as they experience
an intention to act. This configuration is to be remembered and
reported after the action has been performed. Variants of this
paradigm use a stream of letters (Soon et al., 2008, 2013; Bode
et al., 2011) instead of a traditional clock. Although this method
is widely applied (Dominik et al., 2018; Saigle et al., 2018), it has
been criticized repeatedly (Haggard, 2008; Nachev and Hacker,
2014; Navon, 2014; Wolpe and Rowe, 2014). Major critiques
concern the requirement of constant introspection, the post-hoc
nature of the intention reports and the ecological validity of the
experimental task.

In 2008, Matsuhashi and Hallett came up with an alternative
to the clock method. They invented a novel probing strategy to
measure the experienced timing of an intention to act. Their
strategy uses auditory probes that are presented to a participant
at random points in time. These probes trigger a report on
the awareness of an intention to act through a behavioral
response. When a probe is presented and the participant is
experiencing an intention, they need to refrain from acting (i.e.,
veto) and wait. Alternatively, when a probe is presented when
they are not intending to act, they should simply ignore the
probe and continue their self-paced actions. By comparing the
timing of probes and consequent actions, one can determine
during which time period the participant was aware of their
intention to act.

We believe the probe method of Matsuhashi and Hallett
(2008) provides a valuable addition to the popular clock method
of Libet et al. (1983) for several reasons. First of all, the probe
method does not require constant introspection: participants
need to perform introspection only for a brief moment in
response to a probe. Secondly, the probes are presented during
action preparation, measuring the timing of an intention to act in
real-time rather than post-hoc after action performance. Thirdly,
the probe method can easily be used in combination with other
visual or tactile stimuli. This provides the opportunity to use
this method within a more complex environment and study a
more ecologically valid experimental task. This way, the probe
method can broaden our methodological repertoire so we can
study intentional actions under various circumstances. Fourth,
in addition to the timing of an intention to act, the probe method
measures the point of no return (Matsuhashi and Hallett, 2008).
This point of no return indicates until what time one is still able
to veto an intended act.

Although the probe method of Matsuhashi and Hallett
provides a valuable addition to the conventional clock method,
it has not been applied widely. To the best of our knowledge,
only one investigation (by us) has used this method since
(Verbaarschot et al., 2016). The vast majority of researchers
use the clock method to investigate the timing of an intention:
Alexander et al. (2016), Banks and Isham (2009), Bode et al.
(2011), Fried et al. (2011), Douglas et al. (2015), Haggard and
Eimer (1999), Haggard et al. (2002), Keller and Heckhausen
(1990), Miller et al. (2011), Jo et al. (2014), Lau et al. (2007),
Rigoni et al. (2011), Schlegel et al. (2013), Schneider et al. (2013),
Sirigu et al. (2004), Soon et al. (2008), Soon et al. (2013), Tabu

et al. (2015), Wohlschläger et al. (2003), etc. Perhaps this is
due to the fact that, while the clock method is not without
problems, the probe method has some concerns of its own. These
concerns mainly involve the effect that the probes might have
on the experienced awareness of an intention to act, the timing
of the performed actions and the underlying neural activity (as
described in detail below). In order to address these concerns, a
2x2 within-subject design is tested. In this design, two variables
are manipulated: (1) the requirement of an introspection report
and (2) the presence of an auditory probe.

Three observables are measured that provide information
about the timing of an intention to act: (1) awareness reports
of the subjective experience of having an intention, (2) neural
preparatory activity for action, and (3) behavioral data of the
performed actions. The measured intention reports can consist
of a post-hoc report on the vividness of an experienced intention,
analog to the required constant introspection of the clock
method (Libet et al., 1983). Alternatively, it can consist of
the response to an auditory probe (i.e., ignore the probe or
veto the action), as used in the probe method of Matsuhashi
and Hallett (2008). The neural preparatory activity for action
is recorded using an electro-encephalogram (EEG). Both the
readiness potential (RP) and event-related desynchronization
in the alpha (8–12 Hz) and beta (13–30 Hz) bands over the
motor cortex prior to action are investigated. Both signatures
have been reported to correlate with voluntary movement in
previous research (Kornhuber and Deecke, 1965; Pfurtscheller
and Aranibar, 1979; Libet et al., 1983; Doyle et al., 2005; Shibasaki
and Hallett, 2006; Bai et al., 2011; Lew et al., 2012; Khalighinejad
et al., 2018). The performed actions are measured through the
timing of button presses and an electro-myogram (EMG) of the
relevant arm-muscles.

Post-hoc, we investigated the brain activity prior to ignored
and vetoed probes. When a probe is ignored, it means that the
participant did not experience an intention to act at probe onset.
We know that the RP has its onset up to 2s prior to action,
whereas the awareness of an intention is reported up to 1.5s prior
to action using the probe method (Matsuhashi and Hallett, 2008).
This means that if a participant ignores a probe, one would expect
no or a very weak RP prior to probe onset. However, when a
probe is vetoed and the participant was experiencing an intention
to act, one would expect to see an RP prior to probe onset. In this
case the RP is time-locked to probe onset, therefore we expect
it to be less pronounced (i.e., smaller amplitude) than when it
would be time-locked to action onset. If we find an RP prior
to vetoed probes and not prior to ignored probes, this would
provide further credence to the probe method as an accurate tool
for measuring the timing of an intention to act.

Before going into the details of our experiment, the next
section (2) will provide additional background on the clock
and probe methods. Section 3 describes our experiment which
quantifies the concerns about the probe method by assessing the
individual effects of the manipulated variables on each of the
observables. Section 4 will compare the strengths and weaknesses
of the probe method to those of the clock method. By addressing
concerns and explicating the added value of the probe method,
we hope to promote its use in future research.
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2. COMPARING PROBES AND CLOCKS

Participants in studies that use the clock or probe method usually
perform a similar motor task: a spontaneous action (e.g., a button
press or brisk flexion of the hand) that is made by the participant
whenever they experience an intention to do so. The difference
between these methods is in the way they collect a report on the
timing of an intention to act: see Figure 1. The clock method
instructs participants to remember and report the configuration
of a clock at the time of their experienced intention. The probe
method uses auditory beeps to probe the participant at different
moments in time for their awareness of an intention.

The probe and clock methods each have their strengths and
weaknesses. First of all, the clock method requires participants
to remember and report the onset of their intention after
action performance Libet et al. (1983). This post-hoc method
of gathering first-person reports seems prone to inaccuracies
(Wolpe and Rowe, 2014). Moreover, the reported intention
timings seem to be heavily influenced by the perceived action
onset and/or the consequences of acting (Banks and Isham,
2009). The probe method measures the awareness of an intention
on the spot. Participants need to respond immediately to a probe
and have no need to retain the exact onset of their intention to

act. Furthermore, since the awareness of an intention is measured
prior to action performance, its timing cannot be influenced by
the act itself or any of its potential consequences.

Second, the clock method requires continuous introspection:
participants need to tune into their conscious experience to detect
the slightest trace of an urge to act. This requirement seems to
have an effect on the neural signatures that can be observed at
that time (Lau et al., 2007). The probe method requires sporadic
introspection: participants need to perform introspection for a
brief moment in time in response to a probe. This happens once
during a trial at most.

Third, the clock method requires an explicit intention report
from a participant: participants are instructed to track the onset
of their intention to act and remember and report its timing.
Explicit awareness of an intention to perform a spontaneous
(motor) action is not something we usually exhibit in our daily
life. Requiring this awareness seems quite artificial. In contrast,
the probe method uses the behavioral response to a probe to infer
the time course of an intention to act. This implicit intention
report softens the constraints on the level of awareness that is
needed to perform the task. This situation seems similar to one
in everyday life where we can explain our intentions when asked
by someone.

FIGURE 1 | Comparison of the clock and probe methods.
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Fourth, the required type of intended action that is studied
by the clock and probe methods does not seem ecologically
valid. Most investigations involve simple spontaneous actions
like a self-paced hand movement (Libet et al., 1983; Sirigu
et al., 2004; Matsuhashi and Hallett, 2008; Schlegel et al., 2013;
Douglas et al., 2015) or a decision to add or subtract a number
(Soon et al., 2013; Wisniewski et al., 2016). An alternative (more
ecologically valid) task is difficult to find for the clock method.
This is mostly due to the fact that it is difficult to combine
the clock method with additional stimuli because focus and
concentration is needed to observe a visually presented clock
and remember the time of the experienced intention to act. In
contrast, the probe method can easily be used in combination
with other visual or tactile stimuli. This provides the opportunity
to investigate the timing of an intention to act while performing
actions that could be performed in everyday life. For instance, a
recent study by Khalighinejad et al. (2018) made adaptations to a
conventional moving-dot task in order to measure meaningful
spontaneous hand movements. The target actions consist of
voluntary decisions to skip a trial. Their design could be used in
combination with the probe method to gain information on the
timing of the intention to skip.

Fifth, the clock method seems in line with a discrete
interpretation of an intention to act, whereas the probe method
seems more in line with a dynamic one. The clock method asks
participants to remember and report the moment at which they
are aware of an urge or decision to act. This seems to assume
that an intention is a discrete mental state that “pops up” in a
participants mind at a specific moment in time, or at least that
the awareness of that intention occurs at a discrete time (Uithol
et al., 2014). The probe method questions the participant across
a range in time, allowing a variety of moments at which one is
aware of an urge or decision to act. Furthermore, the average
onset of an intention to act measured with the probe method
seems to bemuch earlier (about 1.5 s prior to action performance;
see Matsuhashi and Hallett, 2008; Verbaarschot et al., 2016) than
when it is measured with the clock method (about 0.15 s prior to
action; see Libet et al., 1983; Haggard and Eimer, 1999; Haggard
et al., 2002; Sirigu et al., 2004; Banks and Isham, 2009; Bode et al.,
2011; Fried et al., 2011; Soon et al., 2013; Jo et al., 2014; Douglas
et al., 2015; Tabu et al., 2015; Alexander et al., 2016). As argued
previously (Verbaarschot et al., 2016), these findings fit better
with the interpretation of an intention as a dynamic process
rather than a discrete mental state. Unlike the clock method,
the probe method can measure different stages in this process.
However, the success of this method does come at a cost: quite a
large amount of trials (±300) are required to get a good estimate
of the awareness of an intention to act for a single participant. In
contrast, the clock method provides a single-trial estimate of the
onset of an intention.

Sixth and last, in addition to the timing of an intention to act,
the probe method measures the point of no return (Matsuhashi
and Hallett, 2008). When a probe is presented close to action
onset, participants can no longer veto their action. According to
Matsuhashi and Hallett, this inability to refrain from acting in
response to a probe occurs around 0.13 s prior to action onset.
The point in time at which this happens is referred to as the point

of no return. Comparing the point of no return to the average
brain activity at that point in time provides the opportunity
to examine the stages of neural preparation for action after
which action execution becomes irreversible. Schultze-Kraft et al.
(2016), who found the point of no return at 200ms prior to action
onset, show that even after the onset of the Readiness Potential
and alpha/beta ERD one can still veto an intended act. The clock
method does not allow for any such analyses as it is unable to
capture the point of no return.

Although the probe method seems to be a valuable addition to
the clock method, it also raises some concerns. The requirement
of an introspection report and the presence of a probe could
potentially disrupt the “natural” process of intending to act in
unknown ways (see Figure 2A). We have identified six possible
scenarios that would invalidate the probe method as a tool to
measure the timing of an intention to act 1:

1. Probes speed up brain signals: in an experimental context in
which spontaneous actions are performed in absence of a clear
external stimulus on when to act, intentions to act may be
based largely on spontaneous fluctuations in neural activity
(Schurger et al., 2012). Whenever the neural activity crosses a
certain threshold, this results in an action. Threshold crossing
tends to happen at crests in the ongoing neural fluctuations.
Probes may affect these fluctuations and push them over
the threshold for action performance (see Figure 2B). This
influence may happen irrespective of the current stage of
development of the RP and alpha/beta ERD. If this is the case,
we expect to find more variance in these neural signatures
in conditions with probes (sound + probe) compared to
those without (control + introspect). On the other hand, the
neural signatures may be susceptible to probes only during
a specific stage in their development. If this is the case,
we expect to find a later onset of these signatures relative
to action performance in conditions with probes compared
to those without. Irrespective of these two cases: if probes
speed up brain signals, actions should speed up as well.
Therefore, we expect that in both these cases actions will
be faster in conditions with probes than those without. It
could be the case that probes affect brain signals only if
participants should pay attention to them. If this is the case,
we expect to find the differences described above in the probe
condition only.

2. Probes delay brain signals: rather than pushing the neural
fluctuations over the threshold for action performance, probes
may bring neural activations back to baseline level (see
Figure 2C). If this is the case, we expect to find more
variance in the RP and alpha/beta ERD in conditions with
probes (sound + probe) compared to those without (control
+ introspect). Moreover, we expect to find slower actions in
conditions with probes compared to those without. Again,
these effects may be specific to conditions in which the probe
matters for the task at hand. In that case, we expect to find
these differences in the probe condition only.

1We note that similar criticisms could be raised for the moving clock stimulus used
in Libet-type studies.
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FIGURE 2 | Illustration of hypotheses. (A) Schematic overview of the (top:

brain) brain processes (e.g., RP), (middle: light bulb) experienced intentions

and (bottom: notebook) intention reports (e.g., through veto and ignore

responses to probes) prior to a spontaneous act. The gap in the distribution of

ignored probes is due to vetos: prior to action onset, participants are aware of

their intention and perform a veto in response to any probes that are presented

at this time. Shortly prior to action onset, ignored probes reappear in the

distribution: at this point, probes are presented so close to action onset that

participants are unable to veto. (B) Probes could speed up brain signals by

pushing the neural activity over the threshold for action. This should speed up

actions as well. (C) Probes could delay brain signals, bringing the neural

activity back to baseline. This should delay the actions. (D) Probes could

induce awareness of intending to act. In this case, probes would often elicit a

veto response, causing a sparse distribution of ignored probes that lacks a

clear gap. (E) Probes could also suppress the awareness of intending to act.

In this case, the distribution of ignored probes closely resembles the

underlying distribution of scheduled probes. A clear gap due to consistent veto

responses is missing.

3. Probes induce awareness: the presentation of a probe may
enhance the awareness of an intention to act or even cause an
intention to act (see Figure 2D). If this is the case, almost all
probes in the probe condition should result in a veto response.
This would cause the distribution of ignored probes to look
sparse.

4. Probes suppress awareness: probes may also suppress
awareness of an intention to act (see Figure 2E). In this case,
probes should almost never result in a veto response in the
probe condition. The distribution of ignored probes should
look very similar to the distribution of scheduled probes.

5. Veto influences action: participants may dislike the required
veto response and may therefore attempt to act before a probe

is presented. In this case, actions should be performed faster
in the probe condition compared to the other conditions.

6. Inaccurate intention report: participants may simply not be
able to report their intentions to act using the probes. In
this case, veto’s are expected to be performed randomly in
response to a probe. In this case, the distribution of ignored
probes of the probe condition should look quite similar to the
distribution of scheduled probes: there is no clear time range
during which vetos are consistently performed.

To quantify these six concerns, each scenario is tested using the
methods described in the next section.

3. MATERIALS AND METHODS

3.1. Participants
The experiment was conducted in accordance with the ethical
standards provided by the 1964 Declaration of Helsinki. The
study protocol was approved by the local Ethics Committee of
Faculty of Social Sciences of the Radboud University Nijmegen.
A total of 21 healthy participants (15 females, mean age: 26 years
old, youngest participant: 19 year old, oldest participant: 55 years
old) volunteered to perform the experiment with their written
informed consent. All participants were right-handed and had
normal or corrected-to-normal vision. Participants received€25
or 2.5 course credits for their participation.

Five participants were excluded from the analysis. One
participant reported to suffer from a brain disease that affects
the amount of blood vessels present in the brain. Since it is
unknown how this disease might affect their brain activity or
behavior in this experiment, it was decided to exclude this
participant from further analysis. Another participant reported
to be nauseous during the experiment and could not sit still.
Due to the large amount of resulting movement artifacts in the
EEG data, this participant was excluded from further analysis.
Similarly, manymovement artifacts were found in the data of one
other participant, leading to their exclusion from further analysis.
Two participants did not follow instructions correctly, as was
apparent from their answers to a post-experiment questionnaire.
They were also excluded from analysis. The data of the remaining
16 participants was analyzed.

3.2. Experimental Procedure
The experiment consisted of a 2 × 2 within subject-design
in which the following variables were manipulated: (1) the
requirement of an introspection report and (2) the presence of
an auditory probe. The main task of the participants, underlying
each of the four conditions, was to press a button with the
index finger of their right hand whenever they wanted to,
similar to Libet et al. (1983) and Matsuhashi and Hallett (2008).
Participants were instructed not to plan their actions, but press
the button as soon as they felt an intention to do so. While
performing these self-paced spontaneous actions, participants
were instructed to look at a fixation cross that was displayed
at the center of a computer screen. As long as the fixation
cross was present, participants were instructed to relax, rest their
arms and hands in between button presses and blink as little
as possible.
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When there are no reasons for deciding when to act other
than a spontaneous intention to do so, it is challenging to prevent
participants from acting as soon as possible (i.e., within the first 2
s of a trial). In Libet-type experiments this is done by instructing
participants to wait for at least one full revolution of the clock
before acting (Libet et al., 1983; Haggard and Eimer, 1999).
Matsuhashi and Hallett (2008) instructed participants to perform
their actions at intervals of roughly 5–10 s, without planning their
actions or keeping time. When the action intervals were too long
or short, participants were notified by the experimenter. Because
details are missing on exactly when and how the participants
were notified during the experiment of Matsuhashi and Hallett
(2008), we achieved the action interval of 5-10 s using trial-by-
trial color feedback: immediately at every button press, the color
of the fixation cross changed for 1 s before the cross disappeared.
If it turned blue, the action was made too slow; if it turned red,
the action was made too fast; and if it turned green the action
timing was perfect. The participant was instructed to adjust the
timing of their button-presses depending on the color feedback.
In this way, participants had no need to keep track of time,
but could rely on the color feedback. The trained action timing
provided a window of opportunity of about 5 s. During this time
window, participants were free to perform a spontaneous act.
This window ensured that there would be enough data for the
subsequent EEG analysis and sufficient time to present a probe
prior to action onset.

On top of the main task of performing self-paced button
presses, each of the two independent variables were individually
manipulated. This resulted in the following four experimental
conditions (visualized in Figure 3):

1. Control: participants performed the main task of pressing
a button at their own pace roughly every 5–10 s. An
introspection report on their experienced intention was not
required. This was the most basic condition as it consisted
solely of the performance of spontaneous voluntary actions.
With no additional stimuli or mental tasks, this condition
provided pure control data for the timing of intended actions
and their preceding neurological signals.

2. Sound: in addition to the main task, an auditory probe was
presented at random times. Participants were instructed to
ignore this probe completely because it has no importance
to the experiment. Again, an introspection report on their
experienced intention was not required. This condition
allowed the investigation of any potential effects of the added
auditory stimuli on the neural preparation for action, the
awareness of an intention and the action itself.

3. Introspect: This condition did not involve any probes, but did
require an introspection report. In addition to the main task,
participants were instructed to focus their attention on the
first moment at which they felt the urge to press the button.
Immediately at every button press, the following multiple-
choice question was presented: “How did you experience your
intention to act?”. Participants could answer this question by
pressing one of three buttons corresponding to the following
answer options: “vivid and conscious,” “a vague feeling of
wanting” or “pressed the button without thinking about it.”

FIGURE 3 | Overview of experimental conditions. In all conditions, participants

were pressing a button at their own pace. In addition, the sound and probe

conditions presented an auditory probe to participants at pseudo-random

moments in time. The introspect and probe conditions both required a report

on the awareness of an intention to act. In the introspect condition, participants

needed to report post-hoc how vividly they experienced their intention to act.

In the probe condition, participant needed to veto their action in response to a

probe when at that time they were aware of their intention to act.

To prevent action preparation prior to the presentation of
this question, the order of these answer options was set
randomly at the start of each trial. Using these instructions and
questions, participants were required to maintain a constant
meta-awareness of their intention to act. This requirement
mimicked the level of introspection required in a Libet-type
experiment (Libet et al., 1983) and allowed the investigation
of any effects of the pure introspection task - without the
additional visual stimuli and memory tasks required by the
clock method. Color feedback on action timing was provided
immediately after answering the multiple-choice question.

4. Probe: in addition to the main task, an auditory probe was
presented at random times and an introspection report was
required. When the probe is presented while (1) they had an
intention to act: they should veto the intended act (i.e., not
press the button) and wait for the fixation cross to disappear.
Alternatively, when a probe is presented while (2) they did
not have an intention to act: they should ignore the probe and
press the button whenever they wanted to. These instructions
were a direct replication from Matsuhashi and Hallett (2008).
Whenever a trial ended without a button press, the question
“did you intend to act at the time you heard the beep?”
was presented. The participant could answer this multiple-
choice question with either “yes” or “no.” To prevent action
preparation prior to the presentation of this question, the
order of these answer options was determined randomly at
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the start of each trial. This question was presented in order
to distinguish a veto from the absence of a button press
(i.e., the trial ended before the participant experienced an
intention to act). The subjective experience of an intention
was reported indirectly through the behavioral response (i.e.,
veto or ignore) to a probe and was confirmed by answering the
question at the end of a trial. This was the core condition that
implemented the full probe method. Color feedback on action
timing was provided immediately at each button press or, in
case a trial ended without a button press, after answering the
multiple-choice question.

At the end of the experiment, participants 8 to 21 completed
a short questionnaire in order to gain more insight into
their subjective experience during the experiment. The
questionnaire consisted of the following seven questions
(translated from Dutch):

1. Did you act spontaneously?

a. Yes, I pressed the button as soon as I wanted to
b. No, long before I pressed the button, I already decided to

act

2. Was the difference between the tasks clear?

a. Yes
b. No

3. What did you think about the beeps?

a. Annoying
b. Neutral
c. Stressful
d. Other: ...

4. Was it difficult to determine whether you had an intention to
act at the time you heard the beep?

a. Yes
b. No
c. Sometimes

5. How did you decide whether you could press the button after
you heard a beep?

6. Was there a clear difference between themoment at which you
had an intention to press the button and the moment at which
you pressed the button?

a. Yes, the intention to press the button was clearly
distinguishable from the button press itself

b. No, the intention to press the button occurred at the same
time as the button press

c. Other: ...

7. Did the beeps influence your intention to press the button?

a. No
b. Yes, because: ...

3.3. Stimuli
The participant was seated on a comfortable chair in front of a
table inside a quiet room. The instructions and visual stimuli were

displayed using a 17 inch TFT screen with a resolution of 800 by
600 pixels and a refresh rate of 60Hz that was placed roughly at
70cm directly in front of the participant. In-ear headphones were
used to present the auditory probes. A button box containing a
total of four buttons was used to perform the self-paced button
presses and answer the questions in the introspect and probe
conditions. The experiment was run in BrainStream 2.

The auditory probe consisted of a short “beep” that was
created in Matlab 3. The probe had a frequency of 1200 Hz
and duration of 0.04 s. Matsuhashi and Hallett (2008) state that
“Tones were applied pseudo-randomly at intervals of 3–20 s,
controlled by one of the investigators in a way that was not
predictable by the subjects” (pp. 2345–2346). However, because
further details on the exact timing of the probes are missing,
these probes times are not replicable. For this reason we designed
our own probe distribution. The timing of our probes are pre-
determined on the basis of 25 control trials that were collected
during a training block at the start of the experiment. The
probe onsets ranged from 0.5 s before the average action time
plus and minus one standard deviation. Within this interval,
auditory probes followed a truncated normal distribution such
that most probes were presented before the average action time
(see Figure 4). A minimum probe interval of 3 s before the
average action time was ensured. Moreover, the probe interval
was ensured to start at least 3 s after trial onset. As well as
being explicable, this probe distribution was designed to optimize
experimental efficiency by ensuring that approximately one third
of all trials would present a probe within 3 s before movement
onset (during which awareness of an intention to act is most
likely to occur). Both the sound and probe conditions used the
exact same probe distribution per participant. Every trial in the
sound or probe conditions could contain maximally one probe.
Depending on the participants action time, this probe may or
may not be presented on a certain trial.

The color feedback was slightly random. The fixation cross
turned red (i.e., too fast) if the button press was made within the
first 5 s after trial start + a random time interval between 0 and 3s.
The fixation cross turned blue (i.e., too slow) if the button press
occurs more than 10 s after trial start + a random time interval
between 0 to 3 s. In all other cases where a button press was made,
the fixation cross turned green. This means that the boundaries
between each feedback color were blurred by 0–3 s. These blurred
boundaries within the color feedback were designed to encourage
the element of spontaneity. Theymade it difficult for a participant
to count time or otherwise plan their actions to perform them at
a “correct” time. Instead, they needed to refrain from planning
and focus on their intention to act within the learned window
of opportunity.

The presentation of the fixation cross marked the start of
a trial. Each trial had a maximum duration of 9 to 14 s. The
exact trial duration was chosen randomly at the start of each
trial. A trial ended either because the participant had pressed the
button or because the maximum trial duration was reached. The

2see www.brainstream.nu
3see www.mathworks.com
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FIGURE 4 | Example probe distribution. Here, the measured action times during training have a mean of 5.563 s (mean AT) and a standard deviation of 1.513 s (std

AT). Probes are sampled from a normal distribution with a mean of mean AT - std AT - 0.5 and a standard deviation equal to std AT. The sampled probe onsets follow

a truncated normal distribution within the interval of 0.5s before the average action time plus and minus one standard deviation.

inter trial interval was chosen randomly between 1.5 and 3 s on
each trial.

3.4. Experimental Timeline
At the start of the experiment, participants performed two
training blocks. The first block consisted of 20 control trials and
was used to train participants on the main task of pressing a
button whenever they wanted to. This block was repeated until
the participant performed the desired actions at roughly the right
time interval. The second block consisted of 25 control trials and
was used to collect the action times required to set the time
distribution of the probes. The remainder of the experiment
consisted of 4 test sequences. Each test sequence consisted of
4 blocks of 25 trials of each condition in a random order. The
type of condition was displayed to the participant prior to each
sequence of 25 trials of a single condition. In total, 100 trials were
acquired per condition.

The experiment took 1.5 to 2 hours + 0.5 hours for setting
up the EEG, which resulted in a maximum total duration
of 2.5hours.

3.5. Behavioral Data
Three behavioral measurements were collected during the
experiment: (1) the introspection reports, (2) the timing of the
performed actions and (3) the answers to the questionnaire. In
the introspect condition, the introspection reports consisted of
the experienced vividness of the intention to act. In the probe
condition they consisted of a behavioral response to a probe (a
veto or ignore) and its confirmation at the end of a trial. The
action timing was measured using the button presses and the
onset of muscle activation as recorded with an EMG.

In order to quantify hypotheses 3, 4 and 6 (see Section 2), we
needed to determine whether the probes in the probe condition
lead to veto responses across a consistent time range prior to
action onset. In other words: is there a gap in the distribution
of ignored probes, as illustrated in Figure 2A and found by
Matsuhashi and Hallett (2008)? To answer this question, the

timing of the ignored and scheduled probes relative to action
onset was analyzed. The distribution of scheduled probes refers
to the average amount of probes that should by design occur prior
to action onset, as described in Section 3.3. Since participants
performed self-paced actions during the experiment, one could
not predict their exact action onsets. Therefore, the amount of
probes that were actually presented prior to action onset will
always differ a bit from the scheduled ones. The distribution of
ignored probes is a sample from the scheduled probe distribution
that shows how many of the scheduled probes were actually
presented and ignored by the participant.

To determine the distribution of scheduled probes relative
to action onset, the scheduled probe onsets that precede each
individual action were sampled per participant. Subsequently, the
action onset was subtracted from each corresponding sampled
probe onset in order to calculate the probe timing relative to
action onset. A histogram with 33 time bins of 150 ms, running
from 5 s prior to action until action onset, was constructed
of the scheduled probe timings. In order to get an estimate of
the average number of scheduled probes per participant, the
histogram of scheduled probes was divided by the total number
of performed actions. In addition, a histogram was created of the
ignored probe times (probes that were followed by an action at a
later point in time) using identical time bins. Lastly, the mean
distribution of scheduled and ignored probes was calculated
across all participants. A Wilcoxon signed-rank test (Wilcoxon,
1945) was used to assess whether the values of each time bin differ
significantly between the ignored and scheduled probes across
participants. The alpha-level for significance was Bonferroni
corrected and set at 0.05/33 = 0.0015. The consecutive time
points at which the number of ignored probes were found
to be significantly less than the number of scheduled probes
define a time range during which participants were on average
aware of their intention to act (see Figure 6). As a control,
these steps were repeated for the sound condition (which should
not show a gap in the distribution of ignored probes prior to
action onset).

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 6829

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Verbaarschot et al. Probing for Intentions

The EMG measurement served to check the accuracy of the
button presses. The EMG was recorded using two electrodes,
placed in a bipolar pair on the right wrist and the center of
the right forearm (on the flexor pollicis longus). For analysis,
the EMG data of the bipolar electrodes was subtracted and
band-pass filtered between 51 and 250 Hz. Subsequently, the
absolute value was taken and the data was sliced in epochs of
4 s prior to a button press until 1 s after. For each participant,
the average EMG activity was calculated across all trials. From
this average the median and standard deviation were calculated
for each participant over all time points. An individual threshold
for muscle activation was set at the median EMG activity plus
2x its standard deviation. The average onset of muscle activity
was determined as the point in time at which the average EMG
activity exceeded the set threshold.

The mean and standard deviation of the action times relative
to trial start were calculated for each participant. To quantify
hypotheses 1, 2, and 5 (see Section 2), a two-factor within-
subject repeated measures ANOVA was used to assess any
significant effects of the manipulated variables on the mean
and standard deviation of the action times between conditions.
The two factors are: (1) the requirement of an introspection
report and (2) the presence of probes. By using a Bonferroni
correction for these two factors and their potential interaction,
the significance level was set to 0.025/3 = 0.008 for a two-
sided significance test. When a main effect of either manipulated
variable was found, individual post-hoc paired-samples t-tests
were used to assess specific differences in action mean or
standard deviation between conditions. The significance level
of these individual tests was set to 0.025 for a two-sided
significance test.

In addition, the relation between probes and actions was
investigated by looking at differences between conditions in
action times relative to probe onset. In order to calculate the
action times of the control and introspect conditions relative to
probe onset, the same probe distribution was used as presented in
the sound condition. These simulated probe onsets—button press
times represent the absence of a connection between probes and
actions in the control and introspect conditions and served as a
control for the sound condition in which such a relation may be
present. Differences in actionmean or standard deviation relative
to probe onset were assessed using a paired-sample t-test on all
three possible combinations of the control, introspect and sound
conditions. The significance level was set to 0.025/3 = 0.008. The
probe condition was left out of this analysis since it would differ
by design from all other conditions due to the performed veto
responses: creating a potential gap in the distribution of ignored
probes, as illustrated in Figure 2A.

3.6. Brain Data
EEG data was collected using 64 Ag/AgCl active electrodes
sampled at 512 Hz using Biosemi equipment 4. The electrodes
were placed according to the International 10/20 system. The
electrodes measured all frequencies between 0 and 512 Hz. Two
electrodes were placed on the left and right mastoids and four

4 see www.biosemi.com

electro-oculogram (EOG) electrodes were placed in bipolar pairs
above and below the left eye and on the outer sides of both eyes.
The neural data was analyzed using Fieldtrip 5.

The EEG data was preprocessed using the following steps:

1. Data was sliced in epochs of 10 s before to 5 s after action onset
(i.e., button press), so the data was time locked to action onset
(at 0 s).

2. Data is downsampled to 256 Hz.
3. Trials in which the participant acted within 4 s after trial start

were removed to ensure a decent baseline period.
4. Trials in which a probe was presented between 4.5 and 2.5 s

before action onset were removed to ensure a decent baseline
period.

5. Data of all conditions was concatenated per participant.
6. Data was rereferenced using a linked-mastoid reference.
7. Baseline correction was performed per trial and electrode by

subtracting the average EEG signal between 3.5 and 2.5 s prior
to action onset.

8. EOG artifacts were removed using a linear decorrelation of the
recorded EEG and EOG (Gratton, 1998).

9. A band-pass filter between 0.2 and 47 Hz was used to filter out
slow drifts and 50 Hz line noise.

10. Epochs of -5 to 3 s around action onset were retained.
11. Bad channels were removed if they differed more than 3.5

standard deviation in power from the median across all
channels.

12. Bad epochs were removed if they differed more than 3.5
standard deviation in power from the median across all trials.

13. Bad channel rejection was repeated.
14. A spherical spline interpolation was used to reconstruct bad

channels (Perrin et al., 1989).

To quantify hypotheses 1 and 2 (see Section 2), individual Event-
Related Potentials (ERPs) were calculated per participant and per
condition. To assess the main effects of the requirement of an
introspection report and the presence of probes on the RP, mean
ERPs were calculated across the following conditions:

1. Control and sound: providing information about all conditions
without introspection reports.

2. Introspect and probe: providing information about all
conditions with introspection reports.

3. Control and introspect: providing information about all
conditions without probes.

4. Sound and probe: providing information about all conditions
with probes.

Two within-subject cluster permutation tests with 1000
permutations were used to assess whether the last 2.5 s of data
prior to action onset differed between these grouped conditions:
introspection vs. no introspection and no probe vs. probe
conditions (Maris and Oostenveld, 2007). After a Bonferroni
correction, the significance level was set to 0.025/2 = 0.013 for a
two-sided significance test. If significant main effects were found,
post-hoc within-subject cluster permutation tests were used to
identify significant differences between individual experimental

5see www.fieldtriptoolbox.org
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conditions. The significance level of these individual tests was set
to .025 for a two-sided significance test.

Data from the probe condition was used to analyze the
RP prior to ignored and vetoed probes, since this was the
only condition that contained both ignore and veto responses
to probes. From this data, four types of trials were extracted
(see Figure 5):

1. Action-without-probe: trials in which no probe occurred and
an action was performed at least 4 s after trial start (to ensure
a decent baseline).

2. Ignore: trials in which a probe occurred at least 4 s after trial
start and was followed by an action more than 0.5 s later
(which was determined as the point of no return, as shown
in Section 4.1.2).

3. Veto: trials in which a probe occurred at least 4 s after trial start
and was followed by a veto (i.e., no action). The veto response
was confirmed by the answer to the veto question at the end of
the trial.

4. Incorrect action: trials in which a probe occurred at least 4 s
after trial start and was followed by an action within 0.5 s.

According to Matsuhashi and Hallett (2008), vetos should
consistently be performed across a specific time range prior to
action onset. Moreover, this time range should coincide with
the build-up of the RP (Verbaarschot et al., 2016). If this is the
case, we expect to find a weak RP signature prior to vetoed
probes and no RP prior to ignored probes (see Figure 6). To
test this, action-without-probe trials were time-locked to the
performed button press, whereas the ignore, veto and incorrect
action trials were time-locked to probe onset. To extract the
general signature of the RP (i.e., a negative potential relative to
baseline), the mean activities during the last 1.5 s to 0.5 s and
0.5 s to 0 s prior to action or probe onset were calculated per
participant at electrode Cz. These two time intervals were used
to assess whether there are differences in the early and/or late
phase of the RP between these different trial types (Shibasaki and
Hallett, 2006). For the two time intervals, two-sided dependent

samples t-tests were used to test whether the activity differs
significantly between action-without-probe and incorrect action
trials and action-without-probe and veto trials (Bonferroni
corrected at 0.025/8 = 0.003). A further one-sided dependent
samples t-tests were used to test for both time intervals whether
the activity was more negative in veto and action-without-
probe trials relative to ignore trials (Bonferroni corrected
at 0.05/8 = 0.006).

To quantify hypotheses 1 and 2 (see Section 2), individual
alpha/beta ERDs were assessed. For this reason, the data of all
conditions was concatenated and a spectogram was calculated
between –5 and 3 s around action onset. Frequencies of
interest were defined from 5 to 30 Hz using 2 Hz bins. A
flexible Hanning window was used such that it included at
least 7 cycles of each frequency of interest. The data was
baselined using a relative baseline, resulting in the relative
signal change compared to baseline (where a value of 1 means
no change). The baseline activity was defined per electrode,
frequency and trial as the median power between 3.5 and
2.5 s prior to action. Subsequently, the data was separated
into the different conditions. The ERD was calculated per
participant by taking the median power across trials for each
electrode, frequency and trial. Mean ERDs were calculated
per participant for no introspection (control and sound) vs.
introspection conditions (introspect and probe), and no probe
(control and introspect) vs. probe conditions (i.e., sound and
probe). Within-subject cluster permutation tests (Maris and
Oostenveld, 2007) with 1000 permutations were used to
assess whether the last 2.5 s of data prior to action onset
differed between the no introspection vs. introspection and
no probe vs. probe conditions. After a Bonferroni correction,
the significance level was set to 0.025/2 = 0.013. When a
significant main effect was found, post-hoc within-subject cluster
permutation tests were used to identify significant differences
between individual experimental conditions. The significance
level of these individual tests was set to .025 for a two-sided
significance test.

FIGURE 5 | Schematic timeline of events that could happen within a trial of the probe condition. The “+” indicates trial start. Each probe trial could develop in one of

four ways. (1) Ignore: a probe is presented when the participant is not intending to act. The participant ignores the probe and presses the button at a later point in time

when he/she feels the intention to do so. (2) Veto: a probe is presented when the participant experiences an intention to act. The participant vetos his/her action and

waits for the trial to end. (3) Incorrect action: a probe is presented when the participant experiences an intention to act. The probe happens so close to action onset,

that the participant is unable to veto his/her action and presses the button anyway. (4) Action-without-probe: the participant presses a button when he/she feels the

intention to do so. They are uninterrupted by a probe. The darker colored portions of each row indicate the portion of the trial that is used for EEG analysis. This

portion is either time-locked to probe (ignore, veto and incorrect action trials) or action onset (action-without-probe trials).
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FIGURE 6 | The top plot shows a schematic grand average of the distribution of scheduled and ignored probes relative to action onset. The difference between the

scheduled and ignored probe distribution, as highlighted in dark gray, shows the time points at which participants are expected to perform a veto in response to a

probe. The gap provides an estimated time period during which participants are expected to be aware of their intention to act. The bottom plot shows a schematic

grand average of the expected RP. When looking at the average brain activity prior to an action, a full RP is expected to be present. When looking at the average brain

activity prior to an ignored probe, no RP is expected. The analysis window prior to a vetoed probe is expected to sample the early phase of the RP, which given the

shape of the RP will look like a weaker version of the full RP.

4. RESULTS

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

4.1. Behavioral Data
4.1.1. Questionnaire
A total of 14 participants completed the questionnaire at the
end of the experiment (see Section 3.2). Due to the exclusion
of some participants (see Section 3.1), the answers of a total
of 12 participants were analyzed. All 12 participants indicated
that the differences between the control, sound, introspect and
probe conditions were clear. Eleven participants indicated that
they acted spontaneously during the entire experiment, i.e., they
pressed the button as soon as they wanted to. In contrast,
1 participant indicated that he/she did not act spontaneously,
i.e., he/she already decided to act long before they pressed
the button.

Six participants always experienced a clear difference in timing
between an intention and action, whereas 1 participant only
experienced this sometimes and 1 other participant only had
this experience when he/she perceived the intention consciously
and vividly. One participant experienced the intention as always
occurring prior to the action. Three participants did not
experience any difference in timing between the intention and
action and perceived them as occurring at the same time.

Concerning the sound and probe conditions, 7 participants
reported the probes as neutral: they did not experience any
positive or negative effects caused by the probes. However,

5 participants experienced some negative effects from the
probes as they reported them to be “annoying” (2 participants),
“stressful” (2 participants), or as “disturbing their relaxed state”
(1 participant). Moreover, 9 participants believe that the probes
did influence their course of action, whereas 3 participants did
not experience any influence of the probes.

During the probe condition, 8 participants found it sometimes
difficult to judge whether or not they were experiencing an
intention to act when a probe was presented. One participant
always experienced this intention assessment as difficult and
3 participants had no trouble with it at all. Eight participants
followed instructions correctly and vetoed their intended
movement when they experienced an intention to act upon
probe presentation, whereas another 2 participants did not use
any particular strategy to decide whether or not they could
press the button after a probe was presented. Two participants
determined whether or not they should veto their act based
on their expectation of a probe. Whenever they were expecting
a probe and a probe was presented, they would veto their
subsequent act. In their case, the performed veto’s did not
relate to their intention to act but to their expectation of a
probe. Because these participants were effectively not following
instructions correctly, they were excluded from further analysis
(as indicated in Section 2.1).

In summary, 92% of the participants who completed the
questionnaire acted spontaneously throughout the experiment.
Although 75% of the participants at least sometimes perceived
their intentions and actions as two different events in time,
75% of participants also found it difficult to assess upon probe
presentation whether or not they were intending to act. Lastly,
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the probes seem to be experienced in a negative way by at least
42% of participants.

4.1.2. Intention Reports
Each participant completed 100 trials of the introspect condition.
Twenty-three (=1%) trials across all participants ended without
a button press. Participants reported having experienced their
intention as “vivid and conscious” in 45% (±2%) of all
trials containing an action. In 34% (±1%) the intention was
experienced as a “vague feeling of wanting.” In the remaining
21% (±1%), participants reported to have “pressed the button
without thinking about it.” Figure 7A shows the reports on the
subjective experience of intending to act for each participant and
across all participants.

Similar to the introspect condition, 100 trials were collected
per participant in the probe condition. In 63% (±1%) of
all trials across participants, a probe was presented. Seventy-
eight% (±16%) of the presented probes across participants
were followed by an ignore response, whereas 20% (±14%)
was followed by a veto response. Three % (±5%) of the
presented probes were followed neither by an ignore or a veto
response; the trial simply ended before an action was made.
Figure 7B shows the number of ignore and veto responses for
each participant and the percentage of these responses across
all participants.

Figures 8A,B show the number of observed ignored probes
and scheduled probes relative to action onset across all
participants for the probe and sound conditions. As noted
in Section 3.5, the distribution of observed ignored probes
will always differ a bit from the distribution of scheduled

probes since the scheduled probes are an approximation
of the observed probes: i.e., the predicted amount of
probes that on average should occur prior to action onset.
Furthermore, the distribution of ignored probes includes
the amount of probes that are presented and followed
by an action only, whereas the distribution of scheduled
probes also includes probes that are not followed by an
action (i.e., a veto).

Since our probes do not follow a uniform but a truncated
normal distribution, our plot looks slightly different from those
of Matsuhashi and Hallett (2008). Similar to Matsuhashi and
Hallett (2008), we observe a significant decrease in the fraction
of ignored probes between 1.4 and 0.65 s prior to action
(p < 0.0015) for the probe condition. During this time period,
participants mostly performed a veto in response to a presented
probe. Shortly prior to action, from 0.5 s to action onset, the
fraction of ignored probes increases again. This increase could
be due to the point of no return as defined by Matsuhashi and
Hallett (2008). At the point of no return, a probe was presented
in such close proximity to action onset that participants are not
able to cancel their action anymore to perform a veto. As shown
in Figure 8C, the distribution of presented probes of the sound
condition also shows a slight decrease in the amount of probes
between 1 and 0.5s prior to action. However, this deviation
between the scheduled and presented probes was not found to
be significant.

4.1.3. Action Distribution
Across all participants, the mean onset of muscle activation
was found at 81 ms (±78ms) prior to a button press. Since

FIGURE 7 | (A) Reported experience of an intention to act in the introspect condition. Participants could report their intention to act after every trial as “vivid and

conscious,” “a vague feeling of wanting,” or “pressed the button without thinking about it.” The number of times each possible answer was selected is shown per

participant. The percentage of each selected answer across all participants is shown in the pie chart in the top right corner. (B) Overview of the responses to a probe

in the probe condition. The number of times a presented probe is followed by an ignore or a veto response is shown for each participant. The percentage of presented

probes that were followed by an ignore or veto response across all participants is shown in the pie chart in the top right corner. The gap in the pie chart shows the

percentage of presented probes that were ignored but not followed by an action (i.e., the participant did not intend to act during the trial).
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FIGURE 8 | (A) The mean and standard deviation of the ignored probes across all participants in the probe condition. (B) In gray the mean number of probes that

were scheduled to be presented prior to action across all participants in the probe condition (standard deviations across participants are provided on top of the

histogram). In purple the mean number of probes that were ignored and followed by an action (at time 0) across all participants. Around –1.4 s prior to action,

participants start to veto their action in response to a probe: this is apparent by the decrease in the observed fraction of probes that were followed by an action

compared to the scheduled fraction of probes. Around –0.5 s prior to action, participants are no longer able to veto their action in response to a probe due to their

close proximity in time (i.e., point of no return), hence the increase in ignored probes. Note: the purple distribution of ignored probes in (B) is identical to that in (A), but

with a different scaling factor. Significant (p < 0.0015) differences between the amount of scheduled and ignored probes are indicated with an asterisk (*). (C) In gray

the mean number of probes that were scheduled to be presented prior to action across all participants in the sound condition. In green the mean number of probes

that were actually presented and followed by an action (at time 0) across all participants.

this difference is small relative to the magnitude of the
expected intention reports (about 1 s) and estimation errors, the
timing of the button press is used as action onset throughout
the analysis.

A boxplot of the action times of the control (mean: 7.501
s, standard deviation: 1.549 s), sound (mean: 7.180 s, standard
deviation: 1.447 s), introspect (mean: 7.720 s, standard deviation:
1.618 s) and probe (mean: 7.179 s, standard deviation: 1.493
s) conditions across all participants is shown in Figure 9A. A
significant main effect of the presence of probes on the mean
action time was found (df = 15, F = 15.704, p = 0.0013).
Individual post-hoc tests reveal that this is due to significant
differences between the probe and control (df = 15, t =

−3.100, p = 0.007), sound and introspect (df = 15, t =

3.823, p = 0.002), and probe and introspect conditions (df =

15, t = −4.199, p = .000). No significant main effect of the
requirement of an introspection report on mean action time
was found (df = 15, F = 3.291, p = 0.090). Furthermore, no
significant main effects of the requirement of an introspection
report or the presence of probes was found on the standard
deviation of action times.

Furthermore, the effect of the presence of a probe on
action timing was explicitly investigated by comparing the
action timings relative to probe onset across all conditions.
A boxplot of the action timings relative to probe onset of
the control (mean: 0.886 s, standard deviation: 1.801 s), sound
(mean: 0.574 s, standard deviation: 1.704 s) and introspect
(mean: 1.110 s, standard deviation: 1.840 s) conditions across
all participants is shown in Figure 9B. Again, the mean action
time of the sound condition was found to differ significantly
from that of the introspect (df = 15, t = 3.8226, p =

.002∗) condition. No significant differences in mean action
time were found between the control and introspect or
control and sound conditions. No significant differences in the
standard deviation of action times were found between any of
the conditions.

4.2. Brain Data
After preprocessing, 85 (minimum: 40, maximum: 91) trials
remained for analysis of the control condition, 85 (minimum: 46,
maximum: 92) trials for the sound, 87 (minimum: 48, maximum:
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FIGURE 9 | (A) Boxplot of action times per condition across all participants. Action times are measured relative to trial start. (B) Boxplot of action times per condition

across all participants. Action times are measured relative to probe presentation. Significant differences (p < 0.025 for A and p < 0.008 for B) between conditions are

indicated with an asterisk (*).

96) trials for the introspect and 75 (minimum: 28, maximum: 89)
trials for the probe condition.

4.2.1. Readiness Potential
Figure 10 shows the grand average of the RP for conditions with
and without introspection reports and with and without probes.
Visually, the RP seems to have its earliest onset around 2 s prior
to movement. The shape and timing of the RP confirm previous
research involving spontaneous voluntary right handmovements
(Kornhuber and Deecke, 1965; Libet et al., 1983; Shibasaki and
Hallett, 2006). Significant main effects of the requirement of an
introspection report and the presence of probes are found on
the last 2.5 s of the RP (N = 16, p < 0.008, see Figure 10).
Whereas probes seem to cause a slight increase in RP amplitude,
the requirement of an introspection report seems to cause a slight
decrease in RP amplitude. The introspect condition seems to lie at
the heart of these effects, as the RPs in this condition were found
to differ significantly from those in all other conditions (N = 16,
p < 0.025). Figure 11 shows the grand average of the RP for each
individual condition.

After action onset, the RP of the introspect condition deviates
from the others (see Figure 11). This is due to a difference in
events after action onset: immediately after action performance
in the introspect condition, participants are prompted with a
question about the vividness of their intention to act and need
to respond to this question by pressing one of three buttons.

Concerning the post-hoc analysis of the RP prior to vetoed
and ignored probes, Figure 12 shows the grand average ERP for
different trials of the probe condition. The number of ignored
and vetoed probes differ greatly among participants within this
condition (see Section 4.1.2). Especially the number of vetoed
probes is quite low: around 20%. For this reason, we removed

some participants from further analysis: only those participants
who retained at least 10 trials action-without-probe, ignore and
veto trials were kept for further analysis. This resulted in a
total of 8 participants containing on average 39 (minimum: 30,
maximum: 53) action-without-probe trials, 25 (minimum: 19,
maximum: 32) ignore trials, 15 (minimum: 10, maximum: 20)
veto trials and 11 (minimum: 5, maximum: 18) incorrect action
trials per participant.

Figure 12A shows a clear negativity across the motor cortex
for the action-without-probe and incorrect action trials. This
is to be expected since both trial types include an intended
action and thus should look similar to the RP in Figure 11. The
incorrect action trials are a weaker version of the action-without-
probe trials because they contain less data and are time-locked
to probe onset rather than action onset. As the RP increases in
amplitude up to action at 0 s, time-locking to earlier times in
the RP development results in reduced ERP amplitudes, as seen
here for the incorrect action trials where probes occur randomly
somewhere in the last 0.5 s before action onset. The veto trials
show a medium and more widespread negativity across the
motor cortex, whereas this negativity seems completely absent for
ignore trials. A similar trend can be observed from Figure 12B:
a clear negativity (i.e., RP) can be observed for action-without-
probe trials, whereas ignore trials remain around baseline. Veto
trials (which we expect are randomly sampled from –1.4 to –
0.65 s before action based on the intention-window identified in
Figure 8) are in between ignore and action-without-probe trials,
showing a medium negativity shortly prior to probe onset.

One-sided dependent samples t-tests showed that the action-
without-probe trials are significantly higher in amplitude
compared to the ignore trials during both the early (–1.5 to –
0.5 s: df = 7, t = −3.5217, p = .005) and late (–0.5 to 0 s:
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FIGURE 10 | (A) Grand average readiness potential at electrode Cz for conditions without (control + introspect) and with probes (sound + probe). (B) Grand average

readiness potential at electrode Cz for conditions without (control + sound) and with intention reports (introspect + probe). Action onset is at time 0 and is indicated by

a vertical line. The colored shade indicates the standard error across participants. The topoplots show the grand average EEG activity at each electrode, averaged

across the last 0.5s prior to action onset. Significant differences (p < 0.013) are indicated by a gray box. Note, the data is baselined between 3.5 and 2.5 s prior to

action, as indicated by a small horizontal line in the bottom left corner of each plot.

FIGURE 11 | (A) Topoplot showing the grand average EEG activity at each electrode, averaged across the last 0.5s prior to action onset. (B) Grand average of the

readiness potential at electrode Cz. Each color shows the grand average RP of a single condition surrounded by two lines, indicating the standard error across

participants. Action onset is at time 0 and is indicated by a vertical line. Note, the data is baselined between 3.5 and 2.5 s prior to action, as indicated by a small

horizontal line in the bottom left corner of plot B. The introspect condition was found to differ significantly from all others (p < 0.025).
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FIGURE 12 | (A) Topoplot showing the grand average EEG activity of the

probe condition averaged across the last 0.5s prior to action

(action-without-probe trials) or probe onset (ignore, veto, or incorrect action

trials). (B) Grand average ERP at electrode Cz. Each color shows the grand

average RP of a single trial type surrounded by the standard error across

participants. For simplicity, we leave out the incorrect trials, since they closely

resemble the action-without-probe trials. Time 0 corresponds to action

(action-without-probe trials) or probe (ignore or veto) onset and is indicated by

a vertical line. A significant difference between action-without-probe and

ignore trials was found across –1.5 to 0 s. Note, the data is baselined between

3.5 and 2.5 s prior to action or probe onset, as indicated by a small horizontal

line in the bottom left corner of plot (B).

df = 7, t = −5.4562, p = 0.001) phase of the RP. No significant
differences were found between the action-without-probe and
incorrect action trials (df = 7, t = −0.3285, p = 0.752), action-
without-probe and veto trials (df = 7, t = −1.928, p = 0.095)
or veto and ignore trials (df = 7, t = −1.014, p = 0.172) for the
early phase of the RP. Similarly, no significant differences were
found between the action-without-probe and incorrect action
trials (df = 7, t = −0.4593, p = 0.670), action-without-probe
and veto trials (df = 7, t = −1.969, p = 0.090) or veto and ignore
trials (df = 7, t = −2.587, p = 0.018) for the late phase of the RP.

Figure 12 also shows differences between action-without-
probe, ignore, veto and incorrect action trials after time 0s. Note
however, that time 0 s refers to action onset for action-without-
probe trials only and to probe onset for ignore, veto and incorrect
action trials. Therefore, any differences after time 0s likely reflect
the presence of an action or probe (or the combination of the two
for incorrect action trials). We do not investigate brain activity
after time 0 s because any differences in brain processing related

to action preparation will be contaminated by the brain response
to probe presentation or action performance.

4.2.2. Alpha/Beta Event-Related Desynchronization
Significant main effects of the requirement of an introspection
report and the presence of probes are found on the last 2.5 s
of the RP (N = 16, p < 0.013, see Figure 13). Figure 14

shows the grand average of the ERD across the alpha (8–
12Hz) and beta (13–30Hz) bands at channel C3 for each
condition. An ERD is visible in the average time-frequency
spectrum prior and during action (time 0). The ERD seems
to have its earliest onset at around 2 s prior to action onset.
Judging from the topoplot provided in Figure 14A, the ERD
seems enhanced in the introspect and especially probe conditions
compared to the control and sound conditions. After action,
an event-related synchonization is visible in the control, sound
and probe conditions, whereas the ERD seems to continue
after movement in the introspect condition. This continued
ERD in the introspect condition is caused by the second
button press that is required to answer the multiple-choice
question on the subjective experience of the intention to act.
Overall, the shape and timing of the observed ERD and ERS
signatures confirm those of previous research (Pfurtscheller and
Aranibar, 1979; Doyle et al., 2005). Individual post-hoc tests
reveal significant differences in the ERD between the probe and
sound, probe and control, and introspect and control conditions
(N = 16, p < 0.025).

5. DISCUSSION

The probe method of Matsuhashi and Hallett (2008) promises
to be a valuable addition to the clock method of Libet et al.
(1983) in studying the timing of an intention to act. Here, it
was put to test to verify its accuracy and quantify any potential
concerns that might limit its usage. In a 2 × 2 within-subject
design (1) the requirement of an introspection report and (2)
the presence of an auditory probe were manipulated. In total, the
experiment consisted of 4 conditions: control, sound, introspect
and probe. In all conditions, participants were instructed to make
a spontaneous self-paced right hand movement between 5 and
10 s after trial start. The control condition consisted solely of the
performance of these voluntary actions. In addition, the sound
and probe conditions contained (identical) auditory probes.
Furthermore, the introspect and probe conditions required a
report on the experienced intention to act. In the introspect
condition, this report was provided by answering a multiple-
choice question on the vividness of an experienced intention.
In the probe condition, it was provided through the response
to a probe: ignoring the probe or vetoing the intended action.
In addition, 14 participants completed a questionnaire to
get more insight into their subjective experience during the
experiment. The effect of the two manipulated variables on
the neural preparatory activity for action (RP and alpha/beta
ERD), the awareness of an intention, and the performed actions
was investigated.

The presence of probes had a significant effect on the observed
mean action times. This effect was due to significant differences
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FIGURE 13 | Topoplots showing the grand average power across 8–30 Hz at each electrode, averaged across the last 0.5 s prior to action onset. Averages across

conditions with (sound + probe) and without probes (control + introspect), and with (introspect + probe) and without intention reports (control + sound) are shown. A

significant difference (p < 0.013) is found between conditions with and without intention reports.

FIGURE 14 | (A) Topoplot showing the grand average power across 8-30Hz at each electrode, averaged across the last 0.5s prior to action onset. (B) Grand average

of the event-related desynchronization across the alpha (8–1 2Hz) and beta (13–30 Hz) bands measured at electrode C3. Each spectogram corresponds to the grand

average data of an individual condition: control (left), sound (left of middle), introspect (right of middle) and probe (right). The dotted vertical line indicates action onset

(time 0). The data is baselined between 3.5 and 2.5 s prior to action, as indicated by the horizontal line in the bottom left corner.

in mean action time between the sound and introspect, control
and probe, and probe and introspect conditions. Regardless of the
requirement of an introspection report, the presence of probes
seem to speed up the mean action time by roughly 0.3 s. One
possible explanation for this observation is that the action times
get tuned toward the probe distribution. The probe distribution
is designed to be a shifted version of the action distribution.
On average, this shift causes the probes to be presented slightly
prior to the actions. This precedence of probes could bias the
actions by speeding them up. Although a significant difference is
found between the control and probe conditions, it was not found
between the control and sound condition. On the one hand, this
may be due to the fact that the sampling of actions in the probe

condition slightly enhances the effect of the probes: slow actions
are more likely to be turned into a veto response due to a probe.
Because these slow actions will not be performed, they do not add
to the mean action time. This enhances the difference between
mean action onset in the probe compared to the sound condition.
On the other hand, this result may also confirm hypothesis 5:
veto influences action. Participants may act faster in the probe
condition because they want to either explicitly (consciously)
or implicitly (subconsciously) decrease the chance of having to
perform a veto.

