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Editorial on the Research Topic

Endocrine and paracrine regulation of spermatogenesis - A collection
of up to date research contributions on testis formation and function
Introduction

Continuous generation of male gametes occurs through the tightly controlled

multistep process of spermatogenesis. This process includes the formation and

differentiation of spermatogonia, their entry into meiosis, recombination of the

paternal genome during meiosis, and the differentiation of the spermatids that result

frommeiosis into advanced spermatids/spermatozoa. Somatic cell-cell and somatic-germ

cell interactions within the testis define the local milieu and endocrine environment

driving germ cell development and spermatogenesis. The spermatozoa formed in the

testis gain the ability for forward motility and fertility during their passage though the

epididymis. The process of spermatogenesis ensures the propagation of the species while

also providing biological diversity and adaptation.

This volume, edited by Erwin Goldberg (Northwestern University), Polina Lishko

(University of California, Berkeley), Vassilios Papadopoulos (University of Southern

California), and Barry Zirkin (Johns Hopkins University), is dedicated to how the

process of spermatogenesis is regulated by endocrine and paracrine mechanisms. It

encompasses peer-reviewed perspectives, reviews, opinion papers, and original research

reports by scientists at the cutting edges of their fields. The authors were invited by the guest

editors to submit articles in the broad area of endocrine and paracrine regulation of

spermatogenesis. The topics covered in the volume include the regulation of

spermatogonial development from stem cells, spermatogonial division to form cells that

enter meiosis, the process of meiosis, spermatogenesis and its regulation, the effects of aging
frontiersin.org
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and of chemical exposure on sperm formation and function, new

approaches to male contraception, and the application of new

molecular technologies. The editors have organized the papers

into four major areas: Spermatogonia: Development and

Regulation; Sperm Formation: Molecular and Hormonal

Regulation; Effects of Age and Exogenous Influences on Sperm

Formation and Function; and Clinical Applications: Testosterone,

Spermatogenesis and Contraception. The following descriptions

summarize the contents of the papers contained in each of these

four major areas:
Spermatogonia: Development
and regulation

Analyses of altered activin A in murine models by Moody

et al. implicate activin A as a key determinant of early germline

formation and highlight the potential for altered activin A levels

in utero to increase the risk of testicular pathologies that arise

from impaired germline maturation. Manku et al., building on

their previously identified Ubiquitin-Proteasome System (UPS)

enzymes that are dynamically altered during gonocyte

differentiation, focus on the role of the RING finger protein

149 (RNF149), an E3 ligase expressed in gonocytes and

downregulated in spermatogonia. The new data that are

presented support a role for RNF149 in gonocyte proliferation.

Wright reviews the in vivo regulation of spermatogonial

stem cells (SSCs) in adult testes by Sertoli cell-produced glial cell

line-derived neurotrophic factor (GDNF) through the use of a

novel chemical-genetic approach to diminish replication and

increase the differentiation of SSCs. The data that are reviewed

suggest that GDNF may prove to be an effective therapy for men

whose testes contain only Sertoli cells (SCO syndrome).

Diao et al. summarize research progress on the regulation of

spermatogonial stem cells (SSCs), and the potential application

of SSCs for fertility restoration. The authors suggest that in vitro

spermatogenesis from SSCs produced from induced pluripotent

stem cells (iPSCs) might be of use in improvement

of spermatogenesis.
Sperm formation: Molecular and
hormonal regulation

Leydig cells are the main site of production of the male sex

hormone testosterone, a steroid that is critical for the development

of male sexual characteristics and spermatogenesis. The

commitment, differentiation, and function of Leydig cells

require the coordinated action of several transcription factors

acting in a time-specific manner. de Mattos et al. review current

knowledge on the expression, function, and mechanism of action

of various transcription factors that regulate fetal and adult

endocrine Leydig cell development and function. The ability of
Frontiers in Endocrinology
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Leydig cells to form androgen is influenced by other cells present

in the interstitium, e.g., immune cells such as macrophages.

Gu et al. review the literature showing that interstitial testicular

macrophages are intimately associated with Leydig cells,

controlling Leydig cell development and function, and that

certain types of lymphocytes produce and metabolize steroids

that might affect the steroidogenic output of the testis. Ruthig and

Lamb review recent advances in understanding the interplay of

Sertoli cell endocrine and paracrine signals that regulate germ cell

state and thus, spermatogenesis. Recent studies of Sertoli cell

ablation and transplantation that provide better clarity of the role

of the Sertoli cell niche in germ cell development are discussed.

Sertoli cells are a major component of the spermatogonial stem

cell niche and provide essential growth factors and chemokines to

developing germ cells. Hoffman and McBeath review the activation

of master regulators of the niche in Sertoli cells and their targets,

and the molecular mechanisms underlying the regulation of growth

and differentiation factors such as GDNF and retinoic acid by

NOTCH signaling and other pathways.

Male fertility is reliant upon continuous production of sperm.

Spermatogenesis involves the coordinated transitions of mitosis,

meiosis, and spermiogenesis. Moritz and Hammoud review

current understanding of chromatin dynamics during

spermiogenesis, and the molecular basis of the histone-to-

protamine exchange in idiopathic male infertility. The transition

of Type A spermatogonia to differentiated spermatogonia requires

the action of retinoic acid (RA). The synthesis of retinoic acid

from retinal in the seminiferous epithelium is a result of the action

of aldehyde dehydrogenases. Topping and Griswold report that of

the three known retinal dehydrogenases involved in RA synthesis,

two are required in Sertoli cells for normal spermatogenesis, and

that the global deletion of the genes for these two enzymes blocks

spermatogenesis, thus offering a potential target for contraception

in the male.

Meyer-Ficca et al. address the question of whether age-

related NAD+ decline is functionally linked to decreased male

fertility. Using a transgenic mouse model, the authors report that

decreasing testicular NAD+ levels in young adult mice, to levels

that match or exceed the NAD+ decline observed in old mice,

results in the disruption of spermatogenesis, and that providing

vitamin B3 (niacin) to NAD+-depleted transgenic mice rescues

spermatogenesis. The results suggest that NAD+ provided by

vitamin B3 is important for complete spermatogenesis and

male fertility.

Mundt et al. review publications on extracellular adenosine

triphosphate (ATP) as a paracrine mediator of male fertility and

sperm production, acting by targeting membrane-bound purinergic

receptors and ion channels, and triggering changes in the cell’s

membrane potential, calcium homeostasis, and cAMP levels. The

summarized results demonstrate the importance of purinergic

signaling in the control of male reproduction.

Kiyozumi and Ikawa describe biological processes regulated

by proteases and protease inhibitors based on the use of gene-
frontiersin.org
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modified organisms. A focus is on the generation and activation

of gametes during spermatogenesis. Discussed are proteolysis-

related factors and biological processes regulated by proteolysis

for successful reproduction, including cleavage of peptide bonds

to activate and inactivate enzymes, transcription factors,

and receptors.
Effects of age and exogenous
influences on sperm formation
and function

Paternal age at conception has been steadily increasing

globally. Chan and Robaire review results from mammalian

animal models showing that increasing paternal age affects

progeny outcome. Clinical studies reveal effects on offspring

with respect to perinatal health, cancer risk, genetic diseases, and

neurodevelopmental deficits. An overview of the potential

mechanisms involved in altering germ cells in advanced age is

presented. This is followed by an analysis of the current state of

management of reproductive risks associated with advanced

paternal age, and strategies for mitigating its impact.

Sakib et al. make the case that an in vitro system to study

testicular maturation would serve as a platform for high-

throughput drug and toxicity screening in a tissue-specific

context. The authors report conditions that result in the

successful generation and maintenance of rat testicular

organoids in culture and the use of this system to study

testicular cell maturation and the effects of exposure to toxicants.

Infection and inflammation can lead to infertility. The

review by Hasan et al. describes evidence for the activation of

inflammatory pathways as causative in various forms of male

testicular disorders. The focus is on how imbalance of local

testicular factors contributes to disturbances of spermatogenesis

and steroidogenesis.

Wang et al. discuss the association of perinatal exposure to

smoking and childhood asthma. They point out that although

the molecular mechanisms underlying childhood asthma

induced by perinatal exposure to smoking or nicotine remain

elusive, an epigenetic mechanism might be involved. The new

data presented in this paper show that perinatal exposure to

nicotine leads to alterations in the profiles of sperm RNAs,

including mRNAs and small RNAs, and that rosiglitazone, a

PPARg agonist, can reverse the negative effects on RNA.

The study by Starovlah et al. addresses the possible

mechanism(s) by which acute psychological stress might affect

male fertility in rat models. Included in the study are analyses of

numbers of spermatozoa, markers of mitochondrial dynamics,

and expression of signaling molecules.

Wang et al. discuss the X-linked miR-465 cluster. The study

that the authors present focuses on the role of the miR-465 cluster

in murine development. It is reported that ablation of the miR-465

miRNA cluster using CRISPR-Cas9 did not cause infertility, but
Frontiers in Endocrinology
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rather a sex ratio biased toward males in the knockout mice. The

data suggest that the miR-465 cluster is required for normal female

placental development, and that ablation of the miR-465 cluster

leads to a skewed sex ratio with more males (~60%) due to selective

degeneration and resorption of the female conceptuses.
Clinical applications: Testosterone,
spermatogenesis and contraception

Hypogonadism and priapism have been shown to be common

in men with sickle cell disease (SCD). Musicki and Burnett review

the use of a mouse model for understanding the relationship of

primary hypogonadism to SCD and to priapism. They also discuss

the mechanisms involved in reduced cholesterol transport to and

into the mitochondria in relationship to reduced testosterone, and

how endogenous testosterone production might be restored

specifically and safely in men with SCD, thereby reducing

episodes of priapism.

Makela and Toppari review data showing that the

retinoblastoma protein (RB) binds to E2F transcription factors

in the testis, and that their interaction is a key mechanism

involved in the establishment and maintenance of male fertility.

In particular, evidence from gene knock-out studies is discussed

that demonstrates that RB-E2F interaction in Sertoli cells is

essential for fertility and is important for germline maintenance

and lifelong sperm production.

Schlegel points out that much of what is understood about

human spermatogenesis has come from the study of rodent

models, but that this approach might not be ideal. This paper

focuses on clinical observations of human spermatogenesis,

focused mainly on genetic abnormalities in human sperm that

are based on analyses conduct with patients presenting with

symptoms of severe infertility.

Johnston and Lindsey discuss innovative approaches focused on

expanding the contraceptive options available to men and women.

They also consider new challenges to clinical development and

regulatory approval, and how these challenges can be met so that

new discoveries will move “from bench to bedside.”

In the last but not the least of these contributions, Page et al.

emphasize the importance of effective contraceptive options for

men and women and make the case for expanded male

contraceptive methods. The authors discuss the use of exogenous

progestins and androgen that suppress the hypothalamic-pituitary-

gonadal axis as effective and reversible, and present new data on the

use of novel steroids and varied routes of hormone delivery.
Concluding remarks

The editors are sincerely grateful to all authors for their

invaluable contributions highlighting current knowledge on

spermatogenesis and its regulation by endocrine and paracrine
frontiersin.org
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factors. Moreover, we are grateful to the reviewers for their

insightful and constructive reviews. Our hope is that these

results are discussed, and the new techniques that now are

available to investigators, will inspire further in-depth work in

this important field of human biology. We also express our

appreciation for the editorial assistance by the Frontiers staff

and in particular that from Samuel Manning Journal

Specialist, Frontiers in Endocrinology for his timely and helpful

responses to our many questions during the entire project period.
Author contributions

EG, PL, VP and BZ contacted potential authors, assigned

manuscripts to reviewers, and ultimately made decisions as to

the publication status of the manuscripts.
Frontiers in Endocrinology
8

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fendo.2022.984409
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology | www.frontiersi

Edited by:
Erwin Goldberg,

Northwestern University,
United States

Reviewed by:
William Skinner,

University of California, Berkeley,
United States

Michael Griswold,
Washington State University,

United States

*Correspondence:
Nadine Mundt

nadine.mundt@ucsf.edu

Specialty section:
This article was submitted to

Reproduction,
a section of the journal

Frontiers in Endocrinology

Received: 31 January 2022
Accepted: 08 March 2022
Published: 05 April 2022

Citation:
Mundt N, Kenzler L and Spehr M

(2022) Purinergic Signaling in
Spermatogenesis.

Front. Endocrinol. 13:867011.
doi: 10.3389/fendo.2022.867011

MINI REVIEW
published: 05 April 2022

doi: 10.3389/fendo.2022.867011
Purinergic Signaling in
Spermatogenesis
Nadine Mundt1,2,3*, Lina Kenzler2 and Marc Spehr2,3

1 Department of Physiology, University of California, San Francisco, San Francisco, CA, United States, 2 Department of
Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany, 3 Research Training Group 2416
MultiSenses – MultiScales, RWTH Aachen University, Aachen, Germany

Adenosine triphosphate (ATP) serves as the essential source of cellular energy. Over the
last two decades, however, ATP has also attracted increasing interest as an extracellular
signal that activates purinergic plasma membrane receptors of the P2 family. P2 receptors
are divided into two types: ATP-gated nonselective cation channels (P2X) and G protein-
coupled receptors (P2Y), the latter being activated by a broad range of purine and
pyrimidine nucleotides (ATP, ADP, UTP, and UDP, among others). Purinergic signaling
mechanisms are involved in numerous physiological events and pathophysiological
conditions. Here, we address the growing body of evidence implicating purinergic
signaling in male reproductive system functions. The life-long generation of fertile male
germ cells is a highly complex, yet mechanistically poorly understood process. Given the
relatively sparse innervation of the testis, spermatogenesis relies on both endocrine
control and multi-directional paracrine communication. Therefore, a detailed
understanding of such paracrine messengers, including ATP, is crucial to gain
mechanistic insight into male reproduction.

Keywords: spermatogenesis, ATP - adenosine triphosphate, purinoceptor, calcium signaling, P2X, P2Y
SPERMATOGENESIS

The generation of fertile spermatozoa is one of the most complex, yet least understood
developmental processes in postnatal life. Spermatogenesis describes the differentiation and
maturation of diploid spermatogonial stem cells into haploid spermatozoa (1). Spermatogenesis
occurs in the seminiferous tubules within the mammalian testis (2) (Figure 1). These hollow tubules
are coiled loops that converge in the rete testis, which feeds into the epididymis (2, 4). Seminiferous
tubules comprise a specialized tissue subdivided into three compartments: the lumen, the germinal
epithelium, and the tubular wall. The latter is composed of extracellular matrix proteins and flat
smooth-muscle-like testicular peritubular cells (TPCs). The germinal epithelium comprises two cell
types: somatic Sertoli cells and developing germ cells.

Sertoli cells fulfill essential structural, regulatory, and nourishing functions for the surrounding
germ cells. They span from the basal lamina to the lumen and are associated with up to 50 germ cells
(5). During the course of differentiation, Sertoli and germ cells remain connected, enabling
continuous bidirectional communication. In the basal seminiferous epithelium, Sertoli cells form
necklace-like tight junction threads between adjacent Sertoli cells, creating a tight barrier between
the basal and adluminal compartments (6). This blood-testis barrier prevents passage of many
n.org April 2022 | Volume 13 | Article 86701119
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molecules and migrating immune cells into the inner, adluminal
compartment and, thus, creates a protective, immune-privileged
environment for postmeiotic germ cell development (7).

During maturation, germ cells migrate in a complex process
from the basal compartment towards the lumen. The first wave
of spermatogenesis is initiated upon puberty and divided into
four phases (8, 9):

1. Mitot ic pro l i f era t ion of dip lo id spermatogonia
(spermatogoniogenesis)

2. Meiotic division of tetraploid spermatocytes into haploid
spermatids

3. Morphological differentiation of spermatids into
spermatozoa (spermiogenesis)

4. Sperm release into the tubular lumen (spermiation)

The first mitotic division is asymmetrical as one daughter cell
remains in the stem cell pool, while the other spermatogonium is
irreversibly determined to differentiate. In subsequent mitotic
divisions into various spermatogonial subtypes, the cells lose
contact with the basal lamina (10). Due to incomplete
cytokinesis, premeiotic germ cells stay connected via
cytoplasmic bridges allowing small molecule exchange and,
hence, synchronized development (11, 12). Spermatogonia
then differentiate into primary spermatocytes, which progress
through meiosis and cross the blood-testis barrier. Haploid
spermatids undergo drast ic morphological changes
(spermiogenesis), yielding elongated and flagellated
Frontiers in Endocrinology | www.frontiersin.org 210
spermatozoa that are located close to the tubular lumen.
Finally, in a process called “spermiation”, spermatozoa are
released into the lumen, which marks the endpoint of
spermatogenesis (2, 8). Upon release, spermatozoa remain
immotile and, thus, need to be actively transported towards
rete testis and epididymis, where they gain the capacity for
motility but remain quiescent (13–15). Sperm transport is
mediated by coordinated smooth muscle contractions of TPCs
that surround individual tubules (3, 16).

The bewildering complexity of cell types that coexist in the
seminiferous epithelium as well as the numerous proliferation
and differentiation steps that must be precisely orchestrated pose
an obvious question: Which multi-directional cellular
communication mechanisms control spermatogenesis?

Given the lack of pronounced seminiferous tubule innervation
testicular sympathetic innervation appears restricted to blood
vessels and the tunica albuginea (17), spermatogenesis relies on
endo-, auto-, and paracrine communication pathways. Therefore,
a detailed understanding of the relevant paracrine messengers,
including ATP, promises to provide much needed mechanistic
insight into male reproduction.
PURINERGIC SIGNALING

One of the paracrine messengers that has attracted increasing
scientific interest in a multitude of general physiological
FIGURE 1 | Functional P2 receptor isoform distribution among individual cell types of the seminiferous tubule. Left: Schematic illustration of the mammalian testis
and cellular architecture of a seminiferous tubule. A single layer of contractile testicular peritubular cells (TPC) lines the tubular wall. Developing germ cells are
distributed between nourishing Sertoli cells (SCs). Undifferentiated spermatogonia (SP) are located near the basal membrane. Spermatocytes (SPC) migrate to the
adluminal compartment, where they complete meiosis. The resulting haploid round spermatids (SPT) differentiate into elongated spermatids and, eventually, into
highly condensed and compartmentalized spermatozoa (SPZ). These mature, yet immotile spermatozoa are then released into the lumen (spermiation) and undergo
further maturation steps once transported to the epididymis. Adapted from: Fleck, Kenzler et al. (3). Right: Distribution of P2 isoforms in various cell types of the
seminiferous tubule. Schematic shows the P2 receptor distribution as supported by direct functional (i.e., physiological) evidence.
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events is extracellular adenosine triphosphate (ATP) (18–21).
Through an evolutionarily conserved route for cell-to-cell
communication, extracellular ATP activates members of the
membrane-bound P2 purinoceptor family (18). ATP-gated P2
receptors are divided into two classes, namely ionotropic P2X
receptors (22, 23), and metabotropic P2Y receptors, which are
members of the G protein-coupled receptor (GPCR) superfamily
(24). The majority of the eight P2Y receptor isoforms (P2Y1, 2, 4,
6, 11) couple to Gaq, thus signaling via phosphoinositide
turnover. Gaq activates phospholipase C, which in turn
hydrolyzes phosphatidylinositol-4,5-bisphosphate to inositol-
1,4,5-trisphosphate (IP3) and diacylglycerol. Cytosolic increase
in IP3 level triggers Ca2+ release from internal Ca2+ storage
organelles (i.e., the endo/sarcoplasmic reticulum) via IP3
receptors. The main effector of P2Y12, P2Y13, and P2Y14 is
Gai/o followed by an activation or inactivation of adenylate
cyclase and altered cytosolic cyclic adenosine monophosphate
(cAMP) levels (25).

P2X receptors, by contrast, are homo- or heterotrimeric
ligand-gated nonselective cation channels. They share a
common transmembrane topology – intracellular termini and
two transmembrane domains separated by a large extracellular
loop (26) – with DEG/ENaC/ASIC channels. Upon ATP
binding, conformational changes lead to the opening of a
cation-permeable channel pore (27). Among the P2X family,
seven homotrimeric (P2X1–7) and several heterotrimeric
isoforms have been described, all of which share substantial
Ca2+ permeability, but are readily distinguished by ligand
affinities, activation and desensitization kinetics, as well as
distinct pharmacological fingerprints (28). The complexity of
both receptor families, which cover a vast dose-response range of
effective ATP concentrations, and the broad spatiotemporal
response scales of P2 receptors confer both functional
specificity and physiological flexibility to a ubiquitous signaling
pathway. Accordingly, a given cell’s P2 receptor expression
profile underlies its unique response phenotype upon ATP
exposure. Notably, as both metabotropic and ionotropic ATP
response pathways represent substantial cellular Ca2+ gates,
purinoceptors mediate numerous Ca2+-dependent downstream
effects, including control of gene transcription, protein
phosphorylation, ion channel function, muscle contraction,
and more (29). While the general picture is still incomplete, we
here seek to summarize evidence from a growing number of
reports about purinergic signaling routes within the seminiferous
tubule and their potential implications in spermatogenesis and
male (in)fertility.

Purinoceptor Signaling in Germ Cells
Given the broad physiological response scale of purinoceptors,
purinergic signaling has been proposed to play a role in
controlling germ cell maturation at different developmental
stages. In mice, twelve such stages are sequentially transitioned
to complete one seminiferous epithelial cycle. Accordingly,
immunohistochemical investigation of cell type- and stage-
dependent protein expression has been notoriously difficult.
Early work described immunoreactivity for several P2X
receptor subtypes in the rat testis (30). Various germ cell types
Frontiers in Endocrinology | www.frontiersin.org 311
throughout different stages of the seminiferous epithelial cycle
were found immunopositive for P2X2, P2X3, and P2X5
receptors. By contrast, P2X4 and P2X6 receptors appeared
absent from rat testis samples – a finding that was later
contradicted by Ko and coworkers (31). P2X1 receptors were
exclusively detected in blood vessels and P2X7 antibody staining
was restricted to Sertoli cells (30). Notably, P2X2 and P2X3
isoforms, which frequently form functional heteromers in the
nervous system (32), were usually observed in the same cell types
and stages (30).

Recently, we combined gene expression analysis, immuno-
and bioanalytical chemistry, protein knockdown, and single-cell
electrophysiology to gather functional evidence for purinergic
signaling in male germ cells (33). We identified a
multidimensional ATP response pathway consisting of both
P2X4 and P2X7 receptors and downstream Ca2+-activated
large conductance (BK) K+ channels in prepubescent mouse
spermatogonia (Figure 2AIII). P2X4 and P2X7 receptors display
distinct ATP affinities, and their activation triggers
transmembrane currents with characteristic kinetics that enable
unequivocal electrophysiological isoform identification.
Coopera t ive ly ac t iva ted by concurrent membrane
depolarization and increased cytoplasmic Ca2+, hyperpolarizing
BK channels provide a negative feedback mechanism that
counteracts the effects of P2X receptor activation and ensures
swift repolarization of the spermatogonial membrane
potential (33).

While some of the apparent discrepancies between the above
studies (30, 31, 33) likely result from species [mouse (33) versus
rat (30, 31)] and/or age [juvenile (33) versus adult (30, 31)]
differences, they also highlight the limitations of unidirectional
(i.e., immunochemistry-only) protein expression analysis.
Electrophysiological recordings from postmeiotic germ cells in
acute seminiferous tubule slices of adult mice are technically
challenging. Our own unpublished data nonetheless indicate
functional expression of a fast activating and slowly
desensitizing ATP-activated channel in postmeiotic
spermatocytes and/or round spermatids (Figure 2AIV). The
molecular identity of this putative P2X receptor remains to
be identified.

Given the emerging role of extracellular ATP in numerous
physiological signaling processes, it is tempting to speculate that
spermatozoa might be exposed to varying concentrations of
extracellular ATP in the testis, epididymis, and/or female
reproductive tract. ATP might, therefore, play a role in
modulating sperm fertilizing capacity. In humans, extracellular
ATP has been reported to increase the fertilizing potential of
sperm and, accordingly, sperm exposure to ATP during IVF
treatment has been suggested (36). Early studies report that
extracellular ATP triggers acrosome exocytosis in human
sperm via P2X-dependent Na+ influx (37, 38). In rat
spermatozoa, P2X7 has been proposed to mediate the ATP-
triggered acrosome reaction (39). While the acrosomal
membrane is as yet inaccessible to electrophysiological
recordings, acrosomal P2X receptor currents remain to be
verified. A different mechanism was found in bovine
spermatozoa, where extracellular ATP appears to activate P2Y
April 2022 | Volume 13 | Article 867011
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receptors. The resulting elevation in cytoplasmic Ca2+ activates
PKCa, which triggers acrosomal exocytosis (40). In 2007,
Edwards et al. quantified the effects of extracellular ATP on
acrosomal exocytosis, protein tyrosine phosphorylation, and
sperm motility parameters in human sperm (41). In healthy
and asthenozoospermic donors, ATP had no impact on
acrosome exocytosis or tyrosine phosphorylation. However, it
significantly altered sperm motility, increasing curvilinear
velocity and percentage of hyperactivation. This observation
might explain the previously described benefits of ATP
supplement during IVF treatment.

Navarro et al. reported a nonselective cation current in the
midpiece of mouse spermatozoa that is activated by external ATP
exposure (Figure 2AV) (34). This current matches the kinetics and
pharmacological profile reported for recombinant P2X2 and,
importantly, is absent in P2X2-/- mice. Despite the loss of this
ATP-gated current, P2X2-/- spermatozoa show unaltered motility
and acrosome reaction. However, P2X2-/- males are subfertile
when given the chance to mate at high frequencies, indicating that
Frontiers in Endocrinology | www.frontiersin.org 412
P2X2 adds a selective advantage under frequent mating
conditions. The authors hypothesize that increased intracellular
Ca2+ through P2X2 energizes sperm mitochondria in the
midpiece, presumably as a consequence of Ca2+-dependent
potentiation of enzymes in the Kreb’s cycle (42).

Purinoceptor Signaling in Sertoli Cells
Work from multiple laboratories suggests that extracellular ATP
triggers a rapid and transient increase in the cytosolic Ca2+

concentration of Sertoli cells, albeit with partly conflicting
propositions for the underlying purinoceptor isoforms (31, 33,
43–47).

