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Efficient Fitting of 3D Tessellations to
Curved Polycrystalline Grain
Boundaries
Lukas Petrich1*, Orkun Furat 1, Mingyan Wang2, Carl E. Krill III 2 and Volker Schmidt1

1Institute of Stochastics, Faculty of Mathematics and Economics, Ulm University, Ulm, Germany, 2Institute of Functional
Nanosystems, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany

The curvature of grain boundaries in polycrystalline materials is an important characteristic,
since it plays a key role in phenomena like grain growth. However, most traditional
tessellation models that are used for modeling the microstructure morphology of these
materials, e.g., Voronoi or Laguerre tessellations, have flat faces and thus fail to incorporate
the curvature of the latter. For this reason, we consider generalizations of Laguerre
tessellations—variations of so-called generalized balanced power diagrams (GBPDs)—
that exhibit non-convex cells. With as many as ten parameters for each cell, it is
computationally demanding to fit GBPDs to three-dimensional image data containing
hundreds of grains. We therefore propose a modification of the traditional definition of
GBDPs that allows gradient-based optimization methods to be employed. The resulting
reduction in runtime makes it feasible to find approximations to real experimental datasets.
We demonstrate this on a three-dimensional x-ray diffraction (3DXRD) mapping of an AlCu
alloy, but we also evaluate the modeling errors for simulated data. Furthermore, we
investigate the effect of noisy image data and whether the smoothing of image data prior to
the fitting step is advantageous.

Keywords: polycrystallinematerial, tessellation, generalized balanced power diagram, gradient-based optimization,
image noise

1 INTRODUCTION

The grain boundaries of polycrystalline materials play an important role in many different
phenomena, ranging from fundamental processes like grain growth and extending to applied
scenarios like the degradation of electrodes in lithium-ion batteries. In many such cases, the
investigation and modeling of grain boundaries presupposes that their locations can be
represented precisely. For this purpose, tessellations have proven to be a powerful tool, as they
provide a partitioning of space into disjoint subsets called cells. For example, the representation of a
material’s microstructure by means of tessellations can be utilized for the analysis of microstructure-
property relationships (Raabe, 1998; Westhoff et al., 2018). For the latter, realistic “virtual
polycrystals” generated by parametric stochastic models for these tessellations are particularly
helpful (see, e.g., Allen et al., 2021). A prominent tessellation type in materials science is the Laguerre
tessellation (Lautensack and Zuyev, 2008), which is a generalization of the well-known Voronoi
tessellation (Møller, 1994; Okabe et al., 2000). It is therefore not surprising that the fitting of Laguerre
tessellations to experimental data has already received much attention. For example, in Bourne et al.
(2020); Petrich et al. (2019); Quey and Renversade (2018) the problem of finding good
representations for statistical data, such as grain volumes and centroids, is discussed. Of
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particular interest is the description of 3D image data, e.g., from
3D electron backscatter diffraction (EBSD) or 3D x-ray
diffraction (3DXRD) microscopy, which was studied in
Liebscher (2015); Quey and Renversade (2018); Spettl et al.
(2016). Additional details regarding the method proposed in
Spettl et al. (2016) are given in Section 2.4.1. A major
drawback of the Laguerre tessellation, however, is the fact that
its facets are planar and therefore apply only to grains having
nearly flat boundaries. This is unacceptable when it comes to the
investigation of curvature-related phenomena like grain growth.
In this case, other tessellation models—often generalizations of
the Voronoi/Laguerre tessellations—have been proposed; we
refer to Altendorf et al. (2014); Šedivý et al. (2018) for an
overview. Heuristics for fitting some of these tessellation
models are described in Altendorf et al. (2014); Teferra and
Graham-Brady (2015). A quite general tessellation model, the
so-called generalized balanced power diagram (GBPD), is
introduced in Alpers et al. (2015), in which a fitting procedure
based on a (very high-dimensional) linear optimization is also
proposed. A different fitting method, again relying on
optimization, is described by Šedivý et al. (2016). Moreover, a
completely different approach is taken in Teferra and
Rowenhorst (2018), where closed formulas for approximating
GBPDs are presented. The latter two methods are discussed in
detail in Sections 2.4.2 and 4.2.

The major goal of the present paper is to propose a fitting
method that works well for GBPDs and other distance-based
tessellations. Taking advantage of efficient gradient-descent
optimization, the new approach aims to achieve a goodness of
fit similar or better than that of other techniques—but with much
shorter computational runtime. This is investigated on 3DXRD
mapping data obtained from a sample of an AlCu alloy, but we
also evaluate the modeling errors for simulated data. Note that the
fitting method presented here is also applicable to image data
obtained by techniques other than 3DXRD, such as 3D EBSD
(Zaefferer et al., 2008; Schwartz et al., 2009; Burnett et al., 2016).
Furthermore, the robustness with respect to noisy image data is
studied, and the question is posed whether the smoothing of grain
boundaries prior to tessellation fitting—as is routinely carried
out—actually improves the fit. Even though different tessellation
models were fitted to the datasets, the topic of model selection is
not discussed; for the latter, we refer to Šedivý et al. (2018). The
present paper extends a previous version of the fitting algorithm
originally described in Furat et al. (2021) by considering more
general types of tessellations and a thorough analysis of the
goodness of fit for different datasets.

2 MATERIALS AND METHODS

In this section we describe the materials and methods used in the
present paper. These topics include the 3DXRD image data
described in Section 2.1, the definitions of various tessellation
models in Section 2.2, a procedure for gradient descent-based
tessellation fitting in Section 2.3 (originally introduced in Furat
et al. (2021)), and two further methods from the literature for the
gradient-free fitting of tessellations to image data (Section 2.4).

2.1 Description of 3DXRD Image Data
One of the main goals of the present paper is to describe a
procedure for finding accurate parametric representations of real,
experimental image data. To that end, a 3D microstructural
mapping was carried out on a 1.4 mm-diameter cylinder of
Al-5wt%Cu, which was cut out of a cold-rolled plate (50%
thickness reduction) that had been subsequently homogenized
at 500°C for 24 h in air. The shape of individual grains in the
specimen and the location of internal grain boundaries were
revealed by 3DXRD microscopy measurements, performed at
beamline BL20XU of the Japanese synchrotron radiation facility
SPring-8 using a monochromatic beam of 32 keV x-rays
(Poulsen, 2004). For 10 min prior to this room-temperature
mapping, the specimen was subjected to a heat treatment at
575°C in air, which results in a liquid AlCu phase of
approximately 2 vol% wetting the boundaries between the
solid, aluminum-rich grains. Owing to the simultaneous
presence of two phases, the resulting evolution of the sample’s
microstructure is classified as Ostwald ripening (Wang and
Glicksman, 2007). Once the sample is removed from the
furnace, however, the liquid layer crystallizes and the growth/
shrinkage of individual grains ceases.

Reconstruction of the 3DXRD data followed the protocol
described in Dake et al. (2016), relying on the data processing
routines of Schmidt (2005, 2014). To each voxel in the
reconstructed volume, the software assigns the crystal lattice
orientation that generates the most complete diffraction signal,
whereby “completeness” is defined as the ratio between the
number of experimentally detected diffraction spots associated
with the voxel in question and the number of diffraction spots
that are simulated to arise from this particular voxel if it were to
have the assumed orientation. The grain labels were then assigned
voxel-by-voxel to the orientation having the greatest
completeness value. Formally, we describe the resulting image
dataset as a mapping

IE,raw : WE,raw � 1, . . . , 531{ } × 1, . . . , 321{ }
× 1, . . . , 321{ } → 0, . . . , 943{ },

where each voxel coordinate is mapped to the corresponding
grain label. Here, the label 0 is assigned to the background
(i.e., voxels located outside the specimen). Each of the
remaining labels is associated with one of the 943 grains.

However, with this reconstruction procedure the grain
boundaries may manifest irregularities, such as local
roughness, “island” voxels, zigzag shapes, or regions of
fluctuating curvature (see Figure 1A) as a result of
measurement uncertainties. These artifacts can be eliminated
by treating the raw reconstruction as the initial configuration
of a computational simulation of curvature-driven grain growth.
If the duration of such a simulation is kept short enough, any
boundary location manifesting severe curvature will tend to
smoothen out, and any island voxels will be consumed by the
surrounding grain, but no long-range translation of boundaries
will occur—see Figure 1B. In the present paper, we employed 25
iterations of a 3D phase field algorithm (Krill and Chen, 2002) to
reduce the roughness of grain boundaries in the raw 3DXRD
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reconstructions. The resulting smoothed experimental image is
referred to as

IE,smooth : WE,smooth → 0, . . . , 938{ },
where WE,smooth � WE,raw. Note that some smaller grains
vanished during the data smoothing procedure; consequently,
IE,smooth had fewer grains than IE,raw (938 grains instead of 943).

2.2 Tessellation Models
In order to represent the 3D grain architecture of (measured and
simulated) image data in an efficient way, we apply an
optimization method to decompose the volume of interest into
subvolumes using tessellations. Thus, to begin with, we briefly
describe the tessellation models considered in the present paper.
For additional details on tessellations in general, we refer, e.g., to
Chiu et al. (2013).

Roughly speaking, a tessellation is a partitioning of space into
pairwise disjoint sets, so-called cells. More precisely, a tessellation
T in a sampling windowW ⊂ R3 is a countable collection of sets
(cells), T � {CT

i ⊂ W: i � 1, 2, . . . }, such that

1) int(CT
i ) ∩ int(CT

j ) � ∅ for i ≠ j,
2) ∪∞i�1C

T
i � W,

3) and T is locally finite—i.e., #{CT ∈ T : CT ∩ B ≠ ∅}<∞ for
all bounded B ⊂ W,

where int(·) denotes the interior of a set. Note that in this paper
we consider tessellations only in a bounded sampling window
W ⊂ R3. In this case, the number of (non-empty) cells is finite
and is denoted by nT .

For practical purposes, such as finding simplified
representations of experimental image data, parametric
tessellation models are probably the most suitable class of
tessellations. The tessellation models considered in the present
paper have in common that their cells are defined in terms of a
distance function dT : R

3 ×G → {R}, where {G} denotes the
domain of generators (i.e., a set of admissible parameters of a
single tessellation cell). For a (finite) set of generators

G � {gi}nTi�1 ⊂ GnT , the i-th cell CT
i of a distance-based

tessellation T is given by

CT
i � x ∈ W: dT x, gi( )≤ dT x, gj( ) for each j � 1, . . . , nT{ }.

(1)

For brevity, we use the notation

CT
i x( ) � 1 if x ∈ CT

i ,
0 otherwise,

{

to indicate whether a point x ∈ W belongs to the i-th cell, where
i � 1, . . . , nT .

The simplest model of a distance-based tessellation is the
Voronoi tessellation, where dT (x, s) � ‖x − s‖ for x ∈ W with a
generator s ∈ R3 � G, and ‖x − s‖ denotes the Euclidean norm of
x − s. While widely studied in literature, see e.g. Aurenhammer
et al. (2013); Møller (1994); Okabe et al. (2000), the Voronoi
tessellation is often found to be insufficiently flexible to fit
experimental maps of polycrystalline materials (Šedivý et al.,
2018); thus, more sophisticated tessellation models are needed.
The fitting procedure considered in the present paper is able to
handle many tessellations of the form given by Eq. 1 for which the
distance function dT is differentiable. However, we focus on
tessellation models that are special cases of generalized balanced
power diagrams (GBPDs), listed here in order from simplest to
most complex:

1) The Laguerre tessellation (Lautensack and Zuyev, 2008) is
obtained if dT (x, (s, w)) � ‖x − s‖2 − w for x ∈ W, with a
generator consisting of a seed point s ∈ R3 and an additive
weight w ∈ R.

2) The multiplicatively weighted Laguerre tessellation is
obtained if dT (x, (s, m, w)) � m‖x − s‖2 − w for x ∈ W,
with a generator consisting of a seed point s ∈ R3, a
multiplicative weight m > 0 and an additive weight w ∈ R.

3) The diagonal GBPD is obtained if dT (x, (s,M,w)) �
(x − s)⊤M(x − s) − w for x ∈ W, with a generator

FIGURE 1 | Two-dimensional slice through the raw (A) and smoothed (B) experimental 3D image data and a magnified region showing the grain boundaries.
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consisting of a seed point s ∈ R3, a diagonal distance matrix
M ∈ R3×3 where every (diagonal) entry is positive and an
additive weight w ∈ R.

4) The general GBPD (Alpers et al., 2015) is obtained if
dT (x, (s,M,w)) � (x − s)⊤M(x − s) − w for x ∈ W, with a
generator consisting of a seed point s ∈ R3, a positive definite
distance matrix M ∈ R3×3 and an additive weight w ∈ R.

Note that all of these models, except the Laguerre tessellation,
can exhibit curved cell boundaries and thus non-convex cells.
With this property comes the possibility, however, that cells are
no longer connected, which might be undesirable when seeking
parametric representations of polycrystalline materials. To rectify
this issue, modifications of the original tessellation models, such
as the one given by Šedivý et al. (2018), can be applied to fitted
generators as a post-processing step. Another problem that affects
all of the tessellation models described above is the possibility for
a generator not to produce a corresponding cell. This can be
mitigated by considering a volume-based cost function during the
fitting that penalizes missing cells—see Section 2.3.

2.3 Gradient Descent-Based Tessellation
Fitting
In this section we describe an efficient, gradient descent-based
fitting procedure for GBPD-type tessellations. This procedure
was originally introduced in Furat et al. (2021), but in Section 3 it
will be applied to a broader class of tessellation models than in
Furat et al. (2021).

Note that the fitting of a tessellation T � {CT
i }nTi�1 can be

achieved by finding generators such that the similarity
between the tessellation T and the ground truth image data is
maximized. Formally, we consider the i-th grain of the ground
truth image data as a map CGT

i : Z3 → {0, 1} given by

CGT
i x( ) � 1 if x belongs to the i − th grain,

0 otherwise,
{

withZ the set of all integers, i � 1, . . ., nGT, and nGT the number of
grains in the sampling window W ⊂ R3. Nearest-neighbor
interpolation can be used to extend the domain of CGT

i from
the integer lattice Z3 to the continuous Euclidean space R3.
Furthermore, let XF � {xF

j }nFj�1 ∈ Z3×nF be the set of all

coordinates of voxels that belong to one of the grains, which
we call the foreground voxels of the image data. If nF denotes the
number of foreground voxels in W, then for each j � 1, . . ., nF
there is an integer i � 1, . . ., nGT such that CGT

i (xF
j ) � 1. In

Section 3we will consider the smoothed experimental image data
from Section 2.1 (among others) and set

CGT
i x( ) � 1 if x ∈ WE,smooth and IE,smooth x( ) � i,

0 otherwise,
{

and XF � {x ∈ WE,smooth: IE,smooth(x)> 0}.
Probably the most natural way to define the similarity between

a tessellation T and the ground truth image data is to count the
voxels at which each cell of the tessellation and the corresponding
grain of the ground truth dataset overlap. To be more precise, the

value of the objective function E: GnGT → [0,∞) for a set of
generators G � {gi}nGTi�1 with gi ∈ G is given by

E G( ) � 1
nF

∑nF
j�1

∑nGT
i�1

CT
i xF

j( )CGT
i xF

j( ), (2)

where the cells CT
1 , . . . , C

T
nGT

of the tessellation T depend on the
choice of the generators in G subject to nT � nGT. The
corresponding fitting problem is thus to determine an optimal
set of generators Gopt defined as

Gopt � argmax
G

E G( ). (3)

It is easy to see that CT
j (xF) with xF ∈ XF can be

reformulated as

CT
j xF( ) � argminp

j dT xF, g1( ), . . . , dT xF, gnT( )( ), (4)

where argmin*j is the j-th component of the nT -dimensional
vector-valued argmin function, i.e.,

argminp : RnT → 0, 1{ }nT ,
argminp

j z � 1 if zj ≤ zi for all i � 1, . . . , nT ,
0 otherwise,

{
with z � (z1, . . . , znT ) ∈ RnT . In cases where the minimum is not
unique, i.e., there are indices j1, j2 ∈ {1, . . . , nT } with j1 ≠ j2 and
zj1 � zj2, only the component with the smallest index is set equal
to 1. The function argmaxp is defined analogously.

Even though the distance function dT is differentiable (with
respect to the generators), the fact that argminp in Eq. 4 does
not have a derivative makes the objective function E defined in
Eq. 2 non-differentiable. This leaves us having to resort to
derivative-free optimization algorithms to solve Eq. 3, which
in most cases converge slower than gradient descent methods
(Audet and Hare, 2017). In order to increase efficiency, we
slightly deviate from the original tessellation formulation by
replacing the argminp function in Eq. 4 with a “softminp”
function—i.e., a softmaxp function with a negative argument,
~C
T
j (xF) � softmaxpj(−dT (xF, g1), . . . ,−dT (xF, gnT )) for

xF ∈ XF. Here, the nT -dimensional function

softmaxp : RnT → 0, 1[ ]nT ,

softmaxpj z � exp zj( )
∑nT

k�1 exp zk( )
with z � (z1, . . . , znT ) ∈ RnT is a smooth version of the argmaxp

function. So, instead of returning a vector the components of
which are either 0 or 1, the softmaxp function is a vector-valued
map, the components of which are continuous functions with
values between 0 and 1. In fact, the output vector softmaxp z for
some argument z ∈ RnT defines a discrete probability measure
(i.e., the values of all components are between 0 and 1 and their
sum is equal to 1), which assigns the highest probability to the
index j if zj ≥ zi for all i ∈ {1, . . . , nT }. Here, the last property can
be understood in the sense that the softmaxp function preserves
the maximum of the input vector. The largest value of a
component of the vector (~CT

1 (xF), . . . , ~CT
nT
(xF)) is therefore
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the one whose corresponding generator has the shortest
tessellation distance to the given evaluation point xF.

The benefit of applying the softmaxp function instead of using
the tessellation distances directly is found in the fact that the
output vector of the softmaxp function is normalized, and thus for
each evaluation point xF only the relative changes in the
tessellation distances to the generators are considered,
providing the same scale (i.e., values in [0, 1]) for all
evaluation points. This trick is often used for multi-class
classification problems in machine learning (Goodfellow et al.,
2016). Furthermore, note that since softmaxp is a composition of
differentiable functions and is itself therefore differentiable, the
function ~C

T
j is differentiable, as well, for each j ∈ {1, . . . , nT }.

Because—in contrast to CT
j , which is either 0 or 1—~C

T
j

assumes continuous values, it is necessary to adapt the
objective function. Consequently, instead of E defined as in
Eq. 2, we consider the function ~E: GnGT → (−∞, 0], where

~E G( ) � 1
nF

∑nF
j�1

∑nGT
i�1

λNCE ~C
T
i xF

j( ), CGT
i xF

j( )( ) (5)

with the negative (binary) cross-entropy loss function λNCE : [0,1]
2

→ ( − ∞, 0] given by λNCE(~y, y) � y log~y + (1 − y)log(1 − ~y).
Note that the cross-entropy loss is often used in machine learning
(Goodfellow et al., 2016) to compare the output of a classifier to
ground truth data, which is basically the same purpose it serves
here: If an evaluation point xF belongs to the i-th grain
(i.e., CGT

i (xF) � 1), ~C
T
i(xF) also needs to be close to 1 in order

to maximize λNCE, and vice versa. Note that the modified objective
function ~E is differentiable with respect to the generators. The fitted
set of generators ~Gopt can then be obtained by solving

~Gopt � argmax
G

~E G( ). (6)

In summary, we reformulated the original fitting problem,
Eq. 3, into the differentiable version given in Eq. 6. This allows
us to employ fast, gradient-based optimization algorithms, such
as the one used in the present work: the stochastic gradient
descent algorithm ADAM (Kingma and Ba, 2015) (applied to the
negative objective function). The optimization is stopped after a
maximum of 25 iterations through (random permutations of)
the dataset or if the objective function ~E defined in Eq. 5 does
not increase by more than 10−4 in 3 iterations. Note that for the
discretization of a fitted GBPD-type tessellation, we compute
the (unique) cell labels using the classical definition in Eq. 4.
The software implementation for the fitting and the
discretization is based on TENSORFLOW (Abadi et al., 2015),
which allows for highly parallel and even GPU-accelerated
computations.

2.4 Gradient-free Tessellation Fitting
In addition to the procedure described in Section 2.3, we
mention two additional methods from the literature for
fitting tessellations to image data, to which we will refer
below. We start with the procedure for Laguerre tessellations
introduced in Spettl et al. (2016), which was used to acquire the
initial parameter configuration in Section 3. Furthermore, in

order to compare the results of our method described in Section
2.3, we also employed a different method for the fast fitting of
GBPDs that was originally developed in Teferra and
Rowenhorst (2018).

2.4.1 Laguerre Tessellation Fitting with the
Cross-Entropy Method
In Spettl et al. (2016), approximations of polycrystalline image data
were sought in the form of Laguerre tessellations. Just like in Section
2.3 of the present paper, an optimization problem was formulated.
However, instead of considering a volume-based objective function,
an interface-based discrepancy measure was minimized. More
precisely, the quality of fit for a given set of Laguerre generators
G was judged by looking at each boundary between two grains. Let
their grain labels be denoted by i ≠ ℓ � 1, . . ., nGT. Then, a plane Por

i,ℓ
was determined by orthogonal regression of the boundary voxel
coordinates, and ten test points xT

i,ℓ,1, . . .x
T
i,ℓ,10 ∈ Por

i,ℓ on this plane
were considered. Furthermore, the plane Peq

i,ℓ that is equidistant
(with respect to the Laguerre distance dT ) to the two corresponding
generators gi and gℓ was computed. Note that if the cellsCT

i andCT
ℓ

are neighboring, the plane Peq
i,ℓ covers their shared facet, but

otherwise—e.g., when one of the cells is empty—the plane Peq
i,ℓ

does not have a correspondence in the tessellation. The total
discrepancy D: G → [0,∞) was then obtained as the average of
squared distances between the test points {xT

i,ℓ,1, . . . , x
T
i,ℓ,10} to the

plane Peq
i,ℓ for all neighboring grains; more precisely,

D G( ) � 1
nT

∑
i,ℓ�1,...,nGT

grains i,ℓ neighboring

∑10
k�1

dist xT
i,ℓ,k, P

eq
i,ℓ( )2,

where nT is the total number of test points for all neighboring
grains, and dist(x, P) is the shortest Euclidean distance of the
point x to a point on the plane P. The resulting minimization
problem is rather high-dimensional and non-convex. For this
reason, in Spettl et al. (2016) a global stochastic optimization
technique was employed—namely, the cross-entropy method
(Rubinstein and Kroese, 2004)—to escape local minima of the
objective function. In the present paper, the same values for the
parameters of the algorithm as proposed by Spettl et al. were used
(see Spettl et al. (2016) for a full list).

2.4.2 GBPD Fitting Using a Direct Approach
A quite different approach, this time for fitting GBPDs, was
proposed in Teferra and Rowenhorst (2018) (which is referred to
as the direct approach in the following). In Section 3, we will
employ this method as a baseline comparison to our gradient-
based fitting method. With the direct approach no optimization
was performed, but rather formulas for directly estimating the
tessellation parameters were presented, which leads to a very fast
heuristic to fit GBPDs. This was achieved by determining the
generators (si, Mi, wi) of the i-th cell only by considering the i-th
grain and without knowledge of the other grains/cells: The seed
point si was set to the center of mass of the grain, and the distance
matrix Mi was computed from the covariance matrix of its voxel
coordinates. Since the isosurface of the GBPD distance function
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{x ∈ W: dT (x, (si,Mi, wi)) � (x − si)⊤Mi(x − si) − wi � 0} can
be considered as an ellipsoid, the additive weights were computed
by equating the volume of this ellipsoid to that of the i-th grain.
Note that this approach is similar to the one proposed in
Lyckegaard et al. (2011) for Laguerre tessellations.

3 RESULTS

In order to evaluate the gradient descent-based fitting method
described in Section 2.3, we applied it to several different image
datasets using the following procedure. First, initial Laguerre
generators were determined by the cross-entropy approach
developed in Spettl et al. (2016) (see Section 2.4.1). Then,
tessellation models with increasing complexity were
successively fitted, using the generators of a simpler
tessellation model as the initial parameter configuration. Here,
any parameters that were not part of the simpler model were
initialized with default values: For example, when optimizing the
fit of a multiplicatively weighted Laguerre tessellation based on
the generators of a fitted Laguerre tessellation, the multiplicative
weights were set equal to 1; in the case of a diagonal GBPD, each
diagonal matrix was filled with a value equal to the corresponding
multiplicative weight. For purposes of comparison, we
independently applied the direct approach of Teferra and
Rowenhorst (2018) to each image dataset (see Section 2.4.2).

3.1 Performance Measures
To evaluate the goodness of fit of the tessellation {CT

i }nTi�1 fitted to
the foreground voxels XF � {xF

j }nFj�1 of the ground truth image
data {CGT

i }nGTi�1 (with nGT � nT ), we consider various performance
measures. The fraction of correctly assigned voxels is given by

Fc � 1
nF

∑nF
j�1

∑nGT
i�1

CT
i xF

j( )CGT
i xF

j( ).
Similarly, the fraction of correctly assigned boundary voxels is

defined as

FB
c � 1

nB
∑nB
j�1

∑nGT
i�1

CT
i xB

j( )CGT
i xB

j( ),
where

XB � xB
j{ }nB

j�1 � {xB
1 ∈ XF: ‖xB

1 − xB
2‖≤



3

√
andCGT

i xB
1( )

� CGT
ℓ

xB
2( ) � 1 for somexB

2 ∈ XF and i, ℓ � 1, . . . , nGT, i ≠ ℓ}
are the coordinates of the nB grain boundary voxels (with respect
to the 26-neighborhood, where the voxels x1, x2 are neighbors if
‖x1 − x2‖≤



3

√
). Moreover, note that the fraction of empty cells

F0 can be written as

F0 � 1
nT

∑nT
i�1

1{CT
i xF( ) � 0 for allxF ∈ XF},

where 1{·} denotes the indicator function. Furthermore, consider
the set of all grains that are a neighbor of the i-th grain in the

ground truth image data (with respect to the 6-neighborhood of
each voxel, where the voxels x1, x2 are neighbors if ‖x1 − x2‖ ≤ 1),

N GT
i � {ℓ ∈ 1, . . . , nGT{ }: CGT

i xF
1( ) � CGT

ℓ
xF
2( ) � 1

for any xF
1 , x

F
2 ∈ XF with ‖xF

1 − xF
2‖≤ 1, i ≠ ℓ},

the set of all cells that are a neighbor of the i-th tessellation cell,
NT

i (defined analogously), and the resulting set of correctly
assigned neighbors, N i � N GT

i ∩ NT
i . Then, the fraction of

cells for which all cell neighbors are correct can be written as

N0 � 1
nGT

∑nGT
i�1

1{N GT
i � NT

i },
and the mean number of incorrect cell neighbors is

�N � 1
nGT

∑nGT
i�1

#N GT
i − #N i( ),

where # denotes cardinality. These performance measures were
calculated for simulated and experimental image data with both
smooth and rough grain boundaries (see Sections 3.2, 3.3).

3.2 Simulated Data
In this section, the fitting of tessellations to simulated image data
is investigated. This allows us to study scenarios in which, in
principle, the tessellations can perfectly describe the image data,
which is usually not the case for experimental data. Apart from
that, it is also possible to simulate the effect of noisy image data
while still having access to the true grain boundaries.

3.2.1 Smooth Grain Boundaries
As a first step, the performance of the fitting procedure described
in Section 2.3 is evaluated for simulated data having smooth
grain boundaries—more precisely, for a (discretized) realization
of a randommultiplicatively weighted Laguerre tessellation. Since
a tessellation of the same type (among others) was fitted to the
simulated image dataset, it is clear that theoretically a perfect
match could have been achieved. However, whether or not this
global optimum is actually found depends strongly on the initial
generators. In the present investigation, we made sure that no
information leaked from the generation of the simulated image
data to the choice of initial generators (apart from the image data,
of course).

The tessellation underlying the simulated data was created as
follows in the cubic sampling window W � [0, 299]3. The seed
points {si}nTi�1 were a realization of a Matérn hardcore process with
(overall) intensity λsim > 0 and hardcore radius rsim > 0. We refer
to Chiu et al. (2013) for additional details. The weights were then
independently drawn: in the case of additive weights {wi}nTi�1, from
a (0,∞)-truncated normal distribution with (untruncated) mean
μsim > 0 and variance σ2sim > 0, and, in the case of multiplicative
weights {mi}nTi�1, from an inverse gamma distribution with shape
parameter αsim > 0 and scale parameter βsim > 0. To mitigate
boundary effects, the seed point process was simulated in a larger
window, and only those generators whose cell was located at least
partly within the actual simulation window were retained (this
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procedure is called plus-sampling in the literature—see e.g. Chiu
et al. (2013)).

In our case, the parameters of the random tessellation model
were set as follows: λsim � 0.0000205, rsim � 14.1, μsim � 27.4,
σ2sim � 9.25, αsim � 1.5 and βsim � 0.0939. In total, the resulting
realization had nGT � 1073 cells and was discretized in the
window Wsim � {0, . . . , 299}3 by assigning each voxel a label
associated with the simulated cell in which the corresponding
voxel coordinate is located. This is described by the mapping
Isim: Wsim → {1, . . . , nGT}, the values of which are hereafter

referred to as smooth simulated image data. All voxels were
considered during the fitting (i.e., XF � Wsim).

Once the simulated image dataset was obtained, different
tessellation models were successively fitted to it, and their
goodness of fit was evaluated using the performance measures
from Section 3.1. A schematic overview of this procedure is
depicted in Figure 2. A visual comparison of the ground truth
image data and the fits is given in Figure 3, whereas numerical
fitting results are presented in Table 1.

3.2.2 Perturbed Grain Labels
One of the main goals of the present paper is to investigate the
fitting of tessellations to image data containing rough grain
boundaries—which may result, for example, from
measurement uncertainties. For an in-depth analysis of this
scenario, the grain labels of the simulated image data from
Section 3.2.1 were perturbed such that the originally smooth
boundaries exhibited a similar degree of roughness as in the
experimental image data. With this approach, it was possible to
vary the intensity of the perturbation and to study the robustness
of the fitting even for degrees of boundary roughness well beyond
that observed in experiment. Another benefit was the ability to
evaluate the goodness of fit with respect to the (true) smooth
grain boundaries instead of with respect to the perturbed grain
boundaries that were input to the fitting procedure (Figure 4).

FIGURE 2 |Schematic overview of the fitting of tessellations to simulated
image data having smooth grain boundaries and validation of the resulting fits.
Orthogonal 2D slices through 3D datasets are shown.

FIGURE 3 | Two-dimensional slices through (A) the simulated ground truth image data and the corresponding fitted tessellations: (B)–(E) were obtained by the
gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in Section 2.4.2.
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Intuitively, the perturbed simulated image data was generated
by computing a binary image of the grain boundaries from the
smooth simulated image Isim considered in Section 3.2.1. Then,
the grain boundaries were blurred. The resulting grayscale image
was used to define probabilities with which the grain labels of
voxels in Isim were reassigned to labels drawn from each voxel’s
near vicinity. This way, a grain label is most likely to be changed
when a voxel is located near a grain boundary, while the labels of
voxels closer to a grain center will usually remain unchanged. A
similar tendency is evident in the raw experimental data
(Figure 1).

More precisely, the perturbation probabilities were obtained as
follows. First, a ‘subvoxel’ boundary image Ib: Wp

pert → {0, 1} of
the smooth simulated image Isim was computed according to

Ib y( ) � 1 if #N b y( )> 1,
0 otherwise,

{
with

N b y( ) � {Isim x1, x2, x3( ): xk � yk ± 1
2

if yk odd, and

xk � yk

2
if yk even, k � 1, 2, 3}

for y � (y1, y2, y3) ∈ Wp
pert � {0, . . . , 598}3. This means Ib(y) is

labeled as a boundary voxel whenever the setN b(y) contains
at least two distinct grain labels. Effectively, this amounts to
assigning boundary locations by considering an upsampled
version of Isim with nearly twice the number of voxels in each
spatial dimension. So, if two neighboring voxels in Isim have
different labels, a boundary is drawn between these voxels in
Ib—see Figure 5. Next, a Gaussian blur (Russ and Neal,
2017) with standard deviation σ ≥ 0 (where σ � 0 implies no
blurring) was applied to the boundary image Ib to obtain the
blurred boundary image Iblur: Wp

pert → [0, 1]. Here, the
values of voxels in Wp

pert are scaled such that their
minimum and maximum are equal to 0 and 1,
respectively. Since σ determines how far into a grain the
perturbations occur, we call it the perturbation spread.
Finally, the perturbation probability image
Iprob: Wpert → [0, 1] was acquired by a subsequent
downsampling to the original resolution of Isim:

Iprob x( ) � 1
8

∑
z1 ,z2 ,z3∈ 0,1{ }

Iblur 2x1 + z1, 2x2 + z2, 2x3 + z3( )

for x � (x1, x2, x3) ∈ Wpert � Wsim. During this calculation,
values outside the domain of Iblur were set equal to 0.

The smooth simulated image Isim was perturbed by considering
the random variables Zx with values in {1, . . ., nGT} such that

Zx � Isim x( ) with probability Iprob x( ),
Isim y( ) with probability 1 − Iprob x( ),{

for each voxel x ∈ Wpert, where y is the closest voxel in Isim to x for
which Isim(y) ≠ Isim(x) (ties are broken by choosing a grain label
uniformly at random). We assume that all Zx are stochastically
independent of each other. The perturbation
Ipert: Wpert → {1, . . . , nGT} of the smooth simulated image Isim
was then obtained as a realization of the random variables
{Zx}x∈Wpert

. Note that Ipert is a function of the perturbation
spread σ ≥ 0 and that, even for the case σ � 0, perturbations
can still occur within a voxel of the grain boundaries, as Iprob can

TABLE 1 | Values of performance measures for various tessellation models fitted
to the smooth simulated image data, considering the fraction of correctly
assigned voxels Fc, the fraction of correctly assigned boundary voxels FB

c , the
fraction of empty cells F0, the fraction of cells for which all cell neighbors are correct
N0, and the mean number of incorrect cell neighbors �N. The fits were obtained
by the cross-entropy approach (“initial configuration”) described in Section 2.4.1,
the gradient descent-based approach described in Section 2.3, and the “direct
approach” described in Section 2.4.2.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.516 0.324 0.005 0.064 6.289
Laguerre 0.802 0.562 0.036 0.114 3.290
Multiplicatively weighted Laguerre 0.987 0.948 0.058 0.587 0.634
Diagonal GBPD 0.988 0.952 0.056 0.644 0.529
GBPD 0.979 0.909 0.055 0.579 0.624
GBPD (direct approach) 0.824 0.551 0.004 0.271 1.392

FIGURE 4 | Schematic overview of the generation of perturbed simulated grain labels and validation of their fits. Orthogonal 2D slices through 3D datasets
are shown.
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FIGURE 5 | Two-dimensional example of (A) a 3 × 3-pixel grain label image Isim with three grain labels (green, red and blue) and (B) its “subvoxel”
boundary image Ib. Two pixels of the boundary image (one at location (3, 1) and another at (1, 4)) are superimposed on their corresponding locations in the
grain label image (dotted squares). Effectively, the set N b(·) contains all grain labels covered by these shifted pixels. The cardinality of the set N b((1, 4)) is
therefore 2, whereas #N b((3,1)) � 3. If the indices specifying the location of a pixel in the boundary image are all even, this pixel lies entirely within the
bounds of a single pixel in the grain label image; consequently, the cardinality ofN b(·) is always 1, and the pixel in Ib will always be assigned the value of zero
(shaded black in the boundary image).

FIGURE 6 | Two-dimensional slices through the simulated image data Isim following perturbation of the latter with Ipert, shown in (A–F) for different values of the
perturbation spread σ ≥ 0.
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take non-zero values. Since there were no background voxels in
Ipert, we set XF � Wpert.

Several different values of the perturbation spread σ are
considered in the present paper. In Figures 6, 2D slices

through the resulting perturbed simulated image data are
shown. For each of these datasets the same fittings as in
the previous section were performed. As the perturbations
are assumed to have originated from measurement errors,

FIGURE7 | Fraction of correctly assigned voxels plotted against the perturbation spread σ, evaluated for all voxels in the image dataset and for the boundary voxels.

FIGURE 8 | Two-dimensional slices through (A) the smooth simulated image Isim and (B)–(F) tessellations fitted to the perturbed simulated image data Ipert with σ �
1. The fits in (B)–(E) were obtained by the gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in
Section 2.4.2.
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the fits were compared to the smooth image data instead
of evaluating the goodness of fit with respect to the
perturbed image data (cf. Figure 4). The dependence of
the quality of fit on the perturbation spread σ is visualized in
Figure 7. For σ � 1, a visual comparison of the fitted
tessellations to the smooth simulated image data is shown
in Figure 8, whereas in Table 2 numerical fitting results
are given.

3.3 Experimental Data
In this section, the fitting method described in Section 2.3 is
tested with realistic grain boundaries. For this purpose,
experimental image data obtained from a 3DXRD mapping of
an AlCu sample (Section 2.1) was used. As with the simulated
data of Section 3.2, we first consider image data with smooth
grain boundaries before tackling a dataset with rougher
boundaries (Figure 1). The goal is to assess the robustness of
the fitting procedure with respect to real-world grain boundary
perturbations—originating, e.g., from measurement
uncertainties—and also to determine whether the custom of
preprocessing raw experimental image data to obtain smoother

TABLE 2 | Values of performance measures for various tessellation models fitted
to the perturbed simulated image Ipert with σ � 1 and evaluated with respect to
the smooth simulated image Isim.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.505 0.318 0.006 0.062 6.222
Laguerre 0.796 0.546 0.036 0.130 3.236
Multiplicatively weighted Laguerre 0.941 0.761 0.083 0.376 1.118
Diagonal GBPD 0.940 0.757 0.063 0.427 0.980
GBPD 0.951 0.792 0.050 0.486 0.781
GBPD (direct approach) 0.822 0.549 0.002 0.286 1.349

TABLE 3 | Values of performance measures for various tessellation models fitted
to the smoothed experimental image data.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.595 0.373 0.000 0.089 3.219
Laguerre 0.845 0.566 0.021 0.293 1.266
Multiplicatively weighted Laguerre 0.936 0.688 0.050 0.446 0.993
Diagonal GBPD 0.955 0.758 0.031 0.543 0.779
GBPD 0.970 0.831 0.047 0.624 0.679
GBPD (direct approach) 0.903 0.619 0.000 0.324 1.163

FIGURE 9 | Two-dimensional slices through (A) the raw experimental ground truth image data and (B)–(F) the corresponding fitted tessellations. The fits in (B)–E)
were obtained by the gradient descent-based method described in Section 2.3, whereas (F) followed from the direct approach described in Section 2.4.2. Note that
the 2D slice shown in (A) differs from that shown in Figure 1A.
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(and, thus, physically more sensible) grain boundaries prior to
fitting is actually necessary.

3.3.1 Smoothed Grain Boundaries
The image IE,smooth gained from an AlCu sample exhibits
smooth grain boundaries after being preprocessed with
a phase field algorithm (Section 2.1). Tessellation fitting
was performed with respect to all foreground voxels
XF � {x ∈ WE,smooth: IE,smooth(x)> 0}. The numerical results of
the fitting are presented in Table 3. Because 2D slices through
these fitted tessellations were found to be qualitatively similar to
those shown in Figure 9—which were obtained from fits to the
raw experimental map—we omit the images of tessellations fitted
to the smoothed experimental data.

3.3.2 Raw Grain Boundaries
The raw experimental image data, described by the mapping
IE,raw (see Section 2.1), was not subjected to the phase field
smoothing step following tomographic reconstruction of the
3DXRD measurement. For this reason, artifacts attributable to
measurement uncertainties are visible at and near the grain
boundaries (cf. Figure 1A). In contrast to the fitting of
tessellations to the perturbed simulated image data of Section
3.2.2, in the present case we evaluate the quality of fit with respect
to the same data that was used as the input dataset (i.e., the raw
experimental map). One might consider treating IE,smooth as a
good approximation of the true, unobserved grain boundaries;
however, since some grains were removed by the smoothing step,
the number of grains in the ‘reference’ dataset would differ from
the number of cells in the fitted tessellations. As a result, the
performance measures of Section 3.1 would no longer be
applicable. A visual comparison of the fits to the raw
experimental image data is shown in Figure 9, and the
numerical results are presented in Table 4. Here, all
foreground voxels XF � {x ∈ WE,smooth: IE,smooth(x)> 0} were
considered during the fitting.

4 DISCUSSION

4.1 Fitting Results
As seen in Section 3.2.1, the fitted multiplicatively weighted
Laguerre tessellation, the diagonal GBPD and the GBPDmatched
the smooth simulated image data very well, and a near perfect
voxelwise accuracy was obtained. Between these tessellation
models, there were only minor differences in the goodness of

fit. Most notably, the GBPD was slightly worse at reconstructing
the boundary voxels (see Table 1). Nevertheless, no significant
decline in goodness of fit was observed even for the tessellation
models that employ more parameters than necessary to describe
the ground truth image data (which was generated from a
multiplicatively weighted Laguerre tessellation). Furthermore,
except for the number of empty cells, the gradient descent-
based fitting procedure described in Section 2.3 achieved a
notably better fit than the good results obtained by the direct
approach of Teferra and Rowenhorst (2018) (see Section 2.4.2).
On the other hand, in light of the results given in Table 1 for the
initial Laguerre tessellation and the improved generators that
resulted from the fitting procedure of Section 2.3, it is clear that
the Laguerre tessellations with their flat boundaries (see
Figure 3B) lacked sufficient flexibility for an accurate
reconstruction of the ground truth data. However, the gradient
descent-based fitting procedure still managed to bring about a
significant improvement compared to the initial generators from
the cross-entropy approach. This can likely be traced to the fact
that the gradient descent-based approach considers a volume-
based objective function (see Section 2.3) rather than an
interface-based one (see Section 2.4.1). In general, we cannot
expect to solve such a high-dimensional optimization problem by
finding its global optimum; this would be equivalent to finding a
perfect reconstruction of the multiplicatively weighted Laguerre
tessellation that underlays the ground truth image data.
Nevertheless, the fitted tessellations were quite close to the
optimum, despite having been obtained by a local
optimization method.

When it comes to the perturbed simulated image data
investigated in Section 3.2.2, it is somewhat surprising how
well the voxels of the smooth simulated image data could be
reconstructed even from very noisy input image data (see
Figure 7). As the same effect is observed for all three fitting
methods considered in the present paper—i.e., the cross-entropy
approach (Section 2.4.1), the direct approach (Section 2.4.2),
and the gradient descent-based method (Section 2.3)—we
attribute this robustness against perturbations to the inherent
smoothing property of tessellations. Another observation that
might surprise is the finding that the results for the direct
approach were practically independent of the perturbation
spread σ, but, just as in the case of the smooth simulated
dataset, the gradient descent-based fitting procedure of Section
2.3 was able to surpass the direct method. The proposed method
also achieved a better accuracy of the boundary voxels. In the
latter case, however, some degradation could be observed with
increasing σ. Some part of this degradation can be explained by
the fact that a procedure producing more accurate
approximations of the grain boundaries in the first place is
going to be more sensitive to noise in the grain boundaries.
Naturally, the deterioration in the fit of the boundary voxels also
influences the considered grain neighborhood characteristics N0

and �N—compare Tables 1, 2. Nevertheless, the decline in
goodness of fit with σ is still well within reason, given the
high noise level of the input image data (see Figure 6). In
fact, from a visual comparison of the raw experimental image
data in Figure 1B to the perturbed simulated image data in

TABLE 4 | Values of performance measures for various tessellation models fitted
to the raw experimental image data.

Fc FB
c F0 N0

�N

Laguerre (initial configuration) 0.595 0.378 0.000 0.101 3.221
Laguerre 0.846 0.576 0.021 0.288 1.316
Multiplicatively weighted Laguerre 0.935 0.696 0.053 0.443 0.987
Diagonal GBPD 0.951 0.754 0.044 0.510 0.847
GBPD 0.966 0.820 0.045 0.622 0.652
GBPD (direct approach) 0.901 0.627 0.000 0.329 1.146
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Figure 6, it can be seen that the case with the lowest level of noise
(i.e., σ � 0) comes closest to the considered experimental data.
This indicates that the gradient descent-based fitting procedure
described in Section 2.3 is not only able to deal with the present
level of measurement artifacts but also with much noisier
scenarios.

For the experimental image data investigated in Sections
3.3.1, 3.3.2, quite high voxelwise accuracies Fc and FB

c were
observed, particularly for the more sophisticated tessellation
models, as they are better at describing non-convex grain
morphologies. Despite this fact, with respect to Fc and FB

c the
simpler Laguerre tessellation does a better job of fitting the
experimental datasets than the simulated image—compare
Tables 3, 4; Table 1. The same is true when considering the
grain neighborhood characteristicsN0 and �N. As could already be
anticipated from our analysis of the perturbed simulated image
data, there was no significant difference in goodness of fit to the
smoothed versus to the raw experimental datasets (for all
performance measures). This leads us to conclude that there is
no benefit to smoothing the grain boundaries in experimental
image data prior to tessellation fitting.

One of the main advantages of the gradient descent-based
fitting procedure described in Section 2.3 compared to other
optimization approaches lies in its runtime performance. This
comes from the reformulation of the objective function and the
resulting ability to employ efficient gradient descent optimization
algorithms. Another reason is the fact that the objective function
and its gradient can both be computed on multiple CPU cores or
even on GPUs. This opens up the possibility of reducing the (wall
clock) time for the fitting procedure by employing hardware
having a higher degree of parallelism (such as GPUs), which
would not be so readily feasible for sequential fitting procedures.
As runtime benchmarks are notorious for their dependence on a
multitude of factors (in this case, for example, on the number of
generators/grains, the number of voxels, the computer hardware,
etc.), the runtimes quoted in Table 5 for the fitting of tessellations
to the smoothed experimental image data should be taken with a
grain of salt. In this particular case, the slower fitting of the GBPD
model than the other tessellations can be attributed not only to
the increased number of parameters but, more importantly, to the
fact that a less efficient software implementation had to be used to
compute the GBPD distance function. That being said, to achieve
such a high goodness of fit for a dataset with 531 × 321 × 321
voxels and 938 grains, the runtimes are quite competitive,
especially for the other tessellation models.

4.2 Other Fitting Approaches in the
Literature
The fitting results for the direct approach of Teferra and
Rowenhorst (2018) (Section 2.4.2) were discussed in the
previous section. For all datasets, the direct approach delivered
reasonably good fits of GBPDs, but they were consistently worse
than those obtained by the gradient descent-based fitting
procedure of Section 2.3. The only exception here is the fact
that the direct method produced very few empty cells. Its main
benefit, however, is the very short runtime of only a couple of
seconds. Therefore, the direct approach is a good choice if a
tessellation must be found quickly, but if the focus lies on the
quality of fit, the gradient descent-based method developed in the
present paper may be more suitable.

In Šedivý et al. (2016), still another method for fitting
GBPDs was proposed, in which—similar to the present
paper—a volume-based objective function is optimized.
However, instead of a gradient descent method, Šedivý
et al. employed a global stochastic optimization technique,
the simulated annealing algorithm. As the name implies, this
technique is inspired by the annealing (heat treatment) of
metals. Specifically, during each iteration of the optimization,
a random modification of the previous generators is
proposed. These changes are accepted depending on
whether the objective function is improved as well as on
the current value of the ‘temperature.’ Here, the parameter
‘temperature’ governs the likelihood that a change in
generators is accepted even though it leads to a worse
value of the objective function. As the temperature is
decreased over the course of the optimization, the
probability increases that only improvements in the fit are
accepted. In Šedivý et al. (2016), this fitting procedure was
applied to both simulated and experimental image data. For
the former case, which was a realization of a random GBPD,
the quality of fit of the simulated annealing approach (Fc �
0.975, N0 � 0.604, �N � 0.57) was similar to the results
obtained in Section 3.2.1 of the present paper. However,
since the simulated datasets were drawn from two different
models (GBPD vs. multiplicatively weighted Laguerre
tessellation), direct comparison warrants caution.
Regarding the runtime of the fitting routine, it is
mentioned in Šedivý et al. (2016) that roughly 19 h were
needed to carry out 10 million optimization iterations on an
Intel Xeon E3-1240 CPU with four 3.4 GHz cores (slightly
slower than the Intel Core i7-4770K used in the present
paper). The procedure stopped after 13 million iterations,
which corresponds to a total runtime of about 24 h. When
comparing this to the 16:42 h that the same fitting took in the
present paper (see Table 5), we note that the dataset
considered by Šedivý et al. had only about a 10th the size
(1803 vs. 531 × 321 × 321 voxels) but more than twice as many
grains (1894 vs. 938 grains). A direct comparison to their
experimental dataset is omitted, as the two datasets are quite
different. In summary, the goodness of fit achieved by the
simulated annealing approach applied to simulated data was
similar to that achieved by the gradient descent-based fitting

TABLE 5 | Runtimes for the fitting of tessellation models to the smoothed
experimental image dataset. System A employed only a CPU (Intel Core i7-
4770K with four 3.50 GHz cores), whereas System B performed some of the
computations on a GPU (CPU: AMD Ryzen 5 3600 with six 3.6 GHz cores; GPU:
NVIDIA GeForce RTX 3060).

Tessellation model System A System B

Laguerre 6:07 h 1:12 h
Multiplicatively weighted Laguerre 6:27 h 1:13 h
Diagonal GBPD 8:26 h 1:19 h
GBPD 16:42 h 3:58 h
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procedure of the present paper, but the runtime reported in
Šedivý et al. (2016) was significantly longer.

5 CONCLUSION

In this paper, a novel method for fitting distance-based
tessellations, such as the Laguerre tessellation or generalized
balanced power diagrams, to 3D image data was developed.
With this approach, it is possible to obtain parametric
representations of the curved grain boundaries of real
polycrystalline materials. The method employs efficient
gradient descent optimization, with the technique proving to
be capable of reconstructing a tessellation from its discretized
image. Nearly identical fits were obtained when the procedure
was applied to smoothed versus raw experimental data. From the
observed robustness against noise in the input image data, we
conclude that there is no benefit to smoothing an experimental
image dataset prior to fitting it with a tessellation model.

The proposed method could facilitate the study of physical
phenomena like curvature-driven grain growth, in which smooth
representations of grain boundaries—such as those provided by
tessellation models—are required for accurate calculations.
Furthermore, the fitted tessellations could serve as the basis
for stochastic models of polycrystalline microstructures. These
models could potentially enable researchers to investigate
mechanical properties of material samples in silico instead of
through resource-intensive laboratory experimentation.
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Large-Scale Statistical Learning for
Mass Transport Prediction in Porous
Materials Using 90,000 Artificially
Generated Microstructures
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Volker Schmidt1

1Institute of Stochastics, Ulm University, Ulm, Germany, 2Agriculture and Food, Bioeconomy and Health, Research Institutes of
Sweden, Gothenburg, Sweden, 3Department of Mathematical Sciences, Chalmers University of Technology and University of
Gothenburg, Gothenburg, Sweden

Effective properties of functional materials crucially depend on their 3D microstructure. In
this paper, we investigate quantitative relationships between descriptors of two-phase
microstructures, consisting of solid and pores and their mass transport properties. To that
end, we generate a vast database comprising 90,000 microstructures drawn from nine
different stochastic models, and compute their effective diffusivity and permeability as well
as various microstructural descriptors. To the best of our knowledge, this is the largest and
most diverse dataset created for studying the influence of 3D microstructure on mass
transport. In particular, we establish microstructure-property relationships using analytical
prediction formulas, artificial (fully-connected) neural networks, and convolutional neural
networks. Again, to the best of our knowledge, this is the first time that these three
statistical learning approaches are quantitatively compared on the same dataset. The
diversity of the dataset increases the generality of the determined relationships, and its size
is vital for robust training of convolutional neural networks. We make the 3D
microstructures, their structural descriptors and effective properties, as well as the
code used to study the relationships between them available open access.

Keywords: diffusivity, permeability, virtual materials testing, deep learning, porous materials, mass transport,
structure-property relationship

1 INTRODUCTION

The performance of functional materials is significantly influenced by the underlying 3D structure
andmorphology (Torquato, 2002;Willot and Forest, 2018). Thus, optimizing 3Dmicrostructures for
high performance in particular applications is one of the main goals in many branches of materials
research. Typically, the amount of candidate materials structures is enormous and beyond the reach
of conventional experimental screening (Dunn et al., 2020; Saunders et al., 2021) (for example, the
number of potential pharmacologically active molecules is at least 1020 and theoretically estimated at
1060) (Hoffmann and Gastreich, 2019). To overcome this limitation, virtual materials testing is an
approach of increasing importance, where mathematical models are used for both the analysis of
artificially generated materials structures, as well as for the investigation of their effective properties.
By systematically varying the model parameters, a large number of virtual but realistic 3D
microstructures can be drawn from stochastic models just at the cost of computer simulations.
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These structures serve as geometry input for spatially-resolved
numerical simulations of effective properties. In this way,
together with the computation of various descriptors of the
3D microstructures, quantitative microstructure-property
relationships can be established.

Typically, the mathematical models of random porous
microstructures with two phases, solid and pores, are located
in the (continuous) Euclidean space. If we restrict ourselves to
discrete representations on a computational grid, say a cube of N3

lattice points, the number of theoretically possible structures is
2N

3
. Although many of those structures are not suitable to

describe real materials, still a huge number of structural
scenarios remains for which this is the case. In virtual
materials testing, 3D microstructures are typically explored by
means of parametric models that span some region of interest,
using tools from mathematical morphology and stochastic
geometry (Lantuéjoul, 2002; Chiu et al., 2013; Jeulin, 2021).
These microstructure models can be calibrated with
experimental data gained, e.g., by tomographic imaging or
simply be inspired by experimentally observed structures.
There are numerous examples for artificial generation and
virtual testing of functional materials, including applications
for lithium ion batteries (Feinauer et al., 2015; Hein et al.,
2016; Westhoff et al., 2018a; Prifling et al., 2019; Hein et al.,
2020; Allen et al., 2021; Prifling et al., 2021a; Birkholz et al., 2021;
Furat et al., 2021), solid oxide fuel cells (Abdallah et al., 2016;
Neumann et al., 2016; Moussaoui et al., 2018), amorphous silica
(Prifling et al., 2021b), gas diffusion electrodes (Neumann et al.,
2019a), open-cell foams (Westhoff et al., 2018b), organic
semiconductors (Westhoff et al., 2015), mesoporous alumina
(Wang et al., 2015), solar cells (Stenzel et al., 2011), electric
double-layer capacitors (Prill et al., 2017), platelet-filled
composites (Röding et al., 2018), fiber-based materials (Röding
et al., 2016; Townsend et al., 2021), and pharmaceutical coatings
for controlled drug release (Barman et al., 2019).

The focus of the present paper is on quantifying the influence
of 3D microstructure on mass transport properties of porous
materials and, specifically, in effective diffusivity and fluid
permeability. There are numerous microstructural descriptors
that are useful for the prediction of those properties. The most
fundamental one is porosity, followed by specific surface area
i.e., the pore-solid interface area per unit volume. However, there
are many more sophisticated structural descriptors considered in
literature, e.g., various measures of tortuosity, pore size
distributions, constrictivity, and two-point correlation
functions. Various combinations of such descriptors have been
used to establish microstructure-property relationships of varying
complexity. The most well-known relationship for permeability is
perhaps the Kozeny-Carman equation which in its basic form
only uses porosity and specific surface area to describe the
underlying 3D microstructure (Kozeny, 1927; Carman, 1937).
For effective diffusivity, there exist equally simple formulas, in
some cases involving only porosity (Masaro and Zhu, 1999). Later
on, analytical expressions of this type have been developed where
more complex structural descriptors have been taken into
account, such as constrictivity and tortuosity (Barman et al.,
2019; Neumann. et al., 2020), as well as two-point correlation

functions (Berryman, 1985; Torquato, 1991; Jiao and Torquato,
2012; Liasneuski et al., 2014; Hlushkou et al., 2015; Ma and
Torquato, 2018). Some of these formulas still are sufficiently
simple to allow a certain physical interpretation. On the other
hand, numerous attempts have been made to use high-
dimensional regression methods and machine learning in
order to obtain more accurate prediction models, where the
descriptors of 3D microstructures and mass transport
properties, as input and output variables, still have physical
underpinnings. But the relationships derived between them
are, in a sense, more data-driven and less determined by the
underlying physics, where this effect amplifies with increasing
dimension and complexity of the prediction model. For example,
in van der Linden et al. (2016), the permeability and 27 different
microstructural descriptors were computed for 536 granular
materials structures. This information was then used to
develop (log-)linear relationships and find relevant subsets of
descriptors through variable selection procedures. In Stenzel et al.
(2017), effective conductivity (mathematically equivalent to
effective diffusivity) and numerous structural descriptors
including constrictivity and tortuosity were computed for
8,119 microstructures, where conventional regression, random
forests, and artificial neural networks (ANNs) were used for
prediction. In Röding et al. (2020), permeability, tortuosity
and two-point correlation functions were computed for 30,000
structures, where log-linear regression and ANNs were used for
prediction. Although machine learning regression using ANNs is
less transparent compared to analytical prediction formulas and
hence less interpretable, the benefit of this approach is that
arbitrarily complex relationships can be represented by a feed-
forward network due to the universal approximation theorem
(Cybenko, 1989; Hornik et al., 1989). Hence, machine learning
regression can be considered a data-science approach that leads to
insight into new relationships and into which descriptors are
most useful for prediction (Umehara et al., 2019; Röding et al.,
2020). A third option is the prediction of effective properties
using convolutional neural networks (CNNs). Note that
conventional ANNs learn to perform nonlinear regression
using predefined descriptors, whereas CNNs perform their
own descriptor extraction directly from the microstructure,
expressed as nonlinear compositions of convolution filters.
These are then used as input to a conventional ANN that
performs the regression (Kawaguchi et al., 2021). CNNs have
been used for predicting both permeability (Srisutthiyakorn,
2016; Wu et al., 2018; Araya-Polo et al., 2019; Sudakov et al.,
2019; Graczyk and Matyka, 2020; Kamrava et al., 2020) and
effective diffusivity (Wu et al., 2019; Wang et al., 2020), although
in many cases with small datasets and/or only with 2D structures.
Generally, CNNs have the tendency to be even less transparent
than ANNs in terms of understanding how the prediction works.

In the present paper, we investigate an extremely broad range
of virtual two-phase microstructures which are drawn from nine
different stochastic models. For each model type, 10,000
microstructures are generated for different specifications of
model parameters leading, e.g., to varying porosities and
length scales. Hence, in total, our study comprises 90,000
microstructures. For each structure, both effective diffusivity
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and permeability are computed. Furthermore, a multitude of
structural descriptors is determined, like porosity, specific surface
area, median pore radius, radius of the characteristic bottleneck,
constrictivity, tortuosity (and its distribution), chord lengths (and
their distribution), spherical contact distribution, and two-point
correlation functions. The dimension of the largest possible
descriptor space is equal to 236. As already mentioned above,
we utilize analytical prediction formulas as well as ANNs and
CNNs to establish microstructure-property relationships. Due to
the large diversity of the dataset considered in this paper, the
determined relationships are not specific to any particular
morphology, but rather quite generally applicable. For CNNs,
in particular, large amounts of data are needed to ensure robust
training and good generalization to new data. Thus, to the best of
our knowledge, the data considered in this paper is the largest and
most diverse dataset for the study of effective diffusivity and
permeability, which has been reported so far in the literature. To
facilitate further development of microstructure-property
relationships and their predictive power, the microstructures,
their corresponding morphological and effective properties, and
the code used to study microstructure-property relationships are
available open access (Prifling et al., 2021c). Note that besides the
comprehensive database for porous materials considered in the
present paper, there are several further research activities of this
kind for other types of materials, e.g., for composite particulate
materials occurring in crushed ores (Ditscherlein et al., 2021).

The rest of this paper is organized as follows. In Section 2 the
definitions of various structural descriptors are explained as well
as their estimation from 3D image data. They are used as input
variables for establishing microstructure-property relationships.
Then, in Section 3, two descriptors of effective properties, namely
diffusivity and permeability of the pore space, are presented,
which serve as output variables. Section 4 introduces the
stochastic models used for the artificial generation of 3D
microstructures, whereas in Section 5 three different
approaches are explained which are applied to establish the
microstructure-property relationships. Finally, a discussion of
the results obtained in this paper is provided in Section 6.

2 STRUCTURAL DESCRIPTORS AND
THEIR ESTIMATION

The goal of this section is to explain the definitions of various
structural descriptors considered in this paper as well as methods
for their estimation from simulated 3D image data, where the
underlying stochastic 3D microstructure models described in
Section 4 are stationary and isotropic. This implies that the
pore space is a stationary and isotropic random set as well, which
will be denoted by Ξ in the following, i.e., its distribution is
invariant with respect to translations of and rotations around the
origin (Lantuéjoul, 2002; Chiu et al., 2013; Jeulin, 2021). Note that
all microstructures that are drawn from these stochastic models
fulfill periodic boundary conditions in x-, y- and z-directions.
This is taken into account when estimating the structural
descriptors as presented below. In addition to simple scalar
descriptors of Ξ such as volume fraction, specific surface area

or constrictivity, we also consider more complex descriptors like
the chord length distribution, the spherical contact distribution
and the distribution of geodesic tortuosity. In practice, we
represent these distributions by their quantiles, starting from
5%- up to 95%-quantiles in 5% steps.

2.1 Porosity
To begin with, we consider one of the simplest but most
important structural descriptors, namely the porosity ε ∈ [0, 1],
i.e., the volume fraction of the random pore space Ξ ⊂ R3, where
ε � E(]3(Ξ ∩ [0, 1]3)) and ]3 denotes the three-dimensional
Lebesgue measure. This characteristic can be easily
estimated from 3D image data by the point-count method
(Chiu et al., 2013). Note that this estimation method has
obviously not to be adapted further to account for periodic
boundary conditions.

2.2 Specific Surface Area
A further relevant scalar descriptor is the specific surface area of
the interface between solid and pores, denoted by S > 0. It is
defined as the expected surface area of the pore space per unit
volume. In order to estimate this characteristic from voxelized
binary images, we compute weighted sums by considering local
2 × 2 × 2 voxel configurations, where we use the weights proposed
by Schladitz et al. (2007). Periodic boundary conditions are taken
into account by a circular padding of size one in each direction
using the Matlab command “padarray” (MATLAB, 2021).

2.3 Geodesic Tortuosity
Next, we consider the geodesic tortuosity of the pore space, which
is a purely geometric quantity that significantly influences
effective properties (Stenzel et al., 2016; Barman et al., 2019;
Neumann. et al., 2020; Holzer et al., 2021). It is important to point
out that different concepts of tortuosity exist in the literature
(Clennell, 1997; Ghanbarian et al., 2013; Tjaden et al., 2018). The
general idea is to consider shortest paths from a predefined
starting plane to a target plane, which have to be completely
contained in the pore phase. This means, that we consider the
shortest path with respect to the geodesic metric of the pore space
(Lantuéjoul and Maisonneuve, 1984). Then, the distribution of
the lengths τgeo of those shortest paths, divided by the distance of
the two planes, is denoted by d(τgeo). Recall that, in this paper, the
distribution d(τgeo) is represented by 19 quantiles, starting from
5%- up to 95%-quantiles in 5% steps. Furthermore, mean
geodesic tortuosity, denoted by m(τgeo) ≥ 1, is defined as the
mean value of the random variable τgeo, whereas its standard
deviation is denoted by σ(τgeo). A more formal definition of these
quantities within the framework of random sets can be found in
Neumann et al. (2019b), whereas a slightly different definition of
geodesic tortuosity is presented in Barman et al. (2019).
Regarding the estimation of the distribution of geodesic
tortuosity from 3D image data, we compute the shortest paths
with the Dijkstra algorithm (Jungnickel, 2007), where the
transport direction is from low x-values to high x-values. Note
that the transport paths are allowed to “leave” the sampling
window in the y- and z-directions in order to account for
periodic boundary conditions.
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2.4 Constrictivity
In order to define the constrictivity of the pore space, denoted by
β ∈ [0, 1], we first describe the continuous pore size distribution
(CPSD) as well as the concept of simulated mercury intrusion
porosimetry (MIP). The continuous pore size distribution
CPSD: [0,∞)→ [0, 1] has been introduced in Münch and
Holzer (2008) and is based on a morphological opening
(Serra, 1982; Soille, 2003). More precisely, for each radius
r ≥ 0, the value CPSD(r) is given by the volume fraction of
the pore space that can be covered by a potentially overlapping
union of spheres with radius r, which have to be completely
contained in the pore space. The radius rmax is now defined as the
radius for which CPSD(rmax) equals half of the porosity,
i.e., CPSD(rmax) � CPSD(0)/2. The estimation of CPSD(r)
from image data relies on the computation of the so-called
Euclidean distance transform (Maurer et al., 2003; Soille,
2003), which allows to perform an erosion followed by a
dilation using a ball with radius r as structuring element. In
order to take periodic boundary conditions into account, the
computation of the Euclidean distance transform has to be
adapted as follows. At first, a circular padding is applied to
the binary image leading to a 3D image, which is twice as
large in each of the three directions. In a second step, the
Euclidean distance transform is computed on the enlarged
image. Afterwards, a 3D cutout with the same size as the
original image, whose centroid corresponds to the centroid of
the enlarged Euclidean distance transform, is cut out of the
enlarged Euclidean distance transform. Finally, a circular shift
is applied to this cutout using the “circshift” command in Matlab
in order to restore the original spatial arrangement of the voxels
(MATLAB, 2021).

The concept of simulated mercury intrusion porosimetry
(MIP) is similar to that of the CPSD, except that MIP depends
in general on a predefined direction. More precisely, the union of
potentially overlapping balls of radius r considered above has to
form an intrusion from the given direction, when computing the
correspondingly modified volume fraction MIP(r). This
accounts for bottlenecks in the pore space such that the values
of the function MIP: [0,∞)→ [0, 1] are always less or equal than
the corresponding values of CPSD: [0,∞)→ [0, 1],
i.e., MIP(r)≤CPSD(r) for all r ≥ 0. In order to simulate the
intrusion from low x-values to high x-values, the Hoshen-
Kopelman algorithm is used (Hoshen and Kopelman, 1976),
where it is straightforward to apply periodic boundary
conditions in y- and z-directions. Note that due to our
stationarity and isotropy assumptions, the values of MIP do
not depend on the choice of the predefined direction. However,
within the present paper, this quantity is computed in x-direction,
where the intrusion starts at low x-values. Analogously to rmax,
the radius rmin is defined as the radius for whichMIP(rmin) equals
half the porosity, i.e., MIP(rmin) � CPSD(0)/2.

The constrictivity of the pore space is now given by
β � (rmin

rmax
)2 ∈ [0, 1] (Münch and Holzer, 2008), where a

constrictivity of one occurs if there are no constrictions within
the pore space at all. The lower the constrictivity, the more the
transport within the pore space is hindered by bottlenecks. This
geometric characteristic has turned out to significantly influence

effective properties of functional materials (Holzer et al., 2013). A
formal definition of constrictivity within the framework of
random sets can be found in Neumann et al. (2019b).

2.5 Chord Length Distribution
The chord length distribution of the pore space, which is
modelled by a stationary random set Ξ ⊂ R3, is defined as
follows (Ohser and Mücklich, 2000; Ohser and Schladitz, 2009;
Chiu et al., 2013). Given a predefined direction
φ ∈ [0, π2] × [0, 2π), the chord length distribution of the
random set Ξ in direction φ is the distribution of the length L
of the so-called typical line segment (selected at random) in Ξ ∩ ℓ,
where ℓ denotes the line passing through the origin in direction φ.
The distribution of L is denoted by d(L) and, again, represented
by 19 quantiles, starting from 5%- up to 95%-quantiles in 5%
steps. Note that d(L) does not depend on the particular choice of
φ, when considering stationary and isotropic random sets. The
mean and the standard deviation of the chord length distribution
are denoted by m(L) and σ(L), respectively. In the present paper,
observing Ξ ∩ ℓ ∩W within some sampling windowW ⊂ R3, the
chord length distribution is estimated by counting subsequent
voxels belonging to the pore space along the x-axis and
computing the empirical distribution function of the lengths of
these voxel sequences. Note that periodic boundary conditions
can be simply accounted for by merging the first and the last
chord in Ξ ∩ ℓ ∩ W, provided that both chords belong to the
pore space.

2.6 Spherical Contact Distribution
Consider the (random) distance H from the typical point of
Ξc � R3\Ξ to the nearest point within Ξ. The function FH:
[0, ∞) → [0, 1] with FH(r) � P(H≤ r) for each r ≥ 0 is called
the spherical contact distribution function of Ξ. Note that the
values of FH are given by

FH(r) � 1 − P(Ξ ∩ B(o, r) � ∅)
1 − ε

for each r≥ 0,

where B(o, r) ⊂ R3 denotes the closed ball with radius r centered
at the origin (Chiu et al., 2013). The mean, standard deviation and
distribution of H are denoted by m(H), σ(H) and d(H),
respectively. These quantities can be estimated from voxelized
3D image data using the algorithm proposed by Mayer (2004),
which relies on the computation of the Euclidean distance
transform. Thus, periodic boundary conditions are taken into
account by computing the Euclidean distance transform with
respect to periodic boundary conditions as described above in
Section 2.4. As in case of the distribution of geodesic tortuosity
and the chord length distribution, the distribution d(H) is
represented by 19 quantiles.

2.7 Two-Point Correlation Function
For a stationary and isotropic random set Ξ ⊂ R3 describing the
pore space of a porous material, the two-point (pore-pore)
correlation function C: [0, ∞) → [0, 1], which is also called
covariance function (Serra, 1982; Ohser and Schladitz, 2009), is
defined as
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C(r) � P(o ∈ Ξ, x ∈ Ξ) for each r≥ 0, (1)

where x ∈ R3 is an arbitrary point with distance r to the origin
(Matheron, 1975; Torquato, 2002; Chiu et al., 2013). This
quantity can be estimated from voxelized image data by the
Fourier method described in Ohser and Schladitz (Ohser and
Schladitz, 2009), where no further step is required to account for
periodic boundary conditions. In practice, we represent the two-
point correlation function by C(0), C(1), . . ., C(167), where 167 �
⌈ ������������

3 · (0.5 · 192)2
√ ⌉ is the maximal distance of two points within

the sampling window W � [0,192]3 with respect to periodic
boundaries. Note that the pore-solid and solid-solid correlation
functions are uniquely determined by the pore-pore correlation
function.

3 EFFECTIVE TRANSPORT PROPERTIES

In this section we briefly explain two effective transport
properties, namely diffusivity and permeability of the pore
space, for which numerical simulations are carried out to
estimate these quantities from 3D image data.

3.1 Diffusivity and M-Factor
Effective tortuosity of the pore space is usually defined by

τeff � ε · D0

Deff
,

where D0 denotes the intrinsic diffusivity and Deff the effective
diffusivity of the pore phase (Cooper et al., 2016). Note thatDeff≤D0,
because the solid phase acts as obstacle hindering the diffusion
process. The characteristic Deff plays a major role in a broad
spectrum of applications including water flow (Sahimi, 2011;
Bear, 2018), battery electrodes (Newman and Thomas-Alyea,
2004; Thorat et al., 2009; Kehrwald et al., 2011; Nguyen et al.,
2020), solid oxide fuel cells (Cooper et al., 2013), biology (Jiao and
Torquato, 2012) and heat transfer (Nellis and Klein, 2009; Kaviany,
2012). This quantity is estimated from voxelized image data using
the TauFactor app for Matlab (Cooper et al., 2016). More precisely,
effective diffusivity is obtained by numerically solving Laplace’s
equation on Ξ, i.e., the following second-order differential
equation is solved:

∇2c � 0 onΞ, (2)

where c denotes the concentration of the diffusing species. Apart
from mass conservation within the pore space, one has to ensure
that the diffusing species can not intrude into the solid phase,
which is formally described the following equation at the interface:

∇c°n � 0 on zΞ, (3)

where the outward pointing unit normal is denoted by n and ◦
denotes the scalar product. Finally, the following equations are
the driving force for the flux in x-direction:

c � 0 onΞ ∩ x0 and c � 1 onΞ ∩ xmax, (4)

where x0 and xmax denote the two parallel planes described by
x � 0 and x � 192, respectively. Note that periodic boundary
conditions are applied in y- and z-direction. Further technical
details regarding the implementation of the equations above can
be found in (Cooper et al., 2016).

TheM-factor, defined asM�Deff/D0, is now given byM� ε/τeff,
where it holds thatM ∈ [0, ε] and, equivalently, τeff ≥ 1, according
to Eq. 21.14 in the book of Torquato (2002). In particular, lower
values ofM correspond to more pronounced transport limitations,
whereas a high value of M indicates nearly no hindrance of
diffusion processes.