When specifically investigating the effect of the probes on the
action times, the mean action times relative to probe onset of the
sound condition were found to differ from those of the introspect
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condition. However, the action times relative to probe onset did
not differ significantly between the sound and control nor the
introspect and control conditions, suggesting that the difference
between the sound and introspect conditions are a combined
effect from the relatively slower action times in the introspect
condition and faster action times of the sound condition.

Although probes seem to speed up actions, they do not seem
to speed up brain signals. In contrast, it is not the presence
of probes, but the requirement of an introspection report that
seems to influence brain signals: reducing the amplitude of
the RP and increasing the desynchronization in the alpha and
beta bands prior to action onset. Specifically, the RPs in the
introspect condition have the lowest amplitude of all. This
may suggest that the introspection requirement influences the
threshold for action performance, making one more susceptible
to small fluctuations in neural activity. Moreover, performing
introspection may enhance the level of attention, which reduces
the general level of alpha activity and could cause a relatively
enhanced desynchronization in this range. These types of effects
of introspection, i.e., tuning attention toward ones internal state,
have been reported to induce changes in brain activity in the past
(Lau et al., 2007).

Nine out of 12 participants who completed the questionnaire
indicated that they found it difficult to assess whether or not
they were intending to act upon probe presentation in the probe
condition. Yet, vetos were performed in a specific time range
across all participants: running from 1.4 until 0.65 s prior to
action onset. Finding a significant descrease in the amount
of ignored probes during this time range confirms the main
behavioral findings of Matsuhashi and Hallett (2008). Moreover,
within the probe condition, we found a significant difference
in brain activity prior to an ignored probe and an action: we
see a clear RP prior to action onset, but nothing like an RP
prior to an ignored probe. This suggests that there is no neural
preparatory activity for action present prior to an ignored probe,
providing further evidence indicating that participants are indeed
not experiencing an intention to act when they ignore a probe.

The average onset of the awareness of an intention to act found
here and in previous research (Matsuhashi and Hallett, 2008;
Verbaarschot et al., 2016) is much earlier than that found by
studies using the clock method (Libet et al., 1983; Haggard and
Eimer, 1999; Haggard et al., 2002; Sirigu et al., 2004; Banks and
Isham, 2009; Bode et al., 2011; Fried et al., 2011; Soon et al., 2013;
Jo et al., 2014; Douglas et al., 2015; Tabu et al., 2015; Alexander
et al., 2016). This suggests that probes spread out the awareness
of an intention to act. During a specific time range prior to
action (starting around 1.4 s before), probes seem to facilitate
the awareness of an intention. Within this time range, probes are
consistently followed by a veto response across all participants. As
argued previously (Uithol et al., 2014; Verbaarschot et al., 2016),
these findings suggests that an intention to act reflects a dynamic
process rather than a discrete mental state. The probe method
is able to measure the awareness of intending during the earlier
stages of this process, during which one seems susceptible to
external stimuli. In contrast, the clock method seems to measure
only its final stage, during which intentions become available for
self-initiated report.

The probe distribution is designed to present the majority
of probes in the last 3s prior to action onset, where awareness
of an intention is most likely to occur (Matsuhashi and Hallett,
2008; Verbaarschot et al., 2016). The choice of probe distribution
may co-determine the results: awareness of an intention to act
starting earlier than 3s prior to action onset may be missed
using our probe distribution. We believe our choice of probe
distribution should be sufficient since our results as well as
those of Matsuhashi and Hallett and Verbaarschot et al. show
that probes are consistently followed by a veto response starting
from 1.5s prior to action onset, and not earlier. If needed,
the probe distribution could be extended in future research to
investigate earlier awareness of an intention to act. If one would
want to measure the timing of an intention to act across a
larger time period, one would need to extend the experiment
in order to retain a similar time resolution: a fixed amount of
probes with small variations in timing provides a more detailed
approximation of the timing of an intention to act during a
limited time period, than the same amount of probes with big
variations in timing across a larger time period.

Eleven out of 12 participants who completed the questionnaire
indicated that they acted spontaneously throughout the
experiment. Although participants were instructed to act
whenever they experienced an intention to do so, only 45% of
these intentions were reported as vivid and conscious across
all participants in the introspect condition. The remaining
intentions were either perceived as a vague feeling of wanting
(34%) or without any conscious thought at all (21%). These
results might be related to the type of task that participants were
asked to perform: an arbitrary button press that is performed
without any reason or consequence. In daily life, these actions
are usually not preceded by a vivid intention. This type of task
has been criticized in the past (Mele, 2010; Nachev and Hacker,
2014) and highlights the importance of designing an ecologically
valid experiment that aims to measure meaningful actions
(Mecacci and Haselager, 2015). In contrast to the clock method,
the probe method can be used to reach this goal as it does not
require constant introspection and can be used in combination
with other stimuli. Additional stimuli can be used to create an
ecologically valid experimental context in which actions can be
made for a reason and have some consequence.

We used trial-by-trial color feedback rather than a sporadic
verbal correction [as most probably used by Matsuhashi and
Hallett (2008)] to prevent potential instructional differences
between participants. In addition, the feedback was designed to
provide an intuitive feeling of the time window of opportunity
for acting without the need to keep track of time. However,
the feedback may have enhanced the artificial nature of the
experimental task and decreased the element of spontaneity
in comparison to that of Matsuhashi and Hallett (2008). In a
previous study we conducted a Matsuhashi style experiment
without the use of color feedback (Verbaarschot et al., 2016).
Participants had complete freedom to decide when to act and
what action (a left or right hand button press) to perform.
In our current study, we observed a similar action pattern to
that of our previous Matsuhashi style experiment in terms of
action mean and variance across all conditions. As we believe
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that action variance increases with spontaneity, this suggests
that the actions measured in this experiment are at least as
spontaneous as those measured in our previous Matsuhashi type
experiment that did not use any color feedback. Moreover, since
participants acted around 5-7 s after trial start in the previous
Matsuhashi experiment, the 5–10 s window of opportunity used
in the current experiment does not seem to restrict the average
participant’s spontaneous actions in an obvious way (Verleger
et al., 2016). In future research, we encourage the use of a more
ecologically valid task that evokes the required action timing
and pattern in a natural and intuitive way without the use of
explicit feedback.

In summary, our test of the probe method has confirmed
certain effects of the presence of probes and the requirement of an
introspection report: probes speed up actions and introspection
changes the neural preparation for action. However, we do
not believe that these effects make the probe method an
unsuitable alternative to the clock method to study the timing
of intentions to act. The RP and alpha/beta ERD were clearly
detectable in all experimental conditions, confirming previous
findings on the neural preparation for a voluntary movement
(Pfurtscheller and Aranibar, 1979; Libet et al., 1983; Shibasaki
and Hallett, 2006). Moreover, vetos were performed consistently
across participants from 1.4 to 0.65 s prior to action onset.
Together with previous research, this time range has been
confirmed in three independent investigations (Matsuhashi and
Hallett, 2008; Verbaarschot et al., 2016). Probes do seem to
affect the timing of actions, speeding them up a bit (about
300 ms on average compared to the control condition). But
they do not seem to speed up or delay brain signals. The
requirement of an introspection report does influence the brain
signals. However, this effect is common to both the probe
and clock methods, as they both require introspection reports.
Moreover, the continuous introspection, as required by the clock
method and mimicked by the introspect condition, seems to
exacerbate these effects as shown by the lower amplitude RP and

enhanced desynchronization in the alpha and beta bands prior to
action onset.

We believe that the probe method provides a valuable
addition to the clock method. The probe method can be used
in combination with other tactile, visual, or even auditory (if
the probe is easily detectable) stimuli, creating the possibility to
embed it in a more realistic and ecologically valid experimental
task. By including it in our repertoire, intentional actions can
be studied in various experimental contexts. In contrast to
the clock method, the probe method measures the awareness
of an intention to act in real-time during action preparation.
As such, it requires only sporadic introspection. Moreover,
the probe method seems capable of measuring earlier stages
of intending compared to the clock method. Depending on
one’s research objective, one might favor the clock or probe
method over the other. When the amount of experimental
time needs to be limited and one is interested in the onset
of a reportable intention to act, one might best opt for
the clock method. On the other hand, when devising a
complex and ecologically valid experimental task and one is
interested in the time period during which one is aware of
an intention to act, the probe method seems the best way to
go. With this overview and our current findings, we hope to
encourage the use of Matsuhashi and Hallet’s probe method
in future research and extend the repertoire for experimentally
studying intended action.
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As driving functions become increasingly automated, motorists run the risk of becoming

cognitively removed from the driving process. Psychophysiological measures may

provide added value not captured through behavioral or self-report measures alone.

This paper provides a selective review of the psychophysiological measures that can be

utilized to assess cognitive states in real-world driving environments. First, the importance

of psychophysiological measures within the context of traffic safety is discussed. Next,

the most commonly used physiology-based indices of cognitive states are considered as

potential candidates relevant for driving research. These include: electroencephalography

and event-related potentials, optical imaging, heart rate and heart rate variability, blood

pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For

each of these measures, an overview is provided, followed by a discussion of the

methods for measuring it in a driving context. Drawing from recent empirical driving and

psychophysiology research, the relative strengths and limitations of each measure are

discussed to highlight each measures’ unique value. Challenges and recommendations

for valid and reliable quantification from lab to (less predictable) real-world driving settings

are considered. Finally, we discuss measures that may be better candidates for a near

real-time assessment of motorists’ cognitive states that can be utilized in applied settings

outside the lab. This review synthesizes the literature on in-vehicle psychophysiological

measures to advance the development of effective human-machine driving interfaces

and driver support systems.

Keywords: psychophysiology, cognition, driving, traffic safety, real-world

THE IMPORTANCE OF PSYCHOPHYSIOLOGICAL MEASURES IN
TRAFFIC SAFETY

Suboptimal level of cognitive functioning (e.g., inattention, drowsiness) is a key cause
of traffic accidents and poor driving performance. According to Traffic Safety Culture
Index, 87.5% of drivers identify distracted driving to be a greater concern today than in
past years and 87.9% perceive drowsiness as a threat to their safety (AAA Foundation
for Traffic Safety, 2018). Traffic safety researchers are constantly working on methods
to improve driving performance by assessing cognitive states, such as drivers’ workload,
inattention, and fatigue. One way to improve the assessment of covert cognitive states
is to adopt a multi-method approach to measure changes in central and peripheral
nervous system functioning in order to sense near-real time information about cognitive
states of motorists. Such assessments of internal states can also promote the development
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of Advanced Driver Assistance Systems (ADAS) that can predict
and augment risky driving behavior.

Why Adopt
Psychophysiological Measures?
Cognitive states can be assessed using subjective, behavioral,
and physiological measures (Mauss and Robinson, 2009; Strayer
et al., 2015; Lohani et al., 2018). Subjective measures can be
limiting if the assessment is disruptive to the real-time task (i.e.,
primary task intrusion, see O’Donnell and Eggemeier, 1986).
More importantly, humansmay not always be accurate inmaking
judgements about their cognitive states (Schmidt et al., 2009).
Motorists can be inaccurate in making judgments about their
internal and cognitive states (such as their attention, workload,
and drowsiness levels). For instance, motorists were inaccurate at
self-assessments of vigilance (Schmidt et al., 2009); even though
objective physiological indicators (e.g., heart rate, EEG, and
ERPs) suggested poor vigilance levels at the end of a 3-h drive,
participants self-reported improved vigilance instead (Schmidt
et al., 2009). Such misjudgments in assessment of cognitive
states suggest that objective measures are required to assess and
augment human behavior in order to reduce risk for traffic safety.
While behavioral measures (such as head movement detection to
assess distraction) are also useful, given the intent of this review,
we will focus on physiological measures. Accuracy in detecting
cognitive workload has been found to significantly increase when
physiological data was utilized (Lenneman and Backs, 2009, 2010;
Solovey et al., 2014; Borghini et al., 2015; Yang et al., 2016).
Some work has also found that physiological measures were
sensitive to variations in cognitive load during secondary tasks
while behavioral driving measures like steering wheel reversals
and velocity (Belyusar et al., 2015) and lane-keeping measures
(Lenneman and Backs, 2009) were not. Unlike behavioral
measures (e.g., verbal and facial behavior), many physiological
measures are not under voluntary control ofmotorists.Moreover,
cognitive states such as mental workload are a multi-faceted
and dynamic concept and self-report alone cannot be used to
operationalize it, but multiple measures (e.g., performance and
physiology) are warranted (de Waard and Lewis-Evans, 2014).
Thus, inclusion of physiological data can complement and extend
behavioral metrics and improve assessments of motorists’ state-
level changes in cognition (Brookhuis and de Waard, 1993;
Mehler et al., 2012).

As automation is likely to become more prevalent over
time, real-time monitoring behaviors required by motorists may
decline as they are less involved in the driving process. This is
a critical reason why non-behavior-based metrics will become
more relevant to incorporate into our understanding of the
motorists’ cognitive states. Moreover, distracted motorists of
a self-driving vehicle compared to manually driving motorists
take longer to gain control of the driving task once automation
deactivates (Vogelpohl et al., 2018). Intelligent driving assistance
systems should be capable of reliably sensing and assessing
distraction and drowsiness levels of motorists to be able to
augment safe-driving conditions. Building reliable systems to be
able to predict decreased levels of vigilance or dangerous levels of

fatigue, drowsiness, or workload could help augment them in a
timely manner (Balters et al., 2018).

Cognition in Dynamic Real-World
Driving Contexts
In general, psychophysiological measures can be used to assess
degree of arousal or activation (Mauss and Robinson, 2009).
Importantly, multiple psychological constructs can influence
variations in psychophysiological measures. For instance, heart
rate, skin conductance, and electrical activity of the brain
are sensitive to many psychological constructs experienced by
motorists, such as workload, drowsiness, stress, etc. In the
past years, important contributions have reviewed the literature
on specific cognitive states, such as workload (Borghini et al.,
2014; Costa et al., 2017), distraction (Matthews et al., 2019),
drowsiness (Sahayadhas et al., 2012; Borghini et al., 2014),
and stress (Rastgoo et al., 2018) in driving research. These
reviews provide an understanding of physiological outcomes
that can explain variations in specific constructs based on
carefully manipulated and well-controlled designs. Unlike highly
controlled lab-based settings, where a single construct (e.g.,
workload) can be successfully manipulated and its effect on
psychophysiological measures examined, real-world settings are
more dynamic and complex.

In a real-world setting, the net resulting cognitive state of a
motorist is a combination of variation among several interrelated
constructs (e.g., attention allocation, stress, workload, fatigue).
Broadly speaking, the net cognitive state of a motorist,
composed of variation among these many dimensions, can
be classified along an arousal-spectrum ranging from lower-
arousal and passive states, to a state of optimal performance,
to a hyper-aroused or over-active state. Indeed, this concept is
not new; Yerkes and Dodson (1908) established strong non-
linear relationships between arousal-level and performance,
and such relationships have since been well-established across
many human performance domains (Hebb, 1955; Broadhurst,
1959; Wekselblatt and Niell, 2015). Although these ideas are
not new, there has been a recent resurgence in a formal
understanding of arousal-performance relationships, including
an expanded understanding of the underlying neuromodulatory
systems involved in regulating task engagement and optimal
performance (e.g., the adaptive-gain control theory, Aston-Jones
and Cohen, 2005). Given the recent increase in understanding
of the mapping between physiological indices of arousal and
human performance in the lab, such models serve as a
clear starting point in delineating the predictive capacity of
psychophysiological measures for understanding cognitive states
and human performance in the vehicle.

For instance, low-arousal states relevant to the driving task can
be driven by a combination of psychological constructs including
low workload, reduced stress, and high drowsiness. On the other
hand, an over-aroused state could be due to a combination of
high workload and high stress in the presence of low drowsiness.
Similarly, other combinations of constructs can also lead to
changes in general arousal states as well. Given the likely dynamic
interplay among these interrelated constructs in applied settings,
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the current review focuses on psychophysiological measures that
can be utilized to capture motorists’ states in real-world driving
settings. Indeed, one major applied goal of this work is to be able
to accurately capture the dynamic and highly variable changes
in arousal that occur in ecologically valid driving settings, a goal
that is critical for building accurate predictive models (Yarkoni
and Westfall, 2017) of individual motorist’s states and future
driving performance.

Specifically, there are two novel contributions of this review.
First, instead of focusing on a selective construct and related
measures of interest, the goal of this current review is to
focus on psychophysiological measures that may have the
potential to be adopted in real-world and applied settings to
measure state level variations in motorists. The paper provides
a broad but selective review of a number of psychophysiological
measures that we believe show the greatest promise in their
utilization to assess low-arousal vs. over-arousal (passive vs.
over-active) states in real-world driving environments. The
most commonly used physiology-based measures of cognitive
states are considered as potential candidates relevant for driving
research. The following physiological measures are reviewed
(see section “Psychophysiological Measures to Assess Cognitive
States” and Tables 1, 2) in assessing arousal state in real-
world driving research: electroencephalography and event-
related potentials, optical imaging, heart rate, and heart rate
variability, blood pressure, skin conductance, electromyography,
thermal imaging, and pupillometry. As reviewed in classical
contributions by Cacioppo et al. (Cacioppo and Tassinary,
1990; Cacioppo et al., 2007), inference of unique psychological
constructs based on physiological indices (one-to-one relation)
is still unresolved and is not the aim of this review (see
further discussion in section “Research Applicability in Real-
World Settings”). However, we discuss how multiple measures
(that are sensitive to several interrelated internal states) may
be combined to delineate net resulting changes across multiple
inter-related cognitive state-level variations. Second, for each
measure, we make the distinction between useful research
measures and practical measures for real-world application
(see section Research Applicability in Real-World Settings and
Table 2). Throughout, we have tried to highlight the practical
relevance of measures in the driving context. Although this
review focuses primarily on on-road and simulated driving
contexts, when relevant, we have also drawn research from
related contexts (traffic operators, pilots, or ship navigators) to
more thoroughly characterize each measure.

PSYCHOPHYSIOLOGICAL MEASURES TO
ASSESS COGNITIVE STATES

Electroencephalogram (EEG) and
Event-Related Potentials (ERP)
EEG Quantification
The EEG is a record of both oscillatory and aperiodic
brain electrical activity. Neural activity (largely post-synaptic
potentials) from multiple simultaneous generators propagate
throughout the brain and skull and summate at a distance,

where voltages can be measured relatively non-invasively via
electrodes placed on the scalp. The dominant sources of scalp-
recorded EEG come from cortical pyramidal cells arranged in
the columnar organization of the cortex (Nunez and Srinivasan,
2006). Pyramidal cells are the most numerous cortical excitatory
cell type and play a critical role in advanced cognitive functions
(Spruston, 2008). The laminar organization of the cortex results
in cortical pyramidal cells following an open-field alignment
with a consistent orientation that is perpendicular to the skull,
such that their post-synaptic potentials can summate at a
distance. Importantly, EEG allows for a high temporal resolution
(millisecond) and direct record of neural activity. This detailed
temporal resolution also allows for a decomposition of the time-
domain EEG signal into spectral information via Fourier analysis,
allowing for an examination of oscillatory activity in canonical
frequency bands (e.g., alpha, ∼8–12Hz; theta, ∼4–7Hz), which
have been related to specific neurocognitive functions. For
instance, mental workload increases theta power and reduce
alpha power activity (Mun et al., 2017), whereas fatigue increases
alpha power (Käthner et al., 2014). Moreover, the development
of novel computational techniques for analyzing spectral activity
has promoted a wide range of new tools for probing ongoing
neural dynamics during human cognition via EEG; such as cross-
frequency coupling, phase coupling (Cohen, 2011), independent
component analysis (Dasari et al., 2017), and neighborhood
component analysis (Lim et al., 2018). In addition, more
traditional analyses of transient neural activity that is tied to
specific perceptual, motor, or cognitive events can be gleaned
from continuous EEG, via the calculation of event-related
brain potentials.

ERP Quantification
ERPs are electrophysiological responses that are consistently
linked in time with specific sensory, cognitive, or motor events.
They are derived from the continuously recorded EEG by time-
aligning epochs of EEG relative to an event of interest, such as
a stimulus onset or a participant’s response and averaging many
of these similar EEG segments to reveal activity that is time and
phase locked to the event. Such discrete events can be added in
the experimental design, e.g., every time a participant responded
to a secondary task while driving. The logic of this approach
is that systematic activity that is locked in time and space to
some specific activity will remain in the averaged ERP waveform,
whereas activity that is not time- and phase-locked will average to
zero with a large enough number of trials (Luck and Kappenman,
2012). The resulting ERPwaveform is plotted as voltage over time
at a given set of electrodes. ERP topography can also be examined,
showing the distribution of activity over the entire space within
a particular time-window. A major benefit of ERPs is that the
waveform has characteristic components, stereotyped features of
the ERP with specific eliciting conditions. ERP components are
defined empirically by a combination of their polarity, timing,
scalp distribution, and sensitivity to task manipulations.

Extensive work has characterized and validated specific ERP
components with respect to their associations with specific
cognitive and neural processes (e.g., Fabiani et al., 2007;
Luck and Kappenman, 2012; Mun et al., 2017). Cognitive
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TABLE 1 | Overview of relationships between arousal state and physiological indices in real-world driving.

Measure Under-arousal state Over-arousal state

Electroencephalogram • Increased alpha due to increase in drowsiness and attentional

withdrawalb

• Changes in theta and delta activity related to transition to fatigue

• Increase in theta activity due to mental workload

• Alpha activity suppression due to workload

Event related potential • Reduced ERP amplitudes with fatigue, time on task, and lower

vigilance over time while driving

• Also, reduced ERP amplitude to driving relevant stimuli under

high workload

Optical imaging for

cerebral flow

• A decrease in cerebral oxygenation with fatigue and drowsiness • An increased concentration of oxygenated hemoglobin and a

decreased concentration of deoxygenation with mental workload

and stress

Heart rate and Heart

rate variabilityb
• Decrease in heart rate with drowsiness, decrease in vigilance, use of

self-driving technology

• Increase in HRV indices (e.g., RMSSD) with drowsiness, fatigue,

and disengagement

• Increase in heart rate with mental workload and stress

• Decrease in HRV with workload, stress, and vigilance

Blood Pressureb • Decrease in blood pressure relative to baseline with fatigue

and drowsiness

• Increase in systolic BP with workload and stress

Electrodermal activity • Lower EDA relative to baseline activity range with drowsiness • EDA increase with workload, stress, lower trust in automation,

and anxiety

Electromyography • Decreases in mean and median power frequency of EMG due to

decline in muscle activities and fatigue a
• High muscle activity relative to baseline with stress

Thermal imaging • Temperature around baseline levels a • Higher task difficulty increases forehead temperature and decreases

nose temperature and thus an increase in the difference between

forehead and nose temperatures

Pupillometry • Decreases in average pupil diameter with drowsiness

• Increases in standard deviation of pupil diameter

• Increases in pupil diameter with cognitive load

• Decreases in standard deviation of pupil diameter

aLimited findings available.
bMixed findings reported.

demands can modulate several ERP components, such as P3
(discussed below; Käthner et al., 2014), mismatch negativity
(MMN is a negative ERP component sensitive to pre-attentive
information processing; Wanyan et al., 2018), and late positive
potentials amplitude (a later ERP component like P6 that is
related to attentional allocation similar to P3; Mun et al.,
2017). The P3 component is associated with attentional and
memory processes required to detect any changes in incoming
stimuli-related information (Polich, 2007). The canonical P3
has two distinct but related components – the P3a and P3b
(see Polich, 2007 for a review). The P3a, with an anterior
distribution, is associated with novel stimulus-driven attentional
processing or orienting responses. The P3b, with a centro-
posterior distribution, is associated with task-relevant stimulus-
driven attentional, decision making, and subsequent memory
processing (Polich, 2007). Both components have been used
in driving research. Recent work has also examined how
neural indices (as measured by both P3 ERP components) are
associated with subjective workload (as measured by NASA-
TLX) and how this covariation is influenced by cognitive effort
(Yakobi, 2018). Novel techniques (such as intra-block averaging
of ERP amplitudes; Horat et al., 2016) can enable robust
electrophysiological measurement of cognitive demands over
time. Thus, ERPs are an attractive measure for studying cognitive
states and performance in driving contexts.

EEG/ERP in Driving Context
EEG and ERPs have a long history in the study of the neural
indices of cognitive effort and attention allocation in both
laboratory and applied settings. EEG is perhaps one of the

most widely used neurophysiological methods to study driving
behavior. Several frequencies (e.g., power in alpha frequency
band) and time (e.g., P3) domain indices can reliably measure
changes in cognitive demands (Käthner et al., 2014). This makes
EEG is viable measure for applied driving settings.

Over-arousal in driving context
Over-aroused states, such as increased workload while driving
can be indexed by decreases in alpha power and increases
in theta power (Borghini et al., 2014; Käthner et al., 2014).
A recent study found alpha band power to be higher during
the relaxed condition compared with the engaged condition
in an autonomous driving setting (Zander et al., 2017). This
highlights the sensitivity of alpha power to internal factors such as
attentional engagement. In addition to internal factors, external
factors (such as task load and time on task) can also influence
alpha and theta power bands in opposite directions (Wascher
et al., 2018). For instance, a decrease in task load and time on task
led to an increase in relative alpha power, but a decrease in theta
power (Getzmann et al., 2018; Wascher et al., 2018). To account
for both power bands, past work has also used a ratio of frontal
theta and parietal alpha power spectral density to operationalize
workload in pilots (Borghini et al., 2015). This ratio approach
may be relevant for driving research as well, however this has
been a point of debate, as discussed shortly.

The application of known ERP indicators of attentional
workload (and their eliciting tasks) can be successfully translated
into the driving domain as well. One of the most commonly
adopted components in driving research is the P3b (Brookhuis
and de Waard, 2010; Solís-Marcos and Kircher, 2018). Mental
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TABLE 2 | Tentative framework for considering the research applicability of these measures in lab and real-world settings.

Measure Lab-setting Real-world Advantages Disadvantages

Electroencephalogram High High to medium • High temporal resolution

• Direct measure of neural activity

• Contact sensors

• Longer setup time

Event related potential High Mediuma • Same benefits as EEG

• Well-characterized components (e.g., P3)

• High temporal resolution

• Same disadvantages as EEG

• Generally needs higher number of trails and

post-processing

• Needs time-locking event

• Interpretation of amplitude is very

context specific

Optical Imaging for Cerebral

Flow

High Low to mediuma • Higher spatial resolution

• Feasible in naturalistic settings with

technical advancements

• Lower temporal resolution (e.g., fNIRS)

• Need systematic investigation/replication

Heart Rate/Heart Rate

Variability

High High • Higher signal-to-noise ratio (SNR)

• Easy to collect

• Very sensitive to artifacts

• Sensitive to variation in respiration

Blood Pressure High Mediuma • Reliable

• Higher SNR

• Limitations of equipment; can disrupt

driving task

Electrodermal activity High High • Sympathetic activity

• Easy to collect

• Lagged response

• Not all individuals show EDA response

Electromyography High Lowa • Reliable

• High temporal resolution

• Slightly longer setup time

• Sensitive to movement

• Lower SNR

Thermal Imaging High Mediuma • Low setup time

• Promising technology

• Non-contact

• Need systematic investigation/replication

Pupillometry High Lowa • Non-contact

• Quick setup time

• Signal strongly sensitive to variable lighting

conditions (pupillary light reflex)

aLimited findings available.

workload can be indexed by increases in P3b latencies (Ying
et al., 2011) and amplitude (Strayer and Drews, 2007). For
example, Strayer and Drews (2007) examined the amplitude of
the P3b time-locked to the onset of a pace break light under
single-task driving conditions or dual-tasking via cell-phone–
induced distraction. Drawing on basic experimental work that
has shown that the P3b is sensitive to the degree of attention
allocated to a task (e.g., Sirevaag et al., 1989), they also showed
that cell-phone induced distraction resulted in reduced P3b
amplitudes to brake lights. Similar effects have been observed in
comparing the workload of “single-task” driving in laboratory
simulator vs. real-life driving contexts, where for example, the
diversion of attention to other concurrent activities in the
vehicle result in additional attentional demands in real-world
driving (Strayer et al., 2015).

A recent study compared mental workload due to increased
information processing demands consumed by in-vehicle
information systems (Solís-Marcos and Kircher, 2018). They
found both P3b and N1 latencies and amplitudes to be
sensitive to cognitive demands of processing additional in-vehicle
information systems. For instance, P3b amplitudes decreased
with additional information processing related tasks (Solís-
Marcos and Kircher, 2018). P3a amplitude was also found to
decrease with additional task-related load (Getzmann et al.,
2018). High mental workload has been associated with increased
latencies in MMN during driving (Ying et al., 2011) and also
increased frontal MMN in flight simulation tasks (Wanyan et al.,
2018), however a recent study did not find workload to influence

MMN amplitudes (Getzmann et al., 2018). Future work will help
clarify sensitivity of MMN in driving research.

Under-arousal in driving context
Extensive work has focused on electrophysiological indicators
of under-arousal via EEG. A substantial number of papers have
implicated changes in alpha amplitude during fatigued driving
(e.g., Schier, 2000; Jensen and Mazaheri, 2010; Simon et al.,
2011; Zhao et al., 2012; Borghini et al., 2014; Jagannath and
Balasubramanian, 2014; Arnau et al., 2017; Brouwer et al., 2017),
such that fatigued driving is associated with increased alpha
activity. However, other work has challenged these alpha power
links with fatigue and claim that alpha power changes may be
due to the decreases in task-demands and visual input during
monotonous driving tasks and not due to decline in cognitive
processing abilities (Wascher et al., 2014). Increases in relative
alpha band power with increased time on task, easier driving
route, and lower control of driving situations, which suggested
that relative alpha power increases imply attentional withdrawal
and not fatigue (Wascher et al., 2014, 2018). Wascher et al. (2014,
2018) have argued that mid-frontal theta activity may be a more
appropriate neural marker of cognitive-control related processes
in driving than occipital alpha activity. Low task load is associated
with relatively reduced theta activity, which suggests that theta
activity is sensitive to declines in cognitive processing ability.
Instead of alpha activity, Wascher et al. (2014, 2018) recommend
that indices of oscillatory synchronization (e.g., inter-trial phase
clustering) and ERPs (such as P3a) are more reliable and valid
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indices of changes in cognitive state associated with mental
fatigue. For instance, time on task (Wascher et al., 2014), fatigue
(Massar et al., 2010), and decreases in vigilance over time
(Schmidt et al., 2009) were found to reduce P3a amplitude
while driving. Similarly, mind-wandering during driving is
associated with a reduction in P3a amplitude (Baldwin et al.,
2017). One other study found both P3a and P3b components’
amplitudes were reduced due to driving-related fatigue (Guoping
and Zhang, 2009). These findings show that ERP components
could be utilized to detect variations in neurophysiological
arousal due to interrelated cognitive constructs in
driving contexts.

Some researchers have argued that LF/HF ratios (e.g., frontal
theta/beta) are potential biomarkers for attentional control, and
have established some evidence that such measures have good
psychometric properties, for e.g., test-retest reliability (Putman
et al., 2014; Angelidis et al., 2016). Decreases in beta power
(e.g., Zhao et al., 2012; Jagannath and Balasubramanian, 2014)
have been found, along with changes in theta and delta activity
as markers related to transition to fatigue. This has led some
researchers to propose spectral ratio indices (e.g., alpha/beta;
Eoh et al., 2005; Wang et al., 2018), as biomarkers of alertness.
However, ratio indices have also been criticized for being an
inadequate method because it combines frequency bands with
distinct topographic specificity that change differently over time
(Wascher et al., 2014). There is existing criticism of this ratio
approach, especially in driving research (Wascher et al., 2018),
and more broadly, researchers in cognitive electrophysiology
have been moving away from such highly constrained “band-
based” approaches given their lack of replicability across studies.
Alternatively, researchers have increasingly endorsed methods
that allow for broad-band assessment of spectral dynamics
(e.g., 1/f scaling, Voytek and Knight, 2015) and methods that
can address narrow-band dynamics without a priori selection
of frequency (e.g., cluster-based permutation testing in time-
frequency data; Maris and Oostenveld, 2007). Other recent work
has used EEG-based detection algorithms to detect fatigue and
drowsiness (Li et al., 2017; Morales et al., 2017; Belakhdar
et al., 2018; Gao et al., 2018; Wei et al., 2018). However,
other work reported no additional benefit of utilizing EEG
measures in drowsiness and fatigue detection in sleep deprivation
contexts (Perrier et al., 2016; Liang et al., 2017). Another
line of work has aimed to apply machine-learning techniques
to brain computing interfaces in order to classify states of
drowsiness and fatigue in real-time (e.g., Lin et al., 2005; Correa
et al., 2014). Recent work has also shown data filtering and
processing techniques such as artifact subspace reconstruction
and independent component analysis could be utilized for
“online” processing of EEG data collected while driving in order
to attenuate movement-and noise-related artifacts (Krol et al.,
2017). Together, these findings suggest that EEG and ERPs can
be utilized as objective techniques to assess state-level variations
in cognitive demands.

Practical Considerations
There are a number of important considerations when applying
EEG indices to real-world driving environments. Typical EEG

artifacts arising from muscle-and-eye movements (de Waard,
1996; Zander et al., 2017), impedance shifts, environmental line
(60Hz) noise, and other complications are potentially amplified
in real-world environments. As such, real-time monitoring
of good quality EEG signals is critical for effective data
collection. The commercial introduction of high-impedance
systems with active electrodes and small electrically shielded
mobile EEG amplifiers has spawned a large increase in real-
world EEG applications. Many of these systems are capable
of high density (<128 channel) recording, but it is critical
for the researcher to decide whether and to what degree an
increase in the number of channels may result in a decrease
in the quality of the recorded EEG (Luck and Kappenman,
2012). Importantly, the well-understood limitations of the spatial
resolution of EEG limit the utility of high-density recording
in ecologically valid environments (e.g., where measurement
of EEG sensors co-localized in 3D space on a single-subject
basis may be unfeasible). Moreover, with increasing channel
density comes increases in the likelihood for poorly recorded
or poorly monitored channels during recording. As such, if
source-localization of underlying EEG/ERP generators is not
a primary aim of the methodology (and we expect, in most
applied cases it would not be), researchers may wish to
record from a smaller density (e.g., 32 channels or fewer), at
the benefit of better monitoring of data quality throughout
the experiment.

On the theoretical side—researchers in human factors
automotive research should carefully consider the linking
hypotheses between specific electrophysiological indicators (e.g.,
P3b ERP amplitude, alpha power increases) and their purported
cognitive interpretations. The ERP literature has a massive
basic literature in which specific components have been very
well-characterized relative to their eliciting conditions and
underlying cognitive interpretations (Luck and Kappenman,
2012). One such example was reviewed earlier on characterizing
the P3b under different states of distraction during driving.
Limited work (e.g., Strayer et al., 2015) has attempted to
examine ERP components in naturalistic settings. In future
work, inventive approaches can be validated to use task-
related responses or behaviors (such as eye-blink potentials or
frequent vs. infrequent vehicle cues) as discrete events that
can be recorded to estimate ERP components in real-world
settings. At the same time, such characterizations in the spectral
domain are not as clearly developed to date. However, this
is changing, as basic research in cognitive electrophysiology
shifts toward a more complete understanding of oscillatory
mechanisms underlying human perception and cognition (e.g.,
Kahana, 2006), involving development in standardized analysis
methods (Cohen, 2011), careful experimental characterization of
specific oscillatory markers (e.g., alpha phase and perception,
Mathewson et al., 2009; midline frontal theta and conflict
resolution; Cavanagh and Frank, 2014), and the development of
neurophysiologically guided models (Jensen andMazaheri, 2010;
Voytek and Knight, 2015). We expect that such development
of basic research findings in cognitive electrophysiology will
be a great asset in future applied research in contexts such
as driving.

Frontiers in Human Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 5747

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lohani et al. Psychophysiological Measures in Driving

Optical Imaging for Cerebral Blood Flow
Optical Imaging Quantification
Optical imaging methods allow for the visualization of the
interaction of photons with tissues (Villringer et al., 1993).
In recent years, there has been a rapid advancement in the
application of non-invasive optical imaging methods such as
functional near infrared spectroscopy (fNIRS) to study human
brain and cognitive functioning. fNIRS is a neuroimaging
method based on the principles of near-infrared spectroscopy,
which was originally developed in humans for investigating
clinical features of brain functioning (e.g., cerebral oxygenation;
Jobsis, 1977). These principles have been extended to measure
local changes in cerebral hemodynamic activity that can be
used to infer information on the underlying neural activity
due to neurovascular coupling, following similar logic to the
Blood Oxygen Level Dependent (BOLD) signal in functional
magnetic resonance imaging. NIR (700–1,000 nm) light is able
to penetrate several centimeters through the skull and into
brain tissue, allowing for non-invasive measurement of certain
optical properties of cortical tissue. For example, changes in the
concentration of oxy- and deoxy-hemoglobin can be measured
via NIRS because oxy- and deoxy-hemoglobin have distinct
absorption spectra that correspond to the different coloration
of arterial and venous blood (Grinvald et al., 1986). These
absorption characteristics make it possible to use a spectroscopic
approach to measure changes in the concentration of oxy- and
deoxy- hemoglobin as a function of neural activity, for example
during cognitive task performance. In typical optical imaging
systems, optical fibers, called optodes or sources, carry NIR light
to the scalp while other optical fibers, called detectors, collect the
photons as they emerge from the scalp. Each source–detector pair
is a single channel. Multi-channel and wearable fNIRS systems
have become commercially available with diverse montages
capable of measuring brain activity across the entire scalp.

Optical Imaging for Cerebral Blood Flow in

Driving Context
The application of fNIRS in driving research is in its infancy.
Nevertheless, a number of interesting demonstrations of the
utility of fNIRS for studying over-arousal states such as driver
workload have emerged (e.g., Tsunashima and Yanagisawa,
2009; Liu et al., 2012, 2016; Sibi et al., 2016). For example,
increases in oxygenated hemoglobin have been reported during
simulated driving tasks under cognitive load compared to control
conditions (Liu et al., 2012). A recent study (Unni et al., 2017)
utilized fNIRS in a naturalistic driving simulator while doing
a secondary task (modified version of 0–4 back). They found
systematic increases in bilateral inferior frontal and temporo-
occipital brain regions with increments in workload. Another
study reported that fNIRS could be used to differentiate between
low vs. high workload (n-back task) related hemodynamic
activity in the prefrontal cortex while motorists drove in a
realistic driving simulator (Herff et al., 2017). Furthermore,
fNIRS have been used to monitor pilot’s task engagement and
working memory load in real-time (Gateau et al., 2015). On a
related note, fNIRS have been found sensitive to increase in task
difficulty in flight simulators (Causse et al., 2017) as indicated

by an increased concentration of oxygenated hemoglobin and a
decreased deoxygenated hemoglobin.

Other work has investigated effects of under-arousal
related states with fNIRS. Research has related decreases in
hemodynamic measures of cerebral oxygenation with fatigue
in simulated driving (Li et al., 2009), and findings have
been extended into actual highway driving (Yoshino et al.,
2013). An increase in fatigue can be indexed by a decrease in
cerebral oxygenation and mental stress can be indexed by an
increase in cerebral oxygenation. Tsunashima and Yanagisawa
(2009) examined changes in prefrontal activity via multi-channel
frontal fNIRS systems in driving with and without adaptive
cruise control. Their findings revealed substantial decreases
in prefrontal activity when participants drove with adaptive
cruise control relative to without, which was correlated with
perceived workload (via the NASA-TLX). Similar decreases in
activation of prefrontal cortex (lower cognitive load associated
with drowsiness) were reported while participants monitored
a simulated autonomous car driving task relative to higher
prefrontal cortex activation during manual driving task (Sibi
et al., 2016). Such findings indicate that optical imaging for
cerebral blood flow is a valuable tool for assessing performance
and neural efficiency in well-controlled realistic driving contexts.

Practical Considerations
One important limitation of fNIRS is that, because it relies on the
measurement of absorption properties of light as a function of
vascular changes in the brain, its temporal resolution is limited
by the time-course of hemodynamic activity (on the order of
seconds). In contrast, the development of recent ‘fast’ optical
imaging methods, such as the event-related optical signal (EROS;
Gratton and Fabiani, 2001, 2003), which measures scattering
properties of light as a function of changes in neural activity, have
amuch higher temporal resolution (on the order ofmilliseconds).
Although applications of this method in human factors research
is sparse, fast optical imaging methods have growing promise.
While the spatial resolution of optical imaging methods is higher
than EEG, such spatial inference is constrained by the penetration
depth of NIR light, which reaches only a few cm from the
scalp surface. Therefore, imaging of activity from deep cortical
and subcortical sources (beyond the outer cortical mantle) is
limited. Recent work has also employed wearable fNIRS systems
(Piper et al., 2014; McKendrick et al., 2016; Le et al., 2018)
and simultaneous collection of fNIRS and EEG (Kassab et al.,
2018), which can enable real-world monitoring in ecologically
valid settings.

Heart Rate (HR) and Heart Rate
Variability (HRV)
Heart Activity Quantification
Heart rate (in beats per minute or bpm) is the number of
heartbeats in 1min (Jennings et al., 1981). Electrocardiography
(ECG) is a well-established method to record the electrical
activity of the heart. In psychophysiology, a lead II configuration
(i.e., placing the negative electrode in the region of right collar
bone, the ground near the left collar bone, and the positive lead
over the lower left ribcage, or functionally similar variant) is
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commonly used to be able to record electrical activity of the
heart via research grade equipment. A single heart beat wave in
an ECG signal shows changes in electrical potentials (referred
to as the P, Q, R, S, & T components and together they are
referred to as the QRS complex, for review please see Berntson
et al., 2007). The R component (one for each heart beat) is due
to ventricular depolarization and for a lead II configuration, it
has a larger magnitude and a sharper inflection than the rest
of the components making it easily detectable. While heart rate
is a count of beat per minute, heart period (also called inter-
beat-interval) is the time in milliseconds between successive R
spikes (Berntson et al., 2007). Heart rate is generally derived by
converting mean heart period (in milliseconds) to heart rate (in
beats per minute), see Berntson et al. (2007).

Heart data can also be collected via other technique
including photoelectric plethysmography (PPG) and
photoplethysmography imaging (PPGI). PPG technique
includes use of a photocell (such as an infrared light-emitting
diode) placed over an area of tissue with blood capillaries that
is easily accessible (e.g., finger or ear lobe). Energy emitted
from an infrared source passes through the tissue and reflects
off the tissue. Changes in blood volume (due to heart beats) in
an area can thus be assessed by the amount of light that was
reflected back to the photodetector, and thus forms the basis
of estimating heart beats (Berntson et al., 2007; Laborde et al.,
2017). A similar concept is used in “wearables” which have
photo-emitters and detectors placed on a convenient location
(e.g., wrists and earlobes) making them easy to wear and collect
data from them (Byrom et al., 2018; van Gent et al., 2018). This
idea is used in vehicles with photo-emitters and detectors placed
on the steering wheels, which allow collecting heart data (heart
rate, HRV, and blood volume pulse) while driving. Another
advancement in PPG is a contactless measurement technique
called PPGI that detects color changes (e.g., the forehead area) in
a video due to blood perfusions (Blöcher et al., 2017). Instead of
photodiodes used in PPG, PPGI uses detector arrays in cameras
to collect image sequences that contain information about
bio-signals (e.g., blood volume pulse and respiration). Image and
signal processing methods are utilized for beat-to-beat heart rate
estimation (Blöcher et al., 2017; Madan et al., 2018).

On a related note, established guidelines for heart beat
detection processing, with recommended parameters to derive
heart rate and heart rate variability are provided in Jennings et al.
(1981), Berntson et al. (2007), and Shaffer and Ginsberg (2017).
Custom and open-source software has also been developed to
automatically detect R peaks to calculate heart beats. As is true
for most physiological measures, data should be visually checked
to inspect the ECG data for artifacts and irregularities. Artifacts
can be introduced in these data due to numerous reasons
(such as motorists’ excessive motion, sneezing and coughing,
and irregular heartbeats) any of which can disrupt the ECG
measurement or directly impact normal heart-beat patterns.
Visual inspection helps insure that the heart beats are correctly
marked by the detection software and physiologically improbable
values are detected and then corrected.

HRV is variability in the time intervals of adjacent heartbeats
(Berntson et al., 2007; Shaffer and Ginsberg, 2017). HRV can

be derived from ECG data over a period of time ranging from
short intervals (∼1–5min) up to longer intervals (∼24 h). HRV
metrics can be roughly categorized as falling under time-domain,
frequency-domain, or non-linear measures of HRV (for a review
see Shaffer and Ginsberg, 2017). Time domain-based parameters
calculate the variations in heart beat intervals, such as standard
deviation of R-R intervals (SDRR), percentage of successive
R-R intervals that differ by more than 50ms (pNN50), and
root mean square of successive R-R intervals (RMSSD). A few
time-domain parameters also represent geometric shape of R-
R interval distributions, such as the HRV triangular index (i.e.,
plotting the integral of the ratio of RR interval density histogram
by its height) and the baseline width of the RR intervals histogram
(TINN), for details see Shaffer and Ginsberg (2017). Frequency-
domain based measures transform the beat-to-beat variations in
heart beat (R-R intervals) into frequency power bands via Fourier
analysis (Task Force of the European Society of Cardiology,
1996). The most commonly used frequency-domain methods are
low- and high-frequency power. A low-frequency (LF) power
is the energy of heart rate oscillations in a lower-frequency
(0.04–0.15Hz) band. Similarly, high-frequency (HF) power is
the energy of heart rate oscillations in a higher-frequency (0.15–
0.4Hz) band (Task Force of the European Society of Cardiology,
1996; Shaffer and Ginsberg, 2017). A peak in these frequency
bands can also be calculated, which is an estimate of the peak
frequency in the specific frequency band. Non-linear measures
of HRV are useful in capturing the unpredictability and dynamic
nature of heart rate time-series data (Shaffer and Ginsberg, 2017).
Commonmeasures include fitting an elliptical-shape to represent
non-linear HRV and calculating approximate entropy (ApEn)
and sample entropy (SmpEn), which characterize the complex
pattern of time-series heart data (Shaffer and Ginsberg, 2017).
Detailed discussions can be found elsewhere (Task Force of the
European Society of Cardiology, 1996; Berntson et al., 2007;
Laborde et al., 2017; Shaffer and Ginsberg, 2017).

HR/HRV in Driving Context

Over-arousal in driving context
Heart rate is a commonly measured index of physiological
arousal in response to changes in driving demands. One of
the most studied over-aroused cognitive states is workload.
Numerous studies have examined changes in heart rate as a
function of workload (Lenneman and Backs, 2009, 2010; Mehler
et al., 2012; Heine et al., 2017). Heart rate was also found to
increase while performing visual and auditory dual-tasks relative
to single-task of driving in a simulator (Lenneman and Backs,
2009). Similarly, heart rate has been shown to be incrementally
higher for systematically more difficult auditory dual-tasks while
driving in a simulator (Mehler et al., 2009) as well as while driving
on-road (Reimer et al., 2009). These findings of an incremental
change in heart have been replicated in younger-aged (20–29
years old), middle-aged (40–49 years old), and older-aged (60–69
years old) adults (Mehler et al., 2012). Thus, heart rate increases
with workload due to cognitive demand (Lenneman and Backs,
2009; Mehler et al., 2012; Ruscio et al., 2017; Hidalgo-Muñoz
et al., 2018; c.f., Engström et al., 2005). Other efforts have also
been made to utilize rhythmic and morphological parameters
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of a heart activity to explore mental workload. A recent study
examined the influence of mental workload (due to a secondary
task) on morphological parameters from ECG while completing
a lane change task (Heine et al., 2017). They found that a
combination of derived HR and HRV features (such as mean
HR, RMSSD, pNN50, etc.) could be extracted from ECG data
that could distinguish between workload levels and suggest that
a combination of ECG features can be used to detect mental
workload (for details see Heine et al., 2017).

Relative to HR, a fewer number of studies have examined
HRV, especially in a systematic manner. HRV decreases with
increasing task demands (Luque-Casado et al., 2016). HRV has
been found to be sensitive to variations in attention levels
while driving that may not be necessarily evident in driving
performance (Lenneman and Backs, 2009) and thus HRV can
have more sensitivity than behavioral measures. LF- and HF-
HRV power bands are influenced by driving task (Zhao et al.,
2012; Tozman et al., 2015; Wang et al., 2018). A study (Tozman
et al., 2015) compared effect of demand levels (boredom, average
demand, and high demand) on HRV in a driving simulator. Both
LF- and HF-HRV varied for all the three conditions. High task
demands reduced both LF-HRV and HF-HRV (Tozman et al.,
2015). Some work has indicated that stress-inducing real-world
driving tasks lead to increased heart rate and decreased SDNN,
RMSSD, pNN50 (Lee et al., 2007). HRV also varies with workload
experienced by drivers during simulated driving (Zhao et al.,
2012; Heine et al., 2017; Hidalgo-Muñoz et al., 2018) and on-
road driving (Lee et al., 2007). In addition, HRV variations due to
cognitive workload have also been found in city traffic operators
(Fallahi et al., 2016) and unmanned aerial vehicles operators
(Jasper et al., 2016). HRV is sensitive to workload increases due
to vigilance and situational awareness demands of the task (Saus
et al., 2001; Stuiver et al., 2014; Jasper et al., 2016). However, at
least one study (Shakouri et al., 2018) found no variation in heart
rate variability metrics (RMSSD, LF, HF, and LF/HF ratio) as a
function of higher traffic density while driving in a simulator,
even though variations in subjective workload were found.

Under-arousal in driving context
HR and HRV are also sensitive to low-arousal states, such
as vigilance and drowsiness. Decreases in vigilance over the
course of a 3-h continuous driving task were indexed by a
significant drop in heart rate over time (Schmidt et al., 2009).
Drowsiness experienced in car drivers and aircraft pilots can also
be associated with decreases in HR (Borghini et al., 2014). A
recent on-road study (Biondi et al., 2018) found that driving a
Tesla in semi-automated mode (e.g., autopilot) led to a lower
heart rate relative to manual driving on a freeway. Another
study found heart rate was sensitive to activity of the Adaptive
Cruise Control (ACC) technology (Brouwer et al., 2017). Heart
rate increased when ACC decelerated more suddenly compared
to instances when the car decelerated more gradually (Brouwer
et al., 2017). These findings suggest that heart rate is a sensitive
measure that can assess cognitive processing pertaining to
advanced technology in semi-autonomous vehicles.

Other studies have found that LF-HRV and HF-HRV vary
with fatigue (Liang et al., 2009; Sugie et al., 2016). A recent

study (Wang et al., 2018) found that changes in fatigue levels
while driving can be represented by non-linear measures of
HRV (e.g., sample entropy). Variations in drowsiness levels can
also impact HRV (Noda et al., 2015; Piotrowski and Szypulska,
2017). Another recent study found that variations in HRV (TINN
and RMSSD) was higher when participants drove a vehicle in
automated mode relative to the manual mode (Biondi et al.,
2018). Perhaps, drowsiness and a lack of engagement in the
driving task during automated mode may have led to a higher
HRV. HRV and blink rates have also been shown to assess sleep
onset (Noda et al., 2015). HRV-based assessment algorithms can
be used for early detection of fatigue and drowsiness to augment
attention and performance (Patel et al., 2011; Zhao et al., 2012;
Abe et al., 2016; Vicente et al., 2016).

Practical Considerations
Heart rate and its variability are inexpensive and reliable
measures that are relatively easy to record with research-quality
equipment that meets recommended guidelines (Task Force of
the European Society of Cardiology, 1996). It has good signal
to noise ratio as well (R-R peaks can be detected even in very
noisy environments). Consequently, it is also not difficult to
collect in lab as well as in unpredictable field studies, especially
with the availability of mobile data recording systems. However,
these advantages can also lead to misuse of this methodology.
Great attention to the data collection and processing are required
to have meaningful data. Skin preparation (e.g., cleaning with
alcohol wipes) before electrode placement and signal monitoring
to collect good quality data can drastically reduce post-processing
(e.g., Berntson et al., 2007). Participants should be comfortably
positioned to avoid physiologically induced changes in heart rate
such as altered breathing rate due to postural adjustments. Body
movements should be minimized and accounted for as such
movements can add noise and also add movement-related heart
rate changes. Effective data cleaning to remove artifacts and noise
are a must, otherwise heart data will be uninterpretable.

Some recording devices do not utilize the traditional QRS
complex from an ECG to calculate HR and HRV. For example,
PPG uses a photoelectric sensor that estimates changes in
blood volume to calculate HR. There are a few methodological
challenges that should be considered before adopting such PPG-
based systems. PPG records a lagged cardiac response further
away from the heart (e.g., from fingers and earlobes). Unlike ECG
based estimates that have a sharp spike for the R component,
PPG-based methods instead show a less pronounced curved
peak of the blood volume pulse signal, which makes accurate
and automatic detection of heart period relatively more difficult
(Laborde et al., 2017). Moreover, ECG-based estimates of HR
and HRV are recommended for more reliable results because
it allows visual inspection and artifact correction of heart
data. Such methodological differences between PPG and ECG
can explain why PPG and ECG findings are comparable
during rest, but are not comparable during stress, for example
(Schäfer and Vagedes, 2013).

On a related note, commercialized equipment meant for
exercise and fitness tracking fail to meet established guidelines
for heart data collection and processing (e.g., minimum
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sampling rate and access to raw data for necessary artifact
correction methods), which are necessary to make meaningful
interpretations (see Berntson et al., 2007; Quintana et al., 2016;
Shaffer and Ginsberg, 2017). Similarly, smartphone camera-
based assessments have methodological challenges, including
very poor sampling rate, illumination variation (due to
confounds like weather and time of day), poor signal-to-noise
ratio, and motion-related artifacts that can lead to inaccurate
interpretations (Laborde et al., 2017; cf., Nowara et al., 2018;
van Gent et al., 2018). Ensuring the validity and inter-device
variability of wearables (which utilize a PPG-based or camera-
based HR system) with an established ECG-based equipment
is a necessary step to be able to validate data collected from
wearables. However, most commercialized equipment has not
been validated in such a manner (Quintana et al., 2016). Without
this critical validation step, data collected from commercialized
non-research grade equipment does not have convergent validity
and should be discouraged by the scientific community until such
standards aremet.While innovation is critical to be able to collect
psychophysiological data in real-world settings, careful adoption
and cross-checks with existing gold standards are necessary to
make meaningful progress in the adoption of these technologies
in real-world driving research.

Moreover, HF-HRV has been found to be impacted by
parasympathetic nervous system, however, LF-HRV is influenced
by both sympathetic and parasympathetic nervous systems
(Berntson et al., 2007; Laborde et al., 2017). Thus, LF-HRV
should not be described as a metric of sympathetic activity,
but instead be interpreted as a mixture of sympathetic and
parasympathetic influences. On a related note, the LF/HF ratio
has been a controversial metric as it assumes that LF is due
to sympathetic activity while HF is due to parasympathetic
(Billman, 2013). The LF/HF ratio was originally based on 24 h
recordings, while shorter duration recordings (even 5min long)
have also been calculated. The duration of recording (e.g.,
5min vs. 24 h) can also lead to uncorrelated findings and
some metrics are better for short term recordings than others
(Shaffer and Ginsberg, 2017).

Another metric we would like to highlight is heart period.
Heart rate and heart period have been used interchangeably,
however in some instances heart period may be a better choice.
Even though, heart rate is more commonly used metric, use of
heart period instead of heart rate is recommended measure of
autonomic activity because heart period changes more linearly
over time (Quigley and Berntson, 1996; Berntson et al., 2007).
Heart period should specially be used when comparing changes
in heart activity due to experimental manipulation or due
to between group differences for short time periods. Further
information on heart activity related metrics can be found in
detailed reviews (Jennings et al., 1981; Task Force of the European
Society of Cardiology, 1996; Berntson et al., 2007; Laborde et al.,
2017; Shaffer and Ginsberg, 2017).

Not all heart-based metrices may be sensitive to the variations
in cognitive state during driving task. For instance, a study
compared several commonly used metrices for HR and HRV
cognitive workload during highway driving (Mehler et al.,
2011). While HR was robust in differentiating between cognitive

workload in single vs. dual tasks, HRV indices were less robust
(e.g., smaller effect sizes). A few HRV indices varied with
workload (RMSSD, SDSD, and LF power), however others
(SDNN, NN50, pNN50, HF power, and LF/HF) did not
significantly differ with workload (Mehler et al., 2011). These
findings suggest that depending upon the task, certain indices
may be more sensitive to variation in cognitive state than other
indices that may be less robust.