Endocrine control of spermatogenesis along the hypothalamic–
pituitary–testicular axis converges on Sertoli cells (48). Sertoli cell
function is centrally regulated by gonadotropins, either directly by
follicle stimulating hormone (FSH) or indirectly by luteinizing
hormone-dependent generation of dihydrotestosterone. FSH
surges trigger cAMP production and mobilization of cytosolic
Ca2+ in Sertoli cells (48). Interestingly, both ATP and its uridine
A

B B

FIGURE 2 | ATP sensitivity across cell types of the seminiferous tubule. (A) Representative whole-cell voltage-clamp recordings from various testicular cell types,
transiently exposed to extracellular ATP (100 µM). Negative current indicates cation influx through P2X receptors. (AI) Slowly desensitizing P2X2 and/or P2X4 current in a
mouse TPC (3). (AII) ATP activates P2X2 in murine Sertoli cells (33). (AIII) 100 µM ATP selectively activates P2X4, but not P2X7 in premeiotic spermatogonia. Note the
delayed BK-mediated outward current (33). (AIV) Postmeiotic germ cells exhibit an ATP-induced inward current, but the underlying P2X isoform is yet to be identified
(unpublished data; recording in an acute seminiferous tubule section from an adult mouse according to (33), extracellular solution containing (mM) 145 NaCl, 5 KCl, 1
CaCl2, 0.5 MgCl2, and 10 HEPES; pH = 7.3, intracellular solution containing (mM) 143 KCl, 2 KOH, 1 EGTA, 0.3 CaCl2, 10 HEPES, and 1 Na-GTP ([Ca2+]free = 110 nM);
pH = 7.1, stimulation with 100 mM ATP for 5 s). (AV) Epididymal mouse spermatozoa with characteristic fast-activating and slowly desensitizing P2X2 current evoked by
extracellular ATP. Electrophysiological recording was performed on a head plus midpiece fragment by Navarro et al. (2011) (34). (B) Combined ionotropic and
metabotropic ATP responses of various cells in an acute seminiferous tubule section visualized as Ca2+-dependent changes in fluorescence. Imaging was performed
according to published experimental protocols (35). (BI) Brightfield micrograph of the seminiferous tubule section under investigation. (BII) Fluorescence images of the
same seminiferous tubule bulk-loaded with fura-2/AM (30 mM, 30 min at room temperature). Pseudocolor images (rainbow 256 color map) illustrate relative cytosolic Ca2+

concentration before, during, and after ATP stimulation (unpublished data).
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derivative UTP inhibit FSH-dependent cAMP accumulation by
70% in rat Sertoli cells, suggesting that P2Y2 or P2Y4 receptors are
involved (43). Moreover, rapid IP3 accumulation was observed
upon ATP exposure in primary cultures of rat and mouse Sertoli
cells, in line with P2Y2 or P2Y4 receptor activation (49). In rat
Sertoli cells, extracellular ATP evoked 17b-estradiol production/
secretion. This effect depended on both membrane depolarization
via Na+ influx (implicating P2X receptors) and Ca2+ release from
internal stores (suggesting a concurrent role of P2Y receptors) (47).

Both receptor identification and direct functional
characterization of purinergic signaling in mouse Sertoli cells
were performed by Veitinger et al. in 2011 as well as Fleck et al.
in 2016 (33, 45). P2X2 and P2Y2 are the prevailing purinoceptors
(Figure 2AII) with confirmatory results obtained from both Sertoli
cell–germ cell co-cultures (45) and acute seminiferous tubule
sections (33). These (electro-)physiological observations are in
accordance with early findings by Foresta et al. in rat Sertoli cells.
Here, the authors claimed that ATP exposure generates both an
increase in cytosolic Ca2+ by release from intracellular stores (P2Y
receptors) and a depolarizing Na+ influx consistent with P2X
receptor activation (43). Notably, Veitinger and coworkers
establish that mitochondria serve as essential regulatory
components of Sertoli cell purinergic Ca2+ signaling (45).

Purinoceptor Signaling in Testicular
Peritubular Cells
Spermatogenesis completes with the release of still immotile
spermatozoa from the seminiferous epithelium into the lumen of
the seminiferous tubule. After detachment from Sertoli cells, sperm
must therefore be transported towards the rete testis and epididymis
for further maturation. Accordingly, precisely regulated tubular
transport mechanisms are imperative for reproduction.

Early on, observations of minute motions of seminiferous
tubule segments (50, 51) have sparked speculation about a
critical role for smooth muscle-like TPCs (52, 53) in male (in)
fertility through mediating contractile tubule movements (54,
55). However, direct experimental in vivo evidence for paracrine
control of TPC contractions has been lacking (56) and
quantitative live-cell measurements of seminiferous tubule
contractions are rare and controversial (57–60). Somewhat
surprisingly, early work explicitly excluded extracellular ATP
as an activator of TPCs (61). By contrast, we recently reported
both ATP-dependent Ca2+ signals and adenosine-dependent
proinflammatory actions in human TPCs in vitro (62, 63).
Notably, we also identified purinergic signaling pathways as
physiological triggers of tubular contractions both in vitro and
in vivo. By acting on ionotropic (P2X2 and/or P2X4) and
metabotropic (P2Y2) purinoceptors (Figure 2), extracellular
ATP elevates cytosolic Ca2+ (Figure 2B), activates TPC
contractions, and triggers stage-dependent directional sperm
movement within the mouse seminiferous tubules (3).
Combining recordings from primary mouse and human TPC
cultures as well as acute mouse seminiferous tubule slices with
intravital multiphoton imaging of intact tubules, we provide
direct and quantitative evidence for purinergic TPC signaling
that triggers robust peristaltic movement of luminal sperm (3).
Electrophysiological and Ca2+ imaging data suggest that, while
Frontiers in Endocrinology | www.frontiersin.org 513
metabotropic P2Y signaling is sufficient to induce ATP-
dependent contractions, influx of extracellular Ca2+ through
ionotropic P2X receptors enhances TPC contractions. While
the full picture is admittedly still incomplete, current data
support a concept of Ca2+-induced Ca2+ release mechanisms
that amplify ATP-dependent excitation-contraction coupling.

Being under androgen control, expression of TPC
contractility proteins initiates with puberty and, notably, TPC-
selective androgen receptor knock-out renders mice infertile
(64). Both findings underscore a potential role of TPC
contractions in male (in)fertility. Accordingly, pharmacological
targeting of purinergic signaling pathways to (re)gain control of
TPC contractility represents an attractive approach for male
infertility treatment or contraceptive development (3). Still,
translation of TPC contractions and their putative role(s) from
mice to humans awaits further physiological investigation.
CONCLUDING REMARKS

With recent technical advances in male reproductive physiology,
we and others identified functional P2X and/or P2Y receptors in
essentially all cell types of the seminiferous tubule, constituting a
purinergic signaling network (Figure 2). Local ATP elevations
will affect the surrounding cells within a limited paracrine radius
both electrophysiologically and biochemically by triggering
membrane depolarization as well as substantial Ca2+ influx and
cAMP signaling. Distinct type- and stage-specific purinoceptor
repertoires will determine unique response profiles of individual
target cells. Moreover, ectonucleotidases provide pathways of
local ATP degradation/metabolization, restricting the effective
range of paracrine ATP signaling (65). Both Sertoli and germ
cells have been proposed as putative ATP release sites (66), but a
conclusive picture of extracellular ATP release in the testis
requires future investigation.
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Cell differentiation and acquisition of specialized functions are inherent steps in events that
lead to normal tissue development and function. These processes require accurate
temporal, tissue, and cell-specific activation or repression of gene transcription. This is
achieved by complex interactions between transcription factors that form a unique
combinatorial code in each specialized cell type and in response to different
physiological signals. Transcription factors typically act by binding to short, nucleotide-
specific DNA sequences located in the promoter region of target genes. In males, Leydig
cells play a crucial role in sex differentiation, health, and reproductive function from
embryonic life to adulthood. To better understand the molecular mechanisms regulating
Leydig cell differentiation and function, several transcription factors important to Leydig
cells have been identified, including some previously unknown to this specialized cell type.
This mini review summarizes the current knowledge on transcription factors in fetal and
adult Leydig cells, describing their roles and mechanisms of action.

Keywords: transcription factors, gene expression, regulatory element, DNA binding motif, steroidogenesis,
Leydig cells
1 INTRODUCTION

Localized in the testicular interstitium, Leydig cells are the principal source of testosterone and
insulin-like 3 (INSL3), two hormones that regulate male reproductive development and function. In
mammals, there are at least two distinct populations of Leydig cells, fetal Leydig cells (FLC) and
adult Leydig cells (ALC), which are responsible for the synthesis of steroid hormones in the prenatal
and postnatal testes, respectively [reviewed in (1, 2)]. Steroidogenesis is a multi-step process
requiring various transporters and enzymes to convert cholesterol into a steroid hormone [reviewed
in (3)]. The expression of the genes coding for these steroidogenic proteins is finely regulated to
avoid steroid hormone insufficiency or excess across the lifespan.

Transcription factors (TFs) are fundamental to the regulation of gene expression. They are
specialized proteins that recognize and bind to regulatory DNA sequences, modulating the rate of
gene transcription [reviewed in (4)]. TFs typically recruit or interact with other TFs forming a
unique molecular code that is key for specifying temporal- and tissue-specific gene expression as
well as hormone responsiveness in hormone-sensitive target tissues. Moreover, TFs exhibit a
dynamic behaviour that is characterized by their ability to interact with various partner proteins and
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to regulate different target genes according to many determinants
such as cell type, development stage, and signal stimulus,
among others.

In recent years, the development of novel and powerful
methodological approaches in molecular genetics has led to the
emergence of new information regarding the role of TFs in the
regulation of Leydig cell differentiation and function, and by
extension, in male fertility and reproductive health. In this mini
review, we provide a brief overview of the roles and mechanisms
of action of some of the most characterized TFs in Leydig cells.
We have adopted the most recent classification of TFs, which is
based both on amino acid sequence homology and the tertiary
structure of their DNA-binding domains (5). Using this
classification, TFs that have been identified in Leydig cells are
presented in Table 1; Table 2 lists the target genes for these TFs
in Leydig cells.
2 SUPERCLASS OF BASIC DOMAINS

2.1 Class of Basic Leucine Zipper
Factors (BZIP)
2.1.1 AP-1 Factors
The activator protein 1 (AP-1) is a dimeric complex that includes
members of the JUN, FOS, activating transcription factor (ATF),
and musculoaponeurotic fibrosarcoma (MAF) families of TFs
(54). Among the AP-1 members, JUN and FOS are the best
characterized. The JUN subfamily comprises three members
(cJUN, JUNB, and JUND) while four members compose the FOS
subfamily [cFOS, FOSB, Fos-related antigens 1 (FRA-1, FOSL1),
and Fos-related antigens 2 (FRA-2, FOSL2)]. Members of the JUN
family can homodimerize or heterodimerize, whereas FOS family
members only form heterodimers. The DNA sequence recognized
by AP-1 members differs according to the dimer involved. JUN :
JUN and FOS : JUN dimers recognize the TPA-response element
(TRE; TGA(C/G)TCA) and the cAMP-responsive element (CRE;
TGACGTCA), whereas ATF dimers preferentially recognize the
CRE motif, and MAF dimers bind to MAF recognition elements
(MAREs), a long palindromic sequence that contains TRE or CRE
motifs (55) [reviewed in (56)].

AP-1 members were first described in Leydig cells in the late
1990s (57). AP-1 factors regulate several genes in Leydig cells
such as the steroidogenic acute regulatory protein (Star) gene,
which is activated by cJUN (6, 7, 12). In addition, cJUN
cooperates with other TFs, including GATA4, STAT5B,
and NUR77 leading to a stronger activation of the Star
promoter (7–9). Both cJUN and cFOS regulate Star promoter
activity by recruiting CREB and CBP (10). Transcription of the
gap junction protein alpha1 [Gja1, also known as connexin43
(Cx43)] gene, involved in the initiation and maintenance of
sperm production, is also controlled by cJUN, JUNB, and
FOSL2, and by a cJUN/cFOS cooperation (11, 58).
Furthermore, the ferredoxin 1 (Fdx1) promoter is activated by
a cJUN/SF1 cooperation (12). Fdx1 is a partner of Cyp11a1,
participating in the conversion of cholesterol into pregnenolone,
the first and rate-limiting step in steroidogenesis. It is important
to note that the nature of the cJUN dimerization partner
Frontiers in Endocrinology | www.frontiersin.org 217
influences its role in gene regulation. For example, the
combination of either FOSL2 or cFOS with cJUN inhibits the
stimulatory effect of cJUN on the Star promoter (6, 10, 59). AP-1
factors in Leydig cells have been reviewed elsewhere (56).

2.1.2 CREB-Related Factors
CREB-related factors include three members: CRE-binding
protein (CREB), cAMP response element modulator (CREM),
and CRE-activating transcription factor (ATF-1). CREB factors
homodimerize and heterodimerize with other CREB members
and with other bZIP TFs, such as AP-1 members (60). CREB
factors regulate transcription by binding to a CRE motif
(TGACGTCA) similar to that recognized by AP-1 members,
leading to overlap and redundancy in their activities (61).
Although CREM is the most abundant member in MA-10
Leydig cells, all CREB members activate Star transcription
through CRE elements located in the proximal promoter
region (13, 14). Moreover, CREB factors cooperate with SF1
(NR5A1, Ad4BP) to enhance Star transcription (15). CREB
also stimulates CKLFSF2B promoter activity in response to
LH/cAMP (16). Cklfsf2b codes for a protein that inhibits
steroidogenesis in Leydig cells (16). Therefore, CREB is
involved in both activation and repression of steroidogenesis in
Leydig cells depending on its target genes.

2.1.3 C/EBP-Related Factors
Members of the CCAAT/enhancer binding protein (C/EBP)
subfamily contain a bZIP DNA-binding domain and regulate
gene expression by binding to the sequence (A/G)TTGCG(C/T)
AA(C/T) as homo- or heterodimers (62). C/EBPb is the
predominant member in Leydig cells (17, 63) where it activates
Star transcription alone and in cooperation with SF1 and
GATA4 (17–19). C/EBPb also cooperates with NF-kb p50 to
stimulate Nur77 promoter activity in Leydig cells (20). The
Nur77 gene encodes the orphan nuclear receptor NUR77,
which regulates several genes involved in steroidogenesis in
Leydig cells (see Section 3.1.2, NGFI-B/NR4A Receptors, below).
3 SUPERCLASS OF ZINC-COORDINATING
DNA-BINDING DOMAINS

3.1 Class of Nuclear Receptors
With C4 Zinc Fingers
TFs belonging to the nuclear receptor class respond to extracellular
and intracellular signals to regulate gene expression. They also
regulate cellular functions within the cytoplasm (64). In this section
we present the nuclear receptors for which the roles and
mechanisms of action are, or have begun to be, characterized in
Leydig cells. Detailed information can be found in a review article
dedicated to nuclear receptors in Leydig cells (65).

3.1.1 COUP-Like/NR2F Receptors
The nuclear receptor subclass 2, group F (NR2F) subfamily
consists of three members: chicken ovalbumin upstream
promoter transcription factor I (COUP-TFI, NR2F1, EAR3),
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COUP-TFII (NR2F2, ARP1) and COUP-TFIII (NR2F6, EAR2).
NR2Fs have been implicated in various physiological and
developmental processes by regulating the expression of
numerous genes [reviewed in (66, 67)]. Via their double zinc
Frontiers in Endocrinology | www.frontiersin.org 318
finger DNA-binding domain, NR2F factors bind as monomers to
the nuclear receptor element AGGTCA and its variants. They
also bind as dimers to direct (DR), inverted (IR), and everted
(ER) repeats separated by 1-12 nucleotides (68).
TABLE 1 | Classification of transcription factors identified in Leydig cells.

Superclass Class Family Subfamily Transcription factor

Basic Domains Basic leucine zipper factors
(bZIP)

Jun-related Jun cJUN
JUNB

NF-E2-like factors NFE2L2 (NRF2)
Fos-related Fos cFOS

FRA-2 (FOSL2)
CREB-related CREB-like CREB

CREM
C/EBP-related C/EBP C/EBPb

Basic helix-loop-helix factors
(bHLH)

PAS domain Arnt-like factors ARNTL (BMAL1)
bHLH-ZIP SREBP factors SREBP

USF USF1
USF2

n.a. SPZ1
Basic helix-span-helix factors
(bHSH)

AP-2 n.a. AP-2

Zinc-Coordinating DNA-Binding
Domains

Nuclear receptors with C4 zinc
fingers

Steroid Hormone Receptors
(NR3)

GR-like receptors (NR3C) NR3C1 (GR)
NR3C2 (MR)
NR3C3 (PR)
NR3C4 (AR)

ER-like (NR3A) Era; Erb
Thyroid hormone receptor-related
(NR1)

Retinoic acid receptors (RAR -
NR1B)

RARa, RARb, RARg

Thyroid hormone receptors (THR -
NR1A)

TRa, TRb

PPAR (NR1C) PPARa, PPARb/d,
PPARg

LXR (NR1H) LXRa, FXR
RXR-related receptors (NR2) Retinoid X receptors (NR2B) RXRa, RXRb, RXRb

Testicular receptors (NR2C) TR2 (NR2C1)
COUP-like receptors (NR2F) COUP-TFII (NR2F2)

NGFI-B-related receptors (NR4A) n.a. NR4A1 (NUR77,
NGFI-B)
NR4A2 (NURR1)

FTZ-F1-related receptors (NR5A) n.a. NR5A1 (SF-1, FTZ-
F1)
NR5A2 (LRH1)

DAX-related receptors (NR0B) n.a. NR0B1 (DAX1)
NR0B2 (SHP)

Others C4 zinc finger-type
factors

GATA-type zinc fingers Two zinc-finger GATA factors GATA4

C2H2 zinc finger factors Three-zinc finger Krüppel-related Sp1-like SP1
SP3

Kr-like KLF6
EGR EGR1 (NGFI-A)

More than 3 adjacent zinc fingers ZNF44-2-like ZNF44 (GIOT2)
(unclassified) ZNF461 (GIOT1)

Helix-Turn-Helix domains Homeodomain factors Paired-related HD ARX ARX
RHOX RHOX4

PBX1
HD-LIM LHX2-like LHX9

Fork head/winged helix factors Forkhead box (FOX) FOXA FOXA3 (HNF-3g)
Alpha-helices exposed by beta-
structures

MADS box factors Regulators of differentiation MEF2 MEF2A
MEF2C
MEF2D

Immunoglobulin fold Rel homology region (RHR)
factors

NF-kappab-related NF-kappab p50 subunit-like NF-kb p50
NF-kappab p65 subunit-like NF-kb p65 (RelA)

STAT domain factors STAT n.a. STAT5B
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Of the NR2F subfamily members, COUP-TFII is by far the
most abundant in Leydig cells. Although COUP-TFII is present
in mice interstitial cells from early fetal life throughout
adulthood, it is only associated with steroidogenically active
ALC in postnatal life (24). COUP-TFII is a marker of stem
cells giving rise to the ALC population (24, 69). In vivo studies
using mouse models have shown that COUP-TFII is crucial for
Leydig cell development and male reproductive function (70, 71).
In Leydig cells, COUP-TFII regulates the expression of several
Frontiers in Endocrinology | www.frontiersin.org 419
genes involved in lipid metabolism, male gonad development,
and steroidogenesis (28). COUP-TFII activates Star, Insl3, and
Amhr2 expression by binding to their respective promoter
sequences (24–26). It cooperates with SF1 on the Star and
Insl3 promoters (24, 25) and with SP1 on the Amhr2 promoter
(26). The Akr1c14 gene, which codes for the 3a-HSD enzyme
that catalyzes the interconversion of dihydrotestosterone (DHT)
into 5a-androstane-3a,17b-diol (3a-diol), is activated by
COUP-TFII in cooperation with MEF2 (27). COUP-TFII also
TABLE 2 | Transcription factors and their target genes in Leydig cells.

Transcription Factor Target Gene* Select References

AP-1 (cJUN/cFOS) h, mStar (6–10)
mGja1 (11)
mFdx1 (12)

CREB/CREM mStar (10, 13–15)
hCKLFSF2B (16)

C/EBPb mStar (17–19)
rNr4a1 (Nur77) (20)

BMAL1 mStar (21)
AP-2 m, rLhr (22, 23)
NR2F2 (COUP-TFII) mStar (24)

mInsl3 (25)
mAmhr2 (26)
mAkr1c14 (27)
mGsta3 (28)
mInha (28)

NR4A1 (NUR77, NGFI-B) mStar (9, 29, 30)
m, hHsd3b (31, 32)
h, mInsl3 (33, 34)
rCyp17a1 (35, 36)

NR5A1 (SF1, FTZ-F1) m, hStar (9, 15, 17–19, 37)
rCyp19a1 (38)
hHSD3B2 (32)
hCyp11a1 (37)
rCyp17a1 (39, 40)
rPrlr (41)
rAmhr2 (42)
mVanin-1 (43)
m, hInsl3 (33, 34)
mFdx1 (12)

NR5A2 (LRH1) mStar (9)
rCyp19a1 (44)
m, hInsl3 (33)

NR0B1 (DAX1) mStar (45)
GATA4 h, mStar (7, 18, 19, 46, 47)

hHSD3B2 (32)
mAmhr2 (46)
rSrd5a1 (46)

SP1 rSrbi (48)
mLhr (22)

SP1/SP3 mVegf (49)
mPbr (50)

KLF6 hINSL3 (34)
FOXA3 (HNF-3g) rPdgfra (51)
MEF2 mStar (47)

rNr4a1 (Nur77) (52)
mGsta1-4 (53)
mAkr1c14 (27)

NF-kb p50 rNr4a1 (Nur77) (20)
NF-kb p65 (RelA) rCyp17a1 (31)
STAT5B mStar (8)

rNr4a1 (Nur77) (8)
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activates the expression of Gsta3 and Inha, genes involved in the
inactivation of reactive oxygen species and in the homeostasis of
the hypothalamic-pituitary-gonadal axis, respectively (28).
Expression of several other Leydig cell genes including
Cyp17a1, Hsd3b1 and Cyp11a1 is reduced in Coup-tfii null
mice (71) and in COUP-TFII-depleted MA-10 Leydig cells
(28), implying a role for COUP-TFII in their expression.

3.1.2 NGFI-B/NR4A Receptors
The NR4A family consists of three orphan nuclear receptors:
neuron-derived clone 77 (NR4A1, NUR77, NGFI-B, TR3), nuclear
receptor related 1 (NR4A2, NURR1) and neuron-derived orphan
receptor 1 (NR4A3, NOR1). NR4A members can bind to DNA
either as monomers, homodimers, or heterodimers. NUR77 and
NURR1 also heterodimerize with RXR. As monomers, they bind
to a NGFI-B-response element (NBRE; AAAGGTCA), as
homodimers and heterodimers to a Nur-response element
(NurRE; TGATATTTN6AAATGCCA), and as heterodimers
with RXR to a DR5 sequence [reviewed in (72, 73)]. NR4A
factors are immediate early response genes involved in the
regulation of several physiological and pathological processes,
including steroidogenesis (74) [reviewed in (75)].

Leydig cells contain mainly NUR77, followed by NURR1
where both are important regulators of basal and hormone-
induced gene transcription (76). Nur77 expression is strongly
increased by LH (76) via the CAMKI pathway (29, 77) consistent
with its role as a key regulator of several genes in Leydig cells
including Cyp17a1 (31, 35), Hsd3b (31), HSD3B2 (32), Insl3 (33,
34), and Star (29, 30). NUR77 regulates the expression of these
genes by cooperating with CAMKI (29), cJUN (9), KLF6 (34),
and SF1 (34). In Leydig cells, Nur77 expression is controlled by
distinct regulatory elements for both basal and hormone-induced
expression (77), through mechanisms involving MEF2 (52),
STAT5B (8), CREB (77), cJUN (9), C/EBPb (20), and NF-kb
p50 (20).

3.1.3 FTZ-F1-Related/NR5A Receptors
The nuclear receptor 5A (NR5A) family comprises two members:
steroidogenic factor 1 (NR5A1, Ad4BP, SF1) and liver receptor
homolog 1 (NR5A2, LRH1, FTF). Both factors share high sequence
similarity, bind to the same DNA motif, regulate common target
steroidogenic genes, and exhibit overlapping expression in several
tissues [reviewed in (78, 79)]. Despite this, they have nonredundant
roles and cannot fully compensate for each other [reviewed in (78,
79)]. NR5A members regulate gene expression by binding as
monomers to the sequence (T/C)CAAGGTCA located in the
promoter region of target genes.

SF1 was initially identified as a tissue-specific activator of
several cytochrome P450 steroid hydroxylase genes (38, 80). SF1
is essential for steroidogenesis, reproduction, and male sex
differentiation, as revealed by mutations in the SF1 gene in
humans and in mouse models where adrenal and gonadal
development and function are impaired (37, 81–84) [reviewed
in (85, 86)]. Interestingly, Sf1 knockdown in MLTC-1 Leydig
cells leads to downregulation of Star and Cyp11a1 and
accumulation of neutral lipids and cholesterol (37). Moreover,
SF1 is one of only a handful of TFs that can convert fibroblasts
Frontiers in Endocrinology | www.frontiersin.org 520
into functional Leydig-like cells, revealing the pivotal role of this
nuclear receptor in Leydig cells (87, 88).

In vitro analysis of regulatory elements has shown that the
expression of several Leydig cell genes is regulated by SF1. These
include Star (9, 17, 37), Cyp19a1 (38), HSD3B2 (32), Cyp17a1
(39, 40), Cyp11a1 (37), Prlr (41), Amhr2 (42), Vanin-1 (43), Insl3
(33), and Fdx1 (12). SF1 activity relies on interactions with a long
list of protein partners, such as C/EBPb (17), cJUN (9, 12), DAX1
(45), GATA4 (89), and KLF6 (34).

Like SF1, LRH1 influences steroidogenesis and fertility. To
date, only a few genes are known to be regulated by LRH1 in
Leydig cells, including Star (in cooperation with cJUN) (9),
Cyp19a1 (44), and Insl3 (33).

3.1.4 DAX-Related/NR0B Receptors
TheDAX-related receptor (NR0B) family comprises twomembers:
critical region on the X chromosome gene 1 (NR0B1, DAX1) and
smallheterodimerpartner (NR0B2, SHP).They lack the typical zinc
finger DNA-binding domain and therefore act mainly as
transcriptional repressors by inhibiting the activity of other TFs
(90, 91). Both members are present in Leydig cells and act as
homodimers or heterodimers (92).

InDax1-deficientmice, testis cord organization is compromised
and FLC development is arrested (93). In vitro studies in Leydig cell
lines revealed that DAX1 represses steroidogenesis by inhibiting
Star expression, while silencing Dax1 expression increases Star
transcription leading to enhanced steroidogenesis (45). DAX1
interacts with and represses the activity of NUR77 and SF1,
inhibiting Star expression (36, 45). Interestingly, Dax1
knockdown in MA-10 Leydig cells decreases Cyp11a1 and Star
expression suggesting that DAX1 could also act as a coactivator in
addition to its repressor role (94).

