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Lung cancer (LC) is one of the most frequently diagnosed cancers and the leading cause of cancer death worldwide, and most LCs are non-small cell lung cancer (NSCLC). Radiotherapy is one of the most effective treatments for patients with lung cancer, either alone or in combination with other treatment methods. However, radiotherapy responses vary considerably among NSCLC patients. The efficacy of radiotherapy is influenced by several factors, among which autophagy is of importance. Autophagy is induced by radiotherapy and also influences cell responses to radiation. We explored the clinical significance of autophagy-related genes (ARGs) and gene sets (ARGSs) and the underlying mechanism in NSCLC patients treated with radiotherapy. First, differentially expressed ARGs (SNCA, SESN3, DAPL1, and ELAPOR1) and miRNAs (miR-205-5p, miR-26a-1-3p, miR-6510-3p, miR-194-3p, miR-215-5p, and miR-375-3p) were identified between radiotherapy-resistant and radiotherapy-sensitive groups. An autophagy-related radiosensitivity risk signature (ARRS) by nine ARmRNAs/miRNAs and an autophagy-related overall survival risk signature (AROS) by three ARmRNAs were then constructed with estimated AUCs of 0.8854 (95% CI: 0.8131–0.9576) and 0.7901 (95% CI: 0.7168–0.8685), respectively. The correlations between ARGSs or prognostic signatures and clinicopathological factors, short-term radiotherapy responses (radiotherapy sensitivity), long-term radiotherapy responses (overall survival), and immune characteristics were analyzed. Both ARGSs and prognostic signatures were related to immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating immune cells (TIICs), and the activity of the cancer immune cycle. Finally, after target prediction and correlation analysis, circRNA (hsa_circ_0019709, hsa_circ_0081983, hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and hsa_circ_0098966)-regulated miRNA/ARmRNA axes (miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and miR-26a-1-3p/SNCA) were considered potential modulatory mechanisms by influencing the regulation of autophagy, macroautophagy, and chaperone-mediated autophagy.

Keywords: non-small cell lung cancer, autophagy, radiotherapy sensitivity, tumor immune microenvironment, competing endogenous RNA


INTRODUCTION

With an estimated 2.2 million new cases and 1.8 million deaths, lung cancer (LC) is one of the most frequently occurring cancer and the leading cause of cancer death according to the most recent global cancer statistics (Sung et al., 2021). In most countries, the 5-year survival rate of patients with LC is only 10 to 20% during 2010 through 2014 (Allemani et al., 2018). To increase the survival rate of patients, improving therapeutic effectiveness is as important as early screening. Radiotherapy is one of the most effective treatments for patients with LC, either alone or in combination with other treatment methods. However, because of individual heterogeneity, radiotherapy responses vary among patients, especially in those with non-small cell lung cancer (NSCLC) (Baker et al., 2016), which accounts for 80% of LC. An important focus of radiation oncology research is to predict radiotherapy responses by using molecular analysis.

Autophagy, a major type of programmed cell death, has been generally regarded as a survival or cytoprotective response under stressful conditions, for example, exposure to radiation and chemicals (Murrow and Debnath, 2013). A growing body of evidence indicates that tumor resistance to anticancer therapies, such as radiotherapy, was often associated with the regulation of autophagy (Sharma et al., 2014; Tam et al., 2017). Although no consensus has been reached about the antitumor or protumor action of autophagy induction, autophagy inhibitors or promoters are potential drug-drug or drug-radiation combinations to promote therapeutic efficacy. Thus, understanding the functional relevance of autophagy within radiotherapy is critical to evade resistance and enhance the effects for NSCLC patients. In addition, few studies have discussed the selective types of autophagy, which are highlighted in our study.

Non-coding RNAs (ncRNAs), accounting for 98% of the human genome, mediate protumorigenic/antitumorigenic responses to different cancer therapies (Zhang X. et al., 2020). MicroRNAs (miRNAs) are a family of small ncRNAs of approximately 22 nucleotides that play an important role in biological pathways by silencing mRNAs and regulating the expression of genes posttranscriptionally (Ambros, 2004). Circular RNAs (circRNAs), another type of ncRNA that can act as gene regulators or even be encoded into proteins, also play vital tumor-regulated roles in numerous cancers (Chen, 2020). Many cases have shown that circRNAs can interact with miRNAs and then form a network to regulate cellular physiological and pathological activities (Hansen et al., 2013). Moreover, due to their relatively stable structure, miRNAs and circRNAs can also be used as biomarkers of cancer therapeutic effects.

In the present study, we made full use of publicly available large-scale cancer omics data, mainly The Cancer Genome Atlas (TCGA), to investigate the clinical significance and underlying mechanisms of autophagy-related genes and gene sets in radiotherapy responses of NSCLC patients. First, patients receiving radiotherapy with complete prognostic information were retrieved, and autophagy-related genes (ARGs) and gene sets (ARGSs) were identified. Then, radiotherapy sensitivity- and overall survival (OS)-related risk signatures were generated following the differential analysis of ARGs and miRNAs. Risk signatures were then subjected to correlation analysis of clinicopathologic factors, predictive value of prognosis, and characteristic analysis of the immune microenvironment. Finally, after targeting prediction and correlation analysis of expression levels, a circRNA-miRNA-ARmRNA-ARGS network was constructed to explain the potential regulatory mechanism.



MATERIALS AND METHODS


Schematic Diagram of the Study Design

As shown in Figure 1, we first mined the public data for our datasets of interest. NSCLC patient information from The Cancer Genome Atlas (TCGA) project was obtained from UCSC Xena1. The targeted screening was performed according to the following criteria: (1) patients treated with radiotherapy without additional locoregional surgical procedure; (2) patient primary therapy outcome success and overall survival information was recorded; and (3) patient tumor samples received RNA sequencing (RNA-seq) and/or miRNA sequencing (miRNA-seq). The following four levels of primary therapy outcome were assessed: complete remission/response (CR), partial remission/response (PR), stable disease (SD), and progressive disease (PD). Patients with CR and PR were classified into the radiotherapy-sensitive group, while patients with SD and PD were classified into the radiotherapy-resistant group. Eighty-seven NSCLC patients with RNA-seq and 83 NSCLC patients with miRNA-seq met the requirements (Table 1). Moreover, autophagy-related genes (ARGs) and gene sets (ARGSs) were acquired from the Gene Ontology (GO) resource2. The study was then extended to thoroughly investigate the clinical significance and regulatory mechanism of autophagy in the radiotherapy response of NSCLC patients. Differential expression of RNAs and miRNAs was analyzed, and the score of ARGSs was calculated. Clinical correlation and immune microenvironment analysis were then performed at both the gene and gene set levels. Moreover, radiotherapy sensitivity- and overall survival (OS)-related risk signatures were constructed for prognostic prediction. A circRNA-miRNA-ARmRNA-ARGS network was constructed following target prediction and correlation analysis.
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FIGURE 1. Flowchart of the study design. CR: complete remission/response, PR: partial remission/response, SD: stable disease, PD: progressive disease, DE: differential expressed, ARmRNA: autophagy-related mRNA, NSCLC: non-small cell lung cancer.



TABLE 1. Patients’ characteristics.
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Identification and Extraction of Autophagy-Related Genes and Gene Sets

A total of 537 unduplicated autophagy-related genes (ARGs) were extracted from GO:0006914, and 9 autophagy-related gene sets (ARGSs) were identified (Supplementary Figure 1 and Supplementary Table 1). The genes were related to the following types of autophagy: 78 genes were related to autophagy of mitochondrion (GO:0000422); 8 genes were related to autophagy of peroxisome (GO:0030242); 18 genes were related to chaperone-mediated autophagy (GO:0061684); 5 genes were related to late endosomal microautophagy (GO:0061738); 308 genes were related to macroautophagy (GO:0016236); 17 genes were related to autophagy of nucleus (GO:0044804); 7 genes were related to lysosomal microautophagy (GO:0016237); 336 genes were related to regulation of autophagy (GO:0010506); and 9 genes were related to modulation by symbiont of host autophagy (GO:0075071).



Evaluation of the Immune Characteristics of Tumor Microenvironment (TME)

The immune characteristics of TME included the expression level of immune checkpoint inhibitors (ICIs), infiltration of tumor-infiltrating immune cells (TIICs), and activity of the cancer immune cycle. Overall, 20 ICIs (HAVCR2, CD274, CD86, LAG3, LAIR1, PVR, IDO1, CD80, CTLA4, SNCA, TIGIT, CD200R1, CEACAM1, CD276, CD200, KIR3DL1, BTLA, ADORA2A, LGALS3, and VTCN1) with therapeutic potential (Noam et al., 2018) were identified in our study. The infiltration levels of 28 tumor-infiltrating immune cells (activated B cells, activated CD4 T cells, activated CD8 T cells, activated dendritic cells, CD56 bright NK cells, CD56 dim NK cells, central memory CD4 T cells, central memory CD8 T cells, effector memory CD4 T cells, effector memory CD8 T cells, eosinophil cells, gamma delta T cells, immature B cells, immature dendritic cells, macrophages, mast cells, MDSCs, memory B cells, monocytes, NK cells, NK T cells, neutrophils, plasmacytoid dendritic cells, regulatory T cells, T follicular helper cells, TH1 cells, TH17 cells, and TH2 cells) (Charoentong et al., 2017) were considered. The cancer immune cycle mainly comprises the following seven steps: release of cancer cell antigens (Step 1); cancer antigen presentation (Step 2); priming and activation (Step 3); trafficking of immune cells to tumors (Step 4); infiltration of immune cells into tumors (Step 5); recognition of cancer cells by T cells (Step 6); and killing of cancer cells (Step 7) (Chen and Mellman, 2013). The activity of TIICs and the cancer immune cycle were evaluated by calculating marker gene set scores based on the gene expression of individual samples.



Screening of Differentially Expressed Genes

Available RNA sequencing (RNA-seq) and miRNA sequencing (miRNA-seq) data were downloaded. We transformed miRNA-seq names into human mature miRNA names using the miRBase version 22.0 database. We then applied DESeq2, edgeR, and limma/voom to identify differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs). The criteria for determining differential DEmRNAs and DEmiRNAs were set with an adjusted p-value < 0.05 and | log fold change (FC)| > mean ± standard deviation (sd). We determined the common DEmRNAs and DEmiRNAs by utilizing the VennDiagram R package (Chen and Boutros, 2011). Volcano plots visually displaying the distribution of DEmRNAs and DEmiRNAs were generated using ggpubr R packages, and heatmaps describing the expression of differentially expressed autophagy-related mRNAs (DEARmRNAs) and miRNAs (DEmiRNAs) were generated utilizing the pheatmap R package.



Establishment of Specific Risk Signatures

We extracted the DEmRNAs and DEmiRNAs expression profiles collected from NSCLC patients receiving radiotherapy with prognostic information. Differential analysis by Student’s t-test was conducted to compare the radiotherapy-resistant and radiotherapy-sensitive groups, while the overall survival (OS) difference was calculated by the log-rank test and described by the K-M curve. The significant variables were included in a logistic or Cox regression model. Finally, we generated an autophagy-related radiosensitivity risk signature (ARRS) and an autophagy-related OS risk signature (AROS) for each sample using the following equation: ARRS or AROS = ∑i Cofficient(RNAi) × Expression(RNAi). The receiver operating characteristic (ROC) curves with risk score against radiosensitivity and survival status were generated using ROCit and survivalROC/timeROC R packages (Blanche, 2015), respectively. Based on the mean as a cutoff point, patients were divided into high- and low-risk groups. Student’s t-test and log-rank test were used in univariate differential analysis, while multivariate logistic and Cox regression were used in independent predictor tests.



Construction of the circRNA-miRNA-mRNA-ARGS Network

DEARmRNAs were the key module in the ceRNA network. MiRNAs targeting DEARmRNAs were predicted by miRWalk 3.03 (Dweep et al., 2011). These miRNAs were intersected with DEmiRNAs to obtain the miRNA module. The circRNA sponges of the miRNA modules were obtained by circBank4 (Liu et al., 2019). CircRNAs sponging more than one candidate miRNAs were included in the circRNA module. Correlation analysis was then performed between the ARmRNA module and miRNA module in the total population of the TCGA NSCLC project to obtain the negatively correlated ARmRNAs and miRNAs. The targeted ARGSs of ARmRNAs and circRNA sponges of miRNAs were added to construct the final regulatory network. The R package ggalluvial and Cytoscape (Shannon et al., 2003) were used to visualize the ceRNA and circRNA-miRNA-ARmRNA-ARGS network.



Additional Bioinformatics and Statistical Analyses

R software 4.0.45, GraphPad Prism 9.0 (GraphPad Software Inc., San Diego, CA, United States), and Cytoscape 3.8.26 were used to analyze and visualize the data. The scores of gene sets (ARGSs, immune characteristics of the tumor microenvironment) in each sample were quantified via both single-sample gene set enrichment analysis (ssGSEA) and the gene set variation analysis (GSVA) algorithm based on the bulk RNA-seq data using the GSVA R package (Hnzelmann et al., 2013; Supplementary Table 2). We used the chi-square test for correlation analysis between categorical variables, and Pearson correlation coefficients for correlation analysis between continuous variables. A p value < 0.05 was considered statistically significant.




RESULTS


Clinical Significance of Autophagy-Related Gene Sets in NSCLC Patients Treated With Radiotherapy

We plotted heatmaps to describe the distribution of ARGS scores by ssGSEA or GSVA (Figure 2A) and performed differential analysis between the radiotherapy-resistant and radiotherapy-sensitive groups. Late endosomal microautophagy (GO:0061738) was identified as significant by both methods (Figure 2B). The correlation between clinicopathological factors and ARGS was evaluated (Figure 2C). The consistent results of ssGSEA and GSVA score showed that autophagy of mitochondrion (GO:0000422) and macroautophagy (GO:0016236) were discriminatory for different histological types, while autophagy of peroxisome (GO:0030242), autophagy of nucleus (GO:0044804), late endosomal microautophagy (GO:0061738), and symbiont of host autophagy (GO:0075071) were discriminatory for patient gender and histological type. Multivariate logistic regression analysis demonstrated that lysosomal microautophagy (GO:0016237) and late endosomal microautophagy (GO:0061738) were independent risk factors for radiotherapy sensitivity (Figure 2D), while no ARGSs were associated with OS (Supplementary Figure 2). These findings demonstrated the clinical significance of autophagy or selective types of autophagy in NSCLC patients receiving radiotherapy.
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FIGURE 2. Clinical correlation of autophagy-related gene sets (ARGSs) score by ssGSEA and GSVA methods. (A) The distribution of ARGSs score in radiotherapy resistant and sensitive groups. (B) The differential analysis of ARGSs score between radiotherapy resistant and sensitive groups. The left is radiotherapy resistant group while the right is radiotherapy sensitive group. (C) The correlation analysis of ARGSs and clinicopathologic factors. (D) Multivariate logistic regression analysis of ARGSs with radiotherapy responses.




Correlation Analysis of ARGSs and Immune Microenvironment Characteristics in NSCLC Patients Receiving Radiotherapy

With regard to immune microenvironment characteristics (Supplementary Figure 3A and Supplementary Table 3), autophagy (GO:0006914), regulation of autophagy (GO:0010506), macroautophagy (GO:0016236), and autophagy of peroxisome (GO:0030242) were related to infiltration of central memory CD8 T cells and gamma delta T cells (Supplementary Figure 3B). In addition, macroautophagy (GO:0016236) was related to infiltration of CD56 bright NK cells, and symbiont of host autophagy (GO:0075071) was related to central memory CD4 T cells. Regarding the immune cycle, only autophagy of peroxisome (GO:0030242) correlated with the trafficking of monocytes to tumors (Step 4) (Supplementary Figure 3C). Finally, and most importantly, we evaluated the association with ICIs (Supplementary Figure 3D). Autophagy (GO:0006914) was associated with expression levels of ADORA2A, CD200R1, CD274, CD80, CD86, HAVCR2, LAIR1, LGALS3, and TIGIT; autophagy of mitochondrion (GO:0000422) was correlated with CD276 and SNCA; regulation of autophagy (GO:0010506) was correlated with ADORA2A, CD200R1, CD274, CD80, CD86, HAVCR2, LAIR1, and TIGIT; macroautophagy (GO:0016236) was correlated with CD80, CD86, HAVCR2, LAG3, and LAIR1; autophagy of peroxisome (GO:0030242) was correlated with CD276 and SNCA; chaperone-mediated autophagy (GO:0061684) was correlated with CD200R1, CD80, CD86, HAVCR2, LAG3, and LAIR1; and late endosomal microautophagy (GO:0061738) and symbiont of host autophagy (GO:0075071) were correlated with SNCA.



Identification of Differentially Expressed Autophagy-Related mRNAs (DEARmRNAs) and miRNAs (DEmiRNAs) Associated With Radiotherapy Sensitivity in NSCLC Patients

In addition to the levels of gene sets, we explored the clinical significance of autophagy at the gene level. The DEmRNAs were identified from the radiotherapy-sensitive group compared to the radiotherapy-resistant group by DESeq2, edgeR, and limma/voom seperately (Figure 3A). In total, 461 DEmRNAs (235 upregulated and 226 downregulated) were found by intersection of these three methods (Figure 3B). Then, DEARmRNAs were recognized from DEmRNAs (Figure 3C) and one downregulated gene (ELAPOR1), three upregulated genes (SNCA, SESN3, and DAPL1) were the consistent results. The same methods were used in DEmiRNA screening (Figure 3D), which identified 3 upregulated (hsa-miR-205-5p, hsa-miR-26a-1-3p, and hsa-miR-6510-3p) and 3 downregulated (hsa-miR-194-3p, hsa-miR-215-5p, and hsa-miR-375-3p) DEmiRNAs by intersection of DESeq2, edgeR, and limma/voom (Figures 3E,F).
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FIGURE 3. Differentially expressed (DE) analysis of mRNAs and miRNAs between rediotherapy resistant and sensitive groups. (A) Volcano plots of DEmRNAs by DESeq2, edgeR, and limma/voom. (B) Venn diagram of common DEmRNAs. (C) Heatmaps of DEARmRNAs. (D) Volcano plots of DEmiRNAs by DESeq2, edgeR, and limma/voom. (E) Venn diagram of common DEmiRNAs. (F) Heatmaps of DEmiRNAs. Red represents upregulated genes and blue indicates downregulated genes.




Validation of the Prognostic Value of DEARmRNAs and DEmiRNAs in NSCLC Patients Receiving Radiotherapy

To establish crucial miRNAs and ARmRNAs with prognostic value in NSCLC patients receiving radiotherapy, we first verified the differential expression of mRNAs and miRNAs between radiotherapy-sensitive and radiotherapy-resistant groups. Our results showed that hsa-miR-194-3p, hsa-miR-215-5p, hsa-miR-375-3p, and ELAPOR1 were upregulated in the radiotherapy-resistant group, while hsa-miR-205-5p, hsa-miR-26a-1-3p, SESN3, SNCA, and DAPL1 were upregulated in the radiotherapy-sensitive group (Figure 4). To determine whether these DERNAs are associated with the long-term prognosis of NSCLC patients treated with radiotherapy, we generated Kaplan-Meier curves to analyze differences in OS. We found that SNCA, SESN3, and DAPL1 were related to the OS of NSCLC patients (Figure 5).
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FIGURE 4. The distribution of differentially expressed miRNAs and mRNAs between rediotherapy resistant and sensitive groups. Blue represents radiotherapy resistant group and pink indicates radiotherapy sensitive group.
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FIGURE 5. Overall survival analysis of differentially expressed miRNAs and mRNAs. The high- and low-expression values of four autophagy-related mRNAs (ARmRNAs) and six miRNAs were compared by Kaplan-Meier survival curve for NSCLC patients. The median survival time were indicated by dashed line.




Establishment of the ARmRNA/miRNA Signature to Predict Prognosis in NSCLC Patients Receiving Radiotherapy

Based on the above results, we first established a 9 ARmRNA/miRNA signature by multivariate logistic regression to predict the radiosensitivity of NSCLC patients, and the score for each patient was calculated as follows: ARRS = 1.543103 −0.002191∗hsa-miR-205-5p −0.500703∗hsa-miR-215-5p +0.776517∗hsa-miR-26a-1-3p −0.300282∗hsa-miR-194-3p −0.041439∗hsa-miR-375-3p −0.394497∗ELAPOR1 −0.053145∗SNCA +0.331343∗SESN3 +0.181778∗DAPL1. The ROC curve was generated, and the estimated AUC was 0.885 with a 95% CI of 0.813–0.958 (Figure 6A). The ARRS discriminated the radiotherapy-sensitive group from the radiotherapy-resistant group (p < 0.001) by higher ARRS score (Figure 6C) and related to histology and stage (Figure 6E). Besides, ARRS could serve as an independent radiotherapy sensitivity predictor for NSCLC and high ARRS score patients are more likely to get better radiotherapy sensitivity (OR:3.13[95%CI:1.66–4.96], p < 0.001) (Figure 6G).
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FIGURE 6. Construction and clinical correlation analysis of autophagy-related prognostic risk signature. (A) The receive operator curve (ROC) analysis for autophagy-related radiosensitivity risk signature (ARRS). AUC: Area Under Curve, FPR: false positive rate, TPR: true positive rate. (B) The ROC analysis for autophagy-related overall survival risk signature (AROS). (C) The distribution of ARRS between rediotherapy resistant and sensitive groups. Blue represents radiotherapy resistant group and pink indicates radiotherapy sensitive groups. (D) The Kaplan-Meier survival curve grouping by high- and low- AROS. The median survival time were indicated by dashed line. (E) The correlation analysis of ARRSs and clinicopathologic factors. (F) The correlation analysis of AROSs and clinicopathologic factors. (G) Multivariate logistic regression analysis of ARRSs with radiotherapy sensitivity. (H) Multivariate Cox regression analysis of AROSs with overall survival.


Moreover, a 3 ARmRNA signature was generated by multivariate Cox regression to predict the OS of NSCLC patients, and the score for each patient was calculated as follows: AROS = −0.19011∗hsa-miR-6510-3p −0.18664∗SNCA −0.14049∗SESN3 +0.06797∗DAPL1. The ROC curve was generated, and the estimated AUC was 0.790, with a 95% CI of 0.717–0.869 (Figure 6B). The K-M curves were different between the high- and low-AROS groups (p < 0.001) (Figure 6D), and multivariate Cox regression revealed that AROS served as an independent predictor of OS for NSCLC patients who scored higher AROS with shorter OS (HR:3.40[95%CI:1.44–7.99], p = 0.005) (Figure 6H). The AROS was also related to histology and stage (Figure 6F).



Landscape of Immune Microenvironment Characteristics Associated With the ARmRNA/miRNA Signature

The two prognosis-related signatures (ARRS and AROS) were then estimated for immune microenvironment characteristics. ARRS positively correlated with the infiltration of CD56 bright NK cells and central memory CD8 T cells but negatively correlated with eosinophils and type 17 T helper cells (Figure 7A), while AROS negatively correlated with the infiltration of CD56 bright NK cells in both methods (Figure 7C). In terms of the immune cycle, ARRS was positively correlated with the trafficking of eosinophil cells to tumors (Step 4) (Figure 7B), while AROS was positively correlated with the trafficking of TH1 cells to tumors (Step 4) (Figure 7D) in both methods. Finally, we also investigated the relationship between ARRS or AROS and the expression levels of immune checkpoint molecules. Low ARRS indicated low expression of SNCA, CD200R1, CD276, LGALS3, and VTCN1 but high expression of CEACAM1 (Figure 7E), while low AROS represented high expression of SNCA, CD200R1, CD276, and VTCN1 (Figure 7F).
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FIGURE 7. Role of autophagy-related prognostic risk signature in predicting immune phenotypes. (A) Correlations between ARRS and infiltration levels of tumor-associated immune cells. (B) Correlations between ARRS and immune cycle. (C) Correlations between AROS and infiltration levels of tumor-associated immune cells. (D) Correlations between AROS and immune cycle. (E) Correlations between ARRS and immune checkpoint inhibitors. (F) Correlations between AROS and immune checkpoint inhibitors.




Construction of the circRNA-miRNA-ARmRNA-ARGS Network to Regulate the Radiation Sensitivity of NSCLC

The targeted miRNAs of DEARmRNAs were predicted by miRWalk (Supplementary Table 4) and intersected with DEmiRNAs. We obtained three candidate ARmRNAs (ELAPOR1, SESN3, and SNCA) and 5 miRNAs (hsa-miR-26a-1-3p, hsa-miR-6510-3p, hsa-miR-205-5p, hsa-miR-375-3p, and hsa-miR-194-3p) for network construction (Figure 8A). Considering the conventionally negative correlation between mRNAs and miRNAs in regulatory relationships, we used the total population of TCGA NSCLC project for correlation analysis between these three ARmRNAs and their targeted miRNAs. After secondary screening, three miRNA/ARmRNA axes were recognized, namely, miR-205-5p/ELAPOR1, miR-26a-1-3p/SNCA, and miR-194-3p/SESN3 (Figures 8B–D). We then used circBank to identify the circRNAs targeting these three miRNAs (Supplementary Table 4). To enhance the affinity between circRNAs and the ceRNA network, we sought candidate circRNAs targeting two or more miRNAs. Finally, six circRNAs (hsa_circ_0019709, hsa_circ_0081983, hsa_circ_0112354, hsa_circ_0040569, hsa_circ_0135500, and hsa_circ_0098966) were identified. Finally, ARmRNA-associated ARGSs were added to form a complete regulatory network (Figure 9). All three ARGs (ELAPOR1, SNCA, and SESN3) participate in the regulation of autophagy. ELAPOR1 and SESN3 are involved in macroautophagy, and SNCA participates in chaperone-mediated autophagy.
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FIGURE 8. Construction and correlation analysis of the ceRNA network. (A) The alluvial diagram of regulatory network of ceRNA. (B) Correlation analysis between has-miR-205-5p and ELAPOR1. (C) Correlation analysis between has-miR-26-1-3p and SNCA. (D) Correlation analysis between has-miR-194-3p and SESN3.
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FIGURE 9. Diagram of the schematics of the circRNA-miRNA-ARmRNA-ARGS network. Red circles represent high-risk genes; orange circles represent their, respectively, identified regulatory miRNAs; yellow circles represent sponge circRNAs; green, blue, and purple ellipse represent corresponding ARGSs.





DISCUSSION

Although autophagy can be non-specific, there are many selective types of autophagy (Klionsky et al., 2016). For a more detailed exploration of the role of autophagy in radiotherapy responses, we referred to the GO source to identify 9 ARGSs in the present study. The differential analysis of ARGS scores revealed that late endosomal microautophagy was distinct between the radiotherapy-sensitive and radiotherapy-resistant groups. Endosomal microautophagy requires endosomal-sorting complex systems for lysosome or endosome delivery and selectively degrades KFERQ-containing proteins recognized by HSC70 (Zheng et al., 2019). Microautophagy is the least studied form of autophagy with a largely unclear cargo delivery process (Zheng et al., 2019). The significance of endosomal microautophagy in the radiotherapy sensitivity of NSCLC patients was first proposed in our study; the intrinsic mechanism is worth pursuing in the future.

Competing endogenous RNAs (ceRNAs) are transcripts that competitively bind to shared miRNAs and act as miRNA sponges to modulate each other at the posttranscriptional level (Qi et al., 2015). With the development of high-throughput sequencing technology, abundant circRNAs have been identified and have become the focus in the ceRNA family due to the abundance of conserved miRNA response elements (MREs) (Zhong et al., 2018). Previous research has demonstrated that one of the most important mechanisms of circRNAs is their action on ceRNAs. For example, circRNA hsa_circ_100395 has been demonstrated to inhibit lung cancer progression by regulating the miR-1228/TCG21 pathway (Chen et al., 2018), while circRNA_101237 promotes NSCLC progression by regulating the miR-490-3p/MAPK1 axis (Zhang Z. Y. et al., 2020). Moreover, Jin et al. (2020) revealed potential prognostic biomarkers for radiotherapies with X-rays and carbon ions in NSCLC by integrating analysis of the circRNA-miRNA-mRNA network. Overall, the role of the circRNA-miRNA-mRNA network in the radiotherapy sensitivity of NSCLC still needs further research. In our study, after generating three miRNA-ARmRNA axes (miR-194-3p/SESN3, miR-205-5p/ELAPOR1, and miR-26a-1-3p/SNCA), we obtained six circRNAs (hsa_circ_0019709, hsa_circ_0040569, hsa_circ_0081983, hsa_circ_0098996, hsa_circ_0112354, hsa_circ_0135500) that intersected these three axes and constructed a circRNA-miRNA-ARmRNA network. It is worth noting that these ARmRNAs were contained in three ARGSs, namely, regulation of autophagy, macroautophagy, and chaperone-mediated autophagy. Macroautophagy refers to the process of autophagosomes formation and fusion with late endosomes or lysosomes to form amphisomes or autolysosomes, which are the canonical and well-known participants in the autophagy process (Zheng et al., 2019). Chaperone-mediated autophagy (CMA) is another vital type of selective autophagy which selectively degrades cytosolic proteins recognized by a specific chaperone in lysosomes (Zheng et al., 2019). CMA does not rely on vesicles or membrane invagination to deliver targeted substrates and degrades 30% of cytosolic proteins. SESN3 encodes a member of the sestrin family of stress-induced proteins, which may contribute to the positive regulation of macroautophagy (Pascale et al., 2011). ELAPOR1 is an endosome-lysosome-associated apoptosis and autophagy regulator, and it may protect cells from cell death by upregulating the autophagy pathway (Deng et al., 2010). SNCA is a member of the synuclein family and negatively regulates CMA (Alvarez-Erviti et al., 2010). In summary, our study utilized circRNA-miRNA-ARmRNA network analysis to investigate the subtypes of autophagy.

With the general success of immune checkpoint inhibitor antibodies and cell-based treatments, the age of immunotherapy has arrived, which raises the question of how autophagy interacts with the immune microenvironment and contributes to cancer treatments (Li et al., 2017; Jiang et al., 2019). It remains unclear whether autophagy inhibition impairs systematic immunity. Some evidence has shown that autophagy maintains the survival of memory T cells (Puleston et al., 2014) and promotes self-renewal of B1 cells (Clarke et al., 2018), while other evidence has shown that autophagy inhibition does not impair T cell function in preclinical models of melanoma and breast cancer, including chemotherapy-treated cells (Starobinets et al., 2016). Although a greater understanding of the role of autophagy in tumor immunity is emerging, the distinction between canonical autophagy and types of selective autophagy needs to be considered. Correlation analysis of ARGSs and ICI expression levels, immune cell infiltration, and the immune cycle was conducted in our work. We found that autophagy was related to the expression levels of many ICIs and the infiltration of central memory CD8 T cells and gamma delta T cells, while peroxisome autophagy correlated with the trafficking of monocytes to tumors. Though more extensive experiments are needed to confirm this model, these results support that autophagy levels are in tune with the immune microenvironment and have the potential to contribute to monitoring and improving immunotherapy in NSCLC patients.

Despite the tremendous development of radiation technology, tumor control and survival in NSCLC patients have not substantially improved. Individual heterogeneity partly explains this. Some patients may benefit from specific treatments while others require more aggressive treatments. To improve clinical outcomes and avoid excessive medical treatment, patients should be classified into cohorts according to differences in disease susceptibility, prognosis, and likely treatment response rates (Meehan et al., 2020). Additionally, the incorporation of molecular analysis and other patient information into the prevention, investigation, and treatment of diseases is an important aspect of precision medicine (Penet et al., 2014). Some efforts have been made to identify biomarkers that could be applied to tailor radiotherapy sensitivity to individual molecular characteristics of patient tissue. Salem et al. (2017) reported a blood biomarker panel containing interleukin (IL)-1b, neutrophil count, and cytokeratin-19 antigen to predict lung cancer radiotherapy response. Saito et al. (2014) constructed a three-microRNA signature to predict responses to platinum-based doublet chemotherapy in patients with lung adenocarcinoma. Liu et al. (2019) identified a miRNA signature by an in vitro system to assess radiosensitivity for head and neck squamous cell carcinomas and validated this signature using the TCGA database (Ning et al., 2015). These studies indicate that radiotherapy sensitivity should be considered before designing the treatment plan. Furthermore, short-term radiotherapy response does not always equate to long-term treatment outcomes. Hence, we also established an OS-related signature (AROS) beyond a radiotherapy sensitivity predictive signature (ARRS). The differential expression analysis and autophagy-related gene selection provided strong background support.

With the advent of immunotherapy, the interaction of radiotherapy and the immune system has gained widespread interest, and this interaction has been increasingly reported in NSCLC (Herter-Sprie et al., 2016). Radiotherapy has been demonstrated to promote tumor cell death and enhance antitumor immune responses by converting poorly immunogenic tumors into more highly immunogenic ones, not only through immunogenic cell death (ICD) but also through the modification of the characteristics of key immune cells within the tumor microenvironment (Keam et al., 2020). However, radiotherapy may be a double-edged sword; it induces activation and infiltration of T cells to the tumor bed, but it also triggers migration of immunosuppressive cells and upregulates inhibitory ligands and receptors (Keam et al., 2020). To improve the beneficial effects and reduce the risks, the biological responses and toxicities of radiation and drugs should be accurately modeled. However, the combination and the optimal timing, dose, or schedules of radiotherapy and immunotherapy are still controversial (Aliru et al., 2018). In addition to investigating the molecular features of patients’ responses to radiotherapy, we also described their tumor microenvironment by the bulk RNA-seq results in the present study. Autophagy-related risk scores predict not only radiotherapy sensitivity and OS but also the landscape of ICIs, immune cell infiltration, and immune cycle activation. These signature models may aid treatment decision making with consideration of concurrent radiotherapy and immunotherapy.

There were several limitations to this study. First, due to the incompleteness of primary therapy outcome success data in TCGA, fewer than 90 patients met our inclusion requirements. In addition, the lack of an index may render an inaccurate interpretation. Second, the prognostic signature was not validated because of the rarity of data sets recording radiotherapy responses in NSCLC patients. Third, although a potential regulatory mechanism has been constructed, no experimental support was provided. To ameliorate the limitations described above, single institution or multicenter clinical retrospective or prospective study should be conducted to verify the predictive value of prognostic signatures, and experiments should be rigorously designed to demonstrate the regulatory network of NSCLC.