In addition, researchers should consider other contextual
factors that may vary across participants and may confound
study interpretations. A confounding factor that can potentially
bias HF-HRV comparisons between conditions of interest is
differences in respiration (Grossman, 1992; Berntson et al., 2007;
Laborde et al., 2017). Respiration related-parameters should be
accounted for by using them as covariates with such HRV indices
(for a detailed discussion, see Berntson et al., 2007; Laborde et al.,
2017). Similarly, other factors may impact HR/HRV, including
task characteristics and motorists’ state (relaxation, engagement,
and motivation) and activities (smoking and posture). For
instance, HRV may increase over time if the task becomes less
difficult over time, which may put motorists in a more relaxed
state (Jasper et al., 2016). Similarly, HRV may also increase over
time with disengagement or demotivation to perform a difficult
task (Jasper et al., 2016). Careful consideration of contextual
factors will afford accurate and reliable measurement of HR/HRV
indices in applied driving settings.

Blood Pressure (BP)
BP Quantification
BP (in millimeters of mercury, also written as mmHg) is the
force exerted against the walls of the blood vessels (Shapiro
et al., 1996; Berntson et al., 2007). Depending upon the stage
of the dynamic cardiac cycle, BP differs from lowest to highest
levels. During a single cardiac cycle, diastolic BP is the lowest
level of arterial pressure when the heart is filled with blood
and systolic BP is relatively the highest level of arterial pressure
(Shapiro et al., 1996; Berntson et al., 2007). As invasive methods
to record BP require additional safeguards and equipment,
most psychophysiology research studies focus on non-invasive
approaches to record blood pressure. Three relatively non-
invasive methods are auscultatory or oscillometric methods,
arterial tonometry, or the volume-clampmethods (see for details,
Berntson et al., 2007). The most common method is auscultatory
measurement, which records the sounds of blood flow by
placing a cuff on the upper arm and a stethoscope placed
over the brachial artery to identify the systolic and diastolic
blood pressure (Shapiro et al., 1996; Berntson et al., 2007).
Physiological arousal during mentally effortful situations leads to
greater vasoconstriction and cardiovascular reactivity evidenced
by increased heart rate and blood pressure and decreased heart
rate variability (Lundberg et al., 1994; Ottaviani et al., 2016).
BP increases with psychological stress (Ottaviani et al., 2016)
and is correlated with self-reported stress (Lundberg et al.,
1994). However, cognitive workload may not reliably influence
BP (ElKomy et al., 2017).
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BP in Driving Context
Limited research has examined over- and under-arousal via BP in
driving contexts. Systolic BP and BP variability have been found
to increase while driving in simulated high traffic conditions that
had high workload demands (Stuiver et al., 2014). Fatigue was
also associated with a decrease in systolic BP and HR (Liang
et al., 2009). However, other studies have not found a reliable
effect of stress on BP (Simonson et al., 1968; Littler et al., 1973;
Lee et al., 2007). One study found no significant change in
BP from beginning to end of the drive with a short period
of arterial pressure changes during events such as overtaking
that returned to baseline (Littler et al., 1973). BP was also not
found to vary in an on-road stressful driving task speed in
a simulator even though HRV parameters were significantly
impacted (Lee et al., 2007).

Nevertheless, BP is a very useful measure to understand the
factors that impact driving performance. One clear example of
this comes from a simulator-based study investigating aggressive
driving behavior in irregular traffic flow and under time pressure
(Drews et al., 2012). Irregular traffic patterns were not found to
impact BP. However, male drivers who were under time pressure
to drive faster in order to receive a monetary incentive, had
elevated systolic BP compared to females under time pressure
or compared to male drivers who were not under time pressure.
In fact, females did not show any elevated blood pressure
under time pressure (Drews et al., 2012). These findings suggest
that individual difference factors such as sex differences and
motivation to drive aggressively may impact driving behavior
and associated physiological signals. Other studies have shown
that trait-level variation in BP (such as a history of high BP
i.e., hypertension) is an important measure to capture health
and age-related impact on driving performance in vulnerable
older populations (Lyman et al., 2001; Siren et al., 2004). A 5-
year longitudinal study that examined the effect of urban bus
driving on BP found that the number of hours driven per week
predicted higher diastolic BP (Johansson et al., 2012), suggesting
that there are cumulative effects of cognitive demands and stress
of continuous driving.

Practical Considerations
While heart-rate was reported to rapidly change in response to
car racing, BP was “less responsive” (Simonson et al., 1968).
Other studies have found that BP does not change significantly
during on-road driving (Littler et al., 1973; Lee et al., 2007).
A few BP recording-related reasons could play a role. BP can
rapidly change over time so multiple readings are recommended
for a more accurate estimate. However, a limiting factor is
the BP equipment. The pressure from a cuff worn by the
responder can become uncomfortable and disruptive within a
few minutes. Continuous reliable BP measurement (especially
via volume-clamp) is uncomfortable, distracting, and potentially
disruptive to driving. This limits the frequency of samples that
could be collected, which are about 1 reading per minute. Also,
the BP recordings are sensitive to movement so in an on-
road study, it is less feasible to accurately record multiple BP
reading from participants while drivers are actively involved
in the driving process. While some alternative methods to

record blood pressure (e.g., plethysmography) may be available,
methodological issues similar to those discussed in recording
heart activity apply to BP as well and it is crucial to evade
poor quality unreliable equipment. In sum, BP provides valuable
insights about vulnerable states of the drivers, however, in a
real-world driving context, methodological concerns can limit
reliable data collection. Much future work is required to be able
to measure reliable and non-invasive BP activity.

Electrodermal Activity (EDA)
EDA Quantification
EDA, previously known as galvanic skin response, is a change
in electrical potentials of the skin that can be used to make
interpretations about the psychological phenomena of the
responder (Boucsein et al., 2012). EDA can be measured
via exosomatic or endosomatic techniques. Exosomatic
techniques—a more commonly used method used in applied
research—apply a small current through a pair of electrodes
and then measure electrical resistance (or its reciprocal, i.e.,
conductance) from the skin. Because the current is kept constant,
it is possible to measure changes in the voltage between the
electrodes that will vary directly with changes in skin resistance,
following Ohm’s lab (see Dawson et al., 2007 for a technical
review). Endosomatic techniques measure passive changes in
intrinsic electrical activity without application of an external
current. For details on EDA recording techniques, see Fowles
(1986), Dawson et al. (2007), and Boucsein et al. (2012). Higher
EDA is indicative of physiological arousal due to increased
sympathetic autonomic nervous activity (Dawson et al., 2007;
Lohani and Isaacowitz, 2014). EDA is sensitive to physiological
reactivity and many other factors, such as respiration and mental
effort (Dawson et al., 2007). Commonly derived EDA metrics
(Dawson et al., 2007; Boucsein et al., 2012) include slowly varying
tonic level of electrical conductivity (skin conductance level;
SCL) and phasic increase in magnitude electrical conductance in
response to an unexpected or relevant event (skin conductance
response; SCR). Non-linear EDA metrics that can differentiate
between increased cognitive load vs. recovery phases of stressors
have been identified as well (Visnovcova et al., 2016).

EDA in Driving Context
In driving research, systematic variation in several arousal-
related constructs can impact EDA. Most commonly investigated
is cognitive workload. SCL is higher during increased workload
in dual-task relative to single-task driving (Mehler et al., 2012). A
systematic investigation of workload increments in one on-road
driving study (Mehler et al., 2012) found a systematic increase in
SCL as a function of three levels of auditory workload secondary
tasks relative to single driving task for young, middle, and older
age groups. These findings suggest that SCL can be used to
index workload levels in driving context. High SCR has also been
found to increase with workload experienced by motorists while
driving on difficult road types that required avoiding more traffic
and making more decisions (Schneegass et al., 2013). A recent
study reported SCR amplitude increased with cognitive load due
to dual-task driving (Ruscio et al., 2017). Additional workload
experienced due to texting and navigation (Seo et al., 2017) and
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speeding (Kajiwara, 2014) while simulated driving was also found
to increase EDA.

EDA also varies with other physiological arousal-related
constructs. EDA based indices can be used to detect stressful
events during driving (Affanni et al., 2018). A recent study
utilized feature extraction and discrimination processing
techniques to classify EDA data into low, medium, vs. high
stress levels with about 82% recognition rate (Liu and Du, 2018).
Another recent study found higher SCLs when participants drove
a simulated vehicle in autonomous mode compared to manual
mode (Morris et al., 2017). Higher skin conductance levels
could be indicative of lower levels of trust in the autonomous
mode than manual mode. State anxiety during simulated
driving was also found to be associated with SCL (Barnard and
Chapman, 2018). Another recent study found that relative to
sleepiness, higher skin conductance levels are found during
wakefulness, effects which are indicative of comparatively higher
sympathetic activity (Schmidt et al., 2017).

Practical Considerations
In driving contexts, EDA is shown to vary due to many cognitive
states, such as workload, stress, anxiety, sleepiness, all of which
are influenced by sympathetic nervous system activity. This
allows the use of EDA in assessment of various psychological
phenomena (Dawson et al., 2007). Therefore, caution should
be exercised while interpreting changes in EDA in an applied
and less-controlled setting as it is sensitive to not one, but
many psychological variables. In the driving context, careful
choice of filters to remove artifacts (Affanni et al., 2018) and
identification of cognition-related features (Chen et al., 2017; Liu
and Du, 2018) that have been successfully implemented could
be utilized to improve accuracy and detection. One disadvantage
of EDA is that it has a slower response (lag of 1–3 s) after
the stimulus has occurred (Dawson et al., 2007). In instances
when near-real time physiological responses need to be detected,
EDA may be relatively slower (than cardiovascular measures).
Another point to consider is that, similar to other physiological
measures, not all individuals have the expected skin conductance
response (Dawson et al., 2007). This is another reason to avoid
reliance on a single measure, but multiple channels, to capture
the psychological phenomena of interest.

Electromyography (EMG)
EMG Quantification
EMG is used to measure the electrical activity generated by
muscle fibers (Fridlund and Cacioppo, 1986; van Boxtel, 2001).
Surface EMG is captured by placing small surface electrodes
on specific muscles of interest, which is then digitized and
amplified to record muscle activity (Fridlund and Cacioppo,
1986). Numerous features can be extracted from the EMG signals.
Root mean square of the signal (in microvolts) is a recommended
and commonly reported EMG signal amplitude (Fridlund and
Cacioppo, 1986). Other commonly assessed statistical features
are peak spectral density, peak amplitude, and peak frequency.
A specific muscle’s activity can provide insights into the
psychological processes underplay. For instance, the smilemuscle
(or zygomaticus major) and the frown muscle (or corrugator

supercilii) have been used a lot in emotion research to identify
positive and negative behavioral expressions. For example, more
frown muscle activation can be an index of negative behavioral
expressions (Lohani and Isaacowitz, 2014; Lohani et al., 2018).
Psychological processes (e.g., stress) can lead to sympathetic
nervous system activity (Lundberg et al., 1994), which can elicit
muscular tension. Researchers have studied muscular activations
under controlled conditions to indexmental processes (Lundberg
et al., 1994; Wijsman et al., 2013; Luijcks et al., 2014). Applied
driving research has successfully assessed psychological processes
by assessing EMG (Healey et al., 1999; Fu et al., 2016; cf., Morris
et al., 2017; Ma et al., 2018).

EMG in Driving Context
In driving contexts, surface EMG has been utilized to study
psychological and physiological stress (Jonsson and Jonsson,
1975; Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Ahlström et al., 2018). Stress and fatigue have been studied by
recording electrical activity from relevant muscles. For instance,
variations in the trapezius muscle (a major back muscle that
extends from the neck to shoulder blades and lower spine)
and deltoid (triangular muscle located on uppermost part of
an arm and the top of shoulder) are influenced by mental
stress (Wikström, 1993; Balasubramanian and Adalarasu, 2007;
Hirao et al., 2007; Wijsman et al., 2013; Luijcks et al., 2014; cf.,
Morris et al., 2017). A recent study (Lee et al., 2017a) recorded
trapezius muscle activity to detect stress in a driving simulator
under relaxed and stressed conditions. A continuous increase
over time in muscular tension was associated with greater stress
experienced due to driving task (Lee et al., 2017a). Muscular
tension can thus be a useful metric of stress level that can be
utilized in driving research.

It is worth noting that muscular fatigue and discomfort
are not isolated issues (Leinonen et al., 2005) and they cause
psychological distress and disrupt cognitive performance while
driving. Muscle fatigue while driving has been studied by
examining changes in muscular tension in shoulder and neck
muscles (Sheridan et al., 1991;Wikström, 1993; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Compared to the
beginning of the drive, continuous driving can lead to reduced
back muscles (e.g., trapezius and deltoid) activity and fatigue.
Muscular fatigue (measured by EMG of back muscles) is
associated with decreases in power of EMG activity-related
frequency band (Hostens and Ramon, 2005; Balasubramanian
and Adalarasu, 2007; Hirao et al., 2007). Surface EMG is a helpful
way of identifying discomfort in fatigued and weak muscles and
targeting rehabilitation for skeletomuscular problems specially
in professional or long-distance drivers (Balasubramanian and
Adalarasu, 2007). A recent study (Artanto et al., 2017) has also
used a low-cost EMG system to detect drowsiness. An EMG
sensor attached to muscles around eyelid region captured the
duration of eyelid closure as an indicator of drowsiness (Artanto
et al., 2017). Another recent study has proposed a system that
can detect real-time changes in EMG (Mazzetta et al., 2018).
Further research is needed to validate EMG’s applicability in
real-world settings.
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Practical Considerations
EMG measurement enable recording continuous data from the
specific muscle of interest without obstructing the driving task.
Such objective information can be helpful in learning about
muscular activity (and relevant cognitive states) that may not
be necessarily visible to the researchers or under the awareness
of the responder. However, it is essential to pay attention to
any outliers or irrelevant events that may add noise to the
EMG signal and impact signal interpretation. Irrelevant events
can include muscular activity due to driving-unrelated (e.g.,
continuous posture change, scratching skin, or touching the
electrodes) and driving-related (e.g., functional steering activity)
movement and yet unrelated to the cognitive state (e.g., mental
workload) of the driver (Mehler et al., 2009). In real-world
settings, it can be tedious to tease apart muscular activity due
to other confounding reasons from activity relevant to changes
in cognitive states. Furthermore, the task under investigation is
also of importance. For instance, a study that comparedmuscular
tension while driving car autonomously vs. manually found no
differences in EMG signals, but significant differences were found
for SCL (Morris et al., 2017). This suggests that for some tasks
the muscular activity may not significantly differ, but may still be
psychologically different in other modalities. This also highlights
the importance of multiple measures.

Thermal Imaging
Thermal Imaging Quantification
The measurement of changes in skin temperature is a useful
technique to detect and track attributes of a responder, such as
body posture and emotional expression (Gade and Moeslund,
2014; Rai et al., 2017). A special merit of this technology is
that it enables sensing the real-time state of motorists non-
invasively without disrupting driving related tasks. In addition,
unlike RGB cameras, thermal cameras do not depend on an
external illumination (Gade and Moeslund, 2014; Rai et al.,
2017). Objects that emit radiations in themid-to-long wavelength
infrared spectrum (3–14µm), such as the human body (but
not inanimate objects) can be detected via thermal imaging
(Gade and Moeslund, 2014; Rai et al., 2017). Changes in
temperature distribution, as captured by the thermal cameras,
are utilized to make meaningful interpretations. For instance,
facial thermography can be used to capture the heat distribution
in facial locations known to vary with sympathetic activity as a
metric of the varying psychological phenomena. Most commonly
investigated facial locations include the forehead and nasal
temperature changes.

Sympathetic autonomous nervous system activation may lead
to constrictions of blood vessels, thereby decreasing temperature
in extremities, such as the nose (Or and Duffy, 2007; Gade and
Moeslund, 2014). For example, mental workload changes lead to
temperature variations in the forehead, nose, cheeks, and chin
regions (Stemberger et al., 2010; Marinescu et al., 2018). A recent
study examined the validity and sensitivity of thermal imaging in
assessing variation in cognitive load (Abdelrahman et al., 2017).
Increased cognitive task difficulty led to significant increases in
the forehead temperature and decreases in nose temperature
(Abdelrahman et al., 2017). The largest effect sizes were found

when the difference in forehead and nose temperature was
estimated. Higher task difficulty led to an increase in forehead
and nose temperature differences (Abdelrahman et al., 2017).
Additional work has also examined real-time sensitivity of
thermal imaging and found that specialized thermal cameras
can detect changes in cognitive load with a latency of 0.7 s
post eliciting event (Abdelrahman et al., 2017). This finding
suggests that this methodology has a high relevance for real-time
assessments of cognitive load in applied settings like driving.

Thermography in Driving Context
In driving contexts, facial thermography was found to be useful
in assessing over-arousal constructs such as mental workload (Or
and Duffy, 2007; Murai et al., 2008). Performing a secondary
workload task (mental arithmetic) while driving in a simulator
as well as an on-road car led to a decrease in nasal temperature
with stable forehead temperatures (Or and Duffy, 2007). Drop
in nasal temperature also correlated with self-reported workload
(Or and Duffy, 2007). Another study found increases in the
difference between nose and forehead temperature increased
with mental workload (Kajiwara, 2014). Participants’ nasal
temperature varied as a function of mental workload in simulated
driving (Kajiwara, 2014). Workload variation indexed by changes
in nasal temperature were also reported during ship navigation
using a simulator (Murai et al., 2008), highlighting its utility in
applied settings.

Furthermore, facial thermography can be useful to examine
and infer heat distribution in faces during emotional states.
This method could be promising and may provide a non-
invasive approach to capture emotional states because
current methods of emotion recognition using facial features
detection software have limitations. One study used an
infrared thermal camera to non-invasively detect face regions
and recognize emotional states of motorists (Kolli et al.,
2011). This study suggests that thermography can improve
face detection algorithm for in-vehicle settings thereby
facilitating ADAS.

In another line of work (Cheng et al., 2007), a combination of
thermal infrared and color cameras have shown to be effective in
sensing body movements in real-time on-road driving. Similarly,
infrared streaming has been used to develop posture and
occupancy sensory systems (Kato et al., 2004; Trivedi et al., 2004).
Another recent study reported successful use of near-infrared
light and thermal camera sensors to identify aggressive driving
behavior (Lee et al., 2018) and were able to categorize aggressive
driving from relaxed driving. The above studies suggest that
thermography has the potential to be a useful non-invasive
technique that can be validated to capture cognition-relevant
states and improve traffic safety.

Practical Considerations
Thermal cameras are used in numerous industrial, agricultural,
and military settings (Gade and Moeslund, 2014). They
can be extremely useful in vehicular technology because
they are non-contact sensors and can work regardless of
external illumination. Nevertheless, further testing is needed
to better understand how this technology would improve our

Frontiers in Human Neuroscience | www.frontiersin.org 13 March 2019 | Volume 13 | Article 5754

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lohani et al. Psychophysiological Measures in Driving

understanding of cognitive states in traffic safety. Further
systematic investigation and replication of thermography as a
function of cognitive workload, stress, and drowsiness after
controlling for confounding factors, such as environmental
factors (e.g., weather conditions and air conditioning), are
needed to be able to make confident assessments of cognitive
states. The results so far look promising.

Pupillometry
Pupil Quantification
Pupillometry is the measurement of pupil size and reactivity.
Modern pupillometry is measured via optical eye-trackers that
use some combination of monitoring infrared light reflections
from the cornea, the back of the lens, and the pupil, as well
as absorption of light by the pupil (e.g., dark-pupil tracking).
Most modern eye-tracking devices can monitor pupil location
(and eye-fixation location) with very high resolution (>1,000Hz)
non-invasively and at a substantial distance from a participant.
Thus, measurement can occur in highly ecologically valid
environments, without participants having to make any overt
responses. Since the 1960’s it has been shown that pupil dilation
changes as a result of mental activity—for example, increases
in arousal and cognitive workload (e.g., Hess and Polt, 1964).
In a classic study demonstrating the sensitivity of pupillometry
to cognitive demands, Kahneman and Beatty (1966) showed
that pupil dilation increases parametrically with an increasing
number of words to recall in a simple word list memory task.
Moreover, they showed that this increase in workload persists
over a maintenance interval, and reduces parametrically as
each word is retrieved (and released) from memory. These
findings, along with a number of other demonstrations of
pupillary sensitivity to cognitive workload, for example in math
problem solving (Sirois and Brisson, 2014), working memory
and individual differences in intelligence (Tsukahara et al., 2016),
aging and verbal memory load (Piquado et al., 2010), has led to
wide interest in this measure as a physiological marker of arousal
and cognitive effort.

Janisse (1977) remarked that the eye is the only “visible part
of the brain.” Indeed, detailed models of the neurophysiology of
pupillomotor functioning are developed and growing, including
an understanding of the innervation of the sphincter and
dilator muscles by the autonomic nervous system (Miller
et al., 2005), as well as the neuromodulatory relationship
between pupil dilation, activity in the locus-coeruleus (LC; a
neuromodulatory nucleus in the dorsal pons of the brainstem
strongly linked to phasic and tonic arousal, cognitive control, and
monitoring functions), and norepinephrine (Gilzenrat, 2006).
For instance, a high correlation (0.6) between spike frequency
and pupil diameter has been found, whereby large pupil diameter
equates to high LC activity (Rajkowski et al., 1994). Demberg
(2013) have also recently reported changes in pupillometry due
to linguistically induced cognitive load (e.g., comprehending
syntactically demanding sentences). Other recent work has also
examined user state related changes in pupil diameter in lab-
settings such as variations in valence and arousal (Kassem et al.,
2017) and interest in real-time (Jacob et al., 2018).

Pupillometry in Driving Context
Eye-tracking has been used extensively in studying visual
perception and attention in driving contexts, however the unique
use of pupillometry as an index of real-time physiological
indicator of cognitive workload is only lately growing in
popularity (Schwalm et al., 2008). For example, Cegovnik et al.
(2018) recently validated a low-cost eye-tracker and showed that
pupil dilation increases with increments in cognitive load due
to a secondary memory task (n-back) (see also Recarte and
Nunes, 2000 for similar results). Pupillometry has also been
adopted in driving research while motorists drove in a simulated
driving context. Pupil diameter was found to reliably increase
with increases in cognitive load (Palinko et al., 2010; Faure et al.,
2016). Other work has use machine learning algorithms to detect
cognitive load while driving from pupillometry data (Yoshida
et al., 2014). A recent study found that during simulated driving,
pupil dilation could detect increases in cognitive load imposed by
a secondary task within a lag of 1 s (Prabhakar et al., 2018). This
suggests that pupillometry could be used as a near-real time index
of cognitive load.

Pupillometry has also been used to differentiate between
alertness and drowsiness (Soares et al., 2013). Alertness is
associated with increased mean pupil diameter and decreases in
standard deviation (i.e., stable), whereas drowsiness is associated
with decreases in diameter, but increases in standard deviation
(i.e., fluctuations) in pupil diameter (Morad et al., 2000; Wilhelm
et al., 2009). Fluctuations in pupil size have been proposed to be
a reliable index of drowsiness-related impairment while driving
(Maccora et al., 2018). Pupil dilation was also found sensitive
to fatigue levels while driving with a decrease in fatigue being
associated with an increase in pupil diameter (Schmidt et al.,
2017). Although early, these findings, along with others (for a
recent review see Marquart et al., 2015; Maccora et al., 2018)
suggest that pupillometry is an efficient, ecologically valid, and
low-cost physiological reporter variable for indexing cognitive
states in driving in highly-controlled environments like realistic
driving simulators.

Practical Considerations
In lab settings, pupil diameter was found to be a reliable, non-
invasive, and real-time measure of workload (Marinescu et al.,
2018). However, in on-road settings, it is quite challenging to
capture interpretable pupil information due to large variations
in luminance that are hard to control across conditions
and participants. Indeed, photopupillary reflex is massive in
magnitude relative to changes in pupil size related to cognitive
and attentional factors. As such, if there are considerable changes
in lighting conditions (e.g., sunny vs. cloudy days), this can
create considerable noise in the pupillary signal. Moreover, if
specific conditions of interest are confounded with respect to
overall luminance (e.g., driving during the day vs. driving at
night), this overall pupillary light reflex-related shift should be
taken into consideration. Furthermore, if investigating event-
related pupillary responses in driving, one should be careful to
determine that differences in pupil dilation are not only due
to differences in visual stimulation (e.g., presenting a luminant
STOP sign). Modeling techniques have also developed methods
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to infer cognitive workload after accounting for some variations
in lighting conditions (Pfleging et al., 2016; Reilly et al., 2018).

Marshall (2002) have developed a signal processing method
for extracting high-frequency changes in pupil dilation that
they argue is uniquely related to cognitive components (Index
of Cognitive Activity or ICA). However, this method is a
commercially available “black box” system, and should be
interpreted with caution given that the exact algorithm used to
calculate ICA from raw pupillometry is not open source. Other
work has estimated an Index of Pupillary Activity (IPA) inspired
by ICA, that uses wavelet-based algorithms to decompose pupil
data (Duchowski et al., 2018). IPA was found to differentiate
between low vs. high mental workload (Duchowski et al., 2018).
Another important feature to consider is that measurement of
pupil dilation is affected by eye-movements and relative gaze
position (e.g., Gagl et al., 2011). When gaze position changes
from central to peripheral locations, the recorded pupil shifts
from a circular to an elliptical shape from the point of view of
fixed camera location. This change in the recorded geometry
of the pupil is accompanied by changes in overall pupil size,
irrespective of actual changes in dilation or constriction. Gagl
et al. (2011) have developed methods for the measurement and
removal of such systematic influences. Nevertheless, researchers
should be careful to measure gaze position and to design studies
such that likely visual target locations are not confounded across
conditions of interest.

CHALLENGES AND RECOMMENDATIONS

Psychophysiological research has made tremendous progress
in developing methods to quantify cognitive processes. Most
of this research has been conducted in carefully controlled
environments to be able to interpret with certainty what
changes in a physiological signal may imply about the
psychological phenomena under investigation. Physiological
signals are valuable to understand how people interact in real-
world contexts. Driving research is an excellent application of
psychophysiological methods to understand and interpret how
people interact with automation in natural settings, which in turn
can inform intelligent systems to improve driving performance
and safety. As evidenced by much of the growing research
base discussed above, psychophysiological measures can be
successfully adopted to meet these goals. At the same time, lack
of adherence to research protocols and guidelines can seriously
jeopardize meaningful use of these methodologies. Here we
highlight a few general challenges and recommendations that cut
across all psychophysiological measures in driving research when
collecting data from real-world driving settings—which are less
predictable than lab settings— to improve data-quality and aid in
effective interpretation.

Valid and Reliable Quantification
of Construct
Depending upon the task and setting (lab-based simulator or
field study), some physiological measures will be more suitable
and feasible than others. For example, in a simulator with very

controlled body movement, continuous blood pressure using
the volume clamp method can be collected. However, while
on-road, this equipment may compromise drivers’ safety and
thus is not feasible. Other measures like ECG and thermal
cameras are highly mobile and feasible. Careful observations
can allow interpretation of cognitive processes while driving.
One important concern is the possibility of misinterpreting
the relationship between physiological signals and cognitive
processes (Cacioppo and Tassinary, 1990; Cacioppo et al., 2007).
Often, physiological measures (such as HR, EDA, EMG) are
impacted by multiple processes, such as drowsiness, stress, and
workload, which can lead to interpretive caveats. Systematic
variations in different experimental conditions can help tease
apart the underlying mechanism causing autonomic activations
to be able to draw clear inferences. However, in an applied
setting like driving a car in unpredictable traffic, control over the
experimental task is largely out of the control of the researcher.
Confirmatory independent measures are important to validate
the construct of interest in the study. Similarly, it is helpful
to ensure that the construct of interest reliably varies across
conditions and that the experimental manipulation was effective.

Individual Differences
A combination of factors may influence physiological signals,
including trait-level variables such as demographic factors
(age, gender), task experience (professional, experienced,
inexperienced), anxiety, and certain health conditions and
medications (e.g., cardiovascular health). State-level variations
such as stress-levels unrelated to task, caffeine intake (which
may change autonomic activity), and engagement/motivation
and frustration during the task can also interact with individual
differences in ways that may not be readily apparent. Combining
data from participants after considering such trait- and state-level
variables can help in proper interpretation of study findings.

On a related note, a critical challenge in multi-modal
recordings is that individuals may be highly reactive as assessed
by one measure but not necessarily, according to another. There
is considerable variability across individuals in how closely
physiological, behavioral, and subjective measures covary over
time with one another (Lohani et al., 2018). Furthermore, it
is possible that only some individuals may be sensitive to the
experimental manipulation (Drews et al., 2012). Such individual
differences may lead to variations in psychophysiological
assessments and may also explain to some extent lack of
significant differences across experimental conditions. Many, if
not all, of these measures are currently utilized within paradigms
where we are studying relative changes in the outcome across
conditions (e.g., P3b amplitude is a difference wave, HRV%
change, %signal change in BOLD response, etc.), for which
these measures do not have currently well-understood absolute
thresholds for making strong absolute judgements. While there
isn’t a fixed threshold for physiological measures that can be used
across individuals to define high and low arousal levels, relative
changes from baseline can be a useful way of assessing variations
in arousal levels from optimal levels for the individual. If the
system can be calibrated on what is a “normal” range for an
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individual, then significant variations from this calibrated range
can be a way to detect sub-optimal arousal levels.

Baseline Assessments
Baseline assessments provide insights about the physiological
state of the responder when the experimental condition was
absent. It also allows to control for physiological activity due
to any prior conditions, so that the change in the experimental
condition of interest is interpreted relative to the state right
before the condition started. A single baseline is generally not
enough, especially when there are multiple conditions. It is a
good practice to capture as many baseline assessments and as
close to the experimental condition as possible. Another alternate
design to consider (for measures with high temporal resolution)
is an event-related design, where activity is time-locked to specific
events of interest. In this design, pre-event activity in the measure
is subtracted from the overall physiological time series, resulting
in a strong baseline control for each trial (e.g., ERPs).

Sampling Rate, Filtering, and Signal Quality
Nearly all physiological signals discussed above are analog
signals, which have to be digitized for further processing.
Choice of optimal sampling rate and filtering helps avoid
signal distortions (Jennings and Allen, 2016), and as such,
knowledge of signal processing characteristics of the target
physiological measures is necessary for researchers to effectively
use these tools. Optimal sampling rate differs by the physiological
signal’s frequency characteristics, and poor sampling rate can
distort waveform characteristics, and induce artificial oscillatory
characteristics that are not part of the true analog signal (i.e.,
aliasing). For example, for HRV analysis, the recommended
sampling rate is at least 250Hz (Task Force of the European
Society of Cardiology, 1996). Some commercial wearables (e.g.,
fitness-related wrist watch sensors) have sampling rate as low
as 60Hz, which will lead to signal aliasing (Jennings and Allen,
2016) and inaccurate and uninterpretable HRV values. The
sampling rate needs to be at least above the Nyquist frequency
(2x the sampling rate of the highest frequency), and current
standards suggest a sample rate 3–4 times the highest frequency
component of physiological signal. Advancements in modern
computing allow for research-grade equipment to sample far
above Nyquist for most of the measures discussed (>2,000Hz)
during data acquisition. Of course, data can always be down-
sampled post data collection. As discussed in sections “Heart
Activity Quantification” and “Practical Considerations” on heart
activity, quantification using wearables can lead to inaccurate
assessments (Laborde et al., 2017) due to poor sampling rates,
lagged responses, and noisier signals to name a few, which would
lead to inaccurate interpretations.

Filters are helpful in getting rid of artifacts and noise
not relevant for the physiological signal being processed. For
instance, muscle and electrical noise (around 60Hz) are not
meaningful while interpreting EEG and ERP data, and thus
data outside the range of interest (typically not higher than
40–50Hz) can be bandpass filtered. However, if EMG activity,
which has a much higher frequency content, is of interest,
then bandpass filtering with allow low-pass cutoff at 500Hz

and high-pass cutoff at 20Hz, is often suitable (van Boxtel,
2001). Visual inspection pre- and post-filtering process can help
determine how filtering is affecting a signal. Note that all filters
distort the waveform and spectral characteristics, so unnecessary
filtering should be avoided and researchers should take care to
understand exactly how filters are impacting their data in time
and frequency domains.

For each psychophysiological measure discussed, researchers
have a growing number of indices that can be examined (for
example, for HRV, time-based, frequency-based, and non-linear
measures can be derived). Choice of metrics should be carefully
evaluated, as somemetrics may bemore suitable tomeet the goals
of the study, while others may not be suitable. For instance, some
metrics require minimum duration of data and falling short of
such requirements will lead to misrepresentative findings (e.g.,
standard deviation of R-R heart beats or SDRR is considered
more accurate when calculated over 24 h vs. 5min or shorter
intervals; Shaffer and Ginsberg, 2017). Such choices should
be made a priori, based on the research question of interest
and links between a measure and its purported psychological
interpretation based on prior research. Such flexibility in multi-
modal recording comes at the cost of an increasing number
of “experimenter degrees of freedom,” that can lead to inflated
Type-I error rates, if a consistent analysis pipeline is not
followed. It is also important to use comparable durations
of physiological signals across conditions and participants for
appropriate interpretation. Finally, great attention to accurate
event markers is critical for valid interpretation within and
across participants in event-related designs. This can be an
issue when using commercial products that are not designed for
research purposes.

Innovation
A limitation of most current psychophysiological research-grade
measures is the need for using contact sensors (placed on
skin). Non-contact sensors are beginning to be tested in applied
settings, which can make physiological data collection even less
invasive. For instance, ECG data can be derived from high-
quality RGB cameras, or sensors could be placed on the steering
wheel and driving seats (but should meet the recommended
requirements). While these can potentially be a great approach
to counter the limitations of contact sensors, caution is advised
while considering them because new limitations or inaccuracies
in assessment are possible and further research and testing
is required to adopt them in research. Commercial products
may not meet the requirements recommended by the scientific
community, which can lead to poor data quality and invalid
interpretations. For example, smartphone camera-based PPG
sensing estimates have poor sampling rate and can lead to
inaccurate assessments (Laborde et al., 2017). It is essential
to ensure that the guidelines for measures are met before
investing time and resources to avoid technical issues in data
collection and interpretation. For instance, as discussed earlier,
it is critical to collect physiological data with recommended
frequency sampling to avoid aliasing (Jennings and Allen, 2016).
Only equipment that have been or can be validated against
research-grade devices should be adopted for research purposes.
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Classification
Reliable and valid assessment of cognitive states is the
groundwork to develop inputs to advance state detection-
workload managers and “aware” systems. For instance, a recent
study reported a reliable method to elicit stress in naturalistic
driving scenarios (Baltodano et al., 2018). Given that onemeasure
may not be enough to reliably measure subtle changes in
cognitive state, a multi-method approach is critical to capture
state-level variations that may not be apparent through a single
measure alone. Research has shown that multi-modal approaches
provide a reliable (Schmidt et al., 2011; Borghini et al., 2014; Chen
et al., 2017) way to sense and assess cognitive states of motorists
in real-world settings. Notably, due to the dynamic nature of
the physiological signals, conventional linear approaches are
not always appropriate in modeling and predicting cognitive
state (Chen et al., 2015). The discussed physiological signals
are often non-stationary overall but for the briefest periods
of time. As such, innovative methods of combining temporal
and spectral resolution (time-frequency analysis) have been
developed in some domains (e.g., EEG), but their application to
other physiological signals is only in its infancy.

Once data have been processed to remove artifacts or
irrelevant noise, machine learning techniques could be trained
on these data to identify “risky” sub-optimal levels of cognitive
states, such as low-arousal states of drowsiness and fatigue
associated with unsafe driving performance. During the training
phase, multimodal features extracted from physiological training
data could be used to train models to classify observations
into high-arousal states (e.g., due to high stress and workload),
optimal-arousal state, vs. low-arousal state (e.g., due to
drowsiness and fatigue). During the test phase, the fully-specified
machine learning algorithm can be tested in terms of its capacity
to accurately classify observations into respective arousal states.
Indeed, cognitive state detection based on multimodal feature
analysis and classifiers have been also used to detect stress (Yang
et al., 2016; Chen et al., 2017; Lee et al., 2017b), alertness and
drowsiness (Forsman et al., 2013; Correa et al., 2014; Chen
et al., 2015; Wang and Chuan, 2016), fatigue (Fu and Wang,
2014; Wang, 2015; Fu et al., 2016; Li et al., 2017; Wang et al.,
2017), and workload (Borghini et al., 2014; Yang et al., 2016)
in real-time. Such studies have integrated data from more than
one measure by conducting multi-modal analysis to extract the
relevant features to capture the psychological phenomena at
hand. A comparison of multiple classifiers to train & optimize
machine learning algorithms can help determine the best fitting
model to represent changes in cognitive states that can explain
driving performance (Nadeau and Bengio, 2000; Fairclough
et al., 2015; Balters and Steinert, 2017; Tran et al., 2017). Thus,
utilizing multi-modal physiological signals, models could be
trained to learn and predict motorists’ sub-optimal cognitive
states associated with unsafe-driving behavior.

The optimized machine learning algorithms could
accordingly inform advanced state detection managers to
trigger warnings or otherwise intervene when sub-optimal
cognitive states associated with risky driving behavior are
detected (Aidman et al., 2015). The ability to predict unsafe

levels of physiological arousal will enable targeted augmentation
to modify motorists’ cognitive state to promote safer driving
behavior (Schmidt and Bullinger, 2017; Schmidt et al., 2017;
Aricò et al., 2018). For instance, countermeasures to augment
cognitive states, such as thermal stimulation (Schmidt and
Bullinger, 2017; Schmidt et al., 2017) and warning signs or verbal
communication (Schmidt et al., 2011; Aidman et al., 2015) can
be used by an automated system to modify drivers’ cognitive
state. This may especially benefit vulnerable groups such as
inexperienced drivers (Noordzij et al., 2017; Yan et al., 2017) and
older (Costa et al., 2017) drivers who may be more susceptible
to cognitive overload. Furthermore, a person-centered approach
can account for individual differences, such as the role of
age, driving profile, trust, and reliance on automation. For
instance, a recent study used discriminant analysis to account
for motorists’ driving-styles and individual difference factors
(e.g., gender, age, anxiety, anger) and also identify motorists’
EEG and EDA response features to classify motorists’ safe vs.
risky driving tendencies (Liang and Lin, 2018). This study
shows that individual differences can explain variations in
driving performance and a customized approach may also
help improve model prediction over time by accounting for
motorists’ characteristics and preferences. For example, the
low, normal, and high physiological arousal ranges will vary
depending on attributes such as anxious, risky, and distress
reduction driving styles of an individual (Liang and Lin, 2018)
and prediction of cognitive state-level variations may be more
accurate when predictions account for such individual-level
variations. Thus, a person-centered approach will improve
reliable predictions of cognitive states in real-world contexts by
intelligent driving systems.

RESEARCH APPLICABILITY IN
REAL-WORLD SETTINGS

As the reviewed literature in section, “Psychophysiological
Measures to Assess Cognitive States” suggests, many interrelated
states could lead to a similar pattern of findings on a physiological
measure (e.g., mental fatigue, drowsiness, lower vigilance, and
mind wandering are all sensitive to similar EEG/ERP indices).
After considering the overlap across findings from interrelated
constructs, in Table 1 we have summarized the expected pattern
that each physiological measure will have during a low vs. high
arousal state in an applied driving context. There are a few
points to consider. First, changes in several related cognitive
states can lead to similar changes in arousal. For example,
increases in driver workload, stress, or vigilance may occur under
different contexts, but may similarly lead to heightened arousal.
Second, even though arousal is continuous, we chose to classify
driver states into categories of low and high arousal because
both extremes are sub-optimal for driving performance. Third,
cognitive states are complex and change across time. For instance,
in the current review, we have placed mind wandering in a low-
arousal state based on similar patterns of findings as drowsiness.
However, mind wandering is a convenient short-hand for a
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more complex constellation of non-externally directed cognitive
states (see Smallwood and Schooler, 2006 for a review) and
depending on the context, such mind-wandering states can yield
states of heightened-arousal as well. Similarly, fatigue can be
categorized as high-arousal due to prolonged cognitive overload
or it can be passive, because of underload due to monotonous
driving conditions, for example (Saxby et al., 2008; Matthews
et al., 2019). With further empirical evidence in naturalistic
environments, a better characterization of complex cognitive
states could be developed.

It is still an open question if interrelated cognitive states
could be successfully differentiated from other similar states
in naturalistic environments (see Cacioppo et al., 2007 for
challenges with psychological inference). However, physiological
measures could be used to assess sub-optimal levels of general
arousal in real-world settings and intelligent systems can use
this information to trigger augmentation strategies even if we
cannot fully differentiate between specific cognitive states besides
along their arousal axis. We have reviewed how physiological
responses across multiple measures can provide a rich array
of response data relevant to domains that are of interest to
driving researchers (e.g., attention, fatigue, workload, etc.). These
measures provide unique information and unique sensitivity to
experimental manipulations beyond behavioral responses alone.
Thus, their current and future utility in real-world driving
research is important. This does not mean that measuring one
or even a large number of these measures alone will provide
us with a direct interpretation of a covert state (e.g., becoming
increasingly frustrated about an aggressive driver behind you).
Before the state of the research matures to be able to address such
a lofty goal as predicting specific cognitive states (Yarkoni and
Westfall, 2017), we first need careful on-road experimental work
to understand the sensitivity and specificity of these measures
to specific changes in driver-relevant states in observational and
experimental research in real-world settings. Thus, the focus of
the current review is not to claim that measurement of multiple
physiological measures in real-world driving could accurately
predict motorists’ specific cognitive state. Rather, our goal is
to summarize the feasibility of each of these measures for
integrating high-quality psychophysiological methodology into
real-world driving research. Table 1 presents the current working
predictions that are expected based on the available literature,
but more work is needed to be able to use physiological signals
to infer psychological processes. The current review represents a
summary of initial steps in that direction.

In Table 2, we have summarized the research applicability of
the reviewed psychophysiological measures. Although all of these
measures can provide valuable insights in the controlled settings
of a lab, some measures are more feasible to use and interpret
than others in real-world driving contexts. A few factors that
may play a role in determining the practical use of physiological
measures in applied settings are: the degree of coupling between
the measure and subtle changes in cognitive states, temporal
resolution, psychometric reliability, ease of data collection (e.g.,
setup time), sensitivity to artifacts, and the degree of invasiveness
and disruption to normal driving. After considering the available
evidence, we have categorized each measure’s real-world research

applicability into low, medium, or high levels. Moreover, certain
measures may be better candidates than others for a near real-
time assessment in applied settings. We review the real-world
applicability and feasibility of each of the measures in Table 2.

Some promising work suggests that cardiovascular measures
may be robust in detecting near real-time changes across multiple
domains. Studies have shown that cardiovascular data can
reliably detect changes in workload (Mehler et al., 2009, 2012;
Lenneman and Backs, 2010; Stuiver et al., 2014), fatigue (Patel
et al., 2011; Matthews et al., 2019), and drowsiness (Vicente
et al., 2016; Kurosawa et al., 2017). Like any physiological
signal, cardiovascular data is susceptible to artifacts that could
otherwise lead to inaccurate estimations. However, recent
analytical advances have led to an improved use in real-world
settings even in the presence of substantial recording artifact.
For instance, an analysis approach using short segments of
cardiovascular data (e.g., a moving window of 30 s; Stuiver et al.,
2012) can be used to detect workload demands during driving
(Stuiver et al., 2014). Use of smaller temporal windows of data
allow for an investigation of the short-term effects of cognitive
state without being overly susceptible to artifacts. Recent work
has shown that frequency analysis techniques on ECG data
can also be utilized to detect early onset of fatigue (Matthews
et al., 2019). While the limitations of PPG discussed earlier still
apply, recent preliminary work using near-infrared illumination
PPG (which overcomes confounds of illumination and motion-
related inaccuracies) while driving seems a promising direction
for future practical applications (Nowara et al., 2018). Another
recent work has developed a noise-resistant algorithm specifically
designed to analyze PPG waveforms (van Gent et al., 2018),
which can provide researchers an open-source and validated
heart rate analysis software to overcome some existing limitations
of PPG data processing, making it more feasible for applied
driving research.

EDA has been found to be a robust measure of sympathetic
arousal in driving contexts in real-world settings (Mehler et al.,
2012; Schneegass et al., 2013; Ruscio et al., 2017). EDA is also
easy to set up and collect from a motorist without obstructing
the driving process. Even though it has a slower response time
and provides only a broad sense of arousal (a combination of
workload, stress, fatigue, etc.), EDA in an applied uncontrolled
environment can estimate relative changes and periods of
stability in sympathetic activity of a motorist with an upper
temporal resolution of approximately 3–5 s. For example, recent
work found EDA to be suitable in capturing stress-level variations
in a real-time unconstrained setting (ElKomy et al., 2017).
Feature extraction and pattern recognition algorithms have
also shown reasonable success recently in detecting changes in
cognitive states (Chen et al., 2017; Liu and Du, 2018). Moreover,
adaptive filters have been successfully used to remove motion-
related artifacts for automatic and accurate detection (up to
95% sensitivity) of state-level variations in cognition (Affanni
et al., 2018). Such recent processing and analytic advances with
EDA data has shown its high relevance in applied intelligent
automation. For example, a development approach proposed for
monitoring driver’s fatigue levels and functional state utilizes
automated analysis of EDA indices in their detection module
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to improve intelligent vehicular systems (Liu and Du, 2018;
Savchenko and Poddubko, 2018).

EEG, a direct measure of brain’s electrical activity, can provide
robust measures of cognitive state variations while driving,
including levels of drowsiness (Liang et al., 2006; Wei et al.,
2018), fatigue (Liu et al., 2015; Fu et al., 2016; Hung et al., 2017),
and workload (Dasari et al., 2017; Zander et al., 2017). EEG
has high temporal resolution and is a direct measure of brain
activity. However, data collection (e.g., longer setup time) and
processing in real-world setting (e.g., movement artifacts) can be
quite challenging to implement into a real-world driving research
protocol (Popescu et al., 2008). At the same time, there have
been innovative technological and analytical developments in
EEG acquisition. For instance, efforts in brain computer interface
applications have utilized a single electrode to classify relaxed
vs. cognitive workload phases (Shirazi et al., 2014) and monitor
fatigue levels (Morales et al., 2017). Recent work extracted
features from a 6-channel EEG dataset to classify mental tasks
with up to 83% accuracy rate (Neshov et al., 2018). Other recent
work has reported detection algorithms that can be used to
accurately classify fatigue (Li et al., 2017; Gao et al., 2018). In
other work, a novel approach to detect drowsiness has been
proposed which reduces calibration time for a new user by
90% using a hierarchical clustering method, which accounts for
inter- and intra-subject variability (Wei et al., 2018). Automatic
drowsiness detection algorithms based on only a single target
channel can allow real-time neural assessments of cognitive states
(Belakhdar et al., 2018). With increasing advancements in sensor
development and data processing, we hold an optimistic view of
adopting EEG-based measures in driving research, albeit after
considerable validation (Kosiachenko and Si, 2017; Krol et al.,
2017; Zander et al., 2017; Byrom et al., 2018). Recent work has
also shown the applicability of specific ERP components (such
as the P300), some of which show good psychometric properties
(e.g., Cassidy et al., 2012), and can be adopted to brain-computer
interfaces (Piña-Ramírez et al., 2018). Future work and reliable
replication of studies are required to ensure EEG and ERPs could
be assimilated in human-machine automation interface.

Traditional fNIRS has lower temporal resolution and may
additionally be difficult to collect in applied settings. However,
recently, mobile-friendly systems have been developed and used
in applied domains (von Lühmann et al., 2015) including exercise
physiology (Byun et al., 2014), clinical monitoring (Kassab
et al., 2018), and infant developmental research (Quaresima
et al., 2012). Importantly, these advancements mean that fNIRS
measurements can be performed in naturalistic environments
without considerable restraint. As the development of ultra-
portable systems grows (e.g., battery powered mobile systems,
McKendrick et al., 2016), fNIRS will likely form a novel
complement to the many other physiological measures discussed
here, in part because of its unique capability to image neural
hemodynamics and reveal changes in brain activity with
improved spatial resolution compared to other portable and
non-invasive neurophysiological methods (e.g., EEG; Ahn and
Jun, 2017). For instance, a recent study adopted a wearable
fNIRS system (with sensors placed on a baseball cap making
it less intrusive) to measure cognitive distraction while driving

(Le et al., 2018). Thus, while these methods are still in their
infancy compared to many of the other methods discussed here,
the ability to reveal neural mechanisms of cognitive states in
real-world domains such as driving is promising.

Similar to fNIRS, thermal imaging also shows some early
promise. It is a non-contact technology that has high relevance
in applied settings, including driving (Lee et al., 2018). For
example, recent work has shown the validity of thermal imaging
in indexing cognitive load. In these studies, changes in nasal
and forehead temperatures were observed as a function of task
difficulty in a non-driving context (Abdelrahman et al., 2017;
Marinescu et al., 2018). However, research in real-world settings
is currently limited. Existing preliminary work has focused
primarily on understanding the sensitivity of this measure in
well-controlled environments. Future work will help qualify the
utility and validity of thermal imaging in real-world conditions.

On the other hand, several measures, despite clear utility
in a lab environment, may be currently of less use in real-
world settings. For example, pupillometry in well-controlled lab
settings can provide helpful information in interpreting user
state (e.g., Pfleging et al., 2016; Cegovnik et al., 2018). Moreover,
with the development of desktop-mounted eye trackers, pupil
dilation and constriction can be measured non-invasively and
remotely with high spatial and temporal resolution. In lab
settings, where features such as luminance can be controlled and
measured, recent work has shown success in using pupillometry
to examine mental workload in an unconstrained setting (e.g.,
Lego construction; Bækgaard et al., 2019). In driving, some
researchers have suggested that pupil-based measurements are
highly relevant for assessment of drowsiness (Maccora et al.,
2018). However, detection of pupil diameter in real-world
settings with rapidly changing and uncontrollable variations
in luminance is a critical confounding factor in the utility of
pupillometry in driving (Kassem et al., 2017).

Similarly, EMG can be utilized in lab settings to understand
psychological processes. For example, EMG in combination
with other psychophysiological measures was recently utilized
in detecting fatigue in drivers (Fu et al., 2016; Ma et al., 2018).
Preliminary research has also proposed the use of EMG to
detect drowsiness (Artanto et al., 2017) and real-time monitoring
of muscle activity (Mazzetta et al., 2018). However, in applied
settings such as driving, EMG may have only low utility, in part
because the necessary motor activity needed to engage in the task
(e.g., turning the steering wheel and actuation of break) can cause
uncontrolled changes in muscle activity that can be confounded
with the psychological variance in EMG, which is an order of
magnitude smaller than these artifacts.

At the same time, ongoing methodological developments are
resulting in more efficient systems, improved signal-to-noise
ratio, and improved signal-processing methods, all of which
culminate in rapidly improving the reliability and validity of
acquisition across these multiple methodologies. Some attempts
to assess cognitive states using multiple methods have been
integrated in non-driving domains (ElKomy et al., 2017; Ko et al.,
2017; Moghaddam and Lowe, 2019) and multi-method work
in real-world driving contexts are already underway (Fu et al.,
2016; Brouwer et al., 2017; Zander et al., 2017; Aricò et al., 2018;

Frontiers in Human Neuroscience | www.frontiersin.org 19 March 2019 | Volume 13 | Article 5760

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Lohani et al. Psychophysiological Measures in Driving

Belakhdar et al., 2018; Haouij et al., 2018; Paredes et al., 2018;
Rastgoo et al., 2018).

Taken together, we have reviewed a growing body of
empirical evidence suggesting that physiological measures can
be used to sense and assess changes in the cognitive states
of motorists during real-world driving. Through this selective
review, we believe that the strengths and limitations of
adopting physiological measures in driving can clearly extend
to other domains such as the use of aircraft, trains, and ships.
Furthermore, we see growing promise for the application of
covert monitoring methods like those reviewed above with the
increasing rise in semi-automated technology, where motorists
will become less directly involved in the driving process.
As such, the development of intelligent driving assistance
systems will need to utilize non-behavior-based measures to
index covert cognitive states of a motorist in the absence
of any overt behavior. The physiological measures reviewed
above have the potential to detect sub-optimal arousal levels
associated with risky driving behavior and inform state detection-
workload managers and “aware” systems to trigger warnings

or intervene, resulting in a closed-loop system in the absence
of any overt-driving behaviors. Before we reach such a future
however, the field needs to adopt rigorous standards for the
use of psychophysiological measurement in real-world settings.
We hope to see a future of increased collaboration and
integration of basic psychophysiology, human factors, and traffic
safety research. Such integration is necessary to advance the
development of effective human-machine driving interfaces and
driver support systems, with the ultimate goal of improving
traffic safety.
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Measuring and assessing the cognitive load associated with different tasks is crucial for

many applications, from the design of instructional materials to monitoring the mental

well-being of aircraft pilots. The goal of this paper is to utilize EEG to infer the cognitive

workload of subjects during intelligence tests. We chose the well established advanced

progressive matrices test, an ideal framework because it presents problems at increasing

levels of difficulty and has been rigorously validated in past experiments. We train classic

machine learning models using basic EEG measures as well as measures of network

connectivity and signal complexity. Our findings demonstrate that cognitive load can be

well predicted using these features, even for a low number of channels. We show that by

creating an individually tuned neural network for each subject, we can improve prediction

compared to a generic model and that such models are robust to decreasing the number

of available channels as well.

Keywords: brain-computer interface, electroencephalography, cognitive load, machine learning, Raven’smatrices

1. INTRODUCTION

The performance of complex tasks requires the integration of various mental resources,
such as task-related knowledge, working memory, attention and decision making. However,
our brains have limited resources for processing and integrating information. The
concept of cognitive load generally refers to the relative load on these limited resources
(Sweller et al., 1998; Coyne et al., 2009).

Cognitive workload has been explored from different perspectives. Brouwer et al. (2012) refer
to workload as the working memory load in an n-back task. Mills et al. (2017) use simple true-
false questions for eliciting low workload and open-ended questions, which require more precise
memory, for eliciting high workload. Other studies have emphasized the role of skill acquisition
in modeling cognitive load (Sweller et al., 1998). Logan (1985) show that when subjects acquire a
skill and learn how to perform a task in an automatic manner, their cognitive workload decreases
(Borghini et al., 2017) . Thus, the cognitive load depends not only on task complexity but also on the
subject’s skill at the given task. A highly complex task performed by a non-skilled individual would
result in high cognitive load, whereas a simple task performed by a skilled individual would result
in low cognitive load. For example, Stevens et al. (2006) assessed subjects as they were learning to
diagnose disorders of organ systems and Mak et al. (2013) focused on performance improvement
in a visual-motor task. Both studies showed a decrease in cognitive load metrics, with an increase
in task familiarity. In all of these studies, the relative difficulty of the task is seen as a proxy for
its associated cognitive load. The difficulty was assessed using a variety of approaches, such as the
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type of questions (true-false vs. open ended), subject performance
and even participant subjective ratings. A major limitation of
many studies is that the levels of difficulty were not rigorously
defined. Here, we chose a setting in which problem difficulty was
rigorously validated and is commonly used in the psychological
literature (see below). Another limitation of previous studies is
that cognitive workload was assessed using discrete levels, often
only two or three levels (Aricò et al., 2016a,b). In the present
study, we use a continuous scale for workload.

In addition to behavioral measures, there is a growing interest
in assessing cognitive workload using physiological measures,
such as pupil diameter (Palinko et al., 2010). The focus of
this paper is on quantifying cognitive workload using measures
based on electroencephalography (EEG). Several studies have
previously developed EEG-based measures for cognitive load. In
particular, it was found that the ratio between the theta power (4–
8 Hz) and the alpha power (8–12 Hz), as well as the ratio between
the beta power (12–30 Hz) and the alpha power and several
related combinations, provided informative indices concerning
task engagement and cognitive workload (Pope et al., 1995;
Stevens et al., 2006; Mills et al., 2017). Other researchers came
to similar conclusions, namely that the relation between different
spectral features can help predict cognitive load from EEG (Gerě
and Jaušcvec, 1999; McDonald and Soussou, 2011; Conrad and
Bliemel, 2016). This study aimed to further expand these studies
and develop continuous and more accurate EEG-based measures
of cognitive load. Furthermore, we tried to examine the utility
of additional measures, in particular network connectivity and
signal complexity.

We focused on recording EEG during performance of a well-
known psychological assessment tool, the advanced progressive
matrices test (Raven, 2000), which is commonly used to measure
general intelligence. The test is composed of different problems
that involve the manipulation of shapes. Problems are presented
to subjects at increasing levels of difficulty. The difficulty of each
problem is validated across a large number of subjects (Forbes,
1964; Arthur et al., 1999), in the sense that more difficult
questions lead to a higher error rate in the population.

Here, we adopt problem difficulty as the operational definition
of cognitive load and demonstrate that it can be predicted from
the subject’s EEG readings. Specifically, we employ a variety of
EEGmeasures as input to machine-learning algorithms and train
them to predict problem difficulty.

As mentioned above, previous studies of EEG-based measures
of cognitive load were limited in several ways. In particular,
they relied mostly on spectral features and produced a simple
discrete measure of either low or high load. In contrast, this paper
models cognitive load in a continuous manner. In addition, we
go beyond basic spectral features and examine how measures of
network connectivity and signal complexity affect the prediction
of cognitive load. To measure network connectivity, we used
complex network analysis (CNA), which provides measures to
examine functional connectivity in the brain (Bullmore and
Sporns, 2009; Fekete et al., 2014). Features of neural complexity
are often computed using measures of entropy, reflecting the
proportion of ordered patterns that can be detected in a
signal (Bullmore et al., 2009). To measure neural complexity, we

focused on Lempel-Ziv (Tononi and Edelman, 1998) complexity,
Multi Scale Entropy (MSE) (Abásolo et al., 2006) and Detrended
Fluctuation Analysis (DFA) (Rubin et al., 2013).