SHP is a repressor of steroidogenesis. In mouse Leydig cells,
Shp expression is reduced by hCG treatment (95). In Shp-
deficient mice, testosterone levels as well as Star, Cyp11a1, and
Hsd3b1 mRNA levels are increased leading to premature sexual
maturation (96). SHP inhibits steroidogenesis by interacting and
repressing the activity of LHR1 (96). Shp mRNA levels are
significantly reduced in COUP-TFII- and MEF2-depleted
Leydig cells, indicating that Shp expression requires these two
TFs (28, 97).
3.2 Class of Other C4 Zinc
Finger-Type Factors
3.2.1 Two Zinc-Finger GATA Factors
The six GATA members (GATA1 to 6) are crucial for the
development and function of several tissues, including the male
gonad [reviewed in (98, 99)]. GATA factors regulate gene
expression by binding via their two zinc fingers to the DNA
sequence (A/T)GATA(A/G) in the promoter region of target
genes. Of the six GATA factors, GATA4 is the most abundant in
Leydig cells in vivo (100–102). Its expression is also the broadest
being present from the onset of testis morphogenesis and into adult
life (103). Considered one of the first gonadal markers in both sexes,
GATA4 is required for urogenital ridge development in mice and
later for mammalian gonadal differentiation (103, 104).
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A Sf1-Cre mouse line, which expresses the Cre recombinase
in several tissues including Leydig, Sertoli and adrenal cells, was
used to conditionally inactivate Gata4. The resulting males were
undervirilized and had small testes lacking mature sperm (105),
thereby supporting a role for this factor in male reproductive
function. Transcriptomic analysis of GATA4-depleted MA-10
Leydig cells revealed several deregulated pathways, including
cholesterol metabolism and steroidogenesis (46). Consistent with
this, GATA4 stimulates the transcription of several genes
expressed in Leydig cells such as HSD3B2 (32), Cyp19a1 (106),
Star (46, 106), Inha (106), Sf1 (106), Amhr2 (46), and Srd5a1
(46). GATA4 also cooperates with cJUN, C/EBPb, and MEF2 to
upregulate Star expression (7, 18, 47). These results emphasize
the indispensable role of GATA4 in the differentiation and
function of FLC and ALC (46, 107). The critical nature of
GATA4 in the Leydig cell differentiation is further supported
by the demonstration that GATA4, along with SF1 and DMRT1
or NUR77, are sufficient to reprogram fibroblasts toward the
Leydig-like cell fate (87, 88).
4 SUPERCLASS OF HELIX-TURN-
HELIX DOMAINS

4.1 Class of Forkhead/Winged
Helix Factors
4.1.1 Forkhead Box (FOX) Factors
The forkhead box A3 (FOXA3) is the only member of the FOXA
subfamily present in the testes, mainly in ALC (51, 108, 109). So
far, the only direct target identified for FOXA3 in Leydig cells is
the gene coding for the platelet-derived growth factor receptor
alpha (Pdgfra) (51), that in response to PDGF signaling, acts in
Leydig cell differentiation and testis organogenesis (110). In
cAMP-induced steroidogenesis, FOXA3 is proposed to repress
Nur77 expression, which in turn reduces steroidogenic gene
expression and testosterone production (111). These findings
indicate that FOXA3 participates actively in the control of Leydig
cell function and male fertility.
5 SUPERCLASS OF a-HELICES EXPOSED
BY b-STRUCTURES

5.1 Class of MADS Box Factors
5.1.1 MEF2 Subfamily
The Myocyte Enhancer Factor 2 (MEF2) factor subfamily
comprises four members (MEF2A-2D) that share two highly
conserved domains, a MADS box and a MEF2 domain, involved
in dimerization and DNA binding [reviewed in (112)]. MEF2
factors form homo- and heterodimers that bind the sequence
YTAWWWWTAR (Y=C/T, W=A/T, R=G/A) in the promoter
region of their target genes. Because of their conserved DNA-
binding domain, MEF2 members share common targets and can
compensate for each other. MEF2 members also display unique
spatiotemporal patterns in different tissues. Due to their
divergent transactivation domain, MEF2 factors respond to
Frontiers in Endocrinology | www.frontiersin.org 621
different signals and interact with different partners, leading to
specific gene expression [reviewed in (112)].

Although widely studied in other organs, the presence of
MEF2 in the testes, more specifically in Sertoli and Leydig cells,
was only reported in 2014 (52). In Leydig cells, MEF2A and
MEF2D and to a lesser extent MEF2C, are expressed from early
gonadal development into adulthood (52). MEF2A/2D-depleted
MA-10 Leydig cells produce less steroid hormone demonstrating
that MEF2 factors have a role in male reproductive function (47).
Consistent with this, microarray analysis of MEF2A/2D-depleted
MA-10 Leydig cells identified several differently regulated genes
known to be involved in fertility, gonad morphology, and
steroidogenesis (97). To date, direct gene targets for MEF2
factors in Leydig cells include Nur77 (52), Gsta1-4 (53), Star
(involving a MEF2/GATA4 cooperation) (47), and Akr1c14
(through a cooperation with COUP-TFII) (27). The complete
network of genes regulated by MEF2 factors in Leydig cells as
well as MEF2 interacting partners remain to be fully elucidated.
6 SUPERCLASS OF
IMMUNOGLOBULIN FOLD

6.1 Class of STAT Domain Factors
6.1.1 STAT Factors
The signal transducer and activator of transcription (STAT)
family consists of seven proteins [reviewed in (113)]. Cytokines
and growth factors activate STAT members through the Janus
kinase (JAK) signaling pathway. In the nucleus, STAT factors
regulate gene transcription by binding as homo- or heterodimers
to the g-interferon-activated sequence (GAS; TTCN3GAA) in the
promoter region of target genes. So far, STAT5B is the only
STAT factor identified in Leydig cells (114). In these cells,
STAT5B is activated by growth hormone, an important
regulator of steroidogenesis (8). STAT5B activates Star
expression directly by binding to a GAS element and in
cooperation with cJUN (8). STAT5B also activates the Nur77
promoter (8).
7 OTHER TRANSCRIPTION FACTORS
PRESENT IN LEYDIG CELLS

Other TFs have been described in Leydig cells, but their
mechanisms of action remain poorly characterized. This
includes the nuclear factor E2-related factor-2 (NRF2,
NFE2l2), which is an important modulator of reactive oxygen
species levels, especially in aging Leydig cells (115–117).
Furthermore, the brain and muscle arnt-like protein-1
(BMAL1), a component of the circadian clock system, is also
directly involved in the control of Leydig cell function in different
species, by regulating the expression of Star,Hsb3b, and Cyp11a1
(21, 118, 119). Finally, members of the nuclear factor kappa-beta
(NF-kb) family, involved in immune and inflammatory
responses, also contribute to the regulation of steroidogenesis
in Leydig cells (20, 31, 120).
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8 CONCLUDING REMARKS

As described in this mini review, several TFs belonging to
different classes and families are pivotal to ensure proper
Leydig cell differentiation and function. This underscores the
complex regulatory mechanisms involved. Most of the
knowledge acquired so far has relied on in vitro analyses of
regulatory elements of genes expressed in Leydig cells. Although
we are far from fully understanding all the signals, pathways, and
TFs involved, technological advances and novel mouse models
will certainly lead to significant discoveries in the coming years.
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REFERENCES

1. Shima Y. Development of Fetal and Adult Leydig Cells. Reprod Med Biol
(2019) 18:323–30. doi: 10.1002/rmb2.12287

2. Teerds KJ, Huhtaniemi IT. Morphological and Functional Maturation of
Leydig Cells: From Rodent Models to Primates. Hum Reprod Update (2015)
21:310–28. doi: 10.1093/humupd/dmv008

3. Selvaraj V, Stocco DM, Clark BJ. Current Knowledge on the Acute
Regulation of Steroidogenesis. Biol Reprod (2018) 99:13–26. doi: 10.1093/
biolre/ioy102

4. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The
Human Transcription Factors. Cell (2018) 172:650–65. doi: 10.1016/
j.cell.2018.01.029

5. Wingender E, Schoeps T, Haubrock M, Krull M, Dönitz J. TFClass:
Expanding the Classification of Human Transcription Factors to Their
Mammalian Orthologs. Nucleic Acids Res (2018) 46:D343–7. doi: 10.1093/
nar/gkx987

6. Manna PR, Eubank DW, Stocco DM. Assessment of the Role of Activator
Protein-1 on Transcription of the Mouse Steroidogenic Acute Regulatory
Protein Gene.Mol Endocrinol (2004) 18:558–73. doi: 10.1210/me.2003-0223

7. Martin LJ, Bergeron F, Viger RS, Tremblay JJ. Functional Cooperation
Between GATA Factors and cJun on the Star Promoter in MA-10 Leydig
Cells. J Androl (2012) 33:81–7. doi: 10.2164/jandrol.110.012039
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47. Daems C, Di-Luoffo M, Paradis É, Tremblay JJ. MEF2 Cooperates With
Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse
MA-10 Leydig Cells. Endocrinology (2015) 156:2693–703. doi: 10.1210/
en.2014-1964

48. Mizutani T, Yamada K, Minegishi T, Miyamoto K. Transcriptional
Regulation of Rat Scavenger Receptor Class B Type I Gene. J Biol Chem
(2000) 275:22512–9. doi: 10.1074/jbc.M001631200

49. Schwarzenbach H, Chakrabarti G, Paust HJ, Mukhopadhyay AK.
Gonadotropin-Mediated Regulation of the Murine VEGF Expression in
MA-10 Leydig Cells. J Androl (2004) 25:128–39. doi: 10.1002/j.1939-
4640.2004.tb02768.x

50. Giatzakis C, Papadopoulos V. Differential Utilization of the Promoter of
Peripheral-Type Benzodiazepine Receptor by Steroidogenic Versus
Nonsteroidogenic Cell Lines and the Role of Sp1 and Sp3 in the
Regulation of Basal Activity. Endocrinology (2004) 145:1113–23.
doi: 10.1210/en.2003-1330

51. Garon G, Bergeron F, Brousseau C, Robert NM, Tremblay JJ. FOXA3 Is
Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates
Pdgfra Expression in Leydig Cells. Endocrinology (2017) 158:1886–97.
doi: 10.1210/en.2016-1736

52. Daems C, Martin LJ, Brousseau C, Tremblay JJ. MEF2 Is Restricted to the
Male Gonad and Regulates Expression of the Orphan Nuclear Receptor
Nr4a1. Mol Endocrinol (2014) 28:886–98. doi: 10.1210/me.2013-1407

53. Di-Luoffo M, Brousseau C, Bergeron F, Tremblay JJ. The Transcription
Factor MEF2 Is a Novel Regulator of Gsta Gene Class in Mouse MA-10
Leydig Cells. Endocrinology (2015) 156:4695–706. doi: 10.1210/en.2015-
1500

54. Eferl R, Wagner EF. AP-1: A Double-Edged Sword in Tumorigenesis. Nat
Rev Cancer (2003) 3:859–68. doi: 10.1038/nrc1209

55. Kataoka K, Noda M, Nishizawa M. Maf Nuclear Oncoprotein Recognizes
Sequences Related to an AP-1 Site and Forms Heterodimers With Both Fos
and Jun. Mol Cell Biol (1994) 14:700–12. doi: 10.1128/mcb.14.1.700-
712.1994

56. Nguyen HT, Najih M, Martin LJ. The AP-1 Family of Transcription Factors
Are Important Regulators of Gene Expression Within Leydig Cells.
Endocrine (2021) 74:498–507. doi: 10.1007/s12020-021-02888-7

57. Li X, Hales KH, Watanabe G, Lee RJ, Pestell RG, Hales DB. The Effect of
Tumor Necrosis Factor-a and cAMP on Induction of AP-1 Activity in MA-
10 Tumor Leydig Cells. Endocrine (1997) 6:317–24. doi: 10.1007/
BF02820509

58. Noelke J, Wistuba J, Damm OS, Fietz D, Gerber J, Gaehle M. Brehm R. A
Sertoli Cell-Specific Connexin43 Knockout Leads to Altered Interstitial
Connexin Expression and Increased Leydig Cell Numbers. Cell Tissue Res
(2015) 361:633–44. doi: 10.1007/s00441-015-2126-7

59. Shea-Eaton W, Sandhoff TW, Lopez D, Hales DB, McLean MP.
Transcriptional Repression of the Rat Steroidogenic Acute Regulatory
(Star) Protein Gene by the AP-1 Family Member C-Fos. Mol Cell
Endocrinol (2002) 188:161–70. doi: 10.1016/s0303-7207(01)00715-8

60. Cai DH, Wang D, Keefer J, Yeamans C, Hensley K, Friedman AD. C/EBP
Alpha: AP-1 Leucine Zipper Heterodimers Bind Novel DNA Elements,
Activate the PU.1 Promoter and Direct Monocyte Lineage Commitment
More Potently Than C/EBP Alpha Homodimers or AP-1. Oncogene (2008)
27:2772–9. doi: 10.1038/sj.onc.1210940

61. Rutberg SE, Adams TL, Olive M, Alexander N, Vinson C, Yuspa SH. CRE
DNA Binding Proteins Bind to the AP-1 Target Sequence and Suppress
April 2022 | Volume 13 | Article 881309

https://doi.org/10.1093/biolre/ioab131
https://doi.org/10.1210/me.2007-0370
https://doi.org/10.1210/en.2008-1668
https://doi.org/10.1128/mcb.24.7.2593-2604.2004
https://doi.org/10.1210/me.2004-0257
https://doi.org/10.1095/biolreprod.105.044560
https://doi.org/10.1530/JME-15-0139
https://doi.org/10.1210/mend.11.7.9940
https://doi.org/10.1210/mend.11.7.9940
https://doi.org/10.1210/me.2004-0043
https://doi.org/10.1007/s12020-016-1043-1
https://doi.org/10.1007/s12020-016-1043-1
https://doi.org/10.1210/mend.7.6.8395654
https://doi.org/10.1089/dna.1994.13.1087
https://doi.org/10.1089/dna.1994.13.1087
https://doi.org/10.1210/mend.10.2.8825555
https://doi.org/10.1074/jbc.272.22.14263
https://doi.org/10.1073/pnas.96.24.13831
https://doi.org/10.1073/pnas.96.24.13831
https://doi.org/10.1074/jbc.M412806200
https://doi.org/10.1074/jbc.M412806200
https://doi.org/10.1210/en.2003-1366
https://doi.org/10.1210/en.2003-1366
https://doi.org/10.1210/en.2008-0368
https://doi.org/10.1530/REP-14-0369
https://doi.org/10.1210/en.2014-1964
https://doi.org/10.1210/en.2014-1964
https://doi.org/10.1074/jbc.M001631200
https://doi.org/10.1002/j.1939-4640.2004.tb02768.x
https://doi.org/10.1002/j.1939-4640.2004.tb02768.x
https://doi.org/10.1210/en.2003-1330
https://doi.org/10.1210/en.2016-1736
https://doi.org/10.1210/me.2013-1407
https://doi.org/10.1210/en.2015-1500
https://doi.org/10.1210/en.2015-1500
https://doi.org/10.1038/nrc1209
https://doi.org/10.1128/mcb.14.1.700-712.1994
https://doi.org/10.1128/mcb.14.1.700-712.1994
https://doi.org/10.1007/s12020-021-02888-7
https://doi.org/10.1007/BF02820509
https://doi.org/10.1007/BF02820509
https://doi.org/10.1007/s00441-015-2126-7
https://doi.org/10.1016/s0303-7207(01)00715-8
https://doi.org/10.1038/sj.onc.1210940
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


de Mattos et al. Transcription Factors in Leydig Cells
AP-1 Transcriptional Activity in Mouse Keratinocytes. Oncogene (1999)
18:1569–79. doi: 10.1038/sj.onc.1202463

62. Osada S, Yamamoto H, Nishihara T, Imagawa M. DNA Binding Specificity
of the CCAAT/Enhancer-Binding Protein Transcription Factor Family.
J Biol Chem (1996) 271:3891–6. doi: 10.1074/jbc.271.7.3891

63. Nalbant D, Williams SC, Stocco DM, Khan SA. Luteinizing Hormone-
Dependent Gene Regulation in Leydig Cells May Be Mediated by CCAAT/
Enhancer-Binding Protein-b. Endocrinology (1998) 139:272–9. doi: 10.1210/
endo.139.1.5663

64. Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, et al. Genomic
Analysis of the Nuclear Receptor Family: New Insights Into Structure,
Regulation, and Evolution From the Rat Genome. Genome Res (2004)
14:580–90. doi: 10.1101/gr.2160004

65. Martin LJ, Tremblay JJ. Nuclear Receptors in Leydig Cell Gene Expression and
Function. Biol Reprod (2010) 83:3–14. doi: 10.1095/biolreprod.110.083824

66. Lin FJ, Qin J, Tang K, Tsai SY, Tsai MJ. Coup D’etat: An Orphan Takes
Control. Endocr Rev (2011) 32:404–21. doi: 10.1210/er.2010-0021

67. Ashraf UM, Sanchez ER, Kumarasamy S. COUP-TFII Revisited: Its Role in
Metabolic Gene Regulation. Steroids (2019) 141:63–9. doi: 10.1016/
j.steroids.2018.11.013

68. Cooney AJ, Tsai SY, O’Malley BW, Tsai MJ. Chicken Ovalbumin Upstream
Promoter Transcription Factor (COUP-TF) Dimers Bind to Different
GGTCA Response Elements, Allowing COUP-TF to Repress Hormonal
Induction of the Vitamin D3, Thyroid Hormone, and Retinoic Acid
Receptors. Mol Cell Biol (1992) 12:4153–63. doi: 10.1128/mcb.12.9.4153

69. Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnell C, van den
Driesche S, et al. Fetal Programming of Adult Leydig Cell Function by
Androgenic Effects on Stem/Progenitor Cells. Proc Natl Acad Sci USA (2014)
111:E1924–32. doi: 10.1073/pnas.1320735111

70. Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY. The Orphan Nuclear Receptor
COUP-TFII Is Required for Angiogenesis and Heart Development. Genes
Dev (1999) 13:1037–49. doi: 10.1101/gad.13.8.1037

71. Qin J, Tsai MJ, Tsai SY. Essential Roles of COUP-TFII in Leydig Cell
Differentiation and Male Fertility. PloS One (2008) 3:1–11. doi: 10.1371/
journal.pone.0003285

72. Maxwell MA, Muscat GEO. The NR4A Subgroup: Immediate Early
Response Genes With Pleiotropic Physiological Roles. Nucl Recept Signal
(2006) 4:e002. doi: 10.1621/nrs.04002

73. Kurakula K, Koenis DS, van Tiel CM, de Vries CJM. NR4A Nuclear
Receptors Are Orphans But Not Lonesome. Biochim Biophys Acta - Mol
Cell Res (2014) 1843:2543–55. doi: 10.1016/j.bbamcr.2014.06.010

74. Wilson TE, Mouw AR, Weaver CA, Milbrandt J, Parker KL. The Orphan
Nuclear Receptor NGFI-B Regulates Expression of the Gene Encoding
Steroid 21-Hydroxylase. Mol Cell Biol (1993) 13:861–8. doi: 10.1128/
mcb.13.2.861-868.1993

75. Eells J, Witta J, Otridge J, Zuffova E, Nikodem V. Structure and Function of
the Nur77 Receptor Subfamily, a Unique Class of Hormone Nuclear
Receptors. Curr Genomics (2005) 1:135–52. doi: 10.2174/1389202003351580

76. Song KH, Park JI, Lee MO, Soh J, Lee K, Choi HS. LH Induces Orphan
Nuclear Receptor Nur77 Gene Expression in Testicular Leydig Cells.
Endocrinology (2001) 142:5116–23. doi: 10.1210/endo.142.12.8525

77. Martin LJ, Boucher N, El-Asmar B, Tremblay JJ. cAMP-Induced Expression of
the OrphanNuclear Receptor Nur77 inMA-10 Leydig Cells Involves a CaMKI
Pathway. J Androl (2009) 30:134–45. doi: 10.2164/jandrol.108.006387

78. Fayard E, Auwerx J, Schoonjans K. LRH-1: An Orphan Nuclear Receptor
Involved in Development, Metabolism and Steroidogenesis. Trends Cell Biol
(2004) 14:250–60. doi: 10.1016/j.tcb.2004.03.008

79. Meinsohn M-C, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear
Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure,
Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev
(2019) 99:1249–79. doi: 10.1152/physrev.00019.2018

80. Morohashi K, Zanger UM, Honda S, Hara M, Waterman MR, Omura T.
Activation of CYP11A and CYP11B Gene Promoters by the Steroidogenic
Cell-Specific Transcription Factor, Ad4BP. Mol Endocrinol (1993) 7:1196–
204. doi: 10.1210/mend.7.9.8247022

81. Luo X, Ikeda Y. Parker KL. A Cell-Specific Nuclear Receptor Is Essential for
Adrenal and Gonadal Development and Sexual Differentiation. Cell (1994)
77:481–90. doi: 10.1016/0092-8674(94)90211-9
Frontiers in Endocrinology | www.frontiersin.org 924
82. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA,
Tourtellotte LM, et al. Mice Deficient in the Orphan Receptor
Steroidogenic Factor 1 Lack Adrenal Glands and Gonads But Express
P450 Side-Chain-Cleavage Enzyme in the Placenta and Have Normal
Embryonic Serum Levels of Corticosteroids. Proc Natl Acad Sci USA
(1995) 92:10939–43. doi: 10.1073/pnas.92.24.10939

83. Jeyasuria P, Ikeda Y, Jamin SP, Zhao L, De Rooij DG, Themmen APN, et al.
Cell-Specific Knockout of Steriodogenic Factor 1 Reveals Its Essential Roles
in Gonadal Function. Mol Endocrinol (2004) 18:1610–9. doi: 10.1210/
me.2003-0404

84. Karpova T, Ravichandiran K, Insisienmay L, Rice D, Agbor V, Heckert LL.
Steroidogenic Factor 1 Differentially Regulates Fetal and Adult Leydig Cell
Development in Male Mice. Biol Reprod (2015) 93:1–15. doi: 10.1095/
biolreprod.115.131193

85. Parker KL, Rice DA, Lala DS, Ikeda Y, Luo X, Wong M, et al. Steroidogenic
Factor 1: An Essential Mediator of Endocrine Development. Recent Prog
Horm Res (2002) 57:19–36. doi: 10.1210/rp.57.1.19

86. Schimmer BP, White PC. Minireview: Steroidogenic Factor 1: Its Roles in
Differentiation, Development, and Disease. Mol Endocrinol (2010) 24:1322–
37. doi: 10.1210/me.2009-0519

87. Yang Y, Li Z, Wu X, Chen H, Xu W, Xiang Q, et al. Direct Reprogramming
of Mouse Fibroblasts Toward Leydig-Like Cells by Defined Factors. Stem
Cell Rep (2017) 8:39–53. doi: 10.1016/j.stemcr.2016.11.010

88. Hou YP, Zhang ZY, Xing XY, Zhou J, Sun J. Direct Conversion of Human
Fibroblasts Into Functional Leydig-Like Cells by SF-1, GATA4 and NGFI-B.
Am J Transl Res (2018) 10:175–83.

89. Tremblay JJ, Viger RS. Transcription Factor GATA-4 Enhances Mullerian
Inhibiting Substance Gene Transcription Through a Direct Interaction With
the Nuclear Receptor SF-1. Mol Endocrinol (1999) 13:1388–401.
doi: 10.1210/mend.13.8.0330

90. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, et al. An
Unusual Member of the Nuclear Hormone Receptor Superfamily
Responsible for X-Linked Adrenal Hypoplasia Congenita. Nature (1994)
372:635–41. doi: 10.1038/372635a0

91. Iyer AK, McCabe ERB. Molecular Mechanisms of DAX1 Action. Mol Genet
Metab (2004) 83:60–73. doi: 10.1016/j.ymgme.2004.07.018

92. Iyer AK, Zhang Y-H, McCabe ERB. Dosage-Sensitive Sex Reversal Adrenal
Hypoplasia Congenita Critical Region on the X Chromosome, Gene 1
(DAX1) (NR0B1) and Small Heterodimer Partner (SHP) (NR0B2) Form
Homodimers Individually, as Well as DAX1-SHP Heterodimers. Mol
Endocrinol (2006) 20:2326–42. doi: 10.1210/me.2005-0383

93. Meeks JJ, Russell TA, Jeffs B, Huhtaniemi I, Weiss J, Jameson JL. Leydig Cell-
Specific Expression of DAX1 Improves Fertility of the Dax1-Deficient Mouse.
Biol Reprod (2003) 69:154–60. doi: 10.1095/biolreprod.102.011429

94. Xu B, Yang W-H, Gerin I, Hu C-D, Hammer GD, Koenig RJ. Dax-1 and
Steroid Receptor RNA Activator (SRA) Function as Transcriptional
Coactivators for Steroidogenic Factor 1 in Steroidogenesis. Mol Cell Biol
(2009) 29:1719–34. doi: 10.1128/mcb.01010-08

95. Vega A, Martinot E, Baptissart M, De Haze A, Saru JP, Baron S, et al.
Identification of the Link Between the Hypothalamo-Pituitary Axis and the
Testicular Orphan Nuclear Receptor NR0B2 in Adult Male Mice.
Endocrinology (2015) 156:660–9. doi: 10.1210/en.2014-1418

96. Volle DH, Duggavathi R, Magnier BC, Houten SM, Cummins CL, Lobaccaro
JMA, et al. The Small Heterodimer Partner Is a Gonadal Gatekeeper of Sexual
Maturation inMaleMice.GenesDev (2007) 21:303–15. doi: 10.1101/gad.409307

97. Di-Luoffo M, Daems C, Bergeron F, Tremblay JJ. Novel Targets for the
Transcription Factors MEF2 in MA-10 Leydig Cells. Biol Reprod (2015)
93:1–12. doi: 10.1095/biolreprod.114.127761

98. Viger RS, Taniguchi H, Robert NM, Tremblay JJ. Role of the GATA Family
of Transcription Factors in Andrology. J Androl (2004) 25:441–52.
doi: 10.1002/j.1939-4640.2004.tb02813.x

99. Tremblay M, Sanchez-Ferras O, Bouchard M. GATA Transcription Factors
in Development and Disease. Development (2018) 145:1–20. doi: 10.1242/
dev.164384

100. Yomogida K, Ohtani H, Harigae H, Ito E, Nishimune Y, Engel JD, et al.
Developmental Stage- and Spermatogenic Cycle-Specific Expression of
Transcription Factor GATA-1 in Mouse Sertoli Cells. Development (1994)
120:1759–66. doi: 10.1242/dev.120.7.1759
April 2022 | Volume 13 | Article 881309

https://doi.org/10.1038/sj.onc.1202463
https://doi.org/10.1074/jbc.271.7.3891
https://doi.org/10.1210/endo.139.1.5663
https://doi.org/10.1210/endo.139.1.5663
https://doi.org/10.1101/gr.2160004
https://doi.org/10.1095/biolreprod.110.083824
https://doi.org/10.1210/er.2010-0021
https://doi.org/10.1016/j.steroids.2018.11.013
https://doi.org/10.1016/j.steroids.2018.11.013
https://doi.org/10.1128/mcb.12.9.4153
https://doi.org/10.1073/pnas.1320735111
https://doi.org/10.1101/gad.13.8.1037
https://doi.org/10.1371/journal.pone.0003285
https://doi.org/10.1371/journal.pone.0003285
https://doi.org/10.1621/nrs.04002
https://doi.org/10.1016/j.bbamcr.2014.06.010
https://doi.org/10.1128/mcb.13.2.861-868.1993
https://doi.org/10.1128/mcb.13.2.861-868.1993
https://doi.org/10.2174/1389202003351580
https://doi.org/10.1210/endo.142.12.8525
https://doi.org/10.2164/jandrol.108.006387
https://doi.org/10.1016/j.tcb.2004.03.008
https://doi.org/10.1152/physrev.00019.2018
https://doi.org/10.1210/mend.7.9.8247022
https://doi.org/10.1016/0092-8674(94)90211-9
https://doi.org/10.1073/pnas.92.24.10939
https://doi.org/10.1210/me.2003-0404
https://doi.org/10.1210/me.2003-0404
https://doi.org/10.1095/biolreprod.115.131193
https://doi.org/10.1095/biolreprod.115.131193
https://doi.org/10.1210/rp.57.1.19
https://doi.org/10.1210/me.2009-0519
https://doi.org/10.1016/j.stemcr.2016.11.010
https://doi.org/10.1210/mend.13.8.0330
https://doi.org/10.1038/372635a0
https://doi.org/10.1016/j.ymgme.2004.07.018
https://doi.org/10.1210/me.2005-0383
https://doi.org/10.1095/biolreprod.102.011429
https://doi.org/10.1128/mcb.01010-08
https://doi.org/10.1210/en.2014-1418
https://doi.org/10.1101/gad.409307
https://doi.org/10.1095/biolreprod.114.127761
https://doi.org/10.1002/j.1939-4640.2004.tb02813.x
https://doi.org/10.1242/dev.164384
https://doi.org/10.1242/dev.164384
https://doi.org/10.1242/dev.120.7.1759
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


de Mattos et al. Transcription Factors in Leydig Cells
101. Ketola I, Rahman N, Toppari J, Bielinska M, Porter-Tinge SB, Tapanainen JS,
et al. Expression and Regulation of Transcription Factors GATA-4 and
GATA-6 in Developing Mouse Testis. Endocrinology (1999) 140:1470–80.
doi: 10.1210/endo.140.3.6587