In conclusion, we examined the role of autophagy-related genes (ARGs) and gene sets (ARGSs) in the radiotherapy response of NSCLC patients by mining public data. First, we verified the clinical significance of autophagy in the radiotherapy response of NSCLC patients by analyzing the correlation between ARGs or ARGSs and clinicopathologic factors, prognosis, and the immune microenvironment. In addition, the circRNA-miRNA-ARmRNA-ARGS network was constructed to predict the regulatory mechanisms underlying the radiation response of NSCLC. In summary, our work provided useful information to introduce potential molecular classifications and regulatory mechanisms into radiotherapy short- and long-term responses of NSCLC patients.
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Background: Colon cancer (CC) remains one of the most common malignancies with a poor prognosis. Pyroptosis, referred to as cellular inflammatory necrosis, is thought to influence tumor development. However, the potential effects of pyroptosis-related regulators (PRRs) on the CC immune microenvironment remain unknown.
Methods: In this study, 27 PRRs reported in the previous study were used to cluster the 1,334 CC samples into three pyroptosis-related molecular patterns. Through subtype pattern differential analysis and structure network mining using Weighted Gene Co-expression Network Analysis (WGCNA), 854 signature genes associated with the PRRs were discovered. Further LASSO-penalized Cox regression of these genes established an eight-gene assessment model for predicting prognosis.
Results: The CC patients were subtyped based on three distinct pyroptosis-related molecular patterns. These pyroptosis-related patterns were correlated with different clinical outcomes and immune cell infiltration characteristics in the tumor microenvironment. The pyroptosis-related eight-signature model was established and used to assess the prognosis of CC patients with medium-to-high accuracy by employing the risk scores, which was named “PRM-scores.” Greater inflammatory cell infiltration was observed in tumors with low PRM-scores, indicating a potential benefit of immunotherapy in these patients.
Conclusions: This study suggests that PRRs have a significant effect on the tumor immune microenvironment and tumor development. Evaluating the pyroptosis-related patterns and related models will promote our understanding of immune cell infiltration characteristics in the tumor microenvironment and provide a theoretical basis for future research targeting pyroptosis in cancer.
Keywords: pyroptosis, colon cancer, tumor microenvironment, prognosis, machine learning
INTRODUCTION
Colon cancer (CC) is one of the most common malignancies of the digestive system, and it still has a high mortality (Sanoff et al., 2007). Worryingly, the recurrence and mortality rates of CC are in fact increasing (Bray et al., 2018). In spite of recent developments in treatment, the 5-years survival rate has not been significantly improved. Consequently, it is urgent to find gene signatures or biomarkers to identify the inherent genetic and epigenetic heterogeneity of CC and establish prognostic models for guiding therapy.
Numerous studies have shown that cancer cells can undergo cell death through pyroptosis, but the function of pyroptosis in tumor development and the tumor immune microenvironment are still controversial (Miao et al., 2011; Broz et al., 2020; Petley et al., 2021). Pyroptosis refers to a distinct form of programmed cell death, which is characterized by cells swelling with large ballooning bubbles emerging from the plasma membrane and releasing inflammatory cellular contents (Zhang et al., 2018; Frank and Vince, 2019). Unlike apoptosis, pyroptosis contributes to the activation of a variety of cytokines and danger-associated signaling molecules, which is accompanied with immune cell infiltration and inflammatory responses (Frank and Vince, 2019). During the process of pyroptosis, mature caspase-1 promotes the production of pro-inflammatory cytokines of the classical pathway, such as IL-1β7 and IL-18, which can recruit inflammatory cells and influence the tumor microenvironment (TME) (Dupaul-Chicoine et al., 2010; Kolb et al., 2014). Additionally, caspase-3 can be activated by antitumor drugs and promote the cleavage of gasdermin E (GSDME) into GSDME-N to switch the cell death mode from apoptosis to pyroptosis (Kayagaki et al., 2015; Tang et al., 2020). Pyroptosis can promote a tumor-suppressive environment by recruiting inflammatory cells and causing local inflammation, but it can also inhibit antitumor immunity and promote tumor development in many cancer types (Martinon et al., 2002; He et al., 2015; Van Gorp and Lamkanfi, 2019). For instance, it was reported that pyroptosis in a small fraction of cancer cells in the central hypoxic region of the tumor induces chronic tumor necrosis, which in turn inhibits antitumor immunity (Kayagaki et al., 2011). Accordingly, the role of pyroptosis in the development of CC still requires further study.
Recent studies have suggested that pyroptosis-related (PR) regulators would play a significant role in regulating pyroptosis (Knodler et al., 2014; Viganò et al., 2015; Yang et al., 2018). Gasdermin D (GSDMD) has been proved to be a direct substrate of inflammatory caspases and plays the role of the major executor of pyroptosis in macrophages (Wang et al., 2020). Studies have also proposed that GSDMD may be positively correlated with the migration and invasion of lung cancer (Zanoni et al., 2016). However, downregulation of GSDMD expression was found to promote S/G2 cell cycle transition, which indicated that GSDMD may serve as a tumor suppressor in gastrointestinal cancers (Zanoni et al., 2016). Furthermore, GSDMA/B/C was proved to be the substrate of caspases or granzymes, and the oligomerization of its N-terminal in the membrane was found to increase pyroptosis (Lee et al., 2018). In most previous studies, the function of these PR regulators was identified individually through classical approaches. However, the composition of the TME is complex, and many tumor regulators can interact in a highly coordinated manner. Therefore, comprehensively estimating the immune cell infiltration characteristics of the TME with multiple PR regulators would increase our understanding of tumor immunity and the antitumor inflammatory response.
In the current study, we established a molecular subtype classification pattern by integrating the genomic information of 1,023 CC samples based on 27 PR regulators. The CC samples were classified into three distinct PR patterns, which were associated with the tumor immune microenvironment and prognosis. Additionally, we developed a risk assessment tool related to PR regulators and defined the PR risk assessment model (PRM) scores using LASSO regression analysis and machine learning, which could be used to assess the prognosis, immune infiltration, and potential treatment targets of CC.
MATERIALS AND METHODS
Colon Cancer Dataset Source
The workflow chart is shown in the Supplementary Data (Supplementary Figure S1). The public gene-expression data for transcriptome profiling and the corresponding clinical annotation were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database on May 1, 2021. There were four eligible CC cohorts of gene-expression data (GSE39582, GSE33113, and TCGA–Colon Adenocarcinoma [TCGA-COAD) (discovery data) and GSE17538 (independent validation data)]. We downloaded the raw microarray data form the Affymetrix Human Genome U133 Plus 2.0 Array of GEO database and the RNA sequencing data (fragments per kilobase of transcript million mapped reads (FPKM) value) of TCGA. We employed the “ComBat” algorithm in “SVA” package to adjust the batch effects from nonbiological technical biases among different CC RNA-seq data. And all of the RNA-seq data were adjusted for background adjustment and quantile normalization with robust multiarray averaging method in “affy” and “simpleaffy” packages. And the DNA sequencing of annotated somatic mutation of single-nucleotide polymorphisms (SNPs) and copy number variation (CNV) data for CC were also downloaded from TCGA. All CC samples were coded according to the third Edition of International Classification of Diseases for Oncology (ICD-O-3). And the exclusion criteria included patients with incomplete survival information and missing data on neoplasm histologic type.
Identification of Pyroptosis-Related Regulators
From previous research, we identified a total of 27 PR genes presented in the Supplementary Data (Supplementary Table S1). All of PR genes were gathered from previous study and MSigDB database (Latz et al., 2013; Shi et al., 2015; Orning et al., 2018; Karki and Kanneganti, 2019; Li et al., 2021). For example, the previous study suggested that the caspase (CASP) family (CASP1, CASP3, CASP4, CASP5, CASP6, CASP8, and CASP9) was related to GSDMD, GSDMB, GSDMA, and GSDMC, which were significant for cancer cell pyroptosis (Shi et al., 2015; Li et al., 2021). And study showed that CASP3 and Granzyme B (GZMB) could help to convert cell apoptosis into pyroptosis (Orning et al., 2018). A protein–protein interaction (PPI) network for the differentially expressed genes (DEGs) was constructed with Search Tool for the Retrieval of Interacting Genes (STRING), version 11.0 (https://string-db.org/).
Unsupervised Clustering for Colon Cancer Molecular Subtypes
We built a novel PR molecular subtype based on the level of 27 PR genes identified from three CC cohorts. The unsupervised clustering analysis clustering algorithm was performed to estimate the patterns of pyroptosis regulation and classify the CC samples for further analysis. The stability and patterns of molecular clusters were adjusted by the consensus clustering algorithm (Wong, 1979). The “ConsensuClusterPlus” package was employed to cluster, and the process was performed 1,000 times (Wilkerson and Hayes, 2010).
Identification of Differentially Expressed Genes Among Subtypes
To identify PR regulators genes, we need to estimate the expression level of different genes for studying the molecular feature among PR subtypes. We identified the DEGs with the empirical Bayesian approach in “limma” package, and we set the |log2-fold change| > 1 and false discovery rate (FDR) < 0.05 as the significance criteria.
Gene Set Variation Analysis and Gene Set Enrichment Analysis
To investigate the molecular feature among PR subtypes, we established gene set variation analysis (GSVA) enrichment analysis with “GSVA” R packages (Hänzelmann et al., 2013). The gene set of “c2. cp.kegg.v6.2. symbols” and “c5. all.v6.2. symbols.gmt” were gathered from the MSigDB database to be used in GSVA. H: Hallmark gene sets; C2: curated gene sets [including Kyoto Encyclopedia of Genes and Genomes (KEGG)] were downloaded from the MSigDB database to be used in gene set enrichment analysis (GSEA) with the software gsea 3.0. And we set the adjusted p < 0.05, nominal (NOM) p < 0.05, and FDR q < 0.05 as the statistically significance to identify the difference on biological process.
Estimation of Infiltrating Immune Cells and Immune Microenvironment Characteristics
The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) was used to calculate the stromal score, immune-score, tumor-purity, and ESTIMATE-score for CC (Song et al., 2017). The enrichment levels of the 29 immune signatures were established based on the genes set from MSigDB database (Supplementary Table S1) with the single-sample GSEA (ssGSEA) (Ritchie et al., 2015; Bu et al., 2021). And the infection of 22 human immune cells in TME was established with cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) web portal (https://cibersortx.stanford.edu/) and 1,000 permutations (Chai et al., 2019). The deconvolution algorithm output had a p-value <0.05 was set as successful and accurate deconvolution, which would be normalized to make their direct interpretation as cell fractions for comparison across different groups.
Weighted Gene Co-Expression Network Analysis
The Weighted Gene Co-expression Network Analysis (“WGCNA”) R package was employed to build the co-expression network of DEGs (van Houwelingen et al., 2006). The co-expression similarity matrix, Pearson’s correlation matrices, and average linkage method were involved in evaluating the correlations among the included genes. The Amn = |Cmn|β (Amn is theadjacency between gene m and gene n; Cmn, Pearson’s correlation between gene-m and gene-n; and β, soft thresholding parameter) could show that the strength of correlations contributes to the weighted adjacency matrix with a scale-free co-expression network. The topological overlap matrix (TOM) was used to identify the connectivity and dissimilarity of the co-expression network established with an appropriate β value.
Statistical Analysis
The log-rank test and the Kaplan–Meier survival analysis were used to evaluate the difference in overall survival (OS) among different groups. We used the package “caret” to allocate all the CC patients in inner-training and inner-testing groups randomly through the 8:2 ratio, which contributed to enhance the generalization ability of model. The LASSO-penalized Cox regression model was used to evaluate the role of genes to identify signatures significantly associated with the patients’ OS. And the 10-fold cross validation was employed to prevent overfitting with the penalty parameter lambda.1se (Heagerty et al., 2000). The univariable and multivariate Cox regression analyses were used to identify the independent prognostic factors and to establish eight PR signatures and nomogram based on the forward and backward elimination methods. The area under the curve (AUC) and the time-dependent receiver operating characteristic (ROC) curve were used to evaluate the prognostic accuracy of the eight PR signatures model in inner-training and inner-testing groups with the package “survival ROC” (Pei et al., 2020). The PRM-scores were established based on the eight PR signatures model, and the median of PRM-scores was set as the cutoff value to the separate patients into high- and low-PRM-score groups. Bootstrap method was performed to validate the Cox model internally and externally. Bootstrap-corrected OS rates were calculated by averaging the Kaplan–Meier estimates based on 2,000 bootstrap samples.
RESULTS
The Genetic and Expression Characteristics of Pyroptosis-Related Regulators in Colon Cancer
A total of 27 PR regulators were identified in CC in this study with three eligible CC cohorts. We dissect the incidence of somatic mutations and molecular signatures of PR regulators in CC from TCGA-COAD (Figure 1A). The result showed that 109 of 590 CC samples experienced mutations of PR regulators, with frequency of 23.33%. It was found that the missense mutation exhibited the highest frequency variant classification. Both C>T ranked and SNPs were the most frequent alternatives in single-nucleotide variant (SNV) class and variant type. The NLRP7 exhibited the highest alteration frequency followed by SCAF11, while the PRKACA, CASP6, PYCARD, and TNF showed extremely low alteration frequency in CC samples (Figure 1B). To ascertain whether the above genetic variations influenced the expression of PR regulators in CC patients, we investigated the mRNA expression levels of regulators between normal and CC samples (Mann–Whitney U test; *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 1C). The expression of CASP4, GASP8, GPX4, GSDMC, GZMB, IL1B, NOD1, NOD2, and PLCG1 was increased; while the expression of AIM2, CASP1, CASP3, CASP5, CASP6, CASP9, GSDMB, GZMB, IL18, NLRP1, and NLRP7 was decreased in CC samples compared with normal tissues. Correlation analysis was performed with genetic variation and expression variations of PR regulators in CC to further investigate the relationship among these regulators (left: genetic variation; right: expression variations) (Figure 1D). The correlation network containing all PR genes is presented in Figure 1E (red: positive correlations; blue: negative correlations).
[image: Figure 1]FIGURE 1 | Landscape of genetic and expression variation of pyroptosis-related regulators in colon cancer. (A, B) The mutation frequency and classification of 27 pyroptosis-related regulators in colon cancer based on The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD). (C) The expression of 27 pyroptosis-related regulators in colon cancer and normal tissues: tumor, blue; and normal, red. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show the outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D) Heatmap showing the correlation of genetic variation and expression variations of pyroptosis-related regulators. Left: genetic variation; right: expression variations. p < 0.05. (E) The correlation network of the pyroptosis-related genes (red line, positive correlation; blue line, negative correlation; the depth of the colors reflects the strength of the relevance).
Construction of a Molecular Subtype Classification Pattern for Colon Cancer Mediated by 27 Pyroptosis-Related Regulators
To explore the potential biological molecular of PR regulators, we established a PR molecular subtype using consensus clustering analysis for CC patients. Three CC datasets with available clinical and follow-up information (GSE39582, GSE33113, and TCGA-COAD) were incorporated into one meta-cohort and clustered into three molecular subtypes (PR-A, PR-B, and PR-C) based on the expression of 27 PR regulators (Figure 2A). There are high intragroup correlations and low intergroup correlations in this classification pattern. There was also a significant difference in the survival among three subtypes (Figure 2B). The results of survival analysis proved that the OS of the PR-B and PR-C groups was significantly lower than that of the PR-A group according to the Kaplan–Meier curves of the CC cohorts (log-rank test, p < 0.01, Figure 2B). The expression of 27 PR regulators was different in three subtypes (ANOVA test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 2C). In order to further portray the biological characteristics of these distinct molecular subtypes, we established GSVA enrichment analysis, including the KEGG and Gene Ontology (GO). The PR-A showed enrichment in terms of pathways associated with immune activation, including IL-17 production, T cell-mediated cytotoxicity, T cell-mediated, T-cell chemotaxis, and T-cell migration and differentiation. PR-B presented enrichment pathways including the proximal tubule bicarbonate reclamation, nitrogen metabolism, and tyrosine phosphorylation of STAT5 protein. While the enrichment pathways in PR-C were associated with immune suppression, including downregulation in natural killer (NK) cell activation involved in immune response, B-cell proliferation, and T-cell activation involved in immune response.
[image: Figure 2]FIGURE 2 | Subgroups of colon cancer related by pyroptosis-related regulators. (A) The consensus score matrix of all colon cancer patients when k = 3 in three cohorts based on the three eligible colon cancer (CC) cohorts of gene-expression data (GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD)). Two samples were more likely to be grouped into the same cluster when there was a higher consensus score between them in different iterations. (B) OS curves for the three pyroptosis-related (PR) clusters based on colon cancer patients from three cohorts (log-rank test, p < 0.01). OS, overall survival. (C) The expression of 27 pyroptosis-related regulators in three PR clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (D) These heatmaps were employed to visualize Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed by gene set variation analysis (GSVA), which presented the enrichment biological pathways in distinct three PR clusters (Bayes moderation, ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001).
Different Characteristics of Tumor Microenvironment Cell Infiltration Among Three Pyroptosis-Related Subtypes
In addition, we tend to estimate the immune microenvironment among the PR molecular subtypes. The TME cell infiltration characteristics were calculated with ESTIMATE, including the tumor purity and immune-scores (ANOVA test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 3A). The result showed that the immune-scores and ESTIMATE were the highest in PR-A among three subtypes, which suggested that the PR-A presented a high level of immune fully activation. The highest stromal-scores and tumor purity were in PR-C, and the lowest immune-scores were in PR-C, which suggested that the PR-C may characterized by the suppression of immunity. To investigate the proportions and differences of tumor infiltrating immune cell subsets among PR regulators subtypes, we employed a deconvolution algorithm with the CIBERSORT method (Figure 3B, Supplementary Figures 1A,B). The results noted that there were significant differences on the compositions of TME cell types among the three PR subtypes, which suggested that PR regulators may influence the types of TME infiltrating cell in CC. We found that the infiltration of activated immune cell in TME was abundant in PR-A, including the presence of CD8 T cells, activated NK cells, and B cells (ANOVA test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 3C), which were same with the immune-scores from ESTIMATE. The high level of immunity may be related to the significant survival advantage (Bai et al., 2020). The PR-B was enriched with M1 macrophages, dendritic cells, plasma cells, and CD8 T cells. And the PR-C was enriched with M2 macrophages, naive B cell, CD4 T-cell memory resting, and T-cell regulatory cells (Tregs). The PR-C was reached with M2 macrophages, resting dendritic cells, and Tregs. And we quantify the enrichment levels of immunity related pathways and immune cells in CC via ssGSEA with a total of 29 immune-associated gene sets (Supplementary Figure S2). There was a significant difference in level of HLA genes among three subtypes. The checkpoint, CD8 T cells, HLA, MHC, and TILs were the highest in PR-A, which suggested the potentially ability for immune-inflamed. Based on the characterization of TME cell infiltration and biological molecular, PR-A was classified as immune-activated phenotype, with abundant immune cell infiltration and survival advantage; PR-B was classified as intermediate phenotype; and PR-C was classified as immune-excluded phenotype, characterized by the low immune response and high tumor purity. But the type of TME immune cells was the same among different subtypes, which showed that the PR regulators may regulate the level of immune cell infiltration and that they could not influence the types of cells in TME.
[image: Figure 3]FIGURE 3 | Distinct three pyroptosis-related (PR) clusters showed diverse tumor microenvironment (TME) cell infiltration. (A) The level of stromalScores, immuneScores, ESTIMATEScores, and tumorPurity calculated with ESTIMATE in three PR clusters based on the three eligible colon cancer (CC) cohorts of gene-expression data (GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD)). (B) Heatmap showing the correlation of TME cell infiltration calculated with CIBERSORT. (C) The level of TME cell infiltration in three PR clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant.
Development and Validation of Risk Assessment Tool-Constructions Related to Pyroptosis-Related Regulators for Colon Cancer Patients
To further reveal the role of PR subtypes for prognosis and treatment of CC and apply the clusters to guide subsequent treatment, we established risk assessment tool-constructions based on the PR subtypes. All the genes were analyzed for co-expression network analysis using the WGCNA package (Figure 4A, Supplementary Figure S3). The association was built among the expression of gene and the PR clusters and clinical information based on the three eligible CC cohorts of gene-expression data (GSE39582, GSE33113, and TCGA-COAD). A total of 18 modules were identified; and the ME in the brown, yellow, red, and pink modules showed significantly higher association with PR regulators clusters than other modules in CC. From these modules, we identified 854 signature genes associated with the PR regulators (p < 0.05), which were selected for further analysis. Next, we estimated the independent prognostic signature of these genes using univariate Cox regression analysis, and the p-value <0.05 was considered to be the cutoff criteria. Patients from TCGA-COAD, GSE33113, and GSE39582 were randomly divided into inner-training and inner-testing groups through the 8:2 ratio. And we set GSE17538 as the independent validation cohort. Next, we established the LASSO-Cox regression model and cross validation to calculate the mean-squared error of genes with independent prognostic factors (Figure 4B). Eight genes, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), chemokine (C-C motif) ligand 11 (CCL11), ninein (NIN), transmembrane protein 154 (TMEM154), kinesin family member 7 (KIF7), KIAA1671, ribonuclease P/MRP 14-kDa subunit (RPP14), and cadherin 19 (CDH19), were identified with the LASSO-Cox regression model and multivariate Cox regression analysis, which were used to establish the PRM (Figure 4B). All of these genes had significant independent prognostic factors in multivariate Cox regression analysis (Figure 4C). Besides these, eight genes expression were different in three PR subtypes (ANOVA test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 4D). And CTLA4, CCL11, NIN, TMEM154, KIAA1671, RPP14, and CDH19 expressions were associated with immune-scores (Figure 4E). The prognostic index formula for CC was as follows: PRM-scores = [Status of CTLA4 * (−0.27274) + Status of CCL11 * (−0.05312) + Status of NIN * (0.30814) + Status of TMEM154 * (−0.21183) + Status of KIF7 * (0.55555) + Status of KIAA1671 * (−0.15928) + Status of RPP14 * (−0.34418) + Status of CDH19 * (0.45252)]. We divided colon patients into high- and low-PRM-score groups based on the median value, which was set as the cutoff value to divide the patient into high or low group in the validation cohorts.
[image: Figure 4]FIGURE 4 | Generation of risk assessment tool-constructions to predict patient survival related to pyroptosis-related regulators for colon cancer patients. (A) Identification of a co-expression module in colon cancer. Each piece of the leaves on the cluster dendrogram corresponded to a gene, and those genes with similar expression patterns compose a branch. Correlation between gene modules and clinical features or three pyroptosis-related (PR) clusters. The upper row in each cell indicates the correlation coefficient ranging from −1 to 1 of the correlation between a certain gene module and clinical features or three PR clusters. The lower row in each cell indicates the p-value. (B) In the LASSO-Cox model of inner-training cohort from GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD) data, the minimum standard was adopted to obtain the value of the super parameter l by 10-fold cross validation. (C) Hazard ratio and p‐value of the constituents involved in multivariate Cox regression analyses of eight signatures in inner-training cohorts. (D) The expression of eight signatures in three PR clusters: PR-A, red; PR-B, green; and PR-C, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical p-value. ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (E) The association between the immuneScores calculated with ESTIMATE and the expression of eight signatures related to three PR clusters.
The survival analysis suggested that the OS of the high-PRM-score group was significantly lower than that of the low-PRM-score group in inner-training cohort (log-rank test, p < 0.001, Figure 5A), as well as the Kaplan–Meier curves of the inner-testing cohort (log-rank test, p < 0.001, Figure 5E). The PRM-score distribution and the expression of eight PR significant genes in the inner-training and inner-testing cohorts are presented in Figures 5B,C,F–G. Then, ROC curves were used to estimate the validity of the eight PR risk assessment tool-constructions in CC cohorts. The AUCs were equal to 0.738 at 3 years and 0.782at 5 years in the inner-training group (Figure 5D, Supplementary Figures 4A, B). Similarly, the AUCs were equal to 0.708 at 3 years and 0.753 at 5 years in the inner-testing group (Figure 5H, Supplementary Figure 4C), which showed that the model could achieve satisfactory predictive accuracy in both the inner-training and inner-testing cohorts. We established the survival analysis and ROC curves in the independent validation cohort (GSE17538), which showed the significant difference in OS between high- and low-PRM-score groups (log-rank test, p < 0.001, Supplementary Figure 5A). The AUCs were equal to 0.644 at 3 years and 0.684 at 5 years in the independent validation group (Supplementary Figures 5B, C). And we established the model to predict the prognosis based on PR genes with “random Survival Forest” (Supplementary Figures 6A–C). And the 10-fold cross validation was employed to prevent overfitting.
[image: Figure 5]FIGURE 5 | Construction and validation of the PRM-scores in colon cancer cohorts. (A) Kaplan–Meier curves for the overall survival (OS) of colon patients in inner-training cohort between the high- and low-PRM-scores groups based on GSE39582, GSE33113, and The Cancer Genome Atlas—Colon Adenocarcinoma (TCGA-COAD) data (log-rank test, p < 0.01). (B, C) Distribution of PRM-scores and the expression of eight signatures related to three pyroptosis-related (PR) clusters in inner-training cohort. (D) receiver operating characteristic (ROC) curves demonstrated the predictive efficiency of the PRM-scores in inner-training cohort. (E) Kaplan–Meier curves for the OS of colon patients in validation cohort between the high- and low-PRM-scores groups (log-rank test, p < 0.01). (F, G) Distribution of PRM-scores and the expression of eight signatures related to three PR clusters in validation cohort. (H) ROC curves demonstrated the predictive efficiency of the PRM-scores in validation cohort.
Differences of Immune Function and Biological Characteristic Between Risk Assessment Model-Scores Groups
We estimated the immune microenvironment between the eight genes related high- and low-PRM-score groups. Only the immune-scores were significant different between two groups, and the level of tumor-purity was the same in the two groups (Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 6A). We found that the infiltration of activated immune cell in TME was abundant in low-PRM-score groups, including the M1 macrophages, NK cells, CD4 T cells (Mann–Whitney U test, *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant) (Figure 6B). To further evaluate the association between the expression of the tumor immune microenvironment and these eight genes, we analyzed the corrections between the 22 types of immune cell infiltration profiles and these eight genes (Supplementary Figure S7). GSEA was used to analyze potential biological characteristics of the PRM-score groups in CC patients. As shown in Figures 6C,D, according to the Hallmark and KEGG collection defined by MSigDB, the genes in the high-PRM-score group were mainly enriched in angiogenesis, KRAS signaling, and epithelial mesenchymal transition. And the genes in the low-PRM-score groups were mainly enriched in cell cycle, P53 signaling pathway, T-cell receptor signaling pathway, and PI3K/AKT/MTOR signaling.
[image: Figure 6]FIGURE 6 | Characteristics of the PRM-scores scoring model for colon cancer patients. (A) The level of stromalScores, immuneScores, ESTIMATEScores, and tumorPurity calculated with ESTIMATE in high- and low-PRM-scores groups. (B) The level of tumor microenvironment (TME) cell infiltration in high- and low-PRM-scores groups: high PRM-scores, red; and low PRM-scores, blue. The upper and lower ends of the boxes represent the interquartile range of values. The lines in the boxes represent median value, and black dots show outliers. The asterisks represent the statistical p-value. Mann–Whitney U test. *p < 0.05; **p < 0.01; ***p < 0.001; p ≥ 0.05, not significant. (C) The enriched gene sets in Kyoto Encyclopedia of Genes and Genomes (KEGG) by samples with high-risk sample. And only several leading gene sets are displayed in the plot. (D) Enriched gene sets in Hallmark collection by samples of high-risk sample. Only several leading gene sets are shown in the plot. Each line represents one particular gene set with unique color, and upregulated genes are located in the left approaching the origin of the coordinates; by contrast, the downregulated genes are on the right of the x-axis. Only gene sets with nominal (NOM) p < 0.05 and false discovery rate (FDR) q < 0.05 were considered significant. And only several leading gene sets are displayed in the plot.
Establishment and Validation of the Nomogram
The univariate and multivariable Cox regression models were applied to the inner-training cohort to evaluate the predictors of OS. Univariate analyses indicated that age, stage-N, stage-M, PRM-scores, and PR subtypes were associated with OS in CC patients (p < 0.05 in all cases, Table 1). Next, the multivariate Cox analyses found that age, stage-N, stage-M, PRM-scores, and PR subtypes were independent risk factors for OS based on forward and backward elimination methods (Table 1).
TABLE 1 | Univariable and multivariable Cox regression analyses of OS in CC patients.
[image: Table 1]Because stage-N, age, stage-M, PRM-scores, and PR subtypes were predictive for OS in multivariate analysis, these variables were further included in the nomogram, which was for predicting the 1, 3, and 5-years OS for CC patients (Figure 7A). The weighted total score, calculated from these factors, was applied to predict the 1, 3, and 5-years OS of CC patients.
[image: Figure 7]FIGURE 7 | The clinical application value of the PRM-scores scoring model and pyroptosis-related (PR) clusters. (A) A nomogram was established for predicting 1, 3, and 5-years overall survival (OS) in colon cancer. To calculate probability of OS, first, determine the value for each factor by drawing a vertical line from that factor to the points scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then sum up all of the individual values and draw a vertical line from the total points scale to the 1, 3, and 5-years OS probability lines to obtain OS estimates. (B) The decision curve analysis (DCA) of nomogram in inner-training set for 5 years OS. (C) Calibration curves for the probability of OS at 5 years. The nomogram cohort was divided into three equal groups for validation. The gray line represents the perfect match between the actual (y-axis) and nomogram-predicted (x-axis) survival probabilities. Black circles represent nomogram-predicted probabilities for each group, and X’s represent the bootstrap-corrected estimates. Error bars represent the 95% CIs of these estimates. A closer distance between two curves suggests higher accuracy.
Besides, the model showed good accuracy for predicting the OS, and internal validation was performed using the inner-training cohort with a C-index of 0.739. Furthermore, the decision curve analysis (DCA) results of the nomograms also confirmed their clinical applicability for predicting the OS, with superior performance compared with PRM-scores and PR subtypes (Figure 7B). Calibration curves for the probability of OS at 3 and 5 years indicated satisfactory consistency between actual observation and nomogram-predicted OS probabilities in CC cohort (Figure 7C, Supplementary Figure 4B).
DISCUSSION
Pyroptosis is a newly discovered type of programmed cell death induced by inflammasomes, leading to membrane rupture and the release of cell contents that trigger the inflammatory response. It has a dual function in tumor development, inhibiting tumor growth in liver cancer and having an ambiguous effect in breast cancer (Tan et al., 2021). Gasdermin family proteins are the executors of pyroptosis, which is regulated by multiple signaling factors and stromal cells in the TME. A comprehensive bioinformatics analysis of PR regulators is needed to evaluate the involved molecular signatures and signaling pathways, promising better results than those obtained when judging the prognosis using individual gasdermin proteins. Therefore, we evaluated the factors and molecular signatures related to pyroptosis to establish a classification and prognostic model, which provides potential signatures for CC therapy targeting pyroptosis.
In this study, we revealed three distinct pyroptotic tumor subtypes based on the expression of 27 PR regulators. These three subtypes had a significantly distinct prognosis, immune cell infiltration, and molecular characteristics. The PR-A subtype was characterized by a survival advantage, high immune-scores, and abundant immune cell infiltration, corresponding to an immunologically activated phenotype. The PR-B subtype corresponded to an intermediate phenotype. Finally, the PR-C type was characterized by a low immune response and high tumor purity, corresponding to an immune-excluded phenotype. According to the functional enrichment analysis, PR-C tumors exhibited low immune-scores and IL-17 production, T cell-mediated cytotoxicity, T-cell chemotaxis, and T-cell migration and differentiation, which were related to immune suppression, including the downregulation of NK cells, reduced B-cell proliferation, and subdued T-cell activation.
In order to provide a theoretical basis for the clinical treatment of CC, we established a reliable risk assessment tool based on three PR subtypes. The PS-score takes into account the heterogeneity of patients and links pyroptosis with the clinical prognosis. The PRM-scores were estimated based on the fractions of eight genes from the PR key module, and it featured both tumor promoter and suppressors, which were weighted differently. CTLA4, a member of the immunoglobulin superfamily, has been proved to act as an immunosuppressor that can convey the inhibitory signal to T cells in most tumors (Liu et al., 2021a; Sena et al., 2021). The treatment with immune checkpoint inhibitors (ICIs) against CTLA4 could reinvigorate the exhausted antitumor immunity (Wang et al., 2021a; Imazeki et al., 2021). Our results showed that CTLA4 expression is related to the tumor infiltration characteristics of multiple immune cell types. CCL11, a neutrophil-related chemokine, exerts a chemotactic effect on eosinophils by interacting with CXCR3 and CCR5 (Wang et al., 2021b), which was found to be a potential prognostic signature for TNM stage II CC patients (Liu et al., 2021b). NIN is essential for the construction of the centrosome and helps regulate cell migration and polarity (Goldspink et al., 2017). SNPs of NIN were found to be related with the morbidity of CRC (Grosch et al., 2013). The research on KIAA1671, CDH19, and TMEM154 mainly focused on their prognostic implications (Blons et al., 2002; Fernández-Madrid et al., 2004; Zhang et al., 2020). It was reported that CDH19 was related to the inflammatory response (Oparina et al., 2015). KIF7 is a member of the kinesin family that plays a significant role in cancer proliferation (Yao et al., 2019). TME cell infiltration data demonstrated that the PS-score holds an important value for immunotherapy. More activated immune cell infiltration in patients with a low PS-score predicted a better response to immunotherapy. Furthermore, we established an efficient and accurate nomogram to guide subsequent treatment for CC patients.
Finally, there are also some limitations that should be kept in mind when considering this research. Although we used multi-database searches to perform the verification from multiple angles, all of the database searches were retrospective and lacked complete clinical information. It is necessary to conduct prospective studies and perform subgroup validation. Furthermore, there is little current research on the role of pyroptosis in CC, and our research can only provide preliminary theoretical support for future experimental verification. The risk model developed in this study did not exhibit a better predictive value for the OS of CC patients, and the random survival forest algorithm exhibited overfitting and high variance. We plan to implement a more suitable machine learning method to improve the predictive ability.
In conclusion, we conducted a comprehensive and systematic bioinformatics analysis for PR regulators and demonstrated their relationship with the development of CC. This study also suggests the extensive effect of PR regulators on the tumor immune microenvironment based on the established PR CC subtypes. Moreover, we identified eight PR independent risk signatures, and we built the PRM-score for assessing the prognosis of CC patients. Our comprehensive evaluation of PR regulators improves our understanding of the TME and provides an important theoretical basis for prognosis and selection of therapeutic strategies.
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 This study aims to determine hub genes related to the incidence and prognosis of EGFR-mutant (MT) lung adenocarcinoma (LUAD) with weighted gene coexpression network analysis (WGCNA). From The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we used 253 EGFR-MT LUAD samples and 38 normal lung tissue samples. At the same time, GSE19188 was additionally included to verify the accuracy of the predicted gene. To discover differentially expressed genes (DEGs), the R package “limma” was used. The R packages “WGCNA” and “survival” were used to perform WGCNA and survival analyses, respectively. The functional analysis was carried out with the R package “clusterProfiler.” In total, 1450 EGFR-MT–specific DEGs were found, and 7 tumor-related modules were marked with WGCNA. We found 6 hub genes in DEGs that overlapped with the tumor-related modules, and the overexpression level of B3GNT3 was significantly associated with the worse OS (overall survival) of the EGFR-MT LUAD patients (p < 0.05). Functional analysis of the hub genes showed the metabolism and protein synthesis–related terms added value. In conclusion, we used WGCNA to identify hub genes in the development of EGFR-MT LUAD. The established prognostic factors could be used as clinical biomarkers. To confirm the mechanism of those genes in EGFR-MT LUAD, further molecular research is required.
Keywords: EGFR–mutant lung adenocarcinoma, prognosis, WGCNA, TCGA, GEO
INTRODUCTION
Lung cancer is the most prominent cancer-related cause of death worldwide. Non–small-cell lung carcinoma (NSCLC) accounts for 75–80 percent of all lung cancers and is often detected at an early stage, resulting in a poor prognosis (Liu et al., 2017). Lung adenocarcinoma is the most prevalent form of NSCLC (LUAD) (Yang et al., 2020a).
Significant advances in the understanding of lung cancer, especially LUAD, have been made in recent years. The epidermal growth factor receptor (EGFR) has been identified as an oncoming engine. Especially in Asian lung adenocarcinoma patients, the frequency of EGFR mutations is higher (Devanagari et al., 2015). Treatments for managing EGFR-mutant (EGFR-MT) LUAD included the following: radiation therapy, surgery, chemotherapy, and EGFR tyrosine kinase inhibitors (TKIs) (Hsu et al., 2018). Based on the diagnosis, suitable variations of the three treatment modalities are chosen. Although the overall survival (OS) of EGFR-MT LUAD patients has been significantly improved due to the emergence of TKIs, there are still some critical patients or TKI-resistant patients with limited survival advantages (Yang et al., 2020b).
In the past few decades, high-throughput technologies such as gene chips and gene sequencing have been widely used to identify driver genes and detect important somatic nucleotide polymorphisms, and gene fusions during tumorigenesis, recurrence, and metastasis (Luo et al., 2018; Nahum et al., 2018; O'Farrell et al., 2019). Understanding these genetic alterations may assist in interpreting the molecular mechanism of EGFR-MT LUAD, but the genetic and cytogenetic complexities intrinsic to EGFR-MT LUAD are difficult to uncover because cancer biology is regulated by several factors, including ferroptosis, hypoxia, and tumor microenvironment (Hanahan and Coussens, 2012; Qiu et al., 2017; Gao et al., 2019). It is important to establish a realistic and accurate diagnostic test that can predict the likelihood of EGFR-MT LUAD metastasis or progression.
Structure network algorithms were widely used to identify important nodes in a network by measuring the leadership role of a node based on all of its links (Zeng et al., 2016; Bu et al., 2020). One of the most remarkable methods is weighted correlation network analysis (WGCNA), a scientific tool for explaining the pattern of gene interaction between different samples (Langfelder and Horvath, 2008). It can be used to locate and scan co-expressed gene modules and essential biomarkers. This method has not been used in EGFR-MT LUAD to our knowledge. The aim of our study was to identify novel gene network co-expression modules associated with EGFR-MT LUAD by WGCNA to determine the key signal pathways and genes involved in EGFR-MT LUAD pathogenesis and prognostics.
MATERIALS AND METHODS
Figure 1 shows the workflow of the analytical key gene extraction pipeline. In the following subsections, we elaborate on each step. In this study, the data of GSE31210 and TCGA were set as the training set for screening key prognostic genes, and the data of GSE19188 were set as the test set to verify the results.
[image: Figure 1]FIGURE 1 | Study design and workflow.
Data Sources and Data Preprocessing
GSE31210 (Okinawa et al., 2012; Yamauchi et al., 2012) and GSE19188 (Hou et al., 2010) were downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo). The “impute” and “limma” packages were used to supplement the missing data and standardize the two expression profiles. The two data corresponding to clinical information were extracted and integrated for subsequent use.
EGFR-MT LUAD RNA-seq data and corresponding clinical information were downloaded from TCGA (The Cancer Genome Atlas) database (https://portal.gdc.cancer.gov/). 126 EGFR-MT LUAD and 18 normal samples of tissues have been presented. The data were annotated in a human hg38 gene standard track reference transcript. After the count per million (CPM) < 1 gene was filtered using the function space in the “edgeR” package, calculated with gene counts divided according to the gene length, our next analysis was made with 15,213 genes with RPKM values. The detailed information of all the data used in this research is given in Table 1.
TABLE 1 | Research usage data information.
[image: Table 1]Identification of Tumor-Related Modules With WGCNA
The TCGA-LUAD and GSE31210 gene expression data were built using a “WGCNA” package in the form of genetic co-expression modules in R (Zeng et al., 2016). Soft power β = 1 was chosen in both data to create a scale-free network. Next, the adjacency matrix was generated using the following formula: Aid = |Sij|β (aid: adjacency matrix between gene I and gene j, Sij: similarity matrix rendered by Pearson’s association of both gene pairs, β: soft power value) and converted into a topological overlap matrix (TOM) as well as corresponding dissimilarity (1-TOM). A hierarchical clustering dendrogram was formed for the 1-TOM matrix in the subsequent grouping, with a minimum of 50 genes for dendrogram for the same gene expressions, into separate gene co-expression modules. The link between the modules and the details of the clinical characteristics was calculated for tumor-related modules.
Screen DEGs and Hub Genes Shared With Tumor-Related Modules
We used the limma package to screen DEGs of TCGA-EGFR-MT LUAD and GSE31210 (Ritchie et al., 2015). The |log2 (fold change) |>2 and adjust p value < 0.05 were set to screen DEGs. The volcano plot of DEGs was visualized by the R package “ggplot2” (Wickham, 2009). Subsequently, genes overlapping in modules linked to tumors harvested as hub gene candidates for later detection were presented as a diagram of Venn using the package “VennDiagram” (Chen and Boutros, 2011).
Functional Enrichment for Hub Genes
Functional enrichment analysis for hub genes included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG: http://www.kegg.jp/kegg/) pathway enrichment analysis, which were performed for genes by “clusterProfiler” package in R (Yu et al., 2012). An adjusted p-value <0.05 was considered significant.
The Validation of Hub Gene Expression Patterns and Prognostic Values
The expression patterns of the hub gene in various pathological EGFR-MT LA and normal tissue have been tested to validate the reliability of the hub genes. The levels of expression of each hub gene were seen as a box plot graph between EGFR-MT LA and normal tissue. The “survival” package was used to conduct a Kaplan–Meier survival analysis based on the data from TCGA database to explore the correlation between overall survival (OS) and hub genes in patients. For the survival study, only patients who had finished their follow-up period were chosen, and they were split into two classes depending on the median expression value of hub genes. The survival-related hub genes with a log-rank p value < 0.05 were regarded as statistically significant. In order to explore the functions and pathways of hub genes which were statistically significant, gene set enrichment analysis (GSEA) was performed in the high-expression and the low-expression groups; gene sets with |NES|>1, NOM p < 0.05, were considered to be enrichment significant.
Microarray Data and the HPA Database Were Used to Verify Protein Expressions of Survival-Related Hub Genes
To verify the expression level and survival significance of the 6 hub genes, we introduced another microarray data of LUAD (GSE19188) for external data verification. Based on the clinical information of GSE19188, the prognostic significance of the 6 hub genes was verified.
At the same time, we used immunohistochemistry (IHC) from the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/) to further verify the protein expression of survival-related genes (Thul and Lindskog, 2018). Also, the protein expression pattern based on IHC is the most commonly used method for detecting the relative position and abundance of proteins in immunotherapy (Maity et al., 2013).
RESULTS
Identification of Co-Expression Gene Modules With WGCNA
A total of 7 modules in the TCGA–EGFR-MT LUAD (Supplementary Figure S1A) and 9 modules in the GSE31210 (Supplementary Figure S2A) were identified via average linkage clustering (excluding gray modules that were not assigned to any cluster). The results of the module–trait relationships revealed that 3 modules in the TCGA–EGFR-MT LUAD and 4 modules in the GSE6631 were found to have an association with tumor tissues (Supplementary Figures S1B, S2B).
Screen DEGs and Identification of Hub Genes
1,149 DEGs in the TCGA dataset (Figure 2A) and 301 DEGs in the GSE31210 dataset (Figure 2B) were defined as deregulated in tumor tissues using a cutoff criterion (log2 (fold change)≥ 2.0 and adj. p < 0.05). Subsequently, the extracted 6 genes in DEGs that overlapped with the tumor-related modules including beta-1,3-N-acetylglucosaminyltransferase 3 (B3GNT3), adhering 3 (CDH3), cysteine SN (CST1), zinc finger and BTB domain containing 16 (ZBTB16), keratin 15 (KRT15), and cloth beta (KLB) were selected as the hub genes for subsequent analysis (Figure 2C).
[image: Figure 2]FIGURE 2 | DEGs were observed in TCGA and GSE31210 datasets using |logFC|≥2.0 and adj. p < 0.05 as cutoff parameters. (A) Volcano plot of DEGs in TCGA dataset. (B) Volcano plot of DEGs in the GSE31210 dataset. (C) Genes contained in DEGs and tumor-related modules in a Venn diagram. At the intersection of DEGs and modules, there are a total of 6 overlapping genes.
Functional Enrichment Analysis for Hub Genes
After the screening of GO enrichment analysis, the top 5 enriched gene sets are shown in Figure 3A. The biological process (BP) of 6 hub genes is mainly enriched in keratinization and the poly-N-acetyllactosamine biosynthetic process. The cellular component (CC) showed that these genes were mainly involved in the catering complex. Moreover, in the molecular function (MF) analysis, fibroblast growth factor binding and fibroblast growth factor receptor binding were suggested to be related to the 6 genes. As shown in Figure 3B, 6 hub genes were enriched in the KEGG pathway of glycosphingolipid biosynthesis—lacto and neglect series.
[image: Figure 3]FIGURE 3 | Six hub genes were analyzed for enrichment. The size of the spots represents the gene number, and the color represents the adjusted p-values (BH). (A) Result of GO enrichment analysis. (B) Result of KEGG enrichment analysis.
Analysis and Verification of the Hub Gene Expression Level and Survival Significance
In EGFR-MT LUAD tissues (RNA-seq data from TCGA), all of the 6 hub genes were found to be substantially downregulated or unchecked, as shown in Figure 4. Furthermore, Kaplan–Meier survival studies of the 6 hub genes showed that B3GNT3 overexpression was substantially correlated with poorer overall survival of EGFR-MT LUAD patients (p < 0.05) (Figure 5).
[image: Figure 4]FIGURE 4 | TCGA database was used to verify the expression levels of 6 hub genes in EGFR-MT LUAD and normal tissues. (A) Gene expression values of B3GNT3 among samples of TCGA. (B) Gene expression values CDH3 among samples of TCGA. (C) Gene expression values of CST1 among samples of TCGA. (D) Gene expression values of KLB among samples of TCGA. (E) Gene expression values of KRT15 among samples of TCGA. (F) Gene expression values of ZBTB16 among samples of TCGA.
[image: Figure 5]FIGURE 5 | TCGA database was used to look at the overall survival (OS) of 6 hub genes in EGFR-MT LUAD patients. (A) Survival analysis for B3GNT3. (B) Survival analysis for CDH3. (C) Survival analysis for CST1. (D) Survival analysis for KLB. (E) Survival analysis for KRT15. (F) Survival analysis for ZBTB16. The patients were stratified into the high-level group (red) and low-level group (blue) according to the median expression of the gene. Log-rank p < 0.05 was considered to be a statistically significant difference.
GSE19188 was used to verify the expression level and survival significance of the 6 hub genes. It was found that compared with normal lung tissues, the 6 hub genes were significantly inhibited or overexpressed, and the results of B3GNT3 were consistent with the results of RNA-seq data analysis from TCGA (Figure 6). The GSEA enrichment term exhibited that high expression of B3GNT3 was mainly associated with ether lipid metabolism, lysosome, steroid biosynthesis, glycan biosynthesis, and so on (Table 2). According to the HPA database, the protein levels of the B3GNT3 gene were substantially higher in tumor tissues than in normal tissues (Figure 7).
[image: Figure 6]FIGURE 6 | GSE19188 was used to verify the expression levels of 6 hub genes. (A) Gene expression values of B3GNT3. The GSE19188 was used to verify the overall survival (OS) of 6 hub genes. (B) Survival analysis for B3GNT3. The patients were stratified into the high-level group (red) and low-level group (blue) according to the median expression of the gene. Log-rank p < 0.05 was considered to be a statistically significant difference.
[image: Figure 7]FIGURE 7 | Immunohistochemistry of the B3GNT3 gene in LUAD and normal tissues from the Human Protein Atlas (HPA) database. (A) Protein levels of B3GNT3 in LUAD tissues. (B) Protein levels of B3GNT3 in normal lung tissues.
TAB 2 | GSEA enrichment results for high expression of B3GNT gene.
[image: Tab 2]DISCUSSION
The WGCNA is a valuable method for finding highly correlated gene modules. The main module’s intramuscular center could be used for disease detection and prognostication, such as cancer. We use specific DEGs caused by EGFR mutations to perform WGCNA on EGFR-MT LUAD and normal lung samples. We found B3GNT3 correlated with the prognosis of EGFR-MT LUAD patients. Moreover, the functional analysis found these 6 hub genes mainly enriched in keratinization terms and glycosphingolipid biosynthesis—lacto and neglect series pathway.
B3GNT3, also known as acetylglucosaminyltransferase, is a member of the beta-1,3-N-acetylglucosaminyltransferase family (Ho et al., 2013). It plays a dominant role in L-selectin ligand biosynthesis, lymphocyte homing, and lymphocyte trafficking. (Maity et al., 2013). Besides, in early cervical cancer, pancreatic cancer, and neuroblastoma, the level of B3GNT3 mRNA is higher than that of adjacent control tissues (Ho et al., 2013; Zhang et al., 2015; Barkley et al., 2018; Li et al., 2018). B3GNT3 was shown to be upregulated in tumor tissues as opposed to normal tissues in our sample, with a strong link to EGFR-MT LUAD. Higher levels of B3GNT3 have been related to a weak prognosis in patients with NSCLC in previous trials, but it is uncertain which subtype of NSCLC is involved (Gao et al., 2018). That was in line with our survival review results, and our research contributes to the growing body of evidence that B3GNT3 can be used as a diagnostic and prognostic marker for EGFR-MT LUAD.
Although the other 5 hub genes in our study did not suggest significance for the OS of EGFR-MT LUAD patients, studies have confirmed that they are closely related to EGFR-MT LUAD metastasis, recurrence, and drug resistance. Ting et al. found that high CDH3 expression is related to EGFR-TKI resistance (Hsiao et al., 2020a); Cao et al. found that high CST1 expression can be used as a marker for recurrence and metastasis in patients with NSCLC (Cao et al., 2015); Wang et al. found that low expression of ZBTB16 can promote the survival of NSCLC tumor cells and enhance their invasiveness (Wang et al., 2013; Xiao et al., 2015). Our study revealed that these genes are heavily enriched in metabolism-related biological processes such as the poly-N-acetyllactosamine biosynthetic process, glycosphingolipid biosynthesis—lacto and neglect series process. This suggests that they may have an important role in tumor metabolism, to be explored in further studies.
CDH3, a cell adhesion molecule, is associated with the function of cells to bind with other cells and the extracellular matrix (ECM). CDH3 is overexpressed in many malignancies (Kaupmann et al., 1992). In our study, it was also found to be overexpressed in EGFR-MT LUAD. Hsiao et al. (2020b) found that CDH3 overexpression is related to the patients’ EGFR-TKI resistance, and reducing the expression level of CDH3 can increase the sensitivity of EGFR-TKI in patients. Moreover, sCDH3 was positively associated with the tumor stage in non–small-cell lung cancer, although it has not been found to have a significant effect on the prognosis in our study. But these genes’ significance on the metastasis and invasion of EGFR-MT LUAD still needs to be further studied.
CST1 belongs to the type 2 cystatin superfamily, which restricts the proteolytic activities of cysteine proteases. It has been found correlated with multiple tumor metastasis and invasion (Cui et al., 2019). Dai et al. (2017) found that the OS in the low CST1 expression subgroup was significantly superior to the high CST1 expression subgroup. In our study, we found that it is highly expressed in patients with EGFR-MT LUAD, but its effect on the prognosis of patients needs further research to confirm ZBTB16, a member of the Kruppel C2H2-type zinc finger protein family and encodes a zinc finger transcription factor that contains nine Kruppel-type zinc finger domains at the carboxyl terminus. This protein is located in the nucleus, is involved in cell cycle progression, and interacts with a histone deacetylase (Furukawa et al., 2003). Some studies have found that it can be used as a prognostic evaluation marker and potential therapeutic target in reproductive system tumors and Ewing’s sarcoma (Xiao et al., 2016; Xiao et al., 2019), but its role in lung cancer needs further study.
KRT15 is an encoding protein which belongs to the keratin gene family. It has been found to be highly expressed in colon cancer, breast cancer, gastric cancer, and other tumors and has prognostic value (Zhang et al., 2019; Rao et al., 2020; Xu et al., 2020). Ooi et al. (2010) found that this gene is positively expressed in smoking patients with non–small-cell lung cancer and has prognostic value. Its abnormal expression can lead to abnormal airway epithelial damage and repair function, thereby promoting the development of lung cancer.
KLB is a protein-coding gene and mediates binding of fibroblast growth factor (FGF) 21 to the FGF receptor (FGFR). FGF21-KLB-FGFR signaling regulates multiple metabolic systems in the liver (Ji et al., 2019). Andrew et al. (Thompson et al., 2020) found that it is closely related to the increase in the incidence of lung cancer caused by heavy drinking. At the same time, Zhou et al. (2021) found that serum KLB concentration can be used to predict the clinical outcome of NSCLC patients, although in our study, it was found to have an effect on the prognosis of patients. However, more patient omics data are expected to reveal its clinical significance.
As with all research, our work has several limitations. Although we provide a comprehensive bioinformatics analysis to determine the potential diagnostic genes between cancer and normal tissues, it may not be very accurate in evaluating EGFR-MT LUAD patients at every stage. Also, the molecular mechanism of survival-related genes involved in affecting the prognosis of patients with EGFR-MT LUAD needs to be further verified through a series of experiments. In conclusion, our work discovered the important survival-related gene B3GNT3 that can forecast prognosis in EGFR-MT LUAD by combining WGCNA with differential gene expression analysis.
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A Mutation-Related Long Noncoding RNA Signature of Genome Instability Predicts Immune Infiltration and Hepatocellular Carcinoma Prognosis
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Background: Long noncoding RNAs (lncRNAs) have been discovered to play a regulatory role in genomic instability (GI), which participates in the carcinogenesis of various cancers, including hepatocellular carcinoma (HCC). We endeavored to establish a GI-derived lncRNA signature (GILncSig) as a potential biomarker and explore its impact on immune infiltration and prognostic significance.
Methods: Combining expression and somatic mutation profiles from The Cancer Genome Atlas database, we identified GI-related lncRNAs and conducted functional analyses on co-expressed genes. Based on Cox regression analysis, a GILncSig was established in the training cohort (n = 187), and an independent testing patient cohort (n = 183) was used to validate its predictive ability. Kaplan-Meier method and receiver operating characteristic curves were adopted to evaluate the performance. The correlation between GI and immune infiltration status was investigated based on the CIBERSORT algorithm and single sample gene set enrichment analysis. In addition, a comprehensive nomogram integrating the GILncSig and clinicopathological variables was constructed to efficiently assess HCC patient prognosis in clinical applications.
Results: A total of 88 GI-related lncRNAs were screened out and the functional analyses indicated diversified effects on HCC progression. The GILncSig was established using four independent lncRNAs (AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG) with significant prognostic value (p < 0.05). Following evaluation with the GILncSig, low-risk patients had significantly better clinical outcomes than high-risk patients in the training cohort (p < 0.001), which was subsequently validated in the independent testing cohort. High-risk group exhibited more immunocyte infiltration including B cells memory, macrophages M0 and neutrophils and higher expression of HLA gene set and immune checkpoint genes. Compared to existing HCC signatures, the GILncSig showed better prognosis predictive performance [area under the curve (AUC) = 0.709]. Furthermore, an integrated nomogram was constructed and validated to efficiently and reliably evaluate HCC patient prognosis (3-years survival AUC = 0.710 and 5-years survival AUC = 0.707).
Conclusion: The GILncSig measuring GI and impacting immune infiltration serves as a potential biomarker and independent predictor of HCC patient prognosis. Our results highlight further investigation of GI and HCC molecular mechanisms.
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INTRODUCTION
Hepatocellular carcinoma (HCC), or malignant hepatoma, has become the most common primary liver malignant tumor, accounting for 7% of all cancers globally (Budny et al., 2017). Despite advances in medical, locoregional, and surgical therapies, the clinical prognosis of HCC is not satisfactory, and its mortality rate remains high (Hartke et al., 2017). The key factors contributing to the development of HCC include viral hepatitis B and C, cirrhosis, fatty liver disease, diabetes, alcohol, aflatoxin, and aristolochic acid (Yang et al., 2019). It is widely acknowledged that the pathogenesis of HCC involves genetic and epigenetic changes, but the molecular mechanisms remain unclear (Ogunwobi et al., 2019). Thus far, scholars have focused on prognostic biomarkers and molecular risk models to better predict HCC patient prognosis and elucidate HCC carcinogenesis (Wang et al., 2019a; Zhang et al., 2020). However, there are several limitations to these studies, including small sample size and lack of functional or mechanical analyses. Thus, there is an urgent need to utilize comprehensive methods to identify potential biomarkers and predict HCC prognosis in clinical management.
Genomic instability (GI) has been recognized as a leading factor in carcinogenesis and a hallmark of cancer (Negrini et al., 2010). Accumulation of GI can be lethal to cells and is correlated with poor prognosis (Andor et al., 2017). Although the cellular mechanisms of GI are not fully understood, replication damage and transcriptional regulation have been recognized to play critical roles (Ferguson et al., 2015; Tubbs and Nussenzweig, 2017). Therefore, scholars have utilized relevant molecular signatures to quantify GI in cancers. For example, Vacher et al. studied 103 bladder cancer cases and identified a palindromic non-coding mutation signature of somatic GI (Vacher et al., 2020). A GI-derived three-microRNA (miRNA) signature in breast cancer constructed by Bao et al. was found to be significantly associated with unfavorable prognosis (Bao et al., 2021).
Long noncoding RNAs (lncRNAs) are a group of non-coding RNAs with more than 200 nucleotides that can regulate the products of gene expression in various cell activities and biological processes and are involved in different types of cancers (Paraskevopoulou and Hatzigeorgiou, 2016; Bhan et al., 2017). Increasing evidence has revealed the significant role of lncRNAs in the maintenance of gene stability via multiple pathways (Oliva-Rico and Herrera, 2017; Thapar, 2018). Kristen et al. identified a novel lncRNA MANCR that was functionally associated with genomic stability, the depletion of which led to DNA damage and cell cycle dysregulation (Tracy et al., 2018). Another subsequent study by Mahmoud et al. stressed the contributions of lncRNA NORAD and the NORAD-PUMILIO axis in the genome maintenance of mammalian cells (Elguindy et al., 2019). However, additional GI-related lncRNAs remain unidentified, and their clinical significance as potential biomarkers and treatment targets for HCC patients requires further investigation.
Hence, in this study, we aimed to identify GI-related lncRNAs by combining somatic mutation and expression profiles based on The Cancer Genome Atlas (TCGA) database and develop a GI-derived lncRNA signature (GILncSig) to quantify GI in HCC and help to predict HCC patient prognosis. Besides, we analyzed the immunocytes infiltration, immune-related pathways and expression profiles to explore the association between the GILncSig and immune status. In addition, a comprehensive nomogram was established by integrating clinical variables and the GILncSig to assess clinical outcomes and more efficiently guide patient management.
METHODS
Data Collection
The expression profile data and clinical information of HCC patients were extracted from TCGA (https://portal.gdc.cancer.gov/). A total of 371 expression cases in 424 files and 377 clinical cases of HCC were obtained, including 50 normal and 374 tumor tissues with mRNA and lncRNA profiles. In addition, 375 somatic mutation data were downloaded from TCGA. A flow chart showed all procedures in this study in Supplementary Figure S1.
Identification of GI-Related lncRNAs
Based on mutation profiles, the cumulative somatic mutations in HCC samples were first calculated, and the samples were ranked in descending order. The top 25% of mutation numbers were defined as the genomically unstable (GU)-like samples (n = 93), and the bottom 25% were defined as genomically stable (GS)-like samples (n = 90). The differentially expressed lncRNAs between the GS and GU groups were defined as GI-related lncRNAs.
Hierarchical cluster analyses were conducted for all samples, and we explored the association between mutation conditions and clusters with different gene stabilities. In addition, according to the Pearson correlation coefficients, the top 10 mRNAs that varied with the GI-related lncRNAs were selected, and a co-expression network was constructed. Furthermore, to comprehend their potential functions in GI development, we conducted functional enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms.
Establishment of the GILncSig
First, all HCC cases with expression profiles and clinical information were randomly divided into two equal groups, a training group (n = 187) and a testing group (n = 183), for the construction and validation of the GILncSig. The chi-square test was used to demonstrate that there were no significant differences between the two groups. In the training group, univariate Cox analysis was performed to explore the GI-related lncRNAs associated with overall survival, and multivariate Cox analysis identified lncRNAs with independent prognostic value. Combining the results of the Cox regression analysis and the expression profiles of GI-related lncRNAs, a GILncSig with linear risk score formula was established, which applies to all HCC samples and can be calculated as follows:
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where n represents the number of independent prognostic lncRNAs, and β represents the regression coefficients from the Cox regression analyses, weighing the value of each lncRNA in the formula.
Then, all HCC samples in the training and testing groups were assigned risk scores and classified into high-risk and low-risk groups by the cutoff of the group median risk score. Log-rank tests and the Kaplan-Meier method were then adopted to verify the predictive ability of the GILncSig, and the performance was further evaluated using receiver operating characteristic (ROC) curves.
Immune Infiltration Analysis
Immunocytes and related pathways were analyzed by Single Sample Gene Set Enrichment Analysis (ssGSEA) with the “GSVA” package and the infiltration levels of all HCC samples were evaluated with the “estimate” package by R software. Furthermore, we speculated the quantity of 22 immunocyte subtypes in each HCC sample by the corresponding expression signatures of the 22 immunocytes with the CIBERSORT algorithm (Newman et al., 2015). To explore the relationship between GI and immune infiltration, the differential immune fractions between high-risk and low-risk groups were compared by the Wilcoxon test and exhibited with the “vioplot” package. In addition, we compared other immunity profiles between the two groups, including the expression of immune checkpoint genes and human leukocyte antigen (HLA) genes.
Construction and Evaluation of the Nomogram
A comprehensive nomogram for predicting the survival probability of HCC patients was built by integrating the GILncSig and clinicopathologic variables, such as age, grade, and stage. Based on the Cox regression analyses, the nomogram weighing all predictive variables computed the total points of HCC patients, which could predict their 3- and 5-years survival probability. The higher the score, the worse the prognosis. In addition, Harrell’s C-index and 3- and 5-years calibration curves were generated to assess the predictive performance. Furthermore, based on the nomogram scores of all HCC samples, 3- and 5-years ROC curves and survival analyses were performed to evaluate the reliability and feasibility of the nomogram in clinical applications.
Statistical Analysis
R (v.4.0.2; The R Foundation, Vienna, Austria) and Excel (Microsoft Corporation, Redmond, WA United States) software were used to conduct all statistical analyses with flexible statistical methods. p < 0.05 was set as statistically significant in most parts of our study.
RESULTS
Identification of GI-Related lncRNAs in HCC
Based on cumulative somatic mutations, all HCC samples from TCGA were classified into the GU-like group of the top 25% of mutation numbers and the GS-like group of the bottom 25% of mutation numbers. Differential expression analysis showed that a total of 88 lncRNAs were significantly differentially expressed between the two groups with a false discovery rate-adjusted p-value < 0.05. Compared to the GS-like group, 56 lncRNAs were upregulated and 32 lncRNAs were downregulated in the GU-like group. The top 20 most differentially expressed lncRNAs were selected using fold change and are shown in a heatmap (Figure 1A).
[image: Figure 1]FIGURE 1 | Identification of the GI-related lncRNAs in HCC. (A) The top 20 most differentially expressed lncRNAs between the GS and GU group. (B) Unsupervised clustering of 374 HCC samples based on the 88 GI-related lncRNAs. The red cluster is the GU-like group and the blue cluster is the GS-like group. (C) Boxplots of somatic mutations between the GU-like group and GS-like group. (D) Boxplots of H2AX expression level between the GU-like group and GS-like group.
Based on the 88 GI-related lncRNAs, unsupervised hierarchical clustering classified all 374 HCC samples into two groups: GS-like (n = 221) and GU-like (n = 153; Figure 1B). There were significantly higher somatic mutation counts in the GU-like group than in the GS-like group (median value: 131.5 vs. 102; p < 0.001; Figure 1C). Meanwhile, the expression of H2AX, an identified driver gene associated with gene instability and cancer onset, was compared between the two groups. The expression of H2AX was significantly higher in the GU-like group than in the GS-like group (p < 0.01; Figure 1D).
Then, the top 10 mRNAs relevant to each GI-related lncRNA were selected, and an mRNA-lncRNA co-expression network was established (Figure 2A). Furthermore, functional analyses were performed on these mRNAs to explore the potential functions of the 88 lncRNAs in GI occurrence. KEGG analysis revealed that most genes relevant to the lncRNAs were significantly enriched in 22 pathways, including pyrimidine metabolism, purine metabolism, and folate biosynthesis, which participate in the synthesis of nucleotides and may affect genomic stability (Figure 2B). As for the GO analysis shown in Figure 2C, the GI-related mRNAs were significantly linked to biological processes involved in the metabolism of genetic material, including purine-containing compound metabolic processes and small molecule catabolic processes. The other significant enrichment terms revealed in the cellular component and molecular function analyses indicated the probable mechanisms in the formation and development of GI.
[image: Figure 2]FIGURE 2 | Functional analysis of the GI-related lncRNAs in HCC. (A) Co-expression network of GI-related lncRNAs and top 10 relevant mRNAs. (B) KEGG enrichment analysis for the co-expressed genes. (C) GO functional analysis for the co-expressed genes.
Establishment of the GILncSig for Prognosis Prediction
All HCC cases were randomly and equally divided into a training group (n = 187) and a testing group (n = 183), and a chi-square test showed that there were no significant differences in clinicopathological features between the two groups (Table 1). To determine the prognostic value of GI-related lncRNAs, univariate Cox regression analysis was conducted among the training group, and 10 lncRNAs were found to be significantly associated with overall survival (p < 0.05; Figure 3A). Multivariate Cox analysis identified four lncRNAs with independent values: AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG. Based on the Cox analysis and expression profiles of HCC patients, a GILncSig was established with a linear risk score formula combining the four independent GI-related lncRNAs weighted by coefficients from the multivariate analysis. Hence, the risk scores of all HCC patients can be calculated as follows: GILncSig score = (0.1594 × expression level of AC116351.1) + (0.1189 × expression level of ZFPM2-AS1) + (0.2247 × expression level of AC145343.1) + (0.1092 × expression level of MIR210HG). All coefficients of the four lncRNAs were positive, implying that they were risk factors for HCC prognosis.
TABLE 1 | Clinical information of three HCC patients sets in this study.
[image: Table 1][image: Figure 3]FIGURE 3 | Establishment of GILncSig for prognosis prediction in the training group. (A) Univariate Cox regression analysis of the GI-related lncRNAs associated with overall survival in the training group. (B) Kaplan–Meier survival analysis of high-risk and low-risk groups predicted by the GILncSig. (C) ROC curve to evaluate the performance of the GILncSig. (D) The expression pattern of the GILncSig in the training group. (E) Distribution of somatic mutations with increasing risk score. (F) UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations, (G) UBQLN4 expression (H) and H2AX expression (I) between the high-risk and low-risk groups in the training group.
Then, using the GILncSig, all HCC patients were assigned risk scores in the training set and were subsequently divided into two groups based on the median risk score: a high-risk group with higher scores and a low-risk group with lower scores. Log-rank tests and Kaplan–Meier curves showed that the high-risk group had significantly poorer prognosis than the low-risk group (p < 0.001; Figure 3B). An ROC curve was then generated to assess the reliability of the GILncSig, and the area under the curve (AUC) was 0.724 (Figure 3C), indicating good predictive ability. Furthermore, we explored the changes in GILncSig expression, somatic mutation count, and UBQLN4 expression in all HCC patients along with their increasing risk scores in the training group (Figures 3D–F). In the high-risk group, the expression levels of the four lncRNAs were all increased, somatic mutations became more frequent, and the expression level of UBQLN4, a GI-driver gene, was also upregulated compared to the low-risk group. Additionally, two boxplots were drawn to demonstrate the UBQLN4 expression and somatic mutation number trends in patients along with their increasing risk scores (Figures 3G,H). There was a visible increase in the two plots, but it was not statistically significant, which was further verified in the following section. The expression of H2AX was significantly higher in the high-risk group than in the low-risk group, which was consistent with the previous result (p < 0.05; Figure 3I).
Independent Validation of the GILncSig in HCC Datasets
To validate the feasibility and reliability of the GILncSig established in the training set, we applied the signature to all HCC patients in the testing set (n = 183) and obtained their risk scores for prognosis. The patients were then classified into two groups with different prognosis risks according to the median score, and Kaplan-Meier analysis showed that the high-risk group had significantly poorer clinical outcomes than the low-risk group (p < 0.05; Figure 4A). An ROC curve of the GILncSig with an AUC of 0.708 was produced, representing good sensitivity and specificity (Figure 4B). Furthermore, we displayed the patients with risk scores in increasing order and analyzed the tendencies of GILncSig expression, somatic mutation count, and UBQLN4 expression in all HCC patients (Figures 4C–E). Similar to the training group, they were all positively associated with risk score, which is further illustrated in Figure 4F and Figure 4G. Somatic mutation count and UBQLN4 expression were both significantly increased in the high-risk group (p < 0.01). In addition, H2AX expression was significantly upregulated (p < 0.001; Figure 4H).
[image: Figure 4]FIGURE 4 | Independent validation of the GILncSig in the testing group. (A) Kaplan–Meier survival analysis of high-risk and low-risk groups. (B) ROC curve to evaluate the performance of the GILncSig. (C) The expression pattern of the GILncSig in the testing group. (D) Distribution of somatic mutations with increasing risk score. (E) UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations (F), UBQLN4 expression (G) and H2AX expression (H) between the high-risk and low-risk groups in the testing group.
Next, we utilized all HCC cases from TCGA to examine the performance of the GILncSig and obtained similar but more significant results. After all patients were assigned risk scores and divided into high- and low-risk groups, log-rank tests and Kaplan–Meier curves showed significant survival differences between the two groups (p < 0.001; Figure 5A). ROC curve analysis showed the reliability of the signature with an AUC of 0.709 (Figure 5B). As shown in Figures 5C–E, the distributions of GILncSig expression, somatic mutation count, and UBQLN4 expression in all HCC patients along with their increasing scores became more evident. The three boxplots verified the trends of increasing mutation counts and expression levels of UBQLN4 and H2AX with statistical significance (p < 0.001, Figure 5F; p < 0.001, Figure 5G; and p < 0.001, Figure 5H, respectively).
[image: Figure 5]FIGURE 5 | Evaluation of the GILncSig in the TCGA set. (A) Kaplan–Meier survival analysis of high-risk and low-risk groups. (B) ROC analysis to evaluate the performance of the GILncSig, GuLncSig, KongLncSig, SunLncSig and LiLncSig. (C) The expression pattern of the GILncSig in the TCGA set. (D) Distribution of somatic mutations with increasing risk score. (E) UBQLN4 expression with increasing risk score. The boxplots of the distribution of somatic mutations (F), UBQLN4 expression (G) and H2AX expression (H) between the high-risk and low-risk groups in the testing group.
Comparison of Predictive Ability of lncRNA Signatures
Subsequently, we compared the GILncSig in this study and 4 other lncRNA signatures of HCC prognosis from previous studies: the 6-lncRNA signature from Gu’s study (mentioned as GuLncSig) (Gu et al., 2019), the 2-lncRNA signature from Kong’s study (mentioned as KongLncSig) (Kong et al., 2020), the 5-lncRNA signature from Sun’s study (mentioned as SunLncSig) (Sun et al., 2019) and the 11-lncRNA signature from Li’s study (mentioned as LiLncSig) (Li et al., 2020). Based on the same cohort from TCGA, we applied these lncRNA signatures to all HCC patients to evaluate their prognosis, and the performances of the signatures were compared by ROC curve analysis. As shown in Figure 5B, the AUC of GILncSig was 0.709, which was higher than that of all four other signatures: GuLncSig (AUC = 0.595), KongLncSig (AUC = 0.692), SunLncSig (AUC = 0.528), and LiLncSig (AUC = 0.700). In addition, the GILncSig consists of 4 fewer lncRNAs than the GuLncSig (6 lncRNAs), SunLncSig (5 lncRNAs), and LiLncSig (11 lncRNAs). These comparisons provided evidence of better performance of the GILncSig in predicting HCC patient prognosis.
Independent GILncSig Prediction From Other Clinical Factors
Based on the distribution of risk scores, HCC patients had significantly higher risks in clinical subgroups of >65 (p = 0.015), grade 3–grade 4 (p = 0.0017), stage III−IV (p = 0.011) and T3-4 stage (p = 0.024, Figure 6). As clinical characteristics are commonly used in clinical prognosis evaluation, it is necessary to explore the independency and compare the prediction efficiency among the GILncSig risk score and clinical factors. Firstly Kaplan–Meier survival analyses examined the prognostic ability of traditional clinical variables and patients in higher stage or higher T stage showed worse clinical outcome (Figure 7). Within all HCC samples in the training set, we first performed univariate Cox regression analysis to select potential predictors related to overall survival (Figure 8A). Next, using multivariate Cox regression analysis, stage [hazard ratio (HR) = 1.708, 95% confidence interval (CI): 1.231–2.370; p < 0.01] and risk score (HR = 1.284, 95% CI: 1.173–1.406; p < 0.001) were identified to be independent factors (Figure 8B). In the testing set, the two factors presented similarly good prediction abilities, but only stage showed significant meaning. Furthermore, the Cox analyses among all HCC cases in the database validated the results, as stage (HR = 1.702, 95% CI: 1.384–2.093; p < 0.001) and risk score (HR = 1.125, 95% CI: 1.058–1.196; p < 0.001) showed significantly independent prognostic values for HCC prognosis (Figures 8C,D). The results of all Cox analyses are shown in Table 2.
[image: Figure 6]FIGURE 6 | Risk score distribution in different clinical subgroups. (A) Age. (B) Gender. (C) Grade. (D) Stage. (E) T stage. (F) N stage. (G) M stage.
[image: Figure 7]FIGURE 7 | Kaplan–Meier survival analyses of patients with different clinical characteristics. (A) Age. (B) Gender. (C) Grade. (D) Stage. (E) T stage.
[image: Figure 8]FIGURE 8 | Comparison of the prognostic value of the GILncSig and other clinical variables. Training set (A, B), TCGA set (C–L). (A–C) Univariate Cox regression analyses of the OS-related parameters. (B–D) Multivariate Cox regression analysis of the OS-related parameters. Stratification analysis and Kaplan–Meier survival analysis in high-risk and low-risk groups for old patients (E), young patients (F), early-grade patients (G), late-grade patients (H), male (I), female (J), early-stage patients (K) and late-stage patients (L).
TABLE 2 | Cox regression analyses of clinical variables and GILncSig risk score associated with overall survival in HCC.
[image: Table 2]In addition, a stratified analysis was conducted to examine the GILncSig among subgroups with different clinical characteristics. Patients were first divided into two or three groups based on different clinical terms and then classified into high- and low-risk teams within these initial groupings for further survival analysis. As shown in Figures 8E–L, patients with lower risks survived significantly longer than those with higher risks in most clinical subgroups, including >65 (p = 0.01), ≤65 (p < 0.001), male (p < 0.001), grade 1–grade 2 (p = 0.006), grade 3–grade 4 (p < 0.001), and stage I–II (p < 0.001). However, the results in the female and stage III−IV subgroups were not satisfactory, which may be due to the small sample size; the p value was only marginally significant in stage III−IV (p = 0.057). Overall, the GILncSig was an independent predictor and performed well in the classification of patient prognosis within different clinical subgroups.
Immune Infiltration Analysis of HCC Samples
Based on the result of ssGSEA, all HCC samples were classified into high- and low-immunity clusters and the distribution of 29 immunocyte subtypes and immune related pathways of each HCC sample was shown in a heatmap (Figure 9A). Besides, the immune infiltration level was estimated by immune score, stromal score, ESTIMATE score and tumor purity. The ESTIMATE score was the sum of the former two scores and represented the immune status of the microenvironment. Similarly, the immune fraction distribution and immunity scores of each sample in high- and low-risk groups was shown in Figure 9B. Classified by immunity cluster or scores, HCC patients with higher risks possessed lower survival rate than those with lower risks (Supplementary Figure S2). Then we speculated 22 immunocytes percentage in HCC samples between the two risk groups (Figure 9C). The proportion of B cells memory, macrophages M0 and neutrophils were significantly higher in the high-risk group while B cells naïve were significantly lower (p < 0.01), which indicated a higher immune infiltration in the high-risk group.
[image: Figure 9]FIGURE 9 | Immune infiltration and profile analysis in HCC. By ssGSEA, immunocyte subtypes and pathways enrichment (A) in high- and low-immunity clusters and (B) in high- and low-risk groups. The immune score, stromal score, ESTIMATE score and tumor purity were shown in the heatmaps. (C) Violin plots of infiltrated immunocyte subtypes between high-risk (red) and low-risk (green) groups. (D) Differential expression level of HLA related genes between high-risk (red) and low-risk (green) groups (ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001). The expression level of immune checkpoint genes between high-risk (red) and low-risk (blue) groups, including CD276 (E), CTLA4 (F), HAVCR2 (G), TNFRSF4 (H) and TNFRSF18. (I) **p < 0.01, ***p < 0.001).
Furthermore, the immune related expression profiles were compared between the two risk groups. The high-risk group showed a higher expression of HLA gene set than the low-risk group (Figure 9D). In addition, we examined 16 immune checkpoint genes and the expression of five genes were significantly upregulated in the high-risk group, including CD276, CTLA4, HAVCR2, TNFRSF4 and TNFRSF18 (Figures 9E–I), which provided potential immunotherapy targets and indicated a better response to the immune inhibiting reagents in the high-risk group.
Comprehensive Nomogram to Predict HCC Patient Prognosis
To develop an efficient prediction tool in clinical practice, a comprehensive nomogram was constructed by integrating the GILncSig and clinicopathological features, including age, grade, and stage (Figure 10A). The nomogram could then assess the 3- and 5-years survival rates of HCC patients based on the total points of the prognostic factors weighed by coefficients. The higher the points, the worse the prognosis. To evaluate the nomogram performance, calibration plots in which the nomogram-predicted survival rate was close to the actual survival of both 3- and 5-years conditions were drawn (Figures 10B,C). Harrell’s concordance index for survival prediction was 0.673 (95% CI: 0.622–0.724). In addition, time-dependent ROC curve analysis of the 3-years (AUC = 0.710) and 5-years (AUC = 0.707) survival predictions was conducted, and the results showed good reliability of the nomogram (Figure 10D). Furthermore, we classified all HCC patients into high-risk and low-risk groups based on the median points produced by the nomogram and performed Kaplan–Meier survival analysis. As shown in Figure 10E, patients with lower risk levels had significantly better clinical outcomes (p < 0.001). Therefore, the integrated nomogram was validated as an efficient and reliable tool for evaluating HCC patient prognosis.
[image: Figure 10]FIGURE 10 | Construction of nomogram to predict the prognosis of HCC patients. (A) Comprehensive nomogram integrating the GILncSig and clinicopathological features. Calibration plot of the nomogram model to predict (B) 3-years survival and (C) 5-years survival. (D) ROC curves of the model prediction of 3 and 5-years survival. (E) Kaplan–Meier survival analysis of the high-risk and low-risk groups classified by the nomogram.
DISCUSSION
In recent decades, considerable efforts have been made to explore the initiation mechanisms and potential treatment methods of HCC (Dimri and Satyanarayana, 2020). Traditional clinicopathological features are still used as predictive tools for HCC prognosis in clinical practice, but molecular risk factors may offer more precise predictions, which could facilitate individualized treatment of HCC patients and help with the allocation of medical resources (Fujiwara et al., 2018; Yin et al., 2019).
Recent studies have discovered that GI plays a vital role in cancer evolution and is related to poor prognosis (Andor et al., 2017; Tubbs and Nussenzweig, 2017). Investigation of colorectal cancer has revealed the contribution of GI in carcinogenesis as early as the premalignant phase through complex mechanisms, including DNA damage and transcriptional mistakes (Grady and Carethers, 2008). Therefore, detectable GI-related molecules have been utilized for the quantification of GI and for further prediction of cancer patient prognosis. Emerging studies have focused on the prognostic value and potential mechanisms of GI-related miRNAs, genes, and relevant signatures in multiple cancers (Vincent et al., 2014; Zhang et al., 2019a), but the role of lncRNAs has been largely neglected thus far. Some recent findings revealed the functions of GI-related lncRNAs, including participation in the DNA damage response, DNA replication, and mitotic and mitochondrial genome maintenance (Lee et al., 2016; Du Mee et al., 2018; Burger et al., 2019). However, the identification and application of GI-related lncRNAs as a means of measuring GI in cancers are new, and the construction of an lncRNA signature to predict HCC patient prognosis requires further exploration.
In this study, we combined somatic mutations with expression profiles and screened 88 GI-related lncRNAs in the TCGA database of HCC patients. KEGG analysis showed that the genes co-expressed with GI-related lncRNAs were enriched in 22 pathways, including pyrimidine metabolism, purine metabolism, Fanconi anemia (FA), and folate biosynthesis, all of which may affect genomic stability. Excessive pyrimidine synthesis over purine results in DNA transversion mutations and genomic signatures (Lee et al., 2018). In addition, studies have shown that the FA pathway guards genomic stability via the signaling network of DNA damage repair, and the knockdown of FA genes could impair break end resection and homologous recombination repair (Palovcak et al., 2017; Cai et al., 2020). In addition, GO analysis suggested that the GI-related genes were enriched in various terms, including purine-containing compound metabolic processes and small molecule catabolic processes related to genomic stability.
Furthermore, we selected GI-related lncRNAs with independent prognostic values and established an lncRNA signature (GILncSig) using AC116351.1, ZFPM2-AS1, AC145343.1, and MIR210HG. In a recent study, AC116351.1 showed significant associations with DNA repair and prognostic value in HCC (Zeng et al., 2021). Overexpression of lncRNA ZFPM2-AS1 in HCC tissue was correlated with poorer overall survival, and through in vitro functional analysis, ZFPM2-AS1 was found to act as miRNA sponge for promoting HCC cell proliferation, apoptosis, migration, and invasion via multiple axes (He et al., 2020; Liu et al., 2020; Zhang et al., 2021). Similarly, MIR210HG is an oncogenic lncRNA that is upregulated in HCC, and its silencing suppresses proliferation, migration, and invasion (Wang et al., 2019b). Little is known about AC145343.1, but the replaced version AC145343.2 was identified as a prognostic factor for glioma mesenchymal transition (Liang et al., 2020). Collectively, these four lncRNAs play vital functions in cancer onset and have shown prognostic value; however, their roles in GI and the combined predictive ability of the established GILncSig remain unknown in previous studies.
Following evaluation with the GILncSig, patients with lower predicted risk levels survived longer than those with higher risk levels in the training set, and the independent internal testing set further validated this result. In contrast to traditional clinical factors, the GILncSig showed comparable or better predictive performance and presented good classification ability within clinical subgroups. In addition, GILncSig expression was significantly associated with somatic mutation counts and expression levels of UBQLN4 and H2AX in all HCC cohorts. UBQLN4, an identified GI driver in multiple cancers, has been found to be overexpressed in aggressive tumors and related to poor outcomes (Jachimowicz et al., 2019; Yu et al., 2020). Similarly, H2AX is involved in GI through DNA damage repair, and its phosphorylated form marks the double-strand break (Seo et al., 2012; Subbiahanadar Chelladurai et al., 2020). Overall, the GILncSig appears to act as a good indicator of both overall survival and GI characteristics of HCC patients. From a therapeutic perspective, the GILncSig provides potential targets for individualized treatment of HCC and further informs medicine resource management concerning personal predicted prognosis.
Besides, the GILncSig associated with somatic mutation would likely to cause a more active immune reaction. We explored the immunocytes and immune related pathways by ssGSEA and estimate the immune microenvironment between the high- and low-risk groups scored by GILncSig. The infiltration of 22 immunocyte subtypes was investigated with the CIBERSORT algorithm and B cells memory, macrophages M0 and neutrophils were more enriched in the high-risk group, consistent with the result of a recent study on immune-related prognostic index in HCC (Hu et al., 2020). High density of IgM+ and CD27− isotype-switched memory B cells was correlated with better survival, which may offer novel therapeutic targets (Zhang et al., 2019b). Macrophages M0 could aggravate HCC development stimulated by the CCAT1/let-7b/HMGA2 pathway (Deng et al., 2020). Similarly, tumor-associated neutrophils promoted HCC progression and could be identified as potential targets for HCC treatment (Zhou et al., 2016; Peng et al., 2020). Furthermore, we compared the expression profiles of immune related genes between the two risk groups and notably, five immune checkpoint genes were upregulated in the high-risk group, including CTLA4, indicating the potential application of the inhibiting agents.
Although this study elucidates the molecular mechanisms of GI in HCC and provides potential biomarkers and efficient evaluation tools for GI and patient prognosis, there are some limitations that require further investigation. Despite the internal validation in the TCGA database, additional large, independent, and complete data sources are needed to verify our findings. We explored the Gene Expression Omnibus database, but the expression and clinical data were inadequate for a complete validation process. In addition, as the identification and function of the GILncSig were analyzed based on bioinformatics methods, experiments involving laboratory measurements and animal models are required in future demonstrations of the GILncSig regulatory mechanisms in HCC development.
In conclusion, we identified a GI-derived lncRNA signature of HCC that may serve as a potential biomarker and independent predictor of HCC prognosis. Furthermore, the comprehensive nomogram integrating the GILncSig and clinical characteristics appeared to efficiently evaluate the overall survival of HCC patients in clinical practice. Our results will likely help to guide further investigations of GI and the molecular mechanisms of HCC.
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Abstract Background: Both hypoxia and long non-coding RNAs (lncRNAs) contribute to the tumor progression in hepatocellular carcinoma (HCC). We sought to establish a hypoxia-related lncRNA signature and explore its correlation with immunotherapy response in HCC.
Materials and Methods: Hypoxia-related differentially expressed lncRNAs (HRDELs) were identified by conducting the differential gene expression analyses in GSE155505 and The Cancer Genome Atlas (TCGA)- liver hepatocellular carcinoma (LIHC) datasets. The HRDELs landscape in patients with HCC in TCGA-LIHC was dissected by an unsupervised clustering method. Patients in the TCGA-LIHC cohort were stochastically split into the training and testing dataset. The prognostic signature was developed using LASSO (least absolute shrinkage and selection operator) penalty Cox and multivariable Cox analyses. The tumor immune microenvironment was delineated by the single-sample gene set enrichment analysis (ssGSEA) algorithm. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was applied to evaluate the predictive value of the constructed signature in immunotherapeutic responsiveness.
Results: A total of 55 HRDELs were identified through integrated bioinformatical analyses in GSE155505 and TCGA-LIHC. Patients in the TCGA-LIHC cohort were categorized into three HRDELs-specific clusters associated with different clinical outcomes. The prognostic signature involving five hypoxia-related lncRNAs (LINC00869, CAHM, RHPN1-AS1, MKLN1-AS, and DUXAP8) was constructed in the training dataset and then validated in the testing dataset and entire TCGA-LIHC cohort. The 5-years AUC of the constructed signature for prognostic prediction reaches 0.705 and is superior to that of age, AJCC stage, and histopathological grade. Patients with high-risk scores consistently had poorer overall survival outcomes than those with low-risk scores irrespective of other clinical parameters status. The low-risk group had more abundance in activated CD8+ T cell and activated B cell and were predicted to be more responsive to immunotherapy and targeted therapy than the high-risk group.
Conclusion: We established a reliable hypoxia-related lncRNAs signature that could accurately predict the clinical outcomes of HCC patients and correlate with immunotherapy response and targeted drug sensitivity, providing new insights for immunotherapy and targeted therapy in HCC.
Keywords: hypoxia, lncRNA (long non-coding RNA), hepatocellular carcinoma, prognostic signature, tumor immune microenvironment, immunotherapy response
INTRODUCTION