3.2 Permeability
The lattice Boltzmann method is a numerical framework for
solving partial differential equations based on kinetic theory, and
is used to simulate fluid flow through porous microstructures
(Gebäck and Heintz, 2014; Gebäck et al., 2015). The Navier-
Stokes equations for pressure-driven flow are solved for the
steady state. No-slip, bounce-back boundary conditions are
used on the interface between the two phases and periodic
boundary conditions are applied orthogonal to the flow
direction. We use the two relaxation time collision model with
the free parameter λeo � 3

16. This ensures that the computed
permeability is independent of the relaxation time (and
thus the viscosity) (Ginzburg et al., 2008). The relaxation time
trel � − 1

λe
is kept at 1.25. The flow is driven by a constant pressure

difference across the structure in the transport direction along the
x-axis (Zou and He, 1997), and a linear gradient is used as initial
condition. The computational grid has the same resolution as the
binary structure arrays, i.e., 192

3
. After convergence to steady-

state flow, the permeability κ is extracted from Darcy’s law
(Torquato, 2002),

�u � −κΔp
μd

. (5)

Here, �u is the average velocity, Δp is the applied pressure
difference, μ is the dynamic viscosity, and d is the length of the
microstructure in the flow direction. The permeability is
independent of the fluid and the pressure difference and is
hence a property solely of the microstructure, provided that
the Reynolds number is sufficiently small (< 0.01). This also
ensures that the velocity is proportional to the pressure difference.
Note that, since we are dealing with simulated microstructure
data on the voxel grid, computed permeabilities are given in
(voxel unit)2.

4 MICROSTRUCTURE GENERATORS

In order to determine microstructure-property relationships
which are as general as possible, we generate a large set of
periodic microstructures with different types of geometries.
More precisely, from each of nine different types of spatial
stochastic models we draw 10,000 microstructures such that 1)
their porosities are (approximately) uniformly distributed in the
interval [0.3, 0.95], and 2) the values of further transport-relevant
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microstructure characteristics (like specific surface area, rmin and
rmax) are located in the same ranges. As a consequence, also the
values of effective diffusivity and permeability are located in the
same ranges for the nine different types of stochastic
microstructure models. Some of the microstructures
considered in the present paper are defined in the
(continuous) Euclidean space, whereas others are generated
directly on a computational grid. Finally, all structures are
converted into 1923 binary arrays with periodic boundary
conditions. The different types of microstructures, described
below in detail, are (I) fiber systems, (II) channel systems, (III)
spatial stochastic graphs, (IV) level sets of Gaussian random
fields, (V) level sets of spinodal decompositions, (VI) hard
ellipsoids, (VII) smoothed hard ellipsoids (VIII) soft ellipsoids,
and (IX) smoothed soft ellipsoids. Examples of microstructures
drawn from the nine different model types are shown in Figure 1.
Note that, as can be seen in Figure 2, the microstructure models
considered in the present paper are designed in such a way that
the resulting sets of artificially generated microstructures are
disperse in the sense that their microstructure descriptors cover

a wide spectrum of values. In particular, keeping the value of a
certain microstructure descriptor fixed, the values of other
characteristics can still be varied “independently” (to a
certain extent). However, on the other hand, note that due to
inherent correlations between some pairs of geometric
microstructure descriptors, the space of values that can be
covered is naturally limited. For example, porosity values
close to one typically go along with a low mean geodesic
tortuosity. To summarize, the 90,000 microstructures drawn
from the nine different stochastic models lead to an extensive
dataset representing a broad range of morphologies, which
allows us to attribute a certain generality of the
microstructure-property relationships determined in the
present paper.

4.1 Fiber Systems
The fiber systems considered in this paper are generated using
essentially the method described in Townsend et al. (2021),
with modifications to allow for periodic and isotropic
structures. Individual fibers are first represented as a set of

FIGURE 1 | Examples of the different types of microstructures, showing an artificially generated fiber system (I), channel system (II), spatial graph (III), level set of a
Gaussian random field (IV), level set of a spinodal decomposition (V), as well as systems of hard ellipsoids (VI), smoothed hard ellipsoids, (VII), soft ellipsoids (VIII), and
smoothed soft ellipsoids (IX). Note that the solid phase is always depicted in blue, whereas mass transport takes place in the transparent porous phase.
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nodes generated by a random walk. The angle between the
directions of two consecutive steps of the random walk are
drawn from a spherical von Mises distribution (Mardia and
Jupp, 1999). The parameters of the von Mises distribution are
the mean direction μdir, which is computed using the angle
between the previous two nodes, and the concentration θdir,
which specifies the global bending tendency of the fibers. The
random walks have a fixed length of 8 nodes. The step length
is drawn from a normal distribution with mean 16 voxels and
standard deviation 2 voxels. To generate the skeleton of a
fiber, we plot a smooth Bézier curve (Gallier, 2000) through
its node points. A curvature parameter ρ for the Bézier curves
controls the local bending tendency of the fibers. This
skeleton is discretized on the 1923 voxel grid and then
dilated to obtain the final cylindrical fibers with radius r,
subject to periodic boundary conditions. The concentration
parameter θdir and the curvature ρ are drawn from the
uniform distribution on the intervals (Torquato, 2002;
Furat et al., 2021) and [0.25, 0.75], respectively.

Furthermore, the fiber radius r is drawn at random from
the set of integers {2, 3, 4, 5, 6, 7, 8}. Starting from a fully
porous structure (without any fibers), new fibers are added
until the desired porosity is reached. The method is
implemented in MATLAB (2021).

4.2 Channel Systems
Systems of channels are generated using essentially the same code
as for the fiber systems considered in Section 4.1, treating the
fibers as porous channels instead. The parameters of the random
walks, the Bezier curves, and the fiber radii are sampled in the
same fashion as in Section 4.1. Starting from a fully solid
structure (without any channels), new channels are added
until the desired porosity is reached.

4.3 Spatial Stochastic Graphs
Spatial stochastic graph structures are generated using a model
that has been introduced in Gaiselmann et al. (2014), where it has
been applied to mimic the 3D microstructure of solid oxid fuel
cells. The spatial graph model is based on a homogeneous Poisson
point process X � {Xn}n∈N with parameter λ > 0 (Last and
Penrose, 2017), where λ � E#{n ∈ N: Xn ∈ [0, 1]3} is the
expected number of points per unit volume, with #A denoting
the cardinality of a set A. Note that by this frequently used point-
process model the situation of complete spatial randomness is
depicted, i.e., there is no interaction between the points Xn. For a
more formal introduction to the concept of point processes, the
reader is referred, e.g., to the monographs of Daley andVere-Jones
(2005) and Daley and Vere-Jones (2008). Next, the relative
neighborhood graph GX � (X, EX) (Toussaint, 1980) is
constructed, where the set X of vertices is given by the atoms
Xn of the underlying homogeneous Poisson process. In order to
define the edge set EX, a so-called critical region R(p1, p2) �
B(p1, ‖p1 − p2‖) ∩ B(p2, ‖p1 − p2‖) for p1, p2 ∈ R3 is
considered, where ‖p‖ denotes the Euclidean norm of p ∈ R3.
The edge set EX is now given by EX � {(Xi,Xj) ∈X ×X: #(R(Xi,Xj) ∩
X) � 2}, This means that there is an edge between two points Xi

andXj if and only if there is no further point ofXwithin the critical
region R(Xi, Xj) except for Xi and Xj themselves. Finally, each edge
e ∈ EX is dilated using a sphere as structuring element (Soille,
2003). The radius of the sphere follows a Gamma distribution with
expectation μΓ and variance σ2Γ, where each edge is dilated
independently from the other edges. In order to obtain an
approximately uniformly distributed porosity between 0.3 and
0.95, we draw the model parameters λ, μΓ and σ2Γ from the uniform
distribution on the intervals [10–5, 5 · 10–4], [1, 10] and [1, 6],
respectively. Then, after generating 25,000 samples of such
microstructures, it was possible to select 10,000 of them leading
to the desired uniform distribution of porosities on the interval
[0.3, 0.95]. The generation of 3D microstructures by the spatial
stochastic graph model described above is carried out by in-house
Java software using the Geostoch framework (Mayer et al., 2004).

4.4 Level Sets of Gaussian Random Fields
Level sets of Gaussian random fields are a well-known concept of
stochastic geometry (Lantuéjoul, 2002; Chiu et al., 2013) which,
among others, is used for modeling the 3D microstructure of

FIGURE 2 | Specific surface area (in (voxelunit)−1) (A), mean geodesic
tortuosity (B), standard deviation of geodesic tortuosity (C), characteristic
bottleneck radius rmin (in voxelunit) (D), constrictivity (E) and mean chord
length (in voxelunit) (F) as a function of porosity, where 250 structures
have been randomly selected for each of the nine different microstructure
models, depicted by nine distinct colors. Note that the roman numbers in the
legend correspond to the numbering of the nine stochastic model types
mentioned at the beginning of Section 4.
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anodes in lithium-ion batteries (Kremer et al., 2020) and
electrodes in solid oxide cells (Moussaoui et al., 2018). In the
present paper, periodic Gaussian random fields are generated
using an approach based on the fast Fourier transform (FFT)
(Lang and Potthoff, 2011). It utilizes the spectral density of the
covariance function to generate a random field with the desired
covariance structure. In particular, zero-centered white noise
(independent and normal distributed) is generated in the
spatial domain, transformed to the Fourier domain, and
multiplied by the square root of the spectral density, where
four types of spectral densities (power-law, exponential,
Gaussian, and circular top-hat) are used to generate 2,500
structures of each kind (Röding et al., 2020). After linear
rescaling and applying inverse FFT, a Gaussian random
field with mean zero and the specified covariance function
is obtained. The parameters of the different spectral densities
are chosen to ensure a suitable range of length scales. Finally,
binary microstructures are obtained as level sets of the random
fields, i.e., the desired porosities are obtained by thresholding
at appropriate quantiles of the Gaussian random field intensity
distributions. The method is implemented in MATLAB
(2021).

4.5 Level Sets of Spinodal Decompositions
Phase separation dynamics through the spinodal decomposition
mechanism are simulated by solving a system of Navier-Stokes
and Cahn-Hilliard equations (Miranville, 2019). A field of
spatially resolved concentrations, denoted by ψ(x, t) ∈ [0, 1], is
evolved in time using the lattice Boltzmannmethod (Krüger et al.,
2017). Initially, the values of ψ are uniformly distributed in the
interval [0, 1], independently for all grid points on a 963 grid. The
spatiotemporal evolution of the concentration profile is
determined by several factors such as surface tension, density
and viscosity ratio between the two phases. These three
characteristics are chosen log-uniformly distributed in their
respective ranges to yield a slightly different behaviour of the
interfacial geometry. Furthermore, the numbers of time steps,
which control the degree of coarsening of the structures, are
chosen such that a suitable range of length scales is obtained. Note
that the Lifshitz-Slyozov law states that the typical length scale in
the structure is proportional to the cubic root of the simulation
time (Lifshitz and Slyozov, 1961). After terminating the
simulations, the solutions are upscaled to 1923 voxels. Finally,
in the same way as described in Section 4.4 for Gaussian random
fields, the desired porosities are obtained by thresholding at
appropriate quantiles of the concentration intensity
distributions. The spinodal decomposition simulations are
implemented using in-house software based on the lattice
Boltzmann method (Gebäck and Heintz, 2014; Gebäck et al.,
2015).

4.6 Hard Ellipsoids
Configurations of hard (i.e., non-overlapping) ellipsoids have
been used as models for e.g., separation columns (Bertei et al.,
2014) and are simulated using a hard-particle Markov Chain
Monte Carlo (MCMC) algorithm (Brooks et al., 2011).
Initially, the ellipsoids are placed at random locations and

with random orientations. Then, the configurations are
relaxed by performing random translations and rotations of
all particles until no pairs of particles overlap. If the desired
porosity is larger than 0.5, non-overlapping configurations
can be generated easily at constant porosity as described
above. Otherwise, as a preliminary procedure, the steps
described above are performed for a porosity of 0.5 and
then the resulting configuration is compressed in small
steps, until the target porosity is reached. The magnitudes
of proposed translations and rotations are adaptively selected
such that the acceptance probability is held at 0.25. The
number of ellipsoids is between 8 and 512, yielding a wide
range of length scales. In addition, the ellipsoids are given by
vectors of semi-axes (1, 1, α) where the random variable α is
uniformly distributed in the interval [0.25, 1] (oblate) with
probability 0.5 and, otherwise, uniformly distributed in [1, 4]
(prolate). The microstructures drawn from this model are
generated using in-house developed software (Röding, 2017;
Röding, 2018) implemented in Julia (Bezanson et al., 2017).

4.7 Smoothed Hard Ellipsoids
Configurations of smoothed hard ellipsoids are generated in the
same manner as the hard ellipsoid systems described in Section
4.6, with the only difference that the final discretized structure is
smoothed with a Gaussian filter, the standard deviation of which is
randomly sampled in the range of [2, 16] voxels (Gonzalez and
Woods, 2008; Russ, 2007). This yields structures with a semi-
continuous solid phase in contrast to the systems of hard ellipsoids
described in Section 4.6, which consist of discrete particles. Note
that similar structures have been used in Prill et al. (2017) as a
model for porous electrodes, where spheres instead of random
ellipsoids are considered.

4.8 Soft Ellipsoids
Configurations of soft (i.e., overlapping) ellipsoids are created
in a similar fashion as the systems of hard ellipsoids considered
in Section 4.6, but without implementing a specific overlap
criterion. Instead, ellipsoids with random locations and
orientations are sequentially added until the desired
porosity has been obtained. The ellipsoid sizes relative to
the simulation window are selected at random to yield an
appropriate range of length scales. As in the case of hard
ellipsoid systems considered in Section 4.6, soft ellipsoids are
given by vectors of semi-axes (1, 1, α), where α is uniformly
distributed in [0.25, 1] (oblate) with probability 0.5 and,
otherwise, uniformly distributed in [1, 4] (prolate). The
method is implemented in Bezanson et al. (2017).

4.9 Smoothed Soft Ellipsoids
Configurations of smoothed soft ellipsoids are generated in the
same manner as the systems of soft ellipsoids considered in
Section 4.8, with the only difference that the final discretized
structure is smoothed with a Gaussian filter, the standard
deviation of which is randomly sampled in the range of
[2, 16] voxels (Russ, 2007; Gonzalez and Woods, 2008).
This yields structures with a smoother, more continuous
solid phase.

Frontiers in Materials | www.frontiersin.org December 2021 | Volume 8 | Article 7865028

Prifling et al. Mircostructure-Property Relationships for Mass Transport

27

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


5 MICROSTRUCTURE-PROPERTY
RELATIONSHIPS

For the 90,000 samples of 3D microstructures generated by the
stochastic models described in Section 4, the structural
descriptors explained in Section 2 as well as the effective
transport properties stated in Section 3 are computed. This
data is then used to establish microstructure-property
relationships by means of three different approaches, namely
analytical prediction formulas, (artificial) fully-connected neural
networks (ANNs) and convolutional neural networks (CNNs).
For this, the data is randomly shuffled and split into three subsets
of training, validation, and test data, respectively. This is done in a
stratified manner such that an equal number of microstructures
of each type is included in each of the three datasets. The split,
which is the same for each of the three types of prediction models,
is 70% training data (7,000 per type of microstructure and 63,000
in total) and 15% each for the validation and test data (1,500 per
type of microstructure and 13,500 in total).

Several error measures are considered to assess predictive
performance. For fitting the prediction models, the mean
squared error (MSE) loss is used, where

MSE � 1
k
∑k
j�1

(ŷj − yj)2. (6)

Here y1, . . . , yk is the ground truth data of a given output
variable and ŷ1, . . . , ŷk are the corresponding estimates predicted
by the model. Depending on context, the MSE loss is used either
on the output variables themselves or on transformed outputs.
Further details can be found below in Sections 5.1–5.3 for the
three types of microstructure-property relationships considered
in this paper. Note that the MSE loss is an appropriate loss
function for optimization because it is differentiable. In contrast,
for final assessment, the mean absolute percentage error (MAPE)
loss is used, where

MAPE � 100
k

∑k
j�1

ŷj − yj

yj

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣. (7)

However, because the MAPE loss is not everywhere
differentiable, it is less well-behaved as an optimization target,
but on the other hand it is more interpretable.

In addition, we consider the coefficient of determination
R2 ∈ [0, 1], which is given by

R2 � 1 −
∑k
j�1
(yj − ŷj)2

∑k
j�1
(yj − �y)2

, (8)

where �y denotes the empirical mean of the ground truth data
y1, . . . , yk. Since the values for permeability cover several orders of
magnitude, the value of R2 would be dominated by those terms
that involve large values. For this reason, we also consider the
coefficient of determination on the log scale, denoted by
R2
log ∈ [0, 1]. In particular, it holds

R2
log � 1 −

∑k
j�1
(log(yj) − log(ŷj))2

∑k
j�1
(log(yj) − �ylog)2

, (9)

where �ylog is defined as the empirical mean of the sample log(y1),
. . ., log(yk).

Before the derivation of microstructure-property relationships
is discussed, we first quantify the “amount of information” that is
contained in the different structural descriptors with regard to
permeability, effective tortuosity and theM-factor. For this purpose,
we make use of the measure of general functional dependence,
which has been introduced in (Xu et al., 2017). In contrast to
several widely used quantities such as Pearson’s ρ, Kendall’s τ or
Spearman’s ρ, this characteristic, denoted by 0 ≤ δ(x, y) ≤ 1, relies
neither on a linear nor on a monotone relationship between the
quantities x and y. Thus, it can be used to quantify the importance
of a single (scalar) structural descriptor x on an effective property y,
where higher values correspond to a higher “amount of
information”. The upper limit of 1 is reached if and only if x is
a function of y or vice versa since in general it holds δ(x, y) � δ(y, x).
The corresponding results are shown in Table 1. Note that the
values for the effective tortuosity are always larger than for the
M-factor, which is probably caused by the fact that τeff already
contains the porosity ε. However, it is worth mentioning that a low
value of the functional dependence measure does not automatically
imply that this quantity should not be considered for predicting a
certain effective property. This is due to the fact that δ(x, y) only
contains some information on the predictive power of xwith regard
to y, but not regarding the usefulness of x in combination with other
structural descriptors. This also explains the fact that the
normalized quantity M turned out to be predicted with higher
accuracy than τeff, and therefore we stick to M for the rest of this
work. It is also interesting to point out that m(L) and σ(L) seem to
be closely related to permeability and effective tortuosity,
considering that the chord length distribution is rarely used in
the literature for establishingmicrostructure-property relationships.

5.1 Analytical Prediction Formulas
In this section, microstructure-property relationships are derived
by analytical prediction formulas, whose parameters are fitted by
least-squares regression (Sen and Srivastava, 2012). More
precisely, we use the trust-region-reflective algorithm
(Coleman and Li, 1994; Coleman and Li, 1996) for
unconstrained least-squares problems and the interior point
algorithm (Byrd et al., 2000; Waltz et al., 2006) for
constrained ones. Since there are no hyperparameters in case
of analytical prediction formulas, we merge the training set with
the validation set for computing the fitting parameters and use the
test set for assessing performance. Altogether, we state nine
analytical prediction formulas and their fitting parameters.
Afterwards, a comparison of these formulas is carried out,
including an interpretation of the results.

To begin with, we consider several relationships between
geometric microstructure descriptors given in Section 2 and
the M-factor stated in Section 3. Recall that according to
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Equation 21.14 in the book of S. Torquato (Torquato, 2002), it
holds thatM ∈ [0, 1], which is also ensured for the predictions M̂
ofM presented below. At first, we consider a type of a parametric
formula, which has been originally proposed in Stenzel et al.,
2016) and later reconsidered in Eq. 4 of Neumann. et al. (2020).
More precisely, the M-factor is predicted by

M̂ � εc1βc2m(τgeo)c3 . (10)

To ensure that M̂ ∈ [0, 1], we use the constraints c1 ≥ 1 and
c2 ≥ 0, which leads to the following results: c1� 1, c2� 0 and c3� −8.45.
More precisely, the best fit in a least-squares sense does not
contain the constrictivity β, whereas the exponent of the porosity
equals the lower limit of one. Note that Formula (Eq. 10) for
predicting the M-factor has been modified in Neumann. et al.
(2020) to ensure that M̂ ∈ [0, 1] holds also for the dilute limit by
using the constrictivity β within the exponent of porosity. More
precisely, in Neumann. et al. (2020) the following parametric
prediction formula is proposed:

M̂ � εc1+c2βm(τgeo)c3 , (11)

where the additional constraint c1 + c2 ≥ 0 is used to ensure
that M̂ ∈ [0, 1]. This leads to c1 � 1.25, c2 � − 1.25 and c3 � − 7.82.
Finally, we consider a formula for predicting the M-factor by
porosity as well as the mean and standard deviation of geodesic
tortuosity of the pore space, see Barman et al. (2019):

M̂ � c1m(τgeo)c2σ(τgeo)c3εc4 , (12)

where least-squares fitting gives that c1 � 1.18, c2 � − 9.17, c3 � 0.03
and c4 � 1.02.

Having discussed parametric formulas for predicting the
M-factor, we now predict the permeability κ using geometric
microstructure descriptors given in Section 2. Since the values of
κ can cover several orders of magnitude, the fitting of parameters
is carried out on the log scale. First, we consider the prediction
formula

κ̂ � c1ε
c2βc3S−2m(τgeo)c4 , (13)

which has been introduced in Neumann. et al. (2020). By least-
squares regression, we obtain that c1 � 0.16, c2 � 2.05, c3 � 0.64
and c4 � − 7.31. Moreover, we consider still another type of a
parametric prediction formula for κ, proposed in Neumann. et al.
(2020). Namely,

κ̂ � c1(c2rmin + c3rmax)2εc4m(τgeo)c5 , (14)

where least-squares fitting gives that c1 � 0.24, c2 � 0.92, c3 � 0.08,
c4 � 1.6 and c5 � − 6.82. Note that for fitting the parameters in
Eq. 14we use the additional constraint c2, c3 ∈ [0, 1] with c2 + c3 �
1. Thus, we use a convex combination of rmin and rmax, which is
subsequently squared to ensure the right unit of permeability.
Last not least, a further parametric prediction formula for κ,
which has been discussed in the literature, is given by

κ̂ � c1ε
c2S−2m(τgeo)c3 , (15)

see Röding et al. (2020), where least-squares regression leads to
c1 � 0.14, c2 � 2.07 and c3 � − 8.57.

In addition to the results mentioned above, we consider the
following prediction formula for κ:

κ̂ � c1ε
c2+c3βS−2m(τgeo)c4 , (16)

which uses the constrictivity β within the exponent of the
porosity ε, similar to Eq. 11, where the fitting parameters are
given by c1 � 0.14, c2 � 3.07, c3 � − 1.38 and c4 � − 7.37.
Furthermore, we predict κ by the porosity ε, the mean geodesic
tortuosity m(τgeo) and the median rmin via

κ̂ � c1ε
c2m(τgeo)c3r2min, (17)

where least-squares fitting on the log scale gives that c1 � 0.25,
c2 � 1.6 and c3 � − 6.6. Finally, we consider a prediction
formula for κ which involves the mean chord length m(L) of
the pore space:

κ̂ � c1m(L)c2εc3+c4βrc5minm(τgeo)c6 , (18)

where we use the constraint c2 + c5 � 2 in order to obtain the right
unit (voxels2), and the fitting parameters are given by c1 � 0.1, c2 �
0.63, c3 � 1.38, c4 � − 0.2, c5 � 1.37 and c6 � − 6.74.

Regarding the prediction of effective diffusivity, the data
visualized in the top row Figure 3 lead to the following results.
It is interesting to observe that the problem of Eq. 10
described in Neumann. et al. (2020), namely not fulfilling
that M̂ ≈ 1 in the dilute limit (ε → 1), does not occur, see
Figure 3A, since fitting the coefficients leads to c2 � 0, i.e., the
constrictivity β is not used for predicting effective diffusivity.
Furthermore, note that the performance of Eq. 10 is similar to
the performance of Eqs. 11, 12 even though the latter one does
not involve constrictivity, see Figures 3A–C.

In contrast to the prediction of effective diffusivity, the
performance of the analytical prediction formulas for
permeability significantly varies case by case, see Figures
3D–I. In particular, Eq. 15 leads to the lowest predictive
power in terms of MAPE, where the low value of the
coefficient of determination R2 is attributed to an
overestimation of permeability in the regime of large
permeability values, see Table 2. This also holds with regard
to Eqs. 13, 16, which both lead to a similar MAPE of
approximately 18%. On the other hand, a remarkable
improvement can be observed by disregarding constrictivity
and including instead rmin, as in Eq. 17, or a convex

TABLE 1 | Functional dependence measure δ(x, y) between a scalar structural
descriptor x and an effective property y.

x/y κ τeff M

ε 0.674 0.927 0.916
S 0.726 0.833 0.467
β 0.631 0.864 0.638
rmin 0.685 0.856 0.242
rmax 0.798 0.847 0.565
m(τgeo) 0.474 0.964 0.851
σ(τgeo) 0.632 0.866 0.742
m(L) 0.900 0.872 0.614
σ(L) 0.902 0.883 0.677
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combination of rmin and rmax, as in Eq. 14, where both prediction
formulas lead to a MAPE of approximately 15%. However, it is
worth mentioning that Eq. 17 only uses three adjustable
parameters and three geometric descriptors of the underlying
3D microstructure. In addition, the small value c3 � 0.08 of the
parameter corresponding to rmax in Eq. 14 highlights the
importance of the direction-dependent characteristic rmin,
which in contrast to rmax also contains information about
bottleneck effects. The best performance with regard to MAPE
is obtained when additionally using the mean chord length as in
Eq. 18, where one has to note that this prediction formula also
contains the highest number of parameters as well as
microstructure descriptors. However, it is interesting to note
that such a simple quantity as the mean chord length turns
out to be beneficial in terms of further improving the predictive
power see Table 2.

5.2 Artificial Neural Networks
In addition to the analytical prediction formulas Eqs. 10–18
presented above, we investigate artificial neural networks (ANNs)
for the prediction of mass transport properties. Note that a

conventional, fully-connected ANN is a composition of linear
and nonlinear operations. The building blocks are fully-
connected (also called dense) layers, each of which consists of
a certain number of nodes. The input to each node is a weighted
sum of the outputs from the nodes in the previous layer, to which
a nonlinear so-called activation function f: R→R is applied. As

FIGURE 3 | Prediction of effective transport properties using analytical formulas. Top row (from left to right): Prediction of M-factor via Eqs. 10–12. Middle row
(from left to right): Prediction of permeability via Eqs. 13–15. Bottom row (from left to right): Prediction of permeability via Eqs. 16–18. Note that the scatter plots
show results based on the test data.

TABLE 2 | Error measures computed on the test set, corresponding to the
analytical prediction formulas Eqs. 10–18 for M-factor and permeability,
respectively. Note that in case of predicting permeability, the quantity R2

log denotes
the coefficient of determination on the log scale.

Equation R2 MAPE R2
log

(10) 0.993 5.76 -
(11) 0.994 5.44 -
(12) 0.994 5.15 -
(13) 0.218 18.94 0.985
(14) 0.920 14.84 0.990
(15) 0.219 21.33 0.982
(16) 0.331 18.34 0.986
(17) 0.915 14.81 0.990
(18) 0.820 11.63 0.992
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a whole, the network describes a nonlinear mapping from some
input to some output that can be arbitrarily complex. During
training of an ANN, the parameters (weights of the sums) are
optimized with respect to a loss function that penalizes deviations
from the target output (Schmidhuber, 2015).

The first layer is, in a sense, the input layer, the dimension of
which depends on the set of microstructural descriptors used. The
first layer is followed by a certain number of fully-connected
layers, so-called hidden layers, which are described below in more
detail. The final layer is the output layer, which in our case of a
scalar output consists of a single node only. For the hidden layers,
the exponential linear unit (Elu) activation function is used
(Clevert et al., 2016), which is given by

f(x) � x, if x> 0,
c ex − 1( ), if x≤ 0,{ (19)

where we put c � 1.
We investigate 12 different sets of geometric microstructure

descriptors, re-using all sets of descriptors considered in the
analytical prediction formulas Eqs. 10–18 and also adding
new ones involving more complex descriptors like
distributions/quantiles of e.g., geodesic tortuosity, chord length
distributions, spherical contact distribution and the two-point
correlation function. The descriptor sets are summarized in
Table 3. The inputs, i.e. the microstructure descriptors, are
linearly rescaled such that in each case, the input data
provided by the training set has zero mean and unit variance,
which often improves convergence during training (LeCun et al.,
2012). Furthermore, the outputs are transformed in the following
fashion. The values ofM ∈ (0, 1) and κ ∈ (0,∞) cover some orders
of magnitude. To simplify training, the logit-transformed
M-factor y � log(M/(1 − M)) and the log-transformed
permeability y � log(κ) are used as the target outputs. This
yields the benefit that the inverse-transformed predictions
belong to (0, 1) and (0, ∞), respectively.

The networks are implemented in Tensorflow 2.4.1 (Abadi et al.,
2015) and optimized with respect to MSE loss (on the logit and log
scales). Glorot/Xavier uniform initialization is used for all weights

(Glorot et al., 2010), as well as stochastic gradient descent (SGD)
with momentum (Qian, 1999; Bottou, 2010) for optimization. A
random search hyperparameter optimization (Bergstra and Bengio,
2012) is performed to quantify the importance of the number of
hidden layers, the number of nodes per layer, the batch size (in each
update in the SGD), the momentum and the learning rate of the
SGD. It turns out that 4 hidden layers, each with 64 nodes, is a
reasonable choice, where the number of weights varies from 12,801
to 27,713 depending on the dimension of the descriptor input. The
network architecture is illustrated in Figure 4. Furthermore, a batch
size of 128 and a momentum of 0.9 is chosen, but those particular
values turned out to be not critical with regard to the performance.
Also, we consider different kinds of regularization such as weight
decay, i.e., l2 regularization (Krogh and Hertz, 1992) and dropout
regularization (Srivastava et al., 2014), where both did not lead to any
improvement. It is also worth mentioning that batch normalization
(Ioffe and Szegedy, 2015), another common regularization method,
is not investigated here because combining it with the Elu activation
function (Clevert et al., 2016) has been found not useful. Finally, it
turned out that the learning rate (LR) has considerable impact on the
results. Therefore, we design an LR scheme with a step-wise
increasing and then step-wise decreasing learning rate. More
precisely, let LR ∈ {10–4.5, 10–4, 10–3.5, 10–3, 10–2.5} for 1,000
epochs (iterations over the whole training set) each, and then, we
choose LR ∈ {10–2, 10–2.5, 10–3, 10–3.5, 10–4} for 4,000 epochs each. In
total, the training procedure comprises 25,000 epochs. For each set of
inputs, i.e., microstructural descriptors, 100 networks are trained
using different random seeds. Note that the random seed controls
the weight initializations in the network as well as the shuffling of
data in the SGD. The model yielding the minimal validation loss
(over all epochs and all runs) for each set of microstructural
descriptors is selected. On a single NVIDIA T4 GPU, the
average execution time for each run is 3.7 h.

Scatter plots visualizing the prediction results for M-factor and
permeability are shown in Figures 5, 6, respectively.
Furthermore, error measures for the prediction of M-factor
and permeability are shown in Tables 4 and 5, respectively. It

TABLE 3 | Descriptor sets used as input for the ANNs, together with the
dimensions of the corresponding input vectors. Note that Models 8, 9 and 10
involve four scalar quanities and one distributional characteristic described by 19
quantiles, whereas the two-point correlation function in Model 1 is evaluated for
168 different radii.

Model Descriptors Dimension

1 ε, S, m(τgeo) 3
2 ε, S, m(τgeo), β 4
3 ε, m(τgeo), σ(τgeo) 3
4 ε, m(τgeo), β 3
5 ε, m(τgeo), rmin 3
6 ε, m(τgeo), rmin, rmax 4
7 ε, m(τgeo), rmin, β, m(L) 5
8 ε, S, m(τgeo), σ(τgeo), d(τgeo) 23
9 ε, S, m(L), σ(L), d(L) 23
10 ε, S, m(H), σ(H), d(H) 23
11 ε, S, C 170
12 all 236

FIGURE 4 | Illustration of the ANN architecture with 4 hidden layers,
each with 64 nodes, where only a smaller number of nodes is shown in this
figure for clarity. Furthermore, the input in this figure is 5-dimensional, but in the
present paper the input dimension varies from 3 to 236, see Table 3.
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turns out that the predictions obtained by ANNs are consistently
better than those obtained by the analytical prediction formulas
considered in Section 5.1, when the same descriptors are used as
input. In addition, adding more complex descriptors like
quantiles (of tortuosity, etc.) improves the results even further.
Unsurprisingly, the best results are obtained using all the
computed descriptors.

Note that some of the ANNmodels (Models 1–7 in Table 3)
involve exactly the same sets of descriptors as input which are
used in the analytical models for the prediction of M and/or κ.

Not surprisingly, the ANNs outperform the corresponding
analytical prediction formulas (with the same descriptor sets)
in all cases in terms of MAPE evaluated on the test set.
Furthermore, in the case of geodesic tortuosity τgeo, there
are clear improvements when adding more detailed
information on the distribution of τgeo, i.e., starting with ϵ,
m(τgeo), σ(τgeo) and then adding 19 quantiles of d(τgeo), the
MAPE is reduced from 3.84 to 3.38% for the M-factor, and
from 29.25 to 10.01% for permeability. Also, descriptor sets
involving detailed information on the distributions of chord

FIGURE 5 | Prediction of M-factor using ANNs. Top row (from left to right): Prediction ofM via Models 1–3. Second row (from left to right): Prediction ofM via
Models 4–6. Third row (from left to right): Prediction ofM via Models 7–9. Bottom row (from left to right): Prediction ofM via Models 10–12. Note that the scatter plots
show results based on the test data.
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lengths and spherical contact distances perform well. With
regard to the prediction of the M-factor, these high-
dimensional descriptors perform better than the ANN
model (no. 10 in Table 3) involving the two-point
correlation function. However, for the prediction of
permeability, the ANN model involving the two-point
correlation function performs better than the model (no. 8)
involving the distribution of tortuosity.

Note that theModels 3 and 4 which do not use neither rmin nor
the specific surface area S, perform substantially worse than all
other models with regard to permeability. Not surprisingly,

including all descriptors (Model 12) yields the best
performance for predicting both M and κ. However,
comparing models with low-dimensional (Models 1–7) and
high-dimensional (Models 8–12) descriptor sets, the best low-
dimensional descriptor (Model 7) gives very good performance.
In particular, going from 5 to 236 input dimensions reduces the
MAPE from 2.74 to 2.03% for M and from 7.47 to 6.51% with
regard to κ. Considering that this reduction in error requires a
massive reduction in interpretability of the model, it is not
obvious how to make this trade-off between model complexity
and performance.

FIGURE 6 | Prediction of permeability using ANNs. Top row (from left to right): Prediction of κ via Models 1–3. Second row (from left to right): Prediction of κ via
Models 4–6. Third row (from left to right): Prediction of κ via Models 7–9. Bottom row (from left to right): Prediction of κ via Models 10–12. Note that the scatter plots
show results based on the test data.
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5.3 Convolutional Neural Networks
In a CNN, as opposed to a conventional ANN, the main
building blocks are convolutional layers. A typical CNN
architecture comprises convolutional layers, pooling layers,
and fully-connected layers. In the convolutional layers, the
input is convolved with several convolution kernels, whose
entries are trainable parameters. The convolutions themselves
are linear operations, but a nonlinear activation function
f: R→R is applied to the result to produce the outputs,
called feature maps. In the pooling layers, the feature maps
are downsampled by computing, e.g., the mean or maximum
on small (typically non-overlapping) patches of the feature
maps from the preceding layer, reducing the resolution such
that the next convolutional layer can extract information from
another spatial scale. After the convolutional and pooling
layers, fully-connected layers are typically used to obtain a
scalar output. The first part of the CNN can be thought of as a
feature extractor that produces geometrical features which are
qualitatively similar to the ones used for the analytical
prediction formulas and ANNs considered in the previous
sections of this paper, whereas the second part corresponds
directly to the ANNs themselves.

The size of the microstructures themselves is too large to be
practically feasible from a computational point of view.
Therefore, we downsample to half the size in all directions
by averaging. The result is a 963 array for each structure with
values in {0, . . . , 8} stored as 8-bit unsigned integers. Apart
from a linear scaling factor, this preprocessing step is
equivalent to having an average pooling filter with a 2 ×
2 × 2 window as the first layer in the CNN. Preprocessing
the structures in this manner allows for a larger batch size
without running out of GPU memory. During training, the
input arrays are batch-wise converted to 32-bit floating point
precision and rescaled to [ − 1/2, 1/2] prior to the gradient
update. The outputs are transformed in the same way as for the
ANNs. The first part of the CNN consists of three
convolutional blocks, each with two convolutional layers
with Elu activations and one average pooling layer. The
convolutional layers use 3 × 3 × 3 kernels, and the number

of filters, i.e. kernels, used is 16, 32, and 64 in the respective
blocks. The average pooling layers use 2 × 2 × 2 windows. The
second part of the CNN consists of 4 fully-connected layers
with Elu activations, each with 64 nodes, i.e. the same as for the
ANNs considered in the previous section. The total number of
weights is 2,324,689. The network architecture is illustrated in
Figure 7.

The weight initialization procedure, optimizer, and
momentum are the same as for ANNs. However, the batch
size is 16 and the learning rate (LR) schedule is also different:
Let LR ∈ {10–4, 10–3.75, 10–3.5, 10–3.25} for 25 epochs each, then
LR � 10–3 for 100 epochs, and finally LR ∈ {10–3.25, 10–3.5,
10–3.75, 10–4} for 50 epochs each, in total comprising 400
epochs. In contrast to ANNs, we now introduce a data
augmentation scheme for the training data, involving
random flips, rotations, and circular shifts of the structure
array in both dimensions orthogonal to the mass transport
direction. The mass transport is invariant with respect to these
transformations such that a data augmentation scheme like this
will act as a regularizer that increases the generalization
performance of the network (Hernández-García et al., 2018).
On a single NVIDIA V100 GPU, the average execution time is
140 h. The model yielding the minimal validation loss over all
epochs is selected. Because of the large computational workload
for CNNs, we do only one run for M-factor and one for
permeability.

In addition to this ordinary CNN, we train the same
architecture with a different kind of input data. Instead of
using the structure arrays, we compute the Euclidean distance
transform in the pore space which effectively comprises a
spatial map of local pore sizes (Russ, 2007). To the best of
our knowledge, this approach of using the distance transform
as a representation of the pore space has not been used before
as inputs to a CNN, where these inputs are again rescaled to
963 arrays. The only differences compared to the ordinary
CNN are that the input data has to be stored in 32-bit floating
point precision (leading to high demands in storage space, ∼
320 GB for training, validation, and test) and that the data are

TABLE 4 | Error measures for the prediction ofM via ANNs where MSE is given for
the training, validation and test sets, and MAPE for the test set. Note that MSE
is evaluated on the logit scale and MAPE on the linear scale.

MSE MAPE (in %)

Model Training Validation Test Test

1 0.0073 0.0077 0.0075 3.55
2 0.0055 0.0064 0.0062 3.07
3 0.0081 0.0084 0.0084 3.84
4 0.0075 0.0089 0.0089 4.03
5 0.0067 0.0069 0.0076 3.59
6 0.0053 0.0061 0.0065 3.10
7 0.0043 0.0055 0.0054 2.74
8 0.0062 0.0068 0.0071 3.38
9 0.0061 0.0073 0.0078 3.25
10 0.0063 0.0080 0.0077 3.03
11 0.0077 0.0102 0.0103 3.66
12 0.0021 0.0037 0.0034 2.03

TABLE 5 | Error measures for the prediction of κ via ANNs, where MSE is given for
the training, validation and test sets, and MAPE for the test set. Note that MSE
is evaluated on the logit scale and MAPE on the linear scale.

MSE MAPE (in %)

Model Training Validation Test Test

1 0.0241 0.0296 0.0298 10.99
2 0.0176 0.0227 0.0225 9.44
3 0.1387 0.1473 0.1491 29.25
4 0.6256 0.6815 0.6830 76.63
5 0.0206 0.0236 0.0240 10.35
6 0.0164 0.0211 0.0214 9.31
7 0.0132 0.0176 0.0163 7.47
8 0.0181 0.0247 0.0236 10.01
9 0.0114 0.0174 0.0170 7.39
10 0.0180 0.0228 0.0208 8.49
11 0.0203 0.0254 0.0243 9.51
12 0.0069 0.0131 0.0140 6.51
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batch-wise rescaled by a factor 1/24 (the 95%-quantile of the
distance transform values is approximately 24).

Scatter plots visualizing the prediction results for M-factor
and permeability are shown in Figure 8. Furthermore, error
measures are shown in Table 6 for both M and κ and for both
the ordinary CNN (briefly denoted by CNN) and the
distance-transform CNN (denoted by DT-CNN). As can be
seen, all CNNs perform better than their best ANN

counterparts, the best models attaining 1.65% (M-factor)
and 3.78% (permeability) MAPE, although this is at the
expense of even less interpretability than for the highest-
dimensional descriptor used for the ANNs. Also, the
differences between the ordinary CNN and the DT-CNN
are not substantial and neither one of them is consistently
better. This is possibly because the ordinary CNN learns
similar information as that already supplied to the DT-

FIGURE 7 | Illustration of the CNN architecture. The inputs, arrays of size 963, are fed into the convolutional part of the network, consisting of three convolutional
blocks, each in turn consisting of two convolutional layers (the numbers of filters are indicated in the figure) followed by an average pooling layer. The feature maps
produced as output from the convolutional part are passed to 4 fully-connected layers with 64 nodes each.

FIGURE 8 | Prediction results using different CNNs, showing (A) prediction of M using an ordinary CNN, (B) prediction of M using a DT-CNN, (C) prediction of κ
using an ordinary CNN, and (D) prediction of κ using a DT-CNN. Note that the scatter plots show results based on the test data.

Frontiers in Materials | www.frontiersin.org December 2021 | Volume 8 | Article 78650216

Prifling et al. Mircostructure-Property Relationships for Mass Transport

35

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


CNN. Hence, we conclude that given the increased
computational workload of the distance transform, there
are at least no substantial benefits of using the DT-CNN
over the ordinary CNN.

6 CONCLUSION

We investigate microstructure-property relationships for
artificially generated porous materials, developing prediction
models for diffusivity and permeability based on the geometry
of the pore space. The basis for this is a comprehensive dataset
of 90,000 structures with size of 1923 voxels, which are
generated by 9 different stochastic 3D microstructure
models. To the best of our knowledge, this is the largest
and most diverse dataset for studying diffusivity and
permeability published so far in the literature.
Microstructural descriptors like porosity, specific surface
area, tortuosity and its distribution, constrictivity, spherical
contact distributions, chord length distribution and two-point
correlation functions are used in various combinations as
input to both analytical prediction formulas and artificial
neural networks (ANNs). Furthermore, the structure itself
as well as a distance transform in the pore space, capturing
the shortest distance to the solid phase, is used as input to
convolutional neural networks (CNNs). In terms of mean
absolute percentage error (MAPE), the best analytical
models attain 5.15% (diffusivity) and 11.63% (permeability)
error. The ANNs outperform the analytical prediction
formulas with the same inputs, which indicates that the
microstructure-property relationships are more complex
and nonlinear than can be expressed through simple
analytical models. In addition, ANNs can naturally
incorporate high-dimensional descriptors like distributions
(which haven been characterized by quantiles), and
correlation functions. The best ANN models attain a MAPE
of 2.03% (diffusivity) and 6.51% (permeability). However, one
downside of ANNs is that their results are not as interpretable
as those based on analytical prediction formulas. Furthermore,
the CNNs outperform the best-performing ANNs, where the
best CNN models attain 1.65% (diffusivity) and 3.78%
(permeability) MAPE. This comes at the price of a
significant increase in training time and use of

computational resources, and yet another decrease in
interpretability of the results. The fact that the prediction
quality of best-performing ANNs comes at least reasonably
close to that of CNNs indicates that the microstructural
descriptors considered in this paper strongly influence mass
transport and are thus suitable for predicting diffusivity and
permeability. To our knowledge, analytical prediction
formulas, ANNs, and CNNs have not been compared
quantitatively on the same dataset before, and in particular
not on such a large and diverse dataset. To facilitate further
development of microstructure-property relationships, we
make the artificially generated microstructures, their
descriptors, and the code used to study the relationships
between them available open access (Prifling et al., 2021c).
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Explainable Artificial Intelligence for
Mechanics: Physics-Explaining Neural
Networks for Constitutive Models
Arnd Koeppe1*, Franz Bamer2, Michael Selzer1,3, Britta Nestler 1,3 and Bernd Markert2

1Institute for Applied Materials - Computational Materials Science (IAM-CMS), Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, 2Institute of General Mechanics (IAM), RWTH Aachen University, Aachen, Germany, 3Institute for Digital Materials
Science (IDM), Karlsruhe University of Applied Sciences (HSKA), Karlsruhe, Germany

(Artificial) neural networks have become increasingly popular in mechanics and materials
sciences to accelerate computations with model order reduction techniques and as
universal models for a wide variety of materials. However, the major disadvantage of
neural networks remains: their numerous parameters are challenging to interpret and
explain. Thus, neural networks are often labeled as black boxes, and their results often
elude human interpretation. The new and active field of physics-informed neural networks
attempts to mitigate this disadvantage by designing deep neural networks on the basis of
mechanical knowledge. By using this a priori knowledge, deeper andmore complex neural
networks became feasible, since the mechanical assumptions can be explained. However,
the internal reasoning and explanation of neural network parameters remain mysterious.
Complementary to the physics-informed approach, we propose a first step towards a
physics-explaining approach, which interprets neural networks trained onmechanical data
a posteriori. This proof-of-concept explainable artificial intelligence approach aims at
elucidating the black box of neural networks and their high-dimensional
representations. Therein, the principal component analysis decorrelates the distributed
representations in cell states of RNNs and allows the comparison to known and
fundamental functions. The novel approach is supported by a systematic
hyperparameter search strategy that identifies the best neural network architectures
and training parameters. The findings of three case studies on fundamental constitutive
models (hyperelasticity, elastoplasticity, and viscoelasticity) imply that the proposed
strategy can help identify numerical and analytical closed-form solutions to characterize
new materials.

Keywords: constitutive modeling, artificial intelligence, explainable AI, recurrent neural networks, principal
component analysis

1 INTRODUCTION

Data-driven models trained with deep learning algorithms have achieved tremendous successes in
many research fields (LeCun et al., 2015). As the archetypical deep learning model, (artificial) neural
networks and their variants are powerful predictors exceptionally well-suited for spatio-temporal
data, such as mechanical tensor fields (Koeppe et al., 2020a). Each successive layer of a deep neural
network learns to extract higher-level representations of the input and creates a data-driven model by
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supervised learning. Due to the large variety of layers and cells,
neural networks are highly modular and successful for many
applications (LeCun et al., 2015).

In mechanics and materials sciences, machine learning
algorithms accelerate the development of new materials (Bock
et al., 2019), provide model order reduction techniques and
enable data-driven constitutive models. Likewise, machine and
deep learning algorithms have become an active field of research
in the related domain of tribology Argatov (2019); Argatov and
Chai (2021). As one of the first works in mechanics, Ghaboussi
et al. (1991) proposed a unified constitutive model with shallow
neural networks that learn from experimental data. Further
extensions reduced the required number of experimental
samples (Ghaboussi et al., 1998), adjusted the hidden layer
dimensionality during training (Ghaboussi and Sidarta, 1998),
and approximated the stiffness matrix (Hashash et al., 2004).
Theocaris and Panagiotopoulos (1995) used dense neural
networks to model kinematic hardening (Theocaris and
Panagiotopoulos, 1995) and identify parameters for the failure
mode of anisotropic materials (Theocaris et al., 1997). Shin and
Pande (2000) and Javadi et al. (2003, 2009); Javadi and Rezania
(2009) proposed “intelligent finite elements”, neural network
constitutive models that were applied to soils under cyclic
loading and tunneling processes. Using context neurons in
Recurrent Neural Networks (RNNs), Oeser and Freitag (2009),
Graf et al. (2012), and Freitag et al. (2013) modeled elastoplastic
and viscoelastic materials with fuzzy parameters. Bessa et al.
(2017) proposed a data-driven analysis framework for materials
with uncertain material parameters. For cantilever beams,
Sadeghi and Lotfan (2017) used neural networks for nonlinear
system identification and parameter estimation, while Koeppe
et al. (2016) used dense neural networks to predict the
displacement response. Extensions to continuum models
resulted in linear “intelligent meta element” models of a
cantilever beam (Koeppe et al., 2018a). To bridge the gap
between atomistic and continuum mechanics, Teichert et al.
(2019) trained integrable deep neural networks on atomistic
scale models and successively approximated free energy
functions. Stoffel et al. (2018) used dense neural networks to
fit material data from high-velocity shock-wave tube experiments.
Heider et al. (2020) investigated the frame invariance for graph-
based neural networks predicting anisotropic elastoplastic
material behavior. Huang et al. (2020) combined the proper
orthogonal decomposition, manual history variables, and
dense neural networks for hyperelasticity and plasticity. For
materials applications, various data science methods have been
successfully applied to simulation data and synthesized
microstructures to analyze, characterize, and quantifify (e.g.,
Zhao et al. (2020); Altschuh et al. (2017)).

Despite the efforts to combine artificial intelligence and
mechanics, the main disadvantage of neural networks remains:
the learned parameters in black-box neural networks are
challenging to interpret and explain (Breiman, 2001). Their
high-level representations in deeper layers often elude human
interpretation: what the neural network understood and how the
individual parameter values can be explained remains
incomprehensible. Coupled with insufficient data and limited

computation capacities for past efforts, engineers and scientists
mistrusted neural networks in favor of simpler models, whose
fewer parameters could be easily interpreted and explained.
Occam’s razor, the well-known problem-solving principle by
William of Ockham (ca. 1,287–1,347), became an almost
dogmatic imperative: the simpler model with fewer parameters
must be chosen if two models are equally accurate. However, with
the advent of deep learning, the concept of simple models has
become ambiguous. The shared representations common in
dense neural networks require potentially infinite numbers of
parameters to model arbitrary functions (Hornik et al., 1989). To
handle the large dimensionality of mechanical spatio-temporal
data, extensive parameter sharing, utilized by recursions (Freitag
et al., 2013; Freitag et al., 2017; Koeppe et al., 2017; Koeppe et al.,
2018b; Koeppe et al., 2019) and convolutions (Koeppe et al.,
2020a; Koeppe et al., 2020b; Wu P. et al., 2020), introduces
assumptions based on prior knowledge and user-defined
parameters, i.e., hyperparameters, to reduce the number of
trainable parameters.

By deriving the prior assumptions on the deep learning
algorithm from mechanical knowledge, the recent trend in
computational mechanics, enhanced by neural networks, aims
towards physics-informed neural networks. Lagaris et al. (1998)
and Aarts and van der Veer (2001) imposed boundary and initial
conditions on dense neural networks, which were trained to solve
unconstrained partial differential equations by differentiating the
neural network graphs. In Ramuhalli et al. (2005), the authors
designed their neural network by embedding a finite element
model, which used the neural network’s hidden layer to predict
stiffness components and the output layer to predict the external
force. Baymani et al. (2010) split the Stokes problem into three
Poisson problems, approximated by three neural networks with
superimposed boundary condition terms. In Rudd et al. (2014), a
constrained backpropagation approach ensures that the
boundary conditions are satisfied at each training step. The
physics-informed neural network approach, as proposed by
Raissi et al. (2019), employed two neural networks that
contributed to the objective function. One physics-
informed neural network mimicked the balance equation,
while the second neural network approximated the potential
function and pressure field. Yang and Perdikaris (2019)
employed adversarial training to improve the performance
of physics-informed neural networks. In Kissas et al. (2020),
physics-informed neural networks model arterial blood
pressure with magnetic resonance imaging data. Using the
FEM to inspire a novel neural network architecture, Koeppe
et al. (2020a) developed a deep convolutional recurrent
neural network architecture that maps Dirichlet boundary
constraints to force response and discretized field quantities
in intelligent meta elements. Yao et al. (2020) used physics-
informed deep convolutional neural networks to predict
mechanical responses. Thus, using physics-informed
approaches, neural networks with more parameters became
feasible, whose architecture could be designed and explained
using prior mechanical knowledge. However, the internal
reasonings of the neural networks remained challenging to
understand.
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Complementary to the physics-informed approach, this work
constitutes a new proof-of-concept approach towards a search
approach radically different from the aforementioned design
approach. Inspired by the explainable Artificial Intelligence
(AI) research field (Bach et al., 2015; Arras et al., 2017; Alber
et al., 2018; Montavon et al., 2018; Montavon et al., 2019; Samek
et al., 2019), this novel approach elucidates the black box of neural
networks to provide physics-explaining neural networks that
complement the existing physics-informed neural networks. As
a result, more powerful neural networks may be employed with
confidence, since both the architectural design and the learned
parameters can be explained.

This work has the objective to efficiently and systematically
search neural network architectures for fundamental one-
dimensional constitutive models and explain the trained
neural networks. For this explanation, we propose a novel
explainable AI method that uses the principal component
analysis to interpret the cell states in RNNs. For the search,
we define a wide hyperparameter search domain, implement an
efficient search algorithm, and apply it to hyperelastic,
viscoelastic, and elastoplastic constitutive models. After the
search, the best neural network architectures are trained until
they achieve low errors, and their generalization capabilities are
tested. Finally, the developed explainable AI approach compares
the temporal behavior of RNN cell states to known solutions to
the fundamental physical problem, thereby demonstrating that
neural networks without prior physical assumptions have the
potential to inform mechanical research.

To the best of the authors’ knowledge, this work constitutes a
first proof-of-concept study proposing a dedicated explainable AI
strategy for neural networks in mechanics, as well as a novel
approach within the general field of explainable AI. Unique to
RNNs, which are popular in mechanics (Graf et al., 2010; Freitag
et al., 2011, Freitag et al., 2017; Cao et al., 2016; Koeppe et al.,
2018b, 2019; Wu L. et al., 2020), this work complements popular
strategies for classification problems that investigate kernels in
convolutional neural networks or investigate the data flow
through neural networks, such as layer-wise relevance
propagation (Bach et al., 2015; Montavon et al., 2019; Samek
et al., 2019). Moreover, our new approach complements
unsupervised approaches to find parsimonious and
interpretable models for hyperelastic material behavior
(Flaschel et al., 2021), which are one of the most recent
representatives of the principle of simplicity. Finally, the
systematic hyperparameter search strategy offers an alternative
strategy to self-designing neural networks, which have
successfully modeled anisotropic and elastoplastic constitutive
behavior (Fuchs et al., 2021; Heider et al., 2021).

In Section 2.1, we briefly review the necessary preliminaries
for RNN training as the foundation for the following sections.
Section 2.2 details the systematic hyperparameter search strategy
and explainable AI approach for data-driven constitutive models.
For fundamental constitutive models, Section 3 demonstrates the
developed approaches in three case studies. Finally, Section 4
discusses the approach and compares the results to related
publications.

2 MATERIALS AND METHODS

2.1 Preliminaries
2.1.1 Training Artificial Neural Networks
Dense feedforward neural networks are the fundamental building
block of neural networks. They represent nonlinear parametric
mappings NN from inputs x to predictions ŷ with L consecutive
layers and trainable parameters θ:

NN: x; θ1 ŷ with θ � (W 1( ), b 1( )) . . . (W L( ), b L( )){ },
(1)

For dense feedforward neural networks, the parameters θ
include the layer weights W(l) and biases b(l). Each layer l
applies a linear transformation to the layer inputs x(l), before a
nonlinear activation function f(l) returns the layer activations a(l)

a l( ) � f l( ) z l( )( ) with z l( ) � W l( )x l( ) + b l( ) ∀l � 1 . . . L. (2)

Assembling and vectorizing these consecutive layers from
x ≡ a(0) to ŷ ≡ a(L) enables fast computations on Graphics
Processing Units (GPUs) and Tensor Processing Units
(TPUs).

Using supervised learning, neural network training identifies
optimal parameters θopt, which minimize the difference between
desired outputs and neural network predictions. From a wide
variety of input-target samples (x, y), the task of predicting
physical responses ŷ ≈ y can be reformulated as a machine
learning problem, where the prediction represents the
expectation of the data probability distribution pdata (y | x):

ŷ x( ) ≈ E pdata y | x( )[ ]. (3)

Assuming a single-peak distribution, e.g., a normal distribution
pdata(y | x) ≈ N (y | x), the maximum likelihood estimation
principle (cf. Goodfellow et al. (2016)) yields a compatible loss
function L(y, ŷ) for the prediction of physical values, such as the
Mean Squared Error (MSE) averaged for batch sizeM and number
of features F, i.e., L(y, ŷ) :� (MF)−1y · ŷ. Using this loss function
to compute scalar errors ϵ, the contributions of each parameter to
the error can be backpropagated to compute gradients and train the
neural network with gradient descent. To ensure generalization to
unknown samples, the datasets used are split (usually randomly)
into training, validation, and test sets. Gradient descent with
backpropagation is only performed on the training set, while
the validation set safeguards against overfitting of the
parameters θ. The test set safeguards against overfitting of the
chosen hyperparameter values γ, which include, e.g., the
dimensionalities of each layer dim (a(l)) and the number of layers L.

Recurrent neural networks (Rumelhart et al., 1986) introduce
time-delayed recursions to feedforward neural networks
(Goodfellow et al., 2016). Thus, RNNs use parameter sharing
to reuse parameters efficiently for sequential data-driven
problems. Such sequential data xt may be sorted according to
the rate-dependent real time or a pseudo time. One
straightforward implementation of an RNN cell introduces a
single tensor-valued recursion as given by
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�xt+1 � xt+1 at[ ]T, (4)

ct+1 � f W�xt+1 + b( ) , (5)

at+1 � Woct+1 + bo. (6)

In Figure 1, the recurrent cell is depicted as a graph of two
conventional dense layers and a time-delayed recursion of
previous activation at. Subsequently embedded into a larger
sequence tensor X � [x1 . . . xT], RNNs can be trained with
backpropagation through time (Rumelhart et al., 1986).

However, simple RNNs (Eq. 4 to Eq. 6) suffer from unstable
gradients and fading memory (Hochreiter and Schmidhuber, 1997;
Greff et al., 2015), which motivated the development of RNNs with
gates. These gating layers control the data flow, thereby stabilizing the
gradients and mitigating the fading memory. The Long Short-Term
Memory (LSTM) cell (Figure 2) (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000) and the Gated Recurrent Unit (GRU) (Cho et al.,
2014) are the most common gated RNNs and demonstrated
comparable performances (Chung et al., 2014). As in Eq. 4, the
previous activation at is concatenated with the input xt+1:

�xt+1 � xt+1 at[ ]T, (7)

~xt+1 � �xt+1 or ~xt+1 � �xt+1 ct[ ]T. (8)

The gates process the adjusted input ~xt+1 using dense layers,
(W i, bi), (W f , bf ), and (Wo, bo), and apply a sigmoid activation,
which yields

g i � sig (W i~xt+1 + bi), (9)

g f � sig (W f ~xt+1 + bf), (10)

go � sig Wo~xt+1 + bo( ). (11)

Therein, gi is the input gate activation, gf the forget gate
activation, and go the output gate activation, whose coefficient
values are bounded between zero and one. Similar to Boolean
masks, these gates control the data flow in the LSTM cell by

it+1 � g i ⊙ f W�xt+1 + b( ), (12)

ct+1 � g f ⊙ ct + it+1, (13)

at+1 � go ⊙ f ct+1( ), (14)

where the element-wise product ⊙ allows the gate tensors gi, gf,
and go to control the incoming data flow into the cell ct+1, to
forget information from selected entries, and to output selected
information as at+1. Despite being the foundation for the RNN
reasoning and long-term memory, the cell states are often
regarded as black boxes.

2.1.2 A Selection of Fundamental Constitutive Models
The systematic hyperparameter search and explainable AI
approach will be demonstrated on three representative
constitutive models, briefly reviewed in the following. These
well-known models describe material effects, such as finite,
lasting, and rate-dependent deformations. Since the ground
truths for these one-dimensional models are known, the
resulting neural network architectures from the
hyperparameter search can be evaluated. Furthermore, for
history-dependent material behaviors, the explainable AI
approach can investigate the RNNs that best describe the
constitutive models.

First, a hyperelastic constitutive model challenges neural
networks to model finite strains and deal with the singular
behavior of stretches that approach zero. The one-dimensional
Neo-Hooke model (cf. Holzapfel (2000)) is regarded as one of the
most straightforward nonlinear elastic material models. Therein,
a single parameter μ describes the Cauchy stress τ as a function of
the stretch λ:

τ � μ λ2 − 1
λ( ). (15)

Thus, the Neo-Hooke model offers the highest possible
contrast to distributed neural network representations. In
Figure 3, the corresponding rheological model (Figure 3A)

FIGURE 1 | Visualization of a recurrent cell. The recurrent cell consists of
two feedforward layers (light violet squares). A time-delayed recursion (black
square) loops the activation of the first or last layer back as additional input to
the cell.

FIGURE 2 | Visualization of an LSTM cell, which consists of multiple
feedforward layers (light violet). Three gates, gi, gf, and go, control the data
flow into the cell, within the cell, and out of the cell. Two recursions (black
rectangles) ensure stable gradients across many time steps.

FIGURE 3 | One-dimensional hyperelastic rheological model (A) and
example load cycle (B).
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and a loading and unloading cycle (Figure 3B) are depicted. The
neural network approximation is challenged by stretch values
near the origin, where the stress response exhibits singular
behavior.

Second, viscoelasticity represents the archetype of fading-
memory material behavior (Truesdell and Noll, 2004), which
poses a short-term temporal regression problem to the neural
networks. Figure 4A introduces the Poynting-Thomson or
standard linear viscoelastic solid model as an example for rate-
dependent inelastic material behavior. As the elementary example
for generalized Maxwell models, which use multiple parallel
Maxwell branches to cover more decades in the frequency
range, it exhibits the same principal relaxation and creep
behavior (Markert, 2005), as depicted in Figure 4B–D.

The additive decomposition of the stress σ and the evolution
equations for each Maxwell branch i, as reviewed, e.g., in the
textbook of Holzapfel (2000), yield

3 _σi + σi
τi

� Ei _ε ∀ i � 1 . . . I , and (16)

σ � E ε +∑
i

σi . (17)

For each branch i, σi represents the stress, τi the relaxation
time, and Ei the modulus. The strain ε is shared by all Maxwell
branches and the elastic spring with modulus E. For I � 1, Eqs 16,
17 yield

σ + τ1 _σ � Eε + τ1(E + E1)_ε. (18)

Many known excitations, e.g., unit steps σ(t) � σ0 H(t) or
ε(t) � ε0H(t) yield closed-form solutions described by the relaxation
function R(t) and creep function C(t) (Simo and Hughes, 1998):

σ t( ) � ∫
t

−∞
R t − ~t( ) _ε ~t( ) d~t with (19)

R t( ) � E + E1 exp − t
τ1

( ), (20)

ε t( ) � ∫
t

−∞
C t − ~t( ) _σ ~t( ) d~t with (21)

C t( ) � 1
E + E1

+ E1

E E + E1( ) 1 − exp − tE
τ1 E + SEi( )( )( )[ ].

(22)

For the general case of incremental excitations, numerical
integration Eq. 16 with an implicit backward Euler scheme yields

σt+Δt � 1
cσ1

ce1εt+Δt − ce0εt + cσ0σt[ ]
with cσ0 � τ1

Δt , cσ1 � 1 + τ1
Δt,

cϵ0 � τ1
Δt (E + E1) , cϵ1 � E + τ1

Δt (E + E1).
(23)

Therein, σt and σt+Δt represent the stresses while εt and εt+Δt
respectively represent the strains, respectively at the current and
next increment. As a dissipative model, the dissipated energy can
be described by the area surrounded by the hystereses, which
depend on the strain rates (Figure 4B).

Finally, elastoplastic models exhibit path-dependent behavior
with lasting deformations, i.e., long-term dependency behavior,
and include potential discontinuities in the stress response, which
need to be learned by the neural network. Numerical
implementations of one-dimensional Prandtl-Reuss plasticity
(Figure 5A) can be found, e.g., in Simo and Hughes (1998) or
de Borst et al. (2012):

σ � E(ε − εP), (24)

_εP � γ sign σ − qσ( ) and _qε � γ
and _qσ � γH sign σ − qσ( ), (25)

fy(σ, qε, qσ) � |σ − qσ| − (σY + Kqε). (26)

In Eqs 24 to 26, the main history variable is the plastic
strain εP, whose evolution follows the yield step γ if a yield
criterion fy � 1 is met. In Figure 5B, the characteristic stress-strain
curve of one-dimensional Prandtl-Reuss plasticity is shown.

FIGURE 4 | One-dimensional viscoelastic material behavior. (A) Poynting-Thomson rheological model. (B) Cyclic loading hysteresis for constant strain rates _ε.
(C) Stress relaxation response to a unit-sized step ε(t) � ε0 H(t). (D) Creep retardation response to a unit-sized step σ(t) � σ0 H(t).
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2.2 Explainable Artificial Intelligence for
Mechanics
2.2.1 Data-Driven Constitutive Models for
Fundamental Material Behavior
Data-driven constitutive models and intelligent finite elements
were one of the first applications of neural networks within the
FEM (Ghaboussi et al., 1991; Ghaboussi et al., 1998; Ghaboussi
and Sidarta, 1998; Javadi et al., 2009), since they leverage the
flexibility of the FEM to the fullest. For a strain-driven problem,
data-driven constitutive models can be defined by

IC: ε1Q
σ, (27)

where ε represents the strain and σ represents the stress. The
history variables are gathered in Q, which may include both
algorithmic history variables, such as the plastic strain εP, and
recurrent neural network cell states C. As in the conventional
FEM, the unified interface of inputs, outputs, and history
variables enables a straightforward substitution of different
data-driven constitutive models. For example, data-driven
constitutive models, e.g., trained on experimental data (Stoffel
et al., 2018), can substitute analytically derived constitutive
models with trivial implementation effort. However, this
flexibility massively increases the choice of conceivable neural
network architectures and their defining hyperparameter
configurations of data-driven constitutive models. Often, these
hyperparameter configurations are chosen by the user or tuned
using brute-force search algorithms.

2.2.2 Systematic Hyperparameter Search
Systematic hyperparameter search strategies constitute elegant
and efficient solutions to finding optimal architectures and
hyperparameter configurations. Hyperparameter search
algorithms automatize the task of identifying advantageous
neural network architectures and tuning hyperparameters γ to
achieve good performance. Since neural networks are nonlinear
function approximators with numerous parameters, the error
surface is generally non-convex, high dimensional, potentially
non-smooth, and noisy (Li et al., 2017). Furthermore,
hyperparameters are interdependent, and the effects on the
model remain unclear and problem-specific (Li et al., 2017),
which often popularized brute force search algorithms, such as
grid search (Bergstra and Bengio, 2012).

Grid search is the most fundamental search algorithm that
seeks to cover the entire hyperparameter search domain. All
possible combinations of user-defined hyperparameter values are

tested one by one, with a fixed step size. The number and intervals
of tested hyperparameter configurations Γ are set arbitrarily by
the user, making the approach wasteful, inefficient, and infeasible
for large numbers of hyperparameters.

Random search algorithms (Bergstra and Bengio, 2012) yield
probabilistic approaches for larger numbers of hyperparameters.
With enough trials, random search statistically explores the entire
search space by testing a random selection of all possible
combinations with varying step sizes. Thus, high-dimensional
search spaces are explored faster, which makes random search a
widely used search algorithm for hyperparameter-intensive
neural networks (Bergstra and Bengio, 2012). Unfortunately,
the computational effort of random search remains significant.

Therefore, this work follows approaches that increase the
efficiency of the random search algorithm, leveraging the
observation that the final performances of neural networks can
be approximately assessed after a few epochs n, i.e., iterations that
include the entire training dataset. The Successive Halving
algorithm (Jamieson and Talwalkar, 2016), for example, trains
randomly chosen hyperparameter configurations Γ � {γ(1). . .γ(C)}
for n epochs. After that, the lowest-performing configurations are
discarded, while the best-performing configurations are trained
further. Thus, the approach focuses the computational resources
on promising hyperparameter configurations.

Unfortunately, the number of epochs to train before deciding on
discarding low-performing configurations constitutes another
hyperparameter, which depends on the mechanical problem.
Either Successive Halving can explore more configurations C for
fewer epochs n or investigate fewer configurationsC formore epochs
n per decision. Li et al. (2017) solved this exploration issue with the
Hyperband search algorithm (Algorithm 1). By gathering groups of
configurations in h brackets, Successive Halving can be applied for
different numbers of epochs nh per group. The first bracket s � h
maximizes exploration to testmany configurationsCwith Successive
Halving, identifying promising positions even for vast search
domains and non-convex or non-smooth loss functions. In the
last bracket s � 0, fewer configurations are tested for the full number
of epochs, similar to a conventional random search. This is
advantageous if the search domain is narrow and the objective
functions are convex and smooth. Thus, Hyperband combines
efficient exploration and investigation of promising architectures
and does not introduce additional hyperparameters to be tuned.

In this work, we combine Hyperband with aggressive early
stopping, which discards solutions that are unlikely to improve
further by monitoring moving averages of the validation errors.

FIGURE 5 | One-dimensional Prandtl-Reuss elastoplastic rheological model (A) with perfect plastic material behavior (B).
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Independent of Hyperband, this additional logic further increases the
efficiency of the search strategy for data-driven constitutive models.
Thus, this fully automatized strategy identifies optimal neural network
architectures for the given training and validation data without user
interaction. The resulting hyperparameter configurations represent a
‘natural’ choice for the given problem, which merits further
investigations into why this specific neural network was chosen.

2.2.3 The Novel Explainable Artificial Intelligence
Approach
If the problem allows, it is generally possible to identify and train an
efficient neural network to achieve accurate results and generalize
to unknown data with the systematic approach outlined above.
However, in the past, the proven approximation capabilities of
neural networks (Hornik et al., 1989) were often shunned because
the magical black-box-generated results could not be explained.
Given only finite dataset sizes, any machine learning algorithm
may learn spurious or accidental correlations. Since neural
networks naturally develop distributed high-dimensional
representations in deep layers, the ‘reasoning’ of neural
networks is notoriously difficult to verify. Thus, a trained neural
network may generalize to validation and test datasets but found
it’s decision-making on unphysical observations and biases in the
dataset. Themotivation of explainable AI is to unmask such ‘Clever
Hans’ predictors1 (Lapuschkin et al., 2019).

Many explainable neural network approaches, such as Layer-
wise Relevance Propagation (LRP) (Bach et al., 2015; Arras et al.,
2017; Montavon et al., 2018, Montavon et al., 2019), use the
neural network graph to trace the activation back to its origin. In

particular, such approaches are attractive for classification,
because they can explain individual class labels, i.e., from
single binary values to multiple inputs. For positive binary
values, the activations can be traced back straightforwardly,
explaining why the neural network chose the class associated
with the binary value. However, multivariate regression
problems are faced with a different problem: since the
outputs are continuous, the neural network ‘reasoning’ must
be interpretable over the full output ranges, including the
origin. In particular, in balance equations, zero-valued
residuals are at least as important as non-zero residuals and
follow the same physical governing equations. Thus, for
mechanical regression tasks, different explainable AI
methods are necessary, which focus on the evolution of the
high-dimensional representations.

As a new explainable AI approach using mechanical domain
knowledge, our proposed approach focuses on the temporal
evolution of mechanical quantities. Since time-variant
problems in mechanics are often modeled by training RNNs
on time-variant and path-dependent mechanical data (Freitag
et al., 2011; Cao et al., 2016; Koeppe et al., 2019; Wu L. et al.,
2020), we propose to use the Principal Component Analysis
(PCA) to investigate recurrent cell states, e.g., in LSTM and
GRU cells. Therefore, we interpret the time-variant cell states
as statistical variables and use the PCA to identify the major
variance directions in the distributed representations. With the
original evolution equations and history variables known, major
principal components can be compared with the known temporal
evolution. If the cell states resemble the mechanical evolution
equations of the algorithmic history variables, the neural network
correctly understood the fundamental mechanical problem. For
future materials, neural networks can thus be trained on new
material test data, and the material can be possibly characterized
by comparing the cell state principal components to known
fundamental evolution equations.

The PCA (Pearson, 1901) constitutes an unsupervised
learning algorithm that decorrelated data (Figure 6)
(Goodfellow et al., 2016). As a linear transformation, the
PCA identifies an orthonormal basis by maximizing the
variance in the directions of the principal components. In the
field of model order reduction and data analysis, the PCA is
often used to compute proper orthogonal decompositions,
which eliminate undesirable frequencies from mechanical
problems and reduce the model dimensionality to achieve
computational speed-up (cf. Freitag et al. (2017); Cao et al.
(2016); Bamer et al. (2017); Huber (2021); Altschuh et al.
(2017)). Used in this explainable AI approach, the PCA is
not used to accelerate computations, but to analyze and
explain neural network behavior.

To compute the PCA on a dataset with correlated features
(Figure 6A), the dataset ofM samples xm is collected in a dataset
tensor X and centered feature-wise to �X:

X � [x1 . . . xM]T, (28)
�X � X − E[X] (29)

Applied to the centered dataset tensor �X, the Singular Value
Decomposition (SVD),

ALGORITHM 1 | Hyperband search (Li et al., 2017).