102. Robert NM, Tremblay JJ, Viger RS. Friend of GATA (FOG)-1 and FOG-2
Differentially Repress the GATA-Dependent Activity of Multiple Gonadal
Promoters. Endocrinology (2002) 143:3963–73. doi: 10.1210/en.2002-220280

103. Viger RS, Mertineit C, Trasler JM, Nemer M. Transcription Factor GATA-4 Is
Expressed in a Sexually Dimorphic Pattern During Mouse Gonadal
Development and Is a Potent Activator of the Mullerian Inhibiting Substance
Promoter. Development (1998) 125:2665–75. doi: 10.1242/dev.125.14.2665

104. Hu YC, Okumura LM, Page DC. Gata4 Is Required for Formation of the
Genital Ridge in Mice. PloS Genet (2013) 9:1–12. doi: 10.1371/
journal.pgen.1003629

105. Manuylov NL, Zhou B, Ma Q, Fox SC, Pu WT, Tevosian SG. Conditional
Ablation of Gata4 and Fog2 Genes in Mice Reveals Their Distinct Roles in
Mammalian Sexual Differentiation. Dev Biol (2011) 353:229–41.
doi: 10.1016/j.ydbio.2011.02.032

106. Tremblay JJ, Viger RS. GATA Factors Differentially Activate Multiple
Gonadal Promoters Through Conserved GATA Regulatory Elements.
Endocrinology (2001) 142:977–86. doi: 10.1210/endo.142.3.7995

107. Bielinska M, Seehra A, Toppari J, Heikinheimo M, Wilson DB. GATA-4 Is
Required for Sex Steroidogenic Cell Development in the Fetal Mouse. Dev
Dyn (2007) 236:203–13. doi: 10.1002/dvdy.21004

108. Kaestner KH, Hiemisch H, Luckow B, Schütz G. The HNF-3 Gene Family of
Transcription Factors in Mice: Gene Structure, cDNA Sequence, and mRNA
Distribution. Genomics (1994) 20:377–85. doi: 10.1006/geno.1994.1191

109. Behr R, Sackett SD, Bochkis IM, Le PP, Kaestner KH. Impaired Male Fertility
and Atrophy of Seminiferous Tubules Caused by Haploinsufficiency for
Foxa3. Dev Biol (2007) 306:636–45. doi: 10.1016/j.ydbio.2007.03.525

110. Brennan J, Tilmann C, Capel B. Pdgfr-Alpha Mediates Testis Cord
Organization and Fetal Leydig Cell Development in the XY Gonad. Genes
Dev (2003) 17:800–10. doi: 10.1101/gad.1052503

111. Kim H, Kumar S, Lee K. FOXA3, a Negative Regulator of Nur77 Expression
and Activity in Testicular Steroidogenesis. Int J Endocrinol (2021) 2021:1–8.
doi: 10.1155/2021/6619447

112. Potthoff MJ, Olson EN. MEF2: A Central Regulator of Diverse
Developmental Programs. Development (2007) 134:4131–40. doi: 10.1242/
dev.008367

113. Dodington DW, Desai HR, Woo M. JAK/STAT – Emerging Players in
Metabolism. Trends Endocrinol Metab (2018) 29:55–65. doi: 10.1016/
j.tem.2017.11.001
Frontiers in Endocrinology | www.frontiersin.org 1025
114. Kanzaki M, Morris PL. Lactogenic Hormone-Inducible Phosphorylation and
Gamma-Activated Site-Binding Activities of Stat5b in Primary Rat Leydig
Cells and MA-10 Mouse Leydig Tumor Cells. Endocrinology (1998)
139:1872–82. doi: 10.1210/endo.139.4.5956

115. Nakamura BN, Lawson G, Chan JY, Banuelos J, Cortés MM, Hoang YD, et al.
Knockout of the Transcription Factor NRF2 Disrupts Spermatogenesis in an
Age-Dependent Manner. Free Radic Biol Med (2010) 49:1368–79.
doi: 10.1016/j.freeradbiomed.2010.07.019

116. Chen H, Jin S, Guo J, Kombairaju P, Biswal S, Zirkin BR. Knockout of the
Transcription Factor Nrf2: Effects on Testosterone Production by Aging
Mouse Leydig Cells. Mol Cell Endocrinol (2015) 409:113–20. doi: 10.1016/
j.mce.2015.03.013

117. Chung J-Y, Chen H, Zirkin B. Sirt1 and Nrf2: Regulation of Leydig Cell
Oxidant/Antioxidant Intracellular Environment and Steroid Formation. Biol
Reprod (2021) 105:1307–16. doi: 10.1093/biolre/ioab150

118. Xiao Y, Zhao L, Li W, Wang X, Ma T, Yang L, et al. Circadian Clock Gene
BMAL1 Controls Testosterone Production by Regulating Steroidogenesis-
Related Gene Transcription in Goat Leydig Cells. J Cell Physiol (2021)
236:6706–25. doi: 10.1002/jcp.30334

119. Ding H, Zhao J, Liu H, Wang J, Lu W. BMAL1 Knockdown Promoted
Apoptosis and Reduced Testosterone Secretion in TM3 Leydig Cell Line.
Gene (2020) 747:144672. doi: 10.1016/j.gene.2020.144672

120. Mealy K, Robinson B, Millette CF, Majzoub J, Wilmore DW. The Testicular
Effects of Tumor Necrosis Factor. Ann Surg (1990) 211:470–5. doi: 10.1097/
00000658-199004000-00014

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 de Mattos, Viger and Tremblay. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
April 2022 | Volume 13 | Article 881309

https://doi.org/10.1210/endo.140.3.6587
https://doi.org/10.1210/en.2002-220280
https://doi.org/10.1242/dev.125.14.2665
https://doi.org/10.1371/journal.pgen.1003629
https://doi.org/10.1371/journal.pgen.1003629
https://doi.org/10.1016/j.ydbio.2011.02.032
https://doi.org/10.1210/endo.142.3.7995
https://doi.org/10.1002/dvdy.21004
https://doi.org/10.1006/geno.1994.1191
https://doi.org/10.1016/j.ydbio.2007.03.525
https://doi.org/10.1101/gad.1052503
https://doi.org/10.1155/2021/6619447
https://doi.org/10.1242/dev.008367
https://doi.org/10.1242/dev.008367
https://doi.org/10.1016/j.tem.2017.11.001
https://doi.org/10.1016/j.tem.2017.11.001
https://doi.org/10.1210/endo.139.4.5956
https://doi.org/10.1016/j.freeradbiomed.2010.07.019
https://doi.org/10.1016/j.mce.2015.03.013
https://doi.org/10.1016/j.mce.2015.03.013
https://doi.org/10.1093/biolre/ioab150
https://doi.org/10.1002/jcp.30334
https://doi.org/10.1016/j.gene.2020.144672
https://doi.org/10.1097/00000658-199004000-00014
https://doi.org/10.1097/00000658-199004000-00014
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Endocrinology | www.frontiersi

Edited by:
Barry Zirkin,

Johns Hopkins University,
United States

Reviewed by:
Kate Lakoski Loveland,

Monash University, Australia

*Correspondence:
Tony DeFalco

tony.defalco@cchmc.org

†These authors have contributed
equally to this work and share

first authorship

Specialty section:
This article was submitted to

Reproduction,
a section of the journal

Frontiers in Endocrinology

Received: 11 March 2022
Accepted: 31 March 2022
Published: 28 April 2022

Citation:
Gu X, Li S-Y, Matsuyama S and

DeFalco T (2022) Immune Cells as
Critical Regulators of Steroidogenesis

in the Testis and Beyond.
Front. Endocrinol. 13:894437.

doi: 10.3389/fendo.2022.894437

MINI REVIEW
published: 28 April 2022

doi: 10.3389/fendo.2022.894437
Immune Cells as Critical Regulators
of Steroidogenesis in the Testis
and Beyond
Xiaowei Gu1†, Shu-Yun Li1†, Satoko Matsuyama1† and Tony DeFalco1,2*

1 Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,
2 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States

Steroidogenesis is an essential biological process for embryonic development,
reproduction, and adult health. While specific glandular cells, such as Leydig cells in the
testis, are traditionally known to be the principal players in steroid hormone production,
there are other cell types that contribute to the process of steroidogenesis. In particular,
immune cells are often an important component of the cellular niche that is required for the
production of steroid hormones. For several decades, studies have reported that
testicular macrophages and Leydig cells are intimately associated and exhibit a
dependency on the other cell type for their proper development; however, the
mechanisms that underlie the functional relationship between macrophages and Leydig
cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as
certain types of lymphocytes, are capable of steroid hormone production, thus
highlighting the complexity and diversity that underlie steroidogenesis. In this review we
will describe how immune cells are critical regulators of steroidogenesis in the testis and in
extra-glandular locations, as well as discuss how this area of research offers opportunities
to uncover new insights into steroid hormone production.

Keywords: Leydig cell, macrophage, steroidogenesis, testosterone, testis, immune cell, reproduction
INTRODUCTION

Steroid hormones are mainly produced in the adrenal glands, gonads, and placenta, where they play
endocrine roles in regulating target tissue or cell function depending on circulating steroid
concentrations (1, 2). While specific hormone-producing cells in these tissues have received the
major share of focus in the field, previous studies have shown that many peripheral tissues and cell
types within the brain, kidney, lung, skeletal muscle, intestine, keratinocytes, adipocytes, astrocytes,
and placental trophoblasts have the capacity of de novo steroidogenesis or steroid conversion (3–
11). This diversity of tissues with steroidogenic capacity indicates that there are multiple cell types
that can undertake or mediate steroid hormone production. One cell lineage that has been linked to
steroidogenesis is the immune cell lineage, as local sex steroid production has been identified within
immune cell populations such as macrophages and T lymphocytes (12–14). Within the testis,
macrophages have been implicated in steroid production by Leydig cells (15, 16), although the
mechanisms by which macrophages developmentally or functionally regulate Leydig cells are poorly
understood. The unexpected and poorly understood steroidogenic capacity of immune cells and
n.org April 2022 | Volume 13 | Article 894437126
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their roles in modulating glandular steroidogenesis is becoming
an emerging area of research that is critical for a deeper
understanding of the complex immunoregulatory roles of
steroid hormones in normal and disease contexts. In this
review we will discuss the various roles proposed for testicular
macrophages in Leydig cell biology and we will highlight future
areas of research that should be pursued to elucidate the
mechanisms underlying regulatory functions of immune cells
and their potential de novo steroidogenesis in the testis and,
potentially, beyond.
BIOSYNTHETIC PATHWAY AND SITE OF
PRODUCTION OF STEROID HORMONES

Steroidogenesis is a process in which cholesterol is converted
into steroid hormones by a series of steps mediated by
steroidogenic enzymes. In this process, there are two key rate-
limiting steps, which are 1) the transport of cholesterol from the
cytoplasm into mitochondria and 2) the conversion of
cholesterol into pregnenolone. Free cholesterol is derived from
intracellular cholesterol that is synthesized either from acetate,
from cholesterol ester stored in lipid droplets, or from uptake of
cholesterol-containing low-density lipoproteins (LDLs). Plasma
LDLs are the most important source of cholesterol when
steroidogenic cells are chronically stimulated. Then
steroidogenic acute regulatory protein (StAR) promotes the
rapid flux of cholesterol into the mitochondria, where
cholesterol is catalyzed to yield pregnenolone by side-chain
cleavage enzyme cytochrome P450scc (also known as
CYP11A1, encoded by the CYP11A1 gene) within the
mitochondrial inner membrane. Pregnenolone, as an
immediate precursor, requires further catalysis by two major
families of enzymes, which are cytochrome P450 (CYP) and
hydroxysteroid dehydrogenase (HSD) located in both
mitochondria and the endoplasmic reticulum, to facilitate the
biosynthesis of steroid hormones (2, 17, 18).

In many contexts, steroid hormones are classified based on
the organs that produce them and the receptors to which they
bind. The adrenal steroids, which consist of glucocorticoids and
mineralocorticoids, are secreted by the adrenal cortex.
Glucocorticoids such as cortisol in humans and corticosterone
in rodents control many cell metabolic processes, including
maintaining blood pressure and regulating immune cell
f u n c t i o n . A l d o s t e r on e i s t h e mo s t w e l l - k nown
mineralocorticoid, which maintains the body’s water and salt
balance by acting primarily on the kidneys. Sex steroid
hormones, which are composed of androgens (e.g. ,
testosterone), estrogens (e.g., estradiol), and progestogens (e.g.,
progesterone), are produced by the gonads and placenta. These
sex hormones are responsible for regulating sexual development
and promoting fertility. Additionally, the adrenal cortex secretes
sex hormones to a lesser extent than the gonads, and the gonads
may produce adrenal steroids (1, 19). Aside from dedicated
steroidogenic cells l ike Leydig cells , theca cells , or
adrenocortical cells, future research should address the extent
Frontiers in Endocrinology | www.frontiersin.org 227
to which alternative glandular or extra-glandular cell types in the
gonads and adrenal are involved in de novo steroidogenesis.
DEVELOPMENTAL LINKS BETWEEN
TESTICULAR MACROPHAGES AND
LEYDIG CELLS

Early analyses of the immune cells in the testis revealed that
macrophages are a large component of the testicular interstitial
compartment, comprising approximately 20% of interstitial cells
(20). Macrophages and Leydig cells, therefore, occupy the same
compartment of the testis and are in intimate contact throughout
development (21). Histological and ultrastructural studies of the
postnatal and adult rat testis demonstrated that macrophages
and Leydig cells form intercellular cytoplasmic digitations (21,
22), which only are observed between these 2 cell types and only
upon puberty (22), indicating an intimate relationship linked to
testicular maturation. Furthermore, macrophage-deficient
osteopetrotic mice mutant for colony stimulating factor 1
(Csf1op/op) are infertile as a result of low testosterone,
oligozoospermia, and decreased libido (15, 23, 24). Analyses of
normal and cryptorchid testes revealed that there is a robust
correlation between the volume density of Leydig cells and
macrophages, as well as total mass of Leydig cells and
macrophages per testis (25), leading to early ideas of functional
coupling between the two cell types. These findings strongly
suggest that testicular macrophages have trophic functions in
Leydig cell differentiation and promote steroidogenesis, but the
developmental and functional links between macrophages and
Leydig cells are still open areas of investigation.

Multiple studies by Gaytan et al. in the 1990s revealed that
there is an interdependent relationship between macrophages
and Leydig cells in both developmental and regenerative contexts
(26–28). Using dichloromethylene diphosphonate-containing
liposome (Cl2MDP-lp) injection to deplete testicular
macrophages in prepubertal rats, they found that macrophages
are required for the development of Leydig cells during postnatal
testicular maturation (26). The authors concluded that, in the
absence of macrophages, Leydig cell proliferation did not occur,
nor were mesenchymal progenitor cells able to undergo
differentiation into Leydig cells (26). They further speculated
that macrophages were required for Leydig cell responsiveness to
lutenizing hormone (LH) and human chorionic gonadotropin
(hCG) (29, 30), as hCG-treated Leydig cells in Cl2MDP-lp-
injected testes did not increase in number as in contralateral
intact testes. Regeneration of Leydig cells in testes that had
selective Leydig cell depletion induced by ethylene
dimethanesulfonate (EDS) treatment, which requires LH (31),
was also hindered in the absence of macrophages (27, 28) (see
next paragraph). These findings suggest that as-of-yet undefined
macrophage factors are essential for Leydig cell responsiveness to
LH/hCG.

Gaytan et al. demonstrated, again using a Cl2MDP-lp-
mediated ablation method (27, 28), that testicular macrophages
are required for adult Leydig cell regeneration after specific
April 2022 | Volume 13 | Article 894437
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depletion of Leydig cells via EDS treatment. In contrast, when
macrophages were ablated in intact adult testes, there was no
effect on Leydig cell numbers (28), indicating that macrophages
are not as essential for steady-state maintenance of adult Leydig
cell numbers; a more recent finding showed a similar result, in
which a diphtheria-toxin-mediated ablation of adult
macrophages did not result in a change in Leydig cell number
(although there was a significant drop in testicular testosterone
levels) (32).
FUNCTIONAL RELATIONSHIP BETWEEN
TESTICULAR MACROPHAGES AND
LEYDIG CELLS

Given the tight physical association between testicular macrophages
and Leydig cells in the interstitial compartment, in the past 40 years
most investigations into testicular macrophage functions focused on
Leydig cell steroidogenesis (16, 33). Yee and Hutson in 1985 showed
that testicular macrophage-conditioned medium (TMCM) in a
dose-dependent manner increases testosterone production of
Leydig cells (34). Consistent with this finding, bank vole Leydig
cells from a long photoperiod in co-cultures with testicular
macrophages or treated with TMCM produced more testosterone
(35). However, some subsequent studies demonstrated that non-
stimulated testicular macrophages have an inhibitory effect on the
production of testosterone by Leydig cells (36–38), whereas TMCM
obtained from lipopolysaccharide (LPS)-stimulated macrophages or
macrophages isolated from autoimmune orchitis could promote
testosterone production (36, 39). Therefore, the role of testicular
macrophages in Leydig cell steroidogenesis under physiological
conditions has been controversial. Furthermore, testicular
macrophages isolated using different methods may have different
phenotypes and metabolic properties in vitro due to the loss of their
complex in vivo microenvironment. This could be one of the
reasons why testicular macrophages need to be additionally
activated in some circumstances in order to function properly.
Our recent study found that the depletion of adult testicular
macrophages in vivo decreases testicular testosterone levels (32),
suggesting the beneficial effect of testicular macrophages on Leydig
cell steroidogenesis.

Role of Testicular Macrophage-Derived
Cytokines in Leydig Cell Steroidogenesis
A number of studies have shown that testicular macrophages
from rats and goldfish can secrete pro-inflammatory cytokines,
such as interleukin 1 (IL1) and tumor necrosis factor (TNF),
which were dramatically increased after stimulation by LPS (40–
42). Therefore, these cytokines from testicular macrophages may
be key regulators of testosterone production, either enhancing or
inhibiting it under physiological and inflammatory conditions.
Previous research on the roles of IL1 on Leydig cell
steroidogenesis in vitro yielded contradictory results. Many
studies have shown that IL1B decreases testosterone synthesis
of Leydig cells (43–45), whereas some studies reported that IL1B
had no effects on testosterone synthesis of Leydig cells (37, 46), or
Frontiers in Endocrinology | www.frontiersin.org 328
even increased testosterone synthesis (47). Different testicular
IL1 isoforms, including 17K IL1A and IL1B, 32K proIL1A, and a
24K splice variant, stimulated testosterone production by Leydig
cells from 40- but not 80-day-old rats, and the potency of IL1A
was 50-fold more than IL-1B (48). Intratesticular administration
of IL1B resulted in a significant increase in basal testosterone
secretion in vitro and serum testosterone concentration one day
after treatment in 21-day-old rats, but it inhibited this process 6
days after treatment (49). A recent study showed that IL1B
deficiency induced by treatment with diacerein, an anti-
inflammatory agent, impairs Leydig cell function, suggesting a
positive effect of IL1B in steroidogenesis under normal
conditions (50). These findings suggest that the paracrine roles
of IL1 in regulating Leydig cell steroidogenesis may be related to
animal age, treatment time, and IL1 isoforms. Generally,
numerous studies documented that TNF reduces testosterone
production of Leydig cell function in vitro and in vivo. TNF
treatment inhibited steroidogenic enzyme activity or their
mRNA expression, such as StAR, CYP17A1, and HSD3B1, in a
dose-dependent manner (51–55). Additionally, under LPS
stimulation, testicular macrophages also could produce reactive
oxygen species (ROS) and nitric oxide (NO) (33). Leydig cell
steroidogenesis was inhibited by both hydrogen peroxide (a
potent oxidant) (56, 57) and NO (58, 59). These results suggest
that under inflammatory conditions, activated testicular
macrophages secrete several factors that limit Leydig cell
steroidogenesis and even impair testicular function.

Several groups’ studies have clearly demonstrated that there
are two distinct macrophage populations in adult testis: 1)
interstitial macrophages located in the testicular interstitium
and in close contact with Leydig cells; and 2) peritubular
macrophages located in the myoid layer around seminiferous
tubules (32, 60–65). Interstitial macrophages express higher
levels of the immunosuppressive M2-type gene Il10, while
peritubular macrophages highly express the M1-associated
inflammatory gene Il1b (62). However, whether IL10 and IL1B
can be secreted into the testicular interstitial compartment by the
two macrophage populations and whether the two populations
have unique or overlapping roles in regulating Leydig cell
steroidogenesis have been not investigated.
Role of Testicular Macrophage-Derived
Lipophilic Factors in Adult Leydig Cell
Steroidogenesis
Aside from cytokines, a testicular macrophage-derived factor
implicated in steroidogenesis was a lipophilic factor later
identified as 25-hydroxycholesterol (25-HC) after it was
purified using organic extraction and high-performance liquid
chromatography (66, 67). Furthermore, human macrophages
have been shown to produce 25-HC, indicating that this
phenomenon is not specific to rodents (68). 25-HC is an
oxysterol that is synthesized from cholesterol by the addition
of a hydroxyl group to the position 25 carbon, and this reaction is
catalyzed by cholesterol 25-hydroxylase (CH25H) (69). CH25H
is found in the endoplasmic reticulum and is widely expressed in
many cell types, particularly macrophages (70). The intracellular
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level of 25-HC is primarily determined by the activity of CH25H,
which is upregulated via TLR4/IRF3/IFN-b/STAT1 signaling
pathways in LPS-stimulated macrophages (71).

Recent studies have found that macrophages have the potential to
provide an alternative pathway for steroidogenesis by providing 25-
HC as a direct substrate for side chain cleavage (16, 72). 25-HC has
been shown to increase StAR protein levels in Leydig cells and
adrenocortical cells in vitro (73). Kazeto et al. transfected non-
steroidogenic cells with a complex of eel P450scc cDNA (encoding
Cyp11a1) and discovered that the recombinant CYP11A1 produced
in these cells efficiently catalyzed the conversion of 25-HC into
pregnenolone (74). A recent study revealed that Leydig cells utilize
25-HC as a substrate for testosterone biosynthesis (72), in which it
was proposed that cholesterol is converted into 25-HC by CH25H in
macrophages, and the 25-HC is subsequently secreted into
neighboring Leydig cells. In Leydig cells, StAR transports 25-HC to
mitochondria where is converted into pregnenolone by the CYP11A1
enzyme. 25-HC produced in macrophages promotes testosterone
synthesis in Leydig cells, while testosterone produced in Leydig cells
inhibits 25-HC production in macrophages (75), which suggests a
paracrine negative feedback loop between the two cell types.
Therefore, 25-HC could be a paracrine factor that mediates
interactions between macrophages and neighboring Leydig cells.
STEROID PRODUCTION BY
IMMUNE CELLS

Tissue immune cells, particularly macrophages and T lymphocytes,
may be an important source of local steroid production by steroid
conversion or de novo steroidogenesis. Intracrine and paracrine
roles of immune-cell-derived steroids may be essential for cellular
functions within various tissues. Therefore, immune cell-derived
steroids and steroid metabolites potentially have biological effects
within the tissue microenvironment, although their quantities in
tissue fluids or blood are likely modest.

Steroid Conversion Capacity of
Immune Cells
Immune cells are not only passive targets of steroid hormones
due to their expression of hormone receptors, but also have the
capacity for steroid hormone conversion and metabolism (14).
Human alveolar macrophages can convert androstenedione to
testosterone and other steroids through the catalytic activity of
3b-HSD, 3a-HSD, 17b-HSD, and 5a-reductase enzymes (76).
These steroidogenic enzymes also are present in the alveolar
macrophages of pigs (77), indicating an evolutionary
conservation of these steroidogenic functions. In turn,
tes tosterone is converted to androstenedione and
dihydrotestosterone (DHT) in primary cultured human
synovial macrophages (78, 79). In addition, human monocyte-
derived macrophages, rather than monocytes, preferentially
convert dehydroepiandrosterone (DHEA) to a physiologically
relevant amount of downstream steroid hormones including
testosterone, androstenedione, estrone, and estradiol, in the
presence of LPS (80). When human peripheral monocyte-
Frontiers in Endocrinology | www.frontiersin.org 429
derived THP-1 cells and primary monocytes are differentiated
to macrophages, they exhibit upregulation of both CYP19A1
mRNA levels and aromatase activity, which catalyzes the
conversion of androgens to estrogens, in response to
dexamethasone (a synthetic glucocorticoid) (81). These studies
suggest that the conversion of steroid hormones in macrophages
may be related to their phenotypic heterogeneity and
microenvironmental contexts.

Steroidogenic enzymes are also expressed by T lymphocytes.
Splenic T lymphocytes in trauma-hemorrhagic male and proestrus
female mice exhibited enzyme activities of 3b-HSD, 17b-HSD, 5a-
reductase, and aromatase (CYP19A1). Although most of these
steroidogenic enzymes were also found in B lymphocytes, they
had lower activity and no 17b-HSD activity. Increased 5a-
reductase activity in male T cells is immunosuppressive due to
enhanced 5a-dihydrotestosterone synthesis, whereas increased
aromatase activity, which triggered 17b-estradiol synthesis, has an
immune-protective function in female T cells (82). Furthermore,
CYP19A1 expression and aromatase activity has been reported in
tumor-infiltrating lymphocytes (83, 84). However, whether other
lymphocytes and/or myeloid cell types in normal tissues have
steroidogenic activities that can induce the conversion of steroid
hormones to fulfill their immunoregulatory functions is likely a
fruitful area for future research.