Liver malignancy is the sixth frequent malignant disease with a growth of 905,677 new cases in 2020 and becomes the third leading cause of tumor-associated death worldwide (Sung, et al., 2021). Hepatocellular carcinoma (HCC) occupies nearly 90% of patients with primary liver cancer (Forner, et al., 2018). Owing to lacking apparent symptoms in the initial stage, many cases were diagnosed in the advanced stage in HCC and lost the curative surgeon opportunity. Targeted therapy such as sorafenib represents the first-line strategy for advanced-stage cases. However, the overall clinical outcomes are still far from satisfactory owing to the emerged resistance of sorafenib (Zhu, et al., 2017). In recent years, immunotherapy based on immune checkpoint inhibitors has brought favorable treatment benefits in several solid tumors (Darvin, et al., 2018), including hepatocellular carcinoma (El-Khoueiry, et al., 2017). Nevertheless, only a subgroup of HCC patients responded to immunotherapy and most of them died of tumor recurrence and metastasis. It is of paramount importance to explore new prognostic biomarkers and potential predictors of immunotherapeutic response for HCC.
Hypoxia is a specific feature in solid tumors (Pouysségur, et al., 2006). Owing to the fast expansion of tumor cells and abnormal vascularization, the tumor microenvironment suffers from insufficient oxygen and nutrition. The hypoxia-inducible factor-1 alpha (HIF-1α) signaling plays a momentous role in the regulation of tumor development, metastasis, recurrence, and drug resistance in the hypoxic tumor microenvironment (LaGory and Giaccia, 2016; Rankin and Giaccia, 2016). HIF-1α can enhance the stemness of HCC cell lines in hypoxia exposure, and the knockdown of HIF1α in HCC cells can effectively downturn the extracellular acidification rate under hypoxic conditions (Ling, et al., 2020).
Evidence has suggested that lncRNAs are involved in the dysregulation of gene expression and signaling pathways closely linked to tumor initiation, progression, and distant metastasis (Slack and Chinnaiyan, 2019). Recently, many studies have revealed that lncRNAs also participate in the hypoxia-response process of cancer cells (Choudhry, et al., 2016; Huan, et al., 2020), and the interplay between hypoxia and lncRNAs is connected with tumor aggression and metastasis (Wang, et al., 2021). In HCC, hypoxia exposure promotes epithelial-to-mesenchymal transition (EMT) and distant metastasis of HCC cells with overexpression of lncRNA AGAP2-AS1, while the knockdown of AGAP2-AS1 can reverse the aggressive phenotype (Liu, et al., 2019). Thus, we speculate that hypoxia-related lncRNAs tightly affect the progression of HCC and have a substantial influence on the clinical outcomes of HCC patients. Moreover, the hypoxic tumor microenvironment can drive cancer cells to an immune resistance phenotype and contribute to the resistance to immunotherapy (Abou Khouzam, et al., 2020). To our knowledge, there is still a lack of hypoxia-related lncRNAs signature that can accurately predict the prognosis and immunotherapeutic responsiveness in HCC.
In the current study, we sought to microdissect the hypoxia-related lncRNAs landscape in HCC and establish a hypoxia-related lncRNAs prognostic signature in HCC patients in the TCGA-LIHC cohort. We also in-depth investigated the association of the prognostic signature with tumor immune infiltration pattern, targeted-drug sensitivity, and immunotherapy response. Our findings may improve the prognostic prediction and personalized treatment management of immunotherapy in HCC.
MATERIALS AND METHODS
Data Preparation
The FPKM profiles of the transcriptome sequencing data of HCC patients in the TCGA -LIHC cohort were publicly obtained from TCGA database. We then transformed the FPKM values into the log2-transformed TPM (Transcripts Per Million) values for further analysis. The microarray dataset GSE155505 consisting of human HCC cells treated with hypoxia or normoxia was publicly obtained from Geo Expression Ombimus (GEO) database.
The TCGA-LIHC project comprises 374 primary HCC tumor samples and 50 normal specimens, and their clinical data were publicly obtained from the cBioPortal database (Cerami, et al., 2012). Patients were included in the present study based on the following criteria: 1) patients had the complete overall survival (OS) time and status; 2) patients with OS time <30 days were excluded for the reason that these patients probably died of other coexisting diseases; 3) patients had detailed histopathological grade information. In the end, 337 patients in the TCGA-LIHC cohort match the above criteria, with a detailed list shown in Supplementary Tables S1, S2. Particularly, Mx denotes the uncertain status of the pathological metastasis and it ranges from M0 to M1, and Nx represents the uncertain status of the pathological nodes and it ranges from N0 to N1. A previous study (Hong, et al., 2021) merged the pathological M1 and Mx (defined as M1+Mx) and established a nomogram to predict the clinical outcomes of patients with HCC in TCGA-LIHC. Analogously, we merged patients with pathological N1 and NX (defined as pathological N+), and also merged patients with pathological M1 and MX (defined as pathological M+), respectively. All the 50 normal tissues were included to conduct further differential gene expression analyses. The total design of the current study was shown in Supplementary Figure S1.
Identifying Hypoxia-Related Differential Expressed lncRNAs
We utilized the “SeqMap” software (Jiang and Wong, 2008) to re-annotate the lncRNA expression matrix in GSE155505 with the annotation file “gencode.v30. transcripts.fa” (FASTA format, 03-April-2019), publicly obtained from the “GENECODE” database (https://www.gencodegenes.org/). The analyses of differentially expressed lncRNAs (DELs) in GSE155505 and TCGA- LIHC datasets were conducted by the R “limma” package (Ritchie, et al., 2015), respectively. The criteria of DELs were set at |fold change| >1.5 and corrected p-value < 0.05. HRDELs were identified as the intersection of DELs in the GSE155505 and TCGA- LIHC datasets.
Identification of HRDELs-Related HCC Clusters With Different Clinical Characteristics
All the 337 cases in the TCGA-LIHC project were unsupervisedly clustered into different groups according to the expression levels of HRDELs, using the “K-means” method in the “ConsensusClusterPlus” package. The “survival” package was employed to perform the survival analysis among different HCC clusters. Kaplan-Meier curves were plotted and the log-rank test was conducted to determine the survival difference. We further analyzed the correlation between the HRDELs-specific clusters and the corresponding clinical characteristics of each patient with HCC, including overall survival status, age, sex, Alpha-fetoprotein (AFP) level, pathological T, pathological N, pathological M, American Joint Committee on Cancer (AJCC) stage, tumor histopathological grade, and “Progressed (Yes/No)”.
Development of the HRDELs-Derived Prognostic Signature
The prognostic signature was identified as the following steps:1) 337 cases in the entire TCGA-LIHC dataset were randomly divided into a training dataset (236 cases) and another independent testing dataset (101 cases) at the ratio of 7:3 via the R package “caret”, and particularly the testing dataset was only applied to verify the prognostic model; 2) Univariable Cox analysis was employed to select for the prognostic lncRNAs in the training dataset (p-value < 0.05); 3) The LASSO penalty Cox regression was employed to remove the less contributive variables via the “glmnet” package; 4) Stepwise multivariable Cox analysis was utilized to develop an optimal signature according to the minimal AIC (Akaike information criterion). The final risk score formula is defined as follows:[image: image], where the [image: image] represents the expression of the specific prognostic lncRNA and the [image: image] represents its corresponding multivariate Cox regression coefficient.
Evaluating and Validating the Prognostic Signature
The risk scores of HCC patients in the training dataset (236 cases), independent testing dataset (101 patients), and the entire TCGA-LIHC cohort (337 patients) were computed by the constructed formula. We split HCC patients into different hypoxia-related risk groups according to the optimal threshold value estimated by the “survminer” package in R. Survival analyses were carried out through the “survival” package, with the survival difference determined by the log-rank test. The time-dependent ROC (receiver operating characteristic) curve and the AUCs (areas under the curve) methods were employed to judge the prognostic value of the signature via the “timeROC” package.
Relationship Between the HRDELs-Derived Signature and Clinical Characteristics
To further test the predictive ability of the HRDELs-derived signature, the overall survival difference analysis between the high-risk and low-risk group in the entire TCGA-LIHC cohort was performed using the Kaplan-Meier curve and log-rank test, according to different clinical subgroups including age (≥65 or <65 years), sex (male or female), AFP level (high ≥400 ng/ ml or low <400 ng/ ml), T (T1-2 or T3-4), M (M0 or M+), N (N0 or N+), AJCC stage (stage Ⅰ-Ⅱ or stage Ⅲ-Ⅳ), tumor histopathological grade (G1-2 or G3-4). In addition, comparisons of the distribution differences of the hypoxia-related risk groups among the different clinical characteristics were also carried out.
Estimating the Independent Prognostic Value of the HRDELs-Derived Signature
Univariable Cox analysis and multivariable Cox analysis were carried out to identify whether the HRDELs-derived signature served as an independent prognostic factor when adjusting for other clinical parameters. We further incorporated these independent prognostic factors to construct a clinical nomogram via the “rms” package. Calibration curves and decision curve analysis (DCA) (Vickers and Elkin, 2006) were utilized to evaluate the calibration and clinical net benefits of the predictive model.
GO and KEGG function enrichment analysis.
Pearson correlation was applied to explore the coexpression genes of the five key lncRNAs (LINC00869, CAHM, RHPN1-AS1, MKLN1-AS, and DUXAP8), according to the threshold standard of |r| > 0.3 and p < 0.05. Subsequently, GO and KEGG function enrichment analyses of the above coexpression genes were conducted to unravel the fundamental mechanism of the five HRDELs via the R “clusterProfiler” package (Yu, et al., 2012).
Somatic Variant Analysis
Somatic variants profiles calculated by the “Mutect2” software in the TCGA-LIHC cohort were downloaded from the TCGA database, and the “maftools” package (Mayakonda, et al., 2018) was employed to analyze and visualize the somatic variant landscape.
GSEA
We conducted differential gene expression analyses between the hypoxia-related high- and low-risk groups in the TCGA-LIHC cohort by the “limma” package (Ritchie, et al., 2015). All genes were ranked as a gene list according to their log2 fold change (log2FC) value. GSEA (gene set enrichment analysis) (Subramanian, et al., 2005), which calculates the enrichment score and the corresponding adjusted p-value of a predefined gene set according to the pre-ranked gene list based on transcriptomic expression profiles, was employed to determine the differently enriched pathways in hallmark gene sets (“h.all.v7.4. entrez.txt”) and KEGG pathways gene sets (“c2. cp.kegg.v7.4. entrez.txt”) publicly downloaded from the MsigDB database (Liberzon, et al., 2015) (http://www.gsea-msigdb.org/gsea/msigdb) via the R “clusterProfiler” package (Yu, et al., 2012). A set value of adjusted p-value <0.05 represents a statistical significance.
Analyzing the Landscape of Tumor Immune Microenvironment
The single-sample gene set enrichment analysis (ssGSEA) (Yi, et al., 2020), which can estimate the relative score of a specific type of immune cell at the level of a single sample, was utilized to evaluate the relative abundance of 28 immune cells according to the specific gene signatures curated from the previously published literature (Charoentong, et al., 2017) via the R package “GSVA”. The ssGSEA is a popular bioinformatics algorithm, which was extensively utilized in cancer-related studies (Liu, et al., 2021a; Liu, et al., 2021b; Liu, et al., 2021c; Liu, et al., 2021d; Liu, et al., 2021e; Liu, et al., 2021f; Liu, et al., 2021g).
Correlation Between HRDELs-Derived Risk score and Stemness, HIF-1A mRNA Level, and Immune Checkpoint Expression.
RNAss (RNA-based stemness scores) and DNAss (DNA methylation-based stemness scores) of HCC patients in the TCGA-LIHC cohort were publicly downloaded from the UCSC Xena database (https://pancanatlas.xenahubs.net), curated by the previously published literature (Malta, et al., 2018). Correlations between HRDELs-derived risk score and stemness, HIF-1A mRNA expression (representing the HIF-1α mRNA level), and immune checkpoint expression for each HCC patient were examined by Pearson correlation analysis, respectively.
Prediction of Immunotherapy Responsiveness and Targeted Drug Sensitivity
Prediction of immunotherapy response in HCC patients was conducted using the TIDE (Tumor Immune Dysfunction and Exclusion) method (http://tide.dfci.harvard.edu/) (Jiang, et al., 2018). Drug sensitivities for HCC patients were estimated via the Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang, et al., 2013). Drug sensitivity was assessed according to the IC50 (half-maximal inhibitory concentration) values of HCC patients estimated by the “pRRophetic” package (Geeleher, et al., 2014).
Statistical Analysis
R software was employed to conduct the statistical analyses. Continual variable differences between the two groups were determined by the Wilcoxon test. Comparisons among more than two groups were performed by the Kruskal-Wallis test. The frequency differences in category variables were examined via the chi-square test or Fisher’s exact test. Survival differences were determined by the log-rank test. A threshold of two-sided p-value < 0.05 was set to indicate statistical significance. For multiple testing, the Benjamini–Hochberg method was employed to correct the p-value.
RESULTS
Identification of the HRDELs in HCC
A previous study has established a hypoxia-related gene signature from public datasets consisting of hypoxia and normoxia HCC cells to predict the diagnosis and prognosis of HCC patients (Zhang, et al., 2020). Analogously, by conducting differential gene expression analyses between the hypoxia and normoxia HCC cells in GSE155505, we acquired 2312 DELs (|fold change| > 1.5 and adjusted p-value < 0.05) and defined them as HCC-specific hypoxia-related lncRNAs (Supplementary Table S3), including 1249 up-regulated and 1063 down-regulated lncRNAs (Figure 1A). With the same threshold criteria in the TCGA-LIHC cohort, we obtained 926 DELs (829 up-regulated and 97 down-regulated lncRNAs) in HCC tumor tissues compared with normal samples (Figure 1B; Supplementary Table S4). To further select the most contributive hypoxia-related lncRNAs in the carcinogenesis of HCC, we obtained a total number of 55 HRDELs by intersecting the HCC-specific hypoxia-related lncRNAs in GSE155505 with the DELs in TCGA-LIHC (Figure 1C; Supplementary Table S5). Of note, the majority of those HRDELs possessed elevated expression levels not only in hypoxia-treated HCC cells in GSE155505 (Supplementary Figure S2) but also in the HCC tumor tissues in TCGA-LIHC (Figure 1D), indicating that the above 55 HRDELs substantially contribute to the tumorigenesis of HCC.
[image: Figure 1]FIGURE 1 | Identification of HRDELs in HCC. Volcano plots for DELs in GSE155505 (A) and TCGA-LIHC cohort (B). (C) Venn diagram of hypoxia-related lncRNAs from GSE155505 and TCGA-LIHC cohort. (D) Heatmap of the expression levels of 55 HRDELs between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort. HRDELs: hypoxia-related differentially expressed lncRNAs. DELs: differentially expressed lncRNAs. HCC: hepatocellular carcinoma. TCGA: The Cancer Genome Atlas. LIHC: liver hepatocellular carcinoma.
Microdissection of the HRDELs-Related Clusters in HCC
The HRDELs landscape in patients with HCC in the TCGA-LIHC cohort was microdissected by unsupervised clustering according to the expression levels of the 55 aforementioned HRDELs, via the “K-means” algorithm in the “ConsensusClusterPlus” package. We selected 3 as the optimal k value because that the k value of 3 could simultaneously possess a high cumulative distribution function (CDF) value and a clear separation of the consensus matrix (as shown in Figure 2A; Supplementary Figures S3A–D). Therefore, all cases were assigned into three groups according to the unsupervised clustering results (Figure 2A). In brief, cluster 1, cluster 2, and cluster 3 include 83, 181, and 73 cases, respectively (Supplementary Table S6). Cluster2 showed the lowest mRNA expression level of HIF1A compared with cluster 1 (Figure 2B, p = 2.7e−09) and cluster 3 (p = 0.0043). Notably, there were significant OS differences among the three clusters (Figure 2C, global p = 3.76e−07). Cluster 2 possessed a longer median OS time than cluster 1 (p = 2.107e−08) and cluster 3 (p = 0.011), while there was no significant OS difference between cluster 1 and cluster 3 (p = 0.051). Survival analysis also showed that cluster 2 exhibited better disease-free survival (DFS) outcomes (Figure 2D, global p = 0.001) than cluster 1 (p = 4.41e-04) and cluster 3 (p = 0.015), whereas no statistical significance was shown between cluster 1 and cluster 3 (p = 0.493). These results indicate that cluster 2 with the lowest HIF1A mRNA expression level represents the least hypoxic exposure in HCC and has the best survival outcomes. Thus, we conclude that the hypoxia-related lncRNA landscape indeed correlates with the clinical outcomes of HCC patients.
[image: Figure 2]FIGURE 2 | Microdissection of the hypoxia-related lncRNA landscape in TCGA-LIHC cohort. (A) the Consensus matrix plot of HCC patients by unsupervised clustering (K-means method) according to the expression levels of 55 HRDELs, when k = 3 representing the optimal cluster number. (B) Comparison of HIF1A mRNA expression among the HRDEL-specific clusters. (C) Overall survival difference and (D) DFS difference among hypoxia-specific clusters. HCC: hepatocellular carcinoma. HRDELs: hypoxia-related differentially expressed lncRNAs. DFS: disease-free survival.
Clinical Correlation Analysis of HRDELs-Related Clusters
We further comprehensively analyzed the association of the HRDELs-related clusters and clinical characteristics in the TCGA-LIHC cohort. Results showed that there were significant distributive differences in overall survival status, pathological T, AJCC stage, and “Progressed (Ye/No)” among HRDELs-related clusters (Figure 3A). Cluster 2 has a lower death rate of patients with HCC (25%) compared to cluster1 (53%), and cluster3 (40%), as shown in Figure 3B (p = 5.1e−05). Cluster 2 had a higher proportion of patients with pathological T1 (65%), stage Ⅰ (65%), and “Progressed (No) (49%)” than cluster 1 (42, 45, and 31%, respectively) and cluster 3 (21, 20, and 37%, respectively), as shown in Figures 3C–E. The above evidence suggests that HRDELs-related clusters are closely associated with tumor progression in HCC.
[image: Figure 3]FIGURE 3 | Clinical correlation analysis of HRDELs-specific clusters in TCGA-LIHC cohort. (A) Distribution landscape of HRDELs-specific clusters among clinical characteristics. Comparison of distribution difference of overall survival status (B), pathological T (C), AJCC stage (D), and “Progressed (Yes/No)” (E) among HRDELs -specific clusters. HRDELs: hypoxia-related differentially expressed lncRNAs. AJCC: American Joint Committee on Cancer. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
Construction of the HRDELs-Derived Prognostic Signature
All 337 patients in the TCGA-LIHC cohort were randomly assigned into the training dataset (236 cases) and the testing dataset (101 cases). The prognostic signature was developed in the training dataset. We utilized the univariable Cox regression to yield 21 significant prognostic hypoxia-related lncRNAs (Figure 4A). Subsequently, 10 prognostic lncRNAs were retained after filtering the variables by LASSO penalty Cox analysis according to the “lambda. min” standard (Figures 4B,C; Supplementary Table S7). Furthermore, the stepwise multivariable Cox regression model was employed to establish the optimal signature (Figure 4D; Supplementary Table S8). Ultimately, five hypoxia-related lncRNAs were selected and incorporated into the final model: risk score = 0.26120*LINC00869 expression+0.37141*CAHM expression+0.28394*RHPN1-AS1 expression +0.48183* MKLN1-AS expression +0.49900*DUXAP8 expression.
[image: Figure 4]FIGURE 4 | Construction of hypoxia-related lncRNA signature in the training dataset. (A) Forest plot of 21 significant prognostic lncRNAs determined by the univariate Cox regression. (B) LASSO penalty coefficients of the above 21 prognostic lncRNAs. (C) Cross-validation of the LASSO Cox regression model, the left vertical dashed line represents the “lambda. min” standard. (D) Forest plot of the optimal model determined by the stepwise multivariate Cox analysis according to the minimal AIC value (783.95). LASSO: least absolute shrinkage and selection operator. AIC: Akaike information criterion. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
Evaluating and Validating the Performance of the Prognostic Signature
Applying the above formula, we computed the hypoxia-related risk score for each patient in the training dataset (Supplementary Table S9). All these cases were assigned into a high-risk (71 patients) or low-risk group (165 patients) based on the optimal threshold value (2.3033). The high-risk group showed an adverse prognosis compared with those in the low-risk counterpart (p < 0.001, Figure 5A). The AUCs of the risk scores for the 1-, 3-, and 5-years survival predictions were 0.746, 0.702, and 0.726 (Figure 5D), respectively, indicating a good predictive value. We further tested the prognostic model in the testing dataset (Supplementary Table S10) and the entire TCGA-LIHC dataset. With the same threshold, cases in the testing dataset and the entire TCGA-LIHC dataset were assigned into different hypoxia-related risk groups, respectively. Analogously, the high-risk group consistently showed a poorer clinical outcome than the low-risk group, with p = 0.002 in the testing dataset (Figure 5B) and p < 0.001 in the entire TCGA-LIHC dataset (Figure 5C), respectively. The AUCs for the 1-, 3-, and 5-years prognostic prediction in the testing dataset were 0.755, 0.684, and 0.686, respectively (Figure 5E), and the AUCs of the entire TCGA-LIHC cohort were 0.746, 0.697, and 0.712 for 1-, 3-, and 5- year survival prediction, respectively (Figure 5F). These results demonstrate the robustness and reliability of the prognostic signature.
[image: Figure 5]FIGURE 5 | Identification and validation of the hypoxia-related lncRNAs signature. Kaplan-Meier curves and log-rank test p-value of the training dataset (A), testing dataset (B), and entire TCGA-LIHC cohort (C), respectively. The AUCs of the time-dependent ROC curves for the training dataset (D), testing dataset (E), and entire TCGA-LIHC cohort (F), respectively.
We further sought to search for an external validation dataset in the International Cancer Genome Consortium (ICGC) database or GEO database, but unfortunately, there was no other public dataset of HCC patients with matched lncRNA expression profiles and complete survival information. Finally, we chose the HCC dataset GSE14520-GPL3921 as the external validation dataset and re-annotated all the probe sequences using the “SeqMap” software to obtain the lncRNA expression profiles. However, only three lncRNAs (LINC00869, RHPN1-AS1, and MKLN1-AS) in the hypoxia-related lncRNA signature were re-annotated in GSE14520-GPL3921 and thus we had to calculate the risk score through the following formula: risk score = 0.26120*LINC00869 expression+0.28394*RHPN1-AS1 expression + 0.48183* MKLN1-AS expression. GSE14520-GPL3921 comprises 225 HCC tissues and 220 non-tumor specimens, and 221 tumor samples with detailed survival data were enrolled as the validation dataset. We calculated the risk score for each HCC patient (Supplementary Table S11) and categorized patients into different risk groups based on the optimal threshold (9.753). In the same manner, Kaplan-Meier curves demonstrated that patients in the high-risk group had poorer clinical outcomes than those in the low-risk counterpart (Supplementary Figure S4A, p = 0.032). ROC analyses showed that The AUCs for the 1-, 3-, and 5-years prognosis prediction were 0.510, 0.570, and 0.534, respectively (Supplementary Figure S4B). The unsatisfactory AUC values in GSE14520-GPL3921 might be caused by the lack of expression profiles of CAHM and DUXAP8, and further complete external validation will still be needed in the future. Collectively, the external validation results further confirmed that the hypoxia-related lncRNA signature was closely associated with adverse clinical outcomes in HCC.
Subgroup Survival Analysis of the HRDELs-Derived Signature
We further stratified the entire TCGA-LIHC cohort into different subgroups according to the clinical characteristics including age (≥65 or <65 years), sex (male or female), AJCC stage (stage Ⅰ-Ⅱ or stage Ⅲ-Ⅳ), pathological T (T1-2 or T3-4), pathological M (M0 or M + ), pathological N (N0 or N+), tumor histopathological grade (G1-2 or G3-4), AFP level (high ≥400 ng/ml or low <400 ng/ ml). Strikingly, patients with high-risk scores consistently had poorer clinical outcomes than those with low-risk scores, no matter which subgroups they are in (Supplementary Figures S5–S7). This further confirms the reliable prognostic value of the hypoxia-related lncRNA signature in predicting the clinical outcomes of patients with HCC.
Identifying the Independent Prognostic Value of Hypoxia-Related lncRNA Signature
Univariable and multivariable Cox analyses consistently demonstrated that hypoxia-related risk scores and the AJCC stage were independent prognostic indicators in HCC (Figures 6A,B). Moreover, the risk score was tightly associated with pathological T, AJCC stage, and “Progressed (Yes/No)” (Figure 7A). The high-risk group has a higher proportion of patients with T3-4, stage Ⅲ-Ⅳ, and “Progressed (Yes)” than the low-risk counterpart (Supplementary Figures S8A–C). Time-dependent ROC illustrates that the 5-years AUC of hypoxia-related risk scores for the prognostic prediction reaches 0.705 and is superior to that of age, AJCC stage, pathological grade, and HIF1A mRNA expression (Figures 7B,C), indicating the good performance of the hypoxia-related lncRNA signature. Furthermore, The five lncRNAs in the prognostic signature (CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1), all had a significantly higher expression level in HCC tumor samples than normal samples in the TCGA-LIHC cohort (Figures 6C–G), implying that they probably act as oncogenic lncRNAs in the tumorigenesis of HCC.
[image: Figure 6]FIGURE 6 | Identifying the hypoxia-related lncRNA signature as an independent prognostic factor. Forest plot of the corresponding p-values of the univariate Cox regression analysis (A) and multivariate Cox regression analysis (B). Comparisons of the expression levels of CAHM (C), DUXAP8 (D), LINC00869 (E), MKLN1-AS (F), and RHPN1-AS1 (G) between HCC tumor and adjacent normal tissues in TCGA-LIHC cohort. TCGA: The Cancer Genome Atlas. LIHC: liver hepatocellular carcinoma. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
[image: Figure 7]FIGURE 7 | (A) Distribution landscape of the hypoxia-related risk groups among clinical parameters and the heatmap of the expression levels of the five key lncRNAs in HCC patients in the TCGA-LIHC cohort. The color blue denotes a low expression level and red represents a high expression level. (B) AUCs of the time-dependent ROC curves for risk score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. (C) AUCs for the 5-years prognostic prediction of risk score, HIF1A mRNA expression, age, stage, and tumor grade in HCC patients. AUC: area under the curve. ROC: receiver operating characteristic curve. HCC: hepatocellular carcinoma. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
Construction of a Clinical Nomogram to Improve Prognostic Prediction
To test the clinical practicability of the hypoxia-related lncRNA signature, the two independent prognostic indicators yielded by the multivariable Cox analyses, hypoxia-related risk score and AJCC stage, were incorporated to develop a hybrid nomogram to facilitate the prognostic prediction. Patients were given a total risk score based on each factor level in the nomogram (Figure 8A). Statistical analysis showed that the concordance index (C-index) of the nomogram reached 0.718 (95% confidence interval: 0.666–0.770). Calibration curves showed that the nomogram-predicted OS probability was consistent with the observed OS probability (Figure 8B). DCA curves further suggested that the 5-years clinical net benefit of the combined nomogram was superior to that of other individual models (Figure 8C).
[image: Figure 8]FIGURE 8 | Construction of a clinical predictive nomogram to improve the prognostic prediction in HCC. (A) The hybrid nomogram combining the hypoxia-related risk score with the AJCC stage. Patients were given a total risk score based on each factor level in the nomogram. (B) Calibration curves show the consistency between the nomogram-predicted OS probability and the observed OS probability. (C) DCA curves illustrate the 5-years clinical net benefit of the combined nomogram compared with other individual models. HCC: hepatocellular carcinoma. OS: overall survival. DCA: decision curve analysis.
Functional Annotation of Five Key Prognostic lncRNAs in HRDELs-Derived Signature
To investigate the underlying mechanism of the signature, we used the Pearson correlation analysis to select potential targeted genes of the five key lncRNAs. We finally obtained 1678, 3427, 79, 6720, and 3359 coexpression genes for CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1, respectively (|r| > 0.3 and p < 0.05). These corresponding coexpression genes for each key lncRNA were subjected to GO and KEGG function enrichment analysis. With the GO biological process (BP) term enrichment, four of the five key lncRNAs except for LINC00869 were consistently enriched in the tumor proliferation process including DNA replication, RNA splicing, nuclear division, mitotic nuclear division, and nuclear transport (Figure 9A). We also noticed that LINC00869 had a significant enrichment in “mitochondrial gene expression,” and “mitochondrial respiratory chain complex assembly” (Figure 9A), suggesting that LINC00869 was closely related to mitochondrial energy metabolism. For the KEGG pathway, CAHM, DUXAP8, MKLN1-AS, and RHPN1-AS1 were all enriched in these tumor proliferation-related pathways such as Spliceosome, Cell cycle, DNA replication, and RNA transport (Figure 9B), suggesting their important role in the tumorigenesis. However, there was no significantly enriched KEGG pathway associated with LINC00869. Owing to the fewer coexpression genes for LINC00869 in HCC tissues, we further compared the expression level of LINC00869 between the HCC tumor samples and non-tumor samples in GSE14520-GPL3921. Notably, LINC00869 also possessed a significantly higher expression level in tumor tissues in comparison with non-tumor tissues (Supplementary Figure S8D, p = 4.964e−20), confirming the critical role of LINC00869 in the carcinogenesis of HCC. We speculate that the reason for the fewer coexpression genes may be due to the unique expression pattern and molecular mechanism of LINC00869, and this phenomenon is worth further study.
[image: Figure 9]FIGURE 9 | Functional annotation of CAHM, DUXAP8, LINC00869, MKLN1-AS, and RHPN1-AS1. Significantly enriched terms in the GO biological process terms (A) and KEGG pathway (B), according to the corresponding coexpression genes of the above five key lncRNAs. GO: Gene Ontology. KEGG: Kyoto Encyclopedia of Genes and Genomes.
Distinct Molecular Patterns Among the Hypoxia-Related Risk Groups
On account of the significant survival difference between the two groups, GSEA was performed to elucidate the underlying molecular mechanism. With the hallmark gene sets, the high-risk group possessed significantly enriched scores in the “G2M_CHECKPOINT,” “MITOTIC_SPINDLE,” “PI3K_AKT_MTOR_SIGNALING,” “WNT_BETA_CATENIN_SIGNALING,” and “EPITHELIAL_MESENCHYMAL_TRANSITION” pathways which were strongly associated with tumor cell proliferation and aggression (Supplementary Figure S9A). In particular, the “HALLMARK_HYPOXIA” pathway was also significantly enriched in the high-risk cohort, confirming a strong correlation between the hypoxia-related lncRNA signature and hypoxic exposure in HCC. In the case of the KEGG pathway gene sets, the high-risk cohort displayed significantly enriched scores in the “CELL_CYCLE,” “SPLICEOSOME,” “PATHWAYS_IN_CANCER,” and “ADHERENS_JUNCTION” pathways (Supplementary Figure S9B). Furthermore, the high-risk cohort showed a higher level of the RNAss (RNA-based stemness scores), DNAss (DNA methylation-based stemness scores), and HIF1A expression level compared with the low-risk counterpart (Supplementary Figures S10A–C). The hypoxia-related risk score also had a significant positive correlation with RNAss, DNAss, and the HIF1A mRNA expression level (Supplementary Figures S10D–F), supporting the pivotal role of hypoxia in promoting the stemness in HCC. Collectively, the hypoxia-related lncRNA signature indeed reflects the hypoxic exposure in HCC, and hypoxia-related lncRNAs also contribute to the stemness and tumor progression of HCC.
Somatic Variants Analysis
In total, we obtained the somatic variants profiles of 324 HCC patients enrolled in our study by matching the patient identity number. The distributive landscape of the top 20 frequently mutated genes between the two groups was depicted in Figure 10A, and TP53, CTNNB1, and TTN ranked as the top three mutative genes. Studies have reported that mutant TP53 can cooperate with hypoxia to promote tumor progression (Amelio, et al., 2018; Zhang, et al., 2021). Thus, we focus on the relationship between the TP53 mutational status and the hypoxia-related lncRNA signature. The Chi-square test showed that TP53 had a significantly higher mutative ratio in the high-risk group than in the low-risk counterpart (54 versus 20%, p = 8.55e−09, Figure 10B). With respect to the comparisons of the mutative ratio of CTNNB1 and TTN, there was no significant difference between the two groups (Supplementary Figures S11A–B). Subgroup survival analysis further indicated that patients with low-risk scores consistently had better OS survival outcomes than those with high-risk scores irrespective of the TP53 status (Figure 10C, global p-value < 0.001). Moreover, patients with a wild type of TP53 in the high-risk or low-risk group showed better clinical outcomes than patients with a mutant type of TP53 in the corresponding group. In the case of CTNNB1 and TTN, subgroup survival analyses showed the same results as TP53 (Supplementary Figures S11C–D). These results support that hypoxia contributes to genome instability and the crosstalk between these frequently mutated genes (TP53, CTNNB1, and TTN) and hypoxia has a substantial impact on the prognosis of patients with HCC.
[image: Figure 10]FIGURE 10 | Somatic variants analysis of patients in TCGA-LIHC cohort. (A) Somatic variants landscape of the top 20 frequently mutational genes in the two risk groups. (B) Comparison of mutational frequency differences of TP53 between hypoxia-related high-risk and low-risk groups. (C) Survival analyses of the different clinical subgroups stratified by TP53 status and hypoxia-related risk score. TP53-MUT: TP53-mutant. TP53-WT: TP53-wild type. H-risk score: high-risk score. L-risk score: low-risk score.
Correlation Between the Hypoxia-Related lncRNA Signature and Tumor Immune Microenvironment
A previously published study has already classified more than 10,000 tumor samples across 33 cancer types in TCGA into six classical immune subtypes (immune C1, C2, C3, C4, C5, and C6) and found that patients in the immune type C3 (inflammatory type) have the best survival outcomes (Thorsson, et al., 2018). Thus, we further investigated the association of the hypoxia-related lncRNA signature and the classical immune subtypes. In total, 330 out of the 337 HCC patients in our study matched the immune subtype information (17, 39, 125, 148, and 1 patient for immune C1, C2, C3, C4, and C6, respectively). We excluded the immune C6 with only one patient from further analysis to avoid potential bias. Fisher’s exact test revealed that the low-risk group had a significantly higher proportion of immune C3 than the high-risk group (45 versus 21%, p = 2.7 e−06, Figure 11A). Furthermore, the immune C3 showed the lowest risk scores compared with other immune subtypes (Figure 11B). The alluvial plot showed that the immune C3 was mainly derived from HRDELs-specific cluster 2 and the majority of immune C3 was attributed to the low-risk group which had a favorable prognosis in HCC (Figure 11C). These results indicated that the hypoxia-related low-risk group had a different tumor immune infiltration pattern from the high-risk group.
[image: Figure 11]FIGURE 11 | Correlation between the hypoxia-related lncRNA signature and classical immune subtypes. (A) Comparison of the distributive difference of the immune subtypes between the two risk groups. (B) Comparisons of the hypoxia-related risk scores among different immune subtypes. (C) The alluvial plot illustrating the relationship between the HRDELs-specific clusters, classical immune subtypes, hypoxia-related risk groups, and overall survival status. HRDELs: hypoxia-related differentially expressed lncRNAs.
We then calculated the relative scores of 28 immune cells for each patient with HCC using the ssGSEA algorithm (Supplementary Table S12, detailed method is described in the “Materials and methods” part). Notably, The low-risk group possessed a higher abundance in activated CD8+ T cell, activated B cell, monocyte, neutrophil, while the high-risk group had a higher fraction in activated CD4+ T cell and immature dendritic cell, and activated dendritic cell (Figure 12A). We further explored the correlation between the abundance of 28 immune cells and the expression levels of the five key lncRNAs in the hypoxia-related lncRNA signature by Pearson correlation analysis (Supplementary Figure S12). Interestingly, MKLN1−AS was significantly positively correlated with several types of immune cells such as Activated CD4 T cell, Immature dendritic cell, Effector memory CD4 T cell, Plasmacytoid dendritic cell, and Type 2 T helper cell. CAHM, DUXAP8, and RHPN1−AS1 were positively correlated with Activated CD4 T cells. These results indicated that the hypoxia-related lncRNA signature might be mainly expressed in the above immune cells.
[image: Figure 12]FIGURE 12 | Correlation between the hypoxia-related lncRNA signature and tumor immune microenvironment. (A) Comparisons of the abundance of 28 immune cells between the high- and low-risk group using ssGSEA. (B) Chord diagram of the correlation between hypoxia-related risk score and the expression levels of PD1(PDCD1), PDL1(CD274), CTLA4, LAG3, and TIGIT. The color red denotes the positive correlation and blue represents the negative correlation. ssGSEA: single-sample gene set enrichment analysis. ****, p < 0.0001; ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns: no significance.
Hypoxia has been reported to up-regulate the expression level of immune checkpoints such as PDL1 to induce immune escape (Lequeux, et al., 2019). Hence, we also investigated the correlation between the hypoxia-related risk score and the expression levels of several critical immune checkpoints. Results showed that the mRNA expression levels of PD1 (PDCD1), PDL1 (CD274), CTLA4, LAG3, and TIGIT were consistently elevated in the hypoxia-related high-risk group in comparison with the low-risk counterpart (Supplementary Figures S13A–E). Meanwhile, the risk score was significantly positively correlated with the mRNA expression of PD1(PDCD1), PDL1(CD274), CTLA4, LAG3, and TIGIT (Figure 12B). the above evidence demonstrates that hypoxia indeed contributes to the tumor immune dysfunction and immune exclusion in HCC.
Prediction of Immunotherapy Responsiveness and Targeted Drug Sensitivity
Accumulative evidence suggests that hypoxia can drive cancer cells to an immune resistance phenotype and is associated with resistance to immunotherapy (Abou Khouzam, et al., 2020). Hypoxia is also involved in the acquired chemoresistance during cancer chemotherapy (Akman, et al., 2021). Therefore, we investigated the association of the hypoxia-related lncRNA signature with immunotherapy response and targeted drug sensitivity in HCC. The low-risk group was predicted to hold a higher proportion of immunotherapeutic responders compared with the high-risk counterpart (56 versus 29%, chi-square test p = 9.3 e−07, Figure 13A; Supplementary Table S13). Patients with low-risk scores had lower TIDE scores, which means more responsive to the immunotherapy, compared with those with high-risk scores (p = 1.3 e−07, Figure 13B). Moreover, the hypoxia-related risk score has a significant positive correlation (r = 0.3 and p = 3.3 e−08) with the TIDE score (Figure 13C). These results demonstrated that the hypoxia-related lncRNA signature could distinguish the immunotherapeutic responders in HCC and had the potential to serve as a predictor of the immunotherapy response in patients with HCC. The drug sensitivity analyses revealed that patients in the low-risk group exhibited a significantly lower IC50 value of the several drugs including axitinib, dasatinib, erlotinib, gefitinib, and lapatinib (except for sorafenib) in contrast with the high-risk group (Figures 13D–I), suggesting a potential treatment sensitivity of these patients towards above drugs. According to these results, we conclude that the HRDELs-derived signature has the potential predictive ability of immunotherapy response and targeted drug sensitivity.
[image: Figure 13]FIGURE 13 | Prediction of immunotherapy response and targeted-drug sensitivity. (A) Comparison of predicted immunotherapeutic responder proportion and (B) TIDE score between the high- and low-risk groups. (C) Correlation between hypoxia-related risk score and TIDE score in TCGA-LIHC cohort. Comparisons of the IC50 values between the high- and low-risk groups for Axitinib (D), Dasatinib (E), Erlotinib (F), Gefitinib (G), Lapatinib (H), and Sorafenib (I), respectively. TIDE: Tumor Immune Dysfunction and Exclusion. IC50: half-maximal inhibitory concentration.
DISCUSSION
HCC accounts for approximately 90% of liver malignancies and possesses high mortality (Forner, et al., 2018). It is urgent to explore new prognostic biomarkers and potential therapeutic predictors of immunotherapeutic response for HCC. Studies have demonstrated that the hypoxic tumor microenvironment promotes tumor progression, metastasis, recurrence, and drug resistance (LaGory and Giaccia, 2016; Rankin and Giaccia, 2016). Another study (Zhang, et al., 2020) established a hypoxia-related gene signature connected with unfavorable prognosis and elevated recurrence rate in HCC. However, there is still a lack of hypoxia-related lncRNAs prognostic signature in HCC. lncRNAs play a crucial role in the hypoxia-response process of cancer cells (Choudhry, et al., 2016; Huan, et al., 2020), and the interplay between hypoxia and lncRNAs associates with tumor growth and metastasis (Wang, et al., 2021). Thus, we for the first time microdissected the hypoxia-related lncRNA landscape in HCC and identified three hypoxia-specific clusters which are strongly related to OS and DFS outcomes. We further established a robust and reliable hypoxia-related lncRNA signature associated with a poor prognosis in HCC. Time-dependent ROC curves illustrate that the constructed model is superior to age, AJCC stage, tumor pathological grade, and HIF-1A mRNA expression in the prognostic prediction of HCC. More importantly, we constructed a clinical nomogram including the HRDELs-derived signature and AJCC stage, and the nomogram model showed good discrimination, calibration, and clinical net benefit. These results demonstrated that the hypoxia-related lncRNA signature can improve the prognosis prediction in HCC and has good clinical practicability.
The prognostic signature comprises five hypoxia-related lncRNAs, which are all associated with poor clinical outcomes in HCC and their expression levels are elevated in HCC tumor tissues. DUXAP8 promotes the growth and proliferation of HCC cell lines by suppressing Krüppel-like factor 2 (KLF2) expression (Jiang, et al., 2019). (Gao, et al., 2020) revealed that MKLN1-AS promoted HCC progression by acting on miR-654-3p, and down-regulation of MKLN1-AS inhibits the aggressive phenotype of HCC cells. RHPN1-AS1 enhances the proliferation and invasion process of HCC cells by targeting miR-7-5p (Song, et al., 2020). The above evidence is consistent with our results and confirms that DUXAP8, MKLN1-AS, and RHPN1-AS1 are crucial oncogenic lncRNAs in HCC. Notably, CAHM and LINC00869 have not been reported in HCC yet and their role in HCC is worth further study to explore novel treatment targets.
Subsequently, we analyzed the underlying molecular mechanism related to the hypoxia-related lncRNAs. Unsurprisingly, the high-risk group exhibited increased HIF-1A mRNA expression compared to the low counterpart. HIF-1α plays a key role in the regulation of tumor progression, metastasis, and recurrence under hypoxic conditions (LaGory and Giaccia, 2016; Rankin and Giaccia, 2016). Hence, the constructed signature indeed reflects the hypoxia exposure level of HCC tissues. The risk score is also positively correlated with both the RNAss and DNAss, indicating the crucial role of hypoxia in contributing to the enhanced tumor stemness in HCC (Cui, et al., 2017). In addition, GSEA displays that the high-risk cohort exhibits more enriched scores in the “WNT_BETA_CATENIN_SIGNALING”, “PI3K_AKT_MTOR_SIGNALING”, and “EPITHELIAL_MESENCHYMAL_TRANSITION” pathways than the low-risk cohort. Hypoxia has been reported to promote EMT in HCC to induce immunosuppression and facilitate tumor metastasis (Ye, et al., 2016). Thus, we speculate that hypoxia-related lncRNAs may exert their action through the above oncogenic pathways to regulate the progression of HCC.
Tumor immune infiltration pattern contributes greatly to the progression of HCC. The CD8+ T cell is critical for anti-tumor immunity in HCC and can directly induce the death of tumor cells (Wei, et al., 2016). More abundance of CD8+ T cells is correlated with less recurrence and a longer recurrence-free survival time in HCC (Gabrielson, et al., 2016). Tumor-infiltrating B cells can positively mediate the antigen presentation process to induce tumor killing (Wouters and Nelson, 2018). In our study, the low-risk group with a better prognosis displays more abundance in CD8+ T cells and activated B cells than the high-risk group, and thus possesses elevated anti-tumor immunity. In contrast, the high-risk group exhibits a high fraction of immature dendritic cells and activated dendritic cells, which may be due to the phenomenon that the chronic hypoxic microenvironment exerts a stimulatory action on the immunoregulatory functions of immature dendritic cells (Pierobon, et al., 2013). Therefore, we conclude that the hypoxia-related lncRNA signature is tightly connected with the tumor immune microenvironment in HCC. The hypoxic tumor microenvironment supports tumor stemness, metastasis, and tumor immune escape (Chouaib, et al., 2017; Samanta and Semenza, 2018), and also up-regulates critical immune checkpoints expression such as PD1/PDL1 (Lequeux, et al., 2019). We also uncovered that the high-risk cluster exhibited elevated expression levels of PD1, PDL1, CTLA4, LAG3, and TIGIT compared to the low-risk counterpart, supporting the contribution of hypoxia to the tumor immune escape in HCC.
Hypoxia has been considered to drive cancer cells to an immune resistance phenotype and is associated with resistance to immunotherapy (Abou Khouzam, et al., 2020; Wu, et al., 2019). We also investigated the association of our constructed signature with immunotherapy response using the TIDE algorithm, which can effectively predict the treatment responsiveness of immune checkpoint blockade (Jiang, et al., 2018). A higher TIDE score means more T cell dysfunction or more exclusion of T cell infiltration and thus less response to immunotherapy. Notably, the low-risk group possesses more potential immunotherapeutic responders compared to the high-risk counterpart. We speculate that the low-risk group represents less hypoxic exposure and therefore is more responsive to immunotherapy. Additionally, the low-risk group exhibits a lower inhibitory concentration (IC50) value of Axitinib, Dasatinib, Erlotinib, Gefitinib, and Lapatinib, suggesting a higher sensitivity to these drugs than the high-risk group. Hypoxia aberrantly activates the HIF-1α pathway and several specific oncogenic pathways, inducing chemoresistance in cancer chemotherapy (Akman, et al., 2021; Kim and Lee, 2017). In line with these studies, the high-risk group retains more enriched scores in the “WNT_BETA_CATENIN_SIGNALING” and “PI3K_AKT_MTOR_SIGNALING” pathways, demonstrating the potential chemoresistance mechanism under the hypoxia condition in HCC. However, the IC50 value of sorafenib shows no statistical difference between the two groups. This phenomenon may be due to the intricate mechanism of sorafenib resistance including epigenetic modification, autophagy, ferroptosis, hypoxia, immune microenvironment (Tang, et al., 2020), and tumor genetic heterogeneity with HCC (Cabral, et al., 2020). Collectively, the hypoxia-related lncRNA signature has the potential to predict immunotherapy response and targeted drug sensitivity.
However, our present study has some limitations. Due to the absence of another public dataset of HCC patients with matched lncRNA expression profiles and complete survival data, the prognostic model was validated in an internal split testing dataset and lacked complete external validation. Thus, additional studies will be needed to further verify its reliable prognostic value. Meanwhile, the signature has been proved to possess the potential predictive capability of immunotherapy response by bioinformatical analysis, but well-designed clinical trials are required to further examine its performance. Additionally, CAHM and LINC00869 are reported in HCC for the first time, their mechanism is worth further exploration by molecular function experiment.
In conclusion, the hypoxia-related lncRNA landscape correlates with clinical outcomes in patients with HCC. We established a reliable hypoxia-related lncRNAs signature that could accurately predict the clinical outcomes of HCC patients and correlate with immunotherapy response and targeted drug sensitivity, providing new insights for immunotherapy and targeted therapy in HCC.
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Background: Non–small cell lung cancer (NSCLC) is among the major health problems around the world. Reliable biomarkers for NSCLC are still needed in clinical practice. We aimed to develop a novel ferroptosis- and immune-based index for NSCLC.
Methods: The training and testing datasets were obtained from TCGA and GEO databases, respectively. Immune- and ferroptosis-related genes were identified and used to establish a prognostic model. Then, the prognostic and therapeutic potential of the established index was evaluated.
Results: Intimate interaction of immune genes with ferroptosis genes was observed. A total of 32 prognosis-related signatures were selected to develop a predictive model for NSCLC using LASSO Cox regression. Patients were classified into the high- and low-risk group based on the risk score. Patients in the low-risk group have better OS in contrast with that in the high-risk group in independent verification datasets. Besides, patients with a high risk score have shorter OS in all subgroups (T, N, and M0 subgroups) and pathological stages (stage I, II, and III). The risk score was positively associated with Immune Score, Stromal Score, and Ferroptosis Score in TCGA and GEO cohorts. A differential immune cell infiltration between the high-risk and the low-risk groups was also observed. Finally, we explored the significance of our model in tumor-related pathways, and different enrichment levels in the therapeutic pathway were observed between the high- and low-risk groups.
Conclusion: The present study developed an immune and ferroptosis-combined index for the prognosis of NSCLC.
Keywords: NSCLC, biomarkers, bioinformatics analysis, microenvironment non–small cell lung cancer, immune, prognosis
INTRODUCTION
According to cancer statistics 2020, lung cancer accounts for almost one-fourth of all cancer fatalities (Siegel et al., 2020). Non–small cell lung cancer (NSCLC) is the most frequent type of lung cancers with high morbidity along with mortality, which remains a major public health problem. Despite the current progression of NSCLC treatment, the diagnosis and treatment for NSCLC is still limited. Therefore, a better understanding of the NSCLC and identifying novel biomarkers are still needed.
The immune microenvironment constitutes an important element of cancer. For example, hepatocellular carcinoma (HCC) patients with a high immune status were associated with poorly differentiated HCC. The immune status has histological and molecular classification potential for HCC (Kurebayashi et al., 2018). The microenvironment is also considered an important integral component of NSCLC (Chae et al., 2018). Our previous study identified some immune-related genes that possessed prognostic potential for NSCLC and identified an immune gene–based risk model to predict overall survival (OS) of individuals with NSCLC (Mi et al., 2020).
Ferroptosis is a kind of iron-dependent cell death caused by unrestricted lipid peroxidation (Dixon et al., 2012). Plenty of studies have been conducted to reveal its prognostic and therapeutic potential for cancer. Ribonucleotide reductase regulatory subunit M2 (RRM2) is elevated in liver cancer tissues and cells, which could protect against ferroptosis of liver cancer cells (Yang et al., 2020). The expression of a major target of ferroptosis Xc-complex was elevated in gemcitabine-resistant pancreatic cancer cells (Tang et al., 2020), and the regulators of ferroptosis play an indispensable role in estimating the survival of individuals with pancreatic cancer (Tang et al., 2020). Increased sensitivity to ferroptosis was identified to be correlated with higher scores of CD8+ T cells and immune checkpoints (Tang et al., 2020). Siramesine (lysosome-disrupting agent) and lapatinib (tyrosine kinase inhibitor) synergistically induced the ferroptosis of breast cancer cells. This process was inhibited by ferrastatin-1, a potent inhibitor of ferroptosis (Ma et al., 2016). Acetaminophen and erastin exert a synergistic effect in inducing ferroptosis in NSCLC (Gai et al., 2020).
The interaction between ferroptosis and immunity has aroused the attention of researchers. The enhanced function of CD8+ T cells in the cancer microenvironment is a dominant mechanism of cancer immunotherapy. Wang et al. found that immunotherapy could activate CD8+ T cells and subsequently induce ferroptosis of cancer cells (Wang W. et al., 2019). On the contrary, ferroptosis-induced lipid metabolite release by cancer cells could modulate the function of immune cells and induce immune response (Luo et al., 2021). Therefore, the combined therapy with the ferroptosis enhancer and checkpoint blockade would be a potential cancer therapeutic approach.
However, little is known about the comprehensive status of ferroptosis and the immune response in NSCLC. Herein, we aim to analysis the association between ferroptosis and immune response in NSCLC.
METHODS AND MATERIALS
Gene Expression Datasets of Lung Cancer
In this study, we incorporated NSCLC data from two publicly available databases. For the TCGA, the gene expression data along with the matching clinical data of lung adenocarcinoma (LUAD), as well as lung squamous cell carcinoma (LUSC) were obtained from the Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/). We combined LUAD samples and LUSC samples as training cohorts, which were called “TCGA” cohort, including 1129 samples.
The gene expression microarray of NSCLC (GSE37745 and GSE50081) with matching clinical data was abstracted from Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). We integrated GSE37745 and GSE50081 samples as validation cohort, which were called “GEO” cohort, including 377 samples. Gene expression data of both the datasets were normalized using the Robust Multichip Average (RMA) approach from R package “affy”.
Immune and Ferroptosis Gene Set
A total of 1793 immune-related genes were abstracted from immunology databases, as well as Analysis Portal (ImmPort) data resource (https://www.immport.org/home). A total of 103 ferroptosis-related genes were abstracted from the study by Luo H et al (Luo and Ma, 2021).
The protein–protein interaction (PPI) network of immune-related genes and ferroptosis-related genes was constructed and visualized using Cytoscape (https://cytoscape.org/). PPI data were obtained from the STRING (https://string-db.org/) database.
Determination of Prognosis-Linked Signatures and Establishment of the Prognostic Model
A univariate Cox proportional regression model was adopted to select OS-linked genes from both immune and ferroptosis gene sets in TCGA training data set. Overall, 42 prognosis-linked signatures were screened with p < 0.05, including 38 immune genes and five ferroptosis-related genes, among which NEDD4 was both the immune- and ferroptosis-related gene.
Next, the least absolute shrinkage and selection operator (LASSO) regression model was constructed to identify significant prognostic genes. A risk score was computed via considering the expression of optimized 32 signatures and correlation: Risk score = (exp gene1 * coef gene1) + (exp gene2 * coef gene2) + … + (exp gene32 * coef gene32). Patients with lung cancer were stratified into the high-risk group or low-risk group by the median of the risk score.
Evaluation of Predictive Efficacy of Prognostic Model
Principal component analysis (PCA) was used according to the expression profile of 32 prognosis-related signatures of the prognostic model in the training (TCGA cohort) and validation sets (GEO cohort). The log-rank test was adopted to assess the difference of the survival time between high-risk patients and low-risk patients. Kaplan–Meier plots were used to present the results.
Clinical Features Relationship Analysis for Risk Score
A one-sided Wilcoxon rank sum test was adopted to explore the difference in the risk score between patients with various clinical characteristics, including sex, patient status, lymph node, tumor recurrence, and clinical pathological stage (TNM categorization of malignant tumors) in TCGA or GEO cohorts.
A chi-square test was implemented to evaluate the relationship of the clinical pathological stage group with the risk score group in TCGA dataset (Table 1).
TABLE 1 | Baseline features of patients in TCGA cohort.
[image: Table 1]A multivariable Cox proportional regression model was performed based on the risk score and clinical characteristics. Adjusted p < 0.05 signified statistical significance (Table 2).
TABLE 2 | Multivariate Cox regression analyses of risk factors for OS.
[image: Table 2]Correlation Analysis of the Risk Score With Immune Infiltration and Ferroptosis-Related Score
We explored tumor immune invasion of TCGA and GEO cohorts using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) approach by R software with the package “estimate” (Yoshihara et al., 2013). The ESTIMATE method assesses the number of stromal cells along with the invasion level of immune cells in samples. Single-sample GSEA (ssGSEA) in R package gsva was used to calculate the ferroptosis-related enrichment score which we called Ferroptosis Score for each sample based on ferroptosis-related gene sets.
The fraction of 22 tumor-invading immune cells was calculated based on CIBERSORT (https://cibersort.stanford.edu/index.php) (Newman et al., 2015) for TCGA and GEO cohorts. The one-sided Wilcoxon rank sum test was adopted to analyze the differences of infiltrative degree for immune cells, and p < 0.05 denoted statistical significance.
After that, we conducted expression assessment of five immune checkpoint–linked genes consisting of PDCD1 (code PD-1), BTLA and, CD274 (code PD-L1), along with CTLA-4 and CD47. The one-sided Wilcoxon rank sum test was carried out for exploring the differences of the expression of five immune checkpoint–related genes in the high-risk group and low-risk group in TCGA and GEO cohorts, and p < 0.05 denoted statistical significance.
Correlation Analysis of the Risk Score and Cancer Therapeutic Signatures
A total of 23 cancer therapeutic-predicted signature sets that we used were obtained from several studies, including “Basal_differentiation”, “EMT_differentiation”, “Immune_differentiation”, “Mismatch_repair”, “Nucleotide_excision_repair”, “p53_signaling_cascade”, “Oocyte_meiosis”, “Proteasome”, “Spliceosome”, “Pyrimidine_metabolism”, “DNA_replication” “Systemic_lupus_erythematosus”, “EGFR_ligands”, “Viral_carcinogenesis”, “FGFR3-coexpressed_genes”, “PPARG_network”, “IDH1”, “KDM6B”, “WNT-β-catenin_network”, “VEGFA”, “Hypoxia”, “Cell_cycle”, and “Progesterone-mediated_oocyte_maturation” (Motz et al., 2014; Peng et al., 2015; Sweis et al., 2016; Mariathasan et al., 2018; Spranger and Gajewski, 2018; Seiler et al., 2019; Kamoun et al., 2020; Necchi et al., 2020). ssGSEA was adopted to calculate the enrichment score of the abovementioned therapeutic signature gene sets. The one-sided Wilcoxon rank sum test was adopted to explore the differences of the enrichment score between high- and low-risk groups.
Prediction of Immunotherapy Response
IMvigor210 was used to predict immunotherapy response (http://research-pub.gene.com/IMvigor210CoreBiologies). It is a study to investigate the anti–PD-L1 antibody atezolizumab in patients with metastatic urothelial cancer (mUCC) (Mariathasan et al., 2018). We evaluated the difference of the risk score between responsive groups [PD (progressive disease), SD (stable disease), PR (partial response), and CR (complete response)].
RESULTS
Intimate Interaction Between Immune Genes and Ferroptosis-Linked Genes
The transcriptome data in TCGA cohort were used to create a comprehensive indicator from immune- and ferroptosis-related profiling (Figures 1A,B). We constructed PPI networks of immune genes and ferroptosis-related genes. Most immune genes directly interacted with the ferroptosis-related genes according to the STRING database (Figure 1C). After data processing, 1294 immune genes and 94 ferroptosis-related genes were used for subsequent model construction (Figure 1D).
[image: Figure 1]FIGURE 1 | Interactions between immune genes and ferroptosis-related genes. (A,B) Circos plots illustrating the annotation and cross-talk of immune genes and ferroptosis-linked genes, respectively, in the genome of TCGA dataset. Outer circle illustrates individual genes’ positions on chromosomes. Scatter plots in the second circle designate the genes. Third circle demonstrates the relative levels of expressions of the genes in TCGA cohort. Central lines designate the possible cross-talks between genes forecasted by the STRING data resource. (C) PPI network of immune genes and ferroptosis-linked genes predicted by the STRING database. Purple nodes designate ferroptosis-linked genes, blue nodes indicate immune genes, and brown nodes are both ferroptosis-related and immune-related genes. (D) Venn diagram indicating ferroptosis-related and immune-related genes identified in TCGA cohort.
Identification of Prognosis-Linked Signatures and Constructing the Prognostic Model
A univariate Cox proportional regression model was used to explore the prognostic value of both immune- and ferroptosis-linked genes. Screened with p < 0.05, 42 prognosis-related genes were obtained (Figure 2A), including 38 immune-related genes and five ferroptosis-related genes, among which, NEDD4 was both an immune- and ferroptosis-related gene (Figure 2A). NEDD4 is an oncogene, which encodes E3 ubiquitin ligase. Next, a LASSO analysis was used to construct a prognostic model with 32 signatures: ACSL3, ACTG1, ANGPTL4, APOD, CD1E, CRHR2, CTF1, DEFB103B, DKK1, EREG, FGA, FGF4, HLA-DOB, IL2, INSL4, ITGA6, LCN1, NEDD4, PDGFB, PF4V1, PTX3, RFXAP, SEMA3C, SEMA7A, SHC1, SLC11A2, STC2, TNFRSF6B, UMODL1, VDAC1, VEGFC, and XCR1 (Figures 2B,C). Then, based on the expression of the optimized 32 signatures and correlation in TCGA cohort, we established a predictive model.
[image: Figure 2]FIGURE 2 | Establishment of the prognostic model. (A) According to univariate Cox proportional regression, 40 prognosis-related immune and ferroptosis-related genes were identified based on TCGA cohort. (B) Profiles of LASSO coefficients of 40 immune- and ferroptosis-linked genes. (C) Cross-confirmation for tuning selection of parameters in the LASSO model.
Verification of the Prognostic Model
Every patient’ risk score in TCGA and GEO data sets was computed. For analyzing the accuracy of the signatures used for constructing the module, we visualized the expression of 32 genes and found that a majority of 32 genes were differentially expressed between the high-risk and low-risk groups (Figure 3A). Then, PCA was performed to investigate whether lung cancer patients could be distinguished according to the expression of the 32 signatures in TCGA and GEO data sets (Figures 3B,C).
[image: Figure 3]FIGURE 3 | Dividing power of prognostic models. (A) Heatmap showed the expression of 32 signatures we used for constructing the model. (B,C) Principal component analysis for TCGA and GEO cohorts based on the expression of the 32 signatures. (D) Kaplan–Meier plot was adopted to show the difference in OS between high- and low-risk groups in TCGA dataset. (E)–(G) Survival time and risk score distributions on the basis of the prognostic model in TCGA dataset. (H) Difference in OS between high- and low-risk groups in the independent validation set (GEO cohort). (I–K) Survival time, as well as risk score distributions in the GEO cohort. p < 0.05 denoted statistical significance.
Next, patients were categorized into the high- and low-risk group using the median risk score as the cutoff value. In TCGA data set, patients in the high-risk group had a remarkably worse OS (Figure 3D; p < 0.0001; log-rank test), and the number of alive patients in the low-risk group were more relative to those in the high-risk group (Figures 3E–G). In the independent validation set (GEO dataset), patients in the high-risk group also exhibited a remarkably worse OS (Figure 3H; p = 0.00042 log-rank test), and the alive patients in low-risk group were more than those in the high-risk group (Figures 3I–K).
Risk Score Connected With Clinical Pathological Characteristics
We next explored the capacity of the prognostic model in clinical pathological characteristics. We first investigated the difference of clinical characteristics between the high-risk and low-risk groups (Table 1). Then, we evaluated the differences of the risk score between patients with different clinical characteristics (dead vs. alive), sex groups (female vs. male), tumor size groups (T1 vs. T2 vs. T3 vs. T4), lymph node (N0 vs. N1-N3), and pathological stage (Stage I vs. Stage II-Stage IV) in TCGA cohort. The risk score in dead patients was remarkably higher in contrast with alive patients (Figure 4A; p < 2.22e-16), and male patients were remarkably higher than female patients (Figure 4B; p = 0.00015). The risk score in stage T2, T3, and T4 was remarkably higher relative to stage T1, and the risk score in stage T3 was remarkably higher than stage T2 (Figure 4C; p < 0.05). Besides, the risk score in stage N1–N3 was remarkably higher in contrast with stage N0 (Figure 4D; p = 0.003), and stage II–stage IV was remarkably higher than stage I (Figure 4E; p = 2.7e-06). Moreover, the risk score of dead patients was remarkably higher relative to alive patients (Figure 4F; p = 0.00094), and male patients were remarkably higher than female patients (Figure 4G; p = 0.012). Stage II–Stage IV was remarkably higher than stage I (Figure 4H; p = 0.022), and recurrent patients were remarkably higher than non-recurrence patients (Figure 4I; p = 0.022) in the GEO cohort.
[image: Figure 4]FIGURE 4 | Risk score discrepancy between the subgroup of clinical characteristics. (A–E) One-sided Wilcoxon rank sum test was used to evaluate the differences in the risk score between patient status groups, sex groups, tumor size groups, lymph node groups, and pathological stage groups in TCGA cohort. (F–I) One-sided Wilcoxon rank sum test was used to evaluate the differences in the risk score between patient status groups, sex groups, pathological stage groups, and recurrence groups in the GEO cohort. p < 0.05 denoted statistical significance.
Further assessment was conducted to explore whether the risk score reveals prognosis in diverse subgroups of clinical features. In the T subgroups (T1, T2, and T3), N subgroups (N0, N1, and N2), M0 subgroup, and pathological stage (stage I, stage II, and stage III) of TCGA cohort, patients in the high-risk group exhibited a poor OS (Figures 5A–J; p < 0.05; log-rank test). In the pathological stage (stage I and stage II) of the GEO cohort, remarkably poorer OS was found in patients in the high-risk group (Figures 5K,L; p < 0.05; log-rank test).
[image: Figure 5]FIGURE 5 | Performance of our prognostic model in patients with different clinical characteristics. (A–J) Difference in OS between the high-risk and low-risk samples of T subgroups (T1, T2, and T3), N subgroups (N0, N1, and N2), M0 subgroups, and pathological stage (stage I, stage II, and stage III) of TCGA cohort. (K,L) Difference in OS between high-risk and low-risk samples in pathological stage (stage I and stage II) of the GEO cohort. p < 0.05 was regarded remarkable.
A multivariable Cox proportional regression model was built in TCGA cohort using the risk score and clinical pathological stage groups to verify the prognostic potential and independence of the prognostic model from other clinico-pathologic characteristics. The result suggested that our prognostic model has a potential in clinical application (Table 2).
The discrepancy of immune infiltration and ferroptosis between different risk groups.
To investigate the relationship between the risk score and immune infiltration as well as ferroptosis, we analyzed the distribution of the ESTIMATE score (consists of Immune Score and Stromal Score) and Ferroptosis Score (enrichment score of ferroptosis-related genes) in each sample. Immune Score, Stromal Score, and Ferroptosis Score tended to increase with the escalation of the risk score in both TCGA and GEO cohorts (Figures 6A,B). To further confirm this trend, Pearson’s correlation analysis was calculated between the risk score and Immune Score, Stromal Score, and Ferroptosis Score, respectively. The results showed that they were positively related with the risk score in both TCGA and GEO cohorts (Figures 6C–H; p < 0.05; Pearson’s correlation analysis).
[image: Figure 6]FIGURE 6 | Associations of the risk score with immune invasion and ferroptosis. (A,B) Distribution of Immune Score, Stromal Score, and Ferroptosis Score with the increase of risk score in both TCGA and GEO datasets. (C,H) Pearson’s correlation analysis was proceeded to discern the relation of Immune Score, Stromal Score, and Ferroptosis Score with the risk score in both TCGA and GEO cohorts. p < 0.05 was regarded remarkable.
Next, we investigated the difference in the expression of five immune checkpoint–linked genes between high- and low-risk groups. The expression of PD-L1 in the high-risk group was remarkably greater than that in the low-risk group in TCGA and GEO cohorts (Figures 7A,B; p = 0.021, p = 0.0064). Besides, CTLA-4 and PD-1 expressions in the high-risk group were greater than those in the low-risk group in the GEO cohort (Figure 7B; p = 0.0198, p = 0.0297).
[image: Figure 7]FIGURE 7 | Associations of the risk score with the tumor immune microenvironment and cancer therapeutic score. (A,B) Differences in the expressions of five immune checkpoint–linked genes between high- and low-risk groups in TCGA and GEO cohorts. (C,D) Differences in 22 immune cell infiltration between high- and low-risk groups in TCGA and GEO datasets. (E,F) Differences in the cancer therapeutic enrichment score in high- and low-risk groups in TCGA and GEO datasets. p < 0.05 was regarded statistically significant.
To explore immune cell infiltration of tumor samples, we calculated 22 immune cell abundances among TCGA and GEO cohorts by CIBERSORT. Next, we explored the difference of 22 immune cell invasion between high- and low-risk groups. The invasion of M0 Macrophages in the high-risk group was remarkably greater in contrast with that in the low-risk group in TCGA cohort (Figure 7C; p < 0.0001). The infiltration of resting NK cells in the high-risk group was remarkably higher than that in the low risk group in TCGA and GEO cohorts (Figures 7C,D; p < 0.01). Also, significantly greater infiltration of CD8 T cells was observed in the high-risk group relative to that in the low-risk group in TCGA and GEO data sets (Figures 7C,D; p < 0.01).
We next investigated the potential role of the prognostic model in the prediction of response to immunotherapy using the IMvigor210 cohort. We found that the risk score in non-responsive patients [stable disease (SD) and progressive disease (PD)] was significantly higher than responsive patients [complete response (CR) and partial response (PR)] (Supplementary Figure S1A; p < 0.05; one-sided Wilcoxon rank sum test). The number of non-responsive patients in the high-risk group was more than that in the low-risk group (Supplementary Figure S1B). The distribution of CR, PR, SD, and PD patients between the high-risk and low-risk groups was significant (Supplementary Figure S1C; p < 0.05; chi-square test). Besides, patients in the high-risk group had significantly poorer OS (Supplementary Figure S1D; p < 0.01).
Correlation of Risk Score and Cancer Therapeutic Potential
For investigating the guiding role of the risk score in cancer treatment, we calculated the enrichment score for each sample according to 23 cancer therapeutic–predicted signature sets by ssGSEA. Next, we analyzed the differences of these scores in the high-risk and low-risk groups in TCGA and GEO cohorts. In TCGA cohort, the enrichment score of the high-risk group was higher relative to the low-risk group in 73.91% (17/23) of cancer therapeutic prediction signature sets, including “Basal_differentiation”, “Cell_cycle”, “DNA_replication”, “EGFR_ligands”, “EMT_differentiation”, “Hypoxia”, “Immune_differentiation”, “Mismatch_repair”, “Nucleotide_excision_repair”, “Oocyte_meiosis”, “p53_signaling_casacde”, “Progesterone-mediated_oocyte_maturation”, “Proteasome”, “Spliceosome”, “Pyrimidine_metabolism”, “Systemic_lupus_erythematosus”, and “Viral_carcinogenesis” (Figure 7E; p < 0.05). In the GEO cohort, the elevated score of “Basal_differentiation”, “EGFR_ligands”, “EMT_differentiation”, “Hypoxia”, “Immune_differentiation”, and “Proteasome” was observed in the high-risk group in contrast with those in the low-risk group (Figure 7F; p < 0.05).
DISCUSSION
Immune status and ferroptosis are both important in NSCLC. Tumor immune microenvironment–related signature could estimate the prognosis of NSCLC patients, which may also be indicators for immunotherapy (Ojlert et al., 2019; Li et al., 2020). Recently, a ferroptosis-linked gene-based prognostic model was constructed by Han et al. They found that the ferroptosis-related risk score was linked to immune status (Han et al., 2021). Although clinical indicators regarding immune response and ferroptosis have been established, few investigations focused on their combined effect and their clinical application capacity have been performed. Herein, we explored the potential role of a combined immune and ferroptosis model for NSCLC.
Gene expression data were obtained from TCGA and GEO databases, which served as training and testing datasets, respectively. Immune- and ferroptosis-related genes were identified through databases and publications. After data processing, we collected 1294 immune genes and 94 ferroptosis-related genes (Figure 1).
A univariate Cox proportional regression model was used to identify immune- and ferroptosis-linked genes that have prognostic potential of NSCLC in the TCGA dataset. Overall, genes were analyzed, including 1294 immune-related genes and 94 ferroptosis-related genes, and 12 of these genes are related to both immune response and ferroptosis. Screened with p < 0.05, 42 prognosis-related genes were obtained, including 38 immune-related genes and 5 ferroptosis-related genes, among which, NEDD4 was both an immune- and ferroptosis-related gene (Figure 2). NEDD4 is an oncogene, which encodes E3 ubiquitin ligase. NEDD4 is remarkably correlated with the migration of NSCLC cells (Shao et al., 2018). Knockdown of NEDD4 could inhibit the migration of NSCLC cells (Shao et al., 2018). NEDD4 is also related to drug resistance of NSCLC cells. The downregulation of NEDD4 could elevate the effect of afatinib in afatinib-resistant H1975 clones (Booth et al., 2018). NEDD4 was also associated with the erlotinib resistance of NSCLC by inhibiting PTEN expression (Sun et al., 2017). Moreover, NEDD4 could be the therapeutic target for NSCLC. The anticancerous effect of nitidine chloride was evaluated through the inhibition of NEDD4 in NSCLC H1299 cells, which was abrogated by the overexpression of NEDD4 (Zhang et al., 2020).
Of these 42 genes, 32 of them were selected to compute the risk of NSCLC. On the basis of the LASSO Cox regression model, the samples were stratified into high-risk and low-risk groups. Then, we analyzed the OS in TCGA and GEO cohorts. Patients in the low-risk group have better OS in contrast with those in the high-risk group in both the cohorts (Figure 3).
We then evaluated the differences of the risk score among the clinical pathological subgroups. The higher risk score was observed in dead samples, larger tumor size, higher cancer stage, and recurrence cohorts, respectively (Figure 4). Especially, we found that the risk score was lower in early stages than in later stages, but there was no difference in each stage (Figure 4; Table 1). The prognosis potential of the risk score was investigated in different subgroups and pathological stages of NSCLC. The results showed that patients exhibiting a high risk score have shorter OS in all subgroups (T, N, and M0 subgroups) and pathological stages (stage I, II, and III) (Figure 5).
Subsequently, we assessed the relationship of the risk score and immune invasion with ferroptosis. Our developed risk score was found to be positively correlated with Immune Score, Stromal Score, and Ferroptosis Score in TCGA and GEO cohorts (Figure 6). This result was in accordance with the previous findings that Immune Score, Stromal Score, and Ferroptosis Score were all prognosis indicators for cancer (Shen et al., 2019; Wang H. et al., 2019; Liang et al., 2020). The relationship of the risk score with the immune checkpoint–linked genes (BTLA, PD-L1, CD47, CTLA-4, and PD-1) was evaluated. PD-L1 expression was elevated in the high-risk score group relative to that in the low-risk score group in both cohorts (Figures 7A,B). It is widely accepted that immunotherapies are effective for NSCLC patients with high PD-L1 expression. Regardless of histologic type, atezolizumab treatment remarkably prolonged the OS of NSCLC with high PD-L1 expression than platinum-based chemotherapy (Herbst et al., 2020). NSCLC harboring EGFR mutations exhibited an immune-inert phenotype, which was characterized by low expression of PD-L1, low tumor mutational burden, low cytotoxic T-cell number, and low T-cell receptor clonality. This kind of NSCLC lacks clinical response to immune checkpoint blockade therapy (Le et al., 2021).
Next, the immune cell infiltration between the high-risk and the low-risk groups was analyzed. The infiltration of CD8+ T cells was lower in the high-risk group in contrast with the low-risk group in TCGA along with GEO cohorts (Figures 7C,D). CD8+ T-cell infiltration is considered an independent predictive factor for NSCLC (Donnem et al., 2015). Hurkmans et al. suggested that the combination of PD-L1 expression, TML, CD8+ T-cell infiltration, and HLA class-I functions could be used to predict the efficiency of immunotherapy in NSCLC patients (Hurkmans et al., 2020). Combined with the results of Figures 7A,B, in which PD-L1 expression was higher in the high-risk score group than in the low-risk score group, we concluded that our prognostic model integrating ferroptosis and immune infiltration could be used as a potentially predictive biomarker for response to immunotherapy. Furthermore, we investigated the potential role of the prognostic model in the prediction of response to immunotherapy using the IMvigor210 cohort. We found that the risk score in non-responsive patients was significantly higher than in responsive patients (Supplementary Figure S1A) and the patients in the high-risk group had significantly poorer OS (Supplementary Figure S1D), suggesting the potential use of the prognostic model in immunotherapy.
Finally, the guiding role of the risk score in cancer treatment was evaluated. “EGFR_ligands”, “EMT_differentiation” “Hypoxia”, “Immune_differentiation”, and “Proteasome” were positively associated with the risk score in TCGA and GEO cohorts. These factors are all important prognosis biomarkers and therapeutic targets for NSCLC. For example, hypoxia is linked to poor prognosis and could induce resistance of NSCLC (Salem et al., 2018; Shi et al., 2019; Hua et al., 2020; Lu et al., 2020). EGFR and proteasomes play a pivotal role in NSCLC development, and their inhibitors could be used in NSCLC treatment (Li et al., 2009; Liu et al., 2014; Floc’h et al., 2018; Tanimoto et al., 2021). Whereas, “PPARG_network” was inversely related with the risk score in TCGA and GEO datasets. It is reported that PPARG c.1347C>T polymorphism was correlated with the risk of NSCLC (Ding et al., 2017). PPARG was downregulated in NSCLC samples, and the enhanced expression of PPARG may inhibit the development and progression of NSCLC (Shi et al., 2020).
CONCLUSION
In conclusion, by analyzing a total of 1376 immune- and/or ferroptosis-related genes, we developed a ferroptosis and immune-combined index with 32 genes for NSCLC prognosis. The integrated predictor may help distinguish the heterogeneity of NSCLC and effectively improve the prognostic value. However, the study cohorts we used only included LUAD and LUSC. This limitation will be greatly alleviated by the development of cancer big-data. Also, sufficient experimental verification is needed to explore the potential mechanisms of ferroptosis in NSCLC.
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Human bladder cancer (BCa) is the most common urogenital system malignancy. Patients with BCa have limited treatment efficacy in clinical practice. Novel biomarkers could provide more crucial information conferring to cancer diagnosis, treatment, and prognosis. Here, we aimed to explore and identify novel biomarkers associated with cancer-specific survival of patients with BCa to build a prognostic signature. Based on univariate Cox regression, Lasso regression, and multivariate Cox regression analysis, we conducted an integrated analysis in the training set (GSE32894) and established a six-gene signature to predict the cancer-specific survival for human BCa. The six genes were Cyclin Dependent Kinase 4 (CDK4), E2F Transcription Factor 7 (E2F7), Collagen Type XI Alpha 1 Chain (COL11A1), Bradykinin Receptor B2 (BDKRB2), Yip1 Interacting Factor Homolog B (YIF1B), and Zinc Finger Protein 415 (ZNF415). Then, we validated the prognostic value of the model by using two other datasets (GSE13507 and TCGA). Also, we conducted univariate and multivariate Cox regression analyses, and results indicated that the six-gene signature was an independent prognostic factor of cancer-specific survival of patients with BCa. Functional analysis was performed based on the differentially expressed genes of low- and high-risk patients, and we found that they were enriched in lipid metabolic and cell division-related biological processes. Meanwhile, the gene set enrichment analysis (GSEA) revealed that high-risk samples were enriched in cell cycle and cancer-related pathways [G2/M checkpoint, E2F targets, mitotic spindle, mTOR signaling, spermatogenesis, epithelial–mesenchymal transition (EMT), DNA repair, PI3K/AKT/mTOR signaling, unfolded protein response (UPR), and MYC targets V2]. Lastly, we detected the relative expression of each signature in BCa cell lines by quantitative real-time PCR (qRT-PCR). As far as we know, currently, the present study is the first research that developed and validated a cancer-specific survival prognostic index based on three independent cohorts. The results revealed that this six-gene signature has a predictive ability for cancer-specific prognosis. Moreover, we also verified the relative expression of these six signatures between the bladder cell line and four BCa cell lines by qRT-PCR. Nevertheless, experiments to further explore the function of six genes are lacking.
Keywords: bladder cancer, biomarkers, cancer-specific survival, six-gene prognostic signature, bioinformatics analysis
1 INTRODUCTION
Human bladder cancer (BCa) is the most common urogenital system malignancy, and among the cancers related to males, it ranks fourth (Siegel et al., 2013). In China, BCa is also one of the most common urologic malignancies, and in the past few years, the incidence and mortality rates have increased gradually (Chen et al., 2015). The major risk factors for human BCa are still smoking and occupational exposures, whereas chronic infection with Schistosoma hematobium is relatively rare (Pang et al., 2016). BCa is divided into two types: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC). Most BCa patients are diagnosed with NMIBC, which is featured as high recurrence (Prout et al., 1992). Nowadays, the common treatment for superficial BCa is transurethral resection and intravesical perfusion chemotherapy. Bacillus Calmette Guerin installation remains the gold standard of NMIBC, while appropriately 40% of patients are not sensitive to it, even 15% of patients may progress into MIBC after treating it (Seidl, 2020). What is more, the 5-year overall survival rate of patients remains at a level of 15%–20% (Cao et al., 2019). Furthermore, BCa is easy to recur and progress into MIBC. Most MIBCs were treated with radical cystectomy (Chen et al., 2015; Pang et al., 2016). As a result, the expenditure for treating BCa is huge (Sloan et al., 2020). Besides, the risks of radical cystectomy contain infection, incontinence, stones in the urethrostomy, obstruction of urine flow, damage to nearby organs, and so on (Seidl, 2020). Plenty of patients undergoing radical cystectomy generally have a poor quality of life. Therefore, it is essential to understand the critical biomarkers and key pathways governing tumor behavior for better treatment strategies and prediction of prognosis.
Due to microarray and high-throughput sequencing technology development, we could identify thousands of cancer-related genes and generate innovative insights into understanding the potential molecular mechanism of them, therefore applying them to the biomedical research field to benefit patients (Cui et al., 2015). Additionally, it is increasingly being used to search for potential biomarkers related to cancer diagnosis, treatment, and prognosis (Cancer Genome Atlas Research, 2014). In clinical practice, we found that the optional treatment strategies for patients with BCa were limited and the efficacy was not satisfactory. Hence, it is urgent to explore original target to explore new targets to provide new treatment strategies for patients with BCa. Therefore, we developed a prognostic model for BCa to predict the progression of BCa, hoping that it can provide a basis for clinical setting for BCa patients in the future.
Our study obtained mRNA expression microarray data of GSE32894 from the GEO database as the training set and another two independent test datasets, GSE13507 microarray data and The Cancer Genome Atlas (TCGA) mRNA sequencing data of BLCA. By executing univariate Cox, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate hazard Cox regression analysis, six genes related to cancer-specific survival were identified and thus constructed a six-gene prognostic index based on these genes. Another two independent test sets performed the validation of the prognostic value of the six-gene signature. Finally, we performed qRT-PCR to further verify these six genes in the bladder cell line (SV-HUV-1) and four BCa cell lines (5637, T24, UM-UC3, and J82). Our study proved that the six-gene signature could function as the independent biomarkers for the cancer-specific prognosis of human BCa and their potential roles in tumor progression.
2 MATERIALS AND METHODS
2.1 Data Collection
Expressing mRNA profiles and related clinical data of human BCa were downloaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013). Dataset GSE32894 performed on Illumina Human HT-12 V3.0 expression bead chip was used as the training set (Sjödahl et al., 2012). Dataset GSE13507 performed on Illumina human-6 v2.0 expression bead chip (Kim et al., 2010; Lee et al., 2010) and mRNA expression profiles of BLCA patients were obtained from the TCGA data portal (https://gdc-portal.nci.nih.gov/) (Ye et al., 2019) and were used as another test set. Prognostic data for all TCGA survival analyses were obtained from published papers (Liu et al., 2018).
2.2 Data Preprocessing
We used RMA background correction for the raw expression data for the microarray analyses at first, and log2 transformation and normalization were employed for processed signals. Then, we used the “affy” R package to summarize the median-polish probe sets. The Affymetrix annotation files annotated probes. For TCGA BLCA data, the gene expression data were based on the RNA-sequencing technology of IlluminaHiseq.
2.3 Signature Development and Validation
Firstly, we excluded samples without exact survival data. By applying the univariate hazard Cox regression analysis with survival as a dependent characteristic, the correlation between each gene expression profile and cancer-specific survival in patients was evaluated based on the training dataset (GSE32894). Here, we identified genes with p < 1E-6 of cancer-specific survival as prognostic gene signatures and then performed LASSO regression analysis. Genes selected from LASSO regression analysis were taken as the candidate factors, and then were subjected to perform multivariate hazard Cox regression analysis in the training dataset with cancer-specific survival as the dependent prognostic influence factor. The risk score was developed based on a linear combination of the mRNA expression level weighted by the estimated regression coefficient generated from the multivariate hazard Cox regression analysis. The formula of risk score for each patient was calculated as follows: Risk score = βgene1 × exprgene1 + βgene2 × exprgene2+ ··· + βgeneN × exprgeneN, in which N is the number of prognostic gene signatures, expr represents the expression profiles of gene signatures, and β means the estimated regression coefficient of gene signatures derived from the multivariate hazard Cox regression analysis. Then, the gene signatures could calculate a risk score for each patient, and we could divide the patients into two (high- and low-risk) groups according to the median risk score. The Kaplan–Meier analysis was used to evaluate the cancer-specific survival distributions by the R “survival” package. Then, another two independent datasets were used to perform the test of the prognostic signature. GSE13507 was used to test the cancer-specific survival and TCGA BLCA data were used to test the disease-specific survival distribution. Moreover, we performed univariate Cox regression and multivariate Cox regression analysis to further verify the prognostic model’s accuracy and precision by integrating clinical features (including gender, age, tumor stage, tumor grade, and progression).
2.4 DEGs Analysis for High- and Low-Risk Groups
The “limma” R package was utilized to screen the distinguishingly expressed genes between high-risk and low-risk patients. The SAM (significance analysis of microarrays) with FDR (false discovery rate) < 0.05 and |log2 fold change (FC)| > 1 were set as the cutoff, and the DEGs were applied to further analysis.
2.5 Functional Analysis for DEGs
Gene ontology (GO) analysis (here, we chose the biological process) was accomplished using the R package cluster Profiler to observe the potential functions of DEGs. p < 0.05 was set as the cutoff criterion.
2.6 Gene Set Enrichment Analysis
To further analyze the potential function, the training set was performed into two groups according to the median risk score. For use with GSEA software (https://www.gsea-msigdb.org/gsea/index.jsp) (Subramanian et al., 2005), the collection of annotated gene sets of h.all.v6.1.symbol.gmat [Hallmarks] in Molecular Signatures Database (MSigDB, http://software.broadinstitute.org/gsea/msigdb/index.jsp) was chosen as the reference gene sets (Subramanian et al., 2005; Croken et al., 2014). We selected the gene sets enriched in high-risk groups or high expression level groups, and p < 0.05 was chosen as the cutoff criteria.
2.7 Gene Expression Level Evaluation
To further evaluate the gene expression level between normal bladder and BCa tissues, we used an online database GEPIA2 (http://gepia2.cancer-pku.cn/) (Tang et al., 2019). Moreover, the test set GSE13507 was used to compare the differences between normal bladder mucosae, bladder mucosae surrounding cancer, primary non-muscle invasive BCa, primary muscle invasive BCa, and recurrent non-muscle invasive tumor.
2.8 RNA Extraction, Reverse Transcription, and qRT-PCR
Total RNA was extracted from the nontumorous immortalized bladder cell line (SV-HUV-1) and four BCa cell lines (5637, T24, UM-UC3, and J82) using HiPure Total RNA Mini Kit (Cat. #R4111-03, Magen, China) according to the manufacturer’s instruction. The reverse transcription process was carried out with the ReverTra Ace qPCR RT Kit (Toyobo, China). The expressions of six genes were normalized to GAPDH expression. The primer sequences are listed as Supplementary Table S1.
2.9 Statistical Analysis
Univariate hazard Cox regression, LASSO regression, and multivariate hazard Cox regression analyses were performed to identify the prognostic factors and to establish a prognostic model. The survival curve was drawn by the Kaplan–Meier method and compared by log-rank test. ROC curve was used to evaluate the predictive power of the prognostic index. Univariate Cox regression analysis and multivariate Cox regression analysis were performed to further verify the independent prognostic value of the prognostic signature. The statistical significance of differences in qRT-PCR was compared using the Student’s t-test as appropriate. Bioinformatic analysis was done in the R language (version 3.6.2) and p < 0.05 was considered as statistically significant at two sides.
3 RESULTS
3.1 Recognition of Prognostic Genes Related to Patients’ Cancer-Specific Survival From the Training Dataset
The flow chart of recognition and validation of the six-gene signature is shown as Figure 1. Originally, we employed the univariate hazard Cox regression analysis to assess the connection between all gene expressions and patients’ cancer-specific survival in the training dataset (GSE32894) (Figure 1). Moreover, the result revealed that there were 60 genes significantly associated with prognosis (p < 1E-6), which were defined as prognostic genes. Then, the candidate genes were performed by LASSO regression (Figures 2A,B), and CDK4, GUCY1A2, NMMT, E2F7, ZNF415, HTR2A, NUAK1, COL11A1, THOP1, TNFRSF6B, BCAT1, CBX2, CTRC, DHRS2, BDKRB2, YIF1B, and SLC22A16 were screened. Among these prognostic genes, only three genes (ZNF415, HTR2A, and DHRS2) with higher expression were correlated with more prolonged survival [whose z (coefficient) < 0], whereas other genes (CDK4, GUCY1A2, NMMT, E2F7, NUAK1, COL11A1, THOP1, TNFRSF6B, BCAT1, CBX2, CTRC, BDKRB2, YIF1B, and SLC22A16) with higher expression were lined with shorter survival [whose z (coefficient) > 0].
[image: Figure 1]FIGURE 1 | Flow chart representing the process used to select target genes included in the analysis.
[image: Figure 2]FIGURE 2 | Independent prognostic-related genes selection utilizing LASSO and Multivariate cox regression. Plots of the 10-fold cross-validation error rates (A). LASSO coefficient profiles of 17 prognostic-related signatures (B). The multivariate hazard Cox regression analysis results show six independent prognostic-related signatures (C).
3.2 Establishment and Validation of a Six-Gene Signature for Predicting Patients’ Cancer-Specific Survival in the Training Dataset
Multivariate hazard Cox regression analysis was further used to analyze those 17 prognostic genes and then selected genes independently related to cancer-specific survival. Eventually, we screened six genes (CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and ZNF415) as the independent factor and established a prognostic model (Figure 2C). Via integrating the expression of those six genes and the estimated regression coefficient, we then obtained the following calculation model: Risk score = (1.43215589574675 × expression of CDK4) + (0.921330280956022 × expression of E2F7) + (−1.04548254381182 × expression of ZNF415) + (0.814780461026126 × expression of COL11A1) + (0.973314699914422 × expression value of BDKRB2) + (0.964685342668668 × expression value of YIF1B). With the six-gene signature, the risk score for each patient with BCa in the training dataset could be calculated and ranked from the largest to the smallest. Based on the median risk score (0.630561), 224 BCa patients in the training dataset were divided into a high-risk group (n = 112) and a low-risk group (n = 112). There was an obvious difference (p = 6.6956E-08) in patients’ cancer-specific survival between the high-risk and the low-risk groups (Figure 3A). Moreover, we could observe that those ranked into the high-risk group had remarkably shorter survival (median 28.84 months) than those in the low-risk group (median 44.28 months). The time-dependent ROC curve was carried out for 3- and 5-year cancer-specific survival to evaluate the efficacy of the six-gene signature for predicting the cancer-specific survival. The AUCs for the six-gene signature at the cancer-specific survival of 3 and 5 years were 0.96 and 0.967, respectively (Figure 3D). The distribution of the risk score, cancer-specific survival time, and six genes’ expression profiles in the training dataset are shown in Figure 3G, ranked with the increasing risk score. We could find that high-risk patients lived shorter than low-risk patients, and meanwhile, the expression level of patients had a similar trend in five genes (CDK4, E2F7, COL11A1, BDKRB2, and YIF1B), elevating with the increasing risk score, while ZNF415 demonstrated the opposite trend.
[image: Figure 3]FIGURE 3 | The six-gene signature in the prognosis of cancer-specific survival of bladder cancer patients in the training set and test sets (GSE13507 and TCGA). The Kaplan–Meier curves of survival between high-risk and low-risk patients in the training set and test sets (A–C). The ROC curve for survival prediction by the six-gene signature within 3 and 5 years as the defining point in the training set and test sets (D–F). The six-gene risk score distribution, survival of patients, and heatmap of the six-gene expression profiles in the training set and test sets (G–I).
3.3 Validation of the Six-Gene Signature in the Test Sets
Cancer-specific survival of GSE13507 was utilized to test and verify the prognostic efficacy of the six-gene signature for cancer-specific survival prediction; 165 patients of the test set (GSE13507) were classified into the high-risk group (n = 83) and low-risk group (n = 82) according to the same formula generating from GSE32894. The result showed a significant difference (p = 0.0080; median 29.37 vs. 46.835 months) in cancer-specific survival between high-risk and low-risk groups (Figure 3B). The AUC for the six-gene signature was 0.744 and 0.748 at the cancer-specific survival of 3 and 5 years, respectively, in the test set (GSE13507) (Figure 3E). The distribution of the risk score, cancer-specific survival time, and six genes’ expression profiles in the test set of GSE13507 are shown in Figure 3H, ranked with the increasing risk score. In addition, the disease-specific survival of TCGA was used to verify the accuracy of the six-gene signature. As shown in Figure 3C, patients in high risk had a lower survival rate than those in low risk (p = 0.0041). The AUC for the six-gene signature was 0.576 and 0.606 at the disease-specific survival of 3 and 5 years, respectively (Figure 3F). The distribution of the risk score, disease-specific survival time, and six genes’ expression profiles in TCGA are shown in Figure 3I. Above all, the results indicated the good reliability and reproducibility of the six-gene prognostic model for forecasting cancer-specific survival for patients with BCa.