The results of this paper demonstrate the applicability of using
EEG andmachine learning for quantifying cognitive load in well-
validated problem-solving tasks. In particular, as EEG and other
measures of brain activity become more pervasive, quantitative
cognitive load measures could be used to facilitate the design of
domains involving real-time problem-solving, such as e-learning,
psychometric exams, military training, and more (Ikehara and
Crosby, 2005; Mills et al., 2017).

2. METHODS

We recorded EEG from subjects while they solved the Advanced
Progressive Matrices set II (Raven test). The 36 problems in the
test were presented in increasing levels of difficulty. The raw
EEG data were then passed through an artifact removal pipeline
(see details below) before extracting EEG-based measures of
spectral activity, neural complexity and network connectivity.
These measures served as input to machine learning algorithms,
which were trained to predict problem difficulty.

2.1. Participants
Fifty-two subjects (26 female and 26 male; age range 21–28,
Mean = 24.55 years, SD = 1.76 years) participated voluntarily in
the experiment, provided written informed consent and received
compensation for participating. The experiment was approved
by the Ben-Gurion University ethics committee. All subjects
reported that they are right-handed, have normal or corrected
vision, and that they have never completed any sort of intelligence
test in the past. Four participants were excluded from the study
because they required 10 min or less to solve the entire test or
answered correctly 16 problems or less. An additional participant
was excluded due to a compromised recording (several electrodes
did not record any signal throughout the entire session).

2.2. Experimental Paradigm
Subjects performed the Raven’s APM Set II problems (36
items in increasing difficulty level), and instructions were
delivered before the test started (see Figure 1 for an example
problem). The test was run with no time limit, with all
the key requirements and administration instructions carefully
following the manual (Raven et al., 1998). Subjects sat in
a comfortable chair facing a computer screen 60 cm away.
The test was conducted by displaying the problems on the
computer screen (23′′, 1,920 × 1,080 resolution, with a 2.3◦

visual angle between each answer’s corners), where the subjects
were required to press a keyboard key (with their right hand) in
accordance with their chosen answer number. The experiment
was programmed in MATLAB ( www.mathworks.com, version
2015), using the Psychophysics Toolbox extensions (Brainard
and Vision, 1997; Pelli, 1997; Kleiner et al., 2007). Each trial lasted
from the presentation of the corresponding problem until subject
response, and thus trial duration was variable.

EEG was recorded through the whole session using the g.Tec
HIamp system (g.Tec, Austria) with 64 gel-based electrodes

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 19170

https://www.mathworks.com/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Friedman et al. EEG-Based Prediction of Cognitive Load

FIGURE 1 | Illustration of Raven’s set II Example Problem. The subject is asked to choose the missing shape from the 8 possible options. The correct answer here is

option 8.

(AgCl electrolyte gel). Electrodes were positioned according
to the standard 10/20 system with linked ears reference. An
impedance test and adjustment were carried out at the beginning
of the session, and impedances of all electrodes were kept below
5 k�. The signal was sampled at 256 Hz with a high-pass filter
of 1 Hz. The data were recorded using Matlab Simulink g.Tec
plug-ins.

2.3. Feature Extraction
Data were analyzed using a combination of the EEGLAB Matlab
toolbox (Delorme and Makeig, 2004) routines and custom
code. Data were first high-pass filtered (cut-off 1 Hz), then a
customized adaptive filter was applied to suppress line-noise.
This was followed by Artifact Subspace Reconstruction (Mullen
et al., 2015), re-referencing to the mean, and low-pass filtering
(cutoff 60 Hz). Next, Infomax ICA was carried out (Bell and
Sejnowski, 1995). The resulting ICs were evaluated automatically
for artifacts by combining spatial, spectral and temporal analysis
of ICs. ICs identified as containing ocular, muscular or cardiac
artifacts were removed from data.

Various features were extracted from the EEG data:

• Power spectrum metrics (PS) - The power in 5 frequency
bands (delta [1–4 Hz], theta [4–8 Hz], alpha [8–12 Hz], beta

[12–30 Hz], and gamma [30–50 Hz]) was calculated for each
channel across the whole trial duration. This resulted in 310
features (62 channels× 5 bands) for each trial.

• Neural complexity metrics-We focused on three measures of
complexity, specifically, Lempel-Ziv complexity (LZC) (Zhang
et al., 2001), Multi Scale Entropy (MSE) (Abásolo et al., 2006)
and Detrended Fluctuation Analysis (DFA) (Peng et al., 1995;
Rubin et al., 2013). The LZC measure was computed as the
mean of the measure across all channels, resulting in a single
feature for each trial. In comparison, the MSE and DFA
measures were first computed for each individual channel, and
for DFA we also computed the metric for each frequency band
(as described above), and a broadband [1–50Hz]. We then
computed the mean, variance, maximum, minimum, mean

variance

and maximum
minimum , resulting in 6 features for the MSE, and 36

features for DFA [6 measures × (5 bands + 1 broadband)],
resulting in 43 complexity features for each trial. Because these
metrics are affected by trial duration, we calculated them for
the last 2,500 samples (≈10 s) of each trial.

• Connectivity metrics - These features are based on a graph
reflecting the connectivity of the underlying network. The
graph comprises 62 vertices (channels); edges in the graph
represent correlations between channels (there are no self
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edges). There are two approaches regarding the weight of each
edge. One is to take the absolute value of the correlation as the
weight of each edge. Another is to give the same weight to all
edges that were kept after the thresholding process described
below. We kept only the top x% (we tried several thresholds)
of the edges with the highest values, for example 5% (which
was what we ultimately used), meaning that we were left
with 190 edges out of the 622 (minus the 62 self edges).
The graph was used to extract graph-theoretical features such
as average shortest distance between nodes, small-worldness,
etc. (Bullmore and Sporns, 2009). We ultimately used the
mean and standard deviation of the small-worldness measure
and its components, across the different thresholds.

• Basic - Simple demographic features of subjects’ age and sex
were used. In addition, the time it took to answer each problem
was used as a feature. These features were added to all the
above feature groups in the prediction phase.

3. RESULTS

After removal of subjects who did not meet the inclusion criteria
(see Methods), we were left with 47 subjects for the analysis (24
female and 23 male; age range 21–28,Mean = 24.55 years, SD =

1.79 years). Our goal was to estimate the cognitive workload of
subjects as they were trying to solve each problem during the test.

To this end, we assumed that the difficulty level increased
with every problem, as validated in previous studies (Forbes,
1964; Arthur et al., 1999). Figure 2 shows the rate of incorrect
responses over all problems in our data, reflecting the established
relationship between problem number and difficulty level.
Interestingly, problems 24 and 29 deviated significantly from the
trend (more than 3 standard deviations). For this reason, both
problems were also excluded from our analysis. In addition, we
only considered trials where subjects answered correctly. This
is based on the premise that the cognitive load exhibited by

participants for incorrect answers may not reflect the true level of
the question. After excluding the subjects (180 trials) and specific
problems (94 trials), as stated above, and the incorrect trials (366
trials), we were left with 1,232 trials.

For each of the 1232 correct trials, we computed different
features (as detailed in the Methods) and assigned them with
the corresponding difficulty level (a number between 1 and 36)
as the target value. Several types of machine learning algorithms
were tested in order to predict cognitive load - ”Random Forest”
(RF) from the sklearn python package (Buitinck et al., 2013) ,
which is a bagging decision-tree based model (Ho, 1995), and
”XGBoost” (XGB) and its corresponding python package (Chen
and Guestrin, 2016). XGB is also a decision tree-based model,
though it comes from the ”boosting” family (Zhou, 2012). They
were chosen because of the virtues of an ensemble learning
algorithm, along with their usual good fit with temporal data.
Additionally, we applied an artificial neural network (ANN),
using the keras python package (Chollet et al., 2015). Lastly, we
used simple Linear Regression (LR), also from the sklearn python
package, as a baseline for comparison. The hyper-parameters
of these models were found using a grid search. The best
performance was exhibited by the XGBoost classifier with a
step size of 0.05. For the optimal feature group, the number of
boosting rounds was 300. All other parameters were run with
the default settings. All results shown were cross-validated by
dividing the data randomly to training and validation sets (80%
of the data were used for training, 20% of the data were used for
validation) and repeating the process 10–20 times (determined
by the time complexity of the analysis). Our main measure
of model performance was r2, which is simply the Pearson
correlation squared. It is commonly interpreted as the proportion
of the variance for a dependent variable that is explained by an
independent variable or variables.

At first, we compared the different feature types in
the prediction process with the different classifiers. Table 1

FIGURE 2 | Subject Error rate as a function of problem number. The mean error rate across subjects is plotted for each problem (circles) together with a quadratic fit

(dark gray curve). The equation corresponding to the fit is y = 0.0004793x2 − 0.000897x − 0.08256. The color of each point indicates the number of standard

deviations from the fit, with bright colors indicating a higher value.
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TABLE 1 | The table shows the Pearson correlation (r2) of each Feature group-

Model Pair.

LR RF XGB ANN

PS 0.007 0.383* 0.655* 0.346*

Complexity 0.323* 0.055 0.508* 0.286*

Connectivity 0.335* 0.186 0.5* 0.267*

PS & Complexity 0 0.322* 0.641* 0.186*

PS & Connectivity 0.07 0.44* 0.67* 0.32*

Complexity & Connectivity 0.339* 0.122 0.519* 0.331*

All Features 0.05 0.358* 0.628* 0.297*

summarizes the r2 results for this analysis (all results marked
with an * were significant). The best results were obtained using
XGB for all feature types as seen in a variance test(F(36, 3) =

16.79, p < 0.001, Tukey multiple comparisons: p < 0.05
for all XGB pairs). XGB provides a good trade-off between
model complexity and the number of samples required to
reach robustness. Even though ANN can capture very complex
relationships, they require a large training set. On the other hand,
LR and RF do not require significant amounts of training data,
but their model complexity is significantly more constrained
than XGB.

Next, we compared the utility of each of the three different
feature types. PS and connectivity features obtained the highest
score, and adding the complexity features to either of the two did
not contribute significantly to the prediction. This suggests that
complexity features do not add any further information beyond
spectral features and connectivity features. To test whether this
was not due to highmodel complexity resulting in over-fitting, we
conducted a feature selection process. We found that even after
reducing the number of features, no combination of complexity,
connectivity and PS features yielded better results than using only
the PS and connectivity features together with the basic features.

Figure 3 shows a scatter plot of the best model’s prediction
together with the true label of each instance in the test set. The
Pearson correlation of the best model is r2 = 0.67 (p < 0.01).
The model was trained on the problem serial number, which
should, in principle, produce a linear relationship. However, as
evident in Figure 2, the relationship between problem number
and error rate is slightly non-linear. This suggests that the
relationship between problem number and the EEG measure
could also be non-linear. We therefore also computed the
Spearman correlation, which relates to a general monotonic
relationship rather than a linear one, and obtained a value of 0.81
(p < 0.01). One of the features used by the algorithm was the
duration of each segment, namely the time it took the subject to
answer.We also examined the performance with only this feature
and found a r2 of 0.23 (p < 0.01) and a Spearman correlation of
0.41 (p < 0.01).

3.1. Effect of Number of Electrodes
From an applicative point of view, the number of electrodes
affects both the cost and the complexity of using EEG. We
therefore examined the extent to which reducing the number
of electrodes affects the prediction quality. To this end, we

FIGURE 3 | This figure shows the Pearson correlation between the XGBoost

model’s prediction and the true label of each instance. The model shown here

uses the PS, connectivity and basic features, which is the one that produced

the best prediction. The equation of the linear fit is y = 1.19x − 2.33.

conducted a two step analysis. Firstly, we ran 1,000 simulations,
where in each, ten electrodes were chosen randomly out of the
total of 62. For each electrode combination, only the relevant
PS features were used (five per channel, in addition to the
basic features) to generate a workload prediction using the XGB
algorithm.We then sorted the electrodes based on the percentage
of simulations each electrode was involved in that yielded a score
above a specified threshold, out of all simulations it participated
in. The top thirty electrodes were chosen in descending order and
were taken for the second step, where the effect of the number of
best electrodes on the r2 was examined. As seen in Figure 4, a
relatively high r2 of 0.7 (p < 0.01) can be obtained using only 12
electrodes (and in fact over 95 percent of peak performance for
only 8). Additionally, using the same features of the 12 electrodes,
the model produces a Spearman correlation of 0.82 (p < 0.05).
These 12 electrodes were: CP1, CPz, CP4, TP8, TP10, P3, P4,
PO7, O1, O2, AF3, FT8.

3.2. Effect of Discretizing the Workload
In our analysis, the target variable (difficulty of each problem)
had 34 possible values. We analyzed the influence of reducing the
number of levels of the target variable. We used different sized
bins, to reduce the number of different values to 6, 9, 18, 34. For
example, to obtain 6 levels, values were binned to [1–6], [7–12],
[13–18], [19–24], [25–30], and [31–36]. As evident in Figure 5,
prediction quality generally decreased with the number of levels.
This is not surprising, because the prediction task becomes more
complex with the number of levels. In addition, we show that
using only the best 12 electrodes found earlier to compute the
connectivity features (combined with the PS features of those
electrodes), we obtain r2 = 0.713 (p < 0.05) for 6 levels, which is
the best prediction quality we obtained.

3.3. Individualized Prediction Using Neural
Networks
Lastly, because different individuals might experience different
levels of cognitive load for the same problem, we wanted to assess
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FIGURE 4 | Performance as a function of the number of best channels. Channels were ordered according to their contribution to the prediction quality (see text for

details). The curve depicts the prediction quality (r2) for the XGBoost algorithm as a function of the number of best channels taken into account.

FIGURE 5 | Difficulty level discretization effect on prediction quality (r2). Each line corresponds to different feature types. PS red are the PS features of the 12 best

channels. Error bars reflect standard error of the mean.

the influence of individualizing the prediction model. To this
end, we first built a three layer artificial neural network (ANN),
trained with data from all subjects using the PS and connectivity
features of the 12 best electrodes. We then fixed the parameters
of the first and second layers, and for each subject continued
to train the weights of the output layer (Figure 6). This is a
common practice in the field of neural networks (Gruber et al.,
2017). We conducted a paired t-test (Figure 7), by calculating
the mean correlation with the correct answer over several folds
using the general model (M = 0.39, SD = 0.06) and after

tuning (M = 0.43, SD = 0.06), which yielded a significant
difference (t = −4.75, p = 0.001) in favor of the individualized
network models.

4. DISCUSSION

We recorded EEG from subjects while solving the advanced
progressive matrices test (Raven’s matrices test) and used EEG
features and machine learning to predict problem difficulty,
our chosen operationalization of cognitive workload. Problem
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FIGURE 6 | Diagram explaining the architecture of the ANN that was used. There were 2 hidden layers, and all layers were dense (e.g., all connections were present).

The parameters between the input layer and hidden layer 1, and the parameters between hidden layer 1 and hidden layer 2 were held during the individualization

phase.

FIGURE 7 | Difference of r2 score using an ANN before and after

individualizing the last layer for each subject. Error bars reflect standard error

of the mean. Paired t-test results are shown. ***p = 0.001.

difficulty was ordered on a scale from 1 to 36 (Forbes, 1964;
Arthur et al., 1999) and was treated here as a continuous value.
Our results show that even when considering cognitive load in
a continuous manner, a reasonable prediction accuracy can be

obtained using EEG measures. This could be very useful for
many applications in which there is a wide range of cognitive
workload levels. These findings extend those of previous studies
which used a small number (2-3) of discrete levels of cognitive
workload (Gerě and Jaušcvec, 1999; McDonald and Soussou,
2011; Conrad and Bliemel, 2016). Indeed, we found that reducing
the number of difficulty levels improves the results significantly.

We examined several machine learning algorithms and found
that XGBoost outperformed all other algorithms with all three
feature groups. XGBoost was more accurate than the simpler
models of linear regression and Random Forest. The lower scores
of the ANN are probably due to the fact that they typically require
a much larger training dataset than we had at our disposal (Chen
and Guestrin, 2016). Furthermore, even though the ANN scored
lower than XGBoost, we showed that prediction quality can be
improved by tuning the last layer of the ANN to each individual.
With a larger dataset, the personalized ANN could potentially
attain better prediction than XGBoost. Additionally, in this study
we did not use individual features such as individual frequency
bands. In general, this could improve the performance of the
algorithm. Incorporating individual features should be addressed
in future research.

As part of our analysis, we checked the impact of additional
EEG measures, specifically metrics of connectivity and metrics
of neural complexity. Our results suggest that connectivity
measures do add information regarding cognitive load beyond
the simple spectral features. On the other hand, it seems
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that complexity features, while holding information regarding
cognitive load, do not afford additional information over and
above that found in connectivity and PS features.

Lastly, we found that prediction quality did not deteriorate,
and even improved, when using a limited number of channels
(∼ 12), which is important for practical applications. This is
most probably due to better generalization, resulting from a less
complex model, as opposed to one utilizing all channels.

We chose to utilize the advanced progressive matrices test in
this study because of the high validity of its operationalization of
difficulty levels. However, to extend our findings further toward
applicability, future studies should examine the utility of our
EEG-based metrics for cognitive load in real-life settings such
as control tower operator performance as aerial traffic ebbs and
flows. Since our results indicate the feasibility of employing an
array comprising as little as eight electrodes, potentially such
studies could be carried out in parallel using portable dry EEG
systems. The added benefit would be the feasibility of amassing
the expansive datasets necessary for utilizing elaborate neural
network models, which in this scenario are expected to improve
predictive ability. In addition, it would be useful to identify EEG
markers for different dimensions of cognitive workload. Such
markers would pave the way for optimizing and personalizing
learning processes from e-learning to military training (Ikehara
and Crosby, 2005; Mills et al., 2017).
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Brain training is a large and expanding industry, and yet there is a recurrent and
ongoing debate concerning its scientific basis or evidence for efficacy. Much of evidence
for the efficacy of brain training within this debate is from small-scale studies that
do not assess the type of “brain training,” the specificity of transfer effects, or the
length of training required to achieve a generalized effect. To explore these factors,
we analyze cross-sectional data from two large Internet-cohort studies (total N = 60,222)
to determine whether cognition differs at the population level for individuals who report
that they brain train on different devices, and across different timeframes, with programs
in common use circa 2010–2013. Examining scores for an assessment of working-
memory, reasoning and verbal abilities shows no cognitive advantages for individuals
who brain train. This contrasts unfavorably with significant advantages for individuals
who regularly undertake other cognitive pursuits such as computer, board and card
games. However, finer grained analyses reveal a more complex relationship between
brain training and cognitive performance. Specifically, individuals who have just begun
to brain train start from a low cognitive baseline compared to individuals who have
never engaged in brain training, whereas those who have trained for a year or more
have higher working-memory and verbal scores compared to those who have just
started, thus suggesting an efficacy for brain training over an extended period of time.
The advantages in global function, working memory, and verbal memory after several
months of training are plausible and of clinically relevant scale. However, this relationship
is not evident for reasoning performance or self-report measures of everyday function
(e.g., employment status and problems with attention). These results accord with the
view that although brain training programs can produce benefits, these might extend
to tasks that are operationally similar to the training regime. Furthermore, the duration
of training regime required for effective enhancement of cognitive performance is longer
than that applied in most previous studies.
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INTRODUCTION

Brain training is a large and expanding industry. It has been
estimated that sales in this sector are increasing at a compound
rate of 20 to 25% annually, passing $1.3bn worldwide in 2013 and
projected to exceed $6bn by 2020 (SharpBrains, 2013; Cookson,
2014; Katz, 2014). Brain training has also been the focus of
intensive academic research; however, despite the prominence
and commercial success of brain training, its efficacy remains the
topic of much debate.

Most notably, in 2014 more than 70 scientists signed an open
letter entitled “A Consensus on the Brain Training Industry
from the Scientific Community,” which argued that there is no
scientific basis or evidence for the efficacy of brain training
(Allaire et al., 2014). In response, 2 months later another
group of more than 100 scientists publicly criticized the open
letter, in form and substance, claiming that evidence for the
“brain training effect” was plentiful and highlighting that the
first letter could not be considered a consensus view (Alescio-
Lautier et al., 2014). The latter group also accused the former
of taking an extreme “faith-based” position, pertaining more to
an ideological stance, whilst ignoring the scientific evidence. At
present, opinions remain divided.

A number of factors contribute to this controversy. At
the most fundamental level there is uncertainty regarding
the definition of what exactly constitutes “efficacy”. More
specifically, the core aim of brain training is to produce
general improvements in cognition through repeated exercise on
specific computer-based tasks. To be considered effective, brain
training should enhance the performance of untrained tasks via
improvements in underlying cognitive abilities (Lindenberger
et al., 2017). Consequently, validation studies look for evidence
of “generalization” or “transfer effects.”

Some of the largest academic randomized control trials
in computerized cognitive training (ACTIVE, IHAMS
and IMPACT) have reported evidence for cognitive
improvement, and transfer to everyday cognitive function
(e.g., IADLs/HRQoL/depression, IADLs/depression, PROs,
respectively) (ACTIVE: Willis et al., 2006; Rebok et al., 2014;
IHAMS: Wolinsky et al., 2013; Wolinsky et al., 2016; IMPACT:
Smith et al., 2009; Zelinski et al., 2011). However, another large-
scale trial published negative results in younger adults (Owen
et al., 2010), although positive results, including generalization
to real-world measures, were reported for older adults who
trained over a longer time frame (Corbett et al., 2015). A recent
meta-analyses of cognitive training and a pilot study showed
benefits in cognitive function, with the first specifically noting
transfer to untrained measures (Mewborn et al., 2017) and the
latter reporting short-term functional and long-term structural
plastic changes related to gains in global cognition (Lampit et al.,
2015a, but see also Lampit et al., 2015b).

However, there is a crucial lack of clarity regarding what
“transfer” actually means. In a prominent review, a differentiation
between “near” and “far” transfer has been advocated (Simons
et al., 2016). Specifically, “near transfer” refers to improvements
that generalize to tasks that are operationally similar to
the training paradigm; for example, training on one spatial

working memory task and observing improvements on another
spatial working memory task. In contrast, “far transfer”
refers to improvements that generalize more broadly, for
example, training on a spatial working memory task and
observing improvements in selective attention or a composite
construct such as IQ.

Indeed, to “match the hype” of the brain training sector,
transfer should not only be “far”, but also ecologically valid,
namely evident as improvements in everyday function. Seeking
to achieve this is quite ambitious. As noted by Simons, there
is “no evidence for broad-based improvement in cognition,
academic achievement, professional performance, and social
competencies that derive from the decontextualized practice
of cognitive skills devoid of domain-specific content” (Simons
et al., 2016). These broad abilities may rely on factors that brain
training regime often neglect, including complex environments
offering practice and engagement with domain-related challenges
(Simonton, 1990; Shimamura et al., 1995; Staudinger and Baltes,
1996; Stern, 2002; Ericsson, 2006; Rohwedder and Willis, 2010;
Grossmann et al., 2012). It is perhaps not surprising that only rare
examples of studies reporting “far” transfer effects exist, and most
of these studies used children as participants (Thorell et al., 2009;
Steiner et al., 2011; Johnstone et al., 2012; Foy and Mann, 2014;
Graziano and Hart, 2016; Conklin et al., 2017).

Conversely, evidence for “near transfer” is more convincing.
A brain training regime was reported to improve processing
speed and executive functions in the elderly (Nouchi et al., 2012)
and in young adults (Nouchi et al., 2013). Substantial effects
have been reported within the working memory domain for tasks
that are similar to the training paradigms (Melby-Lervåg and
Hulme, 2013; Karbach and Verhaeghen, 2014; Au et al., 2016;
Melby-Lervåg and Hulme, 2016; Soveri et al., 2017; Strobach and
Huestegge, 2017). For example, it has been shown that transfer
may occur when the category of stimulus is changed and the
operational requirements of the paradigm remain similar, but
not when the paradigm is changed (Holmes et al., 2018). This
lack of far transfer in the context of significant near transfer
has also been demonstrated in a population with mild cognitive
impairment (Vermeij et al., 2016). Nonetheless, some brain
training studies have even failed to find even “near transfer”
effects (Guye and von Bastian, 2017).

One might argue that this lack of reproducibility relates to the
prevalence of too many parallel trials conducted at small cohort
scale. Thus, the academic field of “brain training” has a high risk
of type 1 and 2 errors. Notable exceptions to this rule are studies
that have measured transfer effects in thousands of individuals.
However, even there, the reported results appear contradictory,
with some articles claiming significant transfer effects at large
scale (Hardy et al., 2015) whereas others have reported negligible
transfer even to operationally similar tasks (Owen et al., 2010).

Notably, Owen et al. (2010) have been criticized for providing
insufficient “intensity” during the training phase. This criticism
warrants further discussion because it highlights an often-
overlooked problem: it remains unclear what the optimal
parameters for a brain training regime are. Should the training
last minutes or hours per session? How many times per
week? What timescale should the training program be run
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for to produce transfer effects (near or far) of significant
scale? Should brain training be paired with physical activity
and social interaction to increase the positive effect of the
brain training (Boot and Kramer, 2014). This issue relates to
a lack of exploratory “scoping” work in the field; evidence
from controlled trials forms the ultimate target of intervention
research, yet this is often undertaken without prior exploration
of study design parameters, which in turn inflates the risk
of insensitive and underpowered studies. Brain training-wise,
a gap between existing theories and existing data has very
recently been highlighted (Edwards et al., 2018). While the option
of dismissing effective behavioral interventions on theoretical
grounds is not beneficial to public health (Edwards et al., 2018),
further investigations are needed before wide implementation of
brain training programs. Indeed, it is notable that older adults
from the cohort of Owen et al. (2010) did show transfer effects,
but they also trained over a longer period of time.

Here we attempt to bridge this knowledge gap with an
exploratory cross-sectional investigation of data from two
large-scale Internet-cohort studies. In the first cohort, the
questionnaire included the question “do you brain train.” In the
second cohort, we expanded significantly on this question in
order to probe intensity, device and length of training, whilst also
exploring how these factors might compare with other cognitive
pursuits such as gaming. Out hypothesis was that brain training
has significantly scaled transfer effects over long but not short
time scales. To seek evidence of near transfer, we test whether
individuals who used brain training programs in common use in
2010–2013 had a significant advantage in their working-memory,
reasoning and verbal scores. We examine how these differences
in scores interact with how long participants had been brain-
training, i.e., for individuals who had just started to brain train
compared to those who do not brain train at all and those who
had trained for weeks, months or years. We then assess how
cognitive performance varies as a function of training frequency.
We also search for evidence of far transfer by comparing
employment status and self-reported problems of attention in
everyday life across the brain training groups. Finally, we test the
hypothesis, that for both near and far transfer, engaging in brain
training is as or more effective than alternative cognitive pursuits,
including card games, video games and puzzles.

MATERIALS AND METHODS

Cognitive Tasks
The cognitive tasks reported in this study were programmed
in Adobe Flex 3 by AH. They have been reported in several
previous studies (such as Owen et al., 2010; Hampshire et al.,
2012; Daws and Hampshire, 2017) and were adapted for the
Internet from classical paradigms in the experimental psychology
and cognitive neuroscience literature. They measure planning,
reasoning, attention, and working memory abilities. Tasks were
presented on a bespoke web-site in a fixed sequence, after which
we performed a detailed, demographic assessment. An entire
battery of tasks took approximately 30 min to complete, with each
task calculating one outcome measure.

Participants
Data collection for Cohort 1 was performed between September
and December 2010 via a website advertised in a New Scientist
feature, on the Discovery Channel website, in the Daily
Telegraph, and on social networking websites including Facebook
and Twitter (for further details, please refer to Hampshire et al.,
2012). Cohort 2 used a slightly different subset of tasks and was
collected in the first four months of 2013 with advertisement
through a press release associated with the article published from
analysis of Cohort 1 (Hampshire et al., 2012).

In Cohort 1, we included participants who completed all 12
tasks in the analysis (44,780 participants, Table 1). In Cohort 2,
we included in the analysis only participants who had completed
12 or more of the 13 tasks (15,442).

Ethical approval for the study protocol was awarded by the
Cambridge Psychology Research Ethics Committees (2010.62)
and the University of Western Ontario Health Sciences Research
Ethics Board (103472) for Cohorts 1 and 2, respectively. All
participants gave informed consent by clicking a button on
the website before being able to access the cognitive and
demographic assessment.

Data Analysis
MATLAB and SPSS were used to conduct statistical analyses. The
studies were not pre-registered, and the analyses are exploratory
rather than resulting from an a priori analyses plan. Data from
both studies were preprocessed using the following steps:

(i) Participants with ages below 15 or above 90 and subjects
with nonsensical responses to any survey question
were excluded case-wise (see Hampshire et al., 2012
for further details). Each participant was issued with
a username and login. They were able to undertake
the tasks multiple times if they wished; however,
only their first attempt at the testing battery was
analyzed in this study. Individuals who answered the
questionnaire too quickly to have read the questions
were excluded.

(ii) The cognitive data for each task were ranked and
transformed to normality, an approach that deals with
Non-normally distributed data and outlier values.

TABLE 1 | Demographics for Cohort 1 (N = 44,780).

Age range (years) Mean 30

SD 11,48

Gender Female 11,633

Male 33,147

Handedness Left 5,411

Right 39,369

Brain train? Yes 2,833

No 41,947

Video games? Daily 12,415

Weekly 11,911

Monthly 9,452

Never 11,002
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(iii) Latent variables were estimated separately from the
Cohort 1 and Cohort 2 performance data in a data-
driven manner using principal component analysis
(PCA) as follows.

To define a “Global” measure of cognitive performance in each
cohort, we first performed a principal component analysis, on
the rank-transformed scores for each of the 12 tasks. The first
unrotated principal component was used to define a “global”
measure. Mathematically, this is the biggest linear mixture
of all abilities that tasks involve and is analogous to an IQ
score. To enable finer-grained analysis across different cognitive
domains, we defined three orthogonal “summary” variables
using a varimax rotation of the PCA coefficients. These latent
variables are fully characterized in previous work (Hampshire
et al., 2012; Daws and Hampshire, 2017). In brief, significant
components were defined using the Kaiser convention, which
only includes components that have eigenvalues that are higher
than 1 (Table 2). In both datasets, three “significant” components
were identified. Inspection of the task-component loadings
after varimax rotation showed that these summary variables
correspond to the working memory (WM), reasoning and verbal
demands of the tasks. Multiple abilities underlie performance of
each task, and this has been reported extensively in our previous
papers. For the sake of consistency with previous studies, we used
PCA with varimax rotation and not alternative methods such as
PFA. We noted though, that the latter generates a near identical
task-factor loading matrix.

(iv) Latent variable scores were generated for the participants
using regression. Relationships between latent variable scores
and questionnaire variables were determined by generalized
linear modeling after factoring out other potentially confounding
questionnaire variables.

Analyzing data with large numbers of samples affords very
high statistical power, which means that effects of potentially
negligible or small scale can have very low p values; therefore,
in big-data studies of this type, a more informative gauge of
significance is effect size. Here, we conform to Cohen’s notion of
effect sizes, whereby an effect of ∼0.2 standard deviations (SDs)
is small,∼0.5 SDs is medium, and∼0.8 SDs is large. All statistical
values from our analyses are p < 0.001 unless otherwise indicated.
All results and figures are presented in SD units, enabling visual
assessment of effect size.

TABLE 2 | Brain training and computer gaming vs. task scores in Cohort 1.

Wald Chi-square df Sig.

Global score Video games 1413.65 3 < 0.001

Brain training 9.98 1 0.002

WM Video games 608.00 3 < 0.001

Brain training 14.25 1 < 0.001

Reasoning Video games 909.80 3 < 0.001

Brain training 4.18 1 0.041

Verbal Video games 18.63 3 < 0.001

Brain training 3.10 1 0.079

RESULTS

Cohort 1 – Is Brain Training Effective?
Brain Training Is Effective, but the Effect Is Small to
Negligible When Compared to Regular Video-Gaming
Of the 44,780 participants included in Cohort 1, 2,833
reported that they regularly used a brain training program
(Table 1). The global measure explained∼28% of the population
variance in performance. The three varimax rotated principal
components (Figure 1), collectively accounting for ∼46% of
the variance. Potentially confounding variables including age,
gender, handedness, ethnicity, education level and employment
status were factored out of these summary variables prior to
further analysis. A general linear model was run including the
factors Brain Training (answer “yes” vs. “no” to the question
“Do you brain train?”) and Video Games (answer “Never,”
“Monthly,” “Weekly” or “Daily” to question “How often do you
play Video Games?”) with global performance as the predicted
variable. The Wald Chi Squared showed statistically significant
main effects of Brain Training (X = 9.98 p = 0.002) and of
Video Games (X = 1413.7 p < 0.001). However, the Brain
Training main effect was of small scale (+0.06 SDs). The Video
Games main effect was of medium scale and there was a clear
relationship with frequency of gaming, specifically, Non-gamers
scored 0.47 SDs lower than those who reported playing Video
Games daily. Repeating these analyses for the WM, Reasoning
and Verbal summary variables (Table 2 and Figure 2) showed
negligible scaled main effects for Brain Training. There were
significantly scaled main effects for Video Games for the WM
and Reasoning variables, but not for the Verbal variable (0.31,
0.37 and 0.024 SDs, respectively). In a final analysis, the scale of
the Brain Training effect was examined separately for each age
decade. None of the age groups showed a significantly scaled
effect, with the largest being for people in their 30 and 60 s
(both∼0.15 SDs).

Cohort 2 – What Are the Factors
Affecting Brain Training and
Other Cognitive Pursuits?
A plausible explanation for the lack of relationship between
cognitive performance and brain training in Cohort 1 was
that lower than average cognitive ability motivates people to
engage in brain training. If this was the case, then individuals
who have just started to brain train would have lower than
average task performance, which would mask any benefits.
A related possibility was that training may be required at
high frequency produce a generalized effect. Furthermore, some
training software packages may be more beneficial than others.
To explore these possibilities, Cohort 2 completed a more detailed
questionnaire, which included the questions “Do you believe that
brain training works?,” “How often do you brain train?,” “How
long have you been brain training?” and “Which brain training
devices do you use?.” There also were questions pertaining to the
frequency of other common cognitive pursuits including Video
Games, card games, board games, and puzzles such as Sudoku
and crossword puzzles.
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FIGURE 1 | Principle components analysis. Similar varimax rotated 3-component models were evident in Study 1 and 2. One component (WM) explained substantial
variance in tasks that require information to be maintained actively in working memory. Another component (Reasoning) explained variance in tasks that required
either information to be transformed according to rules (e.g., Rotations and Spatial Planning) or rules to be identified (e.g., Deductive Reasoning). The final
component (Verbal) explained variance in tasks that have language or number stimuli.

FIGURE 2 | Relationship of brain training and computer gaming with cognitive score in Study 1. Left – In Study 1 there was little difference in cognitive scores for
individuals who report regular brain training vs. the rest of cohort. Right – Participants who played Video Games showed small-medium scaled advantages in
cognitive scores. These scaled with frequency of gaming and were evident for the Global, WM and Reasoning scores, but not for Verbal score.

Belief in Brain Training Is Consistent With
Generalized Strength of Belief
After data cleaning, 15,442 individuals were included in Cohort 2,
3,917 of whom reported that they brain trained (Table 3).
Approximately half (8,387) of the cohort answered “yes” to
the question “Do you believe that brain training works,” 1,368
answered “no” with the remaining 5,682 reporting that they did
not have an opinion. Interestingly, strength of belief in brain
training scaled linearly with strength of religious belief (Figure 3).
The global performance variable accounted for 27% of the
variance in performance. The three varimax rotated components
collectively accounted for 43% of the variance (Figure 1).
Potentially confounding effects of age, handedness, gender,

ethnicity, education level, employment status and religious
group were factored out of the summary variables prior to
further analysis.

Brain Training May Be Effective, but So Are
Other Cognitive Pursuits
A general linear model was run with global performance as the
predicted variable and including factors for frequency (Never,
Monthly, Weekly, Daily) of pursuits including Brain Training,
Video Games, Board games, Cards and Puzzles (e.g., crosswords
and Sudoku) (frequencies in Table 4). All factors showed
statistically significant main effects at p < 0.001 (Table 5 and
Figure 4). The largest positive effect sizes were for Video Games
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TABLE 3 | Demographics for Cohort 2 (N = 15,442).

Age range (years) Mean 26

SD 12.7

Gender Female 4,756

Male 10,683

Handedness Left 1,638

Right 13,804

Brain training works? Yes 8,387

Maybe 5,682

No 1,368

FIGURE 3 | Relationship between religiosity and belief in brain training in
Study 2. The majority of participants were of the opinion that brain training
“works.” However, those who held strong religious beliefs also were more
likely to believe in brain training.

TABLE 4 | Frequency of cognitive pursuits.

Daily Weekly Monthly Never

Brain training 810 1,055 2,052 11,519

Video games 3,572 3,666 3,684 4,515

Card games 441 1,312 6,218 7,466

Board games 265 1,071 6,110 7,991

Puzzles 1,304 4,968 6,428 2,276

at 0.27 SDs and Puzzles at 0.39 SDs. Individuals who reported
brain training daily showed a small disadvantage relative to those
who did not (e.g., Daily training vs. Never = –0.21 SDs).

At a finer grain, Video Game and puzzle players showed
small advantages for the Reasoning variable (0.29 and 0.24 SDs,
respectively), Cards and puzzle players showed small advantages
for the WM variable (both 0.21 SDs), and puzzle players showed
a small advantage for the Verbal variable (0.21 SDs) whereas
individuals who brain trained showed a small disadvantage for
the Verbal variable (–0.25 SDs).

TABLE 5 | Cognitive pursuits vs. task scores in Cohort 2.

Wald Chi-square df Sig.

Global score Brain training 41.19 3 < 0.001

Video games 177.29 3 < 0.001

Card games 18.47 3 < 0.001

Board games 51.43 3 < 0.001

Puzzles 358.30 4 < 0.001

WM Brain training 1.85 3 0.604

Video games 32.78 3 < 0.001

Card games 57.20 3 < 0.001

Board games 24.52 3 < 0.001

Puzzles 130.83 4 < 0.001

Reasoning Brain training 17.78 3 < 0.001

Video games 182.73 3 < 0.001

Card games 4.25 3 0.235

Board games 12.65 3 0.005

Puzzles 127.00 4 < 0.001

Verbal Brain training 65.48 3 < 0.001

Video games 10.52 3 0.015

Card games 4.72 3 0.194

Board games 26.00 3 < 0.001

Puzzles 68.20 4 < 0.001

There Are Small Differences Between Common
Devices and Packages for Brain Training
When global variable scores were compared for the most
common training software packages in the cohort, these being
Lumosity (N = 877) Nintendo Brain Age (N = 298) vs. all
others. There was no significant main effect of device (p = 0.537).
Repeating this analysis at a finer grain showed no statistically
significant main effect of device for the WM variable (p = 0.165).
There were statistically significant main effects of device for
the Reasoning and Verbal variables (p = 0.007 and p = 0.001,
respectively). However, these were of negligible effect size, with
Brain Age scoring 0.15 SDs higher than Lumosity for the
Reasoning variable and Lumosity scoring 0.18 SDs higher than
brain Age for the verbal variable.

Frequency and Intensity Are Independent Factors
That Contribute to the Efficacy of Brain Training
Individuals who brain trained were examined at an even finer
grain by dividing the population into groups according to
whether they reported training for a year or more (875), months
(704), weeks (695), or had just started (1644). A general linear
model was run with global performance as the predicted variable
and the factors Training Frequency (Daily, Weekly Monthly) and
Training Duration, and the 2-way interaction of these factors (see
Table 6 for cross tabulation). Both main effects were significant at
p < 0.001. The interaction was statistically Non-significant, which
is notable given the statistical power afforded at this cohort scale.

New “Brain Trainers” Start at a Lower Baseline in
Cognitive Performance
Examining the data for those individuals who had just started
brain training showed that they were on average numerically
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FIGURE 4 | Relationship of brain training and other cognitive pursuits with cognitive scores in Study 2. Left – Cognitive scores for participants who brain train at
different frequencies in cohort 2. All measures are relative to those who do not brain train. Participants who engaged in daily brain training showed a small but
significant disadvantage in their Global and Verbal scores. Right – Scores broken down according to other cognitive pursuits. All values relative to participants who
do not participate in the relevant cognitive pursuit. Small-medium scaled advantages in cognitive scores were evident. These often scaled with frequency. The
relationships also varied according to the type of cognitive pursuit. E.g., participants who played card games regularly showed advantages for WM score only
whereas those who played Video Games showed advantages for WM and Reasoning but not Verbal scores. Puzzles were associated with higher scores for all three
cognitive variables.

below the mean performance of the broader cohort (Tables 6, 7
and Figure 5). This effect was most pronounced for those
individuals who trained on a daily basis (–0.24 SDs). Global
performance tracked upward in a linear manner for all three
frequency groups as a function of training duration with the
highest performing group being those who trained on a weekly
basis for > 1 year. This group performed 0.32 SDs higher than
the population average for individuals who do not brain train.
Repeating this analysis for each composite performance variable
showed significant main effects of frequency and duration for
the Verbal variable, a significant main effect of duration for the
WM variable and a significant main effect of frequency for the
Reasoning variable. There were no other significant main effects
or interactions (Table 7 and Figure 5).

Brain training has a negligible effect on self-report of
everyday problems
Finally, we examined whether the relationship that was evident
between brain training duration and cognitive performance
extended to every-day life, “far transfer.” First, the frequency
of self-reported problems concentrating in everyday life was

TABLE 6 | Cross tabs for training frequency and training duration.

Just started Weeks Months >1 year Total

Daily 240 130 143 298 811

Monthly 1064 316 322 350 2052

Weekly 340 249 239 227 1055

Total 1644 695 704 875 3918

examined (never, infrequently, weekly, several times a week,
every day, all the time) for individuals who had brain trained
for different time spans. There was a statistically significant main
effect of timespan (P < 0.001); however, although the group with
lowest self-reported scores for problems concentrating were those
who had brain trained the longest, the difference relative to those
who just started was of negligible scale (0.072 SDs) as was the
difference relative to those who do not brain train (0.13 SDs).
Then, the proportion of individuals who were employed was
examined as a function of time spent brain training. Calculating
the strength of association between time spent training (never,
just started, weekly, monthly, > 1 year) and employment status

TABLE 7 | Main effects and interactions of frequency and duration.

Wald Chi-square df Sig.

Global score Frequency 28.833 2 < 0.001

Duration 35.414 3 < 0.001

Interaction 2.343 6 0.886

WM Frequency 0.678 2 0.713

Duration 12.393 3 0.006

Interaction 5.875 6 0.437

Reasoning Frequency 19.56 2 < 0.001

Duration 4.461 3 0.216

Interaction 4.232 6 0.645

Verbal Frequency 16.739 2 < 0.001

Duration 25.729 3 < 0.001

Interaction 11.723 6 0.068
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FIGURE 5 | Cognitive scores in Study 2 for people who report brain training at different frequencies and over different durations. Participants who had just started
brain training showed significantly scaled disadvantages in Global and Verbal score relative to participants who reported no brain training. These lower scores were
most pronounced for participants who reported brain training on a daily basis. There was an increase in cognitive scores with duration of training such that those
who trained weekly for a year or more had Global scores 0.32 SDs higher than the non-training population. Smaller scaled trends in the same direction were evident
for the WM and Reasoning variables.

(full time, part time and unemployed) again showed a statistically
significant but negligible-scaled association (Cramer’s V = 0.05,
p < 0.001) (Figure 6).

DISCUSSION

Our large-scale cross-sectional analyses provide population-
level insights into the likely efficacy of different brain training
programs when applied at different intensities and temporal
scales. The findings can help not only in the evaluation of
previously reported results, but also in the design of future trials
(Seitz, 2017).

At a first pass, we found little cross-sectional evidence for
beneficial effects of brain training. More specifically, analysis of
performance scores in Cohort 1 showed no advantage for people

who brain train vs. those who do not in terms of global or any
of the three summary variables. The same was essentially the case
for Cohort 2; however, the extended questionnaire allowed this
null finding to be examined in more detail.

The most notable finding from this finer grained analysis
was that people who have just started to brain training
(i.e., such that there was no time to have gained any
benefits) tend to have a disadvantage relative to the broader
population. Scores then track upward as a function of how
long but not how frequently they have trained for. These
low scores are best accounted for by motivational factors.
Simply put, lower cognitive ability is likely a motivating
factor for engaging in brain training. In accordance with
this view, far more people believe that training works than
engage in it. Furthermore, individuals who train the most
frequently show the lowest starting baseline. Accounting for
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FIGURE 6 | Relationship between time spent brain training and employment in Study 2. Approximately 70% of the study cohort reported being in full time
employment. There was no significantly scaled relationship between employment status and the reported duration of brain training.

the differential baseline and its relationship to population
variability in motivational factors is an important consideration
for any future studies.

The higher performance observed in those who train for
longer durations is more promising. It could well be the
case that although those who engage in brain training start
from a lower than average cognitive baseline, through practice
they are able to improve. It is important to note that our
results are from cross sectional data and must be corroborated
through longitudinal trials. Nonetheless, a synergy exists between
observational research and controlled trials, with the former
helping to provide a guide to the focus and design of the latter,
whilst the latter provides evidence for cause-effect relationships
that cannot be directly inferred from the former. In the case
of brain training, we argue that there has been insufficient
observational research, leading to suboptimal design in many
published brain training studies. Few studies have sought to
determine the training timespan that is required to produce
transfer effects. The guidance of observational studies can help
inform optimal parameter ranges. The large-scale observational
study presented here provides novel insights that may guide
the design of future trials. Most notably, the significantly scaled
differences in cognitive performance within the brain training
group were observed when comparing those who had been
training for a year or more with those who had just started. On
the one side, many among the previous studies have operated
at substantially shorter timescales: findings from training studies
conducted at the scale of weeks or months should be treated
cautiously, especially when conducted in small cohorts. On the
other side, the differences between the two groups could be
explained by selective attrition (e.g., people with low cognitive
function are not able to sustain brain training for several
months or a year), although our study is not suitable to directly
assess this aspect.

Our analyses also showed no interaction or main effect
of brain training frequency. On the surface, this provides
little support for high intensity regimes, which, from a
pragmatic perspective, is important if longer time scales are
required. Although previously published reports have suggested a
relationship between training frequency and the scale of transfer
effects (cited in the review by Simons et al., 2016), the extent
and the significance of this relationship remains elusive. De
facto, this relationship is often assessed retrospectively, which
is an aspect directly linked to the nature of the experimental
study design used, and the impact of frequency on the size
of the transfer may hide the contribution of other factors.
A possible explanation for this can thus be the greater sensitivity
and control afforded by longitudinal within-subject designs.
Moreover, another explanation encompasses the fact that there
may be an interaction between baseline ability and rate of
improvement with training (higher ability individuals may tend
to learn faster) or even an important role of other factors such
as motivation. These factors may effectively cancel each other
out, thus nullifying their effects. Future controlled intervention
trials will assess whether intensity of training plays a key role
and will clarify the relationship between training frequency
and the scale of the transfer effect. Regardless, such trials
should be conducted at longer duration. In line with this
interpretation, the study by Corbett et al. (2015) showed cognitive
and functional improvements in older adults with a brain
training program over a longer timescale (Corbett et al., 2015).
A possible complication with longer regime training is that
dropout rates may be higher for individuals who start from
lower cognitive baselines. This could conceivably produce the
illusion of an improvement for groups who had been training
for longer time spans. However, we consider this to be unlikely,
especially taking into account that previous longitudinal studies
have observed no systematic bias in compliance for high vs.
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low performing individuals (Hardy et al., 2015); if anything,
it is the lower performing individuals who are the most
motivated to engage in the training in this study as well,
at least as it can be gauged by frequency, although it could
still be the case that one’s perceived improvement is itself a
motivating factor.

A key issue pertains to how far the benefits of brain training
generalize. In their piece, Simons and colleagues suggested that
benefits likely transfer to cognitive tasks that are similar to
the training paradigms. However, evidence for “far” transfer to
operationally distinct tasks or improvement in everyday cognitive
function after brain training is lacking (Simons et al., 2016;
Lindenberger et al., 2017). Our results accord well with this view.
For example, there were subtle differences in the relationship
between scores for the WM, Reasoning and verbal variables and
training software package, which likely relates to the different
composition of paradigms that are used.

More importantly, we found little evidence of far transfer
effects at the population level. Specifically, when we examined
two ecologically focused self-report measures: frequency of
problems concentrating in everyday life and employment status.
These also showed no overall relationship with brain training
and correlation with training frequencies and timescale were
of small scale. Again, this result accords well with Simons’
perspective on the limited scope of transfer (Simons et al.,
2016). It also highlights the importance of assessing the
ecological relevance of transfer effects when designing brain
training studies.

More tentatively, it could be the case that to achieve
generalization to everyday function in clinical populations, it will
be necessary to develop training regimes that are closely targeted
to the specific operational impairments that contribute to the
problems they have in everyday tasks. It may also be advisable
to couch such training in a more ecologically relevant format,
i.e., by designing training with real-world applications (Moreau
and Conway, 2014), virtual environments or augmented reality
with similarities to the everyday tasks that the individual would
most benefit from improving at. Also, as everyday life involves
interaction with other people, ecological validity should take into
account factors linked to social interactions (Engert et al., 2017;
Valk et al., 2017).

The comparison of these results for brain training to other
pursuits is informative in terms of simple mean differences
to controls, namely those who do not brain train. Solving
puzzles such as crosswords or jigsaws is of course cognitively
challenging (Fissler et al., 2017) as are a vast range of other
cognitive pursuits. The relationship between frequency of video
games, board games and puzzles and cognitive performance
were all of significant scale relative to Non-engagement. It is
interesting to note that the relationships were not homogenous,
i.e., different cognitive pursuits correlated with advantages
in different cognitive domains. this again accords with the
notion that if there are generalized benefits of engaging in
such pursuits, then they likely extend in “near” as opposed
to “far” manner.

We cannot rule out the possibility that these relationships
have a basis in motivational factors: motivation is very different

for cognitive pursuits such as computer gaming, because these
are undertaken for entertainment, those who engage in such
pursuits may be more motivated to do so if they are more
cognitively able and perform better. However, such robust
relationships warrant further attention in future studies, with
a cross sectional focus extending to baseline performance
differences, and further empirical work focusing on carefully
controlled “game-training” trials.

Indeed, the current literature on “video-game training” is
analogous to that for brain training. For example, some studies
have reported significant generalized benefits (Basak et al., 2008;
Boot et al., 2008; Anguera et al., 2013; Granic et al., 2014; Mayas
et al., 2014; Toril et al., 2014; Green and Bavelier, 2015; Bediou
et al., 2018), whereas others have no or only modest benefits
(Unsworth et al., 2015; Ballesteros et al., 2017; Sala et al., 2018),
with some tentative meta-analytic evidence for both near and
far transfer (Wang et al., 2016; Bediou et al., 2018). Once again,
the timescales required for generalized benefits is poorly defined
and may underlie this inconsistency. The need for larger cohort
studies and more intervention studies with more than 30 h of
training has already been argued (Bediou et al., 2018), as well as
the importance of considering the role of motivational effects in
order to rule out alternative explanations before attributing the
effect to interventions (Foroughi et al., 2016).

A final interesting point pertains to the relationship between
religiosity and belief in the efficacy of brain training. It is
intriguing that, as discussed above, those researchers who hold
favorable opinions of brain training accused those who do
not of taking a faith based position in their open letter.
We have previously published analysis of religiosity and its
relationship to other variables. It is somewhat ironic that
it is, in fact, religious individuals, who are characterized by
faith based decisions (Daws and Hampshire, 2017), those who
are most likely to believe that “brain training works,” and
it might be that some people are likely to believe in claims
presented to them quite generally. Moreover, belief in different
contexts correlates, although there might be other potential
confounds (e.g., geography, age, SES). This has implications
for where purveyor of brain training technology may best
target their products.

Our study has many strengths, but it is important to mention
the limitations that might affect the interpretation of our main
findings, such as the retrospective nature of report, its Non-
experimental design and potential biases inherent to self-report.
Our finding that brain training has a negligible effect without
long term practice is complicated by the fact that in this cross-
sectional analysis participants who underwent brain-training had
a heterogenous experience (i.e., focused on a range of domains).
This adds noise to our findings, and potentially deflates the
scale of our inference and may play a role in explaining the
null results here presented, compounded by the retrospective
style of the analysis, and the self-report of brain training by
participants. Assessing the relationships between the content of
brain training and the specific outcomes can be considered.
Naturally assessing relationships between the content of brain
training, and specific cognitive outcomes should be considered
in future works. However, it must be noted that analysis in an
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interventional experimental design would require more focused
parameters for duration and frequency as identified here. On a
more general level, the differences between the brain training
groups who have just started brain training and those that have
trained for more than a year could be explained by selective
attrition (e.g., people with low cognitive function are not able to
sustain brain training for several months or a year).

In conclusion, we provide cross-sectional results from two
large Internet-based cohorts that accord with the view that
individuals who undertake commercially available brain training
regimes for long timescales gain benefits that transfer in a
limited way to other computerized tasks. Motivation to engage
in brain training is shown to be an important confounding
factor because it correlates with baseline cognitive ability.
Other types of cognitive pursuit are associated with greater
performance advantages in the general population and warrant
further investigation with controlled trials. Future trials aimed at
validating training regimes should focus on longer time-spans,
carefully control for baseline ability and motivational factors,
and quantify transfer to everyday function. Clinical applications
of training should focus on cognitive operations that form the
specific basis of patients’ impairments in order to minimize
transfer distance to everyday function.
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The purpose of this study is to clarify whether there is a learning effect on brain activity
after writing with an ink pen vs. a digital pen. Previous studies have reported the
superiority of handwriting to typing in terms of learning performance, but differences
between the use of an ink pen vs. a digital pen remain unclear. In the present study,
the participants learned to read difficult words by writing with an ink pen vs. a digital
pen. After the learning period, electroencephalography (EEG) signals were measured,
while the participants underwent a repetition priming paradigm with the use of the
learned words. The repetition priming effect of the N400 event-related potential (ERP)
was quantified as an index of the learning effect and the effects between pen types
were compared. The groups were also subdivided according to whether a digital pen is
frequently used (familiar vs. unfamiliar group). The number of writing repetitions for each
word within 10 min during the learning activity and the post-learning test scores were not
affected by the pen-type or familiarity with a digital pen. However, the repetition priming
effect of the N400 was greater for words written with a digital pen in the learning session,
as compared with an ink pen, in the familiar group, but not the unfamiliar group. These
results suggest that for those familiar with its use, writing with a digital pen may improve
learning relative to the use of an ink pen.

Keywords: digital device, learning, electroencephalography, digital pen, handwriting

INTRODUCTION

Digital devices are increasingly used in education, so understanding the differences in the effects
on learning ability relative to the use of analog devices could lead to more effective educational
practices. Experimental psychological studies have investigated the differences in learning effects
between writing with a conventional pen and typing on a keyboard. In adult participants,
recognition accuracy was higher after they learned unfamiliar characters by writing them down
on paper than typing on a keyboard (Longcamp et al., 2008), and more words were recalled after
writing on paper than typing (Mangen et al., 2015). Preschool children also learned letters and
words more effectively by handwriting than typing (Longcamp et al., 2005; Kiefer et al., 2015).
Additionally, handwriting seems to be more effective for conceptual comprehension than typing.
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In fact, comprehension assessment of listening to
technology/entertainment/design talks was superior among
college students who made notes in a notebook using a
pen as compared to those who typed notes on a laptop
computer (Mueller and Oppenheimer, 2014). The advantage
of handwriting over typing has also been indicated in
neuroscientific approaches using electroencephalography
(EEG; van der Meer and van der Weel, 2017) and magnetic
resonance imaging (Vinci-booher et al., 2016).

However, few studies have investigated whether learning
effects differ between writing with a digital pen on a tablet
vs. writing with a conventional pen on paper. Hatano et al.
(2015) conducted an EEG experiment in which the participants
took notes with a digital pen on a tablet or with a mechanical
pencil on paper while listening to scientific lessons. There were
no significant differences in the scores of comprehension and
memory tests performed after taking notes on a tablet vs. paper.
However, theta-band (4–7 Hz) EEG activity was higher when
writing on a tablet than on paper. Because the theta-band EEG
activity was reported to increase with the cognitive load (Gevins
et al., 1997; Borghini et al., 2012; Anguera et al., 2014), the use of
a digital pen and tablet require more cognitive effort to monitor
written characters and more attention to movements for writing
compared with writing on paper. In fact, recent studies reported
that the movements of handwriting with a digital pen on a tablet
are not the same as with a conventional pen on paper (Alamargot
and Morin, 2015; Gerth et al., 2016a,b; Wollscheid et al., 2016;
Guilbert et al., 2019). Alamargot andMorin (2015) demonstrated
that the handwriting kinematics of school-age children when
writing with a plastic-tipped pen on a tablet screen is different
from when writing with a ballpoint pen on paper, and the effects
vary with age, as second graders made longer pauses and nine
graders increased pen pressure and speed. These results suggest
that segment trajectory calculation is disturbed in younger
children and control of muscular adjustment is disturbed in
older children. From the points of view of movements and
brain activities, handwriting with a digital pen on a tablet might
disturb cognitive activities, such as learning. To the best of our
knowledge, this is the first study to investigate whether brain
activity after learning by handwriting with a digital pen on a
tablet is different from that with a pen on paper. The difference
of after-effect might vary according to the (un)familiarity with a
digital device.