1Apparently, the horse ‘Clever Hans’ (1895–1916) could count and calculate, but,
in fact, interpreted the expressions and gestures of the audience to find the correct
answers.
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SVD: �X1U ,Σ,WT, (30)

decomposes �X into the left-singular vectors U, the singular-value
diagonal matrix Σ, and the right-singular vectors W.
Conventionally, most SVD algorithms sort the singular vectors
and singular values on the basis of the magnitude of the latter,
where the highest singular value in Σ corresponds to the highest
variance (i.e., frequency) in the dataset. Feature-wise contraction
of the centered dataset �X with W yields the decoupled data
tensor �x:

�x � �XW . (31)

The reciprocal square root of the singular values
���
Σ−1√

scales
the decoupled dataset �x down to unit variance.

To use the PCA on LSTM cell states ct from Eq. 13, the data
tensor C of sequence length T is assembled:

C ≡ [c1 . . . cT]. (32)

Equations 29 to 32 yield

�C � �CW with �C � C − E[C]. (33)

The columns �Ct (t � 1 . . . T) of the decoupled state tensor �C
describe the temporal behavior of the cell in the principal axes.
The associated singular value Σf divided by the sum of all singular
values quantifies the relative importance of the corresponding
principal components, i.e., how much each principal component
explains the cell state variance. Often, most of the variance can be
explained using the first three principal components, �cI, �cII, and
�cIII, which describe the memory response of the majority of the
cell units. To investigate the ability to explain the mechanical
problem, the neural network’s major memory cell responses, �cI,
�cII, and �cIII, are compared to the algorithmic history variables q.

This comparison demonstrates that the neural network
understood temporal mechanical problems in line with the
physically observed evolution laws.

Note that the ability to generalize, i.e., to achieve a
reproducible and equally accurate result on unknown data, as
outlined in Section 2.2.2, remains independent of the ability to
model the result on correct physical assumptions, as described in

this subsection. To achieve generalizable results, systematic
hyperparameter tuning thus is the necessary prerequisite for
the explainable AI approaches.

3 RESULTS

The following three case studies demonstrate the systematic
hyperparameter search strategy and the new explainable AI
approach. First, the proposed systematic hyperparameter
search strategy will be demonstrated in the scope of a case
study for an intelligent nonlinear elastic constitutive model.
Thereafter, the latter two case studies combine the systematic
hyperparameter search strategy with explainable AI, in order to
interpret inelastic time-variant constitutive behavior.

For all data-driven constitutive models, the same data-
generation strategy provides training, validation, and test data.
For a sequence length of T � 10000 and Ω � 5 phases of loading
and unloading, we sample control values from a random normal
distribution N (μ � 0, σ � 1). Between those control values, a
variety of ramping functions, e.g., linear, quadratic, or
sinusoidal, interpolate the intermediate values to assemble
stress- or strain-controlled loading sequences. The ramping
functions are selected to cover a variety of constitutive
responses based on the investigated constitutive models.
Thereafter, the numerical implementation of each reference
constitutive model generates Mtotal � 10000 samples, which are
split randomly 70%-15%–15% into training, validation, and
test set.

Three constitutive models are selected to demonstrate
fundamental mechanical material behavior, including finite
deformations, long-term temporal behavior, and rate
dependency. To enhance interpretability, each one-
dimensional constitutive model uses dimensionless and purely
academic parameter values. Using preprocessing strategies, such
as normalization and augmenting the input with explicit model
parameters, models with arbitrary material parameter values can
be created (Koeppe et al., 2018b; 2020a). First, an incompressible
Neo-Hooke constitutive model (μ � 1

3) computes the nonlinear

FIGURE 6 | Feature decoupling using the PCA. The PCA identifies the directions with the highest variance in the original data (A) and enables the extraction of
linearly independent features (B).
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stress response to stretch-controlled loading. Due to the
hyperelastic problem, all loading and unloading phases ω �
1. . .Ω use linear ramps. The investigated time-distributed
dense neural network architectures receive the stretch λ as
input and learn to predict the Cauchy stress σ. Second, a
perfect Prandtl-Reuss elastoplasticity model (E � 1, σY � 0.6)
is subjected to strain-controlled loading. The phase interpolation
functions are sampled randomly from linear, quadratic, square-
root, exponential, sine, and half-sine ramping functions. The
investigated RNN architectures use the strain ε to return the stress
σ and plastic strain εP. Finally, a Poynting-Thomson constitutive
model, defined by E � 1.0, E1 � 0.5, and τ1 � 0.1667 is integrated in
time (T � 1) with an implicit backward Euler-scheme. The stress-
controlled phases ω � 1. . .Ω include linear ramps and constant
phases to investigate creeping behavior. The RNN architectures
process the stress σ and return the strain ε and the viscous branch
stress σ1. For all neural networks, a final time-distributed dense
layer of output size applies a linear transformation to cover the
entire range of real values.

For the neural network architecture and the hyperparameters,
the Hyperband algorithm (Li et al., 2017) systematically explores
and investigates the high-dimensional search domain. During the
training of each configuration, the Adam algorithm (Kingma and
Ba, 2014) minimizes the MSE on the training set (N � 51 epochs)
and reports the validation loss to evaluate the configuration in the
scope of Hyperband. To avoid artificially penalizing specific
weight values, neither L1 nor L2 regularization is used,
optimizing the unconstrained MSE. In the Hyperband
brackets, each step performed by the Successive Halving
algorithm eliminates the worst configurations from all
configurations by a factor of η � 3.7. In Table 1, the search
domains for the recurrent and dense neural network architectures
are described. The design variables, i.e., the layer width d(l), the
neural network depth L, the base learning rate α and the batch size
M vary during all search trials. Moreover, for dense neural
networks (hyperelastic material behavior), multiple activation
functions are investigated by the algorithm, whereas for
recurrent neural networks (viscoelastic and elastoplastic
material behavior), the cell type of the reccurent cells become
additional design variables. To limit the potentially infinite search
space, the layer widths are selected to be identifcal for all layers
and the design variables are varied in heurisically defined steps
and ranges. After the search, we train the best configuration, as
evaluated by the lowest MSE on the validation set, for the full
duration of N � 301 epochs. The resulting parameter values θopt

are used to evaluate the test set to compute the test errors.

For the last two case studies, the novel explainable neural
network approach (Section 2.2.3), employing the PCA on the cell
states, analyzes the best RNN architectures to explain the
intelligent inelastic constitutive models.

The Kadi4Mat (Brandt et al., 2021) data management
infrastructure stores, links, and describes the data generated in
this publication. Published via the direct integration of Zenodo
(Koeppe et al., 2021), the dataset includes the generated reference
constitutive model dataset, the associated metadata of the
constitutive and neural network models, and the serialized
trained neural networks for different hyperparameter
configurations at different epochs during training. The data
storage with the associated metadata and connections
enhances the systematic hyperparameter search strategy with
the option for long-term data sustainability, e.g., by reusing
previous search results and hyperparameter configurations for
future models. Furthermore, the links between the dataset and the
serialized neural network models provide a starting point for a
bottom-up data ontology for machine learning in mechanics and
material sciences. Subsequently formalized, the data ontology will
provide semantic rules that describe the relations and workflows
inherent to the research data, which will enable additional
analysis and explainable AI approaches.

3.1 Systematic Investigation of Data-Driven
Hyperelastic Constitutive Models
For the hyperelastic problem, the best-performing
hyperparameters were a batch size of M � 64 and a base
learning rate of α � 3 · 10–3. A deep feedforward neural network
with 5 hidden layers of width 112 and rectifier activation achieved
the best performance. After training (Figure 7) for 301 epochs, the
neural network achieves an MSE ϵMSE of 1.28 · 10–5 on the training,
1.01 · 10–5 on the validation, and 1.01 · 10–5 on the test set. The same
order of error magnitude on all three datasets indicates that the
neural network achieved generalization. Figure 8 visualizes three
randomly selected test samples. For the one-dimensional
hyperelastic case, the data-driven constitutive model is in perfect
agreement with the reference model.

3.2 Explaining Data-Driven Elastoplastic
Constitutive Models
For the elastoplastic problem, the systematic search strategy identified
a best-performing architecture, characterized by four LSTM cells,
with a width of 52 units followed by a linear time-distributed dense

TABLE 1 | Hyperband search domain for constitutive models.

Variable Search domain

layer width d(l) [4, 8, . . . , 128]
neural network depth L [2, 3, 4, 5, 6]
Base learning rate α [1 · 10–2, 3 · 10–3, 1 · 10–3, 3 · 10–4, 1 · 10–4]
batch size M [32, 64, 128]

a) activation (dense only) f [rect, sig, tanh, elu, splus]
b) cell type (recurrent only) — [LSTM, GRU, recurrent − tanh, recurrent − rect]
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layer with 2 units. For the training (Figure 9), a batch size ofM � 32
and a base learning rate of α � 1 · 10–3 resulted in the best result
without overfitting, i.e., an MSE ϵMSE of 5.72 · 10–5 on the training,
5.11 · 10–5 on the validation, and 4.38 · 10–5 on the test set.

To interpret and explain the RNN behavior, a random sample
is extracted from the test set and evaluated using the data-driven
constitutive model. The explainable AI approach uses the PCA on
the concatenated cell states of all recurrent cells and yields the
three principal components with the highest singular values.
Expressed in the three major principal components and
divided by their singular values, the cell states I, II, and III
represent the joint response of the LSTM cell states. Figure 10
visualizes and compares the evolution of the stresses, strains, and
history variables over the entire loading sequence.

The neural network’s output predictions and the reference
constitutive model match exactly, i.e., the stresses and plastic
strain predictions are accurate. By comparing the plastic strain
with the internal cell states, the learned function of the LSTM cells
becomes apparent, which governs the neural network’s decision-

making behavior. Without being trained directly, the cell states’
principal components learn to approximate the plastic strain
evolution (with a negative sign). Since the PCA chooses the
principal directions based on the variance, and the output
layer can apply arbitrary weighting, the negative sign of the
cell state does not affect the result. The second and third
principal components do not contribute to the joint cell state
response.

3.3 Explaining Data-Driven Viscoelastic
Constitutive Models
For the viscoelastic problem, the Hyperband search found the
best-performing architecture to be three GRU cells with 120
units, followed by a time-distributed dense layer (2 units and
linear activation). For training convergence, a batch size of
M � 32 and a base learning rate of α � 1 · 10–3 achieved the best
results. After training for the full 301 epochs (Figure 11), the
neural network achieved a best MSE ϵMSE of 2.05 · 10–7 on the

FIGURE 7 | Training and validation loss during hyperelastic constitutive model training. Both losses rapidly reduce within the first 20 epochs before oscillating due to
variance shift combined with the singular behavior of the stretch near the origin.

FIGURE 8 | Three randomly selected stress-stretch curves for hyperelastic constitutive behavior. The data-driven constitutive model exactly matches the reference
solution.

FIGURE 9 | Training and validation loss during elastoplastic constitutive model training.
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FIGURE 10 | An explainable elastoplastic constitutive model. (A) The strain-driven loading over the time increments. (B) The stress response of the reference and
data-driven constitutive model. (C) The plastic strain, compared to the three major principal components of the cell state. The cell states approximate the plastic strain
(with a negative sign remedied by the output layer).

FIGURE 11 | Training and validation loss during viscoelastic constitutive model training.

FIGURE 12 | An explainable viscoelastic constitutive model. (A) The stress-driven loading over time. (B) The strain response of the reference and data-driven
constitutive model. (C) The branch history stress compared to the three major principal components of the cell state. Instead of mimicking the history variables used to
generate training data, the cell states learned a generic solution for viscoelasticity: a modified exponential function that can be shifted and scaled at will by the output layer.

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 8 | Article 82495811

Koeppe et al. Explainable Artificial Intelligence for Mechanics

51

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


training, 7.36 · 10–7 on the validation, and 1.15 · 10–6 on the test
set, indicating generalization. Furthermore, since all samples
are generated with unit variance and unit stiffness, the model
approximates almost at the machine precision of the element-
wise definition of the MSE performance metric (∼O(107) for
single-precision floating-point arithmetic).

Figure 12 exemplifies the explainable AI strategy on one
randomly generated sample that was not used for training or
validation. In the top row, the stress is plotted over the
increments, which constitutes the input to the reference
constitutive and neural network models. The second row
compares the strain response of the reference and neural
network models. The final row depicts the history variables q.
The branch stress σ1 is computed by both the reference and data-
driven constitutive models. Both strain and branch stress match
accurately, as indicated by the low test loss. Finally, the PCA on
the GRU cell state over time yields the data-driven constitutive
history variables, i.e., the three principal components with the
highest singular values, which govern the major evolution of the
data-driven constitutive model.

Instead of approximating the history variables σ1, used to
generate the training data with backward Euler time integration,
the first principal component of the cell states approximates a
modified exponential function, correctly identifying the
exponential behavior of viscoelasticity. Shifting, scaling, and
changing the sign of a function represent trivial operations for
previous and subsequent neural network layers. Thus, the weights
of the RNN and the last dense layer can modify the cell output at
will to assemble a solution, such as Eq. 21. The second and third
principal components do not contribute to the joint cell state
response.

4 DISCUSSION

4.1 Results and Approach
The objectives of this publication were to systematically and
automatically identify and train neural networks for data-driven
constitutive models of fundamental material behavior and to
explain the resulting recurrent neural networks’ behavior.

The test errors (2.45 · 10–6 to 4.38 · 10–5) approach machine
precision for the single-precision floating-point arithmetic
used to compute them. The neural network performance
surpasses the elastoplastic constitutive model for uniaxial
tension and compression in the recent works of Huang et al.
(2020) (3.93 · 10–2) and Alwattar and Mian (2019) (∼ 1 · 10–5, as
reported on the training set). For each of the case studies, the
results were in the same order of magnitude for all datasets,
regardless of whether they were shown to the neural networks
during training (training dataset) or unknown to the neural
network (validation and test dataset). The oscillations in the
loss curves for the viscoelastic and hyperelastic cases can be
attributed to the shift in randomly selected samples for each
batch averaged over each epoch in combination with the
stronger continuous nonlinearities of the problems. This
suggests, that no overfitting occured and generalization to
unknown data was achieved, despite the considerable

number of trained parameters in some of the models
identified by the search algorithm.

When using manual hyperparameter tuning, mechanical and
physical 1257 knowledge, and machine learning expertise,
considerably smaller neural networks with fewer parameters
with fewer layers and units per layer are conceivable that could
have been trained to achieve similar results. Limiting the capacity
of machine learning models is one of the first and most important
steps in achieving robust performance and generalization to
unknown data. This limit is governed by the amount and
variance of the data, which is considerably harder to generate in
abundance for experimental data (cf. Argatov and Chai (2019)).
Here, many best-practice applications and textbooks suggest
choosing a neural network capacity slightly larger than strictly
necessary and utilizing additional regularization schemes for
optimal generalization performance (Goodfellow et al., 2016;
Argatov and Chai, 2019). However, the objectives of this study
were to demonstrate an automated and inductive strategy that
requires minimal prior knowledge to automatically identify and
train models and to help understand the resulting models,
regardless of how many parameters were used. Therefore, the
less-than-minimalistic models identified by the hyperparameter
search algorithm posed a more difficult challenge for the novel
explainable AI approach.

The results were achieved inductively, with minimal user
input, through the application of a Hyperband-inspired
systematic search strategy on mechanical data. To further
improve the results of the neural networks, several approaches
are conceivable, most of which are deductively derived from deep
learning and mechanical domain knowledge. Ensemble learning
and related regularizers, such as dropout (Srivastava et al., 2014),
for example, are known to improve the quality of the results
further (Srivastava et al., 2014; Goodfellow et al., 2016). Similarly,
physics-informed and physics-guided approaches, as proposed by
Raissi et al. (2019), Yang and Perdikaris (2019), or Kissas et al.
(2020), use mechanical domain knowledge to improve neural
network models of physical systems. In contrast, the data-driven
constitutive models trained in this work represent an inductive,
fundamental, and accurate approach that offers intuition for
possible neural network architectures and hyperparameter
configurations for higher-dimensional mechanical problems. In
combination with the explainable AI approach, the data-driven
constitutive models represent the first step towards physics-
explaining neural networks.

Even beyond mechanics and materials sciences, applying the
PCA to explain neural network cell states constitutes a novel and
promising explainable AI method. The PCA investigation
proposed in this work can explain the recurrent cell state
behavior, despite the considerable size of the investigated
architecture, compared to the one-dimensional fundamental
problems. Due to the quality of the results and the
explainability of the neural network, “Clever-Hans” predictors
(Lapuschkin et al., 2019) can be ruled out. For material behavior
where multiple physical effects affect the same observed features
(e.g., viscoplasticity or ductile fracture), the global PCA used in
this proof-of-concept study could be upgraded to provide local
decompositions in combination with clustering algorithms.
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As an explainable neural network approach in mechanics, the
case studies demonstrate how neural networks can help to explain
material behavior. For the elastoplastic problem, the recurrent cell
state identified the same history variables used in computing the
ground truth. For the viscoelastic problem, the data generation
used numerical time-integration, but the neural network found a
solution similar to the exponential closed-form solution.
Therefore, if the ground truth is not known, e.g., when
learning from raw experimental data, explainable neural
network approaches can possibly identify underlying closed-
form solutions. By characterizing new materials or material
behavior, e.g., at extreme loading conditions, explainable AI
can help guide researchers in mechanics and materials sciences
towards new analytic closed-form solutions that elegantly model
the materials in the desired ranges.

4.2 Concluding Remarks and Outlook
We proposed a step towards physics-explaining neural networks,
which inductively complement existing deductive approaches for
physics-informed and physics-guided neural networks. To that
end, a systematic hyperparameter search strategy was
implemented to identify the best neural network architectures
and training parameters efficiently. For the analysis of the best
neural networks, we proposed a novel explainable AI approach,
which uses the PCA to explain the distributed representations in
the cell states of RNNs.

The search strategy and explainable AI approach were
demonstrated on data-driven constitutive models that learned
fundamental material behavior, i.e., one-dimensional
hyperelasticity, elastoplasticity, and viscoelasticity. For all case
studies, the best neural network architectures achieved test errors
in the order of 1 · 10-5 to 1 · 10-6. In particular, for hyperelasticity,
the test error approached machine precision, despite the singular
behavior for stretches approaching zero. For elastoplasticity, the
novel explainable AI approach identified that the recurrent cell
states learned history variables equivalent to the plastic strain,
i.e., the history variables used to generate the original data.
Remarkably, for viscoelasticity, the explainable AI approach
found that the best performing neural network architecture
used an exponential function as the basis for its decisions
instead of the algorithmic history variables used to generate
the training data.

These findings imply that systematic hyperparameter search,
coupled with explainable AI, can help identify and characterize
numerical and analytical closed-form solutions for constitutive
models independent of the data origin. Thus, new materials can
potentially be characterized with data originating from
experiments, using the approach proposed in this work.

Future studies will apply and extend the proposed strategies to
more complex material models. Of particular interest are
viscoelastic materials subjected to strain rates that cover

multiple decades, where conventional numerical models
require numerous algorithmic history variables. Eventually,
new materials, where the analytic closed-form solutions are as-
of-yet unknown and numerical solutions are challenging to
implement, can be characterized with developments based on
the present work. Finally, applications beyond constitutive
models are conceivable. For spatio-temporal problems, e.g., as
given in Koeppe et al. (2020a), the explainable AI approach
outlined in this work needs to be extended to leverage the
spatial structure.

In forthcoming work, it is intended to extend the developed
artificial intelligence approach within the Kadi4Mat (Brandt
et al., 2021) framework to higher dimensional data containing
2D and 3D spatial plus temporal information to predict
microstructure-mechanics correlations. The database used to
train the neural network algorithms relies on digital twin data
from synchronously conducted experiments and simulations of
mechanically loaded polycrystalline and multiphase materials.
Based on the training, the AI approach is applied to large-scale
micromechanics-microstructure simulations so as to provide
new insights, e.g., into mechanically induced nucleation events
of new phases and grain variants or into microcrack
probabilities. The combination of new AI concepts and
advanced high-performance materials simulations shall
establish an integral component of the research data
infrastructure to enable computational methods for an
accelerated design of new materials.
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Machine Learning Assisted Design of
Experiments for Solid State Electrolyte
Lithium Aluminum Titanium
Phosphate
Yinghan Zhao1†, Nikolas Schiffmann2†, Arnd Koeppe1*, Nico Brandt1, Ethel C. Bucharsky2,
Karl G. Schell 2, Michael Selzer1,3 and Britta Nestler1,3
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3Institute for Digital Materials, Karlsruhe University of Applied Sciences, Karlsruhe, Germany

Lithium-ion batteries with solid electrolytes offer safety, higher energy density and higher
long-term performance, which are promising alternatives to conventional liquid electrolyte
batteries. Lithium aluminum titanium phosphate (LATP) is one potential solid electrolyte
candidate due to its high Li-ion conductivity. To evaluate its performance, influences of the
experimental factors on the materials design need to be investigated systematically. In this
work, a materials design strategy based on machine learning (ML) is employed to design
experimental conditions for the synthesis of LATP. In the variation of parameters, we focus
on the tolerance against the possible deviations in the concentration of the precursors, as
well as the influence of sintering temperature and holding time. Specifically, models built
with different design selection strategies are compared based on the training data
assembled from previous laboratory experiments. The best one is then chosen to
design new experiment parameters, followed by measuring the corresponding
properties of the newly synthesized samples. A previously unknown sample with ionic
conductivity of 1.09 × 10−3 S cm−1 is discovered within several iterations. In order to further
understand the mechanisms governing the high ionic conductivity of these samples, the
resulting phase compositions and crystal structures are studied with X-ray diffraction, while
the microstructures of sintered pellets are investigated by scanning electron microscopy.
Our studies demonstrate the advantages of applying machine learning in designing
experimental conditions by the synthesis of desired materials, which can effectively
help researchers to reduce the number of required experiments.

Keywords: all-solid-state lithium batteries, LATP, machine learning, bayesian optimization, design of experiment

1 INTRODUCTION

Energy is one of the core issues to be solved in the development of human society. Currently, lithium
ion batteries (LIBs) are widely used, as they show great promise as an effective energy storage
technology for a wide range of applications from mobile devices to electric vehicles. However,
commercial LIBs confront hidden risks which are due to the utilization of fluid electrolytes, which
may cause a variety of safety and performance problems, such as the potential ignition of the
flammable solvent. To address these problems, lithium-ion batteries with solid electrolytes have
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potentials to be safer and longer-lasting alternatives with higher
energy density compared to conventional liquid electrolyte
batteries by allowing the use of high-voltage cathodes, which
can decrease flammability, and suppress dendrite formation
(Goodenough and Kim, 2010). However, the principal design
challenge of solid electrolytes is their restricted ionic conductivity,
which is typically many orders of magnitude lower than that of
liquids (10−2 S cm−1) (Aravindan et al., 2011). The feasibility of
these concepts depends on the applied solid-state electrolyte, for
which a wide range of materials is being considered (Manthiram
et al., 2017). One of the promising materials is the family of
lithium containing NASICON (sodium super ionic conductor)
materials, such as lithium aluminum titanium phosphate (LATP,
Li1+xAlxTi2-x(PO4)3), one of the most often investigated materials
(Aono et al., 1990). They have received wide attention as they
have emerged as particularly promising solid electrolyte
candidates due to their high ionic conductivity, low cost, and
stability (Rossbach et al., 2018).

The ionic conductivity of LATP is particularly high for the
composition Li1.3Al0.3Ti1.7(PO4)3, and several studies have
reported values up to 10−3 S cm−1 (Narváez-Semanate and
Rodrigues, 2010; Pérez-Estébanez et al., 2014; Bucharsky et al.,
2015; Ma et al., 2016). Li1.3Al0.3Ti1.7(PO4)3 ceramics have been
successfully synthesized by different routes, such as calcination of
stoichiometric mixtures of oxide precursors (Arbi et al., 2002), by
glass crystallization (Narváez-Semanate and Rodrigues, 2010), or
by sol-gel (Bucharsky et al., 2015). However, these studies are
usually limited to laboratory scale, i.e., in small quantities and
under experimental environments. In order to make ceramic
electrolytes usable and competitive in the next generation of
batteries, it is necessary to identify processing routes for the
upscale production. The sol-gel route has already been adopted
successfully for the mass production of many materials for
industry and therefore provides a good basis for LATP
synthesis. For the sake of quality maintenance and
reproducibility, the crucial processing parameters have to be
identified. As the first step towards the upscaling of LATP
production via the sol-gel route, influence of possible
deviations in the concentration of the precursors was
investigated in our previous study (Schiffmann et al., 2021).
This applies especially to phosphoric acid which is difficult to
specify due to its hygroscopicity. In the case when precursors are
not exactly stoichiometric, this can easily lead to the second-
phase formation. In particular, for LATP, such second phases
have a great influence on the densification and the ionic
conductivity. Hupfer et al. (2017) report how the second
phases AlPO4 and LiTiOPO4 can have impacts on the
properties of LATP. In this work, synthesis of LATP is studied
by varying concentration of the reactants, dwell time, and
sintering temperature while microstructures, phase
compositions, and ionic conductivities of the samples are
further analyzed.

A key challenge in developing better materials is the large
potential search space for the optimal chemistries and processing
conditions. Traditionally, the development of new materials
requires a vast number of experiments guided by intuition,
trial and error, and is complemented by simulations and other

tools to analyze the mechanism or optimize the design (Wang
et al., 2015). As a result, this process is time-consuming,
challenging and is often accompanied by detours or
serendipity. Recently, the use of machine learning methods to
accelerate materials development has received a lot of attention
and many advances using this kind of technique have been made
in the study of solid-state electrolytes, such as screening fast ion
conductor candidates in supervised (Sendek et al., 2017) or
unsupervised (Zhang et al., 2019) manner, filtering electrolytes
in consideration of suppression of dendrite formation in lithium
metal anodes (Ahmad et al., 2018), and developing good
candidates combining theoretical calculations as well as
experimental data sets (Fujimura et al., 2013).

Among the many approaches, accelerating the research of
novel materials through automated experiments (Alberi et al.,
2018; Häse et al., 2019; Stein and Gregoire, 2019) instructed by
artificial intelligence (AI) (Tran and Ulissi, 2018) has recently
attracted a lot of interest. In particular, AI sampling algorithms
(Coley et al., 2020) hold great promise for resource-constrained
tasks such as materials research, since they can reduce the
number of experiments required to achieve a desired property
(Vasudevan et al., 2019). Among them, the Bayesian decision-
theoretic approach naturally lends itself to adaptive sampling and
active learning (Cohn et al., 1996). Hence, a series of active
learning methods based on Bayesian optimization can be used to
find the optimal material composition or to optimize the
experimental parameters. This type of method has been
successfully applied in different materials system, such as low
thermal hysteresis shape memory alloys (Xue et al., 2016),
BaTiO3-based ceramics with better dielectric energy storage
density (Yuan et al., 2019), fast ion conductors for
rechargeable batteries (Jalem et al., 2018; Harada et al., 2020;
Homma et al., 2020; Yang et al., 2020), oxygen evolution reaction
catalyst (Rohr et al., 2020), and organic thin films (MacLeod et al.,
2020).

In this work, we use a Gaussian process (GP) based Bayesian
optimization (Ki Williams, 2006) to optimize the synthesis of a
popular electrolyte material for solid-state lithium-ion batteries,
LATP (Li1.3Al0.3Ti1.7(PO4)3). Via the sol-gel route, it is possible to
prepare the material at laboratory scale with high purity and with
a maximum Li-ion conductivity in the order of 1 × 10−3 S cm−1 at
room temperature. However, for a potential commercial usage,
battery-cell upscaling of the synthesis is required. Based on our
previous study (Schiffmann et al., 2021), we further explore the
effects of deviations in the concentration of the precursors
H3PO4, sintering temperature and holding time on the
conductivity of the synthesized electrolytes. We use machine
learning methods to guide us to reduce the number of
required experiments as much as possible to produce LATP
with higher ionic conductivity. We train the initial model
using the data points from previous experiments (sampled
from an equidistant grid and this is noted as grid search) and
predict the next optimal experimental configurations. The results
show that newly synthesized samples guided by the model can
achieve a good performance with the maximum ionic
conductivity of 1.09 × 10−3 S cm−1, in the same order of
magnitude of the maximum Li-ion conductivity which LATP
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can achieve. This method can help to quickly narrow down the
search space and assist the experimentalists in designing and
analyzing experiments.

2 EXPERIMENTS AND MACHINE
LEARNING METHODS

2.1 Experiments
In our experiments, LATP powders are prepared following a
modified sol-gel synthesis route described by (Bucharsky et al.,
2015). Appropriate amounts of lithium acetate Li(C2H3O2)
·2H2O (purity ≥ 99%, Alfa Aesar GmbH & Co KG, Germany),
aluminum nitrate Al(NO3)3 ·9H2O (purity ≥ 98.5%, Merck
KGaA, Germany), titanium-isopropoxide Ti[OCH(CH3)2]4
(purity ≥ 98%, Merck KGaA, Germany) are used as
precursors. Lithium acetate and aluminum nitrate are
dissolved in distilled water under constant stirring. Titanium-
Isopropoxide is then added dropwise to the solution. By adding
the phosphoric acid slowly through a drip funnel, a white gel
forms, which is then dried at room temperature for 24 h. The
subsequent heat treatment is performed in two steps: first,
samples are heat treated at 400°C for 6 h to achieve the
precursor formation and to eliminate reaction gases; second,
samples are then processed at 900°C for 8 h to complete the
reaction to crystalline LATP. One sol-gel batch is prepared with
all precursors in stoichiometric quantities (marked as 0.0 wt%).
To test whether the sol-gel route is tolerant against possible
deviations in the concentration of the precursors, we also
explore different sol-gel batches with either an excess up to
+7.5 wt%, or a deficiency up to −15.0 wt% of phosphoric acid
compared to the stoichiometric composition.

To ensure a high sinterability, the obtained powders are
further processed in a planetary ball mill. The pellets are
formed by uniaxial pressing and then further densified by cold
isostatic pressing at 400 MPa. All pressed samples have a green
density of approximately 62% relative density. Samples are
sintered at temperatures ranging from 850 to 1,050°C and
isothermal sintering time between 30 and 540 min. After
sintering, samples are cooled down to room temperature in
furnace and their corresponding densities are determined by
Archimedes’ method. For the ionic conductivity
measurements, impedance analysis is performed at room
temperature over the frequency range from 0.1 Hz to 1 MHz
with an AC amplitude of 50 mV in the frequency response
analyzer (AMTEK GmbH, VersaSTAT 4, Pennsylvania,
United States). For further details of the experimental part
please refer to our previous work (Schiffmann et al., 2021).

To apply machine learning methods in guiding the
experimental study, 80 initial data points from the
aforementioned phosphoric acid deviation study are used to
train the Gaussian process regression based Bayesian
optimization (GPR-BO) model. These data points are sampled
from an equidistant grid from −22.5 wt% to +7.5 wt% deviation of
phosphoric acid compared to the stoichiometric composition.
Sintering parameters with temperatures ranging from 800°C up to
1,100°C in steps of 100°C and isothermal durations of 10, 30, 60

and 480 min are applied. To further investigate the effect of these
synthesis and sintering conditions on the properties of LATP, the
machine learning model is used to predict promising candidate to
investigate. Considering the long time needed to synthesize
samples with different acid concentrations, we expand the
experimental conditions available to the model in two steps:
for the first two iterations (1–2), we only allow the model to
make a choice among the available samples; for the last two
iterations (3–4), we expand the selection range of acid
concentrations. Such kind of condition setting is derived from
the results of our previous grid search study and offers an efficient
compromise that would address the otherwise excessively large
search space. In total, we have synthesized 22 new samples in 4
iterations following the model’s predictions. Detailed settings for
the experiments are listed in Table 1.

2.2 Machine Learning Methods
2.2.1 Design Loop
Our method of applying Bayesian optimization (BO) in guiding
experiments is schematically illustrated in Figure 1. The whole
process is mapped as a workflow containing an iterative loop with
feedback steps and it is also collectively referred to as “adaptive
design.” First, the model fits the initial data points. Then the next
candidate configuration is predicted and the accompanying
experiment and measurements are performed. Finally, the
resulting new data point is fed back into the data set for the
next iteration. Key ingredients of this process for our problem are
as follows: 1) collecting the training data set of the solid state
electrolyte LATP, where samples are described by features, here:
experimental conditions and their measured properties of interest
(e.g., ionic conductivity); 2) training an inference model
(Gaussian process regressor) to learn to map the input-output
relationship with associated uncertainties. Then, the trained
model predicts the outputs (i.e., ionic conductivities) along
with their corresponding uncertainties for the whole search
space; 3) choosing the combination of experimental
parameters, which is expected to produce the material with
better characteristics (e.g., higher ionic conductivity) by
balancing the trade-off between exploitation and exploration,
that is, taking both prediction (of the best known so far) and
uncertainty into consideration; 4) performing experiments and
measuring the corresponding properties; 5) adding the new
sample to the training data set, which allows the subsequent
iterative improvement of the inference model. This loop
continues until performance (e.g., we have synthesized a
sample with a satisfying performance) or a break condition,
such as a maximum number of iterations, is met. In this work,
the research data infrastructure Kadi4Mat (Brandt et al., 2021) is
used to share and manage data for continuously updating the
machine learning model. Besides, the whole workflow will also be
integrated into this platform and serves as a demonstration for
data-driven and machine learning based optimization of solid
state electrolyte.

2.2.2 Bayesian Optimization
Bayesian optimization (BO) is a class of machine-learning-based
optimization methods focusing on solving the problem arg
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maxx∈χ f(x) within a domain χ ⊂ Rd as the bounding box. Its
ability to optimize expensive black-box derivative-free functions
makes BO extremely versatile (Shahriari et al., 2015). Recently, it
has become extremely popular for tuning hyper-parameters in
machine learning algorithms, especially deep neural networks
(Snoek et al., 2012). A typical Bayesian optimization algorithm
involves two primary components: a method for statistical
inference, typically Gaussian process (GP) (Rasmussen, 2003;
Williams and Rasmussen, 2006); and an acquisition function that
decides where to sample. For the latter, there are many options
such as PI [probability of improvement (Kushner, 1964)], EI
[expected improvement (Močkus, 1975; Jones et al., 1998)] or
UCB [upper confidence boundary (Auer et al., 2002)]. GP
(Gaussian process) is a widely used surrogate for modeling
objective functions in Bayesian optimization. The function f is
typically assumed to be a GP which is determined by a mean
function μ and a covariance kernel K, f ~ GP(μ, K). Given the
observed data set D, the question would be where the next point
to observe the function is. The meta-approach in Bayesian
optimization is to design an acquisition function a(x). The
acquisition function is usually an inexpensive function, which
defines a balance between exploring new areas in the objective
space and exploiting areas that are already known to have
favorable values (Frazier, 2018). This strategy is important for
helping to find the global optimum efficiently instead of being
trapped in a local optimum. In short, by adopting this method,
the original optimization problem is replaced with another
optimization problem based on a much-cheaper function a(x).

PI is one of the earliest acquisition functions designed for
Bayesian optimization which suggests maximizing the probability
of improvement over the current best observed value f(x+), where
x+ � arg maxx∈D1: tf(x) with the observed data set D1:t, so that

xt+1 � arg max
x∈χ

aPI x( ) � arg max
x∈χ

P f x( )≥f x+( )( )
� arg max

x∈χ
Φ μt x;D1: t( ) − f x+( )

σt x;D1: t( )( )
whereΦ(·) is the normal cumulative distribution function, μt and
σt are the posterior mean and posterior standard deviation at
iteration t.

Alternatively, maximizing the expected improvement (EI)
over the current best value can also be chosen, which accounts
for the size of the improvement (while PI does not). It can be
computed analytically as:

xt+1 � arg max
x∈χ

aEI x( )

� arg max
x∈χ

μt x;D1: t( ) − f x+( )( )Φ Z( ) + σt x;D1: t( )ϕ Z( )[ ]

Z � μt x;D1: t( ) − f x+( )
σt x;D1: t( )

where Φ(·) and ϕ(·) are the cumulative distribution function
(CDF) and probability density function (PDF) of the standard
normal distribution, respectively.

The acquisition function of UCB takes the form:

xt+1 � arg max
x∈χ

aUCB x( ) � arg max
x∈χ

μt x;D1: t( ) + κσt x;D1: t( )[ ].

This function can be intuitively interpreted as a weighted sum
of prediction of f(x) and its uncertainty. κ is a tunable hyper-
parameter (usually set to be 1.96 as it represents the 95%
confidence interval and generally has good performance)
which controls how much of the variance in the predicted

TABLE 1 | Range of experimental parameters for selection.

Experimental
parameters

Iteration 1–2 Iteration 3–4

Value range

Rel. amount of acid wt% −22.5, −15.0, −7.5, 0.0, 7.5 −22.5, −18.75, −15.0, −11.25, −7.5, −3.75, 0.0, 3.75, 7.5
Temperature °C 800–1,100 (step size 50) 800–1,100 (step size 25)
Time min 10, 20, 30, 40, 50, 60, 90, 120, 240, 360,

480, 540
10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360, 390, 420, 450, 480,

510, 540

FIGURE 1 | An overview of the Bayesian optimization workflow. It consists of five main components and forms an iterative loop: (i) collecting some initial data points
(input-output pairs) from experiments and aggregating them into a database which will be used for training the machine learningmodel; (ii) fitting an inferencemodel (e.g.,
a Gaussian process regressionmodel); based on the existing data set; (iii) predicting the property in the search space along with uncertainty, taking both prediction (of the
best known so far) and uncertainty (i.e., exploitation vs. exploration) into consideration for selecting the next optimal experimental configuration which has the
potential to yield a better property; (iv) performing the experiment to synthesize new sample and (v) validating the new sample’s performance using different
characterization techniques. The resulting sample is fed back into the initial training data set for the next iteration.
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values should be taken into account. Higher value favours the
exploration over exploitation and vice versa.

To predict optimal experimental parameters in an effective
way, the search strategy also needs to follow the aforementioned
principle, i.e., combining exploration and exploitation. The
model should not only focus on the local region where the
known maximum value is located, but also explore the whole
search space wisely. Here, we adopt one of the widely used
Bayesian optimization methods named GP-UCB [Gaussian
Process Upper Confidence Boundary (Srinivas et al., 2009)],
which is an intuitive algorithm inspired by the multi-armed
bandit problem. We show how the GP-UCB method can be
used for materials discovery, as this allows us to choose potential
candidates which aims at maximizing the target property of the
material. A schematic diagram of the working principle is
illustrated in Figure 2. This figure shows the fitting of model
with the H3PO4 acid at stoichiometry (namely, .0 wt%), where the
x-axis stands for dwell time and the y-axis represents the sintering

temperature. Larger values of the ionic conductivity are marked
with brighter color. The left diagram shows what the prediction
(inference) based on known data points from the grid search
study looks like in the search space and the right diagram
illustrates the prediction with uncertainty. It can be clearly
seen that when taking the uncertainty into account, the search
surface becomes significantly rugged and the location of the
possible optimal value has shifted. The model will select
regions worth exploring according to both the prediction and
the degree of uncertainty.

In addition to UCB, we also compare the abovementioned two
other common acquisition functions: PI and EI. The detailed
results will be discussed in the model selection section shown in
Figure 3. In performing the experiments, we greedily choose the
next experimental condition for the synthesis of LATP with the
best predicted value from the model. In order to make full use of
our experiment facilities, it is better that the model can suggest
several samples simultaneously in the pre-defined search space in

FIGURE 2 | Illustration of the prediction (A) based on known data points (white points) and prediction with uncertainty (B) from the Gaussian process regression
with UCB model in the search space. It shows the ionic conductivity (S cm−1) of LATP with stoichiometric H3PO4 (0.0 wt%), where higher values are indicated with
brighter color. The x-axis represents the holding time, while the y-axis represents the sintering temperature. It can be seen that the position of the possible optimum (the
lightest area) has shifted when considering the uncertainty.

FIGURE 3 | Comparison of GPR based Bayesian optimization with different acquisition functions, EI (dark purple), UCB (light purple), PI (orange) and random
selection (grey dashed): (A) number of counts to find the global maximum in the repeated 200 virtual experiments, where random selection (grey dashed line) can find
126 times (63%); (B) number of additional tries of different strategies needed after n initial random selections (x-axis) to find the global maximum of ionic conductivity
(1.09 × 10−3 S cm−1) in the training data set (grid search). On average random selection takes about 34.7 tries to arrive at the maximum. It is noticeable that only
those cases where the global minimum is found are counted to calculate the average.
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each iteration of BO. However, one of the limitations of Bayesian
optimization is that the acquisition is myopic and permits only a
single sample per iteration (Brochu et al., 2010). To alleviate this
problem, the so-called Kriging believer approach (Cressie, 1990)
is used to suggest 5–6 samples at the same time during each
iteration of BO in our study: to suggest more than 1 sample in
each iteration, this approach (temporarily) adds each predicted
sample to the training data set for updating the model, and then
predicts another sample subsequently.

3 RESULTS AND DISCUSSIONS

3.1 Data Set
The initial 80 training data points are listed in Supplementary
Table S1.

3.2 Model Selection
As there is no clear indication of which optimization strategy to
use (according to the “no-free-lunch theorem” (Wolpert and
Macready, 1997), there is no universal optimizer for all
problems), we compare the optimization efficiencies of BOs
with random search, EI, UCB and PI strategies with the 80
initial points from the grid search study. The strategy of
achieving the maximum ionic conductivity (1.09 ×
10−3 S cm−1) with the least number of average iterations is
considered to be optimal. During the experiment of comparing
these strategies, random noise is added to the observations and
the sample is allowed to be picked more than once (namely, with
replacement). In detail, we randomly select a given number of
samples from the training data with replacement as initial data
points, then train the model using a given acquisition function
and count the total number of extra tries (after initial random
picks) needed to find the best sample (that is, the one with the
largest ionic conductivity) in the grid search study. The model is
only allowed to make up to m attempts (m = 80 − number of
initial data points) to find the maximum value. This process is
called “virtual experiment” and is repeated 200 times with
different sets of randomly selected samples. In the overall
count, the initial random picks are excluded. Detailed results
of comparing different strategies of acquisition functions are
shown in Figure 3.

Figure 3A illustrates how many times different strategies
can find the global maximum (1.09 × 10−3 S cm−1) within the
80 tries in 200 virtual experiments. The grey dashed line
represents how many counts the random selection can find
the global maximum. Among the 200 virtual experiments, the
random selection can find 126 times (63%) and it acts as the
base line for evaluating the performance of other models.
From the figure it can be seen that GPR model with an EI
(dark purple) or UCB (light purple) acquisition function can
find the maximum in most virtual experiments (≥ 95%),
where UCB performs slightly better than EI in some cases.
In contrast, PI (orange) performs slightly worse than the
other two, but still much better than the random selection.
We speculate that PI sometimes gets stuck in the local
optimum, making it difficult for the model to reach the

global maximum. As a result, it fails to find the global
maximum in some cases.

Figure 3B illustrates the average number of extra tries (after a
given number of initial data points) required for the models with
different acquisition functions to find the global maximum. The
random selection takes on average 34.7 tries to find the global
maximum, which is marked as grey dashed line in the figure. It
can be seen that all the three models perform much better than
the random selection. Performance of EI and UCB is similar, with
UCB being slightly better and it takes the fewest extra tries to
achieve the best result. More specifically, the number of extra tries
needed to find the global maximum for EI and UCB decreases
quickly with more initial data points, which is reasonable as the
models’ ability to fit and predict is gradually enhanced. After
more than 15 initial data points, the gain of introducing more
initial data points gradually decreases and the required extra tries
finally stabilizes at about 5. This phenomenon is very beneficial
for experiments because the model can achieve good performance
even with only a small number of initial data points, significantly
reducing the number of attempts required. In contrast, the
performance of PI is worse than the other two strategies as it
requires more steps to obtain the global optimum. Therefore, we
choose the model with UCB acquisition function and use it to
predict the optimal experimental conditions, as it is more robust
and takes fewer steps to reach the global optimum.

3.3 Result of Newly Synthesized Lithium
Aluminum Titanium Phosphate Samples
As the search space becomes larger, it is difficult to manually
determine the experimental conditions to obtain samples with
better performance. Hence, a machine learning model is
employed to help to explore the unknown experimental space
quickly in order to reduce the number of required trials. The
experimental conditions predicted by the model and their
measured properties of the resulting new samples, namely,
relative density after sintering and ionic conductivity, are listed
in Table 2. All samples have a green density of approximately
62% so this property is not listed. Starting with 80 data points, we
have performed 4 iterations (each predicting 5–6 samples) to
optimize the experimental conditions to obtain LATP with higher
ionic conductivity. At the end of each iteration, the newly
synthesized samples are fed back to the model, which is then
retrained. After the update, new experimental conditions are
predicted for the next iteration. This process forms a loop,
which is repeated until the target number of iterations has
been achieved. In total 22 new samples are synthesized.

It can be seen from Table 2 that the model quickly discovers a
new sample (sample No. 3) with second highest ionic
conductivity (1.06 × 10−3 S cm−1) in the first iteration. The
ionic conductivity of this sample is very close to the highest
one of all samples (1.09 × 10−3 S cm−1), which shows a very good
performance of our model. The comparison of experimental
conditions shows that even though the sintering time of the
new sample (540 min) is 60 min longer than that of the known
maximum sample (480 min, with a deficiency of −7.25% H3PO4

at 900°C), it can still maintain good performance. This indicates
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that LATP samples synthesized under this condition are stable
against long holding time. On the other hand, comparing the
densities of samples No. 2 (360 min) andNo. 5 (240 min) it can be
concluded that shorter holding time is not enough for the samples
to get fully sintered as the densities of these samples are less than
those with longer holding time. Therefore, the ionic
conductivities of these samples are significantly lower than
those of the fully sintered ones.

As the Bayesian optimization process is a trade-off process
between exploration and exploitation, it is important to explore
unknown areas efficiently, which can help to find the global
optimum in a scientific way. This can be well reflected in our
experiments. It can be seen that in the first iteration, the model
explores experimental conditions with holding time at 360 min
(sample No. 2) and 240 min (sample No. 5), as the original
experimental conditions of grid search have a large gap
(uncertainty) of holding time between 60 and 480 min.
Similarly, this can also explain why the model in the second
iteration explores the temperature intervals that have never been
explored before, as these areas are subject to relatively large
degrees of uncertainties. Though samples obtained in the
second iteration show poor ionic conductivity (on average
1.59 × 10−4 S cm−1), it does not render this iteration a failure.
This attempt is reasonable and can help the model to quickly
explore this unknown region and excludes the possibility of an
optimal value appearing in that region, which effectively reduces
the number of tries it needs compared to the exhaustive method.
Notably, starting from the third iteration, we expand the range of
experimental conditions that can be chosen, more centrally, we
expand the extent to which the amount of precursor H3PO4 can

be adjusted, as its preparation can take a long time. It can be
clearly seen that the model also undergoes a competitive process
between exploration and exploitation in the third and fourth
iterations. It first makes predictions (samples No. 12–14) with
experimental conditions with a deficiency of −11.25% H3PO4,
which has never been explored before (exploration). At this point,
the model finds a new sample (sample No. 14) with a value of
ionic conductivity which is as large as the previous maximum
(1.09 × 10−3 S cm−1). Then the model begins to make the most of
this information and makes several attempts (samples No. 18, 21,
22) around this point (exploitation). It can be seen that properties
(ionic conductivity) of later samples are inferior to that of sample
No. 14, indicating that the model has a good predictive
performance. As a result, it can find the optimal value
efficiently and quickly, reducing the number of required
experiments.

The values of ionic conductivity (black line) during the four
iterations and the values of the maximum (grey line) are plotted
in Figure 4. It can be noted that the overall result shows a step-
wise upward trend, illustrating the improvement of new samples
during iterations. During the iteration, the model goes through a
process of exploration and exploitation, which can be reflected in
the fluctuating experimental results of ionic conductivity. The
model first selects a sample which yields moderate performance
(5.67 × 10−4 S cm−1). Afterwards, the performance of samples
increases with iterations and it quickly finds the second highest
maximum (sample No. 3). Starting from the sample No. 11, the
search space is extended (marked as the vertical grey dashed line
in the middle) and the model quickly finds another global
maximum (sample No. 14, marked as red star). Another

TABLE 2 | Recommended samples using BO and measured properties.

Iteration No Experimental parameters Measured properties

rel. H3PO4 wt% Temperature°C Time min rel. Density % Ionic
Conductivity S cm−1

1 1 −7.5 1,000 40 87.99 5.67 × 10−4

2 −7.5 1,000 360 92.78 7.21 × 10−4

3 −7.5 1,000 540 95.81 1.06 × 10−3

4 0.0 900 20 96.29 7.23 × 10−4

5 −7.5 1,000 240 92.12 6.89 × 10−4

2 6 −15.0 950 480 78.24 1.27 × 10−4

7 −22.5 950 540 80.00 4.93 × 10−5

8 7.5 950 540 75.22 6.67 × 10−5

9 0.0 850 30 92.56 4.91 × 10−4

10 0.0 1,050 30 81.27 6.11 × 10−5

3 11 .0 900 40 95.80 4.07 × 10−4

12 −11.25 1,000 480 97.47 9.06 × 10−4

13 −11.25 1,000 510 96.11 7.87 × 10−4

14 −11.25 1,000 450 97.52 1.09 × 10−3

15 −7.5 1,000 450 95.00 4.02 × 10−4

16 −7.5 1,000 510 97.36 4.37 × 10−4

4 17 −15.0 1,000 450 97.21 7.81 × 10−4

18 −11.25 1,000 420 95.25 8.36 × 10−4

19 −15.0 1,000 510 96.81 5.36 × 10−4

20 −15.0 1,025 450 98.89 5.87 × 10−4

21 −11.25 1,000 540 91.31 6.38 × 10−4

22 −11.25 1,000 390 91.60 7.10 × 10−4
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schematic diagram (similar to Figure 2) is shown in the
supporting material (Supplementary Figure S1) to illustrate
the above working principle and to better visualize the
evolution of changes in the predictions of the model during
different iterations. Overall, results of predictions prove that our
model has a good ability to help us to find another sample with
maximum ionic conductivity under different experimental
condition where it has never been explored before. By using
the Bayesian optimization model, it can help the experimentalist
to quickly narrow the search space and hence can reduce the
number of required experiments effectively.

To further explore why these samples (e.g., sample No. 14)
have better performances than others, characterization
measurement are performed to investigate the mechanisms
governing the high ionic conductivity. Details are given in the
next section.

3.4 Characterization of Lithium Aluminum
Titanium Phosphate Samples
A standard stoichiometric LATP sample reaches the highest
ionic conductivity at a sintering temperature of 900°C and a

FIGURE 4 | The values of ionic conductivity for each sample (black line) during the four iterations and the values of the maximum (grey line). The results of
experiments show a fluctuating trend, reflecting the exploration vs. exploitation in the optimization process. The overall result exhibits a step-wise upward trend and it can
be seen that the model has found the largest values of ionic conductivity (marked as red star) within several iterations.

FIGURE 5 | X-ray diffraction patterns for the LATP (−11.25 wt%) sample sintered at 1,000°C for 450 min and one LATP (0.0 wt%) sample sintered at 900°C for
30 min. A standard X-ray diffraction pattern of Li1.3Al0.3Ti1.7(PO4)3 from the database is shown in red color for reference.
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holding time of 30 min. With the aid of machine learning
algorithms, the best properties are achieved for the sample
No. 14, which is sintered from a LATP batch synthesized with
a deficit of −11.25 wt% in phosphoric acid and sintered at
1,000°C for 450 min. For a better understanding why this
sample has also reached ionic conductivity performance in
the order of 1 × 10−3 S cm−1, even though synthesis and
sintering conditions deviated from the standard procedure,
the microstructure is analyzed. Figure 5 shows a comparison
of the X-ray diffraction patterns of the standard
stoichiometric LATP (0.0 wt%) sample and another LATP
(−11.25 wt%) sample. While the stoichiometric sample is still
phase pure in the expected NZP-structure after sintering,
clear foreign peaks can be seen in the LATP (−11.25 wt%)
sample. Among the foreign phases that have formed in
addition to the NZP-structure, TiO2 could be identified as
a second phase.

In addition, the different microstructure developments are
shown in Figure 6. Figure 6A shows the LATP (0.0 wt%) sample
sintered at 900°C with a holding time of 30 min. There, the ionic
conductivity in the order of 1 × 10−3 S cm−1 is achieved by a
homogeneous and dense microstructure with small and uniform
grains as well as very small and finely distributed pores. Despite
the significantly different sintering parameters, Figure 6B shows
a similar homogeneous microstructure with only slightly larger
grains and pores for the LATP (−11.25 wt%) sample. The
homogeneous grain size and dense structure is not typical for
LATP sintered at this high temperature as the comparison in
Figure 6C with LATP (0.0 wt%) sintered with these parameters
shows. There, abnormal grain growth and the related microcracks
in these large grains, due to a high thermal expansion anisotropy
between a and c lattice parameters, shatter the microstructure and
cause a drastic decrease in ionic conductivity (Jackman and
Cutler, 2012; Hupfer et al., 2016; Waetzig et al., 2016). Grain

FIGURE 6 | Microstructure of (A) LATP (0.0 wt%) sample sintered at 900°C for 30 min; (B) LATP (−11.25 wt%) sample sintered at 1,000°C for 450 min and (C)
LATP (0.0 wt%) sample sintered at 1,000°C for 450 min.

FIGURE 7 | EDX-line-scan of a bright second phase particle in the structure of the sintered LATP (−11.25 wt%) sample. A significant increase can be clearly seen in
titanium intensity at the position of the bright region, which indicates that the second phase is highly possible to be TiO2.
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growth seems to be suppressed for the LATP (−11.25 wt%)
sample by second-phase particles, which are visible as
homogeneously distributed bright dots throughout the
structure at the triple points of the grain boundaries. The
evaluation of the corresponding XRD-pattern leads to the
assumption that the second phase is TiO2 and this is
reinforced by the results of the EDX (Energy dispersive
X-Ray) analysis of one of these particles shown in Figure 7.
The line-scan shows a clear increase in the titanium intensity in
the EDX measurement at the position of the bright particle. The
interaction between second-phase particles and migrating grain
boundaries is known as Zener-type mechanism in ceramic
materials and can reduce grain growth. This is likely to be the
reason for the moderate grain growth of the LATP (−11.25 wt%)
sample at these high sintering temperatures (Rahaman, 2007). It
allows for a densification of the microstructure that in turn results
in a ionic conductivity in the order of 1 × 10−3 S cm−1. The above
analysis serves to explain the possible mechanism why samples
like No. 14 have better performances than others, which agrees
well with the conclusions from our previous study (Schiffmann
et al., 2021) where a deficiency of phosphoric acid in the synthesis
can lead to the formation of LiTiOPO4 and TiO2. It seems that the
second phases are the reason for the prevention of abnormal grain
growth for sintering temperatures up to 1,000°C. Because the
small grains are less susceptible to microcracking, a dense
structure with high ionic conductivity is achievable even
sintered at these high sintering temperatures. Experimental
parameters for other samples, such as the sample No. 3
(1.06 × 10−3 S cm−1) synthesized with parameters (−7.5 wt%,
1,000°C, 540 min), are comparable to one of the samples
(−7.5 wt%, 1,000°C, 480 min with ionic conductivity of 1.09 ×
10−3 S cm−1) in the paper mentioned above and one can therefore
assume that a comparable microstructure is the reason for the
high ionic conductivity of this sample as well.

4 CONCLUSION

Our work shows that a data-driven materials design strategy based
on Bayesian optimization using Gaussian process regression can be
employed in effectively designing experimental conditions for
synthesizing LATP, which is one of the potential solid
electrolyte candidates for batteries. The whole design strategy is
divided into several sections: first, to find the most suitable model
for our study, virtual experiments are performed to compare
models built with several combinations of design strategies
using the training data assembled from previous laboratory
studies. In our study, we find that the model with UCB (upper
confidence boundary) strategy can achieve the best performance.
Second, the best model is then selected to design new experimental
parameters in order to synthesize new sample with the largest
possible value of ionic conductivity. Third, the corresponding
properties of the newly sintered samples are measured and
these results are fed back to update the model for the next
iteration of the design process. Our results show that within
several iterations, newly synthesized samples guided by the
model can achieve a good performance with maximum value of

1.09 × 10−3 S cm−1, which is in the same order of magnitude of the
maximum Li-ion conductivity that LATP can achieve. In addition,
the range of search space can be dynamically adjusted during the
experiment, making this method flexible according to researchers’
needs. Besides, it can help the researcher to quickly explore the
boundary of the range of experimental parameters whichmay yield
samples with good performance, hence it can be assisted in
designing experiments in an effective and reasonable way to
reduce the number of required experiments. It is worth noting
here that the main focus of this work is on single-objective
optimization, that is, only the ionic conductivity is paid
attention to. Admittedly, this is a simplification of the
optimization problem, since other properties (e.g., sintered
density) can also affect our interested property. As a result,
taking them into consideration and regarding it as a multi-
objective optimization problem (previous studies concerning
similar question can be found in (Harada et al., 2020; Yang
et al., 2020)) may further improve the performance of the
model and may hence result in better samples. This question
deserves to be explored in details and is left for the future research.

In order to further understand the reasons governing the high
ionic conductivity of these samples, the resulting crystal structures
and phase compositions are studied with X-ray diffraction and
energy dispersive X-Ray analysis, while the microstructures of
sintered pellets are investigated by scanning electron
microscopy. The formation of secondary phases such as TiO2, is
demonstrated to be substantially influenced by the initial
concentration of the precursors, which can influence ionic
conductivity, densification behavior, andmicrostructure evolution.

In summary, our studies demonstrate the advantages of adopting
machine learning for an accelerated design of experimental
parameters by the synthesis of materials with targeted properties,
which can help experimentalists to explore the search space
effectively and narrow the parameter range quickly. This is a
general method that can be mapped to other research systems
and the whole workflow will be kept sustainable within the
Kadi4Mat framework, which can reduce the number of required
experiments and accelerate the process of developing materials.
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Efficient Exploration of
Microstructure-Property Spaces via
Active Learning
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In materials design, supervised learning plays an important role for optimization and inverse
modeling of microstructure-property relations. To successfully apply supervised learning
models, it is essential to train them on suitable data. Here, suitable means that the data
covers the microstructure and property space sufficiently and, especially for optimization
and inverse modeling, that the property space is explored broadly. For virtual materials
design, typically data is generated by numerical simulations, which implies that data pairs
can be sampled on demand at arbitrary locations in microstructure space. However,
exploring the space of properties remains challenging. To tackle this problem, interactive
learning techniques known as active learning can be applied. The present work is the first
that investigates the applicability of the active learning strategy query-by-committee for an
efficient property space exploration. Furthermore, an extension to active learning strategies
is described, which prevents from exploring regions with properties out of scope
(i.e., properties that are physically not meaningful or not reachable by manufacturing
processes).

Keywords: active learning, adaptive sampling, data generation, inverse modeling, materials design, membership
query synthesis, microstructure-property relations, query-by-committee

1 INTRODUCTION

1.1 Motivation
With regard to natural learning processes, Cohn et al. stated that “in many situations, the learner’s
most powerful tool is its ability to act, to gather data, and to influence the world it is trying to
understand” (Cohn et al., 1996). One attempt to transfer this ability to methods in the field of
machine learning is called active learning. Active learning describes an interactive learning process in
which machine learning models improve with experience and training (Settles, 2012). It is therefore
contrary to the often used approach of gathering data a priori and learn from it afterwards. In fact,
active learning couples both, sampling and training, what typically results in an efficient and broad
data space exploration.

In terms of materials design, the exploration of data spaces is quite important. For a designer, it is
essential to know all possible microstructure configurations and reachable properties of a material in
order to increase the performance of a workpiece. How to delineate these configurations and
properties is described for example in the microstructure sensitive design (MSD) approach (Adams
et al., 2001). Two necessary steps for MSD are 1) to determine the design space yielding a hull of
possible microstructures and 2) to calculate the corresponding properties defining a so-called
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property closure (Fullwood et al., 2010). For complex high-
dimensional microstructure representations, exploring the
design space is, however, challenging. It is even more
challenging, if gathering data is cumbersome, because it is
time-consuming (e.g., running complex numerical
simulations), ties up manpower (e.g., labeling data manually)
or laborious (e.g., performing experiments).

To the authors knowledge, the present work is the first one
that uses the active learning strategy query-by-committee
(Burbidge et al., 2007) for generating microstructure-property
data in materials science. We show that the active learning
strategy can be used to explore microstructure-property spaces
efficiently and that the generated data is better suited to train
accurate machine learning models than data generated via
classical sampling approaches. Moreover, we present an
extension to active learning approaches that aims to avoid
sampling in regions with properties out of scope. This is
necessary, as defining bounds for microstructure spaces is not
always simple and it can happen that active learning techniques
explore regions with properties that are physically not meaningful
or not reachable by manufacturing processes.

1.2 Related Work
Active learning techniques can be grouped into three use-case
specific classes, namely stream-based selective sampling, pool-
based selective sampling and membership query synthesis
(Settles, 2009). The first two mentioned are based either on a
continuous data-stream or an a priori defined pool of data, from
which the active learning algorithm can chose data points to be
labeled. In membership query synthesis, in contrast, the
algorithm is free of choice at which location new data points
are created. Therefore, membership query synthesis is well suited
for virtual data generation on the basis of numerical simulations.

Membership query synthesis goes back to Angluin (1988) for
classification problems and to Cohn et al. (1996) for regression
problems. The technique presented in Cohn et al. (1996) is called
variance reduction. It aims to minimize the output variance of a
machine learning model in order to minimize the future
generalization error. Alternative approaches for regression
problems are maximizing the expected change of a machine
learning model when seeing new data (Cai et al., 2013) or
committee-based approaches like query-by-committee
(Burbidge et al., 2007), where the prediction variance of a
committee consisting of multiple separately trained machine
learning models is minimized. In the present study, we use the
latter approach, as it is straightforward to implement and scales to
complex models (i.e., neural networks). Recent research in active
learning targets the application of deep learning models, see for
example Stark et al. (2015) andWang et al. (2016) for applications
using convolutional neural networks and Zhu and Bento (2017),
Sinha et al. (2019) and Mayer and Timofte (2020) for generative
models.

Instead of actively sampling data spaces, classical space-filling
sampling strategies can be used to generate data without
considering the learning task, see Fang et al. (2000), Simpson
et al. (2001) and Wang and Shan (2006) for an overview. In the
following, we list some of the most popular space-filling sampling

strategies. Latin hypercube design (McKay et al., 2000) aims to
partition the dimensions of the input space into equidistant slices
and places data points such that each slice is covered by one data
point. Orthogonal arrays (Owen, 1992) are special matrices that
define sampling with the aim to sample data spaces uniformly. In
particular, orthogonal arrays can be used to generate uniform
Latin hypercubes (Tang, 1993). Furthermore, low-discrepancy
sequences can be used to cover spaces uniformly with data points,
see for example Niederreiter (1988). Among others, popular
sequences are the Hammersley sequence (Hammersley and
Handscomb, 1964), Halton sequence (Halton, 1964) and Sobol
sequence (Sobol, 1967). In addition to these methods, a common
sampling strategy is to randomly draw samples from a uniform
distribution. However, all of these approaches suffer from the
curse of dimensionality, which means that the effort needed to
sufficiently sample data spaces grows exponentially with the
number of dimensions.

In materials design, the usage of classical sampling strategies is
very common. The framework for data-driven analysis of
materials that is presented in Bessa et al. (2017) for example,
uses data generation on the basis of space-filling sampling
methods, especially the Sobol sequence. In Gupta et al. (2015),
dual-phase 2D-microstructures are generated by randomly
placing particles in a steel matrix. In order to generate
spatially resolved dual-phase microstructure volume elements,
Liu et al. (2015b) uses evenly distributed data of phase volume
fractions. Regarding homogenized microstructural features, in
Iraki et al. (2021), Latin hypercube design is used to generate a
data set of textures for cold rolled steel sheets. Even special
sampling heuristics have been developed for generating sets of
microstructure features, like in Johnson and Kurniawan, 2018.

Also, adaptive sampling techniques are used in materials
design, however, in the sense of an optimization aiming to
identify microstructures with targeted properties. In Liu et al.
(2015a) and Paul et al. (2019), specific machine learning-based
optimization approaches are presented that efficiently guide
sampling to regions in the space of microstructures, where
microstructures with desired properties are expected to be
located. Further statistic-based approaches exist that use
surrogate-based optimization (cf. Forrester and Keane, 2009),
see Nikolaev et al. (2016), Balachandran et al. (2016), Lookman
et al. (2017) and Lookman et al. (2019). Yet, as these approaches
aim to find individual material compositions or microstructures
for certain target properties, they are not applicable for sampling
microstructure-property spaces broadly.

So far, only few publications exist, which describe the usage of
active learning to train a machine learning model while
generating microstructure-property data (Jung et al., 2019;
Kalidindi, 2019; Castillo et al., 2019). The approaches
presented therein are based on variance reduction using
Bayesian models, like Gaussian process regression (GPR), cf.
Seo et al. (2000). Such Bayesian approaches can have a
tremendous advantage when working with experimental
measurements. However, the computational complexity of
GPR increases cubically with the number of data points.
Furthermore, it is worth mentioning the Bayesian approach
described in Tran and Wildey (2021) to solve stochastic
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inverse problems for property-structure linkages. It is the aim of
the approach to model posterior probabilities for microstructures
having desired properties. This is achieved by successively
updating an a priori probability distribution with new sampled
microstructure-property data points. These are generated by
drawing microstructure samples from the actual probability
distribution and evaluating their properties. Afterwards, the
samples are accepted or rejected depending on a certain
criterion. However, this so-called acceptance-rejection
sampling can be disadvantageous in terms of sample
efficiency, as the decision to accept samples is made after
calculating properties.

1.3 Paper Structure
In Section 2 the concept of membership query synthesis is
presented including an extension to avoid sampling in regions
out of scope. Additionally, the applied query-by-committee
approach is described in detail. In Section 3, three numerical
examples are shown to demonstrate the advantage of using active
learning to sample microstructure-property spaces. The results
are discussed in Section 4. The work is summarized in Section 5
and a brief outlook on the application of active learning in virtual
materials design is given.

2 METHODS

2.1 Active Learning via Membership Query
Synthesis
Membership query synthesis follows an iterative procedure that is
sketched schematically in Figure 1, cf. Settles (2012). The
procedure starts with an initial data set of input variables
Xi ∈ Rk and corresponding target variables Y i ∈ Rl. The
mapping from input space X to output space Y is
approximated by a learner:

f: X → Y, y � f x( ), (1)
where x ∈ X ⊂ Rk and y ∈ Y ⊂ Rl. The learner is realized by one
or more supervised learning models. To apply active learning, it is
essential that the learner’s prediction quality can be measured. On
the basis of such ameasure, an optimization is performed with the

objective to find the location X* in the input space X at which the
learner’s prediction quality is likely worst. At this location, a new
data point is generated in order to improve the learner. To get the
corresponding target label Y*, the so-called oracle (in our case a
numerical simulation) is queried. The obtained new data tupleX*,
Y* is added to the data set and the procedure is repeated.

2.2 Avoid Queries in Regions out of Scope
Following the procedure described in Section 2.1, new data
points are generated over the whole input space. In many
applications, this might be appropriate to improve the learner.
However, when the input space bounds cannot be defined
adequately, it is probable that the active learning algorithm
queries for data in regions that are out of interest for the
application case. To avoid sampling in regions out of scope,
the original workflow depicted in Figure 1 can be extended with a
region, cf. Figure 2. The purpose of the region filter is to limit the
optimizer to regions in the input space leading only to output
quantities of interest. In order to set up the region filter, the data
points Xi get an additional class label c ∈ (0, 1), which marks if the
output values are of interest or out of scope. The bounds in the
output space that determine the class label can be defined by the
user.

The region filter is realized by a binary classifier that partitions
the input space depending on the class label by learning the
mapping function

g: X → c, c � g x( ). (2)
In fact, the described extension is similar to Bayesian
optimization approaches that account for unknown constraints
using classification methods, see for example Sacher et al. (2018),
Heese et al. (2019) and Tran et al. (2019).

Often the amount of data that is out of scope is much lower
than the data of interest. If this is the case, one-class classification
methods can be used as region filter, such as isolation forests (Liu
et al., 2008) or one-class support vector machines (Schölkopf
et al., 2001). Both are unsupervised learning methods that delimit
the input space, which is covered by data out of scope. Once
trained, they are used to estimate the class membership of unseen

FIGURE 1 | Iterative procedure of membership query synthesis, cf.
Settles (2012).

FIGURE 2 | Iterative procedure of membership query synthesis (cf.
Settles (2012)) including an extension to avoid sampling in regions out of
scope. The class labels of the data points are represented by Ci ∈ (0, 1).
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data points. For more complex classification problems, this can
also be achieved by deep learning approaches (cf. Chalapathy and
Chawla, 2019), such as autoencoder neural networks (Hinton and
Salakhutdinov, 2006; Sakurada and Yairi, 2014).

2.3 Query-By-Committee for
Microstructure-Property Space Exploration
Originally, query-by-committee was introduced by Seung et al.
(1992) for classification problems. In this study, the query-by-
committee approach following Burbidge et al. (2007) for
regression problems is applied. In this approach, the learner is
realized by a committee of n regression models (here we use
feedforward neural networks). Following the workflow depicted
in Figure 1, the committee members are trained on the actual
data set. However, in this work, each neural network is trained
only on a subset of the data (RayChaudhuri and Hamey, 1995). In
order to query new data points, the microstructure space is
searched for the location at which the committee members
disagree the most. Disagreement is defined by the variance of
the neural network predictions s2 (Krogh and Vedelsby, 1995):

s2 x( ) � ∑n
η�1

fη x( ) − �f x( )( )2, (3)

where fη (x) denotes the property prediction of neural network η
and �f(x) denotes the mean over all predictions at location x. The
location to query the next data point is determined by

Xp � arg max
x

s2 x( )( ). (4)

Certainly, it is challenging here to chose the right number of
regression models and to equip them with sufficient complexity
(e.g., depth of neural networks). Depending on the mapping to
learn, we suggest to assign a lower complexity to the regression
models in the beginning, as the amount of initial data is typically
low. With an increasing amount of data it is possible to increase
the complexity of the regression models, which was, however, not
done in this study. Regarding the number of regression models in
the committee, the similarity of the query-by-committee
approach to Bayesian methods like GPR is worth mentioning
here. GPR can be interpreted as a distribution over functions
(Williams and Rasmussen, 2006), which is also the case for the
query-by-committee approach when the number of committee
members goes to infinity. Though, the overall training time of the
query-by-committee approach increases linearly with an
increasing number of committee members.

In order to extend the query-by-committee approach to avoid
sampling in regions out of scope, first, data points that exceed the
predefined output bounds need to be filtered out from the actual
data set. Then, a classifier is trained on these data points in order
to delimit a region in microstructure space. This region is
excluded from the optimization by adding a soft constraint to
Eq. 4:

Xp � arg max
x

s2 x( ) −W 〈ρ x( )〉( ), (5)

where 〈·〉 denotes the Macaulay brackets and ρ(x) denotes the
distance of x to the decision boundary that is defined by the
classifier. As s2(x) and ρ(x) can be of different magnitudes, the
scalar weight factor W is introduced, which needs to be set in
order to balance the optimization.

In this work, ρ(x) is determined by an isolation forest classifier.
Isolation forest is an outlier detection method that consists of an
ensemble of decision trees. Each tree partitions the input space
randomly until all training data points are isolated. It is assumed
that outliers typically lie in partitions with rather short paths in
the decision tree structures. On the basis of the path lengths, an
anomaly score (in the range of (0, 1)) can be defined for each
observation, see Liu et al. (2008) for details. Therein, it is stated
that data points with an anomaly score < 0.5 can be regarded as
being normal. Consequently, the decision function ρ(x) can be
defined by shifting the anomaly score to the range (−0.5, 0.5), and,
in this work, by multiplying it by −1. The latter needs to be done
because the isolation forest is trained only onmicrostructures that
exceed the predefined property bounds. In this respect, two cases
can occur in Eq. 5. If ρ(x) > 0, the optimization is punished such
that the optimizer is forced to generate candidate microstructures
that do likely not exceed the specified property bounds.
Generating such microstructures then leads to ρ(x) ≤ 0, what
does not affect the optimization at all.

To solve Eqs 4, 5, we use the differential evolution algorithm
by Storn and Price (1997) as it is implemented in Python package
scipy (Virtanen et al., 2020). The neural network models and the
isolation forest classifier applied in this work are based on the
implementation in Python package scikit-learn (Pedregosa et al.,
2011).