3.4 Independent Prognostic Analysis of Prognostic Signature
In order to explore whether the prognostic index is an independent prognostic factor, we conducted univariate Cox regression analysis and multivariate Cox regression analysis by integrating several clinicopathological characteristics, including gender, age, tumor stage, tumor grade, and progression. The results indicated that prognostic signature was significantly associated with the cancer-specific survival of BLCA not only in univariate Cox regression analysis (p < 0.001) (Figure 4A), but also in multivariate Cox regression analysis (p < 0.001) (Figure 4B). In summary, the six-gene prognostic model can be seen as an independent prognostic indicator of BLCA.
[image: Figure 4]FIGURE 4 | Univariate Cox and multivariate Cox regression of the prognostic signature integrating with clinical parameters, including gender, age, tumor stage, tumor grade, and progression. Univariate Cox regression analysis for signature and clinical variants (A). Multivariate Cox regression analysis for signature and clinical features (B).
3.5 Clinicopathological Correlation Analysis of Prognostic Signature
Subsequently, the correlation of the six-gene signature with clinicopathological features and its prognostic significance were analyzed in the training set and two test sets. We observed that the signature was significantly correlated with BCa divided by T-stage in GSE32894 and GSE13507 (Figures 5A,D) grade in all sets (Figures 5B,E,H). In addition, we found that it was also associated with molecular subtype in GSE32894 (Figure 5C), pathological stage in TCGA (Figure 5G) and progression in test sets GSE13507 (Figure 5F) and TCGA (Figure 5I).
[image: Figure 5]FIGURE 5 | Clinicopathological significance of the prognostic signature of bladder cancer in the training set (GSE32894) and test sets (GSE13507 and TCGA). p values were statistically significant at T-stage (A, D), grade (B, E, H), molecular subtype (C), pathological stage (G), and progression (F, I).
3.6 Stratified Analyses of the Six-Gene Signature for Cancer-Specific Survival Prediction of Other Clinical Characteristics
Furthermore, to assess the prognostic value of the six-gene index, the stratified analyses were performed by using clinical information including age, gender, tumor grade, tumor stage, node status, and tumor progression. All 224 BCa patients were firstly stratified by age into the younger dataset (<65 years old, n = 70) and the elder dataset (≥65 years old, n = 154), by gender into a female dataset (n = 61) and male dataset (n = 163), and by tumor grade into grade 1–2 (n = 129) and grade 3 (n = 93). The prognostic power of the six-gene signature was significant in the younger dataset, the elder dataset, the female dataset, the male dataset, the grade 1–2 dataset, and the grade 3 dataset (Figures 6A–F). Based on the tumor stage, patients were categorized into low stage (Ta and T1, n = 173) and high stage (T2–T4, n = 51). Meanwhile, patients were also stratified by node status into N0 (n = 26) and N+ (n = 20) and by tumor progression status into non-tumor progression dataset (n = 211) and tumor progression dataset (n = 13). Interestingly, a similar significant prognostic value could be observed in the high-stage dataset and patients without progression dataset (Figures 6H,I). Otherwise, the prognosis of the low-stage dataset, and N0 and N+ and tumor progression datasets had no significance (data not shown), which may be due to the limited patients.
[image: Figure 6]FIGURE 6 | Survival analyses of bladder cancer patients stratified by age, gender, grade, T stage, and tumor progression with the six-gene signature in GSE32894. The Kaplan–Meier curves for the young (age <65) and old (age ≥65) groups (A,B), for the female and male patients (C,D), for the grade 1–2 and grade 3 groups (E,F), for the low stage (Ta and T1) and high stage (T2–T4) groups (G,H), and for the non-progression (without progression to higher stage or grade) group (I).
3.7 DEGs for High- and Low-Risk Patients
To investigate the potential function of the six prognostic genes, samples in the training set GSE32894 were divided into two groups according to the risk score. Under the threshold of FDR < 0.05 and |log2 FC| > 1, a total of 82 DEGs were screened (54 downregulated and 28 upregulated). The volcano plot presented the differential expressed signatures between high- and low-risk groups (Figure 7A).
[image: Figure 7]FIGURE 7 | Functional annotation of DEGs. The volcano plot based on the differentially expressed genes (A). Biological process analysis of the remarkable association of down- and upregulated genes (B,C). The top 10 enriched pathways in the high-risk group were analyzed by gene set enrichment analysis (D).
3.8 Functional Annotation of the DEGs
The biological process of down- and upregulated genes between high- and low-risk groups is visualized in Figures 6B,C, respectively. In the low-risk group, the biological process was enriched in lipid catabolic process, lipid transport, lipid localization, steroid metabolic process, regulation of macrophage-derived foam cell differentiation, triglyceride catabolic process, macrophage-derived foam cell differentiation, foam cell differentiation, neutral lipid catabolic process, and acylglycerol catabolic process. In the high-risk group, the biological processes were significantly enriched in the nuclear division, organelle fission, mitotic nuclear division, chromosome segregation, sister chromatid segregation, nuclear chromosome segregation, mitotic sister chromatid segregation, regulation of mitotic nuclear division, regulation of nuclear division, and regulation of chromosome segregation. Moreover, GSEA analysis was performed, and it revealed that high-risk samples were enriched in G2/M checkpoint, E2F targets, mitotic spindle, mTOR signaling, spermatogenesis, EMT, DNA repair, PI3K/AKT/mTOR signaling, UPR, and MYC targets V2 (Figure 7D).
3.9 Relative Expression of Six Genes in Bladder Cell Line and for BCa Cell Lines
The results of qRT-PCR and expression profiles between the normal bladder and BCa tissues of six signatures are shown in Figure 7. Compared with normal bladder epithelial cell line (SV-HUV-1), the level of CDK4, E2F7, COL11A1, BDKRB2, and YIF1B was upregulated in most BCa cell lines (Figures 8A,C,E,G,I). On the contrary, the level of ZNF415 (Figure 7K) was downregulated, compared with SV-HUV-1, which were in line with our above contents. In GEPIA2, the expression of CDK4, E2F7, COL11A1, and YIF1B was upregulated in BCa tissues compared with normal bladder tissues (Figures 8B,D,F,J), while the level of BDKRB2 and ZNF415 showed an opposite outcome (Figures 7H,L). FDR < 0.05 and |log2 FC| > 1 were used as thresholds for judging the significance of gene expression differences in GEPIA2. The results of qRT-PCR were roughly in line with the consequences of GEPIA2 and our above contents that higher expression was related with shorter survival, such as CDK4 and E2F7, and that higher expression was connected with longer survival, for instance, ZNF415.
[image: Figure 8]FIGURE 8 | Relative expression of six signatures in the bladder cell line and four BCa cell lines. Expression of CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and ZNF415 in the bladder cell line (SV-HUV-1 (SV in short)) and four BCa cell lines (5637, T24, UM-UC3 (UC3 in short), and J82) (A, C, E, G, I, K). Relative expression of CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and ZNF415 in normal bladder and BCa cancer tissues in GEPIA2 (B, D, F, H, J, L).
4 DISCUSSION
With the development of molecular biomarkers, like tumoral suppressors or oncogenes, which are less expensive and less invasive, we could detect human BCa or predict patients’ outcomes more easily. Additionally, together with the currently used cystoscopy, patients could be provided a better chance for appropriate therapies.
We identified six genes (CDK4, E2F7, COL11A1, BDKRB2, YIF1B, and ZNF415) that were significantly associated with BCa prognosis and developed a six-gene signature. Based on the six-gene signature, we observed that patients in the high-risk group had shorter cancer-specific survival than the low-risk group. Furthermore, the high-risk group also showed worse cancer-specific survival than the low-risk group in patients with other clinical features (age, gender, tumor grade, tumor stage and node status, and tumor progression). In addition, the results of univariate Cox regression and multivariate Cox regression analysis showed that the six-gene prognostic signature was an independent prognostic factor of BLCA.
All of the six genes have vital functions. CDK4, a Ser/Thr protein kinase family member and its partner CDK6, is a key player in cell cycle progression (Sheppard and McArthur, 2013). It is reported that CDKs could induce genomic and chromosomal instability and unscheduled proliferation, which attach great importance to oncogenesis (Malumbres and Barbacid, 2009). E2F7, a member of the E2F family, plays an essential role in regulating the cell cycle (Chen et al., 2009). It is also reported that E2F7 is a unique repressor of a subset of E2F target genes whose products are required for cell cycle progression (Di Stefano et al., 2003). Mitxelena et al. reported that E2F7 controlled a new regulatory network involving transcriptional and post-transcriptional mechanisms to restrain cell cycle progression through repression of proliferation-promoting miRNAs (Mitxelena et al., 2016). Chu et al. demonstrated that upregulated E2F7 restrains the level of miR-15a/16 and therefore promotes Cyclin E1 and Bcl-2, thereby bringing out tamoxifen resistance. COL11A1 is a part of type XI collagen, which acts as a vital role in skeletal development. Other studies have shown that high expression of COL11A1 is related to poor clinical prognosis in diverse cancers. Overexpression of COL11A1 could accelerate cancer cell proliferation, invasion, migration, and metastasis, and resist chemotherapy sensitivity (Cheon et al., 2014; Wu et al., 2014; Wu et al., 2019; Wang et al., 2020; Nallanthighal et al., 2021). BDKRB2, an angiogenesis-related gene, demonstrated as a direct IRX1 target gene and was reported to be involved in gastric cancer progression (Jiang et al., 2011). A previous study revealed that bradykinin could upregulate the levels of TRPM7 and MMP2 to promote the invasion and migration of hepatocellular carcinoma cells (Chen et al., 2016). YIF1B is a gene related to nervous development, whose mutation could lead to neurodevelopmental syndrome (Diaz et al., 2020). With the development of bioinformatics, YIF1B was gradually exploited to predict clinical prognosis for cancer patients (Liu et al., 2020; Jia et al., 2021). ZNF415, a member of zinc finger proteins, was reported to play an essential role in AP-1 and p53-mediated transcriptional activity regulation (Cheng et al., 2006). In addition, Omura et al. observed that ZNF415, as a methylated promoter, is involved in pancreatic adenocarcinoma (Omura et al., 2008).
In the test set, we could observe that five (CDK4, E2F7, BDKRB2, YIF1B, and ZNF415) of these six signatures were differentially expressed between BCa tissues and normal bladder tissues. Moreover, CDK4 and YIF1B were discovered as the biomarkers to distinguish the recurrent BCa and BCa.
To further study the potential function, GO analysis and GSEA were performed. GO biological process enrichment analysis for differentially expressed genes between high- and low-risk groups indicated that the lipid metabolic process and associated terms were enriched in the low-risk group, whereas cell division and interrelated terms were enriched in the high-risk group. Cell division is essential for tumor development and progression. Many times, cell divisions were asymmetric, containing protein content, cell size, or developmental potential, leading to cancer incidence and other diseases (Chia et al., 2008; Neumuller and Knoblich, 2009). Because DNA is the only cellular component that can accumulate and transmit changes throughout life (from zygote to death), it was soon accepted that carcinogenesis of cancer requires a multi-step accumulation of DNA (López-Lázaro, 2018). Conferring to the GSEA analysis, we found that the G2/M checkpoint, E2F targets, and mitotic spindle, which regulated the cell cycle, were enriched. Meanwhile, other functional pathways were enriched either. mTOR signaling activated protein synthesis by phosphorylating 4E-BP1 and S6K1 (Holz, 2012); regulated metabolic pathways on transcriptional, translational, and posttranslational levels (Peng et al., 2002); promoted lipid and cholesterol synthesis (Porstmann et al., 2008); and was involved in autophagy (Codogno and Meijer, 2005), which was essential for the cancer progression. EMT signaling pathway was closely related to the progress of cancer, which promoted the mobility, invasion, and resistance to apoptotic stimuli to accelerate the metastasis of cancer cells (Mittal, 2018; Lu and Kang, 2019). DNA repair was crucial to maintain the survival and growth of cells. Lack of DNA repair pathway led to the change of genome, which favored cancer cell proliferation (Klinakis et al., 2020). The PI3K/AKT/mTOR signaling pathway was implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders (Alayev and Holz, 2013). The PI3K/AKT/mTOR pathway regulated cell proliferation, growth, cell size, metabolism, and motility (Alzahrani, 2019). UPR was the potential driver for cancer and other chronic metabolic diseases. UPR delivered the information of protein folding status to the nucleus and cytosol to induce cell apoptosis when the body is in a state of chronic injury and consumption (Hetz et al., 2020). MYC was demonstrated to promote cell proliferation. High targets V2 was able to act as an indicator to predict the clinical prognosis (Schulze et al., 2020).
The six-gene prognostic model can effectively predict the prognosis of patients with BCa and may provide a clinical setting for individualized treatment of BCa in the future. Moreover, we verified the relative expression of these six signatures between the bladder cell line and four BCa cell lines by qRT-PCR. However, we have to admit that our research is insufficient. First of all, we only have TCGA and one GEO dataset to validate the prognostic index, and we have not further validated our model through other databases such as ICGC and Oncomine. In addition, the cell function experiments of the six genes in BCa have not been explored in depth.
5 CONCLUSION
In conclusion, those six genes are able to distinguish human BCa tissues and normal tissues, and their expression signature combination could also possess a predictive ability for the cancer-specific prognosis.
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Aberrant activation of calmodulin 1 (CALM1) has been reported in human cancers. However, comprehensive understanding of the role of CALM1 in most cancer types has remained unclear. We systematically analyzed the expression landscape, DNA methylation, gene alteration, immune infiltration, clinical relevance, and molecular pathway of CALM1 in multiple cancers using various online tools, including The Cancer Genome Atlas, cBioPortal and the Human Protein Atlas databases. Kaplan–Meier and receiver operating characteristic (ROC) curves were plotted to explore the prognostic and diagnostic potential of CALM1 expression. Multivariate analyses were used to evaluate whether the CALM1 expression could be an independent risk factor. A nomogram predicting the overall survival (OS) of patients was developed, evaluated, and compared with the traditional Tumor-Node-Metastasis (TNM) model using decision curve analysis. R language was employed as the main tool for analysis and visualization. Results revealed CALM1 to be highly expressed in most cancers, its expression being regulated by DNA methylation in multiple cancers. CALM1 had a low mutation frequency (within 3%) and was associated with immune infiltration. We observed a substantial positive correlation between CALM1 expression and macrophage and neutrophil infiltration levels in multiple cancers. Different mutational forms of CALM1 hampered immune cell infiltration. Additionally, CALM1 expression had high diagnostic and prognostic potential. Multivariate analyses revealed CALM1 expression to be an independent risk factor for OS. Therefore, our newly developed nomogram had a higher clinical value than the TNM model. The concordance index, calibration curve, and time-dependent ROC curves of the nomogram exhibited excellent performance in terms of predicting the survival rate of patients. Moreover, elevated CALM1 expression contributes to the activation of cancer-related pathways, such as the WNT and MAPK pathways. Overall, our findings improved our understanding of the function of CALM1 in human cancers.
Keywords: multi-omics, calmodulin, prognosis analysis, immune infiltration, cancer biomarker
INTRODUCTION
As one of the most common diseases worldwide, cancer threatens human life and public health. The pathogenesis of cancer is very complex and involves several cancer-critical genes, which control fundamental cell division and growth processes (Rezatabar et al., 2019; Lacroix et al., 2020). Therefore, it is important to perform multi-omics analysis for any cancer-critical gene, followed by further assessment of their molecular function in tumorigenesis and correlation of the same with clinical prognosis.
Calmodulin (CALM), the best-studied Ca2+-binding protein, is composed of 148 amino acids, and contains two globular domains linked by a highly flexible central linker domain (Ikura and Ames, 2006). A previous study had shown CALM to be a valuable peripheral biomarker for Alzheimer’s disease, discriminating the latter from other disorders related to dementia (Esteras et al., 2013). Another study showed that CALM expression significantly increases in cerebrospinal fluid of patients with Creutzfeldt Jakob disease (CJD) and might be used as a diagnostic biomarker for CJD (Chen et al., 2021). Moreover, the abnormally high expression of CALM can indicate liver fibrosis (Ji et al., 2019) and recurrence of nasopharyngeal carcinoma (Meng et al., 2017). In mammals, three genes encode CALM, namely CALM1, CALM2, and CALM3 (Zhang et al., 2012). Although these genes only differ in their non-coding regions, they have distinct cellular functions, based on subcellular distribution and epigenetics (Toutenhoofd and Strehler, 2000). In this study, we specifically focused on CALM1. CALM1 can regulate cell motility, differentiation, and proliferation (Chin and Means, 2000); increased CALM1 expression had previously been detected in nasopharyngeal carcinoma (Zamanian Azodi et al., 2018), prostate cancer (Adeola et al., 2016), and bladder cancer (Zhang et al., 2018) and has been reported to play an oncogenic role in esophageal squamous cell carcinoma (Liu et al., 2021). However, our knowledge regarding the expression pattern, gene mutation, molecular function, and clinical value of CALM1 and relationship of CALM1 expression with DNA methylation and immune infiltration in most cancers is still lacking.
Here, we aimed to conduct comprehensive and systematic analyses of CALM1 in human cancers. This study had five analysis modules, namely gene expression, DNA methylation and gene alterations, immune infiltration, prognostic and diagnostic potential, and relevant cellular pathways. We found that CALM1 expression was upregulated in most cancer types and was closely related to immune infiltration and cancer-related cellular pathways. DNA methylation affected CALM1 expression in multiple cancers. Additionally, CALM1 expression had high diagnostic and prognostic potential. Taken together, our findings revealed that CALM1 could be a promising prognostic and diagnostic biomarker for determining patient survival in human cancers.
MATERIALS AND METHODS
Data Acquisition and Processing
We downloaded gene expression RNA-seq data of 33 The Cancer Genome Atlas (TCGA) cancer types and corresponding normal tissues from the Genotype-Tissue Expression database (GTEx; http://www.gtexportal.org/) and TCGA database (https://cancergenome.nih.gov/). These data were detected from 798 TCGA normal tissues, 9,807 TCGA cancer tissues, and 7,498 GTEx normal tissues, and were further processed using the Toil method (Vivian et al., 2017) and log2 transformed. Relevant clinical information (survival time, TNM stage, pathologic stage, etc.) of each patient and DNA methylation data (HM450) were also extracted from TCGA. Alteration frequency, mutation type and mutated site of CALM1 in 33 TCGA cancer types were obtained from the cBioPortal database (https://www.cbioportal.org/). GSE41613 was downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/), including 97 HNSC samples with complete follow-up information (survival time and status). Additionally, we calculated the enrichment rate of immune cells in each cancer sample by the ssGSEA algorithm that used the specific markers (Bindea et al., 2013) of immune cell as a gene set to calculate the enrichment score of immune cells in each sample.
Gene Expression Analysis
We compared the CALM1 mRNA distribution between cancer tissues and adjacent non-cancer tissues in 33 TCGA cancer types. Owing to the abnormal distribution of CALM1 expression values, we used the Mann–Whitney U test to compare CALM1 expression between normal and cancer tissues. Subsequently, we investigated the correlation between CALM1 expression and clinical features in different cancers using the Kruskal–Wallis test. Protein-wide omics data from the Human Protein Atlas (HPA; https://www.proteinatlas.org/) was used to verify the expression of CALM1 between normal and cancer tissues. Analysis and visualization of data were based on the R language and a p-value of <0.05 indicated significance.
DNA Methylation and Gene Alteration Analysis
We performed DNA methylation analysis using the transcriptome data of CALM1 and DNA methylation data (HM450) from TCGA. Beta values were used to estimate the methylation levels of CALM1 DNA. Differences in CALM1 methylation between cancer tissues and adjacent non-cancer tissues were compared using the Mann–Whitney U test. The Pearson correlation method was used to measure the relationship between CALM1 expression and methylation. A p-value of <0.05 and correlation coefficient of < −0.1 were regarded as the cut-off points. Subsequently, we conducted gene alteration analysis based on the cBioPortal database (Cerami et al., 2012). Genetic alterations of CALM1 were obtained from the “Quick select” module. Results of alteration frequency and the mutation type of CALM1 in human cancers were obtained using the “Cancer Type Summary” module. The 3D structure of the mutated site of CALM1 was further observed with the “Mutations” module.
Immune Infiltration Analysis
Using the ssGSEA algorithm in the R package GSVA (Sonja et al., 2013) and the transcriptome data of CALM1 from TCGA, we investigated the correlation between CALM1 expression and immune infiltration in human cancers. The Spearman correlation method was used to calculate the correlation coefficient. A total of four immune cells were included in this analysis, namely macrophages, B-cells, CD8+ T-cells, and neutrophils. Subsequently, we used the Tumor IMmune Estimation Resource 2 (TIMER2; http://timer.cistrome.org/) database (Li et al., 2020) to verify the correlation via the “Gene” module. Additionally, we investigated the correlation between immune infiltration abundance and Somatic Copy Number Alteration (SCNA) of CALM1 using the “SCNA” module of the TIMER database (https://cistrome.shinyapps.io/timer/; (Li et al., 2017).
Prognostic and Diagnostic Potential Analysis
We performed Kaplan–Meier (KM) analysis to assess the effect of CALM family genes expression on patient survival. Patients were divided into low- and high-expression groups according to the median expression of the CALM family genes. Differences in survival rates between the two groups were compared by Cox regression. Moreover, we used the GSE41613 dataset to verify the prognostic potential of CALM1 expression in head and neck squamous cell carcinoma (HNSC). The University of Alabama Cancer database (UALCAN; http://ualcan.path.uab.edu/; Chandrashekar et al., 2017) was used to verify the prognostic potential of CALM1 expression in liver hepatocellular carcinoma (LIHC). Subsequently, the diagnostic ROC curve (Do and Le, 2020; Do et al., 2021) was plotted, and the area under the curve (AUC) was calculated to define the diagnostic value of CALM family genes mRNA levels in cancers. The Cox proportional hazards regression model was used to evaluate whether CALM1 expression could be a risk factor for overall survival (OS) in TCGA cancers. Using TCGA-HNSC data, we established a nomogram integrating CALM1 expression, N stage, smoker, and radiation therapy for predicting patient survival rate at 1, 3, and 5 years. Performance of this nomogram was evaluated via concordance index (C-index), calibration curve, and time-dependent receiver operating characteristic (ROC) curves and compared with that of the traditional TNM nomogram via decision curve analysis (DCA).
To further assess the general applicability of the established model, we selected the TCGA-LIHC cohort as the validation set. Similarly, a nomogram integrating CALM1 expression, TNM stage, pathologic stage and tumor status was developed, and its efficacy in predicting patient survival rate was evaluated using the C-index, calibration curve, ROC curves and DCA. Gene expression and clinicopathological information were extracted from TCGA. Analysis and visualization of data were accomplished using R language, and a p-value of <0.05 indicated significance.
Insights Into CALM1 Function
The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING; https://string-db.org/) is commonly used to predict protein-protein interactions (Szklarczyk et al., 2019). According to this database, we screened 50 experimentally determined CALM1-binding proteins. Subsequently, we obtained 100 CALM1-correlated genes using the “Similar Gene Detection” module of the Gene Expression Profiling Interactive Analysis 2 (GEPIA2; http://gepia2.cancer-pku.cn/) database (Tang et al., 2019). Four genes with the strongest correlation with CALM1 were screened for further expression analysis by the TIMER2 database. Finally, to elucidate functional differences for CALM1-high expression group versus CALM1-low expression group in HNSC and LIHC, we performed Gene Set Enrichment Analysis (GSEA) using the R package “clusterProfiler” (Yu et al., 2012). An adjusted p-value of <0.05 and FDR of <0.25 indicated significance.
RESULTS
Gene Expression Analysis Data
We assessed CALM1 mRNA expression profiles in human cancers using data from the TCGA and GTEx databases. The results showed that CALM1 mRNA expression is increased in 13 cancers, including the lymphoid neoplasm diffuse large B-cell lymphoma (DLBC; P = 0.002), LIHC (P < 0.001), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC; P < 0.001), HNSC (P < 0.001), acute myeloid leukemia (LAML; P < 0.001), ovarian serous cystadenocarcinoma (OV; P < 0.001), pancreatic adenocarcinoma (PAAD; P < 0.001), pheochromocytoma and paraganglioma (PCPG; P = 0.003), testicular germ cell tumor (TGCT; P < 0.001), stomach adenocarcinoma (STAD; P < 0.001), skin cutaneous melanoma (SKCM; P < 0.001), thymoma (THYM; P = 0.001), and uterine corpus endometrioid carcinoma (UCEC; P < 0.001), compared with that in normal tissues. However, CALM1 mRNA expression is decreased in colon adenocarcinoma (COAD; P < 0.001), kidney chromophobe (KICH; P = 0.001), lower grade glioma (LGG; P < 0.001), lung adenocarcinoma (LUAD; P < 0.001), prostate adenocarcinoma (PRAD; P < 0.001), and rectum adenocarcinoma (READ; P < 0.001) (Figure 1A). The abbreviations and full names of TCGA cancers are listed in Supplementary Table S1. For paired normal and cancer tissues, the same difference in CALM1 mRNA expression was verified in kidney renal papillary cell carcinoma (KIRC; P < 0.001), HNSC (P < 0.001), COAD (P < 0.001), KICH (P < 0.001), kidney clear cell carcinoma (KIRC; P < 0.001), LUAD (P < 0.001), PRAD (P < 0.001), READ (P = 0.031), STAD (P = 0.004), and thyroid carcinoma (THCA; P < 0.05) (Figure 1B). Overall, compared with non-cancer tissues, most cancer types had higher CALM1 expression. We also observed a significant association between CALM1 expression and clinical features (e.g., TNM stage, pathologic stage, and histologic grade) in human cancers (Figure 1C).
[image: Figure 1]FIGURE 1 | Expression levels of CALM1 gene in human cancers and relevant clinical features. (A, B) Expression levels of CALM1 mRNA in cancer and adjacent/paired normal tissues. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance. (C) Relationship between CALM1 mRNA expression and clinical features in human cancers. *P < 0.05; **P < 0.01; ***P < 0.001.
Additionally, we used immunohistochemistry staining to verify CALM1 expression in human cancers (Figure 2). The results showed that CALM1 staining was increased in breast cancer, liver cancer, and pancreatic cancer but decreased in colorectal cancer, prostate cancer, and lung cancer, compared with that in normal tissues. These results demonstrated that the protein expression of CALM1 increases in breast cancer, liver cancer, and pancreatic cancer, but decreases in colorectal cancer, prostate cancer, and lung cancer, compared with that in normal tissues, which is consistent with the mRNA levels of CALM1.
[image: Figure 2]FIGURE 2 | Validation the expression of CALM1 on translational level using immunohistochemistry from the Human Protein Atlas database. (A) Colon and colorectal cancer. (B) Breast and breast cancer. (C) Prostate and Prostate cancer. (D) Lung and lung cancer. (E) Liver and liver cancer. (F) Pancreatic and pancreatic cancer. Staining: low, medium, and high. Antibody: CAB018558 and HPA044999.
DNA Methylation and Alteration Analysis Data
Based on the data from TCGA, we analyzed CALM1 methylation levels between normal and cancer specimens. The results showed CALM1 methylation to be significantly increased in cervical and endocervical cancer (CESC) and COAD compared with that in normal tissues, but significantly decreased in LIHC and PCPG (Figure 3A), showing an inverse trend compared with that of the expression pattern. Subsequently, we explored the relationship between CALM1 mRNA expression and DNA methylation. Our results showed a negative association between DNA methylation and CALM1 expression in four selected cancers (Figure 3B), which further demonstrates the regulatory ability of DNA methylation on CALM1 expression. Additionally, DNA alteration analysis indicated that CALM1 has a relatively low alteration rate, with the maximum not exceeding 3%. These alterations included missense mutations, amplification, and deep deletion; the adrenocortical carcinoma (ACC), PCPG, sarcoma (SARC), and LGG cases only carried amplification alteration of CALM1 (Figure 3C). The alteration case numbers, types, and sites of CALM1 are shown in Figure 3D. We found that the primary genetic alteration of CALM1 was a missense mutation. R107 was observed in the 3D structure as the most frequent alteration site of CALM1 (Figure 3E) that could induce translation from R (Arginine) to H (Histidine) or C (Cysteine). However, genetic alterations in CALM1 barely influenced the OS of cancer patients.
[image: Figure 3]FIGURE 3 | Analysis of DNA methylation and alteration of CALM1 in human cancers. (A) Methylation level of CALM1 in normal and cancer specimens. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance. (B) Relationship between CALM1 mRNA levels and DNA methylation in cervical and endocervical cancer (CESE), colon adenocarcinoma (COAD), liver hepatocellular carcinoma (LIHC), and pheochromocytoma and paraganglioma (PCPG). (C) Alteration frequency and mutation type of CALM1 is displayed. (D) The types, sites, and case numbers of CALM1 genetic alteration are presented. (E) The mutation site numbered 107 is displayed in the 3D structure of CALM1 protein.
Immune Infiltration Analysis Data
Previous studies have shown that immune cells in the tumor microenvironment can affect patient prognosis. Therefore, it is meaningful to explore the association between CALM1 expression and immune infiltration. The results from TCGA indicated a positive relationship between CALM1 expression and macrophages, B-cells, and neutrophils in COAD, LUAD, PRAD, and SKCM. The number of CD8+T-cells was negatively correlated with CALM1 expression in LUAD and PRAD, but positively correlated with that in COAD and SKCM (Figure 4). The results from TIMER2 verified CALM1 expression to be positively correlated with levels of neutrophils and macrophages in four selected cancers (Supplementary Figure S1A). Additionally, we found that different mutant forms of CALM1 (e.g., arm-level gain, arm-level deletion, and deep deletion) to hamper the infiltration of immune cells (Supplementary Figure S1B).
[image: Figure 4]FIGURE 4 | Immune infiltration analysis of CALM1 expression. Correlation between CALM1 mRNA levels and immune infiltration in colon adenocarcinoma (COAD) (A), lung adenocarcinoma (LUAD) (B), prostate adenocarcinoma (PRAD) (C), and skin cutaneous melanoma (SKCM) (D).
Prognostic and Diagnostic Potential Data
To evaluate the prognostic and diagnostic potentials of the CALM family genes, we performed KM and diagnostic ROC curve analyses using the data from TCGA. KM survival analysis showed that patients with elevated CALM1 expression had a favorable OS in KIRC, SARC, glioblastoma multiforme and brain lower-grade glioma (GBMLGG), and COAD, but poorer OS in uveal melanoma (UVM), acute myeloid leukemia (LAML) and BLCA (Figure 5A). The ROC curve demonstrated that CALM1 expression had a high diagnostic value in COAD, KICH, LUAD, READ, and PAAD (AUC >0.9; Figure 5B). Similarly, CALM2 and CALM3 also had high prognostic and diagnostic potentials in human cancers (Supplementary Figure S2, S3). Taken together, the results showed that the CALM family genes could be a promising prognostic and diagnostic biomarker in human cancers.
[image: Figure 5]FIGURE 5 | Analysis of prognostic and diagnostic potentials of CALM1 expression in human cancers. (A) Kaplan–Meier survival analysis was conducted to investigate the prognostic value of CALM1 expression. (B) ROC analysis was performed for investigating the diagnostic value of CALM1 expression. HR, hazard ratio; AUC, area under curve; CI, confidence interval; ROC, receiver operating characteristic.
Specifically, in HNSC, patients with decreased CALM1 expression showed a favorable OS (P = 0.007; Figure 6A). KM analysis using data from the GSE41613 dataset confirmed that the low mRNA level of CALM1 was associated with a favorable OS (P = 0.034; Figure 6B). The Cox regression models demonstrated CALM1 to be an independent risk factors for OS (Figure 6C). Furthermore, we developed a nomogram integrating CALM1 expression, N stage, smoker, and radiation therapy for predicting the survival probability of HNSC patients (Figure 6D). The calibration curve showed excellent agreement between predicted and actual probabilities at 1, 3, and 5 years with a C-index of 0.625 (range, 0.602–0.649) (Supplementary Figure S4A). The accuracies calculated by AUC in predicting 1, 3 and 5 years OS were 0.662, 0.649, and 0.658, respectively (Supplementary Figure S4B). DCA revealed our nomogram to have a higher net benefit in predicting OS, compared with the traditional TNM model (Supplementary Figure S4C).
[image: Figure 6]FIGURE 6 | Evaluation prognostic potential of CALM1 expression and establishment of nomograms in HNSC and LIHC. (A) Survival curves show that overall survival was different for patients with low or high expression of CALM1 in HNSC. (B) The GSE41613 dataset was used to verify the prognostic potential of CALM1 expression in HNSC. (C) Forest plot for the prognostic analysis of CALM1 expression in human cancers. (D) Construction of the nomogram model integrating CALM1 expression, N stage, smoker, and radiation therapy in HNSC. (E) Survival analysis show patients with decreased CALM1 expression had a favorable overall survival in LIHC. (F) The UALCAN database was used to verify the prognostic potential of CALM1 expression in LIHC. (G) Construction of a nomogram model integrating CALM1 expression, TNM stages, pathologic stages, and tumor status in LIHC. HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma.
To further assess the prognostic predictive value of CALM1 expression, we selected TCGA-LIHC as the validation set. KM survival analysis confirmed patients with decreased CALM1 expression had a favorable OS (P = 0.003; Figure 6E), which is consistent with the results of UALCAN (P = 0.01; Figure 6F). Subsequently, we developed a new nomogram integrating CALM1 expression, TNM stage, pathologic stage, and tumor status (Figure 6G). The calibration curve showed excellent agreement between predicted and actual probabilities at 1, 3, and 5 years with a C-index of 0.665 (range, 0.630–0.700; Supplementary Figure S4D). The accuracies calculated by AUC in predicting 1, 3 and 5 years OS were 0.688, 0.760, and 0.761, respectively (Supplementary Figure S4E). However, DCA revealed that the traditional TNM model has a higher net benefit in predicting OS, compared with our nomogram (Supplementary Figure S4F). Taken together, CALM1 mRNA levels had good applicability and can not only predict the prognosis of HNSC but also serve as a prognostic predictive biomarker for LIHC.
Insights Into CALM1 Function
To understand the mechanism underlying the role of CALM1 in tumorigenesis, we conducted KEGG and GO enrichment analyses using 50 CALM1-binding proteins and 100 CALM1 expression-correlated genes. In total, 50 CALM1-binding proteins were identified using the STRING database, which was further verified experimentally. The interaction network of these proteins is presented in Figure 7A. A total of 100 CALM1 expression-correlated genes were identified using the GEPIA2 database. Among them, SLC9A6, KLC1, ARPP19, and IDS were significantly related to CALM1 overexpression, according to the data from the TIMER2 database (Figure 7B). The intersection analysis integrating 50 CALM1-binding proteins and 100 CALM1 expression-correlated genes showed two common members, namely CAMK2G and SCN2A (Figure 7C). Finally, we conducted GSEA to explore the roles of CALM1 in cancers. We found that WNT and MAPK signaling pathways associated gene sets were significantly enriched in the CALM1 high expression group in both HNSC (Figure 7D) and LIHC (Figure 7E). Other cancer-related gene sets, such as the PI3K-Akt and Hippo signaling pathways, were found to be affected by different CALM1 expression levels (Supplementary Figure S5).
[image: Figure 7]FIGURE 7 | Insights into CALM1 function. (A) We obtained the protein-protein interaction network of CALM1 using the STRING website. (B) We analyzed the pan-cancer correlation between CALM1 expression and SLC9A6, ARPP19, KLC1, and IDS using the TIMER2 website. (C) We conducted an intersection analysis for the CALM1-binding and CALM1-correlated genes. Finally, we performed GSEA to elucidate functional differences for CALM1-high expression group versus CALM1-low expression group in HNSC (D) and LIHC (E). SLC9A6, solute carrier family 9-member a6; ARPP19, CAMP regulated phosphoprotein; KLC1, kinesin light chain 1; IDS, iduronate 2-sulfatase; CAMK2G, calcium/calmodulin dependent protein kinase II gamma; SCN2A, sodium voltage-gated channel alpha subunit 2; GSEA, Gene Set Enrichment Analysis; TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma.
DISCUSSION
As the major Ca2+ sensor, CALM, encoded by the CALM1 gene in mammals, is highly conserved in eukaryotic cells. Previous studies had found CALM1 to be upregulated in nasopharyngeal carcinoma, prostate cancer, and bladder cancer, and had reported its oncogenic role in esophageal squamous cell carcinoma. However, little is known regarding the global function and expression landscape of CALM1 in other cancers. In this report, we comprehensively assessed the CALM1 expression pattern based on TCGA data. The results demonstrated that CALM1 levels are increased in CESC, DLBC, HNSC, LAML, LIHC, OV, PAAD, PCPG, SKCM, STAD, TGCT, UCEC, and THYM, but decreased in COAD, KICH, LGG, LUAD, PRAD, and READ, compared with that in normal tissues. Further validation using the HPA databases revealed that the protein expression of CALM1 increases in breast cancer, liver cancer, and pancreatic cancer, but decreases in colorectal cancer, prostate cancer, and lung cancer, compared with that in normal tissues. The differential expression profiles might reflect the distinct molecular functions of CALM1 in human cancers.
Since cancer progression involves a series of abnormal regulations affected by gene alterations (Liu et al., 2021) or DNA methylation (Liu et al., 2021), we aimed to investigate the potential correlation across gene alterations, DNA methylation, and patient survival. We observed several genetic alterations of CALM1, including deep deletion, amplification, and missense mutation; although these alterations might affect cancer progression, according to the data from the cBioPortal database, they did not affect prognostic outcomes. Additionally, we found CALM1 methylation to be significantly increased in CESC and COAD compared with normal tissues and significantly decreased in LIHC and PCPG, showing an inverse trend compared with that of the expression pattern. This finding implies that CALM1 expression is regulated by DNA methylation in human cancers. Subsequently, we found a negative association between DNA methylation and CALM1 expression in CESC, COAD, LIHC, and PCPG, which further demonstrates the regulatory ability of DNA methylation on CALM1 expression. The results collectively suggested that CALM1 methylation plays a significant and complicated role in human cancers; however, more in-depth research is needed to verify this conclusion.
Previous studies had found immune cell infiltration to significantly affect cancer progression and prognosis (Liu et al., 2017). M1 macrophages are known to inhibit cancer progression, CD4+T-cells can recognize cancer antigens (Lin et al., 2019), CD8+T-cells can inhibit cancer metastasis (Joseph et al., 2021), and immune infiltration of T-cells can significantly influence the efficacy of immunotherapy (Borst et al., 2018). This study found a statistically significant positive correlation between immune infiltration and CALM1 expression in human cancers. The different CALM1 mutational forms hampered immune infiltration. The results collectively imply that CALM1 plays an essential role in the regulation and recruitment of immune cell infiltration, which might eventually affect patient prognostic outcomes.
Another key finding of this study is that CALM1 expression can indicate different prognostic outcomes in human cancers. Kaplan–Meier survival analysis showed that patients with elevated CALM1 expression had a favorable OS in KIRC, SARC, GBMLGG, and COAD, but poorer OS in UVM, LAML, LIHC, and BLCA. The multivariate Cox model further confirmed CALM1 expression as an independent risk factor for OS in human cancers. Additionally, we constructed a nomogram integrating clinical variables and CALM1 expression for predicting survival rate in HNSC patients, and it performed better than the traditional TNM model. The ROC curve demonstrated that CALM1 expression had a high diagnostic value in COAD, KICH, LUAD, READ, and PAAD (AUC >0.9). Overall, the results suggest that CALM1 could be a valuable prognostic and diagnostic biomarker in human cancers.
We performed GSEA to predict the potential molecular function of CALM1 in cancers. A previous study analyzing the hyperglycemia of obese diabetic mice had revealed that elevated CALM1 expression can directly activate the PI3K-Akt pathway to repress gluconeogenic gene expression in hepatocytes (Chen et al., 2017). Consistent with this report, our functional enrichment analysis showed that increased CALM1 expression could activate the PI3K-Akt signaling pathway. This pathway involves cell apoptosis, oxidative stress, and inflammation, and plays a vital regulatory role in various malignant tumors. Our results show that increased CALM1 expression could also activate other cancer-related pathways, such as the Hippo, Wnt, and MAPK signaling pathways. Previous studies had revealed that the activated Hippo pathway increases ovarian cancer stemness and tumor resistance (Muñoz-Galván et al., 2020). The activated Wnt pathway promotes cell growth and migration in squamous cell lung carcinoma (Wu et al., 2021). Similarly, the activated MAPK pathway regulates various cellular functions, such as apoptosis, survival, differentiation, and proliferation (Liu et al., 2018). The results overall suggest that CALM1 is closely associated with cancer progression.
This study has some limitations. First, no experimental validation was performed. Second, the correlation between mRNA levels and protein expression of CALM1 would need further verification. Third, since CALM1 plays a very complex role in cancer prognosis, we could not define the exact role of CALM1 as either oncogenic or protective.
CONCLUSION
Our study was the first to elucidate the expression landscape, DNA methylation, gene alteration, immune infiltration, clinical relevance, and molecular pathways of CALM1 in multiple cancers using in-silico multi-omics analysis. CALM1 was found to be differentially expressed in human cancers and adjacent normal tissues, with a low mutation frequency. DNA methylation of CALM1 regulated its expression in multiple cancers. CALM1 expression was closely related to immune infiltration and cancer-related cellular pathways. Additionally, CALM1 expression had a high diagnostic and prognostic potential in human cancers. These findings collectively offer a relatively comprehensive understanding of the functional significance of CALM1 in human cancers.
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Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in recent years, and the rate of progression once relapsed is high. At present, owing to lack of effective prognosis predicted markers and post-recurrence drug selection guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a regulated form of cell necrosis in a way that is independent of caspase. Induced necroptosis is considered an effective strategy in chemotherapy and targeted drugs, and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA) database and divided them into two distinct necroptosis-related patterns (C1 and C2) through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed the differences in clinicopathological characteristics and tumor immune microenvironment (TIME). Then, we constructed the NRG prognosis signature (NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore could be used as an independent prognostic marker for KIRC patients and performed excellent stability and accuracy. A nomogram model was also established to provide a more beneficial prognostic indicator for the clinic. We found that NRGscore was significantly correlated with clinicopathological characteristics, TIME, and tumor mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective guiding significance for immunotherapy, chemotherapy, and targeted drugs.
Keywords: kidney renal clear cell carcinoma, necroptosis, tumor immune microenvironment, prognostic signature, nomogram, bioinformatics
INTRODUCTION
Kidney cancer is the third largest malignant tumor in the genitourinary system, with growing morbidity and mortality in recent years. It is estimated that in 2018, >400,000 new cases were diagnosed and >175,000 people died of this disease (Bray et al., 2018). About 90% of kidney cancer was renal cell carcinoma (RCC), 70% of which was kidney renal clear cell carcinoma (KIRC) (Atkins and Tannir, 2018). About 30% of patients have metastasis by the time they are diagnosed. With advances in RCC pathologic staging, the 5-year disease-specific survival (DSS) rate has been reduced by about 10%; however, the median overall survival (OS) for advanced RCC is just 10–15 months (Cairns, 2011). Medication (immunotherapy, chemotherapy, and targeted drugs) is the preferred treatment approach for patients with end-stage or recurrent KIRC. However, due to secondary effects of drugs, individual differences in drug sensitivity, and lack of reliable prognostic biomarkers, there is usually little improvement in the median OS probability after the first round of therapy (Cairns, 2011; Luo et al., 2019). The tumor microenvironment (TME) is closely related to tumor progression and efficacy of immunotherapy and chemotherapy (Wu and Dai, 2017; Hinshaw and Shevde, 2019; Newton et al., 2019). Altering the TME has been a potential strategy for improving the efficacy of anticancer treatments and clinical outcomes.
Necroptosis is a regulated form of cell necrosis in a way that is independent of caspase (Gong et al., 2019). RIPK1 and RIPK3 are upstream molecules of necroptosis, which form oligomeric complexes of necrotic bodies and cause rapid membrane permeability of necrotic cells through MLKL (Galluzzi et al., 2012; Cai et al., 2014). Therefore, necroptosis shows morphological characteristics of cell membrane rupture, gradually translucent cytoplasm, and organelle swelling (Vandenabeele et al., 2010; Chan, 2012). In addition, the release of cell contents leads to exposure of damage-associated molecular patterns (DAMPs) and a strong inflammatory response (Pasparakis and Vandenabeele, 2015). In apoptosis, DAMPs are mostly solidified, so necroptosis is significantly diverse from apoptosis not only in morphology but also in immunology (Kaczmarek et al., 2013). In multiple tumors, the key molecular expression of the necroptosis signaling pathway was reduced, which was related to poor prognosis and enhanced tumor progression and metastasis (Park et al., 2009; Ke et al., 2013; Wang et al., 2013; Feng et al., 2015; Ertao et al., 2016; Stoll et al., 2017). Inducing necroptosis is considered an effective strategy to solve the problem of apoptosis resistance in the process of chemotherapy, and a variety of anticancer drugs have been developed to induce necroptosis (Gong et al., 2019). Furthermore, necroptosis induces NF-κB–derived signals, activates dendritic cells (DCs), increases antigen presentation, and enhances CD8 + T cell–mediated tumor clearance (Snyder et al., 2019). Bioinformatics analysis suggests that RIPK1, RIPK3, and MLKL are associated with T cell dysfunction, and their overexpression predicts prolonged survival in many clinical studies of immune checkpoint inhibitors (ICIs) (Tang et al., 2020). Several animal experiments have explored the synergy of necroptosis in ICIs to produce novel immunotherapy strategies (Kang et al., 2018; Van Hoecke et al., 2018; Snyder et al., 2019). These suggest that necroptosis has great potential in providing effective drug therapy for advanced KIRC patients.
To address the abovementioned point, we clustered 526 KIRC patients from The Cancer Genome Atlas (TCGA) database on the basis of the expression patterns of necroptosis-related genes (NRGs). The differences between necroptosis-related patterns were analyzed in multi-omics analysis, including survival analysis, clinical relevance, tumor immune microenvironment (TIME), and so on. A prognostic signature (NRGscore) that could be used to predict the OS of KIRC patients was then constructed, confirming that it was an independent prognostic indicator. Moreover, a nomogram model was constructed with NRGscore and several clinicopathological characteristics to provide accurate prognosis predictions for clinical patients. Eventually, we have verified that NRGscore was significantly correlated with TIME, somatic mutation, and immunotherapeutic and chemotherapeutic efficacy in KIRC patients.
MATERIALS AND METHODS
Retrieval of Necroptosis-Related Genes
We first obtained eight NRGs from the GOBP_NECROPTOTIC_SIGNALING_PATHWAY gene set in the Molecular Signatures database (MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). After screening a large number of previous research literature on necroptosis, a necroptosis gene set containing 74 NRGs was finally retrieved (Supplementary Table S1).
Acquisition and Process of Original Data
Transcription RNA sequencing, clinical information, and somatic mutation of TCGA-KIRC cohort were publicly available in TCGA database (https://portal.gdc.cancer.gov/). Transcription RNA sequencing consisted of 539 KIRC tumor tissues and 72 surrounding normal tissues. It was downloaded as fragments per kilobase of transcript per million mapped reads (FPKM), and gene expression was annotated in an average when an individual gene symbol contained more than one Ensembl ID. After removing the samples without complete OS information, 526 patients were incorporated into the training set. 328 TCGA samples included in the study had somatic mutation information. The E-MATB-1980 dataset (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/) provided the RNA-seq data and clinical information of 101 KIRC samples to be an external test set. All sequencing data were processed with log2 transformation and eliminated batch effects between cohorts before establishing and verifying the prognostic signature through the “sva” package in R.
Non-Negative Matrix Factorization Clustering
We integrated the RNA-seq data and overall survival (OS) information of TCGA-KIRC and gained the prognosis-related NRGs through univariate COX regression analysis (p < 0.05). Non-negative matrix factorization (NMF) was applied to determine distinct necroptosis-related patterns with the help of the “NMF” R package. The NMF algorithm divided the original matrix into two non-negative matrices to identify the potential features in the gene expression profile (Brunet et al., 2004). The deposition was repeated and the results were aggregated to obtain consistent clustering. According to the cophenetic coefficient, contour, and sample size, k = 2 was determined as the best cluster number. All the prognosis-related NRGs were selected to construct a principal component analysis (PCA) scoring system with the “prcomp” function in R.
Gene Set Enrichment Analysis
GSEA is a nonparametric and unsupervised algorithm that transforms an isolate gene expression matrix to an expression matrix of particular gene sets as features. The algorithm is implemented based on the “clusterProfiler,” “enrichplot,” and “DOSE” R packages. We downloaded the gene sets of “c2. cp.kegg.v7.4. symbols,” “h.all.v7.4. symbols,” “c2. cp.reactome.v7.4. symbols,” “c2. cp.biocarta.v7.4. symbols,” and “c2. cp.pid.v7.4. symbols” from the MSigDB database for GSEA. The statistical differences of the expression matrix after transformation were analyzed by the “limma” package.
Evaluation of the Tumor Immune Microenvironment
Single-sample gene set enrichment analysis (ssGSEA), ESTIMATE, and CIBERSORT were used in R to assess the TIME status of each KIRC sample. ssGSEA investigated congenital and adaptive immune cells as well as a variety of immune-related functions. The normalized enrichment score (NES) was to embody the relative amount of each TIME infiltration unit in patients. ESTIMATE predicted the level of infiltrating matrix and immune cells by calculating stromal and immune scores and comprehensively obtained the ESTIMATE score for evaluating the TIME. We also assessed the relative fraction of 22 tumor-infiltrating immune cells (TIICs) in each cancer sample with the CIBERSORT algorithm. P < 0.05 was the threshold of a credible sample for estimating the proportion of immune cells.
Functional Enrichment Analysis of Differentially Expressed Genes Between Necroptosis-Related Patterns
After NMF clustering, to identify DEGs between two different necroptosis phenotypes, we used the “limma” package in R to evaluate gene expression differences through T statistics and p values (p < 0.001) calculated by empirical Bayesian estimation in the linear model (Ritchie et al., 2015). Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs between necroptosis-related patterns through the “clusterProfiler,” “enrichplot,” and “DOSE” R packages. The GO terms were in the biological process (BP), cellular component (CC), and molecular function categories (MF). The results were visualized with the “ggplot2” R package.
Establishment and Validation of the NRG Prognostic Signature
Based on the prognosis-related NRGs in the univariate Cox regression model, the “glmnet” R package performed the least absolute shrinkage and selection operator (LASSO) and selected the minimum criteria to identify important prognostic genes, which contained 16 NRGs (Supplementary Table S2). Eventually, the multivariate Cox regression made the NRG signature more optimized and practical, with 10 NRGs remaining. In addition, the NRGscore formula was obtained as follows:
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After calculating the optimal cutoff of NRGscore by the “surv_cutpoint” function in R, we divided TCGA-KIRC cohort into high- and low-risk groups. With the help of Kaplan–Meier analysis (“survival” package) and receiver operating characteristic (ROC) curve (“timeROC” package), the predictive ability of the prognostic model was assessed. The ROC curve was quantified with the area under the curve (AUC). The same NRGscore calculation formula, cutoff value, and analysis methods were applied in the E-MTAB-1980 cohort to validate the signature.
Establishment of the Nomogram Model
A nomogram is an intuitive clinical prognosis prediction model integrating a variety of prognosis-related variables. We established a nomogram model to provide a more accurate prediction of prognosis for clinical patients based on NRGscore and clinicopathological characteristics. First, univariate Cox regression analysis was utilized to evaluate predicted values of variables. Then, the coefficient was further determined via multivariate Cox regression analysis. The “rms” R package then established a nomogram for predicting the operating system. In addition, we used the “DynNom” R package to construct a dynamic nomogram to visualize the model. Concordance index (C-index) and calibration analysis were applied to estimate the accuracy and consistency. Finally, the clinical application value of the nomogram was evaluated using decision curve analysis (DCA).
Evaluation of the Efficacy of Chemotherapy and Targeted Drugs
The chemotherapeutic response of KIRC patients was evaluated by Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerRxgene.org). Eight chemotherapeutic and targeted drugs in KIRC treatment were chosen, including axitinib, bortezomib, cisplatin, gefitinib, sorafenib, sunitinib, temsirolimus, and vinblastine. The ridge regression algorithm was used to calculate the half-maximal inhibitory concentration (IC50), and satisfactory prediction accuracy was obtained through 10-fold cross-validation (Geeleher et al., 2014). The process was calculated by the “pRRophetic” R package.
Statistical Analysis
All statistical analyses were completed with R software (version 4.0.4) in this study. The Wilcoxon rank-sum test or paired-samples t-test was used to verify the statistical difference in two groups. When comparing the difference among more than two groups, the Kruskal–Wallis test was selected. Spearman’s correlation analysis calculated the correlation coefficients between TMB, immune checkpoint gene expression, and NRGscore. The “maftools” package was used to build waterfall plots to show the frequency of gene mutations. P-value <0.05 was set as a statistically significant standard.
RESULT
To describe our research intuitively and systematically, we show the research process in Figure 1.
[image: Figure 1]FIGURE 1 | Flow chart of our study.
NMF Clustering of Necroptosis-Related Patterns in KIRC
We performed NMF clustering on TCGA-KIRC cohort based on 33 prognosis-related NRGs in the univariate COX regression model (Table 1). According to cophenetic coefficients, k = 2 was the best clustering result (Figures 2A,B). Eventually, we identified two distinct necroptosis-related patterns termed necroptosis. C1 (n = 126) and necroptosis. C2 (n = 400). Figure 2C showed a transcription profile heatmap of 33 prognosis-related NRGs in C1 and C2. Afterward, we performed PCA to further complement the distinction between C1 and C2 at NRG transcription levels (Figure 2D). Kaplan–Meier analysis indicated that C2 had significantly longer OS than C1 (Figure 2E, p < 0.001). Ultimately, the chi-square test was used to reveal the distinction in clinicopathological characteristics between C1 and C2 (Figure 2F). As shown in the figure, the distribution of TNM stages, pathologic stage, histologic grade, OS, DSS, and PFI events was significantly distinct in C1 and C2. In addition, the advanced pathological characteristics and bad prognosis results had a tendency to concentrate on C1.
TABLE 1 | Prognosis-related NRGs selected by univariate COX regression analysis.
[image: Table 1][image: Figure 2]FIGURE 2 | Non-negative matrix factorization clustering of necroptosis-related patterns in TCGA-KIRC cohort. (A) Cophenetic coefficients. (B) Consensus matrix heatmap when k = 2. (C) Expression profile of prognosis-related NRGs. PCA analysis (D) and Kaplan–Meier analysis (E) of necroptosis-related patterns. (F) Clinical relevance of necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
Tumor Immune Microenvironment of Necroptosis-Related Patterns
Through GSEA analysis, we confirmed the concentration level of TCGA-KIRC samples in DNA damage repair, immune activation, stromal score, and carcinogenic-related pathways (Figure 3A). We believed that C1 had a higher expression in DNA damage repair and immune activation–related pathways, while C2 had significantly higher concentration in carcinogenic-related pathways, including regulation of autophagy. According to previous studies, the process of necroptosis shows a strong inflammatory response. To distinguish the difference between C1 and C2 in immune-related characteristics, we first quantified the tumor microenvironment composition using ESTIMATE (Figure 3B). The stromal score (p < 0.001), immune score (p < 0.001), and ESTIMATE score (p < 0.001) of C1 were all significantly higher than those in C2. Then, we compared the distinctions between TIICs and immune-related functions between necroptosis-related patterns through ssGSEA. Moreover, the expression of multiple immune checkpoints, including PDCD1, PDCD1LG2, LAG3, TIGIT, and CTLA4, was significantly higher in C1 (Figure 3C). ssGSEA analysis revealed that B cells, T cells, DCs, macrophages, and neutrophils in C1 infiltrated significantly higher than those in C2 (Figure 3D). Consistently, almost all immune functions in C1 were expressed higher (Figure 3E).
[image: Figure 3]FIGURE 3 | Correlation between necroptosis-related patterns and the tumor immune microenvironment. (A) Heatmap of GSEA analysis results. (B) Differential analysis of stromal, immune, and ESTIMATE scores. (C) Differential analysis of the expression of immune checkpoints. (D) Infiltration of 23 TIICs in necroptosis-related patterns. (E) Enrichment scores of immune-related functions in necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
In addition, functional enrichment analyses of DEGs between necroptosis-related patterns were applied to explore differences at the molecule. GO analysis indicated that DEGs were mainly involved in the regulation of the immune effector process, phagocytosis, positive regulation of leukocyte activation, and multiple immune-related biological processes (Figure 4A). Transcription proteins were mostly located in mitochondrial matrix, cell leading edge, and cell−substrate junction (Figure 4B). Molecular functions were mostly concentrated in molecular adapter activity, ubiquitin−like protein ligase binding, and protein−macromolecule adapter activity (Figure 4C). In addition, the DEGs were related to several immune-related pathways, such as the chemokine signaling pathway, mTOR signaling pathway, and TGF-β signaling pathway (Figure 4D).
[image: Figure 4]FIGURE 4 | Functional enrichment analyses of DEGs between necroptosis-related patterns. (A) Biological process, (B) cellular component, (C) molecular function, and (D) KEGG pathways.
Establishment of the NRG Signature in TCGA-KIRC Cohort
We established a NRG prognostic signature to obtain an indicator that could accurately and effectively predict the clinical survival rate of KIRC patients. In previous studies, we have obtained a univariate COX regression analysis model with 33 NRGs. Then, the univariate Cox regression model was processed to obtain the coefficient through LASSO Cox regression analysis, and the minimum standard was selected to further screen 16 genes (Figures 5A,B). The model was eventually optimized using multivariate Cox regression analysis, with a total of 10 genes remaining, including PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3. We also obtained a quantitative indicator: NRGscore = (0.39839 × PLK1 expression)—(0.21626 × APP expression)—(0.13856 × TNFRSF21 expression) + (0.08438 × CXCL8 expression)—(0.31476 × MYCN expression) + (0.40884 × TNFRSF1A expression) + (0.39387 × TRAF2 expression)—(0.26223 × HSP90AA1 expression)—(0.48853 × STUB1 expression)—(0.25716 × FLT3 expression). Then, we calculated NRGscore for each patient based on the abovementioned formula. In Kaplan–Meier analysis, we divided patients into the high-risk group (n = 165) and low-risk group (n = 361) based on the optimal cutoff value (cut point = 1.276099) for NRGscore. In addition, the result revealed that the OS of patients in the high-risk group was significantly worse than that in the low-risk group [Figure 5C, hazard ratio (HR) = 3.95 (2.91–5.37), p < 0.001]. Additionally, we used ROC curves to assess the veracity of NRGscore to predict the OS survival rate of KIRC patients. The AUCs for the 1-, 3-, and 5-year OS survival rates were 0.770, 0.731, and 0.763, respectively (Figure 5D). Figures 5E–G showed that the proportion of deaths in the high-risk group was elevated and increased with NRGscore. The expression of PLK1, CXCL8, TNFRSF1A, and TRAF2 was increased with the risk processes, whereas APP, TNFRSF21, MYCN, HSP90AA1, STUB1, and FLT3 were negatively correlated with NRGscore.
[image: Figure 5]FIGURE 5 | Establishment of the NRG signature based on the training set. (A, B) LASSO COX regression analysis. (C) Kaplan–Meier analysis between NRGscore-defined groups. (D) Time-dependent ROC curve of NRGscore. (E) NRGscore distribution. (F) Survival status heatmap. (G) NRG expression profile heatmap.
Validation of the NRG Signature in the E-MTAB-1980 Cohort
To further verify the stability and accuracy of NRGscore in KIRC patients, we used 101 KIRC patients in E-MTAB-1980 as the test set. We quantified samples in the test set using the same NRGscore calculation formula and grouped them with the same cutoff value (cut point = 1.276099) as the training set [high-risk group (n = 31) and low-risk group (n = 70)]. Kaplan–Meier analysis showed that a high NRGscore indicated significantly poor OS [Figure 6A, hazard ratio (HR) = 6.70 (2.74–16.36), p < 0.001]. ROC curves showed favorable results that the AUCs were 0.793 at a 1-year OS survival rate, 0.780 at a 3-year OS survival rate, and 0.789 at a 5-year OS survival rate (Figure 6B). The risk score distribution, survival status, and expression profile heatmaps showed a trend similar to that of the training set (Figures 6C–E).
[image: Figure 6]FIGURE 6 | Validation of the NRG signature based on the test set. (A) Kaplan–Meier analysis between NRGscore-defined groups. (B) Time-dependent ROC curve of NRGscore. (C) NRGscore distribution. (D) Survival status heatmap. (E) NRG expression profile heatmap.
To illustrate the superiority of the NRG signature, we compared the other two immune-autophagy–related gene signature (Zhang et al., 2021) and pyroptosis-related gene signature (Sun et al., 2021) recently published. After obtaining the genes constituting the prognosis signature from literature, the Kaplan–Meier curves and ROC curves were constructed by TCGA-KIRC cohort (Supplementary Figure S1). According to the results, the NRG signature had better prediction accuracy for the OS of KIRC patients.
Clinical Relevance of the NRG Signature
We calculated the correlation between NRGscore and clinicopathological characteristics for further analysis of the clinical benefits of the NRG signature. It can be seen that NRGscore increased significantly with the progress of TNM stages, pathologic stage, and histologic grade (Figures 7A–E). Male patients also scored higher than female patients (Figure 7F). There was no statistical difference between the age group (Figure 7G). In addition, the high NRGscore indicated a higher incidence of bad OS, DSS, and PFI events (Figures 7H–J).
[image: Figure 7]FIGURE 7 | Clinical relevance of the NRG signature. (A–J) NRGscore differences between subgroups of clinicopathological parameters, including T stage (A), N stage (B), M stage (C), pathologic stage (D), histologic grade (E), gender (F), age (G), OS event (H), DSS event (I), and PFI event (J). Univariate (K) and multivariate (L) Cox regression analysis of NRGscore and clinicopathological parameters. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
Next, we applied univariate and multivariate Cox regression analyses to investigate whether NRGscore was an independent prognostic indicator of KIRC patients. Univariate Cox regression analysis pointed out that pathologic stage, histologic grade, age, and NRGscore were hazard factors (Figure 7K). Then, multivariate Cox regression analysis verified that NRGscore could be utilized as a robust independent prognostic indicator for KIRC patients [hazard ratio (HR) = 1.180 (1.127–1.235), p < 0.001, Figure 7L].
Construction of a Nomogram Model Based on the NRG Signature
Next, according to the results of Cox regression analyses, we integrated NRGscore with several clinicopathological characteristics, including pathologic stage, histologic grade, and age, to construct a nomogram model that can more accurately and steadily evaluate the OS survival probability of patients in TCGA-KIRC cohort (Figure 8A). A total of 515 KIRC patients with complete clinicopathologic information were included in the model analysis. Then, C-index and calibration curves were utilized to assess the precision of the nomogram model. The C-index reached 0.771 (95% CI: 0.736–0.807, p < 0.0001). The calibration curves also confirmed that the nomogram model possessed excellent accuracy (Figures 8B–E). In addition, we used DCA curves to prove that NRGscore has a better clinical application value for patient OS prediction than the pathologic stage and histologic grade (Figures 8F–I). Finally, we defined patients in TCGA-KIRC cohort as high or low risk according to the optimal cutoff nomogram score (cut point = 0.7666527). Kaplan–Meier analysis suggested that high-risk patients showed poorer OS than low-risk patients [Figure 8J, hazard ratio (HR) = 6.55 (4.83–8.89), p < 0.001]. AUCs were 0.873 at the 1-year OS survival rate, 0.813 at the 3-year OS survival rate, and 0.775 at the 5-year OS survival rate (Figure 8K). We also validated the nomogram model using the E-MTAB-1980 cohort. The test set used the same model and cutoff value. Kaplan–Meier analysis showed the same result as the training set [Figure 8L, hazard ratio (HR) = 8.26 (3.53–19.35), p < 0.001]. In addition, the 1-, 3-, and 5-year AUCs were 0.925, 0.913, and 0.860, respectively (Figure 8M).
[image: Figure 8]FIGURE 8 | Construction of the nomogram model. (A) Nomogram for predicting the OS probability over 1, 3, and 5 years (B–E) Calibration curves for evaluating the fitness of the nomogram model in 1, 3, 5, and 7 years. (F–I) DCA curves of 1, 3, 5, and 7 years. Kaplan–Meier analysis (J) and time-dependent ROC curves (K) of the nomogram model in TCGA-KIRC cohort. Validation of the nomogram model in the E-MTAB-1980 cohort with the Kaplan–Meier analysis (L) and time-dependent ROC curves (M).
Coexpression Relevance and GSEA
We used GeneMANIA to predict and visualize the interaction networks of the 10 NRGs that comprise NRGscore and potential interactive molecules (Figure 9A) (Warde-Farley et al., 2010). GeneMANIA automatically identifies genes that contained several hub genes for necroptosis, including RIPK1, TNF, BIRC2, and CDC37. Figure 9B showed the coexpressed correlation of 10 NRGs in KIRC. TRAF2 had the highest number of NRGs with significant coexpression correlation (n = 8).
[image: Figure 9]FIGURE 9 | Coexpression relevance and GSEA of the NRG signature. (A) Regulatory network of 10 signature-related NRGs and conceivable interaction proteins built by GeneMANIA. (B) Coexpressed correlation of 10 model-related NRGs in KIRC. (C–G) GSEA analyses based on KEGG (C), Hallmark (D), Reactome (E), BioCarta (F), and PID (G) gene sets in the high-risk group. *p < 0.05; **p < 0.01; ***p < 0.001.
Then, GSEA was used to explore potential biological processes and signal pathways in the high-risk group of TCGA-KIRC cohort. GSEA based on the KEGG gene set suggested that carcinogenic and immune-related pathways were highly concentrated, including complement and coagulation cascades, cytokine–cytokine receptor interaction, NOD-like receptor (NLR) signaling pathway, and P53 signaling pathway (Figure 9C). The NLR signaling pathway plays a regulatory role in inflammation-related cancer and can be used as a therapeutic target (Liu et al., 2019). The transcription factor p53 is an important tumor suppressor. A p53 activating compound has been proven to be significantly cytotoxic to breast cancer and colon cancer cells (Mirgayazova et al., 2019). In addition, Hallmark gene sets of cell cycles and epithelial–mesenchymal transition were also highly expressed (Figure 9D). In addition, Figures 9E–G indicated that the high-risk group was related to immune-related reactions, classic pathways, and coagulation pathways.
Correlation Between the NRG Signature and Tumor Immune Microenvironment
As a result of the strong inflammatory response of necroptosis reported in previous studies and the distinction in immunophenotype between necroptosis-related patterns, we further analyzed the correlation between the NRG signature and TIME. First, we evaluated the distinction in TME scores between NRG-defined groups with the ESTIMATE algorithm (Figure 10A). The Wilcoxon rank-sum test suggested that immune score (p < 0.001) and ESTIMATE score (p < 0.001) in the high-risk group were significantly higher than those in the low-risk group. Figure 10B indicated that the expression of costimulatory molecules, except CD40, was significantly elevated in the high-risk group. As for adhesion molecules, ICAM1 and ICAM2 were highly expressed in high- and low-risk groups, respectively. Moreover, the expression levels of most major histocompatibility complex (MHC) molecules had no statistical difference in NRGscore-defined groups. ssGSEA showed that most immune-related functions were highly concentrated in the high-risk group (Figure 10C). Consistently, there was no significant distinction in antigen presentation between NRGscore-defined groups.
[image: Figure 10]FIGURE 10 | Correlation between the NRG signature and tumor immune microenvironment. (A) Differential analysis of stromal, immune, and ESTIMATE scores between NRGscore-defined groups. (B) Differential analysis in the expression of MHC molecules, costimulatory molecules, and adhesion molecules between NRGscore-defined groups. (C) Enrichment scores of immune-related functions in NRGscore-defined groups. *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
Then, we calculated the fraction of 22 TIICs in each TCGA-KIRC sample on the basis of the CIBERSORT algorithm. The results of a total of 415 samples were statistically significant. Figure 11A showed the distribution of TIICs in KIRC in the form of a grouping histogram. T cells and macrophages could be seen to account for the largest components. Next, we found that the fractions of plasma cells, CD8 T cells, activated CD4 memory T cells, follicular helper T cells, regulatory T cells (Tregs), M0 macrophages, and activated DCs were significantly higher in the high-risk group (Figure 11B), while resting CD4 memory T cells, resting natural killer (NK) cells, monocytes, M2 macrophages, resting DCs, and resting mast cells had lower fractions in the high-risk group (Figure 11B). Among these differentially distributed TIICs, higher fractions of plasma cells, activated CD4 memory T cells, follicular helper T cells, Tregs, and M0 macrophages and lower fractions of resting CD4 memory T cells, monocytes, M2 macrophages, resting DCs, and resting mast cells were significantly associated with poor OS survival probability in KIRC patients (Figures 11C−L). The abovementioned results suggested that necroptosis might affect the prognosis of KIRC patients through potential regulation of these TIICs.
[image: Figure 11]FIGURE 11 | Correlation between the fraction of 22 TIICs and the NRG signature on the basis of the CIBERSORT algorithm. (A) Proportion of 22 TIICs in KIRC. (B) Differential analysis of 22 TIIC fractions between NRGscore-defined groups. (C–L) Association between the infiltration level of TIICs [plasma cells (C), activated CD4 memory T cells (D), resting CD4 memory T cells (E), follicular helper T cells (F), Tregs (G), monocytes (H), M0 macrophages (I), M2 macrophages (J), resting DCs (K), and resting mast cells (L)] and OS of KIRC patients. *p < 0.05; **p < 0.01; ***p < 0.001.
Correlation Between the NRG Signature and Somatic Mutation
Tumorigenesis frequently occurs after accumulation of gene mutations (Martincorena and Campbell, 2015). Hence, we explored the distinction in somatic mutations between NRGscore-risk groups. The mutation spectrum and TMB of each sample in TCGA-KIRC were calculated on the basis of the single-nucleotide variation information. Waterfall plots showed that the 20 genes with the highest mutation rate in KIRC were VHL, PBRM1, TTN, SETD2, BAP1, MTOR, KDM5C, MUC16, DNAH9, HMCN1, ATM, LRP2, SPEN, ANK3, FBN2, CSMD2, ARID1A, MUC4, FLG, and MACF1 (Figures 12A,B). We applied the optimal TMB cutoff value to divide patients into low- and high-TMB groups. KIRC patients with higher TMB were associated with poorer OS survival probability (Figure 12C). As shown in Figure 12D, the proportion of high-TMB patients was higher in the high-risk group. In addition, we revealed a significant positive relevance between NRGscore and TMB in KIRC patients (Figure 12E, R = 0.2, p = 0.00025).
[image: Figure 12]FIGURE 12 | Correlation between the NRG signature and somatic mutation. (A, B) Waterfall plots of 20 genes with the highest mutation rate in the high-risk group (A) and low-risk group (B). (C) Kaplan–Meier analysis of TMB in KIRC patients. (D) Distribution of the TMB level in NRGscore-defined groups (E) Correlation between NRGscore and TMB.
Correlation Between the NRG Signature and Drug Sensitivity
Recently, ICIs have gradually shown clinical benefits for advanced KIRC. However, because most patients showed no response to immunotherapy, it was important to find effective predictive markers. We calculated the correlation between NRGscore and gene expression of several immune checkpoints (Figure 13A). It was found that NRGscore was significantly positively correlated with the expression of PDCD1, CD274, PDCD1LG2, LAG3, TIGIT, and CTLA4, which indicated that patients in the high-risk group were more likely to benefit from immunotherapy.
[image: Figure 13]FIGURE 13 | Therapeutic benefit of the NRGscore (A) Correlation between NRGscore and gene expression of seven immune checkpoints. (B–I) Correlation between the NRG signature and IC50 values of chemotherapy and targeted drugs, including axitinib (B), bortezomib (C), cisplatin (D), gefitinib (E), sorafenib (F), sunitinib (G), temsirolimus (H), and vinblastine (I). *p < 0.05; **p < 0.01; ***p < 0.001; ns = no significance.
The responsive predictive values of NRGscore for chemotherapy and targeted drugs were also calculated by IC50 values (Figures 13B–I). Compared with the low-risk group, the IC50 value of bortezomib, cisplatin, gefitinib, sunitinib, temsirolimus, and vinblastine was significantly lower in the high-risk group, which means patients with higher NRGscore were more sensitive to these drugs.
DISCUSSION
Necrosis was originally thought to be an uncontrolled form of accidental cell death, but a growing body of research has confirmed that necrosis can be induced and carried out in the form of apoptosis (Christofferson and Yuan, 2010; Linkermann and Green, 2014). This form of programmed cell death was called necroptosis. These activation factors include TNF-receptor superfamily, Toll-like-receptor superfamily, and interferon receptor (Khoury et al., 2020). But, unlike apoptosis cells, which maintain cell membrane integrity, necrosis-experiencing cells show damage to the cell membrane, leading to the release of immunogenic DAMPs, which in turn shows extreme immunogenicity (Häcker, 2000; Rosenbaum et al., 2009; Kaczmarek et al., 2013; Svensson et al., 2017). DAMPs can mediate the interaction between cancer cells and immune cells to trigger an anticancer-related immune response, such as the activation of cytotoxic CD8+ T lymphocytes, prompting DC to release proinflammatory cytokines and reduce Treg tumor immersion (Biswas and Mantovani, 2010; Werthmöller et al., 2015; Yatim et al., 2015; Sprooten et al., 2020). However, the immune landscape caused by necroptosis rarely is a one-way antitumor effect. For instance, IL-1α produced by necrotic tumor cells can directly stimulate the proliferation of neighboring cells and promote tumor progression (Grivennikov et al., 2010). The release of active nitrogen intermediates (RNI) and/or ROS associated with necrosis apoptosis may facilitate tumor development (Grivennikov et al., 2010). Therefore, further experimental research is needed to balance this complex immune landscape, through the necroptosis inducer in the in vivo tumor environment to achieve a “pure” protective effect, to achieve the purpose of precision immunotherapy. In addition, the detailed effects of necroptosis on KIRC are yet to be fully studied.
In this study, we identified two necroptosis-related patterns by NMF algorithm clustering. Necroptosis C1 showed a significantly poor OS survival probability. The proportion of patients in the advanced clinicopathological stages in high-risk necroptosis C1 was also significantly elevated. Furthermore, these two necroptosis-related patterns showed distinct biological pathway enrichment and TME immune cell infiltration. In TCGA-KIRC cohort, C1 was characterized by high levels of adaptive immunity activation and TME immune cell immersion. In addition, we found that several immune checkpoints (PD-1, PD-L2, LAG3, TIGIT, and CTLA4) were highly expressed in C1. Properly located and migrated T cells are the basis of tumor immune monitoring, but there was no matching survival advantage in C2. We speculated that the immunosuppressive microenvironment induced by high-level expression of immune checkpoint genes eliminated the antitumor effect based on activating the immune pathway and high infiltration level T cells (Dunn et al., 2002). The abovementioned evidence proved that necroptosis was of great significance in regulating the immune landscape of KIRC.
Then, we established a prognostic signature for predicting OS including 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3) in TCGA-KIRC cohort to evaluate and quantify the necroptosis pattern of KIRC individuals (NRGscore). A series of analyses were carried out by NRGscore-defined groups. Survival analysis suggested that the OS of patients in the high-risk group should be significantly reduced. It was consistently and significantly confirmed in a separate external E-MTAB-1980 cohort. High NRGscore also indicated tumor progression or poor prognosis event. Univariate and multivariate Cox analyses proved that NRGscore could be utilized as an independent prognostic marker. Among the 10 NRGs included in the prognostic signature, PLK1 could promote proliferation and inhibit apoptosis in KIRC cells, and had been proven to be upregulated and inhibit necroptosis in hormone-resistant prostate cancer (Deeraksa et al., 2013; Gao et al., 2020). The compound of APP and death receptor 6 (DR6/TNFRSF21) inhibited the activation of necroptosis of vascular endothelial cells, resulting in significant reduction in transdermal migration of tumor cells, thus controlling tumor metastasis (Wang et al., 2021). IL-8/CXCL8 was found to be regulated by JNK/MAPK8 in colon cancer and became a downstream signal pathway of tumor regrouping induced by necroptosis (Wang et al., 2019). High-risk neuroblastoma (NB) often showed MYCN amplification and decreased susceptibility to the death of programmed cells induced by chemotherapy drugs (Nicolai et al., 2015). Watanabe S. further confirmed that polyphyllin D induced necroptosis in MYCN-amplified NB cells and apoptosis in NB cells without MYCN amplification (Watanabe et al., 2017). TNFR1/TNFRSF1A was a typical necroptosis inducer in pancreatic catheter adenocarcinoma (Seifert et al., 2016). TRAF2 could mediate cross-talk between TNFR1 and TNFR2, affecting signal conduction results of TNF stimulation, including necroptosis (Borghi et al., 2016). HSP90 regulated the stability of MLKL and RIPK3 and was necessary for TNF-stimulated necrosis assembly (Zhao et al., 2016). CHIP/STUB1 regulated necroptosis through ubiquitination and lysosomal-dependent degradation of RIPK1 and RIPK3 (Tang et al., 2018). In addition, RIPK1 in the myeloid progenitor with FLT3 mutations had a strongly increasing tendency (Hillert et al., 2019). Furthermore, we established a nomogram model for predicting the OS of KIRC patients in combination with NRGscore and several clinicopathological characteristics. It showed excellent stability and clinical benefit and was validated in the E-MTAB-1980 cohort.
Due to the strong inflammatory nature of necroptosis, we investigated the correlation between the NRGscore and TIME. Our results indicated that the TME of NRGscore-defined groups was quite distinct. The expression of HLA-related genes had no significant fluctuation, and costimulatory molecules and adhesion molecules were upregulated in the high-risk group. The infiltration level of CD8+ T cells that play an antitumor protection role was significantly elevated in the high-risk group. However, patients in the high-risk group had significantly lower OS. In our study, the high-risk group had a significantly elevated immune score and ESTIMATE score, which indicated that the tumor purity of the high-risk group was lower. D Zeng also found that a high immune score was associated with poor prognosis in patients with gastric cancer (Zeng et al., 2018). Similar studies reported that lower tumor purity was related to adverse prognosis and immune escape phenotype (Gong et al., 2020). In addition, as an immunogenic tumor, KIRC could cause immune dysfunction by inducing immunosuppressive cell immersion (Díaz-Montero et al., 2020). We found that Tregs and DCs were highly infiltrated into the TME in patients of the high-risk group. Numerous studies have confirmed that Tregs could form an immunosuppressive microenvironment to promote tumor metastasis and progression (Ohue et al., 2019). In addition, DCs regulated the immune system and induce immune tolerance in a stable state (Audiger et al., 2017). The accumulation of M2 macrophages in the TME was generally associated with poor prognosis (Lan et al., 2019). However, we found that the discovery of M2 macrophages with low components of the TME in KIRC indicated better OS. This contradiction needs further study to be explained.
Somatic mutation is not only the driving factor of tumorigenesis but also TMB can be used as a guiding basis for diagnosis and treatment. As shown in Kaplan–Meier analysis, KIRC patients with high TMB possessed poorer OS survival probability. We also found a significant positive correlation between NRGscore and TMB in KIRC. Some studies have reported that cancer patients with high TMB were more likely to get effective and long-term responses from immunotherapy (Chan et al., 2019; Sholl et al., 2020). Furthermore, we found that NRGscore was significantly positively correlated with the expression of multiple immune checkpoint genes. This means that the immunosuppressive microenvironment played a key role in high-risk patients, who were more likely to benefit from ICIs. We also evaluated the ability of the NRG signature to predict the sensitivity of chemotherapy and targeted drugs in KIRC patients. The results revealed that bortezomib, cisplatin, gefitinib, sunitinib, temsirolimus, and vinblastine had more significant benefits in high-risk patients. We, therefore, believe that NRGscore is helpful for identifying better treatment strategies for individual advanced KIRC patients.
Our research still has limitations. First, this study is a retrospective study in which patient clinical information is prone to bias and requires large, multicenter, prospective studies to further confirm our results. Second, the ability of NRGscore to predict drug efficacy needs to be confirmed by clinical studies with sufficient samples. Finally, the NRGs we included in the study were based on non-KIRC cancer types, and their specific molecular mechanisms for necroptosis in KIRC still need to be further explored.
To sum up, NRGscore can individualize and quantify the necroptosis phenotype of patients and make comprehensive assessments of the clinical, cellular, and molecular characteristics of KIRC patients, including prognosis, clinical characteristics, pathologic stage, histologic grade, TIME, and tumor mutation. NRGscore is an independent prognostic marker for KIRC patients and can be utilized as a guiding indicator in the formulation of treatment strategies for immunotherapy, chemotherapy, and targeted drugs.
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Background: Breast cancer (BC) is a major leading cause of woman deaths worldwide. Increasing evidence has revealed that stemness features are related to the prognosis and progression of tumors. Nevertheless, the roles of stemness-index-related long noncoding RNAs (lncRNAs) in BC remain unclear.
Methods: Differentially expressed stemness-index-related lncRNAs between BC and normal samples in The Cancer Genome Atlas database were screened based on weighted gene co-expression network analysis and differential analysis. Univariate Cox and least absolute shrinkage and selection operator regression analyses were performed to identify prognostic lncRNAs and construct a stemness-index-related lncRNA signature. Time-dependent receiver operating characteristic curves were plotted to evaluate the predictive capability of the stemness-index-related lncRNA signature. Moreover, correlation analysis and functional enrichment analyses were conducted to investigate the stemness-index-related lncRNA signature-related biological function. Finally, a quantitative real-time polymerase chain reaction was used to detect the expression levels of lncRNAs.
Results: A total of 73 differentially expressed stemness-index-related lncRNAs were identified. Next, FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were used to construct a stemness-index-related lncRNA signature, and receiver operating characteristic curves indicated that stemness-index-related lncRNA signature could predict the prognosis of BC well. Moreover, functional enrichment analysis suggested that differentially expressed genes between the high-risk group and low-risk group were mainly involved in immune-related biological processes and pathways. Furthermore, functional enrichment analysis of lncRNA-related protein-coding genes revealed that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were associated with neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling pathway, and cGMP-PKG signaling pathway. Finally, quantitative real-time polymerase chain reaction revealed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the potential diagnostic biomarkers of BC.
Conclusion: The stemness-index-related lncRNA signature based on FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could be used as an independent predictor for the survival of BC, and FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the diagnostic markers of BC.
Keywords: breast cancer, cancer stem cells, stemness-index-related lncRNAs, WGCNA, prognosis
INTRODUCTION
Breast cancer (BC) is the most common malignancy among women, accounting for one-fourth of female cancer cases (Siegel et al., 2020). In 2018, there were 2.08 million new cases and 630,000 deaths worldwide (Bray et al., 2018). It is a heterogeneous disease, which can be divided into group A (luminal A type), B (luminal B type), C (HER2+ type), D (basal-like type), and E (normal-like) (Perou et al., 2000). Patients with similar clinicopathological features may have different clinical prognoses due to different gene expression patterns (Walker et al., 1997). Although the prognosis of BC has improved significantly in the past few decades due to the progress of early diagnosis and treatment, the high incidence and high mortality rate of BC still pose a major threat to human health (Early Breast Cancer Trialists' Collaborative Group et al., 2011). Therefore, accurate prediction for the prognosis of BC is very important to improve the prognosis and provide appropriate treatment for patients.
Cancer stem cells (CSCs), which have the ability of long-term self-renewal and abnormal differentiation, have been assumed to be responsible for tumorigenesis (Wang et al., 2021). It has been reported that all solid tumors contain CSCs, including BC (Al-Hajj et al., 2003), pancreatic cancer (Li et al., 2007), colorectal cancer (Dalerba et al., 2007), and ovarian cancer (Zhang et al., 2008). In addition, CSCs play an important role in tumor survival, proliferation, metastasis, and recurrence. For example, the “Driver Network” regulatory molecules FoxM1 and mybl2, which are involved in cell proliferation, can be used as potential biomarkers and therapeutic targets for non-small cell lung cancer (Ahmed, 2019). Increasing evidence has revealed that transcriptomic and epigenomic features are related to cancer stemness (Young, 2011; Bradner et al., 2017). Malta et al. developed two independent stemness indices, including DNA methylation-based stemness index and messenger RNA expression-based stemness index (mRNAsi), based on molecular profiles from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) using an innovative one-class logistic regression machine-learning algorithm (Sokolov et al., 2016). DNA methylation-based stemness index and mRNAsi were derived using a one-class logistic regression machine-learning algorithm trained on stem cell, embryonic stem cell, induced pluripotent stem cell classes, and their differentiated ecto-, meso-, and endoderm progenitors and ranges from low (zero) to high (one) stemness. (Sokolov et al., 2016). Moreover, epigenetic regulation-based stemness index (EREG-mRNAsi) is a stemness index generated using a set of stemness-related genes that were regulated by DNA methylation (Malta et al., 2018). An increasing number of studies have suggested that mRNAsi and EREG-mRNAsi are important indexes to evaluate the overall stemness of CSCs (Wang et al., 2021). Moreover, recent studies have suggested a correlation between stemness-index-related genes and the survival and prognosis of cancer patients in all TCGA tumors (Malta et al., 2018). For instance, Zhang et al. (2020) found that the stemness-index-associated signature, including seven stemness-index-related genes, can predict the prognosis of primary lower-grade glioma. In addition, Chen X. et al. (2020) identified 17 key stemness-index-related genes and constructed a nine-gene risk mode to predict the disease outcome of gastric cancer patients.
Long noncoding RNA (lncRNA) is a kind of noncoding RNA with a length of 200-bp–100 KB. It is mainly produced by destroying the structure of protein-coding genes (Fedor et al., 2013). It exists in the cytoplasm and interacts with other molecules in the cell to regulate the physiological and biochemical processes in organisms (Fan and Hu, 2016). The role of lncRNA in BC has been gradually revealed. LncRNA-encoded polypeptide ASRPS inhibits triple-negative BC angiogenesis (Wang et al., 2020). LncRNA TINCR promotes chemoresistance and epithelial–mesenchymal transition in BC through targeting microRNA-125b (Dong et al., 2019). More importantly, previous studies have suggested that lncRNA has potential implications in facilitating the tumorigenesis and stemness of cancer. For example, lncRNA LOXL1-AS1 can facilitate the tumorigenesis and stemness of gastric carcinoma via the regulation of the miR-708-5p/USF1 pathway (Sun et al., 2019). LncRNA TUG1 facilitates proliferation, invasion, and stemness of ovarian cancer cells (Zhan et al., 2020). However, the prognostic and diagnostic value of stemness-index-related lncRNAs in BC has been few reported.
The present study aims to screen stemness-index-related lncRNAs in BC based on weighted gene co-expression network analysis (WGCNA) and construct a stemness-index-related lncRNA signature to predict the prognosis of BC patients. Moreover, we also explored the diagnostic values and biological functions of lncRNAs in stemness-index-related lncRNA signature. It is of great significance in improving not only the clinical diagnosis level of BC but also the prognosis of BC patients and providing the basis for the treatment of BC.
MATERIALS AND METHODS
Data Sources
The expression profiles of lncRNAs and mRNAs from 1,072 BC patients and 99 adjacent normal tissues and the clinical information of BC patients were downloaded from TCGA database. The mRNAsi and EREG-mRNAsi data of each BC patient were obtained from previous literature (Sokolov et al., 2016). After eliminating BC patients missing overall survival (OS) and the stemness index information, a total of 1,050 BC patients were retained for further analyses. Moreover, the microarray expression profile of the GSE20685 (including 327 BC patients with OS) dataset was acquired from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) as a validation set.
Identification of Stemness-Index-Related Module and Long Noncoding RNAs Based on Weighted Gene Correlation Network Analysis
To identify stemness-index-related lncRNAs, WGCNA was carried out via the “WGCNA” package in R based on the expression profile of lncRNAs of 1,050 BC patients from TCGA database (Langfelder and Horvath, 2008). Firstly, samples' cluster analysis was conducted with the hclust function to remove the outlier samples. Next, the softPower = sft$powerEstimate command was used to select an optimal soft threshold to ensure that interactions among lncRNAs conform to the scale-free distribution to the maximum extent (Kenny, 2019). In addition, we calculated the adjacency among lncRNAs, and the adjacency matrix was used to construct a co-expression network by calculating topological overlap matrix (TO), which was then hierarchically clustered with (1-TO) as a distance measure. Furthermore, modules were identified by a dynamic shear tree algorithm, with the parameters MEDissThres set to 0.2 and minModuleSize set to 30 (Zhan et al., 2020). Finally, the key module was selected for further analyses based on the correlation coefficients between modules and the traits, and the lncRNAs in the key module were defined as stemness-index-related lncRNAs.
Identification of Differentially Expressed Stemness-Index-Related Long Noncoding RNAs
Firstly, we extracted the expression matrix of stemness-index-related lncRNAs from the BC and normal samples in TCGA database. Next, the “limma” package in R was selected to perform the differential expression analysis (Ritchie et al., 2015), and lncRNAs with adj < 0.05 and fold change > 1.5 were selected as differentially expressed stemness-index-related lncRNAs.
Construction and Validation of a Stemness-Index-Related Long Noncoding RNA Signature Associated With the Survival of Breast Cancer Patients
To construct a signature based on stemness-index-related lncRNAs, univariate Cox regression analysis was used to screen the prognosis-related lncRNAs from the differentially expressed stemness-index-related lncRNAs by “survival” package in R in TCGA database. The results of univariate Cox regression analysis were shown by the forestplot plotted using the “forestplot” package in R. Next, lncRNAs with p < .1 were used to perform the least absolute shrinkage and selection operator (LASSO) regression analysis through the “glmnet” package in R for constructing the optimal stemness-index-related lncRNA signature in TCGA database (Friedman et al., 2010). Subsequently, a stemness-index-related lncRNA signature was established based on the expression values of lncRNAs and corresponding coefficients obtained by LASSO regression analysis. Thus, the stemness-index-related lncRNA signature was established according to the expression values of these six lncRNAs and the corresponding coefficient derived from the LASSO Cox regression analysis. Namely, the risk score of each patient, which was calculated as follows: risk score = (expression of lncRNA 1 × coefficient of lncRNA 1) + (expression of lncRNA 2 × coefficient of lncRNA 2) + … + (expression of lncRNA n × coefficient of lncRNA n), was the sum of the products of the expression values of these six lncRNAs and their respective LASSO coefficients. Therefore, BC patients in TCGA database and GSE20585 dataset were, respectively, stratified into the high-risk and low-risk groups based on the median value of the risk scores in all BC patients. Finally, Kaplan–Meier (K-M) survival analyses using the “survminer” package in R and the log-rank test were performed to compare the OS of patients in the high-risk and low-risk groups. Time-dependent receiver operating characteristic (ROC) curves were plotted to investigate the prediction accuracy for prognosis prediction of the stemness-index-related lncRNA signature, and the area under the curve for 1-, 3-, and 5-year OS was calculated through the “survivalROC” package in R (Heagerty and Zheng, 2005).