De Novo Steroidogenesis of Immune Cells
Beyond immune cells’ capability of local steroid conversion,
recent reports indicate that immune cells have the ability to
undertake de novo steroidogenesis starting from the initial
processing of cholesterol. Type 2 immune cells, including mast
cells, basophils, and particularly T helper 2 cells, can de novo
synthesize pregnenolone during helminth infection and in tumor
environments to regulate immune homeostasis and tumor
immunosuppression, respectively. T-helper-2-cell-mediated
steroidogenesis is likely due to the high expression of
CYP11A1 in these immune cells (12, 13). CYP11A1 expression
is increased in CD4+ or CD8+ T cells in peanut-induced
intestinal anaphylaxis and allergic lung disease (85, 86).
Additionally, in peanut-allergic children, CYP11A1 is involved
in the regulation of CD4+ T cells in the proallergic immune
response (87). These findings may suggest the importance of
steroids derived from immune-cell-mediated de novo
steroidogenesis in healthy and pathological microenvironments
with adaptive immunomodulation. In addition, infiltrating
myeloid cells in dystrophic skeletal muscles can produce
aldosterone, as all genes encoding steroidogenic enzymes in the
aldosterone synthesis pathway are expressed by muscle-derived
myeloid cells (88). However, whether tissue-resident or
inflammation-induced macrophages are capable of de novo
steroidogenesis has yet to be determined. StAR has been
detected in macrophages (89, 90), indicating that macrophages
contain at least the ability to produce steroidogenic substrates.
Interestingly, primary testicular macrophages produce
significant amounts of corticosterone in vitro (91), but whether
this corticosterone is derived from the conversion of other
steroids or from de novo steroidogenesis was not investigated
in that study. A recent study reported that testicular
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macrophages could also produce progesterone, and this steroid
production by macrophages may contribute to a local feedback
loop between Leydig cells and macrophages that regulates
testosterone production (92). Therefore, it is necessary to
explore in greater detail whether and how testicular
macrophages have the ability to undertake de novo
steroidogenesis and, if so, to what extent testicular function is
dependent on this source of steroidogenesis.
DISCUSSION

The presence of testicular macrophages and their potential roles in
Leydig cell steroidogenesis have been investigated for several decades,
but the mechanisms underlying their functional relationship is still
unclear. One particular area that needs to be rigorously addressed is
whether testicular macrophages merely promote steroidogenesis by
Leydig cells or if they undergo de novo steroidogenesis in a
meaningful way to promote spermatogenesis and fertility.
Macrophages could impact Leydig cells through a number of
mechanisms, such as regulating the cytokine environment,
providing steroidogenic substrates, or through modulating Leydig
cell ultrastructure via unique cell-cell junctions (Figure 1). Given
recent findings of de novo steroidogenesis by T cells in various
contexts, the contributions of immune-cell-derived steroids should
Frontiers in Endocrinology | www.frontiersin.org 530
be addressed in the context of testicular function. Furthermore, as
many studies have linked inflammation to infertility, it is also critical
to study how macrophage polarization and the subsequent changes
in their cellular activities cause or exacerbate testicular pathology.
Reports in several fields indicate that immune cell steroid production
is a broadly observed and evolutionarily conserved phenomenon;
therefore, understanding the roles of immune cells in testicular
steroidogenesis and Leydig cell function will likely provide new
insights into endocrinology that will extend beyond the boundaries
of the testis.
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FIGURE 1 | Potential mechanisms underlying macrophage-Leydig cell interactions and immune cell steroidogenesis. Cartoon depicts the adult rodent testicular
interstitium, containing a Leydig cell, macrophage, and T cell. Arrows denote the different molecular and cellular pathways that have been implicated in macrophage-
Leydig interactions and de novo steroidogenesis by immune cells. T-shaped lines indicate an inhibitory interaction. Dashed arrows and lines flanked by question
marks indicate that interactions have been proposed but have not been demonstrated experimentally, nor have mechanisms or factors involved been identified
definitively. 25HC, 25-hydroxycholesterol; CH25H, cholesterol 25-hydroxylase; IL1B, interleukin 1 beta; NO, nitric oxide; ROS, reactive oxygen species; StAR,
steroidogenic acute regulatory protein; TNF, tumor necrosis factor.
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Infection and inflammation are relevant entities of male reproductive disorders that can
lead to sub-/infertility. Associated damage of the testis of affected men and in rodent
models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and
reduced androgen levels. Negative effects on spermatogenesis are thought to be
elicited by oxidative stress sustained mostly by increased levels of ROS and pro-
inflammatory cytokines. Under normal conditions these cytokines have physiological
functions. However, increased levels as seen in inflammation and infection, but also in
obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary,
there is mounting evidence that the activation of inflammatory pathways is a rather
common feature in various forms of male testicular disorders that extends beyond
established infectious/inflammatory cues. This mini review will focus on relevant entities
and the mechanisms of how a dysbalance of local testicular factors contributes to
disturbances of spermatogenesis and steroidogenesis.

Keywords: testicular infection, testicular inflammation, autoimmunity, paracrine regulation, oxidative stress, ROS,
cytokines, chemokines
CONDITIONS LEADING TO TESTICULAR AND
EPIDIDYMAL INFLAMMATION AND THEIR
INFLUENCE ON HORMONE LEVELS,
STEROIDOGENESIS, SPERMATOGENESIS
AND SEMEN QUALITY

The testis is an immune privileged organ that tolerates the introduction of sperm autoantigens at the
onset of puberty without eliciting an inflammatory immune response (1). The testis in mammals
evolved multiple strategies to preserve this immunocompromised status, namely, the formation of
the blood-testis-barrier (BTB) between adjacent Sertoli cells that secludes most of the developing
germ cells from the interstitial compartment where leukocytes reside (1, 2). Besides the BTB the
Sertoli cells display important immunoprotective functions that may also contribute to immune
privilege. This has been shown when Sertoli cells were co-transplanted with allo- or xenografts
thereby prolonging the survival of pancreatic islets (3), hepatocytes (4) and neurons (5) as well as
other types of cells (6). Moreover, through Sertoli cells, antigens protected from transcellular leakage
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by the BTB can egress via transcytosis into the interstitial space
where antigen-presenting cells (dendritic cells, macrophages)
help to maintain Treg tolerance to meiotic antigens. Depletion
of the Treg leads to autoimmune orchitis emphasizing the
importance of the Sertoli cell-macrophage-Treg axis in
maintaining immune privilege (7).

Evidence suggests that immunological and infectious
etiologies contribute substantially to male infertility
[accounting for 13–15% of cases (2)], a medical and social
problem which in total is increasing worldwide (8). The
contribution of inflammatory infertility may be underestimated
as immune cell infiltration is observed in 20% of testicular
biopsies of azoospermic infertile patients (9). Moreover,
increased infiltration of immune cells into the testes with
concomitant impairment in testicular functions is associated
with certain chronic diseases, namely atherosclerosis and
cancer (10–12). Given that infection and inflammation are
critical drivers of male infertility, we will highlight how these
entities can impair the archetypical functions of the male gonad,
i.e. spermatogenesis and steroidogenesis.

Local inflammatory conditions of the testis, because of acute
infection or inflammatory testicular reactions of unknown origin
as well as systemic inflammatory conditions, all can negatively
impact spermatogenesis and steroidogenesis. They can do so at
the following levels: (a) direct impairment of spermatogenesis,
sperm quality and function, e.g. by germ cell death, oxidative
stress and impaired mitochondrial activity, (b) disruption of
steroidogenesis due to perturbation of the hypothalamic-
pituitary-testicular axis, (c) obstruction of the male genital
tract or (d) dysfunction of accessory glands (13–15). The
following sections will elaborate in more detail on relevant
factors and mechanism of disease.

Bacterial infections
In the clinic, Escherichia coli (E. coli), Proteus mirabilis,
Staphylococcus aureus, Streptococcus veridans, Ureaplasma
urealyticum, Mycoplasma hominis and Chlamydia trachomatis
are commonly isolated pathogens in liquid biopsies of men with
genitourinary tract infection (16, 17). Among these bacteria, E.
coli and Chlamydia trachomatis are the most clinically relevant
pathogens and thus are frequently used in animal studies to
mimic the human condition (16). Currently, rodent models
propose two routes of infection for these microbes with
uropathogenic E. coli (UPEC) reaching the epididymis and
testis via ascending canicular infection after injection into the
vas deferens. Alternatively, for Chlamydia muridarum, a murine-
specific pathovar, macrophages were suggested as a vector as
luminal spread from the infection site at the urethral orifice was
excluded by vasectomy (18–20). Although not seen as vectors for
UPEC, infiltrating monocyte-derived macrophages also appear
to be crucial in the immunopathology associated with acute
epididymo-orchitis which was convincingly shown in Ccr2-/-

mice, which lack blood monocytes due to defective egress from
the bone marrow (21).

In clinical practice, epididymitis is almost exclusively of
infectious origin. Leukocytospermia is seen often in the acute
phase of disease; however, approximately 40-50% of epididymitis
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patients show persistent impaired semen parameters affecting
sperm concentrations, motility and morphology (22). In up to
60% of all cases, the testis is also affected in a combined
epididymo-orchitis as follow-up biopsies revealed severe
hypospermatogenesis indicated by loss of germ cells in the
adluminal compartment of the seminiferous epithelium,
massive infiltration of the interstitial and even tubular
compartment by immune cells, a thickened lamina propria and
interstitial fibrosis. These alterations were accompanied by
increased FSH levels (23, 24). Of note, persistent azoospermia
in 10% and oligozoospermia in 30% of men suffering from acute
epididymitis is detected (15, 22). Interestingly, sperm proteome
analysis in patients after recovery from epididymitis (3 months)
demonstrated long-term alterations in protein composition (25).
Besides changes in the proteome, the glycome of sperm was
altered in men with a history of epididymitis as seen by a
substantial reduction of sialic acid residues on the surface of
spermatozoa (26).

Viral infections
Several viruses, namely human immunodeficiency virus (HIV-
1), Zika virus (ZIKV), Ebola and Marburg viruses as well as the
mumps orthorubulavirus (MuV) can infect not only the testes
but also the entire male reproductive tract of human and non-
human primates through the hematogenous route (14). These
viruses silently propagate inside the organ for an extended time.
Recent studies suggest that the testicular macrophages are the
reservoir for a few viruses and are critical for initiating infection
and later dissemination into other testicular cells. For example,
the ZIKV colonized the interstitial CD206+ testicular
macrophages and then spread infection into the seminiferous
tubules (27). Similarly, another study demonstrated that the
S100A4+ macrophages were susceptible to ZIKV infection that
facilitated ZIKV dissemination and persistence in the
seminiferous tubules (28). After internalizing ZIKV, testicular
macrophages skewed towards a pro-inflammatory phenotype
and secreted pro-inflammatory cytokines. These disturb the
BTB in a paracrine fashion by down-regulating claudin-1
expression and facilitating S100A4+ macrophage entry into the
seminiferous tubules (28). In contrast to ZIKV, Marburg virus
mainly colonized Sertoli cells leading to a disruption of the BTB.
In addition, infection with Marburg virus results in increased
infiltration of immune cells in the testis, namely CD68+

macrophages/monocytes, CD3+ T cells and B cells in both the
interstitial space and seminiferous tubules leading to
spermatogenic cell loss and severe testicular damage (29).

Viral infection alters endocrine, sperm and semen parameters
by targeting the male reproductive tract directly and indirectly
(systemic). In relation to systemic infections (e.g. influenza),
fever could result in increased testicular temperature and
subsequent d i s tu rbances in spermatogenes i s and
steroidogenesis by perturbation of the hypothalamo-pituitary-
gonadal axis (30, 31). In the context of viral infections, alterations
in spermatozoal (count, motility, morphology) and semen
parameters (e.g. volume of seminal plasma, viscosity, pH,
enzyme concentrations) were reported, in some cases
accompanied by orch i t i s (32–37) . Impai rment of
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spermatogenesis could be related to different mechanisms
including inflammatory reactions in the reproductive organ,
disruption of the testicular cytokine milieu, decreased
testosterone production by Leydig cells, disturbances in the
paracrine control by somatic cells, change in testicular
temperature due to fever and viral replication within cells of
the male genital tract. Of note, macrophages, Sertoli cells and
germ cells may serve as viral reservoirs [reviewed in (14)]. In
chronic viral orchitis, histology of affected seminiferous tubules
reveal degeneration of the germinal epithelium accompanied by
thickening of the lamina propria, which ultimately may result in
complete hyalinization and fibrosis of the tubules leading to the
formation of so called “tubular shadows” (38). In Leydig cells,
viral replication can lead to decreased testosterone production
(39–41) an observation that was reported to be accompanied by
changes in LH, FSH or inhibin B levels (32, 33, 36, 37, 41).

Autoimmunity
Autoimmune orchitis is an inflammation of the testis, where
autoimmune reactions against spermatic antigens cause damage
to germ cells, and also to testicular somatic cells. It is a rare
disease in men with the potential to impede the normal function
of the testis. Mutation in the autoimmune regulator (Aire) gene
results in human autoimmune polyendocrine syndrome APS-
type 1 (APS-1), which is characterized by autoimmune reactions
in several organs, including the testes (42). This observation is
corroborated in Aire-deficient mice that reproduced many
clinical signs of APS-1 in human (43).

In men, histopathological analysis of testicular biopsies with
inflammatory lesions of idiopathic origin show that lymphocytic
infiltrates correlate with tubular damage, visible as partial or
complete loss of the germinal epithelium, thickening of the
lamina propria and tubular fibrosis. These changes are associated
with reduced testicular volume and score counts for
spermatogenesis, while FSH levels are not increased in these
patients (2, 38). Similar histopathological changes are also seen in
a mouse model of autoimmune-based epididymo-orchitis (EAEO)
elicited by injection of testicular homogenate. Here, the disease can
develop progressively up to the formation of granulomas. In rodent
EAEO, FSH levels are concomitantly increased, while testosterone
levels are reduced. This possibly points to a negative local paracrine
influence on Leydig cell steroidogenesis. This assumption is
supported by the observation that basal and hCG stimulated
production of testosterone is elevated in isolated primary Leydig
cells from EAEO rats compared to control. TNF-a abolishes this
increase in testosterone [reviewed in (2, 44)].

In addition, systemic low grade inflammatory conditions
associated with obesity including complications leading to
cardiovascular disease, type 2 diabetes mellitus, malignancy
and accelerated aging are connected with alterations in the
hypothalamic-pituitary-gonadal axis, poor semen quality and
disruption of testicular steroidogenesis. Obesity impacts
negatively semen parameters (sperm concentration, motility,
viability, morphology) and sperm function (chromatin
condensation, DNA fragmentation, apoptosis and epigenetic
signatures [reviewed in (45, 46)].
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INFLAMMATORY DISORDER RELATED
MECHANISMS AND PATHWAYS

Influence of Oxidative Stress on
Spermatogenesis and Steroidogenesis
Reactive oxygen species (ROS) play an important role both in the
maintenance of fertility in men, but also in pathological
alterations of sperm parameters such as viability, motility,
maturation, capacitation, hyperactivation and acrosome
reaction (47). While ROS is required to combat pathogens and
thus account for an effective anti-microbial immune response
(48), supraphysiological levels of ROS, particularly for extended
periods of time, can induce intense oxidative stress with toxic
consequences for cells in general. In this regard, spermatozoa are
particularly vulnerable due to their unique cytoarchitecture and
biochemical characteristics (49–51). Spermatozoa possess a
plasma membrane that is highly enriched in polyunsaturated
fatty acids, particularly docosahexaenoic and arachidonic acids
making them extremely susceptible to ROS-induced damage
(52). Increased ROS production coupled with poor antioxidant
capabilities in sperm can result in sperm DNA fragmentation
(SDF) (Figure 1) (53). Elevated SDF alters the ultrastructure of
sperm by leading to vacuolization in the nucleus along with other
severe sperm morphological abnormalities that altogether can
hinder fertilization by adversely affecting hyperactivation,
capacitation and acrosome reaction (54). In this light, it is not
surprising that SDF was reported in couples with unexplained
recurrent pregnancy loss (55). Moreover, an initiation in the lipid
peroxidation cascade can ultimately reduce sperm motility and
viability owing to the fact that ROS-induced lipid peroxidation
decreases mitochondrial membrane potential with concomitant
structural damage in the adjacent axoneme (56, 57). The
generation of lipid peroxidation products, particularly lipid
aldehydes such as 4-hydroxynonenal (4-HNE), can negatively
influence sperm motility as 4-HNE can bind to the dynein heavy
chain in the sperm tail and to protein kinase anchoring protein 4
(AKAP4) in the sperm fibrous sheath (51) (Figure 1). In
developing germ cells, oxidative stress can mediate cell death
via several apoptotic pathways including activation of death
receptors (Fas and TNFR1) and mitochondrial pathways
(caspase 9) (58–60). The increased co-expression of Fas and
FasL in germ cells implies that cell death via the Fas/FasL-
mediated apoptotic signal transduction pathway could occur via
autocrine and/or paracrine mechanisms (59). The susceptibility
of germ cells to apoptosis via Fas/FasL could be regulated by
Sertoli cells when the intracellular death domain of Fas reacts
with FasL receptors on Sertoli cells (61, 62). Activated
macrophages also play a role in the apoptosis of germ cells by
releasing the stress response protein HMGB1 in response to
inflammation-induced oxidative stress (Figure 1). In turn,
HMGB1 causes germ cell death by inducing a decrease in anti-
apoptotic Bcl-2 levels and a concomitant increase in pro-
apoptotic Bax protein levels, cytochrome c and caspase 3
activity (63).

Alongside apoptosis, autophagy was reported as a pathway
involved in disruption of spermatogenesis. In this context,
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increased expression of autophagy-related gene 7 (Atg7) was
observed in spermatocytes after heat treatment of mice (64). The
knockdown of Atg7, a factor required for formation of
autophagosomes (65), via siRNA injected into the seminiferous
tubules of these mice led to significant protection against heat-
induced autophagy that was accompanied with decreased rates of
germ cell apoptosis (64).

Intense oxidative stress can also affect Leydig cell
steroidogenesis eventually leading to infertility. ROS can
disturb Leydig cell mitochondria in diminishing the expression
of steroidogenic acute regulatory protein (StAR) which in turn
can decrease mitochondrial transport of cholesterol and
consequently reduces synthesis of androgens (66, 67). This
negative influence on steroidogenesis was reported to be a
result of oxidative stress-induced activation of the p38 MAPK
protein (68). C-Jun, a further stress responsive MAPK subfamily
member, was also shown to be involved in suppressing the
expression of steroidogenic enzymes as ROS mediated
signaling upregulation of c-Jun inhibits Nur77 transactivation
(69). Orphan nuclear receptors like Nur77 are known to be key
transcriptional factors regulating the gene expression of
steroidogenic enzymes (70, 71). Moreover, steroidogenesis can
be downregulated in a paracrine fashion. This is elicited by TNF-
a released by activated macrophages which addresses the TNF-a
receptor TNFR1 expressed on neighboring Leydig cells. This
leads to Leydig cell apoptosis and to activation of p38 MAPK
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signaling pathway resulting in decreased serum testosterone
levels (72).

Paracrine Influence of Cytokines,
Chemokines and Growth Factors on
Spermatogenesis and Steroidogenesis
Signaling molecules especially cytokines and growth factors and
their receptors are widely produced by testicular cells. These
signaling molecules play crucial roles in normal testis
development and function when expressed at physiological
levels, whereas increased levels can lead to disturbed organ
function (73, 74). As an example, the activation of toll-like
receptors (TLR) following binding of microbial pathogen-
associated molecular patterns (PAMPs) and endogenous
ligands such as alarmins (which are released during tissue
damage) can initiate a cascade of signal transduction pathways
which ultimately can culminate in the secretion of a range of
signaling molecules including pro-inflammatory cytokines TNF-
a, interleukin (IL)-1b and IL-6 in addition to chemokines
(CXCL8 and CXCL10) (75) that all act in a paracrine fashion.
Pathological consequences are indicated by neutralization of
TNF-a in conditioned media of testicular macrophages, which
results in decreased apoptosis of germ cells (74). Furthermore,
murine Tnf-a-/- Sertoli cells were protected from MuV-induced
down-regulation of occludin and zonula occludin-1 thus
safeguarding the integrity of the BTB. Inhibition of TNF-a
FIGURE 1 | Effect of cytokines and oxidative stress on spermatogenesis and steroidogenesis. Under normal conditions, levels of anti- and pro-inflammatory
cytokines, chemokines as well as anti-and pro-oxidants are balanced maintaining steroidogenesis and spermatogenesis. Sterile inflammation and microbial infection
both cause an invasion of monocyte derived macrophages that together with increased production of pro-inflammatory cytokines such as IL-6, TNF-a, IL-17, IL-1b
and chemokines such as CCL2, CXCL10 by resident testicular cells as well as recruited immune cells result in a shift towards higher levels of pro-inflammatory
factors that negatively impact spermatogenesis and steroidogenesis. As a consequence, germ cell death and lower levels of androgens are observed e.g. by ROS
diminishing the expression of StAR. ROS induced damage of spermatozoa also occurs during epididymal transit (axoneme damage, decreased mitochondrial
potential = DYM, sperm DNA fragmentation =SDF). Figure created with BioRender.com.
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production by the immunomodulatory drug pomalidomide in
MuV infected Sertoli cells also prevented the disruption of the
tight junction integrity of the BTB. Similar observations were
made in vivo where TNF-a deficiency prevented the MuV
induced disruption in the BTB and loss in spermatids (76).

TNF-a can also induce the production of CXCL10 in Sertoli
cells in an autocrine manner, which can in turn induce apoptosis
of germ cells via caspase-3 activation after binding to CXCR3 on
these cells. As a control, the experimental deletion of the genes
for CXCL10 or TNF-a in a co-culture of germ cells and Sertoli
cells inhibits MuV-induced germ cell apoptosis (77). To add,
CXCL10 and another chemokine ligand, CCL2, which is
produced by Sertoli cells, Leydig cells and testicular
macrophages in response to inflammation could recruit
leukocytes resulting in a negative impact on spermatogenesis
(Figure 1) (78). The role of a dysregulated CCL2/CCR2 axis on
spermatogenesis was clearly shown in Ccr2−/− mice that were
protected from germ cell loss otherwise seen in acute bacterial
epididymo-orchitis (21) TNF-a can also lead to elevated
expression of activin A - a member of the transforming growth
factor-b (TGFb) family of cytokines - in Sertoli cells (Figure 1).
Inhibiting activin A in vivo by elevating circulating levels of its
antagonist follistatin reduced the overall severity of EAEO,
associated germ cell loss and fibrotic damage (79). Further
credence of a negative role of upregulated pro-inflammatory
cytokines on spermatogenesis is derived from in vivo and in vitro
experiments (74, 80–82). Testicular injection of IL-6 or IL-17A
induced germ cell sloughing and disruption of the integrity of the
BTB, a finding corroborated in vitro when murine Sertoli cells
cultured with excess IL-6 or IL-17A exhibited a disrupted BTB
integrity and permeability concomitant with a decrease in
transepithelial electrical resistance that was associated with
changes in the distribution of tight junction protein expression
(occludin, claudin 11) (81, 83) (Figure 1). IL-6 can also directly
induce apoptosis of germ cells in vitro (74, 84). Infection with
Sars-Cov-2 was shown to increase the levels of pro-inflammatory
cytokines mainly IL-6, TNF-a, IL-1b and this was accompanied
with disruption in the expression of junctional proteins
(occludin, claudin-11, connexin-43) along with decreased
numbers of Sertoli cells and decreased sperm counts (85–87).

Increase in the aforementioned pro-inflammatory cytokines
and chemokines can also negatively influence the ability of
Leydig cells to synthesize testosterone mainly by acting as
repressors of steroidogenic enzyme gene expression (88–90).
TNF-a and TGF- b were found to be implicated in disrupting
steroidogenesis directly via the competitive inhibitory action of
NF-kB subunits on the transactivation of Nur77 and other
orphan nuclear receptors (88, 91–93). Activated macrophages,
which are physically interacting with Leydig cells, were shown to
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produce pro-inflammatory cytokines such as IL-1 and TNF-a
that can inhibit Leydig cell steroidogenesis (66). In this co-
culture setting of Leydig cells with activated testicular
macrophages (via lipopolysaccharide stimulation), mRNA
expression of steroidogenesis related genes (SF1, StAR and 3b-
HSD) was inhibited (94). Moreover, IL-1b added to murine
Leydig cells can induce the expression of CCL2, which in turn
can decrease steroidogenic enzymes such as CYP17A1 and
induce apoptosis as evidenced by cleaved caspase-3. This effect
was also documented in human Leydig cells (95). Overexpression
of another chemokine -CXCL10- in murine tumor Leydig cells
also inhibit StAR expression and decrease cAMP-induced
progesterone synthesis in a paracrine fashion (77).
SIGNIFICANCE AND CONCLUSION

Cytokines and chemokines play an important role in the
regulation of normal testicular function. They display direct
paracrine effects on spermatogenic and Leydig cells that in the
case of an upregulation during inflammatory episodes can
impose harmful consequences. However, a degree of caution is
necessary as a considerable amount of data relies on in vitro
studies using isolated cells. Moreover, definitive functions of pro-
inflammatory factors are difficult to determine as their action is
context dependent and influenced by other mediators acting at
the same target cell. Research harvesting breakthrough
technologies like scRNA-seq and spatial transcriptomic is just
about to unravel the overlap of the immune and testicular system
and how they are linked in normal and pathological condition.
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School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States

The transition of undifferentiated A spermatogonia to differentiated spermatogonia
requires the action of retinoic acid (RA). The synthesis of retinoic acid from retinal in the
seminiferous epithelium is a result of the action of aldehyde dehydrogenases termed
ALDH1A1, ALDH1A2, and ALDH1A3. We used a mouse with a global deletion of the
Aldh1a1 gene that is phenotypically normal and the CRE-loxP approach to eliminate
Aldh1a2 genes globally and from Sertoli cells and germ cells. The results show that global
elimination of Aldh1a1 and Aldh1a2 genes blocks spermatogenesis but does not appear
to affect viability. The cell specific elimination of Aldh1a2 gene showed that retinoic acid
synthesis by Sertoli cells is required for the initial round of spermatogonial differentiation
but that there is no requirement for retinoic acid synthesis by germ cells. In both the global
gene deletion and the cell specific gene deletions the maintenance of Aldh1a3 activity
could not compensate.

Keywords: ALDH1A1, ALDH1A2, retinoic, spermatogenesis, viability
INTRODUCTION

The active form of vitamin A is retinoic acid that is synthesized in precise cellular locations by a two-
step mechanism. First, retinol which is the circulating form of the vitamin is oxidized in a reversible
reaction to retinal by retinol dehydrogenase (RDH10). Retinal is then oxidized to retinoic acid in a
nonreversible reaction by one of 3 retinal dehydrogenases known as ALDH1A1, ALDH1A2, and
ALDH1A3 (1).

ALDH1A2 and ALDH1A3 are required during fetal development. ALDH1A2−/− mice die during
embryonic development and ALDH1A3−/− mice die shortly after birth (2, 3). However, ALDH1A1−/−

mice develop normally (4). In humans, ALDH1A1mRNA is found in the liver, kidney, testis, brain, lung,
red blood cells, and lens of the eye while ALDH1A2 mRNA is found in the testis, uterus, and skeletal
muscle, and ALDH1A3 mRNA is localized in the prostate, trachea, intestine, and testis (5). Clearly all
three ALDH1A enzymes contribute to RA synthesis during postnatal life. All together these studies
underscore the tissue-specific central roles that ALDH1A enzymes play in animal physiology, and the
vital significance of obtaining information concerning the expression and essential nature of the activity
of these enzymes in human tissues.