3 RESULTS

3.1 Toy Example: Dirac Delta Function
First, a simplistic extreme case is analyzed. The data generating
process considered here is given by an approximation of the Dirac
delta function via a Gaussian distribution

δ x( ) � 1
|α| ��

x
√ e−

x
α( )2 , (6)

with parameter α = 0.1. A set of 500 data points is generated by
randomly drawing samples of x in the range of (−50, 50).
Additionally, 500 data points are generated via query-by-
committee. Therefore, a committee of five neural networks is set
up, which are all trained on a random subset of 80%of the actual data.
The neural networks consist of two layers with five neurons each. To
avoid overfitting, early stopping (Prechelt, 1998) and L2-
regularization (Krogh and Hertz, 1992) is applied with
regularization parameter λ = 0.0001. As activation functions,
rectifiers (ReLU) are used. The mean-squared-error loss function
between true and predicted δ(x) is applied and optimized using the
limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
optimizer (Liu and Nocedal, 1989). The approach is initialized
with 100 randomly drawn samples.
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The resulting 500 data points and their distribution over x are
shown in Figure 3. The data points generated by random
sampling are distributed almost uniformly over the input
space. All data points are located in regions of lower δ(x). The
maximum δ(x)-value in the randomly sampled data set equals
0.506 208 09. In contrast, the query-by-committee approach
concentrates on sampling the region close to the peak of the
approximated delta function. The maximum δ(x)-value in the
data set equals 5.64189535, which is very close to the maximum of
Eq. 6: δ(x = 0) = 5.64189584. The generated data is available
online, see Morand et al. (2021).

3.2 Identifying Material Model Parameters
The second example is about inferring material model parameters
from given material model responses, which is (like typical
materials design problems) an inverse identification problem, cf.
Mahnken (2004). To solve it, neural networks can be used to
directly learn a mapping from material model responses to model
parameters (Yagawa and Okuda, 1996; Huber, 2000). Such an
approach is for example applied in Huber and Tsakmakis (1999) to
identify constitutive parameters of a finite deformation plasticity
model on the basis of spherical indentation tests. As simulating
spherical indentation tests is time consuming, the usage of active
learning can be beneficial, because it efficiently explores the space
of material model parameters and responses. This characteristic
can be understood as goal-directed sampling, which is essential for
the prediction quality of supervised learning models that are
directly trained on inverse relations (Jordan and Rumelhart, 1992).

In this example, we analyze the identification problem
described in Morand and Helm (2019), as it requires a special
sampling, for which a knowledge-based approach has been

developed. The data generating process is defined by the
hardening model (cf. Helm, 2006):

H sp, β, γ( ) � γ

β
1 − e−βsp( ), (7)

where β and γ are material dependent parameters and sp denotes
the accumulated plastic strain. For the purpose of this study, the
hardening curves are discretized into 20 equidistantly distributed
points in sp ∈ (0.0, 0.2). For sampling, we consider β and γ

β being
inside the ranges (5, 200) and (100, 400), respectively. This yields
a parameter identification problem as it is illustrated in Figure 4.

In total 2,500 discretized hardening curves H i ∈ R20 are
generated by varying β and γ

β using 1) Latin hypercube design,
2) the proposed knowledge-based sampling approach following
Morand and Helm (2019) and 3) query-by-committee. The
knowledge-based approach from Morand and Helm (2019) is
also based on Latin hypercube design, however, the parameter
variations in β are manipulated such that the region of lower β-
values is sampledmore densely (as this region is significant for the
shapes of the hardening curves). The configuration of the query-
by-committee approach here is the same as in Section 3.1, except
for the neural network complexity, which is increased to two
hidden layers with 10 and 15 neurons. The initial data set consists
of 100 randomly sampled data points.

The resulting sets of parameter tuples (β, γβ) chosen by the three
sampling strategies are shown in Figure 5 and are represented in
the following by Bi ∈ R2. Per definition, Latin hypercube design
samples the parameter space almost uniformly. In contrast, the
query-by-committee approach samples the parameter space in a
similar manner as it is done by the knowledge-based approach.
Thereby, the region of lower β-values is sampled even more

FIGURE 3 | The sampled input-output space of the approximated Dirac delta function δ(x) is shown above. 500 samples were generated via random sampling (A)
and query-by-committee, labeled as QBC, (B). Below, the normalized Gaussian kernel density estimation is shown for the data sets generated via random sampling (C)
and query-by-committee (D).
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densely and, in contrast to the knowledge-based approach, also
the bounds of the parameter space are sampled. Naturally, the
three generated data sets have different effects on the prediction
quality of supervised learning models.

In order to show these effects, neural networks are trained on
the data sets. As there is no ground truth to test the trained
models, the generated data is also used for testing. Training and
testing is done for both, the forward mapping

f: B → H, h � f b( ), (8)

and the inverse mapping as it is outlined in Figure 4

f−1: H → B, b � f−1 h( ), (9)
where b ∈ B ⊂ R2 and h ∈ H ⊂ R20. Here, B denotes the space of
hardening parameters and H the space of discretized hardening
curves.

The neural networks that learn the forwardmapping consist of
two hidden layers with 10 and 15 neurons and for learning the

inverse mapping they consist of two hidden layers with 15 and 10
neurons. In both cases, the mean-squared-error loss function
between true and predicted output quantity is applied and
optimized using the limited-memory BFGS optimizer with L2
regularization of λ = 0.0001. Furthermore, early stopping is
applied using a random subset of 10% of the training data for
validation. Both networks use ReLU activation functions. To
measure the performance of the forward models, the absolute
error between the predicted curveHpred and the true curveHtrue is
given by

ΔH � 1
20

∑ |Hpred −H true|. (10)

To measure the performance of the inverse models, the curves
are reconstructed using the predicted material model parameters
(which yields Hrecon) and compared with the true curves Htrue:

ΔH � 1
20

∑ |Hrecon −H true|. (11)

FIGURE 4 | Parameter identification problem. A data base of material model parameters and corresponding responses is set up (black dots and curves), which can be
used to train a neural network (NN) on the inversemapping. After training, the neural network is able to identify parameters for given hardening curves (reddashed line and cross).

FIGURE 5 | The sampled parameter space of the hardening model described in Eq. 7. 2,500 samples were generated using Latin hypercube design (A), the
knowledge-based sampling approach following Morand and Helm (2019) (B) and query-by-committee (C).
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Training and test runs were performed five times with
different random validation splits. The averaged results are
listed in Table 1. The neural network trained on the data set
generated by query-by-committee reaches a similar performance
than the neural network trained on the data generated by the
knowledge-based approach when tested on the Latin hypercube
samples. When tested on each other, the averaged mean is rather
low for both approaches. However, one can observe that for
modeling the forward relation, the neural network trained with
the data generated by query-by-committee is slightly better than
the one trained with the data generated by the knowledge-based
sampling approach and vice versa for the inverse relation.
Comparing both neural networks with the neural network
trained on the data generated via Latin hypercube design, the
latter is outperformed for every test set. The generated data is
available online, see Morand et al. (2021).

3.3 Artificial Rolling Texture Generation
As a third example, we analyze the problem of generating
microstructure-property data, which is used to learn a forward
mapping as a fundamental basis to solve materials design
problems in Iraki et al. (2021). The specific materials design
problem tackled therein is the identification of crystallographic
textures for given desired material properties of DC04 steel
sheets, see Figure 6 for an illustration. Basically, this is
achieved by using a machine learning-based model that
approximates the mapping from crystallographic textures to
properties combined with an optimization approach.
Alternatively, the identification problem can be solved by

learning the inverse mapping. In general, solving inverse
problems is challenging due to ill-posedness. In this example,
the solution of the inverse problem is not guaranteed to exist, and
if it exists, it is not guaranteed to be unique (in contrast to the
previous example). Here, the uniqueness and existence of a
solution is highly depending on the choice of desired
properties. If the definition of desired properties is very
specific, then it is rather unlikely that a microstructure leading
to exact these properties exists. One way to tackle this problem is
by defining target property windows (desired properties with
tolerances), as is done in Iraki et al. (2021) for example.

In Iraki et al. (2021), texture generation is done based on the
rolling texture description model described in Delannay et al.
(1999). In this study, the parameter ranges for the texture
description model are defined as is described in Iraki et al.
(2021). To calculate the properties of interest, a crystal
plasticity model is used. The model is of Taylor-type and is
set up following Kalidindi et al. (1992). For a detailed description
of the Taylor-type crystal plasticity model, see Dornheim et al.
(2022) and Iraki et al. (2021). Besides, instead of using a Taylor-
type crystal plasticity model, also computationally expensive full-
field models can be applied here. For the purpose of our study, we
use the Taylor-type crystal plasticity model to determine the
Young’s moduli Eφ and the Lankford coefficients (r-values) rφ,
both at 0, 45 and 90° to rolling direction for given crystallographic
textures. In the following, the generated properties are
represented by Pi ∈ R6. The material model parameters are
chosen to represent DC04 steel (cf. Iraki et al., 2021).
However, using the elastic constants for ferrite from Eghtesad
and Knezevic, (2020), the Young’s modulus is slightly
overestimated by our simulations.

In the following, we compare the generation of
5,000 texture-property data pairs using Latin hypercube
design and query-by-committee. As r-values of rolled DC04
sheets typically do not exceed values of 5.0, we additionally
apply the extension described in Section 2.2 to suppress
generating data in regions leading to r > 5.0 (the factor to
weight the soft constraint W in Eq. 5 is set to 100). For the
query-by-committee approach, a committee of five neural
networks is used with two hidden layers of 24 and 6
neurons. Every committee member is trained on a random
subset of 80% of the actual data. The mean-squared-error loss
function between true and predicted properties is applied and
the limited-memory BFGS optimizer is used. Early stopping
and L2-regularization with λ = 0.1 are applied. The activation
function used is ReLU. For an initial data set, 100 texture-
property data points are sampled randomly.

TABLE 1 | Averaged mean ΔH for the neural networks that are trained and evaluated using the three data sets. The data sets are generated using LHD (Latin hypercube
design), KBS (the knowledge-based sampling approach), and QBC (query-by-committee). The best result for each test set is marked in bold.

Av. mean
ΔH (MPa)

Forward model trained with Inverse model trained with

LHD set KBS set QBC set LHD set KBS set QBC set

Tested on LHD set — 3.70 3.46 — 2.60 3.06
Tested on KBS set 7.92 — 4.07 9.10 — 6.10
Tested on QBC set 7.88 4.77 — 9.77 5.66 —

TABLE 2 | Average mean ΔE and Δr for the neural networks trained and evaluated
on the three generated data sets: LHD (Latin hypercube design), QBC (query-
by-committee) and QBC+ (query-by-committee with extension). The best result
for each test set is marked in bold.

Av. mean ΔE (MPa) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 125 133
Tested on QBC set 240 — 207
Tested on QBC + set 183 157 —

Av. mean Δr (−) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 0.035 0.037
Tested on QBC set 0.081 — 0.062
Tested on QBC + set 0.055 0.045 —
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The obtained data sets are depicted as projections in property
space in Figure 7 (E0, E90) and Figure 8 (r45, r0). The point cloud
generated by Latin hypercube design comprises a much smaller
region in property space compared to the ones generated by
query-by-committee. Furthermore, the point cloud is
concentrated at its center. Such a strong concentration cannot
be observed in the point clouds generated by query-by-
committee. Also the minimum and maximum values in both,
E and r, that are found by the active learning strategies are more
extreme than by using Latin hypercube design. However, the
original query-by-committee sampling approach leads to
unrealistic high r-values, cf. Figure 8B. In contrast, Figure 8C

shows that this effect can be minimized by applying the extension
to query-by-committee presented in Section 2.2. The applied
region filter (isolation forest) limits the active learning search
space in such a way that textures with high r-values are excluded.
Therefore, the amount of textures in the data set that lead to
unrealistic high r-values decreases dramatically compared to the
data set generated without the query-by-committee extension.
The latter includes 141 data points with r > 5, while the former
includes only 11. The generated data is available online, see
Morand et al. (2021).

To evaluate the effect of the applied sampling strategies on
supervised learning models, we train and test feedforward neural

FIGURE 6 | Illustration of the texture identification problem. The space of rolling textures is described by dj and the space of properties by pj.

FIGURE 7 | 5,000 sampled texture-property data points projected into property space (E0, E90). Data points are generated on the basis of Latin hypercube design
(A), query-by-committee (B) and extended query-by-committee with r ≤ 5.0 (C).

FIGURE 8 | 5,000 sampled texture-property data points projected into property space (r45, r0). The data points are generated on the basis of Latin hypercube
design (A), query-by-committee (B) and extended query-by-committee with r ≤ 5.0 (C).
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networks on the generated data. For training and testing, we
exclude the data points with r > 5.0. In contrast to Section 3.2,
only the forward mapping is modeled, as the inverse relation
cannot be learned directly using feedforward neural networks due
to its non-uniqueness. For the forward mapping, first, we
approximate the orientation distribution function of the
generated textures via symmetric generalized spherical
harmonics of degree 12 Bunge (2013). The constants Di ∈ R33

of this series expansion are used as texture representation (cf.
Kalidindi et al., 2004). The feedforward neural networks are
supposed to learn the mapping from texture space D to
property space P

f: D → P, p � f d( ), (12)
where p ∈ P ⊂ R6 and d ∈ D ⊂ R33. Each neural network
consists of two hidden layers with 30 and 10 neurons with
ReLU activation functions. The mean-squared-error loss
function is applied and optimized using the limited memory
BFGS optimizer. L2 regularization with λ = 0.0001 is applied as
well as early stopping using a subset of 10% of the training data
for validation.

The performance measure for the neural networks used in this
example is the mean absolute error for the Young’s moduli

ΔE � 1
3

|E0,pred − E0,true| + |E45,pred − E45,true| + |E90,pred − E90,true|( )
(13)

and for the r-values

Δr � 1
3

|r0,pred − r0,true| + |r45,pred − r45,true| + |r90,pred − r90,true|( ).
(14)

Table 2 and 3 show the results of the trained neural networks,
when tested on the generated data. Training and test runs were
performed five times with different random validation splits. The
mean and maximum errors were averaged over the data set. Both
tables show that the neural networks trained with data generated
by query-by-committee outperform the neural networks trained
with data generated on the basis of Latin hypercube design.
However, the differences in the averaged mean errors are not

significantly high. In contrast, regarding the averaged maximum
errors, the differences are much higher. When tested on the data
set generated by Latin hypercube design, both neural networks
that are trained with data generated by query-by-committee
achieve similar results.

4 DISCUSSION

In Section 3.1, an extreme case is studied to emphasize the
advantage of using active learning for the generation of
microstructure-property data sets. The peak of the
approximated delta function is chosen to be quite steep such
that the probability of sampling data points on it by random
sampling is rather small. As a result, random sampling covers the
peak region of the delta function insufficiently. In contrast, by
using query-by-committee, the peak region is explored
extensively. As pointed out, even the maximum value in the
sampled data set is very close to the maximum value of the
approximated delta function. If we imagine the delta function
expressing a relation between microstructures and properties, we
can easily see the advantage for a designer to gain knowledge
about the property peak in order to be able to improve the
performance of a workpiece.

In Section 3.2, the query-by-committee approach is compared
to a classical Latin hypercube design approach and a knowledge-
based sampling approach for generating data of hardening model
parameters and responses. Originally, the knowledge-based
approach was developed in Morand and Helm (2019) to
optimally sample the hardening model’s parameter space by
incorporating knowledge about the model’s behavior. The
results show that the query-by-committee approach is able to
find a similar parameter distribution, but without manually
introducing any expert knowledge. The data generated by
query-by-committee is equally appropriate for training
forward and inverse neural network models, which all
outperform the models trained on the data generated by the
baseline Latin hypercube design approach. All in all, the results
show that by using query-by-committee, sampling can be
performed automatically in a goal-directed way without
additionally introducing expert knowledge.

Also, the results from Section 3.3 show that the query-by-
committee approach is more suitable to sample microstructure-
property spaces than classical space-filling sampling strategies. In
this example, a space of artificial rolling textures is sampled aiming
to efficiently explore the space of corresponding properties. A
comparison of the spread of the generated properties point clouds
reveals with which additional possibilities a designer can be
equipped, when the design space is sampled via active learning.
However, the original query-by-committee approach explores the
texture space in regions that lead to unrealistic high properties. By
using the extension to membership query synthesis that is
presented in this paper, sampling in regions with unrealistic
high properties can be suppressed. In fact, still some data
points are generated in these regions, which are yet necessary
for the binary classifier (region filter) to be trained. Nevertheless,
compared to the classical query-by-committee approach, the

TABLE 3 | Average maximum ΔE and Δr for the neural networks trained and
evaluated on the three generated data sets: LHD (Latin hypercube design),
QBC (query-by-committee) and QBC+ (query-by-committee with extension). The
best result for each test set is marked in bold.

Av. max ΔE (MPa) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 1,347 1,252
Tested on QBC set 2,684 — 1977
Tested on QBC + set 2,296 1,227 —

Av. max Δr (−) Forward model trained with

LHD set QBC set QBC+ set

Tested on LHD set — 0.345 0.388
Tested on QBC set 0.921 — 0.898
Tested on QBC + set 0.725 0.483 —
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amount of property data out of scope is much lower and sampling
concentrates on the predefined region of interest. Consequently,
when training a supervised learning model on the inverse relation
(predicting textures for given properties), more extreme properties
can be learned on the basis of data generated by query-by-
committee.

Such a positive effect can also be observed on learning the
forward relation. The neural networks trained on the data
generated by query-by-committee both outperform the model
trained with the data generated by Latin hypercube design.
However, no significant differences in the averaged mean
absolute error (shown in Table 2) can be seen. This is due to the
fact that most of the data points are located near the center of the
point cloud, which is where all the neural networks are quite
accurate. In contrast, the differences in the averaged maximum
errors are more significant. This is because the data sets sampled by
query-by-committee contains more extreme data points than the
data set sampled by Latin hypercube design. Furthermore, it can be
seen that the neural network trained on the data generated by the
extended query-by-committee approach performs worse than the
network trained with the data from the original approach. This is a
sign that the region filter limits the texture space too rigorously and
further adjustment is needed. However, the general concept of the
active learning extension is proven, as less samples were generated in
regions out of scope compared to the original approach.

5 SUMMARY AND OUTLOOK

The present paper shows that active learning can be used to efficiently
explore microstructure-property spaces. By using the active learning
approach query-by-committee, the focus of data generation is
automatically shifted to sparse regions and nonlinearities.
Subsequently, two main advantages of active learning in materials
design applications follow: 1) regions in microstructure space that
lead to extreme properties are explored extensively and 2) in contrast
to classical space-filling sampling strategies, active learning can be
used for goal-directed sampling, which is relevant for training direct
inverse machine learning models. Future work is, however, necessary
to investigate how the size of the committee, the fraction of the data
used to train the committee members and the complexity of these
affect sampling. Also it is necessary to benchmark the query-by-
committee approach to the Bayesian approaches, which are
mentioned in the introduction.

In general, a problem for active learning approaches arises,
when the input space bounds are not set adequately. Then,
regions in microstructure space are explored that lead to
properties out of scope. However, sampling in these regions

can be suppressed by using the extension presented in this
work. Still one drawback of using active learning remains: In
contrast to classical sampling strategies, active learning is time-
intensive, as in every active learning cycle one or more machine
learning models need to be trained and additionally an
optimization has to be performed. Yet, the results of the
present paper show that by using active learning, less data is
needed to sufficiently cover microstructure-property spaces than
it is the case for classical sampling strategies.

Therefore, regarding virtual materials design, the application of
active learning techniques is suitable when sample-efficiency plays
an important role. This is for example the case when data is
generated using time-intensive numerical simulations, like for
example on the bases of spatially resolved full-field
microstructures. Also, active learning can help setting up multi-
fidelity data bases by enriching less quality data with precisely
sampled high quality simulation data or experimental data.
Though, incorporating multi-fidelity data and experimental data
has not been studied in this work and is part of future research.
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The AiiDA-Spirit Plugin for Automated
Spin-Dynamics Simulations and
Multi-Scale Modeling Based on
First-Principles Calculations
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Florian Rhiem4 and Stefan Blügel 1
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Landau-Lifshitz-Gilbert (LLG) spin-dynamics calculations based on the extended
Heisenberg Hamiltonian is an important tool in computational materials science
involving magnetic materials. LLG simulations allow to bridge the gap from expensive
quantum mechanical calculations with small unit cells to large supercells where the
collective behavior of millions of spins can be studied. In this work we present the
AiiDA-Spirit plugin that connects the spin-dynamics code Spirit to the AiiDA
framework. AiiDA provides a Python interface that facilitates performing high-
throughput calculations while automatically augmenting the calculations with metadata
describing the data provenance between calculations in a directed acyclic graph. The
AiiDA-Spirit interface thus provides an easy way for high-throughput spin-dynamics
calculations. The interface to the AiiDA infrastructure furthermore has the advantage
that input parameters for the extended Heisenberg model can be extracted from high-
throughput first-principles calculations including a proper treatment of the data
provenance that ensures reproducibility of the calculation results in accordance to the
FAIR principles. We describe the layout of the AiiDA-Spirit plugin and demonstrate its
capabilities using selected examples for LLG spin-dynamics andMonte Carlo calculations.
Furthermore, the integration with first-principles calculations through AiiDA is
demonstrated at the example of γ–Fe, where the complex spin-spiral ground state is
investigated.

Keywords: spin-dynamics simulation, high-throughput computation, Landau-Lifshitz-Gilbert equation, Monte-Carlo
simulation, spin-spiral state, gamma-Fe, skyrmion, antiskyrmion

1 INTRODUCTION

Magnetic materials play an important role in modern technology. Their most important applications
range from electrical motors to the storing and processing of digital information. The performance of
such applications crucially relies on the performance of magnets where the knowledge of their
magnetic order, the Curie temperature, the magnetic hardness or their chirality plays an important
role. Computational materials design of magnetic materials and devices is a complex multi-scale
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problem. While quantum mechanical calculations allow to
predict the interaction strength among magnetic atoms
(Liechtenstein et al., 1987), large scale simulations for
nanometer to micrometer length scales are unfeasible due to
their computational cost. Mapping these interactions to a classical
Heisenberg model allows to bridge the scales from the atomic
length scale to the length scale of devices. The classical
Heisenberg model is an approximation to the quantum
mechanical problem which assumes that the magnetic
moments are localized on atoms and can be described as
classical vectors which is applicable for a wide range of materials.

Spin-dynamics calculations based on the Landau-Lifshitz-
Gilbert (LLG) equation (Landau and Lifshitz, 1935; Gilbert,
2004) are a widely used tool for this multi-scale modeling of
magnetic materials (Dupé et al., 2014; Hoffmann et al., 2017;
Hoffmann et al., 2021;Weißenhofer et al., 2021), providing access
to the collective behavior of millions of spins (Müller et al., 2019).
This approach allows to find, for instance, the (non-collinear)
magnetic ground state based on an energy minimization of the
extended Heisenberg Hamiltonian or to study the dynamics of
magnetic solitons such as skyrmions (Mu€hlbauer et al., 2009; Yu
et al., 2010; Heinze et al., 2011; Back et al., 2020) or hopfions
(Bogolubsky, 1988; Sutcliffe, 2018; Kent et al., 2021) at finite
temperature. In combination with the geodesic nudged elastic
band method and the harmonic transition state theory (Bessarab
et al., 2012; Bessarab et al., 2015) it furthermore gives insight into
the stability of aforementioned objects (Müller et al., 2019).

In this work we introduce the AiiDA-Spirit plugin that
connects the Spirit code (Müller et al., 2021) to the AiiDA
environment (Huber et al., 2020). AiiDA is an open-source
Python framework designed around the FAIR principles of
findable, accessible, interoperable and reusable data (Wilkinson
et al., 2016) in computational science (Pizzi et al., 2016).
Calculations that run through the AiiDA infrastructure are
automatically stored as nodes in a database together with all
inputs and outputs that are necessary to reproduce the simulation
results. This results in an directed acyclic graph that can connect
different nodes which can be used to reproduce the data
provenance from a final result.

In the context of spin-dynamics simulations, a simulation result
could be the magnetic ordering obtained from a minimization of
the forces on each spin in an LLG calculation. The outcome of such
a simulationwill in general depend on input parameters such as the
geometry (positions of the spins, size of simulation cell, open or
periodic boundary conditions), the exchange coupling constants,
or applied external fields as well as temperature noise. But also the
starting point for the minimization (e.g., starting from an ordered
ferromagnet or from random spin orientations) are important as
local minima in the energy landscape can generally be present in
which metastable states can be stabilized. To ensure reproducible
calculation results, keeping track of the full data provenance of a
simulation is necessary.

AiiDA’s plugin infrastructure allows to orchestrate and
combine different sequences of calculations, possibly using
different simulation software and methods, through a common
interface. Here, we use this to first generate exchange coupling
parameters from DFT calculations using the JuKKR code (The

JuKKR developers, 2021) with the help of the AiiDA-KKR plugin
(Rüßmann et al., 2021a; Rüßmann et al., 2021b). Then, we
proceed with spin-dynamics simulations using the Spirit code
(Müller et al., 2019; Müller et al., 2021) via the newly developed
AiiDA-Spirit plugin (The AiiDA-Spirit developers, 2021). This
allows to include the full history of the input parameter
generation for spin-dynamics calculations in the provenance
graph of a Spirit simulation. Using AiiDA therefore facilitates
multi-scale modeling that combines the predictive power of DFT
calculations and the speed and scalability of spin-dynamics
simulations in the same framework.

The AiiDA engine (Uhrin et al., 2021) provides a highly
scalable infrastructure that is able to deal with thousands of
calculations simultaneously. Together with the simple Python
interface that AiiDA-Spirit provides, spin-dynamics simulations
are possible in an automated way which can be used in a high-
throughput fashion. This opens new possibilities for applying the
Spirit code in automated setups and as part of complex workflows
in conjunction with other simulation methods such as DFT. This
new capability allows to integrate Spirit in the toolbox of methods
that are used in automated computational materials design for
magnetic materials (Himanen et al., 2019).

This paper is structured as follows. First the methods section
introduces the theory behind spin-dynamics simulations. Then
the AiiDA-Spirit plugin is presented which is then applied to 1) a
parameter exploration based on a toy model and a large number
of high-throughput AiiDA-Spirit calculations, 2) to a simple
Monte Carlo example to find the critical temperature of a
model system, and 3) multi-scale modelling combining DFT
and LLG calculations at the example of γ–Fe. Finally the
paper concludes with a discussion of the results.

2 METHODS

2.1 Spirit Theory
All spin-dynamics simulations shown throughout the paper were
performed with the Spirit code (Müller et al., 2019; Müller et al.,
2021). The Spirit code provides a framework for atomic-scale spin
simulations and combines both a graphical user interface as well
as an easy accessible Python API. All simulations performed with
Spirit are based on an extended Heisenberg Hamiltonian
describing the interaction of spins �Si � �Mi/μi (μi � | �Mi|)
sitting at lattice sites i. It can be written in its most general
form as

H � − ∑
〈ij〉

Jij �Si · �Sj( ) − ∑
〈ij〉

�Dij · �Si × �Sj( )
− ∑

i

K⊥( �Si · �̂ez)2 −∑
i

μi
�B · �Si

− μ0
8π

∑
i≠j

3 �Si · �̂rij( ) �Sj · �̂rij( ) − �Si · �Sj
r3ij

− ∑
〈ijkl〉

Kijkl
�Si · �Sj( ) �Sk · �Sl( ) .

(1)

Here, thefirst line contains the isotropic andantisymmetric exchange
interactions, the later also referred to as Dzyaloshinskii-Moriya
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interaction. The second and third line describe the on-site
anisotropy, the Zeeman energy due to an external magnetic
field �B, as well as the dipolar contribution. The last term
allows to include higher-order exchange interactions
(Hoffmann and Blügel, 2020) such as the conventional four-
spin or four-spin-four-site interaction (Heinze et al., 2011), the
four-spin-three-site interaction (Krönlein et al., 2018), as well as
the biquadratic interaction (Szilva et al., 2013). The list of pairs
〈ij〉 and quadruplets 〈ijkl〉 as well as their respective parameters
Jij, �Dij, and Kijkl can be defined by the user based on the desired
use case. Furthermore, the system geometry such as the lattice
symmetry and lattice size can be chosen arbitrarily and Spirit
allows to introduce defects such as vacancies or atoms of different
types. To obtain ground state as well as thermal properties of the
investigated system, either the Monte Carlo method based on a
Metropolis algorithm or Landau-Lifshitz-Gilbert dynamics can
be used.

A more detailed description of the Spirit framework as well
as its further functionalities, such as the possibility to
calculate lifetimes of magnetic textures based on the
combination of geodesic nudged elastic band and
harmonic transition state theory calculations, can be found
in Ref. (Müller et al., 2019).

2.2 The AiiDA-Spirit Plugin
AiiDA’s plugin system allows to combine various simulation
codes and methods (to date more than 60 plugins exist
already (The AiiDA team, 2021)) on the same footing while
augmenting the calculation done through the AiiDA
infrastructure with the stored data provenance. Albeit their
significance in research on magnetic materials, spin-dynamics
calculations have not been at the center of the AiiDA community
so far. To the best of our knowledge, besides the AiiDA-Spirit
plugin presented here, only a first version of the AiiDA-UppASD

plugin (Xu et al., 2021) exists for the UppASD code (Skubic et al.,
2008) to combine AiiDA with a spin dynamics simulation engine.

In the context of AiiDA, a calculation plugin needs to be able
to generate typical input files that are required to run a calculation
through a bash script that will be generated when a calculation is
submitted to a computer or as a job on a supercomputer. At the
heart of the AiiDA-Spirit plugin lies the SpiritCalculation that
connects the Spirit code via the Spirit Python API to AiiDA. The
Layout of the SpiritCalculation is shown in Figure 1. To run a
Spirit calculation a number of input nodes are required:

• a structure node describing the lattice of spins (i.e., their
positions in the unit cell),

• an array of the corresponding jij_data that contains the
pairwise Jij and �Dij parameters for the extended Heisenberg
Hamiltonian (Eq. 1),

• the SpiritCode that is an installation of the Spirit Python
API on the computer where the calculation should run,

• and run_options as well as input parameters that control the
type of the Spirit run (e.g., LLG or Monte Carlo) or further
settings like strength and direction of external fields,
respectively.

Additionally, input modes that trigger special features of the
Spirit code such as disorder and defects in the structure or
pinning of spins to certain directions can be controlled with
the corresponding optional input nodes. The SpiritCalculation
then implements the functionality to translate this information
into the appropriate input files and runs the calculation using the
Spirit Python API. The AiiDA daemon automatically takes care of
creating a suitable job script, copying necessary input files, and of
submitting and monitoring the calculation run. Once the
calculation job finishes, important output files are copied back
to the retrieved folder in the AiiDA file repository associated to

FIGURE 1 | Layout of the SpiritCalculation that is at the heart of the AiiDA-Spirit plugin. On the left hand side the possible input nodes are shown which are
translated by the SpiritCalculation into the appropriate input files needed to execute Spirit. The run_options and parameters input nodes are optional that default to a
basic LLG calculation starting from random orientation of the spins and without external fields or temperature. The typical output nodes for a LLG calculation are shown
on the right hand side.
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the AiiDA database. Then, the SpiritParser extracts useful
information that should be stored in the database. For the
example of a LLG calculation this entails settings such as the
number of LLG steps until convergence, the used wall clock time
on the computer where the calcualtion ran, an array of the
energies (i.e. exchange energy per spin), and the initial and
final directions of the spins in the magnetization array.

Apart from the SpiritCalculation and SpiritParser, AiiDA-
Spirit comes with some tools that can be used in the typical
jupyter notebook environment that is often used in the context of
AiiDA. In particular we mention the show_spins tool of AiiDA-
Spirit which provides the Spirit visualization capabilities in a
simple Python API. This consists of a WebAssembly and WebGL
version of the VFRendering library (Vfrendering, 2021) in
combination with a JavaScript interface that can be used to
visualize the directions of the spins from the web-browser
based environment natural to jupyter notebooks.

2.3 DFT-Based Calculation of Exchange
Coupling Constants
The density functional theory (DFT) results of this work were
produced within the generalized gradient approximation (GGA-
PBE) (Perdew et al., 1996) using the full-potential scalar-
relativistic Korringa-Kohn-Rostoker Green’s function method
(KKR) (Ebert et al., 2011) as implemented in the JuKKR code
package (The JuKKR developers, 2021). We use an ℓmax = 3 cutoff
in the angular momentum expansion with an exact description of
the atomic cells (Stefanou et al., 1990; Stefanou and Zeller, 1991).
After the self-consistent DFT calculations, the method of
infinitesimal rotations (Liechtenstein et al., 1987) was used to
compute the exchange interaction parameters Jij. The series of
DFT calculations in this study are orchestrated using the AiiDA-
KKR (Rüßmann et al., 2021a) plugins to the AiiDA infrastructure
(Huber et al., 2020). The complete dataset that includes the full
provenance of the calculations is made publicly available in the
materials cloud repository (Talirz et al., 2020; Rüßmann et al., 2021).

3 RESULTS

3.1 Automated Landau-Lifshitz-Gilbert
Calculations for Model Parameter
Exploration
To illustrate the usage of AiiDA-Spirit we first consider a toy
model consisting of a single layer of spins in a simple-cubic lattice.
The complete example is part of the dataset that accompanies this
publication (Rüßmann et al., 2021). We assume only nearest
neighbor interactions with isotropic exchange J1 = 10 meV and
Dzyaloshinskii-Moriya interactions with a strength of D1 =
6 meV. This choice of parameters does not reflect any
concrete physical system but is chosen for illustration
purposes because it is known to produce skyrmions with small
radii. The generation of the corresponding input node for the
SpiritCalculation where including the directions of the DMI
vectors can be seen in the following code snippet.

Here i, j index the lattice site in the unit cell (situated at �ri,
�rj) and da, db, dc describe offsets into unit cells further away
such that �Rij � �rj − �ri + da �a + db �b + dc �c describes the distance
between two spins ( �a, �b, �c are the Bravais vectors of the lattice),
Jij and Dx, Dy, Dz denote the exchange interaction and the
three components of the DMI vector. For this example we
consider an isolated layer of spins with periodic boundary
conditions in the plane. We choose a supercell for the
SpiritCalculation of 50 × 50 × 1 spins. Furthermore we apply
an external field of various strength (in the code snippet we show
the input parameters for a value of 25 T) in the direction
perpendicular to the film in the following code snippet.

Starting from random orientations of the spins we then
perform a time evolution using the LLG method with the
Depondt solver (Depondt and Mertens, 2009). The parameters
for the LLG calculations are summarized in Table 1.

To harness the high-throughput capabilities of the AiiDA-
Spirit plugin we perform a series of SpiritCalculations to screen a
range of external fields and temperatures. We change the
temperature from 0 to 75 K in 2.5 K steps and vary the
external field from − 50 T to + 50 T in steps of 2.5 T. The
calculations for each parameters set are repeated 5 times
starting from different random orientations of the spins for
statistical averaging. This amounts to 31 × 41 × 5 = 6,355

TABLE 1 | Parameters for the LLG calculations of the toy model. Arrays are
indicated by the square brackets. Except for external_field_magnitude and
llg_temperature all parameters are kept fixed in the simulations.

Parameter Value Description

n_basis_cells (50, 50, 1) Size of the simulation cell
boundary_conditions (True, True, False) Periodic boundary conditions
llg_n_iterations 100,000 Number of iterations
llg_damping 0.3 Damping constant
llg_beta 0.1 Non-adiabatic damping
llg_dt 0.001 Time step dt (ps)
llg_force_convergence 10−7 Force convergence parameter
llg_temperature 0. . .75 Temperature (K)
external_field_magnitude − 50. . .50 Magnitude of the external field
external_field_normal (0.0, 0.0, 1.0) Direction of the external field
mu_s (2.0) Spin moment (μB)
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individual SpiritCalculations that were submitted to an in-house
compute cluster. We stress that the AiiDA daemon (Uhrin et al.,
2021) conveniently takes care of creating submission scripts and

automatically retrieves and parses the outcome of the calculations
without the need for any user interaction. A visualization of the
dataset and the provenance graph for this application is shown in
Figure 2.

In order to analyze the outcome of the SpiritCalculations we
chose to investigate the topological charge in the simulation cell at
the end of the LLG simulation. For a continuous vector field �m it
is defined as

ρT � 1
4π

∫ �m · z �m

zx
×
z �m

zy
( )dxdy . (2)

We added a custom post-processing step to the
SpiritCalculation which uses the get_topological_charge
function of the spirit Python API. This function calculates the
topological charge from the discretized form of Eq. 2 as a
summation over all contributions of triangles formed by
neighboring spins in the simulation cell (Müller et al., 2019).

Figure 3 shows the outcome of these simulations where the
topological charge is shown for all 1,271 pairs (T, Bz) together
with selected spin configurations of representative calculations
marked by the symbols (Figures 3B–G). The real-space spin
configuration at the end of the LLG calculations were visualized
using the show_spins tool of the AiiDA-Spirit plugin. It can be
seen that a small external field leads to the appearance of
skyrmions which in this case have a topological charge of ±
1, depending whether they form in a ferromagnetic background
of spins pointing in − z (Figure 3C) or + z (Figure 3E) direction.
In general, the topological charge counts the difference between

FIGURE 2 | Provenance graph of the SpiritCalculations discussed in
section 3.1. The graph consists of several thousand calculations that all use
the same crystal structure as input (the black circle in the center) with which
they are connected. The inset shows a magnified view of one of these
calculations (red circle) which is connected to outgoing nodes (colored in light
orange).

FIGURE 3 | Topological charge of the toy model discussed in the text. (A) Dependence of the topological charge ρT on the external magnetic field and temperature calculated
from the final spin texture after an LLG calculation. The black arrow highlights the inflection point where |ρT(Bz)| has a minimum with respect to Bz. For the parameters marked by the
symbols (B–G) the resulting spin textures are shown in the corresponding panels. The arrows in (F) highlight the two skyrmions that result in a topological charge of ρT = − 2.
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the amount of skyrmions in up-domains (ρT > 0) and skyrmions
in down-domains (ρT < 0) as seen for vanishing external field in
(Figure 3D) where several skyrmions with opposite topological
charges lead to a near cancellation of the total topological
charge.

At very large fields, the Zeeman exchange coupling term
becomes larger than the DMI energy and a homogeneous
ferromagnet forms (Figures 3B,G). Temperature
fluctuations tend to deform the skyrmions (Figure 3F) and
destabilize them. Thus, at elevated temperatures smaller
magnitudes of the external magnetic field leads to a
vanishing topological charge. As highlighted by the black
arrow in (Figure 3A), this is however only true up to a
certain critical temperature. For T > 40 K the topological
charge increases again which can be explained by the
energy barrier of skyrmion formation and destruction. At
these elevated temperatures the fluctuations of the spin
directions are larger than 40 K · kB ≈ 3.45 meV which we
conjecture is the energy barrier for skyrmion formation. While
the energy barrier can in principle be calculated by performing
geodesic nudged elastic band calculations, this is beyond the
scope of this paper and therefore will be omitted. The larger
temperature fluctuations also prohibit reaching the force
convergence criterion set in the LLG calculation which
means that the LLG simulation runs until the maximal
simulation time of 100 ps is reached. During this simulation
time, skyrmions can spontaneously form and disappear which
results in a finite topological charge measured at the end of the
run. In the future the real time dynamics of skyrmion creation
and collapse may be the focus of the investigation. However,
this approach may become unfeasible for situations where the
skyrmion lifetime is very long compared to the typical time
step in LLG calculations. Finally, we highlight that with
increasing temperature fluctuations we also find a larger
variance in the number of skyrmions when averaging over
the five different starting configuration for each pair (T, Bz).
This supports our interpretation that skyrmions are
spontaneously created and annihilated by temperature
fluctuations.

3.2 Curie Temperature Using Monte Carlo
The Monte Carlo (MC) method is a well established tool in
physics which, when applied to spin systems, allows to
estimate the critical temperature of the magnetic ordering
(Curie temperature) (Binder and Heermann, 1997). The
Spirit code (Müller et al., 2019) implements a Metropolis

algorithm which can be used from AiiDA-Spirit by choosing
the mc simulation method (instead of the previously used
LLG method). We demonstrate the MC at the example of a
simple-cubic ferromagnet with only nearest neighbor
interactions J1 = 1 meV. We perform calculations for
varying supercell sizes between 10 × 10 × 10 and 40 ×
40 × 40 with the MC parameters given in Table 2. The
results of the calculation are shown in Figure 4 where,
together with the total magnetization M, the isothermal
susceptibility

χ � 1
kBT

(〈M2〉 − 〈M〉2) (3)

with M � | 1N∑i
�Si| the average magnetization of the sample is

shown. We see thatM(T) converges with increasing supercell size
indicating that boundary effects become less important. The
corresponding susceptibilities show a diverging behavior at Tc.
Our calculation results agree well with the expected value of Tc =
1.44J1/kB = 16.71 K. We stress that these calculations require a
series of steps consisting of, for example, thermalization and
decorrelation steps at each temperature value in the scanning
interval. Within AiiDA-Spirit this complexity is conveniently
absorbed in the SpiritCalculation which greatly facilitates the
application of MC calculations.

TABLE 2 | Parameters for the MC calculations of the simple-cubic ferromagnet discussed in the text. Note that the chosen settings result in temperature steps of 0.5 K.

Parameter Value Description

n_thermalisation 5,000 Number of thermalization steps before n_samples are taken
n_samples 250,000 Number of samples taken in metropolis algorithm
n_decorrelation 2 Number of decorrelation steps
n_temperatures 40 Number of temperature steps
T_start 25 Start of temperature scanning range
T_end 5 End of temperature scanning range

FIGURE 4 | Results of the Monte Carlo calculations for a simple-cubic
ferromagnetic with nearest neighbor J1 = 1 meV exchange interactions.
Shown are results for 10 × 10 × 10 to 40 × 40 × 40 supercells where the solid
lines show the normalized value of the total magnetization M and the
dashed lines the corresponding susceptibility χ. The dashed vertical line
indicate the expected value of the critical temperature at Tc = 16.71 K.
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3.3 Multi-Scale Modeling: γ–Fe
We now demonstrate how the integration of the Spirit code into
the AiiDA framework through the AiiDA-Spirit plugin can
facilitate multi-scale modeling for magnetic materials. In this
example we first calculate the exchange interaction parameters for
γ–Fe using density functional theory which are then passed to the
AiiDA-Spirit plugin for LLG simulations.

The γ phase of Fe is a metastable high-temperature phase
where the atoms crystallize in the fcc lattice (Knöpfle et al., 2000;
Sjöstedt and Nordström, 2002). This has a drastic consequence on
the exchange interactions where, in contrast to the ferromagnetic
bcc Fe, frustrated exchange interactions can lead to the formation
of spin-spirals. Experimentally this structure of Fe can be realized
in a Cu matrix (Tsunoda, 1989; Tsunoda et al., 1993). It is known
that a variation of the lattice constant of γ–Fe can have drastic
consequences for the magnetic ordering (Sjöstedt and
Nordström, 2002). Here, we investigate bulk crystals of γ–Fe
for varying lattice constants between alat � 3.2�A and alat � 4.0�A
around the lattice constant of Cu (alat � 3.6�A).

Figure 5 summarizes the results of the DFT calculations that
were done with the AiiDA-KKR plugin (see methods section for
numerical details). The total energy as a function of the lattice
constant (shown in panel Figure 5A) reveals a phase transition
from the low-spin state (for alat < 3.6�A) to the high-spin state
(alat ≥ 3.6�A) of γ–Fe as seen in the jump of the spin moment to
μs > 2.5 μB. This coincides with a smaller exchange splitting seen
in the density of states (Figure 5B) and consequently a smaller
value of the spin moment (Figure 5C). For lattice constants below

3.37�A we find that the magnetic moment vanishes. Panel
(Figure 5D) shows the calculated exchange interactions Jij as a
function of distance between two Fe atoms. Clearly, the sign of the
nearest neighbor interaction shows the most drastic change with
the transition from high-spin to low-spin state at smaller lattice
constant of γ–Fe. While in the high-spin state the first and second
nearest neighbor interaction are both ferromagnetic (Jij > 0), for
the low-spin state the nearest neighbor interaction changes from
being weakly ferromagnetic to antiferromagnetic (Jij < 0).

In the following, the consequences of this change for the
magnetic ordering are investigated based on a series of LLG
calculations using the AiiDA-Spirit plugin. In the DFT
calculation we use the primitive cell which contains a single
atom in the unit cell. For the spirit calculations we map the
calculated exchange interactions onto the conventional unit cell
consisting of four atoms. The parameters of the LLG simulations
are summarized in Table 3. We study the magnetic ordering in a
40 × 40 × 40 × 4 = 256,000 spins supercell without external
magnetic fields and at temperature T = 0 K. Here we focus on the
ground state that forms and therefore neglect effects of
temperature fluctuations and external fields which can, for
example if T is high enough, overcome the energy barrier
between different (metastable) magnetic orderings. We further
neglect the influence of anisotropy (K⊥ = 0) in this work and we
also do not include higher order exchange terms (Ki,j,k,l = 0). We
choose open boundary conditions in order to not bias the
eventually resulting spin-spiral wavelength by the periodicity
of the supercell. Table 4 summarizes the DFT calculated

FIGURE 5 | Results of the DFT calculations for γ–Fe. Total energy as a function of the lattice constant (A)where the green and violet lines show parabolic fits to low-
spin (alat <3.6�A) and high-spin (alat ≥3.6�A) states. (B) Corresponding density of states (value in the legend indicates the lattice constant) which clearly separates into
low-spin (LS) with smaller exchange splitting and high-spin (HS) states with larger exchange splitting. Note that the positive (negative) values of the DOS indicate
the majority (minority) spin channels. (C) Spin moment as a function of the lattice constant where the transition from non-magnetic (first four data points) over the
low-spin state to the high-spin state is evident. (D) Resulting exchange coupling constants (Jij) as a function of the pairwise distance between the Fe atoms in γ–Fe (the
lattice constant is given in the legend).
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values for magnetic moments and exchange coupling
constants for varying lattice constants that were used in
the respective SpiritCalculations. Note that the exchange
coupling constants are only shown up to the seventh shell
of neighbors but the calculations included pairs up to the 15th
shell that are however much smaller than the values reported
in Table 4.

We start the discussion of the LLG calculations with the
results for γ–Fe in the lattice constant of Cu (alat � 3.61�A).
Figure 6A shows the resulting spin texture at the end of the
LLG calculation for the central layer of spins in the yz-plane
(shown in the inset Figure 6B). We can see that a spin-spiral
forms in z-direction with ferromagnetically ordered spins in y-
direction. At the open boundaries we see that the missing
neighbors on one side influence the magnetic ordering that
deviates from the spin-spiral in the center for a distance of
about five lattice constants. In order to quantify the spin-spiral
we pick the two cardinal directions in this plane (indicated by
blue and orange lines in Figure 5A) and extract the z-
component of the spin Sz. We combine the projections onto
the yz-plane from two adjacent layers of spins (indicated by the
two grey planes in Figure 5B) to not restrict our analysis to a
single sub-lattice only. This allows to describe also
antiferromagnetic structures in the sub-lattices with
ferromagnetic ordering within one sub-lattice, which will be
important later. Figure 6C shows that, except for boundary
effects, Sz stays constants when following the y-direction.
Along the z-axis we see a complex beating pattern with the
site index that can be decomposed into two π/2-shifted spin-

spirals in the two different sub-lattices. The corresponding
Fourier transformation

F j(q) � 1���
2π

√ ∫ e−iqrjSz(rj) drj (4)

with j = y, z computed with the fast Fourier transform algorithm
(FFT) is shown in (Figure 6D). As expected, the FFT of the
predominantly ferromagnetically ordered spins along the y-
direction |F y| mainly shows a signal at q = 0 whereas |F z|
shows the appearance of four peaks at q ≈± 0.2 2π

alat
and

q ≈± 0.8 2π
alat

� (1 − 0.2) 2π/alat which are attributed to the two
π/2-shifted oscillations in the two sub-lattices. We point out that
the reflection symmetry around q = 0 is a consequence of the real-
valued input to the FFT and is therefore not discussed further. As
seen from the FFT in y-direction and from the corresponding
spin texture in (Figure 6A) the spins in the direction
perpendicular to the propagation direction of the spin spiral
(i.e., the z-direction in this example) are ordered
ferromagnetically. Therefore the spin-spiral wavevector is
�q � (0, 0, 0.2) 2π/alat. After having characterized the spin-spiral
ground state of γ–Fe we continue with a discussion of the
magnetic ordering depending on the changing exchange
coupling parameters with changing lattice constant.

Figure 7 summarizes the LLG calculations for γ–Fe for
varying lattice constants using the respective set of exchange
parameters shown in Figure 5D. The lines in Figure 7A show
the energy at the end of the LLG calculation starting either
from a random spin configuration (E, dashed orange) or from
the ferromagnetic (EFM, solid blue) state. We find that for
lattice constants alat ≥ 3.65�A the ferromagnetic state
minimizes the energy (E − EFM = 0). We attribute this to
the increasing ferromagnetic interaction for nearest neighbor
spins in the high-spin state which was discussed with
Figure 5D. At smaller lattice constants (alat ≤ 3.6�A), the
ferromagnet (FM) is not the ground state anymore. Here
we find either a spin-spiral (SS) ground state or an
antiferromagnetic (AFM) phase. Figure 7C shows three
representative images of the SS, AFM and FM states.

In the SS state the magnetization rotates from left to right (i.e.
along the y-axis) and shows antiparallel alignment of the rows in
z-direction. Along the x-axis (direction perpendicular to the
drawn plane) the spins are aligned ferromagnetically, except
for boundary effects at the open ends of the simulation cell
(seen in the direction of the first layer of spins). In z-direction,
adjacent layers are antiferromagnetically ordered. Thus the
spin-spiral wavevector for these lattice constants has the

TABLE 3 | Parameters for the LLG calculations for γ–Fe. Note that the simulation cell consists of 40 × 40 × 40 × 4 = 256,000 atoms due to the choice of the conventional unit
cell with four atoms. The spin moment μ is extracted from the DFT calculation at the respective lattice constant and open boundary conditions are chosen. Parameters
not listed here are set to the same value as in Table 1.

Parameter Value Description

n_basis_cells (40, 40, 40) Size of the simulation cell
boundary_conditions (False, False, False) Open boundary conditions
llg_temperature 0 Temperature (K)
external_field_magnitude 0 Magnitude of the external field
mu_s (μ, μ, μ, μ) Spin moment (μB)

TABLE 4 | Input parameters extracted from DFT that are used in the
SpiritCalculations for γ–Fe for different lattice constants alat (given in Å). Listed
are the magnetic moment μ (in μB per spin) and the exchange coupling parameters
Jij for the first seven shells (denoted J1 to J7) which are given in meV.

alat μ J1 J2 J3 J4 J5 J6 J7

3.39 0.52 0.42 0.85 −0.04 −0.03 −0.27 0.00 0.05
3.43 0.83 0.60 2.23 −0.17 0.03 −0.48 0.00 0.04
3.46 0.97 0.42 3.15 −0.31 0.16 −0.57 −0.04 0.00
3.50 1.08 −0.05 3.79 −0.45 0.38 −0.61 −0.07 −0.04
3.54 1.20 −0.98 4.28 −0.64 0.80 −0.62 −0.11 −0.10
3.57 1.40 −2.92 4.56 −1.11 1.83 −0.59 −0.09 −0.16
3.61 2.55 7.27 5.46 −3.82 5.33 0.29 −0.87 0.12
3.65 2.59 9.05 5.75 −3.48 4.57 0.29 −0.87 0.12
3.68 2.62 10.19 5.85 −3.19 4.05 0.30 −0.86 0.12
3.72 2.66 11.03 5.84 −2.96 3.67 0.32 −0.83 0.11
3.75 2.70 11.66 5.79 −2.75 3.33 0.35 −0.80 0.10
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form �q � (0, q, 1) 2π/alat which due to the cubic symmetry of the
crystal is equivalent to �q � (q, 0, 1) 2π/alat. Note that �qAF �
(0, 0, 1) 2π/alat is the antiferromagnet because the distance between
two layers in the (0, 0, 1) direction of the fcc lattice is alat/2.

In the AFM phase the direction of the spins separate into four
sub-lattices that correspond to the four atoms in the conventional
fcc unit cell. Within each sub-lattice the spins are aligned parallel
and form a right angle with their neighboring spins from different
sub-lattices. This is highlighted with a red box in the middle panel
of (Figure 7C). In the FM phase (lower panel) all spins point in
the same direction. Note that in all these calculations the spins
can collectively rotate since we neglected contributions from
single-ion anisotropies and do not apply an external field.

The summed magnitude of the Fourier transform along the
three cardinal axes

|F(q)| � ∑
j�x,y,z

|F j(q)| (5)

is shown in Figure 7B for different lattice constants. Note that we
have summed here over the symmetry-equivalent directions
along the x- y- and z-directions because of the rotational
invariance of the complete spin-structure. Starting from the
smallest lattice constant of alat � 3.39�A we see a peak in
|F(q)| at �q � (± 0.195, 0, 1) 2π/alat which corresponds to a
wavelength of the spin-spiral of 5.13 alat. Here we focus our
discussion on the peak at smaller q values as the same arguments
hold for the second peak at 2π/alat − q as discussed above. With

increasing lattice constant the spin-spiral wavelength increases to
7.82 alat/2 ( �q � (± 0.128, 0, 1) 2π/alat) at a lattice constant of
alat � 3.5�A. For 3.5�A< alat < 3.6�A the AFM state is found,
which in the Fourier transform is characterized by the
dominating peak at q = ±2π/alat. Note that we still get a
considerable signal at q = 0 because we sum over all three
cardinal directions and there is ferromagnetic ordering along
one direction (see Figure 7C). As discussed above, for larger
lattice constants the spin-spiral state briefly shows up again at
alat � 3.61�A with a wavelength of 5.59 alat which however has
ferromagnetically ordered spins in both directions perpendicular
to the direction of spin-spiral propagation ( �q �
(± 0.179, 0, 0) 2π/alat) until for alat ≥ 3.65�A the FM state is
found which only shows a significant Fourier amplitude at q = 0.

The appearance of the AFM phase for 3.5�A< alat < 3.6�A can
be attributed to the sign change of the nearest neighbor
interaction from ferro- to antiferromagnetic. To verify this
hypothesis we employ a series of LLG calculations through
AiiDA-Spirit. We chose to start from the setup of the
calculation for alat � 3.61�A, which was found to reproduce
the spin-spiral phase. We then modify the strength of the
nearest neighbor interaction J1 ranging from − 5 meV to +
15 meV and run LLG calculations starting from the FM state,
from the AFM state, from the SS phase and random spin
orientations. For the AFM state we construct the row-wise
AFM orientation of the spins. All other parameters for the LLG
calculation are kept constant. In total this is another set of 84

FIGURE 6 | Spin-spiral ground state for γ–Fe at a lattice constant of alat � 3.61�A. (A) Cut through the central yz-plane of the 40 × 40 × 40 supercell. Each unit cell
consists of 4 Fe atoms on the sub-lattices A, B,C andD shown in the inset (B). The colored points on the grey sphere in the lower left of panel (A) show a projection of the
direction of the spins onto the unit sphere. (C) z-component of the spin along the y- (orange line) and z-directions (solid blue line) indicated in (A) with the corresponding
colored stripes. Each direction combines the spins from two adjacent yz-planes to cover more than a single sub-lattice per direction (i.e. sites in y-direction consist
of atoms A-B-A-. . .). The dashed and dotted lines in (C) are a decomposition of Sz(z) into the sub-lattices A andD. Note that the orange and dashed and dotted blue lines
are shifted by ± 2 with respect to the solid blue line. (D)Magnitude of the Fourier transformation of Sz along the y- and z-directions, i.e. solid orange and blue lines in (C),
respectively.

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 8250439

Rüßmann et al. The AiiDA-Spirit Plugin

89

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


SpiritCalculations where we find that starting from a random
spin configuration coincides with starting from the SS. The
random starting point is therefore omitted in the following
discussion. Figures 8A,B show the dependence of the energy
per spin at the end of the LLG calculations. We point out that
the LLG calculations for the FM and AFM states are converged
in the very first iteration which indicates that the FM and AFM
phases are local minima in the energy landscape. We find that
the SS state is lowest in energy with a maximal energy gain of ~
7 meV/spin in the transition region where EFM − EAFM changes
sign. From the final spin structure of the spin-spiral solution
we proceed with an analysis of the Fourier components as
introduced in equations 4 and 5. This is shown in Figure 8C.
As highlighted by the grey line, we see an increase in the spin-
spiral wavevector with increasing J1 up to the point where EFM
and EAFM cross around J1 = 7.3 meV. As in the previous analysis
for changing lattice constant we find that the spin-spiral state is
characterized by two wavevectors at q and 2π/alat − q (grey dashed
line). Furthermore, the Fourier transform for all states show

significant signals at q = 0 (indicating parallel spins) and q =
±2π/alat (indicating antiparallel spins).

Overall we can conclude that the resulting spin-texture in the
256,000 spin unit cell with open boundary conditions is a result of
the complex competition of distance-dependent exchange
couplings that favor ferromagnetic or antiferromagnetic
alignments of spins or can compete and stabilize spin-spiral
ground states.

4 DISCUSSION

In this article we have presented the AiiDA-Spirit plugin that
connects the spin-dynamics code Spirit to the AiiDA framework.
AiiDA enables high-throughput calculations while automatically
keeping track of the data provenance (Huber et al., 2020). We
have demonstrated the capabilities of the AiiDA-Spirit plugin
with three examples; 1) high-throughput spin-dynamics
calculations based on the Landau-Lifshitz-Gilbert (LLG)

FIGURE 7 |Magnetic ground state in γ–Fe from spin-dynamics simulations via the AiiDA-Spirit plugin. (A)Calculated energies per spin of the final state after an LLG
calculation. Each data point uses the exchange constants computed from DFT (cf. Figure 5D). The solid blue and dashed orange lines indicate the energy computed
starting from random spin configuration or the ferromagentic (FM) state. The white, grey and red shaded areas indicate if, respectively, a spin-spiral (SS),
antiferromagnetic (AFM) or FM ordering is found to be the ground state. (B) Normalized Fourier transform of the z-component of the magnetization in the yz-plane
for different lattice constants, shifted for clarity. Solid lines correspond to SS, dashed lines to AFM and dotted lines to FM solutions, respectively. The arrows highlight the
principal wavenumber of the spin-spiral and highlight their change with the lattice constant. (C) Visualization of representative spin structures for (from top to bottom) SS,
AFM and FM states where the red box in the AFM structure highlights a unit cell with the four sub-lattices. The colored points on the grey sphere in the lower left panels
show a projection of the direction of the spins onto the unit sphere.
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equation for a toy model that shows skyrmions, 2) Monte Carlo
calculations for finding the critical temperature of a simple-cubic
model ferromagnet, and 3) multi-scale modelling combining
density functional calculations with spin-dynamics simulations
for γ–Fe.

In our high-throughput LLG calculations we performed more
than 6,000 simulations of a model system consisting of a 2D
lattice of spins in the simple-cubic lattice. The model parameters
were chosen such that topologically nontrivial skyrmions appear
in the magnetic textures. We varied the temperature and the
external magnetic field as external parameters and investigate the
change in the topological charge, which is a measure of the
number of skyrmions that appear in the system. We find that,
starting from T = 0, the transition to the homogeneous
ferromagnetic phase happens at lower magnetic fields. At a
certain critical temperature however the number of skyrmions
starts increasing again. We interpret this as the surpassing of the
energy barrier for skyrmion formation which can be overcome by
temperature fluctuations of the spins. This goes hand in hand
with a larger variance in the topological charge that we measure
from averaging multiple runs for each pair of (T, Bz). These
calculations demonstrate the possibility to employ the AiiDA-
Spirit plugin for high-throughput spin-dynamics simulations
which make parameter exploration easier accessible.

In our Monte Carlo calculations we showed how the complex
series of calculations necessary for finding the ordering
temperature of a simple-cubic ferromagnet (several
calculations across the transition region from ferromagnetically

ordered to paramagnetic state have to be performed) can be
found from a single SpiritCalculation of the AiiDA-Spirit plugin.
Our simulation result is in good agreement with the theoretically
expected result. The ease-of-use for these calculations facilitate
the incorporation of AiiDA-Spirit calculations in complex
workflows in materials informatics for magnetic materials.
Here, finding the critical temperature of a magnetic material is
a very common problem.

Finally, we discussed the use case of LLG calculations for the
study of the magnetic ordering of γ–Fe, which is the high-
temperature fcc phase of Fe. From experiments, where Fe
clusters were embedded in a Cu matrix, it is known that a
spin-spiral ground state with wavevector �q � (0.1, 0, 1) 2π/alat
is found for γ–Fe around the lattice constant of Cu (Tsunoda,
1989; Tsunoda et al., 1993). Note that q = (0, 0, 2π/alat)
correspond to the antiferromagnet since the distance between
two layers in the (0, 0, 1) direction of the fcc lattice is alat/2.
Theoretically, this wavevector was reproduced from first-
principles calculations with good agreement where �q �
(0.15, 0, 1) 2π/alat (Knöpfle et al., 2000) and �q �
(0.16, 0, 1) 2π/alat (Sjöstedt and Nordström, 2002) were found.
However, a significantly different lattice constant compared to
the lattice constant of Cu is required for γ–Fe in the calculation
compared to the experiments, which makes this agreement
unsatisfactory (Sjöstedt and Nordström, 2002). In our work,
instead of looking for the spin-spiral energies from first-
principles calculations, we chose to explore the predictive
power of a combination of DFT and LLG calculations for

FIGURE 8 | (A) Spin-spiral (SS) energies as a function of the nearest neighbor interaction J1 in comparison to ferromagnetic (FM) and antiferromagnetic (AFM)
states. Exchange coupling constants were taken from the alat � 3.61�A calculation and the nearest neighbor couplings J1 were modified in the range from − 5 to 15 meV.
(B) Zoom into the transition regionmarked by the black box in (A). The grey area highlights the energy gain in the SS state compared to FM or AFM states. (C)Normalized
Fourier transform of the z-component of the magnetization in the yz-plane. The spectra are shifted for clarity. Dashed lines indicate where EAFM − ESS < 2 meV and
dotted lines are used for EFM − ESS < 2 meV. The solid and dashed grey lines are guides to the eye highlighting the change in the spin-spiral wavevector with J1.

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 82504311

Rüßmann et al. The AiiDA-Spirit Plugin

91

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


γ–Fe with changing lattice constants.We found a change from the
low-spin to high-spin ground state in our DFT results that were
performed with the JuKKR code (The JuKKR developers, 2021)
through the AiiDA-KKR plugin (Rüßmann et al., 2021a;
Rüßmann et al., 2021b). This agrees well with earlier DFT
calculations where a similar change in the spin moment of the
Fe atoms from μ ~ 1 μB to > 2.5 μB is seen (Knöpfle et al., 2000;
Sjöstedt and Nordström, 2002).

In contrast to the spin-spiral energy calculations of Refs.
(Knöpfle et al., 2000; Sjöstedt and Nordström, 2002) we
calculate the exchange parameters for the extended Heisenberg
model from the method of infinitesimal rotations (Liechtenstein
et al., 1987) around the collinear, ferromagnetically ordered state.
These parameters are then used in the SpiritCalculations where
the collective magnetic ordering is investigated in a 256,000 spin
supercell. We find a strong influence of exchange interactions on
the lattice constant of γ–Fe which results in a competition of
ferromagnetic, antiferromagnetic and spin-spiral orderings. In
our analysis of the spin-spiral wavevectors we chose to study the
Fourier transform of the z-component of the spin around the
three cardinal axes which are symmetry-equivalent in our
approach. At the lattice constant of Cu (alat � 3.6�A) we find a
spin-spiral with �q � (0.2, 0, 0) 2π/alat in contrast to the spin-
spiral �qexp � (0.1, 0, 1) 2π/alat found experimentally which has
an antiferromagnetic component (Tsunoda, 1989). We attribute
this discrepancy to neglecting the change in the spin moment
with the spin-spiral wavevector in our simulations based on the
Heisenberg Hamiltonian. This change is known to be significant
and can be as large as 0.8 μB (Sjöstedt and Nordström, 2002). For
lattice constants alat ≤ 3.5 we do find the correct spin-spiral with
�q � (q, 0, 1) 2π/alat that reappears after the spin-spiral with
ferromagnetic ordering perpendicular to �q transforms into the
ordered antiferromagnet. With smaller lattice constant the spin-
spiral wavevector increases from �q � (0.13, 0, 1) 2π/alat at alat �
3.5�A up to �q � (0.2, 0, 1) 2π/alat at alat � 3.39�A which is in
reasonable agreement with earlier calculation results (Knöpfle
et al., 2000; Sjöstedt and Nordström, 2002). Incorporating a
change of the spin moment with the spin-spiral wavevector
might further improve our agreement to the earlier ab initio
results of Knöpfle et al. (Knöpfle et al., 2000) and Sjöstedt and
Nordström (Sjöstedt and Nordström, 2002) and also the
experimental spin-spiral wavevector (Tsunoda, 1989). The
need to include spin moment change is also observed in the
high-pressure ε-phase of iron (Lebert et al., 2019). Furthermore,
including higher order exchange interactions (Ki,j,k,l ≠ 0) could
also be important. Especially for magnetically frustrated systems,
those additional terms can be essential in describing the magnetic
ground state as seen, for example, in iron chalcogenides where the
biquadratic term is required for a correct description based on the
Heisenberg model (Glasbrenner et al., 2015).

The change of the ordering to the antiferromagnetic state and
then the reappearance of the spin-spiral state at even smaller
lattice constant compared to the lattice constant of Cu on the
other hand agrees well with the previously stated observation of
competing magnetic orders, which are very close in energy and
could coexist (Sjöstedt and Nordström, 2002). We further

demonstrated the sensitivity of the magnetic ordering with a
numerical experiment where we chose to modify the strength of
the nearest neighbor exchange interaction J1. The resulting strong
change in the spin-spiral wavevector and the magnetic ordering
highlights the rich energy landscape that is underlying the
complex magnetic ordering in γ–Fe.

In conclusion, we have shown how augmenting spin-dynamics
calculations with the Spirit code through the AiiDA-Spirit plugin
enables high-throughput spin-dynamics simulations via the
AiiDA infrastructure. This was applied to model systems and,
in combination with DFT calculations through the AiiDA-KKR
plugin, to the multi-scale problem of the magnetic ordering in
γ–Fe. Our results demonstrate that typical spin-dynamics
simulations benefit from the possibility to run a large number
of calculations in a high-throughput fashion. Automation of
SpiritCalculations through AiiDA can be a great asset when
complex model parameter spaces (i.e. external fields,
temperatures, different geometries, . . .) are screened in order
to find structure-property relations of magnetic materials. The
feature of AiiDA to keep track of the data provenance is here
indispensable to get reproducible results and to eventually
engineer recipes for the creation and control of
unconventional topological solitons in magnetic structures
such as skyrmions or hopfions in the future.
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Training Deep Neural Networks to
Reconstruct Nanoporous Structures
From FIB Tomography Images Using
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Focused ion beam (FIB) tomography is a destructive technique used to collect three-
dimensional (3D) structural information at a resolution of a few nanometers. For FIB
tomography, a material sample is degraded by layer-wise milling. After each layer, the
current surface is imaged by a scanning electron microscope (SEM), providing a
consecutive series of cross-sections of the three-dimensional material sample.
Especially for nanoporous materials, the reconstruction of the 3D microstructure of the
material, from the information collected during FIB tomography, is impaired by the so-
called shine-through effect. This effect prevents a unique mapping between voxel intensity
values and material phase (e.g., solid or void). It often substantially reduces the accuracy of
conventional methods for image segmentation. Here we demonstrate how machine
learning can be used to tackle this problem. A bottleneck in doing so is the availability
of sufficient training data. To overcome this problem, we present a novel approach to
generate synthetic training data in the form of FIB-SEM images generated by Monte Carlo
simulations. Based on this approach, we compare the performance of different machine
learning architectures for segmenting FIB tomography data of nanoporous materials. We
demonstrate that two-dimensional (2D) convolutional neural network (CNN) architectures
processing a group of adjacent slices as input data as well as 3D CNN perform best and
can enhance the segmentation performance significantly.

Keywords: electron microscopy, synthetic training data, 3D reconstruction, semantic segmentation, SEM
simulation, 3D CNN, 2D CNN with adjacent slices, machine learning

1 INTRODUCTION

Nanoporous materials bear great potential in microtechnology, chemical engineering, biomedical
engineering, energy technology and electronics and communication technology. So-called FIB
tomography combines the sequential removal of material layers by FIB with SEM imaging. It is
a powerful technique for 3D imaging of nanoporous materials with a resolution of approx. 1 nm in
the SEM plane and 10 nm in the out-of-plane direction (Knott et al., 2008).

However, accurate 3D reconstruction of nanoporous structures remains a challenge because of the
so-called shine-through effect in FIB tomography data (Prill et al., 2013). Due to this effect, the
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intensity of pixels in the SEM images generally depends not only
on the material at the respective position in the plane currently
imaged but also on structures in deeper layers. This effect occurs
because these structures may shine through the nanopores up to
the surface currently imaged by SEM, in case of back-scattered
electron (BSE) imaging even in infiltrated nanoporous materials.
Hence, there is no unique mapping between the intensity of a
voxel in FIB tomography data and the material composition at
exactly the position of this voxel. This ambiguity makes
segmentation of FIB tomography data of nanoporous materials
highly non-trivial (Figure 1A).

Classical methods like thresholding work best for standard
materials without nanopores (Salzer et al., 2015). However, they
fail for nanoporous materials with strong shine-through effects
because of the ambiguity in the local voxel intensity. Machine
learning algorithms like random forests or the k-means algorithm
can help classify material and pores (Rogge and Ritter, 2018;
Fager et al., 2020). However, deep learning-based (DL) methods,
especially convolutional neural networks (CNN), bear the
potential to outperform such methods when processing
images. Over the last years, CNNs have more and more
outperformed such classical methods across all disciplines
(Krizhevsky et al., 2012; Girshick et al., 2014). For example,
CNNs were used for the semantic segmentation of electron
microscopy images of neuronal membranes (Ciresan et al.,
2012). For the segmentation of FIB tomography images of
porous membranes, the deep learning architecture ResUNet
was applied, using initial training data generated by a random
forest algorithm (Tracey et al., 2019). It is thus consequential to
apply convolutional neural networks like U-Net, which was
originally developed for biomedical images (Ronneberger et al.,

2015), with some modifications also to FIB tomography data
(Fend et al., 2021).

Due to shine-through effects in FIB tomography datasets,
structures are visible through several subsequent SEM slices.
Taking this information into account is an important step
towards accurate segmentation of FIB tomography data of
nanoporous materials. The machine learning architecture
called CNN 2.5D has recently been reported to be particularly
powerful (Vu et al., 2020) to incorporate such partial spatial
information in a specific direction. CNN 2.5D feeds several
adjacent slices into channels of a 2D CNN architecture. A
similar approach, but with 3D kernels, is pursued by two
other recently proposed machine learning architectures, 3D
U-Net (Çiçek et al., 2016), and VNet (Milletari et al., 2016).
The latter seeks to prevent information loss when the network
grows deeper (Milletari et al., 2016).

Deep learning requires, however, a large amount of
training data. In the context of the semantic segmentation
of FIB tomography data, a sufficient amount of images is
required whose pixels are labelled as belonging to specific
categories (e.g., the solid or the pore phase in a nanoporous
material). Obtaining sufficient training data from
experiments can be expensive and time-consuming. To
overcome this problem, synthetic training data is
frequently used (Nikolenko, 2019).

In electron microscopy, two steps are required to generate
synthetic training images for deep learning segmentation
methods. The first step is the generation of a realistic
geometric structure. The second step is the computer
simulation of the FIB tomography of this structure,
i.e., synthetic back-scattered electron (BSE) imaging data.

FIGURE 1 | Back-scattered electron scanning microscope images of epoxy-infiltrated nanoporous gold (npg) and hierarchical nanoporous gold (hnpg). (A)
nanoporous gold structures below the cross-section plane shine through the epoxy-filled pores so that for some pixels it is unclear whether they belong to the solid (gold)
or the pore (epoxy) phase (arrow with the question mark). (B) The influence of the shine-through effect is increased in hierarchical nanoporous gold due to the small pore
sizes within the ligaments.
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For the first step (Fend et al., 2021), previously used geometric
primitives like spheres and cylinders. However, these do not
adequately resemble the microstructure of the nanoporous
materials of our interest. Therefore, these are suitable only to
a limited extent for generating synthetic training data for the case
we are interested in.

For the second step, Monte Carlo simulations of electron
microscopy imaging can be performed. These simulate the
trajectories of numerous electrons, thereby providing realistic
information on the appearance of SEM images of specific
structures. In order to perform such simulations on very
simple geometries, first programs were developed more than
two decades ago and have seen continuous improvements
(Lowney J, 1994; Lowney, 1995; Karabekov et al., 2003; Zhang
et al., 2012; Hovington et al., 1997; Gauvin et al., 2006).

In this paper, we compare different deep learning
architectures for accurately segmenting FIB tomography data
of nanoporous structures despite shine-through effects. We
present a novel approach to generate synthetic FIB-SEM
images using Monte Carlo (MC) simulations to overcome
the lack of training data for deep learning methods. To
obtain as realistic synthetic training data as possible, these
simulations are not performed on geometries consisting of
simple geometric primitives. Instead, we compare three
different ways to generate largely realistic microstructures
and use the most promising of them, the so-called levelled-
wave algorithm (Li et al., 2020) as a basis for our study. Using
the in silico training data generated this way, we demonstrate
that 2D CNN with a group of adjacent slices as input data and
3D CNN can surpass the segmentation performance of classical
methods by more than 100%. In the absence of ground-truth
data, we measure the segmentation performance with a novel
approach, which exploits specific geometrical properties of
nanoporous gold and hierarchical nanoporous gold, such as
isotropy.