Stratified Survival Analysis
To further investigate whether the stemness-index-related lncRNA signature could apply in different clinicopathological characteristics, we also investigated the OS between the high-risk and low-risk groups based on the median value of the risk scores in different clinical features using the “survminer” package in R.
Independent Prognostic Analysis
To investigate whether the stemness-index-related lncRNA signature could act as an independent prognostic prediction factor, the stemness-index-related lncRNA signature and other clinical features were merged to screen independently prognostic prediction factor via univariate and multivariate Cox regression analyses in TCGA database. Similarly, the results of univariate and multivariate Cox regression analyses were shown by the forestplots plotted using the “forestplot” package in R.
Identification of Stemness-Index-Related Long Noncoding RNA Signature Related to Biological Function
Firstly, we identified the differentially expressed genes (DEGs) between the high-risk and low-risk groups using the “limma” package in R, with the cutoff values of adj.P.Val < 0.05 and Fold Change > 1.5 (Ritchie et al., 2015). Next, Gene Ontology (GO) annotation (including biological process, molecular function, and cellular component) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to explore the biological function of DEGs using the “clusterProfiler” package in R (Yu et al., 2012), and adj.P.Val < 0.05 was considered significant enrichment. Finally, the “ggplot2” package in R was used to plot bubble diagrams to show the results of enrichment analyses. Moreover, single-sample gene set enrichment analysis, which computed an enrichment score representing the degree to which genes in a particular gene set were coordinately up- or downregulated within a single sample, was used to investigate the immune cell infiltration between the high-risk and low-risk groups using GSVA R package-based immune cell-related gene sets (Barbie et al., 2009).
Identification of Long Noncoding RNA-Related Protein-Coding Gene and Function Enrichment Analysis
To investigate the potential regulatory mechanisms of lncRNAs in the stemness-index-related lncRNA signature, Pearson's correlation analysis was performed to identify protein-coding genes related to lncRNAs in the stemness-index-related lncRNA signature in BC patients from TCGA database using psych v.2.0.12 package in R, with the parameters set as |R| > 0.5 and p < 0.01. Moreover, the “VennDiagram” package in R was used to recognize the overlapping genes among each lncRNA-related gene. Furthermore, the correlation network and mechanism were visualized using Cytoscape version 3.8.0 and “Ggalluvial” package in R. Finally, KEGG pathway analysis of protein-coding genes related to each lncRNA in the stemness-index-related lncRNA signature was conducted using “clusterProfiler package” in R, and p < .05 was considered significant enrichment.
Investigation of the Diagnostic Value of Long Noncoding RNAs in the Stemness-Index-Related Long Noncoding RNA Signature
Firstly, we examined the expression levels of lncRNAs in the stemness-index-related lncRNA signature in TCGA database. Next, ROC curves were plotted to show the performance of lncRNAs for distinguishing BC and normal samples (Heagerty and Zheng, 2005).
Validation of the Expression of Long Noncoding RNAs in the Stemness-Index-Related Long Noncoding RNA Signature by Quantitative Real-Time Polymerase Chain Reaction
The normal breast epithelial cell line MCF-10A and human BC cell lines MCF-7, T47D, ZR-75-1, MDA-MB-231, and MDA-MB-468 were purchased from the American Tissue Culture Collection (Rockville, MD, USA) and were maintained in our lab. The MCF-10A cells were cultured in MEB medium (Lonza Group Ltd., Basel, Switzerland) with 100 U/ml penicillin (Sigma, St. Louis, MO, USA), 100 U/ml streptomycin (Sigma), 20 ng/ml human epidermal growth factor (Lonza Group Ltd.), 0.5 μg/ml hydrocortisone (Lonza Group Ltd.), 100 ng/ml cholera toxin (Lonza Group Ltd.), 10 μg/ml human insulin (Lonza Group Ltd.), and 5% horse serum (Sigma). The MCF-7 cells were maintained in DME medium (Gibco, Invitrogen Corporation, NY, USA) with 100 U/ml penicillin, 100 μg/ml streptomycin, 10 μg/ml human insulin (Sigma), 10% fetal bovine serum (Hyclone, Logan, UT, USA). The T47D cells were maintained in RPMI-1640 medium (Gibco, Invitrogen Corporation) with 100 U/ml penicillin, 100 μg/ml streptomycin, 0.2 U/ml bovine insulin (Sigma), and 10% fetal bovine serum. The ZR-75-1 cells were maintained in RPMI-1640 medium with 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% fetal bovine serum. The MDA-MB-231 and MDA-MB-468 cells were cultured in Leibovitz's L-15 medium (Gibco, Invitrogen Corporation) with 100 U/ml penicillin, 100 μg/ml streptomycin, and 10% fetal bovine serum.
The TRIzol reagent (Thermo, MA, USA) was used to extract the total RNA of cells according to the manufacturer's instructions. Next, total RNA was reverse transcribed into complementary DNA using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) based on the manufacturer's procedure. Moreover, quantitative real-time polymerase chain reaction (PCR) was performed using SYBR Green Premix Ex Taq (Takara, Japan) and the Applied Biosystems 7,500 Real-time PCR System (Applied Biosystems, Inc., Carlsbad, CA, USA). Finally, the relative expression level of each lncRNA was calculated using the 2-ΔΔCt method, ΔΔCt = (CtRNA—Ctβ-actin) BC cells—(CtRNA—Ctβ-actin) normal cells, and fold change = 2−ΔΔCt. Primer sequences and annealing temperatures of quantitative real-time PCR could be found in Table 1
Statistical Analysis
Statistical analyses in the present study were performed through R software. The t-test and log-rank test compared the differences between different groups. The expression levels of each lncRNA between normal cells and BC cells were compared with one-way ANOVA and Tukey's test. p < .05 is considered statistically significant unless otherwise noted.
RESULTS
Identification of Stemness-Index-Related Module and Long Noncoding RNAs Based on Weighted Gene Co-Expression Network Analysis
After sample cluster analysis, genes in 1,050 BC samples were selected to construct a weighted gene co-expression network (Figure 1A). Subsequently, soft threshold selection analysis suggested that β = 6 (scale-free R2 = 0.85) was optimal soft thresholds (Figure 1B). Moreover, by setting MEDissThres as 0.2 and minModuleSize as 30, a total of 11 modules were identified and presented in different colors (Figure 1C). Correlation analyses between any two-module revealed that 11 modules were grouped into four clusters (Figure 1D). Moreover, the correlation heatmap of modules also suggested that the purple module has the lowest correlation with other modules (Figure 1E). Finally, correlation analysis suggested that the magenta module was the most significantly negatively correlated with mRNAsi (Figure 1F, p < .05 and correlation coefficient = -0.62). Thus, the magenta module was defined as a stemness-index-related module, and 299 lncRNAs in this module were defined as stemness-index-related lncRNAs.
[image: Figure 1]FIGURE 1 | Identification of stemness-index-related module and lncRNAs based on WGCNA. Samples clustering analysis to remove outliers (A), determination of soft threshold and inspection of scale-free network (B), 11 modules were identified and presented in different colors by setting MEDissThres as 0.2 and minModuleSize as 30 (C), 11 modules were grouped into four clusters by correlation analyses (D), purple module has lowest correlation with other modules (E), and magenta module was most significantly negatively correlated with mRNAsi (p < .05 and correlation coefficient = −0.62) (F).
Identification of Differentially Expressed Stemness-Index-Related Long Noncoding RNAs
To screen differentially expressed stemness-index-related lncRNAs, we extracted the expression matrix of 299 stemness-index-related lncRNAs from the BC and normal samples in TCGA database. Under the cutoff value of adj.P.Val < 0.05 and fold change > 1.5, a total of 73 lncRNAs, including seven upregulated lncRNAs and 66 downregulated lncRNAs in BC samples compared with normal samples, were identified as differentially expressed stemness-index-related lncRNAs (Supplementary Figure S1, Supplementary Material S1).
Construction and Validation of a Stemness-Index-Related Long Noncoding RNA Signature Associated With the Survival of Breast Cancer Patients
To establish a stemness-index-related lncRNA signature, univariate Cox regression analysis was carried out to identify the prognostic lncRNAs in BC patients from the differentially expressed stemness-index-related lncRNAs in TCGA database. As shown in Figure 2A, univariate Cox regression analysis revealed that RP11-1070N10.3, RP11-696F12.1, RP11-1100L3.8, FAM83H-AS1, RP1-28O10.1, HID1-AS1, and HOXB-AS1 were related to the prognosis of BC patients at the cutoff value of p < .1. Next, LASSO Cox regression analysis suggested that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were retained to construct a stemness-index-related lncRNA signature based on the optimal lambda value (Figure 2B). Thus, the risk score of each patient was calculated as follows: Risk score = expression value of FAM83H-AS1 × 0.0791 + expression value of HID1-AS1 × 1.1969 + expression value of HOXB-AS1 × (−0.1696) + expression value of RP11-1070N10.3 × (-0.7021) + expression value of RP11-1100L3.8 × (-0.2640) + expression value of RP11-696F12.1 × (−0.8372). At the same time, the coefficient also suggested that FAM83H-AS1 and HID1-AS1 were risk factors (hazard ratio > 1), but the other four lncRNAs were protective factors (hazard ratio < 1), which was consistent with the results of the K-M survival analysis (Supplementary Figure S2). Therefore, BC patients in TCGA database were divided into the high-risk and low-risk groups based on the median value of risk scores. In addition, K-M survival analysis suggested that patients in the high-risk group showed significantly lower OS than those in the low-risk group (Figure 2C). As illustrated in Figure 2E, the area under the curve values for predicting the 1-, 3-, and 5-year survival were 0.664 at 1 year, 0.723 at 3 years, and 0.636 at 5 years, suggesting that stemness-index-related lncRNA signature could predict the 1-, 3-, and 5-year survival of BC patients well. Consistently, the high-risk group included more dead samples than the low-risk group (Figure 2G). Furthermore, the analyses of the expression levels for these six lncRNAs between the high-risk and low-risk groups also suggested that FAM83H-AS1 and HID1-AS1 were risk factors, but other lncRNAs were protective factors (Figure 2G), which was consistent with the results of the LASSO Cox regression analysis. On the other hand, K-M survival, ROC analysis, these six lncRNA expression profiles, the risk scores distribution, and patients' survival status analyses in the GSE20585 dataset also showed the same results as TCGA database (Figures 2D,F,H). Furthermore, the stratified survival analysis in TCGA database also suggested that the stemness-index-related lncRNA signature also could predict the OS in different clinical features, including age, pathological stage, and luminal subtype (Figure 3). To sum up, these results indicated that the stemness-index-related lncRNA signature based on FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could predict the survival of BC patients well.
[image: Figure 2]FIGURE 2 | Construction and validation of a stemness-index-related lncRNA signature associated with survival of BC patients. Results of univariate Cox regression analysis (A) and LASSO Cox regression analysis (B), Kaplan–Meier survival analysis between high-risk and low-risk groups in TCGA database (C) and GSE20585 dataset (D), ROC curve evaluated efficiency of stemness-index-related lncRNA signature for predicting 1-, 3-, and 5-year OS in TCGA database (E) and GSE20585 dataset (F), and lncRNAs expression profiles, risk scores distribution, and patients' survival status in TCGA database (G) and GSE20585 dataset (H).
[image: Figure 3]FIGURE 3 | Kaplan–Meier survival stratifcation analyses in TCGA database based on stemness-index-related lncRNA signature. Age > = 60 years (A), age < 60 years (B), female (C), M0 (D), N0 (E), N1–N3 (F), stages i–ii (G), stages iii-iv (H), T1–T2 (I), T3–T4 (J).
Stemness-Index-Related Long Noncoding RNA Signature Was an Independently Prognostic Factor in Breast Cancer
To verify whether the stemness-index-related lncRNA signature could be used as an independent prognostic factor in BC patients, univariate and multivariate Cox regression analyses were performed to identify independent prognostic factors from the clinicopathological characteristics and the stemness-index-related lncRNA signature. Surprisingly, univariate Cox regression analysis demonstrated that the stemness-index-related lncRNA signature, age, pathological M stage, pathological N stage, pathological T stage, and pathological tumor stage were associated with the OS in BC patients (p < .05, Figure 4A). Moreover, multivariate Cox regression analysis confirmed that the stemness-index-related lncRNA signature, age, and pathological M stage could act as independent prognostic factors for predicting the prognosis of BC patients (p < .05, Figure 4B). Thus, the stemness-index-related lncRNA signature was an independent prognostic factor in BC.
[image: Figure 4]FIGURE 4 | Stemness-index-related lncRNA signature was an independent prognostic factor in BC. Univariate Cox regression analysis (A) and multivariate Cox regression analysis (B) to identify independent prognostic factors from stemness-index-related lncRNAs and other clinicopathological characteristics in TCGA database.
Functional Annotation of the Stemness-Index-Related Long Noncoding RNA Signature
To investigate the GO functions and KEGG pathways related to the stemness-index-related lncRNA signature, GO annotation and KEGG pathway enrichment analysis were performed to explore the biological function of DEGs between the high-risk and low-risk groups. Firstly, 236 DEGs, including 24 upregulated and 212 downregulated, were identified (Supplementary Figure S3, Supplementary Material S2). Moreover, for biological processes, DEGs were mainly involved in T-cell activation, regulation of lymphocyte activation, and leukocyte migration (Figure 5A). For cellular components, DEGs were mainly related to the external of the plasma membrane, endocytic vesicle, and endocytic vesicle membrane (Figure 5B). For molecular function, DEGs were mainly associated with peptide binding, cytokine activity, and glycosaminoglycan binding (Figure 5C). Furthermore, KEGG pathway enrichment analysis suggested that DEGs were mainly related to human T-cell leukemia virus one infection, Staphylococcus aureus infection, hematopoietic lineage, viral protein interaction with cytokine and cytokine receptor, and Th1 and Th2 cell differentiation (Figure 5D). Finally, we also found that the infiltrations of a majority of the immune cell were significantly different in the high- and low-risk groups (Figure 5E). Therefore, these six lncRNAs in the stemness-index-related lncRNA signature might affect the CSC by regulating the composition of immune cells in the tumor microenvironment (TME) of BC.
[image: Figure 5]FIGURE 5 | Functional annotation of stemness-index-related lncRNA signature. GO-Biological processes (A), GO-Cellular component (B), GO-Molecular function (C), and KEGG pathway enrichment analysis (D). Immune cell infiltration between high- and low-risk groups (E). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Identification of Long Noncoding RNA-Related Protein-Coding Genes and Functions Enrichment
To further explore the correlation between lncRNAs in the stemness-index-related lncRNA signature, we carried out the correlation analysis between these six lncRNAs and the protein-coding genes based on the expression matrix of six lncRNAs and the protein-coding genes from the BC patients in TCGA database. The results of the correlation analysis revealed that 132 protein-coding genes were related to FAM83H-AS1, 493 protein-coding genes were related to HID1-AS1, 13 protein-coding genes were related to HOXB-AS1, 340 protein-coding genes were related to RP11-1070N10.3, 37 protein-coding genes were related to RP11-1100L3.8, and 408 protein-coding genes were related to RP11-696F12.1 (Supplementary Material S3). Interestingly, none of the protein-coding genes was associated with all of these six lncRNAs (Figure 6A), indicating these six lncRNAs might independently influence the CSC of BC. Moreover, we also constructed a lncRNA protein-coding gene network based on the five most relevant protein-coding genes of each lncRNA. As shown in Figure 6B, FAM83H-AS1 was associated with FAM83H, GRHL2, ESRP1, ARHGAP39, and ZNF623, HID1-AS1 was associated with PDE2A, EBF1, BTNL9, LDB2, and CD300LG, HOXB-AS1 was associated with HOXB2, RAPGEF3, HOXB3, TNS2, and ELMOD3, RP11-1070N10.3 was associated with CCDC69, ABCD2, SYNE3, GPBAR1, and HSD11B1, RP11-1100L3.8 was associated with FOSB, FOS, EGR1, ZFP36, and NR4A1, and RP11-696F12.1 was associated with RDH5, KCNIP2, C14orf180, GLAYT, and AQP7. The Sankey diagram showed that the five most relevant protein-coding genes of each lncRNA may be related to one or more lncRNAs (Figure 6C). Finally, the KEGG pathway enrichment analysis of each lncRNA-related genes suggested that FAM83H-AS1-related genes were involved in cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation, and viral carcinogenesis (Figure 6D); HID1-AS1-related genes were involved in PI3K-Akt signaling pathway neuroactive ligand–receptor interaction, cAMP signaling pathway, AMPK signaling pathway, Rap1 signaling pathway, and PPAR signaling pathway (Figure 6E); HOXB-AS1-related genes were involved in regulation of lipolysis in adipocytes, cAMP signaling pathway, apelin signaling pathway, and PPAR signaling pathway (Figure 6F); RP11-1070N10.3-related genes were involved in neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling pathway, and adipocytokine signaling pathway (Figure 6G); RP11-1100L3.8-related genes were involved in human T-cell leukemia virus one infection, TNF signaling pathway, IL-17 signaling pathway, C-type lectin receptor signaling pathway, and GnRH signaling pathway (Figure 6H); and RP11-696F12.1-related genes were involved in neuroactive ligand–receptor interaction, cAMP signaling pathway, AMPK signaling pathway, PPAR signaling pathway, cGMP-PKG signaling pathway, apelin signaling pathway, and adipocytokine signaling pathway (Figure 6I). Therefore, it was speculated that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 might play key roles in BC by regulating the AMPK signaling pathway, PPAR signaling pathway, and cGMP-PKG signaling pathway.
[image: Figure 6]FIGURE 6 | Potential regulatory mechanisms of lncRNAs in stemness-index-related lncRNA signature. Venn diagram of protein-coding gene associated with all of six lncRNAs (A), interaction network of five most relevant protein-coding genes and each lncRNA (B), and Sankey diagram showed five most relevant protein-coding genes of each lncRNA (C). KEGG pathway enrichment analysis of each lncRNA-related protein-coding gene. FAM83H-AS1 (D), HID1-AS1 (E), HOXB-AS1 (F), RP11-1070N10.3 (G), RP11-1100L3.8 (H), and RP11-696F12.1 (I). KEGG, Kyoto Encyclopedia of Genes and Genomes.
Investigation of the Diagnostic Value of Long Noncoding RNAs in the Stemness-Index-Related Long Noncoding RNA Signature
To further explore whether these six lncRNAs in the stemness-index-related lncRNA signature can distinguish BC samples and normal samples, we firstly investigated the expression levels of these lncRNAs in the stemness-index-related lncRNA signature in TCGA database. As shown in Figure 7A, FAM83H-AS1 was upregulated in BC samples compared with normal samples, but HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were downregulated in BC samples compared with normal samples. Furthermore, ROC curves suggested that all of FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could distinguish recurrent BC and normal samples in TCGA database (Figure 7B). Thus, FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 might be used as the diagnostic markers of BC.
[image: Figure 7]FIGURE 7 | Investigation of diagnostic value of lncRNAs in stemness-index-related lncRNA signature. Expression levels of these lncRNAs in stemness-index-related lncRNA signature in TCGA database (A), and ROC curves to evaluate their capability in distinguishing BC and normal samples in TCGA database (B). Validation of expression of lncRNAs in stemness-index-related lncRNA signature by quantitative real-time polymerase chain reaction (C). Results were shown as mean ± SD. *p < .05 **p < .01 vs. MCF-10A.
Cell Culture, RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction
To further validate the expression level of FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1, we performed quantitative real-time PCR to detect their expression levels of them. Consistent with TCGA results, we found that FAM83H-AS1 were significantly upregulated in BC cells compared with normal cells, and HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 were significantly downregulated in BC cells compared with normal cells (Figure 7C). However, the expression of HOXB-AS1, RP11-1070N10.3 were upregulated in BC cells compared with normal cells, which were in contrast to TCGA results. Therefore, FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 could be used as the diagnostic biomarkers of BC.
DISCUSSION
BC is characterized as a highly heterogeneous disease, and it can be manifested by their classification into a number of distinct subtypes, each with a characteristic transcriptome and molecular expression signature (Visvader, 2009). Multiple evidence suggested that BC is organized and driven by a small number of tumor cells that display the characteristics of stem cells (Wicha et al., 2006). Once these cells are stimulated in some cases, they will get the ability to switch between a quiescent state and a proliferative state (Wicha et al., 2006; Charafe-Jauffret et al., 2008; Liu and Wicha, 2010). The presence of these stem cells is also associated with tumor survival, metastasis, and treatment resistance (Nassar and Blanpain, 2016). Although the studies on BC stem cells have been deepened worldwide, the role of stemness-index-related lncRNAs in the pathogenesis and progression of BRCA is unclear.
Our research aims to identify lncRNAs related to BC stemness index (mRNAsi and EREG-mRNAsi) by performing WGCNA. Through univariate and LASSO Cox regression analysis, we obtained six prognosis lncRNAs (FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1). Subsequently, we constructed a stemness-index-related lncRNA signature to predict the OS of BC patients based on the expression levels and corresponding coefficients derived from the LASSO Cox regression analysis. Moreover, we found that the stemness-index-related lncRNA signature could effectively predict the prognosis of BC patients and can be used as an independent prognostic factor in BC. Furthermore, we further explored the correlation between FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, RP11-696F12.1, and protein-coding genes in BC, separately. Interestingly, we found that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 may be involved in neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling pathway, and cGMP-PKG signaling pathway. Finally, quantitative real-time PCR revealed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the potential diagnostic biomarkers of BC.
FAM83H-AS1, also known as onco-lncRNA-3, is located on chromosome 8 (8q24.3) and consists of 2,743 base pairs (Table 1). FAM83H-AS1 has been reported to act as an oncogene in several kinds of human cancers, such as cervical cancer (Barr et al., 2019), ovarian cancer (Dou et al., 2019), bladder cancer (Shan et al., 2019), glioma (Bi et al., 2018), rectal cancer (Lu et al., 2018), and lung cancer (Zhang et al., 2017). Consistent with our results, another research revealed that the expression of FAM83H-AS1 is increased and correlates with poor OS in patients with early-stage BC (Deva Magendhra Rao et al., 2019). Moreover, Han et al. (2020) also found that FAM83H-AS1 is associated with triple-negative BC progression by regulating miR-136-5p and MTDH expression. LncRNA HOXB-AS1 can promote the proliferation, migration, and invasion of glioblastoma cells (Bi et al., 2021), multiple myeloma (Chen R. et al., 2020), and endometrial carcinoma (Liu et al., 2020). However, it is less studied in BC. The only research is that lncRNA HOXB-AS1 may be related to N6-methyladenosine-(m6A)-mediated regulation in BC (Wu et al., 2021). As for other stemness-index-related lncRNAs, there are few studies related to tumorigenesis and progression, and more studies are needed.
TABLE 1 | Primers used in quantitative polymerase chain reaction.
[image: Table 1]The TME plays an important role in maintaining tumor stemness (Ye et al., 2014; Plaks et al., 2015). Notably, we found that the DEGs between the high-risk and low-risk groups were mainly involved in the immune-related biological processes and signaling pathways (Figure 6). It has been demonstrated that the interaction between tumor stem cells and their niche is closely related to the characteristics of tumor stem cells. Through this interaction, tumor stem cells can maintain tumor heterogeneity, which is the basis of important malignant biological behaviors such as invasion, metastasis, and therapeutic resistance (Dean et al., 2005; Beck and Blanpain, 2013). The components of TME are complex, and there are various types of cells in its niche, including endothelial cells, immune cells, tumor-related fibroblasts, and so on. In addition, various growth factors and cytokines in TME and hypoxia and pH changes are also important characteristics (Hjelmeland et al., 2011; Balkwill et al., 2012; Campos-Sánchez and Cobaleda, 2015). Therefore, we speculated that the stemness-index-related lncRNA signature might affect the CSC by regulating the composition of immune cells in the TME of BC.
In conclusion, our research identified and developed a novel stemness-index-related lncRNA signature for predicting the prognosis of BC patients based on six stemness-index-related lncRNAs (FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1). Moreover, we also found that stemness-index-related lncRNA signature is an independent prognostic factor and is related to the immune response. Finally, we also confirmed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the potential diagnostic biomarkers of BC. Thus, our results might provide a theoretical basis and reference value for improving the prognosis and diagnosis of BC, which may contribute to the clinic treatment of BC.
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Esophageal squamous cell carcinoma (ESCC) is a common malignant gastrointestinal tumor threatening global human health. For patients diagnosed with ESCC, determining the prognosis is a huge challenge. Due to their important role in tumor progression, long non-coding RNAs (lncRNAs) may be putative molecular candidates in the survival prediction of ESCC patients. Here, we obtained three datasets of ESCC lncRNA expression profiles (GSE53624, GSE53622, and GSE53625) from the Gene Expression Omnibus (GEO) database. The method of statistics and machine learning including survival analysis and LASSO regression analysis were applied. We identified a six-lncRNA signature composed of AL445524.1, AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2. Kaplan–Meier and Cox analyses were conducted, and the prognostic ability and predictive independence of the lncRNA signature were found in three ESCC datasets. In the entire set, time-dependent ROC curve analysis showed that the prediction accuracy of the lncRNA signature was remarkably greater than that of TNM stage. ROC and stratified analysis indicated that the combination of six-lncRNA signature with the TNM stage has the highest accuracy in subgrouping ESCC patients. Furthermore, experiments subsequently confirmed that one of the lncRNAs LINC01273 may play an oncogenic role in ESCC. This study suggested the six-lncRNA signature could be a valuable survival predictor for patients with ESCC and have potential to be an auxiliary biomarker of TNM stage to subdivide ESCC patients more accurately, which has important clinical significance.
Keywords: esophageal squamous cell carcinoma, long non-coding RNAs, prognosis, machine learning, LASSO, LINC01273
INTRODUCTION
Esophageal squamous cell carcinoma (ESCC) has always been a malignant gastrointestinal cancer tumor threatening human health worldwide, with high incidence and death rates (Torre et al., 2015; Chen et al., 2016). Despite the continuous development of therapeutic strategies including surgery, chemotherapy, and radiotherapy, the five-year survival rate of ESCC patients is still limited by 30–40% (Ferlay et al., 2015). A large amount of evidence indicated that tumor heterogeneity is one of the reasons for the poor clinical outcome of ESCC patients (Lin and Lin, 2019); therefore, patients exhibit distinct molecular profiles. Therefore, identification of molecular biomarkers is pivotal to predict the ESCC patients’ survival.
In recent decades, with the rapid development of computing platform of human transcriptome, microarray, and high-throughput sequencing technology, a large amount of omics data has been generated and stored in GEO and other large public databases, which will help us further reveal the molecular mechanism of tumorigenesis and explore tumor markers from the RNA level. Long non-coding RNA (lncRNA) is a type of RNA whose transcription length is >200 nucleotides and lacks the ability to encode proteins (Huarte, 2015). Accumulating evidence supports that lncRNAs can regulate both normal development and disease progression in various species (Mercer et al., 2009; Ulitsky and Bartel, 2013; Peng et al., 2017; Guo et al., 2019). Among them, a large number of lncRNAs have been regarded as critical molecules in promoting tumor growth and metastasis (Bhan et al., 2017), such as H19 (Ghafouri-Fard et al., 2020), MALAT1 (Hirata et al., 2015), PCAT-1 (Prensner et al., 2011), PCGEM1 (Srikantan et al., 2000; Shuo Chen et al., 2018), and HOTAIR (Gupta et al., 2010). In ESCC, lncRNAs, such as ZFAS1 (Li et al., 2019), CASC9 (Liang et al., 2018), GHET1 (Liu et al., 2017), TUSC7 (Chang et al., 2018), and FAM201A (Mingqiu Chen et al., 2018), have been suggested to involve in regulating ESCC epithelial–mesenchymal transition (EMT), metastasis, chemosensitivity, and radiosensitivity. Moreover, due to their high tissue- and cell-specific expression pattern, and their stability and detectability in body fluids, plasma, and urine, lncRNAs open up a new field for their applications as non-invasively diagnostic or prognostic biomarkers and therapeutic targets. A study by Feng et al. (2019) summarizes the observed lncRNAs that could be used as prognostic biomarkers of ESCC, such as SEMA3B-AS1, SNHG6, BANCR, UCA1 and MALAT1, FOXD2-AS1.
Gene expression profiling identifies many gene expression signatures from a variety of tumors, thereby enhancing our understanding of molecular alterations in the carcinogenic process and providing biomarkers for diagnosis or prognosis (Yang et al., 2020). In this research, we aim to find a prognostic biomarker for ESCC patients from the perspective of the lncRNA expression signature. Firstly, we downloaded both the lncRNA expression profiles and the matching clinical follow-up features from the GEO database. Then, Kaplan–Meier (KM) and Cox analyses were used to screen out the lncRNAs correlated with ESCC survival. Integrated bioinformatics methods were performed to establish a prognostic lncRNA signature and validate its prediction performance in multiple datasets. Finally, we confirmed that one of the lncRNAs LINC01273 may serve as an oncogene in ESCC.
MATERIALS AND METHODS
Collection of ESCC RNA Expression Profiles
The ESCC RNA expression profiles and corresponding clinical information were obtained from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database including GSE53624 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624), GSE53622 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53622), and GSE53625 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625) datasets. Samples with complete survival information are retained, while those patients without survival information are eliminated. To develop prognostic prediction lncRNA models, ESCC samples from GSE53624 were treated as a training set. GSE53622 and GSE53625 sets were test and validation datasets. The aforementioned datasets were generated with Agilent-038314 (GPL18109). Through re-annotating microarray probes (see details in the Supplementary Material) (Harrow et al., 2012; White et al., 2014; Guo et al., 2018), we gained the expression values of lncRNAs from ESCC cohorts (Supplementary Table S1). Probes with missing expression values in more than 20% of patients were discarded.
Construction of the Multi-lncRNA Predictive Models Related to Overall Survival
To single out those lncRNAs which were significantly associated with the prognosis of ESCC patients, both univariable Cox regression and KM survival analysis (the median lncRNA expression value as the cutoff value) were used in the training dataset. Those with Cox p < 0.05 and log rank p < 0.05 were considered OS-associated candidates. The LASSO regression method was then applied to obtain the strongest survival-related lncRNAs in the training set. Subsequently, the selected prognostic lncRNAs by KM, Cox, and LASSO regression were performed to develop combination models for estimating the ESCC prognosis risk as follows: risk score (RS) = ∑ Ni = 1 (Exp * coefficient), where N is the number of selected lncRNAs, Exp is the corresponding lncRNAs’ expression level, and the coefficient is calculated by the univariable Cox analysis. Based on the above formula, the RS of each combination model for each ESCC patient was calculated and ROC curve analysis was applied to make comparison of the survival prediction ability among those constructed multi-lncRNA signatures in the training set.
Cell Culture and Cell Transfection
Human ESCC cell lines KYSE410 and TE5 were cultured in RPMI 1640 (Gibco) medium with 10% fetal bovine serum (TransSerum) and 1% streptomycin–penicillin solution (Gibco). All cells were cultured in a 5% CO2 constant temperature incubator. Small interfering RNAs (siRNAs) targeting LINC01273 (siLINC01273-1: 5′-GAC​ACA​GAA​GGA​CAA​UGU​UTT-3′; siLINC01273-2: 5′-GAC​ACA​AAG​UGA​CAG​AAU​GTT-3′) were synthesized by GenePharma Co. (Suzhou, China). Following the instructions, siLINC01273 was transfected at a concentration of 40 nM using Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) with Opti-MEM (Gibco). After transfection for 48 h, the RNAs were harvested.
RNA Extraction and RT-qPCR
Total RNA was reverse transcribed into cDNA by HiScript Q RT SuperMix for qPCR (Vazyme) after extracting by RNA-easy Isolation Reagent (Vazyme). The real-time RT-qPCR assay was conducted with an ABI 7500 system (Corbett Life Science) using ChamQ SYBR Color qPCR Master Mix (Vazyme) with the guide of its manufacturer’s instructions. The primers for RT-qPCR of LINC01273 were 5′-TGT​TGC​GGT​GTT​CAG​GGG​TTT-3′ (forward) and 5′-GTC​TGG​CTT​CTT​TCA​CTG​AGC-3′ (reverse). The primers for beta-actin were 5′-CAA​CTG​GGA​CGA​CAT​GGA​GAA​A-3′ (forward) and 5′-GAT​AGC​AAC​GTA​CAT​GGC​TGG​G-3′ (reverse). The relative mRNA expression was normalized to beta-actin as reference.
Cell Proliferation Assays
For the MTS assay, after transfection for 36 h, 5,000 cells/well were seeded into 96-well plates. After adding MTS solution (Promega) and incubating for 2 h, the absorbance was recorded at 490 nm using an ELISA plate reader. For the colony formation assay, 500 cells/well were planted in 12-well plates and continuously grown for 2 weeks until a single colony was formed. After fixing with methanol, these colonies were stained with 0.1% crystal violet.
Transwell
ESCC cells were transfected with siRNAs for 36 h, and then serum starvation was performed for 12 h. For invasion assays, upper transwell chambers (Falcon) should be pre-coated with Matrigel (BD Biosciences) and then left in the incubator for 1 h. 5×104 cells in 200 μL serum-free cell suspensions were added in the upper transwell chambers, while 500 μL medium containing 10% FBS was added in the bottom chamber. 36 h later, pictures were taken with a microscope magnifying ×200 after fixing and then staining the migrated or invasive cells from upper chambers.
Statistical and Bioinformatics Analysis
The 50th percentile of the risk score is defined as the threshold to classify the high-risk group and the low-risk group. KM analysis was applied to evaluate and validate the survival prediction performance of the lncRNA signature in different ESCC cohorts. The time-dependent ROC curve was used to compare the prediction ability of the lncRNA signature with that of other clinical features at different survival times. And univariable and multivariable Cox regression and stratification analysis were used to test whether the multi-lncRNA risk score model was independent of other clinical characters. The R program (3.5.1) including R packages named survival, survminer, glmnet, pROC, and timeROC was used to perform the above analyses.
To explore the potential biological functions of lncRNAs, the Pearson correlation test was used to construct co-expressed networks of lncRNAs and the protein-coding genes (PCGs) in the GSE53625 dataset, and the PCGs that were highly correlated with lncRNAs (correlation coefficient >0.60/< -0.6, p < 0.001) were selected for GO and KEGG pathway enrichment analysis by the Cluego plugin in Cytoscape (Guo et al., 2018). SubpathwayMiner was also used to identify related pathways of the co-expressed PCGs in the KEGG database including entire pathways and sub-pathways.
All experiments were repeated for at least three times. The values are shown as mean ± SD. Prism 8 software was used to perform statistical analyses. Student’s t-test was employed for comparisons between two groups, and one-way ANOVA was performed for multiple-group comparisons. The differences with *p < 0.05, **p < 0.01, ***p < 0.001 were considered statistically significant.
RESULTS
ESCC Clinical Characteristics and Expression Profiles
There were a total of 179 ESCC samples used in this study, including 119 from GSE53624 and 60 from GSE53622, respectively. GSE53625 is the union of GSE53624 and GSE53622. The median survival age was 60 years. There were more male patients with ESCC than females (146 vs. 33), and most of the patients were dead (survival time, 3 days to 60 months). Other clinical characters are shown in Table 1. In addition, through re-annotating microarray probes, a total of 6,253 expressed lncRNAs and 17,434 expressed PCGs were obtained from GSE53624 and GSE53622.
TABLE 1 | Clinical features of the ESCC patients from GEO.
[image: Table 1]Identification of the Prognostic lncRNAs in the Training Set
ESCC samples from GSE53624 (n = 119) were treated as the training dataset to evaluate the relationship between ESCC OS and lncRNAs. After univariate Cox and KM analysis of lncRNAs’ expression level with clinical survival information, we identified a total of 209 lncRNAs (Figure 1A) related to ESCC patients’ OS significantly (Cox p < 0.05 and log rank p < 0.05), which could be used as prognostic candidates. Then, the LASSO regression algorithm via regression coefficient shrinkage based on a penalty that is proportional to size was utilized to screen out lncRNAs which were mostly correlated with ESCC survival among the 209-lncRNA set. As shown in Figure 1B, we found that the value of independent coefficients tended to zero with the increase of lambda value. Finally, we used threefold cross-validation and selected seven lncRNA candidates to construct the multi-lncRNA classifiers (Figure 1C).
[image: Figure 1]FIGURE 1 | Derivation and selection of the lncRNA signature in the training dataset. (A) Univariate Cox regression and KM analysis identified 209 prognosis-related lncRNAs in the training dataset. (B) LASSO coefficient profiles for the 209-lncRNA set in the training dataset. (C) Cross-validation error rates for selecting the tuning parameters. (D) Hazard ratio of the selected lncRNAs by LASSO. (E) The AUC values of 127 multi-lncRNA signatures were calculated by ROC curve analysis. (F) ROC curve analysis for the 127 combinations and selected six-lncRNA signature in the training dataset.
Construction of the Six-lncRNA Prognostic Signature
To select a better predictive multi-lncRNA model with fewer lncRNAs, ROC curve analysis was performed to compare the prognostic prediction performance of the 27-1 = 127 risk score combinations in the training dataset (Supplementary Table S2). All risk scores for each ESCC based on the corresponding lncRNA signature were calculated as the method described. Then, the six-lncRNA combination with the largest AUC value composed by AL445524.1, AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2 was obtained (Figure 1D; Table 2). The RS of the six-lncRNA signature is as follows: RS = (-0.5460037×AL445524.1) + (-0.2473264× AC109439.2) + (0.4223392× LINC01273) + (-0.81843 × AC015922.3) + (0.7987309× LINC00547) + (0.8210199× PSPC1-AS2). The AUC of the six-lncRNA signature was 0.863 (95% CI: 0.798–0.928), higher than that of the seven-lncRNA model (0.855, 95% CI: 0.787–0.924, Figures 1E,F) and other lncRNA combinations. Therefore, we chose the six-lncRNA signature with fewer nodes and better survival prediction ability as the candidate classifier.
TABLE 2 | Prognostic significance of the six lncRNAs in the signature.
[image: Table 2]Evaluation and Validation of the Prognostic lncRNA Model in ESCC
In the GSE53624 set, on the basis of the median risk score calculated by the six-lncRNA signature, patients were distinguished into two groups with different OS. Unfortunately, patients with ESCC from the high-risk group suffered a worst survival outcome than those from the low-risk group (log rank p < 0.001, Figure 2A). The five-year survival rate of patients in the low-risk group was 63.3%, which was significantly more than 15.25% of patients in the high-risk group.
[image: Figure 2]FIGURE 2 | Kaplan–Meier analysis of the six-lncRNA signature in the GSE53624 (A), GSE53622 (B), and GSE53625(C) datasets.
For verifying the survival classification power of the lncRNA model, each patient from the validation GSE53622 set obtained their risk score values. Figure 2B shows the KM curves for patients with ESCC from the low/high-risk group in the GSE53622 dataset. We found that the median survival time in the high-risk group was 39.17 months less than 50.6 months in the low-risk group (five-year survival rate: 30% vs. 60%, log rank test p = 0.021). As for the entire dataset (GSE53625), patients with high risk scores suffered more undesirable outcomes than those with low risk scores (median survival time: 23.13 months vs. 51.3 months; log rank test p < 0.001, Figure 2C).
Moreover, Figure 3 shows the lncRNAs’ expression pattern of ESCC patients, the distribution of survival status, and their risk scores. For ESCC patients with high risk scores from the training set, the expression values of four lncRNAs (LINC01273, AC015922.3, LINC00547, PSPC1-AS2) were high, while the expression values of protective lncRNAs (AL445524.1, AC109439.2) were low. In contrast, the expression of prognostic lncRNAs showed the opposite pattern in patients with low risk scores in the training set (Figure 3A). Subsequently, we confirmed the similar survival distribution and risky or protective lncRNAs’ expression pattern in GSE53622 and GSE53625 sets (Figures 3B,C).
[image: Figure 3]FIGURE 3 | Expression heatmap of the six lncRNAs, plot of six-lncRNA risk scores, and ESCC patient’s survival status in the GSE53624 (A), GSE53622 (B), and GSE53625 (C) datasets.
Evaluation of Survival Prediction Independence
To evaluate the independence of the signature in survival prediction with other clinical characters including age, gender, and TNM stage, Cox regression analysis in GSE53624, GSE53622, and GSE53625 datasets was performed, and the multivariate Cox results of the multiple ESCC datasets showed that the six-lncRNA signature in OS prediction was independent of age and gender (high vs. low risk, HR = 4.97, p < 0.001, n = 119; HR = 2.26, p = 0.025, n = 60; HR = 2.11, p < 0.001, n = 179, Table 3). In addition, TNM stage affected the OS of patients with ESCC in GSE53624, GSE53622, and GSE53625 datasets (III vs. I + II: HR = 1.8, p < 0.001, n = 119; HR = 2.37, p = 0.009, n = 60; HR = 1.95, p < 0.001, n = 179, Table 3).
TABLE 3 | Cox regression analysis of the signature with ESCC survival.
[image: Table 3]Comparison of the Six-lncRNA Signature With Clinical Features in Survival Prediction Ability
Time-dependent ROC curve analysis from 1 year to 5 years was applied to compare the survival prediction ability of the lncRNA signature with that of tumor grade, TNM stage, T stage, and N stage in the entire ESCC group (GSE53625, n = 179). The AUC values showed the predictive ability of the lncRNA signature (AUC from 1 year to 5 years: 0.698–0.909) was better than that of TNM stage (AUC from 1 year to 5 years: 0.486–0.67) and other features, especially at 5 years (Figure 4A). And the AUC of the combined model was the largest one compared to that of TNM stage or signature alone (AUC = 0.712, 95% CI = 0.645–0.779, Figure 4B), which further suggested the signature has potential to become a novel prognostic biomarker.
[image: Figure 4]FIGURE 4 | Comparison of TNM stage and the six-lncRNA signature and stratification analysis. (A) Time-dependent ROC curve analysis of the six-lncRNA signature and other clinical characters in the GSE53625 group. (B) Comparison of survival prediction performance of TNM stage and the six-lncRNA signature. The signature could further classify ESCC patients from TNM high (C)/low (D) stage into two groups according to markedly different survival.
Stratification Analysis of the Six-lncRNA Signature
To evaluate whether the signature can further subgroup ESCC patients at high (III)/low (I, II) TNM stage, we performed stratification analysis in the entire dataset (GSE53625, n = 179). According to the TNM stage information of all the 179 patients, we found 87 patients at TNM low stage and 92 at TNM high stage. For patients at low TNM stage, the six-lncRNA signature could separate them into low- and high-risk groups with significantly different survival (five-year survival rate 59.1% vs. 18.6%, log rank test p < 0.001, Figure 4C). The signature can further classify patients at the high TNM stage into two groups with different prognostic outcomes (median survival: 28.7 months vs. 58.2 months; log rank test p < 0.001, Figure 4D). This result showed the potential ability of the six-lncRNA signature as a clinical auxiliary marker for TNM stage to subgroup patients with ESCC more accurately.
Functional Prediction of lncRNAs From the Six-lncRNA Signature
The Pearson test observed that the expression of 491 PCGs was significantly related to at least one of the six prognostic lncRNAs (coefficient >0.60/< −0.6, p < 0.001). GO and KEGG function analysis was then performed by Cluego and SubpathwayMiner. The results showed the 491 PCGs correlated with lncRNAs were significantly enriched in 37 GO terms and 36 KEGG pathways (p < 0.05, Supplementary Table S3). All these vital GO terms were organized into an interaction network based on similar functions in Cytoscape, and several clusters of functionally related GO terms were found such as ncRNA metabolic process, RNA process via interacting with those PCGs that affect cell cycle, regulation of actin cytoskeleton, MAPK signaling pathway, cell cycle, and TGF−beta signaling pathway (Supplementary Figure S1B).
Oncogenic Effect of LINC01273 in ESCC Cells
We next investigated the biological roles of LINC01273 in maintaining the malignant phenotypes of ESCC cells. LINC01273 expression was examined in ESCC cell lines which our lab owned using qRT-PCR, and the results showed that LINC01273 was highly expressed in KYSE410 and TE5 cells (Figure 5A). Therefore, KYSE410 and TE5 cell lines were selected for further experiments. Firstly, we, respectively, transfected two individual siRNAs and confirmed LINC01273 was successfully knocked down by qRT-PCR (Figure 5B). We found that, by using the MTT assay and cell colony formation assay, silencing LINC01273 remarkably attenuated both the proliferation and colony formation capability of ESCC cells (Figures 5C,D). Transwell assays showed a significant suppression of the migration and invasive abilities of the two ESCC cell lines due to LINC01273 downregulation (Figures 5E,F). These results suggested that LINC01273 might enhance the ability of proliferation, migration, and invasion of KYSE410 and TE5 cells, demonstrating that LINC01273 may play oncogenic roles in ESCC.
[image: Figure 5]FIGURE 5 | Oncogenic effect of LINC01273 on ESCC cells. (A) RT-qPCR analysis of LINC01273 expression in ESCC cell lines. (B) siRNA-mediated silencing of LINC01273 was evaluated by using RT-qPCR. (C,D) Results of the MTS assay (C) and colony formation assay (D) demonstrated that cell proliferation was inhibited after depletion of LINC01273 in KYSE410 and TE5 cells. (E,F) Transwell assays suggested that migration (E) and invasion (F) abilities were reduced after LINC01273 knockdown. All data are expressed as mean ± SD (*p < 0.05, **p < 0.01, ***p < 0.001).
DISCUSSION
Esophageal cancer ranks eighth in the global incidence of malignant tumors and sixth in tumor-related mortality. ESCC, the most common subtype of esophageal cancer, is so extremely aggressive that recent medical developments have not improved the prognosis of patients. TNM stage is still the main tool for predicting the survival of ESCC (Kang et al., 2020). However, ESCC patients with the same pathological characteristics at diagnosis often have completely different survival outcomes (Matsueda and Ishihara, 2020). For ESCC patients, the application of molecular characteristics to prognostic prediction may help resolve tumor heterogeneity and achieve precise treatment and evaluation. Accumulating evidence shows that lncRNAs are functional regulatory molecules in a variety of tumors. In ESCC, it is reported that lncRNAs regulate tumor progression through multiple mechanisms and multiple molecular interactions (Feng et al., 2019) and have the prognostic value because they are too closely related to survival (Deng et al., 2016). Therefore, exploring a prognostic lncRNA signature from ESCC patients would be meaningful and urgently necessary.
In this study, we achieved and re-mined the publicly available lncRNA profiles of ESCC (Li et al., 2014) and identified a total of 209 survival-related lncRNAs by KM and Cox survival analysis. Then, we developed a six-lncRNA model including AL445524.1, AC109439.2, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2, which was significantly correlated with the prognosis of ESCC. Different from most of the existing prognostic model construction process (Zeng et al., 2018; Bao et al., 2019; Liu et al., 2019; Wang et al., 2019), following LASSO regression analysis which reduced the number of prognostic lncRNAs directly from 209 to 7, we added a key step, permutation and combination of the LASSO-selected lncRNAs, which further diminished the node number in the signature and greatly improved the clinical utility of the signature. Consistent with the risk model construction and prognostic signature screening methods reported in other literature (Guo et al., 2016), we further performed ROC curve analysis on RS models and screened the signature with the strongest predictive ability from multiple signatures composed of seven lncRNAs. In addition, because the AUC value of our six-lncRNA signature is greater than that of other signatures discovered by some researchers (Zhang et al., 2020), our signature performs better in prognostic prediction.
Moreover, we accessed the independence of the six-lncRNA signature from other ESCC clinical characters including age, sex, and TNM stage by Cox regression analysis in multiple ESCC datasets and showed it was an independent prognostic factor. ROC curve analysis results suggested the lncRNA signature had better accuracy in survival prediction than TNM stage, and the combination of TNM stage and lncRNA signature can evaluate the prognosis of patients more accurately. Stratified analysis indicated the ESCC patients at high/low TNM stages could be further separated into two different groups with significantly different survival. Taken together, the six-lncRNA signature could be a valuable classifier for ESCC prognosis and have potential to become an auxiliary biomarker for TNM stage to subdivide patients effectively.
As for the prognostic correlation of six prognostic lncRNAs, the high expression of four risk lncRNAs, LINC01273, AC015922.3, LINC00547, and PSPC1-AS2, was related to poor survival (Cox coefficient >0, p < 0.01), and the remaining protective lncRNAs (AL445524.1 and AC109439.2) were associated with longer survival time (Cox coefficient <0, p < 0.01). The biological functions of these six lncRNAs in cancer have not been reported until now. However, we have demonstrated that one of the lncRNAs of the six-lncRNA signature, LINC01273, may act as an oncogenic lncRNA to improve the abilities of proliferation, migration, and invasion in ESCC, which suggested the importance of LINC01273 in the six-lncRNA signature and other five lncRNAs may play key roles in ESCC as well. Moreover, our functional enrichment analysis results revealed that they may participate in tumorigenesis by cell cycles, MAPK signaling pathway, and TGF-beta signaling pathway. Accumulating studies suggested that the TGF-beta signaling pathway plays an important role in many kinds of cancers due to its importance in migration and EMT which is closely related to chemotherapy resistance (Colak and Ten Dijke, 2017).
So far, we have only demonstrated that LINC01273 may function as an oncogenic lncRNA. Although the potential function of these lncRNAs has been predicted by bioinformatics methods principally, the roles of these lncRNAs in ESCC are still unclear and need more experimental studies to further elucidate in the future. Another drawback of this study is that the model has not been tested and verified in clinical trials. Despite these shortcomings, the significant and consistent correlation between the lncRNA signature and OS in multiple ESCC datasets indicated that the six-lncRNA signature is a powerful prognostic marker of ESCC. Furthermore, our current experiment has confirmed the carcinogenic effect of LINC01273 on ESCC.
In conclusion, the six-lncRNA signature constructed in this study could predict the survival of ESCC patients more accurately and have the potential to be an auxiliary molecular biomarker of TNM stage in prognosis.
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Rectal cancer is a malignant tumor with poor prognosis. Identification of prognostic biomarkers is needed to improve overall survival of rectal cancer patients. Here, we firstly identified miR-20a-5p significantly classifying high-risk group and low-risk group of rectal cancer patients. We also found that several known miRNAs miR-142-5p, miR-486-5p, miR-490-3p and miR-133a-3p played important roles in rectal cancer. Secondly, we constructed and analyzed a rectal cancer-related miRNA-mRNA network. A rectal cancer-related functional module was identified from the miRNA-mRNA network. Survival analysis demonstrated great prognosis capacity of the module to distinguish rectal cancer patients. Thirdly, a rectal cancer-related miRNA-lncRNA network was constructed, which followed power law distribution. Hub miRNAs and lncRNAs of the network were suggested to show significant prognosis ability and be enriched in cancer-related pathways. Fourthly, we constructed a rectal cancer-related ceRNA network and detected several typical lncRNA-miRNA-mRNA crosstalk, such as HAND2-AS1, HAND2 and miR-20a-5p crosstalk and MBNL1-AS1, miR-429 and LONRF2 crosstalk, which were validated to function in improving overall survival of rectal cancer patients. Finally, we identified the regulatory feedback that was constituted by transcriptional factors and lncRNAs, including MEIS1, MEIS2 and multiple lncRNAs. We also demonstrated that these lncRNAs were high related to immune cell infiltration. All these results can help us to uncover the molecular mechanism and provide new light on miRNA-mediated gene crosstalks in rectal cancer.
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INTRODUCTION
Rectal cancer is a kind of malignant tumor that happens on rectum, the risk factors of which are very widespread. The etiology of rectal cancer is not clear at present, may be related to environmental factors, dietary habits and genetic factors (Gaertner et al., 2015). The improved surgical techniques and the addition of neoadjuvant radiation therapy have been performed for patients of rectal cancer (Ludmir et al., 2017). But if the treatment of rectal cancer is not timely, local recurrence or distant metastasis may occur after the operation, causing serious complications. Eventually, cachexia leads to multiple organ dysfunction or failure and death (Li et al., 2016). The 5-years survival rate of patients with early rectal cancer is more than 90%, while that of patients with late rectal cancer is less than 50% (Dossa et al., 2018). It remains low in spite of the progress of diagnostic and therapeutic tools. Therefore, there is a critical need of biomarkers predicting pathological characteristics and subsequently improving patients’ prognosis.
The microRNAs (miRNAs), about 19-25 nt in length, are a class of endogenous, single-stranded, non-coding, small molecular RNAs (Lagos-Quintana et al., 2001; Lee et al., 2003). MiRNAs can control gene expression mainly by inhibiting translation or causing degradation of target RNAs (Hausser and Zavolan 2014). Because of the highly conserved roles of gene expression regulation, miRNAs may be of great interest as possible biomarkers for physiological processes (Vegter et al., 2016). Actually, miRNAs have been involved in various biological processes such as cell differentiation, cellular proliferation, metabolism, and apoptosis (Bartel 2004). The impact of specific miRNAs has been shown for almost every cancer. Long non-coding RNAs (lncRNAs) are a type of RNA transcripts that were once considered as transcriptional “noise” without protein-coding capacity, which are more than 200 nucleotides (Jathar et al., 2017). LncRNAs were reported to be closely involved in human diseases. For example, HOTAIR, HULC, and linc00152 were reported to function in the occurrence and development of cancers, the high expression levels of which predicted a poor prognosis (Li et al., 2015; Xu et al., 2016). Zhang et al. suggested the lncRNAs DBET, LINC00909, FLJ33534, and HSD52 were associated with neoadjuvant chemoradiotherapy (NCRT) response and prognosis in the rectal cancer (Zhang et al., 2021). For a given cell, the transcripts such as lncRNAs or mRNAs containing similar miRNA response elements (MREs) can regulate each other by competitively binding to common miRNAs, and thus act as miRNA sponge. This phenomenon is called competitive endogenous RNA (ceRNA) theory (Salmena et al., 2011). This competition plays crucial roles in tumorigenesis by affecting the expression levels of different kinds of RNAs. For example, linc01133 regulated the expression of APC by sponging miR-106a-3p and further inhibited the progression of gastric cancer (Yang et al., 2018). Overexpression of lncRNA HOXD-AS1 competitively bound to miR-130a-3p and prevented the degradation of SOX4, thus promoted the metastasis of hepatocellular carcinoma (Wang et al., 2017). Therefore, understanding this novel RNA crosstalk will have implications in human disease development. Meanwhile, transcriptional factors (TFs) interact with lncRNAs/miRNAs to regulate of cell cycle. LncRNA HAND2-AS1 was found significantly low in the rectal cancer tissues, which could interact with miR-1275 by target KLF14 to inhibit tumour (Cai et al., 2021).
All these genes including miRNAs, lncRNAs or mRNAs may play important roles in rectal cancer progression. However, genes usually do not function in isolation, they can interact with each other and be grouped into molecular networks. Thus, in the present study, we extracted rectal cancer-related miRNA/lncRNA/mRNA expression profile and constructed miRNA-mRNA network, miRNA-lncRNA network and miRNA-lncRNA-mRNA ceRNA network, respectively. In the context of these biomolecular networks, survival analysis was used for identifying novel biomarkers and functional modules associated with the diagnosis and prognosis of rectal cancer (Supplementary Figure S1).
MATERIALS AND METHODS
Data Sets
We downloaded The Cancer Genome Atlas (TCGA) gene expression profile including transcript-level data of the same 89 tumor samples and three adjacent non-tumor samples from UCSC XENA browser (https://xenabrowser.net/datapages/). According to gene ID conversion from GENCODE (https://www.gencodegenes.org/human/), we converted transcripts with Ensembl IDs to lncRNAs and mRNAs with Gene Symbols. Similarly, we also converted transcripts to miRNAs based on ID conversion that supported by miRBase (https://www.mirbase.org/). In the process of ID conversion, if multiple transcripts corresponded to one miRNA/lncRNA/mRNA, mean expression value of multiple transcripts was computed as the expression value of the miRNA/lncRNA/mRNA. We performed log2 transformation for standardizing raw expression values and finally obtained miRNA expression profile, lncRNA expression profile and mRNA expression profile of rectal cancer with the same samples, respectively.
Differential Expression Analysis
The edgeR test was used to calculate rectal cancer-related differentially expressed (DE) miRNAs, lncRNAs and mRNAs under the threshold of 2-fold change (FC) and p-value <0.05.
Construction of Rectal Cancer-Related miRNA-mRNA Network
Firstly, the curated 423,975 miRNA-mRNA interactions between 386 miRNAs and 13,861 mRNAs were downloaded from starBase (Li et al., 2014). starBase is a comprehensive database which provided interaction networks of lncRNAs, miRNAs, ceRNAs and mRNAs from extensive CLIP-Seq (HITS-CLIP, PAR-CLIP, iCLIP, CLASH) data. Secondly, DE miRNAs and DE mRNAs were mapped into these interactions for extracting DE miRNA-DE mRNA interactions. Then, Pearson correlation coefficients (PCCs) between these DE miRNAs and DE mRNAs were computed based on miRNA expression profile and mRNA expression profile with the same samples. We only retained negatively expression-correlated DE miRNA-DE mRNA interaction pairs and constructed a rectal cancer-related miRNA-mRNA network.
Construction of Rectal Cancer-Related miRNA-lncRNA Network
With the sequences of DE miRNA and DE lncRNA as input data, DE miRNA-DE lncRNA interactions were obtained using the miRanda tools (Enright et al., 2003) with default parameters. PCCs were calculated for these interaction pairs based on miRNA expression profile and lncRNA expression profile with the same samples. The DE miRNA-DE lncRNA pairs that expressed negatively correlated were extracted for constructing a rectal cancer-related miRNA-lncRNA network.
Construction of Rectal Cancer-Related ceRNA Network
According to the above miRNA-mRNA network and miRNA-lncRNA network, we extracted lncRNA-mRNA pairs that shared at least one common miRNA. PCCs between these lncRNA-mRNA pairs were calculated based on lncRNA expression profile and mRNA expression profile of rectal cancer with the same samples. The lncRNA-mRNA pairs with PCC >0.9 were retained for constructing a rectal cancer-related ceRNA network.
Construction of Rectal Cancer-Related TF-lncRNA Network
We obtained TFs list from AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/) were mapped into the rectal cancer-related miRNA-mRNA network for screening TF-miRNA pairs. Previous research found that lncRNA could interacted with miRNA to regulate TF expression. Hypergeometric test was used for extracting TF-lncRNA pairs based on the number of common miRNAs between these TF-miRNA pairs and the above rectal cancer-related miRNA-lncRNA network. The heat map displayed the significant TF-lncRNA pairs with a threshold of p-value <0.05, containing 12 TFs and 17 lncRNAs (Figure 5A). To further identify the binding potential of TFs to lncRNAs, we defined the promoter region of a lncRNA as a basal domain of -2 kb to +2 kb around the transcriptional start site (TSS). We also downloaded enhancer regions from FANTOM5 project (Noguchi et al., 2017). A lncRNA was considered as the target of an enhancer if the enhancer located in more than ± 2 kb of the TSS of the lncRNA. Then, Find Individual Motif Occurrences (FIMO) (Izzat and Yim 1997) was used for performing motif occurrence (Grant et al., 2011). Results demonstrated that the motifs of TF MEIS1 and MEIS2 could bind to the promoters and enhancers of multiple lncRNAs with a threshold of FIMO p-value <1e–4, respectively (Figures 5B,C). These binding pairs also showed strong correlation.
Analysis of Topological Features
Using the R package “igraph”, topological features such as network degree, cluster coefficient and average path length were calculated and analyzed for the network. Degree is the number of direct neighbors of nodes in the network. Cluster coefficient is the aggregation extent of nodes in the network graph. And average path length is the average value of the shortest paths between every two nodes of the network. To measure the statistical significance, we randomly produced 1,000 random networks with remaining the degree of nodes unchanged. The cluster coefficient and average path length were all calculated for the 1,000 random networks. The empirical p-values were respectively computed by the proportion of cluster coefficient in random network larger than that in the real network and the proportion of average path length in random network shorter than that in the real network.
Identification of Functional Modules
MCODE can automatic prediction of protein complexes from qualitative protein-protein interaction data, so it can predict the function of unknown proteins and help understand the functional connections of molecular complexes in cells (Bader and Hogue 2003). Based on the miRNA-mRNA network, miRNA-lncRNA network and lncRNA-miRNA-mRNA ceRNA network, we used the Molecular Complex Detection (MCODE) plug-in in Cytoscape software to identify various rectal cancer-related functional modules (Shannon et al., 2003). The criteria of MCODE we used were as follows: MCODE scores >5, degree cut-off = 2, node score cut-off = 0.2, max depth = 100, and k-score = 2.
Survival Analysis
For performing survival analysis, we downloaded clinical information of our rectal cancer samples from UCSC XENA. A risk model was constructed by calculating linear combination of the miRNA/lncRNA/mRNA expression values weighted by the regression coefficient of univariate Cox regression analysis. The following formula was used to calculate risk score:
[image: image]
where, [image: image] is the Cox regression coefficient of the ith miRNA/lncRNA/mRNA from an independent gene set; Exp(i) is the expression value of the ith miRNA/lncRNA/mRNA in a corresponding patient; and n is the number of miRNAs/lncRNAs/mRNAs in gene set.
The mean risk score was used as a cut-off to classify rectal cancer patients into high-risk group and low-risk group. A Kaplan-Meier survival curve was performed for different groups of rectal cancer patients. The statistical significance was assessed by log-rank test under the threshold of p < 0.05.
Immune Cell Infiltration of lncRNAs in Patients
Cell infiltration information of rectal cancer patients were downloaded from TIMER2. The potential role of lncRNAs in cell infiltration was estimated by calculating the correlation between lncRNA expression and infiltration estimation scores.
RESULTS
miR-20a-5p May be a Potential Prognosis Biomarker of Rectal Cancer
From TCGA, we obtained rectal cancer-related miRNA expression profile containing 89 tumor samples and three adjacent non-tumor samples. The edgeR test with |FC| >2 and p-value <0.05 was used to identify rectal cancer-related DE miRNAs and totally 319 DE miRNAs were identified. Among the most upregulated 10 miRNAs and the most downregulated 10 miRNAs (Figure 1A), several miRNAs have been reported to function in rectal cancer. For example, miR-215 was involved in response of rectal cancer to the chemoradiotherapy (Svoboda et al., 2012). ROC curve analysis showed that miR-21 and miR-328 could provide valuable information for individualizing treatment in rectal cancer patients (Campayo et al., 2018). 3D cell culture-based global miRNA expression analysis revealed increased levels of miR-142-5p in rectal tumor tissue samples after neoadjuvant long course treatment, which may be a theranostic biomarker of rectal cancer (Kunigenas et al., 2020). Low plasma level of exosomal miR-486-5p was associated with organ-invasive primary tumor, which attributed to adverse prognosis of rectal cancer (Bjornetro et al., 2019). The high diagnostic values of miR-490-3p and miR-133a-3p were shown in rectal cancer, which may provide a new way for treatment and prognosis improvement of digestive tract cancers (Lai et al., 2019). Pathway enrichment analysis was performed to the 20 most DE miRNAs that contained the most upregulated 10 miRNAs and the most downregulated 10 miRNAs. Results showed that they were enriched in some cancer-related pathways, such as “Pathways in cancer”, “ErbB signaling pathway”, “Wnt signaling pathway”, “MAPK signaling pathway” and “Focal adhesion” (Figure 1B). We further calculated risk score and the corresponding log-rank p-value for each of the 20 most DE miRNAs and found that miR-20a-5p was statistically significant (p < 0.05, Figure 1C). A Kaplan-Meier survival curve showed that miR-20a-5p significantly classified high-risk group and low-risk group of rectal cancer patients with different clinical outcomes (Figure 1D). It suggested that miR-20a-5p may be a potential prognosis biomarker of rectal cancer.
[image: Figure 1]FIGURE 1 | Identification of the potential prognosis biomarker of rectal cancer. (A) The heat map of the most upregulated 10 miRNAs and the most downregulated 10 miRNAs. (B) Pathway enrichment results of the 20 most DE miRNAs. (C) The log-rank p-values of the 20 most DE miRNAs. miR-20a-5p was statistically significant with p < 0.05. (D) A Kaplan-Meier survival curve of miR-20a-5p (p = 0.041). (E) ROC curve analysis result of the 20 most DE miRNAs. (F) A Kaplan-Meier survival curve of the 20 most DE miRNAs (p = 0.034).
More interestingly, ROC curve analysis showed that the combination of the 20 most DE miRNAs had excellent capacity to distinguish rectal cancer patients with high-risk group from low-risk group (Figure 1E). And the Kaplan-Meier survival curve showed that the combination of the 20 most DE miRNAs significantly classified different risk groups of rectal cancer patients with different clinical outcomes (Figure 1F). These results demonstrated that the integrative analysis of miRNAs had significant prognosis capability, which deserved further research.
MiRNA-mRNA Network and its Functional Module Show Prognosis Potential
The rectal cancer-related DE miRNAs and DE mRNAs were mapped into the miRNA-mRNA interactions from starBase for extracting DE miRNA-DE mRNA interactions. As we all know, miRNAs negatively regulate the expression of target genes at the post-transcriptional level. Thus, we computed the correlations between these DE miRNAs and DE mRNAs by PCCs. The result of heat map showed that some DE miRNAs and DE mRNAs expressed negatively correlated (Figure 2A). We firstly extracted the most negatively expression-correlated 10 DE miRNA-DE mRNA interaction pairs and found that miR-21-5p was a hub node with the large degree (Figure 2B). Risk score was calculated for miR-21-5p and its six direct neighbors by linear combination of their expression values weighted by the regression coefficient of univariate Cox regression analysis. A Kaplan-Meier survival curve showed that they could significantly classify high-risk group and low-risk group of rectal cancer patients with log-rank p < 0.05 (Figure 2C). Secondly, we further detected the power of the combination of miRNAs and their target genes under the background of a larger network. Specifically, all the negatively expression-correlated DE miRNA-DE mRNA interaction pairs were used for constructing a rectal cancer-related miRNA-mRNA network, containing 702 interactions between 30 miRNAs and 114 mRNAs (Figure 2D). We calculated the degrees of all the nodes in the network. And the result of network degree distribution showed power law distribution (R2 = 0.82, Figure 2E). We also computed cluster coefficients of the rectal cancer-related miRNA-mRNA network and 1,000 random networks generated by remaining the degree of nodes unchanged. Result showed that the average cluster coefficient of the real network was significantly larger than that of the random networks (p < 0.01, Figure 2F). Previous study suggested that the network with larger average cluster coefficient usually had modular structures. Therefore, we then identified a rectal cancer-related functional module from the miRNA-mRNA network by MCODE. The module was consisted of 3 DE miRNAs and 7 DE mRNAs (Figure 2G). Surprisingly, the three miRNAs of the module, including miR-21-5p, miR-429 and miR-192-5p were the hub nodes of the rectal cancer-related miRNA-mRNA network. The result of survival analysis demonstrated their great capacity to distinguish rectal cancer patients with high-risk group from low-risk group (Figure 2H). These results suggested both the network and functional module that were consisted of DE miRNAs and their target DE mRNAs showed prognosis potential and played crucial roles in rectal cancer.
[image: Figure 2]FIGURE 2 | Analysis of miRNA-mRNA network and its functional module. (A) The heat map of correlations between DE miRNAs and DE mRNAs. (B) The most negatively expression-correlated 10 DE miRNA-DE mRNA interaction pairs. miR-21-5p was a hub node with the large degree. (C) A Kaplan-Meier survival curve of miR-21-5p and its six direct neighbors (p = 0.045). (D) The rectal cancer-related miRNA-mRNA network. Yellow triangle represents miRNA and purple circular represents mRNA. Node size represents degree of node. (E) Degree distribution of the network. All nodes follow a power-law distribution. (F) Average cluster coefficient of the real network was significantly larger than that of 1,000 random networks. (G) A functional module identified from the miRNA-mRNA network by MCODE. (H) A Kaplan-Meier survival curve of the three miRNAs of the module, miR-21-5p, miR-429 and miR-192-5p (p = 0.031).
MiRNA-lncRNA Network and Its Hub Nodes can Improve Overall Survival
By inputting the sequences of DE miRNAs and DE lncRNAs, DE miRNA-DE lncRNA interactions were obtained via the miRanda tools. The correlations between these DE miRNAs and DE lncRNAs were calculated by PCCs. The result of heat map showed that some DE miRNAs and DE lncRNAs expressed negatively correlated (Figure 3A). We extracted the most negatively expression-correlated 10 DE miRNA-DE lncRNA interaction pairs, referring to six miRNAs and five lncRNAs (Figure 3B). These miRNAs and lncRNAs were used for survival analysis. Risk score was calculated by linear combination of their expression values weighted by the regression coefficient of univariate Cox regression analysis. A Kaplan-Meier survival curve displayed their prognosis ability by distinguishing different risk groups of rectal cancer patients (Figure 3C). The result revealed that the combination of DE miRNAs and their target lncRNAs may contribute to the overall survival of rectal cancer patients. Therefore, we further conducted our analysis from the perspective of miRNA-lncRNA network. A rectal cancer-related miRNA-lncRNA network was constructed by integrating all the negatively expression-correlated DE miRNA-DE lncRNA interaction pairs, containing 155 interactions between 27 miRNAs and 17 lncRNAs (Figure 3D). The network followed power law distribution that most nodes had small degrees but a few nodes had very large degrees. We selected the top 20% miRNA and lncRNA hub nodes with the largest degrees from the miRNA-lncRNA network, which was consisted of six miRNAs, eight lncRNAs and their 47 interactions (Figure 3E). All the expression values of these miRNAs and lncRNAs were used for calculating risk score and their corresponding log-rank p-value. Kaplan-Meier survival curve revealed the significant prognosis ability of these hub miRNAs and lncRNAs (Figure 3F). Finally, pathway enrichment analysis was performed to these hub miRNAs. They were demonstrated to be enriched in multiple pathways associated with biological processes and molecular functions of cancers, including “MAPK signaling pathway”, “Pathways in cancer”, “Autophagy”, “Endocytosis”, “TGF-beta signaling pathway”, and “TNF signaling pathway” (Figure 3G).
[image: Figure 3]FIGURE 3 | Analysis of miRNA-lncRNA network and its nodes. (A) The heat map of correlations between DE miRNAs and DE lncRNAs. (B) The most negatively expression-correlated 10 DE miRNA-DE lncRNA interaction pairs. (C) A Kaplan-Meier survival curve of the six miRNAs and five lncRNAs that express negatively correlated (p = 0.005). (D) The rectal cancer-related miRNA-lncRNA network. Yellow triangle represents miRNA and blue diamond represents lncRNA. Node size represents degree of node. (E) The top 20% miRNA and lncRNA hub nodes with the largest degrees in the miRNA-lncRNA network. (F) A Kaplan-Meier survival curve of these hub miRNAs and lncRNAs (p = 0.01). (G) Pathway enrichment analysis of these hub miRNAs. (H) GO Term enrichment analysis of these hub miRNAs.
RNA Crosstalk has Implications in the Survival of Rectal Cancer Patients
We computed correlations of lncRNAs and mRNAs that shared at least one common miRNA in the above miRNA-mRNA network and miRNA-lncRNA network by PCCs (Figure 4A). The lncRNA-mRNA pairs with PCC >0.9 were retained for constructing a rectal cancer-related ceRNA network, which referred to nine lncRNAs and 22 mRNAs (Figure 4B). The mRNAs of the network were used for pathway enrichment and were found to be related to multiple known cancer pathways, such as “Focal adhesion”, “Long-term potentiation” and “MAPK signaling pathway” (Figure 4C). In addition, in the rectal cancer-related ceRNA network, several lncRNAs were shown to have large degrees. In general, nodes with larger degrees are more important, which play vital roles in maintaining network integrity. Thus, we chose two lncRNAs HAND2-AS1 and MBNL1-AS1 with the largest degrees for in-depth analysis. According to lncRNA HAND2-AS1 and its related mRNA HAND2, the miRNA miR-20a-5p that regulated them could also be extracted for detecting lncRNA-miRNA-mRNA crosstalk. Excitingly, miR-20a-5p was suggested to be a potential prognosis biomarker of rectal cancer in our previous analysis. We further performed survival analysis by computing linear combination of the expression values of HAND2-AS1, HAND2 and miR-20a-5p weighted by the regression coefficient of univariate Cox regression analysis. A Kaplan-Meier survival curve represented prognosis ability of the lncRNA-miRNA-mRNA crosstalk (Figure 4D). Similarly, we identified another lncRNA-miRNA-mRNA crosstalk between MBNL1-AS1, miR-429 and LONRF2 and found that they could significantly distinguish high-risk group and low-risk group of rectal cancer patients (Figure 4E). These results suggested that the crosstalks between lncRNA, miRNA and mRNA may have implications in the survival of rectal cancer patients.
[image: Figure 4]FIGURE 4 | Analysis of lncRNA-mRNA network and lncRNA-miRNA-mRNA crosstalk. (A) The heat map of correlations between lncRNAs and mRNAs that shared at least one common miRNA. (B) The rectal cancer-related lncRNA-mRNA ceRNA network. Blue diamond represents lncRNA and purple circular represents mRNA. Node size represents degree of node. (C) Pathway enrichment analysis of the mRNAs in the network. (D) The heat map of HAND2-AS1, HAND2 and miR-20a-5p and the Kaplan-Meier survival curve of the lncRNA-miRNA-mRNA crosstalk (p = 0.027). (E) The heat map of MBNL1-AS1, miR-429 and LONRF2 and the Kaplan-Meier survival curve of the lncRNA-miRNA-mRNA crosstalk (p = 0.02).
TF MEIS1 and MEIS2 Coordinately Regulate Multiple lncRNAs
Recently, studies have shown that TFs were involved in cancer pathology by regulating lncRNAs (Ji et al., 2020). We focused on the 2 TFs as well as the corresponding lncRNAs that had motif binding relationships and constructed a small TF-lncRNA crosstalk network (Figure 5D). We found that MEIS1 and MEIS2 coordinately regulated multiple lncRNAs by binding to their promoter or enhancer regions. For example, TF MEIS1 and MEIS2 simultaneously bound to the promoters and enhancers of lncRNA MBNL1-AS1 and further coordinately regulated lncRNA MBNL1-AS1. Interestingly, lncRNA MBNL1-AS1 has been demonstrated to be a hub node of the rectal cancer-related miRNA-lncRNA network. Finally, survival analysis was performed to MEIS2 and the combination of MEIS2 and MBNL1-AS1, respectively. The Kaplan-Meier survival curves displayed their prognosis ability by significantly distinguishing high-risk group and low-risk group of rectal cancer patients (Figure 5E).
[image: Figure 5]FIGURE 5 | Identification of TF-lncRNA crosstalk based on motif analysis. (A) The heat map of TF-lncRNA pairs with a threshold of hypergeometric test p-value <0.05. (B) TF motif searching of promoter regions of lncRNAs. Node color represents the correlation score of PCC. Node size represents the number of TFs that bind to the promoter regions of lncRNAs. (C) TF motif searching of enhancer regions of lncRNAs. Node color represents the correlation score of PCC. Node size represents the number of TFs that bind to the enhancer regions of lncRNAs. (D) Visualization of a TF-lncRNA crosstalk network. Blue diamond nodes represent lncRNAs and purple circular nodes represent TFs. Green lines represent TFs binding to the promoter regions of lncRNAs. Red lines represent TFs binding to the enhancer regions of lncRNAs. (E) Kaplan-Meier survival curves of MEIS2 and the combination of MEIS2 and MBNL1-AS1.
Furthermore, we also calculated the relationships between these lncRNAs and immune cell levels via integrating expression data and TIMER2 data. Results showed that myeloid dendritic cells were high related to these lncRNAs (Figure 6A). Especially, four lncRNAs were high related to immune cells than other transcripts, including RP11-131H24, AP001627, RP11-532F6 and CTB-133G6 (Figure 6B). These results also implied that lncRNAs might participate in cancer regulation by controlling immune cell levels in READ.
[image: Figure 6]FIGURE 6 | Immune cell infiltration of lncRNAs in READ patients. (A) The visualization of correlations between lncRNA expression and TIMER2 immune cell estimation score. Two highest correlation pairs were showed in heatmaps with Cor = 0.52 and 0.49. (B) Scatter plots of correlations between lncRNA expression and TIMER2 immune cell estimation score.
DISCUSSION
Rectal cancer is one of the most common cancers worldwide. More and more people suffer from rectal cancer due to the poor living and eating habits. The preoperative chemoradiotherapy and postoperative chemoradiotherapy have all been validated as effective treatments for patients of rectal cancer (Sauer et al., 2004). However, for patients with undifferentiated cancer, obvious regional lymph node metastasis or distant metastasis through the serous layer and surrounding infiltration, recurrence and metastasis are likely to occur 1–3 years after surgery and postoperative chemoradiotherapy, finally leading to death (Bosset et al., 2006). In this respect, potential prognostic biomarkers may play an increasing role in the study of rectal cancer. However, this is a lack of global lncRNA-associated crosstalks in rectal cancer. Thus, in our study, we aimed at finding predictive biomarkers that not only improve local control and reduce toxicity but also ameliorate overall survival of rectal cancer patients.
MiRNAs negatively regulate the expression of target genes at the post-transcriptional level. Evidence has suggested that miRNAs can represent almost all cellular and molecular functions, because about 60% of human mRNAs are regulated by miRNAs (Azizian et al., 2016). Thus, it is not unexpected that miRNAs are involved in diverse cellular processes, such as cell differentiation, proliferation and apoptosis (Bartel 2009). In addition, abnormal expression of the miRNAs can lead to cell dysfunction and then result in the occurrence and development of various diseases, even cancer (Mestdagh et al., 2009; Slaby et al., 2009). Therefore, we focused on miRNAs’ function in rectal cancer and explored their potential to serve as possible prognosis biomarkers and novel therapeutic targets. In recent years, there have been some DE miRNAs identified in the progression of rectal cancer, though limited data on miRNAs in rectal cancer are available (Zhang et al., 2018; Zhou et al., 2018). In this study, a network-based computational analysis was performed to investigate the key lncRNAs and TFs in rectal cancer. We constructed rectal-related global lncRNA-TF network by integrating information of differentially expressed lncRNAs/TFs and then identified functional modules. We identified several known miRNAs that functioned in rectal cancer, such as miR-142-5p, miR-486-5p, miR-490-3p and miR-133a-3p. Meanwhile, we also found miR-20a-5p significantly classifying high-risk group and low-risk group of rectal cancer patients, suggesting that miR-20a-5p may be a potential prognosis biomarker of rectal cancer. These results demonstrated good topological features and integrative power of miRNAs and their target mRNAs/lncRNAs. The closely connected modules were shown to function in survival state of rectal cancer patients and have potential prognosis ability.
Among the abundant knowledge about miRNAs’ function and mechanism, ceRNA theory has been reported to play a vital regulatory role in almost every cancer. Most ceRNAs have potential MREs, share common miRNAs and compete for binding common RNAs. In this study, we constructed a rectal cancer-related ceRNA network and detected several typical lncRNA-miRNA-mRNA crosstalk, such as HAND2-AS1, HAND2 and miR-20a-5p crosstalk and MBNL1-AS1, miR-429 and LONRF2 crosstalk, which were validated to play important roles in improving overall survival of rectal cancer patients. Importantly, we also identified a TF-lncRNA feedback loops based on ceRNA mechanism and motif analysis. Previous studies have proved that TF-lncRNA feedback could help us to uncover the molecular mechanism (Hong et al., 2020) (Swarr et al., 2019). We found that some TFs, such as MEIS1 and MEIS2 might function as the key regulators of lncRNAs in READ. TF-lncRNA pairs could also be used as prognosis markers. Furthermore, we found the TF-regulated lncRNAs were high related to immune cell levels.
Though novel biomarkers and functional modules associated with the diagnosis and prognosis of rectal cancer have been achieved in this study, there were still some limitations in our study. Firstly, limited data on miRNAs and lncRNAs in rectal cancer are available. We only used TCGA data in the study. If a large number of miRNA and lncRNA expression profile data are released, we may discover more valuable information. Secondly, the questions about survival, recurrence and metastasis of rectal cancer are extremely complicated. Survival analysis is just one way to measure the prognosis of rectal cancer from bioinformatics. If combined with the experimental research, we will understand the pathogenesis and molecular mechanism in depth.
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Molecular subtyping of cancer is recognized as a critical and challenging step towards individualized therapy. Most existing computational methods solve this problem via multi-classification of gene-expressions of cancer samples. Although these methods, especially deep learning, perform well in data classification, they usually require large amounts of data for model training and have limitations in interpretability. Besides, as cancer is a complex systemic disease, the phenotypic difference between cancer samples can hardly be fully understood by only analyzing single molecules, and differential expression-based molecular subtyping methods are reportedly not conserved. To address the above issues, we present here a new framework for molecular subtyping of cancer through identifying a robust specific co-expression module for each subtype of cancer, generating network features for each sample by perturbing correlation levels of specific edges, and then training a deep neural network for multi-class classification. When applied to breast cancer (BRCA) and stomach adenocarcinoma (STAD) molecular subtyping, it has superior classification performance over existing methods. In addition to improving classification performance, we consider the specific co-expressed modules selected for subtyping to be biologically meaningful, which potentially offers new insight for diagnostic biomarker design, mechanistic studies of cancer, and individualized treatment plan selection.
Keywords: molecular subtyping of cancer, specific co-expression module, network perturbation, multi-classification, machine learning
1 INTRODUCTION
Precision cancer medicine aims to characterize the distinct biology of an individual or a group of cancer patients sharing certain commonalities and treat them by targeting the specific oncogenic event shared by such a group (Lipinski et al., 2016; Russnes et al., 2017; Ozturk et al., 2018; Zhang et al., 2019). Using breast cancer as an example, the majority of such cancers fall into one of the three subtypes: estrogen receptor positive (ER+), human epidermal growth factor receptor 2 positive (HER2+), and triple-negative (Vuong et al., 2014). Distinct treatment plans have been developed to effectively treat these three subtypes of breast cancer. Patients with ER+ tumors receive endocrine therapy, supplemented with chemotherapy for some; patients of HER2+ tumors receive targeted drug therapy or small-molecule inhibitor therapy combined with chemotherapy; and patients of triple-negative breast cancer are treated using chemotherapy only (Waks and Winer, 2019; Yin et al., 2020). Clearly, the effectiveness of such a treatment plan depends on our ability to accurately subtype cancer tissues with shared biology, particularly common druggable targets among subgroups of a specific cancer type (Chaisaingmongkol et al., 2017). This is the focus of the current study, specifically to identify distinguishing features, measured using transcriptomic data, only shared by samples of each specified subtype of cancer (Valle et al., 2020).
Cancer subtyping through applications of machine learning techniques has been done by numerous authors on multiple cancer types. Cascianelli et al. developed a classification method for breast cancer subtyping that employs several machine learning classifiers to solve the multi-classification task for breast cancer subtyping (Cascianelli et al., 2020). Markus et al. modeled and solved the breast cancer subtyping problem based on integrated analyses of gene expression and DNA methylation data using a random forest algorithm (List et al., 2014). Deep-learning algorithms have recently been applied to tackle the cancer subtyping problem through an end-to-end approach. Guo, et al. have reported a deep-learning framework to learn the representation of high-dimensional features derived from gene expression data and alternative splicing profiles and solve the subtyping problem of breast cancer (Yang et al., 2018).
While these methods, such as deep learning, have powerful capabilities in data classification, most of these methods have limitations in interpretability and tend to require large amounts of data for model training (Chen et al., 2019), which has clearly limited the applications of omic-data based subtyping. In addition, these methods generally rely on gene expression data for classification and have largely ignored the interaction information among the expressed genes in cancer, which generally carries more information than the expression levels of individual genes (Segura-Lepe et al., 2019; Lee et al., 2020). This is particularly important for modeling genes in cancer tissues, knowing that considerable metabolic reprogramming has taken place in cancer tissue cells, as we have previously demonstrated (Sun et al., 2020), which could be captured by co-expression information. Hence, it is worth the effort to develop co-expression-based classifiers to capture the distinct reprogrammed metabolisms and hence the corresponding phenotypes of individual subtypes of cancer.
A few papers have been published on cancer subtyping based on co-expression information, which classify cancer samples based on the general characteristics of the relevant co-expression networks (Liu et al., 2016; Yu et al., 2020). Jiang et al. developed a multi-classification method for cancer samples based on differential co-expression analyses (Jiang et al., 2019), and predicted a sample’s label through calculating its perturbation on the most specific edges of each subclass-representing network module. Although this method performs well in cancer subtyping, there is a lack of interpretability as the identified edges tend to be unconnected, hence the lack of functional information.
In this paper, we present a new cancer molecular subtype classification framework based on a specific co-expression module and a deep neural network (DNN) named SCM-DNN, which can identify a robust, distinct co-expression module for each subtype of a cancer. A co-expression module is a set of genes whose expressions highly correlate with each other (Wolf et al., 2014), and a distinguishing co-expression module is a co-expression module that is associated with a specific subtype but not other subtypes of a cancer. Intuitively, a distinguishing co-expression module should reflect certain unique characteristics of a cancer subtype. Specifically, we use the TCGA transcriptomics data to construct a co-expression network over samples of each subtype and then apply weighted correlation network analysis (WGCNA) (Zhang and Horvath, 2005; Langfelder and Horvath, 2008; Sipko et al., 2018) to partition the network into co-expression modules. Then we assess the discerning power of each co-expression module for cancer subtyping by (1) identifying the most discerning modules and their most specific edges between samples of the current subtype and samples of other subtypes; 2) perturbing the correlation levels of such edges to generate new samples with co-expression network features for each sample; and 3) then training the classifier based on such new samples. When applying this classifier to breast cancer (BRCA) and stomach adenocarcinoma (STAD), we found it has superior performance under both macro-average recall (Macro-R) and macro-average f1-score (Macro-F1) metrics over existing methods. We consider that this co-expression module-based subtyping not only provides an improved method for cancer subtyping but also provides meaningful information about the unique biology of cancer samples of each subtype, hence potentially offering new information about the underlying mechanism of the cancer subtype and suggesting new individualized treatment targets.
2 MATERIALS AND METHODS
We present a new computational framework, SCM-DNN, shown in Figure 1 and Figure 2, for subtyping cancer samples.
[image: Figure 1]FIGURE 1 | (A) The workflow from data processing to specific edges identification. Take four-subclass classification as an example. Each subtype is represented as a gene expression matrix with n genes after data processing. WGCNA is used to divide whole gene set into different co-expression modules. The specific edges of one subtype are extracted from the specific module of their subtype. The perturbation of these specific edges (gene pairs) is used to generate network features data. (B) Detailed process of generating one piece of network feature data. The perturbation values of a sample are the difference of specific edges between expanded network and the reference network.
[image: Figure 2]FIGURE 2 | Sufficient network feature data generation for model training and prediction. One reference sample set consists of T groups of samples that from T subtype (T: total number of subclass). Network feature data corresponding to training samples are used for model training.
2.1 Data Processing
RNA-seq data and clinical information of breast cancer and stomach cancer tissue and normal samples are downloaded from the TCGA database (Weinstein et al., 2013). These cancer samples are pre-labeled with their subtype information. Overall, 113, 437, 37 and 115 samples are labeled as control, ER+, HER2+, and triple-negative BRCA tissues respectively; and 33, 107, 23, 47, and 50 samples are marked as control, CIN, EBV, MSI, and GS STAD tissues, respectively. The FPKM value (with log2 transformation) is used to measure the expression levels in our analysis. For each cancer type, genes whose average expression levels are less than 10 over all the samples are removed, and the median absolute deviation (mad) is used to estimate the variance of a gene’s expression. In a dataset with sample size N, the ‘mad’ value of gene X is calculated as follows:
[image: image]
X = (X1, X2, … , Xi, … , XN), Xi is the expression value of gene X of the ith sample. Clearly, the more similar the expression levels of a gene are across all samples, the closer its “mad” value is to zero. For our analyses, we only keep the top 90% genes with the largest “mad” values. Overall, 14,439 and 7,761 genes are kept for BRCA and STAD, respectively.
2.2 Construction of Co-Expression Networks and Generation of the Co-Expression Modules
For each cancer type, we first construct gene co-expression networks for each subtype; that is, for a cancer type with T molecular subtypes, T co-expression networks need to be constructed. The Spearman correlation coefficient is used to construct the co-expression networks. According to (Anglani et al., 2014), although spearman correlation is an efficient way to construct co-expression networks, its coefficient and statistical significance depend on the sample size to some extent. Since the issue of imbalanced sample size always exists, directly constructing co-expression networks for each category will lead to incomparability among different categories. To solve this problem, we perform sampling to construct the co-expression network for each cancer type.
Given the sample sizes of each subtype {s1, s2, ...sT}, we have performed F-fold sampling to calculate the correlations for each subset, with each fold having Ns samples. Ns should be smaller than min {s1, s2, ...sT}, and F should be large enough to ensure that all samples are selected at least one time. For the fth fold in lth subset, [image: image] represents the correlation values matrix for the co-expression network, and [image: image] represents the corresponding p-values. The final correlation values and p-values of lth subset are defined as Formula (2) and (3):
[image: image]
[image: image]
Furthermore, we have removed gene pairs in the network whose associations are not significant (i.e., p-value >0.01) and genes that do not connect with any other genes in the network. In the end, we have obtained T co-expression networks {MeanNet1, MeanNet2, ...MeanNetT} for each subtype. For each MeanNet, we apply WGCNA to divide it into several co-expression modules. We set the soft thresholds according to the scale free topology fitting index R2 coefficient for each subtype. It reweights the MeanNet by adjusting the coefficient of each co-expression pair to make the network satisfy the scale-free property. All the genes are then hierarchically clustered into different groups based on the weighted network, and the genes that can’t cluster together with other genes are stored in Module0.
2.3 Identification of the Specific Co-Expression Modules
A specific co-expression module is defined if the genes of a subtype are highly correlated in a subtype but weakly correlated within other subtypes. It is worth noting that we don’t consider Module0 of each subtype. We identify the specific co-expression module of each subtype by integrating the following two scores:
Score 1: Specific aggregation score. If genes of one subset are concentrated in a module of one subtype but they are scattered in many different modules for all the other subtypes, it indicates that these genes have a specific co-expression pattern in this subtype. According to this idea, we perform a cross calculation among all the modules of different subtypes to evaluate the specificity of each module. For module [image: image], we first get the gene intersections of [image: image] and [image: image]. (s: source subtype, [image: image]: the ith module of subtype s, Sn: number of modules in the source subtype, [image: image]: the jth module of subtype t, t: target subtype, t ∈ {1, 2, ..T}\s, T is the total number of subtypes). In order to avoid the bias caused by the number of genes in each module, we will calculate the overlap ratio between [image: image] and [image: image] as:
[image: image]
If for any t and j, the Overlapratio(s,t,i,j) values of [image: image] are small, it indicates that the genes in scarcely cluster together in other subtypes. So, for a module [image: image], we define [image: image] to represent the maximal overlap between [image: image] and all the other modules of other subtypes. Then, we sort all modules’ Max overlapratio of this subtype in ascending order and the ranking of [image: image] is equal to its score 1. The lower ranking of [image: image], the more likely [image: image] will be identified as a specific co-expression module.
Score 2: Correlation significance score. If co-expression coefficients of the edges in this module are overall significantly stronger than their coefficients in other module subtypes, then this module is more likely to be a specific one.
For a certain module [image: image], the mean co-expression value of its edges is defined as [image: image]. Meanwhile, the mean co-expression value of these edges on other subtypes’ co-expression networks is calculated and denoted as [image: image] (t: target subtype, t ∈ {1, 2, ..T}\s). If some edges in [image: image] do not appear in co-expression network of subtype t, their values in subtype t are recorded as 0. Then the difference between [image: image] and is [image: image] is defined as:
[image: image]
[image: image] represents the smallest [image: image] of [image: image]. Next we sorted [image: image] in a descending order, their ranking is defined as score 2. Similarly, the lower rank [image: image] is, the more likely [image: image] is to be a specific co-expression module. Taking the sum of score 1 and score 2 as final score for each module [image: image], we rearrange all modules of subtypes in an ascending order, and select the module with lowest rank as the specific co-expression module of subtype s.
2.4 Identification of Specific Edges in Specific Modules
As the sizes of specific modules are different and there are many edges in each specific module, it is necessary for us to select the most specific edges that are highly co-expressed only in one subtype to represent the character of each specific module. In addition, selecting same number of edges for each subclass can improve the comparability. If we want to select E specific edges for each specific module, following steps can be taken. For a gene pairs (i, j) in the specific co-expression module, their correlation values on all subtypes are denoted as [image: image] (T is the number of subtypes), and [image: image] is the max value of [image: image]. Then, the difference between [image: image] and [image: image] is defined as:
[image: image]
The [image: image] of all gene pairs are sorted in descending order, and the top E gene pairs are specific edges.
2.5 Generation of Network Feature for Each Cancer Sample
Although specific co-expression modules could capture the prominent characteristics of each subtype, it is not easy to transfer these characteristics directly to a single sample. Hence, our method proposes learning the sample’s network feature by calculating its perturbation effect when adding it to each specific module. Intuitively, when a sample is added to the specific co-expression module of its same subtype, its disturbance to this module is not significant. Otherwise, when adding this sample to specific modules of other subtypes, their disturbance is relatively large.
For each subtype, we randomly select 90% of the samples as the training set and the remaining 10% as the test set. In order to avoid the classification bias due to imbalanced sample sizes of different subtypes, we generate and amplify new samples by adding one sample to multiple reference network sets and ensuring the sample sizes of each subtype are similar for training.
First, we generate a series of reference network sets covering the specific co-expression edges of each subtype. Reference network of one subtype is generated by genes in its specific module, naturally, specific co-expression edges are covered. The size of samples used for constructing reference networks is uniformly assigned as P (P is smaller than the sample size of any subtype). For each subsampling, a reference network set is generated, including T reference networks corresponding to T subtypes, and we randomly select P samples from each subtype several times and generate several reference network sets, shown in Figure 2.
Then, one cancer sample is added to a reference set, which is T reference networks, to construct T new co-expression networks, called expanded networks. The perturbation value of a specific edge is obtained by calculating the difference between an expanded network and a reference network.
[image: image]
Here, i is the ith specific edge of subtype x, [image: image] and [image: image] are the correlation value of ith specific edge of subtype x in the expanded network and reference network, respectively. [image: image] when a sample is added to the reference network, is perturbation value to ith specific edge. Then, for one cancer sample, it’s T *E perturbation values are merged into a vector, where E is the number of specific edges selected for each subtype, generating a piece of network feature data.
One piece of network feature data shows the characteristics of a sample at the co-expression network level. In order to augment the sample size, we add each training sample to several reference network sets. Hence, we can obtain enough network feature data for model training even though there are few cancer samples, which guarantees the classifiers are able to learn sufficient information for each subtype. For each test sample, it is also randomly added to the reference network sets to generate its corresponding new sample(s). It is worth noting that all the reference networks are constructed from samples of training sets.
2.6 Construction of Cancer Subtype Multi-Classifier
We build a fully connected feed forward neural network classifier with cross-entropy loss function.
[image: image]
Here, the value of y depends on the true label of data i. Let h be a neural network, in which the activation function of hidden layers and output layer are ReLu and softmax, respectively. pic is the probability of the data i belonging to subtype c. N is the size of the data. The optimization algorithm is stochastic gradient descent. We apply an early stop strategy to avoid over-fitting in the training process and take 10-fold cross validation to verify the performance of the classification method. In prediction, when adding each testing sample into different reference networks, it generates several new samples and then gets multiple prediction labels, voting strategy are used to obtain final prediction label of this sample.
2.7 Baseline Methods
We compared our method, SCM-DNN with three traditional filter feature selection methods (Chi-square test, Analysis of Variance, and Mutual Information), and one state-of-the-art wrapper feature selection method, (HSIC-Lasso) following with DNN. In addition, we also compared our method with one of the few co-expression-based cancer subtyping methods. Moreover, we compared our method with one of the few co-expression-based cancer subtyping methods (SCP), which predicted a sample’s label through calculating its perturbation on the most specific edges of each subclass-representing network. In addition, we also compared our method with DeepCC, which is a deep learning-based framework integrating functional spectra quantifying activities of biological pathways for molecular subtyping of cancer (Gao et al., 2019).
3 RESULTS
3.1 Statistic of Distinguishing Co-Expression Modules of Each Cancer Subtype
14439 and 7761 genes were used for the construction of co-expression networks for BRCA and STAD, respectively. We decompose the co-expression network into several modules for each cancer subtype. The number of co-expression modules for each cancer subtype, and the number of genes and edges in each specific co-expression module are shown in Table 1.
TABLE 1 | Statistics of co-expression modules of each cancer subtype.
[image: Table 1]3.2 Evaluation of the Discerning Power of the Co-Expression Module for Each Subtype
To evaluate the discerning power and stability of each co-expression module between each subtype and the samples of the other subtypes of a cancer, we have used accuracy, macro-average recall and macro-average F1-score to avoid possible issues created by imbalanced sample sizes among the subtypes, defined as follow.
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Here, #i is the sample size of ith group; TP is for true positives, FP for false positives, FN for false negatives, and TN for true negatives.
For BRCA subtyping, we have conducted two experiments by selecting the top 100 and top 200 distinguishing co-expressed edges from each co-expression module to evaluate their discerning power. Considering the relatively small sample size and the number of features, a neural network with two-hidden layers is employed to train a classifier, which has 50 and 10 nodes on the first and the second layer, respectively. We have compared the performance of our approach with six other published classifiers (see Methods), each employing the same number of features as our approach.
The subtyping performance of our method on BRCA samples along with the performance by other five methods are shown in Figure 3A. Our method clearly performs better across all the metrics, especially in terms of macro-avg recall and macro-avg f1-score. Imbalanced sample sizes tend to create problems for classification methods, which tend to give higher weights to subtypes with higher numbers of samples. In BRCA, the numbers of samples for the four subtypes are 113, 437, 37, and 115, with HER2+ having the smallest sample size. We note that the recall values for HER2+ samples are 0.891, 0.675, 0.575, 0.475, 0.650, and 0.622 by SCM-DNN, HSIC-lasso, ANOVA, Chi-square, mutual information and DeepCC, respectively.
[image: Figure 3]FIGURE 3 | Cancer subtyping performance by seven methods: our method SCM-DNN,HSIC-LASSO, ANOVA, Chi-square mutual information, SCP and DeepCC (A) BRCA subtyping and (B) STAD subtyping with using top100 and 200 distinguishing co-expressed gene pairs.
For STAD subtyping, we set the same experimental parameters, including the organization of the neural networks as for BRCA breast cancer molecular subtyping task. The performance by our method vs. the other six methods is comparable to that on BRCA, with our method performing the best as detailed in Figure 3B. It is worth noting that the DeepCC classified cancer samples according to a large number of genes which are not suitable for feature selection, so we use all its features and compared it with our method when selecting 100 features and 200 features, respectively.
Overall, the results reveal that our method gives the best and stable subtyping performance, particularly for the subtyping problems with highly imbalanced sample sizes. We found that our method always performs best specially in recall and F1-score, the reason is: we generate sufficient network feature data for neural network model training, and it avoids the situation that the classifier only learns sufficient information for the category with largest scale, instead of categories with small scale. Hence, our method is superior to other methods when predict the subtype with smallest scale. In addition, network feature data can reflect the characteristics of each individual subtypes. It also proves that specific modules with differentiation and robustness are conducive to improving classification performance. We display network feature data in the form of heat map and find that the samples of the same subtype naturally gather into one block. Details are shown in the Supplementary Material.
3.3 Functional Analyses of the Genes in Each Specific Module
To elucidate the possibly unique biology for each cancer subtype, a pathway enrichment analysis is conducted over edges of the identified co-expression module for each subtype. It is worth noting that the number of genes in specific modules of each molecular subtype is different. Specifically, there are 171, 86, 281 and 205 genes in the specific modules of control, ER+, HER2+ and triple negative BRCA samples, respectively, with detailed gene lists given in Supplementary Table S1. And their co-expressed gene pairs are selected for function analyses. The most significantly enriched biological processes and pathways enriched by each of the four gene sets are shown in Table 2.
TABLE 2 | The most significantly enriched pathways by the genes belonging to top 200 specific edges of each molecular subtype in BRCA.
[image: Table 2]The most enriched pathways in each distinct set of samples shown in Table 2 are quite informative. For example, pathways enriched by the control samples revealed key features of control vs. BRCA cancer samples in terms of their functionalities, namely cell-cell adhesion (which is altered in all cancer samples), interactions with immune cells (which is clearly altered in all cancer samples vs. controls). Similar can be said about neural functions (ephrin receptor signaling), cell polarity (which is considerably altered in cancer, actin cytoskeleton) and inflammation signaling (leukotriene biosynthesis). Similarly, the most enriched pathways for ER+ samples are growth related (Wnt signaling), muscle development (also including eyelid development and fiber cell development), and a specific type of immune response (HTLV-I infection). And the most enriched pathways for HER2+ are related to xenobiotic metabolism (including dealing with nitrobenzene), oxidative stress (glutathione biosynthesis), and cell morphogenesis changes. The pathways uniquely enriched by triple negative samples involve neural systems, a general indicator for the level of malignancy of a cancer type, and phosphatidylinositol 3-kinase signaling (a key regulator of cell polarity), also strongly indicating the level of malignancy of the cancer subtype.
For STAD, 72, 81,67,119, and 217 genes and their co-expressed gene pairs are selected as distinguishing features for the control, CIN, EBV, MSI, and GS STAD samples, respectively. The enrichment results by each gene set are shown in Table 3.
TABLE 3 | The most significantly enriched pathways by the genes belonging to top 200 specific edges of each molecular subtype in STAD.
[image: Table 3]The distinct biology of each of the four subtypes of STAD samples, as indicated by their enriched pathways, is striking. For CIN subtype, we see strong indication of toxicity and detoxification in their cells, e.g., by response to toxic substance, sulfation, intracellular protein transport and steroid metabolic process. In EBV samples, the distinct characteristics are dealing with oxidative stress as shown by response to ionizing radiation, valine, leucine, and isoleucine degradation, activation of cysteine-type endopeptidase activity, and upregulation of spliceosome. In MSI, we see that all signals are related to inflammation and immune response in immune response, response to interferon-gamma, type I interferon signaling pathway, and inflammatory response. In GS, the key distinguishing characteristic is rapid cell division, as indicated by cell division, cell cycle, nuclear division, chromatid cohesion and G2/M transition.
3.4 Comparison of Selected Features Between Gene Expression Based and Co-Expression Based Methods
We have compared the consistency and differences among the top 100 selected features obtained by each of the five methods, including ours, with results summarized in Figure 4. We note that genes selected based on gene-expression levels are quite different from the genes identified based on co-expression levels for both BRCA and STAD. And there is considerable overlap among the features selected by different gene-expression level-based methods. For example, genes selected by ANOVA and the mutual information method have a 60% overlap in both cancer types. It should be noted that the top 100 network features obtained by SCM-DNN are 100 gene-pairs, hence the number of genes for SCM-DNN is larger than 100.
[image: Figure 4]FIGURE 4 | Venn diagram for overlaps among top 100 (network) features obtained by SCM-DNN, HSIC-LASSO, ANOVA, Chi-square and mutual information in (A) BRCA and (B) STAD.
Through further performing differential gene expression analyses on the genes obtained by SCM-DNN, we find their expression have little changes among different subtypes of the same cancer type. This result reveals that differential gene expression-based methods have clear limitations in characterizing changes in biological systems. Hence co-expression-based analyses for cancer subtyping and possibly many other cancer omic data analysis problems could prove to be the way to go.
We have also analyzed the connectivity of the selected genes in the co-expression modules. In our subtyping prediction, we used only the top 100 and 200 co-expressed gene pairs. An interesting observation is that all the selected genes could be connected using at most two additional genes in the relevant module, suggesting that the selected feature genes are strongly functionally associated. However, regarding the genes selected by traditional gene expression based feature selection methods, they are generally highly dispersed across a co-expression module.
Additionally, due to the transmissibility of information in a network, it’s not hard to control the whole module by managing a few nodes. Moreover, since these modules are specific to each molecular subtype, in other words, they are probably the most striking features of this disease. Hence, they are expected to be the most effective drug targets for individualized therapy.
4 DISCUSSION
In this paper, we proposed a computational classification method for cancer molecular subtyping based on co-expression network features of each cancer sample. It has been recognized that the phenotypic difference in cancer samples can hardly be fully understood by only analyzing single molecules, and it is the relevant system or specific network that is ultimately responsible for such a phenomenon (Liu et al., 2016). Moreover, network-based biomarkers, e.g. subnetwork markers (Ideker and Krogan, 2012), network biomarkers (Liu et al., 2014), and edge biomarkers (Zhang et al., 2015), are demonstrated superior to traditional single molecule biomarkers for accurately characterizing disease states. However, it is generally challenging to construct specific network and obtain individual network feature for each sample (Liu et al., 2016). Here, we generate a sample’s network feature by calculating its perturbation effect on each background class-specific module after adding it to them. Intuitively, the quality of constructed class-specific networks will direct influence the generation of network feature and then further guide the final classification results. Hence, to ensure the robustness of each subtype specific network, we construct multiple co-expression networks for each molecular subtype by sampling and then integrate them. Our previous study had proved that sampling-based co-expression network construction could avoid the bias caused by both data noise and imbalanced sample size among different subtypes (Jiang et al., 2020). Class-specific modules are identified by a top-down approach (i.e. decomposing the whole co-expression network of each subtype and making comprehensive comparison across different subtypes), which is different from some existing specific modules identification method based on collecting specific co-expression gene pairs. In comparison, co-expression modules give a relatively complete path of signal transmission or transcriptional regulation, and provide much more information for us to understand biological mechanism of each subtype, and then could help researchers to identify both actionable targets for drug design as well as biomarkers for response prediction.
The classification performance of our method is superior to conventional molecule biomarker-based methods, when applied to breast and stomach cancer molecular subtyping, under several evaluation indexes. It is a universal framework and is expected to perform well in molecular subtyping task for other cancer types. Besides, it is also easy to transfer to other subtyping tasks, such as cancer sample staging and grading classification. Similarly, through constructing co-expression networks and extracting specific co-expression modules for each cancer stage or grade, a sample could be accurately classified according to its network features generated by calculating the perturbation effect of this sample on each background class-specific module. We assume that specific module of each cancer stage (or grade) can capture the essential distinguishing property of its samples. And adding a sample of a different class to the specific module will induce large disturbance, while adding a sample of its same class will not disturb too much. One of the advantages of this study is that it doesn’t need too many training samples. Prior knowledge in the basis of satisfying the statistical significance indicates that the sample number of each subtype reaching 15 is enough to construct co-expression networks for each subtype. Then, a large number of new samples with a network feature can be generated.
Omics data have enabled the unbiased characterization of the molecular features of multiple human diseases, particularly in cancer. Multi-omics may provide molecular insights beyond the sum of individual omics, and it is becoming increasingly common to characterize multiple omics layers to gain biological insights spanning multiple types of cellular processes (Vitrinel et al., 2019). Hence, in our further work, besides transcriptomics data, we will introduce other omics data to construct heterogeneous correlated networks and extract heterogeneous specific modules for each subtype. Moreover, this study provides a general framework with extensible and replaceable executive function modules. Other machine learning methods could be applied for the final multi-class classification according to specific task and data distribution.
5 CONCLUSION
We present here a new framework, SCM-DNN, to identify each molecular subtype’s robust, specific co-expression modules that could efficiently and steadily predict patients’ molecular subtypes of breast and stomach cancer. Compared with traditional gene expression based feature selection methods for multi-classification, SCM-DNN performs better under all the metrics even the sample size of each class is extremely imbalanced. Additionally, these specific genes identified by SCM-DNN could probably represent the striking characteristics of individual subtypes; meanwhile, they are concentrated in the co-expression network. Hence, they are promised to assist us to better understand the underlying mechanism of molecular subtyping and potentially guide individualized medicine.
Multi-omics data and their integration are recognized as an effective way to explore the biological mechanism. In future studies, we will make full use of those data to develop a more comprehensive and robust classification method by integrating multi-omics data to construct subtype-specific correlation networks for molecular subtyping of cancers, expecting a deeper mechanism to be discovered.
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Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that can have profound differences in survival outcomes. A variety of powerful prognostic factors and models have been constructed; however, the development of more accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An explosion of research on super-enhancer (SE)–associated genes provide the possibility to use in prognostication for cancer patients. Here, we aimed to establish a novel effective prognostic model using SE-associated genes from DLBCL.
Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database were included in this study and were divided into a training set and a validation set. A total of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate and multivariate Cox regression analysis. Finally, a risk score model based on these 11 genes was constructed.
Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have better clinical survival outcomes. The excellent performance of the model was determined via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on the polygenic risk score was further established to promote reliable prognostic prediction. This study proposed that the SE-associated-gene risk signature can effectively predict the response to chemotherapy in DLBCL patients.
Conclusion: A novel and reliable SE-associated-gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups in terms of overall survival was developed, which may assist clinicians in the treatment of DLBCL.
Keywords: super-enhancer, LASSO, diffuse large B-cell lymphoma, prognostic model, overall survival
INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma (NHL), accounting for 30%–40% of all newly diagnosed NHL cases (Armitage et al., 2017; Siegel et al., 2017). DLBCL is an aggressive, severe, and complex disease with broad genetic, phenotypic, and clinical heterogeneities (Abramson and Shipp, 2005). The heterogeneity of the disease results in different survival outcomes in DLBCL patients receiving standard therapy (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)) (Younes, 2015). About 30–40% of patients do not respond well to standard treatment, with the highest mortality rate in the first 2 years after diagnosis(Yin et al., 2019).
In the era of rituximab, the International Prognostic Index (IPI) is one of the most important tools for prognostic risk stratification. The subsequent revisions have appeared to improve the prognostic evaluation system in DLBCL patients. Disappointingly, these prognostic indicators do not address the underlying biological heterogeneity of DLBCL. Therefore, it is urgent to explore novel and effective molecular markers for a more accurate prediction of the prognosis of patients with DLBCL.
Super-enhancers (SEs) have been described as a class of regulatory domains with unusually strong transcription-assisted activator binding capacity (Parker et al., 2013; Whyte et al., 2013). SE is a cluster of enhancers that has a stronger ability to promote transcription compared to the typical enhancers (TEs). Compared with normal cells, tumor cells construct SEs on oncogenes during tumorigenesis and recruit enhancer-binding proteins to drive gene expression (Lovén et al., 2013). SEs are generally occupied with abundant signals of H3K4me1, H3K27ac, p300, Mediator, RNA polymerase II, BRD4, CDK7, and other master transcription factors (Wang et al., 2019); among them, H3K27ac is the preferred marker for the identification of super-enhancers (Hnisz et al., 2013). The loss or gain of SEs has been reported in various tumors (He et al., 2019); similarly, SEs play a key role in the progression of DLBCL by activating the expression of downstream oncogenes (Chapuy et al., 2013). In addition, SE inhibitors (JQ1) used to treat DLBCL suppress the expression of these genes (Li et al., 2021). Therefore, the exploitation and identification of SEs-driven hub oncogenes will provide novel insights into the diagnosis, prognosis, and treatment of DLBCL.
The least absolute shrinkage and selection operator (Lasso) penalized Cox regression is a variable selection and contraction method in Cox’s proportional risk model proposed by Tibshirani (1997). Lasso can reduce the number of variables compared to traditional stepwise regression because less influential variables will be regularized by shrinking their coefficients to zero (Zhang et al., 2018). Currently, Lasso is widely used to build survival prediction models based on complex, high-throughput genomic data. Wu et al. (2021) identified ten important immune-related genes most associated with the overall survival of DLBCL patients among the 26 immune-related genes by using Lasso regression analysis. Similarly, using group Lasso, an 11-SE-related-gene signature effectively predicted overall survival in DLBCL. Thus, we applied the Lasso regression method to construct a prognostic model of DLBCL.
In this study, Lasso penalized Cox regression analysis was performed using 521 SE-associated genes. A gene cluster containing 11 SE-related genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC) was screened. Subsequently, a risk score model based on these 11 genes was constructed, which was helpful for risk stratification and prognosis. Finally, based on the model, an interactive nomogram containing 11 gene risk groups and clinical characteristics was established, which provides a tool to predict the overall survival (OS) of DLBCL patients clinically. The workflow of our study is shown in Figure 1.
[image: Figure 1]FIGURE 1 | The procedure workflow used to establish and certify the SE-associated gene-based prognostic model for patients with diffuse large B-cell lymphoma.
MATERIALS AND METHODS
Data Source
The microarray data and corresponding clinical information from GSE31312 as the training data and the two other independent datasets, GSE10846 and GSE80371, as the external validation datasets were obtained from Gene Expression Omnibus (GEO) database. 470 DLBCL samples were enrolled in GSE31312, 414 in GSE10856, and 221 in GSE80371.
Identification of Super-Enhancer–Associated Genes
The 521 SE-associated genes identified from the DLBCL cell line OCY-LY1 were obtained from the website http://dbcorc.cam-su.org. H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) signal was used to screen SE-associated genes in the OCY-LY1 cell line. The biological function of these genes was revealed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. To get the final expression matrix, we retained the genes that overlapped between GSE31312 datasets and the SE-associated genes in OCY-LY1.
Lasso Penalized Cox Regression Analysis
To screen the important and potential prognostic genes, Lasso penalized Cox regression analysis was performed to establish a predicting model using the R package “glmnet”. We identified the optimal lambda (λ) value based on ten-fold cross-validation. Two best-fit values (λmin and λlse) were chosen by minimizing the mean cross-validated error to construct the Lasso models. Subsequently, we performed the Wilcoxon test and ROC curve analysis to compare the two parameters.
Development of the Prognostic Signature
To construct an optimal prognostic prediction model, we integrated the candidate genes’ expression levels weighted by their regression coefficients and calculated the risk score for each patient, according to the forum RiskScore = ∑βi * Xi. Here, Xi is the gene expression level, and βi is the regression coefficient. Regarding the value obtained from the maximally standardized long-rank statistics as a cutoff point, DLBCL patients were separated into high- and low-risk groups.
Cox Proportional Hazard Regression Analyses
The univariate and multivariate Cox proportional hazard regression models were utilized to identify the correlation between the gene expression level of the candidate genes and OS, which was accomplished by R packages “survival” and “survimer”. The results were shown on the forest plot. The analyses were also applied to verify the independence of the constructed prognostic model with other clinical features. The parameters included the prognostic risk score and some important clinicopathological factors, such as age, gender, clinical stage, the situation of extranodal invasion, Eastern Cooperative Oncology Group (ECOG) score, lactate dehydrogenase (LDH), and IPI score. The p-value, hazard ratio (HR), and 95% confidence interval (CI) of each factor were calculated.
Kaplan–Meier Analysis and Time-dependent Receiver Operator Characteristic Curve Analysis
The Kaplan–Meier analysis method was used to compare the differences in OS and progression-free survival (PFS) between low- and high-risk groups, and the log-rank tests were performed to measure the statistical significance (p-value of less than 0.05). The R packages “survival” and “survimer” were used to execute the analysis. Moreover, we depicted the time-dependent ROC curve to assess the predictive capability for different factors by figuring out the area under the ROC (AUC) (p < 0.05).
Predictive Nomogram
In total, seven prognostic predictors (six clinical features and the 11-genes risk score) were enrolled to build the predictive nomogram, which was used to forecast the 1-year, 3-year, and 5-year OS of the patients via R package “rms”. We calculated the concordance index (C-index) by package “Hmisc” to evaluate the discrimination of the nomogram. Furthermore, calibration curves were plotted for intuitionistic comparison of the predicted against the actual survival probabilities. Data of one randomly selected patient from GSE31312 were used to validate the probability of 1–5-year OS, based on the predictors in the nomogram. Total points were calculated using the R package “nomogramEx”. Finally, the interactive nomogram was developed and visually displayed by the R package “regplot”.
Chemotherapy Response With Super-Enhancer-Associated Genes Signature
In order to predict the chemotherapy response in the low- and high-risk groups, the R package “pRRophetic” was applied for profiling. We straightforwardly compared the estimated half-maximal inhibitory concentration (IC50) between low- and high-risk groups among the different chemotherapeutics, which exactly proved the hypothesis that the low-risk group was likely more sensitive to the chemotherapy.
Protein–Chemical Interactions Analysis and Chromatin Immunoprecipitation Sequencing Profile for H3K27ac Signal Tracks
We established an interactive network of the hub genes and chemicals to probe into the chemicals correlated to these genes by “NetworkAnalyst 3.0”, based on the data from the Comparative Toxicogenomics Database (CTD). In the end, we used H3K27ac as SE biomarkers based on the ChIP–seq profiles data from Cistrome to visualize the location of the SEs regions and their target genes.
RESULT
Establishment of the Lasso Penalized Cox Regression Model
A 20,174-gene expression matrix of GSE31312 and the corresponding clinical information of 470 DLBCL patients were downloaded from the GEO database under the accession number GSE31312, as described in Supplementary Table S1. In total, 521 SE-associated genes identified from the DLBCL cell line OCY-LY1 were obtained from the website http://dbcorc.cam-su.org. Pathway enrichment analysis indicated that these SE-associated genes were closely related to lymphocyte activation and small GTPase mediated signal transduction (Supplementary Figures S2A and C). We extracted 417 genes that overlapped between GSE31312 datasets and the SE-associated genes in OCY-LY1 to construct the expression matrix. The lasso penalized Cox regression analysis was applied to screen some potential and vital prognostic genes. We calculated the coefficient values at different levels of penalty (Figure 2A). First, we identified the optimal lambda (λ) value based on ten-fold cross-validation. Two best-fit values (lambda.min and lambda.1se) were chosen by minimizing the mean-square error to construct the Lasso models, and we selected two groups of genes (48-gene group of λmin and 16-gene group of λ1se; Figure 2B). As shown in Figure 2C, the lasso models were reconstructed according to the λmin and λlse, and both models performed well to separate the survival and death events (Wilcoxon test, p < 2.2e-16). The result of the ROC curves analysis for the two predictive models showed the AUCs were 0.808 (λ1se) and 0.886 (λmin), suggesting that both models had a promising performance in predicting the probability of overall survival (Figure 2D). Considering that there was no significant difference in the predictive performance of the two models according to AUC and Wilcoxon tests, we further studied the 16-gene model.
[image: Figure 2]FIGURE 2 | Lasso penalized Cox regression analysis of SE-associated 512 genes. (A) Lasso coefficient profiles of the 512 SE-associated genes. (B) The identification of the best Lambda value. The left solid vertical line is the logarithm of lambda.min (48-gene group), and the right solid vertical line is the logarithm of lambda.1se (16-gene group). (C) The scatter plot of survival status of patients with diffuse large B-Cell lymphoma based on the 48-gene model (left, lambda.min, p < 2.2e−16) or the 16-gene model (right, lambda.1se, p < 2.2e−16) by the Wilcoxon test. (D) ROC curves are used to compare the predictive performance for prob-min and prob-1se to predict patient survival.
Association Between Candidate Genes and Prognosis
We utilized multivariate Cox regression analyses to explore whether each of the candidate genes is associated with the overall survival. As the outcome of the multivariate Cox regression analysis shown in Figure 3A, the global p-value of the predictive model was 1.8483e-30, with the Akaike information criterion (AIC) of 1768.55 and C-index of 0.77. Multivariate Cox regression showed that BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC were significantly associated with the overall survival of DLBCL patients. Among these genes, BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12, and MYC may appear to be the risky factors (HR > 1), while PXK, BTG1, EXT1, MYCBP2, and PAX5 seemed to act as the protective factors (HR < 1). To optimize the predictive model, we selected these 11 SE-associated genes to forecast the OS of DLBCL patients.
[image: Figure 3]FIGURE 3 | The 11-gene risk score model for the GSE31312 dataset. (A) Multivariate Cox regression analysis of the 13 genes (*p < 0.05, **p < 0.01, and ***p < 0.001). Hazard ratio and 95% CI are shown in the figure. Global log-rank p, C-index, and AIC were also calculated and shown. (B) The identification of the cutoff value (cutpoint=0.55) of the risk score. (C) DLBCL patients were divided into the high-risk group and low-risk group based on the cutoff value (upper). The survival status and time in high-risk and low-risk groups (lower). (D) Kaplan–Meier survival curves showing the difference in OS (upper) and PFS (lower) between high- and low-risk patients (log-rank test, p < 0.0001). (E) Time-dependent ROC curves for the 11-gene model to predict patient survival.
Establishment and Validation of the 11-Gene Risk Score Model
The risk scores predicted by the coefficient of these 11 candidate genes from the multivariate Cox regression analysis (the equation for risk scores is shown in Materials and Method) stratify the patients into the low-risk (n = 345) and high-risk (n = 125) groups, with the cutoff point of 0.55 (Figure 3B). As the outcome shown, the number of alive events is significantly more in the low-risk group, while the death events are obviously more frequent in the high-risk group (Figure 3C). Subsequently, we conducted a K–M analysis to compare the differences in OS and PFS between low- and high-risk groups. The K–M survival curve of OS demonstrated an inferior outcome in the high-risk group (long-rank test, p < 0.0001), consistent with the analysis of PFS (Figure 3D). Furthermore, the time-dependent ROC analysis also showed a favorable outcome, where the AUC was 0.797 at 1-year, 0.801 at 3-year, and 0.804 at 5-year (Figure 3E), indicating that the risk score model has a good performance to predict the prognostic outcomes.
Independence of 11-Gene Risk Score Model in Survival Prediction
Considering the effects of other important clinical indicators, such as age, gender, clinical stage, the situation of extranodal invasion, ECOG score, LDH level, and IPI score, we validated the independence of the polygenic prognostic predictive model via the univariate and multivariate Cox regression analyses. In the univariate Cox regression analysis, the risk score correlated with OS of the DLBCL patients (HR at 2.718, p < 0.001), similar to other important clinicopathological factors (Figure 4A). As for the multivariate Cox regression analysis, risk score appeared to be an independent and harmful factor for prediction (HR at 2.640, p < 0.001), while only Age and ECOG score among all clinical features showed statistical significance (p < 0.001 and p = 0.009, respectively) (Figure 4A; Table 1). The ROC curve analysis was a complement for verifying the predictive capacity of these indicators, which showed that the AUC of the risk score was 0.795, greater than other clinical indicators (Figure 4B). All these results sufficiently confirmed that our 11-gene risk score model was an independent and robust predictor, which has promising application prospects in comparison with other well-establish indicators.
[image: Figure 4]FIGURE 4 | Univariate and multivariate analysis shows the prognostic value of 11-SE-associated-gene signature. Univariate (A) and multivariate (B) Cox regression analyses of the association between clinicopathological factors and OS of DLBCL patients. (C) The receiver operator characteristic (ROC) curves to predict the sensitivity and specificity of clinicopathological factors and 11-SE-associated-gene signature-derived risk scores in DLBCL patients.
TABLE 1 | Univariate and multivariate Cox regression analyses of the gene signature and overall survival of DLBCL patients in 3 independent datasets.
[image: Table 1]Stratification Analysis
A stratification analysis was carried out to assess the predictive abilities of the risk score model within different clinical feature subgroups. Patients from the entire cohort were factitiously classified by age (>60 vs. <=60), gender (Male vs. Female), disease clinical stage (stage I–II vs. III–IV), the situation of extranodal invasion (extranodal sites >=2 vs. < 2), IPI score (>2 vs. <=2), and disease classification based on immunohistochemical (IHC) [activated B cell (ABC), germinal center B cell (GCB), and unclassified (UC)] as different subgroups. The risk score divided the patients in the same stratum into the low- and high-risk groups. We observed that the K–M curves could be distinguished by the risk score model irrespective of the subgroup, where all the high-risk groups had inferior survival outcomes (Supplementary Figure S1).
Development of Predictive Nomogram for Prognosis Prediction
There were seven prognostic predictors enrolled for building the predictive nomogram to forecast the 1-year, 3-year, and 5-year OS for the patients. The predictors of the nomogram involved the 11-genes risk score and the other six clinical indicators: age, clinical stage, ECOG, IPI, LDH, and extranodal sites (Figure 5A). Calibration curves were plotted for intuitionistic comparisons of the predicted against actual survival probabilities. The calibration curves of 1- to 5-year all appeared very close to the grey lines, suggesting a powerful predictive ability of this nomogram (Figure 5B). In order to evaluate the predictive effect of the 11-genes risk score based on the nomogram, we randomly selected one specific patient from the entire cohort. We added up all the points from these clinical indicators and the 11-gene risk group; the total point was 551, compared with the total point of 382 when only considering the clinical variables. The probability of 1-, 3-, and 5-year OS were 0.335, 0.618, and 0.716, respectively, while taking both the clinical indicators and risk group into account. In reality, the patient died at 910 days, while the predictive probability of death at that day was 0.67. Meanwhile, when we only utilized the six clinical indicators, the probability of 1-, 3-, and 5-year OS were 0.194, 0.372, and 0.445, respectively. The predictive probability of death at 910 days was 0.408, obviously lower than the probability forecasted in consideration of the 11-genes risk score, as mentioned above (Figure 5C).
[image: Figure 5]FIGURE 5 | Nomogram predicting the probability of 1-, 3-, and 5-year OS in patients with DLBCL. (A) Nomogram adding up the points identified on the points scale (the upward line) for each variable. The total points projected on the bottom scales indicate the probability of 1-, 3-, and 5-year OS. (B) Calibration plot for predicting the 1-, 3-, and 5-year OS. The dotted line represents the ideal condition. (C) Nomogram predicting the probability of 1-, 3-, and 5-year OS for the specific patient GSM776084 based on the model containing or not containing the risk group in the GSE31312 dataset.
Validation of the 11-Genes Prognostic Signature in the External Datasets
To further validate the effect of the prognostic predictive model, we analyzed two independent external datasets, GSE10846 and GSE87371, with a similar working procedure as mentioned above. The detail of the clinical characteristics is also described in Supplementary Table S1. The risk scores of each cohort were calculated, which divided the patients into low- and high-risk groups. As the consistent result of the two datasets shown in Figure 6A, the overall survival was distinguished from different groups in K–M analysis (long-rank test, p < 0.0001). In addition, the time-dependent ROC curve analyses also performed favorable outcomes, in which the AUC of 1-year at 0.719, 3-year at 0.708, 5-year at 0.668 in GSE10846, and the AUC of 1-year at 0.709, 3-year at 0.746, 5-year at 0.705 in GSE87371 (Figure 6B). When the cutoff points were 0.32 and 0.27 in GSE10846 and GSE87371, respectively, the patients were separated into low- and high-risk groups subsequently. There were more death events in the high-risk group from both datasets (Figure 6C). Moreover, we also conducted the ROC curve analyses to evaluate the predictive performance of the 11-genes risk score model and some other clinical variables. The AUCs of the risk score were 0.724 in GSE10846 and 0.710 in GSE87371, significantly greater than that of any other clinical parameters (Figure 6D). The univariate and multivariate Cox regression analyses were also used for the two datasets, as shown in Table 1, and the outcome is consistent with the training dataset.
[image: Figure 6]FIGURE 6 | The 11-gene risk score model for the validation datasets (GSE10846 and GSE87371). (A) Kaplan–Meier plots of overall survival in high-risk and low-risk subgroups in the validation datasets derived via Log-rank testing. (B) The time-dependent ROC curve and AUC in the validation datasets. (C) The survival status and time in high-risk and low-risk groups for the validation datasets. (D) The ROC curves to predict the sensitivity and specificity of clinicopathological factors and 11-gene signature-derived risk scores in DLBCL patients for the validation datasets.
Chemotherapy Response With Super-Enhancer-Associated Genes Signature
In addition, we conducted a prediction analysis to evaluate the chemotherapy response in the low- and high-risk groups. Widely, all high-risk groups possessed higher estimated IC50 for the different chemotherapeutics, which exactly proved the hypothesis that the high-risk group was not sensitive to the chemotherapy as the low-risk group (Figure 7). We took 12 chemotherapy drugs into account: bleomycin, vinorelbine, doxorubicin, gemcitabine, docetaxel, epothilone B, etoposide, cisplatin, bortezomib, vinblastine, vorinostat, and bexarotene. In order to better improve the tricky problem, we additionally established an interactive network among these hub genes and chemicals to probe into the chemicals correlated to these genes by “NetworkAnalyst 3.0”. In total, six genes of these 11 hub genes interacted with JQ-1, a well-recognized SE inhibitor, which verified the regulating effect of SEs on these genes to some degree (Supplementary Figure S2B). In the end, we profiled the ChIP signal of H3K27ac-seq for these 11 genes (Figure 8). The predicted regions of SE were plotted as the red bar upon the signal tracks, and each of the predicted SEs located close to these 11 genes, suggesting that the SEs may play an influential role in the expression of the 11 genes. In addition, the SE inhibitor JQ1 may regulate the expression pattern in OCI-LY1 cells.
[image: Figure 7]FIGURE 7 | The IC50s of 12 common chemotherapeutic agents with 11-SE-associated-gene signature.
[image: Figure 8]FIGURE 8 | Signal tracks for H3K27ac ChIP–seq profiles of the 11-SE-associated hub genes visualized using IGV. The regions of SE are shown in a red bar upon the signal tracks. ChIP–seq, chromatin immunoprecipitation–sequencing; SE, super-enhancer; IGV, Integrative Genomics Viewer.
DISCUSSION
DLBCL is the most common lymphoma with high heterogeneity and invasiveness. It accounts for approximately one-third of the non-Hodgkin lymphoma, and plenty of patients suffer from insensitive to the typical treatment regimens (Lavacchi et al., 2021). Researchers aspired to identify optimal biomarkers and then establish various risk prediction models for predicting the survival rate, which can be used to improve the prognosis of DLBCL and contribute to personalized therapeutic decisions (Merdan et al., 2021). Enhancer is an important epigenetic regulatory element for DLBCL, which can determine the gene expression. Super-enhancers (SEs) are a large cluster of active enhancers critical for maintaining cell identity and driving the expression of some oncogenes (Kai et al., 2021; Zhou et al., 2021). However, the previous studies had rarely constructed a risk prediction model based on SE-associated hub genes (Li, Duan and Hao, 2021). In this study, we succeeded in building a superior polygenic prognostic model by analyzing the data of the DLBCL patients from the GEO database, taking some clinical indicators into account as well, which was also rare in previous studies.
In the current study, Lasso penalized Cox regression was conducted to identify the candidate SE-associated genes, as the method has recently been prevalent in much research according to its ability to minimize overfitting (Zhu et al., 2019). In addition, we utilized univariate and multivariate Cox regression analyses to narrow the range of the selected genes. Then, we successfully constructed the gene risk score model for survival prediction. Moreover, we integrated the risk score and some other clinical indicators into developing the predictive nomogram and Cox proportion hazards model, which validated the predictive efficacy of the prognostic model. In our study, a total of 417 genes were filtered out by the Lasso penalized Cox regression. Subsequently, two best-fit values (lambda.min and lambda.1se) were chosen, and then the 48-gene group of λmin and 16-gene group of λ1se were initially screened out, respectively. Compared with the result of the AUC and Wilcoxon test, both models performed well. Furthermore, 11 genes were selected when statistically significant both in univariate and multivariate Cox regression analyses. To explore the influence of the 11 candidate genes on the OS and PFS of DLBCL patients, the patients were classified into two groups based on the 11-gene risk score model. The high-risk group had prominent inferior outcomes both in the K-M survival curve and AUC. Combined with some clinical indicators, the univariate and multivariate Cox regression analyses and AUC were conducted to verify the independence of the risk score. Overall, the constructed 11-genes prognostic model demonstrated good predictive performance in the training dataset GSE31312 and the other two external validation sets, GSE10846 and GSE87371. In the training set, BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12, and MYC appeared to be the risky factors, apparently upregulated, while PXK, BTG1, EXT1, MYCBP2, and PAX5 were downregulated in high-risk DLBCL patients.
BCL2 is considered an apoptosis suppressor gene. BCL2 is a cell survival protein that inhibits apoptosis by interacting with Bax, Bak, and other pro-apoptotic sensitizer proteins (Nabar et al., 2018) and also contributes to tumorigenesis by its promotion for survival, which already has a long and in-depth research history (Oltersdorf et al., 1998). Currently, many studies have shown a tight correlation between BCL2 expression levels in hematopoietic malignancies and drug resistance during therapy (Stewart et al., 2021). Previous studies have shown that DLBCL patients overexpressing the BCL2 protein may be strongly related to inferior survival and resistance to the standard therapy (de Jong et al., 2019). BCL2 is an important independent prognostic factor for DLBCL, consistent with our finding that the expression of BCL2 was significantly upregulated in the high-risk groups.
SPAG16 is a gene encoding sperm-associated antigen 16 that plays a role in sperm flagella function and motile ciliogenesis (Zhang et al., 2017; Alciaturi et al., 2019), correlated with the gene expression machinery of germ cells (Nagarkatti-Gude et al., 2011). Siliņa et al. (2011) have proposed that SPAG16 can be a novel autoantibody target and serologic biomarker for cancers. Our study suggested that SPAG16 appears to be an independent predictor, but the specific mechanism to mediate tumorigenesis and its vulnerability to being an immunotherapeutic target remain unknown.
LRRC37A2 is a member of the LRRC37 gene family which is involved in the regulation of protein–ligand interactions and mapped to chromosome 17q21.31-q21.32 (Giannuzzi et al., 2013). Several studies suggested that LRRC37A2 is implicated in epilepsy, epileptic encephalopathy, and Parkinson’s disease, while the effect on DLBCL has never been reported (Yao et al., 2021). In this study, high expression of LRRC37A2 corresponds with an inferior survival outcome that merits further exploitation.
TGFBR2 encodes a protein named transforming growth factor-beta (TGF-β) receptor type 2. This receptor can transduce signals into the intracellular environment, triggering various responses such as cell proliferation, differentiation, motility, and apoptosis (Biswas et al., 2008). Previous studies have shown that acquisition of TGFBR2 somatic mutation may increase the risk of various tumorigenesis and different diseases (Li et al., 2020). This is in line with our result that high-risk patients have upregulated expression of TGFBR2 compared with the low-risk group.
ANKRD12 encodes a 224 kDa nuclear protein ankyrin repeat domain 12, also called ANCO-2. It has been reported that ANCO proteins can inhibit the transcriptional activity of nuclear receptors involved in carcinogenesis (Bai et al., 2013). As per our result, ANKRD12 can predict survival outcomes for DLBCL patients independently, but further investigation is needed to validate.
MYC, well-known as a key transcriptional effector that modulates cellular proliferative and metabolism in stem cells (MacDonald et al., 2010), is also involved in the diverse cellular processes such as adhesion, apoptosis, and DNA damage response, playing a role in the oncogenic effect (Finley et al., 2015). There has been an explosion of molecular, cellular, and animal experiments to illuminate the effect of MYC in the initial development of neoplasms. As for DLBCL patients, MYC rearrangement (MYC-R) may forebode poor prognostic. Rosenwald A et al. have evaluated a large cohort suggesting the adverse prognostic impact of MYC-R and the significant therapeutic potential in DLBCL (Rosenwald et al., 2019). This statement is corroborated again by our study.
As for the protective prognostic factors in our study, PXK encoding protein is involved in ligand-induced internalization, synaptic transmits, and degradation of epidermal growth factor receptors associated with some autoimmunity diseases (Takeuchi et al., 2010). B-cell translocation gene 1 (BTG1) belongs to an anti-proliferative gene family, which regulates autophagy and the cell cycle and is also implicated in DNA repair and mRNA stability (Xue et al., 2021). BTG1 is a well-characterized tumor suppressor for both solid tumors and hematopoiesis and recently has been reported to have a novel role in genotoxic and integrated stress responses. It is evident that the expression level of BTG1 is regarded as a prognostic biomarker for diverse cancers (Yuniati et al., 2019). EXT1 gene produces the protein exostosin-1, which is found in the Golgi apparatus. This protein can modify newly produced enzymes and some proteins, which are critical for metastasis of cancer cells (Francannet et al., 2001). MYCBP2 encodes a ubiquitin (Ub) E3 ligase, which is essential for neurodevelopment (Mabbitt et al., 2020). The antitumor effect of this gene has been identified in various cancers. PAX5 is a member of the paired-box family of transcriptional factors, exclusively expressed in the B-cell lineage (Berek et al., 2008). This gene correlates with a heterogeneous subset of B cell non-Hodgkin lymphoma (B-NHL). The expression level and bio function of Pax5 play a role in normal B lymphopoiesis and prevent tumorigenesis (Medvedovic et al., 2011). The antitumor effect of the above genes is consistent with this study; every gene act as an independent protective prognostic factor, upregulated in the low-risk group. However, the concrete bio function and corresponding molecular machinery of each gene remain a ripe area for further investigation.
Since BCL2, SPAG16, LRRC37A2, TGFBR2, ANKRD12, MYC, PXK, BTG1, EXT1, MYCBP2, and PAX5 are SE-associated genes, the roles of the genes SPAG16, LRRC37A2, ANKRD12, PXK, and BTG1 have not been illuminated in DLBCL, which merits further in-depth analysis in the wet laboratory. In addition, to further assess the efficacy of the 11-gene risk model, large-scale prospective cohorts are still needed.
CONCLUSION
In summary, we succeeded in constructing a novel and reliable SE-associated-gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups and perform well in predicting the overall survival. The prediction model can be used as a biomarker of prognosis for DLBCL, which may be a potential therapeutic target and can assist clinicians in the treatment of DLBCL.
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GLOSSARY
ABC activated B cell
AIC Akaike information criterion
AUC area under the ROC
B-NHL B cell non-Hodgkin lymphoma
ChIP-seq chromatin immunoprecipitation sequencing
CI confidence interval
C-index concordance index
CTD Comparative Toxicogenomics Database
DLBCL diffuse large B-cell lymphoma
ECOG Eastern Cooperative Oncology Group
GCB germinal center B cell
GEO Gene Expression Omnibus
GO Gene Ontology
HR hazard ratio
IC50 half-maximal inhibitory concentration
IGV Integrative Genomics Viewer
IHC immunohistochemical
IPI International Prognostic Index
KEGG Kyoto Encyclopedia of Genes and Genomes
K–M Kaplan–Meier
Lasso least absolute shrinkage and selection operator
LDH lactate dehydrogenase
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Hepatocellular carcinoma (HCC) is a prevalent malignancy cancer worldwide with a poor prognosis. Hepatic resection is indicated as a potentially curative option for HCC patients in the early stage. However, due to multiple nodules, it leads to clinical challenges for surgical management. Approximately 41%–75% of HCC cases are multifocal at initial diagnosis, which may arise from multicentric occurrence (MO-HCC) or intrahepatic metastasis (IM-HCC) pattern with significantly different clinical outcomes. Effectively differentiating the two mechanisms is crucial to prioritize the allocation of surgery for multifocal HCC. In this study, we collected a multifocal hepatocellular carcinoma cohort of 17 patients with a total of 34 samples. We performed whole-exome sequencing and staining of pathological HE sections for each lesion. Reconstruction of the clonal evolutionary pattern using genome mutations showed that the intrahepatic metastogenesis pattern had a poorer survival performance than independent origins, with variants in the TP53, ARID1A, and higher CNV variants occurring more significantly in the metastatic pattern. Cross-modality analysis with pathology showed that molecular classification results were consistent with pathology results in 70.6% of patients, and we found that pathology results could further complement the classification for undefined patterns of occurrence. Based on these results, we propose a model to differentiate the pattern of multifocal hepatocellular carcinoma based on the pathological results and genome mutations information, which can provide guidelines for diagnosing and treating multifocal hepatocellular carcinoma.
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INTRODUCTION
Liver cancer is ranked as the sixth most common malignancy cancer, and its incidence is rising (Sung et al., 2021). Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for approximately 90% of liver cancer cases (Llovet et al., 2021). Roughly 41%–75% of patients with HCC present with multiple intrahepatic tumors (Miao et al., 2014; Vogel et al., 2018). Despite there existing standardized guidelines for multifocal HCC and indications for surgical resection, surgical suggestions for individual patients remain complicated owing to the difficulty of accurately predicting future tumor progression. These uncertainties for the recurrence of primary lesions or metastatic possibility provide challenges to the prognosis after surgery for individual patients (Viganò et al., 2019).
Multifocal HCC may arise synchronously or metachronously as a separate primary tumor (multicentric occurrence) or develop due to intrahepatic metastases from the same primary cancer (Baffy, 2015). Since the prognosis of hepatocellular carcinoma patients under these two types varies greatly, it is crucial to construct the correct diagnostic approach for these patients. Several assessment methods, including pathological examination, integration of hepatitis B virus (HBV) DNA by PCR and DNA blot analysis, and heterozygosity analysis of DNA microsatellite loci, have been recently developed to distinguish between these two types of multifocal HCC (Study, 2012). However, the combination of molecular and pathological profiling with analytical methods systematically used to distinguish between these two patterns are still lacking.
The advantage and rapid progress of next-generation sequencing, such as whole-exome sequencing (WES), has made it possible to comprehensively characterize the disease mechanisms and altered genes in multiple cancers (Ally et al., 2017; Yan et al., 2018; Nanki et al., 2020). This approach allows the identification of novel molecular markers and the definition of underlying biological mechanisms, thus facilitating the stratification and characterization of cancers (Cortés-Ciriano et al., 2022). In this study, we selected representative patients of HBV-associated multifocal HCC who underwent tumor resection and exhibited a variable postoperative course.
These HCC samples were conducted whole-exome sequencing (WES) to obtain a complete genetic alteration profiling for each patient. We then performed a systematic analysis of integrated genomics and further correlated these with clinic pathological data. We sought to comprehensively unravel the molecular differences between the two multifocal HCC models as well as differences in pathological features and identify molecular markers for diagnostic, prognostic, and potential therapeutic targets to guide the clinical diagnosis and treatment of multifocal hepatocellular carcinoma.
METHODS
Mutation Analysis
First, we aligned the exome sequencing clean reads against the human reference genome hg19 download from UCSC (http://www.genome.ucsc.edu/) using BWA (Li and Durbin, 2009) with the default parameters. To reduce systematic (non-random) technical error, we applied base quality recalibration with the Genome Analysis Toolkit (GATK) 4.0 (McKenna et al., 2010). The duplicated reads was removed from the alignment files using the Picard tools. Somatic variants, including single nucleotide variants (SNVs) and small insertions and deletions changes (Indels), were detected by Mutect2 of GATK 4.0 on the paired tumor and normal samples. High confidence variants were screened using the criteria of TLOD >10, and then they were annotated by the vcf2maf tool (https://github.com/mskcc/vcf2maf) to obtain nine types of mutations, including “Missense Mutation”, “Nonsense Mutation”, “Nonstop Mutation”, “Splice Site”, “Splice Region”, “In Frame Ins”, “In Frame Del”, “Frame Shift Ins” and “Frame Shift Del” mutations.
Copy Number Analysis
The bioinformatics tool facet-suite (R package) (Shen and Seshan, 2016) was utilized to detect CNVs on paired sequencing reads of tumor and normal samples from the same patient. We first assessed the copy number of different segments and then filtered those segments with a total copy number greater than twice the DNA ploidy level as the amplification (AMP), and segments with a total copy number equal to zero as deletions (DEL). These AMP or DEL segments were the annotated with genes located in the genome context to obtain gene-level copy number alteration. To summarize total copy number variation at the level of the whole exome, we calculated a CNV score, which is similar to the TMB, simply by multiplying the length of CNV segments by their relative average altered weight.
Tumor Mutational Burden Analysis
As the predictive biomarker in solid tumors (Wu et al., 2019), the tumor mutational burden (TMB), was calculated for all tumor samples by counting the non-synonymous mutation rate per megabases. We screened nine types of non-silent mutations from the analysis of the vcf2maf annotation tool. Those nine types of variants include “Splice Site”, “Splice Region”, “Missense Mutation”, “Nonstop Mutation”, “Nonsense Mutation”, “Frame Shift Ins” and “Frame Shift Del”, “In Frame Ins”, “In Frame Del”. Then these variants were all counted for TMB calculation, and the values were normalized by the total length of the CDS regions (36 Megabases) covered by the Agient V6 whole exome (Wang et al., 2020).
Microsatellite Instability and Mutational Signature Analysis
We evaluated the MSI status of the tumor samples with the bioinformatics tool Msisensor (Niu et al., 2014), and screened MSI-H samples with the criteria of an MSIsensor score greater than 20 (Shimozaki et al., 2021). We determined the frequency of 96 mutated triplets per tumor sample based on the distribution of the six substitution patterns (C > A, C > G, C > T, T > A, T > C, T > G) and the neighbor 5′ base and 3′ base (Alexandrov et al., 2013). Together with their frequency, these triplets were summarized to construct a 96 × N mutation type frequency matrix, where N is the number of variants. We took the matrix as the input to determine the 1–30 mutational signatures (Alexandrov et al., 2020) from the Cosmic database (Tate et al., 2019) and to assess the proportion of specific mutational signatures in the samples using the bioinformatics tool DeConstructSig (Rosenthal et al., 2016). 30 mutational signatures were then reduced and classified to mutational signature 1, mutational signature 3, mutational signature 6, mutational signature 10 and others according to their different frequencies in the HCC samples (others represent the less frequently mutated mutational signatures in the HCC samples).
Phylogenetic Analysis
Phylogenetic analyses were performed to elucidate genes essential for promoting tumor recurrence. We compared mutant variants in samples from different cancer samples, counted unique and shared mutations, and used the common and unique mutations in two cancer samples to construct a phylogenetic tree. The phylograms were inferred using the R Bioconductor package phangorn (Schliep, 2011). Through phylogenetic tree analysis, we were able to identify early driver mutations and de novo mutations at different stages, thus providing a comprehensive interpretation of the relationships between different tumors.
Pathology Image Analysis
Feature extraction of cell nucleus from pathology images mainly includes cancer region labeling, patch segmentation, color normalization, nucleus segmentation, nucleus-level and image-level feature extraction (Cheng et al., 2020): 1) The whole slide images (WSIs) were labeled the cancer region manually. 2) Non-overlapping image tiles with a size of 2048*2048 pixels with a resolution of 0.5 μm per pixel were extracted from Whole Slide Images (WSIs). To remove the bias of different staining procedures, all tiles were normalized based on one reference image using the Macenko normalization method. 3) Use a hierarchical multilevel thresholding approach to segment the nucleus for each tile. 4) Calculate 10 features of each nucleus in each image patch. 5) For the nuclei of all patches in one WSI, each type of nucleus-level features was dissected into 15 image-level features by combining a 10-bin histogram and 5 distribution statistics (mean, std, skewness, kurtosis, and entropy). In total, we calculated 100 image-level features for each whole-slide image.
Statistical Analysis
We use the student t test to compare the difference between two continuous variables. Kaplan-Meier survival analysis was used to obtain survival curves reflecting the differences in prognosis among tumor subtypes. Log-rank test was couducted to assess the correlation. Mann-Whitney U test was utilized to analyze the relationship between the two classification variables.
RESULTS
Collection of Multifocal HCC Samples
The clinical outcome of patients with HCC undergoing radical surgery are closely related to the number of intrahepatic tumors. The main purpose of this study was to explore genomic and pathological characteristics among the different intrahepatic tumors and discover multiple modality indicators, thus we specified the intrahepatic tumor numbers to be 2. Multifocal HCC samples are collected from Peking University International Hospital and Peking University Third Hospital, and the inclusion criteria is as follows. The tumor satisfies the criteria for surgical indications defined by the Chinese CSCO Guidelines for primary HCC. Postoperative pathology confirmed that the tumor was hepatocellular carcinoma. Tumors were radically resected (R0), and the number of tumors was two. A total of 17 cases of patients met the criteria, and 34 tumor samples were performed whole-exome sequencing.
Molecular Profiling of Liver Cancer
A total of 17 patients with multifocal liver cancer were recruited for our study, with two cancer foci collected per patient. Sixteen of them were male, one was female, and the cohort’s median age was 45 years (distribution 43–67 years). The median follow-up time was 42 months. WES was performed on 34 tumor samples and paired samples of FFPE specimens, with a average 200× coverage depth for both the tumor and normal samples. The detailed clinical and pathological information of all patients used in this research is given in Supplementary Table S1.
To disentangle somatic mutations and molecular characteristics of multifocal hepatocellular carcinoma, mutation analysis of 34 tumor samples identified 7,752 individual mutations, including 6,378 single nucleotide variants (SNVs) and 1,374 small insertions and deletions changes (Indels) (Supplementary Table S2). The mean number of non-synonymous mutations per sample was 77 (range: 10–176), corresponding to 3.5 non-synonymous mutations per Megabyte (Mb), comparable to the TMB in the TCGA cohort. To explore potential driver mutations in patients, we summarized multiple genes with the highest mutation frequency (Figure 1A). The most commonly mutated genes in these patients were OBSCN, MUC5B, TTN, ZNF469, MUC16, TP53, with VAF greater than 25%. The frequency of TP53 variants is comparable to that observed in the TCGA cohort. Deletions were not widespread in genes with high mutation rates, while BTN2A1, BTN3A1, BTN3A3, BTN3A2, and FLG-AS1 were amplified in several samples.
[image: Figure 1]FIGURE 1 | (A) Landscapes of frequently mutated genes in liver cancer. (B) Mutation signature of liver cancer. (C) Characterization statistics of TMB, CNV, MSI, and Ploidy. (D) Copy number alterations in liver cancer.
Mutation signature analysis showed mutation signature 1, 3, 6, and 22 to be more prevalent in patients (Figure 1B). According to published reports (Koh et al., 2021), Signature 6 is associated with DNA mismatch repair defects and MSI tumors. Signature 1 is associated with age at cancer diagnosis and has been detected in most types of cancer samples. Signature 3 is associated with homologous repair and correlates with BRCA gene function. Signature 22 has been found in urothelial (renal pelvis) carcinoma and liver cancers.
We characterize molecular features of TMB, CNV, MSI, and Ploidy. It is shown that the median TMB was around 5.15 (Figure 1C), and the median CNV was assessed at 214.9 (Figure 1C). The MSI analysis showed that most liver cancer samples had low MSISensor scores, all less than 10 (Figure 1C). Most of the samples had a ploidy around 2 (Figure 1C). The copy number of chromosomes has more amplification events on chromosomes 1 and 8 (Figure 1D).
Identification of Hepatocarcinogenesis Pattern by Genomic Signature
We calculated the Jaccard similarity coefficient (Jaccard Index) (Bu et al., 2021b) of two tumors in the sample patient based on the analysis of shared mutations. An index of 0.01 was taken as the screening threshold, and 17 patients were divided into two groups in total. Among them, we defined those with index <0.01 as separate primary hepatocellular carcinoma, 10 cases in total, and those with index >0.01 as metastatic, 7 cases in total (Figure 2A). The index of the metastatic group ranged from 0.08 to 0.7. The analysis of PFS showed that patients with metastatic pattern showed worse survival (p-value = 0.1142) (Figure 2B). Analysis of differences in mutations between the two subgroups showed that TP53 was more inclined to be present in the subgroup with the metastatic pattern, with a p-value of 0.0212 (8/14 vs. 1/20). ARID1A had a slight elevation in metastasis, with p-value = 0.2022 (4/14 vs. 2/20) (Figure 2C). The analysis of the difference among TMB, CNV, MSI, and Ploidy showed a slight increase in TMB (p-value = 0.1199, average = 6.35 vs. 5.44) and a significant increase in CNV (p-value = 0.0327, average = 358.13 vs. 225.68) in the metastatic group. At the same time, there was no significant difference between MSI and Ploidy (Figure 2D).
[image: Figure 2]FIGURE 2 | (A) Molecular typing strategy of two cancer subtypes. (B) Associations between cancer types and OS. (C) Comparison of the prevalence of altered genes between two cancer subtypes. (D) Comparison of TMB, CNV, MSI, and Ploidy between two cancer subtypes.
Phylogenetic Analysis of Hepatocarcinogenesis
According to Jaccard’s similarity coefficient, seventeen individuals were divided into two groups, of which seven were branching evolutionary (metastatic) patterns, and ten were independent occurrence patterns (Supplementary Figure S1). We further used phylogenetic tree analysis to show the evolutionary patterns of different cancer lesions and discover essential driver genes. The results shown by the phylogenetic tree were consistent with the Jaccard similarity coefficient.
For example, in the case of Pt13, the two tumors are highly similar according to the Jaccard similarity coefficient. Moreover, according to the results of the phylogenetic tree, a total of 107 mutations occurred in the two lesions, of which 82 mutations were shared in both samples (76.6%), i.e., located in the branching part of the shared phylogenetic tree (Figure 3A). Among them, ARID1A, TSC2, JAK3, CIC, CINNB1, and SETD2 were mutated at the early stage of carcinogenesis, which played an essential role in advancing early cancer development and progression.
[image: Figure 3]FIGURE 3 | (A) Phylogenetic tree of patient Pt13. (B) Phylogenetic tree of patient Pt03.
In contrast, case of Pt03 had low level of similarity between the two tumors. As shown by the phylogenetic tree, 345 mutations occurred in either of tumor, while only TNIP2 was a shared early mutation (Figure 3B). And TNIP2 is less reported in cancer and is more like passenger mutation, so the mutation sharing here may be due to technical bias of sequencing or some accumulated alterations due to HBV infection. The phylogenetic trees of remaining cases are available at Supplementary Figures S1–S5.
Pathological Cross-Analysis
The results of molecular testing can provide precise results for accurate diagnostic typing. However, more accessible in the clinic, pathology testing require simpler processing and short time consuming than molecular testing. Therefore, we attempted to compare pathology results from different individuals to determine what percentage of molecular typing could be consistently distinguished by pathology typing. In simple words, assuming molecular typing results as the standard, we wanted to see how much of a typing indication the pathology could achieve. From there, we can determine the scenario in which pathology and molecules are used in combination with each other.
We had a mid-level pathologist interpret the pathological images of these 17 patients and then compared the results of pathological typing with those of molecular testing. The analysis of the results of the 17 cases showed that 70.6% (12 cases) of the molecular typing results could be distinguished by pathological indicators, using the typical indicators of the nuclei of the pathological sections as important measures. Case Pt17 was classified as metastatic by pathological typing because the cell morphology of the two tumors was very similar (Figure 4A). This result is consistent with the results of molecular typing. In contrast, case Pt10 was classified as the seperate primary HCC because the cell morphology of the two tumors was quite different, such as the cellular atypia and sinusoids (Figure 4B). In addition, the survival analysis results of pathological typing showed that pathological interpretation could slightly distinguish between the two cancer subtypes (Figure 4C).
[image: Figure 4]FIGURE 4 | (A) Pathological section of patient Pt17. (B) Pathological section of patient Pt10. (C) Associations between cancer types by pathologists and OS.
Meanwhile, we used a machine learning approach (Cheng et al., 2020) to extract 100 features of the pathological images, represented by matrix vectors, to discriminate between two subtypes by comparing the pathological features of two foci slides. First, all features were combined to calculate the correlation between the two foci of the same patient (Figure 5C), and the results showed that the subtypes could be distinguished by correlation (p < 0.001) (Figure 5A). Second, all 100 pathological features were compared between two groups, and we found that the features of rmean_bin4, rmean_bin5, bmean_bin5, bmean_bin6, disMax_bin1,disMax_bin4 and distMean_bin4 are significantly different between the two groups (Figure 5B).
[image: Figure 5]FIGURE 5 | (A) Barplot of correlation from all pathological image feature. (B) Boxplot of correlation from 15 types of pathological image feature.
DISCUSSION
Hepatocellular carcinoma is a cancer with a high degree of malignancy (Chidambaranathan-Reghupaty et al., 2021). In this study, we collected a cohort of 17 patients with multifocal hepatocellular carcinoma. Then we utilized the bioinformatics approach to analyze the whole-exome molecular data and image data of H&E stained histology slides. By calculating the Jaccard Index between two tumor and reconstructing the tumor clonal evolution, we revealed that intrahepatic metastasis and separate primary patterns reflected from the unique gene mutations and copy number alterations. We also utilized a machine learning approach to extract 100 features of the pathological images, to discriminate between two subtypes by comparing the pathological features of two focal H&E slides.
As two standard approaches for accurate diagnosis in the clinic, we explored the consistency between molecular testing and pathological testing. We confirmed that the pathology results could have 70.5% agreement with those of molecular testing. Based on these results, we propose a multi-modality way to differentiate the pattern of multifocal hepatocellular carcinoma using molecular or pathology testing in different clinical scenarios to provide guidelines for diagnosing and treating multifocal hepatocellular carcinoma.
Due to the scarcity of samples for multifocal hepatocellular carcinoma, only 34 samples were collected in this study, which may limit our construction of a more effective mathematical model for molecular subtyping. We may not achieve a significant outcome if the sample size is not large enough. Therefore, in this study, we mainly took a differential comparison to discover possible molecular biomarkers, and analyzed molecular and clinical features to explore how well the molecules testing is consistent with the pathology testing. Following this work, we are conducting a clinical study of multifocal HCC, yielding a more extensive data collection in the future. We will use advanced computational techniques such as artificial intelligence to optimize further the mathematical model of molecular typing (Tanaka et al., 2021), and some biological intelligent interpreters (Bu et al., 2021a) to generate multiple biomedical knowledge. Moreover, decision tools with multimodal combinations (Patel et al., 2021) could also be developed to optimize the diagnosis of multifocal HCC and thus guide the clinical treatment of liver cancer.
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Background: Lung adenocarcinoma (LUAD) is a highly malignant cancer with a bleak prognosis. Pyroptosis is crucial in LUAD. The present study investigated the prognostic value of a pyroptosis-related signature in LUAD.
Methods: LUAD’s genomic data were downloaded from TCGA and GEO databases. K-means clustering was used to classify the data based on pyroptosis-related genes (PRGs). The features of tumor microenvironment were compared between the two subtypes. Differentially expressed genes (DEGs) were identified between the two subtypes, and functional enrichment and module analysis were carried out. LASSO Cox regression was used to build a prognostic model. Its prognostic value was assessed.
Results: In LUAD, genetic and transcriptional changes in PRGs were found. A total of 30 PRGs were found to be differentially expressed in LUAD tissues. Based on PRGs, LUAD patients were divided into two subgroups. Subtype 1 has a higher overall survival rate than subtype 2. The tumor microenvironment characteristics of the two subtypes differed significantly. Compared to subtype 1, subtype 2 had strong immunological infiltration. Between the two groups, 719 DEGs were discovered. WGCNA used these DEGs to build a co-expression network. The network modules were analyzed. A prognostic model based on seven genes was developed, including FOSL1, KRT6A, GPR133, TMPRSS2, PRDM16, SFTPB, and SFTA3. The developed model was linked to overall survival and response to immunotherapy in patients with LUAD.
Conclusion: In LUAD, a pyroptosis-related signature was developed to predict overall survival and treatment responses to immunotherapy.
Keywords: glycosyltransferase, lung adenocarcinoma, prognosis, gene signature, immunotherapy
INTRODUCTION
Lung cancer is a worldwide public health problem (Bray et al., 2018). The most common subtype of lung cancer is lung adenocarcinoma (LUAD) (Cheng et al., 2016). Despite advancements in lung cancer treatment, patients have a 5-year survival rate of less than 20% (Dixon et al., 2014). The clinical application of immunotherapies enhanced lung cancer therapy (Memmott et al., 2021). However, some lung cancer patients do not respond to immunotherapies (Peters et al., 2019). As a result, it is critical to investigate markers for predicting the lung cancer prognosis.
Pyroptosis is a type of programmed cell death that results in the release of pro-inflammatory cytokines (Liu et al., 2021). Pyroptosis is primarily triggered by the cleavage of gasdermin D (GSDMD) and the activation of NLRP3/caspase-1 (Schneider et al., 2017; Wei et al., 2020). Pyroptosis has been linked to various cancers, including liver cancer, cervical cancer, and breast cancer. (A et al., 2014; Chu et al., 2016; Chen et al., 2021). Ye et al. (2021) found that PRGs play a significant role in tumor immunity. The defined pyroptosis-related signature might be utilized to predict the prognosis of ovarian cancer. In lung cancer patients' alveolar macrophages, NLRP3/caspase-1 inflammasome is suppressed (Lasithiotaki et al., 2018).
Furthermore, the activation of pyroptosis has an inhibitive effect on lung cancer. Polyphyllin VI has an anticancer action associated with pyroptosis activation (Teng et al., 2020). Resibufogenin may suppress lung cancer development and metastasis by triggering pyroptosis (Yin et al., 2021). GSDMD downregulation may limit lung cancer cell growth via the EGFR/Akt signaling pathway. Patients with LUAD who had less GSDMD expression had a better prognosis (Gao et al., 2018). As a result, PRGs may have prognostic and therapeutic potential in LUAD management.
We investigated the role of pyroptosis in the prognosis of LUAD, utilizing a pyroptosis-related signature in this study. The established prognostic model might predict LUAD patients' overall survival (OS) and responses to treatment. This study would promote the rationale use of immunotherapy in LUAD.
MATERIALS AND METHODS
Data Sources
The Cancer Genome Atlas (TCGA) genomic data for LUAD samples were obtained from the Genomic Data Commons. Gene Expression Omnibus (GEO) was used to download gene expression microarrays of LUAD samples (GSE31210) and non-small cell lung cancer (NSCLC) samples (GSE37745 and GSE50081) and lung cancer (GSE30219). The Robust Multichip Average (RMA) method and R package “affy” normalized GSE37745 gene expression data. Detailed information of the cohorts is presented in Supplementary Tables S1, S2.
IMvigor210 was a single-arm phase Ⅱ study that looked into an anti-PD-L1 agent (atezolizumab) in patients with metastatic urothelial carcinoma (mUCC) (NCT02108652 and NCT02951767) (Mariathasan et al., 2018). The R package “IMvigor210CoreBiologies” obtained all the expression and clinical data from the IMvigor210 trials. GEO provided RNA-seq data for a total of 27 advanced NSCLC patients who were treated with anti-PD-1/PD-L1 (GSE135222).
Variation and Interactions of Pyroptosis-Related Genes
A total of 47 PRGs were obtained from the study of Song et al. (2021). The R package “maftools” was used to demonstrate PRG mutation. The R package “ggpubr” was used to visualize the copy number variation (CNV) information of PRGs. The R package “limma” was used to examine the differential expression of PRGs in tumor samples.
The Pathway Commons database was used to find PRG protein–protein interactions. Pearson correlation was used to examine the co-expression status of PRGs (Supplementary Table S3). Cytoscape software was utilized to visualize the correlation network.
Identification of Pyroptosis-Related Subtypes
Based on the pyroptosis genes and R package “pheatmap,” K-means clustering was used to determine the pyroptosis-related subtypes (subtypes 1 and 2). The Kaplan–Meier survival analysis was performed to analyze patient differences between the two subtypes in conjunction with the log-rank test. The difference between two subtypes based on the PRG expression was investigated using principal component analysis (PCA).
Distinction of Cancer Therapeutic Signatures Between Subtypes
We obtained 25 cancer treatment-predicted signature sets from various publications (Sweis et al., 2016; Ayers et al., 2017; Mariathasan et al., 2018; Kamoun et al., 2020). The R package “GSVA” was used to calculate the therapeutic signature gene set enrichment score using gene set variation analysis (GSVA). Detailed information of 25 cancer treatment-predicted signature sets is listed in Supplementary Table S4. The one-sided Wilcoxon rank-sum test was used to analyze the differences in the therapeutic enrichment scores between subtypes.
Characteristics of the Tumor Microenvironment
The range of infiltration of 22 immune cells in TCGA LUAD samples was inferred by the CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcripts) method (Newman et al., 2015). CIBERSORT can compute the abundances of specific cell types in a mixed sample based on the bulk expression. In addition, the ESTIMATE (Estimation of STromal and Immune Cells in MAlignant Tumor Tissues Using Expression Data) method was used to calculate the abundances of immune cells by the R package “estimate.” We focused on the mRNA expression of five immune checkpoints: PD-1, PD-L1, CTLA4, CD47, and BTLA. The one-sided Wilcoxon rank-sum test was utilized to analyze the differences between subtypes.
Functional Analysis for Subtypes
The R package “limma” discovered 719 differentially expressed genes (DEGs) between two subtypes with |log2FC| > 0.5 and p < 0.001. A web-based program, Metascape, was used to perform the enrichment analysis on 719 DEGs using ontology sources such as KEGG Pathway, GO, Reactome, and other canonical pathways (Supplementary Table S5). Then, a selection of enriched terms with a similarity greater than 0.3 was chosen and shown as a network plot.
Identification of a Key Module
WGCNA (weighted gene co-expression network analysis) is a data reduction method and an unsupervised classification method (Langfelder and Horvath, 2008; Langfelder and Horvath, 2012). The co-expression network was built using the Sangerbox 3.0 tool and DEG expression profile. Module–trait association analysis was used to determine which co-expression module was the most relevant to the clinical features. The genes were clustered, and a heatmap was created to illustrate the relationship between modules and phenotype.
Construction of a Pyroptosis Subtype-Related Prognostic Model
The least absolute shrinkage and selection operator (LASSO) approach and Cox regression model were employed to screen the prognostic genes in the key module. One standard error (SE) over the minimum threshold was chosen. The R package “glmnet” managed the entire process. Finally, a seven-gene risk score formula was developed, and multivariate Cox regression coefficients were computed using the R package “survival”: Pyroptosis subtype-related risk score (PSR_score) = (exp Gene1 * coef Gene1) + (exp Gene2 * coef Gene2) + … +(exp Gene7* coef Gene7).
Survival Analysis
Patients were classified based on the median of their PSR_score. The R package “survival” used the log-rank test to compare the survival times of patients with high PSR_score and patients with low PSR_score. Furthermore, stratified analysis was performed to determine the protective effect of PSR_score based on the T stage, N stage, M stage, and tumor stage. Chi-square tests were used to examine the connections between the PRG score and clinical factors such as age, gender, T stage, N stage, and M stage. The data were presented using Kaplan–Meier graphs (Supplementary Table S1, S2).
Statistical Analysis
The one-sided Wilcoxon rank-sum test was used to determine the difference between the two subtypes or high- and low-PSR_score groups. R version 4.1.2 was used for all statistical studies. p < 0.05 was considered statistically significant.
RESULTS
Genetic and Transcriptional Alterations of Pyroptosis Genes in Lung Adenocarcinoma
Supplementary Figure S1 depicts the analytical process used in this study. We first explored the landscape of variation in PRGs in the genome and transcriptome. A relatively high mutation frequency of PRGs was observed in LUAD (Figure 1A). TP53 exhibited the highest mutation frequency (55%), followed by NLRP3, NLRP7, and NLRP2. Then, we looked at the link between TP53 mutation and PRG expression. CHMP7, IRF2, CASP4, ELANE, BAX, and TIRAP were all downregulated in TP53 mutation samples (Supplementary Figure S2, p < 0.1). Following that, we investigated the CNV landscape of PRGs in LUAD (Figure 1B). Copy number amplification was common in HMGB1, BAX, CASP3, IRF2, IL18, and GPX4, whereas copy number deletion was common in GSDMC, GSDMD, AIM2, and CHMP6.
[image: Figure 1]FIGURE 1 | Genetic and transcriptional alterations of pyroptosis-related genes in LUAD. (A) Mutation frequencies of pyroptosis-related genes in LUAD patients of TCGA cohort. (B) Frequencies of CNV gain and loss of pyroptosis-related genes in LUAD patients. (C) Expression distributions of pyroptosis-related genes between tumor and normal samples.
Furthermore, we investigated the difference in PRG expression levels between tumor and normal tissues (Figure 1C). A total of 30 (63.83%) PRGs showed differential expression (p < 0.05), with 23 genes showing substantial upregulation and seven showing significant downregulation in tumor samples.
Identification of Pyroptosis-Related Subtypes
We built an interaction network to investigate the relationship between PRGs (Figure 2A). The color of the edges indicated the five types of protein–protein interactions, and the thickness of the edges indicated the level of co-expression between PRGs, as determined by Pearson correlation (Supplementary Table S3). The network showed a strong relationship between PRGs.
[image: Figure 2]FIGURE 2 | Identification of pyroptosis-related subtypes by clustering. (A) Interactions and co-expression among pyroptosis-related genes in LUAD. The colored edges represent protein–protein interactions, with the line thickness indicating the strength of the correlation between pyroptosis-related genes. (B) Two heterogeneous subtypes (subtype 1 and subtype 2) were identified according to unsupervised K-means clustering. (C) Kaplan–Meier curves of OS between subtype 1 and subtype 2. (D) PCA analysis demonstrating a remarkable difference in expression of pyroptosis-related genes between the two subtypes.
To investigate the heterogeneous features of LUAD further, a K-means clustering algorithm was used to categorize patients based on PRG expression profiles. Patients with LUAD were classified into two subtypes (Figure 2B). Survival analysis revealed that subtype 1 had a considerably greater overall survival than subtype 2 (Figure 2C, p = 0.039, log-rank test). According to principal component analysis (PCA), LUAD patients had unique PRG expression patterns between two subtypes (Figure 2D).
Characteristics of the Tumor Microenvironment and Therapeutic Evaluation in Distinct Subtypes
The therapeutic differentiation between the subtypes was investigated, and the GSVA approach was utilized to determine the score of 25 therapeutic signature sets in TCGA LUAD data (Figure 3A). A total of 23 (92%) therapeutic signatures differed significantly between the two subtypes, with 20 therapeutic signature scores in subtype 2 significantly higher than those in subtype 1 and three therapeutic signature ratings significantly lower (Figure 3B, p < 0.05). Patients in subtype 2 were found to be more amenable to treatment.
[image: Figure 3]FIGURE 3 | Distinction of therapeutic signature and TME between the subtypes. (A) Heatmap showed the GSVA score of 25 therapeutic signature gene sets in TCGA LUAD samples. The therapeutic signature gene sets belong to six categories. (B) Distribution of therapeutic signature score between two subtypes. (C–D) Abundance of infiltrating immune cell types in two subtypes. (E) Distribution of the ESTIMATE score in two subtypes. (F) Expression levels of five checkpoints in two subtypes.
The differentiation of TME between two subtypes is then evaluated. According to the CIBERSORT algorithm, infiltration of “B cells naive,” “dendritic cells activated,” “mast cells resting,” “monocytes,” and “neutrophil plasma cells” were higher in subtype 1 than in subtype 2 (Figure 3C, p < 0.05). “B cells memory,” “macrophages M1,” “NK cells resting,”, “T cells CD4 memory activated,” and “T cells CD8” showed significantly lower infiltration in subtype 1 than in subtype 2 (Figure 3D, p < 0.05). Furthermore, we investigated the tumor purity differentiation across the subtypes, finding that the ESTIMATE score, stromal score, and immune score in subtype 1 were considerably lower than those in subtype 2 (Figure 3E, p < 0.05). Furthermore, we investigated the distinction between the subtypes in the ability to recognize tumor cells and execute immune responses. We looked at the differential expression of five immunological checkpoints and discovered that the expression of all the five immunological checkpoints was considerably greater in subtype 2 than that in subtype 1 (Figure 3F, p < 0.05). The result indicated that samples in subtype 2 had a higher level of immune infiltration.
Analysis of Functional Differences Between Subtypes Based on Differentially Expressed Genes
To investigate the potential biological activity of the subtypes, we detected DEGs between the two subtypes, and Metascape performed enrichment analysis on 719 DEGs (Figures 4A,B). The DEGs were found to be significantly enriched in a variety of immune-related pathways and processes, including “leukocyte activation,” “inflammatory response,” “innate immune response,” and “positive regulation of immune response” (Supplementary Table S5).
[image: Figure 4]FIGURE 4 | Functional analysis and identification of the co-expression module. (A) Pathway and process enrichment analysis has been conducted for DEGs that are identified between the subtypes. The graphical representation showed top 20 enrichments with p < 0.01. (B) Enrichment terms with a similarity > 0.3 are connected by edges. (C–D) Analysis of the scale-free fit index for various soft-thresholding powers and the mean connectivity for various soft-thresholding powers. (E) Clustering relationships among WGCNA modules. (F) Correlation between modules and clinical features. Blue represents a positive correlation, and white represents a negative correlation.
Then, WGCNA was used to build co-expressed networks based on the expression of 719 DEGs and identify important modules linked with clinical traits. The power value for modules was screened to ensure an average connection and high independence. The power value in this study was set at 5 as the soft-thresholding parameter to ensure a scale-free network (Figures 4C,D). In total, four modules have been identified (Figure 4E). The module–trait association analysis was used to discover co-expression modules that were highly relevant to clinical traits. Figure 4F depicts the relationship between modules and phenotype. Correlation analysis revealed that the blue module, which comprises 91 genes, was identified as a correlation between the prognosis and tumor stage. The top five highly enriched phrases for blue module genes were “secretion,” “cellular-modified amino acid metabolic process,” “epidermis development,” “NABA MATRISOME ASSOCIATED,” and “malignant pleural mesothelioma” (Supplementary Figure S3; Supplementary Table S5).
Construction and Validation of the Prognostic PSR_score
A model was built with seven pyroptosis subtype-related co-expression prognostic genes, FOSL1, KRT6A, GPR133, TMPRSS2, PRDM16, SFTPB, and SFTA3, to investigate the prognostic value of the selected subtype-related co-expression blue module genes (Figures 5A,B). Then, using the expression of seven genes, we established a predictive model according to the multivariate Cox proportional hazard model: PSR_score = (0.1072 * FOSL1 exp) + (0.09327 * KRT6A exp) + (−0.1144 * GPR133 exp) + (0.04062 * TMPRSS2 exp) + (−0.1238 * PRDM16 exp) + (−0.02503 * SFTPB exp) + (−0.04079 * SFTA3 exp).
[image: Figure 5]FIGURE 5 | Construction and validation of the prognostic PSR_score by LASSO and COX regression analysis. (A) LASSO coefficient profiles of 91 blue co-expression module genes. (B) Cross-validation for tuning parameter selection in the LASSO model. (C–D) Log-rank test was employed to assess the difference in OS between high and low PSR_score samples in TCGA cohorts and ROC curve of the prognostic model. (E–F) Log-rank test was utilized to assess the difference in OS between high and low PSR_score samples in the integrated lung cancer cohorts and ROC curve of the prognostic model.
The PSR_score of each patient in TCGA was calculated using the seven-gene-involved formula. The patients were divided into two groups using the median as the cutoff value: those with a high PSR_score and those with a low PSR_score. Patients with a high PSR_score had a substantially shorter life expectancy (Figure 5C, p = 6. 8e-10, log-rank test). The area under the curve (AUC) of the receiver operating characteristic (ROC) curve revealed that PSR_score correctly predicted mortality (Figure 5D, AUC = 0.679). We then investigated PSR_score’s ability to predict patient prognosis within clinicopathological subgroups. In most cancer stages, high PSR_score patients had a substantially worse OS than low PSR_score patients (Supplementary Figure S4, p < 0.05, log-rank test).
Following that, we validated the prognosis power of PSR_score in independent datasets. Survival analysis was carried out in four GEO lung cancer cohorts (GSE30219, GSE31210, GSE37745, and GSE50081), and the results revealed that a high PSR_score indicated a poor prognosis in all GEO datasets (Supplementary Figure S5, p < 0.1, log-rank test). We combined four GEO lung cancer cohorts into a big dataset to confirm the robustness of PSR_score. Similarly, patients with a high PSR_score had a significantly poor OS (Figure 5E, p = 1.1e-16, log-rank test), with an AUC of 0.682 (Figure 5F).
Correlation of PSR_score and Immunotherapy