In the mouse testis, retinoic acid is essential for the progression of undifferentiated
spermatogonia A to become differentiating spermatogonia A1 and enter into spermatogenesis
(6). In the absence of retinoic acid, undifferentiated spermatogonia never begin this progression (7).
We have previously shown that deletion of the RDH10 gene in Sertoli cells alone will inhibit the
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progression of undifferentiated spermatogonia and also the
deletion in both germ cells and Sertoli cells blocks this
progression (8). Enzyme inhibitors have been used to eliminate
the activity of all 3 aldehyde dehydrogenases and using the
CRElox P approach all 3 Aldh1a genes have been deleted only
in germ cells, only in Sertoli cells and in both cell types (9, 10).
Both of these approaches have shown that the retinal
dehydrogenases are essential for spermatogenesis and both
enzymes are present in germ cells and Sertoli cells. Aldh1a1 is
most highly expressed in the Sertoli cells and Aldh1a2 and
Aldh1a3 are expressed primarily in the germ cells but all 3
enzymes appear to be expressed at some level in both cell
types (11).

It has been known that global deletion of the Aldh1a1 gene in
mice has little effect and does not significantly alter fertility (4).
Recent studies have shown that the knockout of Aldh1a2 alone
or the simultaneous knockout of Aldh1a1-3 in germ cells has
little effect on successful spermatogenesis and fertility (9, 12).
However, the simultaneous knockout of Aldh1a1-3 in Sertoli
cells does not allow the undifferentiated A spermatogonia to
progress to differentiating A1 spermatogonia (9). In this study we
have broadened these previous observations by examining the
effect on spermatogenesis of leaving the Aldh1a3 gene intact. We
started with a mouse mutant with a global deletion in Aldh1a1.
From that genotype we used the CRE-loxP system to remove the
Aldh1a2 gene in germ cells and/or Sertoli cells and globally in all
cells. In addition, and we have included sperm counts and
fertility studies.
MATERIALS AND METHODS

Animal Care, Breeding and Genotyping
All procedures involving mice were approved by the Washington
State University Committee on the Use and Care of Animals.
The mouse colonies were maintained in a temperature-
controlled environment with access to food and water ad
libitum. Mice were euthanized by CO2 asphyxiation followed
by cervical dislocation. Four mouse lines were generated for this
study, each expressing Cre recombinases to inactivate the
Aldh1a2 gene in Sertoli cells, germ cells, both Sertoli and germ
cells or globally. The Aldh1a1-/-, Aldh1a2fl/fl, ERT-Cre line was
created by breeding Aldh1a2fl/fl, ERT-Cre (12) with Aldh1a1-/- (a
gift from John Amory and Jisun Paik at the University of
Washington with permission from Jackson labs, JAX stock
#012247). The offspring who were heterozygous for all 3 alleles
were bred and those animals in the next generation who were
homozygous for the 3 alleles were experimental animals. In every
case the excision of the gene, Aldh1a2D, was confirmed by
genotyping (12).

The Aldh1a1-/-, Aldh1a2fl/fl, Amh-Cre+ line was created by
initially breeding Aldh1a1+/- with Aldh1a2fl/fl, to create mice
that were Aldh1a1+/-, Aldh1a2fl/-. These were bred with mice
carrying the Amh-Cre transgene (a gift from Marie-Claude
Hofman, UT MD Anderson Cancer Center) and those progeny
who were Aldh1a1+/-, Aldh1a2fl/- and carrying the transgene
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were then bred together to accumulate the experimental and
control mice Aldh1a1-/-, Aldh1a2fl/fl, Amh-Cre+ and Aldh1a1-/-,
Aldh1a2fl/-, Amh-Cre+, respectively.

The experimental and control mice for the Aldh1a1-/-,
Aldh1a2fl/fl, Stra8-Cre+ and Aldh1a1-/-, Aldh1a2fl/fl, Stra8-Cre+,
Amh-Cre+ lines were generated from the same breeding scheme.
Males carrying the Stra8-Cre transgene (13) were bred with
Aldh1a1+/- females. Male offspring who were Aldh1a1+/- and
carried the Stra8-Cre transgene were paired with Aldh1a1-/-

females. Males from this breeding who were Aldh1a1-/-, Stra8-
Cre+ were bred with females, generated above, who were
Aldh1a1-/-, Aldh1a2fl/fl, Amh-Cre+. Male offspring from this
pairing who were Aldh1a1-/-, Aldh1a2fl/-, Stra8-Cre+, Amh-Cre+

were paired with females, Aldh1a1-/-, Aldh1a2fl/fl, Amh-Cre+, to
generate experimental and control mice for both lines.

To determine the genotypes of the mice, PCR reactions were
performed on template generated from a tail clip from each
mouse. The primer sets for Amh-Cre and ALDH1A1 are as follows:
Amh-Cre forward primer GCGGTCTGGCAGTAAAAACTATC
and reverse primer GTGAAACAGCATTGCTGTCACTT;
ALDH1A1 forward primer CAACCCTGAGCAAATCCTCCAC,
reverse primer for the knockout TGGATGTGGAATGTGTGCG
AG and reverse primer for wild-type GACAGATTGAGAGCAG
TGTTTACCC. All others have been reported elsewhere (12).

Fertility and Sperm Counts
Males with confirmed KO in germ cells or Sertoli cells or both
germ and Sertoli cells or ERT-Cre, tamoxifen treated males and
controls were aged to 7 weeks and then were paired with a female
of known fertility for 2 months to assess fertility. At the end of
the 2 months the males were euthanized for study and the
females left for 3 more weeks to continue to monitor for
litters. The number of offspring and number of litters for each
male was recorded. Following this timeline, each male in this
study was euthanized at approximately 4 months. The body was
weighed immediately after euthanasia. One testis was placed in
Bouin’s fixative for immunohistochemistry and one was
detunicated, snap frozen and weighed. Both cauda
epididymides were placed in DMEM at room temperature and
processed for counting sperm. The cauda epididymides were cut
into approximately 1mm3 pieces and incubated at 37°C for 15
minutes. Three µl of the sperm suspension was applied to a Cell
Vision disposable counting slide (CV 1020-4CV) and analyzed
using a SCACASA system (Fertility Technology Resources, Inc)
following the manufacturer’s instructions. When the sperm
numbers were over 80 million, the sperm suspension was
diluted 4 fold with DMEM before counting the sperm.

Histology
Bouin’s fixed testes were embedded in paraffin, cut into 4 µm
sections and either stained with hematoxylin and eosin or
immunohistochemistry was performed using primary
antibodies to Stra8 (14).

Tamoxifen Preparation and Administration
Tamoxifen (Sigma T5648) was dissolved in 10% ethanol and 90%
sesame oil at a concentration of 10 or 20 mg/ml, and the solution
April 2022 | Volume 13 | Article 871225
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was wrapped in aluminum foil to protect from light. Mice were
injected intraperitoneally with 40 mg/kg tamoxifen once per day
from postnatal day 8 to 10 and/or with 80 mg/kg tamoxifen for 5
days starting at day 21 postpartum. Alternatively, at day of birth
and postnatal day 1, mice were injected intraperitoneally with
100 mg/kg tamoxifen dissolved in sesame oil only at a
concentration of 5 mg/ml. Tamoxifen was stored for a
maximum of one week at 4°C and warmed to room
temperature before injections. To confirm that the action of
tamoxifen on the ERT-Cre resulted in excision of the ALDH1A2
gene, Aldh1a2D genotyping was performed on tail clips collected
after euthanasia.

Retinoic Acid Injections
Retinoic acid (Sigma R2625) was made fresh each day in DMSO.
For the mice expressing the Stra8-cre and/or AMH-cre, 10 µl of
20 mg/ml was intraperitoneally injected once at day 21. For the
males expressing the ERT-cre, RA at a concentration of 10 mg/ml
was injected intraperitoneally at a dose of 12.5 µg/g body weight
once at day 21. Males were euthanized after one round of
spermatogenesis, 42 days later. As a control the same volume
of DMSO was injected at day 21.
RESULTS

Using the Aldh1a1-/-, Aldh1a2fl/fl mice as our starting point we
first wanted to see whether the presence of Aldh1a3 altered the
results from the previous studies of Teletin et al. (9). Their data
showed that the deletion of all 3 Aldh1a genes in Sertoli cells
blocked spermatogenesis at the conversion of A spermatogonia
to A1 spermatogonia in mice. However, if these mice were
injected with retinoic acid once, the block was removed, and
spermatogenesis proceeded normally and continuously. They
also showed that spermatogenesis was normal with the deletion
of all 3 Aldh1a genes in germ cells alone. They concluded that RA
from Sertoli cells was necessary for the initial A to A1 conversion
of spermatogonia but that RA from germ cells could maintain
the process. If RA synthesis was normal in Sertoli cells the
presence of RA synthesis in germ cells was not necessary. We
created Aldh1a1-/-, Aldh1a2fl/fl mice under control of AMH Cre
or Stra8 Cre to produce deletions of only Aldh1a1 and Aldh1a2
in Sertoli cells or germ cells, respectively. Aldh1a1-/- mice have
essentially normal spermatogenesis and we previously showed
that Aldh1a2-/- mice also have normal spermatogenesis (12).
However, the deletion of both of these two genes in Sertoli cells
or germ cells recapitulated the results from deletion of all 3 genes
reported by Teletin et al. (9). We also found that deletion of
Aldh1a1 and Aldh1a2 genes in Sertoli cells completely blocked
spermatogenesis at the conversion of A spermatogonia to A1 and
that this block could be overcome by a single injection of RA
(Figure 1). The knockout of genes coding for both enzymes in
germ cells had no effect on sperm production. The results based
on histology (Figure 1) were reflected in testis weights and
number of sperm detected in the cauda epididymis. In
breeding studies all of the crosses that had detectable sperm in
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the cauda produced normal litter numbers and sizes. So, the
production of RA by Sertoli cells from either or both Aldh1a1 or
Aldh1a2 enzymes is required for the init iat ion of
spermatogenesis and the presence of Aldh1a3 enzymes
cannot compensate.

In order to examine the effect of globally deleting Aldh1a1
and Aldh1a2 we created Aldh1a1-/-, Aldh1a2fl/fl mice with an
inducible ERT-Cre, and then utilized the injection of tamoxifen
to activate the CRE activity. We used several protocols for the
injection of tamoxifen. We injected once per day for 3
consecutive days starting at 8 days of age or once per day for 5
days at 21 days of age. In both protocols we found that
spermatogenesis appeared to be little affected since the sperm
counts per cauda epididymis were near normal and most of the
mice fathered litters of near normal size. However, if we
combined the protocols and injected tamoxifen for 3
consecutive days at 8 days of age and then repeated the
injections for 5 days at 21 days of age, we found that by 4 to 5
months of age when the mice were analyzed the sperm counts
went to zero and no litters were produced in breeding trials.
Apparently, neither of the 2 individual tamoxifen injection
regimes were sufficient to eliminate all ALDH1A2 activity. An
alternative protocol where on the day of birth and on 1 day of age
the males were injected with tamoxifen produced more robust
results. Under this protocol none of the males produced any
sperm throughout their lifetime. Some of these mice treated with
tamoxifen on day of birth and day 1 after birth were raised to 23
days of age and injected with a bolus of RA. The histology of the
testes of these animals were examined 42 days after the injection
of RA but the block at the conversion of A spermatogonia to A1
spermatogonia was still in place and no sperm were produced
(Figure 1). This was expected since there is no source of RA from
the germ cells or Sertoli cells to support spermatogenesis as was
also seen for Aldh1a1-/-, Aldh1a2fl/fl, Stra8-Cre+, Amh-Cre+
(Table 1 line 6).

Themice with globally deletedAldh1a1 andAldh1a2 from either
tamoxifen injection protocol that resulted in aspermatogenesis were
viable and appeared normal in all respects with the exception of the
testis. (Table 2) A detailed pathological examination was not done
but the mice were routinely aged to 4 months and some were left for
over 6 months and showed normal body weight and no
obvious pathologies.
DISCUSSION

The action of retinoic acid (RA) is required for normal
spermatogenesis in rodents and possibly all mammals (15). We
have previously shown that RA is synthesized locally in pulses along
the seminiferous tubules (16). These pulses are required for the
transition of undifferentiated A spermatogonia into A1
spermatogonia and into the differentiation pathway (7). The
location of these pulses corresponds to the onset of
spermatogenesis and the initiation of the cycle of the seminiferous
epithelium. In the absence of RA there is no cycle, and no germ cells
advance beyond undifferentiated spermatogonia. It has been
April 2022 | Volume 13 | Article 871225
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established that the pulse of retinoic acid is a result of the localized
synthesis of retinal by retinol dehydrogenase 10 (RDH10) and the
conversion of retinal to retinoic acid by 3 aldehyde dehydrogenases
designated ALDH1A1, ALDH1A2 and ALDH1A3 (8, 9, 17, 18).
Both the Sertoli cells and the germ cells have the capacity to
synthesize RA (9).

Deletion of either the Aldh1a1 gene or Aldh1a2 gene alone
has no major consequences to spermatogenesis or the mice.
Teletin et al. (9) used a Cre-Lox P approach to eliminate all 3
Aldh1a genes from Sertoli cells or from germ cells or from both
cell types. From these experiments they determined that RA from
Sertoli cells was essential to begin the first wave of germ cell
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development. Deletion of all 3 genes from germ cells had no
effect on spermatogenesis. However, in the Sertoli cell specific
triple gene deletion, if RA was present during the first wave in the
form of a single injection, spermatogenesis proceeded normally
and was continuous suggesting that the germ cell RA was
sufficient to maintain spermatogenesis once it had been
initiated. We addressed these studies using a different genetic
approach where we left the Aldh1a3 gene intact. While there are
only low levels of ALDH1A3 in the testis we wanted to determine
if it was sufficient to maintain spermatogenesis.

Our cell specific deletions of only Aldh1a1 and Aldh1a2
recapitulated the results from Teletin et al. (9) who deleted all
TABLE 1 | The Aldh1a1-/-, Aldh1a2f/f mice were crossed with the designated Cre to delete gene in Sertoli cells or germ cells or both.

Experiment N Testis wt. Sperm/cauda

control 10 0.129+/-.013 92+/-27
Stra8 Cre 7 0.118+/-.013 79.6+/-37
AMH Cre 6 0.018+/-.002 zero
AMH Cre +RA 9 0.077+/-0.018 84+/-21
Stra8 CRE and AMH CRE 8 0.025+/-.005 zero
Stra8 CRE and AMH CRE plus RA 7 0.029+/-.005 zero
April 2022 | Volume 13 |
In some experiments (4 and 6) mice were treated with RA and analyzed 4 weeks later to determine if spermatogenesis could recover. N is number of individual mice. Values plus standard
deviation are shown.
FIGURE 1 | Histology of testis of mice with gene deletions in Aldh1a1 and Aldh1a2. All samples were Bouin’s fixed, embedded in paraffin, cut into 4 µm sections and
either stained with hematoxylin and eosin and immunohistochemistry was performed using primary antibodies to Stra8. (A) Aldh1a1-/-, Aldh1a2-/+ 4 week old mice showing
normal histology with sperm and Stra8 positive spermatogonia and preleptotene spermatocytes. (B) 4 week old mice with genotype of Aldh1a1-/-, Aldh1a2-/- after crossing
mice in (A) with AMH-Cre mice resulting in deletion in Sertoli cells and a complete block at the progression of undifferentiated spermatogonia. (C) Mice with deletion in
Sertoli cells as shown in (B) 42 days after a single injection of RA. Note recovery of normal spermatogenesis and partial synchrony of Stra8 expression. (D) 4 week old mice
with genotype of Aldh1a1-/-, Aldh1a2-/- after crossing mice in (A) with Stra8-Cre mice resulting in deletion in germ cells. Note normal histology. (E) 4 week old mice with
genotype of Aldh1a1-/-, Aldh1a2-/- after crossing mice in (A) with both AMH-Cre mice and Stra8-Cre mice resulting in deletion in both Sertoli cells and germ cells. (F) 4
week old mice with genotype of Aldh1a1-/-, Aldh1a2-/- after crossing mice with ERT-Cre mice and treatment with tamoxifen starting at postnatal day 8 and again at
postnatal day 21 as described in the methods. Results illustrate the early block between A and A1 spermatogonia when RA is not available.
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3 Aldh1a genes. Deletion of these 2 genes and maintenance of the
Aldh1a3 gene in Sertoli cells completely blocked spermatogenesis
unless an injection of RA was made. Thus, the presence of
ALDH1A3 alone is not sufficient to maintain spermatogenesis.
In addition, deletion of these two genes in germ cells had no
effect on sperm production. RA synthesized in Sertoli cells is
sufficient to initiate and maintain spermatogenesis while RA
from germ cells can only maintain spermatogenesis after it has
been initiated.

Because of the absolute requirement of RA for spermatogenesis,
it has been proposed that inhibition of the synthesis or the action of
RA could be a possible approach for contraceptive development (10,
11, 19). Blocking RA synthesis with an aldehyde dehydrogenase
inhibitor or use of RA analogs that inhibit the action of retinoic acid
receptors (RAR) have been shown to block spermatogenesis (10,
20–22). However, given the prevalence of the RA signaling system
in biology and its absolute requirement in embryogenesis there was
serious concern about developing a contraceptive approach for the
testis that could have serious consequences for other organ systems.
Previously it has been shown that global deletions of the genes for
Cyp26A1 and Cyp26b1, the enzymes involved in RA homeostasis,
lead to increased concentrations of RA in several organs, reduced
lifespan, failure to gain weight, and fat atrophy (23). So, increased
RA concentrations in adult mice led to severe physiological
consequences. Therefore, one of the goals of this study was to
examine the viability of mice after global deletion of 2 of the 3
Aldh1a genes and a decreased ability to synthesize RA. We found
that the global deletion of Aldh1a1 and Aldh1a2 had no apparent
effect on the gross viability of the mice. Teletin et al. (9), only
reported data on the testis cell specific deletion of all 3 genes coding
for ALDH1A enzymes so in our studies it is possible that ALDH1A3
Frontiers in Endocrinology | www.frontiersin.org 546
was able to compensate in some tissues other than the testis.
Nonetheless, inhibitors targeting ALDH1A1 and ALDH1a2 would
certainly act as effective contraceptive compounds while not
affecting gross viability. While we did not examine the
physiopathology of potentially affected systems such as the
immune system these results are significant in attesting to the
feasibility of a RA focused contraceptive approach.
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Hypogonadism is common in men with sickle cell disease (SCD) with prevalence rates as
high as 25%. Testicular failure (primary hypogonadism) is established as the principal
cause for this hormonal abnormality, although secondary hypogonadism and
compensated hypogonadism have also been observed. The underlying mechanism for
primary hypogonadism was elucidated in a mouse model of SCD, and involves increased
NADPH oxidase-derived oxidative stress in the testis, which reduces protein expression of
a steroidogenic acute regulatory protein and cholesterol transport to the mitochondria in
Leydig cells. In all men including those with SCD, hypogonadism affects physical growth
and development, cognition and mental health, sexual function, as well as fertility.
However, it is not understood whether declines in physical, psychological, and social
domains of health in SCD patients are related to low testosterone, or are consequences of
other abnormalities of SCD. Priapism is one of only a few complications of SCD that has
been studied in the context of hypogonadism. In this pathologic condition of prolonged
penile erection in the absence of sexual excitement or stimulation, hypogonadism
exacerbates al ready impaired endothel ia l n i t r ic oxide synthase/cGMP/
phosphodiesterase-5 molecular signaling in the penis. While exogenous testosterone
alleviates priapism, it disadvantageously decreases intratesticular testosterone
production. In contrast to treatment with exogenous testosterone, a novel approach is
to target the mechanisms of testosterone deficiency in the SCD testis to drive
endogenous testosterone production, which potentially decreases further oxidative
stress and damage in the testis, and preserves sperm quality. Stimulation of
translocator protein within the transduceosome of the testis of SCD mice reverses both
hypogonadism and priapism, without affecting intratesticular testosterone production and
consequently fertility. Ongoing research is needed to define and develop therapies that
restore endogenous testosterone production in a physiologic, mechanism-specific
fashion without affecting fertility in SCD men.
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1 INTRODUCTION

Sickle cell disease (SCD) is the most common hereditary
hematologic disorder in the United States, which affects an
estimated 100,000 Americans, mostly African-Americans, and
millions of people globally (1). Patients with SCD experience
acute complications, such as painful vaso-occlusive episodes, and
chronic multi-organ damage, which heighten their risks for
morbidity and mortality (2). SCD was long considered to be a
disease of children and young adults because of its devastating
natural progression. Due mostly to universal newborn screening
and early therapeutic intervention, life expectancy in patients
with SCD has steadily improved over the last 30 years, and recent
studies have estimated the median survival for patients with SCD
at 60 years (3). Extended survival outcomes have, however, led to
an increase in long-term complications of this disease.

SCD is associated with hypogonadism (total testosterone
levels below 300 ng/dl), which develops in up to 25% of men
with this disease (4). This rate contrasts with the 6-12%
prevalence rate of symptomatic hypogonadism in otherwise
healthy middle aged and older men, who manifest an age-
related decline in testosterone production (5). The impact of
testosterone deficiency in the SCD male population is evident,
based on its symptomatic effects, e.g., impaired physical and
sexual maturation, reduced libido, erectile dysfunction,
decreased physical strength, fatiguability, mood changes, and
infertility (6, 7). Attempts to address this problem are, however,
hampered by limited understanding of the mechanism of
hypogonadism in SCD.

This review focuses on the mechanism of testosterone
deficiency in SCD, the impact of hypogonadism on health- and
reproduction-related issues in SCD males, and novel strategies to
drive endogenous testosterone biosynthesis. These strategies may
translate into clinical therapeutic opportunities for preserving
sexual function and fertility, and possibly other conditions,
adversely affected by hypogonadism in SCD.
2 SICKLE CELL DISEASE

SCD is caused by a single point mutation in the b-globin gene of
hemoglobin, leading to the expression of abnormal sickle
hemoglobin (HbS). Traditionally, the pathophysiology of SCD
was thought to result exclusively from the polymerization of HbS
under hypoxic conditions, causing erythrocytes to become
deformed, sludge, and occlude blood vessels, along with
oxidative stress, inflammation, and hemolytic anemia (8).
More recent studies show that SCD is also characterized by a
chronic deficiency of the endogenous vasodilator nitric oxide
(NO) and vascular dysfunction (8, 9). As a consequence, SCD
leads to progressive multi-organ failure resulting in pulmonary
hypertension, leg ulcers, renal failure, stroke, infarct, retinopathy,
neurocognitive impairment, bone loss, and priapism (2, 9, 10).

2.1 Hypogonadism in Sickle Cell Disease
Clinical research has documented a high frequency of testosterone
deficiency in SCD, with prevalence rates as high as 25% (4). In a
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small number of clinical studies investigating hypogonadism in
SCD, findings regarding its etiology and clinical implications have
varied. Studies have reported elevated luteinizing hormone (LH)
and follicle-stimulating hormone (FSH) levels in patients with
SCD (primary hypogonadism; 6, 11–14). Repeated testicular
infarction is observed in some men with SCD, attributed to
erythrocyte sickling, obstructed blood flow, and hypoxia (15),
and this course has been proposed to be a contributing factor for
testicular failure (16–19). In contrast, studies report decreased LH
and FSH in patients with SCD (secondary hypogonadism; 4, 20,
21). Furthermore, compensated hypogonadism (characterized by
increased gonadotropins and normal testosterone levels) has also
been identified in men with SCD (22). Smaller testis size in SCD
men (6, 23) and reduced testis weight in SCD mice (24) is further
evidence of hypogonadism related to this disease.

In recent years, progress has been made toward
understanding the mechanism of testosterone deficiency in
SCD, and primary hypogonadism has now been established as
the principal cause for this hormonal abnormality. Oxidative/
nitrosative stress is implicated in defective testosterone
production by affecting the expression or enzymatic activation
of several steroidogenic enzymes, or by depletion of antioxidants
(25–27). In the vasculature of humans and experimental animals
with SCD, reactive oxygen species (ROS)-generated enzymes
NADPH oxidase (NOX) and xanthine oxidase, endothelial NO
synthase (eNOS) uncoupling, autooxidation of HbS, heme iron
release, and increased asymmetric dimethylarginine have been
described (28, 29). Diverse stimuli associated with these redox
sources include hypoxia, angiotensin II, proinflammatory
cytokines, vasoconstrictors, growth factors, metabolic factors,
and superoxide itself (30).

The testis of the SCDmouse exhibits upregulation of 4-hydroxy-
2-nonenal (4-HNE), a major end product of lipid peroxidation,
upregulation of NOX gp91phox subunit, and uncompensated
expression of the antioxidant enzyme glutathione peroxidase-1, all
consistent with a heightened and uncontrolled redox environment
in the SCD mouse Leydig cell (31). Increased NOX-derived
oxidative stress reduces protein expression of steroidogenic acute
regulatory protein (StAR) (but not cholesterol side-chain cleavage
enzyme) in Leydig cells of the SCD mouse testis, which initiates
cholesterol transfer into mitochondria. Reduced transport of
cholesterol to mitochondria of Leydig cells in the SCD testis
accounts for primary hypogonadism (31).

Secondary hypogonadism appears to represent patients
having more severe or progressive forms of SCD, who exhibit
more frequent abnormalities of LH and FSH in comparison with
patients having mild disease (20). While not completely
understood, secondary hypogonadism may be the result of
vasoocclusion of hypothalamic-pituitary small blood vessels, or
pituitary infarction (11).

2.1.1 Hypogonadism, Reproductive Issues, and
Health-Related Quality of Life in SCD
Testosterone plays a critical role in muscle physiology, body
development, bone density, sexual function, fertility, as well as
social, emotional, and neurocognitive functioning in males (32).
Patients with SCD exhibit reduced height and weight, decreased
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physical strength, and delayed sexual maturation (23). Low levels
of testosterone have been associated with very low bone mass
density in SCD patients compared with those having normal
bone mass density (33). Psychological distress, such as mood
changes, increased anxiety, extreme fatigue, social withdrawal,
and depression, and neurocognitive impairment, such as
impaired executive function, attention, and processing speed,
are well recognized complications of SCD (34–36). However, it is
not understood whether declines in physical, psychological, and
social domains of health in SCD patients are related to low
testosterone levels or are consequences of other abnormalities of
SCD. Future studies are warranted to evaluate this possible
consequence of hypogonadism in SCD.

Although poorly studied in SCD, male infertility is recognized
to be a common complication of this disease (23, 37–39). Impaired
male fertility in SCD is due to multiple causes, including
hypogonadism, gonadal failure and sperm abnormalities (such
as oligospermia, reduced sperm motility and density, and
abnormal sperm morphology), decreased ejaculate volume, and
delayed or impaired sexual development. Prevalence rate of at least
one abnormal sperm parameter in male patients with SCD is 91%
(40). Erectile dysfunction, largely as a result of penile damage from
recurrent or prolonged priapism, further contributes to reduced
fertility in SCD men (23).