2 MATERIALS AND METHODS

2.1 Generation of Synthetic Training Data
Synthetic FIB tomography data can be generated in two steps.
The first step is the generation of virtual microstructures, and the
second step is the generation of virtual SEM images of these
microstructures using MC simulations.

2.1.1 Generation of Virtual Microstructures
To generate artificial microstructures that closely resemble the
ones of nanoporous materials, we compared three different
methods: the levelled wave method (LWM), self-similarity
method (SSM) and random pore generation method (RPGM).

2.1.1.1 Levelled Wave Method
Nanoporous materials are often produced by dealloying.
Theoretical analysis reveals (Li et al., 2020) that this leads to a
microstructure whose geometry can be described by a
superimposition of several wave vectors with an identical
wavelength but different random orientations (Li et al., 2020).

Subsequently, the Gaussian random field generated this way is
subjected to a thresholding algorithm to divide it into a solid and
a pore phase, resulting in microstructures as illustrated in
Figure 2A.

2.1.1.2 Self-Similarity Method
A structure is called self-similar if it resembles exactly or partly
itself. In this method, a hierarchical microstructure is generated
using the thresholded images of a real nanoporous gold structure,
hence the name “self-similarity method (SSM)”. In the first step,
FIB-SEM images of nanoporous gold are segmented to get binary
images identifying the solid phase (intensity 255) and pore phase
(intensity 0) using the k-means algorithm. Then, these binary
images are resized using bilinear interpolation (Press et al., 1992)
according to required voxel dimensions. In the next step, a mask,
smaller in size than the binary images from the previous step, is
prepared by resizing binary slices and rotating them at a random
angle. Final output images are then calculated by performing
arithmetic AND operations on binary images with masks using
convolution (Supplementary Figure S13). These AND
operations with masks generated from the original binary
structure make the final structure self-similar. One slice from
SSM is shown in Figure 2B.

2.1.1.3 Random Pore Generation Method
RPGM is a relatively simple method. In the first step, a volume
that is fully solid (intensity 255) is chosen. Subsequently, void
spheres are introduced at random locations and with a radius
drawn from a Gaussian random distribution using a masking
operation (Supplementary Figure S14). The advantage of RPGM
is that it is a straightforward method. Its disadvantage is that it
produces microstructures that exhibit considerable differences
compared to actual nanoporous materials, limiting their value for
training accurate machine learning-based segmentation
algorithms in our case. The final sample geometry generated
by this method is shown in Figure 2C.

2.1.2 Monte Carlo Simulation of Electron Microscopy
The virtual microstructures generated in the above-described
ways are used in Monte Carlo simulations to generate
synthetic FIB tomography data. The simulation of the BSE
images is performed using the software MCXray. This
software is an extension of the Monte Carlo simulation tools
Casino (Hovington et al., 1997) and Win X-Ray (Gauvin et al.,
2006). It was developed by (Gauvin and Michaud, 2009) and then
incorporated in the Dragonfly Software [ORS, Montreal, Canada]
(Object Research Systems, 2018). MCXray allows simulations of
complex microstructures even consisting of different materials.
Simulated BSE images of virtual microstructures generated by the
above described three methods are presented in Figure 3. In all
the Monte Carlo simulations for this paper, we assume beam
energy of 2 kV, a beam current of 5 × 10–11A, FIB sample stage tilt
angle of 0 degrees, and detector to sample distance of 104mm. We
performed these simulations for nanoporous gold and
hierarchical nanoporous gold, and considered pores in vacuum
(Figure 3) as well as infiltrated with epoxy resin (see for example
Figures 4–B). These simulations have a high shine-through effect
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and mimic images from a less surface sensitive through-the-lens
(TLD) back-scattered electron detector.

2.2 Preprocessing of Training Data
In our study, we applied noise and blur filters to make the
simulated images more similar to actual FIB tomography data.
Subsequently, we applied the online data augmentation technique
to increase the size of the training dataset.

2.2.1 Adding Noise
Electron microscopy images typically exhibit two types of noise
(Cizmar et al., 2008). Primary electrons can generate Poisson noise,
and the rest of the electrons from five noise sources can generate
Gaussian noise (Timischl et al., 2012). Not all five sources are
equally important, and noise added by detection systems is often
assumed to be negligible (Sim et al., 2004; Goldstein, 2003).
MCXray (Gauvin and Michaud, 2009) simulations of BSE
images naturally include Gaussian noise (Hovington et al.,
1997). We added the remaining Poisson noise and some

additional Gaussian noise to understand the effect of noise in
synthetic SEM images. To this end, we used the Scikit image
library1 in this project. First, Poisson noise was added to the image,
and then Gaussian noise, to get a realistic noisy simulated BSE
image. For the Gaussian noise, we heuristically chose a zero mean
value and a variance of 0.001. After adding the noise, the intensities
of the image were renormalized to a range from -1 to 1, converting
the noisy image thereby to a standard unsigned 8-bit image. As
training data for our study, we used these resulting noisy images.

2.2.2 Blurring of Edges
In the images generated by MCXray simulations2, the edges were
observed to be unrealistically sharp. Simple solutions like
applying Gaussian filtering to the whole image may not work

FIGURE 2 | Virtual microstructures generated by (A) levelled wave method (B) self-similarity method (C) random pore generation method.

FIGURE 3 | Simulated BSE images using Monte Carlo simulation method and data generated using (A) LWM as initial virtual structure (B) SSM as initial virtual
structure (C) RPGM as initial virtual structure.

1https://scikit-image.org
2Dragonfly software version 2021.1.0.118 13. Blurring of edges may not require in
future versions of the software
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as it may remove necessary Gaussian randomness of intensities
from the solid ligaments in the simulated image. Therefore, it is
very important to blur only the edges of the ligaments. This can be
achieved by the following steps of masking and blurring.

1. Find edges of the solid ligaments
2. Generate mask with maximum weights at the edges from

step (1)
3. Blur whole original image
4. Blend source image and blurred image from step (3) by mask

from step (2)

The difference between this procedure and standard Gaussian
blurring is illustrated in Figure 4. The image generated by the
above 4-step procedure looks more realistic.

2.2.3 Data Augmentation
Data augmentation is a very powerful technique in deep learning
when there is not enough training data available (Wang et al.,
2017). Herein, we used online data upsampling; during the training
process itself, the training data was augmented by applying random
flips, rotations, brightness changes, and stretch transforms.

2.3 Machine Learning Architectures for
Segmentation
In our synthetic FIB tomography data - as in real data - shine-through
effects occur. Hence, it can be expected that accurate segmentation is
not possible by processing image data layer by layer but rather in the
group of the layers. Herein, we tested two machine learning
architectures for segmentation that address this need.

FIGURE 4 | Synthetic SEM image after applying (A) standard Gaussian blur filter and (B) the 4-step blurring procedure introduced herein (C) intensities of pixel
located at a random location in the xy-plane across slices before blurring (blue), after applying Gaussian blur filter (orange) and 4-step blurring procedure (green).

Frontiers in Materials | www.frontiersin.org February 2022 | Volume 9 | Article 8370065

Sardhara et al. Reconstruction of Nanoporous Structures

99

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


2.3.1 2D CNN With Adjacent Slices
Shine-through effects establish a correlation between adjacent
slices. To account for this in semantic segmentation, one has to
segment different slices not separately but rather process
information from several adjacent slides in each
segmentation operation. As a way to avoid computationally
costly 3D convolutions, one can process information from
several adjacent layers simultaneously by 2D CNN (Figure 5).
To this end, we used the 2D CNN architecture U-Net
(Ronneberger et al., 2015). A general limitation of this
approach is that the number of slices that can be included
at a time is naturally limited by the number of slices available
in the 3D image stack that forms the FIB tomography data.
Indeed this limits the depth to which segmentation can be
performed.

2.3.2 3D CNN
While 2D CNNs are computationally cheaper than 3D CNN,
they may always be prone to miss out on recognizing some

spatial features. To overcome this problem, we also tested 3D
CNN. These use full 3D convolutions. We compared the 3D
CNN architectures 3D U-Net (Çiçek et al., 2016), VNet
(Milletari et al., 2016) and ResUNet3D with minor
modifications. In the U-Net architecture (Ronneberger et al.,
2015) we used padding in the convolutional blocks to retain the
original image size. Moreover, we also added residual
connections in one of our 3D U-Net models. We considered
the number of encoding blocks as a hyperparameter and tuned it
to improve performance.

2.4 Training of Neural Networks
All machine learning architectures were implemented using
PyTorch; data loaders were written in Python, and models
were trained on Tesla K80 GPUs.

2.4.1 2D CNN With Adjacent Slices
Input to the deep neural network was provided using the sliding
window technique (Figure 6), where small patches (64 × 64
pixels) were generated from the original training dataset and
used as the final training set for the network. We used 3, 5, 7 and
9 slices as the number of adjacent slices, making the input

FIGURE 5 | Basic block diagram of 2D CNN receiving as input for the segmentation of slice z also the slices z − 1 (above) and z + 1 (below).

FIGURE 6 | Sliding window method.

TABLE 1 | Parameters used for training 2D CNN with adjacent slices.

Parameter Value

Patch size 64
Stride 0.5
Batch size 64
Epochs 100 with early stopping with patience = 10
Loss Dice loss
Optimizer Adam
Learning rate 0.00001 with reducing it by factor of 0.10 with patience of 10

TABLE 2 | Parameters used for training 3D CNN.

Parameter Value

Patch size 64
Stride 0.5
Batch size 1
Epochs 100 with early stopping with patience = 10
Loss Dice Loss
Optimizer Adam
Learning rate 0.0001 with reducing it by factor of 0.10 with patience of 10
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window size 64 × 64 × 3, 5, 7 and 9, to understand the effect of
the number of adjacent slices on the segmentation performance.
Additional parameters used for the training process are
specified in Table 1.

2.4.2 3D CNN
We trained and compared a total of three 3D CNNmodels, namely
U-Net3D, ResUNet and VNet. We used the same sliding window
technique for all of them. However, unlike for the 2D CNN, the
windowwasmoving in all three spatial directions with a given stride.
The training parameters are summarized in Table 2. Inspired by
(Milletari et al., 2016), we used a squared Dice loss layer with the

necessary smoothness value to avoid zero division in all three 3D
CNN architectures. We used the mean Dice loss as the final loss
value to account for possible data imbalance (Milletari et al., 2016).

2.5 Evaluation Criteria
Due to the unavailability of labelled datasets, the CNNmodels were
trained based on synthetic training and validation data. Moreover,
to evaluate the performance of various segmentation methods for
real BSE images, we used the concept of anisotropy
(Supplementary Section S1). The shine-through effect makes
the images anisotropic in the z-direction (though the underlying
material microstructure is in a statistical sense isotropic, that is,

FIGURE 7 | SEM images of hierarchical nanoporous gold simultaneously recorded with (A) TLD and (B) ICD detector (C) intensities of pixel located at a random
location in the xy-plane in SEM TLD (orange) and ICD (orange) images.
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lacking any preferred direction). Therefore, if the segmented
images are isotropic, then it can be concluded that the
segmentation method has (likely) been able to filter the shine-
through effect and performs well. To measure anisotropy of the
segmented images, we used two-point correlation functions
(TPCF), Supplementary Figures S7, S8, and lineal path
functions (LPF) for segmented ICD images (Supplementary
Figures S10, S11) using our method and Otsu’s thresholding
method. This set of real imaging data, referred to henceforth as
hnpg_epoxy dataset, has a voxel size of 2.6 × 2.6 × 10 nm3, which
was interpolated to 5.2 × 5.2 × 5.2 nm3 using bicubic interpolation.
To quantify anisotropy of the segmented images, we calculated the
TPCF and LPF in the x-, y- and z-direction. Subsequently, we
computed the relative L2 differences for the TPCF and LPF in
z-direction and compared them to the relative L2 differences for
the TPCF and LPF in x- and y-direction, respectively. Generally,
the relative L2 difference between two functions f and g can be
computed in a discrete setting with n given data points as

eL2 f, g( ) � 2 ×
������������∑n

i�1 fi − gi( )2√
��������∑n

i�1 fi( )2√
+

��������∑n
i�1 gi( )2√( ) (1)

where the fi, gi with i = 1, . . . , n are the given data points. Finally,
we averaged the L2 differences of the z-direction compared to the
x- and y-direction. This average is referred to henceforth (e.g., in
Table 4) as TPCF or LPF eL2 difference. The larger both are, the
higher the anisotropy of the segmented images, which can be
considered a hint that the associated segmentation method has
not been able to filter shine-through effects.

As an additional measure of anisotropy, we calculated the
average diameters of ligaments in xy-, yz- and xz-planes using
lineal path functions (Dxy, Dyz, Dxz). Then, we computed the
averaged relative difference eDL2 of the diameters in the xz- and
yz-planes compared to the one in the xy-plane as

eDL2 �
1
2

�����������
Dxz −Dxy( )2

D2
xy

√√
+

�����������
Dyz −Dxy( )2

D2
xy

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Generally, the average diameter of ligaments in the z-direction
is expected to be larger than in the x- and y-direction in the
presence of non-filtered shine-through effects. Therefore,
pronounced shine-through effects can be expected to result in
large eDL2.

In the absence of ground truth, we also checked the
congruency between images from two different sensors. We
segmented FIB-SEM images from a low-loss in-column back-
scattered electron detector (ICD) and compared the results
with segmented images from the TLD. The ICD detector is
situated at an upper position in the column, ensuring that only
the most elastically scattered electrons (i.e., back-scattered
electrons) are collected. The signal is highly sensitive to
Z-contrast with almost no topographical information. Also,
low energy loss increases the probability of near-surface
interaction and therefore near-surface information (Ritter,
2019) (Figures 7–B). Therefore, one can expect the ICD
images to have relatively small shine-through effects anyway
so that they can provide at least some hint at the (not exactly
known) ground truth. We calculated the fraction of misplaced
pixels by

MP � TP − IP( )
TP

× 100 (3)

where TP is the total number of pixels, IP the number of pixels
identically segmented for TLD and ICD images, and MP is the
fraction of pixels where the segmentation of TLD and associated
ICD images disagreed.

TABLE 3 | Performance of different segmentation methods applied to dataset npg40.

Target data DL method
(SSM)

DL method
(LWM)

DL method
(RPGM)

Otsu’s algorithm k-means clustering
(k = 3)

Solid volume fraction (ϕ) 0.34 0.34 0.34 0.36 0.55 0.49
Relative error of solid volume fraction (%) 0.00 −1.99 0.50 4.33 33.69 17.94
Dice coefficient 1.00 0.98 0.99 0.89 0.75 0.78

TABLE 4 | Impact of preprocessing on segmentation performance for real hnpg_epoxy dataset.

DL model Preprocessing ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

2D CNN with adjacent slices No 0.11 0.08 0.08 0.12 0.07 0.02
2D CNN with adjacent slices Yes 0.16 0.10 0.10 0.07 0.008 0.004
3D CNN No 0.19 0.11 0.12 0.15 0.18 0.12
3D CNN Yes 0.18 0.13 0.10 0.13 0.12 0.08

TABLE 5 | Specifications of real FIB-SEM gold datasets used in this study.
Note: All dataset discussed in the table have epoxy material as pore
filling.

Dataset name Gold structure Pixel size [nm3] Detector type

hnpg epoxy ICD hnpg 2.6_2.6_10 ICD
hnpg epoxy TLD hnpg 2.6_2.6_10 TLD
npg ICD npg 3.4_3.4_7 ICD
npg TLD npg 3.4_3.4_7 TLD
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3 RESULTS AND DISCUSSION

3.1 Selection of Best Synthetic Training
Data
The first question we sought to address was which of the three
above described methods of generating synthetic training data
(LWM, SSM, RPGM) is most suitable for training deep neural
networks for semantic segmentation.We performed a study using
the CNN architecture U-Net to answer this question. We trained
the U-Net on the above three types of synthetic data, splitting
them into training data (60%), validation data (20%), and test
data (20%). Subsequently, we compared the performance of the
trained U-Nets to two classical segmentation methods, Otsu’s
thresholding algorithm (Otsu, 1979) and k-means clustering
(Lloyd, 1982) with k = 3.

To evaluate the performance of these segmentation methods,
we generated a synthetic dataset called npg40, which was
prepared using MC simulations on synthetic microstructures
generated by k-means segmentation of real nanoporous gold
SEM images. The performance of the models was then
evaluated using metrics as the relative error of solid volume
fraction and the Dice coefficients. As shown in Table 3, the deep
learning model trained on the LWM data exhibits the lowest solid
volume fraction error and highest Dice coefficient. Therefore, we
trained all our deep learning models, shown below, using
synthetic LWM data only after this preliminary test.

3.2 Role of Preprocessing
It is instructive to compare the performance of segmentation
methods trained on synthetic training data with and without
preprocessing (“blur the edges” and subsequent addition of
noise). To this end, we trained 3D CNN and 2D CNN
processing adjacent slices (on synthetic LWM data) and
subsequently compared their segmentation performance on the
(real) hnpg_epoxy dataset. Table 4 reveals that preprocessing
increases segmentation performance for both 2D CNN processing
adjacent slices and 3D CNN, underlining that preprocessing indeed
helps to generate more realistic synthetic training data.

3.3 Semantic Segmentation
We validated our trained models and their performance both by the
segmentation of one synthetic LWM dataset and four sets of real
FIB-SEM images (see Table 5). Results are presented in Tables 6, 7,
and 8. In these tables, it is apparent that the L2 differences for the
TPCF and LPF and also the ligament diameter anisotropy is much
lower for the novel segmentation methods based on deep learning
introduced in this paper compared to classical methods like Otsu’s
method or k-means clustering (with k = 3). This suggests that our
novel deep learning methods filter shine-through effects much
better than classical methods and thus produce a geometry
much closer to the real one. The excessive solid volume fraction
of the segmented ICD data compared to the associated TLD data
suggests that, in particular, Otsu’s thresholding method in many

TABLE 6 | Performance of different segmentation methods applied to synthetic LWM dataset. MP is here computed not using ICD images as reference but exact synthetic
microstructure generated by the LWM.

Model name ϕ (TLD) ϕ (LWM) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.33 0.12 0.26 0.83 0.75 0.95
Otsu's algorithm 0.54 0.12 0.43 0.96 0.65 0.71
2D CNN 0.12 0.12 0.04 0.18 0.03 0.02
2D CNN with adjacent slices 0.13 0.12 0.03 0.18 0.02 0.02
3D CNN 0.12 0.12 0.03 0.17 0.01 0.003

TABLE 7 | Performance of different segmentation methods applied to real hnpg_epoxy_TLD dataset.

Model name ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.39 0.13 0.39 0.20 0.41 0.37
Otsu's algorithm 0.38 0.29 0.12 0.21 0.29 0.24
2D CNN 0.20 0.10 0.16 0.14 0.05 0.01
2D CNN with adjacent slices 0.16 0.10 0.10 0.07 0.008 0.004
3D CNN 0.18 0.13 0.10 0.13 0.12 0.08

TABLE 8 | Performance of different segmentation methods applied to real npg_TLD dataset.

Model name ϕ (TLD) ϕ (ICD) MP eL2 TPCF eL2 LPF eDL2

k-means clustering 0.33 0.24 0.57 0.46 0.28 0.24
Otsu's algorithm 0.54 0.40 0.19 0.40 0.18 0.12
2D CNN 0.24 0.21 0.18 0.38 0.20 0.10
2D CNN with adjacent slices 0.40 0.36 0.17 0.16 0.07 0.05
3D CNN 0.44 0.31 0.20 0.12 0.06 0.04
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cases fails to classify pixels visible due to the shine-through effect.
Our deep learning-based segmentation methods exhibit much
lower MP values compared to Otsu’s method and k-means
clustering. That is, they succeed in more cases to classify pixels
in TLD and ICD imaging data identically. Following the concept of
sensor fusion, also this is indicative of a better performance of our
deep learning-based segmentation methods. It is interesting to
discuss why there is a particularly large number of misplaced pixels
for both real data sets when using k-means clustering. To explain
this, it is important to note that we selected k = 3 for k-means
clustering to account for the presence of a total of three different
clusters, namely a solid phase, a pore phase and artifacts (i.e. pixels
due to the shine-through effect). This assumption is certainly
reasonable for TLD images because of their sensitivity to shine-
through effects. By contrast, ICD images are much less prone to
this problem, so k = 3 may no longer be a good assumption,
resulting in poor performance of the associated segmentation.

Among the CNN-based segmentation methods, the 2D CNN
with adjacent slices and the 3D CNN performed better than the
standard 2D CNN. They probably can generalize better to the
different datasets. For example, the very low solid volume fraction
in Table 8 for the 2D CNN segmentation suggests that this
method fails to classify solid pixels for the npg_TLD dataset.

We also studied the effects of window size (number of adjacent
slices) on segmentation performance. It is evident from Figure 8
that 2D CNN processing adjacent slices provided the best
performance for windows of sizes 9 and 5 for the
hnpg_epoxy_TLD and the npg_TLD datasets, respectively.

4 CONCLUSION

Deep learning can play an important role in the segmentation of FIB
tomography data. A potential caveat is the limited availability of
training data. We demonstrated that the lack of training data can be
overcome by generating virtualmicrostructures and simulating them

using the MCXray method, providing ample synthetic FIB
tomography training data. We compared three different methods
to generate realistic synthetic nanoporous geometries. Our results
reveal that the training data generated by the levelled wave method
(LWM) is most effective for deep learning of image segmentation. A
major problem in this context is the typically missing availability of
ground truth. That is, for real materials, most often, there is no
information available that would characterize their microstructure
more accurately and reliably than segmented FIB tomography data,
which makes it naturally difficult to evaluate the performance of a
specific segmentation method. Herein, we introduced a novel
approach to measure the extent to which shine-through effects -
which can be expected to be the dominant source of errors in the
semantic segmentation of images of nanoporous materials - are
filtered out by different segmentation methods. This method did not
require any full ground truth but rather exploited that nanoporous
materials typically exhibit an isotropic microstructure. This way, the
degree of anisotropy of the segmented images could be used as a
proxy of the segmentation error. We tested different deep learning
architectures for the segmentation of FIB tomography data and
identified 2D CNNs with adjacent slices as image channels and 3D
CNNs as the best architectures of the ones tested herein. Generally,
3D CNNs were found to be computationally more expensive to train
than 2D CNN with adjacent slices.
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Development of a Robust CNN Model
for CapturingMicrostructure-Property
Linkages and Building Property
Closures Supporting Material Design
Andrew Mann1 and Surya R. Kalidindi 1,2*

1Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA, United States, 2Georgia Institute of
Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, United States

Recent works have demonstrated the viability of convolutional neural networks (CNN) for
capturing the highly non-linear microstructure-property linkages in high contrast
composite material systems. In this work, we develop a new CNN architecture that
utilizes a drastically reduced number of trainable parameters for building these linkages,
compared to the benchmarks in current literature. This is accomplished by creating CNN
architectures that completely avoid the use of fully connected layers, while using the 2-
point spatial correlations of the microstructure as the input to the CNN. In addition to
increased robustness (because of the much smaller number of trainable parameters), the
CNN models developed in this work facilitate the construction of property closures at very
low computational cost. This is because it allows for easy exploration of the space of valid
2-point spatial correlations, which is known to be a convex hull. Consequently, one can
generate new sets of valid 2-point spatial correlations from previously available valid sets of
2-point spatial correlations, simply as convex combinations. This work demonstrates the
significant benefits of utilizing 2-point spatial correlations as the input to the CNN, in place
of the voxelated discrete microstructures used in current benchmarks.

Keywords: convolutional neural networks, property closures, 2-point spatial correlations, convex hull,
microstructure design

1 INTRODUCTION

The microstructure1 of a material has a causal relationship with its effective anisotropic properties.
Therefore, it should be theoretically possible to design the microstructure for optimal performance,
which is typically specified in terms of a set of desired effective material properties. In practice, the
microstructure-property relationships are most commonly explored using computationally
expensive physics-based simulation tools (Ghosh et al., 1995; Kalidindi and Schoenfeld, 2000;
Roters et al., 2010; Wargo et al., 2012; Brands et al., 2016). However, such computational tools allow
exploration mainly in the forward direction, i.e., going from given microstructures to the estimation
of their effective properties. Microstructure design can be achieved through iterative evaluations of
the forward model to minimize a suitably defined objective function on the targeted properties.

Edited by:
Roberto Brighenti,

University of Parma, Italy

Reviewed by:
Niaz Abdolrahim,

University of Rochester, United States
Hamid Akbarzadeh,

McGill University, Canada

*Correspondence:
Surya R. Kalidindi

surya.kalidindi@me.gatech.edu

Specialty section:
This article was submitted to

Computational Materials Science,
a section of the journal
Frontiers in Materials

Received: 09 January 2022
Accepted: 23 February 2022
Published: 11 March 2022

Citation:
Mann A and Kalidindi SR (2022)

Development of a Robust CNN Model
for Capturing Microstructure-Property

Linkages and Building Property
Closures Supporting Material Design.

Front. Mater. 9:851085.
doi: 10.3389/fmats.2022.851085
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However, the high computational expense of the physics-based
forward models poses a major hurdle for such design efforts.

Many efforts in prior literature have aimed to reduce the
computational cost of the forward models described above, since
inverse solutions often require the execution of a very large
number of forward trials. Such efforts have explored both
analytical approaches as well as emergent data-driven
approaches. The most impactful efforts utilizing analytical
approaches have been based on Kroner’s perturbation
expansion of the solution for the effective elastic stiffness of a
composite material (Kröner, 1971). In this formalism, the
effective material property is expressed as a series whose terms
systematically utilize increasingly higher-order spatial
correlations (i.e., n-point spatial correlations) of the different
material local states in the microstructure. In most practical
applications, the series expansion is truncated to include up to
2-point spatial correlations (Torquato, 2002; Adams et al., 2013;
Kalidindi, 2015). An implicit benefit of these analytical
approaches is that they permit formal application of
optimization methods (many of which require computation of
the gradients of the specified objective function with respect to
microstructural variables) in solving microstructure design
problems. Examples of these efforts can be found in the
development and application of the Microstructure-Sensitive
Design (MSD) framework (Fullwood et al., 2007; Fullwood
et al., 2008a; Fullwood et al., 2010; Adams et al., 2013). Prior
MSD efforts have demonstrated the viability of designing simple
microstructures (e.g., composites with two isotropic phases,
single phase polycrystalline materials) to meet designer
specified target properties (Adams et al., 2001; Fast et al.,
2008; Knezevic et al., 2008; Shaffer et al., 2010; Adams et al.,
2013). The application of the MSD framework has been largely
confined to simple microstructures and simple physics due to the
difficulties encountered in computing the convolution integrals
involved in the series expansions. Some of the main hurdles
encountered arise from the need to find Green’s function
solutions for the specific governing field equations and the
reliable computation of the principal value (Fullwood et al.,
2008a; Fullwood et al., 2010; Adams et al., 2013).
Furthermore, the perturbation series expansion has also been
shown to be limited in practice to moderate contrast (refers to the
degree to which the local properties can change from one location
to another in the microstructure) material systems (Kalidindi
et al., 2006; Fullwood et al., 2010). This limitation is due to the
challenges encountered in achieving convergence in the series
expansion with the systematic inclusion of higher-order spatial
correlations (Torquato, 2002; Fullwood et al., 2008a; Fullwood
et al., 2010).

Data-driven approaches have aimed to overcome the
shortcomings of the analytical approaches described above by
producing low-computational cost surrogates trained on the
high-computational cost physics-based numerical models [e.g.,
representative volume elements modeled by finite element
models (FEM)]. If these surrogates exhibit adequate accuracy,
their low computational cost clearly justifies their use in
microstructure design efforts. A prime example of these efforts
can be seen in the Materials Knowledge System (MKS) (Kalidindi

et al., 2010; Landi et al., 2010; Kalidindi, 2015; Brough et al., 2017)
framework, which employs a novel feature engineering approach
for material microstructures by combining the formalism of the
n-point spatial correlations mentioned above with machine
learning tools such as the principal component analysis
(PCA). The MKS framework learns the salient (low-
dimensional) microstructure features in a completely
unsupervised manner. These low-dimensional features are then
used to build data-driven surrogate models for the reliable
prediction of a broad range of material properties of interest.
In typical MKS applications, these surrogate models are trained
on datasets generated by physics-based numerical tools. The
viability of the MKS approach has been demonstrated on a
broad class of material structures and applications (Cecen
et al., 2014; Brough et al., 2017; Latypov et al., 2019). In
recent extensions of the MKS framework (Cecen et al., 2018;
Yang et al., 2018; Eidel, 2021), convolutional neural network
(CNN) based surrogates have been explored, which bypass the
feature engineering steps and build structure-property
relationships directly from the input voxelated microstructure
volumes. These CNN-based surrogates have demonstrated
excellent accuracy, even for high contrast composites (Yang
et al., 2018; Eidel, 2021). Although the CNN-based models
offer a highly accurate and low-computational cost tool to
predict the effective property of a given microstructure, they
encounter certain limitations that arise from the difficulty of
incorporating known physical concepts into the CNN-based
surrogate models. For example, when one imposes periodic
boundary conditions on a representative volume element
(RVE) of a microstructure, the predicted effective property
exhibits translational invariance2. The most commonly used
CNN architectures do not exhibit this characteristic implicitly.
Most importantly, CNN-based models are prone to model over-
fit due to their large number of tunable parameters. Despite these
limitations, recent work has demonstrated the positive impact of
data-driven methods on topology optimization (Kollmann et al.,
2020; Yilin et al., 2021) and inverse design of microstructures
(Jung et al., 2020; Tan et al., 2020).

This work aims to combine the advantages of both the
analytical and data-driven approaches described above. First,
this work employs the microstructure hull concept introduced
in the MSD framework, which represents the complete space of
physically realizable structures in a compact and convex space.
Second, this work builds CNN-based surrogates using the 2-point
spatial correlation maps as inputs, as opposed to using the
voxelated microstructures directly. The approaches described
in this work offer many advantages: 1) The use of 2-point
spatial correlations as input to the CNN models automatically
imparts translational invariance. 2) The change of the input to the
CNN, from the voxelated microstructures (RVEs) to the 2-point
spatial correlation maps, is expected to produce a more accurate
and robust surrogate model (compared to current benchmarks)

2This implies that if one extends the original RVE in all directions utilizing
periodicity and takes a new RVE of the same size but with a different starting
point, its effective property would be exactly the same as the original RVE.
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with a significantly smaller number of trained parameters (and
the associated training cost). 3) The proposed strategy allows one
to explore the complete space of possible property combinations
in a highly practical manner (by limiting the exploration to the 2-
point spatial correlations hull); this construct has been termed as
property closure in prior work (Proust and Kalidindi, 2006;
Fullwood et al., 2007; Wu et al., 2007; Knezevic et al., 2008;
Fullwood et al., 2010; Adams et al., 2013). The property closure
produced in this work represents a significant advance from the
closures produced in prior literature in terms of both
computational cost and accuracy.

2 BACKGROUND

2.1 Microstructure Quantification
Discretized representations have been used extensively in the
mathematical representation of the material microstructures
(Adams et al., 2013). In these, the microstructure is most
conveniently represented as an array, mh

s , whose values
reflect the volume fraction of the material local state, h, in
the spatial bin, s, in the RVE. In this formalism, the local states
are used to index the salient local material attributes (e.g.,
thermodynamic phase identifiers) and the spatial bins are
produced through a uniform tessellation of the RVE
(equivalent to pixels in 2-D and voxels in 3-D). Implicit in
this representation is the assumption that there exist a finite
number of distinct material local states, h � 1, 2, . . . , H, which
are allowed to occupy each spatial bin in the RVE,
s � 1, 2, . . . , S, to define the microstructure of interest. In
this study, we will employ a 3-D vector index s � (s1, s2, s3)
for indexing the spatial bins in a 3-D RVE.

Of primary interest to this paper are the 2-point spatial
correlations, which are captured in a discretized representation
as an array denoted by fhh’

r . The elements of this array reflect the
probability of finding local states h and h′ in the RVE separated by
a discretized vector indexed by an integer array r (very similar to
s). Mathematically, 2-point spatial correlations are defined as
(Kalidindi, 2015)

fhh’

r � 1
S
∑
s

mh
sm

h’

s+r (1)

Where S denotes the total number of spatial bins in the RVE. In
practice, fhh’

r are most efficiently computed by taking advantage
of the fast Fourier transform (FFT) algorithm (Niezgoda et al.,
2008; Cecen et al., 2016).

2.2 Microstructure Hulls and Property
Closures
We will restrict our attention in this work to periodic eigen
microstructures. Eigen microstructures are defined as a special
class of microstructures where each spatial bin is fully occupied by
only one material local state. In other words, mh

s are allowed to
take only the values of either zero or one. Most experimentally
observed microstructures are commonly depicted as eigen
microstructures, with the spatial bin size limited by the

resolution limits of the characterization machine (e.g.,
microscope). Moreover, most structural composites exhibit
thermodynamic phase regions separated by sharp boundaries.
Therefore, in practice, the discretization error arising from the
use of eigen microstructure representations is largely restricted to
the voxels next to the phase boundaries; this error can be
controlled through the selection of a sufficiently small spatial
bin size. The assumption of periodicity makes the microstructure
representations consistent with the typically imposed boundary
conditions in the finite element modeling of the RVEs for the
estimation of their effective (bulk) mechanical properties (e.g.,
elastic stiffness, yield strength) (Cecen et al., 2014; Brough et al.,
2017; Latypov et al., 2019).

Prior work in the development of the MSD framework
(Niezgoda et al., 2008) has demonstrated that the complete
space of 2-point spatial correlations (i.e., the set of all
theoretically possible 2-point spatial correlations) can be
depicted as a convex (and compact) hull. Generally referred as
a microstructure hull, this construct delineates the complete space
of inputs (i.e., design space) that needs to be considered in
microstructure design. It should be recognized that the space
of the 2-point spatial correlations is significantly smaller than the
space of all microstructures, since microstructures related to each
other by translations and/or inversions have the exact same set of
2-point spatial correlations (implied from Eq. 1). This is indeed
one of the main advantages of using spatial correlations to
represent the microstructure in design efforts; the
microstructures that have been filtered out exhibit the exact
same effective mechanical properties as the ones retained in
the 2-point spatial correlations hull. Therefore, they effectively
remove many of the redundancies in the design space. Although
higher-order spatial correlations (i.e., 3-point spatial correlations
and higher) are known to influence the effective properties, they
are expected to have (currently unknown) non-linear
relationships with the 2-point spatial correlations, at least for
the class of eigen microstructures considered in this work. This
can be inferred from the fact that it is possible to reconstruct
exactly the eigen microstructures from their 2-point spatial
correlations (Fullwood et al., 2008b). One of the important
practical consequences of the concepts presented above is that
one can construct a new set of valid 2-point spatial correlations as
a convex combination of the 2-point spatial correlations of
known microstructures. This realization offers an attractive
avenue for exploring efficiently the space of microstructures
without having to instantiate them directly. In other words, we
can explore the space of fhh’

r much more easily than the space of
mh

s . This is because it is not possible to span the space of eigen
microstructures simply as convex combinations of previously
known eigen microstructures.

Another advance from the MSD framework related to the
present work is the concept of a property closure (Proust and
Kalidindi, 2006; Wu et al., 2007; Fullwood et al., 2007; Knezevic
et al., 2008; Fullwood et al., 2010; Adams et al., 2013). The
property closure delineates the complete set of effective (bulk)
property combinations in a selected material system, which are
theoretically realizable through the modulation of its
microstructure. Property closures are extremely valuable in
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engineering design because they represent the complete set of
property combinations that can be leveraged for the optimization
of the part performance. This is particularly important for
heterogeneous design where the microstructures are
intentionally varied throughout the part to optimize the
overall part performance. Prior work in the MSD framework
focused on computationally efficient algorithms for mapping the
microstructure hulls into property closures. As already
mentioned, the case studies reported to date in the MSD
framework have relied on Green’s function-based analytical
models for microstructure-property relationships, which were
themselves restricted to relatively simple material physics
(i.e., constitutive models) and low to moderate contrast
composites (Kalidindi et al., 2006; Proust and Kalidindi, 2006;
Adams et al., 2013).

2.3 Convolutional Neural Networks
Neural networks (Schmidhuber, 2015) have shown to be powerful
tools for learning highly complex non-linear mappings between
selected inputs and the targets (i.e., outputs) in a wide range of
application domains. Indeed, under certain conditions, neural
networks can be shown to be universal function approximators
(Cybenko, 1989; Pinkus, 1999). Convolutional neural networks
(CNNs) are a special class of neural networks that perform
exceptionally well for problems involving spatial fields as
inputs. CNNs have been successfully deployed in a variety of
image analyses and machine vision applications (Lecun et al.,
1998; He et al., 2016; Krizhevsky et al., 2017). Since
microstructures are spatial fields, CNNs are ideally suited to
explore microstructure-property relationships (Yang et al.,
2018; Rao and Liu, 2020; Eidel, 2021). The central advantage
of CNNs is that they circumvent the need for explicit feature
engineering of the complex input spatial fields. In other words,
the feature engineering occurs implicitly in the CNN during the
model training process.

The primary components of a typical CNN are the
convolutional layers, the pooling layers, and the fully
connected layers, all of which are used to transform
systematically the input into the desired target. Figure 1
depicts schematically a typical CNN architecture, where
each block represents the transformed input (i.e., feature
map) and the mathematical operations between the blocks
are performed using one of the types of layers described above.
The number of transformation layers and their characteristics
(e.g., number of channels in each layer, type of non-linear
activation employed, kernel size) are considered as
hyperparameters of the CNN architecture, and are generally
optimized for a specific application through multiple trials. As
the size of the network is increased, the model accuracy and the
computational cost of the training generally increases.
However, increases in network size are often accompanied
by increases in the number of learned (i.e., model-fit)
parameters. Consequently, larger networks are prone to be
model over-fits, especially when using a limited training
dataset. Model over-fit is generally assessed through some
form of cross-validation (Bishop, 2006; Hastie et al., 2009).
Therefore, one aims to build a robust CNNmodel that provides
high model accuracy, while avoiding over-fit.

The reader is referred to various excellent texts (e.g., LeCun
et al., 2015; Emmert-Streib et al., 2020; Zhang et al., 2021) for an
introduction to the basics of machine learning. Here, we briefly
present the primary components of the CNNs discussed in this
work. A convolutional layer applies a linear transformation
(performed as a convolution of a learned kernel on the input)
followed by a non-linear activation applied pointwise on the
feature map. The PReLU activation function defined below has
been used in this work:

PReLU(x) � { x, if x≥ 0
ax, otherwise

(2)

FIGURE 1 | Schematic of a typical CNN architecture consisting of convolutional layers, pooling layers, and fully connected layers.
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A stride (Goodfellow et al., 2016; Zhang et al., 2021) can be
implemented in the convolution operation to effectively coarsen
the input, which helps reduce the size of the transformed feature
map (this is needed as most CNNs start with high-dimensional
spatial maps as input and produce low dimensional targets; see
Figure 1. Pooling (Goodfellow et al., 2016; Zhang et al., 2021) is
another dimensionality reduction technique that is used
extensively in CNN architectures. Specifically, this work
employs global average pooling where a feature map produced
in an output channel is simply replaced by its average. Most CNN
architectures implement fully connected layers in the last few
transformation layers. Unlike the convolution layers, fully
connected layers treat each input feature independently in the
linear transformation. Consequently, fully connected layers
dramatically increase the expressivity of the CNN models
along with a concomitant increase in the number of model-fit
parameters. Consequently, the fully connected layers also make
the CNN models prone to over-fit.

CNNs have been successfully employed to model the
microstructure-property relationships in heterogeneous
(composite) material systems (Yang et al., 2018; Rao and Liu,
2020; Eidel, 2021). However, the CNN architectures designed for
predicting the effective property of a microstructure have not
differed significantly from the CNNs designed for machine vision
problems (Lecun et al., 1998). For example, Yang et al. (2018)
employed a CNN to predict the C1111 component of the effective
elastic stiffness tensor of a composite using a voxelated
representation of its RVE as the input. Their CNN model
contained approximately 3.2 million trainable parameters, the
majority of which reside in the fully connected layers. More
recently, Eidel (2021) improved the CNN model from Yang et al.
(2018) by significantly reducing the number of neurons in the
fully connected layers, which correspondingly reduces the
number of trainable parameters. However, the CNN
architecture still has approximately 2.9 million trainable
parameters, of which approximately 1.8 million parameters are
in the fully connected layers. Because the models are trained using
relatively small datasets, typically containing only about 104

(Yang et al., 2018; Eidel, 2021) training datapoints, the
chances of the CNN model being an over-fit are significant.
As already discussed, the CNN architectures used in the prior
microstructure-property modeling efforts exhibit the following
additional limitations: 1) the use of discrete microstructures as
input makes it difficult to employ them in exploring inverse
microstructure-design solutions (because of the difficulty in
delineating the unimaginably large input domain), and 2) they
do not automatically reflect the desired translation invariance.

3 NEW PROTOCOL FOR BUILDING
PROPERTY CLOSURES

This work proposes a new protocol for constructing property
closures that leverages the prior advances made in both the MSD
and MKS frameworks. More specifically, the proposed protocol
combines the concepts of 2-point spatial correlations and their
hulls developed in the MSD framework (Adams et al., 2013) with

a new CNN architecture that avoids the use of fully connected
layers. The proposed protocol involves two main steps: 1)
building a robust surrogate model that captures the 2-point
spatial correlations-property linkage of interest using the new
CNN architecture, which employs a much lower number of
model fit-parameters compared to current benchmarks (Yang
et al., 2018; Eidel, 2021), and 2) constructing the property closure
by systematically exploring the 2-point spatial correlations hull
with the new CNN model. This new protocol is developed and
demonstrated in this paper for constructing the property closure
for selected components of the effective elastic stiffness tensor in a
high-contrast composite material system.

3.1 Convolutional Neural Network Model for
Microstructure-Property Linkages
The first step of the proposed protocol for building property
closures is to establish a robust surrogate model that takes 2-point
spatial correlations as the input and predicts the effective
properties of interest. The many benefits that could come
from the use of 2-point spatial correlations as the input
instead of the discrete microstructure have already been
discussed earlier. It is emphasized here that the features
identified by the 2-point spatial correlations are expected to
serve as universal features for all effective anisotropic material
properties of interest (Garmestani et al., 1998; Cecen et al., 2014;
Gupta et al., 2015; Kalidindi, 2015; Paulson et al., 2017; Yabansu
et al., 2020; Generale and Kalidindi, 2021). Therefore, it should be
possible to create microstructure-property surrogates capable of
concurrently predicting multiple effective anisotropic material
properties. It is further emphasized that the relationships of
interest have to be necessarily formulated in the direction of
microstructure → property (and not in the inverse direction) as
these are expected to be many-to-one relationships. In other
words, microstructures exhibiting different 2-point spatial
correlations can produce the exact same effective property,
because the effective property reflects a suitably averaged bulk
response of the material3.

A few example RVEs and their 2-point spatial correlation
maps are presented in Figure 2. It should be noted that 2-point
spatial correlation maps are continuous spatial fields with a
natural origin corresponding to the zero vector (i.e., r � 0 in
Eq. 1). Note that the 2-point spatial correlation maps exhibit a
sharp peak at r � 0 and generally decrease with increasing |r|.
More specifically, the peak value is equal to the phase volume
fraction, while the asymptotic value at large |r| is equal to the
square of the phase volume fraction. Additionally, the 2-point
spatial correlations capture a number of other important details
of the microstructure, including size and shape distributions
(Fullwood et al., 2010; Kalidindi, 2015). Indeed, it is seen from
Figure 2 that the shape of the central peak in the 2-point spatial
correlations mimics the average shape of the features in the

3The reader is pointed to prior work on iso-property surfaces in microstructure
hulls (Knezevic and Kalidindi, 2007; Fullwood et al., 2010) to visualize the many-
to-one microstructure-property linkages.
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microstructure. The presence of the natural origin at r � 0
imparts the desired translational invariance of the effective
properties described earlier. The 2-point spatial correlations
maps used as inputs to the CNNs developed in this work include
vectors with x, y, and z components in the integer range
{−15, . . . , 0, . . . , 15}. Although the vectors defining spatial
correlations have physical units of length, they are used here
with arbitrary units (these default to voxels of unit size in this
work), as is typically done in FEM of composite RVEs. This is
because the material constitutive law (i.e., Hooke’s law for
elasticity) employed in these models does not contain any
characteristic length scales. Consequently, the values of the
effective stiffness of the RVE are completely independent of the
physical length of each voxel in the RVE. However, one must
pay attention to the voxelization itself in creating the RVEs. The
use of coarser voxels will lead to inaccurate representation of
the smallest features (i.e., phase regions) in the RVE, while the
use of finer voxels will increase the computational cost. Prior
work (Latypov et al., 2019; Marshall and Kalidindi, 2021) has
utilized successfully RVEs of resolution 27X 27X 27 in
modelling the homogenized plastic response of composite
microstructures. The resolution of the RVEs in this work
was increased to 31X 31X 31 to allow for a slightly
improved representation of the RVEs used to capture the
salient microstructure-property linkages for the present
application. Further increase in the RVE resolutions was not
possible for the present study because of the high computational
cost involved. As a result of the considerations described above,
the 2-point spatial correlation map used as input to the CNN
was standardized as a 3-D array of size 31X 31X 31 (with r � 0
corresponding to the element (16, 16, 16) of this array). Note
that the elements of this array take continuous values only in
the range [0, 1].

Prior work (Garmestani et al., 1998; Cecen et al., 2014; Gupta
et al., 2015; Kalidindi, 2015; Paulson et al., 2017) has also shown
that the 2-point spatial correlations can serve as universal features
for correlating the microstructure to its many different effective
(bulk) properties. The theoretical justification for this claim is
most clearly seen in the statistical continuum theories formulated
by Kröner (1971). Consequently, the use of 2-point spatial
correlations as input can offer attractive avenues for creating
high-fidelity multi-output CNN models, where each output
corresponds to a different effective property of interest. In
other words, one can aim to build CNN architectures that
learn the common salient microstructure features that are
capable of making sufficiently accurate predictions for the
different effective properties of interest. Such multi-output
CNNs would implicitly account for cross-correlations between
the different effective properties of the RVE, making the
predictions more reliable and robust. In this work, we will
specifically explore multi-output CNNs for the predictions of
C1111 and C1212 components of the effective elastic stiffness tensor
for high contrast composites.

The use of 2-point spatial correlations, instead of the voxelated
microstructures, as input to the CNN essentially constitutes
feature engineering. It should be recognized that most
applications of CNNs do not apply any feature engineering
steps. In fact, CNNs are generally touted as model building
approaches that do not require feature-engineering. However,
for our application, the established physics (i.e., statistical
continuum mechanics theories (Kröner, 1971; Torquato,
2002)) has already proven that the 2-point spatial correlations
can serve as versatile microstructural features with a number
of desired characteristics described earlier. CNN models are ill-
equipped to learn the 2-point spatial correlations from
the discrete microstructures by themselves, because the

FIGURE 2 | Example 3-D RVEs with the corresponding Y-Z mid-sections of their 2-point spatial correlations. It is seen that the 2-point autocorrelations capture
various salient measures of the microstructures (for example, the center peak in these plots reflects the phase volume fraction and the shape of the central peak region
reflects the average shape of the phase regions).
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auto-correlations and cross-correlations are not easily
approximated by the various transformation layers used in the
CNNs. Thus, it is likely to be much more beneficial to first
compute the 2-point spatial correlations as a feature engineering
step, and subsequently use them as inputs into a CNN model for
predicting the effective properties. One of the main benefits
anticipated would be a dramatic reduction in the number of
model fit parameters. A critical evaluation of this hypothesis is
one of the main goals of this work.

Towards the goals described above, we primarily focused on
designing CNN architectures for our study that do not have any
fully connected layers. After a few trials, we arrived at Model A
(see Table 1) that showed better accuracy than the benchmarks
with far fewer number of trainable parameters (discussed in more
detail in the next section).We believe that this dramatic reduction
of model complexity is attributable to the fact that we are using
the 2-point spatial correlations as input to the CNN, in place of
the voxelated microstructure. In order to validate this hypothesis,
we created Model B (see Table 1), with the only difference from
Model A coming from the use of the voxelated microstructure as
the input to the CNN. It was also generally observed that the CNN
models produced in this work needed far few layers compared to
the benchmarks. This is because of the already feature-engineered
inputs (i.e., 2-point spatial correlations). Furthermore, the
architectures explored in this work achieved the needed
dimensionality reduction in the feature maps by using stride
in the first convolutional layer. A final dimensionality reduction is
accomplished using global average pooling in the final layer,
effectively transforming the feature maps into scalar outputs
(i.e., targets). Note that the CNN architectures explored in our
work are drastically simplified compared to the current
benchmarks (see Table 1).

The architectures of Models A and B follow the current
benchmarks in that they start with a relatively small number
of channels in the first layer and systematically increase the

number of channels in the subsequent layers. Consequently,
these conventional architectures aim to initially identify a
smaller number of macroscale features and then further
transform them in the subsequent layers into the salient
features that strongly correlate with the output. We also
explored the possible benefits of inverting this architecture,
i.e., starting with a large number of channels in the first layer
and systematically reducing the number of channels in
subsequent layers. The general idea of these inverted
architectures is that they allow the initial capture of a large
number of potential features, and subsequently transform
them to a smaller number of salient features. Another
advantage is that these inverted architectures are more
naturally aligned with the dimensionality reduction needed in
our application - from the higher-dimensional input to the low-
dimensional output. Model C (see Table 1) shows an example of
this architecture. It was also observed that the global average
pooling in the last layer was essential for producing high-
fidelity CNN models for our application. In an effort to
critically validate this concept, we created several CNN
architectures that avoided the use of the average pooling
layer and accomplished the necessary dimensionality
reduction exclusively through the use of convolutional
layers. Model D (see Table 1) shows one such architecture,
which is very similar to Model A. Note also that the change
from Model A architecture to Model D architecture actually
increases the number of trainable parameters and allows for
richer non-linear transformations (i.e., increases model
expressivity). It will be shown in the next section that this
increase in model expressivity dies not necessarily result in an
improvement in model fidelity. The performance of Models A
through D will be discussed extensively in the next section.

The dataset employed in this work to train the CNN networks
consisted of 20,480 two-phase microstructures and their
corresponding FEM-estimated C1111 andC1212 components of

TABLE 1 | Examples of different CNN architectures explored in this work along with the relevant benchmarks from literature. The notation a@b/c indicates a axaxa kernel,
applied with a stride of c, and b channels. The default value of stride, when not mentioned, is one.

Model Yang et al.
(2018)

Eidel (2021) A B C D

Input 51 × 51 ×
51 Microstructure

51 × 51 ×
51 Microstructure

31 × 31 ×
31 Spatial

Correlations

31 × 31 ×
31 Microstructure

31 × 31 ×
31 Spatial

Correlations

31 × 31 ×
31 Spatial

Correlations

L1 3@16 3@16 5@8/2 5@8/2 5@64/2 5@8/2
L2 MaxPool MaxPool 3@16 3@16 3@32 3@16
L3 3@32 3@32 3@32 3@32 3@16 3@32
L4 MaxPool MaxPool 3@64 3@64 3@8 3@64
L5 3@64 3@64 1@2 1@2 1@2 3@4
L6 MaxPool MaxPool AvgPool AvgPool AvgPool 6@2
L7 3@128 3@128 — — — —

L8 MaxPool MaxPool — — — —

L9 3@256 3@256 — — — —

L10 MaxPool MaxPool — — — —

L11 FC-2048 FC-256 — — — —

L12 FC-1024 FC-128 — — — —

Number of Outputs 1 27 2 2 2 2
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the effective elastic stiffness tensor. The details of the generation
of the microstructures and the finite element models used in the
estimation of the effective elastic properties have been described
in prior work (Kelly and Kalidindi, 2021). The microstructures
exhibited volume fractions ranging from 0 to 100%. For the two-
phase microstructures studied in this work, only the f11

r are
independent (Niezgoda et al., 2008). Consequently, only these are
used as input to the CNNs. The finite element models used for the
estimation of the effective properties used periodic boundary
conditions (Landi et al., 2010). Specifically, the C1111 component
of the elastic stiffness tensor was estimated by imposing an
average uniaxial strain of �ε11 � 0.001 on the RVE, computing
the average stress �σ11 from the FE simulation, and dividing it by
the imposed strain (0.001). The C1212 component of the
effective elastic stiffness tensor was similarly evaluated by
imposing an average shear strain. The elastic properties of the
two isotropic phases used in this study were assigned using
Poisson ratios (ν1, ν2) and Young’s Moduli (E1, E2). The
following specific values were used: ν1 � ν2 � 0.3, E1 � 120
and E2 � 6, 000 (as already noted, in the FEM simulations,
these are associated with arbitrary but consistent units). These
selections correspond to a high contrast ratio of 50 (defined by
the ratio E2

E1
) for the composite material system studied here.

Because of the linearity of the elasticity problem, the CNN
model generated here can be applied to any composite
material system with the same contrast value and the same
values of the Poisson ratios, simply by applying a suitable
scaling factor. It should be noted that although the level of
contrast explored in this work is relatively high, it is still far
less than the infinite contrast experienced in porous solids (for
example, commonly encountered in additively manufactured
components). We do believe that the microstructure design
strategy proposed here is extendable to such extremely high
contrast composites.

3.2 Property Closure Construction
In principle, the property closure should be constructed by
mapping the complete 2-point spatial correlations space to the
property space of interest. As already mentioned earlier, the
protocol developed and implemented in this study aims to
take full advantage of the fact that the complete space of the
2-point spatial correlations delineates a convex hull. Themapping
between the 2-point spatial correlations and the effective
properties of interest will be approximated by a suitable multi-
output CNN model. Although the 2-point spatial correlations
space is continuous and convex, it is still too large to explore using
brute-force approaches. A clever strategy is therefore needed to
successfully explore the complete space of 2-point spatial
correlations and map it into the property space of interest.
The following protocol (see Figure 3) is designed and
implemented in this work:

Step 1: Create a large initial set of voxelated eigen
microstructures and compute their 2-point spatial
correlations. Additionally, estimate their corresponding
effective properties using suitable finite element models
(i.e., applying periodic boundary conditions). Build an
initial estimate of the property closure using this initial
dataset.

Step 2: Using a suitable algorithm (such as a convex hull
algorithm), identify the boundary points of the current
estimate of the property closure. This work employed the
Quickhull algorithm (Barber et al., 1996), which
efficiently identifies the boundary points of a convex
hull defined by a set of points. These boundary points
reflect extreme combinations of the properties of interest
(within the current estimate of the property closure). The
boundary points are updated after each iteration of the
proposed protocol until the area enclosed by the

FIGURE 3 | A flow chart of the proposed protocol.
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boundary points does not change significantly. The
microstructures corresponding to these boundary
points are identified as seeds for the generation of new
microstructures of interest in the next step.

Step 3: Let af11
r and bf11

r represent the 2-point spatial
correlations of two selected seeds identified in Step 2.
Generate new microstructures by taking convex
combinations of the 2-point spatial correlations of any
selected pair of seeds from Step 2. In other words, create
newmicrostructures as pf11

r � αaf11
r + (1 − α)bf11

r with
0< α< 1. Create as many new microstructures as needed
by selecting different seeds and varying the weights of the
convex combination. Ideally, one may want to focus their
expansion efforts on regions of the property closure that
are currently lightly populated. In other words, take
convex combinations of the 2-point spatial correlations
that correspond to effective property points that reside in
the sparse regions of the property closure. One can also
use more than two seeds at a time. As long as the weights
are positive and sum to one, the generated microstructure
represents convex combination of the seeds. As an
example, Figure 4A depicts generation of new
microstructures using three seeds, labelled as A, B, and
C. All of the convex combinations are represented by
points inside the triangle ABC. Microstructure D
represents an example of such an interpolation. Using
the CNN surrogate model, estimate the effective
properties of interest for all of the new microstructures
generated in this step. Add these new estimated properties
to the set of points that currently approximates the
property closure. Note the mapping between the
microstructure space and the property space is
expected to be highly non-linear, as illustrated in
Figure 4B. Since a CNN provides a smooth mapping
between the input and the output (Hastie et al., 2009), the
triangular region ABC in the microstructure space would
map to a (non-linearly) distorted but continuous
triangular region with curvilinear sides in the
property space.

Step 4: In this step, we will focus on extrapolations (Step 3 only
used interpolations) by essentially following the same
process as in Step 3, while relaxing the requirement
that all weights are positive. Extrapolations are usually
produced by using at least one negative weight, while
requiring the weights add to one. However, we will
only allow acceptable new microstructures by
requiring that all values of pf11

r lie between zero
and one (this condition is automatically satisfied in
the interpolations in Step 3). Microstructure E in
Figure 4A represents an example of the generation
of a new microstructure through an extrapolation.
Once again, it might be prudent to focus the
generation of new microstructures in this step to
the sparsely populated regions in the current
estimate of the property closure.

Step 5: Validate the newmicrostructures added in Step 3 and 4 as
needed. In particular, we note that our confidence is much
higher in the 2-point spatial correlations generated as
interpolations in Step 3, compared to those generated in
Step 4 as extrapolations. In this work, we only validated
selected new points on the expanded boundaries of the
property closure. For the validation, one would have to
generate a discrete microstructure corresponding to the
known 2-point spatial correlations using one of the
established approaches in literature (Fullwood et al.,
2008b; Robertson and Kalidindi, 2021), and estimate its
effective property using a suitable FEM simulation.

Step 6: Iterate Steps 2–5 as needed, while continuously adding the
validated new points collected in each iteration into the
current estimate of the property closure. This might
necessitate re-training of the CNN model after each
iteration.

The central hypotheses behind the protocol described above is
that the interpolations and extrapolations of the 2-point spatial
correlations can effectively explore the complete microstructure
space. Moreover, since the interpolations and extrapolations are
conducted using promising seeds, the protocol naturally allows

FIGURE 4 | (A) Schematic illustration of the generation of new microstructures (defined in terms of 2-point spatial correlations) as interpolations or extrapolations.
(B) Schematic depiction of the non-linear mapping of microstructures to the property space using a CNN model developed in this work.
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targeted exploration of promising regions of the property closure.
As will be shown in the next section, the CNN model facilitates a
sufficiently accurate non-linear mapping of the 2-point spatial
correlations into the property space.

4 RESULTS AND DISCUSSION

The CNN architectures described in Section 3.1 were
implemented in PyTorch (Paszke et al., 2019), and the
property closure construction protocol described in Section
3.2 was implemented in a Python code. The set of 20, 480
data points described above was split into independent train
(60%), validation (15%), and test (25%) groups. Training was
conducted on a single NVIDIA V100 GPU with 16GB of
memory, utilizing the Adam optimizer (Kingma and Ba, 2017)
with a cosine annealing learning rate (Loshchilov and Hutter,
2017) and a training batch size of 32. The Mean Absolute Error
(MAE) loss function was utilized in this work for training the
CNN model. The Mean Squared Error (MSE) loss function was
also explored. However, it was found that the models trained
utilizing MAE produced improved learning characteristics
compared to the models trained with MSE for the present
application. The CNN architectures were trained for multiple
epochs until the MAE loss function converged to a minimum
value. Based on multiple trials, the number of epochs was fixed at
480 epochs. Using a fixed number of epochs allows for a critical
comparison of the performances of the different CNN
architectures explored in this work.

4.1 Development of the Convolutional
Neural Network Model for Microstructure-
Stiffness Linkages
As previously described, the development of a robust CNNmodel
requires multiple trials in which the hyperparameters of the CNN
architecture are systematically varied to evaluate their influence
on the model fidelity. The main types of architectures explored
were summarized in Table 1. The accuracy of the different CNN
models produced were evaluated using the Normalized MAE
(NMAE) percentage defined as

NMAE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣∣
Si − Ŝi
Saverage

∣∣∣∣∣∣∣∣∣ × 100 (3)

Where Si represents the ground-truth value (established here
using FEM) for the output, Ŝi represents the CNN prediction, and
Saverage denotes the ensemble average of the ground-truth values
from a set of N observations.

Table 2 summarizes the NMAE percentages for some of the
best models produced in this work, along with the corresponding
values from the benchmarks reported in literature (Eidel., 2021,
Yang et al., 2018). The table also summarizes the number of
trainable parameters in each model as well as the sizes of the
training/validation/test sizes employed in building and validating
each model. As the table shows, the number of trainable
parameters for each of the CNN models developed in this
work is significantly smaller than those used in the current
benchmarks. This is primarily because we have built our CNN
models without using any fully connected layers. It is also worth
noting that Eidel (2021) drastically reduced the number of
neurons in the fully connected layers, when compared to Yang
et al. (2018). However, even relatively smaller fully connected
layers produce a very large number of trainable parameters. This
is mainly because the feature maps produced at the end of the
convolutional layers in the benchmark models are high-
dimensional, and their reduction to a small number of features
that are correlated to the outputs using the fully connected layers
introduces a large number of trainable parameters. Although the
Eidel (2021) model demonstrated higher accuracy than the Yang
et al. (2018) model, it should be recognized that the former used
significantly more training data and a much smaller test data set.
As a result of these important differences between them, it is not
possible to conclude conclusively that the Eidel (2021) model
performance is demonstrably better than that of the Yang et al.
(2018) model. However, it is clear from Table 2 that the
performances of Models A, C, and D (all of which used 2-
point spatial correlations as the input) are significantly better
than the benchmarks, both in terms of the prediction accuracy as
well the number of trainable parameters.

Comparing Models A and B, it becomes clear that changing
the input to the CNN from the discrete microstructure to its 2-
point spatial correlations produced a marked improvement in the
model accuracy. This confirms the central hypotheses we laid out
earlier. Since Model B exhibited comparable or better
performance than the benchmarks (keeping in mind the larger
and more diverse test sets used in this study) with a significantly
smaller number of trainable parameters, it is argued that the CNN
architectures without fully connected layers produce more robust
models for our applications.

TABLE 2 | Summary of the performance of selected CNN models produced in this work and their comparison with benchmarks form literature.

Model No.
of Trainable Parameters

Dataset (train/valid/test) NMAE (%)

C1111 C1212

Yang et al. (2018) 3,272 K 3,819/1,881/2,850 3.10 —

Eidel (2021) 2,981 K 7,000/2,000/1,000 1.11 1.15
A 73.9 K 12,288/3,072/5,210 0.72 0.66
B 73.9 K 12,288/3,072/5,210 1.73 1.66
C 80.8 K 12,288/3,072/5,210 0.90 0.80
D 82.5 K 12,288/3,072/5,210 0.96 0.86
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The improved performance of Model A over Model D
underscores the need and benefits of using global average
pooling as the final transformation layer for the
microstructure-property CNNs. This is counter-intuitive,
especially since Model D actually exhibits a higher model
expressivity (i.e., it is capable of capturing more non-linear
mappings). We believe the main reason for the improved

performance of Model A over Model D is that the global
average pooling in the last layer essentially serves as a
model tree, where predictions from multiple models are
averaged to produce the final prediction. Model tree
strategies have been shown to improve the robustness of
the surrogate models in other applications (Ho, 1995;
Breiman, 2001).

FIGURE 5 | Parity plot showing the accuracy of Model A. The test points (red) are superimposed on the train points (blue). It is seen that both the train and test sets
exhibit high levels of accuracy consistent with each other.

FIGURE 6 | (A) Original estimate of the property closure produced using the dataset generated to initially train the CNN surrogate model. (B) Updated property
closure using the protocol presented in Section 3.2. The red points represent the new points generated in the process of building the property closure.
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Overall, it is seen that Model A outperforms all the CNN
models developed to date. Most impressively, it used only
73.9 K model parameters. This is 1-2 orders of magnitude
lower than the number of trainable parameters used in the
current benchmarks for the same problem. As such, this model
represents a significant advance in the proper use of CNNs in
capturing the highly non-linear and elusive microstructure-
property linkages of interest to materials design efforts. The
high accuracy and robustness of the multi-output Model A can
also be confirmed in the parity plots shown in Figure 5. The
fact that the architecture of Model A is able to make
simultaneous accurate predictions for multiple effective
properties opens new research avenues for future materials
design efforts.

4.2 Elastic Property Closure Using
Convolutional Neural Network Model
The protocol established in Section 3.2 for building property
closures was implemented here using Model A. Figure 6A
shows the initial estimate of the property closure using all
20,480 data points generated for training and validating the
CNN model in Section 4.1. It is clear that the property closure
space is not well sampled by the initial dataset. This is to be
expected because the protocols used to generate the
microstructures only aimed to cover as many diverse
microstructures as possible. They were not in any way
informed by the effective properties associated with the
microstructures. Also, generating the microstructures that
produce a uniform sampling of the property space are
especially difficult in our application, because the input is
essentially a discretized 3-D eigen microstructure.

As already described, the central advantage of the protocol
described in Section 3.2 is that it allows us to generate new
datapoints in selected regions of the property space. This is
evident in Figure 6B, where 26,825 new datapoints (shown in
red) were generated using interpolations and extrapolations in
the convex hull of the 2-point spatial correlations. Note that these
new datapoints were targeted to lie in specific regions of the
property closure. This ability to generate new microstructures
corresponding to selected regions of the property space at low
computational cost is unprecedented, and is only possible because
the CNNmodel was established using 2-point spatial correlations
as the input. The central consequence of the property closure
shown in Figure 6B is that it is now possible to trivially produce a
large number of microstructures that correspond to any designer-
specified combination of properties within the property closure.

It is emphasized here that the property closure presented in
Figure 6B is the first of its kind. All previously reported property
closures either used grossly simplified descriptions of the
microstructure (e.g., one-point statistics) or substantially
degraded models (e.g., truncated expansions, primitive
bounds). As such, the property closure presented in Figure 6B
represents the most accurate depiction to date of the property
closure for the selected problem. Although we restricted our
attention in this work to a two-phase composite with a high-
contrast in the elastic properties of its constituent phases, the

framework presented here is extensible to much more
complicated class of composite (i.e., heterogeneous)
microstructures and their different properties of interest (e.g.,
yield strength, conductivity, permeability).

5 CONCLUSION

In this work, a new CNN architecture is proposed that takes as
input the 2-point spatial correlations of a voxelated eigen
microstructure and predicts its effective properties of interest.
Although CNNs are generally viewed as a model building
technique that bypasses explicit feature engineering, it was
observed that transforming the voxelated microstructure into
its 2-point spatial correlations before inputting them into the
CNN model dramatically improved the model accuracy and
robustness. Specifically, it was shown that it is possible to
build CNN models exhibiting ~0.7% test NMAE for
simultaneous predictions of two different elastic stiffness
components for a high-contrast (=50) 3-D composite
microstructure. This unprecedented model accuracy and
robustness was made possible by avoiding the use of fully
connected layers, using a global average pooling in the final
layer, and using 2-point spatial correlations as input to the
CNN. It was also demonstrated that the CNN model produced
in this work is capable of producing the most accurate elastic
property closure available today for the selected high-contrast
composite material system.
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The arrangement of organic semiconductor molecules in a material can be modulated
using different supramolecular approaches, including the metal–organic framework
(MOF) approach. These arrangements result in different frameworks topologies and
structures. Fabrication of materials comprising optimized assemblies and functional
molecules enables efficient tailoring of material properties, including electronic
responses. Since semiconducting properties are sensitive to subtle changes in the
nanostructure of the material, the exploitation of MOFs has promising potential in the
development of new materials with designed structure and function. Based on
decade-long method development, virtual design strategies have become ever
more important, and such design methods profit from the availability of automated
tools. Such tools enable screening of huge libraries of organic molecules in in silico
models of the structure of three-dimensional nanoscale assemblies as the prerequisite
to predict their functionality. In this report, we present and demonstrate the application
of an automated workflow tool developed for MOFs of the primitive cubic (PCU)
topology. We use pentacene-based ditopic linkers of a varied chemical composition
and pillar linkers of different molecular sizes to automatically generate PCU MOFs,
sample their structural dynamics at finite temperature, and predict electronic coupling
matrix elements in vibrationally averaged assemblies. We demonstrate the change of
the intermolecular ordering in the resulting MOFs and its impact on the
semiconducting properties. This development lays the basis of an extendable
framework to automatically model a wide variety of MOFs and characterize their
function with respect to properties, such as conduction properties, absorption, and
interaction with light. The developed workflow protocol and tools are available at
https://github.com/KIT-Workflows/PCU-MOF.

Keywords: organic semiconductors, pentacene, metal–organic framework, virtual design, workflow, structure
builder, molecular dynamics, stacking
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1 INTRODUCTION

Electronic properties of organic semiconductors (OSCs) and their
optoelectronic response highly depend on the structural
arrangement of the molecules and their vibrational freedom in
the material (Pohl and Pohl, 2020; D’Avino et al., 2016). They
determine the electronic coupling between the molecules, which
impacts the mechanism and the properties of the electronic
conduction (Kera et al., 2009; Mailman et al., 2017; Haldar
et al., 2021). The packing geometry of OSC is driven by the
subtle intermolecular interactions, which are difficult to control;
therefore, crystal engineering remains a significant challenge. The
arrangement of molecules depends on the crystallization
conditions, which, in most cases, cannot be easily controlled.
This limits the fabrication of new OSC with desired orientation of
the molecular units and also the optimization of the
semiconducting properties, which result from the molecular
packing in a material. A precise control over the architecture
of the material, which incorporates the OSC components at well-
defined positions and orientations, can be realized by a reticular
chemistry approach (Freund et al., 2021), applied for the
synthesis of metal–organic frameworks (MOFs). This approach
has been successfully utilized to obtain materials with a controlled
three-dimensional assembly of organic molecules (Alvaro et al.,
2007; Liu et al., 2011; Xu et al., 2016; Liu andWöll, 2017), opening
new perspectives in the fabrication of OSC materials with
programmable functionality (Garg et al., 2019; Haldar et al.,
2019; Xie et al., 2020).

Metal–organic frameworks are materials that consist of
organic molecules, i.e., linkers, and inorganic polynuclear
clusters (nodes), known as secondary building units (SBUs)
(Rowsell and Yaghi, 2004) (Figure 1). Several bipartite nets,
known in reticular chemistry (O’Keeffe et al., 2008), represent
binary frameworks used for the construction of MOF structures
of various topologies (Kalmutzki et al., 2018). By combining
different metal ions and organic linkers in diverse topologies, a
considerable variety of MOFs can be realized, and around 100,000
different MOF structures have been synthesized so far (Chung
et al., 2014; Lyu et al., 2020). They represent a unique variety of
structures, and their properties can be tailored through rational
design (Freund et al., 2021) and by choosing the appropriate
combinations. As one may guess, an unprecedented number of
possible combinations occurs, which led also to the creation of
huge databases of hypothetical MOF structures and screening of
new MOF candidates (Moosavi et al., 2020). MOFs are widely
used for gas sorption (Lin et al., 2020; Qiao et al., 2020) and
storage (Li et al., 2018; Connolly et al., 2020), sensors (Kreno
et al., 2012), or solar cells (Goswami et al., 2016). They are good
candidates for establishing new OSC with tailored electronic
properties by ordering organic linkers in a network manner
with the specific framework topology (Öhrström, 2015;
Neumann et al., 2016). However, owing to their porous
structure and relatively large distances between neighboring
OSC linker molecules, MOFs are typical wide-bandgap
semiconductors, but their electronic conduction can be
increased by realizing structures that enable efficient charge
transfer through-bonds (Narayan et al., 2012) or space

(Neumann et al., 2016), as well as by π-stacking (Liu and
Wöll, 2017; Haldar et al., 2021; Zojer and Winkler, 2021). The
through-bond pathway depends on continuous SBUs comprising
metals and ligand moieties; their high charge mobility and small
band gap are a result of the proper orbital overlap and well-
matched energy levels. Through-space electronic conduction can
be enhanced by incorporating guest molecules like TCNQ or
fullerenes inMOF pores (Neumann et al., 2016; Liu et al., 2019). It
can be also photoswitched by light (Heinke et al., 2014; Kanj et al.,
2018; Garg et al., 2019; Haldar et al., 2020). Upscaling of MOF
electronic conduction via the incorporation of highly efficient
OSC molecules with π-stacking within MOF scaffold, e.g.,
pentacene, has been also realized (Haldar et al., 2021). Hence,
electronic conduction in MOFs is based on several different
mechanisms (Xie et al., 2020); therefore, it follows different
design strategies. For example, in the last case, due to the
localized frustrated rotations of the pentacene cores in the
assembled structure, charge carrier mobility is significantly
decreased. More rigid linkers (with limited vibrational
flexibility) or other types of assemblies with the designed
orientation of OSC units in the MOF scaffold are sought after
(Haldar et al., 2019).