Pearson correlation analysis was performed to assess the relationship between PRG_score and the number of immune cells to study the link between PRG_score and immunological infiltration. Infiltration of “macrophages M1,” “T cells CD4 memory activated,” “macrophages M0,” “NK cells resting,” “NK cells activated,” “T cells CD8,” and “dendritic cells activated” was significantly positively connected with PRG_score (Figure 6A-G, p < 0.05, Pearson correlation analysis). Furthermore, ESTIMATE score of high PRG_score samples was higher than that of low PRG_score samples (Figure 6H). We also investigated the relationship between the expression of seven genes in the model and immune cells. We discovered that the quantity of most immune cells was associated with the expression of these genes (Figure 6I). In TCGA LUAD cohorts, the expression of PD-1 and PD-L1 was significantly higher in high PRG_score samples than in low PRG_score samples (Figures 6J,K, p < 0.05).
[image: Figure 6]FIGURE 6 | Correlation of PSR_score and immune cell infiltration. (A–G) Positive correlation between PRG_score and immune cells. (H) Distribution of the ESTIMATE score in high and low PRG_score groups. (I) Correlations between the abundance of immune cells and seven genes in the proposed model. (J–K) Expression of PD-1 and PD-L1 in high and low PRG_score groups.
To further explore if the risk score can predict patients' responses to immunotherapy, we compared OS of patients with a high PRG_score versus low PRG_score who were receiving immunotherapy. In IMvigor210 and GSE135222 cohorts, patients with a high PRG_score had a significantly worse prognosis (Figures 7A,B, p < 0.05, log-rank test). In addition, we looked at the differences in immune checkpoint gene expression between high and low PRG_score groups. PD-L1 and CD47 in the high PRG_score group of the IMvigor210 cohort were significantly greater than those in the low PRG_score group (Figures 7C,D; p < 0.05).
[image: Figure 7]FIGURE 7 | Prognosis power of PSR_score in patients with immunotherapy. (A–B) Log-rank test was used to assess the difference in OS between high and low PSR_score samples in IMvigor210 and GSE135222 cohorts. (C–D) Expression of PD-L1 and CD47 in high and low PRG_score groups in the IMvigor210 cohort.
DISCUSSION
Increasing research has proven the role of pyroptosis in cancer progression (Xia et al., 2019; Fang et al., 2020; Tan et al., 2021). However, the prognostic potential of pyroptosis in LUAD is still unknown. The genetic and transcriptional mutations of PRGs in LUAD were detected in this study. TP53 had the highest mutation frequency among the mutated genes (Figure 1). TP53 mutation was linked to the downregulation of PRGs such as CHMP7, IRF2, CASP4, ELANE, BAX, and TIRAP (Supplementary Figure S1). By elevating the pyroptotic level, the transcription factor p53 may be able to suppress lung cancer cell proliferation (Braden et al., 2014; Zhang et al., 2019). In LUAD samples, 30 PRGs were differentially expressed (Figure 1). Based on the 30 DEGs, the patients were divided into two groups. The OS of subtype 1 is higher than that of subtype 2 (Figure 2).
The score of 25 therapeutic signature sets was calculated to investigate the therapeutic differentiation between the two subtypes. There were 23 therapeutic signatures that differed between the two subtypes. Patients with subtype 2 responded well to the treatment (Figures 3A,B). The difference in TME between the two subtypes was then examined. Compared to subtype 1, subtype 2 had high immunological infiltration of M1 macrophages, NK cells, CD4+, and CD8+ T cells. Patients with LUAD have lower numbers of NK cells, CD4+, and CD8+ T cells (Cui et al., 2021). CD4+ and CD8+ T cells are critical in mediating antitumor responses. Patients with higher numbers of CD4+ T cells respond better to PD-1 blockade therapy (Kagamu et al., 2020). The samples showed greater levels of immune infiltration in subtype 2. As a result, the variation in immune statuses may cause a differential prognosis between the two subtypes.
Following that, DEGs between subtypes 1 and 2 were identified. A total of 719 DEGs were found to be enriched in immune-related pathways and processes, such as “leukocyte activation.” A co-expression network was constructed by WGCNA using these DEGs, and four modules were identified. The blue module was associated with the prognosis and tumor stage (Figure 4).
A seven-gene-involved prognosis model was created using LASSO Cox regression to investigate the prognostic value of genes in the blue module, comprising FOSL1, KRT6A, GPR133, TMPRSS2, PRDM16, SFTPB, and SFTA3. The patients were divided into two groups based on the prognostic model: those with a high PSR_score and those with a low PSR_score. Patients in the low PSR_score group have a better OS than those in the high PSR_score group in TCGA cohort. The GEO cohorts yielded comparable results (Figure 5). FOSL1 and GPR133 were investigated for their roles in LUAD. FOSL1 expression, for example, was found to be inversely associated with the OS of lung cancer patients, particularly those with LUAD. FOSL1 induction might enhance LUAD initiation, whereas FOSL1 deficiency inhibits LUAD cell proliferation and promotes apoptosis (Elangovan et al., 2018). The GPR133 levels were found to be lower in LUAD samples. Higher GPR133 expression was associated with a better prognosis in LUAD patients. Increased GPR133 expression in LUAD patients may limit cell proliferation and tumor progression (Wu et al., 2021).
Then, the correlation between PSR_score and cancer immune features was evaluated. M1 and M0 macrophages, CD4+ and CD8+ T cells, and NK cells were all found to be positively linked with the PRG scores. Higher levels of immunological infection were associated with higher PRG scores and ESTIMATE scores. The infection levels of B cells, CD4+ T cells, and neutrophils have prognostic values for LUAD (Kadara et al., 2017; Ma et al., 2020; Zhang and Ma, 2021). Furthermore, in the TCGA LUAD cohort, patients in the high PRG_score group have higher expression levels of PD-1 and PD-L1 than those in the low PRG_score group (Figure 6). According to the findings, an increased PD-1 and PD-L1 expression was associated with a poor prognosis in LUAD patients (Teglasi et al., 2017; Xia et al., 2017).
Finally, we investigated the predictive value of PSR_score for immunotherapy response. Patients with a low PRG_score have a greater OS rate than those with a high PRG_score. Furthermore, in the IMvigor210 cohort, PD-L1 and CD47 were strongly expressed in the high PSR_score group (Figure 7). LUAD TME was a good predictor of response to immune checkpoint blockade treatment (Wang et al., 2020; Yi et al., 2021). These findings suggested that LUAD patients with a high PSR_score had a poor prognosis due to TME. As a result, the pyroptosis-associated model developed shows predictive potential for responsiveness to immune checkpoint blockade in LUAD. Our results investigated the role of pyroptosis in TME remodeling. Using PRGs, we found a subtype with a poor prognosis, which provides new insights into locating possible immunotherapy manufacturers.
CONCLUSION
The current study established a pyroptosis-related signature for predicting OS and immunotherapy responses in LUAD, which may lead to new insights into the individualized LUAD therapy.
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Background: Renal cell carcinoma (RCC) is the predominant type of malignant tumor in kidney cancer. Finding effective biomarkers, particularly those based on the tumor immune microenvironments (TIME), is critical for the prognosis and diagnosis of RCC. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) play a crucial role in cancer immunity. However, the comprehensive landscape of immune infiltration-associated lncRNAs and their potential roles in the prognosis and diagnosis of RCC remain largely unexplored.
Methods: Based on transcriptomic data of 261 RCC samples, novel lncRNAs were identified using a custom pipeline. RCC patients were classified into different immune groups using unsupervised clustering algorithms. Immune-related lncRNAs were obtained according to the immune status of RCC. Competing endogenous RNAs (ceRNA) regulation network was constructed to reveal their functions. Expression patterns and several tools such as miRanda, RNAhybrid, miRWalk were used to define lncRNAs-miRNAs-mRNAs interactions. Univariate Cox, LASSO, and multivariate Cox regression analyses were performed on the training set to construct a tumorigenesis-immune-infiltration-related (TIR)-lncRNA signature for predicting the prognosis of RCC. Independent datasets involving 531 RCC samples were used to validate the TIR-lncRNA signature.
Results: Tens of thousands of novel lncRNAs were identified in RCC samples. Comparing tumors with controls, 1,400 tumorigenesis-related (TR)-lncRNAs, 1269 TR-mRNAs, and 192 TR-miRNAs were obtained. Based on the infiltration of immune cells, RCC patients were classified into three immune clusters. By comparing immune-high with immune-low groups, 241 TIR-lncRNAs were identified, many of which were detected in urinary samples. Based on lncRNA-miRNA-mRNA interactions, we constructed a ceRNA network, which included 25 TR-miRNAs, 28 TIR-lncRNAs, and 66 TIR-mRNAs. Three TIR lncRNAs were identified as a prognostic signature for RCC. RCC patients in the high-risk group exhibited worse OS than those in the low-risk group in the training and testing sets (p < 0.01). The AUC was 0.9 in the training set. Univariate and multivariate Cox analyses confirmed that the TIR-lncRNA signature was an independent prognostic factor in the training and testing sets.
Conclusion: Based on the constructed immune-related lncRNA landscape, 241 TIR-lncRNAs were functionally characterized, three of which were identified as a novel TIR-lncRNA signature for predicting the prognosis of RCC.
Keywords: renal cell carcinoma, long non-coding RNAs, prognostic signature, cancer immunity, immune infiltration
INTRODUCTION
Kidney cancer is among the most common malignant tumors worldwide, with an estimated nearly 0.4 million new cases (2.2%), and the leading cause of cancer-related deaths (was nearly 0.2 million; 1.8% of the total cancer-related deaths) according to the latest GLOBOCAN 2020 data (Sung et al., 2021). Renal cell carcinoma (RCC) is the predominant type of malignant tumor affecting the kidney, accounting for over 90% of malignant tumors in this organ (Moch et al., 2016). Compared to early or localized RCC, advanced disease has a poor prognosis, with a 5-years survival rate of less than 12% (Atkins and Tannir, 2018; Rao et al., 2018). Recent studies have reported several prognostic models for RCC. However, the Area Under Curve (AUC) values were all less than 0.83 (Qi-Dong et al., 2020; Ma et al., 2021; Sun et al., 2021; Yu et al., 2021). Therefore, a more efficient model is urgently needed for predicting the prognosis of RCC.
Long non-coding RNAs (lncRNAs) are longer than 200 nucleotides and can not encode proteins. Recent studies reported that lncRNAs are involved in multiple biological and cancer-related processes, including tumorigenesis, progression, and metastasis (Moran et al., 2012; Bhan et al., 2017; Peng et al., 2017; Yao et al., 2019; Bao et al., 2020). Increasing evidence have revealed that lncRNAs play crucial roles in cancer immunity (Denaro et al., 2019; Wu et al., 2020). However, the comprehensive landscape of immune infiltration-associated lncRNAs and their potential roles in the prognosis and diagnosis of RCC remain largely unexplored.
Based on raw transcriptomic data from RCC patients, we aim to construct a comprehensive lncRNA landscape for RCC, characterize the regulation in tumor immune microenvironments (TIME), and construct a prognostic signature for RCC.
MATERIALS AND METHODS
Data Sources and Expression Analysis
In our study, a total of 303 data from RCC patients were downloaded from the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo), including tissue and urinary raw transcriptomics data, tissue miRNA data, and clinical information. 261 tissue raw transcriptomics data were used to identify novel lncRNAs. Tissue transcriptomics data and miRNAs data were used to calculate tumorigenesis-related (TR-) lncRNAs, TR-mRNAs, and TR-miRNAs by comparing tumors with controls. All tumor samples were used to investigate the immune infiltration, classify immune groupings, identify tumorigenesis-immune-infiltration-related (TIR)-lncRNAs and TIR-mRNAs. Raw transcriptomics data from urinary samples were used to assess the release of tumor TIR-lncRNAs into the urine in RCC. Tumor transcriptomics data with survival information was regarded as the training set to construct the prognostic model based on TIR-lncRNAs. The detailed information of GEO datasets in our study were shown in Table1.
TABLE 1 | Detailed information of GEO datasets.
[image: Table 1]Besides, we also collected 531 data from kidney renal clear cell carcinoma patients which were downloaded from The Cancer Genome Atlas (TCGA) database, including tumor transcriptomics data and clinical information. These data were independent of the training set, which was regarded as the testing set to validate the prognostic model. TPM (transcripts per million) was used to normalize the gene expression level, and log2 transformed (log2 (TPM+1)).
Raw transcriptome data were analyzed by FastQC v0.11.3 with default parameters (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and removed the adapters and low-quality sequences by TrimGalore-0.6.0 with default parameters (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Clean reads were mapped by using STAR v.2.7.8a (Dobin et al., 2013; Dobin and Gingeras, 2015) (set the twopassMode as Basic), de novo assembled by using StringTie v2.1.6, and merged by using the cuffmerge function of Cufflinks v2.2.1 (Trapnell et al., 2010). The human reference genome version hg38/GRCh38 was utilized. Reads counts and TPM values were calculated by Kallisto v.0.46.2 (Bray et al., 2016) with default parameters.
Identification of Novel lncRNAs in RCC
Based on assembled transcripts, we compared it with GENCODE v38 (Frankish et al., 2019) and RefLncRNA (Jiang et al., 2019) genes annotation by using the cuffcompare function of Cufflinks (Trapnell et al., 2010), respectively. The assembled transcripts were classified into four categories according to the “class code” information, including “complete match” (=), “partial match” (j), “contained” (c), and “not match”. Not matched transcripts (class code included “i, x, u”) were further used to identify the reliable novel lncRNAs by the following steps (Luo et al., 2021): ⅰ) transcript length>=200; ⅱ) have more than one exon; ⅲ) recurrence in at least two samples; ⅳ) identified as novel lncRNAs in both CPC2(Coding Potential Calculator) (Kang et al., 2017) and CNCI (Coding Noncoding Index) (Sun et al., 2013). The final lncRNAs catalog was obtained by combining the RefLncRNA and novel lncRNAs directly.
Identification of TR-lncRNAs, TR-mRNAs, and TR-miRNAs in RCC
To obtain TR-lncRNAs, TR-mRNAs, and TR-miRNAs, the “DESeq2” package in R was used to analyze the transcripts data and miRNAs data by comparing tumors with controls with the cutoff criteria (adjusted p-value < 0.05 and | log2 fold change | >1). Genes with low expression levels (i.e., which were expressed only in one sample and the sum of expression levels of all samples less than 10) were removed from the data.
Identification of Immune Groups, IR-lncRNAs and TIR-lncRNAs in RCC
Single sample gene set enrichment analysis (ssGSEA) was performed by “GSVA” packages in R to calculate the enrichment scores of 28 types of immune cells in the tumor microenvironment (Hänzelmann et al., 2013; Charoentong et al., 2017). Tumors were further classified into different immune groups by using the unsupervised clustering algorithm (“ConsensusClusterPlus” packages in R). And then ESTIMATE algorithms (“estimate” packages in R) were used to confirm these immune groupings by calculating the immune score, stromal score, and estimate score. By comparing the immune-high group with the immune-low group, IR-lncRNAs were calculated by “DESeq2” with the cutoff criteria (adjusted p-value < 0.001 and | log2 fold change | >3). IR-mRNAs were calculated by “DESeq2” with the cutoff criteria (adjusted p-value < 0.05 and | log2 fold change | >1). Through the intersection analysis, TIR-lncRNAs and TIR-mRNAs were obtained.
Construction of ceRNA Network
miRanda (John et al., 2004) (http://www.miRNA.org/) and RNAhybrid (Krüger and Rehmsmeier, 2006) (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/) was used to predict TIR-lncRNAs and TR-miRNA interactions. ‘-sc’ set as 160 in miRanda and set “-b 1 -e -25 -f 8,12 -u 1 -v 1 -s 3utr_human” in RNAhybrid. The TIR-mRNAs and TR-miRNAs interactions were predicted by miRWalk (Dweep et al., 2011; Dweep and Gretz, 2015) (http://mirwalk.umm.uni-heidelberg.de/). TargetScan (Agarwal et al., 2015) and miRDB (Liu and Wang, 2019; Chen and Wang, 2020) databases were used to confirm this prediction. The “psych” package in R was used to calculate the correlation between lncRNAs and mRNAs. The positive correlated pairs between lncRNA and mRNA were selected with the cutoff criteria (adjusted p-value < 0.05 and correlation coefficient >0.65). Based on the miRNA-mRNA, miRNA-lncRNA, and mRNA-lncRNA pairs, the lncRNA–miRNA–mRNA ceRNA network was constructed and visualized by Cytoscape v3.8.2 software (Shannon et al., 2003).
Investigation of the Releasing of Tumor TIR-lncRNAs Into the Urine
Raw urinary transcriptome data from RCC patients were quality controlled, mapped, de novo assembled, and merged using the same methods as tissue transcriptome data. The primary assembled transcripts were used to compare with the TIR-lncRNAs catalog, GENCODE v38 (Frankish et al., 2019), and RefLncRNA (Jiang et al., 2019) genes annotation by using the cuffcompare function of the Cufflinks package, respectively.
Construction and Validation of the TIR-lncRNA Signature
In the training set, univariate Cox regression, LASSO regression, and multivariate Cox regression analyses were performed by “survival”, “survminer”, and “glmnet” packages in R to screen prognosis-related TIR-lncRNAs and to construct a TIR-lncRNA signature for predicting the prognosis of RCC. p < 0.05 was considered to be related to the prognosis. The risk score for each patient was calculated by the following formula. Log2-transformed TPM was used.
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RCC patients in the training set were divided into high-risk and low-risk groups according to the median value of risk score. Kaplan-Meier (K-M) survival analysis (“survival” and “survminer” packages in R) was performed to compare the survival rate between the high-risk and low-risk groups. Receiver-operating characteristic (ROC) analysis (“pROC” packages in R) was performed to evaluate the sensitivity and specificity of the TIR-lncRNA signature.
In the testing set, the risk score was calculated for each patient by the same formula as the training set. RCC patients in the testing set were divided into high-risk and low-risk groups according to the same cutoff as the training set. The K-M survival analysis was performed to compare the survival rate between the high-risk and low-risk groups.
Univariate and multivariate Cox regression analyses were used to assess whether TIR-lncRNA signature was an independent predictor for RCC patients among other clinical information, including age, gender, tumor size, and cancer stage.
In addition, a nomogram score system was constructed using the “rms” and “survival” packages in R, based on the TIR-lncRNA signature, age, gender, tumor size, and pathological stage in the training set, to predict the survival of RCC patients. Each variable was allocated a point in the nomogram score system, adding up to a total point for each sample that predicts 1-, 3-, and 5-years survival (Iasonos et al., 2008).
Gene Functional Enrichment Analysis
To explore the functions of TR-lncRNAs and TIR-lncRNAs, functional enrichment analyses were conducted using the online databases KOBAS 3.0 (http://kobas.cbi.pku.edu.cn) and “Metascape” (Zhou et al., 2019) (http://metascape.org).
Statistical Analysis
All statistical analyses were conducted using the R software version 4.1.1. Forest-plot was plotted by “forestplot” packages in R. Upset plot was plotted by “ComplexHeatmap” packages in R. All comparisons for continuous variables were performed using the two-tailed Wilcoxon test for two groups. For categorical variables, Pearson’s Chi-squared test was used. The FDR method in R was used to adjust the p-value outputted in multiple comparisons. p-value or adjusted p-values < 0.05 were considered as the significance level.
RESULTS
Construction of a Comprehensive lncRNA Catalog for RCC Patients
In order to systematically investigate lncRNAs and their roles in RCC immunity, raw transcriptome data from RCC tissues were used to identify novel lncRNAs. The workflow was shown in Figure 1. After quality control, reads alignment, de novo transcriptome assembly, and merging, 157,119 primary genes were obtained (Figure 2A). To assess the accuracy of the assembly results, comparative analysis was performed using reference protein-coding genes and RefLncRNA genes annotation. More than 86% of the protein-coding genes were verified, and over 50% were completely matched (Figure 2B). In comparison, only 22.94% of the reference lncRNAs were verified (Figure 2C). Based on the primary assembled transcripts that did not match the reference genes, a custom pipeline was used to identify reliable lncRNAs (see Methods 2.4). Finally, 44,507 novel lncRNA genes were identified (Figure 2A).
[image: Figure 1]FIGURE 1 | The overall workflow and study design showed the process of identifying novel lncRNAs, identifying TIR-lncRNAs, TIR-mRNAs, and TR-miRNAs, constructing ceRNA network, assessing tumor lncRNAs shedding into the urine, constructing and validating the 3-TIR-lncRNAs classifiers to predict the prognosis of RCC. RCC, renal cell carcinoma; lncRNAs, long noncoding RNAs; ROC, receiver-operating characteristic.
[image: Figure 2]FIGURE 2 | Identification and characterization of novel lncRNA. (A) The identification process of novel lncRNAs. (B) The statistics of assembled transcripts matched to GENCODE v38 genes annotation. (C) The statistics of assembled transcripts matched to RefLncRNA genes annotation. (D) Density diagrams showed the transcript length in protein-coding genes, reference lncRNAs, and novel lncRNAs (E) Bar plot showed exon numbers in protein-coding genes, reference lncRNAs, and novel lncRNAs. (F) Boxplot showed transcript expression levels of protein-coding genes, reference lncRNAs, and novel lncRNAs in tumors and controls.
To further characterize the novel lncRNAs, we analyzed their transcript lengths, exon numbers, and expression profiles. The mean transcript length was 1.4 k nucleotides and exon numbers mainly ranged from 2-5, which were close to reference lncRNAs (Figures 2D,E). These findings are consistent with those of previous studies (Bo et al., 2021; Wang et al., 2021). The genes expression levels of novel lncRNAs were significantly lower than protein-coding genes in both tumors and controls (p < 0.001, Figure 2F). There was no significant difference in genes expression levels between the novel and reference lncRNAs (p > 0.05, Figure 2F).
Identification of TR-lncRNAs
Based on the integrated lncRNA expression matrix, we calculated the TR-lncRNAs between RCC tumors and controls. In total, 1,400 TR-lncRNAs (730 upregulated and 670 downregulated) were identified, including 520 novel lncRNAs (Figures 3A–C, Supplementary Table S1). Similarly, 1,269 TR-mRNAs (715 upregulated and 554 downregulated) were identified (Supplementary Figures S1A–C, Supplementary Table S2). To investigate the functions of the TR-lncRNAs, functional enrichment analysis of the TR-mRNAs was performed. Upregulated genes were mainly enriched in cytokine, chemokine, and immune-associated pathways, including cytokine-cytokine receptor interaction, chemokine signaling pathway, and primary immunodeficiency (Figure 3D). In comparison, the downregulated genes were mainly enriched in metabolism-associated pathways, including glycine, serine and threonine metabolism, and fatty acid metabolism (Figure 3E).
[image: Figure 3]FIGURE 3 | Identification of TR-lncRNAs by comparing tumors with controls in RCC. (A) Histogram of TR-lncRNAs number in three GEO datasets. (B) Upset plots of the distribution of upregulated lncRNAs in each dataset. (C) Upset plots of the distribution of downregulated lncRNAs in each dataset. (D) Bar plot showed GO enrichment pathways of upregulated genes. (E) Bar plots showed GO enrichment pathways of downregulated genes.
Immune Infiltration Analysis and Identification of TIR-lncRNAs
To further explore immune infiltration-related lncRNAs and their roles in the tumor microenvironment, we first calculated the enrichment scores of 28 immune-cell types in each patient by ssGSEA. Based on immune infiltration, an unsupervised clustering algorithm was utilized to classify the RCC patients into three clusters (Figures 4A–C). When k = 3, the classification was more reliable than others (Figures 4A,B). The heatmap showed normalized enrichment scores for the infiltration of 28 immune-cell types in each patient (Figure 4C). Compared with the immune-low group, the immune-high group showed an overall significantly higher degree of infiltration of immune cells, including activated CD8 T cells, T-helper cells type 1 (Th1), regulatory T cells, macrophages, and gamma delta T cells (Figure 4D, Supplementary Figure S2). Similarly, the immune-middle group exhibited a significantly higher degree of infiltration of immune cells than those in the immune-low group (Figure 4D). Interestingly, unlike other immune-cell types, T-helper cell type 2 (Th2) showed a higher degree of infiltration in the immune-middle group than that in the immune-high and immune-low groups (Figure 4D). Eosinophils exhibited a lower degree of infiltration in the immune-high group than that in the immune-middle and immune-low groups (Figure 4D). These findings may be related to the function of eosinophils recruited by Th2 in pathways associated with allergic reactions and inflammatory responses (Maggi, 1998). Immune grouping was confirmed by comparing their immune, stromal, and estimate scores. The scores of the immune-high and immune-middle groups were significantly higher than those of the immune-low group (Figure 4E). The immune-high group had a significantly higher immune score than the immune-middle group (Figure 4E). These findings suggested that immune grouping could be used for subsequent analyses.
[image: Figure 4]FIGURE 4 | Identification of TIR-lncRNAs and functional enrichment. (A) Sample clustering heatmap for k = 2 to 6, respectively. (B) The cumulative distribution function (CDF) plots for k = 2 to 6. (C) Heatmap of normalized enrichment scores for infiltration of 28 immune-cell types. (D) Comparisons among the immune-high group, the immune-middle group, and the immune-low group for seven immune-cell types. (E) Comparisons among the immune-high group, the immune-middle group, and the immune-low group for immune score, stromal score, and estimate score. (F) Identification of TIR-lncRNAs and TIR-mRNAs. (G) Bar plots showed the main GO enrichment pathways of TIR-lncRNAs.
Integrative analysis of genes related to immune groups and tumorigenesis revealed 241 TIR-lncRNAs and 752 TIR-mRNAs (Figure 4F, Supplementary Tables S3, S4). TIR-lncRNAs were primarily located on autosomal chromosomes and less frequently on X chromosomes (Supplementary Figure S3). Interestingly, no TIR-lncRNAs were present on the Y chromosome (Supplementary Figure S3). As expected, the predominately enriched pathways of TIR-lncRNAs were involved in immune response- and tumorigenesis-associated pathways according to GO enrichment analysis (Figure 4G, Supplementary Table S5).
Immune-Related ceRNA Network Construction
To unveil the potential regulatory roles of the 241 TIR-lncRNAs, we constructed a lncRNA/miRNA/mRNA ceRNA network. First, 192 miRNAs, including 88 upregulated and 104 downregulated miRNAs, were identified by comparing RCC tumors with controls, (Supplementary Figure S4, Supplementary Table S6). The RNAhybrid and miRanda databases were used to predict the interactions between the 192 TR-miRNAs and 241 TIR-lncRNAs, revealing 180 miRNA-lncRNA pairs (Figure 5A), including 77 miRNAs and 68 lncRNAs. The miRwalk database was used to predict the interactions between 192 TR-miRNAs and 752 TIR-mRNAs, and the TargetScan and miRDB databases were used to confirm these interactions. In total, 211 miRNA-mRNA pairs were identified (Figure 5B), including 57 miRNAs and 93 mRNAs. Subsequently, the miRNA-lncRNA and miRNA-mRNA pairs were used to construct the lncRNAs-miRNA-mRNA ceRNA network, which included 25 miRNAs (16 upregulated and 9 downregulated), 28 lncRNAs (9 upregulated and 19 downregulated), and 66 mRNAs (26 upregulated and 40 downregulated) (Figure 5C). Next, these screened lncRNAs were used to survey relevant mRNAs based on their correlations. Based on the correlation between lncRNAs and mRNAs, 6 lncRNAs, 7 miRNAs, and 7 mRNAs were identified as candidate relevant RNAs (Figure 5D). GO enrichment analysis showed that the ceRNA network was involved in pathways associated with kidney morphogenesis and the regulation of ion transport.
[image: Figure 5]FIGURE 5 | Construction of immune-associated ceRNA network. (A) Venn diagram showed the overlapped miRNA-lncRNAs pairs predicted by miRanda and RNAhybrid. (B) Venn diagram showed the overlapped miRNA-mRNAs pairs predicted by miRWalk, Targetscan, and miRDB database. (C) The ceRNA network consists of 28 TIR-lncRNAs, 25 TR-miRNAs, and 66 mRNAs. LncRNAs, miRNAs, and mRNAs are respectively represented by rectangles, triangles, and ellipses. The red color represented upregulated genes, and the blue color represented downregulated genes in the tumor tissues relative to control tissues. (D) The candidate relevant RNAs were further screened based on the correlation between lncRNAs and mRNAs.
A Large Part of Tumor TIR-lncRNAs Can Be Released Into the Urine in RCC
Raw transcript data from RCC urinary samples were analyzed to assess whether TIR-lncRNAs are released into urine. All TIR-lncRNAs were detected in urine, although a large proportion showed low expression levels (Figure 6A). TIR-lncRNAs showed a positive correlation between urinary and tissue samples (r2 = 0.192, p = 9.987e-13. Figure 6B). To further evaluate the transcript features in the urine, we performed de novo assembly analysis. A total of 1,554,672 genes were primary assembled in urine, which were compared with reference genes annotation and catalog of 241 TIR-lncRNAs. Over 82% of the protein-coding genes and 15% of the reference lncRNAs were verified (Figures 6C,D). Moreover, more than 55% of the TIR-lncRNAs were verified, 5.39% were completely matched, 10.37% were partially matched, and 39.83% were contained (Figure 6E).
[image: Figure 6]FIGURE 6 | Assessment of tumor TIR-lncRNAs releasing into the urine in RCC. (A) Bar plots showed the expression level (log2 transformed TPM) of TIR-lncRNAs in tissue samples and urine samples. (B) Scatter plots showed the correlation of TIR-lncRNAs between tissue samples and urine samples. (C) The statistics of assembled urinary transcripts matched to GENCODE v38 genes annotation. (D) The statistics of assembled urinary transcripts matched to RefLncRNA genes annotation. (E) The statistics of assembled urinary transcripts matched to 241 TIR-lncRNAs annotation.
Efficient TIR-lncRNA Signature for Predicting the Prognosis of RCC
To further explore the relationship between TIR-lncRNAs and the prognosis of RCC patients, we constructed a prognostic model for RCC. Univariate Cox regression was performed to screen prognosis-related TIR-lncRNAs and 62 prognosis-related TIR-lncRNAs with p < 0.05. The forest plot showed the p-value, hazard ratio (HR), and 95% confidence interval (CI) of prognosis-related TIR-lncRNAs (Figure 7A, two lncRNAs were not shown in Figure 7A because they had large 95%CI values, Supplementary Table S7). Subsequently, LASSO regression analysis was performed to prevent the overfitting of the prognostic signature. Twelve prognosis-related TIR-lncRNAs were identified when the log-transformed lambda equal to -3.31 (Figures 7B,C). Finally, using stepwise multiple Cox regression analysis, three TIR-lncRNAs were identified and used for modeling. The coefficient, p-value, HR, and 95% CI values of the TIR-lncRNAs involved in the risk model are shown in Figure 7D. The risk score for each patient was calculated based on the coefficient and log2-transformed TPM of TIR-lncRNAs.
[image: Figure 7]FIGURE 7 | Construction of TIR-lncRNA signature in RCC. (A) The Forest plot showed the p-value, HR, and 95%CI of prognosis-related TIR-lncRNAs calculated by univariate Cox regression analysis. (B) The distribution plot of the LASSO coefficient. Twelve variables were retained when log-transformed lambda equal to -3.31. (C) Twelve variables were retained when the partial likelihood deviation reached the minimum (Log Lambda = -3.31). (D) The Forest plot showed the coefficient, p-value, HR, and 95%CI of 3 prognosis-related TIR-lncRNAs calculated by multivariate Cox regression analysis.
In the training set, RCC patients were divided into high-risk and low-risk groups according to the median risk score (Figure 8A). Patients in the high-risk group showed higher mortality rates than those in the low-risk group (p = 0.003, Figure 8B). The heatmap of the expression levels of the three TIR-lncRNAs revealed different expression levels between the high-risk and low-risk groups (Figure 8C). ENSG00000204044.6 and ENSG00000224959.1 were highly expressed in the high-risk group (Figure 8C), whereas ENSG00000226403.1 was highly expressed in the low-risk group (Figure 8C). K-M analysis revealed that RCC patients in the high-risk group exhibited worse overall survival (OS) than those in the low-risk group (p < 0.001, Figure 8D). The AUC of the risk score was 0.9 of OS (Figure 8E).
[image: Figure 8]FIGURE 8 | Evaluation and validation of TIR-lncRNA signature in RCC. (A) The risk curve of each sample was reordered by risk score. The red and blue dots represent high-risk and low-risk, respectively (B) Patients in the high-risk group showed higher mortality than those in the low-risk group. The red and blue dots represent death and survival, respectively. (C) Heatmap showed scaled expression levels of prognosis-related TIR-lncRNAs in the low-risk and high-risk groups. (D) Patients in the high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the training set. (E) The AUC values for forecasting OS status using the risk score in the training set. (F) Patients in the high-risk group (red) exhibited worse OS than those in the low-risk group (blue) in the testing set.
An independent dataset involving 531 samples was used to validate the TIR-related lncRNA signature. K-M analysis revealed that RCC patients in the high-risk group also exhibited worse OS than those in the low-risk group (p < 0.001, Figure 8F). These findings suggested that the TIR-lncRNA signature is efficient for predicting the prognosis of RCC.
TIR-lncRNA Signature Was an Independent Prognostic Factor
To explore whether the TIR-lncRNA signature was an independent prognostic factor for RCC, univariate and multivariate Cox regression analyses were performed to assess the independence of TIR-lncRNAs from other clinical factors, including age, gender, tumor size, and pathological stage in the training and testing sets, respectively. In the training set, the HR of the risk score and 95%CI were 2.7 and 1.6–4.6 in univariate Cox regression analysis (p < 0.001, Figure 9A), and 2.709 and 1.381–5.314 in multivariate Cox regression analysis (p = 0.004, Figure 9B), respectively. In the testing set, the HR of the risk score and 95%CI were 1.6 and 1.3–1.9 in univariate Cox regression analysis (p < 0.001, Figure 9C), and 1.645 and 1.256–2.155 in multivariate Cox regression analysis (p < 0.001, Figure 9D), respectively. These results suggested that the TIR-lncRNA signature was an independent prognostic factor for RCC.
[image: Figure 9]FIGURE 9 | TIR-lncRNA signature was an independent prognostic factor for RCC. (A,B) The Forest plot showed the results of univariate Cox and multivariate Cox regression analyses in the training set. (C,D) The Forest plot showed the results of univariate Cox and multivariate Cox regression analyses in the testing set.
Construction of a Nomogram for Survival Prediction of RCC
To improve the model’s clinical practicability, a nomogram score system was constructed in the training set using the TIR-lncRNA signature, age, gender, tumor size, and pathological stage to predict 1-, 3-, and 5-years overall survival of RCC (Supplementary Figure S5). The nomogram’s concordance index (C-index) was 0.951, which increased the predictive power of OS compared with the TIR-lncRNA signature (C-index = 0.929).
DISCUSSION
In this study, immune-related lncRNA landscape was constructed, and 241 TIR-lncRNAs were functionally characterized, three of which were identified as a novel TIR-lncRNA signature for predicting the prognosis of RCC. First, raw transcriptomic data from the GEO database were used to identify novel lncRNAs. Subsequently, by comparing tumors with controls, we calculated TR-lncRNAs, TR-mRNAs, and TR-miRNAs. Then, an unsupervised clustering algorithm was utilized to classify RCC patients into different immune groups based on the infiltration level of immune cells. TIR-lncRNAs and TIR-mRNAs were identified by comparing the immune-high group with the immune-low group. A lncRNA/miRNA/mRNA ceRNA network based on miRNA-lncRNA and miRNA-mRNA pairs was constructed. In addition, a large part of TIR-lncRNAs were detected in urinary samples from RCC patients. Finally, three prognosis-associated TIR-lncRNAs were identified. To evaluate and validate the predictive ability of the prognostic signature, RCC patients were classified into high-risk and low-risk groups; patients in the high-risk group had worse OS than those in the low-risk group, with an AUC value of 0.9.
Patients were classified into three clusters based on the infiltration score of immune cells in each patient. However, to obtain immune-related lncRNAs, we only compared the immune-high group with the immune-low group. The immune-middle group was not used to calculate immune-related lncRNAs. Compared with the immune-low group, the immune-high group showed a significantly higher degree of infiltration of immune-cell types (Figure 4D, Supplementary Figure S2). However, the immune-middle group showed fluctuations in some immune cells (Supplementary Figure S2). For example, compared with the immune-high group, the immune-middle group exhibited a significantly larger number of immature dendritic cells, natural killer cells, effector memory CD4 T cells, immature B cells, activated CD4 T cells, memory B cells, and T-helper cell type 17. These results suggested that the immune-middle group was not suitable to identify immune-related lncRNAs.
Recent studies have focused on N6-methyladenosine (m6A)-, glycolysis-redox-, or immune-related lncRNA signature for predicting the prognosis of RCC. Yu et al. identified an m6A-related lncRNA signature for predicting the prognosis of RCC, with an AUC value of 0.80 (Yu et al., 2021). Ma et al. identified a glycolysis-related lncRNA prognostic signature for RCC and the AUC value was 0.82 (Ma et al., 2021). Dong et al. identified a redox-related lncRNA signature of RCC and the AUC value was 0.82 (Qi-Dong et al., 2020). Sun et al. constructed an immune-related lncRNA pair signature of RCC and the AUC value was 0.76 (Sun et al., 2021). In our prognostic model, we constructed a tumorigenesis-related and immune infiltration-related lncRNA signature for predicting the prognosis of RCC, with an AUC value of 0.9. This value is higher than those of previous prognosis models, supporting that our model is more efficient in predicting the prognosis of RCC.
Our study had some limitations. On the one hand, molecular-levels analyses are needed to further validate novel lncRNAs. On the other hand, the mechanism of TIR-lncRNAs in regulating protein-coding genes involved in RCC immunity are need to be further explored.
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Background: Here, we establish a prognostic signature based on glycosyltransferase-related genes (GTRGs) for head and neck squamous cell carcinoma (HNSCC) patients.
Methods: The prognostic signature of GTRGs was constructed via univariate and multivariate Cox analyses after obtaining the expression patterns of GTRGs from the TCGA. A nomogram based on the signature and clinical parameters was established to predict the survival of each HNSCC patient. Potential mechanisms were explored through gene set enrichment analysis (GSEA) and immune cell infiltration, immune checkpoints, immunotherapy, and tumor mutational burden (TMB) analyses. The expression differences and prognostic efficacy of the signature were verified through the gene expression omnibus (GEO) and several online databases.
Results: The prognostic signature was constructed based on five glycosyltransferases (PYGL, ALG3, EXT2, FUT2, and KDELC1) and validated in the GSE65858 dataset. The pathways enriched in the high- and low-risk groups were significantly different. The high-risk group had higher tumor purity; lower infiltration of immune cells, such as CD8+ T cells and Tregs; higher cancer-associated fibroblast (CAF) infiltration; lower immune function; and lower checkpoint expression. The signature can also be applied to distinguish whether patients benefit from immunotherapy. In addition, the high-risk group had a higher TMB and more gene mutations, including those in TP53, CSMD1, CDKN2A, and MUC17.
Conclusion: We propose a prognostic signature based on glycosyltransferases for HNSCC patients that may provide potential targets and biomarkers for the precise treatment of HNSCC.
Keywords: glycosyltransferase, prognostic signature, head and neck squamous cell carcinoma, immune cell infiltration, tumor mutational burden
INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common neoplastic disease in humans, accounting for 90% of head and neck cancers (Wang et al., 2021). Every year, more than 830,000 people worldwide are diagnosed with head and neck cancers, most of which are advanced type, and 430,000 patients die from the disease. The 5-year survival rate of HNSCC patients is approximately 43% (Epstein et al., 2012; Chi et al., 2015). Approximately 40–60% of patients relapse even after a combination of surgery, radiation, and chemotherapy (Tolstonog and Simon, 2017). Therefore, it is important to evaluate the prognosis of HNSCC patients. The current evaluation for prognosis is mainly based on the TNM staging system, which includes assessing the primary tumor, lymph node metastasis, and distant metastasis and has limited accuracy (Chen et al., 2021). Therefore, it is necessary to construct a stable model to evaluate patient prognosis.
Glycosylation is a common posttranslational modification of proteins (Fournet et al., 2018). Several glycosidic linkages, including N-, O-, and C-linked glycosylation and glycophosphatidylinositol (GPI)-anchored attachment, are the main features of glycosylation (Rasheduzzaman et al., 2020). Glycosylation can modify the biological function of proteins, mainly affecting cell adhesion, migration, interactions with the cell matrix, cellular metabolism, cell signaling, and immune surveillance. Aberrant O-glycosylation was shown to be associated with tumor cell infiltration. For example, α-N-acetylgalactosamine (α-GalNAc) and α-2,6-sialyltransferase I (ST6GalNAc-I) overexpression could cause sialyl Tn (STn) expression disorder and C1GalT1-specific chaperone 1 (C1GALT1C1) mutation (Pinho and Reis, 2015).
The majority of current protein-based cancer biomarkers, such as PSA for prostate cancer or CA-125 for ovarian cancer, are glycoproteins (Almeida and Kolarich, 2016). Glycosylation was recognized to occur widely in tumor cells, resulting in the secretion of associated polysaccharides or glycoproteins, which serve as vital biomarkers, into the bloodstream (Silsirivanit, 2019). Glycosylation increases the heterogeneity and functional variability of tumor cells (Pinho and Reis, 2015), thus allowing tumor cells to have different glycan profiles at different stages of tumor growth and metastasis (Schjoldager et al., 2020).
At present, there are few studies on the construction of prognostic signatures based on glycosyltransferases. Therefore, we focused on glycosyltransferase to construct a signature in HNSCC patients using public databases to better distinguish their survival status. Furthermore, we explored pathway enrichment, immune cell infiltration, benefits of immunotherapy, and gene mutation status according to the signature.
MATERIALS AND METHODS
Data Source
Transcriptome data, genomic mutation data, and corresponding clinical information from HNSCC patients, which contained 44 normal and 495 primary tumor tissues, were downloaded from The Cancer Genome Atlas (TCGA). GSE65858, containing 270 tumor samples with survival data, was obtained from the Gene Expression Omnibus (GEO) database to verify the prognostic signature. GSE30784 and GSE37991 were used to differentiate the expression levels of the genes in the signature between normal and HNSCC tissues. Moreover, we downloaded the expression data of one normal cell line (HaCaT) and six HNSCC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25, and SQ20B) from GSE62027. A total of 169 glycosyltransferase-related genes (GTRGs) were derived from a previous study (Mohamed Abd-El-Halim et al., 2021).
Identification of Differentially Expressed GTRGs (DE-GTRGs) in HNSCC
A volcano plot and heatmap were used to visualize the DE-GTRGs, which were defined as those with p < 0.05 and |log2 (foldchange)| > 1. Then, a protein–protein interaction (PPI) network of DE-GTRGs was constructed by the GeneMANIA database to identify the interactions of glycosyltransferases. Moreover, the correlation between the expression of various DE-GTRGs was also analyzed.
Construction of the Prognostic Signature
Univariate and multivariate Cox regression analyses were used to screen GTRGs to construct the prognostic signature. The signature reflects both the expression levels of the selected genes and their relative regression coefficient weights calculated from the multivariate Cox analysis. Patients in the training set were classified into high-risk and low-risk groups based on the median risk score. The Kaplan–Meier (KM) method was used to describe the differences in overall survival (OS) between the two groups. Receiver operating characteristic (ROC) curve analysis was further used to demonstrate the specificity and sensitivity of the signature. Principal component analysis (PCA) and T-distributed stochastic neighbor embedding (tSNE) methods were used to conduct dimension reduction analysis for all patients to evaluate the effect of the signature on the ability to distinguish between them. Finally, we incorporated the risk score and clinical parameters into the univariate and multivariate Cox regression analyses to prove that the risk score was an independent risk factor for prognosis.
Correlation of Clinical Parameters and Risk Score
Clinical parameters including age, sex, tumor grade, tumor stage, T stage, and lymph node metastasis were used to perform a stratified analysis of OS. In addition, we analyzed differences in the risk score between subgroups based on the aforementioned clinical parameters.
Nomogram and Calibration Curve Construction
A nomogram was established based on clinical parameters and the risk score. The calibration curves were drawn to assess the consistency between the actual and predicted probabilities of 1-year, 2-year, and 3-year survival. Furthermore, nomograms and calibration curves were also constructed according to the GSE65858 dataset.
Gene Set Enrichment Analysis
GSEA was performed to identify the pathways enriched in the high-risk group or in the low-risk group according to the reference gene set Hallmark and KEGG analysis. An |NSE| > 1, a p value <0.05 and a false discovery rate (FDR) < 0.25 were set as the cut-off values.
Immune Cell Infiltration, Checkpoints, and Immunotherapy Analyses Based on the Signature
The R package “ESTIMATE” was used to analyze the immune, stromal, and estimate scores and tumor purity between the high- and low-risk groups. TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and EPIC were used to compare the differences in immune cells between the two groups using the Wilcoxon test. Moreover, we analyzed the differences in immune cells and immune function between the two groups by using the ssGSEA method. Immune checkpoints, obtained from the TISIDB, were used to evaluate the differences between the two groups. Finally, to assess the value of the signature in patients receiving immunotherapy, multiple datasets were obtained to evaluate whether the signature could be used in immunotherapy patient cohorts. The cohorts included Van Allen’s cohort (CTLA-4 blockade in 40 metastatic melanoma patients) (Van Allen et al., 2015), Braun DA’s cohort (PD1 blockade in 311 advanced clear cell renal cell carcinoma patients) (Braun et al., 2020), Riaz N’s cohort (nivolumab in 50 advanced melanoma patients) (Riaz et al., 2017) and David Liu’s cohort (PD1 blockade in 121 metastatic melanoma patients) (Liu et al., 2019a).
Tumor Mutational Burden and Gene Mutation Analysis
TMB was compared between the high- and low-risk groups and was used to analyze its prognostic value in HNSCC patients through KM analysis. In addition, survival analysis was performed according to TMB and the risk score. Gene mutation frequency was also analyzed between the two groups based on the mutation data from the TCGA, and the top 30 mutated genes are shown on a waterfall plot. We also obtained genes with significant mutation differences between the two groups.
Identification of the Expression Levels and Prognostic Value of the Selected Genes
Immunohistochemistry images of PYGL, ALG3, FUT2, and KDELC1 were obtained from the HPA database. UALCAN was utilized to compare the protein levels of PYGL, EXT2, FUT2, and KDELC1 between normal and tumor tissues. Finally, a KM plotter was used to analyze the prognostic value of the five genes in HNSCC patients.
RESULTS
Screening and Analysis of DE-GTRGs
A flow chart of the current study is shown in Figure 1A. We first obtained the expression values of 169 glycosyltransferase genes in normal and tumor tissues from the TCGA, and differential analysis was performed according to the abovementioned criteria. Twenty-nine DE-GTRGs were identified, among which 10 were downregulated and 19 were upregulated (Figures 1B,C). Based on the DE-GTRGs, a PPI network was constructed through the GeneMANIA database, and significant interactions were observed among these glycosyltransferases (Figure 1D). In addition, a generally positive or negative correlation was found among these DE-GTRGs (Figure 1E).
[image: Figure 1]FIGURE 1 | Identification of DE-GTRGs between 44 normal and 495 HNSCC tissues. (A) Brief flow chart of this study. (B) Volcano plot of 29 DE-GTRGs in TCGA-HNSCC. Red means upregulated and blue means downregulated genes. (C) Heatmap of DE-GTRGs between normal and HNSCC tissues. (D) PPI network based on the DE-GTRGs using the GeneMANIA database. (E) Correlation of the expression of DE-GTRGs in HNSCC tissues. DE-GTRGs, differentially-expressed glycosyltransferase-related genes; HNSCC, head and neck squamous cell carcinoma; TCGA, The Cancer Genome Atlas; PPI, protein–protein interaction.
Construction of a Prognostic Signature
Univariate and multivariate Cox regression analyses were used to screen genes associated with patient prognoses and construct a prognostic signature. The results of the univariate analysis showed that five DE-GTRGs were associated with the prognosis of HNSCC patients, of which PYGL, ALG3, KDELC1, and EXT2 were risk factors and FUT2 was a protective factor (Figure 2A). Then, a prognostic signature based on five GTRGs was constructed utilizing multivariate Cox analysis, and the coefficients of the five genes are shown in Figure 2B. Risk score = (0.043622*KDELC1) + (0.009262*ALG3) + (0.00617*PYGL) + (0.003267*EXT2) - (0.00738*FUT2). The median risk score was applied to divide the HNSCC patients into a high-risk group and a low-risk group. Patients in the low-risk group had a better prognosis than those in the high-risk group (Figure 2C). As the risk score increased, there were more deaths and shorter survival times (Figure 2D). The areas under the curve (AUCs) of the signature at 1, 2, and 3 years were 0.619, 0.656, and 0.675, respectively (Figure 2E). The AUC of the risk score was 0.630, which was higher than that of the other six clinical parameters (Figure 2F). PCA and tSNE analyses were used to reduce dimensionality in all patients, and we found that patients with different risk scores could be distinguished significantly (Figures 2G,H). To analyze the prognostic value of the signature, univariate and multivariate analyses were used, and the results showed that the risk score was an independent risk factor for prognosis (Figures 2I,J).
[image: Figure 2]FIGURE 2 | Construction of the prognostic signature based on five GTRGs. (A) Univariate Cox regression analysis identified five GTRGs associated with the prognosis. Red means risk genes and blue means protective genes. (B) Coefficients of the selected five genes in the signature through multivariate Cox analysis. (C) High-risk group had a worse prognosis than the low-risk group through the KM curve and log-rank test. (D) Risk score, survival time, survival status, and the relative expression of five genes between the high- and low-risk groups. (E) ROC curve analysis of the signature at 1-year, 2-year, and 3-year survival in the training cohort. (F) ROC curve analysis of the signature and the other clinical parameters in the training cohort. (G) PCA in the training cohort. (H) tSNE analysis in the training cohort. (I) Univariate Cox analysis of the signature and the other clinical parameters. (J) Identification of risk score as an independent risk factor for HNSCC patients through multivariate Cox analysis in the training cohort. KM, Kaplan–Meier; ROC, receiver operating characteristic; PCA, principal component analysis; tSNE, t-distributed stochastic neighbor embedding.
Validation of the Signature in an External Dataset
To validate the signature constructed through the TCGA, we obtained the expression profile and clinical parameters of the GSE65858 dataset. Similar to the training model, KM analysis showed poor prognosis in the high-risk group (Figure 3A). An increasing number of deaths were observed as the risk score increased (Figure 3B). ROC curve analysis revealed that the signature was of great value for patient prognosis. The AUCs of the signature at 1, 2, and 3 years were high, and the AUC of the risk score was 0.625, similar to the training model and higher than the other clinical parameters (Figures 3C,D). The results of PCA and tSNE analyses suggested that the prognostic signature can effectively distinguish high- and low-risk patients (Figures 3E,F). Again, the signature was an independent risk factor for patients in the external dataset (Figures 3G,H).
[image: Figure 3]FIGURE 3 | Validation of the prognostic signature in the GSE65858 validation cohort. (A) KM curve showed that the high-risk group had a shorter survival time than the low-risk group. (B) Distribution of the risk score, survival time, and survival status as well as the heatmap between the two groups in the validation cohort. (C) ROC analysis of the signature at 1-year, 2-year, and 3-year survival in the validation cohort. (D) ROC analysis of the signature and the other clinical parameters in the validation cohort. (E) PCA in the external validation cohort. (F) tSNE analysis in the external validation cohort. Univariate (G) and multivariate (H) Cox analyses of the signature and the clinical parameters in the validation cohort.
Application of the Prognostic Signature in Clinical Subgroups
To determine the value of the signature in different clinical subgroups, we performed a stratified analysis. We divided the patients into age ≤ 65 years, age >65 years, female, male, grades 1–2, grades 3–4, stages I–II, stages III–IV, T1–2, T3–4, N0, and N1–3 groups based on various clinical parameters (age, sex, tumor grade, tumor stage, T stage, and lymph node metastasis). The signature showed good efficacy in differentiating patient outcomes across all subgroups (Figure 4), indicating that the signature can be applied to all patients regardless of there being multiple clinical variables.
[image: Figure 4]FIGURE 4 | KM curves showed that the low-risk group had a better prognosis than the high-risk group stratified by the clinical features. (A) Age<=65 years and age>65 years. (B) Female and male. (C) Grades 1–2 and grades 3–4. (D) Stages I–II and stages III–IV. (E) T1-2 and T3-4. (F) N0 and N1-3.
Correlation With the Clinical Parameters and Construction of the Nomogram
Due to the important value of the signature in different clinical subgroups, we then analyzed its correlation with clinical parameters. We found that the signature correlated significantly with tumor stage and tumor size; that is, in advanced tumors (stages III–IV) or when the tumor size was large (T3-4), the risk score was higher (Figures 5A,B). We also integrated the signature and clinical features to construct a nomogram. The nomogram was constructed to predict the 1-year, 2-year, and 3-year survival probabilities in the TCGA cohort (Figure 5C) and in the GSE65858 cohort (Figure 5D). The calibration curve showed good agreement between the predicted and actual 1-year, 2-year, and 3-year survival rates in both the training and validation cohorts (Figures 5E,F). GSEA showed that the high-risk group was associated with a variety of pathways related to tumor development, such as angiogenesis, epithelial–mesenchymal transition (EMT), glycolysis, hypoxia, and the TGF beta signaling pathway (Figure 5G), while the low-risk group was mainly enriched in IL2-STAT5 signaling, KRAS signaling, metabolism-related pathways, and others (Figure 5H).
[image: Figure 5]FIGURE 5 | Analysis of the signature and clinical parameters. (A) Distribution of the clinical parameters and the expression of the five genes between the two groups. (B) Difference analysis of the risk score grouped by the clinical parameters. Construction of the nomogram combined with the risk score and the clinical parameters in the training cohort (C) and GSE65858 validation cohort (D). Calibration curve of the nomogram at 1-year, 2-year and 3-year survival in the training cohort (E) and GSE65858 validation cohort (F). Pathways enriched in the high-risk group (G) and low-risk group (H) through GSEA. GSEA, gene set enrichment analysis.
Differences in Immune Cell Infiltration and Immune Checkpoints
We first evaluated the immune score, stromal score, ESTIMATE score, and tumor purity. The immune and ESTIMATE scores were significantly lower in the high-risk group, while tumor purity was higher in the high-risk group (Figure 6A). We also compared the differences in immune cell infiltration between the two groups according to various algorithms. Based on the TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and EPIC, we found that B cells, CD8+T cells, dendritic cells, and Tregs were lower in the high-risk group and that cancer-associated fibroblasts (CAFs) were higher in the high-risk group (Figures 6B,C). In addition, we estimated the difference in immune cells and immune function between the two groups by using the ssGSEA algorithm. The results showed that immune cell infiltration was similar to that of the previous algorithm (Figure 7A), while multiple immune function scores were lower in the high-risk group, including checkpoints (Figure 7B). We, therefore, analyzed the differences between immune checkpoints in the two groups. Most checkpoints were significantly different between the two groups, and the expression levels of immune checkpoints were lower in the high-risk group, a pattern similar to that using the ssGSEA algorithm (Figure 7C).
[image: Figure 6]FIGURE 6 | Immune landscape between the high- and low-risk groups based on multiple algorithms. (A) Comparison of the immune score, stromal score, ESTIMATE score, and tumor purity between the high- and low-risk groups based on the ESTIMATE algorithm. (B) Heatmap of the immune cell infiltration calculated by five algorithms, including TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, and EPIC between the two groups. (C) Boxplot of the immune cell infiltration calculated by the abovementioned algorithms between the two groups. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
[image: Figure 7]FIGURE 7 | Immune function, immune checkpoints, and immunotherapy analysis based on the signature. Comparison of immune cells (A) and immune function (B) between the high- and low-risk groups through the ssGSEA algorithm. (C) Differences in the expression of 23 immune checkpoints between the high- and low-risk groups. (D) KM curve of OS in Van Allen’s cohort grouped by the signature. KM curves of OS (E) and PFS (F) in Braun DA’s cohort. (G) KM curve of OS in Riaz N’s cohort. KM curves of OS (H) and PFS (I) in David Liu’s cohort. OS, overall survival; PFS, progression-free survival. (*p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant).
Immunotherapy Analysis According to the Signature
Immunotherapy has been considered to play an important role in a variety of malignant tumors and can markedly improve the prognosis. Therefore, it is necessary to identify people who may benefit from immunotherapy. We evaluated the value of the prognostic signature in immunotherapy for malignant tumors using four cohorts. Patients in the high-risk group had a shorter survival time (OS and progression-free survival) than those in the low-risk group in the four cohorts (Figures 7D–I).
Relationship Between TMB and the Signature
TMB was calculated based on the somatic mutation obtained from the TCGA and was compared between the two groups. TMB in the high-risk group was higher than that in the low-risk group (Figure 8A), and the higher TMB group was associated with shorter survival time (Figure 8B). In addition, a stratified analysis based on TMB and the risk score showed significantly worse outcomes in the high-TMB + high-risk group than in the low-TMB + low-risk group (Figure 8C). Gene mutations visualized as a waterfall plot showed that the five most frequent somatic mutations in the high-risk group were those in TP53, TTN, FAT1, CDKN2A, and MUC16 (Figure 8D), while the five most frequent somatic mutations in the low-risk group were those in TP53, TTN, FAT1, NOTCH1, and PIK3CA (Figure 8E). Differential analysis between the two groups showed that the mutation frequencies of TP53, CSMD1, NPAP1, AJUBA, CDKN2A, MUC17, and PRDM9 were higher in the high-risk group (Figure 8F).
[image: Figure 8]FIGURE 8 | Relationship between the risk score and TMB. (A) Comparison of TMB between the high- and low-risk groups. (B) KM curve of the low-TMB and high-TMB groups. (C) KM curve of the HNSCC patients stratified by TMB groups and risk groups. Oncoplots displaying the top 30 somatic mutated genes in the high-risk group (D) and the low-risk group (E). (F) Differences of the mutation frequency of the genes between the two groups. TMB, tumor mutational burden. (*p < 0.05).
Validation of the Selected Genes in Various Databases
The mRNA expression levels of the five genes in GSE30784 revealed that PYGL, ALG3, EXT2, and KDELC1 were upregulated while FUT2 was downregulated in HNSCC (Figure 9A). The differential expression analysis of the genes in the 40 paired normal and tumor tissues in GSE37991 showed similar results (Figure 9B). Furthermore, the expression level detected in one normal and six tumor cell lines was essentially consistent with that in tissues (Figure 9C). The immunohistochemistry images of PYGL, ALG3, FUT2, and KDELC1 in normal oral mucosa and HNSCC tissues are shown in Figure 9D. Meanwhile, the protein levels in the UALCAN database suggested that PYGL, EXT2, and KDELC1 were higher while FUT2 was lower in HNSCC tissues (Figure 9E). Finally, we performed survival analysis using KM curves in the KM plotter database. The results showed that the prognosis of patients with high expression of PYGL, ALG3, EXT2, and KDELC1 was worse, while high expression of FUT2 indicated longer survival time (Figure 9F).
[image: Figure 9]FIGURE 9 | Expression and prognosis validation of the five glycosyltransferases. (A) Difference in the mRNA level of the five genes between 45 normal and 167 tumor tissues in the GSE30784 dataset. (B) Difference in mRNA level of the five genes between 40 matched normal and tumor tissues in the GSE37991 dataset. (C) mRNA level of the five genes in one normal cell line (HaCaT) and six HNSC cell lines (93VU147T, SCC61, SCC047, SCC090, SCC25, and SQ20B) in the GSE62027 dataset. (D) Immunohistochemistry images of the four glycosyltransferases in oral mucosa and HNSCC tissues from the HPA database. (E) Protein level of the four proteins between normal and tumor tissues in the UALCAN dataset. (F) KM curves of the five genes in HNSCC patients through the KM-plotter database. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
DISCUSSION
Recently, due to advances in precision therapy in tumors, a variety of researchers have constructed prognostic models or identified molecular subtypes based on the associated gene sets of various malignant phenotypes. Qiu et al. constructed a prognostic model based on ferroptosis-related genes in pancreatic cancer and found possible correlations with different immune cells and classic immune checkpoints (Qiu et al., 2021). However, few researchers have constructed a prognostic model or identified subtypes based on GTRGs in different tumors. A previous study identified a series of glycosyltransferases and proposed a signature based on GTRGs to better classify pancreatic cancer patients with different prognoses and found the specific mechanisms of glycosylation in tumors and the microenvironment during tumor development (Mohamed Abd-El-Halim et al., 2021). Therefore, we aimed to identify the role of glycosyltransferases in HNSCC and construct a prognostic signature.
In this study, we identified a prognostic signature based on the five GTRGs (PYGL, ALG3, EXT2, FUT2, and KDELC1) through univariate and multivariate Cox regression analyses. The signature was proven to be an independent risk factor for HNSCC. In addition, the GSE65858 dataset was used to verify the prognostic performance of the signature, and we found that it can well-distinguish the prognoses of patients at high and low risk. We also found that the signature was closely related to immune cell infiltration and immune function. Patients in the high-risk group often had lower expression of immune checkpoints. Analyses of several immunotherapy cohorts also demonstrated that the signature can well-differentiate whether patients benefit from immunotherapy.
PYGL is a key phosphorylase that catalyzes the release of glucose molecules from glycogen (Han et al., 2018). A previous study indicated that an increased PYGL expression level was associated with increased tumor size in breast cancer, suggesting that PYGL may participate in tumor progression. In vitro and in vivo, hypoxia can induce the upregulation of glycogen metabolism and accumulation of glycogen in the early stage. The depletion of PYGL and decrease in glycogen accumulation decreased nucleotide synthesis and increased reactive oxygen species (ROS) levels, resulting in a decrease in breast cancer growth (Favaro et al., 2012). Several studies found that PYGL expression was upregulated in several cancers, including seminoma, brain cancer, and papillary renal cell carcinoma. KCNMB2-AS1 promotes esophageal cancer development by binding to miR-3194-3p and further upregulating PYGL expression (Xu et al., 2021). Numerous results have shown that PYGL is a vital target for anticancer therapy.
ALG3 is located on chromosomal region 3q27.1 and is a member of the mannosyltransferase family. Aberrant expression of several high-mannose type N-glycans during cancer progression has been increasingly identified (Munkley et al., 2016). Upregulation of ALG3 promoted the progression of cervical cancer (Choi et al., 2007) and non–small-cell lung cancer (Ke et al., 2020) and was proven to be associated with lymph node metastasis in esophageal squamous cell carcinoma (Shi et al., 2014). High ALG3 expression, negatively regulated by miR-98-5p, exerted a pro-carcinogenic effect by promoting EMT, thus leading to poor prognosis in non–small-cell lung cancer (Ke et al., 2020). In a 30-sample breast cancer cohort (including 15 radioresistant and 15 radiosensitive tumors), ALG3 was the most highly expressed of the ALG family in the radiation-resistant tissue. In addition, high ALG3 expression was associated with poor clinical parameters, short OS, and short relapse-free survival (Sun et al., 2021). A cancer stem cell–like (CSC) shape is thought to be the main cause of radioresistance (Knezevic et al., 2015). ALG3 can increase the radioresistance and tumor stemness of breast cancer cells and can upregulate several key CSC-like markers (Nanog, OCT4, and SOX2) by promoting the glycosylation of TGF-beta receptor II (Sun et al., 2021).
EXT2 is a member of the exotoxin glycosyltransferase family and is involved in the elongation of heparan sulfate (Ahn et al., 1995; Busse and Kusche-Gullberg, 2003). A large number of studies have found that mutations in EXT1 and EXT2 lead to loss of the protein domain, which is closely related to multiple osteochondromas (Guo et al., 2021; Tong et al., 2021). EXT2 was downregulated in breast cancer cells (Sembajwe et al., 2018) but upregulated in squamous cell lung carcinoma (Wu et al., 2021). Moreover, Huang et al. found that EXT2 was an independent risk factor for hepatocellular carcinoma (Huang et al., 2019).
Inactivating polymorphisms in FUT2, which encodes alpha 1,2-fucosyltransferase, were found to be associated with the increasing incidence of HNSCC (Campi et al., 2012; Su et al., 2016). FUT2 was decreased in HNSCC cells, and downregulation of FUT2 was related to a short survival time. EGFR was proven to be one of the potential alpha 1,2-fucosylated adhesion molecules (Montesino et al., 2021). In addition, FUT2 was upregulated and promoted cell migration and invasion in lung adenocarcinoma. A potential mechanism suggests that FUT2 may be involved in the TGF-beta/SMAD signaling pathway (Deng et al., 2018). The effect of FUT2 on tumor development and progression was also observed in breast cancer. Specifically, FUT2 can promote the proliferation, migration, and invasion of cells and is related to cell morphology changes, that is, from cuboidal to small and round cells (Lai et al., 2019). The expression of FUT2 was also downregulated by miR-15b and can facilitate the proliferation in hepatocellular carcinoma (Wu et al., 2014).
POGLUT2, formerly known as KDELC1 and homologous to POGLUT1, is a newly discovered protein O-glucosyltransferase that modifies sites different from POGLUT1 and can affect the Notch signaling pathway (Takeuchi et al., 2018). POGLUT2 was an independent prognostic factor and was used to construct a prognostic signature in clear cell renal cell carcinoma (Li et al., 2021), but few studies have examined the tumor mechanism.
Using multiple immune cell infiltration assessment algorithms, we found that the numbers of CD8+ T cells and Tregs were lower in the high-risk group, while the number of CAFs was higher. A previous study found that an increase in CD8+ T cells was an important prognostic indicator for OS in patients with relapsed HNSCC (So et al., 2020). Tregs play an important role in suppressing spontaneous tumor-associated antigen-specific immune responses (Oweida et al., 2019). Tregs were shown to be highly enriched in in situ HNSCC models and were associated with chemotherapy resistance (Oweida et al., 2018). Compared to healthy donors, HNSCC patients had increased tumor and blood Treg levels and lower CD8/Treg ratios. Indeed, high Treg and low CD8+ T-cell levels were considered poor prognostic factors for various tumors, including melanoma, ovarian cancer, colorectal cancer, and HNSCC. (Overacre-Delgoffe et al., 2017; Dolina et al., 2021), consistent with our results. CAFs are considered to be one of the most abundant mesenchymal cells and are observed in almost all types of solid tumors (Liu et al., 2019b; Chen and Song, 2019). Studies have shown that CAFs are associated with multiple biological oncogenic behaviors such as migration, invasion, self-renewal of tumor stem cells, chemotherapy resistance, and immune cell evasion (Zhang et al., 2013; Costa et al., 2018; Su et al., 2018). In oral squamous carcinoma, a higher density of CAFs suggests a more advanced tumor stage, a greater likelihood of lymph node metastasis, a greater incidence of local recurrence and distant metastasis, and a shorter survival time (Luksic et al., 2015). In addition, CAFs have been shown to play an important role in promoting HNSCC progression (Wheeler et al., 2014), mainly by secreting growth factors such as IL-6 and IL-8 (New et al., 2017), remodeling the extracellular matrix and enhancing therapeutic resistance (Bergers and Hanahan, 2008).
However, some deficiencies can also be found in our study. First, our data were based entirely on the public databases, such as the TCGA and GEO, and lacked experimental validation for the expression differences and prognostic model efficacy. Second, the pro- or antitumor phenotypes or mechanisms of the five genes have not been confirmed by in vivo or in vitro experiments. Third, the effect of the signature with respect to immunotherapy should be further examined using real-world data in future research.
CONCLUSION
We proposed a prognostic signature for HNSCC patients constructed by incorporating five GTRGs from public databases. The high-risk group had lower immune CD8+ T cell and Treg infiltration but higher CAF infiltration. Furthermore, the signature can help judge prognostic differences in HNSCC patients and screen patients who may benefit from immunotherapy.
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Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.
Keywords: HCV and HCC, biomarkers, gene expression/mutational profiling, co-expression, network-level understanding
INTRODUCTION
Acquired genomic aberrations of various sorts and sizes, ranging from single nucleotide variants to structural abnormalities, are a common feature of cancer. Cancer genomes have a wide range of genomic abnormalities of various sorts and sizes. Single nucleotide variants (SNVs) to bigger structural variants (SVs) all have an impact on genome organization (Bruin et al., 2013; Dienstmann et al., 2014; Prandi et al., 2014). Different types of mutations are seen in cancer cells, and they are linked to the cell’s ability to reproduce uncontrollably. Certain modifications to the genetic code only affect one or a few letters (Futreal et al., 2004; Zarrei et al., 2015; Yizhak et al., 2019). Others, referred to as copy number changes (CNA), involve bigger segments of the genome that can be deleted (deletions) or duplicated (duplications) (amplifications) (Pelham et al., 2006; Grubor et al., 2009; Agell et al., 2012; Li and Li, 2014). Various patients’ tumors have different quantities of these deletions or amplifications, which are collectively known as the CNAs burden. Scientists can now scan the genomes of cancers and assess the types of mutations present in each patient thanks to new technologies. The outcomes can assist in determining the best course of action. Patients with a high CNAs burden in their tumors, for example, have a higher chance of relapse after treatment. However, it is unclear whether these persons have shorter survival rates as well, or whether CNAs levels might predict the prognosis of other cancers. Over a hundred samples from prostate cancer patients who were not treated with surgery or radiation were analyzed by Hieronymus et al. The findings revealed that a higher CNA burden in tumors is linked to more disease-related mortality (Rigaill et al., 2012; Beerenwinkel et al., 2014; Li and Li, 2014; Cooper et al., 2015). The findings in prostate cancer were also true in other cancer types. When Hieronymus et al. looked at genomic data from individuals with various tumors using a different DNA sequencing assay that is authorized for clinical use, they came to the same conclusions. This suggests that CNA load could be a valuable clinical measure for assessing risk in cancer patients. Structural variation, in which rearrangements remove, increase, or reorganize genomic regions ranging in size from kilobases (kb) to whole chromosomes, is a crucial mutational mechanism in cancer. Somatically acquired big structural variations (SVs) are a type of abnormality that can cause cancer by deactivating tumor suppressor genes and upregulating oncogenes, among other things. Detecting and characterizing these variations could lead to better cancer medicines and diagnostics (Lim and van Oudenaarden, 2007; Barbosa-Morais et al., 2010; Biesecker and Spinner, 2013; Gerstberger et al., 2014; Moncunill et al., 2014; Zarrei et al., 2015).
Cancer is caused by beginning cells that undergo a lot of evolutionary selection as the disease progresses and can change dramatically throughout treatment. Tumor cell evolution may result in subclonal divergence, leading in genetic and molecular heterogeneity. Computational approaches for creating maps of cancer evolution could help clinical risk classification and therapy techniques. There is still a gap in the study of slightly aberrant or extremely varied malignancies, despite the development of tools for assessing tumor DNA purity and cancer cell ploidy (Bardwell et al., 2001; Thomas et al., 2004; Cui et al., 2007; Carja and Feldman, 2012; Klinke, 2013; Murugaesu et al., 2013; Paguirigan et al., 2015).
The most common type of cancer in the world, hepatocellular carcinoma (HCC), is the leading cause of cancer-related fatalities (Ieta et al., 2007; Consortium et al., 2010; El-Serag, 2011; Repana and Ross, 2015; HASS et al., 2016). A high number of HCC patients show signs of vascular invasion with intrahepatic metastases, which tend to invade portal vein branches and create portal vein tumor thrombus (PVTT), which can obstruct the portal vein and cause portal hypertension (ROBINSON, 1994; Jhunjhunwala et al., 2014; Llovet et al., 2015). HCC advancement can be linked to a variety of causes, the most common of which being HBV and HCV. Aflatoxin B1, alcohol consumption, cigarette smoking, hepatotoxic chemical agents, and host co-factors such as elevated serum androgen levels, genetic polymorphisms, and DNA repair enzymes may all be linked to the progressive accumulation of a number of genomic aberrations within the hepatocytes, with TP53 and CTNNB1 being two well-known cancer drivers (Fujikawa et al., 2001; Ichikawa et al., 2008; Attari et al., 2019).
HCV is a single-stranded RNA virus with four structural proteins: capsid protein C, envelope glycoproteins E1 and E2, and protein P7, as well as six non-structural proteins: NS2, NS3, NS4A, NS4B, NS5A, and NS5B. Chronic inflammation, immune-mediated hepatocyte death and disorder, fibrosis, and multilayer diseases (cellular pathways such as proliferation, apoptosis, and DNA repair) are all possible outcomes of HCV infection (core and structural proteins) (Ahmad et al., 2012; Jost and Altfeld, 2013; Roberts and Gordenin, 2014; Schwarzenbach et al., 2014; Sacerdote and Ricceri, 2018; Lupberger et al., 2019b).
As previously noted, HCV infection appears to be a potential cause of liver disorders such as liver cancer, steatosis, and fibrosis, and the mechanisms behind infection, liver disease development, and carcinogenesis are not fully or well understood. There are also a number of factors associated with HCC. So, in order to learn more about the leading cause of liver cancer/hepatocellular carcinoma, we used a method in which we gathered and studied previously identified biomarkers, a publicly available dataset for hepatocellular carcinoma (temporal data) with and without HCV infection, a combined study, clinical relevance, and functional impact. We examined changes in gene expression patterns, mutation mutations, CNAs, and SVs using publically available information from Gene Expression Omnibus (GEO) and TCGA, followed by cBioPortal. Furthermore, we investigated the enriched pathways for their overall functional implications and used network-level understanding to determine the impact of changed genes on other genes.
RESULTS
As noted in the preceding section, we compiled a list of known HCC biomarkers before working with the GEO and TCGA datasets. The GEO dataset contains HCV-infected data that spans 10 days. So, in the first section of the results, we focused on data related to HCC biomarkers, followed by temporal gene expression profiling and functional significance, and finally, CNAs, mutations, and SVs analyses.
HCC BIOMARKERS AND ITS CLINICAL RELEVANCE
Using cBioPortal in HCC, we were able to map out the proportion of over-expression (both individually and overall) and co-occurrence for the selected genes (biomarkers picked from previously published work) inside the TCGA database. We provided the co-occurrence in Figure 1A, and for co-occurrence, we also presented the network with the relevant connectivity in terms of co-occurrence. CCNB2, CLK2, CDK4, CDC7, E2F3, PCNA, MCM3, MCM4, USP1, KIF20A, MCM2, and MCM7 are shown to be dominantly controlling a large number of genes, or to put it another way, most of the genes are interdependent. The majority of the genes here are involved in the cell cycle, however there are a few that are specifically involved in infection and inflammatory processes (E2F5, MAPK13, IGF2BP3, IGF2). We investigated the temporal gene expression profiling for HCV infection acquired from GEO after assessing the biomarkers association. First, as shown in Figure 1B, we projected DEGs for each day of infection by combining the genes into four groups (0–2 days, 3–5 days, 6–8 days, and 9–10 days). Figure 1B shows that increased infection duration causes significant changes in gene expression patterns until a certain time point, after which there are few changes in gene expression patterns and a slight decrease in the number of DEGs between 9 and 10 days, as well as enriched pathways or biological functions affected by changes in gene expression patterns. Figure 1B shows an exponential growth in the number of DEGs up to day eight, after which there is volatility, leading to the conclusion that there is a greater level of distribution in gene expression pattern during early HCV infection in HCC.
[image: Figure 1]FIGURE 1 | Differential gene expression profiling and pathway enrichment analysis. (A) Co-occurrence network. (B) Temporal evolution of gene expression aberrations and its functional consequences. (C) Venn diagram to represent the shared and specific genes and pathways which are potentially altered as a result of CRC. (D) Enriched pathways followed by their respective p-values. (E) Temporal gene expression profiling of HCC in result to HCV infection. The number of DEGs from day 1 to day 10 and number of common DEGs in different combinations (such day 1 with day 2, day 2 with day 3, day 3 with day 4, day 4 with day 5, and so on). (F) HCC biomarkers profiling for the temporal dataset.
PI3K, cAMP, TGF, TNF, Rap1, NF--kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer.
In addition, we conducted a comparison analysis of HCC gene expression datasets that were not infected with HCV. We observed that there are a large number of DEGs, so we prepared lists of DEGs for these three different fold changes, 2.0, 5.0, and 7.0, and analyzed the enriched pathways for all three datasets, finding that 145 DEGs and 15 enriched pathways were shared across all the three fold changes (2.0, 5.0, and 7.0), 111 DEGs and 19 enriched pathways shared between fold changes 2.0 and 5.0, and 1448 DEGs and 96 enriched pathways were unique to fold change 2.0. We compared this dataset to another dataset for the same after evaluating it at different fold changes. 180 DEGs and 22 enriched pathways were shared between the two datasets, and GSE63863 had its own set of DEGs and enriched pathways. The majority of these 22 pathways are well-known and acknowledged as the most important pathways linked to various malignancies, including HCC (Figures 1C,D; Supplementary Data S1). Furthermore, we have also presented the HCV-infected HCC temporal data in Figure 1E which contains temporal gene expression profiling of HCC in result to HCV infection. The number of DEGs from day 1 to day 10 and number of common DEGs in different combinations (such day 1 with day 2, day 2 with day 3, day 3 with day 4, day 4 with day 5, and so on).
Moreover, we have also performed the mapping of known HCC biomarkers with temporal gene expression dataset and observe that day 0 and day 2 have no HCC biomarkers as DEGs while day 5 contains the maximum number (11) of HCC biomarkers in the predicted DEGs list (Figure 1E).
ANALYSIS OF CNAS, MUTATIONS, AND SVS FROM TCGA DATABASE
After examining gene expression profiling from the GEO database, we went on to look at global genomic aberrations using TCGA and cBioPortal, as well as all of the HCC datasets to look at overall CNAs, mutations, and SVs in the case of HCC. Figure 2A shows the MANTIS Score distributions for mutation count, fraction genome altered, diagnostic age, and microsatellite instability (MSI) (which predicts the MSI status of tumors). For this study, all of the HCC samples from TCGA were chosen. In terms of mutation count, we can see that 10 samples have the most (>150), while 40–70 samples have a similar number of mutations (>120 and 150), and the fraction of genome altered has similar histogram patterns. The majority of the diagnosed patients were between the ages of 50 and 75, with an MSI MANTIS score of 0.4 for almost 400 patients and an MSI MANTIS score of unknown for over 1000 samples. Figure 2B shows the top 50 genes after giving the fundamental data of mutations, CNAs, and SVs. Most of the top 50 genes are specific, although AGN2 (which plays a vital function in RNA interference) was found in both CNAs and SVs lists, and CTNNB1 (a putative component of the adherens junction) was found in both mutations and SVs lists. After mapping the top 50 genes, we applied a threshold level to all three scenarios (CNAs (10.0), mutations (3.0), and SVs (0.5)) and used a venn diagram to compare these gene lists to the enriched pathways lists (Figure 2C). We can see that none of these three lists have a gene in common. There were four genes shared by CNAs and the mutations list, thirteen genes shared by mutations and SVs, and one gene shared by SVs and the CNAs list. In terms of gene set comparison, one pathway (PI3K-AKT) was shared by all three lists, three pathways (MAPK, calcium, and focal adhesion signaling) were shared by mutations and SVs, and two routes (Ras and Rap1 signaling) were shared by SVs and CNAs (Figure 2C) (Table 1).
[image: Figure 2]FIGURE 2 | Genomic-level alterations in HCC datasets of TCGA database. (A) Histograms to present the mutation count, fraction genome altered, diagnosis age, and MSI mantis score. (B) Percentage of patients with different types of alterations (CNA, Mutations, and SV) in case of HCC. (C) Venn diagrams to display the shared and specific significant genes and pathways.
TABLE 1 | Temporal enriched pathways.
[image: Table 1]NETWORK-LEVEL UNDERSTANDING POTENTIAL HCC GENES
Finally, we used the FunCoup network database of CNAs, mutations, and SVs genes list to map out the networks, which we then processed in cytoscape using network analyzer (Figures 3A–C). The statistics, degree distribution, and topological coefficients of the networks were shown in Figure 3. The degree distribution, topological coefficients, and statistical features all show that the SVs network is densely connected, followed by the CNAs network and mutations network (thinly connected). PRPF3, EEF1D, EXOSC4, EIF3E, SF3B4, BOP1, RAD21, MYC, RPL8, HSF1, HIF3E, FLAD1, PPP1R16A, TOP1MT, MAF1, KRTCAP2, CYC1, and GRINA were shown to be substantially related in the CNAs genes network. MYH15, MYCBP2, HSPG2, USH2A, FN1, FBN1, CTNNB1, ARID1A, and TTN were shown to be substantially related in the mutant genes network. The strongly related genes in the SVs genes network were ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB, PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA, PBRM1, PRKCA, EIF3L, RAB6A, and STK38. Based on the general network notion, it might be concluded that genes that appear to be heavily connected within the network are more significant than genes that appear to be less connected. Similarly, the more coupled genes have the potential to change more genes, and as a result, more biological activities. Furthermore, we plotted the gene networks and associated pathways for CNAs genes, mutant genes, and SVs genes (Figures 4A–C), where ADCY8, MYC, and PTK2 appear to be part of a large number of essential signaling pathways in the case of the CNAs genes network. CTNNB1, TP53, and RB1 have all been linked to cancer or cancer-related signaling pathways, primarily in HCC. PRKCA, TP53, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, CTNNB1, GCK, and FGFR2/3 are among the genes in the SVs genes network that connect a vast number of signaling pathways. We conclude that the top-ranked CNAs, mutant, and SVs genes have the ability to change at a higher-scale at the functional level based on these three genes and pathways association networks.
[image: Figure 3]FIGURE 3 | Network-level understanding top-ranked genes. (A) CNA genes network, (B) Mutated genes, and (C) SV genes network followed by their respective analysis (degree distribution and topological coefficients).
[image: Figure 4]FIGURE 4 | Network-level understanding top-ranked genes and the associated pathways. (A) CNA genes network, (B) Mutated genes, (C) SV genes network followed by their respective analysis, and (D) mRNA and protein expression in liver and gallbladder tissues (source protein atlas).
DISCUSSION
Using GEO and TCGA datasets, we adopted an interdisciplinary strategy to investigate gene expression profiles, somatic mutations, CNAs, and SVs analyses. The gene expression datasets were divided into two categories: temporal datasets infected with HCV and non-temporal datasets clear of HCV infection. This study took into account all of the HCC datasets in the TCGA database. Furthermore, we used a network biology technique (Barabasi and Oltvai, 2004; Emmert-Streib and Glazko, 2010; Hu et al., 2016) to better understand the relationship between top-ranked genes in terms of linkage while they were altered. The SVs genes network appears to be the most densely connected, followed by the CNAs and mutant gene networks. Moreover, we have also used those data where the infection is associated with HBV to evaluate the broad spectrum of the impact of infection in addition to HCC at gene expression and functional levels.
The assessment of the clonality of each somatic aberration enables the deconvolution of the sequence of oncogenic events that occur during tumor initiation or progression. Assuming that clonal alterations originated prior to subclonal alterations within the same tumor, we examined pairs of genes that are aberrant in the same sample and across multiple tumors to determine the directionality of the clonal-subclonal hierarchy (Cibulskis et al., 2012; Klijn et al., 2013; Li and Li, 2014; Swanton, 2014). HCC subtypes are classified by gene clustering of tumor specific genes which resolve the HCC pathogenesis according to their etiological factor, clinical stage, recurrence rate, and prognosis. The expression in genes regulating cell proliferation and anti-apoptotic pathways such as PNCA and cell cycle regulators CDK4, CCNB1, CCNA2, and CKS2 and ubiquitination mechanisms were studied previously. In addition to that several molecular markers of tumor progression like HSP70, CAP2, GPC3, and GS were also expressed in expression profiling. The expression profiling by time course analysis has identified several genes as a progression marker in HCC such as GPC3, CXCL12, SPINK1, GLUL, UBD, TM4SF5, DPT, SCD, MAL2, TRIM55, and COL4A2. Meanwhile the specific alteration of HCC signals transduction pathways and protein expression have given the opportunities for new therapies targeting new molecular factors. High-throughput data (genomic and proteomic) are frequently generated with the goal to understand the genotype-phenotype relationship in the complex diseases (Emilsson et al., 2008; Gonzalez-Perez et al., 2013; van’t Veer et al., 2002).
Among the most common enriched pathways are PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways. Majority of these pathways well characterized for immune controlling system, infection and inflammation, and human diseases such as cancer. PRPF3, EEF1D, EXOSC4, EIF3E, SF3B4, BOP1, RAD21, MYC, RPL8, HSF1, HIF3E, FLAD1, PPP1R16A, TOP1MT, MAF1, KRTCAP2, CYC1, and GRINA were highly connected in case of CNAs network, in mutated genes network, MYH15, MYCBP2, HSPG2, USH2A, FN1, FBN1, CTNNB1, ARID1A, and TTN were highly connected, and ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB, PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA, PBRM1, PRKCA, EIF3L, RAB6A, and STK38 were among the highly connected genes in SVs genes network. CTNNB1, TP53, RB1, ADCY8, MYC, PTK2, PRKCA, TP53, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, CTNNB1, GCK, and FGFR2/3 were among the genes whose alterations could possibly alter a large number of critical biological functions including those which directly infer the cancer mainly the HCC pathways. Moreover, we have also presented the expression (mRNA and protein) (Figure 4D) of some of the potential genes in case of human liver and gallbladder tissues by using the Protein Atlas database (Uhlén et al., 2005, 2017, 2019; Cancer Genome Atlas Research Network, 2008). This study could be an example to apply the integrative approach for a number of complex diseases such cancers, type-2 diabetes, cardiovascular diseases, and neurological disorders (Varambally et al., 2005; Taylor et al., 2010; Van Herle et al., 2012; Zhang et al., 2015; Huwait and Mobashir, 2022).
CONCLUSIONS
According to our findings, only a few genes, such as CLK2, E2F5, CDK5, E2F3, MCM3, PCNA, and CDK4, are highly overexpressed among HCC patients, and the overall expression of all the selected biomarkers appears in more than 60% of the patients, and in terms of co-occurrence, CCNB2, CLK2, CDK4, CDC7, E2F3, PCNA, and MCM3 appear to be the dominantly c Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. In contrast to our expression data profile, following 4 days of HCV infection, a group of pathways is always affected. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are all highly altered pathways in HCC infected with HCV, according to our findings. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. Most of these pathways are well-known for their functions in the immune system, infection and inflammation, and human diseases such as cancer. According to the networks of genes and pathways based on CNAs, mutations, and SVs, ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes.
METHODS
We have selected genome-wide expression and mutational data for HCC with HCV infection and without HCV infection samples. By applying computational approach and integrating experimental data, we have unraveled the critical genes and the pathways which appear to be associated with human HCC. We have selected different datasets and the dataset details are as follows: In GSE63863 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63863), using the Mass Array EpiTyper, they have looked at a TERT methylation assay that included the UTSS region in 125 matched HCC samples and then analyzed a validation set of 12 matched HCC samples and obtained the TERT gene’s FPKM value to determine the association between TERT promoter methylation status and TERT expression level. In case of GSE14520 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14520), tumors and the associated non-tumor tissues were analyzed independently using a single channel array technology for gene expression profiling. On Affymetrix GeneChip HG-U133A 2.0 arrays, tumor and paired non-tumor samples from 22 patients in cohort 1 and the normal liver pool were analyzed according to the manufacturer’s methodology. An Affymetrix GeneChip Scanner 3000 was used to measure fluorescence intensities, which was controlled by GCOS Affymetrix software. The 96 HT HG-U133A microarray platform was used to process all samples from cohort 2 as well as 42 tumor and non-tumor samples. An Affymetrix GeneChip HT Array Plate Scanner was used to determine the fluorescence intensities, which was controlled by GCOS Affymetrix software. We have also used HCV specific dataset GSE126831 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126831) where integrated genomic analysis was used to investigate time-resolved HCV infection of hepatocyte-like cells and they discovered pathways relevant for liver disease pathogenesis that have verified in the livers of 216 cirrhotic patients with HCV using differential expression, gene set enrichment analysis, and protein-protein interaction mapping.
In this study, from on previous study, we have collected the genes as biomarkers in case of HCC and studied their clinical relevance and have also studied the publicly available dataset (GSE126831 (Lupberger et al., 2019a)) related to gene expression profiling. In comparison from the previous work, we have applied different approach where we have started our work by mapping the known association (publicly available network database) FunCoup (Alexeyenko and Sonnhammer, 2009), investigated the clinical significance of the overexpression of HCC biomarkers, and finally studied DEGs and the enriched pathways from the gene expression data (obtained from Gene Expression Omnibus). Further, we have utilized the HCC datasets from TCGA database and by using cBioPortal explored all possible mutations, CNAs, and SVs (Koboldt et al., 2012; Werner et al., 2014).
Initially, we have selected the dataset (raw expression dataset) GSE126831 (Lupberger et al., 2019a) for HCC and processed it for normalization and log2 values of all the mapped genes. GSE126831 comprises 63 samples ranging from day 0–10 (temporal samples infected with HCV and mocked samples), with three mocked RNA samples for day 0 and three mocked and three RNA infected with HCV samples for days 1–10. We compared faked samples to HCV infected samples at the respective day of infection for differential gene expression profiling. mRNA profiles of sham or HCV-infected Huh7.5.1dif cells, obtained every day between days 0 and 10 after infection in triplicate. At 7 days after infection, the HCV infection had reached a halt (pi). Unspecific effects cannot be ruled out after day 7 pi.
The paired-end reads from all 63 samples were aligned to the human hg19 UCSC reference using TopHat software for transcriptome profiling at Illumina NextSeq 500 (Homo sapiens) RNA sequencing (v2.0.14). The Cufflinks package’s cuffquant and cuffnorm were used to calculate gene expression levels (FPKM values) (v2.2.1). By creating analytical groups, proteins and transcripts were mapped. Supplementary Files format and content: hg19 Genome build: hg19 The RPKM values for each sample and the results of a differential expression analysis of mapped transcripts are stored in tab-delimited text files. Now, we proceed for our major goal which is to understand the gene expression patterns (Lapointe et al., 2004; Subramanian et al., 2005) and its inferred functions (Subramanian et al., 2005; Mi et al., 2016) and also the impact of HCC biomarker genes. We used MATLAB tools (e.g., mattest) for differential gene expression prediction and statistical analysis, and for pathway analysis, we used the KEGG database (Kanehisa et al., 2007, 2009) and in-house code created for pathway and network research (Bajrai L. et al., 2021; Kamal et al., 2020; Khouja et al., 2022a; Kumar et al., 2020; Warsi et al., 2020). Furthermore, we took all of the HCC samples from the TCGA database and used cBioPortal to look for mutations, CAN, and SV, as well as prepare a list of genes using a threshold cutoff. The CNA threshold was set at 10.0, the mutation threshold at 3.0, and the SV threshold was set at 0.5. As previously stated, this collection of genes has been processed for pathway enrichment analysis. For the GEO datasets, GEO2R was applied for the calculation of p-values and fold changes. GEO2R is a web-based tool that allows users to compare two or more groups of Samples in a GEO Series to find genes that are differentially expressed under different experimental settings. The results are supplied as a table of genes ordered by significance, as well as a set of graphic graphs to help visualise differentially expressed genes and assess data set quality (Bajrai L. et al., 2021; Bajrai et al., 2021 L. H.; Eldakhakhny et al., 2021; Khouja et al., 2022b). FunCoup (Reynolds et al., 2010) was used to generate DEGs networks for all of the networks in this study, and cytoscape was utilized to visualize the networks. Protein complexes, protein-protein physical interactions, metabolic, and signaling pathways are among the four types of functional coupling or linkages predicted by FunCoup. MATLAB has been used for the majority of our code and calculations. Cytoscape (Shannon et al., 2003; Skov et al., 2012), network database (PPI), ProgeneV2, and other fundamental tools are among the extra applications and resources used (Krishnamoorthy et al., 2020; Bajrai L. et al., 2021; Bajrai et al., 2021 L. H.; Eldakhakhny et al., 2021; Ahmed et al., 2022; Anwer et al., 2022).
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GAPDH