In the present study, the N400, an event-related potential
(ERP) response, was used to measure the learning effect of
handwriting with a digital pen vs. an ink pen. The N400 is
a negative-going component peaking around 400 ms after
exposure to words, pictures, and other meaningful stimuli (for
a review, see Kutas and Federmeier, 2011), which is related
to semantic processing so that the amplitude changes with
the ease of accessing information from long-term memory and
integrating semantic representations into a preceding context
(for a review, see Kutas and Federmeier, 2000). Many studies
have shown that theN400 changes with language learning (Ojima
et al., 2005, 2011) and developmental progress (Friedrich and
Friederici, 2004, 2010; Reid et al., 2009). Most importantly,
the N400 effects have been observed in an earlier stage of

learning than behavioral indices (McLaughlin et al., 2004).
Regarding an adult’s ability to learn a second language (L2),
McLaughlin et al. (2004) showed that the amplitude modulation
of N400 discriminated between L2 words and pseudo-words after
14 h of classroom instruction, while the participants reached only
chance levels when making overt L2 word-nonword judgments,
suggesting that the N400 is a powerful tool to reveal the effects of
learning, especially in the early stage.

The Japanese language has two writing systems [i.e., kana
(syllabograms) and kanji (morphograms)], and so, many words
have two notations. As the learning content, well-known
Japanese words are used that are generally written in kana
(syllabograms), as most Japanese people cannot read. Although
there are two notations, most are familiar with the kana notation,
but not kanji notation (Figure 1). In the learning activity, the
participants learned the readings of such words by writing with
a digital pen on a tablet and with an ink pen on paper. Just
after the learning activity, EEG experiments were conducted
with a repetition priming paradigm to determine whether the
repetition priming effects of the N400 were affected by learning
tools (i.e., digital pen vs. ink pen) and/or familiarity with a digital
pen and tablet. When two stimuli are presented consecutively
and the subsequent stimulus (target) is identical/related to the
preceding stimulus (prime), the N400 amplitude of the target
decreases relative to the unrepeated/unrelated target (van Petten
et al., 1991; Deacon et al., 2004; Matsumoto et al., 2005; Rugg,
1985; Holcomb, 1993). In the present study, the words written
in the learning activity (prime) were followed by kana words
(target) that were semantically and phonologically identical to
the prime words (repetitive condition) or not (non-repetitive
condition). We assumed that as learning progresses, a larger
difference in the N400 amplitude between the repetitive and
non-repetitive conditions (i.e., repetition priming effect of the
N400) would occur. The differences in the repetition priming
effect of the N400 with writing with a digital pen on a tablet vs.
with an ink pen on paper were used for comparisons between
participants familiar and unfamiliar with the digital pen system.

MATERIALS AND METHODS

Participants
Twenty-eight healthy volunteers participated in the study.
They were divided into two groups according to the results
of a questionnaire distributed after the EEG experiment:
11 participants (10 men and one woman; age, 26–52 years) who
used a digital pen/tablet system in their daily lives (familiar
group) and 17 participants (10 men and seven women; age,
21–47 years) who did not (unfamiliar group). The study
protocol was approved by the Bioinformatics Ethics Committee
of the National Institute of Information and Communications
Technology, and all participants provided informed written
consent before participation in this study.

Learning Materials
Selection of Words for the Learning Activity
As the learning contents, 120 well-known Japanese words were
selected that are generally written in kana (syllabograms), as
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FIGURE 1 | An example of a Japanese word written in kanji that is difficult to read. Mole in English corresponds to two notations in Japanese: written in
kana (syllabogram) and written in kanji (morphogram). However, the kana notation is generally used and most Japanese cannot read the kanji notation, so
only the kana notation was associated with the reading and meaning of the word “mole,” but not the kanji notation. We assumed that in the learning activity, the
participants wrote the kanji notations of such words, then the kanji notations have association with the reading and meaning, as well as the kana notation.

most Japanese people cannot read written kanji (morphograms).
The words were primary school level that are familiar and easy
to image for Japanese people. Actually, the words had high
familiarity and imaginability values of >5.7 on average on a
seven-point scale (Amano and Kondo, 1999; Sakuma et al.,
2005; Table 1). The 120 words were divided into six sets of
20 words each. We confirmed that the lexical properties of
the words were matched among the sets based on the results
of the Kruskal–Wallis test, where there were no significant
differences in the number of characters (p = 0.20), number of
morae (p = 0.98), familiarity values (p = 0.50), and imaginability
values (p = 0.73) across the sets. In the learning activity, each
participant learned two sets of words that were randomly selected
across participants.

Stimuli for EEG Experiment
Forty kanji words that each participant wrote in the learning
activity (i.e., 20 with an ink pen and 20 with a digital pen)

were used as the prime stimuli in the repetition priming
paradigm. Each prime stimulus was followed by the target
stimuli, which comprised words written in Japanese syllabograms
(kana). According to the type of target word, two conditions
were set up: repetitive, where the target stimulus represented
the reading of the prime stimulus (i.e., semantically and
phonologically identical), and non-repetitive, where the target
stimulus did not represent the reading of the prime stimulus
(i.e., semantically and phonologically different). Trials under the
non-repetitive condition used kanji words from one set and
readings from the other sets (e.g., pair of kanji words of set A
and readings of set B). To prevent unwanted influences from
phonological and semantic priming effects on the non-repetition
condition, two evaluators checked the presence of phonological
similarity and semantic relationships between the prime and
target words in each pair. Finally, the word pairs that the
both evaluators judged as having no phonological similarity
or semantic relationships were adopted. Each kanji word

TABLE 1 | Lexical properties of word sets.

Lexical property Set A Set B Set C Set D Set E Set F Kruskal–Wallis test

Number of characters 2.2 ± 0.5 2.1 ± 0.4 2.2 ± 0.6 2.0 ± 0.5 2.3 ± 0.5 2.0 ± 0.5 p = 0.20
Numbers of morae 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5 3.4 ± 0.5 3.4 ± 0.6 p = 0.98
Familiarity values 5.8 ± 0.5 5.7 ± 0.9 6.0 ± 0.5 5.9 ± 0.6 5.8 ± 0.7 6.0 ± 0.5 p = 0.50
Imaginability values 5.8 ± 0.6 5.7 ± 0.7 5.9 ± 1.0 5.7 ± 0.7 5.8 ± 0.7 5.7 ± 0.6 p = 0.73
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learned by each participant were presented four times as the
prime stimulus throughout the experiment: two times for
the repetitive condition and two times for the non-repetitive
condition. Hence, the participants underwent 160 trials in total:
40 trials with the repetitive condition and 40 trials with the
non-repetitive condition in which the prime stimuli were the
words learned with a digital pen, as well as 40 trials with
the repetitive condition and 40 trials with the non-repetitive
condition in which the prime stimuli were the words learned with
an ink pen.

Experimental Procedures
The experiment flow was as follows: (1) pre-learning
test; (2) learning activity; (3) post-learning test; (4) EEG
measurement; and (5) questionnaire survey (Figure 2). The
protocols for each of these steps are described below.

Pre- and Post-learning Tests
To investigate the effects of the learning activity on test
performance, the participant’s ability to read the selected kanji
words was tested both before and after learning. The test
sheet given to the participants contained all of the kanji words
and the participants answered by writing the correct reading
of the words in kana. The words already known by the
participant before the learning session in the pre-learning test
(Supplementary Figure S1) were excluded from further analyses
of both performance and the N400.

FIGURE 2 | Experimental steps. This chart shows the detailed order of the
experimental steps. First, the participants completed a pre-learning test of
about 7 min. For the learning activity, the participants learned the kanji
notations by writing with each device (10 min each). The order of device use
was randomized. Then, the participants completed the post-learning test.
After 10-min rest, the electroencephalography (EEG) experiment was
conducted for about 22 min. Finally, they answered the questionnaire
(about 7 min).

Learning Activity
For each participant, two sessions were conducted in the learning
activity: a digital pen session, during which the participants wrote
20 words of one set repeatedly with a digital pen on a tablet, and
an ink pen session, during which they wrote 20 words of the other
set with an ink pen on papers. Each session with a given pen-
type lasted 10 min. The two sessions were performed in random
order among the participants. There was a rest period between
the two sessions.

Twenty pairs of kanji words and the corresponding readings
(written with kana syllabograms) were written on each learning
sheet. The participants were asked to copy the kanji words and to
memorize the readings and were told that the readings after the
learning activity would be tested.

For the digital pen learning session, a PDF file of the learning
sheet was displayed to the participants on a tablet (Cintiq
13HD Creative Pen Display DTK-1301; Wacom Co., Limited,
Tokyo, Japan), while the participants wrote with a digital pen
(Propen; Wacom). For the ink pen session, the learning sheet
was physically placed on a tablet (Intuos Pro Large PTH-851;
Wacom) and the participants were instructed to write with an
ink pen (Wacom).

EEG Measurement
The experiment described in ‘‘Stimuli for EEG Experiment’’
section was conducted while recording the EEG signals. Briefly,
the prime, target, and cue (###) were presented continuously
with each stimulus-onset asynchrony set to 1,000 ms (Figure 3).
The presentation duration for the prime and target stimuli was
300 ms, while that of the cue was 500 ms. The participant was
asked to read the prime (kanji) and target (kana) words silently
and to answer whether the readings of the prime and target
stimuli matched or not by clicking the computer mouse after
presentation of the cue. The prime for the next trial was presented
2,000–3,000 ms after the cue onset.

EEG and electrooculography (EOG) signals were measured
continuously using an eight-channel wearable EEG device
(Polimate mini AP108; Miyuki Giken Co. Limited, Tokyo,
Japan). The dry midline electrodes (UniqueMedical Co. Limited,
Tokyo, Japan) Fz, Cz, and Pz were used according to the
International 10-20 system. In addition, to detect the artifacts of
eye movements and blinks, and to reject the noise components
from the EEG signals, an electrode was placed on the upper and
right sides of the left eye to measure the vertical and horizontal
EOG components. All signals were sampled at 500 Hz with the
use of the left earlobe as the ground and the right earlobe as
the reference.

Questionnaire Survey
After completing the EEG measurements, the participants
responded to questionnaires concerning the use of digital pens
on a daily basis as well as the familiarity with the devices
used in the learning activity. Each participant was asked to
choose either the digital pen or the ink pen with respect
to: (1) which they felt required a greater workload; (2) was
more enjoyable; (3) easier to memorize; and (4) easier to
write with.
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FIGURE 3 | Schematic representation of the repetition priming paradigm. The prime stimuli were words written in morphograms (kanji), which the participants wrote
in the learning activity. The target stimuli were words written in syllabograms (kana). In the repetitive condition, the target words were semantically and phonologically
identical to the prime stimuli, but distinctly different in the non-repetitive condition. After presentation of the cue (###), the participants answered whether the reading
of the target was correct or not by clicking a mouse. The prime, target, and cue were presented with a stimulus-onset asynchrony of 1 s. The intertrial interval
between the offset of the cue and the onset of the next prime was randomly set at 2–3 s.

Data Analyses
Performance
The difference between the number of correct answers on the
reading test before and after the learning activity was recorded
as the number of words memorized. To assess the differences
between groups and devices, two-factor, mixed-design analysis
of variance was performed with factors of familiarity (familiar vs.
unfamiliar group) and learning device (digital vs. ink pen).

N400
Analysis of the EEG and EOG signals was conducted using
MATLAB (MathWorks Inc., Natick,MA, USA) and the EEGLAB
toolbox1. A bandpass filter of 0.2–30 Hz was applied to the
measured EEG and EOG signals, and artifact components,
mainly caused by eye movements and blinks, were excluded
from the EEG signals using noise reduction processing with
artifact subspace reconstruction and independent component
analysis. Next, the signals from 100 ms before to 800 ms after
target onset were averaged for each condition (repetitive vs. non-
repetitive) and each channel, and corrected using 100 ms before

1https://sccn.ucsd.edu/eeglab/index.php

target onset as a baseline. Trials exceeding ±80 µV on the Fz,
Cz, and Pz channels, those exceeding ±100 µV on the vertical
and horizontal EOG channels, and those of words correctly
adjusted based on preliminary reading tests were excluded from
the average.

The Cz or Pz electrode with a large repetition priming effect
on N400 was used as an analytical target for each participant and
each learning device. The recorded N400 waves had an average
amplitude of 300–450 ms after target onset.

Effects of familiarity and learning device on the repetition
priming effect of the N400 were analyzed using the same
two-factor analysis of variance described in ‘‘Performance’’
section. Furthermore, as a post hoc test, the t-test was conducted
within each group to identify differences in the repetition
priming effect between the two devices.

Questionnaire Survey
The χ2 test was performed to determine whether the familiar
group differed from the unfamiliar group regarding the
proportion of participants who responded that workload,
enjoyability, ease of memorization, and ease of writing were
greater with the use of a digital pen vs. an ink pen.
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RESULTS

Learning Activity and Pre/Post-learning
Tests
Regarding the number of writing repetitions per word, there was
no main effect of the participant group (F(1,26) = 0.78; p = 0.39,
partial η2 = 0.03), main effect of the learning device (F(1,26) = 0.04;
p = 0.84, partial η2 = 0.00), or interaction between the two factors
(F(1,26) = 2.98; p = 0.10, partial η2 = 0.10; Figure 4A). Similarly,
with regard to the number of words memorized, there was no
main effect of the participant group (F(1,26) = 0.03; p = 0.87,
partial η2 = 0.00), main effect of the learning device (F(1,26) = 2.94;
p = 0.10, partial η2 = 0.10), or interaction (F(1,26) = 0.50; p = 0.49,
partial η2 = 0.02; Figure 4B). Thus, performance in learning was
not affected by either familiarity or the learning device used.

EEG Experiment
Regarding the accuracy rates for the task during the EEG
experiment, there was no main effect of the participant group
(F(1,26) = 0.10; p = 0.76, partial η2 = 0.00) or learning device
(F(1,26) = 0.02; p = 0.90, partial η2 = 0.00) and no interaction
between the participant group and learning device (F(1,26) = 0.02;
p = 0.90, partial η2 = 0.00; Figure 5A).

For each participant group and device, the N400 (ERP;
350–450 ms) with the repetitive condition was smaller than with
the non-repetitive condition (Figure 6A). With specific regard to
the repetition priming effect of the N400 (i.e., difference between
N400 amplitudes measured under non-repetitive and repetitive
conditions; Figure 6B), a main effect of the learning device was
observed (F(1,26) = 4.78; p = 0.04, partial η2 = 0.16). That is, the
repetition priming effect was greater with the use of a digital

FIGURE 4 | Number of writing repetitions per word and number of words memorized. The number of writing repetitions per word during the learning activity (A) and
the number of memorized words (B) were not affected by either the writing device or familiarity with the digital device. Each bar shows the grand average of the
participants. The error bar represents the standard error. The red and blue bars indicate the use of a digital and ink pen, respectively.

FIGURE 5 | Accuracy rate and repetition priming effect of the N400 in the EEG experiment. (A) The accuracy rate was not affected by the learning device or group.
(B) The repetition effect of the N400 was significantly greater for words learned with the digital pen (red) than with the ink pen (blue) in the familiar group, but not in
the unfamiliar group. The bars indicate mean amplitudes of the difference-event-related potential (ERP) from 300 to 450 ms (i.e., non-repetitive condition minus
repetitive condition) between groups. The error bars represent the standard error. ∗p < 0.05.
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FIGURE 6 | ERPs measured in the repetition priming paradigm. (A) The ERPs from approximately 300–450 ms varied between the repetitive condition (solid line)
and non-repetitive condition (dashed line) in both the familiar and unfamiliar groups. The red and blue lines indicate the digital and ink pen condition, respectively.
(B) The difference in waveforms obtained by subtracting the repetitive condition from the non-repetitive condition had a negative peak at approximately 300–450 ms.
In the familiar group, the amplitude was smaller for the ink pen (blue) than the digital pen (red), while there was no difference in the unfamiliar group.

FIGURE 7 | Results of the questionnaire survey. Regarding the number of participants who answered “digital pen” (red) and “ink pen” (blue) to each survey item, the
proportions differed significantly between the familiar and unfamiliar groups with respect to the degree of workload (p = 0.01) and enjoyability (p = 0.03). A greater
number of participants in the familiar group (8 of 11) answered that “the use of the ink pen required a greater workload,” whereas most participants in the unfamiliar
group (13 of 17) answered that “the use of the digital pen required a greater workload.” In addition, most participants in the familiar group (9 of 11) answered that
“the digital pen was more enjoyable to use,” whereas a slight majority of participants in the unfamiliar group (10 of 17) answered that “the ink pen was more enjoyable
to use.” There was no significant difference between groups regarding memorability and ease of writing. ∗p < 0.05.

pen vs. an ink pen. In contrast, there was no main effect of the
participant group (F(1,26) = 2.81; p = 0.11, partial η2 = 0.10) or
interaction between the participant group and learning device
(F(1,26) = 2.58; p = 0.12, partial η2 = 0.09).

When the differences between the learning devices were
examined within each participant group as a post hoc test
(Figure 5B), the repetition priming effect was significantly
greater in the familiar group with the use of a digital pen vs. an

ink pen (t(10) = −2.37; p = 0.02, d = 0.90), while the effect was
similar between pen types in the unfamiliar group (t(16) = −0.47;
p = 0.32, d = 0.13).

To determine whether the difference in the N400 effect
between the familiar and unfamiliar groups resulted from
differences in the ratio of men to women (i.e., familiar group:
10 men and one woman; unfamiliar group: 10 men and
seven women), the data of only men were also analyzed because
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the number of men was the same in the two groups. The results
showed that the same effect was obtained from all participants;
that is, the familiar group had a greater priming effect of the
N400 for the words learned with a digital pen than those with
an ink pen, while in the unfamiliar group, there was no effect by
the learning device (Supplementary Figure S2). Therefore, the
difference obtained among all participants likely did not result
from differences in the sex ratio.

Questionnaire Survey
Figure 7 displays the tallied results of the participants’ answers
to the survey questions concerning workload, enjoyability, ease
of memorization, and ease of writing. Regarding the number
of participants who answered ‘‘digital pen’’ and ‘‘ink pen’’ to
each survey item, the proportions differed significantly between
the familiar and unfamiliar groups with respect to the degree
of workload (χ2 = 6.60; p = 0.01, ϕ = 0.49) and enjoyability
(χ2 = 4.50; p = 0.03, ϕ = 0.40). In the familiar group, a
larger number of participants (8 of 11) than in the unfamiliar
group answered that ‘‘the use of the ink pen required a greater
workload.’’ In the unfamiliar group, most participants (13 of 17)
answered that ‘‘the use of the digital pen required a greater
workload.’’ In addition, most participants in the familiar group
(9 of 11) responded that ‘‘the digital pen was more enjoyable to
use.’’ Conversely, in the unfamiliar group, a slight majority of
participants (10 of 17) responded that ‘‘the ink pen was more
enjoyable to use.’’ Meanwhile, no significant differences were
observed between the two participant groups with respect to
memorability and ease of writing.

DISCUSSION

In the present study, the modulation of electrophysiological
signals was investigated by writing words with a digital pen vs.
a conventional ink pen, while comparing between participants
familiar vs. unfamiliar with the digital device. Regarding the
performance level, there were no differences in the number
of writing repetitions for each word over a 10-min period
and the number of words memorized afterward between the
learning devices in both groups, or in the accuracy rate of
the EEG experiment. In contrast, the repetition priming effect
of the N400 detected immediately after learning showed the
difference between the learning devices. In the familiar group,
the repetition priming effect of the N400 was significantly
greater for the words that were learned by writing with a digital
pen vs. an ink pen, but not in the unfamiliar group. The
dissociation of performance and the N400 effect might be due to
differences in the sensitivity to detect learning effects. That is, the
N400 effect was more sensitive to early learning compared with
the behavioral assessment (McLaughlin et al., 2004). Therefore,

our result indicates that when the participants are familiar with
the use of digital pens, learning with the ink pen gave rise to lesser
effect on brain activity.

From these results, the question arises why the use of a digital
device might affect brain activity. Our questionnaire survey
indicated that more participants in the familiar group found it
fun to use the digital pen and felt less workload when using
the device, as compared with the participants in the unfamiliar
group. Previous studies have reported that mood can affect
learning (Nadler et al., 2010; Bakic et al., 2014) and language
processing (Federmeier et al., 2001; Vissers et al., 2010, 2013;
Chwilla et al., 2011). Therefore, the difference in the N400 effect
between the learning devices might be caused by differences
in mood while using a particular device (i.e., less enjoyable
and higher workload when writing with an ink pen). However,
the data obtained in this study were insufficient for further
investigation, which is a limitation to this study. Nonetheless,
further research on this topic is warranted.
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Occupational activity represents a large percentage of people’s daily activity and
thus likely is as impactful for people’s general and cognitive health as other lifestyle
components such as leisure activity, sleep, diet, and exercise. Different occupations,
however, require different skills, abilities, activities, credentials, work styles, etc.,
constituting a rich multidimensional formative exposure with likely consequences for
brain development over the lifespan. In the current study, we were interested in how
different occupations with their different attributes relate to five variables: structural
brain health, duration of early-life education, gender, IQ, and age, although the main
focus was the relationship to brain health. To this end, we used the Occupation
Information Network (O∗NET), which provides quantification of occupations along 246
items. Occupational patterns with different loadings for these 246 items were derived
from 277 community-dwelling adults, ranging in age from 40 to 80, based upon the
five subject measures. We found significant patterns underlying four of our variables
of interest, with gender and education predictably showing the most numerous and
strongest associations, while brain health and intelligence showed weaker associations,
and age did not manifest any associations. For the occupational pattern associated
with brain health, we found mainly positive associations on items pertaining to rigorous
problem-solving, leadership, responsibility, and information processing. We emphasize
that the findings are correlational and cannot establish causation. Future extensions of
this work will assess the influence of occupation on future cognitive brain status and
cognitive performance.

Keywords: cortical thickness, occupational data, community cohort, education, age, gender

INTRODUCTION

Occupational attainment and fulfillment has been linked to successful cognitive performance
(Garibotto et al., 2008, 2012; Bickel and Kurz, 2009; Foubert-Samier et al., 2012; Pool et al., 2016;
Chan et al., 2018; Dodich et al., 2018), psychiatric aging, and general well-being (Dragano et al.,
2011; Platts et al., 2013; Wahrendorf et al., 2013) in older adults, independent of socio-economic
and educational status.
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The relation between occupational attainment/satisfaction
and markers of brain-structural health, however, has been probed
and observed far less frequently. Some studies have addressed
relationships between occupation and brain metabolism (Spreng
et al., 2010; Spreng et al., 2011) and white-matter tract integrity
(Kaup et al., 2018). In the few studies that have examined
cortical thickness and volume, occupation has been shown to
be negatively associated with occupational stress (Blix et al.,
2013; Savic, 2015; Savic et al., 2018). Negative associations after
controlling for clinical disease severity in neurodegenerative
disease suggests that occupational attainment is a form of
cognitive reserve (Boots et al., 2015).

In the current study, we were interested in the relationship
between occupation and structural brain health, with a particular
interest in the extent of this relationship beyond possible
demographic variables that are collinear confounders of general
health status, including age, education, IQ, and gender.

We studied and used occupational attainment as quantified by
the extensive characterization in the Occupational Information
Network (O∗NET1), an online resource maintained by the
US Department of Labor. Every job, for example Physics
Teacher, Postsecondary or Marketing Manager, is assigned
a Standard Occupational Classification (SOC) numeric code,
25-1054.00 and 11-2021.00 respectively, and is quantified in
terms of a multitude of indicator variables or dimensions.
Here, we followed previous research conventions (Peterson and
American Psychological Association, 1999; Gadermann et al.,
2014) and retained 246 worker-centric variables with data-
ratings. These dimensions are drawn from different domains,
including ‘work values’ (6 items), ‘interests’ (6 items), ‘knowledge’
(33 items), ‘abilities’ (52 items), ‘work activities’ (41 items),
‘work styles’ (16 items), ‘skills’ (35 items), and ‘work context’
(57 items). To further illustrate this taxonomy, we give a few
examples of items in these different categories. ‘Work values,’
‘interests,’ and ‘knowledge’ are more general and abstract, and
thus the labels need more explicit consultation of the online
data base. For instance, ‘work values’ concerns items such as
‘achievement’ which specifies an orientation awards results and
accomplishments, whereas ‘support’ captures occupations that
involve institutionalized support structures (management, HR,
etc.). A watch repairer (code 49-9064.00), for instance, would
score high on ‘achievement,’ but low on ‘support.’

Domains that are more concrete are ‘work styles,’ ‘work
context,’ ‘skills,’ ‘work activities,’ and ‘abilities.’ The labels
for the these items are usually self-explanatory, such as
‘Persistence’ (work styles), ‘Contact with others’ (work context),’
‘Science’ (skills), ‘Interacting with computers’ (work activities),
or ‘Memorization’ (abilities). For all results in this paper, every
item label will also be supplemented by the appropriate domain
label. If the label is not self-explanatory, the exact definition can
be looked up in O∗NET.

It is noteworthy that the quantification of occupations along
the 246 dimensions necessarily induces positive or negative
correlations between items. The reasons are twofold: (1) some of
the items are intrinsically similar or oppositional. For instance,

1https://www.onetonline.org/

the complementary work-context item ‘Time spent standing’
can only correlate negatively with ‘Time spent sitting.’ (2)
More interestingly, some items are not intrinsically similar or
oppositional, but they become so because of the empirical nature
of most occupations in our sample. The skill- and work-activities
items ‘Critical thinking’ and ‘Handling and moving objects’
are not a priori oppositional, and there might be specialized
occupations that require both. However, in our sample –
and probably the majority of population-based research– they
are negatively correlated (R = −0.51, p < 0.0001). Further,
occupational data will most likely be rank-deficient, i.e., the
numbers of observations (= participants in sample) might be
larger than the number of different occupations. This is the case
for our data array, where 277 participants constitute only 152
different occupations.

Apart from inherent correlations between the occupational
items, occupational attainment, intelligence, education and brain
structural health also usually show mutual associations, and this
was no different in our data. Thus, it is difficult isolate a relation
between brain health and occupation free from these confounders
in cross-sectional associations. At the same time, randomized
interventions with occupation are either impossible, or at least
only possible in very narrow contexts, and so associational studies
have to resort to techniques that try to adjust for the confounders
post hoc.

In the current study, we investigated the association between
a measure of structural brain health and occupational attainment
in 246 indicator variables in a community-based cohort of 277
participants, aged 40 to 80. Gender, age, education, and IQ were
simultaneously entered with structural brain health as covariates
in a general linear model to identify associated items in the
occupational data.

MATERIALS AND METHODS

Subject Sample, Acquired Data, and
Pre-processing
Participants who lived within a radius of 10 miles of the
Columbia University Medical Center were recruited to the
study via random market mailing, and were screened for
magnetic resonance imaging (MRI) contraindications and
hearing or visual impairment that would impede testing. Older
adult participants were additionally screened for dementia and
mild cognitive impairment prior to participating in the study,
and participants who met criteria for either were excluded.
Apart from these cognitive exclusion criteria, health-related
exclusion criteria included myocardial infarction, congestive
heart failure or any other heart disease, brain disorder such as
stroke, tumor, infection, epilepsy, multiple sclerosis, degenerative
diseases, head injury (loss of consciousness > 5 min), intellectual
disability, seizure, Parkinson’s disease, Huntington’s disease,
normal pressure hydrocephalus, essential/familial tremor,
Down Syndrome, HIV Infection or AIDS diagnosis, learning
disability/dyslexia, ADHD or ADD, uncontrolled hypertension,
uncontrolled diabetes mellitus, uncontrolled thyroid or other
endocrine disease, uncorrectable vision, color blindness,
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uncorrectable hearing and implant, pregnancy, lactating, any
medication targeting central nervous system, cancer within last
5 years, renal insufficiency, untreated neurosyphillis, any alcohol
and drug abuse within last 12 month, recent non-skin neoplastic
disease or melanoma, active hepatic disease, insulin dependent
diabetes, any history of psychosis or ECT, recent (past 5 years)
major depressive, bipolar, or anxiety disorder, objective cognitive
impairment (dementia rating scale of < 130), and subjective
functional impairment (BFAS > 1).

All procedures undertaken for this study were approved by the
Columbia Institutional Review Board. Table 1 provides sample
information. IQ was assessed with the National Adult Reading
Test (Nelson, 1982; Blair and Spreen, 1989).

Occupational Data Acquisition
Comprehensive EXCEL spreadsheets for all 8 domain
labels for 969 occupations were downloaded from O∗NET
in August 2016, then processed and collated following
prior established convention (Gadermann et al., 2014).
Participants were asked to provide the occupation of the
longest duration during their lifetime. A Research Assistant
matched the occupation to the O∗NET SOC code, and the
246 indicator variables for each code were obtained from the
collated spreadsheet.

Structural Brain Data Acquisition (T1, DTI, and FLAIR)
and Processing
Magnetic resonance imaging images were acquired in a 3.0T
Philips Achieva Magnet using a standard quadrature head coil.
A T1-weighted scout image was acquired to determine subject
position. One hundred sixty-five contiguous 1 mm coronal T1-
weighted images of the whole brain were acquired for each subject
with an MPRAGE sequence using the following parameters: TR
6.5 ms, TE 3 ms; flip angle 8◦, acquisition matrix 256 × 256
and 240 mm field of view. The DTI images were acquired in 55
directions using these parameters: b = 800 s/mm2, TE = 69 ms,
TR = 11032 ms, Flip Angle = 90◦, in-plane resolution 112 × 112
voxels, acquisition time 12 min 56 s, slice thickness = 2 mm
(no gap), 75 slices. Lastly, a FLAIR scan was acquired with the
following parameters: 11,000 ms TR, 2800 ms TE, 256 × 189
voxels in-plane resolution, 23.0 × 17.96 cm field of view (FOV),

TABLE 1 | Number, age, years of education, and IQ of the participant sample.

Participant sample

Age, mean ± STD, range 61.76 ± 9.34, 40–78

Total number, women, men 277, 142 W, 135 M

Self-identified race 67 African American,

6 Asian,

189 Caucasian,

2 Pacific Islander,

2 Mixed Race,

11 Other

Education in years, mean ± STD, range 16.31 ± 2.39, 12–22

IQ, mean ± STD, range 118.52 ± 8.99, 93.60–130.88

IQ was assessed with the National Adult Reading Test.

and 30 slices with slice-thickness/gap of 4/0.5 mm. This sequence
was used to quantify the WMHs volumes. A neuroradiologist
reviewed each scan individually to exclude any relevant findings.
In the case of a clinical positive finding, the subject’s primary care
physician was informed.

Each subject’s structural T1 scans were reconstructed using
FreeSurfer v5.12. The accuracy of FreeSurfer’s subcortical
segmentation and cortical parcelation (Fischl et al., 2002, 2004)
has been reported to be comparable to manual labeling. Each
subject’s white and gray matter boundaries, as well as gray matter
and cerebral spinal fluid boundaries, were visually inspected slice
by slice, and manual control points were added in the case of
any visible discrepancy. Reconstruction was repeated until we
reached satisfactory results within every subject. The subcortical
structure borders were plotted by freeview visualization tools and
compared against the actual brain regions. In case of discrepancy,
they were corrected manually. Finally, we obtained cortical
thickness for 68 regions of nterest (ROIs), and also read out the
main global-thickness value provided by FreeSurfer.

DTI data were processed with TRACULA (Tracts Constrained
by Underlying Anatomy) distributed as part of the FreeSurfer
v. 5.2 library (Yendiki et al., 2011) which produces 18
major White-Matter tracts. The software performs informed
automatic tractography by incorporating anatomical information
from a training data set, provided by the software, with the
anatomical segmentation of the T1 image of the current data
set, thus increasing the accuracy of the WM tract placement
for each participant. Standard DTI processing steps using
the FMRIB’s Diffusion Toolbox (FMRIB’s Software Library v.
4.1.5) including eddy current correction, tensor estimation,
and bedpostx were performed prior to tractography by the
TRACULA software (Yendiki et al., 2011). For each participant,
the means of fractional anisotropy (FA) for each of the 18
tracts, were entered into subsequent analyses. FA ranges from
0 to 1 with higher number representing more intact WM
integrity.

White-Matter-Hyperintensities (WMH) were obtained
through segmentation by the Lesion Segmentation Tool
algorithm (LST) (Schmidt et al., 2012) as implemented in the
LST toolbox version 2.0.15 (June 2017) for Statistical Parametric
Mapping (SPM)3. The algorithm first segments the T1 images
into the three main tissue classes – cerebral brain fluid, gray
matter and white matter. Then, this information is combined
with the co-registered FLAIR intensities in order to calculate
lesion belief maps. By thresholding these maps with a pre-chosen
initial threshold, an initial binary lesion map is obtained which
is subsequently grown along voxels that appear hyper intense
in the FLAIR image. The result is a lesion probability map.
Every FLAIR sequence that had a total WMH volume above
1000 mm3 was manually inspected to ensure that there were no
visible discrepancies. We counted the number of hyper-intense
voxels, N, that were classified as hyper intense and transformed
as log-WMH = log(N+ 1).

2http://surfer.nmr.mgh.harvard.edu/
3www.statistical-modelling.de/lst.html
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Data Analysis: Multimodal Brain Health
Computation
Structural brain health was computed as the multimodal
average of global cortical thickness (the total value provided
by FreeSurfer, not the average of the 68 ROIs), mean tract
integrity and the sign-reversed log-WMH measure. Since the
three constituents are incommensurate, they were first z-scored
and then averaged according to

brain health = [z(global thickness)+ z(mean tract integrity)

−z(log-WMH)]/3.

We note that our operationalization of this measure is
just an obvious starting point in terms of simplicity,
but other formulations are conceivable too. Other
modalities with differential contributions might be
added, optimized for considerations of construct validity
beyond this study. Supplementary regression models
were run where the brain-health variable was substituted
by individual cortical thicknesses. Results can be found
in Supplementary Table S2.

Data Analysis: Mass-Univariate Analysis
We first performed mass-univariate analysis by simultaneously
entering all covariates (brain health, education, IQ, gender, age,
and race) and performing a linear regression according to

occ(i) =
[
brain-health education IQ gender age race 1

]
β+ ε

i = 1 . . . 246.

with a False-Discovery Rate (FDR) of Q < 0.05 (Hochberg
and Benjamini, 1990). (1 denotes the intercept term.) Race was
coded as a categorical index array with values of 0 or 1, had 2
columns and 277 rows. Column 1 indicated the status of ‘African
American’ (N = 67), and column 2 combined the labels ‘Mixed
Race,’ ‘Asian,’ ‘Pacific Islander,’ and ‘Other’ (N = 21), and thus
could be labeled as ‘Neither African American nor Caucasian.’

RESULTS

We first ran our mass-univariate linear regression with the full
covariate set including the racial index array. However, we did
not identify any associations between occupation items and race
at Q < 0.05, and decided to drop the racial index array from
our analyses to increase statistical power. To arrival at our final
results, we re-ran the regression models with the reduced set of
five covariates: (1) brain health, (2) education, (3) gender, (4)
NART-IQ, and (5) age.

Collinearity of Covariates
To convey an impression of the collinearity of the covariates
we report all bivariate correlations at an uncorrected p-value of
p < 0.05. Age displays an expected strong negative correlation
with total brain health (R = −0.54, p < 0.0001) and positive
associations with education (R = 0.12, p = 0.04), NART-IQ

(R = 0.18, p = 0.0025). Lastly, as expected, NART-IQ and
education are highly correlated at R = 0.54, p < 0.0001.

Univariate Analysis With FDR Correction
We found significant associations at Q < 0.05 for all covariates
except age. We first turn our attention to the main objective of
this study: brain health. We list the 10 strongest associations in
Table 2, but give a full listing of the occupational profiles for all
covariates in Supplementary Table S1.

The items associated with brain health (above and beyond
the other covariates) contain a mixture of all domain labels
apart from ‘Interests.’ Inspection of all positively correlated items
shows work activities, styles and context show items that involve
processing of information, numerical reasoning and decision
making with the help of computers, facing responsibility and
having to show leadership with severe consequence of errors.
Numerical and critical-thinking skills and abilities were strongly
associated with better brain health too, as were work styles that
emphasizes persistence, initiative and leadership. The knowledge
item ‘Foreign Language’ showed the only negative association.

For the other covariates, education by far showed the most
numerous and significant associations with 180 items (see
Supplementary Table S1). We display an abbreviated listing in
Table 3, giving the first 10 items in both directions of association.

Table 3 and the full listing in Supplementary Table S1
show that items pertaining to work-context, -activities, skills
and abilities associated with manual labor show a negative
association with education, while items associated with white-
collar knowledge work are associated positively with education.

Gender shows similarly strong effects, probably expressing
stereotypical gender roles with occupation choice that –
over time- might reduce. Women choose occupations
that show more traditionally female attributes with little

TABLE 2 | Abbreviated listing of up to 10 associations for occupational items and
brain health at Q < 0.05.

Brain health – 39 items in total

Item Domain T p

Positive associations

AnalyticalThinking WorkStyles 4.0766 6.01E−05

InformationOrdering Abilities 3.9901 8.50E−05

AchievementEffort WorkStyles 3.9348 0.00010586

IdentifyingObjectsActionsandEvents WorkActivities 3.8641 0.00013957

Support WorkValues 3.7927 0.00018378

SystemsAnalysis Skills 3.6278 0.0003415

Mathematics Knowledge 3.5921 0.00038941

CriticalThinking Skills 3.5737 0.00041658

MonitorProcessesMaterialsor WorkActivities 3.4841 0.00057573

Surroundings

ComplexProblemSolving Skills 3.4362 0.00068262

Negative associations

ForeignLanguage Knowledge −2.7505 0.0063503

There was only a single negative association, but 38 positive associations in total.
The p-values listed are uncorrected.
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TABLE 3 | Abbreviated list of items displaying significant correlations with
education at Q < 0.05.

Education – 180 items in total

Item Domain T p

Positive associations

WrittenComprehension Abilities 7.5256 7.78E−13

ActiveLearning Skills 7.2708 3.84E−12

OralExpression Abilities 7.2525 4.30E−12

WrittenExpression Abilities 7.1636 7.43E−12

ReadingComprehension Skills 7.1374 8.73E−12

Writing Skills 7.0934 1.14E−11

Speaking Skills 6.9272 3.12E−11

JudgmentandDecisionMaking Skills 6.6831 1.33E−10

OralComprehension Abilities 6.618 1.94E−10

DeductiveReasoning Abilities 6.4681 4.61E−10

Negative associations

SpendTimeKneelingCrouching WorkContext −5.9534 8.11E−09

StoopingorCrawling

StaticStrength Abilities −5.7125 2.93E−08

MultilimbCoordination Abilities −5.5934 5.44E−08

SpendTimeBendingorTwistingtheBody WorkContext −5.5346 7.36E−08

CrampedWorkSpaceAwkwardPositions WorkContext −5.4708 1.02E−07

HandlingandMovingObjects WorkActivities −5.4265 1.28E−07

ManualDexterity Abilities −5.3087 2.30E−07

SpeedofLimbMovement Abilities −5.2865 2.57E−07

ExtentFlexibility Abilities −5.2267 3.45E−07

GrossBodyCoordination Abilities −5.0671 7.49E−07

The p-values listed are uncorrected.

constraint by work context, whereas men preferentially have
occupations that involve technical expertise, sensory-perception
demands and manual labor. We give the abbreviated listing
in Table 4.

Lastly, we list the items associated with crystallized
intelligence, i.e., NART-IQ, in Table 5 in full. There were
only eight items in total.

After deriving the occupational profiles of all covariates,
we decided to inspect the similarity between the brain-
health occupational profile and all remaining profiles with
simple bivariate scatter plots (see Figure 1). This second-order
correlation can at least visualize the similarity of the occupation-
covariate relationships in relative terms. Interestingly, the brain-
health profile shows the greatest similarity to the profiles of
education and age (although no individual occupational item
showed an association with age at Q < 0.05). This similarity
is present although the covariates brain health and education
showed no relationship, while brain health and age showed
a strong negative relationship. In our sample at least, older
participants chose occupations that are also associated with better
brain health and higher education.

The gender-associated occupational profile showed no
relationship to the brain-health profile, while the NART-
IQ-related profile showed a weak negative relationship. At
the level of covariates, brain health was unrelated to either
gender or NART-IQ.

TABLE 4 | Abbreviated list of items displaying significant correlations with gender
at Q < 0.05.

Gender – 57 items in total

Item Domain T p

Positive associations (i.e., associations with being female)

Artistic Interests 3.5895 0.00039319

Independence WorkStyles 3.5324 0.00048385

SocialOrientation WorkStyles 3.5204 0.00050533

Innovation WorkStyles 3.4141 0.00073776

FineArts Knowledge 3.3917 0.00079826

SociologyandAnthropology Knowledge 3.3478 0.00092996

CommunicationsandMedia Knowledge 3.3209 0.0010205

PhilosophyandTheology Knowledge 3.3119 0.0010524

Clerical Knowledge 3.3113 0.0010547

Dependability WorkStyles 3.2894 0.0011368

Negative associations (i.e., associations with being male)

SoundLocalization Abilities −4.3912 1.62E−05

SpatialOrientation Abilities −4.2588 2.84E−05

InanOpenVehicleorEquipment WorkContext −4.2431 3.03E−05

NightVision Abilities −4.1894 3.79E−05

SpendTimeClimbingLaddersScaffoldsor WorkContext −4.101 5.44E−05

Poles

Mechanical Knowledge −4.0904 5.68E−05

PeripheralVision Abilities −4.0362 7.07E−05

OperatingVehiclesMechanizedDevicesor WorkActivities −3.9368 0.00010506

Equipment

GlareSensitivity Abilities −3.8362 0.00015547

Realistic Interests −3.7558 0.00021151

Because gender is coded as Female = 2, Male = 1, positive correlations pertain
to items associated with female gender, negative correlations pertain to items
associated with male gender. The p-values listed are uncorrected.

DISCUSSION

The main purpose of this study was to clarify the fine-grained
relationship between structural brain health and occupation,
adjusted for education, gender, age, and IQ. We emphasize again
that the results are correlational, and that no inference regarding
causal directionality can be made.

The occupational profiles of education, sex, and NART-
IQ were somewhat in line with common-sense expectations
which would attribute manual-labor and sensory-perception
skills and abilities predominantly to male or lower educated
participants, while items associated with social orientation,
higher knowledge, fine arts and communication were
differentially and independently associated with being female
and more educated.

For our main association of interest, we mainly found
positive associations between items pertaining to processing of
information, numerical reasoning, problem-solving and decision
making with the help of computers, facing responsibility and
having to show leadership with severe consequence of errors.
Further correlations were shown with numerical and critical-
thinking skills and abilities, and with work styles that emphasize
persistence, responsibility, initiative and leadership. Brain health
in our operationalization did not show any confounding
correlations with education and gender; further, when we
ran supplementary analyses leaving out gender and education,
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TABLE 5 | Full listing of items associated with NART-IQ at Q < 0.05.

NART-IQ – 8 items in total

Item Domain T p

Positive associations

Artistic Interests 5.1803 4.33E-07

FineArts Knowledge 4.5252 9.04E-06

Innovation WorkStyles 4.1979 3.66E-05

ThinkingCreatively WorkActivities 3.6928 0.00026824

Originality Abilities 3.5274 0.0004928

Negative associations

Telephone WorkContext −3.6853 0.00027582

Integrity WorkStyles −3.4688 0.00060787

The p-values listed are uncorrected.

FIGURE 1 | Bivariate plots and correlations between the occupational profile
(= T-statistic) of brain health and the occupational profiles of all other
covariates.

the items that were recovered with significant associations
were very similar and – in fact-fewer in number. Thus,
our results indicate robust relationships between occupation
and brain health that are not fully mediated by education,
intelligence, or gender.

Furthermore, higher-order correlation of the occupational
profiles (= T-statistic) across all 246 items revealed that the brain-
health profile was similar (in the sense of being significantly
correlated) to the education profile, despite both covariates
sharing no significant relationship. There was a likewise similarity
between the brain-health occupational profile and the age-related
occupational profile, even though brain health and age are
strongly negatively associated (and no individual item in the age
profile reached statistical significance at Q < 0.05).

Several caveats must be mentioned in our study design:
(1) important information about parental socio-economics and
upbringing were missing, although these factors are certain to
influence brain development (Noble et al., 2015) beyond the
duration of early-life education. To arrive at a relationship
between occupation and brain health, this confounder would

have to be taken into account. (2) While education and
occupation are not contemporaneous with, and predate, the
brain-health assessment, it is tempting to speculate about causal
relationships. It could be that some occupational demands serve
as cognitive training regimens that result in better brain health,
while some job aspects (particularly environmental exposures)
could be detrimental to brain health. However, even for cross-
sectional correlations, long-lasting influences of other factors
(such as parenting style and early-life socio-economics) would
have to be taken into account. To reduce the possibility of reverse
causation, i.e., brain health at an early age leading to particular
educational and occupational choices, brain health at a young
age ideally should also be considered. (3) We only recorded the
occupation with the longest tenure in our participants’ lives,
and no more detailed information about occupation sequences
were queried.

We close our report with some suggestions for future
extensions, sparked by the study limitations: a more complete
record of occupational history and parental socio-economics
is indispensable for a refinement of the relationship between
occupation and brain health. Further, while interventional
studies for occupation are hard to conceive, prospective cohort
studies could record more complete and dynamic occupational
information and establish relationships to future brain structural
measures, thus getting closer to true a causal account. As
mentioned in the introductory remarks, the large amount of time
that work represents in the daily routine for most people suggests
that occupational choices and demands would be reflected in
the brain, similar to other lifestyle features such as exercise, diet,
sleep, and leisure activities. To clarify the role of occupation for
better brain maintenance and cognitive reserve will be an exciting
endeavor in brain research for the foreseeable future.

Our study also hopes to introduce the O∗NET database
to a broader audience and convey some of the benefits of
the fine-grained quantitative assessment of occupation. We
only performed simple univariate analyses, which is a natural
starting point. O∗NET enables more sophisticated frameworks
of course, and gives the opportunity of operationalizing
similarity and ‘distance’ between occupations, with multivariate
decompositions of occupational profiles that capture dimensions
other than education, gender, and intelligence. Occupational
data might provide a fertile ground for identifying factors
with predictive utility for prognosis and diagnosis of cognitive
dysfunction in addition to structural brain markers and age.
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To characterize each cognitive function per se and to understand the brain as an
aggregate of those functions, it is vital to relate dozens of these functions to each other.
Knowledge about the relationships among cognitive functions is informative not only
for basic neuroscientific research but also for clinical applications and developments of
brain-inspired artificial intelligence. In the present study, we propose an exhaustive data
mining approach to reveal relationships among cognitive functions based on functional
brain mapping and network analysis. We began our analysis with 109 pseudo-activation
maps (cognitive function maps; CFM) that were reconstructed from a functional
magnetic resonance imaging meta-analysis database, each of which corresponds to
one of 109 cognitive functions such as ‘emotion,’ ‘attention,’ ‘episodic memory,’ etc.
Based on the resting-state functional connectivity between the CFMs, we mapped the
cognitive functions onto a two-dimensional space where the relevant functions were
located close to each other, which provided a rough picture of the brain as an aggregate
of cognitive functions. Then, we conducted so-called conceptual analysis of cognitive
functions using clustering of voxels in each CFM connected to the other 108 CFMs with
various strengths. As a result, a CFM for each cognitive function was subdivided into
several parts, each of which is strongly associated with some CFMs for a subset of
the other cognitive functions, which brought in sub-concepts (i.e., sub-functions) of the
cognitive function. Moreover, we conducted network analysis for the network whose
nodes were parcels derived from whole-brain parcellation based on the whole-brain
voxel-to-CFM resting-state functional connectivities. Since each parcel is characterized
by associations with the 109 cognitive functions, network analyses using them are
expected to inform about relationships between cognitive and network characteristics.
Indeed, we found that informational diversities of interaction between parcels and
densities of local connectivity were dependent on the kinds of associated functions.
In addition, we identified the homogeneous and inhomogeneous network communities
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about the associated functions. Altogether, we suggested the effectiveness of our
approach in which we fused the large-scale meta-analysis of functional brain mapping
with the methods of network neuroscience to investigate the relationships among
cognitive functions.

Keywords: human brain, fMRI, meta-analysis database, functional connectivity, network analysis, data mining,
machine learning

INTRODUCTION

Ones of main missions of cognitive neuroscience and psychology
is to understand each cognitive function per se and to understand
the human brain as an aggregate of cognitive functions. To this
end, it is vital to relate dozens of cognitive functions, which
will provide integrated views for the entire cognition in the
human brain and will enable to characterize each cognitive
function by relating it to others. Such understanding will
provide testable hypotheses for the cognitive neuroscience and
psychology communities. In addition, it will give the artificial
intelligence community guidelines and ideas to develop novel
brain-inspired AI algorithms (Hassabis et al., 2017).

Several efforts in psychology have been conducted to reveal
hidden relationships among cognitive functions. Developing
atlases and/or ontologies for psychological concepts is one of
these endeavors to do so (Price and Friston, 2005; Poldrack
et al., 2011; Turner and Laird, 2012; Poldrack and Yarkoni,
2016). Using such ontological data has been shown to be efficient
for probing the neural bases of cognitive functions (Varoquaux
et al., 2018). Therefore, we consider that building atlases and
ontological databases for psychological constructs are promising
approaches. However, currently existing atlases and ontological
databases are highly conceptual but not sufficiently empirical,
which means that most of the relationships are proposed based
on the ‘common senses’ in psychology. It also may lead to missing
many meaningful relationships latent in the experimental data
which have become big data nowadays. Another effort is to
compare cognitive concepts (or psychological constructs) with
each other by trying to identify relationships in idiosyncratic
features or performances in several cognitive tasks (Beaty et al.,
2014; Chuderski and Jastrzêbski, 2018; Eisenberg et al., 2019;
Fuhrmann et al., 2019; Rey-Mermet et al., 2019) as well as by
investigating overlaps in neural substrates using neuroimaging
and neuropsychological methods (Hassabis et al., 2007; Mullally
and Maguire, 2014; Woolgar et al., 2018; Brandl et al., 2019;
Jonikaitis and Moore, 2019). While these approaches provide
insights based on empirical facts, completing such low-profile
tasks exhaustively is challenging.

The magnitude of such exhaustive explorations of common
or dissociated neural bases among many cognitive functions may
dampen the willingness of identification of relationships among
them. However, leveraging neuroscientific knowledge is still
expected to be effective to our aim because the cognitive functions
that overlapping brain regions are responsible for should be
interrelated. Additionally, we also consider that the cognitive
functions that connected brain regions are responsible for should
be interrelated. Therefore, the use of large-scale meta-analysis

databases with knowledge about network topology of the brain
is essential to find relationships among cognitive functions to
characterize each function and the entire cognition in the brain.

BrainMap (Laird et al., 2005, 2011a; Laird, 2009) and
Neurosynth (Yarkoni et al., 2011; Poldrack et al., 2012) are
databases specialized toward linking cognitive functions to
brain regions. The former is a manually constructed database
and includes activation coordinates and ontological data (e.g.,
behavioral domain, task paradigm, and stimulus modality)
reported in fMRI studies. The latter is an automated database
including activation coordinates and terms extracted from
fMRI studies. We can reconstruct pseudo-activation patterns
underlying the reports in each study using the stored activation
coordinates. Therefore, we are able to relate cognitive functions
investigated in the study to the (pseudo-)activation patterns.
For instance, the BrainMap’s team proposed an approach to
provide interpretations of independent components of brain
activity based on the cognitive functions (Smith et al., 2009;
Laird et al., 2011b; Ray et al., 2013). In another instance, brain
parcellation related to cognitive functions was performed by
applying decoding based on the cognitive data in BrainMap
to parcels identified using connectivity data from the Human
Connectome Project database (Fan et al., 2016). In addition,
a Bayesian topic model that relates components of cognitive
functions to well-localized brain regions was developed (Rubin
et al., 2017). This enables decoding of functionality, expressed
as rich text information, from any pattern of brain activity.
The approaches using BrainMap or Neurosynth are effective
for identifying functionalities of sub-divided brain areas,
such as the temporoparietal junction (Bzdok et al., 2013),
the dorsolateral prefrontal cortex (Cieslik et al., 2013), the
insula (Chang et al., 2013), the striatum (Pauli et al., 2016),
and the medial frontal cortex (de la Vega et al., 2016).
More generally, we can construct pseudo-activation maps
corresponding to various cognitive functions (Yarkoni et al.,
2011). Hereafter, we term such a pseudo-activation map cognitive
function map (CFM).

Here, we explore the relationships among dozens of cognitive
functions on the basis of two simple assumptions: (1) cognitive
functions that overlapping brain regions are responsible for
should be interrelated, and (2) cognitive functions that connected
brain regions are responsible for should be also interrelated. To
this end, we analyze the CFMs derived from the meta-analysis
database with resting-state functional connectivity (RSFC).
Therefore, we consider the relationships among cognitive
functions from a network neuroscience perspective, which is the
subfield of neuroscience to reveal complex but well-organized
interdependencies among brain regions using the methods of
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network analysis (Sporns and Kötter, 2004; Sporns et al., 2007;
Bassett et al., 2008; Hagmann et al., 2008; van den Heuvel et al.,
2008; Bullmore and Sporns, 2009, 2012; Power et al., 2011, 2013;
van den Heuvel and Sporns, 2011; Zuo et al., 2012; Bertolero
et al., 2015; Fornito et al., 2016; Nigam et al., 2016; Bassett and
Sporns, 2017; Hwang et al., 2017). We use these methods to reveal
relationships among cognitive functions.

In the present study, we analyzed 109 cognitive functions
from the viewpoints of connectivity and network analysis
using RSFC. First, we provide a comprehensive view of those
cognitive functions by constructing relational mapping among
them based on the distances quantified as the strengths of
RSFCs between the CFMs. This facilitates understanding the
brain as a relational network among cognitive functions. Then,
we conducted so-called conceptual analysis (in philosophy) of
each cognitive function by sub-dividing corresponding CFM
on the basis of the connectivity between each voxel within
the CFM and the other CFMs, resulting in decomposition of
the concept of the function into several sub-concepts. Next,
by applying clustering analysis to the whole-brain voxel-to-
CFM RSFC, we constructed a whole-brain parcellation where
each parcel is labeled with a vector whose components are the
degrees of associations to the 109 cognitive functions. Then,
by applying matrix factorization to the matrix constructed by
concatenating these vectors, we identified six cognitive factors,
including ‘concept processing,’ ‘action and expression,’ ‘vision
and attention,’ ‘executive function,’ ‘value and judgment,’ and
‘memory.’ Each parcel had degrees of contributions with those
factors. Using methods of network analysis to characterize the
network consisting of the parcels, we quantified the diversity of
the information sources/receivers for the six factors, identified
three densely connected subnetworks which are specialized for
‘concept processing,’ ‘action and expression,’ and ‘vision and
attention,’ and found (un-)uniformity of factors associated with
the parcels within each network community.

The goals of our research are to exhaustively reveal
relationships among cognitive functions and relationships
between cognitive functions and network characteristics in the
brain. Although several previous studies partially suggested such
relationships by focusing on some part of the cognitive functions,
to the best of our knowledge, there has been no exhaustive
effort to those subjects, at least explicitly. Therefore, the main
contribution of the present study is, firstly, to provide promising
ways to construct comprehensive knowledge of organizations
of dozens of cognitive functions as exhaustively as possible.
Moreover, we also contribute to providing hopeful ways to
reveal relationships between dozens of cognitive functions and
network characteristics in the brain. Indeed, we found several
new insights into the relationships among cognitive functions
and the relationships between cognitive functions and network
characteristics. These were achieved by the fusion of large-
scale meta-analysis of studies of functional brain mapping and
methods in the network analysis.

Taken together, we suggest the effectiveness of our approach in
which we fused the large-scale meta-analysis of a task-based fMRI
database with network neuroscience approaches to investigate
the relationships among cognitive functions to understand each

cognitive function per se and the human brain as a relational
system consisting of cognitive functions.

MATERIALS AND METHODS

Subjects
Fifty-two subjects (21 women) without a history of neurological
or psychiatric diseases participated in this study. The mean ages
of the male and female subjects were 21.5 and 22.3 years (standard
deviation, 1.27 and 6.94 years), respectively. All subjects were
right-handed. They had a normal or corrected-to-normal vision.
We did not use any power analysis to determine the sample size
but decided the size by reference to previous resting-state fMRI
studies (e.g., Fox et al., 2005; Honey et al., 2009; Smith et al.,
2009). To recruit participants, we mainly used announcements
through Web sites (including SNS) and snowball sampling.

The study was performed in accordance with the
recommendations of the institutional ethics committee of
the National Center of Neurology and Psychiatry (NCNP),
with written informed consent from all subjects, in accordance
with the Declaration of Helsinki. The institutional ethics
committee of the NCNP approved the study protocol
(Approval No. A2014-072).

MRI Acquisition
We used a 3T MRI scanner (Trio, Siemens Medical Solutions,
Erlangen, Germany) with an 8-channel head coil for all
measurements. Structural images were acquired using a T1-
weighted 3D magnetization-prepared-rapid-gradient-echo
sequence. The parameters used were: flip angle = 8◦, voxel
size = 1 mm isotropic, TR = 2000 ms, TI = 990 ms, TE = 4.38 ms,
and number of voxels = 208× 256× 208. Functional images were
acquired with a T2∗-weighted echo-planar imaging sequence.
The parameters used were: flip angle = 90◦, voxel size = 3 mm
(isotropic, with no slice gap), TR = 3000 ms, TE = 30 ms, and
number of voxels = 64 × 64 × 44. The slices were acquired in
interleaved order.