Considering the enormous chemical space of MOF
components, a multitude of new candidates with interesting
properties can be realized. Unfortunately, attempting to access
them all experimentally viaMOF fabrication is expensive, time-
consuming, and based on trial and error (Stock and Biswas,
2012). Predictive methods for MOF construction, design, and
selection of the most prominent candidates with a desired
functionality will significantly accelerate the discovery of new
formulations and reduce costs (Mancuso et al., 2020). There are
several free and commercial tools or molecular editors for the
initial construction of a representative MOF model, e.g.,
Avogadro (Nefedov et al., 2021) and Materials Studio
(Dassault Systèmes, 2020). Often, they require time-
consuming manual work and prior knowledge of the
topological details and metal–organic interactions in MOF.
Advanced algorithms using the reverse topological or top-
down approach are implemented, using graph theory, in the
tool of Boyd and Woo (2016), and using known nets
(topologies) of MOFs that follow a recursive, geometry-based
assembly of SBUs and linkers (O’Keeffe et al., 2008), in codes
like stk (Turcani et al., 2021), Zeo++ (Martin and Haranczyk,
2014), ToBaCCo (Colón et al., 2017), and AuToGraFS (Addicoat
et al., 2014a). All of these tools can be used to prepare a basic
MOF model for visualization, whereas subsequent structure
optimization and the calculation of electronic and/or
optoelectronic properties should be done separately. Some of
the tools require programming knowledge, and they have
limited automation functionality towards virtual design of
new MOFs comprising various components, triggering new
interesting phenomena.

In this report, we present an automated, transferable, and
user-friendly workflow for the generation, optimization, and
structure–property prediction of new MOF materials. We use
the SimStack workflow environment (https://www.simstack.de/)
to combine several modules, called WaNos (Workflow active
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Nodes), responsible for the specific tasks or calculation(s)
involved in the MOF building protocol and up to the analysis
of specific MOF properties, e.g., in the case presented here,
electronic coupling elements towards semiconducting MOFs.
Each WaNo uses as an input the output from the previous
WaNo, enabling an easy transfer of data between compute
units and construction of different workflows, as well as a
combination of different WaNos aiming at desired purposes.
The workflow, introduced here for a MOF design and calculation,
is as follows:

• Adaptable: User-friendly graphical user interface (GUI) and
automated dataflow between multiple module functions
allow easy adaptation of the workflow to specific user
requirements;

• Reproducible: Once set up, it will generate the same results
independently of the user environment. Automatic flow of
data and processes allows an error-free data generation and
storage of the work recipes for other investigations;

• Efficient: It significantly reduces the time to prepare and
carry out similar calculations that have the same
methodological flow, but different starting input data;

• Expandable: By replacing method modules (WaNos), the
workflow can be extended to related applications and to
diverse MOF topologies. Moreover, it can be used as a part
of other workflow(s);

• Transferable: It can be used by users outside the group
which has developed it without facing implementation
issues.

Considering the variety of MOF materials and possible
attained properties, multiple options for such workflow
developments are possible. In the present study, we focus on
the primitive cubic (PCU) topology of MOFs (O’Keeffe and
Yaghi, 2012) (Figure 1) that is a widely used topology found in
fabricated MOF materials (Li et al., 2007; Luo et al., 2017; Wei
et al., 2019; Xing et al., 2019; Yao et al., 2019). The PCU topology
features the network that describes theMOF-2 family, which has
paddle-wheel nodes, such as Zn2(CO2)4 and Cu2(CO2)4,
connected by linkers (Li et al., 1998; Xing et al., 2019;
Goldman et al., 2020; Qiao et al., 2020; Yazdanparast et al.,
2020) and the MOF-5 family with octahedral nodes, such as
Zn4(O)O12C6 (Li et al., 1999; Schoedel et al., 2016). It can be
formed also from SBUs based on Mg, Cd, Pb, or rare earth
metals (Bhattacharya et al., 2014; Luo et al., 2017; Lin et al.,
2018; Yao et al., 2019). In addition, MOF films grown using a
layer-by-layer technique on the pre-functionalized surfaces, e.g.,
surface-anchored MOFs (SURMOFs) (Liu et al., 2012; Zhuang
et al., 2016), using Cu2(CO2)4 and Zn2(CO2)4 SBUs are often
assembled in PCU-type networks. Owing to the fact that
SURMOFs allow us to control the assembly type and the
linker order in a material (Heinke et al., 2014; Heinke and
Wöll, 2019), crystal structure engineering of such MOFs
comprising OSC and chromophore molecules will allow us to
investigate new systems systematically and accelerate the
selection of the most promising MOF candidates. Virtual
screening of various organic linker molecules and their
assembly in the MOF allows computation of
structure–property relationships that can be accessed by the

FIGURE 1 | Reticular chemistry applied for the fabrication of MOFs with diverse metal–organic networks, components (organic molecules and metal nodes), and
properties. Virtual design of new MOF materials by automated workflows investigated in this report.
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automated workflows reported here, including the dynamical
behavior of the structure at finite temperature.

We demonstrate the architecture of such a workflow and its
exemplary usage for the prediction of electronic coupling
elements between pentacene cores in a PCU SURMOF
structures built from ditopic pentacene layer linkers and
DABCO (DABCO = 1,4-diazabicyclo(2.2.2)octane), pyrazine
(pyz = 1,4-diazine), and bipyridine (bipy = 4,4′-bipyridine)
pillar linkers (Figure 2). Pentacene (Pn) is an organic
molecule, which is characterized by high charge mobility in its
different crystal forms (Jurchescu et al., 2007; Virkar et al., 2009).
It was previously integrated in the SURMOF-2 type of MOF
(Haldar et al., 2021), where the stacking of pentacene cores of the
linkers, localized at a distance of approximately 5.8 Å, was
suggested to be not optimal for efficient charge carrier
transport caused by ineffective overlap between the
neighboring pentacene cores (Zojer and Winkler, 2021) and
weak π–π interactions, which are dynamically changing over
time, as observed in MD simulations at 300 K (Haldar et al.,
2021). These simulations explained increased vibrational
flexibility of molecules in the material and the significant
decrease of the effective electronic coupling.

With PCU SURMOF type of assembly, investigated here, we
aim to use automated workflows to build and calculate properties
of new MOFs and illustrate the change of their semiconducting
properties as a function of the controlled separation between the
pentacene cores (by different pillar linkers) that change with the
stacking type and the dynamics of OSC cores in a material. With
this work, we initiate a new approach for further virtual design of
versatile MOF assemblies that will enable the upscaling of the
functionality of single molecules, such as pentacene, to yield

functional solid materials or thin films of macroscopic
dimensions in future investigations.

2 METHODS AND COMPUTATIONAL
DETAILS

MOFs are modular periodic systems, consisting of metal (oxo)-
nodes (SBUs) and organic linker molecules. Depending on the
nature of both components, different three-dimensional nets are
formed. Virtual design of new MOF constructs requires the
combination of several algorithms (methodologies and codes)
that are linked together in one workflow, enabling automated
data transfer and on-the-fly property prediction. Here, we create
an automated methodology to build, optimize, and analyze
MOFs of the PCU topology and implement it within
SimStack. MOF systems and components used for the
protocol demonstration are depicted in Figure 2. Three
ditopic linkers, differing by the R-substitution in the linking
phenyl group and based on pentacene cores, were used as layer
linkers, i.e., connected to the Cu-node by Cu/O coordination
bonds (on y- and z-axes), while DABCO, pyrazine, and
bipyridine were used as pillar linkers with Cu/N
coordination (x-axis).

In SimStack, each module or WaNo implements a graphical
user interface for the backend codes, which performs required
calculations. Each WaNo is maximally generalized, therefore can
be used to calculate various molecules and types of materials, and
can be used for tasks in conceptually different workflows. The
PCU-MOF workflow consists of several WaNos for software
codes, such as TURBOMOLE (Balasubramani et al., 2020),

FIGURE 2 |Representation of MOFmaterials of PCU topology investigated in the present report. Layer and pillar linkers are marked in green and cyan, respectively.
Copper secondary building units (SBUs) are depicted in blue.
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AuToGraFS (Automatic Topological Generator for Framework
Structures) (Addicoat et al., 2014a), GULP (General Utility
Lattice Program) (Gale and Rohl, 2003), VASP (Vienna Ab
initio Simulation Package) (Kresse and Hafner, 1993),
LAMMPS (Large-scale Atomic Molecular Massively Parallel
Simulator) (Boyd et al., 2017; Plimpton et al., 2020), and
interfaces between codes. We also developed several new codes

and algorithms, i.e., LCmaker, Achmol (Assembler of Chemical
Molecules), and SuperCeller.

To create an automated workflow for MOF design, we have
used several available WaNos, DFT-Turbomole (Schlöder and
Rêgo, 2022), DFT-VASP (Ricardo, 2021), QuantumPatch3
(Friederich et al., 2014), and Format-Converter, while all
other WaNos (MOF-input, LCmaker, AuToGraFS, GULP,

FIGURE 3 | PCU-MOFworkflowwithin the SimStack client to build, optimize, and analyze MOFmaterials for automated structure–property predictions and design.
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lammps-interface, LAMMPS, Achmol, and SuperCeller) were
programmed for the purpose of MOF design and are reported
here for the first time. The workflow consists of three central
parts, i.e., 1) MOF Builder, 2) MOF Optimizer, and 3) MOF
Analyzer (Figure 3). TheMOF Builder consists of the general
WaNo MOF-input, where the user specifies linker molecules,
metal node type, and desired topology; DFT-Turbomole,
where optimization of input linkers is done using the
TURBOMOLE software; and LCmaker and AuToGraFS
used to build the periodic MOF model. To generalize the
standard of atomic units in the entire workflow, both in
converting formats and in developing the back-end
software in different parts of the workflow, we employed
the Atomic Simulation Environment (ASE) (Larsen et al.,
2017). The MOF Optimizer includes WaNo GULP for the
pre-optimization of MOFs with force-field potentials, DFT-
VASP for MOF optimization using the quantum mechanical
approach (density functional theory, DFT), and Format-
Converter designed to convert different file formats
between software. The MOF Analyzer is a multifunctional
part of a workflow, which is assigned to calculate different
properties of MOF based on both 1) optimized structures at
0 K (right branch, including Achmol and SuperCeller WaNos)
and 2) sampled MOF structures during molecular dynamics
(MD) simulations at finite temperature using LAMMPS. In
the present study, we focus on the calculation of the electronic
coupling matrix elements, Jif, between the initial state of a
donor and the final state of the acceptor, used in the Marcus
theory of charge transfer (CT), i.e., in a hopping mechanism
(Marcus, 1993) to estimate the semiconducting properties of
PCU MOFs. According to this theory (Eq. 1), the charge
transfer rate, kCT, is defined as

kCT � 2π
Z
|Jif|2

�������
1

4πkBTλ

√
exp

−(ΔG0 + λ)2
4λkBT

( ). (1)

Here, λ is the reorganization energy, connected to the change
in the equilibrium geometry of both donor and acceptor upon
change of the charged state, kB is the Boltzmann constant, T is the
temperature, and ΔG0 is the total Gibbs free energy change
(i.e., energy difference between frontier molecular orbitals
involved in CT). Electronic coupling, Jif, between adjacent
OSC cores in a MOF was calculated using the overlap between
molecular orbitals obtained from the DFT, as implemented in the
WaNo QuantumPatch3. A detailed description of algorithms and
computational details is given below.

2.1 Metal-Organic Framework Builder
In this part, the initial model of a MOF is constructed from the
user-defined linker molecules and implemented SBU nodes.
Here, we describe the PCU topology of MOFs, and we
selected as an example Cu metal nodes in the paddlewheel
shape (Cu_pw6.inp). The workflow uses the AuToGraFS
software; therefore, all SBUs and topologies available in
AuToGraFS can be accessed by our tool too, enabling many
extensions. Input data, i.e., linker molecules and SBUs, are
specified in MOF-input WaNo. Since we have used two linker
types, layer and pillar, that have different chemical compositions,
two parallel optimization procedures of linker molecules have to
be performed in DFT-Turbomole. The choice of different
functionals, basis sets, and other DFT parameters is
implemented in this WaNo. All linkers studied here were
optimized utilizing the B3LYP functional (Lee et al., 1988;
Becke, 1993) with the def2-SV(P) basis set (Weigend and
Ahlrichs, 2005) and Grimme D3 dispersion correction

FIGURE 4 | LCmaker WaNo window in SimStack (A). Options in the right window are set for the PCU topology. Description of all options available is given in
Supplementary Table S1. Main functionality of LCmaker (B).
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(Grimme et al., 2010), using default optimization criteria.
Optimized structures are then automatically passed to LCmaker.

LCmaker makes a customized “inp” or “xyz” format files for
different versions of AuToGraFS and automatically generates the
joint points, called dummies, in the places where the organic linker
should be linked to the metal node. LCmaker supports two
algorithms for dummy selection: (1) for carboxyl group
connections, i.e., by removing COOH groups from layer linkers
and exchanging them by the dummy points (Figure 4B), and (2) for
the nitrogen-terminated pillar linkers by the dummy on the N atom.
Moreover, there is also a possibility to define dummies via the user-
defined atom indexes. Options available in the LCmaker are depicted
in Figure 4 and listed in Supplementary Table S1.

As mentioned before, there are several algorithms to apply
metal center–organic linker connections for the specific MOF
topology. We built MOF structures using AuToGraFS (Addicoat
et al., 2014a) for three main reasons: 1) the simplicity of MOF
construction based on manageable input and output interfaces, 2)
its ability to support almost all MOF topologies, 3) its ability to be
linked to a fully featured force field UFF4MOF (Universal Force
Field for MOF) necessary for further optimization of structures of
arbitrary frameworks using, e.g., GULP software (Addicoat et al.,
2014b; Coupry et al., 2016). Moreover, UFF4MOF is implemented
in LAMMPS package, enabling lots of further investigations of
specific MOF properties, including MD simulations. AuToGraFS
has also implemented additional atom types found in the
Computation-Ready Experimental (CoRE) database (Chung
et al., 2014); it shows comparability with experimental results
and enables our workflows to be extended to various MOF
systems. AuToGraFS was implemented in our workflow in the
respective WaNo node called AuToGraFS (Figure 3). This WaNo
enables use of the code without any prior programming knowledge
andmanual preparation of necessary files. Together with LCmaker,
AuToGraFS is automatically generating MOF periodic
representation that can be processed in the further steps of the
workflow.

2.2 Metal–Organic Framework Optimizer
Two consecutive optimization schemes are used to optimize the
initially generated MOF model: pre-optimization with the
UFF4MOF force field using GULP (Gale and Rohl, 2003;
Addicoat et al., 2014b) and later optimization based on DFT
using VASP. Such a DFT-optimized MOF structure represents
one of the local minima structures necessary for setting up the
next steps of the workflow. For the case study presented here,
DFT calculations in the DFT-VASP WaNo (Ricardo, 2021) were
performed using the PBE functional (Perdew et al., 19961997)
with the Tkatchenko-Scheffler method with iterative Hirshfeld
partitioning (Bučko et al., 2013) using VASP version 5.4.4. The
plane wave energy cutoff was set to 500 eV, and the k-point grid
was 3 × 2 × 2. The input–output file formats between codes were
handled via Format-Converter WaNo (Figure 3).

2.3 Metal-Organic Framework Analyzer
From this step, functionality of the workflow can be user specific,
and different WaNos can be added to the workflow to calculate
desired properties of MOF materials. For the semiconducting
properties, which can be triggered via different electronic
conduction mechanisms, DFT-optimized MOF structures from
DFT-VASP may be used:

• To calculate band structure, from which couplings and
effective masses of electrons and holes can be derived,

FIGURE 5 | AchmolWaNo window in SimStack (A). Options from the right window are described in Supplementary Table S2. Main functionality of Achmol (B).

TABLE 1 | Unit cell parameters of PCU-type MOF structures studied.

Structure Cell parameters
(X × Y × Z in Å)

Cu2(Pn)2(DABCO) 9.24 × 19.50 × 19.50
Cu2(Pn)2(pyz) 9.23 × 19.50 × 19.50
Cu2(Pn)2(bipy) 13.64 × 19.42 × 19.42
Cu2(Me-Pn)2(DABCO) 9.47 × 19.59 × 19.58
Cu2(iPr-Pn)2(DABCO) 9.73 × 19.54 × 19.60
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• To calculate electronic couplings between linkers based on
molecular orbitals self-consistently converged at the explicit
MOF environment, which are used in hopping equations,
e.g., Eq. 1,

• To sample temperature-dependent MOF structures with
further calculation of couplings from snapshots in MD.

Since our previous studies have proven that the vibrational
flexibility of linkers in a MOF impacts charge carrier mobilities
measured experimentally (Haldar et al., 2021), in the present study,
we focus on the electronic couplings betweenOSC cores in PCU-type
MOF assemblies based on the MD sampled structures at 298 K (left
branch inMOF Analyzer in Figure 3). However, in the PCU-MOF
workflow, we demonstrate two possible pathways thatmay be used to
estimate electronic couplings in the hopping scenario.

2.3.1 Electronic Coupling in DFT-Optimized
Metal-Organic Frameworks
If the electronic conduction of a MOF is based on the charge carrier
hopping betweenOSC linkers in aMOF scaffold with no or negligible
impact of themetal atoms linking them (Liu et al., 2019; Haldar et al.,
2021), metal atoms can be omitted. To extract optimized MOF in
XYZ format from the periodic file formats and provide essential files
for theQuantumPatch3WaNo (cml files with linkermolecules in the
MOF supercell fragment), where couplings are calculated for each

linker separately (Friederich et al., 2014), we developed a python-
based code that uses the Open Babel Toolbox within ASE (O’Boyle
et al., 2011). It is known that atom positions in periodic calculations
are mapped to the unit cell (Figure 5); therefore, direct conversion of
files after VASP to Cartesian format, keeping atoms grouped to each
linker, is not possible. This is done in our workflow by the Achmol
(Assembler of Chemical Molecules) code implemented in Achmol
WaNo. It takes the unit cell of the optimized MOF structure and
creates a supercell out of it, e.g., 2 × 2 × 2. Then, it removes metal
atoms and searches for groups (clusters) of complete linkers (the
correct amount of atoms that belong to a specific molecule) based on
a condition of volume minimization of the center of mass of the
linkers. It finds complete linkers based on the number of atoms of
separated linkers after removing metals using a connectivity matrix.
The graph of molecules is the main pattern to find complete linkers
after optimization (Figure 5B). The main output of Achmol is the
Cartesian file with three linkers (on x-, y-, and z-axes, periodically
repeated to represent the MOF) with atoms grouped to a specific
linkermolecule, e.g., atoms 1–49 belong to linker 1, while atoms 50 to
100 to linker 2. All extracted linkers are then automatically
hydrogenated to keep neutral charge consistence and can be used
to create user-defined clusters, specified in WaNo SuperCeller,
necessary for further calculations in QuantumPatch3. Achmol can
post-process output files of periodic calculations in CONTCAR, xml
and cif formats, e.g., vasprun.xml or sample.cif. Options available in

FIGURE 6 | Representative structures of MOF of PCU topology obtained automatically after MOF Builder and MOF Optimizer parts of the workflow starting from
coordinate files of linkers and specification of SBU type: Cu2(Pn)2(DABCO) (A), Cu2(Pn)2(bipy) (B), Cu2(Me-Pn)2(DABCO) (C), Cu2(iPr-Pn)2(DABCO) (D).
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the Achmol WaNo are depicted in Figure 5 and listed in
Supplementary Table S2. Functionality of SuperCeller is listed in
the Supplementary Material (Supplementary Figure S2;
Supplementary Table S3).

2.3.2 Electronic Coupling From Molecular Dynamics
Sampling
MOF structures obtained after MOF Builder and MOF Optimizer
can be used as starting structures in MD simulations at finite
temperature in either VASP (ab initio MD) or LAMMPS (force-
field-based MD). Considering the high computational cost and
limited simulation times of ab initio MD, we performed MOF
structure sampling using UFF4MOF as implemented in
LAMMPS. For that, two WaNos were created: lammps-interface
and LAMMPS (Figure 3). lammps-interface contains a list of options
that should be specified by a user to set up automatically input files to
run MD. It passes all files to LAMMPS, which performs the actual
MD run, including equilibration and production. For the MOF
systems studied here, we performed MD simulations of 4 × 4 × 4
supercells for 10 ns (with a timestep of 1 fs) at 298 K. Production runs
were preceded with 30 ps equilibration. All simulations were done in
a canonical ensemble (NVT).

To calculate electronic couplings between neighboring ditopic
linkers structured in a MOF during 10 ns MD, we extracted
dimers from 1,000 snapshots (every 10 ps) and performed
separate calculations using the Quantum Patch approach
(Friederich et al., 2014). Couplings were calculated as an
overlap between the highest occupied molecular orbitals,
HOMO (hole transport), and the lowest unoccupied molecular

orbitals, LUMO (electron transport), in dimers using the B3LYP
functional with the def2-SVP basis set.

3 RESULTS AND DISCUSSION

The workflow protocol described in Section 2 was applied to
automatically generate and optimize five PCUMOF systems with
the subsequent structure sampling by MD simulations to collect
vibrationally averaged assemblies of pristine and modified
(methyl and isopropyl) pentacene ditopic linkers. The cell
parameters of optimized structures are listed in Table 1.

Representative structures are depicted in Figure 6 and
Supplementary Figure S3. Due to the similar size of DABCO
and pyrazine pillar linkers, the geometrical parameters of both
systems are also similar, resulting in center-of-mass (COM)
distances between neighboring linkers of approximately 9.2 Å,
which is much larger than the distance observed for the
previously reported SURMOF-2 structures (Haldar et al., 2021)
(around 5.8 Å, Figure 7A). PCU MOF with a bipyrazine pillar
has an even larger COM (around 13.6 Å, Figure 6B).

MD calculations of MOFs with pristine pentacene cores
and a DABCO (or pyrazine) pillar revealed system
stabilization in a nanosecond scale with the formation of
self-assemblies depicted in Figure 7B. Dynamical
movements of linkers in these MOFs are decoupled, and
after starting an MD production run, some dimers are
stabilized faster (within 2 ns) and others slower (within
7 ns), e.g., dimers “A-B” and “B-C” in Figures 8B,C.

FIGURE 7 |Molecular packing of the pentacene cores in a MOF as a function of MOF topology and the COMdistance between ditopic linkers: dimer structure from
QM/MM MD simulation of Zn paddlewheel SURMOF-2 reported by Haldar et al. (2021) (COM of 5.8 Å) (A). Cu2(Pn)2(DABCO) PCU-type MOF simulated in the present
study and the trimer of layer linkers formed during MD simulation at 298 K (COM of 9.2 Å) (B).
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However, during a 10 ns MD run, all 128 molecules in
simulated supercells reached stable assemblies (similar to
the ones shown in Figure 7B) without further structural

changes in material. Both π–π interaction distances and π-
slip are significantly changed in comparison to the dimers
formed in SURMOF-2 (Figure 7A); they are also much more

FIGURE 8 | Dynamical change of π–π interaction and π-slip distances between pentacene cores in MOF materials of different topologies and COM distances
obtained fromMD simulations at room temperature. The π–π distance in a dimer from SURMOF-2 reported by Haldar et al. (2021) (A), in a dimer from Cu2(Pn)2(DABCO)
(B) and Cu2(Pn)2(pyz) (C). The comparison of π-slip distances between layer linkers in Cu2(Pn)2(DABCO) and Cu2(Pn)2(pyz) (D). Plotted structural parameters and “A”-,
“B”-, “C”-marked linkers are depicted in Figure 7.

FIGURE 9 | Absolute electronic coupling elements (B3LYP/def2-SVP) between HOMO (A) and LUMO (B) orbitals of ditopic pentacene linkers extracted from the
force-field MD simulations of Cu2(Pn)2(DABCO) (in blue) and Cu2(Pn)2(pyz) (in green) PCU-MOFs at 298 K.
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stable at room temperature than observed previously
(Figure 8).

The average values of π–π distances for both Cu2(Pn)2(DABCO)
and Cu2(Pn)2(pyz) are around 3.75 Å (3.74 and 3.77–3.86 Å,
respectively), and the dispersity of their change is relatively small
with the variance of 0.058–0.066 Å2 (for comparison, see plotted π–π
distances for SURMOF-2 in Figure 8A). A larger COM distance
between metal nodes in the PCU MOF, modulated by pillar linkers,
results in different packing of pentacene cores in a material that
enables more efficient overlap between orbitals, as was also suggested
by Zojer andWinkler (2021) by screening different distances between
ditopic pentacene linkers. New structuring of OSC cores impacts
electronic couplings between HOMO and LUMO orbitals and,
therefore, significantly stabilizes average effective coupling
(Figure 9). From 1,000 snapshots collected in MD, the average
value of absolute coupling between HOMO and LUMO orbitals
of linkers in Cu2(Pn)2(DABCO) is 74.5 and 45.2meV, respectively.
The same is also observed for Cu2(Pn)2(pyz): JHOMO of 77.3 meV and
JLUMO of 47.2 meV. The average values of couplings in the last 2 ns of
MD are 82.2 and 78.3 meV between HOMO orbitals and 52.0 and
46.7 meV between LUMO orbitals of MOFs with DABCO and
pyrazine pillars, respectively. An actual state transition of the
electronic coupling is depicted in Supplementary Figures S8, S9.

Increasing the COM distance further, e.g., by introducing
bipyridine (Figure 6B), resulted in the reduction of interactions
between the pentacene cores (Supplementary Figure S4). Taking
into account the energy barrier for the CCCC dihedral angle rotation
between the OSC linked to two phenyl rings (Supplementary Figure
S5) and possible barrier-free rotations by 60–120°, large separation of
ditopic linkers eliminates any possibility for an overlap between the
adjacent molecules (Supplementary Figure S6). Therefore, the
Cu2(Pn)2(bipy) MOF is not a good candidate for charge
transport. For this reason, we were not continuing analysis of
electronic coupling matrix elements for this system.

Another approach to modify packing of molecules in a MOF can
be realized via introduction of the steric control units (SCU) (Haldar
et al., 2019). We investigated two SCUs also in the present study via
chemical modification of ditopic pentacene linkers by methyl and
isopropyl groups. Hence, we replaced the hydrogen atoms in phenyl
rings with methyl groups (Me = CH3) or isopropyl groups (iPr =

CH(CH3)2) (Figures 2 and 6C,D). Both systems were automatically
structured in aMOFwith theDABCOpillars, i.e., structures Cu2(Me-
Pn)2(DABCO) and Cu2(iPr-Pn)2(DABCO). Even if the unit cells of
these PCU MOFs are very similar, packing of ditopic linkers in the
material and the dynamical behavior of the pentacene cores towards
finding stable aggregates differ significantly. Selected snapshots of the
neighboring OSC cores are depicted in Supplementary Figure S7.
Addition of SCU introduces steric repulsions between neighboring
ditopic linkers, disabling the formation of stable assemblies of
pentacene OSC cores, as was observed for Cu2(Pn)2(DABCO) and
Cu2(Pn)2(pyz). The COM distance is similar in all four cases, but
packing modulated by the SCU allows only for a small coupling
between the orbitals (Figure 10). This packing is not stable at room
temperature, suggesting worse semiconducting properties of such
MOFs. Moreover, the hindrance of efficient packing of pentacene
cores depends on the size of the SCU: the addition of isopropyl group
in Cu2(iPr-Pn)2(DABCO) reduces charge carrier transport in the
material (Figure 10B), resulting in average electronic coupling of
1.7meV (HOMO orbitals) and 3.9meV (LUMO orbitals).

From several examples studied in this report, it is seen that subtle
modifications in the chemical composition of MOF components or
type of MOF topology result in significant differences in the
assemblies of OSC pentacene cores and their dynamically averaged
stacking. Introduction of steric control units induces additional steric
repulsion, suppressing preferable orientation of pentacene cores
(which is observed in the case of pristine ditopic linkers), lowering
charge carrier transport. Spatial control of the separation distance
between OSC cores via the length of the pillar linker allows us to
optimize stacking and increase the average effective couplings for the
hole transport up to 75meV, retaining structural stability at finite
temperature. Virtual screening of other linker molecules, their
packing in a MOF, and resulting electronic properties is possible
using automated workflows reported in this study.

4 CONCLUSION

We developed an automated workflow tool for virtual design of new
MOF materials of the PCU topology with the subsequent prediction
of electronic properties. This reproducible, transferable, and

FIGURE 10 | Absolute electronic coupling elements (B3LYP/def2-SVP) between HOMO (in blue) and LUMO (in purple) orbitals of functionalized ditopic pentacene
linkers (Me-Pn and iPr-Pn, Figure 2) extracted from the force-field MD simulations of Cu2(Me-Pn)2(DABCO) (A) and Cu2(iPr-Pn)2(pyz) (B) PCU-MOFs at 298 K.
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adaptable computational protocol (Mostaghimi et al., 2020) allows us
to build MOF structures, optimize them using different levels of
theory, and analyze electronic coupling matrix elements in
dynamically averaged assemblies at finite temperature. We
demonstrate the functionality of the developed software by
preliminary in silico crystal engineering of molecular assemblies of
pentacene OSC. For this, we constructed MOF structures based on
pristine and chemically functionalized pentacene ditopic linkers (as
layer linkers) and DABCO, pyrazine, and bipyridine (as pillar
linkers). Copper paddlewheel nodes were used to keep the three-
dimensional order of organic molecules in a material.

All structures were automatically optimized and further
investigated using the MD approach. We have shown the change
of the stacking type between ditopic linkers with pentacene OSC
cores as a function of the intermolecular separation in MOFs
controlled by different sizes of MOF pillars. We have proven that
stacking of pristine ditopic linkers is more efficient, where the metal
node distances are around 9 Å, enabling better overlap of HOMO
and LUMO orbitals of OSC cores, increasing both hole and electron
conduction, respectively. Moreover, the analysis of the π–π
interactions and π-slip changes during 10 ns MD production
runs confirmed higher MOF nanostructure stability at room
temperature, addressing the concept reported by Haldar et al.
(2021) and supporting hypotheses postulated by Zojer and
Winkler (2021). The average effective electronic coupling between
OSC in Cu2(Pn)2(DABCO) and Cu2(Pn)2(pyz) was calculated to be
78–82 and 46–52meV between HOMO and LUMO orbitals,
respectively.

Using the developed workflow, we have demonstrated the
reduction of the electronic conduction propensity of PCU-type
MOF materials fabricated from ditopic pentacene linkers with
introduced steric control units (methyl and isopropyl groups).
This observation resulted from steric repulsions between
neighboring organic linkers in the MOF scaffold,
suppressing the formation of the optimal interaction
assemblies with high molecular orbital overlap integrals.
The exceptional sensitivity of the semiconducting properties
of MOFs upon the specific details of the molecular assembly
inside a material, modulated by subtle chemical modifications
of building components, illustrates the importance of
screening protocols for both organic molecules and their
structuring in MOFs. The availability of the automated
workflow tools reported in this study significantly simplifies
the tasks involved in these investigations.
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Fast All-Electron Hybrid Functionals
and Their Application to Rare-Earth
Iron Garnets
Matthias Redies1,2,3, Gregor Michalicek1, Juba Bouaziz1, Christian Terboven4,
Matthias S. Müller2,4, Stefan Blügel 1,2 and Daniel Wortmann1*

1Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany, 2JARA-CSD, Jülich,
Germany, 3Department of Physics, RWTH Aachen University, Aachen, Germany, 4IT Center, RWTH Aachen University, Aachen,
Germany

Virtual materials design requires not only the simulation of a huge number of systems, but
also of systems with ever larger sizes and through increasingly accurate models of the
electronic structure. These can be provided by density functional theory (DFT) using not
only simple local approximations to the unknown exchange and correlation functional, but
also more complex approaches such as hybrid functionals, which include some part of
Hartree–Fock exact exchange. While hybrid functionals allow many properties such as
lattice constants, bond lengths, magnetic moments and band gaps, to be calculated with
improved accuracy, they require the calculation of a nonlocal potential, resulting in high
computational costs, that scale rapidly with the system size. This limits their wide
application. Here, we present a new highly-scalable implementation of the nonlocal
Hartree-Fock-type potential into FLEUR—an all-electron electronic structure code that
implements the full-potential linearized augmented plane-wave (FLAPW) method. This
implementation enables the use of hybrid functionals for systems with several hundred
atoms. By porting this algorithm to GPU accelerators, we can leverage future exascale
supercomputers which we demonstrate by reporting scaling results for up to 64 GPUs and
up to 12,000 CPU cores for a single k-point. As proof of principle, we apply the algorithm to
large and complex iron garnet materials (YIG, GdIG, TmIG) that are used in several
spintronic applications.

Keywords: Density Functional Theory (DFT), Rare-Earth Iron Garnets, High-Performance Computing (HPC), PBE0,
Hybrid Functionals, YIG, GdIG, TmIG

1 INTRODUCTION

Materials science aims to understand and predict material properties ever more accurately, so that
new sophisticated materials can be discovered to drive innovation in domains that rely on them.
While materials science has been around for millennia, it was only at the beginning of the last century
that the arrival of quantummechanics enabled the exact description of the microscopic properties in
materials. However, the cost of calculating the exact solution to the Schrödinger equation grows
exponentially with the size of the system and is therefore limited to very small systems. Density
functional theory (DFT) replaces the 3N-dimensional wave function as the central quantity with the
3-dimensional ground-state density and thereby reduces the exponential computational cost to a
polynomial one.While DFT is in principle exact, a key ingredient, the so-called exchange-correlation
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energy, has no known analytical expression. The approximations
used for this term determine the accuracy with which material
properties can be predicted. While the most commonly used
approximations, the local density approximation (LDA) and the
generalized gradient approximation (GGA), can predict certain
properties with a high precision at a very low computational cost,
they fail to predict some essential electronic properties in
particular of electronically complex materials (Alberi et al., 2018).

DFT is increasingly being used in the context of high-
throughput calculations, where hundreds of thousands of
material candidates are screened using automated workflows
(Yan et al., 2017; Mounet et al., 2018; Rosen et al., 2019).
However, all of these calculations are limited to material
classes and properties for which the underlying exchange-
correlation functionals have a good predictive power. In order
to enhance these calculations with material classes and properties
for which LDA and GGA fail, it is necessary to rely on more
accurate methods producing high-quality results. One class of
accurate methods are the hybrid exchange-correlation
functionals which are particularly suited to predicting
electronic properties such as the band gap, the degree of
charge localization and the polarization in materials with a
stronger electron correlation (Cramer and Truhlar, 2009;
Zhang et al., 2011; Burke, 2012; Becke, 2014; Garza and
Scuseria, 2016).

Hybrid exchange-correlation functionals, such as PBE0
(Perdew et al., 1996) or HSE06 (Krukau et al., 2006)
functionals, mix a portion of an orbital dependent exact
exchange with the electron correlation described by other
approximations, such as LDA or GGA (Becke, 1993). Their
reliance on the orbital dependent exact exchange makes them
computationally considerably more expensive than LDA or GGA.
While an LDA or a GGA calculation grows with the 3rd power of
the number of atoms, a hybrid exchange-correlation functional
calculation typically grows with the 4th power of the number of
atoms. Additionally, the computational cost of a hybrid
calculation grows quadratically with the number of k-points
used to sample the Brillouin zone, whereas for an LDA or a
GGA calculation it only grows linearly. This large computational
cost has prohibited precise predictions for systems with large unit
cells, including a number of interesting material classes such as
garnets (Rodic et al., 1999; Nakamoto et al., 2017) or materials of
interest for solid-state batteries (Yu et al., 2016).

This article focuses on the implementation of hybrid
functionals in the full-potential linearized augmented-plane-
wave (FLAPW) (Wimmer et al., 1981) method as it is
implemented in the open-source code FLEUR (Fleur, 2021).
Unlike approaches employing the pseudopotential
approximation, the FLAPW method treats all electrons
explicitly and does not employ any approximations to
represent the potential or density. It is therefore well suited
for a wide range of systems, including systems containing
heavy atoms that have d- and f-electrons. It is considered to
be one of the most accurate DFT methods and has been used as a
benchmark for other methods and codes (Lejaeghere et al., 2016).
More specifically we focus here on the efficient implementation of
the Hartree-Fock type exact exchange based on the bare Coulomb

kernel as relevant for the PBE0 functional. Functionals based on
the screened Coulomb kernel as HSE06 can be always expressed
in terms of the matrix elements of the bare Coulomb kernel
subtracted by matrix elements of a smooth function (Schlipf et al.,
2011), whose numerical evaluation is not time critical and is not
further discussed here.

There have been significant advances in bringing hybrid
functionals to systems with hundreds or even thousands of
atoms in other approaches, such as the projector augmented
wave method (PAW) (Barnes et al., 2017; Carnimeo et al.,
2019), the s-MTACEMETHOD (Mandal et al., 2021), gaussian
basis functions (Guidon et al., 2008) and atomic-orbitals
method (Hakala and Foster, 2013; Lin et al., 2021). Even
some all-electron methods have demonstrated their
capability to calculate large systems with hybrid functionals
(Ihrig et al., 2015; Levchenko et al., 2015). However, hybrid
functionals within FLAPW have been constrained to very
small systems (Betzinger et al., 2010; Schlipf et al., 2011;
Blaha et al., 2020). The work presented here enables
FLEUR’s hybrid functional implementation to run on the
world’s most advanced supercomputers and use their
immense computational power to investigate these large
and interesting systems containing hundreds of atoms.
Building on the pioneering work previously done on hybrid
functionals in the FLAPW basis and in FLEUR specifically
(Betzinger et al., 2010; Schlipf et al., 2011), we analyzed the
performance and bottlenecks of this legacy implementation,
and explored algorithmic improvements needed to calculate
hundreds of atoms with the accuracy that FLAPW and hybrid
functionals offer.

2 METHODS

The FLAPWmethod, implemented by FLEUR, partitions the unit
cell of volume Ω into two kinds of domains. In spherical regions
MTa centered around each atomic nucleus, a muffin-tin orbital
basis (Andersen and Woolley, 1973) is used, relying on the
products of spherical harmonics and radial functions. In
between these spheres, in the so-called interstitial region (IS),
a plane-wave basis is used. The resulting LAPW basis functions
used to represent the wave functions are

φσ
kG r( ) �

1��
Ω

√ exp i k+G( ) · r[ ] if r ∈ IS

∑
lm

αaσlm k,G( )uaσ
l ‖ra‖( )+βaσlm k,G( ) _uaσ

l ‖ra‖( )[ ]Ylm ea( ) if r ∈MTa

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (1)

Here k and G are the Bloch- and reciprocal lattice vectors,
while σ indicates the spin. αaσlm and βaσlm are coefficients chosen,
such that the wave function is smooth and continuous at the
boundary between the interstitial region and muffin-tin spheres.
u and _u are radial functions, where u is the solution to the radial
Schrödinger equation for the spherically averaged muffin-tin
potential and a fixed energy parameter and _u is its energy
derivative. a indicates the nucleus, l and m are the orbital- and
magnetic quantum numbers of the spherical harmonic Ylm. r
denotes the position, while ra≔r −Ra is the position relative to the
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center of the muffin-tin sphere and ea≔ra/norm ra is the unit
vector in direction of ra.

In order to calculate the Hartree-Fock exact exchange, the
Coulomb integral ∫∫ φp

i (r)φj*(r′)φj(r)φi(r′)
r−r′ , containing four basis

functions needs to be evaluated. It has previously been noted
(Boys and Shavitt, 1959; Shavitt, 1959), that the product of the
basis functions sharing the same argument φp

i (r)φj(r) and
φp
j(r′)φi(r′) can be expressed in a more efficient way, since

the basis function are already designed to be complete and the
set of all products {φp

i (r)φj(r)} makes a linear dependent set. In
the case of the LAPW basis, this observation can be exploited by
employing the so-called mixed-product basis. Themixed-product
basis reduces the basis set for the muffin-tin regions separately
from the interstitial region. In the muffin-tin regions, the overlap
matrix of the products is calculated and diagonalized. The
eigenvectors whose eigenvalues are above a certain threshold ]
then provide a linear-independent representation of the product
space. In the interstitial region products of plane-waves are also
planes-waves, but with a higher cut-off Gmax′ � 2Gmax, where
Gmax is the plane-wave cut-off of the LAPW basis. In practice
reduced values of Gmax′ have proven to provide accurate results.
While this new mixed-product basis is neither continuous nor
smooth, it provides a significant reduction in computational
effort compared to the naive evaluation of the Coulomb
integral. A detailed description of the mixed-product basis can
be found in (Friedrich et al., 2009).

2.1 Exact Exchange
Using this basis set the nonlocal exact exchange can be
expressed as

Vexact
σ,nn′ k( ) � − ∑Nocc

n″
∑BZ
q

∑
IJ

〈ϕσ
nk|ϕσ

n″k−qMq,I〉CIJ q( )〈Mq,Jϕ
σ
n″k−q|ϕσ

n′k〉,

(2)
where n, n′ and n′′ are band indices of the states ϕσnk , ϕ

σ
n′k and

ϕσn′′k . I and J are indices enumerating the mixed-product basis and
C is the Coulomb matrix expressed in this basis. A detailed
derivation of M and C can be found in (Friedrich et al., 2009).
Note that while the sum n′′ only stretches over occupied states, n
and n′ cover all states. The square Coulomb matrix C with the
dimensions of the size of the mixed-product basis is largely
sparse, which allows for a significant reduction in the
computational effort. The product CIJ(q)〈Mq,Jϕ

σ
n′′k−q|ϕσn′k〉 is

referred to “Sparse matmul” in Figure 1; Figures 3–5. The
projector matrix Pσ,n,k(n′′, q, I) � 〈ϕσnk|ϕσn′′k−qMq,I〉 has the
dimensions of the size of the mixed-product basis and the
number of states. The evaluation of this term is split into two
components, one called “inters. wave-prod” and one called “MT
wave-prod”, referring to the evaluation of this term either within
the interstitial region or the muffin-tins. In order to apply
Vexact

σ,nn′(k) to the Hamiltonian in the LAPW basis it is
transformed from the eigenspace to the LAPW basis by
applying the overlap matrix of the LAPW matrix and the
eigenvector matrix. In Figure 1; Figures 3–5 the full
evaluation of the non-local potential, i.e., the setup of the
Coulomb matrix, the evaluation of Eq. 2 and the

transformation into the LAPW basis together, is denoted as
“non-local pot.”

The numerical evaluation of Eq. 2 represents the majority of
the computational effort in a FLEUR calculation using hybrid
functionals. In particular, the projection of the products of
wave functions given in the LAPW basis set (Eq. 1) onto the
mixed-product basis and the multiplication of these
projections with the Coulomb matrix provide significant
computational challenges. The implementation developed
for this work relies on collecting data processed in the same
way. It allows to exploit data parallelism on multiple levels, be
it the use of a SIMD instruction set or an efficient and balanced
use of multiple threads. Two significant changes have been
made to the basic algorithm introduced in (Betzinger et al.,
2010). First, contrary to the previous implementation, the
projection onto the mixed-product basis in the interstitial
region is now calculated by Fourier transforming the wave-
functions into real-space and multiplying pairs of wave-
functions there, before transforming them back into G-
space. By employing fast Fourier transformations, this
reduces the complexity of this calculation from O(nG2) to
O(nG log(nG)), where nG is the number of LAPW basis
functions. Second, rather than calculating all elements of
Vexact

σ (k) individually as vector-matrix-vector products of
the Coulomb matrix and the mixed-product basis, the new
implementation stacks groups of vectors of the mixed-
product-basis into matrices and then calculates blocks of
Vexact

σ (k) as a single matrix-matrix-matrix product. While
these operations are mathematically identical, this new
block-wise implementation is twice as fast as the element-
wise implementation even on a single CPU core, which is due
to its better utilization of the core’s vector units. Additionally,
the element-wise evaluation of this term experiences almost no
speedup if multiple cores are used, while the speedup of the
modern implementation is shown in Figure 1 in blue.
Calculating the non-local potential on a single NVIDIA
A100 GPU results in a speedup of 4× compared to an AMD
EPYC 7742 CPU for the NaCl system with 64 atoms.

2.2 Shared Memory Parallelization
To enable the utilization of supercomputers with complex memory
hierarchies, we rely on two classes of parallelization. We use shared
memory parallelization to make full use of many-core CPUs or
GPUs. While distributed memory parallelization is employed to
distribute the calculation over hundreds of compute nodes. Shared
memory parallelization is realized by utilizing libraries for standard
math problems such as matrix-multiplications or Fourier
transformations whenever possible. Code parts that do not fall
within the mold of any standard math problem were parallelized
using OpenMP on CPUs and OpenACC on GPUs. In Figure 1 the
strong scaling behavior on a single node is shown. For strong scaling
a fixed-size problem is calculated with an increasing amount of
resources and the resulting speedup is measured. Here, the speedup
is defined as Sn ≔

Tnmin
Tn

, which in the case of ideal scaling behaviour is
Sidealn � n

nmin
, where Tn is the runtime with n cores, nodes or GPUs

and nmin is the minimal value of n that was used in a calculation.
This can be used to define the parallel efficiency as τn ≔ Sn

Sidealn
.
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While some parts, such as the projection onto the mixed-
product basis in the muffin-tins or the setup of the Coulomb
matrix show excellent scaling, the speedup of the projection on
the mixed-product basis in the interstitial exhibits a plateau
around a speedup of 4 (see orange line). As mentioned
previously, this algorithm relies on fast Fourier
transformations, which have a low algorithmic intensity,
meaning that only few calculations are performed compared to
the number of load and store operations, making the algorithm

more likely to be limited by the memory bandwidth rather than
the available computational power, explaining the plateau in the
speedup seen in Figure 1. Up until 8 cores, the FFT still benefits
from the additional compute resources, beyond that the FFTs are
not limited anymore by the computational power, but rather by
the memory bandwidth, which does not increase with the number
of assigned cores.

2.3 Distributed Memory Parallelization
The parallelism shown so far is limited to a single shared memory
node and thus limited by the number of cores on a given node.
Therefore, in order to scale the computational challenge posed by
the hybrid exchange-correlation functionals to hundreds of
nodes, we implemented three additional levels of distributed
memory parallelism using MPI. The first two levels distribute
the computations for different k- and q-points, while the third
level parallelizes that of different occupied bands n′′. The
distributed memory parallelization scheme is shown in Figure 2.

The parallelization over k- and q-points requires very little
communication and thus is very efficient, while the band-
parallelization requires more communication. However, it
allows us to limit the size of the largest matrix stored on a
single node to nbasis size × ntotal bands, which then has a size on the
order of O(natoms

2). This turns out to be the bottleneck that
determines the largest system we can calculate on a given
computing platform. With 90 GB of memory per node we
were able to calculate systems with up to 200 atoms.

Figure 3 singles out the strong scaling behavior of this 3rd
MPI level for a single k- and q-point. All code parts except for the
setup of the Coulomb matrix show a good scaling behavior with a
parallel efficiency of over 50% on either 64 CPU nodes or 64
GPUs. The scaling behavior of the Coulomb-matrix setup is not
critical, since it does not dominate the run time of the calculation
even on 256 nodes. Additionally, it only scales linearly with the
number of k-points whereas the other parts of the nonlocal
potential scale quadratically with the number of k-points. To

FIGURE 1 | Strong scaling behavior with OpenMP on a single AMD EPYC 7742 64 core processor. The overall FLEUR iteration is shown with brown pentagons,
while the calculation of the nonlocal potential is shown in red triangles. The four remaining lines show the major parts of the nonlocal potential. The red triangles indicating
the nonlocal potential largely coincide with the brown pentagons indicating the full runtime, making it difficult to see them. The parallel efficiency of slightly above 100% in
the routine for the setup mixed-product basis for 4 and 8 nodes is explained by cache effects. Depending on the number of cores used the stride of the parallelized
loops executed on each core is changed, which can reduce the number of cache misses if this stride coincides with certain array dimensions.

FIGURE 2 | The distributed-memory parallelization of Eq. 2 is divided
into three levels. For each k-point the exact exchange is calculated as an
independent problem. At a k-point ki, the exact exchange is calculated as a
sum over all q-points associated with ki, building the kq-pairs. These first
two levels require very little communication, i.e., copying the final results to
their destination for the k-points and a reduction within the sub-communicator
of each k-point for the q-point sum. The third level of distributed-memory
parallelization calculates groups of occupied bands n′′ in parallel. Here, a lot of
inter-dependencies create a much larger communication demand compared
to the first two levels. In a typical calculation of the non-local potential the
workload is not uniformly distributed: Some k-points have more q-points than
others and some kq-pairs might have more associated bands than others.
The algorithm attempts to compensate this by assigning more nodes to
heavier calculations.

Frontiers in Materials | www.frontiersin.org March 2022 | Volume 9 | Article 8514584

Redies et al. Fast All-Electron Hybrid Functionals

138

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


investigate the performance of our algorithm with multiple k-
points we show the strong scaling behavior for a NaCl supercell
with 64 atoms, 10 k-points and 205 kq-pairs in Figure 4. Here
the scaling behavior of the Coulomb-matrix setup is the
weakest once again, but it only accounts for less than 10%,
even with 410 nodes. All other code parts show nearly perfect
scaling. This is due to the fact that each kq-pair represents a

largely independent problem that only requires little
communication and the 3rd MPI level is only used with 205
and 410 nodes, since the parallelization over the 205 kq-pairs is
preferred. SuperMUC-NG has two CPUs per node and
therefore we assigned two MPI ranks to each node,
resulting in a better performance compared to a one rank-
per-node setup.

FIGURE 3 | Scaling behavior of systems with a single k-point on two types of architectures. Panels (A) and (B) show scaling of a 99-atom FeO supercell with a
vacancy defect on the CPU-based SuperMUC-NG supercomputer, while (C) and (D) show the scaling behavior of a 120-atom GaAs supercell with an Al defect on
JURECA’s GPU partition. Panels (A) and (C) show the speedup, while (B) and (D) show the corresponding parallel efficiency.

FIGURE 4 | Strong scaling behavior of multiple k-points for a 64 atom NaCl supercell with a potassium (K) defect. The system has 10 k-points and 205 kq-pairs.
The super-scalar behavior is caused by the fact, that the 205 kq-pairs are not evenly distributed on 10 nodes (20 MPI). Some nodes are assigned more kq-pairs and
therefore need longer while the others sit idle. This effect disappears for 205 or 410 nodes, which allow for a perfectly even and thereforemore efficient distribution. For 41
nodes, the speedup and parallel efficiency of the Coulomb-matrix setup drop drastically. This is due to the fact, that the Coulomb-matrix setup does not have a q-
dependence, while the number of nodes is chosen to be optimal for the evaluation of Eq. 2. For 10 nodes (20 MPI), all k-points can be calculated in parallel on 2
processes each, while for 41 nodes (82 MPI), it is only possible to calculate 2 k-points in parallel, so that each is distributed over 41 processes, leading to an inefficient
parallelization. In practical calculations this is mitigated by including more nodes (e.g., 45), so that both k- and kq-parallelization are efficient. However, even with 41
nodes, the Coulomb-matrix setup only accounts for 6% of the total runtime.
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2.4 Weak Scaling
While the meaning of strong scaling is very intuitive, it does not
necessarily reflect real life applications. Being able to calculate a
system with twenty atoms in a minute or less may not advance
science significantly. Certainly, science is advanced by being able to
calculate increasingly bigger, more inhomogeneous and more
complex systems in a reasonable time frame. Weak scaling deals
with the latter. As discussed in the introduction, the computational
demand of a hybrid functional calculation scales with

O natom
4( ). (3)

For simplicity and to focus on the ultimately limiting
parallelization level, we use a single kq-pair and neglect the
very efficient parallelization over different k- and q-vectors. In
Figure 5 a gallium arsenide (GaAs) setup was scaled into
supercells with a single nitrogen defect. Then, they were
calculated with the parallelization chosen such that

nnodes � natoms

min natoms( )( )
4

, (4)

where min(natoms) is the number of atoms in the smallest
supercell.

With ideal weak scaling behavior the runtime should be
constant regardless of the size of the unit cell, since the
computational cost in Eq. 3 is canceled out by the additional
compute resources chosen in Eq. 4. Figure 5 shows that the
hybrid functionals in FLEUR can be applied efficiently to a wide
variety of system sizes. The time needed for the calculation of the
nonlocal potential of the largest GaAs supercell is 9% larger
compared to that of the smallest supercell and the full iteration

runtime is 30% larger. The runtime does not monotonously
increase as one would expect for the weak scaling of a simple
algorithm performing a single task. In FLEUR, the situation is
more complex, some parts of the code scale withO(natom3), while
others scale with O(natom4): While the setup of the mixed-
product basis in the muffin-tin spheres grows with O(natom3),
its counterpart in the interstitial region grows with
O(natom3log(natom)). In the Coulomb-matrix setup, some parts
such as the MT-MT interaction grow with O(natom2), while e.g.,
Γ-point correction for in the interstitial grows withO(natom4). For
larger systems terms with a bigger scaling-exponent will be
dominant, but in small systems the parts with the smaller
scaling-exponents dominate the runtime. In these cases the
choice of Eq. 4 is not suitable, because the compute resources
are increased faster than the computational complexity grows,
leading to the initial dip in the overall runtime in Figure 5.

3 APPLICATION TO RARE-EARTH IRON
GARNETS

Yttrium iron garnet (Y3Fe5O12 or short YIG) is a complex
ferrimagnetic insulator with a number of remarkable
properties and applications, in the fields of magnonics (Serga
et al., 2010), ultra-low temperature physics (Demokritov et al.,
2006) and quantum computing (Tabuchi et al., 2015). This
success has sparked interest in a related class of materials, the
so-called rare-earth-iron garnets (RIGs), where the yttrium atom
in the YIG structure is replaced with an element of the lanthanide
series. Here applications range from materials with giant
magnetostriction (Sayetat, 1986) to spin Seebeck insulators
(Uchida et al., 2010). Despite great interest in these materials
there is only a limited number of theoretical studies of their
electronic structure. This is most likely due to the large unit cells
with 160 atoms in the conventional and 80 atoms in the primitive
unit cell.

The typical unit cell of a garnet is shown in Figure 6. The iron
atoms in this structure have two types of environments. They are
either in the centre of an octahedron or a tetrahedron spanned by
neighbouring oxygen atoms. These different iron environments
have a strong effect on the electronic structure, which is discussed
in detail later in this paper. YIG and most RIGs are ferrimagnets,
such that the magnetic moments of the 8 octahedral iron atoms
point in the opposite direction with respect to the 12 tetrahedral
iron atoms, which, for the RIGs discussed here, are aligned in
parallel with the rare-earth elements. Only a very minor magnetic
moment is induced in the yttrium and oxygen atoms.

3.1 Electronic Structure
In order to understand how the choice of the exchange-
correlation functional affects the electronic structure of YIG
we calculated the density-of-states (DOS) with PBE and with
PBE0. All calculations shown in the paper were performed on a
2 × 2 × 2 k-point grid. We confirmed that the DOS is converged
with this grid by comparing the PBE results to results on a denser k-
point grid. We use a smearing of σ = 0.136 eV for all DOS
calculations shown. The muffin-tin radii of Y, Gd, Tm, Fe and O

FIGURE 5 | Weak scaling behavior of FLEUR’s hybrid functional
calculations for a GaAs system which is scaled into a supercell with one
Arsenic atom being substituted with Nitrogen. The y-axis shows the runtime
for different code parts, while the bottom x-axis shows the number of
nodes used. The top x-axis shows the number of atoms in that particular
system.
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are chosen to be rY/Gd/Tm = 2.8 a0, rFe = 2.14 a0 and rO = 1.21 a0. The
structural information, e.g. the unit cell and the atomic positions
used in this chapter are based on the experimental ones, exhibiting a
Ia3d-structure (Y3Fe5O12 crystal structure, 2012; Gd3FeO12
crystal structure, 2012; Tm3Fe5O12 crystal structure, 2012).

As expected, with a value of 0.44 eV, PBE massively
underestimates the experimental band gap of 2.8 eV (Larsen
and Metselaar, 1975), while PBE0 predicts an improved band
gap of 1.83 eV. However, the experimental value relies on optical
measurements, which are not sensitive to all transitions,
potentially missing certain states and thus overestimating the
real band gap.

In Figure 7A) the DOS of YIG is calculated using PBE as an
exchange-correlation functional. In this figure, the
antiferrimagnetic alignment of the iron atoms is visible: the
occupied states associated with the tetrahedral iron atoms are
mainly in the spin-up channel and the unoccupied ones are in the
spin-down channel, while for the octahedral iron atoms the
situation is reversed: below the Fermi level the octahedral iron
states are mostly in the spin-down channel and above it in the
spin-up one. Most states associated with the oxygen atoms are
occupied, while the yttrium states are largely unoccupied. Below
the Fermi level, the DOS in the interstitial region closely follows
the oxygen DOS. Additionally, the DOS associated with both iron
types also coincide with the oxygen and interstitial DOS. This
indicates that the 2p-states of the oxygen and the 3d-states of iron
hybridize for both iron environments. This analysis is supported
by the number of valence electrons found in the different muffin-
tin spheres, which are 6.5 and 6.2 electrons for iron atoms in the
tetrahedral and octhedral environments, respectively, 1.1 valence
electrons in the sphere of yttrium, and an average of 3.7 valence
electrons in the spheres of oxygen. The large number of 164.1
electrons in the interstitial region additionally indicates a high
degree of de-localization of these states. For the unoccupied

octahedral iron states in contrast, we can see a clear signature
of simple crystal field splitting of localized d-states: the three t2g-
states shift down and the two eg-states shift up leading to two
distinct peaks with the lower one containing three and the higher
one containing two states. Similarly, for the unoccupied
tetrahedral Fe d-levels the e-states are shifted down, while the
t2-states are shifted up. This separation however, is not so clear as
the shifts are smaller, the peaks still overlap and another splitting
due to next-nearest neighbors can be seen.

In Figure 7B) we show the DOS calculated using the hybrid
exchange-correlation functional PBE0. The results are qualitatively
different from the PBE results with the most significant change seen
in the different behavior of the two types of Fe in the PBE results:
While the occupied tetrahedral iron 3d-states still hybridize with the
2p-states of the surrounding oxygen atoms, most of the octahedral
iron 3d-states are now strongly localized and form a double peak in
the DOS at around −6.5 eV.

Such a localization effect of the d-states can also be reproduced
in a PBE+U treatment (Chen et al., 2021). However, in these
simulations the d-states of both Fe types show the same behavior.
The different tendency to localize can also be seen in these
simulation by the different values of U used for the different
atoms to achieve the localization. Hence, the result strongly
suggests that the local Coulomb interaction exhibits different
strength in the two environments of Fe. This effect can be caused
by the different initial localization of the d-states as well as by
different interactions and screening effects of the surrounding.
Such a difference can also be seen in the unoccupied spectrum
which is again dominated by a crystal field splitting of the d-
states. However, in the octahedral environment this effect is again
much clearer while the tetrahedral d-states form a broad band
with several peaks also indicating next-nearest neighbor effects.

Finally, we would like to point out that the octahedral Fe d-
states show a rather complex sub-structure with a large peak at

FIGURE 6 | Unit cell of a garnet. Oxygen atoms are shown in red, while iron atoms are shown inside the grey polyhedra. The rare-earth or yttrium atoms are shown
inside the golden dodecahedra. While the yttrium or rare-earth atoms are all symmetry equivalent the iron is present in two different environments. Structure from
(Y3Fe5O12 crystal structure, 2012) and plotted with (Momma and Izumi, 2011).
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− 7 eV and a minor peak at − 8 eV. This is not a crystal field
splitting but rather shows that different states with a different
degree of localization are formed. While the lower peak is
clearly separated from the O p-states, some remaining
hybridization can be identified for the larger peak.

Further investigations of the consequences of these differences
between the Fe atoms is beyond the scope of this paper, but we
expect this electronic structure to have some influence, e.g. on
magnetic interactions and the transition temperature.

3.2 Magnetic Moment
In the introduction we discussed that some key applications of
YIG are related to its magnetic properties. Therefore, we want to
investigate the precision of our predictions for magnetic
properties with different exchange-correlation functionals. In
Table 1 we compare the magnetic moments predicted for the
different iron atom types. We use the magnetic moment inside
the muffin-tin sphere to assign the moment to a specific atom.
Therefore, the magnetic moment depends on the choice of the
radius of the muffin-tin sphere and, strictly speaking, is not
uniquely defined. The magnetization calculated for the oxygen
and yttrium atoms is negligible regardless of the computational
method used. The total magnetic moment per unit formula was
5 μB for every functional. This agreement is expected, since YIG is
a magnetic insulator, which constrains the total magnetization
per unit cell to integer values.

While PBE predicts the magnetic moments of the two iron
types within only ±0.5 μB of the experimental value for the R3
crystal structure, the predictions by PBE0 are even closer to the

experimental those results. This again can be understood by the
observed tendency to localize the Fe d-states and compares very
well to magnetic moments predicted by Barker et al. (Barker et al.,
2020) obtained using QSGW, another highly precise electronic
structure method. The slight difference in the magnetic moments
between the QSGW and PBE0 approach we account to the
different choice of the muffin-tin radii and the different degree
of localization of the Fe d-states. Interestingly, in the comparison
of PBE0 to QSGW in the case of this octahedral iron, the magnetic
moment for this octahedral Fe agrees better with the experimental
results in the R3 crystal structure than the QSGW value,
supporting our findings of a slightly stronger localized d-wave
function in the case of the PBE0 functional. We note that all
theoretical results were calculated for the cubic Ia3d crystal
structure and the magnetic moments of Fe in the tetrahedral
environment agree quite well with each other but also with the
experimental values of Fe in the trigonal R3 structure. On the
other hand, the experimental Fe moment in the Ia3d symmetry is
completely off. It shows a moment of 5.37 μB. This value seems
unrealistic since it is higher than that of a free Fe3+ ion (~ 5 μB),
while the presence of hybridization with oxygen is expected to
lower the moment further. We conclude that further
experimental efforts are needed to analyze the structure-
magnetism relationship of YIG.

3.3 Rare-earth-iron Garnets
As two representatives of the rare-earth-iron garnet group, we
chose to examine Gd3Fe5O12 (GdIG) and Tm3Fe5O12 (TmIG)
more closely. We selected these materials, because a lot of
interesting experimental (Fechine et al., 2008; Phan et al., 2009;
Lassri et al., 2011; Lee et al., 2020; Vilela et al., 2020; Vu et al., 2020)
and even some theoretical work using the FLAPWmethod (Lassri
et al., 2011) has been published for these materials.

In Figure 8 we present the density of states for GdIG and TmIG
calculated with the PBE0 exchange-correlation functional. Reaching
numerical self-consistency for TmIG was challenging with PBE,
which is the starting point for any PBE0 calculation. We achieved
self-consistency by using a few hundred straight mixing iterations
with a low mixing parameter, followed by a set of Anderson mixing
iterations until convergence was reached.With a converged PBE as a

FIGURE 7 | DOS of YIG calculated with PBE in (A) and with PBE0 in (B) on a 2 × 2 × 2 k-grid. In both calculations we use a Kmax � 4.5a0−1. The mixed-product
basis for the calculation in (B) uses a eigenvalue threshold of ] = 10−4 and an lMPB = 16 cutoff for the spherical harmonics.

TABLE 1 | The magnetic moments within the different muffin-tins of both Fe types
in units of μB.

Fe tetra. [μB] Fe octa. [μB]

PBE 3.52 −3.64
PBE0 3.83 −4.01
PBE + U Nakamoto et al. (2017) 4.10 −4.20
QSGW Barker et al. (2020) 3.93 −4.17
exp. R3 Rodic et al. (1999) 3.95 −4.01
exp. Ia3d Rodic et al. (1999) 5.37 −4.11
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starting density the convergence of PBE0 is straight forward. This
difficult convergence is caused by the metallic behavior of TmIG
with PBE as a functional. After the non-local potential is included, a
gap opens up and all later density convergence cycles do not exhibit
this problematic metallic behavior. GdIG converged without
problems both for PBE and PBE0.

For GdIG the band gap was calculated to be 1.7 eV with PBE0.
Literature values obtained using PBE + U suggest a gap of 1.6 eV
(Nakamoto et al., 2017). For TmIG we also predict a band gap of
1.7 eV using PBE0. To our knowledge, this is the first prediction
for the band gap of TmIG. We are not aware of any experimental
results regarding the band gap in either system.

The electronic structure of these two systems has a few striking
similarities with that of YIG. The 3d-states of both types of iron
atoms hybridize with the oxygen 2p-states in PBE, while with
PBE0 the octahedral iron states show localization and a strong
shift to lower energies. This again highlights the difference of the
tetrahedral and octahedral oxygen environment of the iron atoms
causing different effective interactions at these atoms and casting
doubt on simple PBE+U predictions for these garnet systems. For
the unoccupied octahedral iron states we can see the typical
signature of crystal field splitting and in the tetrahedral case this
signature is weaker. The additional 4f-states of the rare-earth
elements in the spin-up channel are strongly localized in PBE. In
PBE0 they show a slightly larger bandwidth, indicating increased
hybridization with the oxygen 2p-states which could be
understood due to the decrease of hybridization of these states
with the octahedral Fe d-states. As expected, Gd has no occupied

4f-states in the spin-down channel, while the 4f-states of Tm are
partially occupied, causing a metallic behavior in PBE. In PBE0
the increased interaction provided by the exchange term opens a
gap in the Tm 4f-band.

In Table 2 the magnetic moments of all atom types are given.
For GdIG we predict a total magnetization per formula unit of
16.0 μB and for TmIG we predict 1.75 μB for PBE as well as PBE0.
Notice, that the formula unit contains 20 atoms, while the
primitive unit cell contains 80. This means, while the magnetic
moment per formula unit is not integer, it is integer per unit cell.

The predicted total magnetic moments are in exact agreement
with experimental results for GdIG (Geller et al., 1965), while they
are in good agreement with the experimental value of 1.2 μB for the
TmIG. This experimental value would correspond to a total
magnetic moment of 4.8 μB for the primitive unit cell. PBE + U
shows a tendency to predict larger magnetic moments for almost all
atoms: 4.2 μB for the octahedral iron, − 4.1 μB for the tetrahedral
iron, 7.0 μB for Gd and 1.9 μB for Tm (Nakamoto et al., 2017).

4 CONCLUSION

In this article we presented a highly scalable implementation of
hybrid exchange-correlation functionals in the LAPW basis. In
this work we focused on the scalable implementation of the
Hartree-Fock exact exchange, which corresponds to the
implementation of the PBE0 functional, but screened functionals
likeHSE06 are related by an additional fast computation of a smooth

FIGURE 8 | The density-of-states is calculated for GdIG in (A) and for TmIG in (B) using PBE0 on a 2 × 2 × 2 k-point grid. Both calculations were performed with a
Kmax � 4.5a0−1 and the mixed-product basis was setup using ] = 10−4 and lMPB = 16. Both band gaps are 1.7 eV and marked in red. The Gd states are fully occupied for the
majority spin-channel and fully unoccupied for theminority spin-channel. The Tm spin-up channel is also fully occupiedwhile theminority spin channel is only partially occupied.

TABLE 2 | Predicted magnetic moments of GdIG and TmIG for each atom type, given in units of [μB].

Fe tetra [μB] Fe octa [μB] Gd/Tm [μB] O [μB]

Gd3Fe5O12 PBE −3.54 3.69 6.88 −0.06
PBE0 −3.85 4.04 6.94 −0.06
PBE + U (Nakamoto et al., 2017) −4.1 4.2 7.0 −

Tm3Fe5O12 PBE −3.298 3.59 1.61 −0.04
PBE0 −3.82 4.01 1.93 −0.05
PBE + U (Nakamoto et al., 2017) −4.1 4.2 1.9 −
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function. The combination of shared and distributed memory
parallelization allows to calculate a broad range of systems with
high efficiency. Combining all three MPI levels gives us an outlook
on the scaling potential of this algorithm. If we were for example to
calculate the GaAs system with 120 atoms and we would use 8 k-
points we would get 125 kq-pairs. Figure 3 shows that for this
system a single kq-pair has a good parallel performance even if
distributed over more than 32 GPUs. Therefore, it is reasonable to
assume that the calculation of the nonlocal potential for a system
with 8 k-points would still have good scaling with
32 GPUs

kq−pair × 125GPUs � 4000 GPUs, which is ~ 250 more than
the 44 PetaFLOP JUWELS Booster Module has to offer. This not
only allows the code to run on the supercomputers currently
available, it also gives us confidence that our code can make
good practical use of future exascale machines. Here, making
good practical use of a supercomputer does not necessarily mean
sending jobs which queue for weeks-on-end and then scale to every
single core which the machine has to offer, but rather that we can
efficiently use significant portions of the machine to investigate
interesting and meaningful systems.

Using the new implementation of the hybrid functional code,
we performed simulations of the electronic structure of iron based
garnet materials. The significant improvement in the obtained
band gap as well as the changes in the electronic structures
discussed in detail demonstrate the significance and power of
this treatment for these technological relevant material class. Our
results suggests an experimental reevaluation of the structure-
magnetism relation of the yttrium iron garnet (YIG), Y3Fe5O12.
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Simulation Study on Internal Short
Circuits in a Li-Ion Battery Depending
on the Sizes, Quantities, and Locations
of Li Dendrites
Suhwan Kim1†, Jihun Song1†, Hyobin Lee1, Seungwon Jung1, Joonam Park2,
Hongkyung Lee1,2* and Yong Min Lee1,2*

1Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South
Korea, 2Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST),
Daegu, South Korea

The internal short circuit caused by the Li dendrite is well known to be a major cause for fire
or explosion accidents involving state-of-the-art lithium-ion batteries (LIBs). However,
post-mortem analysis cannot identify the most probable cause, which is initially embedded
in the cell, because the original structure of the cell totally collapses after the accident.
Thus, multiphysics modeling and simulation must be an effective solution to investigate the
effect of a specific cause in a variety of conditions. Herein, we reported an electrochemical-
thermal model to simulate the internal short circuit depending on Li dendrite’s sizes (1, 3, 5,
7, and 9 μm), quantities (1–9), relative locations (0, 25, 50, 100, and 150 μm), and external
temperature (−10, 10, 30, and 50°C). Through monitoring the temperature change
affected by the joule and reaction heats for each case, we suggested critical
conditions that led to unavoidable thermal runaway. Thus, this model can be a
steppingstone in understanding the correlation between internal short circuits and Li
dendrites.

Keywords: internal short circuit, Li dendrite, Li-ion battery, simulation, safety

INTRODUCTION

A lithium-ion battery (LIB) is an energy storage device widely used from small portable electronics to
large electric vehicles (EVs) and energy storage systems (ESSs). However, there are still safety risks in
state-of-the-art LIBs because of flammable liquid electrolytes. To manage this risk systematically, the
European Council for Automotive R&D (EUCAR) has already set the hazard level for LIB cells,
modules, and packs depending on the failure type (Josefowitz et al., 2005). According to this
criterion, severe battery failures such as fire, fracture, and explosion are categorized into levels 5, 6,
and 7, respectively. Regardless of many efforts to prevent those serious accidents, various reasons
such as BMSmalfunctions (Ye et al., 2016; Ren et al., 2017;Wang Z. et al., 2021), external shock (Feng
et al., 2015; Wang et al., 2017), and high temperature exposure (Kim et al., 2007; Feng et al., 2018a)
have been reported ceaselessly. Furthermore, since the energy density of advanced LIBs increases, it is
not easy to lower the risk of fire or explosion without understanding fundamental reasons at the cell
level (Liu et al., 2018; Wang et al., 2019). Among them, an internal short circuit (ISC) must be the
most frequently mentioned and highlighted reason for LIB accidents. Unfortunately, the ISC has not
been studied systematically and extensively, owing to difficulties in not only detecting the ISC reliably
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but also reproducing a similar phenomenon resulting from the
same reason. This is why the ISC remains an unconquered
research area to date.

To emphasize the severe impact of the ISC in fully charged
LIBs, as an example, with an electrochemical model having an
LIB electrode pair (loading level = 1.9 mAh cm−2 and N/P ratio =
1.1), we could simulate how much current can flow once the Li
dendrite with a radius of 5 μm short-circuits the cell. In this
simulation, the current density was calculated simply based on
Ohm’s law without taking both reversible electrode reactions and
irreversible side reactions into consideration (Qi et al., 2021). As
a result, it is estimated that the current density can increase to
1.97 × 106 mA cm−2, which is about a million times higher than
that in a 50-Ah pouch cell at a 1C-rate (1.715 mA cm−2). Thus, a
huge amount of IR heat is generated to rapidly increase the
temperature near the dendrite inside the battery. In particular,
when the internal temperature increases beyond around 100°C,
thermal decomposition of the solid electrolyte interphase (SEI)
initiates, and subsequent exothermic reactions occur in series
(Feng et al., 2018b). Depending on the difference between heat
generation and dissipation rates, the temperature can reach the
separator collapse limit or not, but once the temperature
increases beyond the limit, the direct contact area of the two
electrodes gets enlarged, thereby reaching the ignition
temperature of organic solvents and resulting in a thermal
runaway. In other words, the combination of flammable
organic electrolytes as a fuel, exothermal side reactions as a
heat source, and the decomposition of lithium transition metal
oxide as an oxygen source accelerate the continuous fire or
explosion that is hardly extinguished. Due to this high risk of
fires or explosion caused by the ISC, many researchers have
attempted to clearly understand the causes of the ISC, the
mechanisms of heat generation and accumulation, and the
temperature rising behavior (Feng et al., 2018b; Zhang et al.,
2021).