Sequence (5—3)

Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse

5'-TAGGAAACGAGCGAGCCC-3'
5'-GCTTTGGGTCTCCCCTTCTT-3'
5'-GAGCCATTTCTGTGGCTTGC-3"
5'-TGAGTGGTAGAAGAGCCCCT-3’
5'-GGGGACTCCAGCGAAAT-3'
5'-ACCCGAAGCCCAACCAC-3'
5'-ATGAGCGCTACTAATGAAGG-3'
5'-TAACCCCGCATCTGTAAAAT-3"
5'-CTCTGCTGGCACTTCACAAA-3'
5'-CTCGGGTTCTCACTTGGAGT-3"
5'-CTGTTACCAACGTCCTAGAG-3'
5'-TGACAATCACACACTTGGAA-3"
5'-GGTCTCCTCTGACTTCAACA-3"
5'-GTGAGGGTCTCTCTCTTCCT-3"
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Patients with RNA-seq data Patients with miRNA-seq data

(N=87) (N=83)
Variables No. (% or range) Variables No. (% or range)
Age Age
<60 35 (0.40) <60 33 (0.40)
> 60 52 (0.60) > 60 50 (0.60)
Gender Gender
Female 38 (43.7) Female 36 (0.43)
Male 49 (56.3) Male 47 (0.57)
Race Race
Asian 3(0.03) Asian 3 (0.04)
White 66 (0.08) White 64 (0.77)
Black 7(0.13) Black 7 (0.08)
Not reported 11 (0.76) Not reported 9 (0.11)
Year of diagnosis Year of diagnosis
Before 2004 18(0.21) Before 2004 18 (0.22)
2005~2008 24 (0.28) 2005~2008 21 (0.25)
2009~2013 45 (0.52) 2009~2013 44 (0.53)
Histology Histology
AD' 49 (0.56) AD 48 (0.58)
SCc? 38 (0.44) SCC 35 (0.42)
Primary site Primary site
Lower lobe 27 (0.31) Lower lobe 25 (0.30)
Upper lobe 54 (0.62) Upper lobe 52 (0.63)
Not reported 6 (0.07) Not reported 6 (0.07)
TNM edition number TNM edition number
Before 5th 9(0.10) Before 5th 9(0.11)
6th 41 (0.47) 6th 38 (0.46)
7th 31(0.36) 7th 31(0.37)
Not reported 6 (0.07) Not reported 5 (0.06)
T stage T stage
T 8(0.21) T 5(0.18)
T2 48 (0.55) T2 47 (0.57)
T3 6(0.18) T3 6(0.19)
T4 4 (0.05) T4 4 (0.05)
Tx 1(0.01) Tx 1(0.01)
N stage N stage
NO 4 (0.39) NO 2 (0.39)
N1 20 (0.23) N1 19 (0.23)
N2 7 (0.31) N2 7 (0.33)
N3 3(0.03) N3 2(0.02)
Nx 3(0.03) Nx 3(0.04)
M stage M stage
MO 65 (0.75) MO 62 (0.75)
M1 6(0.07) M1 5 (0.06)
Mx 16 (0.18) Mx 16 (0.19)
Stage Stage
Stage | 21(0.24) Stage | 20 (0.24)
Stage Il 23 (0.26) Stage Il (O 27)
Stage Ill 37 (0.43) Stage Il 6 (0.43)
Stage IV 6 (0.07) Stage IV (0.06)
Radiotherapy Radiotherapy
sensitivity sensitivity
Sensitivity 48 (0.55) Sensitivity 45 (0.46)
Resistance 39 (0.45) Resistance 38 (0.54)

1AD: adenocarcinoma; 2SCC: squamous cell carcinoma.
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Characteristic (OS) Univariable analysis Multivariable analysis

HR (95% CI) p-Value HR (95% Cl) p-Value

Age (years) - - - -
<60 1 - 1 -
260 1.24 (1.93-167) 0031 1.44 (1.07-1.94) 0016
Gender - - - -
Female 1 - - -
male 1.28 (0.99-1.65) 0056 - -

T stage - - - -
Ti/2 1 - 1 -
T34 1.73 (1.06-2.85) 0029 1.24 (1.15-2.05) 0043
Unknown 374 (1.71-5.18) <0.001 098 (026-3.71) 0981
N stage - - - -
No 1 - 1 -
N1/2 1.78 (1.38-2.32) <0.001 0.20 (090-1.64) 0.181
Unknown 259 (1.50-4.48) <0.001 1.73 (1.25-4.33) 0021
M stage - - - -
Mo 1 - 1 -
M1 458 (3.36-6.24) <0.001 355 (251-3.70) <0.001
Unknown 269 (1.74-4.19) <0.001 2.00 (117-3.74) 0,002
PRM-scores - - - -
Low 1 - 1 -
High 376 (2.82-5.01) <0.001 3.7 (2.36-4.26) <0.001
Pyroptosis-related molecuiar subtype - - - -
PRA 1 - 1 -
PR-B 1.69 (1.25-2.31) <0.001 1.31 (1.09-1.81) 0013
PR-C 1.78 (1.28-2.49) <0.001 1.27 (1.09-1.82) 0034

Note. Multivariate Cox regression analysis is used to calculate the HRs and 95% Cls for OS in CC patients. Covariables that are significant in univariable competing risk regression analysis

(b < 0.05) are included in the multivariable analysis.
HR. hazard ratio: Cl. confidence interval: CC. colon cancer: OS, overall survival.
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name

Ether lipid metabolism 25
Lysosome 116
Steroid biosynthesis 16
Glycan biosynthesis 28
Peroxisome 77
Amino sugar and nucleotide sugar metabolism 40
Vibrio cholerae infection 51
Pathogenic Escherichia coli infection 51
Glycerophospholipid metabolism 66
Ppar signaling pathway 66

Sizer The KEGG paihway contains the number of genes in the expression dataset.
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p-val
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