Resting-State fMRI
We acquired 148 volumes of images. As TR was 3 s, the total
acquisition time was approximately 7.4 min. During imaging, a
fixation point centered on a gray background was presented. We
instructed the subjects to look at the fixation point and to think
of nothing in particular.

Preprocessing of MRI Data
We performed the preprocessing mainly using FSL (FMRIB
Software Library Version 5.0.61) (Jenkinson et al., 2012). All
steps were executed by running commands in FSL from custom-
made shell scripts.

First, we applied slice-time correction to functional images
using the slicetimer command. Next, we conducted head motion
correction using the mcflirt command (Jenkinson et al., 2002)
with the ‘-stages 4 -sinc_final -meanvol -mats -plots’ option.

1http://www.fmrib.ox.ac.uk/fsl/
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Afterward, we applied the bet command (Smith, 2002) to
structural images to extract the brain regions from whole images.
For these structural images, the flirt command (Jenkinson and
Smith, 2001; Jenkinson et al., 2002; Greve and Fischl, 2009)
was executed with the MNI152_T1_2mm_brain template as a
reference. In this step, we used six degrees of freedom, resulting
in rigid-body transformation. Therefore, we executed this step
only for alignment and changing the resolution to 2 mm.
Then, we applied the bet command to the mean functional
image and obtained registration parameters of the image to
the 2-mm-resolution structural image using the flirt command.
Using these parameters, we registered all functional images
to the 2 mm-resolution structural image, resulting in 2-mm-
resolution functional images. Next, we obtained non-linear
transformation parameters by applying the fnirt command to the
2-mm-resolution structural image, with the MNI152_T1_2mm
template as a reference. Then, we transformed the 2-mm-
resolution functional images using the applywarp command with
the non-linear transformation parameters. This yielded 2-mm-
resolution functional images that were standardized into the
Montreal Neurological Institute (MNI) 152 space. Additionally,
we masked these functional images with the regions of the
MNI152 standard brain and smoothed them with a 5-mm full-
width at half-maximum. These functional images were used in
the following analyses.

Additionally, the structural image was standardized into
the 1-mm-resolution MNI 152 space followed by the recon-
all process in Freesurfer (version 5.3.02). This yielded cortical
and subcortical atlases (Fischl et al., 2002; Desikan et al., 2006)
standardized into the 1-mm-resolution MNI 152 space.

In the analyses for the resting-state fMRI shown in the
following subsections, we excluded subjects whose translational
head motions were 1 mm or more or whose rotational head
motions were 1◦ or more, since head motion severely affects the
inference of RSFC (Power et al., 2012; van Dijk et al., 2012).
Our criterion is more stringent compared with the conventional
criteria from previous studies (Guo et al., 2012; Jackson et al.,
2016; Liu et al., 2016; Zhu et al., 2017). According to the criterion,
we excluded twenty-five subjects We did not adopt any other
criterion for excluding data.

Whole-Brain Anatomical Atlas
To construct a whole-brain anatomical atlas, we used the output
files of the recon-all process in Freesurfer. As described above,
the input file for the process was an individual structural image
standardized into the MNI152 space. Therefore, the output file
provided the whole-brain atlas for each subject standardized
into the MNI152 space. In this atlas, each voxel is labeled with
an intensity to specify the anatomical area according to the
Freesurfer convention.

We decomposed the whole-brain atlas for each subject to the
anatomical regions. For each region, we aggregated the atlases
for all subjects into one average atlas by the following method.
First, for each voxel, we counted the number of subjects whose
individual atlases for the region included the voxel and assigned

2https://surfer.nmr.mgh.harvard.edu/

it to the voxel. Then, we binarized the resulting image with a
threshold of the number of subjects for the inclusion of voxels
into the aggregated atlas, which made the number of voxels in the
image closest to the mean of the number of voxels composing
the region across the subjects. This provided an average atlas
across the subjects for the anatomical regions. Finally, we
merged these average atlases into one whole-brain anatomical
atlas on the MNI152 standardized brain. In this whole-brain
atlas, each voxel is labeled with the intensity indicating the
corresponding anatomical region in a manner following the
Freesurfer convention.

Construction of Pseudo-Activation Maps
We constructed a pseudo-activation map for each cognitive
function. To this end, we followed the method based on χ2

statistics described previously (Yarkoni et al., 2011). We will give
an in-depth explanation of the procedure in the remainder of this
section. In the procedure, we used version 0.4 of Neurosynth data
downloaded from the Neurosynth page on GitHub3.

First, for the articles registered in Neurosynth data, we
obtained titles, keywords, and abstracts by accessing PubMed4

using the Entrez Programing Utilities (E-utilities) API5 executed
from the Biopython module (Cock et al., 2009) in Python. Then,
we counted the appearances of cognitive concepts in the title,
keywords, and abstract for each article. As for the cognitive terms
considered in this study, we prepared 702 concepts. Of these,
692 were extracted from the list named ‘concepts’ in Cognitive
Atlas (Poldrack et al., 2011). The extraction date was 8/18/2014.
We added ten cognitive terms. The cognitive terms that we
considered are listed in Supplementary Table S1.

We considered a cognitive term to be present in an article if
the term appeared one or more times per 100 words in the text
merged from the title, keywords, and abstract of the article. We
included only the cognitive terms that appeared in ten or more
articles in the following analyses. Additionally, we discarded the
terms that are used as general words in neuroscience literature,
such as ‘focus’ and ’strength.’ Thus, we selected the 121 cognitive
terms shown in Supplementary Table S2 as the targets to be
considered in this study.

Then, we reconstructed the binary activation map on the
2-mm-resolution MNI 152 brain for each article registered in
Neurosynth data by the following steps. First, we transformed
the coordinates reported in the Talairach brain into the MNI
brain using icbm2tal transform (Lancaster et al., 2007). Then,
we assigned the number ‘1’ to the voxels located within
10 mm of the registered coordinates and the number ‘0’
to the other voxels. Based on these binary activation maps,
we calculated the χ2 statistics for each cognitive term, in
which we compared the appearance of the term and activation
of the voxel. Additionally, we calculated the φ coefficients
corresponding to the χ2 statistics. Thus, we obtained χ2 and φ
maps for each cognitive term. For convenience, in the following
statistical test, these maps were masked by voxels that were

3https://github.com/neurosynth
4https://www.ncbi.nlm.nih.gov/pubmed/
5https://www.ncbi.nlm.nih.gov/books/NBK25501/
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activated in 3% or more articles, which reduced the number of
voxels to be tested.

Based on the χ2 test using the χ2 map, we constructed
a pseudo-activation map for each cognitive function in the
following manner. We executed multiple-test corrections using
the Benjamini–Hochberg procedure for controlling the false
discovery rate (Benjamini and Hochberg, 1995) with q∗ = 0.05.
This yielded a significant mask for each cognitive function.
Additionally, we constructed a mask for each cognitive function
where the positive values of φ coefficients indicated a positive
correlation. Applying these masks to χ2 or φ maps, we obtained
pseudo-activation maps where the pattern of significant positive
activation induced with the cognitive function is expressed. We
call these pseudo-activation maps CFMs. In the present study,
109 CFMs had significant voxels. Therefore, we focused on these
109 cognitive functions (Supplementary Table S3).

Two-Dimensional Embedding of
Cognitive Concepts Based on the
CFM-to-CFM RSFC Matrix
We constructed a two-dimensional relational map among the
109 cognitive functions based on the time-series data of blood-
oxygen-level-dependent (BOLD) signals for each CFM. First, we
extracted the time-series data of BOLD signals of resting-state
fMRI for each voxel in the whole-brain mask. To reduce artifacts
due to motion and signal drift, six head motion parameters
and six differential values of head motion plus the linear trend
and constant component were regressed out. Then, a 0.009–
0.08 Hz band-pass filter was applied to remove the putative
non-neuronal signals according to previous reports (Biswal
et al., 1995; Cordes et al., 2001; Lu et al., 2007; Zuo et al.,
2010). We used the 5th-order Butterworth digital filter. This
filter was applied in forward and backward. We confirmed that
further increase of the order led to little change the resulting
waveform. In addition, the average signals of the gray matter
region, white matter region, and ventricles were regressed out.
Those data were transformed to Z-scores by each voxel to
erase the intensity bias between the voxels. For all voxels
for all subjects, the maximum and minimums Z-scores were
5.32 and −4.89, respectively. By applying the Kolmogorov–
Smirnov test to each voxel of each subject, we found that
0.38% voxels were judged as non-normal distributions. Such
a preprocessing flow was used also in the further analyses
described below.

Then, for each subject, we obtained the mean signal for each
CFM by averaging the signals across voxels in the CFM. We
calculated the correlation matrices between signals of CFMs
and averaged them across the subjects, resulting in the CFM-
to-CFM RSFC matrix. By shifting and scaling the RSFC values,
we obtained the CFM-to-CFM similarity matrix in which the
minimum and maximum values were 0 and 1, respectively.
Applying spectral clustering (see the next paragraph) to the
similarity matrix, we identified clusters of cognitive functions.
In this step, we determined the number of clusters as the
value corresponding to the maximum of silhouette coefficients
(Rousseeuw, 1987) up to 12 (Supplementary Figure S1).

The reason why we used the spectral clustering to identify the
clusters of cognitive functions is that our problem in this analysis
was based on the similarity matrix (not on the feature vectors).
For convenience to the readers, we give a brief introduction to
spectral clustering (von Luxburg, 2007). The procedure of the
spectral clustering consists of two steps. The first step is to embed
data into a representational space. In this space, coordinates
(or representations) of the data are determined to minimize a
loss defined with the similarity matrix and the coordinates. This
minimization problem is reduced to the eigenvalue problem.
Except for parameters used in the numerical calculus to solve
the eigenvalue problem, the parameter that we need to set is
the dimension of the representational space that is equal to the
number of eigenvectors that we consider. Throughout the present
study, we set this value to the same as the number of clusters. The
second step is to cluster the data based on the coordinates in the
representational space. In this step, we need to determine the way
to cluster. Here, we used k-means clustering.

Finally, we applied multidimensional scaling (Borg and
Groenen, 1997) to the CFM-to-CFM RSFC matrix using the
scikit-learn module in Python and obtained the relational map
that involves two-dimensional embedding of the 109 cognitive
functions, in which the well-correlated pairs of cognitive
functions were located as closely as possible. To check a distortion
caused by the embedding, we calculated the stress that is defined
as the difference between given dissimilarities and distances in
the embedding space and is the value to be minimized in the
multidimensional scaling.

Subparcellation of CFMs
For each cognitive function and subject, the resting-state fMRI
BOLD signals of the voxels in the corresponding CFM were
extracted and preprocessed in the same manner as described
in the previous sections. Now we focus on a CFM that we
term target CFM. We calculated the correlation values between
the processed signals of all voxels in the target CFM and the
mean signals obtained from the other CFMs by averaging signals
across the voxels belonging to the CFMs. These correlation values
were averaged across the subjects. Thus, we obtained the target
CFM voxel-to-CFM RSFC matrix. For instance, if we express
the number of voxels in the ‘emotion’ CFM as N (emotion), the
RSFC matrix has a dimension of N(emotion)× 108, since we
considered 109 cognitive functions.

Then, we executed principal component analysis for
dimensionality reduction. We determined the number of
principal components required to explain 95% of the total
variance. Finally, we applied k-means clustering to the resulting
data, in which we set the number of clusters as five.

Whole-Brain Parcellation Based on
Voxel-to-CFM Functional Connectivity
We conducted whole-brain parcellation based on RSFC. First, we
extracted the time series data of BOLD signals of resting-state
fMRI for each voxel in the whole-brain mask and calculated the
mean signal for each CFM. These procedures were the same as
those described above.
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From these processed data, we obtained a matrix of voxel-
to-CFM RSFC by calculating correlation coefficients between the
processed BOLD signals of the 160,296 voxels in the whole-brain
mask and the processed BOLD signals of the 109 CFMs for each
subject. Then, we transformed them into Fisher’s Z values and
averaged them across the subjects. We applied inverse Fisher’s
Z-transform to this and obtained the mean voxel-to-CFM RSFC
matrix in which each row was a 109-dimension feature vector for
each voxel. To reduce the number of dimensions, we performed
principal component analysis by solving the eigenvalue problem
for the covariant matrix for the voxels. We determined the
number of principal components required to explain 95% of
the total variance. Based on this dimension-reduced matrix,
we constructed a similarity matrix between voxels, where the
similarity was defined as the exponential of the correlation
coefficient between two voxels. To consider the spatial constraint,
we set the similarity between the voxels that were not neighbored
to 0, according to a previous study (Craddock et al., 2012),
resulting in a sparse similarity matrix.

To obtain whole-brain parcellation, we applied multiclass
spectral clustering (Yu and Shi, 2003) to this similarity matrix
using the scikit-learn module in Python with ‘discretize’ (to use
the optimal discretization approach searching a discrete partition
closest to the continuous representations to identify data clusters
in the representational space identified with spectral embedding)
and ‘amg’ options. (The reason why we adopted the spectral
clustering in this analysis was to use the spatial constraint
mentioned above.) Since this algorithm requires the similarity
matrix to be connected, we randomly chose 500,000 pairs of
voxels and assigned them a weak positive value (0.0001). We set
the number of clusters to 200 that was determined by reference to
several existing atlases (Destrieux et al., 2010; Power et al., 2011;
Shen et al., 2013; Baldassano et al., 2015; Fan et al., 2016). This
resulted in whole-brain parcellation with 199 parcels. One cluster
was discarded because it was empty (no voxel). We assigned
each parcel a label vector that was the mean voxel-to-CFM
RSFC obtained by averaging voxel-to-CFM RSFCs across the
voxels belonging to the parcel, which represents the relatedness
between the parcel and the 109 cognitive functions (parcel-to-
CFM RSFC matrix).

Dimensionality Reduction Using the
Non-negative Matrix Factorization
We applied the non-negative matrix factorization (NMF) (Lee
and Seung, 1999, 2001) to the parcel-to-CFM matrix to reduce the
dimensionality, which was executed using the NIMFA module
(Žitnik and Zupan, 2012) in Python. Before this process, we set
the negative values in the matrix to 0.

The NMF is a method to decompose a non-negative data
matrix (X) into a non-negative coefficient matrix (Y) and a
non-negative basis matrix (Z). The objective of the NMF is
to approximate X by YZ. Thus, we used the Frobenius norm
||X−YZ||F as the cost function and minimized it subject to
the Y ≥ 0 and Z ≥ 0. Our purpose in the dimensionality
reduction was to identify well-interpretable low dimensional
representations for the parcels. In the preprocessing procedure,

we regressed the mean time-course of the gray matter signals out
from the BOLD data. Although this is efficient to remove artifacts
resulting from biological and equipment factors (Satterthwaite
et al., 2013; Power et al., 2014; Li et al., 2019), it is suggested
that this procedure tends to cause artifactual negative correlation
(Murphy et al., 2009; Weissenbacher et al., 2009). Therefore, to
lead better interpretation for the parcels, focusing only on the
positive RSFCs is appropriate. Therefore, we chose the NMF as
the way for dimensionality reduction.

The number of factors is a key parameter to be predefined
in the NMF. A previous study suggests that the inflection point
in the decrementing line of residual sum of squares (RSSs) with
an increment of the values of the numbers of factors yields the
adequate number (Hutchins et al., 2008). We can detect the
inflection point as the crossing point between the curved lines
fitted to RSSs before and after the point. Therefore, we first
calculated the differentials of the RSSs and fitted them to straight
lines. We repeated the linear regression and obtained the sums
of the squared errors of before-point and after-point lines while
changing the point. We determined the inflection point as the
point realizing the minimum value of the summed squared error
(Supplementary Figure S2). Using the value corresponding to
the point as the number of factors, we conducted the NMF
with singular value decomposition (SVD)-based initialization
(Boutsidis and Gallopoulos, 2008).

Since the output vectors constituting the bases were not
normalized, we scaled them to generate unit vectors and applied
the inverse operation of the scaling to the coefficient matrix to
keep the product invariant.

Heat-Diffusion Analysis of Information
Sources/Receivers
We extracted the time series data of BOLD signals of resting-state
fMRI for each parcel in the whole-brain parcellation obtained
above. These data were preprocessed in the same manner
described in the previous sections. We calculated correlation
coefficients between the processed BOLD signals of the parcels
and obtained a parcel-to-parcel RSFC matrix averaged across
subjects. We set the negative values and diagonal components
in the matrix to 0 and treated it as an adjacency matrix A. In
addition, we defined the degree matrix D in which the diagonal
components were Dii =

∑
j Aij and the other components were

0. From these matrices, we defined graph Laplacian matrix
L = D−A (Chung, 1997), which is the homolog of the negative
Laplacian−∇ 2.

For each NMF factor, we regarded the values of the NMF
coefficients as the intensities of the heat sources distributed over
the parcels. Based on the heat source distribution, we calculated
the steady temperature distribution on the graph whose links
were defined by the adjacency matrix A between parcels as
graph nodes in the following manner, according to a procedure
developed in network theory (Newman, 2010). In the usual
partial differential equations, the temperature diffusion ψ with
heat sources f is governed by the equation ∂ψ/∂t = D∇2ψ −
βψ + f, where D is a diffusion coefficient and β is a decay
constant. As an analog of this equation for the graph, we obtained
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the equation ∂ψ/∂t = −DLψ− βψ+ f, where f is the vector
of heat source distribution defined as the NMF coefficient. As
we consider the steady state ∂ψ/∂t = 0. Therefore, the steady
temperature distribution is ψ = (DL+ βE)−1f, where E is an
identity matrix. We set D = 1 and β = 1 in the main analysis.

The temperature distribution was calculated for each NMF
factor. The temperature of the parcels for each NMF factor
represents a degree of information conveyed from the factor.
Thus, each parcel has a vector of temperatures of the NMF
factors. From the vector, we calculated the Gini coefficients
that represent disparity of conveyed information among the
NMF factors. If a parcel receives information from only one
factor, the value of the Gini coefficient becomes 1. Conversely,
if a parcel receives information from all factors uniformly, the
value becomes 0.

We defined the Gini coefficient for each cognitive function as
the mean of 10 Gini coefficients of parcels whose parcel-to-CFM
RSFCs for the function were the top ten values. In other words,
we averaged the ten Gini coefficients of parcels that were the most
related to the cognitive function and considered the resulting
mean as the Gini coefficient for the function.

In an additional analysis, we investigated the effects of the
parameter values. Since the result is dependent only on the ratio
of D and β , only D was varied and β was fixed (β = 1). Here, we
compared the Gini coefficients between NMF factors. For each
factor, we calculated an inner product between the vector of the
Gini coefficients for cognitive functions defined above and the
vector of the corresponding NMF basis that was normalized to
make the summation one. We call this inner product weighted
sum of the Gini coefficients. Intuitively, the weighted sum of the
Gini coefficients expresses the mean of the Gini coefficients for
the cognitive functions assigned to the factor.

Local Density Identification in the
Parcel-to-Parcel Network Using Clique
Percolation
In this analysis, we first created the parcel-to-parcel network
by defining the connectivity among parcels by thresholding
the adjacency matrix A with 0.3. Then, we applied the clique
percolation method (Palla et al., 2005) to this network to
investigate the local densities of connectivity in this network
using the networkX Python module. In graph theory, K-clique
implies the fully connected subgraph consisting of K nodes.
In the clique percolation method, first, K-cliques are identified.
Then, pairs of K-cliques are connected to form a cluster if they
share a (K-1)-clique. Furthermore, if the cluster shares a (K-1)-
clique with another K-clique, it is assimilated to the cluster. This
process is iteratively executed. When we set K to a large value, the
resulting cluster becomes a densely connected subgraph.

Community Analysis on the
Parcel-to-Parcel RSFC Matrix
By shifting and scaling the values in the parcel-to-parcel RSFC
matrix, we first obtained the parcel-to-parcel similarity matrix
in which the minimum and maximum values were 0 and 1,
respectively. To identify the community structure in the parcels

based on the similarity matrix, we applied spectral clustering
to the parcel-to-parcel similarity matrix using the scikit-learn
module in Python. As is the case with the clustering of
cognitive functions, we used the k-means method to identify
data clusters in the representational space identified with spectral
embedding. The number of communities was set at the value
maximizing the silhouette coefficients (Rousseeuw, 1987) up to
20 (Supplementary Figure S3). The other parameters were set to
the default values.

Reliability Check of RSFC Matrices
Since the analyses described in the above subsections were
basically based on the RSFC matrices defined as the correlation
matrices, checking the reliabilities of the estimations is worthful
to evaluate the stabilities of the results. Especially, we should be
careful about the possible instabilities that might be caused by
the smaller data size compared to the data stored in the recently
developing large-scale databases such as the Human Connectome
Project database (Smith et al., 2013; Van Essen et al., 2013). To
this end, we calculated the standard errors of means (SEMs) of
the RSFCs. Accordingly, we observed the small levels of the values
(∼0.035) compared to the absolute RSFC values (Supplementary
Figure S4), which means that the effects of the instabilities caused
by the small data size were substantially limited.

We also conducted a correlation analysis between the RSFCs
estimated from the present data and the Human Connectome
Project data (Supplementary Figure S5). We used only 706 of
about 2000 data in S500 dataset because of resource limitation.
The preprocessing pipeline was the same as the one explained
above. The correlation coefficients are acceptable (0.94 for CFM-
to-CFM RSFCs, 0.84 for voxel-to-CFM RSFCs, and 0.58 for
parcel-to-parcel RSFCs). Again, those results suggest that the
small size of the present data affected the results limitedly.

RESULTS

Relational Mapping for Cognitive
Functions
In the present study, we aimed to elucidate the relationships
among the cognitive functions in the human brain. To obtain a
comprehensive overview of the human cognition, a visualization
of the whole picture representing the relationships among
cognitive functions is required. To this end, we began our
analysis with the 109 CFMs which were reconstructed as pseudo-
activation maps corresponding to 109 cognitive functions
(Figure 1A). By applying multidimensional scaling to the CFM-
to-CFM RSFC matrix (Figure 1B and Supplementary Data S1),
we provided a relational mapping that involved two-dimensional
embedding of the cognitive functions, in which the closely related
cognitive functions were located close to each other (Figure 1C).
In addition, we identified six clusters of cognitive functions
(cognitive clusters) using the spectral clustering method with
the silhouette coefficients (Figure 1C and Table 1). Roughly, the
red-purple cluster included ‘self and others’-related functions,
the blue cluster included ‘executive function’-related functions,
the orange cluster included ‘language’-related functions, the
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FIGURE 1 | Relational mapping and clustering of cognitive functions based on the cognitive function map (CFM)-to-CFM resting-state functional connectivities
(RSFCs). (A) Examples of the reconstructed CFMs. (B) The CFM-to-CFM RSFC matrix. (C) Relational mapping of cognitive functions. The locations of cognitive
functions in the two-dimensional plane were determined by applying multidimensional scaling to the CFM-to-CFM RSFC matrix. Furthermore, spectral clustering was
applied and resulted in six clusters of cognitive functions, in which, roughly, the red-purple cluster included ‘self and others’-related functions, the blue cluster
included ‘executive function’-related functions, the orange cluster included ‘language’-related functions, the yellowish-green cluster included ‘value and
judgment’-related functions, the red cluster included ‘action and expression’-related functions, and the green cluster included ‘vision and attention’-related functions.
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TABLE 1 | Clustering of the cognitive functions based on the CFM-to-CFM RSFC matrix.

Action and expression Vision and attention Value and judgment Self and others Executive function Language

Movement Attention Emotion Memory Working memory Language

Pain Action Reward Retrieval Decision Reading

Integration Gaze Learning Judgment Cognitive control Context

Skill Spatial attention Risk Intention Response inhibition Meaning

Empathy Selective attention Fear Recall Goal Comprehension

Listening Search Anxiety Episodic memory Rule Concept

Motor imagery Navigation Decision-making Default mode network Reasoning Naming

Prosody Short-term memory Stress Familiarity Maintenance Semantic processing

Speech perception Mental rotation Loss Social cognition Planning Metaphor

Communication Consciousness Choice Inference Executive function Memory encoding

Sustained attention Spatial working memory Anticipation Belief Uncertainty Language processing

Motor control Visual search Sleep Thought Deception Phonological processing

Retention Visual attention Facial expression Theory of mind Task switching Sentence comprehension

Rehearsal Mental imagery Arousal Semantic memory Strategy

Syntax Face perception Emotion regulation Narrative Response selection

Induction Object recognition Extinction Autobiographical memory Executive control

Speech production Impulsivity Humor Intelligence

Motor learning Habit Remembering Memory retrieval

Melody Eating
Consolidation
Sequence learning
Associative memory
Emotional expression

Expectancy
Prospective memory

CFM, cognitive function maps; RSFC, resting-state functional connectivity.

yellowish-green cluster included ‘value and judgment’-related
functions, the red cluster included ‘action and expression’-related
functions, and the green cluster included ‘vision and attention’-
related functions.

To check a distortion caused by the embedding, for each
embedding dimension up to ten, we calculated the stress that is
an index quantifying the deviation of distances in the embedding
space from the distances defined based on the similarity matrix.
The decline of stress is shown as the scree plot in Supplementary
Figure S6. According to the scree criterion, an optimal dimension
seems to be four. Although the two-dimensional mapping has
good readability, this means that it was somewhat distorted
and could not exactly express the strengths of the RSFCs
between the CFMs. Therefore, we also provide figures that
are similar to Figure 1C but show the positive and negative
strengths of RSFCs using red and blue colors, respectively
(Supplementary Figure S7).

RSFC-Based Conceptual Analysis of
Cognitive Functions
One of the bottlenecks preventing us from understanding
information processing during cognitive functions is that we do
not have sufficient in-depth knowledge of the concepts of these
cognitive functions. Therefore, we require so-called conceptual
analysis of the cognitive functions (based not on philosophical
deliberation but on neuroscientific evidence) to elucidate their
deeper meanings. Here, we propose a method of conceptual
analysis based on the voxel-to-CFM RSFCs (Figure 2). In this

method, first, we selected a cognitive function (e.g., ‘emotion’)
and the corresponding CFM. For all voxels within the selected
CFM and the 108 remaining CFMs, a voxel-to-CFM RSFC
matrix was constructed (Figure 2A). Then, we applied k-means
clustering to the matrix and subdivided the CFM for the cognitive
function into five clusters (Figure 2B). Finally, each cluster was
related to the 108 remaining cognitive functions based on cluster-
to-CFM RSFCs.

As examples, the results for ‘emotion,’ ‘prospective memory,’
and ‘thought’ are shown in Figure 2C. The subdivision of
the ‘emotion’-corresponding CFM suggests that ‘emotion’ is
constructed of the subfunctions related to decision-making
(cluster 1), vision (cluster 2), self and others’ minds (cluster 3),
fear (cluster 4), and comprehension of abstract meanings
(cluster 5). The subdivision of the ‘prospective memory’-
corresponding CFM suggests that ‘prospective memory’ is
constructed of the subfunctions related to memory (cluster 1),
intelligent decision (cluster 2), motion (cluster 3), emotional
decision (cluster 4), and executive function (cluster 5). The
subdivision of the ‘thought’-corresponding CFM suggests that
‘thought’ is constructed of the subfunctions related to self
and others’ minds (cluster 1), imaginary navigation (cluster 2),
logical intention and intelligence (cluster 3), emotional decision
(cluster 4), and memory (cluster 5).

The results for all cognitive functions are provided in
Supplementary Data S2. In this analysis, we set the numbers
of clusters identical (i.e., five) across all CFMs by considering
interpretability. On the other hand, showing results from the
clustering in which the numbers of clusters were determined
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FIGURE 2 | Conceptual analysis of cognitive functions based on subdivisions of the cognitive function maps (CFMs). (A) Schematic illustration of voxel-to-CFM
resting-state functional connectivities (RSFCs) between voxels in a CFM of cognitive function under consideration (e.g., ‘emotion’) and the other CFMs. (B) Example
of subdivision of the CFM of ‘emotion’ obtained by applying k-means clustering to the CFM. In this analysis, the number of clusters was fixed to five. Each color
corresponds to each cluster resulting from the subdivision. (C) Examples of subdivision-based conceptual analyses for ‘emotion’ (upper), ‘prospective memory’
(middle), and ‘thought’ (lower). The cluster-to-CFM RSFCs are shown with the names of corresponding cognitive functions. For each cluster, the cluster-to-CFM
RSFCs are defined as the mean values of the voxel-to-CFM RSFCs for the voxels belonging to the cluster.
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based on the silhouette coefficients are beneficial. Therefore, we
provide these results in which the numbers of clusters were
determined based on the silhouette coefficients (up to twelve
clusters) in Supplementary Data S3.

The nifti-formatted images of the subdivided CFMs will be
downloadable from the authors’ web page.

Cognitive Function-Based Whole-Brain
Parcellation
Network analyses using brain parcels that are associated with
cognitive functions as network nodes are promising to offer
insights into the characteristics of each function per se and the
relationships among those functions. To construct such parcels,
we administered a novel whole-brain parcellation method in
which voxels were assembled to one of 199 clusters (or parcels)
by applying spectral clustering to the voxel-to-CFM RSFC matrix
(Figures 3A–C). Each resulting parcel was characterized by its
relatedness with the 109 cognitive functions (i.e., parcel-to-CFM
RSFCs), defined as mean voxel-to-CFM RSFCs over the voxels
belonging to the parcel (Figure 4 and Supplementary Table S4).
Their links to the anatomical brain regions are provided in
Supplementary Table S5.

We also show the correspondence between the present
parcellation and the Glasser’s atlas (Glasser et al., 2016) in
Supplementary Table S6. We found that the voxels belonging
to one parcel in the present parcellation are assigned to several
parcels in the Glasser’s atlas. This is natural since the number of
parcels in the Glasser’s atlas is larger than ours. We show the ratios
of voxels assigned to the most overlapping region, the second
most overlapping region, the third most overlapping region,. . . in
Supplementary Figure S8. Thirty six percent of the voxels are
included in the most overlapping regions in the Glasser’s atlas.
Up to the fourth most overlapping regions, 84% of the voxels are
included in them.

The nifti-formatted CFM and parcellation images will be
downloadable from the authors’ web page.

Cognitive Factor Identification Based on
Dimensionality Reduction Using
Non-negative Matrix Factorization
The 109 cognitive functions were not independent of each
other. Some functions were highly interrelated, and therefore,
had common latent cognitive factors. We believe that all
cognitive functions can be characterized by combinations of
a few latent cognitive factors. When a group of cognitive
functions is commonly dependent on such factors, the parcel-
to-CFM RSFCs of members of the group should be similar.
Thus, to identify the latent cognitive factors, we applied non-
negative matrix factorization (NMF) to the parcel-to-CFM RSFC
matrix (Figure 5A).

The number of NMF factors was determined to be six
according to the evaluation of the residual sum of squares. The
top ten components for each basis vector (row vector in the
identified NMF basis matrix) with the corresponding cognitive
functions are provided in Table 2. All components in the bases
are shown in Supplementary Table S7. The NMF coefficient

matrix is shown in Supplementary Table S8. We found that these
cognitive factors roughly corresponded to ‘concept processing’
(factor 1), ‘action and expression’ (factor 2), ‘vision and attention’
(factor 3), ‘executive function’ (factor 4), ‘value and judgment’
(factor 5), and ‘memory’ (factor 6).

For each factor, the heat map of the NMF coefficients for
the corresponding parcels are shown in Figure 5B, in which we
observe factor-specific spreading patterns. The factor 1-related
parcels are located on the left inferior parietal cortex, left superior
and middle temporal cortex, left inferior frontal gyrus, and
the left superior frontal cortex. The factor 2-related parcels are
located on the bilateral sensorimotor areas and the superior
temporal cortices. The factor 3-related parcels are located on the
bilateral occipital cortices. The factor 4-related parcels are located
on the bilateral lateral prefrontal cortices and supramarginal gyri.
The factor 5-related parcels are located on the bilateral medial
prefrontal cortices. The factor 6-related parcels are located on the
bilateral precuneus areas and the inferior parietal cortices.

Diversity of Information
Sources/Receivers Is Dependent on
Cognitive Factors
Some cognitive functions may need various kinds of information
to be realized while others may require only limited kinds of
information. Similarly, information derived from some cognitive
functions may be required to realize various kinds of cognitive
functions while other information may be needed only from a
small number of cognitive functions. We considered the diversity
of informational interactions to be dependent on cognitive
factors. Therefore, we quantified the diversity of information
sources or receivers that were collected by parcels in the parcel
network. To clarify our method, we assumptively describe some
parcels, functions, or factors as sources in the present section.
However, we note that these may be receivers because our method
did not identify the directions of informational interactions.

First, for each parcel, we defined information sent from a
cognitive factor as steady pseudo-temperature calculated from
the heat diffusion equation in the network with heat sources
whose intensities were defined by the NMF coefficient vector
(column vector of the NMF coefficient matrix) (Figure 6A). This
resulted in a temperature distribution over the parcel network
for each cognitive factor. We observed that the temperatures of
some parcels were roughly uniform across all cognitive functions,
which implies equal collection of information. On the other hand,
in another parcel, only one factor provided a high temperature
and the other factors provided low temperatures, which implies
a polarized collection of information. To quantify the degree of
polarization, we used the Gini coefficients of the distributions
of temperatures across cognitive factors (Figure 6B). Smaller
Gini coefficients express more uniformity over cognitive factors,
suggesting more diverse information sources/receivers.

Moreover, we investigated the 109 cognitive functions in
terms of the diversity of information sources/receivers. For each
cognitive function (or CFM), we averaged the Gini coefficients
of the parcels whose parcel-to-CFM RSFCs were among the
top ten (Figure 6C). The resulting value was regarded as the
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FIGURE 3 | Whole-brain parcellation based on cognitive function maps (CFMs). (A) Schematic illustration of voxel-to-CFM resting-state functional connectivities
(RSFCs). A correlation coefficient between resting-state activities of each voxel and CFM was calculated, and was defined as the RSFC between them.
(B) Parcellation was obtained by applying spectral clustering to the whole-brain voxel-to-CFM RSFC matrix. Each panel on the right corresponds to each resulting
parcel. (C) The resulting parcellation consisting of 199 parcels.
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FIGURE 4 | Examples of parcels resulting from cognitive function-based whole-brain parcellation. Four examples of the parcels. Maps on a standard brain (left in
each parcel) and top 10 relatedness with cognitive functions (right in each panel) are shown. The relatedness was defined as mean voxel-to-cognitive function map
resting-state functional connectivities over the voxels belonging to the parcel.

Gini coefficient for the corresponding cognitive function. Upon
sorting the NMF bases by the Gini coefficients of the cognitive
functions, we observed cognitive factor-dependent differences
in the diversity of information sources/receivers (Figure 6D
and Supplementary Table S9). The factor 6-related cognitive
functions tended to collect information from the most diverse
sources/receivers. The factor 5- and 4-related functions had the
second- and third-most diverse information sources/receivers,
respectively. The diversity of information sources/receivers for
the factor 1-related functions was moderate. The factor 2- and 3-
related functions collected information from the most polarized
sources/receivers.

The method used in this section has two parameters: diffusion
coefficient D and decay constant β . Therefore, as an additional
analysis, we investigated the effects of those parameter values.
Since the result is only dependent on the ratio of those
parameters, we only varied the diffusion coefficient D. As we
observed, the Gini coefficients for the cognitive functions highly
loaded by some factors were small and others were large. Thus, we
compared the weighted sums of the Gini coefficients that express
the means of the Gini coefficients for the cognitive functions
assigned to the factors (see section Materials and Methods)
between factors (Figure 7). Throughout the parameter region,
we found qualitatively similar results to the one shown above
except for the factor 3 that relates to vision and attention. The
value of the weighted sum of the Gini coefficients for the factor
3 was largest when the diffusion coefficient was small, which
means that the diversity of information sources/receivers was
lowest. However, the diversity (indexed with the weighted sum
of the Gini coefficients) relative to the others increased with an
increase in the diffusion coefficient, and, finally became highest.
Since the diffusion coefficient decides the range of information
transmission, this result suggests the factor 3 (relating vision
and attention) changes the relative diversity of informational
interactions depending on the state of information transmission.

Cognitive Factor-Dependent Difference
in Densities of Local Connectivity
The connection density of network which processes a cognitive
function is an important factor to specify computational
characteristics of the function. Using the clique percolation
method, we identified local subnetworks within the parcels that
were densely connected (Figure 8). By increasing the clique
threshold K, subnetworks whose connectivity were denser came
to the surface. When K was set to 8, we identified three densely
connected subnetworks. By extracting the NMF coefficients for
the parcels belonging to densely connected subnetworks, we
found that these subnetworks were highly related with the factors
1 (blue), 2 (yellow), and 3 (green). The parcels composing
each subnetwork are shown with the anatomical information in
Supplementary Table S10.

The blue densely connected subnetwork includes the
following regions: the left temporal cortex, left inferior parietal
cortex, left supramarginal gyrus, left orbitofrontal cortex, left
inferior frontal cortex (pars triangularis and pars orbitalis), left
superior frontal cortex, left rostral middle frontal cortex, left
anterior cingulate cortex, left frontal pole, and a small part of the
left temporal pole.

The yellow densely connected subnetwork includes the
following regions: the bilateral putamen, bilateral pallidum,
bilateral caudal anterior cingulate cortices, bilateral posterior
cingulate cortices, left middle temporal gyrus, bilateral superior
temporal gyri, bilateral transverse temporal gyri, bilateral
superior parietal cortices, bilateral supramarginal gyri, bilateral
precuneus, bilateral precentral gyri, bilateral postcentral gyri,
bilateral paracentral lobules, bilateral insula, bilateral pars
opercularis (mainly left), and the bilateral superior frontal gyri
(slightly lateralized to the left hemisphere).

The green densely connected subnetwork includes the
following regions: the bilateral cerebellum, bilateral lateral
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FIGURE 5 | Identifying cognitive factors using non-negative matrix factorization (NMF). (A) Procedure for identification of cognitive factors. First, the
parcel-to-cognitive function map (CFM) resting-state functional connectivity matrix was thresholded with zero. Then, NMF was applied to the thresholded matrix, and
the NMF coefficient and basis matrices were identified. The rows and columns of the NMF coefficient matrix correspond to parcels and NMF factors (cognitive
factors), respectively. The rows and columns of the NMF basis matrix correspond to factors and CFMs, respectively. (B) The NMF coefficient values for each NMF
factor are mapped on the parcels (shown as dots) located according to coordinates on a standard brain using heat mapping.
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TABLE 2 | Cognitive factors defined using non-negative matrix factorization of the parcel-to-CFM RSFC matrix.

Factor 1 (concept processing) Factor 2 (action and expression) Factor 3 (vision and attention)

Comprehension 0.248 Movement 0.329 Mental imagery 0.342

Narrative 0.245 Motor imagery 0.314 Spatial attention 0.333

Concept 0.244 Speech production 0.302 Visual search 0.329

Judgment 0.227 Skill 0.283 Search 0.317

Metaphor 0.221 Speech perception 0.256 Object recognition 0.252

Theory of mind 0.211 Motor control 0.245 Attention 0.242

Inference 0.204 Melody 0.235 Gaze 0.241

Belief 0.204 Integration 0.226 Face perception 0.223

Intention 0.202 Prosody 0.213 Selective attention 0.218

Semantic processing 0.191 Listening 0.207 Navigation 0.204

Factor 4 (executive function) Factor 5 (value and judgment) Factor 6 (memory)

Cognitive control 0.303 Reward 0.320 Episodic memory 0.342

Rule 0.291 Anticipation 0.270 Default mode network 0.302

Working memory 0.289 Fear 0.263 Memory 0.293

Planning 0.288 Arousal 0.261 Autobiographical memory 0.278

Maintenance 0.276 Choice 0.255 Memory retrieval 0.266

Response inhibition 0.241 Decision making 0.233 Remembering 0.264

Expectancy 0.224 Loss 0.229 Retrieval 0.264

Task switching 0.216 Risk 0.225 Thought 0.262

Decision 0.210 Stress 0.224 Familiarity 0.254

Deception 0.198 Eating 0.202 Prospective memory 0.195

For each factor, the cognitive functions having the ten largest NMF basis values are shown with the corresponding NMF basis values. CFM, cognitive function map; RSFC,
resting-state functional connectivity; NMF, non-negative matrix factorization.

occipital cortices, bilateral cuneus, bilateral pericalcarine cortices,
bilateral lingual gyri, bilateral fusiform gyri, bilateral inferior
parietal cortices, and the bilateral superior parietal cortices.
Additionally, a small part of the inferior temporal cortex
is included.

Network Communities That Are
Uniformly or Diversely Associated With
Cognitive Factors
Previous studies suggest that the RSFC network has a modular
or community structure (He et al., 2009; Power et al., 2011;
Bertolero et al., 2015, 2018). Such a community is considered as a
module of information processing. To elucidate the information
processing executed in each community, it is important to
reveal whether the community is related to uniform or diverse
kinds of cognitive functions. To this end, we identified the
community structure by applying spectral clustering to the
parcel-to-parcel RSFC matrix and investigated the functional
uniformity or diversity of each community (Figure 9). The
number of communities was set to 10, which maximized the
silhouette coefficients. The NMF coefficients for the parcels
belonging to the identified communities showed uniformity
and diversity in their association with the cognitive factors in
a community-dependent manner. The communities 2 and 8
specifically associated with cognitive factors 3 and 2, respectively.
Conversely, the community 4, which was mainly located in the
cerebellum, associated with diverse cognitive factors.

DISCUSSION

In the present study, we endeavored to show a whole picture
of the human cognition and to reveal characteristics of each
cognitive function that constitutes it. To this end, we investigated
the relationships among 109 cognitive functions based on two
ideas: (1) the cognitive functions that overlapping brain regions
are responsible for should be interrelated, and (2) the cognitive
functions that connected brain regions are responsible for should
be also interrelated. Especially, we characterized 109 cognitive
functions based on the CFM and RSFC-determined relationships
among them. First, we presented a relational mapping that
involved two-dimensional embedding of the cognitive functions
using the RSFCs among CFMs. Then, we performed conceptual
analysis in which a cognitive function was analyzed to identify
the subfunctions constituting it, based on the RSFCs between
voxels in the targeted CFM and the remaining CFMs. Moreover,
we obtained a novel whole-brain parcellation in which each
parcel had the vector of relatedness with these cognitive
functions. Based on the network analyses using the parcels,
we identified six cognitive factors, quantified the diversity of
information sources/receivers for each cognitive function and
factor, found the densely connected subnetworks associated
with specific cognitive factors, and identified the communities
that were associated with uniform or diverse cognitive factors.
Altogether, we suggest the effectiveness of our approach in
which we combined a large-scale meta-analysis of functional
brain mapping with the methods of network neuroscience
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FIGURE 6 | Cognitive factor-dependent diversity of informational interactions. (A) Heat source (left) and temperature (right) distributions on the parcels for the
cognitive factor 1. The heat source values were defined as the non-negative matrix factorization (NMF) coefficient values of the corresponding column. Temperatures
were calculated at steady states of the diffusion process governed by the graph Laplacian. (B) The Gini coefficient distribution. For each parcel, the Gini coefficient
represents inhomogeneity of temperatures across the factors. The Gini coefficients and polar graph of temperature for the parcel circled with magenta and blue are
shown on the right. (C) Example plots between the Gini coefficient values and parcel-to-cognitive function map (CFM) resting-state functional connectivities (RSFCs).
Upper and lower plots correspond to the CFMs of ‘episodic memory’ and ‘object recognition,’ respectively. Each dot expresses each parcel. The parcels that have
the 10 largest RSFCs are red-colored. The means and standard deviations of the Gini coefficients for these red-colored parcels are shown as the centers and
radiuses of the red circles, respectively. The means are also indicated by the red dotted line. (D) The transposed NMF basis matrix, sorted by the Gini coefficients.
The cognitive function corresponding to each CFM is shown on the right.
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FIGURE 7 | Effect of the value of the diffusion coefficient on the weighted sum
of the Gini coefficient. Log-log plots of the weighted sums of Gini coefficients
with varying the diffusion coefficient. Throughout the parameter region, relative
orders are qualitatively similar except for the factor 3. The weighted sum of
Gini coefficients for factor 3 moves from largest (i.e., lowest diversity of
informational interaction) to smallest (i.e., highest diversity of informational
interaction).

to investigate the relationships among cognitive functions to
understand each cognitive function per se and the human as a
relational system consisting of cognitive functions.

Implications of the Results and
Comparisons With Previous Studies
Categorization of cognitive functions is an essential first step
not only for the scientific understanding of the brain but also
for the clinical application of neuroscientific knowledge for
diagnosis of psychiatric diseases. In this study, we provided
such categorizations using two methods. One was based on the
clustering on the CFM-to-CFM network and also yielded six
cognitive clusters, including ‘language,’ ‘action and expression,’
‘vision and attention,’ ‘executive function,’ ‘value and judgment,’
and ‘self and others.’ The other was based on the NMF, and
yielded six cognitive factors: ‘concept processing,’ ‘action and
expression,’ ‘vision and attention,’ ‘executive function,’ ‘value and
judgment,’ and ‘memory.’

We show the entire correspondences between the cognitive
clusters and the factors in Figure 10. The cognitive factors
‘action and expression,’ ‘vision and attention,’ ‘executive function,’
and ‘value and judgment’ roughly correspond to the cognitive
clusters that are labeled with the same names. The ‘memory’
factor mainly relates to the ‘self and others’ cluster. Additionally,
we like to stress that several functions that are strongly
associated with the ‘memory’ factor (e.g., ‘memory retrieval’
and ‘prospective memory’) belong to the ‘executive function’
cluster. The ‘concept processing’ factor seems to relate to the
cognitive clusters in a complex manner. Considering the NMF
basis vector, it is suggested to be related to both ‘language’
and ‘self and others’ clusters. Therefore, the concepts of
‘memory,’ ‘concept processing,’ ‘executive function,’ ‘language,’

FIGURE 8 | Identifying densely connected subnetworks using clique
percolation method. Subnetworks are color-coded and the non-negative
matrix factorization coefficients of the parcels belonging to the subnetworks
are shown in corresponding colors. The clique threshold K is a criterion for
densities of connectivity in subnetworks to be identified. The connectivity
becomes dense with an increase in K. When K = 3, all parcels were
interconnected, which implies only one network was identified. When K = 5,
11 subnetworks were identified. When K = 8, three subnetworks were
identified, in each of which the parcels were densely interconnected.

and ‘self and others’ are entangled, and the information
processing relating these concepts may be executed through close
interactions among them.

In the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5), which describes the current standardized
criteria to diagnose psychiatric diseases, the neurocognitive
domain is categorized into six subdomains consisting of ‘complex
attention,’ ‘executive function,’ ‘learning and memory,’ ‘language,’
‘perceptual-motor,’ and ‘social cognition’ (American Psychiatric
Association, 2013). We found rough correspondences between
the categorizations in DSM-5 and our results. The ‘complex
attention’ subdomain in DSM-5 is considered to be included
in the ‘vision and attention’ cognitive factor and cluster in the
present study. The ‘executive function’ subdomain in DSM-5
probably corresponds to the cognitive factor and cluster labeled
with the same name in this study. The ‘learning and memory’
subdomain in DSM-5 mainly relates to the ‘memory’ factor
in this study. Since the immediate memory is included in the
‘learning and memory’ subdomain in DSM-5, this may relate
to the ‘executive function’ cognitive factor and cluster in this
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FIGURE 9 | Characterizing communities in the whole-brain network with the cognitive factors. Ten network communities were identified using spectral clustering.
The parcels belonging to each community are shown by magenta dots. For each community, the subpart of the non-negative matrix factorization coefficient matrix
corresponding to the parcels in the community is shown on the right. The lowest row shows the row mean of the matrix.

study that involves ‘maintenance’ and ‘working memory.’ The
‘language’ subdomain in DSM-5 roughly corresponds to the
‘language’ cluster in our analysis. Furthermore, it also relates to
the ‘action and expression’ cluster in this study because it includes

‘syntax,’ ‘listening,’ ‘communication,’ and so on. Additionally, the
‘language’ subdomain in DSM-5 probably has a close relationship
with the ‘concept processing’ and ‘action and expression’ factors
in this study. The ‘perceptual-motor’ subdomain in DSM-5
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FIGURE 10 | Correspondences between cognitive clusters and factors.
Correlation coefficients between NMF basis vectors for the factors and
presence/absence vectors of cognitive functions for the clusters are shown. In
the presence/absence vectors, the presences and absences in the cluster
were assigned to ‘1’ and ‘0’, respectively.

mainly relates to the ‘action and expression’ and ‘vision and
attention’ factors and clusters in this study. The ‘social cognition’
subdomain in DSM-5 mainly relates to the ‘value and judgment’
and ‘self and others’ clusters in this study. It may also relate to the
‘concept processing’ and ‘value and judgment’ factors.

The relational mapping among cognitive functions that we
obtained provides several insights into the mechanisms of
cognition. We found that the default-mode network was located
in a position close to ‘self and others’-related cognitive functions
(e.g., ‘theory of mind’ and ‘autobiographical memory’) and
social cognitive functions (e.g., ‘social cognition’ and ‘decision-
making’). In fact, many studies suggest that these cognitive
functions share underlying neural substrates (Spreng et al., 2009;
Andrews-Hanna et al., 2010, 2014; Spreng and Grady, 2010; Mars
et al., 2012; Reniers et al., 2012; Li et al., 2014; Meyer et al., 2019).
We also found that ‘phonological processing’ was located close
to the ‘executive function’ cluster. This seems to be consistent
with Baddeley’s working memory system (Baddeley, 2000), in
which phonological loop interacts with central execution. From
the same point of view, we can link ‘episodic memory’ with
episodic buffer in Baddeley’s system, since it was also located close
to the ‘executive function’ cluster. More globally, we observed
that the ‘executive function’ cluster neighbored the ‘self and
others’ cluster, centering on the ‘default-mode network.’ Several
studies reported cooperative activity between the brain areas
related to these cognitive functions when subjects experienced
spontaneous thoughts (Christoff et al., 2009) and engaged in
creative tasks (Beaty et al., 2015) and mental simulations (Gerlach
et al., 2011). Thus, our relational mapping of cognitive functions
provides a whole picture of cognition which is feasible because
it includes many known neurocognitive relationships. A study to
survey relationships among cognitive functions whose aim was
similar to ours was conducted using text analysis of neuroscience

literature (Beam et al., 2014). In this study, the authors identified
networks among 100 cognitive concepts, among 100 anatomical
regions, and among combinations of both on the basis of the
co-occurrences of the terms in the texts. More recently, a study
reported the relations among 120 cognitive functions using
hierarchical clustering based on correlations between pseudo-
activation patterns, not RSFCs (Alexander-Bloch et al., 2018).
Owing to methodological variations between the present and
those studies, the present study can endow another picture
complementing these studies.

In the present study, we proposed a novel method for
conceptual analysis of cognitive concepts based on the CFMs
and RSFCs in the brain. This yielded functional subdivisions
of the cognitive concepts. Each sub-concept was characterized
by its relatedness with the other cognitive concepts. We found
several unexpectedly characterized sub-concepts. A sub-concept
of ‘emotion’ that is characterized by functionality involving
comprehension of abstract meanings is one such unexpected
sub-concept. This may imply that we need emotional processing
to receive an implicit message from linguistic expressions.
Conversely, emotional processing may require analysis of abstract
meanings. Further, we found that ‘thought’ had a sub-concept
related to imaginary navigation. Navigation is considered to be
handled by the grid and place cell systems. Several studies have
shown that these systems play roles not only in physical spaces
but also in abstract spaces such as social relationships, features
of objects and events, and relational knowledge (Tavares et al.,
2015; Constantinescu et al., 2016; Epstein et al., 2017; Garvert
et al., 2017; Aronov et al., 2017; Schafer and Schiller, 2018).
Therefore, imaginary navigation in an abstract space may be
generally used in thoughts.

In the analysis for diversity of informational interactions,
we observed that the nodes associated with cognitive functions
that were closely related to the ‘memory’ factor interacted
with the most diverse information. Since our analyses did not
indicate the directions of the interactions, it was not clear
whether these nodes were information sources or receivers.
If the nodes play the role of information source, our result
suggests that information processed with ‘memory’-related
functions is necessary to realize a wide range of cognitive
functions. Conversely, if the nodes are receivers of information,
it suggests that execution of ‘memory’-related cognitive functions
need information from a wide range of cognitive functions.
Since the ‘value and judgment’- and ‘executive function’-related
cognitive functions also have relatively diverse informational
interactions, these results suggest similar implications. To
support these results, an analysis to clarify the interaction
directions will be required. In the additional analysis, the
behavior of the factor relating to ‘vision and attention’ is
insightful since it suggests that the diversity of informational
interaction highly depends on the range of information
transmission. Since the efficacy of information transmission
changes depending on the brain state such as wakefulness
and sleep (Massimini et al., 2005), our observation may
suggest that the role of visual and attentional processing on
the entire cognitive information processing changes when the
brain state shifts.
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We identified a densely connected subnetwork that was
highly related to the ‘concept processing’ factor as well as the
subnetworks related to the ‘action and expression’ and ‘vision
and attention’ factors. The ‘concept processing’ subnetwork
included a direct pathway between the Broca’s and Wernicke’s
areas and an indirect pathway passing through the left
inferior parietal cortex, which has been previously identified
as constituents of the perisylvian language networks (Catani
et al., 2005). Moreover, we detected participation of a wide
range of structures in the left prefrontal cortex, including
the lateral, medial, and orbital regions as well as the frontal
pole in this subnetwork. Since these areas involve various
aspects of higher-order cognition (Passingham and Wise, 2012;
Fuster, 2015), this subnetwork suggests the existence of an
integrated cognitive function that is highly dependent on
language processing but is contributed also from functions
beyond language processing.

Previous studies have shown that functional communities
exist in the brain (He et al., 2009; Eickhoff et al., 2011;
Power et al., 2011; Crossley et al., 2013; Bertolero et al., 2015,
2018). The studies have emphasized functional specificities of
the communities. On the other hand, we found differences in
the degrees of functional specificities of the communities, in
which some communities were specifically associated with one
cognitive factor while other communities were associated with
diverse cognitive factors. One of the communities associated
with the most diverse cognitive factors was located mainly
in the cerebellum. Although the cerebellum was previously
considered to be related to motor functions, it is now recognized
that the cerebellum involves a remarkably wide range of
cognitive functions (Stoodley and Schmahmann, 2009; Strick
et al., 2009; Stoodley, 2012), which is consistent with our
results. Viewing the internal models in the cerebellum (Wolpert
et al., 1998) as a general controller working on various mental
activities may give rise to a theoretical foundation for the
diversity of cerebellar functionality (Ito, 2008). Additionally, a
theoretical study (Yamazaki and Tanaka, 2007) suggests that the
cerebellum is considered a kind of universal machine, the so-
called liquid state machine (Maass et al., 2002), which may also
support our finding.

Limitations and Future Directions
There are several limitations to the present study which
should be addressed in future studies. While constructing the
CFMs, we used abstract texts to count the occurrences of
cognitive terms. We did not utilize contextual information.
Therefore, we did not discriminate as to whether the occurrences
meant activation or deactivation. Additionally, to ensure
that a term was the main topic in a study, we only
used the frequency of the occurrences in its title, abstract,
and keywords. Utilization of contextual information is a
promising way to improve our analyses. The methods being
developed in the field of natural language processing will
probably provide such ways. Additionally, the use of natural
language processing technics can provide us useful data
revealing the constraints of inferring relationships among
cognitive functions.

Compared to the datasets stored in the recently developing
large-scale databases such as the Human Connectome Project
database (Smith et al., 2013; Van Essen et al., 2013), the dataset
used in the present study was small with respect to both the
number of subjects and the number of scan volumes. Although
we checked the reliabilities of the RSFC matrices and we consider
that the outlines of the results are validated, especially in details
of the results, some instabilities caused by the small data size were
probably not removed. Therefore, we should continuously revise
and establish knowledge suggested from our observations.

The number of parcels in the cognitive function-based whole-
brain parcellation was determined not based on data but by
reference to several existing atlases (Destrieux et al., 2010;
Power et al., 2011; Shen et al., 2013; Baldassano et al., 2015;
Fan et al., 2016). The selection of the number is a trade-
off problem. The larger number of parcels results in a set of
smaller parcels. This is suitable to reflect spatial heterogeneity
in the brain. On the other hand, since the BOLD signal of
the parcel is calculated by averaging the signals over the voxels
within it, the signal of a smaller parcel tends to be more
fluctuated. Several studies suggest that estimations of network
characteristics in the brain depend on a resolution of parcellation
(de Reus and van den Heuvel, 2013; Proix et al., 2016). Therefore,
we need to address the issue of the number of parcels in
the future study.