Among them, many studies have focused on analyzing the
temperature rise depending on ISC types, where they can be
classified into electrical abuse, internal defects, mechanical abuse,
and thermal abuse (Guo et al., 2015; Zhang et al., 2017a; Wang
et al., 2019; Foroozan et al., 2020; Zhang et al., 2021). Also,
depending on the contact area, ISCs can be divided into the point
contact and surface contact (Zhang et al., 2021). Regardless of
many previous studies showing threats caused by various types of
ISCs, however, it was almost impossible to reproduce or repeat
experimental results under the same conditions. Moreover, owing
to significantly improved operando analysis methods (Guo et al.,
2015; Foroozan et al., 2020), although the size or location of Li
dendrites starts to be unveiled in real time, it is still challenging to
fabricate model cell systems for dendrite-based ISC studies.

Nonetheless, Zhang et al., (2017a) realized the internal short
circuit in a pouch cell using a millimeter-sized shape memory
alloy, which shapes a sharp tip at a certain temperature, with high
reproducibility. But their model cells could not mimic the small
contact area of actual micrometer-sized Li dendrites. Also, the
quantities and locations of ISC points were not controlled in their
cell systems. In particular, considering the necessity to track some
variables such as the internal temperature, local current density

and potential, and lithium ion concentrations for better
understanding ISCs, various simulations have been attempted
with 2D models with micrometer-sized ISCs (Zavalis et al., 2012;
Zhang et al., 2017b) or 3D models with millimeter-sized ISCs
(Feng et al., 2016; Wang J. et al., 2021). However, as an actual
point of view of Li dendrites, 3D models simulating micrometer-
sized ISCs are strongly needed to understand the thermal
behavior of actual dendrites and to make battery systems
under control.

For this purpose, in this study, we built a 3D cell model having
various micrometer-sized ISCs in a domain of 1 mm × 1 mm ×
0.177 mm. In particular, to secure the reliability of parameters in
this model, we primarily constructed a model of a 50 Ah-level
NMC442/graphite pouch cell and compared simulated data with
measured ones from electrochemical and thermal experiments.
First, we simulated the maximum temperatures caused by a single
Li dendrite under various external temperatures. Subsequently,
while changing both the number of Li dendrites and their
distances, the maximum temperature behaviors were also
investigated to figure out their interplay. Finally, through
analyzing each case study, we estimated the dominant factors
to determine the maximum temperatures over time.

MODEL DEVELOPMENTS

Mining Parameters and Building a Model for
the 50Ah-Level Pouch Cell
In order to obtain parameters for developing a reliable 3D ISC
model, a 50 Ah-level pouch cell, which has an electrode
chemistry of NMC442/graphite and an electrolyte of 1.15 M
LiPF6 in ethylene carbonate and ethylmethyl carbonate (EC/
EMC = 3/7, v/v) mixture with a size of 247 mm × 227 mm ×
8.02 mm, was used (Top in Figure 1A). Based on the design
parameters of the pouch cell and some literature values on
materials, a P2D electrochemical—3D thermal model of the
pouch cell was initially built using COMSOL Multiphysics 5.5
(COMSOL Inc., USA) (Bottom of Figure 1A; Supplementary
Figure S1; Supplementary Table S2). After that, the initial
model was modified better by fitting model parameters through
filling the gap between simulated data and experimental ones
obtained from the rate capability evaluation [constant current
discharging at 0.5, 1, 2, and 5C-rate at 25°C with a 300-A max
current cycler (PNE Solution Co., Ltd., Republic of Korea)]
(Figures 1B, C). In particular, the surface temperature profiles
of the 50 Ah-level cell were also obtained through a
thermocouple while changing the C-rate. Also, as shown in
Figure 1D, depending on the C-rate, the model could estimate
the surface temperature of the actual pouch cell because not only
the heat generation originated from the electrochemical reaction
but also the heat dissipation to the surroundings was well
simulated in our model. In this simulation, the internal
resistance of the tab was not considered because the tab
welding conditions of the pouch cell were not accurately
known. As shown in Figure 1D, the simulation results for
the temperature distribution of the pouch cell are locally
inaccurate, but it can be seen that at the center of the pouch
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cell, the temperature increase caused by the electrochemical
reaction and the electrode resistance was well calculated. Thus,
final model parameters, including the chemical diffusion
coefficient and exchange current density, were set in
Supplementary Table S3, following the aforementioned
fitting processes.

3D ISC Model Development
Using the parameters obtained from the cell model
(Supplementary Table S3), the 3D electrochemical-thermal
model for simulating the ISC was developed using COMSOL
Multiphysics 5.5. This model is designed to simulate the ISC
between two electrodes induced by the formation of

FIGURE 1 | (A) Real image (top) and 3D model structure (bottom) of a 50 Ah-level NMC442/graphite LIB pouch cell. (B) Temperature profiles and (C) discharge
voltage profiles of the pouch cell at various discharge C-rates (0.5, 1, 2, and 5C) along with simulated ones. (D) Simulated surface temperatures of the pouch cell in a fully
discharged state at different discharge C-rates (1 and 5C).

FIGURE 2 | (A) Actual 3D domain size of the ISC model compared to the 50 Ah-level pouch cell. (B) Temperature changes in the cross-sectional domain and (C)
maximum temperature changes with time (from 0 to 0.2 s) of the ISC model having a Li dendrite of a radius of 5 μm.
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micrometer-sized Li dendrites locally within the pouch cell.
Considering both calculation time and sufficiently large domain
size compared to Li dendrites, this 3D model was designed in a
volume of 1 mm × 1mm × 0.177 mm with the same parameters
and boundary conditions as the entire pouch cell. Furthermore,
considering the excellent thermal conductivity and heat capacity of
the current collector and the larger value of in-plane thermal
conductivity of the electrode layer than through-plane (Zhang
et al., 2020) thermal conductivity, we did not have to consider
thermal transfer from any layer to the peripheral layer (Figure 2A).
As described in the middle of the 3D model, the cylindrical Li
dendrite with a radius of 5 μm looks like just a thin line in the
simulated domain. This is because Li dendrites are known to be
grown through the pores in the separator as cylindrical shapes
rather than fractals, which can be readily formed in the liquid
electrolyte under no physical barriers (Jana et al., 2015; Mu et al.,
2019; Jungjohann et al., 2021).For convenience, in this work, the
shape of Li dendrites was assumed to be a cylinder having the same
height as the separator thickness. The range of the Li dendrite
radius was initially controlled from 1 to 5 μm based on previous
works showing actual Li dendrite sizes (Frenck et al., 2019; Guo
et al., 2020; Liu et al., 2020) and then increased to 9 μm to simulate
catastrophic situations. This model can simulate the thermal
behavior only caused by the current flow through the Li

dendrite, where the corresponding current value is dependent
on the amount and state of active materials in both electrodes.
In other words, this model does not consider the thermal behavior
related to side reactions such as SEI breakdown, separator melting,
or active material decomposition. Thus, for instance, we can
estimate temperature changes around Li dendrites, as shown in
Figure 2B, or maximum temperature changes as a function of
time, as shown in Figure 2C.

RESULTS AND DISCUSSION

To systematically investigate the effects of Li dendrites on
temperature changes in internal short-circuited LIB cells, we
utilized our 3D ISC model while changing the Li dendrite
radius from 1 to 9 μm and the external temperature from −10
to 50°C (Figure 3A). In the case of the Li dendrite radius study, the
external temperature was set to 25°C. As depicted in Figure 3B, the
radius of the Li dendrite governs the maximum temperature. In
more detail, when the radius is as small as 1 μm, the temperature
just increases to 69°C within 0.03 s. On the other hand, when the
radius becomes greater than or equal to 7 μm, the maximum
temperature passes a threshold point of around 100°C, where
SEI begins to be decomposed. In particular, as soon as the ISC

FIGURE 3 | (A) Scheme to change the Li dendrite radius (left) and external temperature (right) in this ISC model. The maximum temperature profiles after ISC occur
when (B) the Li dendrite radius changes from 1 to 9 μm at 25°C and (C) external temperature changes from −10 to 50°C (RLi = 1 μm). (D) 3D map showing maximum
temperatures as both Li dendrite radius and external temperature changes.
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occurs, the temperature rapidly increases to a saturated value
within 0.03 s for all cases because a huge current flows within a
very short period as the adiabatic condition. However, when the
amount of heat transfer becomes almost the same as that of joule
heating, the maximum temperature is maintained at its specific
point regardless of the Li dendrite radius. When the effect of the
external temperatures on the maximum temperature was also
simulated while fixing the Li dendrite radius to 1 μm, as shown
in Figure 3C, the maximum temperature changed similarly, as in
Figure 3B. However, although the maximum temperature is
strongly dependent on the external temperature, the
temperature difference before and after the ISC seems quite
similar at around 44°C. Specifically, in this case, when the
external temperature is greater than or equal to 50°C, the
maximum temperature passes the first threshold point, just like
the case of the Li dendrite radius of 7 μm. Similar to this analysis,
we need to check both the Li dendrite radius and external
temperature simultaneously, as shown in Figure 3D, where safe
and dangerous regions are colored by the combination of blue and
yellow with different ratios. Thus, our ISC model can provide us
with a platform to understand the impact of the Li dendrite size
and external temperature on the thermal runaway of LIB cells.

As the next step, we need to consider some ISC situations
having more than a single Li dendrite by designing their relative
distances, as in Figure 4A, where the base distance of 50 μm is set
by assuming that another Li dendrite of a radius of 5 μm can exist
ten times farther away. Also, although the probability is low, two Li
dendrites that are contacted or located nearby are also considered.
Based on the simulated data summarized in Figure 4B, when the
distance between two Li dendrites is sufficiently far, e.g., 100 μm,
the maximum temperatures in two Li dendrites cases are almost
the same as those in a single Li dendrite one. In the region of less
than 100 μm distance, of course, the maximum temperature tends
to increase as the distance becomes shorter. However, even in the
direct contact case, the maximum temperature additionally
increased by 12.7°C to be 107.7°C while 95.0°C was reached in
the reference single Li dendrite case (Supplementary Table S4).

Thus, when more than one Li dendrite is formed simultaneously,
the risk of thermal runaway of LIBs does not increase
proportionally. In other words, when Li dendrites are formed
relatively far away enough not to interplay, the probability of
encountering catastrophic events becomes lower.

To confirm the effect of the distance between Li dendrites on
the maximum temperature, we simulated the thermal behaviors
of two ISC models: one has a big Li dendrite of 3 μm radius, and
the other has nine small Li dendrites of 1 μm radius, where they
are located by 200 μm, while their total areas are identical to be
9π μm2 (Figures 5A,B). As readily estimated from the results in
Figures 3, 4, the maximum temperature is mainly governed by
the radius of the Li dendrite regardless of Li dendrite numbers
only if each dendrite is far away. However, as observed in
Figure 5C, the maximum temperature of nine small Li
dendrites tends to gradually increase with time, thereby
reaching a little higher value of around 4°C after 0.20 s. This
continuous increase can be ascribed to the average temperature of
29.9°C, which is even higher than the single big Li dendrite case
(Figure 5D; Supplementary Table S5). In other words, when
there are many heat sources, the heat dissipation rate reduces
with time, and both the maximum and average temperature
increase steadily.

To investigate the influence of the Li dendrite (RLi = 5 μm)
number on the maximum temperature in more detail, we built
four ISC models having one, three, five, and nine Li dendrites
with 200 μm distances, as shown in Figure 6A, where the
temperature distribution of each case is expressed through
different colors at 0.2 s after ISC occurs. As already observed
in Figures 4, 5, the maximum temperature in the initial state,
e.g.,t = 0.03 s, is not dependent on the number of Li dendrites.
However, the temperature increase rate is largely affected by the
Li dendrite number, as shown in Figure 6B. More specifically,
while the ISC model with one Li dendrite reaches the maximum
temperature of 95.0°C at 0.2 s, the maximum temperatures of five
and nine Li dendrite models exceed the critical temperature of
100°C, i.e., 101.6 and 109.0°C, respectively (Supplementary Table

FIGURE 4 | (A) Scheme describing the relative distance of two Li dendrites of 5 μm radius and (B)maximum temperature profiles of ISC models depending on the
distance of 10 μm (direct contact), 25, 50, 100, and 150 μm.
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S6). Thus, the maximum temperature in the initial state is mainly
dependent on the Li dendrite size, but the number of Li dendrites
significantly affects the temperature increase rate. With this ISC

model, we can provide a good platform to investigate the
influence of Li dendrite sizes and distribution on the thermal
behaviors of LIB cells in 3D domains.

FIGURE 5 | Thermal 2D color maps at 0.2 s of ISC models having (A) one large Li dendrite of 3 μm radius and (B) nine small Li dendrites of 1 μm radius. (C)
Maximum temperature profiles and (D) average temperature profiles of the aforementioned two ISC models, with the control case having one small Li dendrite of 1 μm.

FIGURE 6 | (A) Thermal 2D color map at 0.2 s of ISC models having one Li dendrite, three Li dendrites, five Li dendrites, and nine Li dendrites. (B) Maximum
temperature profiles of ISC models depending on the number of Li dendrites.

Frontiers in Materials | www.frontiersin.org April 2022 | Volume 9 | Article 8506106

Kim et al. 3D Dendrite-Based ISC Evaluation Model

151

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


CONCLUSION

We developed a 3D electrochemical–thermal model to simulate the
ISC caused by the Li dendrites, which considers external temperature,
Li dendrite size, number, and relative distances simultaneously. With
assumptions such as no side reactions and a simplified Li dendrite
shape, themaximum temperature at the start point (0 s) is determined
by the external temperature, and within a short period (from 0 to
0.03 s), the maximum temperature increase is governed by the size of
the Li dendrite. After a steep temperature increase (after 0.03 s), the
maximum temperature is affected by the number of Li dendrites.
Therefore, these conditions affecting the thermal behaviors of the
LIB cell should be considered simultaneously. Additionally, using our
model, the relative distance effect of Li dendrites was investigated. The
Li dendrites did not affect each other’s maximum temperature rise
when they were sufficiently far away. This result shows that even if
many Li dendrites are generated simultaneously, the risk of thermal
runaway does not increase unconditionally.

Based on this advanced analysis using a 3D ISC model, the
limitation of dendrite-based ISC evaluation, which is almost
impossible to obtain experimental reproducibility , was addressed,
and governing factors formaximum temperature behavior over time
were determined. We believe that our model can provide additional
insights on the correlation between dendrite-based ISCs and thermal
behavior of LIB cells, which can be the basis for further investigating
and understanding the thermal runaway.
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Optimal Data-Generation Strategy for
Machine Learning Yield Functions in
Anisotropic Plasticity
Ronak Shoghi† and Alexander Hartmaier*†

ICAMS, Ruhr-Universität Bochum, Bochum, Germany

Trained machine learning (ML) algorithms can serve as numerically efficient surrogate
models of sophisticated but numerically expensive constitutive models of material
behavior. In the field of plasticity, ML yield functions have been proposed that serve as
the basis of a constitutive model for plastic material behavior. If the training data for such ML
flow rules is gained by micromechanical models, the training procedure can be considered
as a homogenization method that captures essential information of microstructure-property
relationships of a given material. However, generating training data with micromechanical
methods, as for example, the crystal plasticity finite element method, is a numerically
challenging task. Hence, in this work, it is investigated how an optimal data-generation
strategy for the training of a ML model can be established that produces reliable and
accurate ML yield functions with the least possible effort. It is shown that even for materials
with a significant plastic anisotropy, as polycrystals with a pronounced Goss texture, 300
data points representing the yield locus of the material in stress space, are sufficient to train
the ML yield function successfully. Furthermore, it is demonstrated how data-oriented flow
rules can be used in standard finite element analysis.

Keywords: plasticity, data-driven methods, machine learning, data generation, uniform distribution, hypersphere,
homogenization

INTRODUCTION

The finite element method is one of the most popular methods used in solid mechanics to solve the
nonlinear partial differential equations describing mechanical equilibrium of a solid under arbitrary
boundary conditions. The solution of a solid mechanics problemmust satisfy equations of equilibrium,
compatibility of strains and displacements, and obey the constitutive laws for the materials represented
in the model (Chen and Saleeb, 1994; Pian and Wu, 2005). These constitutive equations describe the
relationships between stresses and strains, i.e., they quantify the material response under given
distortions. In the simplest case of elastic materials, this relationship assumes a linear form in
which stress and strain are proportional to each other, as described by Hooke’s law. For nonlinear
and irreversible material behavior, as it must be considered for plastic materials, elastic and plastic
strains need to be treated by separate constitutive models (Chen and Saleeb, 1994; Bonet and Wood,
1997). While for elastic strains, Hooke’s law is still valid, plastic strains need to be calculated in a way
that is consistent with the yield strength and the flow stress observed in tensile tests of the given
material. To accomplish this, a yield function is formulated that indicates whether a given stress state
results in a linear-elastic material response or whether plastic deformation needs to be considered. In
the linear elastic regime, the yield function takes negative values, and it reaches the value zero for those
stress tensors for which plastic yielding starts. Hence, the zeros of the yield function can be represented
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by a hypersurface in stress space, which embodies the convex hull
of the stress tensors leading to a linear-elastic material response. In
the Voigt notation, the six-dimensional (6D) stress space itself is
spanned by the six independent components of the stress tensor,
including normal and shear components. In the case of ideal
plasticity, this hypersurface in stress space, the so-called yield-
locus, remains unchanged by plastic deformation (Chen and
Saleeb, 1994). In contrast, in the case of strain hardening, it can
change its volume (isotropic hardening), location (kinematic
hardening), or shape (distortive hardening) (Helling and Miller,
1987; Kurtyka and Życzkowski, 1996).

This concept of the yield locus as geometrical representation of
the yield criterion can also be applied in cases of anisotropic
plastic deformation, as it occurs, for example, in polycrystalline
metals with specific crystallographic textures. This plastic
anisotropy of polycrystals can be described with the crystal
plasticity finite element method (CPFEM) (Roters et al., 2011),
for an overview, in which plastic slip on the discrete
crystallographic slip planes of each grain is considered. Such
methods also allow us to study the evolution of textures under
large plastic strains (Peranio et al., 2010), where certain
crystallographic planes tend to rotate concerning the direction
of the highest principal strain and, thus, cause a dynamic change
of the crystallographic texture and the resulting plastic
anisotropy, which is the origin of distortive hardening in these
materials.

While CPFEM methods represent a fundamental way of
describing plastic anisotropy of materials, they cause a high
numerical effort, limiting their application to relatively small
volumes. In the work of Vajragupta et al. (2017), it has been
shown that the results of CPFEM calculations can be homogenized
by fitting the parameters of an anisotropic yield criterion to data
obtained from CPFEM calculation of specific textures. Various
formulations of such anisotropic yield criteria have been published
in the literature (Karafillis and Boyce, 1993; Cazacu and Barlat, 2001;
Banabic et al., 2004). In this work, we refer to the formulation of Hill
(Hill, 1948) with six parameters describing the state of anisotropy,
which has been suggested as a generalization of the isotropic yield
criterion after Huber-Von Mises (Huber, 1904; v Mises, 1913), based
on the second invariant of the stress deviator (J2). The corresponding
equivalent stress can be compared to the scalar yield stress of the
material determined in a uniaxial test. Barlat et al. (2005) suggested a
yield function that contains 18 parameters (Yld 2004-18p) based on a
linear transformation of the stress deviator.

In more recent approaches, data-driven computational
methods have been suggested in the literature to describe
anisotropic material behavior. In the data-driven method
suggested by Kirchdoerfer and Ortiz (2016), instead of
constitutive models for finite element analysis, experimental
material data can be used directly to satisfy the required
constraints and conservation laws for mechanical equilibrium.
In a similar approach, Eggersmann et al. (2019), Eggersmann
et al. (2021) have shown that a model-free data-driven
formulation of mechanical problems can be achieved. In the
work of Chinesta et al. (2017) the data-driven strategy was
extended for nonlinear material behavior, which includes not
only the plastic strain rate and the rate of accumulated plastic

deformation but also the kinematic hardening rate. Another
popular approach to develop a data-driven material model is
using machine learning algorithms that are capable of handling
large data sets. At the same time, they provide the possibility of
describing arbitrary mathematical functions, thus relieving the
restrictions for closed-form mathematical descriptions of
anisotropic yield criteria. Liu et al. (2018) employ a clustering
technique to solve the equilibrium equation on clusters of material
points with similar mechanical responses. In another approach
suggested by Ibañez et al. (2018), manifold learning methods were
used to define the constitutive manifold of a given material,
allowing the extraction of relevant information directly from
large experimental data sets. In Linka et al. (2021), a machine
learning-based hyperelasticity model is suggested using a feed-
forward neural network trained using experimental data. (Linka
et al. (2021) introduced constitutive artificial neural networks to
describe hyperelastic material behavior.

Following the method developed in (Hartmaier, 2020), the
present work uses Support Vector Classification (SVC) of the
elastic and plastic domains in the stress space as a data-oriented
yield function. The SVC algorithm is trained by using input data
in the form of critical stresses that mark the onset of plastic
yielding, thus representing the yield locus in a data-based
manner. In this way, a machine learning (ML) yield function
is obtained to determine whether a given stress state lies inside or
outside the material’s elastic domain. Getting a proper data-based
representation of the yield locus as a hypersurface in the 6D stress
space can be challenging. This holds in particular if the training
data is generated by numerically expensive methods as CPFEM.
Hence, in this work, we will use simpler methods for the
generation of various data sets that are the basis for the
development of an optimal strategy to distribute the training
data points over the entire yield locus with as small as possible
data sets. Based on these training data, an accurateML yield locus,
i.e., the hypersurface in the stress space on which plastic
deformation occurs, can be reconstructed from the SVC in the
form of a convolutional sum over a kernel function, from which
the gradient on this yield locus can be conveniently calculated.
Therefore, the standard formulations of continuum plasticity, as
the return mapping algorithm, can be applied in the usual way to
finite element analysis (FEA). Thus, it is demonstrated that the
new ML yield function can replace conventional FEA flow rules.

METHODS

Machine Learning Flow Rule
The elastic-plastic deformation of a material can be described using
stress and strain tensors denoted with σ and ε, respectively. The
stress tensor describes the force acting on the surface of a material,
and the strain tensor describes the deformation of the material.

In the Voigt notation, the symmetric tensor is defined by its six
independent components as

σ � (σ1, σ2, σ3, σ4, σ5, σ6) (1)
where σ1 � σ11, σ2 � σ22, σ3 � σ33, σ4 � σ23, σ5 � σ13, σ6 � σ12.
The yield function of a material is defined as
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f(σ) � σeq(σ) − σy (2)
and plastic deformation sets in at f � 0, i.e., when the equivalent
stress σeq equals the yield strength σy of the material. The
equivalent stress used here follows the definition of Hill for
anisotropic materials in the form

σeq(σ) � 1�
2

√ [H1(σ1 − σ2)2 +H2(σ2 − σ3)2 +H3(σ3 − σ1)2

+6H4σ
2
4 + 6H5σ

2
5 + 6H6σ

2
6]1/2 (3)

In this yield function, the anisotropy of the material’s flow
behavior is described in a Hill-like approach, where the
parameters H1, ..., H6 control the anisotropic flow behavior of
the material. Note that these parameters correspond to the
parameters used in the conventional Hill yield criterion (Hill,
1948).

E(σ2 − σ3)2 + G(σ3 − σ1)2 +H(σ1 − σ2)2 + 2Lσ24 + 2Mσ25
+ 2Nσ2

6 � 1
(4)

whenH � H1σ2y, E � H2σ2y, G � H3σ2y, L � 3H4σ2y ,M � 3H5σ2y,
N � 3H6σ2y. The special case H1 � H2 � . . . � H6 � 1 describes
isotropic plastic behavior, where the equivalent stress defined here
is identical to the von Mises (J2) equivalent stress.

The gradient of the yield function with respect to the stress
components is needed for calculating the plastic strain
increments in the return mapping algorithm of continuum
plasticity and can be evaluated analytically as

zf

zσ1
� zσeq

zσ1
� (H1 +H3)σ1 −H1σ2 −H3σ3

2σeq
(5)

zf

zσ2
� zσeq

zσ2
� (H2 +H1)σ2 −H1σ1 −H2σ3

2σeq
(6)

zf

zσ3
� zσeq

zσ3
� (H3 +H2)σ3 −H3σ1 −H2σ2

2σeq
(7)

zf

zσ4
� zσeq

zσ4
� 3H4

σ4

σeq
(8)

zf

zσ5
� zσeq

zσ5
� 3H5

σ5

σeq
(9)

zf

zσ6
� zσeq

zσ6
� 3H6

σ6

σeq
(10)

In the case of isotropic plasticity, i.e.,H1 � H2 � . . . � H6 � 1 the
gradient takes the simple form

zf

zσ
� 3
2
σdev

σeq
(11)

Where σdev � (σ1 − p, σ2 − p, σ3 − p, σ4, σ5, σ6 ) is the deviatoric
stress tensor and p � (σ1 + σ2 + σ3)/3 is the hydrostatic stress.

Data-Oriented Yield Function
In the data-oriented approach followed in this work, the yield
function fML(σ) is described in the form of a machine learning
(ML) algorithm, which uses Support Vector Classification (SVC)
for categorizing any given stress tensor σ into the categories

“elastic” (fML(σ) � −1) and “plastic” (fML(σ) � +1)
(Hartmaier, 2020). The purpose is to find the optimal
hypersurface which separates these two regions from each
other. This hypersurface is the yield locus defined by the
zeros of the yield function. Based on the SVM algorithm, the
optimal hypersurface is the one in which the margin between
training data points of the respective classes “elastic” and
“plastic” is maximum. This margin is defined as the distance
between the separator and the closest data points to it from both
classes. These data points in the vicinity of the separator are
called support vectors. Given a training set of N data points
{yi, σ i}Ni�1 where σ i εR

6 is the ith input stress and yi � fML(σ i)
is the ith output term required for the supervised training
algorithm. Note that this data-oriented yield function fML

can be considered as the signum function of the physical
yield function defined in Eq. 2, thus fML(σ) � sgn(f(σ)).
This has the advantage that the input data can be given in
terms of critical stresses marking the onset of plastic yielding.
Each of these stresses can then simply be scaled proportionally
into the elastic or plastic region of the stress space during the
training procedure. Furthermore, once the categorial yield
function fML(σ) is known, the value of the true yield
function can be reconstructed by calculating the distance of
the given stress tensor to the yield locus in stress space.

The support vector method aims to construct a classifier in
form

fML(σ) � ⎡⎣ ∑NSV

k�1
αkykψ(σ, σk) + b⎤⎦ (12)

where NSV is the number of the support vectors σk and αkyk are
the so-called dual coefficients and b is an offset. These parameters
are defined during the training procedure of the SVC. For
nonlinear problems ψ(σ, σk) should be chosen as the radial
basis function (RBF) kernel, which is defined as (Suykens and
Vandewalle, 1999).

ψ(σ, σk) � exp[ − γ‖σ − σk‖2] (13)
Since theML yield function is defined as convolution sum over

support vectors, the gradient to the SVC decision function can be
calculated as

zfML(σ)
zσ

� ⎡⎣ ∑NSV

k�1
−2γαkyk exp( − γ

����σ − σk

����2)(σ − σk)⎤⎦ (14)

When using the RBF kernel for training, γ and C are the two most
important hyperparameters to be defined. γ indicates the width of
the kernel function and, thus, the extent to which a single training
point has an impact. A smaller value of γ leads to a short-ranged
influence. Any misclassified data point is penalized by parameter
C. When C is small, the penalty for misclassified points is also
small such that a wide-margin decision function on the boundary
is chosen at the expense of a larger number of misclassifications. If
C is large, the training algorithm limits the number of
misclassified cases by using a high penalty and a smaller
decision boundary. Thus, a higher value of C produces a
“softer” boundary of the classifier, i.e., a function with more
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undulations and an irregular gradient, whereas a smaller value of
C results in a “stiffer” classifier function, i.e., in a rather straight
boundary, which might, however, be less accurate.

A high training quality relies on providing sufficient training
points on the yield locus, as the SVM algorithm creates support
vectors only in the areas covered by training points. While in
previous work (Hartmaier, 2020) only the three-dimensional
space of principal stresses was considered, where the coverage
of the yield locus with data points is a rather trivial task, it is quite
a challenge to create data points efficiently in the full 6D stress
space. An optimal strategy to create as few as possible data points
representing the yield locus in the best possible way is necessary,
particularly when data points are created with numerically
expensive methods such as CPFEM.

Data-Generation Model
Creating a set of yield stresses in the full stress space that serves as
the ground truth is required to train the ML yield function. In a
first step, unit stresses need to be generated that define the load
cases, i.e., the directions in which the load is applied. Then, each
unit stress is proportionally increased until the value of the yield
function f(σ) defined in Eq. 2 is zero, indicating the start of
plastic yielding for the stress tensor σ.

Finally, the full set of stress tensors at the onset of plastic
yielding represents the ground truth for the training of the ML
yield function (Hartmaier, 2020). The task of finding the zeros of
the yield function, i.e., the critical stress tensor at the onset of plastic
yielding, for each load case needs to be done by a fundamental
method, such as CPFEM or mechanical testing that captures the
yielding behavior of the material under investigation. Hence, the
effort for funding this ground truth is a considerable task that
represents the major effort for training an ML flow rule. Thus,
finding an optimal strategy for creating the unit stresses is the
primary goal of this work. The starting point is creating different
distributions of unit stresses on the surface of a unit sphere in a full
6D stress space. After this, the quality of the ML yield criterion
resulting from the training with these data points is verified to
identify the optimal strategy for data generation.

There are different methods for distributing points on the
surface of a unit sphere, but not all of them can be extended to
dimensions higher than 3. Different algorithms have been
proposed to solve the problem of distributing points uniformly
over the surface of a unit sphere in higher dimensional spaces
because it is a common but highly non-trivial task with many
applications in science and engineering. In many proposed
solutions, the initial idea is to uniformly distribute points over
a rectangular area that is then mapped to a sphere using the
cylindrical projection (Hannay and Nye, 2004). In the next part,
four different methods are introduced and the dimensions where
they can be used are investigated.

One of the most common and simple methods for distributing
points on a 3-dimensional sphere is based on the Fibonacci
lattice. Based on the work of Marques et al. (2013), Fibonacci
lattice points are constructed through a mapping process from
the unit square to the unit sphere. A Fibonacci lattice in the unit
square is a set Qm of Fm points (x, y) defined as

xj � {j Fm−1
Fm

}
yj � j

Fm

0≤ j<Fm

(15)

where Fm and Fm−1 are the two last members of the Fibonacci
sequence for a given m> 1, as defined by the recurrence equation
Fm � Fm−1 + Fm−2, with the starting numbers F0 � 0 and F1 � 1.
In this equation, {x} � x − [x] is the fractional part for non-negative
real numbers x, where [x] is the integer part of x (Marques et al.,
2013). Mapping this lattice to the unit sphere is done based on the
Lambert mapping or equal area north pole projection which is
visualized in Figure 1. In this projection, the points

θj � arcsin(2j/2Fm + 1)
ϕj � 2π{j Fm − 1

Fm
} (16)

given by the polar angle θj and the azimuthal angle ϕj are first
moved to (12 θ, ϕ) on the northern hemisphere and then projected
perpendicularly on to the equatorial plane. It can be shown that
equal areas on the sphere’s surface transform into equal areas on
the projection. The south pole becomes the whole circumference
(Hannay and Nye, 2004). The resulting equatorial plane is shown
in Figure 1with 378 points using the Fibonacci number F15 � 377.

As m increases, the Fibonacci ratio Fm/Fm+1 approaches the
golden ratio φ � (1 + �

5
√ )/2 and, as a result, the asymptotic

azimuthal angle.

lim
m→∞

ϕj � 2jπφ−1 (17)

is obtained due to the periodicity of the spherical coordinates
(Marques et al., 2013). This relation can be exploited to release the
requirement that the number of points has to be a Fibonacci
number by defining the coordinates of a spherical point set with
an arbitrary, but sufficiently large number N of points as:

FIGURE 1 | Equal area north pole projection of points on the surface of a
sphere (Hannay and Nye, 2004).
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θj � arcsin(2j/2N + 1)
ϕj � 2jπφ−1

0≤ j<N
(18)

Based on these angles, the cartesian coordinates of the set of
equally distributed points on the 3D unit sphere can be
calculated as

(xj, yj, zj) � (cos θj sin ϕj, sin θj sin ϕj, cos ϕj) (19)
The even arrangement of points divides the sphere into equal-

area spherical rings due to the area-preserving property of the
Lambert map. In this arrangement, each ring contains a single
lattice node (Swinbank and James Purser, 2006; González, 2010;
Marques et al., 2013). A major disadvantage of this formulation
for finding equally distributed points on a sphere based on
Fibonacci lattice points is that it cannot be extended directly
to dimensions higher than 3.

To overcome this limitation, Marsaglia (1972) has suggested a
method that allows the selection of uniformly distributed points
on the surface of a 4D-sphere. This method is conducted by
picking two points as (x1, x2) and (x3, x4) and rejecting any
points if (x2

1 + x2
2)≥ 1 and (x2

3 + x2
4)≥ 1. In this case the points

x � x1

y � x2

z � x3

����������
1 − x2

1 − x2
2

x2
3 + x2

4

√

w � x4

����������
1 − x2

1 − x2
2

x2
3 + x2

4

√
(20)

have a uniform distribution on the surface of a 4D hypersphere.
However, this method does not generalize to higher dimensions
like the Fibonacci lattice.

Another method that can be used even in higher dimensions is
the spherical code problem. In this method, the main goal is
distributing N points on the unit sphere Sd−1 in a way that the
minimal distance between any two points is maximized. Any set of
points on the unit sphere is called a spherical code (Nurmela, 1995). In
the literature, different solutions for the problem of maximizing the
mutual distance between any two points have been suggested based on
energy minimization techniques. In the work of Buddenhagen and
Kottwitz (2001) up to 90 points were suggested in three dimensions.
Nurmela (1995) suggested proper spherical codes up that distribute
uniformly on unit spheres up to five-dimensional space. Sloane et al.
(2000) collected the most extensive spherical codes in various
dimensions. The major restriction with spherical codes is their
restriction to specific solutions with fixed coordinates and can only
be calculated for a specific number of points in different dimensions.
Although there are spherical codes that give the coordinates of a
uniform distribution of points on the surface of a 6D unit sphere, the
limitation in the available number of points makes them unsuited to
select points for the training process.

The most promising method which can be used for
distributing points on the d-dimensional surface of the sphere
Sd embedded in d + 1 dimensions is an inverse sampling

technique that can generate samples from any distribution
(Kroese and Rubinstein, 2012). This method can be used for
uniform sampling and relies on repeated random sampling and
statistical analysis to compute the result. Based on this theory, a
random variable that is uniformly distributed in the range (0,1)
can be used to generate a value of a desired random variable with
the given distribution. To sample a function uniformly, the first
step is to find the PDF (probability distribution function) of that
function and then to compute its cumulative probability
distribution function (CDF). As the final step, the inverse
function of the CDF must be calculated. This method can
generate random points on the surface of a unit sphere, but it
can also be implemented in combination with the Fibonacci
lattice concept described before to generate uniform points. In
this case when a random ensemble is generated instead of taking a
random independent point from the hypersphere, Fibonacci-like
points can be selected to have uniform even distribution on the
d-dimensional surface of the sphere Sd .

For introducing this method, a polar coordinate system is
defined by (r, θ1, θ2, . . . , θd), which can be converted to cartesian
coordinates (x1, x2, . . . , xd+1) with the relations

xd+1 � r cos θd

xd � r sin θd cos θd−1

.

.
x1 � r sin θd cos θ1

(21)

For calculating the PDF, we assume that the data drawn from a
particular distribution are independent and identically distributed.
If we consider a vector θ, containing all angles, as the parameter
vector for ρ which is the probability density function, the PDF is
denoted as ρθ (Raychaudhuri, 2008). Since the points are on S

d and
r = 1, the distribution over θ coordinates must introduce a uniform
surface measure which can be written as

ρθ(θ) � ρθd(θd)ρθd−1|θd(θd−1)... ρθ1|θ2 ...θd(θ1) (22)

Considering Eqs 21, 22 and based on the assumption that the
angles are independently distributed, the d-dimensional PDF can
be written as (Raychaudhuri, 2008).

ρθ(θ) � ∏d
α�1

ρα(θα) (23)

Based on the work of Cai et al. (2013), when the variable α is
fixed, the density function or ρα is given by

ρα(θα) �
1��
π

√
Γ(α + 1

2
)

Γ(α
2
) sinα−1(θα)

θα ∈ [0, π]

(24)

Once the distribution is known for each θα the next step is to
calculate their respective CDFs and finally find their inverse functions.

If we consider X as the continuous random variate that we
want to generate, it will follow ρ(θ) as PDF. The CDF for the
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variant F is continuous and increasing in (0,1), which can be seen
from its definition

Yα(θα) � ∫θα

0
ρα(u)du (25)

which satisfies Yα(0) � 0 and Yα(π) � 1.
If Yα is a random number generated from a continuous

uniform distribution between 0 and 1, then X is a random
number from a distribution with a CDF F, and can be defined as

X � F−1(Yα) (26)
where F−1 is the inverse of the CDF (Raychaudhuri, 2008). As the
final step, mapping from Y hypercube to hypersphere should be
done based on the Lambert mapping as discussed before. Now a
random point ensemble on the sphere has been established. To
make it uniform, instead of taking random independent points
from the hypercube of Y’s, we generate points Y(n) as

Yd
n �

n

N + 1

Yα−1
n � {na1}

Yα−2
n � {na2}

.

.

Y1
n � {nad−1}

(27)

where ai can be irrational numbers like the Fibonacci sequence
that satisfies ai

aj
∉ Q ∀i ≠ j. Using the inverse transformmethod in

combination with the Fibonacci lattice concept, in the case of 4-
dimensional space (d � 4) the points are generated as

w � cos θ1

z � sin θ1cosθ2

y � sin θ1 sin θ2 cos θ3

x � sin θ1 sin θ2 sin θ3

(28)

And the angles are given by

F(x) ≡ x − 1
2
sin 2x, θ1n � F−1( nπ

N + 1
)

θ2n � arccos(1 − 2{n �
2

√ })
θ3n � 2π{n �

3
√ }

(29)

This method can be used for recursively creating uniformly
distributed points in 6- or even higher-dimensional spaces. The
points are distributed such that the distance to the nearest
neighbors for each point is maximum. Since the points are
constructed to lie on the surface of a unit sphere, the distance
of each point to the center of the sphere is unity.

Validation of Uniform Distribution of Data
Points
The inverse transform method mentioned in the previous
section has been implemented in a python code that is freely
available within the Python package “pyLabFEA” (Hartmaier
et al., 2022) from a public repository. Using this algorithm,

any desired number of points can be distributed uniformly on
the surface of a d-dimensional sphere. In Figure 2, 400 points
were distributed uniformly on the surface of a unit sphere in
3D space.

To test the uniformity of this data generation method, 400 points
were distributed on the surface of a hypersphere in 6D space. The
average distance from each point to its five nearest neighbors was
calculated. The distribution of these distances can be seen in Figure 3A.
For comparison, 400 points were generated randomly, and the same
average neighboring distancewas calculated and is shown inFigure 3B.
The random points were generated using the random function
available in the NumPy (Harris et al., 2020) package in python.

It is seen that the method laid out here can create any number of
data points that are uniformly distributed on a surface of a
d-dimensional unit sphere in the sense that the mutual distance of
any two points is maximized and the average distances for K nearest
neighbors are at the same range. This method will be used in the
following to create the data points for training an ML yield criterion.

OPTIMAL STRATEGY FOR DATA
GENERATION

In order to find an optimal strategy for selecting a set of training
data points, in the following, various data sets will be created with
uniform and random distributions and for different sub-spaces of
the full stress space. The training results for the different sets are
evaluated concerning different error measures, and thus, a
strategy to find the smallest possible training data set that
provides the desired accuracy of the result is developed.

Since the training data points need to be generated as stress
tensors lying on the yield locus of material, we define a reference

FIGURE 2 | 400 points generated uniformly on the surface of a sphere in
3-dimensional space using the combination of Monte Carlo theory and
Fibonacci spiral principle.
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material with Hill-type anisotropy with the parameters given in
Table 1. Using such a relatively simple material model with a
simple yield criterion defined in Eq. 2, allows us to generate the
training data sets with a minimum effort. This is beneficial for
developing an optimal strategy for generating data sets for
materials with significant plastic anisotropy. Afterward, it is
verified that the training strategy also produces good results
for more severe cases of anisotropy as they can be seen in
CPFEM results or described by Barlat-type yield criteria to
demonstrate the general applicability of the developed method.

The described reference material is used for creating training
data for machine learning algorithms. This is accomplished by
first creating unit stresses according to various schemes. Then
each unit stress is increased proportionally until the yield
function of this stress tensor is zero, i.e., when plastic yielding
starts for this specific load case. The full set of stress tensors at the
onset of plastic yielding represents the yield function in a data-
oriented way and, thus, forms the ground truth for the training of
theML yield function. After this, the ML yield function in form of
a Support Vector Classifier (SVC) is trained based on this data set.

As will be seen later, it is necessary to create unit stresses that
combine load cases in the full 6D stress space and load cases
with purely normal stresses, representing a 3D subspace of the
full stress space. For training sets with only 6D load cases, the
normal stress space is grossly under-represented with yields a
very poor training result. This reflects the fact that the Voigt
representation of the symmetric (3 × 3) stress tensor as vector of
its six independent components does not fully represent the
tensorial properties of the stress as, for example, the existence of
a transformation into a diagonal tensor by a rotation of the
coordinate system. Hence, the combination of 3D and 6D
stresses reflects the tensorial properties of the stress tensor
better. The optimal combination of these load cases will be
investigated in the second step together with the optimization of
the size of the training set.

Uniform Versus Random Training Data Sets
In the first step to develop an optimal training strategy, we
compare the results from training with uniformly and

randomly distributed training points. For training, 400 load
cases have been genertaed, including 350 load cases in full
stress space and 50 load cases in principal space. Since the
success of the training procedure depends critically on the
hyperparameters, the optimal hyperparameters for the SVC
were selected using a grid search algorithm for each data set.

For uniformly distributed load cases, the result of SVC training
with the hyperparameters C � 5 and γ � 2.5 is shown in Figure 4,
where the J2 equivalent stress of the stress tensors at the onset of
plastic yielding is plotted over the polar angle of the stress tensor in
the π-plane, i.e., the space of principal deviatoric stresses, Appendix
A for the definition of these quantities. A good agreement between
trained ML function (black line) and the Hill yield locus (blue line)
can be observed. In this figure, the support vectors identified during
the training procedure are also represented with a color indicating
their location in the elastic or plastic domain of the stress space. It is
seen that all support vectors lie in the vicinity of the yield locus. At
first sight, it appears that many support vectors are misclassified,
i.e., are lying in the wrong domain. However, this is a mere artifact
fromprojecting the 6D stresses onto the π-plane for amaterial with a
significant plastic anisotropy.

For comparison, the training was done with the same number
of load cases, i.e., a total of 400 with 350 in 6D stress space and 50
in normal stress space, that were generated from a random
distribution. The optimal hyperparameters for this case were
identified as C � 12 and γ � 2.5 by a grid search algorithm. The
result of the training is shown in Figure 5, where it can be seen
that the ML yield locus resulting from training data points

FIGURE 3 | Distribution of average distances for five nearest neighboring points of (A) uniform and (B) randomly distributed points on the surface of the unit sphere
in 6D space. The total number of points is 400.

TABLE 1 | Elastic and plastic material parameters define the reference material
with Hill-like anisotropy in plastic flow behavior. For simplicity, ideal plasticity
with no work hardening is considered in this work.

Quantity Symbol Value

Yield strength σy 50 MPa
Young’s modulus E 200 GPa
Poisson’s ratio ] 0.3
Hill parameters H1 , H2 , H3 , H4 , H5 ,H6 1.4, 1, 0.7, 1.3, 0.8, 1
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representing randomly selected load cases does not have a good
agreement with that of the reference material.

To further quantify the results of the training procedure, both
ML yield functions are verified by comparison with the analytical
yield function for random stress tensors in the vicinity of the yield
locus. The confusion matrices in Figures 6, 7 summarize the
classification performance of both yield functions concerning the

same test data in the form of a two-dimensional matrix, indexed
in one dimension by the object’s true class and in the other
dimension by the class assigned by the classifier. In this context,
the four cells of the matrix are designated as true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN)
(Shultz et al., 2011).

The classification performance can further be quantified in
terms of four classification results, as

Recall � TP/(TP + FN)
Precision � TP/(TP + FP)
Accuracy � (TP + TN)/(TP + FP + FN + TN)
F1 Score � 2 p Precision p Recall/(Precision + Recall)

(30)

The summary of metrics for uniform and randomly distributed
load cases are given in Table 2. It is concluded that uniformly
distributed training data results in a significantly higher quality of
the training of the ML yield function. Hence, in the remainder of
this work, only this method will be further investigated.

FIGURE 4 | The plot of trained SVM classification with uniformly
distributed training data in cylindrical coordinates on the π-plane (space of
principal deviatoric stresses). Orange colors represent positive yield function
values, i.e., they indicate plastic yielding. Purple colors represent negative
values of the yield function, where the stress lies in the elastic regime. No color
scheme is given because the absolute value of the ML yield function has no
physical meaning. The blue line indicates the stresses where the yield function is
zero for the reference material with an analytically formulated Hill-like yield
criterion and a black line for the ML yield criterion. The support vectors identified
during the training procedure are represented as open symbols.

FIGURE 5 | The plot of trained SVM classification with randomly selected
training data in cylindrical coordinates on the π-plane (space of principal
deviatoric stresses). The figure annotations are identical to Figure 4.

FIGURE 6 | Confusion matrix for uniformly distributed load cases.

FIGURE 7 | Confusion matrix for randomly distributed load cases.
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Optimal Number and Structure of Load
Cases
After finding the proper strategy for creating unit stresses
uniformly distributed in the stress space, the next step is to
find the optimal size for it. Besides the quality, the quantity of
training data plays a vital role in the performance of any
machine learning model. Small training data sets result in low
training accuracy and lack of precision, and a very big training
size may lead to overfitting and the problem that the model
cannot generalize well to new data. In this context, it is also
important to find the optimal ratio of unit stresses in the full
6D stress space and purely normal stresses in the 3D sub-
space.

In the first step for finding the proper ratio between 6D and
3D load cases, training was done for a fixed number of 300 load
cases and different ratios of 1:2, 1:1, 1.5:1, 2:1, 2.5:1, and 3:2. and
the confusion matrix and the training metrics were compared in
each case. The corresponding plots can be seen in Figure 8.
After training, the precision and mean absolute error were
calculated and compared in different ratios of unit load cases
in full stress space and the extra cases at principal stress space,
the ratio of 2:1 for 6D:3D load cases have highest precision and
the lowest mean absolute error (MAE). Mean Absolute error
measures the average magnitude of error which quantifies the
difference between prediction and the actual observation which
can be defined as:

MAE � 1
n
∑n
i�1

∣∣∣∣yi − xi

∣∣∣∣ (31)

At the next step for finding the optimal training size, the
training was done for different total numbers of uniformly
distributed load cases with a fixed ratio of 2:1 for 6D to 3D
load cases. The comparison is again made based on the precision
calculated from the confusion matrix and the MAE, Figure 9. It is
seen that a number of 300 is the optimal size for the set of training
data with the lowest mean absolute error and a high precision
after training. It can be seen that an increasing number of data
points leads to an increasing MAE, possibly due to overfitting.
Furthermore, the precision does not have a uniform trend with an
increasing number of data points such that we conclude that 300
data points is the optimal value, which still allows an efficient data
generation process.

The resulting ML yield function, trained with the optimized
training set of 300 uniformly distributed load cases, is visualized
in Figure 10. The optimal hyperparameters for the SVC
algorithm have been determined as C � 15 and γ � 3 using
grid search. A comparison to Figure 4, where a total of 400 data
points have been used in the training set, clearly reveals the
importance of the optimization of the ratio between 6D and 3D
stresses in the training data, as the optimized result is more
accurate with 25% less training data.

The quality of theML flow rule training with the optimized data
set is further verified by comparing the results of the ML yield
function to the known reference values for random stresses in the
vicinity of the yield locus. The confusion matrix and the
performance metrics were calculated and shown in Figure 11,
and Table 3. Comparing to Figures 6, 7 and Table 2 again
indicates a better performance after optimization.

APPLICATION OF TRAINED MACHINE
LEARNING YIELD FUNCTIONS IN FINITE
ELEMENT ANALYSIS
Hill-Type Anisotropy
To demonstrate the capabilities and the accuracy of the
trained ML yield function, in the first step a finite element

TABLE 2 |Summary of the metrics for uniform and random load cases indicate the
quality of training.

Metrics Uniform Random

Precision 0.9885 0.9578
Accuracy 0.985 0.95
Recall 0.9942 0.9815
F1 Score 0.9913 0.9695

FIGURE 8 | (A) Precision and (B)Mean Absolute error after training with total number of 300 load cases in different ratios of load cases in full stress space and extra
cases in principal space.
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analysis (FEA) of a simple 4-element 2D plane-stress model
under four load cases has been performed: 1) uniaxial stress in
the vertical direction, 2) uniaxial stress in the horizontal
direction, 3) equibiaxial strain, and 3) pure shear strain.
The numerical simulations shown in this work have been
completed with the open-source package pyLabFEA
(Hartmaier et al., 2022). All examples of this work are also
provided as python code and a Juypter notebook in this public
repository. The return mapping algorithm used to calculate
the plastic strain increments based on the ML yield function
and its gradient, defined in Eqs 12, 14, respectively, has been
described in detail in (Suykens and Vandewalle, 1999). In that
work, also the full details of the finite element model to
evaluate the given load cases are provided. To estimate the
accuracy of the ML yield function, its results are compared to

FIGURE 9 | (A) Precision and (B)Mean Absolute error after training with different number of load cases and a fixed ratio of 2:1 for 6D to 3D load cases in full stress
space and extra cases in principal space.

FIGURE 10 | Plot of trained SVM classification with optimized training
size and ratio in cylindrical coordinates on the π-plane (space of principal
deviatoric stresses). The figure annotations are identical to Figure 5.

FIGURE 11 | Confusion matrix for 300 load cases and the ratio of 2:1
between 6D and 3D load cases.

TABLE 3 | Summary of the metrics for 300 with the ratio of 2 between 3D and 6D
load cases.

Metrics Uniform

Precision 0.994
Accuracy 0.995
Recall 1
F1 Score 0.997

TABLE 4 | Yield stress obtained for a Hill-type reference material with analytical
yield function and a material with an ML yield function trained to data from the
reference material under four specified load cases.

Load case Hill
yield

stress (MPa)

ML yield
stress (MPa)

Rel.
difference (%)

Uniaxial stress,
horizontal

48.744 48.795 0.10

Uniaxial stress,
vertical

45.596 45.644 0.11

Equibiaxial strain 54.171 54.233 0.11
Pure shear strain 45.283 45.33 0.10
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the ones obtained from the same model with a Hill-type
reference material with elastic-ideal plastic behavior and an
analytically defined yield function, Eq. 2. The material
parameters for this reference material are given in Table 1.
As described above, the ML yield function has been trained to
a data set of 300 stress tensors lying on the yield locus of this
reference material. The equivalent yield stresses resulting
from the FEA under the four given load cases are
summarized in Table 4, where it is seen that the error of
the ML yield function is only on the order of 0.1%. The
resulting curves for equivalent stress versus equivalent
strain for each material under the different load cases are
plotted in Figure 12, where the elastic-ideal plastic material
behavior of both materials is verified for total equivalent

strains of up to 1%. Note that the equivalent J2 stress is
plotted for both materials because the Hill-type equivalent
stress defined in Eq. 3 depends on material parameters that
are typically unknown when working with data-based yield
functions.

During the plastic deformation of materials with ideal
plasticity, it is expected that the flow stresses remain on the
yield locus, as the material does not support higher equivalent
stresses. In Figure 13, the flow stresses for Hill and ML cases are
plotted in the space of the non-zero principal stresses of the plane
stress model, together with the yield locus in this slice of the stress
space. It is seen that all flow stresses, in fact, remain on the yield
locus. Furthermore, it is seen that under stress-controlled
boundary conditions, i.e., uniaxial stress in the horizontal or
vertical direction, the flow stresses remain constant, whereas,
under strain-controlled boundary conditions, the response stress
of the anisotropic material is subject to changes. A comparison of

FIGURE 12 | Stress-strain curves obtained for elastic-ideal plastic material behavior under the loading conditions specified in the legend. (A) Equivalent J2 stress
vs. equivalent total strain for Hill-type yield function, (B) Equivalent J2 stress vs. equivalent total strain for ML yield function.

FIGURE 13 | The two non-zero principal values of the flow stresses
(colored circles) and yield loci of the trained ML flow rule (red line) and the Hill-
type reference material (black line) are plotted for four different load cases of
the 2D plane stress model. The large colored circles represent the flow
stresses resulting from theML yield function, and the small yellow circles show
flow stresses from the analytical Hill-type yield function.

FIGURE 14 | A plane strain model with three sections: (i) linear elastic
(yellow), (ii) elastic, ideal-plastic reference material with analytic Hill-type yield
function (purple), and (iii) elastic, ideal-plastic material with ML yield function
(green). The elements forming a regular mesh are indicated as well as the
imposed displacements at the boundary.
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this evolution of the flow stress tensor under strain-controlled
deformation for the analytical Hill-type yield function and the
ML yield function exhibits that both solutions are in very good
agreement, demonstrating the accuracy and numerical stability of
the ML flow rule even under finite plastic strains.

In a second step, the ML yield function is tested under a more
complex state of deformation. This is accomplished by
performing the FEA of a plane-strain model under uniaxial
strain with laterally free boundaries. The three sections of the
model are given by a square-shaped elastic inclusion in the
middle of a matrix that is vertically split up into the reference
material and the ML material, Figure 14. As the ML material is
trained to have identical material properties as the reference
material, the matrix is expected to show a mirror-symmetric state
of deformation. The linear-elastic inclusion is rather compliant,
with Young’s modulus of Einc � 1 GPa and a Poisson ratio of
υinc � 0.27. The boundary conditions at the top surface are such
that a total strain of 0.2% in the vertical direction is applied at the
end of the load step.

Figure 14A shows the resulting equivalent stress for each finite
element. It is apparent that qualitatively a symmetrical stress state
in the different materials is reached. However, quantitatively, the
equivalent stresses differ because in the region with the Hill-type
material (left-hand-side), the equivalent stress as defined in Eq. 3 is
plotted, whereas in the region with the ML material (right-hand-
side) the J2 equivalent stress is plotted, which can also be calculated
from Eq. 3 when the Hill parameters are set
H1 � H2 � . . . � H6 � 1. Note that for a data-based
constitutive model, properties like the Hill parameters are
typically not known and also not necessary for the training

process. Hence, it is best to use a material independent
definition for the equivalent stress, as the J2 equivalent stress. In
Figure 15B, the equivalent plastic strains are plotted,
demonstrating a completely symmetric deformation between
both regions, as expected for materials with identical plastic
properties. Thus, this example verifies that the ML yield
function can, in fact, be trained to possess the same plastic
properties as the Hill-type reference material and produce the
same plastic strain increments even in complex loading situations.

Barlat-Type Anisotropy
After verifying the accuracy and robustness of the ML yield
function for cases of Hill-type plastic anisotropy, it is tested
here under a more demanding kind of anisotropic behavior, given
by a material with a Barlat-type yield function (Yld 2004-18p)
(Barlat et al., 2005). The material parameters given in Table 5
have been chosen to mimic a polycrystal with a strong Goss
texture, which represents a rather severe case of anisotropic
yielding behavior.

Following the workflow developed above, in the first step, a set
of 300 stress tensors on the yield locus of the Barlat-type reference
model is generated. These training stresses are again produced by
generating 200 unit stresses as load cases that are uniformly
distributed in the 6D stress space and 100 load cases uniformly
distributed in the 3D sub-space of normal stresses. Then, these
unit stresses are increased proportionally until the zero of the
Barlat yield function Yld 2004-18p (Barlat et al., 2005) is reached.
The python code for this example is also provided in the
pyLabFEA package (Hartmaier et al., 2022). With this training
data set, representing the yield locus of the Barlat-type reference

FIGURE 15 | Resulting equivalent stress (A) and equivalent plastic strain (B) within the three sections of the model given in Figure 14.

TABLE 5 | Material parameters for the Barlat-type reference material, mimicking the plastic anisotropy of a Goss-textured polycrystal.

Quantity Symbol Value

Yield strength σy 46.76 MPa
Young’s modulus E 151.22 GPa
Poisson’s ratio ] 0.3
Barlat parameters B1 , B2 , . . . ,B6 0.818, −0.364, 0.312, 0.843, −0.018, 0.832

B7 , B8 , . . . ,B12 0.360, 0.081, 1.293, 1.096, 0.909, 0.277
B13 , B14 , . . . ,B18 1.090, 1.183, −0.019, 0.905, 1.883, 0.013
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material, the ML yield function is trained with the same
hyperparameters as given above, i.e., C � 15 and γ � 2.5. The
training result is shown in Figure 16 by projecting yield stresses
and support vectors to the π-plane, i.e., the plane of principal
deviatoric stresses, Appendix A for a definition of the plotted
quantities. It is seen that even though the Barlat-type yield
function is much more irregular than the Hill-type yield
function, the trained ML yield function provides a very
accurate representation of its yield locus.

The quality of the ML yield function training is further
quantified by comparing the signs of the values of the
analytical yield function and the ML yield function for 200
random stress tensors in the vicinity of the yield locus. The
corresponding confusion matrix is plotted in Figure 17, and the
summary of the metrics indicating the high quality of the training
result is summarized in Table 6. This analysis confirms that the
ML yield function describes the Baralat-type reference material
with very high accuracy.

With this trained ML yield function, the same FEA cases as
above have been performed to demonstrate the stability of theML
yield function even for a more severe plastic anisotropy. After
training, the stress-strain curves are plotted as J2 equivalent stress
vs. equivalent total strain in four load Figure 18A cases as shown
in Figure 18A. Also, the flow stresses resulting from FEA are
plotted in Figure 18B, and they all lie on the ML yield locus as
expected for ideal plasticity. Furthermore, it is seen again that for
the strain-controlled boundary conditions, the stress tensors
change during the plastic deformation. This behavior has
already been observed for the Hill-type plastic anisotropy, but
it is even more pronounced in this case. Note that for the case of
equibiaxial strain, the stresses evolve into a “corner” of the yield
locus, which causes a significant increase in the equivalent stress
that is also seen in the corresponding stress strain curve for this
load case.

Furthermore, in Figure 18, the equivalent stress Figure 18C
and the equivalent plastic strain Figure 18D for a model with a
square-shaped elastic inclusion and an elastic-ideal plastic matrix
represented by the ML yield function are illustrated to
demonstrate the numerical stability of the ML flow rule even
in cases of heterogeneous deformation patterns.

CONCLUSION

In this work, an optimized procedure to generate a data-based
description of the yield function of an arbitrary material has been
developed. Conventionally, the yield function is based on the
concept of the equivalent stress and indicates whether the
material response to an applied stress tensor results in linear
elastic material response, indicated by a negative value of the yield
function, or rather in plastic yielding of the material when the
yield function is zero or positive. Mathematically, the zeros of the
yield function constitute a hypersurface in stress space, the so-
called yield locus, that separates elastic and plastic domains. Since
the stress space is 6-dimensional and spanned by the six
independent normal and shear components of the stress
tensor, it is essential to find an optimal way for sampling this
hypersurface with as few as possible data points. Each data point
represents a stress tensor at which the material starts to yield
plastically, and generating such data requires either numerically

TABLE 6 | Summary of the metrics for 300 with a ratio of 2 between 3D and 6D
load cases for Trained ML yield function.

Metrics Uniform

Precision 0.9939
Accuracy 0.995
Recall 1
F1 Score 0.9969

FIGURE 16 | Plot of trained ML yield function (black line), the analytic
Barlat yield function (blue line) and the support vectors (circles) in cylindrical
coordinates on the π-plane. The same color scheme as in Figure 5 has been
applied.

FIGURE 17 | Confusion matrix comparing the trained ML yield function
and the reference Barlat-type yield function for 200 random stress tensors in
the vicinity of the yield locus.
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expensive approaches such as crystal plasticity finite element
methods or laborious mechanical testing under multi-axial
loading conditions or a combination of both.

In a first step, a numerical method has been introduced that
allows a uniform sampling of the yield locus in a six-dimensional
stress space. Themain idea behind thismethod is to proportionally
increase uniformly distributed unit stresses until the criterion for
plastic yielding is reached for each loading direction. Finding a
uniform distribution of arbitrarily many points on the surface of a
unit sphere in more than three dimensions is, however, a highly
non-trivial task. The solution suggested in this work combines
ideas of Monte Carlo sampling and choosing regularly distributed
sampling points in higher-dimensional spaces based on the
Fibonacci sequence. To sample a higher dimensional unit
sphere uniformly, the probability distribution function of its
surface needs to be defined in Cartesian coordinates, and then
the cumulative distribution function and its inverse need to be
computed. Based on this inverse function, a mapping algorithm is
defined by which random numbers from the unit interval can be
distributed uniformly on the hypersphere. If Fibonacci-like points
are mapped accordingly, instead of random numbers, it can be

shown that the mutual distance between any two sampling points
on the surface of the hypersphere is rather constant and
maximized compared to randomly distributed points. It is
demonstrated in this work that such a uniform distribution of
stress tensors in the 6-dimensional stress space is superior to
purely random sampling.

In the next step, this data-oriented description of the yield
locus is used as the basis for training of a support vector classifier
(SVC) that takes an arbitrary stress tensor as input and predicts
whether the material response to this stress is elastic or plastic. In
earlier work (Hartmaier, 2020), it has been shown for purely
normal stresses how plasticity in the framework of finite element
analysis (FEA) can be described based on such trained SVC. Here,
this formulation is generalized to the full 6-dimensional stress
space, and it is demonstrated that SVC can be trained to predict
the behavior of classical yield functions, like Hill or Barlat-type
yield functions, with very high accuracy, even for a very
significant plastic anisotropy.

As for any machine learning (ML) algorithm, providing
high-quality training data is of great importance, as training
with smaller sets of proper data will result in a better training

FIGURE 18 | (A) Equivalent J2 stress vs. equivalent total strain curves obtained for elastic-ideal plastic material behavior under the loading conditions specified in
the legend for the rained ML yield function; (B) yield loci of ML and Barlat-type materials and the flow stresses obtained from the load cases in (A) plotted as principal
stresses; (C) equivalent J2 stress; and (D) equivalent plastic strain resulting from the 2D plane strain model with a square-shaped elastic inclusion in the center.
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success than larger sets of poor data. After finding a suitable way
to distribute training data uniformly in stress space, it was found
that an appropriate ratio of normal stresses and stresses in the
full 6-dimensional stress space is necessary because otherwise,
the normal stresses are under-represented. It is demonstrated
that a ratio of 1:2 for normal stresses and full stresses represents
the tensorial properties of the yield stress in the best way. It is
also concluded that 300 data points in the form of stress tensors
on the yield locus are sufficient to train the ML yield function
with high accuracy, even in cases of severe plastic anisotropy.
The thus-trained ML yield functions have been shown to
produce accurate and stable numerical solutions in FEA.

To further expand the applicability of ML yield functions in
FEA, microstructural parameters like crystallographic texture or
grain size and morphology can be included in the input data for
the training of the ML yield function, besides the purely
mechanical data used in this work. Furthermore, it is crucial
to develop a proper data-oriented formulation of work hardening
and history-dependent material behavior in the next step.
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APPENDIX A

Since in most metals hydrostatic stress components do not play a
significant role in plastic deformation, it is useful to analyze their
flow stresses in the deviatoric stress space. To accomplish this,
oftentimes a transform to principal stresses is applied. All
deviatoric principal stresses lie on a plane in the stress space,
the so-called π-plane. In this work, we use a cylindrical coordinate
system to plot stresses in this plane, where the equivalent stress
σeq is plotted along the y-axis and the polar angle θ is plotted
along the x-axis. This projection is best introduced via defining a
complex-valued stress deviator based on the vector of deviatoric
principal stresses σ′ � (σ1 − p, σ2 − p, σ3 − p), where σ1, σ2, σ3
are the principal stresses and p is the hydrostatic stress.
Furthermore, it is necessary to specify two arbitrary

orthogonal directions in the π-plane, for which in this work a �
(2,−1,−1)/ �

6
√

and b � (0, 1, −1)/ �
2

√
are chosen. Note that these

unit vectors span the plane normal to the hydrostatic axis
c � (1, 1, 1)/ �

3
√

. Following the method developed in previous
work (Hartmaier, 2020), the complex-valued deviatoric stress is
defined as

σ ′c � σ · a + iσ · b � ���
2/3

√ · σeq · eiθ (32)
In this definition, i is the imaginary unit and the polar angle θ can
be evaluated by

θ � −i ln σ · a + iσ · b���
2/3

√
σeq

(33)

This mapping of the stress is used in Figures 4, 5, 10, 16.
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Establishing a fundamental understanding of the nature of materials via computational
simulation approaches requires knowledge from different areas, including physics,
materials science, chemistry, mechanical engineering, mathematics, and computer
science. Accurate modeling of the characteristics of a particular system usually involves
multiple scales and therefore requires the combination of methods from various fields
into custom-tailored simulation workflows. The typical approach to developing patch-
work solutions on a case-to-case basis requires extensive expertise in scripting,
command-line execution, and knowledge of all methods and tools involved for data
preparation, data transfer between modules, module execution, and analysis. Therefore
multiscale simulations involving state-of-the-art methods suffer from limited scalability,
reproducibility, and flexibility. In this work, we present the workflow framework SimStack
that enables rapid prototyping of simulation workflows involving modules from various
sources. In this platform, multiscale- and multimodule workflows for execution on remote
computational resources are crafted via drag and drop, minimizing the required expertise
and effort for workflow setup. By hiding the complexity of high-performance computations
on remote resources and maximizing reproducibility, SimStack enables users from
academia and industry to combine cutting-edge models into custom-tailored, scalable
simulation solutions.

Keywords: SimStack, workflows, Materials Design, Multiscale modelling, WaNos

1 INTRODUCTION

In the Industry 4.0 context (Lasi et al., 2014), digital twins are an essential tool for companies
based who’s R&D is based on scientific innovation (Posada et al., 2018). The digitalization
of a system or a process provides vital information about the real-world scenario in real-
time. This enables the efficient identification of bottlenecks, thereby speeding up the product
development cycle (Zhu and Geng, 2013; Müller and Däschle, 2018) and, in consequence, saving
R&D costs and shortening time-to-market (Mathew et al., 2017). In terms of the physical-
chemical processes, the development of digital twins is gaining mainstream attention in the
scientific community, especially in materials design (Wu et al., 2020; Ngandjong et al., 2021). In
this field considerable efforts are made to build digital twins in order to screen and discover
new functional materials e.g., for solar cells (Kim et al., 2021; Octavio de Araujo et al., 2021),
batteries (Ponce et al., 2017; Bölle et al., 2019), thermoelectricity (Madsen, 2006; Yao et al., 2021),
and catalysis (Mamun et al., 2019; Mamun et al., 2020). A prerequisite for building a useful digital
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twin is the availability of predictive simulation protocols.
During the designing process of digital twins, a high level
of complexity induces a significant interdisciplinary challenge,
especially when the material characteristics need to be described
by different scales of materials behavior, demanding, in many
cases, multiscale methods. Schaarschmidt et al. (2021) show
that workflow frameworks can address those challenges in
computational materials design.

In addition to technical challenges, computational modeling
of a complex physico-chemical process requires knowledge
of different methods. These include, amongst others, density
functional theory (DFT), molecular dynamics (MD), kinetic
Monte-Carlo (KMC), and or finite element methods (FEM).
Different techniques are employed depending on the studied
phenomena and the scale at which the system is represented.
However, in each method, models typically have many
parameters and often require a meticulous manual setup
to generate meaningful results. Many applications requiring
multiscale or high-throughput calculations for a given system
also include executing a large number of simulations. Handling
these complex computational protocols with script-based
approaches is challenging, especially in simulations where
the numerical errors embedded in the codes need to be
carefully controlled. Usually, multiple steps are required to
handle errors, yet, these are often poorly documented and not
standardized, making it challenging to keep track of, even for
experienced computational experts, thereby limiting the reuse
of these computational protocols even within the same group.
Therefore, scientific workflows have been proposed to address
these shortcomings and inefficiencies by providing automation,
complexity reduction, high-performance computing (HPC)
readiness, data reusability, data provenance, and reliability and
resilience of formalized workflows. Workflows can describe a
complex simulation protocol while only exposing a predefined
set of relevant computational parameters to the end-user.
Therefore, the general aim of workflow frameworks is to allow
the end-users to focus on the science instead of spending
time setting up and monitoring individual calculations. Several
such frameworks have been proposed to leverage the scientific
workflow benefits in the last decade. These include free and
commercial solutions such as Fireworks (Jain et al., 2015),
AiiDA (Pizzi et al., 2016; Huber et al., 2020; Uhrin et al., 2021),
KNIME (Berthold et al., 2008), Pipeline Pilot (Warr, 2012),
MyQueue (Hjorth Larsen et al., 2017; Mortensen et al., 2020),
Pyiron (Janssen et al., 2019), or AFLOW (Curtarolo et al., 2012),
and to name a few.

Next to reducing complexity, another major benefit of
workflow frameworks is the improved reproducibility of
formalized workflows. Reproducibility is a huge challenge for
the scientific community: In 2016, researchers from fields such as
biology, medicine, physics, chemistry, and engineering largely
failed to reproduce their previously published experiments
(Baker, 2016). The transition from theory + experiment to
the theory + experiment + computer simulation paradigm
(Rodrigues et al., 2021) imposes increasing challenges on the
experimental and computational research. The advent of
computer simulation in the theoretical sciences introduced

further challenges regarding the reproducibility of scientific
studies that are not present in purely analytical methods
(Rodrigues et al., 2021). In a computational simulation study,
five groups were asked to perform the same simulation tasks
using eight codes with the same force fields. The initial results
were highly inconsistent between the groups and simulation
codes. Only after some iterations the outcomes started to become
consistent (Schappals et al., 2017). This simple experiment
shows that incorrect usage is, in most cases, the source of
errors in simulations (Wong-ekkabut and Karttunen, 2016;
DeFever et al., 2021). Thus, describing the full simulation in
a formalized workflow ensures correct usage and consistency
among identical and similar simulations.

As one approach to overcome the issue of reproducibility
and leverage the advantages of reusability, transferability, and
flexibility concepts, we discuss the SimStackworkflow framework
here. SimStack enables the rapid prototyping of complex
simulation workflows with computational modules from various
sources. The transfer of re-usable workflows between groups
and researchers allow scientists to perform particular predefined
simulations with the same quality as the computational expert
who conceived and implemented it.

In this work, we present four workflow applications where
SimStack has been employed. These workflows combine typical
state-of-the-art methods of materials design to solve and deal
with real problems and issues representative of those commonly
encountered by researchers in the simulation field using a
comprehensive range of methods. The SimStack concepts and
their usage, features, and applicability to various fields are
illustrated by the selected examples covering Umbrella Sampling,
Exciton Dynamics, Dihedral Scan, and Emission spectra of
organic molecules. The documentation of those workflows
shows additional details on applying the SimStack framework
features.

2 THE WORKFLOW FRAMEWORK
SIMSTACK

The main goal of all major workflow frameworks is to capture
the elements of a complex protocol and automate its execution.
Depending on the implementation and target user group, expert
knowledge is often required for using the framework, setting it
up on local or remote compute resources, or incorporating new
simulation methods. In many cases, easy-to-use frameworks
are often limited in their flexibility and, therefore, hard to
extend to the needs of a specific problem, while flexible
frameworks are hard-to-use for inexperienced users. Here we
introduce the SimStack framework https://simstack.de/, which
addresses the issue by providing an easy-to-use flexible drag
and drop graphical user interface (GUI), which is automatically
generated for a given set of exposed parameters from a
simple file in Extensible Markup Language (XML) format.
The usage of the XML description of the user input coupled
with a simple templating language enables computational
experts and non-experts to provide a GUI for a particular
application in a matter of minutes. SimStack connects to remote
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FIGURE 1 | The SimStack workflow framework is based on a client-server
concept connected via the secure shell (SSH) protocol. The end-user designs
and sets up the workflow within the SimStack client on a local machine. The
workflow and all required input are transferred to the HPC resource via SSH
upon submission. The SimStack server process on the HPC resource
subsequently generates a single job for each step of the workflow and
manages the execution of these jobs through the local scheduling software.

high-performance computing (HPC) resources and automates
data transfer and execution of the entire workflow within
the HPC environment. Thus, it facilitates the efficient
implementation, adoption, and execution of complex and
extensive simulation workflows and enables fast uptake of

modeling techniques for advanced materials by researchers in
academia and industry. SimStack is developed in a joint project
by Nanomatch GmbH and the Karlsruhe Institute of Technology
(KIT).