2.1.2 Hypogonadism and SCD-Related Priapism
Priapism is a pathologic condition of prolonged penile erection
in the absence of sexual excitement or stimulation (41). Ischemic
priapism, which features little or absent intracorporal blood flow
resulting in painful erections, is prevalent in men with SCD,
occurring in as many as 48% of men, with a mean age of onset of
15 years (42, 43). Repeated episodes of priapism may lead to
irreversible damage to erectile tissue and permanent erectile
dysfunction (42, 44, 45) and cause psychological distress,
impaired sexual relationships, and reduced quality and
function of life (46). The prevalence rate of erectile dysfunction
associated with recurrent ischemic priapism in SCD patients is as
high as 47.5% (47).

The historical premise is that androgens are causative in the
pathophysiology of priapism. However, this notion is now
challenged. Reports of no increase in priapism in testosterone
deficient men administered testosterone gel at eugonadal levels
(48), as well as reduced priapism occurrences in testosterone
deficient men with SCD receiving long-acting testosterone
undecanoate injections (49) oppose earlier conceptions that
testosterone therapies cause priapism. It is now established that
physiologic testosterone administration does not cause priapism
and, in contrast, this intervention promotes molecular
mechanisms that favor normal erection responses. In fact,
priapism in SCD is associated with decreased testosterone
levels. A potential role for testosterone in correcting priapism
acknowledges that androgens contribute to physiologic erectile
tissue responses. Testosterone and dihydrotestosterone promote
physiologic relaxation of penile arteries and cavernous tissue,
and androgen deficiency decreases the expression and enzymatic
activities of eNOS, neuronal NOS, and phosphodiesterase type 5
(PDE5) in the penis, the main players in penile erection (50).
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The mechanisms by which testosterone deficiency contributes
to priapism has recently been elucidated. In a mouse model of
SCD, characterized by both primary hypogonadism and
priapism (51), testosterone replacement at eugonadal levels
corrects priapism. At the molecular level, normalized
testosterone levels reverse downregulated eNOS activity via a
nongenomic mechanism by normalizing downregulated P-Akt
(Ser-473) and P-eNOS (Ser-1177) protein expressions in the
penis (51). Increased NO reverses downregulated protein
expression and activity of PDE5, the enzyme which degrades
cGMP in the penis (52–56). Testosterone’s effect on PDE5
protein expression is believed to be mediated by increased NO-
induced accumulation of cGMP, which binds to cGMP response
sequences in the PDE5 promoter (57). Testosterone’s effect on
PDE5 catalytic activity is due to phosphorylation of PDE5 on
Ser-92 by cGMP-mediated activation of protein kinase G, which
stimulates binding of cGMP to the regulatory domain of PDE5
(58). Upregulated PDE5 protein expression and activity in the
penis restores the mechanism for cGMP degradation, thereby
preventing excessive accumulation of this nucleotide upon
neurostimulation. By controlling the amount of cGMP, which
causes relaxation of smooth muscles in the penis and penile
erection, priapic activity is lessened (51). This proof-of-principle
study supports testosterone deficiency as a cause for SCD-
associated priapism by exacerbating already impaired NO
molecular signaling in the penis.

In contrast to its physiologic doses, testosterone at
supraphysiologic doses decreases NO production from eNOS
and increases oxidative stress in endothelial cells (59–61). This
may partially explain findings described in several case reports in
men that, at excessive dosing, testosterone may trigger priapism
rather than reduce it (62–64).

Priapism is one of very few complications of SCD that has
been studied in the context of hypogonadism. It is interesting to
observe that low testosterone exhibits opposing erection
phenomena in the general population of men vs men with
SCD: while low testosterone may contribute to decreased
erection in the general population having cardiovascular or
metabolic factors affecting erectile tissue function, it results in
uncontrolled erection in the SCD population, which has a
severely disturbed PDE5 regulatory pathway in the penis.
However, it is noted that achieving physiologic “eugonadal”
effects in the penis is healthful in both populations.
3 TESTOSTERONE
REPLACEMENT STRATEGIES

Traditional approaches for managing testosterone deficiency in
general have largely centered on exogenous administration of
testosterone. Testosterone therapies and their relative usages
are: transdermal testosterone gel therapy (70%), testosterone
injections (17%), transdermal testosterone patches (10%), and
other forms of testosterone therapy, such as an oral formulation
(3%) (65, 66). However, limitations exist with these current
therapies. Adverse side effects are commonly described in
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association with exogenous testosterone administration,
including supraphysiologic levels of testosterone, local
irritation with applications, gynecomastia, erythrocystosis,
hepatotoxicity, and sleep apnea (67). Adverse prostate health
risks of benign prostate enlargement and prostate cancer as well
as cardiovascular risks (i.e., edema, heart attack, stroke) have
also been contended to be potential risks of testosterone
therapy (68). Impaired sperm production and infertility are
also documented risks of exogenous testosterone therapies, by
virtue of feedback inhibition of central gonadotropin release.
Such therapies suppress LH, which in turn suppress Leydig cell-
stimulated testosterone production, resulting in reduced
intratesticular testosterone concentrations needed for
spermatogenesis (67, 69). Because of the contraceptive effect
exerted by exogenous testosterone preparations, many young
men with hypogonadism desiring to retain reproductive
function are precluded from pursuing exogenous testosterone
therapies as a therapeutic option.

Alternatives to exogenous testosterone treatment have been
explored, with the main objective to drive endogenous
testosterone production and in turn preserve fertility. Current
options include selective estrogen receptor modulators (SERMs),
aromatase inhibitors, and human chorionic gonadotropin (hCG)
(70). Both SERMs (e.g., clomiphene citrate and tamoxifen
citrate), which serve as estrogen receptor antagonists, and
aromatase inhibitors (e.g., letrozole, anastrozole, and
testolactone), which block the conversion of testosterone to
estradiol, result in decreased estrogen feedback to the
hypothalamus thereby effecting a natural increase in
gonadotropin release (70). Their efficacy in increasing
testosterone production is limited in men with normal or
elevated LH levels who manifest a testosterone production
defect at the testicular level. hCG, operating as an LH
analogue, serves to stimulate Leydig cell production of
testosterone. Its efficacy is limited in men whose Leydig cells
are not functionally responsive to LH because of decreased
receptor function or capacity for testosterone production
(65, 71).

These reports indicate that currently available testosterone
therapeutic options aiming to enhance endogenous testosterone
production fall short in addressing testosterone deficiency
associated with testicular failure. This shortcoming is relevant
generally and for hypogonadal males with SCD. Specifically in
males with SCD, exogenous testosterone would further affect
fertility by decreasing intratesticular testosterone production
needed for spermatogenesis.
4 ENDOGENOUS MECHANISM-SPECIFIC
MOLECULAR TARGETS FOR
TESTOSTERONE PRODUCTION

Targeting mechanism-specific endogenous sources of testosterone
production in the SCD testis to produce eugonadal levels of the
hormone directly addresses primary hypogonadism. As transfer of
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cholesterol from the outer to the inner mitochondrial membrane
of Leydig cells in the testis is the principal site of regulation of
steroid hormone biosynthesis, and is impaired in SCD, targets for
stimulating testosterone production may involve transduceosome
protein components. The transduceosome is an ensemble of
mitochondrial and cytosolic proteins responsible for cholesterol
translocation from intracellular stores to the inner mitochondrial
membrane (72). Translocator protein (TSPO) is a high-affinity
drug- and cholesterol-binding mitochondrial protein, and its
protein expression is decreased in the testis of SCD mice (73,
74). The TSPO-dependent import of StAR into mitochondria and
the association of TSPO with the outer/inner mitochondrial
membrane contact sites drives intramitochondrial cholesterol
transfer and subsequent steroid formation (73). Previous studies
have shown that TSPO drug ligands activate steroid production by
MA-10 mouse Leydig tumor cells and by mitochondria isolated
from other steroidogenic cells (75–77). Furthermore,
pharmacologic stimulation of TSPO stimulates testosterone
production, both in vitro by Leydig cells isolated from aged rats
and in vivo in aged rats, without reducing intratesticular
testosterone concentrations or sperm number (78, 79). These
studies oppose several previous reports which questioned the
role and extent of involvement of TSPO in mitochondrial
cholesterol import and steroidogenesis (80, 81).

A recent study in a SCD mouse model demonstrated that
pharmacologic stimulation of TSPO corrects priapism.
Treatment of SCD mice with TSPO-selective drug ligand N,N-
dihexyl-2-(4-fluorophenyl) indole-3-acetamide (FGIN-1-27)
produces eugonadal levels of testosterone. Normalized
testosterone levels corrects priapism without decreasing
intratesticular testosterone production (74). At the molecular
level, TSPO ligand, by normalizing testosterone levels, restores
PDE5 activity and decreases NOX-mediated increase in oxidative
stress in the penis. Conceivably, this effect of testosterone
pertains to recovered control of NO/cGMP responsiveness
associated with restored PDE5 function. The mechanism
underlying testosterone’s inhibitory effect on NOX expression
and activity is not known, but may be indirect through the
improvement of endothelial function. In human endothelial cells
and mouse aorta, NO S-nitrosylates and inhibits p47phox
subunit of NOX, inhibits protein expression of gp91phox and
p47phox subunits of NOX, and inhibits superoxide production
(82–84). These findings suggest that targeting endogenous
testosterone production in the SCD testis by pharmacologic
activation of protein components involved in cholesterol
transport could be a novel, targetable pathway to correct
primary hypogonadism and ameliorate testosterone deficiency-
associated health conditions without affecting fertility.

While not examined, it is plausible that, in addition to
TSPO, other cytosolic or outer mitochondrial membrane
protein components involved in cholesterol transport from
intracellular stores to the inner mitochondrial membrane (such
as voltage dependent anion channel 1, negative protein adaptor
14-3-3ϵ, or AAA domain-containing protein 3A) (72), may be
targeted in the SCD testis to increase endogenous testosterone
production. Because pharmacologic activation of TSPO is
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independent of LH, it is conceivable that this approach may treat
secondary hypogonadism, or mixed primary and secondary
hypogonadism, as well. Other possible mechanism-based
targets in the SCD testis include increased oxidative stress, or
enzymatic sources of oxidative stress (such as NOX), which are
enhanced in SCD-associated primary hypogonadism (Figure 1).

Of note, L-glutamine, one of the 3 recently FDA-approved
treatments for SCD (L-glutamine, crizanlizumab, and voxelotor),
increases glutathione-dependent anti-oxidation in the testis and
testosterone levels, at least in sleep-deprived rats (85), while
alleviating primary hypogonadism and protecting erythrocytes
against oxidative damage.
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5 DISCUSSION

SCD affects millions of people throughout the world, mostly of
African ancestry, and is recognized by the World Health
Organization and United Nations as a global health issue. In
the United States, health outcomes for people with SCD have
improved in the past few decades. Despite medical advances, life
expectancy for individuals with SCD in the United States
remains 20 to 30 years lower than that of the average
American. It has been recognized that research and treatment
efforts for SCD lag behind that of other chronic genetic illnesses,
such as hemophilia and cystic fibrosis, requiring legislative
attention (86, 87). In correlation, less FDA-approved therapies
are currently available for SCD. The Sickle Cell Disease
Comprehensive Care Act, signed into law in December 2018,
represents a commitment by the government to continue
research towards increasing the understanding of prevalence,
distribution, outcomes, and therapies associated with SCD.

Amidst health care disparities among ethnic populations in
the United States, limited knowledge and action surround
hypogonadism in SCD, in spite of its long-term and costly
health problems. While many studies have evaluated the
mechanism and health-related issues of hypogonadism in the
general adolescent population, very few studies have focused on
hypogonadism in the SCD population. For example, although an
estimated 1 in 4 SCD patients exhibits low testosterone levels, no
studies have assessed the testosterone-dependent health-related
quality of life profiles of SCD patients.

Despite inequity in federal and foundation research funding,
basic scientific advances and potential new directions to target
testosterone deficiency in SCD are being made in recent years.
The objective of finding and targeting mechanism-specific
endogenous sources of testosterone production appears
necessary for preserving sexual function and fertility in the
SCD young adult population, particularly in light of the harms
of exogenous testosterone therapies.
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Perinatal exposure to smoking has been associated with childhood asthma, one of the
most common pediatric conditions affecting millions of children globally. Of great interest,
this disease phenotype appears heritable as it can persist across multiple generations
even in the absence of persistent exposure to smoking in subsequent generations.
Although the molecular mechanisms underlying childhood asthma induced by perinatal
exposure to smoking or nicotine remain elusive, an epigenetic mechanism has been
proposed, which is supported by the data from our earlier analyses on germline DNA
methylation (5mC) and histone marks (H3 and H4 acetylation). To further investigate the
potential epigenetic inheritance of childhood asthma induced by perinatal nicotine
exposure, we profiled both large and small RNAs in the sperm of F1 male rats. Our
data revealed that perinatal exposure to nicotine leads to alterations in the profiles of
sperm-borne RNAs, including mRNAs and small RNAs, and that rosiglitazone, a PPARg
agonist, can attenuate the effect of nicotine and reverse the sperm-borne RNA profiles of
F1 male rats to close to placebo control levels.

Keywords: asthma, nicotine, smoking, lung, epigenetic inheritance, small RNA, large noncoding RNA
INTRODUCTION

Asthma is one of the most common childhood diseases with an increasing prevalence over the past
decades (1, 2). Among a multitude of potential causes, perinatal exposure to smoking has been
associated with childhood asthma and a lifelong decrease in pulmonary functions in both humans
and animal models (3, 4). In general, exposure to smoke constituents in utero and/or during early
postnatal development has been regarded as the primary cause as it is well-established that the
chemicals released from smoking, especially nicotine, adversely affect the developing lung,
rendering increased susceptibility to childhood asthma (5–9). Interestingly, we and others have
shown that childhood asthma induced by perinatal exposure to nicotine can be transmitted across
multiple generations even in the absence of the same exposure (10–14). This finding is of great
interest and significance because it suggests that perinatal exposure to smoking/nicotine not only
causes asthma in the immediate offspring but also results in changes in their germline, leading to the
transgenerational inheritance of childhood asthma.

Given that the childhood asthma induced by perinatal exposure to nicotine arises in one
generation and the distribution of this disease phenotype in subsequent generations never follows
Mendel’s Law (11–14), it is highly unlikely that the asthma phenotype results from genetic
n.org May 2022 | Volume 13 | Article 893863156
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muta t ions caused by nico t ine exposure . Ins t ead ,
transgenerational inheritance of the phenotype is most
probably mediated by an epigenetic mechanism. Both inter-
and trans-generational epigenetic inheritance of disease
phenotypes induced by exposure to environmental chemicals,
over-or under-nutrition (e.g., high-fat diet (HFD) or starvation),
or traumatic stress has been convincingly demonstrated at least
in animal models (15–17). However, the underlying molecular
mechanisms remain elusive. Since mammals reproduce sexually,
the epigenetic codes that induce the acquired traits must lie in the
gametes, sperm, and eggs. Indeed, epimutations, including
changes in sperm DNA methylome (e.g., 5mC), histone
modifications, and small RNA profiles, have been associated
with various acquired traits in both human and animal models
(18, 19). However, the causative relationship between specific
epimutations (e.g., altered DNA methylation or histone marks)
and specific phenotypes has not been established. Interestingly,
several studies have shown that sperm total or small RNAs from
male mice with an epigenetic phenotype (e.g., metabolic
disorders induced by HFD and the whitetail tips caused by Kit
paramutation), seem capable of inducing a similar phenotype in
offspring derived from zygotes injected with either total or small
RNAs isolated from the sperm, suggesting that sperm RNAs may
function as the epigenetic codes responsible for the paternal
transmission of certain acquired traits (19–21). Our previous
studies have shown that the sperm 5mC profiles and histone
marks are altered in the male rats with perinatal exposure to
nicotine (11, 22). Given that both DNA methylation and histone
marks in sperm are largely established during testicular
development and spermatogenesis (23, 24), it is plausible to
hypothesize that both large and small sperm-borne RNAs may
also be altered in the male rats of our perinatal nicotine
rat models.

Here, we report that indeed, both mRNA and small RNA
transcriptomes were altered in the sperm of F1 male offspring of
F0 dams with the perinatal treatment of nicotine. Consistent with
our earlier reports (25, 26), we also found that a PPARg agonist
could attenuate the effects of perinatal exposure to nicotine on
sperm RNA profiles in the F1 male offspring.
MATERIALS AND METHODS

The Perinatal Nicotine Exposure
Rat Model
The perinatal nicotine exposure rat model used in this study was
established as described previously (12, 22, 27, 28). Briefly, time
of mating-matched, first-time pregnant, pair-fed adult (2 months
of age) Sprague Dawley rat dams (F0) with bodyweight between
200-250 g received either placebo (saline, n = 3), nicotine (1 mg/
kg, subcutaneously, n = 3), or nicotine (1 mg/kg, subcutaneously)
plus rosiglitazone (RGZ) (3 mg/kg, intraperitoneally, n = 3) in
100 mL volumes once daily from embryonic day 6 (E6) of
gestation to postnatal day 21 (PND21). The dose of nicotine
used (1 mg/kg/day) is within the range of nicotine exposure in
moderately heavy smokers (29–31). At this dose, the pulmonary
Frontiers in Endocrinology | www.frontiersin.org
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structural, molecular, and functional changes that we observed in
the rat model used are similar to those demonstrated in
numerous other perinatal nicotine and smoke exposure models
(12, 27, 32–35). Animals were maintained in a 12h-light and
12h-dark cycle, pair-fed according to the previous day’s food
consumption by the nicotine-treated group and were allowed
free access to water. Following spontaneous delivery at term, the
F1 pups were allowed to breastfeed ad libitum. At PND21, pups
were weaned and maintained in separate cages. At PND60, males
[n = 3 (from 3 separate litters) for each group] were euthanized
by pentobarbital overdose injected intraperitoneally, followed by
epididymis collections as quickly as possible. The epididymides
were kept in ice-cold F12 culture medium until sperm isolation
within 1-2 hours of the collection, as outlined below. All animal
procedures were performed following the National Institutes of
Health guidelines for the care and use of laboratory animals and
approved by the Institutional Animal Care and Use Committee
at The Lundquist Institute for Biomedical Innovation at Harbor-
UCLA Medical Center.

Collection and Purification of Sperm Cells
At culling, each epididymis was isolated by cutting the vas
deferens and muscle connections with the testis. After
trimming the surrounding connective tissue, the two
epididymides from each animal were placed in a tissue culture
plate containing 3 mL of HTF culture medium (Sigma,
EmbryoMax® Human Tubal Fluid (HTF) (1X), Cat No. MR-
070-D) on ice. The spermatozoa were released into the culture
media by making 6-8 small cuts to each epididymis with a sharp
blade, and the plates were placed in a culture incubator at 37°C
for 30 minutes. Following incubation, the medium containing
spermatozoa was filtered through a cell strainer (Genesee
Scientific, 70 mm Advanced Cell Strainers, Cat No. 25-376) to
a 50 mL conical tube, and the filtrate was divided into four 1.5
mL micro-centrifuge tubes. The tubes were centrifuged at
1000×g for 5 minutes, supernatants discarded, and 1 mL lysis
buffer (0.05% SDS and 0.005% Triton X-100 in distilled water)
added to each tube to gently suspend the pellet. The tubes were
kept on ice for 5 minutes to lyse and remove the somatic cell
contamination. After confirming the purity of isolated sperms
microscopically, the samples were centrifuged at 3000×g for 5
minutes. The supernatants were discarded, and each pellet gently
suspended in 1 mL ice-cold PBS. The suspensions from two tubes
were pooled and centrifuged at 3000×g for 5 minutes. The
supernatants were discarded, and pellets stored at -80°C until
RNA isolation and establishment of cDNA library.

Total RNA Extraction
Sperm samples were pooled (n = 3 mice/biological replicate) and
subjected to RNA extraction for RNA-seq, as described below.
RNA was extracted from cells according to the manufacturer’s
instructions using the mirVana miRNA Isolation Kit
(ThermoFisher, Cat No. AM1560). The Qubit RNA High
Sensitivity Assay Kit (Invitrogen, Cat No. Q32855) was used to
quantify the extracted RNA and measured on the Qubit 2.0
Fluorometer (Invitrogen).
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Large RNA Libraries Construction
Large RNA libraries were constructed using KAPA Stranded
RNA-seq Kit with RiboErase (Roche, Cat No. KK8484)
according to the manufacturer’s instructions, as described
previously (36), and sequenced using HiSeq 2500 system for
paired-end 50 bp sequencing.

Large RNA-Seq Data Analysis
The following workflow was used in bioinformatic analyses of
the RNA-seq data: QC check (fastQC) ➔ alignment (Hisat2) ➔
featureCounts (subread) ➔ Differential gene expression analysis
(DESeq2) ➔ Pathway Enrichment, GO analysis (Bioconductor
clusterProfiler). To ensure the quality of RNA-seq data, fastq files
were subjected to fastQC (37) to check their quality and changes
after adaptor and quality trim. MultiQC (38) was then utilized to
analyze and integrate the QC reports (Figure S1). HISAT2 was
used to perform alignment (39). Each sample yielded a bam file
after being aligned to the genome. Feature counts from each bam
file that map to the genomic features in the provided annotation
file was realized by subread function (40). DESeq2 was used to
analyze the gene differential expression (41). Markers/genes with
the sum of reading count across all cases and controls at 10 or
greater were kept for further analyses. To interpret the
expression data, a universal enrichment tool named
“clusterProfiler” was applied to infer gene set enrichment (42).

Annotation of lncRNAs From Large
RNA-Seq Data
LncRNAinformationwasfirstobtainedwithgenesymbolsbymerging two
Ensembl releases (release-105 Rattus_norvegicus.mRatBN7.2.ncRNA.fa.gz
and release-104 Rattus_norvegicus.Rnor_6.0.104.gtf.gz). The gene symbols
were then used in differential expression analyses as keywords to search in
Ensemble toobtain the lncRNAinformation that canbe annotated. Finally,
those two are combined to obtain all the lncRNA gene symbols. The
extracted padj of these lncRNAs weremuch larger than 0.05.

Small RNA Libraries Construction
Small RNA libraries were constructed using NEBNext® Small
RNA Library Prep Set for Illumina® (Multiplex Compatible)
(NEB, Cat No. E7330L) according to the manufacturer’s
instructions, as described previously (43), and sequenced using
HiSeq 2500 system for single-end 50 bp sequencing.

Small RNA-Seq Data Analysis
Cutadapt (44) was used to remove adaptors and trim low quality
reads (q > 20). The fastq files after QC filter were used to run the
AASRA pipeline using default parameters (45). Eight small
species, incuding miRNA, tRNA, piRNA, rRNA, snRNA,
snoRNA, Mt_rRNA and Mt_tRNA, were annotated. The
subsequent analyses using Featurecounts and DESeq2 were
performed the same as large RNA-Seq. TargetScan was used to
identify potential miRNA targets, the candidate target genes were
used for gene ontology (GO) enrichment analyses
using “clusterProfiler”.
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qPCR Analysis
cDNAs for large and small RNA were prepared as previously
described (43). Briefly, large RNAs were reverse transcribed to
cDNAs using SuperScriptTM II Reverse Transcriptase (Thermo
Fisher Scientific, Cat No. 18064014). Then qPCR analyses for
large RNA were conducted using Fast SYBR® Green Master Mix
(Thermo Fisher Scientific, Cat No. 4385616). Gapdh was used for
large RNA expression normalization. Small RNAs were poly(A)
tailed using E. coli Poly(A) Polymerase (NEB, Cat No. M0276L)
followed by reverse transcription with LD_CDS primer using
SuperScript™ II Reverse Transcriptase. qPCR analyses for small
RNA were then performed using TaqMan™ Gene Expression
Master Mix (Thermo Fisher Scientific, Cat No. 4369016) with
Illu lib quant probe. U6 was used for small RNA expression
normalization. The primer sequences used in this study for
qPCR are listed in Datasets S1.

Statistical Analysis
All data were subjected to statistical analysis using the SPSS
program (IBM, SPSS, New York, NY, USA) and shown as mean
± standard error of the mean (SEM). And statistical differences
between two groups were assessed by two samples t-test. Symbols *,
** and *** represent p < 0.05, p < 0.01 and p < 0.001, respectively.

Availability of Data and Materials
The RNA-seq data have been deposited into the National Center
for Biotechnology Information Sequence Read Achieve database
(accession no. PRJNA813596).
RESULTS

mRNA Profiles in Sperm From the Male
Rats Born to Control, Nicotine-Treated,
and Nicotine Plus RGZ-Treated Dams
Adult female rats (F0 dams) received placebo (saline
subcutaneously as controls), nicotine (1 mg/kg, B.W.
subcutaneously), or nicotine (1 mg/kg, B.W. subcutaneously)
plus RGZ (3 mg/kg, B.W., intraperitoneally) between E6 and
PND21 (Figure 1). Cauda epididymal spermatozoa of F1 male
offspring (n = 3, from 3 separate litters in each group) were
collected at PND60 and used for large RNA deep sequencing
(RNA-seq), followed by bioinformatics analyses using the
pipeline as illustrated (Figure 2A).

The 3D principal component analyses (3D-PCAs) verified
that the differential transcriptomes of placebo control, nicotine-
treated (NIC) and nicotine plus RGZ-treated (NR) sperm
samples were indeed clustered separately (Figure 2B). A total
of 29 differentially expressed mRNAs (21 upregulated and 8
downregulated mRNAs) satisfied the criteria of padj (adjusted p-
value) less than 0.05, and fold change greater than 0.2 and less
than −0.2 (logFC ± 0.2) in NIC sperm samples compared to
placebo controls (Datasets S2). The MA plots (Figure 2C, left
panel) illustrate the differentially expressed genes (DEGs). In
contrast, no significantly dysregulated mRNAs (padj <= 0.05 and
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|log2FC| ≥ 2) were detected in sperm of the control and NR
groups (Figure 2C, right panel and Datasets S3).

Many of the upregulated genes in nicotine-treated sperm are
known to be involved in asthma pathogenesis, including L-
Histidine decarboxylase (Hdc), Fc receptor-like 3 (Fcrl3),
Endothelin receptor type B (Ednrb), and Complement C4A
(C4a). Hdc encodes a unique enzyme in mammals which
catalyzes histamine formation from L-histidine and histamine
plays a critical role in the pathogenesis of bronchial asthma. In
particular, the level of Hdc mRNA is elevated in asthmatic
patients (46). Furthermore, Hdc allele Glu644 in homozygotes
increases the risk of rhinitis in the study population, supporting a
prominent role for genetic variants associated with histamine
homeostasis in developing allergic disease risk (47). In studying a
single nucleotide polymorphism (SNP) in Fcrl3 in asthma and/or
AR patients and healthy controls in a Chinese Han population,
novel SNP rs7528684 appears to be associated with asthma with
comorbid AR, and Fcrl3_3 (rs7528684) and Fcrl3_6 (rs3761959)
SNPs are protective against asthma inMexican male patients (48,
49). As the receptor for asthma related gene EDN1, the 30G>A
SNP in Ednrb is strongly associated with the degree of airway
obstruction, especially in patients with factors that induce airway
remodeling, such as asthma or smoking (50). And in the murine
model of asthma, Ednrb receptor antagonists is found to
effectively inhibit allergic reactions (51). When compared with
the children without asthma, an increasing serum level of C4
component of the complement system is observed in the
majority of the patients with intermittent atopic asthma,
representing a biomarker for diagnosis of intermittent atopic
Frontiers in Endocrinology | www.frontiersin.org 459
asthma (52). In addition, the level of C4a increases in the plasma
of patients with aspirin-induced asthma, and significantly
correlated with FEV1 (53).