The connectivity measures used in this study were undirected
and did not provide any information regarding dynamic causality
and logical orders. On the other hand, we expect that the
identification of directions in connectivity will provide useful
insights into the issues dealt with in the present study. One
representative instance is the analysis of the diversity of
informational interactions, in which we found that cognitive
functions highly related to the ‘memory’ factor interact with
the most diverse kinds of information. If those cognitive
functions are information sources (or receivers), this result
suggests certain roles (or mechanisms) of memory-related
information processing in the entire cognitive information
processing. Similarly, directional information is required in
the RSFC-based conceptual analysis, in which we observed
that ‘emotion’ should implicate a sub-concept related to
comprehension of abstract meanings. To determine whether
emotional processing contributes to comprehension or vice
versa, we need to identify the direction of connectivity
between the CFM corresponding to ‘emotion’ and the CFMs
of the cognitive functions related to comprehension of abstract
meanings. Another instance in which directional information
is required is the relational mapping of cognitive functions.
This is expected to reveal the hierarchical dependencies
among the cognitive functions, which will provide a more
sophisticated perspective for the mechanism of the entire
human cognition. To these ends, we may use methods of
time series analyses, including the dynamic causal modeling
(Friston et al., 2003, 2014), Granger causality (Roebroeck
et al., 2005; Seth, 2010), and transfer entropy (Schreiber, 2000;
Vicente et al., 2011).

In our relational mapping, we used multidimensional scaling
to embed cognitive functions. Although this method provided

Frontiers in Human Neuroscience | www.frontiersin.org 20 January 2020 | Volume 13 | Article 457126

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00457 December 24, 2019 Time: 15:48 # 21

Kurashige et al. Revealing Relationships Among Cognitive Functions

an easily interpretable overview of the relationship among
cognitive functions, the distances between them were more
or less distorted. Therefore, we need more sophisticated
embedding methods. The t-SNE may be such a method (van
der Maaten and Hinton, 2008; van der Maaten, 2014). Recently,
embedding methods into non-Euclidean spaces, such as Poincaré
embedding, has been proposed (Nickel and Kiela, 2017). Such a
non-Euclidean embedding method is considered to reveal other
types of information regarding the relationships among cognitive
functions. In addition, on the basis of CFMs, RSFCs, and other
useful neuroscientific tools, exploring ontological relations [e.g.,
is-a and part-of relationships (Lenartowicz et al., 2010; Hastings
et al., 2014; Poldrack and Yarkoni, 2016)] is an important
future direction.

The methods and results provided in the present study let
us clarify the meaning of each cognitive concept and obtain an
analytic and synthetic understanding of the relationships among
cognitive concepts. This possibly provides an empirical sketch
of the research domains of cognitive neuroscience, which has
been the aim of neuroimaging studies involving meta-analytical
methods (Alhazmi et al., 2018). Moreover, this will stimulate
the research fields of biological brain- and/or cognition-inspired
artificial intelligences (Anderson and Lebiereeds, 1998; Anderson
et al., 2004; Anderson, 2005; Eliasmith et al., 2012; Hassabis
et al., 2017) by providing guidelines for understanding human
cognition as a whole.
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The aim of the present study was to investigate whether EEG resting state connectivity
correlates with intelligence. One-hundred and sixty five participants took part in
the study. Six minutes of eyes closed EEG resting state was recorded for each
participant. Graph theoretical connectivity metrics were calculated separately for two
well-established synchronization measures [weighted Phase Lag Index (wPLI) and
Imaginary Coherence (iMCOH)] and for sensor- and source EEG space. Non-verbal
intelligence was measured with Raven’s Progressive Matrices. In line with the Neural
Efficiency Hypothesis, path lengths characteristics of the brain networks (Average and
Characteristic Path lengths, Diameter and Closeness Centrality) within alpha band range
were significantly correlated with non-verbal intelligence for sensor space but no for
source space. According to our results, variance in non-verbal intelligence measure can
be mainly explained by the graph metrics built from the networks that include both weak
and strong connections between the nodes.

Keywords: EEG, resting state, connectivity, intelligence, neural efficiency, graph theory

INTRODUCTION

Information processing in the brain is reflected in brain oscillations (Ward, 2003; Buzsáki and
Draguhn, 2004; Clayton et al., 2015; Sadaghiani and Kleinschmidt, 2016). However, it is still not
clear how neurobiological factors actually contribute to more effective cognitive performance. One
approach to understanding the relationship between brain functioning and cognition is the neural
efficiency hypothesis of intelligence (Haier et al., 1988, 1992). According to this hypothesis, brains
of more intelligent individuals work more efficiently when engaged in cognitive task performance
as compared to those of less intelligent ones. In a seminal studies (Haier et al., 1988, 1992), using
the Positron Emission Tomography (PET) method, participants with higher scores on Raven’s
progressive matrices were found to consume less glucose comparing to participants with lower
scores. Later these results were extended to more types of brain activity measures (EEG, fMRI and
so on) and different types of tasks (see Neubauer and Fink, 2009 for review).

The neural efficiency hypothesis predicts that the level of cognitive abilities would be correlated
to brain activity during cognitive load. However, it is still unclear whether the brain activity at
rest can be a good predictor of individual differences in intelligence. It has been proposed that the
most informative way to investigate resting state activity is the network neuroscience approach
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(Deary et al., 2010). This is because intelligence is not localized in
a single area in the brain but rather operates through a distributed
network (Bullmore and Sporns, 2009). According to this
approach, the nervous system is a network of anatomically and
functionally interconnected areas that form distinct functional
systems operating in a coherent manner. The structure and
dynamics of these complex systems and connectivity patterns
within them can be studied with network modeling tools that
originate from mathematical graph theory. “Efficiency” in case of
network approach is defined in terms of the cost of transmitting
information within the network. In particular, it appears that
brain networks are organized in a way that achieves the maximum
possible cost-efficiency: a topological structure that maximizes
complexity while minimizing transmission costs (Bassett et al.,
2010; Denève and Machens, 2016).

Connectivity patterns of the brain resting state activity have
been shown to be highly stable for an individual (Finn et al.,
2015) and could be used for prediction of various personality
traits (e.g., temperament or creativity; Markett et al., 2013; Beaty
et al., 2018) or associated with psychopathological states (see
van den Heuvel and Sporns, 2019 for review). The growing
consensus in this area of research includes several features of
the topology of the brain networks important for intelligence: (1)
neuronal ensembles incerebral cortex are organized into complex
networks due to frequency specific oscillatory coupling (da Silva,
1991; Barahona and Pecora, 2002; Buzsaki, 2006; Senzai et al.,
2019); (2) the brain network graphs of functional oscillatory
activity patterns share cost-efficient “small-world” properties
[meaning that there is only small number of steps from one
node to any other (Sporns, 2007; Stam and van Straaten, 2012)];
(3) characteristics of frequency-specific networks architecture
are unique for a person and can be used as the identifying
“fingerprints” of the network with almost 100% accuracy (Finn
et al., 2015; Yeh et al., 2016); (4) communication through
neuronal coherence within neuronal networks represent the
neural substrate for individual differences in cognitive processes
(Fries, 2015).

However, data on the relationship between the brain resting
state activity and individual level of intelligence is inconsistent.
In some studies the brain resting state functional connectivity
characteristics correlated to intelligence (Langer et al., 2012).
However, a recent large-scale study of 1200 individuals from
the Human Connectome Project failed to find any significant
associations between measures of the brain resting state dynamics
and several widely used intelligence measures (Kruschwitz et al.,
2018). This lack of significant associations could be due to
the method of assessment of functional connectivity. The study
used fMRI BOLD signal oscillations which have poor temporal
resolution (2–3 s, Logothetis, 2008). A number of studies have
shown that brain oscillations of much higher frequency can play
a significant role in cognition (Palva and Palva, 2011; Fries, 2015;
Sockeel et al., 2016).

The aim of the present study was to replicate the association
between graph metrics of EEG resting state brain connectivity
and non-verbal intelligence, found by Langer et al. (2012); and to
assess consistency of several widely used methods of calculating
EEG connectivity.

MATERIALS AND METHODS

Graph connectivity metrics were assessed during resting state. In
EEG, functional connectivity can be estimated for the oscillations
directly recorded from electrodes (sensor space connectivity)
or for the reconstructed sources of brain activity. In the
present study we included graph connectivity metrics both for
sensor and source EEG space. As signal estimates are spatially
correlated, a leakage of electromagnetic activity into local source
neighborhood often occurs. When the synchronization method
ignores this effect, “false positive” findings typically arise. Various
methods were proposed to overcome the spatial leakage problem
(see Bastos and Schoffelen, 2016 for a review). In the present
study we used two most popular measures designed to correct for
spatial leakage to replicate our results: weighted Phase Lag Index
(wPLI, Vinck et al., 2010) and Imaginary Coherence (iMCOH,
Nolte et al., 2008).

To calculate graph connectivity metrics one has to choose
the threshold synchronization value below which all the
signal pairs are considered to be unrelated. In our study
we systematically test several thresholds to understand how
it affects the connectivity metrics and its relationship with
non-verbal intelligence measure. The rationale for the network
metrics choice and details of calculation are described in
Supplementary Table S1. The plan of analysis is presented
in Figure 1.

The non-verbal intelligence was measured with Raven’s
Standard Progressive Matrices (Raven and Court, 1998).

Participants
The participants were recruited via announcement in social
networks (N = 165). They participated voluntarily without any
monetary incentive. The exclusion criteria were any recorded
history of psychiatric or neurological disorders and head trauma.
Participants’ age ranged from 17 to 34 (M = 21.7, SD = 3.36,
30% identified as female). The majority of the participants were
students or had a bachelor degree.

Procedure
During resting state EEG acquisition all participants were
instructed to sit still, think of nothing in particular and not to
fall asleep for 10 min. Every 2 min the participants were asked to
open or close their eyes with verbal instructions: “Now open your
eyes,” “Now close your eyes.” Data with eyes closed were used for
analysis in the present study.

The non-verbal intelligence was measured online before EEG
recording with the shortened Raven’s matrices test (Raven and
Court, 1998). The test consists of series of incomplete matrices.
In each task participants should choose one of the eight suggested
variants to complete the pattern. The original test, comprises
six sets – A, B, C, D, E, and F. Within each set, the 12 items
progressively become more difficult. We used four sets – C, D, E,
and F. Sets C, D, and E contained six item each: 1st, 3rd, 5th, 7th,
9th, and 11th (items with even numbers were excluded); and set F
contained 12 items. Thus, there were 30 items in total. Sets were
presented in the following order: C – >D – >E – >F, where each
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FIGURE 1 | The plan of analysis of the connectivity metrics calculation.

set in turn became more difficult. A total sum of correct items was
used as the measure of general cognitive ability.

EEG Data Acquisition and
Pre-processing
The EEG data was recorded from 64 active electrodes
placed according to the international 10–10 system with
Brain Products ActiChamp amplifier (BrainProducts, Munich,
Germany). All experiments were conducted in a sound-
attenuated and electrically shielded room with dim light.
Impedance was kept under 25 kOhm with high conductive
chloride gel. Approximate time for settling EEG was 15 min.
The Brain Products PyCorder acquisition system was used for
continuous recording without any filtering and continuously
sampling at 500 Hz. The reference electrode was located at Cz.
The data was re-referenced to the common reference after the
recording and downsampled to 256 Hz. The data were filtered
from 0.1 to 30 Hz and then re-referenced to an averaged reference
and manually cleaned from artifacts, with noisy channels
excluded. No more than 15% of the data was removed during
artifact correction procedures. To remove blink and vertical eye-
movement artifacts, independent component analysis (ICA) was
performed on the following electrodes: VEOG — Fp1, HEOG —
FT9 and FT10. After ICA, we topographically interpolated
the excluded channels and conducted semiautomatic artifact
rejection. The data were bandpassed into theta (4–8 Hz),
alpha (8–13 Hz), beta1 (13–20 Hz), and beta2 (20–30 Hz)
frequency ranges.

EEG Data Analysis
Synchronization Measures
To assess synchronization between pair of signals two metrics
were used. Both metrics were calculated with MNE Python
software (Gramfort et al., 2014).

Weighted Phase Lag Index (Vinck et al., 2010; Hardmeier
et al., 2014) is an extension of the PLI, which quantifies
the asymmetry of the relative phase distribution. PLI ignores
amplitude and is robustto spurious increase in the coherence
between signals due to common sources of brain activity.

PLI = |〈sig[18(tk)]〉|, where 18(tk) – phase shift
between two signals.

By weighing each phase difference according to the magnitude
of the lag, phase differences around zero only marginally
contribute to the calculation of the wPLI.

Imaginary Coherence (Nolte et al., 2008) – is another attempt
to solve common source problem. The method is based on the
assumption, that common source activity is reflected in different
channels simultaneously, without time-lag. iMOCH is designed
so that it is sensitive to time-lagged processes only.

The iMCOH could be calculated as:

icohxy (ω) =
Im(Sxy (ω))√
Sxx (ω) Syy (ω)

,

where Im(Sxy (ω)) − part of the signal with time shift

Source Reconstruction
Source reconstruction was performed using standard source
localization pipeline from MNE-package. First, source space
with 503 sources for each hemisphere was created. Second,
we used BEM (boundary-element model) to create three-
layer model of the hemispheres. The three layers were inner
skull, outer skull and outer skin. Conductivity of layers
was standard for MNE package (0.3, 0.006, 0.3 for three
layers accordingly). MNE exploit anatomical information
from Free Surfer (Fuchs et al., 2001). Third, we constructed
forward operator based on the source space and BEM
model. Fourth, we created individual inverse operator for
every participant with individual noise covariance matrix.
Source reconstruction for each individual was performed
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with appropriate inverse operator using dSPM method
(Dale et al., 2000).

Connectivity Graph Measures
The connectivity metrics were chosen based on the reviews
by Sporns and colleagues (Mišić and Sporns, 2016; Avena-
Koenigsberger et al., 2018). In the present study we calculated the
following graph connectivity metrics:

“Small world index” (SWI) – indexes the number of steps
from one node to any other node within the network.
Average and Characteristic Path Length – the minimal
number of edges that form a direct connection between two
nodes (Average Path Length is based on the mean as the
statistic, Characteristic Path Length – on the median).
Cluster Coefficient – a measure of the number of edges
between a node’s nearest neighbors or the fraction
of triangles around a node, and is a measure of
functional segregation. High C represents clustered
connectivity at the node.
Modularity – a measure of functional segregation, which
quantifies how well the network can be subdivided into
non-overlapping groups of nodes or modules.
Diameter – the greatest distance between any pair of nodes
within the network.
Eigenvector Centrality – a measure of the influence of a node
in a network. A high eigenvector score means that a node is
connected to many nodes that themselves have high scores.
Closeness Centrality – a measure of centrality in a network,
calculated as the reciprocal of the sum of the length of
the shortest paths between the node and all other nodes in
the graph.
Graph measures were calculated with igraph package1 for R
(R Core Team, 2018).
The details of the calculation are presented in
Supplementary Table S1.

STATISTICAL APPROACH

There is substantial variability in the possible routines of
connectivity metrics calculation. There are several steps in EEG
connectivity analysis where variability occurs. First, there is the
alternative whether to use “raw” sensor-space EEG-signal or
reconstruct and localize the source of EEG activity inside the
brain. Second, there are different measures of synchronization
between pairs of signals. Third, there is the convention to use
only the pairs of signals with the strongest connections between
them. However, the rationale to choose the “strong enough”
threshold for synchronization measure is not explicitly and
theoretically defined.

In our study we used two well-established but distinct
measures of synchronization of the oscillatory brain activity
(wPLI, Vinck et al., 2010; and iMCOH, Nolte et al., 2008).
Synchronization was estimated for all pairs of EEG signals
both for sensor and source EEG space separately for common

1http://igraph.org

EEG frequency bands (alpha, beta, and theta). In order to
increase the number of investigated calculation alternatives and
to decrease the number of multiple comparisons we developed
the following approach used in the field of machine learning
(Gareth, 2013). The whole sample was randomly divided into
two subgroups: Test and Validation samples. Bootstrapped
correlation coefficients were then separately calculated for the
two samples– for non-verbal intelligence scores and all types
of connectivity metrics. The median strength of connections
within the person was used as the threshold (e.g., the 50% of
the pairs with the highest synchronization estimates were used
to calculate graph metrics). From this procedure we took only
those metrics that were significantly correlated with non-verbal
intelligence scores in both subsamples and both synchronization
measures. To rule out possible impact of additional factors for
these metrics, we also performed linear regression analysis with
additional factors of sex and age of the participants. Another
known variable, that can affect the EEG data is EEG spectral
power. It was also added in the regression model.

The last step of the analysis was related to effect of
thresholding on the connectivity metrics calculation. For
the variables that remained significant after previous steps we
calculated new metrics based on different synchronization
thresholds (from 10 to 90% of the data preserved with
the 10%-step). All the analyses were performed in R
(R Core Team, 2018).

RESULTS

EEG Sensor and Source Space
Correlations
The consistent (repeated for different samples and
synchronization measures) results were found only for alpha
band EEG sensor space connectivity metrics. The bootstrapped
correlations for the metrics in alpha band are presented in
Table 1. The scatterplots for the relationship between wPLI-
based metrics and intelligence are presented in Figure 2 (The
descriptive statistics and correlations for other frequency bands,
as well as scatterplots for iMCOH-based metrics can be seen in
Supplementary Tables S2–S5 and Supplementary Figures S1,
S2). There were a number of significant correlations between
non-verbal intelligence and connectivity metrics for other
frequency bands and EEG source space (see Supplementary
Tables S2–S4), however, none of them were consistent for the
different samples and synchronization measures.

At this step of analysis we were interested in the metrics that
showed the same pattern of results both for wPLI and iMCOH
measures and for both Test and Validation samples. Only
four metrics calculated for alpha band EEG sensor space met
these criteria (Average and Characteristic Path length, Diameter
and Closeness). However, the collinearity analysis showed that
multicollinaerity was present for these metrics (VIF > 5, Ringle
et al., 2015). Accordingly, for the next step of the analysis we used
only one of these metrics. We have chosen Characteristic Path
Length due to its most straightforward theoretical interpretation.
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TABLE 1 | Bootstrapped correlations between alpha band connectivity metrics and non-verbal intelligence for test sample and validation sample.

EEG sensor space EEG source space

Variable WPLI iMCOH WPLI iMCOH

Test Validation Test Validation Test Validation Test Validation

Char PL 0.41** 0.31** 0.30** 0.32** 0.10 0.19 0.01 0.16

Average PL 0.43** 0.36** 0.30* 0.17 0.09 0.13 0.01 0.14

Clust coef. −0.06 0.01 0.07 −0.28* −0.00 −0.03 0.08 0.07

SWI 0.38** 0.27* 0.24 0.22 0.13 0.13 0.09 0.12

Modularity −0.07 −0.20 −0.04 −0.09 −0.16 0.02 0.14 −0.18

Eigen. centrality −0.06 0.16 −0.04 0.02 −0.02 −0.07 −0.05 0.01

Diameter 0.36** 0.29** 0.29* 0.29* 0.06 0.18 −0.00 0.16

Closeness −0.35** −0.28* −0.38** −0.31** −0.17 −0.22 −0.09 −0.17

* indicates p < 0.05. ** indicates p < 0.01. Char PL, Characteristic Path Length; Average PL, Average Path Length; Clust Coef., Cluster coefficient; Eigen. Centrality,
Eigenvector centrality.

FIGURE 2 | The scatterplots for the relationship between the wPLI-based connectivity metrics and non-verbal intelligence.

The next step of the analysis was the linear regression
analysis with sex, age and EEG spectral power as an additional
variable. Both wPLI and iMCOH-based Characteristic Path
Length remained statistically significant predictors of the level of
non-verbal intelligence. The results are presented in Tables 2, 3.

Correlations for Different EEG
Sensor-Space Connectivity Matrix
Construction Thresholds
One of the steps in the calculation of the connectivity metrics
is thresholding procedure. Its main purpose is the increase in
signal-to-noise ratio by deleting “weak” connections that do not
contain any relevant physiological signal. The threshold values
vary across studies considerably, which can lead to inconsistent
results (Garrison et al., 2015). According to Sporns (2014) the
average threshold is often chosen to delete the connections with
the strength that lies at least below 75% of all connections. The

discrepancies in the resulting networks with different percentiles
(50th and 90th percentiles are taken as examples) can be seen
in Figure 3.

The current study addressed the problem of choosing
the threshold explicitly. We have calculated the sensor space
Characteristic Path length with ten different thresholds (from
10 to 90% with the 10%-step) for the test sample. The results
are presented in Figure 3 (the detailed results are presented
in Supplementary Table S6). No significant correlations with
non-verbal intelligence were observed for the connectivity
metrics calculated with 60% threshold or higher (i.e., with
only strong connections between the nodes used to build
the metric). The Characteristic Path Length metrics calculated
with thresholds from 10 to 60% were significantly correlated
with non-verbal intelligence, with r ranging from 0.24 to
0.36 (p < 0.05; adjusted for multiple comparisons with FDR
correction). The pattern of these significant correlations is
presented in Figure 4.
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TABLE 2 | Regression results using non-verbal intelligence as the criterion and wPLI-based characteristic path length, sex, age, and EEG spectral power as predictors.

Predictor b b 95% CI [LL, UL] beta beta 95% CI [LL, UL] sr2 sr2 95% CI [LL, UL] r Fit

(Intercept) 8.77* [0.69, 16.85]

Characteristic PL 14.86** [8.11, 21.61] 0.39 [0.21, 0.57] 0.13 [0.02, 0.24] 0.38**

sex −1.51 [−3.38, 0.36] −0.14 [−0.31, 0.03] 0.02 [−0.02, 0.06] −0.13

Full years 0.02 [−0.20, 0.23] 0.01 [−0.16, 0.18] 0.00 [−0.00, 0.00] −0.04

alpha_power −0.00 [−0.07, 0.06] −0.01 [−0.18, 0.17] 0.00 [−0.00, 0.00] 0.09

R2 = 0.168**

95% CI[0.04, 0.26]

A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized regression weights. beta indicates the
standardized regression weights. sr2 represents the semi-partial correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits
of a confidence interval, respectively. * indicates p < 0.05. ** indicates p < 0.01.

TABLE 3 | Regression results using non-verbal intelligence as the criterion and iMCOH based characteristic path length, sex, age, and EEG spectral power as predictors.

Predictor b b 95% CI [LL, UL] beta beta 95% CI [LL, UL] sr2 sr2 95% CI [LL, UL] r Fit

(Intercept) 14.80** [8.15, 21.44]

Characteristic PL 25.23** [10.65, 39.81] 0.30 [0.13, 0.48] 0.08 [−0.01, 0.17] 0.32**

sex −1.16 [−3.08, 0.76] −0.11 [−0.28, 0.07] 0.01 [−0.02, 0.04] −0.12

Full years −0.01 [−0.21, 0.20] −0.00 [−0.18, 0.17] 0.00 [−0.00, 0.00] −0.02

alpha_power 0.02 [−0.05, 0.08] 0.05 [−0.12, 0.23] 0.00 [−0.01, 0.02] 0.10

R2 = 0.117**

95% CI[0.01, 0.20]

A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized regression weights. beta indicates that the
standardized regression weights. sr2 represents the semi-partial correlation squared. r represents the zero-order correlation. LL and UL indicate the lower and upper limits
of a confidence interval, respectively. ** indicates p < 0.01.

DISCUSSION

The neural efficiency hypothesis of intelligence is an important
example of the neuroscience-based theories that promote
understanding of psychological phenomena. One of the
promising and well-suited methods for testing the neural
efficiency hypothesis is the graph theoretical approach to the
brain network analysis. However, in the recent large-scale fMRI
study with 1096 participants, the connectivity-derived metrics
of the brain dynamics were shown to be uncorrelated with
various intelligence measures. fMRI is limited in capturing high
frequency oscillations. A suitable measure of fast brain activity
related to cognition is EEG due to its high temporal resolution.
The current study tested the hypothesis that EEG-derived
connectivity metrics is associated with non-verbal intelligence.

We found that average and characteristic path lengths, the
diameter, and closeness centrality of the network in alpha band
in EEG sensor space are correlated with the level of non-verbal
intelligence in both test and validation samples. In the initial
study by Langer et al. (2012) the negative correlation between
intelligence and characteristic path length of the networks has
been found. In contrast, in our study the correlation between
non-verbal intelligence and graph metrics, related to path lengths
characteristics, were positive (except closeness centrality, which
is in inverse relationship with path lengths). The path length
measures of a network we used are thought to be related to
the integrative capacity of individual elements and the entire
network (Avena-Koenigsberger et al., 2018). The average and

characteristic (median) path lengths are related to the ease of
the information transferring in the network. The diameter of
the network measures the length of the shortest path between
the most distanced nodes of a graph. The higher the diameter,
the less linked a network tends to be. In general, the brain
networks are supposed to be organized to ensure reliable and
efficient communication, while minimizing the spent resources.
Networks with longer paths are supposed to be energetically and
metabolically more costly to be developed (Bullmore and Sporns,
2012). At the same time, in real architectures near-minimal
pathway structure violates strict mathematical minimization
criteria and require additional energetic cost (Rubinov et al.,
2015; Betzel et al., 2016). This fact is compatible with the notion,
that nervous systems were evolutionary selected not only for cost
minimization, but also for topological integration (Sousa et al.,
2017; Ardesch et al., 2019).

The importance of the integration of different brain areas
can also explain another result of our study. We have
found that the weak connections in the EEG sensor space
yielded the most important information about the relationship
between connectivity metrics and non-verbal intelligence. In
connectivity studies mostly strong connections between the
nodes have been accounted for, while weak connections were
eliminated from calculation of the metrics. But, according
to our data, variance in intelligence measurecan be mainly
explained by the graph metrics built from the networks with
not only strong, but weak to moderate strength of connections
between the nodes as well. Weak EEG connections could
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FIGURE 3 | EEG Sensor space synchronization networks for wPLI. Connections strength lower than 90% (A) and 50% (B) of all connections removed. Node size
represents node degree; edge width represents strength of the connection between two nodes.

FIGURE 4 | Significant correlations between wPLI and iMCOH connectivity metrics and non-verbal intelligence for different thresholds. Only correlations with metrics
built with thresholds of 60% or lower are presented (p < 0.05, adjusted for multiple comparisons with FDR correction). Non-significant correlations (with 70% and
higher threshold) for Characteristic PL are not presented. The bars represent 95% confidence intervals for bootstrapped correlations.

represent additional abundant pathways that result in resilient
communication within the network. Weak connections have
been hypothesized to be important for stability of various
types of networks (Granovetter, 1973; Pajevic and Plenz, 2012).
Excessive number of pathways could be used to make the
network less prone to bottlenecks and delays in the information
transfer (Nassi and Callaway, 2009; Brandon et al., 2014. Several
computational studies have demonstrated that geometrically
embedded networks are, actually, characterized by physically

short excessive connections that have an overall topology
that increases the mean path length (Kaiser and Hilgetag,
2006). Research with macaque monkeys has shown that weak
connections in the brainare important for neural cohesion
(Goulas et al., 2015). Another possibility is that “a more
intelligent brain” can engage larger amount of the distributed
brain areas into the task solving process, which is in line
with the parallel distribution processing theory (McClelland and
Rumelhart, 1989; Bowers, 2017).
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We have found that connectivity metrics of the brain
networks oscillating within alpha frequency band range are
sustainably correlated with non-verbal intelligence over wide
variety of types of connectivity metrics, which is in line
with the neural efficiency hypothesis. The EEG activity in
the alpha range has been repeatedly associated with scores
in various intelligence measures (Doppelmayr et al., 2002,
2005; Bazanova and Vernon, 2014). It has been hypothesized
that the alpha band power reflects inhibition of non-essential
processing (Klimesch et al., 2007). Thus, individual differences
in the characteristics of resting-state alpha connectivity can
indicate one’s ability to inhibit activity irrelevant to the task
at hand, which can lead to higher task performance at
intelligence tests. The brain oscillations are supposed to be
the mechanism that synchronize the activity between different
areas. The frequency of oscillations has been shown to be
related to the spatial scale of the synchronization. Rhythms
with higher frequency synchronize communication on relatively
small spatial scales within the brain, while slower rhythms
synchronize activity between more distant brain areas (Buzsaki,
2006; Fries, 2015). Therefore, the large-scale communication
between the brain areas during resting state can be one
of the key mechanisms underlying individual differences in
cognitive functioning.

Our results are in line with recent diffusion tensor imaging
study, where the preserving of weak connections on calculation
of graph connectivity metrics was advocated for Civier et al.
(2019), and with earlier fMRI study where thresholding has
been shown to lead to inconsistent results (Garrison et al.,
2015). The results suggest that common practice in research
to eliminate weak connections may lead to missing important
information. One way to avoid arbitrary thresholding is the
data-driven approach to construction of the graphs, which
can be based, for example, on the minimal spanning tree
algorithms, (Dimitriadis et al., 2017, 2018). However, spanning-
tree approach can be highly dependent on an initial state of
the data and lead to different results with minor changes in the
signal. Thus, the direct comparison of the results obtained with
thresholding approaches and various data-driven approaches
are needed.

Our study has a number of limitations. First, there is
no consensus in the literature about the best measure of
EEG synchronization, and the most stable source localization
approach. In the current study we have chosen two of the most
favorites synchronization measures and one paradigm of EEG
source localization. Further research is needed to test whether
our results can be replicated with other types of measures: (1)
synchronization- orthogonalized envelope correlation; canonical
coherence; bicoherence; phase shift invariant imaging of coherent
sources (Ossadtchi et al., 2018,Vidaurre et al., 2019); and (2)
localization – LORETA, FOCUSS, MUSIC (Jatoi et al., 2014).

Second, we hypothesize that the discrepancy in the
association between intelligence level and EEG and fMRI-derived
connectivity metrics can be attributed to higher EEG temporal
resolution. In the present study we were not able to compare
these methods directly. The combined EEG-fMRI study is needed
to further investigate this question.

Lastly, in the initial studies, the neural efficiency hypothesis
was based on the analysis of the brain activity during cognitive
performance rather than resting state. To clarify whether the
graph theoretical approach is a good measure of efficiency within
neural networks under cognitive load, a replication of classical
studies with the graph connectivity metrics calculation is needed.

Overall, we have found that the connectivity characteristics of
the brain networks (particularly, oscillating within alpha range),
derived from EEG resting state with graph theoretical approach,
are significantly correlated with non-verbal intelligence. This
is in line with the neural efficiency hypothesis. According
to our results, weak EEG connections contain an important
information about the brain activity. Therefore, it is possible that
the widely used thresholding procedure can lead to increase in
false negative results.
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Previously conducted structural magnetic resonance imaging (MRI) studies on the
neuroanatomical correlates of mathematical abilities and competencies have several
methodological limitations. Besides small sample sizes, the majority of these studies
have employed voxel-based morphometry (VBM)—a method that, although it is easy
to implement, has some major drawbacks. Taking this into account, the current
study is the first to investigate in a large sample of typically developed adults the
associations between mathematical abilities and variations in brain surface structure
by using surface-based morphometry (SBM). SBM is a method that also allows the
investigation of brain morphometry by avoiding the pitfalls of VBM. Eighty-nine young
adults were tested with a large battery of psychometric tests to measure mathematical
competencies in four different areas: (1) simple arithmetic; (2) complex arithmetic;
(3) higher-order mathematics; and (4) numerical intelligence. Also, we asked participants
for their mathematics grades for their final school exams. Inside the MRI scanner,
we collected high-resolution T1-weighted anatomical images from each subject. SBM
analyses were performed with the computational anatomy toolbox (CAT12) and indices
for cortical thickness, for cortical surface complexity, for gyrification, and sulcal depth
were calculated. Further analyses revealed associations between: (1) the cortical surface
complexity of the right superior temporal gyrus and numerical intelligence; (2) the depth
of the right central sulcus and adults’ ability to solve complex arithmetic problems; and
(3) the depth of the left parieto-occipital sulcus and adults’ higher-order mathematics
competence. Interestingly, no relationships with previously reported brain regions were
observed, thus, suggesting the importance of similar research to confirm the role of the
brain regions found in this study.

Keywords: right superior temporal gyrus, right central sulcus, left parieto-occipital sulcus, surface-based
morphometry, mathematics

INTRODUCTION

Mathematical competencies are one of the key cognitive abilities in our modern societies, and
they are crucial for our profession as well as social development (Parsons and Bynner, 2005). To
date, an extensive number of neuroimaging studies have investigated the cognitive architecture of
mathematical cognition. However, these studies have mainly focused on neurofunctional aspects
of mathematical competencies, whereas literature on their neuroanatomical correlates is scarce.
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Especially, the surface characteristics of the gray matter (GM;
i.e., cortical surface complexity, cortical thickness, gyrification,
and sulcal depth) and their relationships with mathematical
competencies have been widely ignored. The current study aimed
to shed light on this aspect.

Numerous functional magnetic resonance imaging (fMRI)
studies have demonstrated that numerical and mathematical
cognition is associated with the activation of various frontal
(e.g., ventral- and dorsolateral prefrontal cortex) and parietal
brain regions (e.g., inferior and superior parietal cortex; for a
review see Menon, 2014; for a meta-analysis see Arsalidou and
Taylor, 2011). Also, it has been shown that the recruitment
of these brain regions depends on the involved cognitive
processes (e.g., quantity processing, arithmetic problem solving,
etc.; Dehaene et al., 2003; Arsalidou and Taylor, 2011). For
instance, while activation within the intraparietal sulcal (IPS)
is thought to reflect quantity-based processes (Dehaene et al.,
2003; Wilkey et al., 2017; Vogel et al., 2017a; or for a recent
meta-analysis see Sokolowski et al., 2017), the controlled retrieval
of a solution to a given arithmetic problem seems to rely
on brain regions such as the inferior frontal gyrus (IFG), the
supramarginal gyrus (SMG) and the angular gyrus (AG; Delazer
et al., 2003, 2005; Ischebeck et al., 2006, 2009; Grabner et al.,
2009; Klein et al., 2013, 2014; Menon, 2014; Peters and De
Smedt, 2018; Heidekum et al., 2019). Furthermore, neuroimaging
data indicate that activity in this network is also modulated by
individual differences (e.g., Grabner et al., 2007; De Smedt and
Gilmore, 2011; Berteletti et al., 2014). For instance, Grabner
et al. (2007) compared two groups of young adults with different
levels of mathematical competence who solved single-digit and
multi-digit multiplication problems. The authors showed that
individuals with higher mathematical competence more strongly
activate the left AG while solving easy and more difficult
multiplication problems. Grabner et al. (2007) concluded that
mathematically more (compared to less) competent individuals
rely more strongly on language-mediated processes (in particular
fact retrieval) during arithmetic problem-solving.

In contrast to the large number of neurofunctional studies,
only a few studies have used high-resolution structural MRI
to examine how individual differences in brain morphology
relate to variations in mathematical abilities and competencies
(e.g., Isaacs et al., 2001; Aydin et al., 2007; Han et al.,
2008, 2013; Rotzer et al., 2008; Rykhlevskaia et al., 2009;
Lubin et al., 2013; Ranpura et al., 2013; Starke et al., 2013;
Supekar et al., 2013; Cappelletti and Price, 2014; Evans et al.,
2015; Price et al., 2016; Wilkey et al., 2018; Moreau et al.,
2019). Many of those studies have focused on the comparison
between dyscalculic individuals and controls (Han et al., 2008;
Rotzer et al., 2008; Rykhlevskaia et al., 2009; Ranpura et al.,
2013; Starke et al., 2013; Cappelletti and Price, 2014). For
instance, it has been shown that dyscalculic adults have less
GM volume in the right parietal cortex compared to controls
(Cappelletti and Price, 2014) and that children with low
mathematical skills relative to gender and age-matched controls
show structural differences in the bilateral parietal lobes, right
frontal lobe, and left occipital/parietal lobe (Han et al., 2008).
These findings suggest an overlap of brain regions found

in structural MRI studies and those reported in functional
neuroimaging studies.

There are only a few studies (Supekar et al., 2013; Price et al.,
2016; Wilkey et al., 2018) that investigated the neuroanatomical
correlates of mathematics performance in typically developed
individuals. However, most of these studies were conducted
with children. For instance, Price et al. (2016) assessed the
longitudinal and concurrent relations between GM volume
and mathematical performance in a group of 50 children.
GM volume maps derived from anatomical scans collected
at the end of 1st grade and 2nd grade were related to
performance on a standardized math test (i.e., Woodcock-
Johnson III Tests of Achievement Calculation and Applied
Problems). They found that left IPS GM volume at the end
of 1st grade was positively related to math competence at
the end of 2nd grade. Additionally, a positive association
between GM volume in the same brain region at the end of
2nd grade and children’s concurrent math competence was
observed. Wilkey et al. (2018) measured children’s performance
in grade-level mathematics by a state-wide, school-based test of
math achievement. They reported positive associations between
differences in GM volume of the left and right hippocampal
formations (including the hippocampus proper, entorhinal
cortex, and subiculum) as well as the right IFG and children’s
performance in grade-level mathematics.

Previous structural MRI studies on the neuroanatomical
correlates of mathematical abilities and competencies have
several methodological limitations. As highlighted above,
the large majority of studies have involved children with
mathematical learning disabilities (e.g., Han et al., 2013; Starke
et al., 2013). Thus, they do not allow reliable inferences to
typically developed populations because we cannot assume
that neuroanatomical mechanisms that distinguish dyscalculic
individuals from controls are the same that underlie individual
differences in (typically developing) mathematical competence.
Furthermore, we do not know whether the neuroanatomical
mechanisms important during development are still playing a
role in adults. Another methodological problem is the number
of participants that were under investigation. Many findings are
based on small sample sizes (Rotzer et al., 2008; Han et al.,
2013), which is associated with various problems, such as low
statistical power (Button et al., 2013) or an inflated false discovery
rate (Colquhoun, 2014). Finally, most of these studies employed
voxel-based morphometry (VBM) to investigate relationships
between GM density and mathematical competencies. VBM is
a technique that remains extremely popular because it is highly
automated and therefore quick and easy to use. However, VBM
also has been associated with important limitations in recent
years. For example, recent studies have shown that differences
in methodological choices like the registration algorithm (Peelle
et al., 2012), or changes of user-specified parameters such as
the smoothing kernel size (Henley et al., 2010) can lead to
inconsistent VBM results. Furthermore, the interpretation of
VBM findings is often difficult because the results may be driven
by differences in cortical thickness, surface area (SA), cortical
volume, and folding or any combination of these measures
(Voets et al., 2008; Hutton et al., 2009).
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A currently very promising alternative to VBM is surface-
based morphometry (SBM), which also allows the investigation
of brain morphometry. However, SBM uses brain surface meshes
for spatial registration, which increases the accuracy of brain
registration compared to mere volume-based registration (Desai
et al., 2005). Further, it allows the calculation of additional
measures of the neocortical surface structure, namely: cortical
thickness (Dahnke et al., 2013), cortical surface complexity
(quantification of the spatial frequency of gyrification and
fissuration of the brain surface; Yotter et al., 2011), gyrification
(Luders et al., 2006) and sulcal depth (Yotter et al., 2011).
Due to these and further advantages, SBM has been frequently
used in recent years, and a growing body of evidence suggests
that cortical surface measures are particularly informative for
individual differences in intellectual abilities (e.g., Geschwind
and Rakic, 2013). For instance, longitudinal changes in cortical
thickness have been related to variations in intelligence in
children (Schnack et al., 2015) and a pronounced thickening of
specific areas of the neocortex has been related to intellectual
abilities in adulthood (Brans et al., 2010).

Only one study has used SBM in mathematical cognition
so far. Moreau et al. (2019) investigated relationships between
volumetric and surface characteristics of GM and dyslexia,
dyscalculia and comorbid manifestation of both. They collected
MRI data from four different groups of adults (i.e., dyslexic,
dyscalculic, comorbid and control) and performed VBM as well
as SBM analyses. By using Bayesian methods, Moreau et al.
(2019) did not find any evidence for group differences in GM
volume or any surface characteristics (i.e., cortical thickness,
gyrification, sulcal depth, or cortical complexity). Therefore,
the authors concluded that GM differences associated with
these developmental disorders are not as reliable as previously
suggested. However, these results were based on relatively small
group samples (N = 12) and do not allow inferences to individual
differences in typically developed populations.

Against this background, the current study aimed to
investigate how structural variations in GM characteristics relate
to individual differences in mathematical competencies in adults.
Limitations of previous work were taken into account when
designing the current study. First of all, to increase the power
of the current study and the generalizability of its results, we
collected data from a comparably large adult sample consisting
of typically developed individuals. Thus, we attempted to identify
neuroanatomical correlates of mathematical competencies in a
population that has been underrepresented in previous studies.
This will provide important insights into how the human
brain mediates individual differences in mathematical cognition.
Second, since previous studies showed that the neural correlates
of mathematical competence depend on the mathematical
demand (Price et al., 2016; Wilkey et al., 2018), we examined
a broad range of mathematical competencies (e.g., arithmetic,
higher-order mathematics) assessed using different instruments.
Through the use of a large sample and different competence
measures, we can investigate whether individual differences in
mathematical competencies are related to a few brain regions
of the classical model of mathematical cognition—as suggested
by Dehaene et al. (2003)—or whether a more complex picture

emerges. Finally, to avoid the above-described pitfalls of VBM
we applied SBM to examine differences in brain surface structure
(i.e., cortical thickness, cortical surface complexity, gyrification
index, and sulcal depth).

MATERIALS AND METHODS

Participants
Four-hundred and twenty-five German-speaking adults (female:
N = 271; age: M = 23.13, SD = 5.58) participated in a larger
behavioral test session, in which several psychometric measures
were collected. Participants were recruited via social media,
emails, and flyers. The majority of participants were enrolled as
students at the University of Graz. All participants gave written
informed consent before participation and received feedback
regarding their intellectual abilities after testing as an incentive
for taking part in the study.

From this pool, participants were recruited for two
subsequent fMRI studies, in which, among other data,
neurostructural images were collected. Both neuroimaging
studies were carried out independently from each other. For the
first neuroimaging study participants were randomly selected
whereas in the second neuroimaging study participants were
selected based on their arithmetic competencies (i.e., participants
with lower and higher arithmetic competencies), which were
measured in the behavioral test session. For both studies, all
participants gave written informed consent before participation
and were compensated with a minimum of e 20. The
experimental procedure of both studies was approved by
the ethics committee at the University of Graz, Austria.

For the current study, only participants from whom both
data from the behavioral test session and neurostructural data
were collected were included. In total 101 full data sets (Study
1: N = 46; Study 2: N = 55) were collected. However, due to
partially missing data (N = 10) and other exclusion criteria
(i.e., psychiatric disorders and left-handedness; N = 2) the final
sample size comprises of 89 healthy young adults (Study 1:
N = 36; Study 2: N = 53; age: M = 21.88; SD = 3.43; female:
N = 57).

Materials and Stimuli of the Behavioral
Test Session
Berlin Intelligence Structure Test (BIS-T)
Participants’ numerical, verbal and figural intelligence was
measured by the short version of the Berlin Intelligence
Structure Test (Berliner Intelligenzstruktur-Test—BIS-T; Jäger
et al., 1997). This test comprised 16 different tasks that
either draw on the numerical (number of tests: 5), the verbal
(number of tests: 6) or on the figural (number of tests:
5) component of intelligence. Additionally, each subtask can
be assigned to four operational abilities, namely processing
speed, memory, reasoning, and creativity. To assess numerical
intelligence participants had to: (1) continue number series
(reasoning); (2) cross out numbers in a matrix that were bigger
by the factor of three in comparison to the preceding number
(processing speed); (3) memorize pairs of digits (memory);
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(4) estimate the results of complex calculations (reasoning); and
(5) to find different operands resulting in a given arithmetic
solution (creativity). Tasks assessing verbal intelligence required
participants to (6) fill in a missing letter resulting in a given
word (processing speed); (7) list as many abilities a good
salesman should not have (creativity); (8) complete analogies
(reasoning); (9) decide whether a given statement represents
a fact or an opinion (reasoning); (10) answer questions to a
memorized text (memory); and (11) to cross out words that
are meronyms of the preceding word (e.g., ‘‘year’’ preceded by
the word ‘‘month’’; processing speed). Finally, to assess figural
intelligence participants had to (12) complete figural analogies
(reasoning); (13) memorize marked buildings on a city map
(memory); (14) design as many logos for a bike shop (creativity);
(15) cross out ‘‘x’’ in an array of letters (processing speed); and
(16) to complete figures (reasoning). For the subsequent analysis,
we used sum scores for each intelligence component (potential
maximum scores: numerical = 100; verbal = 128; figural = 181)
that were based on raw scores (i.e., number of correct answers)
of each subtask.

Arithmetic Fluency Task
Arithmetic competencies were assessed through a paper-pencil
task developed by Vogel et al. (2017b) that is based on the
French Kit Test (French et al., 1963). This test measures
performance on simple and complex arithmetic problems.
Participants were presented with 128 simple multiplications
(i.e., consisting of two single-digit operands), followed by
64 simple additions (i.e., consisting of two single-digit operands),
128 simple subtractions (i.e., consisting of an operand <20 and a
single-digit operand), 60 complex multiplications (i.e., consisting
of a double-digit and a single-digit operand), 60 complex
additions (i.e., consisting of three double-digit operands) and,
finally, 60 complex subtractions (i.e., consisting of two double-
digit operands). Participants were instructed to solve as many
problems as possible within a given time. For solving simple
arithmetic problems participants were given 90 s for each
operation and 120 s for each operation type of the complex
arithmetic problems. We then computed two scores indicating
the numbers of correctly solved problems separately for each
complexity level (i.e., simple vs. complex), where 320 was the
potential maximum score for simple arithmetic problems and
180 for complex arithmetic problems.

Mathematics Test for Selection of Personnel (M-PA)
We assessed the subject’s performance in higher-order
mathematics by using the short-version of the mathematics
test for personnel selection (Mathematiktest für die
Personalauswahl—M-PA; Jasper and Wagener, 2011). This
test was developed to guarantee an optimal selection of suitable
applicants based on their mathematical competencies. It is
designed for teenagers and adults between 16 and 40 years who
have at least a secondary school degree. The short version of the
test comprises 31 complex mathematical problems presented
as multiple-choice (MC) or open answer (OA) questions.
Problems include fractions (3 OA), conversion of units (3 OA),
exponentiation (7 OA), division with decimals (2 OA), algebra
(1 MC), geometry (1 MC), roots (2 OA), and logarithm (7 OA).

In total, participants had 15 min to solve the problems. For the
subsequent analyses numbers of correctly solved problems were
calculated (potential maximum score = 31).

Experimental Procedure
Behavioral data were collected in test sessions before the
neuroimaging test sessions. Behavioral testing took place in
laboratories of the Institute of Psychology at the University
of Graz. One session took about 3 h, and participants were
tested in small groups of a maximum of 12. After the greeting
and general instruction participants were seated at a desk with
a booklet, a computer screen and a keyboard on it. Desks
were separated by partition walls, so that participants were
able to work undisturbed. The booklet included a general
instruction and all paper-pencil tests described in the ‘‘Materials
and Methods’’ section. Additionally, the booklet included tests
for measuring specific personality traits (i.e., the ‘‘NEO-Fünf-
Faktoren Inventar—NEO-FFI’’ Borkenau and Ostendorf, 1993),
the ‘‘German adaptation of the Abbreviated Math Anxiety
Scale—AMAS-G’’ (Schillinger et al., 2018), the ‘‘Single-Item-
Math Anxiety Scale—SIMA’’ (Núñez-Peña et al., 2014), a
test measuring the attitude towards mathematics (Núñez-Peña
et al., 2013, 2014), the ‘‘German Test Anxiety Inventory’’
(Prüfungsangstfragebogen, PAF; Hodapp et al., 2011), the ‘‘State-
Trait Anxiety Inventory Trait scale—STAI-T’’ (Laux et al., 1981;
Spielberger et al., 1983), and instructions for two computerized
tasks (i.e., a single-digit multiplication task and an associative
memory task), which participants also had to perform. The
results of the latter tasks were not within the scope of the
present study.

The order of tests was as following: BIS-T, M-PA,
arithmetic fluency, computerized single-digit multiplication
task, computerized associative memory task, NEO-FFI, PAF,
attitudes towards mathematics, AMAS-G, SIMA, and STAI-T.
Participants were instructed to work through the booklet page by
page and to pause whenever they reached a page with a red stop
sign. A trained experimenter took the time for all speeded tests
(i.e., BIS-T: 45 min, M-PA: 15 min, arithmetic fluency: 10.5 min),
and informed participants when they had to stop working on
the respective test. At the end of the test booklet, participants
were asked to fill out demographic questions according to their
sex, age, field of study, and the mathematics grade in their final
high school exam. In Austria, the grading system consists of a
five-point scale, where 1 (‘‘Sehr gut’’ – ‘‘very good’’) is the best
possible grade and 5 (‘‘Nicht genügend’’ – ‘‘unsatisfactory’’) is
the lowest possible grade.

MRI Data Acquisition
Neuroimaging data were collected with a 3.0 T Siemens
Skyra MRI scanner at the MRI Lab Graz. A 32-channel
head coil and a Generalized Autocalibrating Partially Parallel
Acquisitions (GRAPPA) sequence (TR = 1,950 ms, TE = 2.89 ms,
1 × 1 × 1 mm isotropic voxel resolution) was used to acquire the
high-resolution T1-weighted anatomical images.

In addition to high-resolution T1-weighted anatomical
images other neuroimaging data were collected in both studies:
In study 1, functional and diffusion MRI (fMRI and dMRI) data
were acquired. Participants had to perform three different tasks
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to measure the neural correlates of various cognitive processes.
Results of the neurofunctional investigation are reported in
Heidekum et al. (2019). In study 2 high-resolution T1-weighted
anatomical images of participants were acquired within a training
study that aimed to investigate the learning of arithmetic
facts (i.e., multiplications). Participants underwent a 5-day
multiplication fact training in which they intensively practiced a
set of multiplications. Following the multiplication facts training,
an MRI test session was conducted. In addition to the collection
of anatomical data, functional imaging (i.e., task-based and
resting-state activation data) as well as dMRI data were collected
in this session. Since the behavioral and neurofunctional results
of the training study are not within the scope of the present study
they will be reported separately.

Analysis of Behavioral Data
Correlation coefficients were calculated to examine associations
between all behavioral measurements. We calculated Spearman’s
correlation coefficients for investigating associations with
mathematics grade, whilst for the rest of the associations,
Pearson’s correlation coefficients were calculated. P-values were
Bonferroni corrected for 21 tested correlations (adjusted level
of significance: pBonf < 0.00238). The normal distribution of
each behavioral variable was verified by checking quantile-
quantile plots and by calculating skewness and kurtosis.
None of the variables significantly deviated from normality
(i.e., zSkewness > 1.96 or zKurtosis > 1.96).

Surface-Based Morphometry Analysis
SBM analyses were performed with the Computational Anatomy
Toolbox (CAT12; Gaser and Dahnke, 2016), which is based on
the Statistical Parametric Mapping (SPM, Welcome Department
of Imaging Neuroscience, London, UK) software. In the
first preprocessing step, T1-weighted anatomical images were
normalized using ‘‘Diffeomorphic Anatomical Registration
using Exponentiated Lie algebra’’ (DARTEL; Ashburner, 2007)
and further segmented into GM, white matter (WM) and
cerebrospinal fluid (CSF). In a next step, indices for cortical
thickness (Dahnke et al., 2013), for cortical surface complexity
(Yotter et al., 2011), for gyrification (Luders et al., 2006) and
sulcal depth (Yotter et al., 2011) were calculated.

Cortical Thickness
Describes the distance between the inner surface (or boundary
between GM and WM) and the outer surface (or boundary
between GM and CSF; Dahnke et al., 2013). Cortical
thickness, for instance, is an important biomarker for typical
(O’Donnell et al., 2005) as well as atypical development
(Thompson et al., 2004).

Fractal Dimensionality Index (Cortical Surface Complexity)
Characterizes the surface shape of the brain by quantifying
the spatial frequency of gyrification and fissuration of the
brain surface (Luders et al., 2004). More precisely, brain
regions with a higher cortical surface complexity have a
higher convolution level and therefore a larger surface area (Li
et al., 2007; Yotter et al., 2011). Besides the investigation of
age-related differences in brain structure (Madan and Kensinger,

2016), cortical complexity has also been successfully used to
study differences in cognitive functions (King et al., 2010;
Sandu et al., 2014).

Gyrification Index
Measures the regional curvature (i.e., convexity and concavity;
Drury and Van Essen, 1997) of the brain and is defined as the
ratio of the inner surface size to the outer surface size of an outer
(usually convex) hull (Thompson et al., 1996; Luders et al., 2004,
2006). The gyrification index has typically been used to study
group differences, such as between men and women (Luders
et al., 2004) or between patients and controls (White et al., 2003;
Shaw et al., 2012).

Sulcal Depth
Is based on the squared-transformed Euclidean distance between
the central surface (average of the inner surface and the outer
surface) and its convex hull (Lohmann, 1998; Yotter et al., 2011).
Neuroanatomical studies using sulcal depth indices have shown,
for instance, that it can account for differences in intelligence (Im
et al., 2011; Yang et al., 2013).

Finally, full-width-at-half-maximum (FWHM) Gaussian
kernels were used to smooth T1-weighted anatomical images.
Following the matched-filter theorem, a 15.0 mm FWHM
Gaussian kernel was applied for cortical thickness and a 20.0 mm
one was used for folding measures (i.e., sulcal depth, gyrification,
and cortical surface complexity).

In SPM we then performed second-level analyses
to investigate whether structural variations in brain
surface measures relate to individual differences in adults’
mathematical competencies. Multiple regression analyses for
each mathematical competence measure (i.e., mathematics
grade, simple arithmetic, complex arithmetic, higher-order
mathematics, and numerical intelligence) were calculated
separately. The multiple regression analyses were performed for
each brain surface measurement (i.e., cortical thickness, cortical
surface complexity, gyrification, and sulcal depth) and were
controlled for the influence of verbal and figural intelligence as
well as for age and sex (i.e., additional regressors of no interest).
Statistical results of these whole-brain analyses are reported with
family-wise error (FWE) corrected values at the cluster level
(p < 0.05).

RESULTS

Descriptive Analyses
In Table 1 means, standard deviations and ranges for all
behavioral measurements are displayed.

Correlation Analyses
Table 2 displays the correlations between all behavioral
measurements. Almost all experimental measures that
were thought to measure the same underlying component
(i.e., mathematical cognition)—i.e., mathematics grade, simple
arithmetic, complex arithmetic, higher-order mathematics
and numerical intelligence—were significantly correlated with
each other. The strongest association was found between
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TABLE 1 | Descriptive statistics of all behavioral measurements (raw values).

N M SD Range

Mathematics grade1 89 2.47 0.96 (1–5)
Simple arithmetic 89 152.74 47.56 (52–246)
Complex arithmetic 89 47.63 19.28 (13–92)
Higher-order mathematics 89 21.20 5.49 (10–31)
Numerical intelligence 89 44.45 15.03 (12–87)
Verbal intelligence 89 92.11 16.14 (42–126)
Figural intelligence 89 84.12 11.97 (54–112)

Note: 1Characteristics of the Austrian grading system: 1.00 = Very Good, 2.00 = Good,
3.00 = Satisfactory, 4 = Adequate, 5 = Unsatisfactory; Abbreviations: M = Mean;
SD = Standard Deviation.

performance on simple and complex arithmetic problems
(r = 0.810, p < 0.001).

For the mathematics grade, we found negative correlations
with performance on complex arithmetic problems (r = −0.358,
p < 0.001) as well as knowledge in higher-order mathematics
(r = −0.356, p < 0.001) and numerical intelligence (r = −0.346,
p< 0.001). Thismeans that individuals with a bettermathematics
grade (associated with a smaller number) had better scores on
experimental tests measuring mathematical abilities.

Additionally, both simple and complex arithmetic was
positively correlated with verbal and figural intelligence.
However, there was no significant correlation of mathematics
grade with verbal and figural intelligence and no significant
correlation of higher-order mathematics with verbal and figural
intelligence. Finally, as can be expected, all three intelligence
components (i.e., numerical, verbal and figural intelligence) were
positively correlated with each other.

Structural Correlates of Mathematical
Competencies
Multiple linear regression analyses were performed to
investigate whether structural variations in brain surface
measures (i.e., cortical thickness, cortical surface complexity,
gyrification, and sulcal depth) relate to individual differences in
adults’ mathematical abilities (i.e., mathematics grade, simple
arithmetic, complex arithmetic, higher-order mathematics and
numerical intelligence). The results are as followed:

Cortical thickness: no significant negative or positive
associations were found.

Cortical surface complexity: analyses revealed that numerical
intelligence was positively associated with the cortical surface
complexity of the right superior temporal gyrus [MNI (x, y, z):

60, −9, −7; p < 0.05 FWE cluster corrected; k = 287; Figure 1A].
No significant negative associations were found.

Gyrification: no significant negative or positive associations
were found.

Sulcal depth: results showed a positive association between
performance on complex arithmetic problems and the depth of
the right central sulcus [MNI (x, y, z): 54, −9, 23; p < 0.05 FWE
cluster corrected; k = 141; Figure 1B]. Additionally, multiple
linear regression analysis revealed a positive relationship between
adults’ competence in higher-order mathematics and the depth
of the left parieto-occipital sulcus [MNI (x, y, z): −18, −70,
29; p < 0.05 FWE cluster corrected; k = 161; Figure 1C]. No
significant negative associations were found.