2.1 SimStack Concept
As shown in Figure 1, the SimStack workflow framework is
based on a lightweight client-server concept. The client provides
a GUI for the end-user to construct, modify, and configure
the workflows, submit the workflow to the server component
on remote HPC resources, monitor submitted workflows, and
browse and retrieve the generated data. Each workflow comprises
various building blocks with predefined control elements for a
given computational task.The tasks represent discrete steps in the
execution of the workflow and are calledWorkflowActiveNodes
(WaNos) within SimStack. The core component of a WaNo is an
XML file describing the expected input, configurable parameters,
the output generated by the WaNo, and the code to be executed.
By drag and drop, the end-user can quickly create a newworkflow
from the available building blocks or adapt existing workflows
to generate a custom-tailored solution for a scientific problem.
In order to incorporate the user input, SimStack employs the
templating engine Jinja (https://jinja.palletsprojects.com). With
this templating approach, specific parameters can be exposed

FIGURE 2 | This WaNo example shows the XML file and its correspondent GUI. The right side displays the XML file with the tags available within the SimStack
workflow framework. On the left side, the arrows associate the tags used to generate the field and variable types of the GUI. The visibility of the second
WaNoDictBox in the XML is coupled to the Boolean variable Conditional-DictBox. In this example, the executable is the python script test-script.py.
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easily via the GUI and included as command line parameters
or into script and input file templates, turning a static script
into a user-configurable building block with a graphical interface
within minutes. This concept enables the simple incorporation
of any arbitrary software or script routinely used on HPC
resources. Multiple compute backends can be configured within
the client. Upon submission of a workflow, the client transfers
the data via an SSH connection to the SimStack server on the
connected remote machine. The SimStack server subsequently
processes the workflow and coordinates the submission of the
individual tasks via the local scheduling software and data
transfer between the workflow elements. In order to provide
broad compatibility with HPC backends, the SimStack server
can communicate with all major schedulers and runs as a
process of the individual user. Consequently, SimStack can be
deployed and used without administrative access to the compute
resource.

SimStack aims to be as simple as possible. Every workflow
on the HPC resource is processed within a dedicated directory
labeled with a submission timestamp and the workflow name.
Every WaNo inside this workflow is referenced with a unique
path in this directory and is also referenced by a unique ID
(UID). The generated data remains at the HPC resource. From
within the client, the user can browse this data on the remote
resource within a hierarchical structure, view images, text files,
and download specific files to his localmachine if needed. Besides
this, each WaNo can include an automated report in HyperText
Markup Language (HTML), providing a concise summary of
each workflow step.

2.2 SimStack Documentation
In order to guide users, documentation is made
available, continuously updated, and extended at https://
simstack.readthedocs.io. The documentation includes
instructions on Client installation and configuration, a tutorial
exploring the main SimStack features and functionalities like
branching workflows and parallelizing high-throughput tasks.
The developer section guides how software can be integrated
into SimStack via WaNos to build custom workflows or
make its own developments available to the community as
a SimStack component. It furthermore provides a reference
guide for the WaNo XML syntax and available tags. Beyond
the documentation, the user can also find an exemplary WaNo
available at https://github.com/KIT-Workflows/Test-WaNo.
Figure 2 illustrates how the XML tags of thisWaNo are translated
into input fields of the GUI of SimStack.

Workflows designed and pre-configured by experts can
be shared with non-expert users, enabling those to conduct
high-level simulations with the same quality as expert users.
Additionally, all data generated can be made discoverable and
accessible either in public or private repositories meeting the
FAIR principles (Wilkinson et al., 2016). Finally, all the WaNos
andworkflows built in the SimStack framework can be extensible,
locally tested, shared between researchers, and made transparent
regarding their dependencies (Thompson et al., 2020). These
features minimize the barrier to transferring scientific state-
of-the-art modeling approaches from experts (e.g., academic

researchers) to non-experts (e.g., industrial users), thereby
boosting the uptake of virtual design approaches.

3 WORKFLOWS

This section illustrates the application of the SimStack framework
with different workflows implemented within SimStack. Four
different exemplary workflows were selected to demonstrate
the broad applicability of Simstack and its main features
and concepts. The Umbrella Sampling workflow computes the
binding free energy of the adsorption of a molecule on surfaces
by chaining structure builders, MD code, umbrella sampling,
and weighted histogram analysis methods. In the Exciton
Dynamics workflow, we present amultiscale simulation approach
combining DFT, forcefield-based molecular modeling, and KMC
approaches to generate a digital twin of OLED devices. In this
workflow, we translate molecular properties to the device scale to
determine their impact on the efficiency and lifetime of OLED
devices. The Dihedral Scan workflow calculates the dihedral
energy potential obtained from MC and DFT calculations,
which can be used to parametrize forcefields for MC and
MD simulations. The Emission spectra of organic molecules
workflow computes fluorescent, phosphorescent, and Thermally
Activated Delayed Fluorescence (TADF) molecules to determine
their emission wavelength by combing DFT and TDDFT
methods.

3.1 Umbrella Sampling
Knowledge about the binding free energy of molecules to
different surfaces is of enormous importance in a great variety
of applications from natural and engineering sciences (Wagner
et al., 2021; Rauwolf et al., 2021; Bag et al., 2021). Umbrella
Sampling (US) simulation (Wagner et al., 2021; Rauwolf et al.,
2021; Kästner, 2011; Bag et al., 2020; Suyetin et al., 2022) is
one of the widely used methods for this purpose. However,
performing a US simulation to evaluate the binding free energy
(to a given surface) of an arbitrary small molecule requires
a complicated simulation routine as depicted in Figure 3A.
Starting with a molecular model, one needs to first generate
the forcefield parameters for the molecule. The molecular
model has to be combined with the predefined surface model
thereafter and the combined system has to be solvated and
charge neutralized. After equilibrating this system, one has
to make many copies of the system for different distances
(reaction coordinate) of the molecule from the surface. Each
individual system will then be subjected to an equilibration
and a production run and the histograms of the reaction
coordinates will be collected. In the end, all these histograms
have to be analyzed using the Weighted Histogram Analysis
Method (WHAM) (Kumar et al., 1992) to get the binding
free energy. Therefore, we designed a workflow using the
SimStack framework features, to implement the complicated US
simulation routine for the calculation of binding free energy
of arbitrary small molecules to predefined (silica/graphene)
surfaces. The structure of the SimStack Workflow is illustrated in
Figure 3B.
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FIGURE 3 | (A) Schematic diagram illustrating potential of mean force (PMF) calculation of an arbitrary small molecule to a given surface using US. (B) Structure of
the SimStack workflow designed to accomplish the complex PMF calculation described in Figure 3A. We combined four different WaNo to build the complete
workflow. (C) PMF profiles calculated using the workflow. PMF profile of ethanol adsorbtion on Graphene are shown in the top panel and the PMF profile between
methane and Silica are shown in the bottom panel. Here we have used two layers of Graphene to model the Graphene surface. The atomistic models of the small
molecules (ethanol and methane) and the surfaces are shown in the inset.

Here, we combine four different WaNos: 1)
GromacsSystemBuilder, 2) Umbrella Sampling 3) Gromacs and
4) Wham. The features and function of the different WaNos in
this workflow are described as follows:

1) GromacsSystemBuilder: The WaNo prepares the necessary
input files for a Gromacs run (Van Der Spoel et al., 2005).
It takes the “pdb” file of the small molecule as input and
combines it with the predefined graphene/Silica surface.
To generate the forcefield (FF) parameters for the small
molecule, the WaNo uses the AmberTools software package
(Case et al., 2016). The FF parameters for the surface are also
preloaded along with their structure. The combined system
is further solvated in water and charge neutralised using
standardGromacs commands (Van Der Spoel et al., 2005). In
the end all necessary input files for the Gromacs run are
generated. Input: pdb (*pdb) of the small molecule. Output:
Gromacs input files (*gro, *top, and *ndx).

2) Umbrella Sampling: The WaNo generates the snippet of the
specific gromacs run parameter file for all the US windows.
This snippet can be read by the Gromacs WaNo and run
the US. The users are supposed to provide the description of

the reaction coordinates as input and the WaNo creates all
the Windows for the US run. Input: Description of reaction
coordinates and umbrella specification. Output: All Umbrella
sampling windows (with all the Gromacs input files) and their
specific MD run parameter (*mdp) file.

3) Gromacs: This is simply a WaNo to run Gromacs
(Van Der Spoel et al., 2005). Input: i) *gro file, ii) *top file,
iii) *ndx file, iv) The Gromacs MD run parameters, v) If the
gromacs run is an umbrella sampling run then the custom
umbrella sampling inputs, vi) Custom forcefield files called
in the *top file. Output: i) The binary run parameter file for
gromacs (*tpr), ii) The equilibrated system Geometry (*gro).
iii) In case of US run, the additional files for the histogram
(pullf/pullx files).

4) Wham: This WaNo collects the output from the US run and
generates the potential of mean force (PMF). Input: files for
Histogram (pullf/pullx files) generated after US. Output: Free
energy Curve.

We further use this developed workflow to calculate the free
energy of binding of various small molecules to the surfaces
(Graphene and Silica). In Figure 3C we show the PMF profile
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from two such calculations: ethanol binding on Graphene and
methane binding on Silica. The free energy of binding of ethanol
to the Graphene is ∼ 8 kJ/mol while the corresponding free
energy between methane and Silica is ∼ 10 kJ/mol. Although
the free energy of binding is very similar for both the systems,
the PMF profile for methane (to the Silica) is wider around
minima which indicates strong binding affinity of methane in
comparison to ethanol. It is evident from 3 (c) that ethanol can
come much closer to the Graphene than methane can come to
the Silica. Both of the surfaces show essentially no interaction
when the molecules are more than 1 nm away from the
surface.

3.2 Exciton Dynamics
Modern organic light emitting diodes (OLED) consist ofmultiple
layers of small organic molecules (Li et al., 2017; Wong and
Zysman-Colman, 2017; Lee et al., 2019; Zou et al., 2020). To
achieve optimal performance and long lifetime of these devices,
molecular properties of materials used in a single OLED need
to be carefully aligned. While the vast chemical spaces opens
the prospect of employing “perfect” material combinations in
an OLED, the identification of suitable material pairings via
experimental trial and error is time consuming and costly, and
especially in the area of blue pixels, OLEDs have to date not
been able to exploit their full potential (Scholz et al., 2015; Song
and Lee, 2017). One fundamental reason for this shortcoming is
the complexity connected to tuning charge carrier and exciton
dynamics in OLEDs, which in turn determine efficiency and
lifetime: The full system dynamics is a complex consequence
of a multitude of microscopic processes (charge hops between
molecules, formation of excitons, and excitonic loss processes,
etc.) that are determined by microscopic molecular properties
(Friederich et al., 2016; Friederich et al., 2017). Further, these
properties change when molecules are embedded in thin films,
depending on their exact environment, and are therefore
hardly accessible experimentally (Bag et al., 2019; Li et al., 2019).
To support experimental R&D by deriving fundamental
understanding of how microscopic properties determine device
performance by triggering and balancing a zoo of microscopic
processes, we developed a multiscale simulation approach
translating molecular properties to the device scale. This
workflow consists of four basic steps, illustrated in Figure 4A.
In the first step, customized force-fields are derived for all
molecules involved. Subsequently, we run a simulation protocol
mimicking physical vapor deposition to generate digital twins
of thin films with atomistic resolution. In a third step we
perform a full quantum chemical electronic structure analysis
of molecules in the thin film morphology to compute molecular
properties required for the simulation of charge carrier and
exciton dynamics, taking into account environmental effects.
Ultimately, we conduct KMC simulations in LightForge, resulting
in all-particle trajectories for further analysis of the system
dynamics.

To enable the efficient analysis of a variety of OLEDs
with different layer setups and materials we integrated all
simulation modules in the workflow platform SimStack. The
full workflow for a specific OLED is constructed via drag and

drop and may be saved for later re-use. Figure 4B depicts the
workflow exemplified for a three-layer OLED, comprising a
hole-transport layer (HTL), an emission layer consisting of a
host material and an emitter, and an electron-transport layer
(ETL): In the first layer we compute customized forcefields for
all four materials using “parallel” panels. In addition to the
Parametrizer module, we use the DihedralParametrizer module
to account for flexibility ofmolecules.The outputs of each parallel
panel (i.e., the forcefield files of a single material) are then
passed to the respective deposit modules, where we first deposit
the HTL (Deposit3), followed by the deposition of host and
emitter of the EML (Deposit3_1) and the deposition of the ETL
(Deposit3_2). In each deposition step we define the molecular
input from the respective DihedralParametrizer module(s), the
size of the simulation box, number of molecules to be deposited
and, in the case of the EML, concentrations of the molecular
mix, along with certain simulation parameters. Note that each
deposited morphology is passed to the next deposition step as
a substrate so that the output of the last deposition is a three-
layermorphology.Using this three-layermorphology as input, we
conduct two independent (and therefore parallel)QuantumPatch
computations: We compute electronic couplings in the left panel
and energy level distributions in the right panel. Both are required
by LightForge to compute rate distributions for microscopic
processes. For simplicity, other key quantities such as transition
dipoles and further input for quenching rates are set manually in
LightForge.

An output of a corresponding parametric simulation using
a phosphorescent emitter is exemplified in Figure 4C. The left
panel depicts the spatial distribution of major excitonic events,
i. e. the count of exciton formation and quenching events over
the device cross section. Here we see that most excitons are,
as expected, generated in the EML (“recombination”). Further,
we find that the major loss channel in the EML is triplet-
triplet annihilation (TTA). As this process occurs at high exciton
densities, we can derive from this simulation that a reduction
of emitter concentration in the EML may increase efficiency.
The left panel of Figure 4C depicts the averaged exciton life-
cycle for this system. Read from the inside out, we find that
almost all singlets (generated by “recombination S1”) undergo
a triplet conversion (“spin flip exc”) before they are quenched
by triplet- or polaron-quenching (“TTA” and “move chg”
respectively).

In this study we implemented a multiscale workflow to
simulate charge-carrier and exciton dynamics in multilayer
OLEDs in the workflow platform SimStack. This workflow
consists of 14 simulation modules with models for different
time and length scales. A corresponding manual execution
of this workflow via manual file transfer and submission of
each individual module would eliminate the advantage that
computer simulations pose in OLED design, as it would be time
consuming and prone to errors. Instead, the implementation via
SimStack provides a re-usable solution that can be adaptedwithin
minutes to various OLED setups (different number of layers,
layer thicknesses, materials and material combinations, etc.) to
maximize the impact of virtual design inOLEDdevelopment.The
exemplified output of this workflows demonstrates how this type
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FIGURE 4 | (A) Illustration of the multiscale-OLED workflow: Parametrizer: computation of customized molecule specific force-fields; Deposit: simulation of physical
vapor deposition to generate digital twins of thin films with atomistic resolution. QuantumPatch: full quantum chemical electronic structure analysis of molecules in
the thin film morphology; LightForge: KMC simulations of the system dynamics. (B) The simulation workflow for a three-layer OLED consisting of HTL, EML (mixed
guest-host system) and ETL. (C) Exemplified output of LightForge. Left panel: spatial distribution of major excitonic events in the three-layer OLED indicating
triplet-triplet annihilation (TTA) as major loss channel. Right panel: Exciton lifecycles in this OLED.

of simulation can aid experimental R&Dby deriving design rules,
in this case reducing emitter concentration.

3.3 Dihedral Scan
It is imperative to perform preliminary optimization steps to
generate reliable atomic models and then calculate Physico-
chemical properties by applying Molecular Dynamics or Monte
Carlo simulations. While it is frequent to use Quantum
calculations such as DFT to obtain molecular conformations
with high accuracy, depending on the molecule complexity,
this approach could lead to local energy conformations. In
many molecules, such as conjugated compounds, the most
critical term that governs their energetic profiles are their
dihedral movements, which configurations could influence

their optical absorption and emission properties and their
performance during MD simulations (Wildman et al., 2016).
Studying different torsions for a given molecule is sensible
before performing any parametrization. Dihedral scans using
low-level theory calculations can determine global and local
energy configurations before applying a final higher-level
refinement calculation and reducing the computational cost in
search of desired structures. In our recent paper (Penaloza-
Amion et al., 2022) we report how the study of dihedrals using
DFT scan calculations on a dimer of poly cis-transoid (4-
carboxyphenyl) acetylene gave structural insights regarding the
clockwise and counterclockwise helical screw-sense.

Following our previous approach, we created the Dihedral-
Scan workflow (Montserrat Penaloza-Amion, 2022) (https://
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FIGURE 5 | (A) Scheme representing the dihedral scan workflow using SIMONA-DHscan, Range-It, ForEach loop, UnpackMol, DFT-Turbomole, and
Table-Generator WaNos. (B) Dihedral profiles of n-butane calculated with SIMONA-DHscan. The best profile is highlighted in green, and the negative scores are red.
(C) Dihedral profile output obtained after using Dihedral-Scan workflow for n-butane showing syn, eclipsed, gauche, and anti configurations.

github.com/KITWorkflows/Dihedral-Scan) to support the study
of torsions for all-atom molecule models as a preliminary step
for further studies such asMD orMC simulations. Our workflow
consists of the followingWaNos: 1) SIMONA-DHscan (Penaloza-
Amion, 2022), 2) Range-It, 3) For each loop, 4)UnpackMol, 5)
DFT-Turbomole and 6) Table-Generator. As shown inFigure 5A,
the first step is to perform a dihedral screening with SIMONA-
DHscan. SMILE code or structure coordinates in PDB format
are allowed. Using SIMONA (Strunk et al., 2012; Penaloza-
Amion et al., 2021) all possible torsions are identified, and
dihedral scans on all dihedrals are performed individually. Each
scan consists of the arbitrary rotation of the torsion selected and
optimizing adjacent torsions using themetropolisMC algorithm.
The calculation of the total energy of each configuration
generated is based on the Coulomb and Lenard-Jones terms from
the General Amber forcefield (GAFF) (Ozpinar et al., 2010).
Parameters such as molecule net charge and rotation steps are
provided manually. Finally, each scan calculation is scored by
the energy difference of the maximum and minimum energies
to reveal which torsion has the most significant energy influence
in the tested molecule. The outputs provided are 1) scoring list
and plots of all torsion profiles calculated, 2) compressed file
with all the configurations for the best-scored torsion, and 3)
input list with atoms Ids for best dihedral scored for further
DFT calculations. The next step is to perform a high-level
calculationwithDFT-Turbomole 5) on all the structures provided
by SIMONA-DHscan. Steps (2), (3), and 4) are needed to support

the workflow in extracting the structures inputs and performing
parallel calculations of each point for the dihedral profile. Finally,
output data can be collected with Table-Generator WaNo to
generate an out file containing the data needed to plot the final
energy profile, as can be seen in Figure 5C.

To illustrate the Dihedral-Scan workflow, we calculated the
dihedral energy profile for n-butane (Figure 5B,C). The n-
butane structure is generated by providing a SMILE code in
SIMONA-DHscan WaNo. SIMONA identified three dihedrals,
providing their respective dihedral profiles (5 (b)). Each
SIMONA simulation is performed using the dihedral scan
protocol explained before. After the identification of the best-
scored torsion (5 (b, green)), the coordinates used to generate
the SIMONA dihedral profile are used to feed the quantum
calculation using Range-It, UnpackMol, ForEach loop, and DFT-
Turbomole WaNos. Each configuration was optimized using
the hybrid B3LYP functional (Becke, 1993a; Becke, 1993b) and
def2-SV(P) basis set (Zheng et al., 2011). The data obtained after
using Table-Generator to extract the angle and total energy
values indicate that our workflow can identify the torsion
that has the biggest influence on the configuration of n-
butane. Additionally, after the refinement calculations using
DFT, the energy profile of n-butane reveals the syn, eclipsed,
gauche, and anti configurations (5 (c)). Our results showed
that Dihedral-Scan could identify torsions, score them, and
perform quantum calculations that support future MD or MC
simulations.
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FIGURE 6 | (A) Structure of the SimStack workflow for the calculation of UV/Vis emission spectra: The “Prepare-Screening” WaNo allows to choose the types of
calculated spectra and creates input files for each molecule. The Following “DFT-Turbomole” WaNos perform the actual DFT and TDDFT calculation after which all
information is gathered by the final “Plot-Spectra” WaNo which creates png files for each calculated IR or UV/Vis spectrum. (B) SMILES input file. (C) Calculated
UV/Vis spectra at B3LYP/def2-TZVP level.

3.4 Emission Spectra of Organic
Molecules

Luminescent molecules have found widespread applications as
emitter molecules in OLED devices in which the recombination
of electrons an holes leads to the formation of exciton which
can—after migration to an emitter molecule—relax to the
ground state by emitting a photon. Several types of emitter
molecules exist in so far three generation of OLEDs based
on fluorescent, phosphorescent and TADF molecule with their
respective advantages and drawbacks. When designing new
emitter molecules, one important factor (next to other equally
important ones as for example the accessibility and stability) is

the emission wavelength which corresponds to the color of the
molecules.

The computational procedure to determine the emission
wavelength of a molecule consists of several DFT and TDDFT
calculation steps including structure optimizations of the
ground and first excited state as well as the calculation of
electronic excitations for both optimized structures. While
for most molecules, this task is a routine one for an expert
on the underlying DFT code, this is in general not the
case for the average user. Furthermore, the repetition of this
task for a large set of molecules is time-consuming and
prone to errors when done manually even by an experienced
user.
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We therefore developed a workflow for the execution of this
procedure which requires nothing more than the structure of the
molecules as an input while other parameters of the (TD) DFT
calculation such as e.g., the functional, the basis set or the type
of excited states can be easily adjusted if necessary. The workflow
is able to loop over a large number of molecules for screening
purposes, and also gives the additional option of calculating the
ground state IR spectrum of each molecule.

The workflow is structured as follows: The first WaNo
(“Prepare-Screening”) creates input files in Gaussian style from
a given list of SMILES codes or an archive file containing several
structure files. These input files have the advantage over a simple
xyz format of containing the desired charge and multiplicity of
the molecule and therefore allow to easily calculate spectra for
ions as well. After this preparatory WaNo which furthermore
gives the options of choosing the type of calculated spectrum,
a sequence of DFT calculations is performed using the “DFT-
Turbomole” WaNo for each structure file. The first two steps
consist of a preoptimization of the structures BP86/def-SV(P)
level followed by an optimization at the B3LYP-D3/def2-TZVP
level of theory which will be used throughout all the following
calculations of the workflow. Depending on the choices made in
the initial WaNo, the workflows continues with a DFT frequency
analysis, the calculation of the electronic excitation spectrum, and
finally an optimization of the first (nth) excited state followed by
an electronic excitation spectrum for the structure of the excited
state. The final WaNo in the workflow (“Plot-Spectra”) reads
in the results from the previous Turbomole calculations which
are saved in yml format and plots the Spectra. Figure 6 shows
the structure of the workflow (a) as well as an example input
file containing the SMILES codes for the three geminal diones
Benzil, Biacetyl and 1,2-Cyclohexanedione (b) which was used to
generate the UV/Vis-spectrum plots (c).

4 CONCLUSION AND PERSPECTIVES

The presented workflow framework SimStack enables rapid
prototyping of multi-module simulation workflows to design,
implement, and test simulation protocols for various applications.
The workflow design steps are carried out interactively via an
easy-to-use flexible GUI. Simulation modules from any source
are incorporated into SimStack as a simple file XML format,
exposing a limited set of application-specific parameters to
the end-user. This format enables computational experts and
non-experts to provide a GUI for a particular application
in a matter of minutes. SimStack connects to remote HPC
resources and automates data transfer and execution of the
simulation to and from the HPC environment. Pre-defined
workflows can be saved for later re-use and transferred
among users, enabling a high level of reproducibility and
transferability of simulation protocols. This enables the transfer
of state-of-the-art scientific simulation approaches from experts
to non-experts, boosting the uptake of multiscale modeling
approaches.

To show the usage of Simstack features, we presented four
workflows tackling different scientific problems. These are real

problems frequently found by researchers when designing
simulation protocols. Those workflows make heavy use of
the ForEach, AdvancedFor, If, and Parallel controls, which
are responsible for branching the workflow and parallelize
the simulation in the HPC resources. Currently, several
WaNos and workflows using standard codes and libraries are
supported in SimStack. Such as; SIMONA https://github.com/
KIT-Workflows/Dihedral-Scan, VASP (Kresse and Joubert,
1999) https://github.com/KIT-Workflows/DFT-VASP, Quantum
Espresso (Giannozzi et al., 2017) https://github.com/KIT-
Workflows/DFT-QE, Turbomole (Ahlrichs et al., 1989) https://
github.com/KIT-Workflows/DFT-Turbomole, ORCA (Neese,
2011), DFTB + (Hourahine et al., 2020) https://github.
com/KIT-Workflows/DFTB-Neural-Net, Fenics (Alnaes et al.,
2015) https://github.com/KIT-Workflows/Fenics-mesh, ASE
(Hjorth Larsen et al., 2017), PymatGen (Ong et al., 2013),
https://github.com/KIT-Workflows/Format-Converter and
many in-house solutions https://github.com/KIT-Workflows/
Table-Generator. All the WaNos where the same methods
are embedded are code interoperable, e.g., workflow running
periodic DFT simulations can run with VASP or Quantum
Espresso.

Next to the available features and capabilities of SimStack, the
software is continuously updated and extended. One of the main
upcoming features is the capability to fully or partially restart a
workflow.

DATA AVAILABILITY STATEMENT

Additional information on theworkflows are available: (Umbrella
Sampling) (https://github.com/KIT-Workflows/Umbrella-
Sampling), (Exciton Dynamics) (https://github.com/KIT-
Workflows/Exciton-Dynamics), (Dihedral Scan) (https://github.
com/KIT-Workflows/Dihedral-Scan), and (Emission spectra
of organic molecules) (https://github.com/KIT-Workflows/
Spectrum-Screening). Documentation related to installing
and tutorials of SimStack client are available on (https://www.
simstack.de/) and (https://simstack.readthedocs.io/). SimStack is
available at (https://www.simstack.de/) in the downloads section.
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We propose an efficient method to determine the micro-structural entropic behavior
of polymer chains directly from a sufficiently rich non-homogeneous experiment at the
continuum scale. The procedure is developed in 2 stages: First, a Macro-Micro-Macro
approach; second, a finite element method. Thus, we no longer require the typical stress-
strain curves from standard homogeneous tests, but we use instead the applied/reaction
forces and the displacement field obtained, for example, from Digital Image Correlation.
The approach is based on the P-spline local approximation of the constituents behavior
at the micro-scale (a priori unknown). The sought spline vertices determining the polymer
behavior are first pushed up from the micro-scale to the integration point of the finite
element, and then from the integration point to the element forces. The polymer chain
behavior is then obtained immediately by solving a linear system of equations which
results from a least squares minimization error, resulting in an inverse problem which
crosses material scales. The result is physically interpretable and directly linked to the
micro-structure of the material, and the resulting polymer behavior may be employed in
any other finite element simulation. We give some demonstrative examples (academic
and from actual polymers) in which we demonstrate that we are capable of recovering
“unknown” analytical models and spline-based constitutive behavior previously obtained
from homogeneous tests.

Keywords: hyperelasticity, data-driven modeling, polymers, digital image correlation, machine learning, splines

1 INTRODUCTION

Modern applications and the easiness of 3D printing of polymers even at the micro-
scale (e.g., via dual-photon polymerization), have renewed the interest in large deformation
modeling of these entropic materials. Polymeric materials can now be found in a wide
range of biomedical applications (stents, sutures, spinal cages, soft tissue implants, and
tissue engineering scaffolds, … ), see Bergström and Hayman (2016). Even most human soft
biological tissues, which are made of a matrix (elastine, proteoglycans) plus fibers (collagen),
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withstand large reversible deformations within the physiological
range, and therefore, use hyperelasticity as ground for more
complex aspects; Chagnon et al. (2015), Chagnon et al. (2017).
As the simplest procedure to guarantee true elasticity (reversible,
non-dissipative processes) the cornerstone in hyperelasticity is
the free energy function, the state function, from which the
stresses are uniquely derived from the strains (or vice-versa),
regardless of path. Since the 3D strain energy function cannot be
measured directly, the classical approach in constitutivemodeling
establishes a predefined form for the free energy. This function
typically contains some parameters that are adjusted according
to the experimentally (stress-strain) observed material behavior.
Although it is relatively simple to tune model parameters to
predict (up to a desirable precision) a single experimental curve,
determining the parameters that produce accurate results for
different modes of deformation is not trivial, as it is apparent
from the unaccountable number of hyperelastic models available;
Volokh (2016). Theoretically, if the proposed model is correct,
this set of parameters should exist and although determined
for specific tests they should predict well other modes of
deformation. In practice, when parameters are obtained from
a single experimental curve, they fail to generalize to other
deformation states; this is the reason why in practice multiple
tests are recommended to determine the parameters of the free
energy function (Marckmann and Verron, 2006, 3, p.12). Using
multiple tests to calibrate the parameters alleviates the deviations
of the model for other modes of deformation (at the cost of
accuracy for a given test), but at the same time it raises the
question of whether the proposed form for the free energy really
captures the physical phenomena behind experimental data or
this assumed form is just a complex interpolation scheme that
adapts its parameters to fit the curves used during calibration.We
remark that if the physics behind were accurately represented, a
single curve should be sufficient to capture the general multiaxial
behavior of isotropic, incompressible polymers under reversible
deformations.

This kind of problems has encouraged many researchers
to pursue different approaches. One of them is the model-
free data-driven computing paradigm. In this approach,
basic conservation laws and essential constraints are satisfied
but the constitutive laws are eliminated in the benefit
of data; Kirchdoerfer and Ortiz (2016), Kirchdoerfer and
Ortiz (2018), Eggersmann et al. (2019), Ibañez et al. (2017),
Ibañez et al. (2018). Regarding the leading role of data for some of
these references, works that address the efficient handling of data
have also been published, see Zheng et al. (2020), Korzeniowski
and Weinberg (2021). On the other hand, other approaches
attempt to surrogate the constitutive law with an input-output
relation through Artificial neural networks (ANNs), Nguyen-
Thanh et al. (2020), Liu et al. (2020). Both approaches (model-
free data-driven and surrogate-like ones) show promising results,
however, the predictive capability of models that just rely
on data is strongly dependent on the amount and quality of
data being employed. In addition, since there is no expression
for the free energy function most of those models are very
difficult to interpret from a physical standpoint. It seems clear
that an approach solely based on data might not be the best

option for this kind of problems (the more the model needs
to learn, the more data is required). This need for introducing
physics information in full data-driven models has led to other
works based on Physics-informed neural networks (PINNs)
Liu et al. (2020) and on thermodynamically consistent data-
driven approaches; González et al. (2018). Still, the increased
generality of those approaches increase the amount of data
required when compared to classical constitutive modeling
techniques and their interpretability is much less direct. To
summarize, an optimal approach for the constitutive modeling
of polymers should: 1) include information about the physical
equations without assuming a fixed given form for the free energy
function; 2) use data to complement what we know about the
physical phenomena and fill in the gaps in our knowledge, but
without using more data than actually needed; 3) interpretability
is also very important because understanding the solution and
being able to identify its physical meaning avoids many pitfalls
allowing us to search for the answer within a smaller solution
space and identify spurious solutions. Interpretability also
facilitates the imposition of desired (physics-based) requirements
to the sought solution, for example, smoothness, monotonic
increase or decrease, isotropy, etc.

With all those requirements in mind we developed the
WYPiWYG (What-You-Prescribe is What-You -Get) approach
to constitutive modelling, Latorre and Montáns (2013), based
on some seminal ideas from the Sussman-Bathe model for
isotropic, incompressible materials, Sussman and Bathe (2009).
The WYPiWYG approach determines the free energy function
or its contributions, but in contrast to classical phenomenological
models, which presume a form for the energy function and fit the
model parameters to the experimental data, our approach starts
with some basic fundamental assumptions about the material
behavior (isotropy/anisotropy, Valanis-Landel decomposition,
invariant-based contributions to the energy function) and then
obtains numerically the constitutive equation from equilibrium
using a local approximation scheme based on splines. This local
approximation philosophy is similar to the way shape functions
in finite elements interpolate the displacement field, instead of
computing coefficients of predefined analytical functions as in the
Navier and Rayleigh methods. The generality of this approach is
demonstrated on themodels elaborated for anisotropicmaterials,
Latorre and Montáns (2014), auxetic materials Crespo and
Montáns (2018) and models for the active and passive response
of skeletalmuscle,Moreno et al. (2020). So far phenomenological
WYPiWYG hyperelasticity circumvents the need to prescribe
the shape of the energy function while maintaining the same
model interpretability that the phenomenological models have.
However, the amount of data required to characterize the
behavior of polymeric materials is similar to the amount of data
required by other parametric phenomenological models like the
Ogden Model, Ogden (1972).

Other alternative to phenomenologicalmodels are those based
on the micro-structure which employ additional information
about the structure of polymers to get better predictive
capabilities with fewer data. Most micro-structural models
assume that the polymer is fully entropic and thus all the work
employed in its deformation directly translates into a variation of
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its entropy.This physical insight has been exploited by researches,
leading to well known models as the Neo-Hookean model,
Flory and Rehner (1943); Gent (1989); Treloar (1975), and the 8-
chain model, Arruda and Boyce (1993). The expressions of those
models depend just on the first invariant of the Green-Cauchy
tensor, IC1 and some material parameters, but in contrast to the
phenomenological ones, the material parameters are linked to
the micro-structure resulting in some additional physical insight.
Although they were conceived to be characterized from a simple
extension test, the results on other modes of deformation are
not satisfactory, even with the additional information about the
microstructural behavior.This fall from expectations added up to
the conclusions ofMooney and its Mooney plots Mooney (1940),
which showed that IC1 was not the right (or at least the
unique) variable to describe the polymer behavior due to the
controversial slope C2 that consistently appeared on simple
extension experimental data.

The extension of the WYPiWYG approach to microstructural
modellingwith the aimof overcoming those dificulties resulted in
a Macro-Micro-Macro (MMM) approach to obtain the polymer
constituents behavior directly from experimental data with no
assumptions about its analytical form or parameters to calibrate;
Amores et al. (2020). Just some basic assumptions were made:
1) homogenization of the chains free energy to obtain the
free energy of the continuumΨ(λ1,λ2,λ3) = ∫Sψch (λch)dS/S, and
2) the computation of the micro-stretch variable is obtained
from the continuum stretch tensor, λch = r ⋅U ⋅ r (a non-affine
measure of deformation in agreement with the lack of relevant
contribution of chains orientation change in the entropy
reduction). The MMM approach predicts well any general
deformation mode requiring just a single experimental curve
to characterize the chain behavior, see (Amores et al., 2020,
Figure 3). Since a similar Data-Driven MMM framework using
the affine deformation measure (λCch)

2 = r ⋅C ⋅ r was not able to
offer the same results, in Amores et al. (2021) we questioned
the affine micro stretch assumption from theoretical grounds,
which seems to be the most popular in micro-structural models;
Treloar (1975), Arruda and Boyce (1993), Alastrué et al. (2009),
Sáez et al. (2011), Khiêmand Itskov (2016). In that samework the
non-affinemeasure of deformation λch = r ⋅U ⋅ r did show to be in
accordancewith the “controversial”C2 slope observed byMooney
that up to the date could not be successfully explained from the
classical statistical theory.

The framework presented in Amores et al. (2020) seems
to be in accordance with both the chain statistical theory
and experimental results, but needs homogeneous tests to
characterize the chain behavior.Hence, ourwork here is to pursue
amore general approach by employing arbitrary continuumnon-
homogeneous tests and using Digital Image Correlation (DIC),
crossing scales from the continuum to the polymer constituent
macromolecules.

The procedure consists of linking two stages. One is the
previously introduced MMM method, and the other one is to
link thatmethod to a finite element analysis of non-homogeneous
continuum problems continuum problems, see (Cite to Figure
1) outline. We assume in the latter that the non-homogeneous
field of displacements (via DIC), plus the test loads (via load

cell) are known, the input data could be either 1D, 2D or 3D
depending on the case, but it is important to note that in 2D and
1D, it should be possible to employ reasonable assumptions to
determine the principal stretches and stresses in the eliminated
directions (incompressibility plus plane stress allow to determine
both the stretch and the stress out of the plane just from the
plane information).Then, the polymer chain behavior ismodeled
by P-splines, which vertices are to be determined—P-splines are
penalyzed interpolating B-splines to guarantee smoothness; see
Eilers and Marx (2021). That structure (the unknown vertices)
are transferred to the continuum scale via integration in all
the material directions and the result attached to the finite
element integration point (the continuum constitutive behavior).
Hence, the nodal forces of the finite element are set as a
direct, explicit function of the unknown P-spline vertices of
the polymer chains and the prescribed deformation gradient.
By a least squares formulation, a linear system of equations
is established, which allows for the immediate determination
(i.e., simply solving a linear system of equations) of the P-spline
vertices of the chain behavior from the macroscopic loads in
the specimen and the macroscopic field of deformation. The
physics equations present on the procedure include at the FEM
level the compatibility equations (computing the strain quantities
from the displacement field) and the equilibrium equations (null
force residual), incompressible hyperelasticity with volumetric-
deviatoric decoupling at the integration point level, properly
including themicro-macro connections (energy homogenization
and affine micro-stretch) at the chain level.

In the following sections we introduce the procedure, first
using a continuum hyperelastic formulation and then the
micromechanical one. We also demonstrate the applicability
through an academic example and an example using the well-
known Treloar’s rubber.

2 METHODOLOGY

2.1 Detailed Procedure Description
One way to obtain the displacement-based finite element
formulation is through the principle of virtual work, which for
the quasi-static case reads δW = δWint − δWext = 0. Considering
a conventional FEM discretization and interpolation of the
displacement field, both virtual works (internal and external)
could also be expressed in terms of the internal and external
nodal forces, δW = δu ⋅ (fint − fext) = 0 or equivalently f int = f ext.
To conclude, a weighted integration of the equilibrium equation
leads to an alternative expression for the virtual work, see
(Eq. 1), that if compared with δW = δu ⋅ (fint − fext) = 0 provides
an expression for the internal and external nodal forces. The
expression for the weighted integration of the equilibrium
equation in the reference configuration can be expressed as:

∫Ω
[δu⊗∇] ∶ P (u)dΩ =∫Ω

δu ⋅ bdΩ+∫Γ
δu ⋅ tdΓ (1)

where δu and u are the virtual displacement field, and the
displacement field, respectively, P, the 1st PK (First Piola-
Kirchhoff) stress tensor, b the volumetric forces and t the
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surface forces. The symbol ⊗ represents the dyadic production,
so [δu⊗∇] ∶ P (u) = P ∶ ∇δu is the internal virtual work density.

2.1.1 Internal Force Term
As it has already been mentioned, a FEM discretization for
the internal force term, ∫ΩP ∶ ∇δudΩ, and the interpolation
of the displacement field in the reference unit element, δu =
∑nna=1h

a (0ξ)δua leads to the expression for the nodal internal
forces, see (Eq. 13). Note that ha (0ξ) are the shape functions, δua

the virtual displacement vector for the node a, and that in δua
i ,

a = 1,…,nn and i indicates the spatial dimension (i = 1,2 in 2D).
The expressions for the internal forces are described with depth
underneath, (Eq. 2) and (Eq. 3):

∫Ω
P ∶ ∇δudΩ =

nel

∑
e=1∫Ωe

P ∶ ∇δudΩe

=
nel

∑
e=1∫□

P ∶ ∇δuJed□

=
nel

∑
e=1

nqp

∑
j=1

Pj ∶ ∇δujJ
e
j wj

=
nel

∑
e=1

nqp

∑
j=1

nn

∑
a=1

Pj ∶ (δua ⊗∇ha (0ξj)) J
e
j wj (2)

where all the variables with subscript j are computed in the
integration point j.The previous equations can be rewritten doing
the sumover theDOFof the element (ndofs = nn × 2 in the 2D solid
elements) instead of doing the sum over the nodes:

∫Ω
P ∶ ∇δudΩ =

nel

∑
e=1

nqp

∑
j=1

ndofs

∑
i=1

δuiPj ∶ ∇h
i
jJ
e
j wj, (3)

In Eq. 3, i is the index that runs through the local degrees of
freedom in the element, for the cases studied here (2D plane
stress problems) i = 1,…,2nn, δui is the virtual displacement
at the local degree of freedom i and ∇hi

j is a second order
tensor that projects the contribution of Pj to the ith local degree
of freedom. Regarding ∇hi

j, for i = 2, ∇h2
j is the projector for

the second local degree of freedom of the element, this DOF
corresponds to the first node of the element a = 1 and the second
dimension 2, therefore,∇h2

j = e2 ⊗∇h
1 (0ξj). If i = 3 instead,∇h

3
j is

the projector for the third local degree of freedom of the element,
which corresponds to the second node of the element a = 2 and
the first dimension 1, therefore, ∇h3

j = e1 ⊗∇h
2 (0ξj). Now Eq. 3

is rewritten in matrix form to identify the components of the
internal force vector:

nel

∑
e=1

nqp

∑
j=1

ndofs

∑
i=1

δuiPj ∶ ∇h
i
jJ
e
j wj =

nel

∑
e=1
[(f eint)1 … (f

e
int)ndofs]
[

[

δue
1
⋮

δue
ndofs

]

]

=
nel

∑
e=1

f eint ⋅ δu
e (4)

where

(f eint)i =
nqp

∑
j=1

Pj ∶ ∇h
i
jJ
e
j wj (5)

Since the PK1 tensor is a two-leg tensor placed in 2
configurations at the same time (material in the right and spatial
in the left), it might be more suitable to rewrite the term Pj ∶ ∇h

i
j

in terms of the PK2 (Second Piola–Kirchhoff) stress tensor, S,
which lies completely in material configuration, P = XS, being
X = ∂tx/∂0x the deformation gradient:

Pj ∶ ∇h
i
j = (XjSj) ∶ ∇h

i
j = Sj ∶ X

T
j ∇h

i
j = Sj ∶ sym(X

T
j ∇h

i
j)

= sym(XT
j ∇h

i
j) ∶ Sj (6)

In order to simplify the notation we define lij ≔ sym(X
T
j ∇h

i
j),

on the other hand the double contraction will be computed using
the Voigt notation. Note that S3 = 0 since we are considering the
case of plane stress and that the components in the Voigt notation
are with respect to the principal directions of deformation/stress.
Then, wewrite in principal directions (denoted as theXppal system
of representation)

Pj ∶ ∇h
i
j = [l11 l22 2l12]

i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

(7)

To compute the principal stress components of a polymeric
and quasi-incompressible material, we assume that the
volumetric and deviatoric contributions of the energy can be
separated (a typical assumption in quasi-incompressibility),
Ψ (A) = U (J) +W (λd1 ,λd2 ,λd3), where the volumetric term U (J)
is just a penalization function, being J = det (X) = dtV/d0V
the volume ratio, and A = 1/2(XTX − I) the Green-Lagrange
strain tensor. A typical choice for the penalization could be
U (J) = κ/2 (J − 1)2 with the bulk modulus, κ, selected such that
the stress produced by a volumetric deformation grows rapidly. If
an estimation for the shear modulus of the material, μ, is known,
κ/μ∼104, might suffice to ensure the satisfaction of the quasi-
incompressibility condition J = λ1 ⋅ λ2 ⋅ λ3 ≈ 1. The decoupling
of the energy in a volumetric and deviatoric energy results in
a similar decoupling for the PK2 stress tensor, S = Sv + Sd. We
note that Sv and Sd are not the volumetric and deviatoric part,
respectively, of a second order tensor S (as obtained from the
respective mathematical operators), but Sv is the contribution
to S that comes from the volumetric energy U(J), and Sd is
the contribution to S that comes from the deviatoric energy,
W(λd1 ,λd2 ,λd3):

S = dΨ
dA
= dU

dJ
dJ
dA
+

3

∑
i=1

∂W
∂λdi

dλdi
dA

(8)

= Sv + Sd = pJC−1 +∑
i
∑
k

WkJ
−1/3

λ2i
(λiδik −

1
3
λk)Ni ⊗Ni (9)

where N i are the principal referential directions of deformation,
Wk = ∂W/∂λdk and λdi = λiJ

−1/3, the isochoric stretches. As we
have already mentioned the test cases are plane stress and
therefore, S3 = 0 = S ∶ (N3 ⊗N3):

S3 =
pJ
λ23
+ 2
3
W3J
−1/3

λ3
− 1
3
(
W1J
−1/3

λ23
λ1 +

W2J
−1/3

λ23
λ2) = 0 (10)

Frontiers in Materials | www.frontiersin.org 4 May 2022 | Volume 9 | Article 879614186

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Amores et al. Crossing Scales in Data-Driven Characterization of Polymers

From the previous equation, the pressure term could be
isolated and introduced in the equations for S1 and S2:

Sj = J−2/3
1
λdj
(∂W
∂λdj
−
λd3
λdj

∂W
∂λd3
) for j = 1,2 (11)

Once the principal stretches are known for a particular
integration point, the principal PK2 stress components in that
same point could be determined through evaluation of the
deviatoric contribution derivatives. When the stress tensor has
been computed in all the integration points of the element,
the internal nodal forces for that element are computed using
(Eq. 4). On the other hand, if the functions for the deviatoric
contribution derivatives are unknown, a cubic P-Spline local
approximation can be employed, see Amores et al. (2019), Eilers
and Marx (2021). The B-splines (or its penalized version, P-
splines) are one of the approaches for expressing any general
function y(x) as the product of a set of known basis functions
(cubic in this case),Bi (x) and it’s a priori unknown corresponding
weights (also called vertices), ̂vi, if the number of vertices of the
B-Spline is nvert, the expression for the unknown function is a
scalar product, y (x) = ∑nverti=1 Bi (x) ̂vi = B (x) ⋅ ̂v. In contrast to the
basis of features proposed in Flaschel et al. (2021), where a basis
of preassumed functions is used, the local B-Spline basis is general
with no assumptions about the possible function expressions (the
only assumption would be that locally the function is at most a
cubic function when cubic B-Splines are used). Additionally, the
local P-Spline approximation in this work is typically performed
directly on the derivatives so there is no need to compute
derivatives of the approximated function. With the mentioned
P-Spline for the derivative of the energy function, the principal
stresses could then be represented as Si (λ

d
1 ,λ

d
2) = S

i
row (λ

d
1 ,λ

d
2) ⋅ ̂v

where Sirow is a vector defined with 1D P-Splines basis vector
(B(λd1), B(λ

d
2)), see Section 3.1 and Section 3.2 for specific

expressions of this vector. Therefore, depending on the approach
that is used to compute the continuum principal stresses, the
unknown vertices, ̂v, could represent the derivative of the energy
either on the macro-structure or in the micro-structure:

Pj ∶ ∇h
i
j = sym(X

T
j ∇h

i
j) ∶

Sj = [l11 l22 2l12]
i
j,Xppal

[[

[

[S1row (λ
d
1 ,λ

d
2)]

T

[S2row (λ
d
1 ,λ

d
2)]

T

[0]T
]]

]j

[ ̂v]

= (l11S1row (λ
d
1 ,λ

d
2) + l22S

2
row (λ

d
1 ,λ

d
2))

i

j
⋅ ̂v

= (∗Srow)
i
j (λ

d
1 ,λ

d
2) ⋅ ̂v (12)

and for the element local degree of freedom i

(f eint)i = [
nqp

∑
j=1

Jej wj(∗Srow)
i
j (λ

d
1 ,λ

d
2)] ⋅ ̂v (13)

which means that every component of the elemental nodal force
vector is obtained as the product of a known row multiplied by
the unknown vertices, or expressed in a different manner:

f eint = F
e
int ⋅ ̂v (14)

where Feint is a known matrix, given in square brackets in Eq. 13.

2.1.2 External Forces Term
In case the body forces and the tractions are not zero, the external
force vector for each element, f eext has also to be computed and
assembled into f ext, looking at the right hand side of (Eq. 1).

(f eext)i =
nqp

∑
j=1

hi
j ⋅ bJ

e
j wj +

nesbound

∑
s=1

nqps

∑
j=1

h
i
j ⋅ tJ

s
jw

s
j (15)

fext =
nel

⋀
e=1

f eext (16)

On the previous equations, the reaction forces on the
boundary where displacements are imposed are accounted in the
traction term, for the sake of simplicity we are going to consider
that those nodal reaction forces are known, while this is not
typically the case in a experimental setting, instead, the total
reaction forces are known rather than the nodal forces. To deal
with this fact, 2 different approaches can be followed: 1) take
another artificial boundary far enough from the original one in
which we can suppose that the reaction force is evenly distributed
according to the Saint-Venant’s principle or 2) consider two
independent set of equations one for the free dofs and other for
theDOFwith fixed displacements, in the fixed displacementDOF
the resultant of the internal forces equals the reaction force at each
of the boundaries.

2.1.3 System of Linear Equations for the P-Spline
Vertices
The problem to solve is an overdetermined linear system of
equations Fint ⋅ ̂v = fext, where ̂v are the unknown vertices of
the P-Spline that approximates the derivative of the energy
function at the macro-scale (phenomenological energy function)
or the derivative of the energy function of the constituents at
the micro-scale. The solution process consists of finding the
vertices, ̂v, that minimizes the mean square error, MSE, in the
force residual:

MSE ( ̂v) = (Fint ⋅ ̂v − fext) ⋅ (Fint ⋅ ̂v − fext) (17)

The solution for the previous minimization problem is
analytical and result in the mentioned linear system of equations:

̂v = A−1sysbsys; Asys = FTintFint, bsys = F
T
intfext (18)

As we have already mentioned, one of the advantages of using
the P-Spline-based local approximation is that althoughwedonot
assume the form of the energy function, additional requirements
can be added to the solution, a typical one is smoothness, which
can be translated into a penalization on the second order finite
differences of the P-spline vertices, if the solution obtained is not
monotonically increasing, this property could also be imposed
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FIGURE 1 | On the right side the FEM part (green contour), from bottom to top there are different levels, first at the solid level, the nodal displacement vector, u, the
nodal internal forces, fint, and the external nodal forces, fext, are encountered. Second, at the element level, the elemental nodal displacement vector, ue, the
elemental nodal internal forces, f eint, and the elemental external nodal forces, f eext. Finally, the integration point (at the macro-scale) characterized by the Right Green
Cauchy tensor C, and the PK2 stress tensor, S, at this point. On the left hand side the Macro-Micro-Macro approach (magenta contour), the general idea would be
“zooming” (hence the magnifying glass) on the integration point and consider that for polymeric materials, the chains oriented in a certain direction (representative
direction) suffer a deformation described by the continuum stretches ellipsoid (upper left). The a priori unknown chain mechanical behavior, Pch (λch) (bottom left), will
be evaluated for each direction and the effect in each representative direction will be integrated for all the representative directions on the reference unit micro-sphere
(center left) to obtain the continuum principal stress components. Finally, the Macro-Micro transition (center of the figure) dictates how the continuum energy is
obtained from the constituents free energy and how the micro-structural stretches (non-affine chain stretch) are obtained from the continuum deformation measures.
From a more practical perspective: 1) The Macro-Micro-Macro approach expresses the continuum principal stresses in terms of the unknown P-Spline vertices for
the constituents mechanical behavior, S ( ̂v), and 2) A classical FEM assembly process is employed to write nodal equilibrium equations from the information at the
integration points, Fint ⋅ ̂v = fext. The substeps involved are: 1.1) The continuum strain, C, tensor defines the micro-structural deformations, λch on the representative
directions; 1.2) The micro-mechanical behavior (unknown a priori) is evaluated in all the representative directions in terms of the unknown vertices ̂v,
Pch (λch) = Brow (x) ⋅ ̂v; 1.3) The constituents mechanical behavior in all directions is integrated over the unit micro-sphere to obtain the continuum principal stresses at
the integration point, S ( ̂v); 2.1) The integration point stress S ( ̂v) is integrated over the element volume to obtain the elemental nodal internal forces, f eint ( ̂v); 2.2) The
elemental nodal internal forces are assembled to obtain the nodal internal forces of the solid, fint ( ̂v); 2.3) The unknown vertices are determined from equilibrium,
fint ( ̂v) = Fint ⋅ ̂v = fext.

by iterative penalization on the vertices that do not satisfy the
condition see Amores et al. (2019), Eilers andMarx (2021). With
all the penalizations, the general system of equations to solve
would be:

̂vk = (Ak
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = FTintWfext,

(19)

whereW is a diagonalmatrix that weights the relative importance
of the equations in Fint, D1 and D2 are the first and second
differences matrices respectively, Ω2 and Ω1, are also diagonal
weight matrices for the penalizations in the second and first
differences of the vertices, note that k indicates the step of
the iterative penalization for monotonic smoothing. When

all the intervals are monotonically increasing the weighting
matrix Ωk

1 = 0 and that penalization automatically disappears.
In contrast to the overdetermined system of linear equations
produced by piecewise approximation presented in this work,
the methodology in Flaschel et al. (2021) employs a basis of
functions which extend over the whole function domain,
although this procedure seems similar to the local one, the
global support typically leads to dense solutions which are less
interpretable. For the sake of interpretability Flaschel et al. (2021)
proposes a sparsity promotion with ℓp regularization, but at the
price of requiring a fixed point iteration procedure to obtain the
solution and introducing p as an hyperparameter that has also
to be determined in the solution process. On the other hand,
the additional matrices added to the system matrix in our work
ensure smoothness of the solution (making the solution more
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robust against noise) and allows penalization in monotonicity if
required (this penalization has not been required for the examples
presented in this article).

3 RESULTS

3.1 Toy Example: Recovering an Analytical
Neo-Hookean With a P-Spline
for the Continuum Free Energy
In this section we are going to demonstrate just the FEM part of
the methodology using a P-Spline based approximation for the
functions that form the deviatoric continuum free energy. The
experimental data is a virtual test (FEM results) of an analytical
quasi-incompressible Neo-Hookean model with parameters
μ = 3.5MPa and κ = 1× 105MPa. The FEM model employed
for the virtual tests is a 2D plate with a hole on plane stress
conditions. The solicitation is an imposed displacement in the
upper border with u = 4. The dimensions of the plate and the
mesh employed in the simulation is shown in Figure 2, the
elements are quadratic quadrilaterals with nine integration
points. The formulation employed for plane stress in large
deformations is detailed in Supplementary Appendix SA,
the reader can also find the details about the Neo-
Hookean material model in Supplementary Appendix SB.
Regarding the software employed, Julia programming language,
Bezanson et al. (2017) has been used, in particular the
package FerriteFem.jl, see Carlsson and Ekre (2021), for
the FEM simulations and Amores (2022) for the P-Splines
functionality.

A typical assumption made on the phenomenological
approach for isotropic incompressible solids is the Valanis
Landel decomposition, W (λd1 ,λd2 ,λd3) = ω(λd1) +ω(λd2) +ω(λd3).
With that assumption, the expressions for the principal PK2
stresses can be obtained in terms of an unknown function
ω′ (x):

Sj = J−2/3
1
λdj
(ω′ (λdj ) −

λd3
λdj

ω′ (λd3)) for j = 1,2 (20)

Once ω′ (x) is obtained, the principal stresses are determined
for any deformation state under the plane stress hypothesis or the
contribution to the principal stresses coming from the deviatoric
energy for any general case (not in plane stress), see (Eq. 8), this
is all that can be determined from a constitutive point of view
because for an incompressible solid, the pressure does not come
from the constitutive equation but from equilibrium conditions.
Using P-splines, the unknown function can be written in terms
of some known basis functions and some unknown vertices in
a similar manner that it is done in FEM formulation with the
displacement field:

ω′ (x) =
nvert

∑
i=1

Bi (x) ̂ωi = [B1 (x) … Bnvert (x)][

[

̂ω1
⋮
̂ωnvert

]

]
= Brow (x) ⋅ ̂ω′ (21)

FIGURE 2 | FEM model used during virtual tests. The elements employed
are quadratic quadrilateral with nine integration points.

FIGURE 3 | Comparison of the Neo-Hookean ω′NH (λ
d) and the ω′ (λd)

obtained from the non-homogeneous virtual test.

With the previous expression, the principal stresses could be
written as:

Sj = J−2/3
1
λdj
(Brow (λ

d
j ) −

λd3
λdj

Brow (λ
d
3)) ⋅ ̂ω

′ = Sjrow (λdj ,λ
d
3) ⋅ ̂ω
′

for j = 1,2 (22)
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FIGURE 4 | Plot comparing the results of σVM for the reference Neo-Hookean continuum model and the reverse-engineered one. (A) σVM using the Neo-Hookean
model. (B) σVM using the ω′ (λdi ) reverse-engineered from the non-homogeneous virtual test.

[

[

S1
S2
0
]

]j,Xppal

= [[

[

[S1row (λ
d
1 ,λ

d
3)]

T

[S2row (λ
d
2 ,λ

d
3)]

T

[0]T
]]

]j

[ ̂ω′]T (23)

Pj ∶ ∇h
i
j = sym(X

T
j ∇h

i
j) ∶ Sj = [l11 l22 2l12]

i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

= (l11 ⋅ S1row (λ
d
1 ,λ

d
3) + l22 ⋅ S

2
row (λ

d
2 ,λ

d
3))

i

j
⋅ ̂ω′

= (∗Srow)
i
j (λ

d
1 ,λ

d
2 ,λ

d
3) ⋅ ̂ω
′

(24)

Referring again to Eq. 13, internal nodal forces of the element
can be written as the product of a known matrix by a vector of
unknown vertices:

f eint = F
e
int ⋅ ̂ω
′ (25)

Doing the assembly of the internal nodal forces of the elements
in the mesh:

fint =
nel

⋀
e=1

f eint = (
nel

⋀
e=1

Feint) ⋅ ̂ω
′ = Fint ⋅ ̂ω′ (26)

From the overdetermined linear system of equations
Fint ⋅ ̂ω′ = fext we can solve for ̂ω′:

( ̂ω′)k = (Ak
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = FTintWfext (27)

The number of vertices has to be enough to capture the
complexity of the curve, typically nvert = 14 suffice, but additional
vertices can be added. If more and more vertices are added, the
number of equations required to determine them increases and
the problem can become ill-conditioned, this is solved by the
smoothing termwhich adds the information of smooth transition
between vertices and links the vertices to its neighbours. In
the homogeneous case, just a single equation is obtained for
every load/displacement step, therefore, in order to obtain

information for the function on the considered domain (from
the minimum principal stretch to the maximum principal
stretch on the simulation), it would be necessary to sweep a
whole range of load/displacement steps. On the other hand, for
the non-homogeneous case, in principle, it would be possible
to employ just a single load/displacement step if the step
under consideration is rich enough (in this case, just the last
step, u = 4 was used). In case that additional information is
needed to determine the function on the considered range, it
is also possible to add more steps between u = 0 and u = 4.
Since the initial solution was directly monotonically increasing,
Ω1 = 0 and it was not necessary to follow an iterative process,
̂ω′ was directly obtained from the simple initial system of

equations:

( ̂ω′) = (Asys)
−1 bsys; Asys = FTintWFint +DT

2Ω2D2, bsys = FTintWfext
(28)

With the vertices obtained, the P-Spline could be
reconstructed and compared to the original one, see Figure 3.

Since the function ω′ (x) has been reverse-engineered exactly,
the values for the free energy partial derivatives for any state of
deformation can be determined, andwill be exactly equal to those
obtained with the original Neo-Hookean model. If desired, the
FEM simulations can be run again with the reversed-engineered
derivatives of the energy function and the σVM plot could be
compared with the one obtained for the original analytical Neo-
Hookean, see Figure 4. As it can be seen in Figure 4 the
plots are exactly the same as it might be expected from having
obtained the exact same ω′ as the one from the original Neo-
Hookean.

In this particular example, the matrix of the system
Asys ⋅ ̂ω′ = bsys, presents a null eigenvalue with its corresponding
associated eigenvector, i.e., there is a certain subspace of
possible solutions ̂ω′0 (containing just the direction of the
eigenvector associated to the null eigenvalue) such that added
to the solution, ̂ω′, produce null effect on the independent
term, bsys and therefore ̂ω′ + α ̂ω′0, for an arbitrary scalar α,
is also a solution of the system. Looking at Eq. 20, to not
produce any effect, such function has to satisfy the condition
ω′ (λdi ) − λ

d
3/λ

d
i ⋅ω
′ (λd3) = 0 ∀ λ

d
1 ,λ

d
2 ,λ

d
3 . Regarding the

functions that satisfy this condition, there is a specific
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form of function that complies (which at the same time
must be smooth due to the regularization) ω′ (λdi )λ

d
i =

ω′ (λd3)λ
d
3 ∀ λ

d
1 ,λ

d
2 ,λ

d
3 . The only way two functions of different

independent variables can be equal ∀ λd1 ,λ
d
2 ,λ

d
3 is that those

functions are constant ω′ (λdi )λ
d
i = ω
′ (λd3)λ

d
3 = β0→ ω′ (λ) =

β0/λ. Since the shape of the eigenvector associated to the
null eigenvalue exactly matches the shape of the function,
ω′ (λ) = β0/λ, we would like to understand physically the origin
of this null contribution to the system. Looking at Eq. 8, we
can see that the pressure term is of the form p(λ1,λ2,λ3)/λ2i ,
the same form of the term resulting from introducing an
additional β0/λ

d
i to the function ω′ (λdi ). From a more general

perspective we can see that this indetermination comes from
the split of the energy into a volumetric and a deviatoric
contribution:

S = Sv + Sd; Sd = 2dW
dC
= 2J−2/3ℙ ∶ dW

dCd
= J−2/3ℙ ∶ S∣d (29)

where C = XTX is the right Cauchy-Green tensor and ℙ is the
fourth order projector tensor, see Supplementary Appendix SB.
Since ℙ ∶ (αC−1) = 0, from (Eq. 29) it can be seen that there
are multiple S∣d = ∂W/∂Cd that produce the same Sd and the
undetermined part has the form of a volumetric-like PK2
stress tensor. Any contribution of this form has no effect on
the solution since it is going to be finally eliminated by the
projector ℙ.

3.2 Micro-Mechanical Approach Based
on the Non-Affine Deformation Chain
Model
In this section the complete methodology described in Section 2
(Macro-Micro-Macro first, FEM second) is demonstrated.
In contrast to the procedure described in Section 3.1, here
the P-Spline will approximate the derivative of the chain
energy function Pch (λch) = dψch/dλch (mechanical behavior of
the material constituents at the micro-scale) rather than the
continuum contributions to the energy. The experimental data
is obtained from a virtual (FEM simulation) using the analytical
structure-based material model in Amores et al. (2020). To be
more precise, the Pch (λch) that will be employed to perform
the virtual test is the one obtained for the Treloar test data for
unfilled rubber, Treloar (1944), that function is displayed in
(Amores et al., 2020, Figure B.1). The FEM model employed for
the virtual tests is again the 2D plate with a hole on plane stress
conditions with an imposed displacement in the upper border
(u = 8). All the required dimensions and the mesh employed in
the simulation is shown in Figure 2. The reader can find further
details about the non-affine deformation chain material model
in Supplementary Appendix SC and Amores et al. (2020), a
discussion about the suitability of the non-affine stretch employed
in the model (free-fluctuating network assumption) is presented
in Amores et al. (2021).

In Amores et al. (2020) a way was established to compute the
strain energy function of the continuumwith an homogenization
of the micro-structural chain free energy function in polymeric
like materials under the assumption of incompressibility

(λ1 ⋅ λ2 ⋅ λ3 = 1):

W (λ1,λ2,λ3) =
1
S ∫S

ψch (λch)dS (30)

For FEM simulations even pure incompressible solids are
simulated with the quasi-incompressible material framework:

Ψ (A) = U (J) +W (λd1 ,λd2 ,λd3)

in which U (J) is a penalization function that leads to
incompressibility for κ→∞ like U (J) = 1

2
k (J − 1)2 and

where W (λd1 ,λd2 ,λd3) is the same as the one used in pure
incompressibility but with the deviatoric stretches instead of
the total ones:

W (λd1 ,λd2 ,λd3) =
1
S ∫S

ψch (λ
d
ch)dS;

λdch = U
d ∶ (r ⊗ r) = λd1r

2
1 + λ

d
2r

2
2 + λ

d
3r

2
3 (31)

Wk =
∂W
∂λdk
= 1
S ∫S

dψch (λ
d
ch)

dλdch

dλdch
dλdk

dS = 1
S ∫S

Pch (λ
d
ch) r

2
kdS (32)

The unknown function that will be approximated using
P-Splines is Pch (λ

d
ch), as described above, the P-Splines

representation expresses the unknown function in terms of some
known basis vector multiplied by a vector of unknown vertices:

Pch (x) =
nvert

∑
i=1

Bi (x) ̂Pchi

= [B1 (x) … Bnvert (x)][

[

̂Pchi
⋮
̂Pchnvert

]

]
= Brow (x) ⋅ ̂Pch (33)

Introducing the expression for Pch (x) in (Eq. 32) and then
all the derivatives of the form Wk in (Eq. 11) a expression for
the principal stresses in terms of the vertices that define the
Polymeric-chain response function can be obtained:

Sj = J
−2/3 1

λdj
{1
S ∫S

Brow (λ
d
ch)(r

2
j −

λd3
λdj

r23)dS} ⋅ ̂Pch

= Sjrow (λd1 ,λ
d
2) ⋅ ̂Pch for j = 1,2 (34)

Note that the previous integral in themicrosphere is computed
by a numerical quadrature, ∫S f (r)dS = ∑

nqS
j=1f (r)w

S
j an that

although λdch depends on λd1 , λ
d
2 and λd3 , since λ

d
1 ⋅ λ

d
2 ⋅ λ

d
3 = 1, there

are just 2 independent variables. Again a procedure similar to the
one in the toy example, Section 3.1, is followed:
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FIGURE 5 | Plot comparing Pch (λ
d
ch) extracted from (Amores et al., 2020,

Figure B.1) and the reverse-engineered Pch (λ
d
ch) obtained with the

methodology described in the article.

[

[

S1
S2
0
]

]j,Xppal

= [[

[

[S1row (λ
d
1 ,λ

d
2)]

T

[S1row (λ
d
1 ,λ

d
2)]

T

[0]T
]]

]j

[ ̂Pch] (35)

Pj ∶ ∇h
i
j = sym(h

T
j ∇h

i
j) ∶ Sj

= [l11 l22 2l12]
i
j,Xppal
[

[

S1
S2
0
]

]j,Xppal

= (l11 ⋅ S1row (λ
d
1 ,λ

d
2) + l22 ⋅ S

2
row (λ

d
1 ,λ

d
2))

i

j
⋅ ̂Pch

= (∗Srow)
i
j (λ

d
1 ,λ

d
2) ⋅ ̂Pch (36)

Looking at the previous matrix equation and using again
(Eq. 13), it is straightforward to write the internal vector force
for an element as

f eint = F
e
int ⋅ ̂Pch (37)

where Fe
int is a matrix. Now in the same way that the components

that the components of f eint can be assembled to obtain the global
internal forces vector, f int. The rows of Feint can be assembled to
obtain a global internal force matrix Fint.

fint =
nel

⋀
e=1

f eint = (
nel

⋀
e=1

Feint) ⋅ ̂Pch = Fint ⋅ ̂Pch (38)

At that point it is important to note that if compared to
the procedure followed in Section 3.1, now the internal force
term is linked with the unknown vertices that correspond to the
constituents behavior at the micro-scale. With that approach we
show that scales can be crossed and information in one scale can
be pushed up to other scales, that of course taking into account
that the macro to micro connection has already been established.

From the overdetermined linear systemof equations Fint ⋅ ̂Pch =
fext a solution can be obtained for ̂Pch:

̂Pk
ch = (A

k
sys)
−1 bsys;

Ak
sys = FTintWFint +DT

2Ω2D2 +DT
1Ω

k
1D1,

bsys = FTintWfext

(39)

The discussion about the number of vertices and steps of
load/displacement required in Section 3.1 is also applicable here.
In this particular case, just the last step of deformation (u = 8)
was used. Again, in case that additional information is needed
to determine the function on the considered range, it is also
possible to add more steps between u = 0 and u = 8. Since the
initial solution was directlymonotonically increasing, Ω1 = 0 and
it was not necessary to follow an iterative process, ̂Pch was directly
obtained from the simple initial system of equations:

̂Pch = (Asys)
−1 bsys; Asys = FTintWFint +DT

2Ω2D2, bsys = FTintWfext
(40)

With the vertices obtained, the P-Spline could be
reconstructed and compared it to the original one, see
Figure 5.

As it is shown in Figure 5, the Pch (λ
d
ch) extracted from

(Amores et al., 2020, Figure B.1) and the one obtained through
the methodology described in the paper are practically identical.
Looking closely, there are some small deviations close to λdch = 1

FIGURE 6 | Plot comparing the results of σVM for the reference micro-mechanical model in Amores et al. (2020) that uses (Amores et al., 2020, Figure B.1) and the
reverse-engineered one described in the article. (A) σVM using the Pch (λch) obtained for unfilled rubber, Treloar (1944) extracted from (Amores et al., 2020, Figure
B.1). (B) σVM using the Pch (λch) reverse-engineered from the non-homogeneous virtual test using the methodology described in this article.
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on the compression range. As it has already been mentioned,
the origin of those deviations is the eigenvector linked to an
almost zero eigenvalue on the reduced matrix of the system, this
matter has been carefully justified at the end of Section 3.1. With
the obtained Pch (λ

d
ch) the partial derivatives of the free energy

can be determined for any state of deformation, with them, it is
possible to re-run the FEM simulations and compare for example,
the σVM plot. Figure 6 compares the σVM with Pch (λ

d
ch) extracted

from (Amores et al., 2020, Figure B.1) and the Pch (λ
d
ch) with the

methodology described in this paper. As we can see, although the
functions are slightly different, that discrepancy has no effect on
the final stresses, this is so because the additional spurious term
that appears in the solution corresponds to a pressure term (in the
cauchy stress sense) and therefore, it will not appear in the final
computed stress due to the projector ℙ.

4 CONCLUSION

We have proposed a numerical method for determining both
the continuum free energy and the polymer macromolecules
behavior from arbitrary non-homogeneous DIC-based tests at
the continuum scale. The procedure consists of a combination of
our Macro-Micro-Macro approach and a Finite Element model.
As a novel contribution of this approach, we show that by crossing
scales transferring the microscale unknowns to the finite element
formulation it is possible to determine the mechanical chain
behavior from non-homogeneous experiments at the continuum
scale by simply solving a linear system of equations (i.e., in an
even more efficient manner than the subsequent simulations
of the polymer behavior). Another key aspect is that Penalized
B-splines (P-splines) preserve the general form of the energy
function while retaining sufficient tools for enforcing specific
desired conditions on the sought functions. The methodology
at hand recovers the analytical free energies used as starting
point in the virtual tests.Therefore, any finite element simulation
performed with the reversed-engineered energy function will

provide identical results to the original material model. From the
authors perspective, this new approach opens new possibilities
for data-driven characterization of themicro-structure fromnon-
homogeneous tests at the macro-scale. Further research has to
be conducted to evaluate the generalization of the approach in
Amores et al. (2020) to more complex material behaviors from
which the applicability of this same methodology has to be
assessed.
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GLOSSARY

Ω1 Weight matrix for the first differences

Ω2 Weight matrix for the second differences

A Green Lagrange strain tensor

b Volumetric forces

C Right Cauchy Green tensor

D1 First differences matrix

D2 Second differences matrix

f eext Element external nodal forces

f eint Element internal nodal forces

f ext External nodal forces

f int Internal nodal forces

N i Principal referential direction of deformation number i

P PK1 (First Piola-Kirchhoff) stress tensor

r Arbitrary direction of the unit sphere in the reference
configuration

S PK2 (Second Piola-Kirchhoff) stress tensor

t Surface forces

u Displacement field

ua Displacement vector of node a

W Weight matrix for the system of equation

X Gradient of deformation tensor, X = ∂tx/∂0x

∇ Nabla operator, ∇ = ∂iei
δu Virtual displacement field

δW Virtual work

δWext External virtual work

δW int Internal virtual work

Γ Area in the reference configuraion

κ Bulk modulus

ℙ Fourth order projector tensor ℙ = 𝕀S − 1/3C−1 ⊗C

0ξ Local coordinates for the unit reference element

μ Shear modulus

Ω volume in the reference configuraion

Ω volume in the reference configuraion

Ψ Continuum free energy function

ψch Chain free energy function

□ Volume of the unit reference element

Bi (x) B-Spline basis function corresponding to the vertex i

ha Shape function of node a in the reference unit element

IC1 First principal invariant of C, IC1 = λ
2
1 + λ

2
2 + λ

2
3λ

J Volume ratio J = det (X)

Jej Jacobian of the element e at integration point j

MSE Mean square error

ndofs Number of DOFs per element

nvert Number of vertices of the BSpline

nel Number of elements

nn Number of nodes

nqp Number of quadrature points per element

nqS Number of quadrature points on the microspheres

Pch Chain mechanical behavior function, Pch = dψch/dλch
ri Director cosine of the vector r with respect to N i

Si Principal value i of the PK2 stress tensor

wj Quadrature weight for the integration point j of the element

wS
j Quadrature weight for the integration point j on the sphere

λCch Affine chain stretch, λCch = √r ⋅C ⋅ r

λdi Deviatoric principal stretch i

λch Non-affine chain stretch, λch = r ⋅U ⋅ r

λi Principal stretch i

U Volumetric contribution to the free energy function

W Deviatoric contribution to the free energy function
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