DISCUSSION

The current study is the first to investigate the associations
between variations in brain surface structure (i.e., cortical
thickness, cortical surface complexity, gyrification index, and
sulcal depth) and individual differences in a broad range of
mathematical abilities (i.e., mathematics grade, performance
on simple and complex arithmetic problems, higher-order
mathematics and numerical intelligence) within a large sample
of typically developed adults. Analyses revealed three brain
regions that were associated with individual differences in
mathematical abilities: (1) the cortical surface complexity of
the right superior temporal gyrus was positively related to
numerical intelligence; (2) the depth of the right central
sulcus was positively associated with individual’s ability to
solve complex arithmetic problems; and (3) the depth of
the left parieto-occipital sulcus showed a positive relationship
with the individual difference in performance on higher-order
mathematics. Although SBM, as a tool to assess local brain
morphology, does not allow any direct assumption of local brain
function, this study supports the idea that these brain regions
play a role in mathematical thinking. Surprisingly, we did not
find any associations between adults’ mathematical abilities and
the neuroanatomical differences of previously reported brain
regions, such as the IPS (Li et al., 2013; Lubin et al., 2013;
Price et al., 2016). Conversely, all three brain regions that were
observed in the present study are not typically associated with
mathematics-related cognitive abilities. Despite these unexpected
findings, the following sections will be an attempt to link
functional properties to the observed cortical regions. Since the
present study can only speculate on the functional role of these

TABLE 2 | Correlation coefficients between the behavioral measurements.

(1) (2) (3) (4) (5) (6) (7)

(1) Mathematics grade -
(2) Simple arithmetic −0.282 -
(3) Complex arithmetic −0.358∗ 0.810∗ -
(4) Higher-order mathematics −0.356∗ 0.388∗ 0.471∗ -
(5) Numerical intelligence −0.346∗ 0.681∗ 0.523∗ 0.379∗ -
(6) Verbal intelligence −0.175 0.428∗ 0.454∗ 0.139 0.461∗ -
(7) Figural intelligence −0.183 0.343∗ 0.325∗ 0.165 0.420∗ 0.370∗ -

∗p < 0.00238 (Bonferroni corrected p-value).
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FIGURE 1 | (A) Significant positive association between numerical intelligence and cortical surface complexity of the right STG. (B) Significant positive association
between performance on complex arithmetic problems and the depth of the right CS. (C) Significant positive association between higher-order mathematics
competence and the depth of the left POS. Scatter plots showing partial correlations between (A) numerical intelligence and cortical surface complexity of the right
STG, (B) performance on complex arithmetic problems and the depth of the right CS and (C) higher-order mathematics competence and the depth of the left POS.
Colorbar: correlation coefficients (R-value). Abbreviations: STG, superior temporal gyrus; CSC, cortical surface complexity; CS, central sulcus; POS, parieto-occipital
sulcus.

regions, further research (applying SBM for investigating brain-
behavior relationships in the field of mathematical cognition)
is needed.

First, our analyses revealed a positive relationship between
the cortical surface complexity of the right superior temporal

gyrus [MNI (x, y, z): 60, −9, −7] and individual differences
in numerical intelligence. Surface complexity was defined by
the fractal dimensionality index, which quantifies the spatial
frequency of gyrification and fissuration of the brain surface
(Luders et al., 2004). Thus, the current finding indicates that
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in individuals with higher numerical intelligence the right
superior temporal gyrus shows a higher convolution level
and therefore a larger surface area. Cortical complexity has
been successfully used to investigate age-related differences
in brain structure (Madan and Kensinger, 2016) and, more
importantly, to study differences in cognitive functions (King
et al., 2010; Sandu et al., 2014). Unfortunately, the scarce
neuroanatomical studies on the correlates of the right superior
temporal gyrus are typically based on comparisons between
various groups of patients and controls (e.g., schizophrenia:
Honea et al., 2008; Nenadic et al., 2010; depression: Mak
et al., 2009; Peng et al., 2011). Due to the methodological
differences of these studies, they do not allow an interpretation
of the current findings. Similarly, the results of neurofunctional
studies are very heterogeneous. The right superior temporal
gyrus has been implicated in several cognitive processes,
such as spatial awareness (Karnath, 2001), emotion processing
(Narumoto et al., 2001) or the detection of biological motion
(Akiyama et al., 2006). Interestingly, previous work (Jung-
Beeman et al., 2004) has also linked activity in the right
superior temporal gyrus to creative problem solving, as it
might be responsible for binding and accessing various types of
available conceptual representations (Shen et al., 2017); cognitive
processes that might also be important for problems in a
numerical intelligence test. Besides these findings on domain-
general cognitive functions, some studies have found activity
in this region to be related to mathematical cognition (Fehr
et al., 2008; Simos et al., 2008; Andres et al., 2011, 2012;
Kucian et al., 2011; Gullick et al., 2012). Since the numerical
intelligence test used in the current study required the correct
application of arithmetic operations (i.e., continuing number
series; crossing out numbers in a matrix that were bigger by
the factor of three in comparison to the preceding number;
finding different operands resulting in a given arithmetic
solution), it is interesting that the majority of these studies
(Fehr et al., 2008; Simos et al., 2008; Andres et al., 2011,
2012) has linked activation within this region to arithmetic
problem-solving. For instance, in an fMRI block design, Andres
et al. (2011) instructed a group of young males to multiply
single Arabic digits (between 3 and 9) with, or subtract them
from, a predefined digit. By contrasting multiplication problems
with subtractions, the authors observed increased activity in
right superior temporal areas (among other brain regions),
which they related to the storing of semantic knowledge of
arithmetic problems. Additionally, Fehr et al. (2008) investigated
fMRI activation patterns during mental addition, subtraction,
multiplication, and division in young adults. In contrast
to Andres et al. (2011), greater right-hemispheric superior
temporal activation was found by contrasting complex with
simple division, which might have reflected the usage of
procedural strategies for problem-solving. Accordingly, even
though these findings are based on neurofunctional studies and
they relate activity within the right superior temporal gyrus
to different arithmetic strategies, they are in line with the
result of the current study. Nevertheless, additional research
is needed to confirm and to further specify the observed
brain-behavior relationship.

Second, our results also revealed a positive correlation
between the depth of the central sulcus [MNI (x, y, z):
54, −9, 23] and adults’ ability to solve complex arithmetic
problems. Previously, sulcal depth indices (e.g., sulcal fundi,
lines or pits) have been successfully implemented to study the
neuroanatomical correlates of various cognitive mechanisms.
For instance, variations in the properties of sulci can account
for individual differences in intelligence (Im et al., 2011;
Yang et al., 2013), and abnormalities in specific sulci, such
as the IPS or the superior temporal sulcus, have been
observed in different groups of atypically developed individuals
(e.g., dyslexia: Steinbrink et al., 2008; Richlan et al., 2013;
dyscalculia: Rotzer et al., 2008; Price et al., 2016). Morphological
changes of the central sulcus, on the other hand, have been
associated with neurodegenerative diseases, such as multiple
sclerosis (Pagani et al., 2005; Ceccarelli et al., 2008). However,
the central sulcus also acts as an extension of its adjacent
areas, namely the pre- and postcentral gyrus. Whereas the
precentral gyrus is involved in eye movements (Corbetta
et al., 1998; Anderson et al., 2007), postcentral activations
have been linked to grasping (Simon et al., 2002)—both
processes are commonly involved in cognitive tasks that include
visually presented stimuli. For that reason, it is not surprising
that these brain areas have also been found to play a role
in numerical and calculation tasks (for a meta-analysis see
Arsalidou and Taylor, 2011). For instance, Kaufmann et al.
(2008) showed that activation patterns within these regions were
related to non-symbolic numerical as well as spatial processing.
And conversely, Kesler et al. (2006) have linked pre- and
postcentral activations to the use of arithmetic strategies such
as subvocalization and finger counting. In the present study,
we observed a relationship between performance on complex
arithmetic problems and the depth of the central sulcus. As the
central sulcus acts as an extension of the pre- and postcentral
gyrus, we, therefore, conclude that it might affect its adjacent
mathematic-related regions.

Finally, the results of our SBM analyses revealed a positive
association between the depth of the parieto-occipital sulcus
[MNI (x, y, z): −18, −70, 29] and adult’s higher-order
mathematical competence. The parieto-occipital sulcus lies
between the posterior parietal and occipital cortices. This brain
region is a crucial node of the dorsal visual stream and is,
therefore, involved in visuospatial processing that support spatial
navigation and goal-directed actions (Caminiti et al., 1999;
Hutchison et al., 2015; Tosoni et al., 2015; Richter et al.,
2019). However, the parieto-occipital sulcus also separates the
cuneus from the precuneus and lies in the direct vicinity
of the IPS. Whereas the cuneus is associated with visual
information processing (Vanni et al., 2001), the latter brain
regions (i.e., precuneus and IPS) were found to contribute to
higher neurocognitive functions, such as attention (Corbetta
and Shulman, 2002; Rosen et al., 2015), working memory
(Barton and Brewer, 2013; Bray et al., 2015) or memory retrieval
(Hebscher et al., 2019; Heidekum et al., 2019). Moreover,
the precuneus and the IPS are often found to be involved
in mathematical cognition (Dehaene et al., 2003; Arsalidou
and Taylor, 2011). In particular, previous studies in the field
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of mathematical cognition have related brain activity in the
precuneus to mental calculation (i.e., addition, multiplication,
and subtraction; for a recent meta-analysis see Arsalidou and
Taylor, 2011) and IPS activation to the representation and
manipulation of numerical magnitude (Dehaene et al., 2003;
or for a recent meta-analysis see Sokolowski et al., 2017). For
instance, greater activation in the precuneus is often observed
when arithmetic problems are solved by procedural strategies,
rather than by memory retrieval (Delazer et al., 2005; Fehr
et al., 2008). And, IPS activity is typically found whenever
participants explicitly or implicitly compare the magnitude of
numerals or dot-arrays (Pinel et al., 2001; Ansari et al., 2005;
Vogel et al., 2017a; Wilkey et al., 2017). Interestingly, the
functional role of the IPS within mathematics has also been
confirmed by neurostructural studies (Isaacs et al., 2001; Rotzer
et al., 2008; Rykhlevskaia et al., 2009; Ranpura et al., 2013)
showing reduced GM in children with dyscalculia. In general,
these studies highlight the importance of parietal brain regions
in mathematical thinking, which is in line with the result of
the current study showing an association between the parieto-
occipital sulcus and higher-order mathematics.

Taken together, the current study highlights the potential
of SBM as an alternative to classical VBM for investigating
brain-behavior relationships in the domain of mathematical
cognition. Associations were found between: (1) the cortical
surface complexity of the right superior temporal gyrus and
numerical intelligence; (2) the depth of the right central sulcus
and adults’ ability to solve complex arithmetic problems; and
(3) the depth of the left parieto-occipital sulcus and adults’
higher-order mathematics competence. Although two out of
three brain regions (i.e., central sulcus and parieto-occipital
sulcus) lie in intermediate vicinity of cortical structures typically
associated with numerical and mathematical cognition, none
of these brain regions were observed in previous studies. This
discrepancy could be due to the methodological approach
of the current study: In contrast to previous work, the
present study studied linear brain-behavior relationships in a
large sample of typically developed adults, whereas previous
studies are mainly based on group comparisons between
children with and without mathematical learning disabilities.
For that reason, our results suggest that in typically developed

individuals different neuroanatomical structures might become
important when it comes to the processing of numerical
and mathematical information. Finally, the current study
shows that the depth of sulci could be a good index to
investigate brain-behavior relationships. Nevertheless, future
studies implementing SBM in different groups of individuals
are needed.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics commitee of the University of Graz. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

AH: conceptualization, data curation, formal analysis,
writing—original draft. SV: conceptualization, formal
analysis, funding acquisition, supervision, writing—original
draft, writing—review and editing. RG: conceptualization,
funding acquisition, project administration, supervision,
writing—original draft, writing—review and editing.

FUNDING

This study was supported by a joint grant from the
Research Foundation Flanders (Fonds Wetenschappelijk
Onderzoek; FWO, G.0027.16) and the Austrian Science Fund
(FWF, I 2425-G18).

ACKNOWLEDGMENTS

We thank Antonia Reuss, Dennis Wambacher and Thomas
Zussner for assistance with data collection. Additionally, we
thank Jochen Mosbacher for advice on the data analysis.

REFERENCES

Akiyama, T., Kato, M., Muramatsu, T., Saito, F., Nakachi, R., and Kashima, H.
(2006). A deficit in discriminating gaze direction in a case with right
superior temporal gyrus lesion. Neuropsychologia 44, 161–170. doi: 10.1016/j.
neuropsychologia.2005.05.018

Anderson, E. J., Mannan, S. K., Husain, M., Rees, G., Sumner, P., Mort, D. J., et al.
(2007). Involvement of prefrontal cortex in visual search. Exp. Brain Res. 180,
289–302. doi: 10.1007/s00221-007-0860-0

Andres, M., Michaux, N., and Pesenti, M. (2012). Common substrate for mental
arithmetic and finger representation in the parietal cortex. NeuroImage 62,
1520–1528. doi: 10.1016/j.neuroimage.2012.05.047

Andres, M., Pelgrims, B., Michaux, N., Olivier, E., and Pesenti, M. (2011). Role of
distinct parietal areas in arithmetic: an fMRI-guided TMS study. NeuroImage
54, 3048–3056. doi: 10.1016/j.neuroimage.2010.11.009

Ansari, D., Garcia, N., Lucas, E., Hamon, K., and Dhitalm, B. (2005).
Neural correlates of symbolic number processing in children and

adults. Neuroreport 16, 1769–1773. doi: 10.1097/01.wnr.0000183905.
23396.f1

Arsalidou, M., and Taylor, M. J. (2011). Is 2+2=4? Meta-analyses of brain
areas needed for numbers and calculations. NeuroImage 54, 2382–2393.
doi: 10.1016/j.neuroimage.2010.10.009

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
NeuroImage 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Aydin, K., Ucar, A., Oguz, K. K., Okur, O. O., Agayev, A., Unal, Z., et al.
(2007). Increased gray matter density in the parietal cortex of mathematicians:
a voxel-based morphometry study. Am. J. Neuroradiol. 28, 1859–1864.
doi: 10.3174/ajnr.A0696

Barton, B., and Brewer, A. A. (2013). Visual working memory in human cortex.
Psychology 4, 655–662. doi: 10.4236/psych.2013.48093

Berteletti, I., Prado, J. Ô., and Booth, J. R. (2014). Children with mathematical
learning disability fail in recruiting verbal and numerical brain regions when
solving simple multiplication problems. Cortex 57, 143–155. doi: 10.1016/j.
cortex.2014.04.001

Frontiers in Human Neuroscience | www.frontiersin.org 9 March 2020 | Volume 14 | Article 116149

https://doi.org/10.1016/j.neuropsychologia.2005.05.018
https://doi.org/10.1016/j.neuropsychologia.2005.05.018
https://doi.org/10.1007/s00221-007-0860-0
https://doi.org/10.1016/j.neuroimage.2012.05.047
https://doi.org/10.1016/j.neuroimage.2010.11.009
https://doi.org/10.1097/01.wnr.0000183905.23396.f1
https://doi.org/10.1097/01.wnr.0000183905.23396.f1
https://doi.org/10.1016/j.neuroimage.2010.10.009
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.3174/ajnr.A0696
https://doi.org/10.4236/psych.2013.48093
https://doi.org/10.1016/j.cortex.2014.04.001
https://doi.org/10.1016/j.cortex.2014.04.001
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Heidekum et al. The Neuroanatomical Correlates of Mathematics: a SBM Study

Borkenau, P., and Ostendorf, F. (1993). NEO-Fünf-Faktoren Inventar (NEO-FFI).
Göttingen: Hogrefe.

Brans, R. G. H., Kahn, S., Schnack, H. G., Van Baal, G. C. M., Posthuma, D.,
Van Haren, N. E. M., et al. (2010). Brain plasticity and intellectual
ability are influenced by shared genes. J. Neurosci. 30, 5519–5524.
doi: 10.1523/JNEUROSCI.5841-09.2010

Bray, S., Almas, R., Arnold, A. E. G. F., Iaria, G., and MacQueen, G.
(2015). Intraparietal sulcus activity and functional connectivity supporting
spatial working memory manipulation. Cereb. Cortex 25, 1252–1264.
doi: 10.1093/cercor/bht320

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,
Robinson, E. S. J., et al. (2013). Power failure: why small sample size
undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376.
doi: 10.1038/nrn3475

Caminiti, R., Genovesio, A., Marconi, B., Mayer, A. B., Onorati, P., Ferraina, S.,
et al. (1999). Early coding of reaching: frontal and parietal association
connections of parieto-occipital cortex. Eur. J. Neurosci. 11, 3339–3345.
doi: 10.1046/j.1460-9568.1999.00801.x

Cappelletti, M., and Price, C. J. (2014). Residual number processing in dyscalculia.
Neuroimage Clin. 4, 18–28. doi: 10.1016/j.nicl.2013.10.004

Ceccarelli, A., Rocca, M. A., Pagani, E., Colombo, B., Martinelli, V., Comi, G., et al.
(2008). A voxel-based morphometry study of grey matter loss in MS patients
with different clinical phenotypes. NeuroImage 42, 315–322. doi: 10.1016/j.
neuroimage.2008.04.173

Colquhoun, D. (2014). An investigation of the false discovery rate and the
misinterpretation of p-values. R. Soc. Open Sci. 1:140216. doi: 10.1098/rsos.
140216

Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M.,
Drury, H. A., et al. (1998). A common network of functional areas for attention
and eye movements. Neuron 21, 761–773. doi: 10.1016/s0896-6273(00)80593-0

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and
stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215.
doi: 10.1038/nrn755

Dahnke, R., Yotter, R. A., and Gaser, C. (2013). Cortical thickness and central
surface estimation. NeuroImage 65, 336–348. doi: 10.1016/j.neuroimage.2012.
09.050

De Smedt, B., and Gilmore, C. K. (2011). Defective number module or impaired
access? Numerical magnitude processing in first graders with mathematical
difficulties. J. Exp. Child Psychol. 108, 278–292. doi: 10.1016/j.jecp.2010.09.003

Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2003). Three parietal
circuits for number processing. Cogn. Neuropsychol. 20, 487–506.
doi: 10.1080/02643290244000239

Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003).
Learning complex arithmetic—an fMRI study. Cogn. Brain Res. 18, 76–88.
doi: 10.1016/j.cogbrainres.2003.09.005

Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F.,
Siedentopf, C. M., et al. (2005). Learning by strategies and learning by
drill—evidence from an fMRI study. NeuroImage 25, 838–849. doi: 10.1016/j.
neuroimage.2004.12.009

Desai, R., Liebenthal, E., Possing, E. T., Waldron, E., and Binder, J. R. (2005).
Volumetric vs. surface-based alignment for localization of auditory cortex
activation. NeuroImage 26, 1019–1029. doi: 10.1016/j.neuroimage.2005.03.024

Drury, H. A., and Van Essen, D. C. (1997). Functional specializations in human
cerebral cortex analyzed using the visible man surface-based atlas. Hum. Brain
Mapp. 5, 233–237. doi: 10.1002/(sici)1097-0193(1997)5:4<233::aid-hbm5>3.0.
co;2-4

Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., et al.
(2015). Brain structural integrity and intrinsic functional connectivity forecast
6 year longitudinal growth in children’s numerical abilities. J. Neurosci. 35,
11743–11750. doi: 10.1523/JNEUROSCI.0216-15.2015

Fehr, T., Code, C., and Herrmann, M. (2008). Auditory task presentation reveals
predominantly right hemispheric fMRI activation patterns during mental
calculation. Neurosci. Lett. 431, 39–44. doi: 10.1016/j.neulet.2007.11.016

French, J. W., Ekstrom, R. B., and Price, L. A. (1963). Manual for Kit of Reference
Tests for Cognitive Factors (Revised 1963). Princeton, NJ: Educational Testing
Service.

Gaser, C., and Dahnke, R. (2016). CAT – A computational anatomy toolbox for
the analysis of structural MRI data. OHBM Conference 2016.

Geschwind, D. H., and Rakic, P. (2013). Cortical evolution: judge the brain by its
cover. Neuron 80, 633–647. doi: 10.1016/j.neuron.2013.10.045

Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., and Neuper, C.
(2007). Individual differences in mathematical competence predict parietal
brain activation during mental calculation. NeuroImage 38, 346–356.
doi: 10.1016/j.neuroimage.2007.07.041

Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F.,
et al. (2009). Fact learning in complex arithmetic and figural-spatial tasks: the
role of the angular gyrus and its relation to mathematical competence. Hum.
Brain Mapp. 30, 2936–2952. doi: 10.1002/hbm.20720

Gullick, M. M., Wolford, G., and Temple, E. (2012). Understanding less than
nothing: neural distance effects for negative numbers.NeuroImage 62, 542–554.
doi: 10.1016/j.neuroimage.2012.04.058

Han, Z., Davis, N., Fuchs, L., Anderson, A. W., Gore, J. C., and Dawant, B. M.
(2013). Relation between brain architecture and mathematical ability in
children: a DBM study. Magn. Reson. Imaging 31, 1645–1656. doi: 10.1016/j.
mri.2013.08.008

Han, Z., Fuchs, L., Davis, N., Cannistraci, C. J., Anderson, A. W., Gore, J. C., et al.
(2008). ‘‘Analysis of anatomic variability in children with low mathematical
skills,’’ in Proceedings of the Medical Imaging 2008: Physiology, Function and
Structure from Medical Images, San Diego, CA, 69160S.

Hebscher, M., Meltzer, J. A., and Gilboa, A. (2019). A causal role for the precuneus
in network-wide theta and gamma oscillatory activity during complex memory
retrieval. Elife 8:e43114. doi: 10.7554/eLife.43114

Heidekum, A. E., Grabner, R. H., De Smedt, B., De Visscher, A., and Vogel, S. E.
(2019). Interference during the retrieval of arithmetic and lexico-semantic
knowledge modulates similar brain regions: evidence from functional magnetic
resonance imaging (fMRI). Cortex 120, 375–393. doi: 10.1016/j.cortex.2019.
06.007

Henley, S. M. D., Ridgway, G. R., Scahill, R. I., Klöppel, S., Tabrizi, S. J., Fox, N. C.,
et al. (2010). Pitfalls in the use of voxel-based morphometry as a biomarker:
examples from Huntington disease. AJNR Am. J. Neuroradiol. 31, 711–719.
doi: 10.3174/ajnr.A1939

Hodapp, V., Rohrmann, S., and Ringeisen, T. (2011).
PAF—Prüfungsangstfragebogen. Göttingen: Hogrefe.

Honea, R. A., Meyer-Lindenberg, A., Hobbs, K. B., Pezawas, L., Mattay, V. S.,
Egan, M. F., et al. (2008). Is gray matter volume an intermediate phenotype
for schizophrenia? A voxel-based morphometry study of patients with
schizophrenia and their healthy siblings. Biol. Psychiatry 63, 465–474.
doi: 10.1016/j.biopsych.2007.05.027

Hutchison, R. M., Culham, J. C., Flanagan, J. R., Everling, S., and Gallivan, J. P.
(2015). Functional subdivisions of medial parieto-occipital cortex in humans
and nonhuman primates using resting-state fMRI. NeuroImage 116, 10–29.
doi: 10.1016/j.neuroimage.2015.04.068

Hutton, C., Draganski, B., Ashburner, J., and Weiskopf, N. (2009). A comparison
between voxel-based cortical thickness and voxel-based morphometry in
normal aging.NeuroImage 48, 371–380. doi: 10.1016/j.neuroimage.2009.06.043

Im, K., Choi, Y. Y., Yang, J. J., Lee, K. H., Kim, S. I., Grant, P. E., et al. (2011).
The relationship between the presence of sulcal pits and intelligence in human
brains. NeuroImage 55, 1490–1496. doi: 10.1016/j.neuroimage.2010.12.080

Isaacs, E. B., Edmonds, C. J., Lucas, A., and Gadian, D. G. (2001). Calculation
difficulties in children of very low birthweight: a neural correlate. Brain 124,
1701–1707. doi: 10.1093/brain/124.9.1701

Ischebeck, A., Zamarian, L., Schocke, M., and Delazer, M. (2009). Flexible
transfer of knowledge in mental arithmetic—an fMRI study. NeuroImage 44,
1103–1112. doi: 10.1016/j.neuroimage.2008.10.025

Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S.,
et al. (2006). How specifically do we learn? Imaging the learning of
multiplication and subtraction. NeuroImage 30, 1365–1375. doi: 10.1016/j.
neuroimage.2005.11.016

Jäger, A. O., Süß, H.-M., and Beauducel, A. (1997). Berliner Intelligenzstruktur-Test
[Berlin Intelligence Structure Test]. Göttingen: Hogrefe.

Jasper, F., and Wagener, D. (2011). Mathematiktest für die Personalauswahl
[Mathematics Test for Selection of Personnel]. Göttingen: Hogrefe.

Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-
Liu, S., Greenblatt, R., et al. (2004). Neural activity when people solve
verbal problems with insight. PLoS Biol. 2:E97. doi: 10.1371/journal.pbio.
0020097

Frontiers in Human Neuroscience | www.frontiersin.org 10 March 2020 | Volume 14 | Article 116150

https://doi.org/10.1523/JNEUROSCI.5841-09.2010
https://doi.org/10.1093/cercor/bht320
https://doi.org/10.1038/nrn3475
https://doi.org/10.1046/j.1460-9568.1999.00801.x
https://doi.org/10.1016/j.nicl.2013.10.004
https://doi.org/10.1016/j.neuroimage.2008.04.173
https://doi.org/10.1016/j.neuroimage.2008.04.173
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1098/rsos.140216
https://doi.org/10.1016/s0896-6273(00)80593-0
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.jecp.2010.09.003
https://doi.org/10.1080/02643290244000239
https://doi.org/10.1016/j.cogbrainres.2003.09.005
https://doi.org/10.1016/j.neuroimage.2004.12.009
https://doi.org/10.1016/j.neuroimage.2004.12.009
https://doi.org/10.1016/j.neuroimage.2005.03.024
https://doi.org/10.1002/(sici)1097-0193(1997)5:4<233::aid-hbm5>3.0.co;2-4
https://doi.org/10.1002/(sici)1097-0193(1997)5:4<233::aid-hbm5>3.0.co;2-4
https://doi.org/10.1523/JNEUROSCI.0216-15.2015
https://doi.org/10.1016/j.neulet.2007.11.016
https://doi.org/10.1016/j.neuron.2013.10.045
https://doi.org/10.1016/j.neuroimage.2007.07.041
https://doi.org/10.1002/hbm.20720
https://doi.org/10.1016/j.neuroimage.2012.04.058
https://doi.org/10.1016/j.mri.2013.08.008
https://doi.org/10.1016/j.mri.2013.08.008
https://doi.org/10.7554/eLife.43114
https://doi.org/10.1016/j.cortex.2019.06.007
https://doi.org/10.1016/j.cortex.2019.06.007
https://doi.org/10.3174/ajnr.A1939
https://doi.org/10.1016/j.biopsych.2007.05.027
https://doi.org/10.1016/j.neuroimage.2015.04.068
https://doi.org/10.1016/j.neuroimage.2009.06.043
https://doi.org/10.1016/j.neuroimage.2010.12.080
https://doi.org/10.1093/brain/124.9.1701
https://doi.org/10.1016/j.neuroimage.2008.10.025
https://doi.org/10.1016/j.neuroimage.2005.11.016
https://doi.org/10.1016/j.neuroimage.2005.11.016
https://doi.org/10.1371/journal.pbio.0020097
https://doi.org/10.1371/journal.pbio.0020097
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Heidekum et al. The Neuroanatomical Correlates of Mathematics: a SBM Study

Karnath, H. O. (2001). New insights into the functions of the superior temporal
cortex. Nat. Rev. Neurosci. 2, 568–576. doi: 10.1038/35086057

Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M.,
Zimmerhackl, L. B., et al. (2008). A developmental fMRI study of nonsymbolic
numerical and spatial processing. Cortex 44, 376–385. doi: 10.1016/j.cortex.
2007.08.003

Kesler, S. R., Menon, V., and Reiss, A. L. (2006). Neurofunctional differences
associated with arithmetic processing in Turner syndrome. Cereb. Cortex 16,
849–856. doi: 10.1093/cercor/bhj028

King, R. D., Brown, B., Hwang, M., Jeon, T., and George, A. T. (2010).
Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease.
NeuroImage 53, 471–479. doi: 10.1016/j.neuroimage.2010.06.050

Klein, E., Moeller, K., Glauche, V., Weiller, C., and Willmes, K. (2013). Processing
pathways in mental arithmetic—evidence from probabilistic fiber tracking.
PLoS One 8:e55455. doi: 10.1371/journal.pone.0055455

Klein, E., Suchan, J., Moeller, K., Karnath, H.-O. O., Knops, A., Wood, G.,
et al. (2014). Considering structural connectivity in the triple code model of
numerical cognition: differential connectivity for magnitude processing and
arithmetic facts. Brain Struct. Funct. 221, 979–995. doi: 10.1007/s00429-014-
0951-1

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F.,
et al. (2011). Mental number line training in children with developmental
dyscalculia. NeuroImage 57, 782–795. doi: 10.1016/j.neuroimage.2011.01.070

Laux, L., Glanzmann, P., Schaffner, P., and Spielberger, C. (1981).Das State-Trait-
Angstinventar: STAI.Weinheim: Beltz.

Li, Y., Hu, Y., Wang, Y., Weng, J., and Chen, F. (2013). Individual structural
differences in left inferior parietal area are associated with schoolchildrens’
arithmetic scores. Front. Hum. Neurosci. 7:844. doi: 10.3389/fnhum.2013.00844

Li, X., Jiang, J., Zhu, W., Yu, C., Sui, M., Wang, Y., et al. (2007). Asymmetry
of prefrontal cortical convolution complexity in males with attention-
deficit/hyperactivity disorder using fractal information dimension. Brain Dev.
29, 649–655. doi: 10.1016/j.braindev.2007.04.008

Lohmann, G. (1998). Extracting line representations of sulcal and gyral patterns
in MR images of the human brain. IEEE Trans. Med. Imaging 17, 1040–1048.
doi: 10.1109/42.746714

Lubin, A., Rossi, S., Simon, G., Lanoë, C., Leroux, G., Poirel, N., et al. (2013).
Numerical transcoding proficiency in 10-year-old schoolchildren is associated
with gray matter inter-individual differences: a voxel-based morphometry
study. Front. Psychol. 4:197. doi: 10.3389/fpsyg.2013.00197

Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., et al.
(2004). Gender differences in cortical complexity. Nat. Neurosci. 7, 799–800.
doi: 10.1038/nn1277

Luders, E., Thompson, P. M., Narr, K. L., Toga, A. W., Jancke, L., and Gaser, C.
(2006). A curvature-based approach to estimate local gyrification on the
cortical surface. NeuroImage 29, 1224–1230. doi: 10.1016/j.neuroimage.2005.
08.049

Madan, C. R., and Kensinger, E. A. (2016). Cortical complexity as a measure
of age-related brain atrophy. NeuroImage 134, 617–629. doi: 10.1016/j.
neuroimage.2016.04.029

Mak, A. K. Y., Wong, M. M. C., Han, S. H., and Lee, T. M. C. (2009). Gray
matter reduction associated with emotion regulation in female outpatients
with major depressive disorder: a voxel-based morphometry study. Prog.
Neuropsychopharmacol. Biol. Psychiatry 33, 1184–1190. doi: 10.1016/j.pnpbp.
2009.06.025

Menon, V. (2014). ‘‘Arithmetic in the child and adult brain,’’ in The Oxford
Handbook of Mathematical Cognition, eds R. Cohen Kadosh and A. Dowker
(Oxford: Oxford University Press), 1–23.

Moreau, D., Wiebels, K., Wilson, A. J., and Waldie, K. E. (2019). Volumetric and
surface characteristics of gray matter in adult dyslexia and dyscalculia.
Neuropsychologia 127, 204–210. doi: 10.1016/j.neuropsychologia.
2019.02.002

Narumoto, J., Okada, T., Sadato, N., Fukui, K., and Yonekura, Y. (2001). Attention
to emotion modulates fMRI activity in human right superior temporal sulcus.
Cogn. Brain Res. 12, 225–231. doi: 10.1016/s0926-6410(01)00053-2

Nenadic, I., Smesny, S., Schlösser, R. G. M., Sauer, H., and Gaser, C. (2010).
Auditory hallucinations and brain structure in schizophrenia: voxel-based
morphometric study. Br. J. Psychiatry 196, 412–413. doi: 10.1192/bjp.bp.109.
070441

Núñez-Peña, M. I., Guilera, G., and Suárez-Pellicioni, M. (2014). The single-item
math anxiety scale: an alternative way of measuring mathematical anxiety.
J. Psychoeduc. Assess. 32, 306–317. doi: 10.1177/0734282913508528

Núñez-Peña, M. I., Suárez-Pellicioni, M., Guilera, G., and Mercadé-Carranza, C.
(2013). A spanish version of the short mathematics anxiety rating scale
(sMARS). Learn. Individ. Differ. 24, 204–210. doi: 10.1016/j.lindif.2012.
12.009

O’Donnell, S., Noseworthy, M. D., Levine, B., and Dennis, M. (2005).
Cortical thickness of the frontopolar area in typically developing children
and adolescents. NeuroImage 24, 948–954. doi: 10.1016/j.neuroimage.2004.
10.014

Pagani, E., Rocca, M. A., Gallo, A., Rovaris, M., Martinelli, V., Comi, G., et al.
(2005). Regional brain atrophy evolves differently in patients with multiple
sclerosis according to clinical phenotype. Am. J. Neuroradiol. 26, 341–346.

Parsons, S., and Bynner, J. (2005).Does Numeracy Matter More? London: National
Research and Development Centre for Adult Literacy and Numeracy.

Peelle, J. E., Cusack, R., and Henson, R. N. A. (2012). Adjusting for global effects
in voxel-basedmorphometry: graymatter decline in normal aging.NeuroImage
60, 1503–1516. doi: 10.1016/j.neuroimage.2011.12.086

Peng, J., Liu, J., Nie, B., Li, Y., Shan, B., Wang, G., et al. (2011). Cerebral and
cerebellar gray matter reduction in first-episode patients with major depressive
disorder: a voxel-based morphometry study. Eur. J. Radiol. 80, 395–399.
doi: 10.1016/j.ejrad.2010.04.006

Peters, L., and De Smedt, B. (2018). Arithmetic in the developing brain: a review
of brain imaging studies. Dev. Cogn. Neurosci. 30, 265–279. doi: 10.1016/j.dcn.
2017.05.002

Pinel, P., Dehaene, S., Rivière, D., and LeBihan, D. (2001). Modulation of parietal
activation by semantic distance in a number comparison task. NeuroImage 14,
1013–1026. doi: 10.1006/nimg.2001.0913

Price, G. R., Wilkey, E. D., Yeo, D. J., and Cutting, L. E. (2016). The relation
between 1st grade grey matter volume and 2nd grade math competence.
NeuroImage 124, 232–237. doi: 10.1016/j.neuroimage.2015.08.046

Ranpura, A., Isaacs, E., Edmonds, C., Rogers, M., Lanigan, J., Singhal, A., et al.
(2013). Developmental trajectories of grey and white matter in dyscalculia.
Trends Neurosci. Educ. 2, 56–64. doi: 10.1016/j.tine.2013.06.007

Richlan, F., Kronbichler, M., and Wimmer, H. (2013). Structural abnormalities in
the dyslexic brain: a meta-analysis of voxel-based morphometry studies. Hum.
Brain Mapp. 34, 3055–3065. doi: 10.1002/hbm.22127

Richter, M., Amunts, K., Mohlberg, H., Bludau, S., Eickhoff, S. B., Zilles, K.,
et al. (2019). Cytoarchitectonic segregation of human posterior intraparietal
and adjacent parieto-occipital sulcus and its relation to visuomotor and
cognitive functions. Cereb. Cortex 29, 1305–1327. doi: 10.1093/cercor/
bhy245

Rosen, M. L., Stern, C. E., Michalka, S. W., Devaney, K. J., and Somers, D. C.
(2015). Influences of long-term memory-guided attention and stimulus-
guided attention on visuospatial representations within human intraparietal
sulcus. J. Neurosci. 35, 11358–11363. doi: 10.1523/JNEUROSCI.1055-
15.2015

Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., and Loenneker, T.
(2008). Optimized voxel-based morphometry in children with developmental
dyscalculia. NeuroImage 39, 417–422. doi: 10.1016/j.neuroimage.2007.
08.045

Rykhlevskaia, E., Uddin, L. Q., Kondos, L., and Menon, V. (2009).
Neuroanatomical correlates of developmental dyscalculia: combined
evidence from morphometry and tractography. Front. Hum. Neurosci.
3:51. doi: 10.3389/neuro.09.051.2009

Sandu, A. L., Staff, R. T., McNeil, C. J., Mustafa, N., Ahearn, T., Whalley, L. J.,
et al. (2014). Structural brain complexity and cognitive decline in late life—a
longitudinal study in the Aberdeen 1936 Birth Cohort. NeuroImage 100,
558–563. doi: 10.1016/j.neuroimage.2014.06.054

Schillinger, F. L., Vogel, S. E., Diedrich, J., andGrabner, R. H. (2018).Math anxiety,
intelligence, and performance in mathematics: insights from the German
adaptation of the Abbreviated Math Anxiety Scale (AMAS-G). Learn. Individ.
Differ. 61, 109–119. doi: 10.1016/j.lindif.2017.11.014

Schnack, H. G., Van Haren, N. E. M., Brouwer, R. M., Evans, A., Durston, S.,
Boomsma, D. I., et al. (2015). Changes in thickness and surface area of
the human cortex and their relationship with intelligence. Cereb. Cortex 25,
1608–1617. doi: 10.1093/cercor/bht357

Frontiers in Human Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 116151

https://doi.org/10.1038/35086057
https://doi.org/10.1016/j.cortex.2007.08.003
https://doi.org/10.1016/j.cortex.2007.08.003
https://doi.org/10.1093/cercor/bhj028
https://doi.org/10.1016/j.neuroimage.2010.06.050
https://doi.org/10.1371/journal.pone.0055455
https://doi.org/10.1007/s00429-014-0951-1
https://doi.org/10.1007/s00429-014-0951-1
https://doi.org/10.1016/j.neuroimage.2011.01.070
https://doi.org/10.3389/fnhum.2013.00844
https://doi.org/10.1016/j.braindev.2007.04.008
https://doi.org/10.1109/42.746714
https://doi.org/10.3389/fpsyg.2013.00197
https://doi.org/10.1038/nn1277
https://doi.org/10.1016/j.neuroimage.2005.08.049
https://doi.org/10.1016/j.neuroimage.2005.08.049
https://doi.org/10.1016/j.neuroimage.2016.04.029
https://doi.org/10.1016/j.neuroimage.2016.04.029
https://doi.org/10.1016/j.pnpbp.2009.06.025
https://doi.org/10.1016/j.pnpbp.2009.06.025
https://doi.org/10.1016/j.neuropsychologia.2019.02.002
https://doi.org/10.1016/j.neuropsychologia.2019.02.002
https://doi.org/10.1016/s0926-6410(01)00053-2
https://doi.org/10.1192/bjp.bp.109.070441
https://doi.org/10.1192/bjp.bp.109.070441
https://doi.org/10.1177/0734282913508528
https://doi.org/10.1016/j.lindif.2012.12.009
https://doi.org/10.1016/j.lindif.2012.12.009
https://doi.org/10.1016/j.neuroimage.2004.10.014
https://doi.org/10.1016/j.neuroimage.2004.10.014
https://doi.org/10.1016/j.neuroimage.2011.12.086
https://doi.org/10.1016/j.ejrad.2010.04.006
https://doi.org/10.1016/j.dcn.2017.05.002
https://doi.org/10.1016/j.dcn.2017.05.002
https://doi.org/10.1006/nimg.2001.0913
https://doi.org/10.1016/j.neuroimage.2015.08.046
https://doi.org/10.1016/j.tine.2013.06.007
https://doi.org/10.1002/hbm.22127
https://doi.org/10.1093/cercor/bhy245
https://doi.org/10.1093/cercor/bhy245
https://doi.org/10.1523/JNEUROSCI.1055-15.2015
https://doi.org/10.1523/JNEUROSCI.1055-15.2015
https://doi.org/10.1016/j.neuroimage.2007.08.045
https://doi.org/10.1016/j.neuroimage.2007.08.045
https://doi.org/10.3389/neuro.09.051.2009
https://doi.org/10.1016/j.neuroimage.2014.06.054
https://doi.org/10.1016/j.lindif.2017.11.014
https://doi.org/10.1093/cercor/bht357
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Heidekum et al. The Neuroanatomical Correlates of Mathematics: a SBM Study

Shaw, P., Malek, M., Watson, B., Sharp, W., Evans, A., and Greenstein, D.
(2012). Development of cortical surface area and gyrification in attention-
deficit/hyperactivity disorder. Biol. Psychiatry 72, 191–197. doi: 10.1016/j.
biopsych.2012.01.031

Shen, W., Yuan, Y., Liu, C., and Luo, J. (2017). The roles of the temporal
lobe in creative insight: an integrated review. Think. Reason. 23, 321–375.
doi: 10.1080/13546783.2017.1308885

Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., and Dehaene, S. (2002).
Topographical layout of hand, eye, calculation and language-related areas in the
human parietal lobe.Neuron 33, 475–487. doi: 10.1016/s0896-6273(02)00575-5

Simos, P. G., Kanatsouli, K., Fletcher, J. M., Sarkari, S., Juranek, J., Cirino, P.,
et al. (2008). Aberrant spatiotemporal activation profiles associated with math
difficulites in children: a magnetic source imaging study. Neuropsychology 22,
571–584. doi: 10.1037/0894-4105.22.5.571

Sokolowski, H. M., Fias, W., Mousa, A., and Ansari, D. (2017). Common and
distinct brain regions in both parietal and frontal cortex support symbolic and
nonsymbolic number processing in humans: a functional neuroimaging meta-
analysis. NeuroImage 146, 376–394. doi: 10.1016/j.neuroimage.2016.10.028

Spielberger, C. D., Gorsuch, R. L., Lushene, P. R., Vagg, P. R., and Jacobs, A. G.
(1983).Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting
Psychologists Press.

Starke, M., Kiechl-Kohlendorfer, U., Kucian, K., Pupp Peglow, U., Kremser, C.,
Schocke, M., et al. (2013). Brain structure, number magnitude processing
and math proficiency in 6- to 7-year-old children born prematurely: a voxel-
based morphometry study. Neuroreport 24, 419–424. doi: 10.1097/WNR.
0b013e32836140ed

Steinbrink, C., Vogt, K., Kastrup, A., Müller, H. P., Juengling, F. D., Kassubek, J.,
et al. (2008). The contribution of white and gray matter differences to
developmental dyslexia: insights fromDTI andVBM at 3.0 T.Neuropsychologia
46, 3170–3178. doi: 10.1016/j.neuropsychologia.2008.07.015

Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L.,
et al. (2013). Neural predictors of individual differences in response to math
tutoring in primary-grade school children. Proc. Natl. Acad. Sci. U S A 110,
8230–8235. doi: 10.1073/pnas.1222154110

Thompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N.,
Rapoport, J. L., et al. (2004). Mapping cortical change in Alzheimer’s disease,
brain development and schizophrenia. NeuroImage 23, 2–18. doi: 10.1016/j.
neuroimage.2004.07.071

Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., and Toga, A. W. (1996).
Three-dimensional statistical analysis of sulcal variability in the human brain.
J. Neurosci. 16, 4261–4274. doi: 10.1523/jneurosci.16-13-04261.1996

Tosoni, A., Pitzalis, S., Committeri, G., Fattori, P., Galletti, C., and Galati, G.
(2015). Resting-state connectivity and functional specialization in human
medial parieto-occipital cortex. Brain Struct. Funct. 220, 3307–3321.
doi: 10.1007/s00429-014-0858-x

Vanni, S., Tanskanen, T., Seppä, M., Uutela, K., and Hari, R. (2001). Coinciding
early activation of the human primary visual cortex and anteromedial
cuneus. Proc. Natl. Acad. Sci. U S A 98, 2776–2780. doi: 10.1073/pnas.0416
00898

Voets, N. L., Hough, M. G., Douaud, G., Matthews, P. M., James, A., Winmill, L.,
et al. (2008). Evidence for abnormalities of cortical development in adolescent-
onset schizophrenia.NeuroImage 43, 665–675. doi: 10.1016/j.neuroimage.2008.
08.013

Vogel, S. E., Goffin, C., Bohnenberger, J., Koschutnig, K., Reishofer, G.,
Grabner, R. H., et al. (2017a). The left intraparietal sulcus adapts to symbolic
number in both the visual and auditory modalities: evidence from fMRI.
NeuroImage 153, 16–27. doi: 10.1016/j.neuroimage.2017.03.048

Vogel, S. E., Haigh, T., Sommerauer, G., Spindler, M., Brunner, C., Lyons, I. M.,
et al. (2017b). Processing the order of symbolic numbers: a reliable and unique
predictor of arithmetic fluency. J. Numer. Cogn. 3, 288–308. doi: 10.5964/jnc.
v3i2.55

White, T., Andreasen, N. C., Nopoulos, P., and Magnotta, V. (2003).
Gyrification abnormalities in childhood- and adolescent-onset schizophrenia.
Biol. Psychiatry 54, 418–426. doi: 10.1016/s0006-3223(03)00065-9

Wilkey, E. D., Barone, J. C., Mazzocco, M. M. M., Vogel, S. E., and Price, G. R.
(2017). The effect of visual parameters on neural activation during nonsymbolic
number comparison and its relation to math competency. NeuroImage 159,
430–442. doi: 10.1016/j.neuroimage.2017.08.023

Wilkey, E. D., Cutting, L. E., and Price, G. R. (2018). Neuroanatomical correlates
of performance in a state-wide test of math achievement. Dev. Sci. 21:2.
doi: 10.1111/desc.12545

Yang, J. J., Yoon, U., Yun, H. J., Im, K., Choi, Y. Y., Lee, K. H., et al.
(2013). Prediction for human intelligence using morphometric characteristics
of cortical surface: partial least square analysis. Neuroscience 246, 351–361.
doi: 10.1016/j.neuroscience.2013.04.051

Yotter, R. A., Nenadic, I., Ziegler, G., Thompson, P. M., and Gaser, C. (2011). Local
cortical surface complexity maps from spherical harmonic reconstructions.
NeuroImage 56, 961–973. doi: 10.1016/j.neuroimage.2011.02.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Heidekum, Vogel and Grabner. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 12 March 2020 | Volume 14 | Article 116152

https://doi.org/10.1016/j.biopsych.2012.01.031
https://doi.org/10.1016/j.biopsych.2012.01.031
https://doi.org/10.1080/13546783.2017.1308885
https://doi.org/10.1016/s0896-6273(02)00575-5
https://doi.org/10.1037/0894-4105.22.5.571
https://doi.org/10.1016/j.neuroimage.2016.10.028
https://doi.org/10.1097/WNR.0b013e32836140ed
https://doi.org/10.1097/WNR.0b013e32836140ed
https://doi.org/10.1016/j.neuropsychologia.2008.07.015
https://doi.org/10.1073/pnas.1222154110
https://doi.org/10.1016/j.neuroimage.2004.07.071
https://doi.org/10.1016/j.neuroimage.2004.07.071
https://doi.org/10.1523/jneurosci.16-13-04261.1996
https://doi.org/10.1007/s00429-014-0858-x
https://doi.org/10.1073/pnas.041600898
https://doi.org/10.1073/pnas.041600898
https://doi.org/10.1016/j.neuroimage.2008.08.013
https://doi.org/10.1016/j.neuroimage.2008.08.013
https://doi.org/10.1016/j.neuroimage.2017.03.048
https://doi.org/10.5964/jnc.v3i2.55
https://doi.org/10.5964/jnc.v3i2.55
https://doi.org/10.1016/s0006-3223(03)00065-9
https://doi.org/10.1016/j.neuroimage.2017.08.023
https://doi.org/10.1111/desc.12545
https://doi.org/10.1016/j.neuroscience.2013.04.051
https://doi.org/10.1016/j.neuroimage.2011.02.007
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Cognitive Neuroscience Editor's Pick 2021
	Table of Contents
	A Non-cognitive Behavioral Model for Interpreting Functional Neuroimaging Studies
	Introduction
	Basic Structure of Standard Cognitive Models (Scm) and Their Application to Functional Neuroimaging
	Localization of Mental Processes by Functional Neuroimaging
	Localization of Mental Processes Using Linear Models
	General Linear Model (GLM) in Functional Neuroimaging

	Explanations for the Lack of Clear Functional Segregation in Cognitive Neuroimaging
	Influence of Resting State Neuronal Activity on the Functional Neuroimaging
	Non-linearity in the Imaging Response, Regional Interactions, and Networks


	The Non-Cognitive Behavioral Model (Nbm)
	Structure of the NBM
	Behaviorism as a Basis for NBM, the Absence of Assumed Mental Processes
	Neuroimaging Can Measure Patterns of Brain Activities Supporting Behavior
	Measured Behavior Is Defined Operationally as Opposed to Being Based on Conceptual Generalizations
	For Behaviors to Be Considered the Same or Similar They Require That the Associated Patterns of Neuronal Activity Be Similar
	The Definition of Behavior Includes Internal Processes and Perception
	Context and Experience Plays a Key Role in How the Brain Supports Behavior Through Neuroplasticity and Other Low Level Mechanisms

	Description of the Neuroimaging Signal in the NBM Formalism
	Experimental Application of the NBM

	Application of the Nbm to Studies Determining Neural Correlates of Consciousness
	Description of Anesthesia Studies
	Comparison of NBM and SCM Interpretations of the Anesthesia Results
	Definitions of Consciousness
	Assignment of the Location of Consciousness Using the SCM and NBM Paradigms

	Statistical Comparison of SCM and NBM Predictions for Patients in the Minimally Conscious State and Vegetative State
	Conclusions and Extension to the Study of Different States of Consciousness

	fMri Studies of Facial and Object Recognition
	fMRI Studies of the Effect of Training on the FFA Response
	Ultra High Resolution Studies of the FFA Provide Further Support of a Non-modular Interpretation
	Localized Neuroimaging Responses Do Not Imply Cognitive Processes: An Alternate Explanation of Imaging Evidence for Functional Segregation Based Upon Neuroplasticity and Image Averaging
	Conclusions

	Application of the Nbm to Study Cognitive Behaviors
	The NBM as an Explanation for the Lack of Unique Functional Segregation for Supporting Different Cognitive Processes
	How Mental Processes Can Be Studied With the NBM
	The NBM in the Study of Consciousness
	Conclusion

	Epistemological Basis of the Nbm
	Author Contributions
	Funding
	Acknowledgments
	References

	Probing for Intentions: Why Clocks Do Not Provide the Only Measurement of Time
	1. Introduction
	2. Comparing Probes and Clocks
	3. Materials and Methods
	3.1. Participants
	3.2. Experimental Procedure
	3.3. Stimuli
	3.4. Experimental Timeline
	3.5. Behavioral Data
	3.6. Brain Data

	4. Results
	4.1. Behavioral Data
	4.1.1. Questionnaire
	4.1.2. Intention Reports
	4.1.3. Action Distribution

	4.2. Brain Data
	4.2.1. Readiness Potential
	4.2.2. Alpha/Beta Event-Related Desynchronization


	5. Discussion
	Author Contributions
	References

	A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving
	The importance of psychophysiological measures in traffic safety
	Why Adopt Psychophysiological Measures?
	Cognition in Dynamic Real-World Driving Contexts

	Psychophysiological Measures to Assess Cognitive States
	Electroencephalogram (EEG) and Event-Related Potentials (ERP)
	EEG Quantification
	ERP Quantification
	EEG/ERP in Driving Context
	Over-arousal in driving context
	Under-arousal in driving context

	Practical Considerations

	Optical Imaging for Cerebral Blood Flow
	Optical Imaging Quantification
	Optical Imaging for Cerebral Blood Flow in Driving Context
	Practical Considerations

	Heart Rate (HR) and Heart Rate Variability (HRV)
	Heart Activity Quantification
	HR/HRV in Driving Context
	Over-arousal in driving context
	Under-arousal in driving context

	Practical Considerations

	Blood Pressure (BP)
	BP Quantification
	BP in Driving Context
	Practical Considerations

	Electrodermal Activity (EDA)
	EDA Quantification
	EDA in Driving Context
	Practical Considerations

	Electromyography (EMG)
	EMG Quantification
	EMG in Driving Context
	Practical Considerations

	Thermal Imaging
	Thermal Imaging Quantification
	Thermography in Driving Context
	Practical Considerations

	Pupillometry
	Pupil Quantification
	Pupillometry in Driving Context
	Practical Considerations


	Challenges and Recommendations
	Valid and Reliable Quantification of Construct
	Individual Differences
	Baseline Assessments
	Sampling Rate, Filtering, and Signal Quality
	Innovation
	Classification

	Research Applicability in Real-World Settings
	Author Contributions
	Funding
	References

	EEG-Based Prediction of Cognitive Load in Intelligence Tests
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Experimental Paradigm
	2.3. Feature Extraction

	3. Results
	3.1. Effect of Number of Electrodes
	3.2. Effect of Discretizing the Workload 
	3.3. Individualized Prediction Using Neural Networks

	4. Discussion
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Large-Scale, Cross-Sectional Investigation Into the Efficacy of Brain Training
	Introduction
	Materials and Methods
	Cognitive Tasks
	Participants
	Data Analysis

	Results
	Cohort 1 – Is Brain Training Effective?
	Brain Training Is Effective, but the Effect Is Small to Negligible When Compared to Regular Video-Gaming

	Cohort 2 – What Are the Factors Affecting Brain Training and Other Cognitive Pursuits?
	Belief in Brain Training Is Consistent With Generalized Strength of Belief
	Brain Training May Be Effective, but So Are Other Cognitive Pursuits
	There Are Small Differences Between Common Devices and Packages for Brain Training
	Frequency and Intensity Are Independent Factors That Contribute to the Efficacy of Brain Training
	New "Brain Trainers" Start at a Lower Baseline in Cognitive Performance
	Brain training has a negligible effect on self-report of everyday problems



	Discussion
	Ethics Statement
	Author Contributions
	References

	Differences in Brain Activity After Learning With the Use of a Digital Pen vs. an Ink Pen—An Electroencephalography Study
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Learning Materials
	Selection of Words for the Learning Activity
	Stimuli for EEG Experiment

	Experimental Procedures
	Pre- and Post-learning Tests
	Learning Activity
	EEG Measurement
	Questionnaire Survey

	Data Analyses
	Performance
	N400
	Questionnaire Survey


	RESULTS
	Learning Activity and Pre/Post-learning Tests
	EEG Experiment
	Questionnaire Survey

	DISCUSSION
	DATA AVAILABILITY
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES

	Occupational Patterns of Structural Brain Health: Independent Contributions Beyond Education, Gender, Intelligence, and Age
	Introduction
	Materials and Methods
	Subject Sample, Acquired Data, and Pre-processing
	Occupational Data Acquisition
	Structural Brain Data Acquisition (T1, DTI, and FLAIR) and Processing

	Data Analysis: Multimodal Brain Health Computation
	Data Analysis: Mass-Univariate Analysis

	Results
	Collinearity of Covariates
	Univariate Analysis With FDR Correction

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
	Introduction
	Materials and Methods
	Subjects
	MRI Acquisition
	Resting-State fMRI
	Preprocessing of MRI Data
	Whole-Brain Anatomical Atlas
	Construction of Pseudo-Activation Maps
	Two-Dimensional Embedding of Cognitive Concepts Based on the CFM-to-CFM RSFC Matrix
	Subparcellation of CFMs
	Whole-Brain Parcellation Based on Voxel-to-CFM Functional Connectivity
	Dimensionality Reduction Using the Non-negative Matrix Factorization
	Heat-Diffusion Analysis of Information Sources/Receivers
	Local Density Identification in the Parcel-to-Parcel Network Using Clique Percolation
	Community Analysis on the Parcel-to-Parcel RSFC Matrix
	Reliability Check of RSFC Matrices

	Results
	Relational Mapping for Cognitive Functions
	RSFC-Based Conceptual Analysis of Cognitive Functions
	Cognitive Function-Based Whole-Brain Parcellation
	Cognitive Factor Identification Based on Dimensionality Reduction Using Non-negative Matrix Factorization
	Diversity of Information Sources/Receivers Is Dependent on Cognitive Factors
	Cognitive Factor-Dependent Difference in Densities of Local Connectivity
	Network Communities That Are Uniformly or Diversely Associated With Cognitive Factors

	Discussion
	Implications of the Results and Comparisons With Previous Studies
	Limitations and Future Directions

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Alpha Band Resting-State EEG Connectivity Is Associated With Non-verbal Intelligence
	Introduction
	Materials and Methods
	Participants
	Procedure
	EEG Data Acquisition and Pre-processing
	EEG Data Analysis
	Synchronization Measures
	Source Reconstruction

	Connectivity Graph Measures

	Statistical Approach
	Results
	EEG Sensor and Source Space Correlations
	Correlations for Different EEG Sensor-Space Connectivity Matrix Construction Thresholds

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References

	Associations Between Individual Differences in Mathematical Competencies and Surface Anatomy of the Adult Brain
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Materials and Stimuli of the Behavioral Test Session
	Berlin Intelligence Structure Test (BIS-T)
	Arithmetic Fluency Task
	Mathematics Test for Selection of Personnel (M-PA)
	Experimental Procedure
	MRI Data Acquisition
	Analysis of Behavioral Data
	Surface-Based Morphometry Analysis


	RESULTS
	Descriptive Analyses
	Correlation Analyses
	Structural Correlates of Mathematical Competencies

	DISCUSSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

	Back Cover