However, several genes are newly implicated in asthma,
including Rho GTPase activating protein 15 (Arhgap15),
Pleckstrin (Plek), and Transcription factor EC (Tfec). Arhgap15
has been called a ‘‘master negative regulator of neutrophil
functions’’, and validated as a differentially expressed novel
transcript in patients with asthma (54, 55). PLEK is a major
substrate for protein kinase C signaling, a pathway strongly
implicated in asthma pathogenesis was upregulated in severe
asthmatics and exhibited a moderate ability to distinguish
between severe and mild-moderate asthmatics (56).
Furthermore, earlier studies have revealed an IL-4/STAT-6/
Tfec/IL-4Ra positive feedback regulatory loop, in which Tfec
transcribes IL-4Ra expression to promote M2 programming in
macrophages, which was implicated in asthma pathogenesis (57).
In addition, several genes were involved in lung cancer and other
lung diseases, such as Ceacam1 (58, 59), Ereg (60, 61), Selp (62,
63), and Pik3r5 (64, 65). The most conspicuous genes among
downregulated ones are members of the keratins (KRTs) and
keratin-associated proteins (KRTAPs), including Krt34, Krtap3-
1, and Krtap7-1, which are important for epidermal development
and hair follicle morphogenesis (66, 67), respectively. qPCR
analyses of seven dysregulated genes, including C4a, C4b,
Sult1c2, Arhgap15, Ednrb, Ceacam1, and Pik3r5, further
validated the RNA-seq data (Figure 2D). In addition,
bioinformatic analyses showed no long non-coding RNAs
(lncRNAs) were significantly dysregulated (padj <= 0.05) in
sperm samples from the three groups (Figure S2, Datasets S4
and S5). To further understand the functions of these DEGs,
gene ontology (GO) term enrichment analyses were performed,
and the dysregulated genes appeared to be involved in integrin
activation and platelet activation (Figure 2E, Datasets S6).

Taken together, perinatal exposure of nicotine appears to
induce altered profiles of sperm mRNAs, but not those of
lncRNAs; however, administration of RGZ appeared to
attenuate the nicotine effects on the sperm mRNA profiles.

Profiles of Small Non-Coding RNAs
(sncRNAs) in Sperm From the Male Rats
Born to Control, Nicotine-Treated, and
Nicotine Plus RGZ-Treated Dams
To determine the effects of perinatal exposure to nicotine and
nicotine plus RGZ on the sperm sncRNAs profiles of F1 males,
sperm small RNAs were isolated and sncRNAs-seq was
performed followed by bioinformatics analyses using AASRA
(68) (Figure 3A). A total of eight sncRNA species, including
miRNAs, mitochondrial DNA-encoded rRNA (Mt_rRNA) and
tRNA (Mt_tRNA) fragments, piRNAs, rRNA fragments, tRNA
fragments, snoRNAs, and snRNAs, were annotated and their
normalized total counts were compared among the three groups
(Figure S3).

Principal component analyses verified that the differential
transcriptomes of the three groups were clustered separately
(Figure 3B). A total of 139 sncRNAs were identified to be
FIGURE 1 | The perinatal nicotine exposure rat model used in the present
study. Dams (F0) received either placebo (saline), nicotine (1 mg/kg,
subcutaneously), or nicotine (1 mg/kg, subcutaneously) plus rosiglitazone
(RGZ) (3 mg/kg, intraperitoneally) once daily from embryonic day 6 (E6) of
gestation to postnatal day 21 (PND21). The F1 pups were allowed to
breastfeed ad libitum. At PND21, the F1s were weaned and maintained in
separate cages. Pure sperm cells of F1 male rats were collected at PND60
and sperm RNA was extracted and used for RNA-seq analyses.
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significantly dysregulated (padj <= 0.05 and |log2FC| ≥ 0 between
sperm from NIC and control groups (Figure 3C, left panel and
Datasets S7). These dysregulated sncRNAs included 47 miRNAs,
83 piRNAs, 1 tRNA, and 8 other sncRNAs. In contrast, no
significantly dysregulated sncRNAs (padj <= 0.05) were detected
between sperm from NR and placebo control groups (Figure 3C,
right panel and Datasets S8). All of the dysregulated miRNAs and
the vast majority (79 out of 83) of the dysregulated piRNAs were
upregulated between NIC and control sperm (Figure 3D).
Interestingly, while miRNA and piRNA levels were upregulated,
other sncRNAs were mostly downregulated in nicotine-treated
sperm. To validate the sncRNAs-seq data, we performed qPCR
analyses on eight miRNAs (let-7a-1-3p, miR-101b-3p, 293-5p,
148-3p, 192-5p, 340-5p, 1b, and 598-3p) and five piRNAs (piR-
rno-62944, rno-62902, rna-62978, rno-62740, rno-62736) in
nicotine-treated and placebo control sperm. The results showed
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that levels of miRNAs and piRNAs were much higher in nicotine-
treated sperm compared to controls (Figure 3E). Together,
perinatal exposure to nicotine appears to alter the sncRNAs
profiles, and this effect can be abolished by RGZ.

Given that miRNAs are known to function as a post-
transcriptional regulator by targeting the 3’UTRs of mRNAs,
we further determined the potential targets of the 47 significantly
dysregulated miRNAs (Datasets S9 and S10) using TargetScan
(69). Those target genes included those previously implicated in
asthma pathogenesis, such as ADAM metallopeptidase domain
33 (Adam33), PHD finger protein 11 (Phf11),Dipeptidyl peptidase
like 10 (Dpp10), Interleukin 4 (Il4), Brain-derived neurotrophic
factor (Bdnf), Serine peptidase inhibitor, Kazal type 5 (Spink5),
Cd69 molecule (Cd69), etc. Following linkage studies, Adam33
(70), Phf11 (71) and Dpp10 (72) have been identified to be
associated with asthma and asthma-related phenotypes. Studies
A B

D E

C

FIGURE 2 | RNA-seq analyses of sperm mRNA profiles in placebo, nicotine-treated and nicotine plus RGZ-treated F1 male rats. (A) The workflow for large RNA-
seq data analyses, showing the major steps and bioinformatic tools used in the study. (B) Three-dimensional principal component analyses of the large RNA-seq
data from nicotine-treated, nicotine plus RGZ-treated, and placebo-treated sperm samples. (C) MA plots showing differentially expressed genes (upDEGs and
downDEGs) detected between nicotine-treated and placebo-treated sperm samples (left panel) and between nicotine plus RGZ-treated and placebo-treated sperm
samples (right panel). The Log2baseMean represent the Log2 mean value of DESeq2 normalized counts between nicotine-treated and placebo-treated sperm, or
between nicotine plus RGZ-treated and placebo-treated sperm. Log2 fold change (Log2FC) was calculated by the Log2 mRNA counts of nicotine-treated sperm/
placebo-treated sperm, or nicotine plus RGZ-treated sperm/placebo-treated sperm. Genes that pass a threshold of padj <= 0.05, log2FC > 2 and padj <= 0.05,
log2FC < -2 in differential expression analysis were designated by red (up-regulated) and blue (down-regulated) in nicotine-treated or nicotine plus RGZ-treated
sperm relative to placebo-treated control sperm cells. (D) qPCR validation of mRNA expression levels in placebo and nicotine-treated sperm. Gapdh was used as an
internal control. Data are presented as mean ± SEM (n = 3). **P < 0.01; *P < 0.05. (E) Circle plots showing the top 10 Gene Ontology (GO) terms of biological
process analyzed from 16 significantly dysregulated genes in sperm samples from rats injected with nicotine compared to those from rats injected with placebo.
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showed that IL4, a key effector Th2 cytokine in allergic asthma,
was essential for B cells autophagy induction in vivo and in vitro,
thereby further sustaining B cell survival and enhanced B cell
antigen presentation (73). BDNF may contribute to normal lung
function and immune response and may serve as a potential
peripheral biomarker for asthma, especially that is aspirin-
sensitive (74). Studies have shown that SPINK5 has biological
actions other than protease inhibition, which may be related to
the pathogenesis of asthma (75). CD69 was known as an early
activation marker antigen of lymphocytes, had a crucial role in
the pathogenesis of arthritis and allergic airway inflammation
and could be a possible therapeutic target for arthritis and
asthma in human patients (76). Furthermore, many of the
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target genes were known to be involved in other lung diseases,
including High mobility group AT-hook 2 (Hmga2) (77),
Ubiquitin-conjugating enzyme E2C (Ube2c) (78), Adrenoceptor
beta 3 (Adrb3) (79), Coronin 1C (Coro1c) (80), Sp1 transcription
factor (Sp1) (81), Ras homolog family member B (Rhob) (82),
Serum/glucocorticoid regulated kinase 1 (Sgk1) (83), BTG anti-
proliferation factor 2 (Btg2) (84), Homeobox D8 (Hoxd8) (85),
Bone morphogenetic protein 4 (Bmp4) (86), Protein regulator of
cytokinesis 1(Prc1) (87), etc.

GO term enrichment analyses identified that the affected
target genes were mostly involved in the biological processes
including embryonic organ morphogenesis, regionalization,
epithelial tube morphogenesis, positive regulation of neuron
A

B

D

E

F

C

FIGURE 3 | RNA-seq analyses of small non-coding RNAs (sncRNAs) in placebo, nicotine-treated and nicotine plus RGZ-treated sperm samples. (A) The workflow
for small RNA-seq data analysis, including the major steps and bioinformatics tools used in the study. (B) Three-dimensional principal component analyses of the
small RNA-seq data from nicotine-treated, nicotine plus RGZ-treated, and placebo-treated sperm samples. (C) MA plots showing the differentially expressed
sncRNAs detected between nicotine-treated and placebo-treated sperm samples (left panel) and between nicotine plus RGZ-treated and placebo-treated sperm
samples (right panel). The Log2baseMean represent the Log2 mean value of DESeq2 normalized counts between nicotine-treated and placebo-treated sperm. Log2
fold change (Log2FC) was calculated by the Log2 sncRNA counts of nicotine-treated sperm/placebo-treated sperm. SncRNAs that pass a threshold of padj <=
0.05, log2FC > 0 and padj <= 0.05, log2FC < 0 in differential expression analysis were designated by red (up-regulated) and blue (down-regulated) in nicotine-
treated or nicotine plus RGZ-treated sperm relative to placebo-treated control sperm cells. (D) MA plots showing the number of significantly differentially expressed
sncRNAs (padj <= 0.05) between nicotine-treated and placebo-treated sperm samples. (E) qPCR validation of sncRNA expression levels in placebo and nicotine-treated
sperm. U6 was used as an internal control. Data are presented as mean ± SEM (n = 3). ***P < 0.001; **P < 0.01; *P < 0.05. (F) GO term enrichment analyses of potential
target genes of significantly dysregulated miRNAs in nicotine-treated sperm. Outputs (biological processes) are sorted and plotted against fold enrichment.
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differentiation, telencephalon development, protein localization
to the cell periphery, pattern specification process, axonogenesis,
regulation of membrane potential, and positive regulation of cell
projection organization (Figure 3F, Datasets S11).
DISCUSSION

Epidemiological studies have shown that grandma’s smoking
when pregnant with the mother increases the risk of asthma in
the grandchild independent of the mother’s smoking status,
suggesting a potential transgenerational effect of perinatal
smoking on the incidence of childhood asthma (88, 89).
However, considering many confounding factors, this notion
remains highly correlative. Given that it would take decades to
follow up on multiple generations on any transgenerational
effect, we and others have developed animal models to
demonstrate that childhood asthma induced by perinatal
exposure to nicotine in F0 dams can persist for at least three
generations in the absence of continuous perinatal exposure to
nicotine in F1-F3 (11, 12). Such intergenerational and
transgenerational transmission of the induced disease
phenotype must be mediated by the gametes (sperm and eggs)
given sexual reproduction. Indeed, our earlier data have shown
that both histone marks and DNA methylation (5mC) patterns
are altered in F1 sperm (10). Since the sperm DNA methylation
patterns are largely established during fetal testicular
development and further modified during spermatogenesis, the
DMRs in F1 male rat sperm must have arisen in pro-
spermatogonia and/or the subsequent spermatogenic cells
including spermatogonia, spermatocytes, or spermatids. Since
DNA methylation changes affect gene expression, it is possible
that the mRNAs that are produced in spermatogenic cells and
packed into the sperm nuclei might be altered as well. In
contrast, the vast majority of nuclear histones are replaced by
transition proteins and ultimately by protamine during the
elongation of round spermatids (20, 90). Consequently, only
trace amounts of histones (<1% in rodents and <5% in humans)
are retained in sperm (91). Therefore, altered histone levels and
chemical modifications must have occurred during late
spermiogenesis. Since both large and small RNAs are believed
to be packed into the condensing nuclei of spermatids upon
elongation during spermiogenesis, the altered histone profiles
may also indicate altered mRNA and small RNAs that are packed
into the nuclei of sperm. Indeed, our data clearly show that the
mRNA and small RNA profiles are indeed altered in the sperm of
F1 male rats born to dams with perinatal exposure to nicotine.

Sperm-borne mRNAs are delivered to the oocytes during
fertilization (92). It remains unclear whether these mRNAs are
functional and thus necessary for fertilization and early
embryonic development. Small RNAs have been detected in
sperm nuclei, and miRNAs and endo-siRNAs have been
shown to be essential for fertilization and early embryonic
development, most likely through functional as post-
transcriptional regulators (93, 94). Increasing lines of evidence
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also suggest that both sperm-borne large and small RNAs may
have a role in mediating epigenetic inheritance of acquired traits
(19). This notion is largely based on the observations that
injection of either total RNA or small RNAs isolated from
male mice with the specific acquired traits (e.g., metabolic
disorders induced by HFD, stress response conditioned to
specific odor, wound healing response conditioned to repeated
liver injury, etc.) into wildtype oocytes can produce offspring
displaying a similar phenotype. However, the exact molecular
actions of these sperm-borne RNAs remain elusive. In the
present study, we identified 29 differentially expressed mRNAs
in nicotine exposed F1 male rats compared to placebo control
male rats. These DEGs may represent the consequences of the
dysregulated epigenome, as reflected by numerous DMRs and
aberrant histone marks detected (11, 22), in spermatogenic cells
during spermatogenesis. An alternative function would be that
these sperm-borne mRNAs, once delivered into the cytoplasm of
the oocytes, can produce proteins that participate in early
embryonic development. Given that these F1 male rats all have
normal fertility, the changed levels of the proteins encoded by
these DEGs must be compatible with successful fertilization and
embryonic development. However, it remains unknown whether
these proteins can be involved in epigenetic regulations that can
lead to childhood asthma. Among the differentially expressed
small RNAs, miRNAs and piRNAs appear to be the dominant
small RNA species in the nicotine exposed F1 male rats. miRNAs
are known to function as a post-transcriptional regulator by
binding the 3’UTR of mRNAs to control mRNA stability and
translational efficiency (95). Sperm-borne piRNAs are largely
produced in spermatocytes and spermatids, and these piRNAs
are believed to control the timely degradation of mRNAs during
late spermiogenesis (96, 97). It remains unclear how miRNAs
and piRNAs function as carriers of epigenetic information in
sperm although both have been shown to be involved in the
transmission of acquired traits inter-or trans-generationally.
Several studies have shown that microinjection of sperm total
or small RNAs (total, miRNAs, tsRNAs) isolated from the male
mice with acquired traits can induce similar phenotypes in
offspring although the phenotypic penetrance varies (98–102).
It would be of great interest to see whether injection of the
dysregulated small RNAs in male F1 rats with perinatal exposure
to nicotine also transmits the asthma phenotype to the
subsequent progeny. Moreover, examination of the epigenome
of the F1 lung tissue in both nicotine-exposed and placebo
control males during fetal and postnatal development may
shed light on the effects of the dysregulated sperm small RNAs
in the future.

Rosiglitazone is a PPARg agonist that has shown a beneficial
effect in both mice and humans with asthma (103, 104). In
asthmatic mice and patients, PPARg activation appears to inhibit
airway inflammation and remodeling by downregulating
proinflammatory gene expression and inflammatory cell
functions (105). In our rat model of childhood asthma,
induced by perinatal nicotine exposure, RGZ administered in
conjunction with nicotine attenuates the development of asthma
(25, 26). More interestingly, the altered levels of 5mC and several
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histone modifications including H3 acetylation and H4
acetylation also get reversed in the lung and gonad of F1 rats
(11, 22). These data suggest that RGZ has an epigenetic effect on
both the target tissue (i.e., lung) and germ cells, which can largely
restore the gene networks required for normal airway functions.
Consistent with these previous data, our RNA-seq analyses of
total RNA expression profiles in the sperm of F1 male rats also
show that RGZ can attenuate the adverse effects of perinatal
exposure to nicotine on the sperm RNA profiles. The effect may
directly affect the expression of certain mRNAs and small RNAs.
Alternatively, the altered transcriptomes may result from RGZ’s
effect on DNA methylation and/or histone modifications.
Nevertheless, the fact that a PPARg agonist attenuates the
effect of nicotine on sperm large and small RNA transcriptome
further supports the notion that PPARg agonists is a promising
class of drugs for treating childhood asthma.

In summary, we report here that perinatal exposure to
nicotine leads to alterations in the profiles of sperm-borne
RNAs, including mRNAs and small RNAs, and that
rosiglitazone can attenuate the effect of nicotine and reverse
the sperm-borne RNA profiles of F1 male rats to close to placebo
control levels.
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Since their initial description by Enrico Sertoli in 1865, Sertoli cells have continued to
enchant testis biologists. Testis size and germ cell carrying capacity are intimately tied to
Sertoli cell number and function. One critical Sertoli cell function is signaling from Sertoli
cells to germ cells as part of regulation of the spermatogenic cycle. Sertoli cell signals can
be endocrine or paracrine in nature. Here we review recent advances in understanding the
interplay of Sertoli cell endocrine and paracrine signals that regulate germ cell state.
Although these findings have long-term implications for treating male infertility, recent
breakthroughs in Sertoli cell transplantation have more immediate implications. We
summarize the surge of advances in Sertoli cell ablation and transplantation, both of
which are wedded to a growing understanding of the unique Sertoli cell niche in the
transitional zone of the testis.

Keywords: sertoli cell (SC) niche, transitional zone (TZ), Sertoli cell ablation, Sertoli cell transplantation,
Spermatogenesis, FSH signaling, AR signaling, Exosome extracellular vesicle (EV)
INTRODUCTION

Although germ cells are the stars of spermatogenesis, Sertoli cells are the sustaining lead, without
which, spermatogenesis would cease to occur. Sertoli cells provide the supportive framework within
which germ cells will safely undergo rounds of mitosis and meiosis (Figure 1). This structure which
includes tight junctions between adjacent Sertoli cells, divides the seminiferous epithelium into the
basal and adluminal compartments, serving a protective role as the testicular region within the
seminiferous tubules that is immuno-privileged (1–5). Sertoli cells act as the mediator between germ
cells and endocrine signaling, from controlling spermatogenesis by hormones (follicle stimulating
hormone [FSH] and testosterone [T]), originating from outside of the seminiferous tubule (6–8).
Sertoli cells also have direct impacts on germ cell development through paracrine signaling (9–11).
These roles are all key elements required to orchestrate the symphonic cyclicity of steady-state
spermatogenesis within the adult testis. When aberrations in Sertoli cell function occur, this
intricate exchange breaks down and spermatogenic failure may occur, ultimately challenging the
fertility of the male. Recent research into the niche population of Sertoli cells at the transition zone
between the rete testis and seminiferous tubules, as well as studies of Sertoli cell transplantation, are
n.org May 2022 | Volume 13 | Article 897196167
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FIGURE 1 | Architecture of Sertoli cells in the adult mouse seminiferous tubule. The bodies of Sertoli cell cytoplasm (green) can be seen engulfing germ cells (red)
from basal lamina to lumen while Sertoli cell nuclei (blue) are located basally. Top row: zoomed inset from grey boxed region in Middle Row: seminiferous tubule
cross section at stage V-VI. Bottom Row: Longitudinal sections showing multiple stages. All scale bars are 50µm.
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bringing new insights to the field. Both branches of investigation
offer the promise of a deeper understanding into how Sertoli cells
come to reside properly in the testis, and methods for getting
functional Sertoli cells in to replace Sertoli cells that are deficient.

Aside from the germ cell based histological staging of
spermatogenesis defined by consistent cell associations present
in cross-sections of the seminiferous tubule (Figure 2), generally
the stages of the cycle can also be defined by unique metabolic
and molecular Sertoli cell identities (22–24). Specifically in
regards to the androgen signaling pathway, Sertoli cells display
stage specific temporal peaks of AR expression in rodents (stages
VI-VIII) (25–27) (Figure 2A), and humans (stage III) (28)
(Figure 2B). For germ cells, as one progresses concentrically
towards the seminiferous tubule lumen, this AR peak period
coincides with: undifferentiated type A spermatogonia meiotic
entry, elongating spermatid adhesion, and spermiation (29–32).

ENDOCRINE AND PARACRINE SIGNALS
Larose et al. 2020 (33) took a more granular look at the direct
impact of AR presence in Sertoli cells on germ cell meiotic
progression. Using SCARKO mutant mice (Sertoli cell androgen
receptor knockout) they defined a Sertoli cell-AR androgen
independent period of germ cell development from meiotic
initiation to early prophase. Germ cells in these mice that did
not undergo apoptosis (and many germ cells did) progressed up
to what, histologically, appeared to be relatively normal
pachytene spermatocytes. But upon deeper investigation using
scRNA-seq, the most advanced germ cells were transcriptionally
defined and resembled leptotene or zygotene spermatocytes (33).
This discrepancy between transcriptomic and histological cell-
identity was also reported in Pdrm9mutant germ cells (34). This
finding calls into question the many definitive studies using
models of androgen deficiency or receptor deletion causing a
defined maturation arrest that predates the use of scRNA-seq
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technology and relied solely on classical histological assessment.
Revisiting these classic maturation arrest studies with modern
bioinformatics tools has the potential to elucidate other
molecular details similar to those reported by 33.

Transcriptomic analysis on SCARKO mutant mice also
identified a set of genes (including: Fabp9, Gstm5, Ybx3, Meig1,
Spink2, Rsph1, Aldh1a1, Igfbps, Piwil1, Mael) regulated by AR
signaling in Sertoli cells. Collectively this gene set seems to
license spermatocytes for the first meiotic division, as well as
for spermiogenic competency (33). Another gene, Rhox5,
initially transcribed in Sertoli cells, is an androgen-inducible
transcription factor (35–39). RHOX5 regulates Sertoli cell gene
expression controlling cell surface and protein secretion in
relation to germ cells (7, 40–43). Rhox5 has two promoters,
distal and proximal. Previously, these promoters were
understood to drive different tissue-specific expression, with
the exception that both promoters are active in adult Sertoli
cells Bhardwaj et al. 2022 defined a postnatal temporality to
Rhox5 promoter activity (44). The proximal promoter is
activated shortly after birth, while the distal promoter is
dormant until late in the postnatal period also identified novel
androgen-responsiveness for the Rhox5 distal promoter. The
group then established that the proximal promoter can act as
an enhancer for the distal promoter and further, that RHOX5
up-regulates its own transcription via the distal promoter (44).

Rhox5 expression in Sertoli cells is dependent on FSH
signaling (36). Unlike Ar, in adult mouse Sertoli cells Fshr has
a consistent expression level throughout the stages of
spermatogenesis (23) and knockout experiments have shown
there is a degree of added redundancy in the FSH pathway when
working synergistically with the AR pathway (45, 46). Reported
activity of both proximal and distal Rhox5 promoters into
adulthood specifically in Sertoli cells at Stages II-V (outside AR
peak) and VI-VIII (within AR peak) (44). Potentially, Rhox5 is
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yet another recipient of synergistic T and FSH action. This would
add another layer to the evolutionary pressure postulated by 44.
According to the authors, this pressure drove retention of the
Rhox5 distal and proximal promoters. This evolutionary
pressure was probably directed at the initial temporally-
staggered promoter expression of Rhox5 postnatally.
During the first wave of spermatogenesis, Ar and Fshr are
known to have dynamic expression patterns in mouse Sertoli
cells (24, 44).

T and FSH synergism is not limited to Sertoli cell
transcription factors. A newer player in the realm of
intercellular signaling is the extracellular vesicle, which can
hold and transport an array of different molecules including:
growth factors, cytokines, mRNAs, bioactive lipids, and
microRNAs (47–49). A recent report by Mancuso et al 2015
utilized a porcine Sertoli cell culture system to define the
extracellular vesicle components with FSH-alone and
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synergistic T+FSH stimulation (50). Proteomic analysis showed
FSH-alone increased proteins generally linked to modulating the
hypothalamic-pituitary axis regulating testosterone biosynthesis,
the blood-testis-barrier, and spermiation (INHA, INHB, PLKA,
HPT, SERA and AT1A1). While stimulation (50) with T+FSH
increased proteins generally linked to blood-testis-barrier
adherens junctions, and gating endocrine and paracrine
regulation of spermatogenesis (INHA, INHB, TPA, EGFL8,
EF1G and SERA). These extracellular vesicles also contained
transcripts (Amh, Inhb, Abp, Fshr), which the authors postulate
could function in loading germ cells, and other testicular cells,
with mRNA that will later be translated (50).

Extracellular vesicles are generally accepted to belong to 3
categories: exosomes, microvesicles, and apoptotic bodies (51,
52). Exosomes, were recently the focus of exciting findings in
the field. Aside from transporting mRNA, extracellular vesicles,
specifically exosomes, can also transport microRNA (53).
A

B

FIGURE 2 | Seminiferous epithelial stages of mouse and human spermatogenesis as classic spermatogenesis cycle staging charts using germ cell associations and
morphology. Spermatogenesis is the process of sperm development and involves phases of mitosis, meiosis, and spermiogenesis (morphological cell changes).
(A) Spermatogenesis in mice is a cycle that takes ~8.6 days (12–14). The time necessary for a germ cell to go from type A spermatogonia to spermatozoa (the
complete process or duration of spermatogenesis) is about 35 days (12, 13, 15). In mice, spermatogenesis is divided into 12 stages (I-XII) and 16 spermatid
developmental steps. A, In, and B are type A, intermediate, and type B spermatogonia, respectively. Pl, L, Z, P, D, M, and 2º are preleptotene, leptotene, zygotene,
pachytene, diplotene, meiotic, and secondary spermatocytes, respectively. Steps of spermatid development are numbered 1-16. Sections were stained with Periodic
Acid Schiff’s regent-hematoxylin (PAS-H), which is a conventional staining for staging of mouse testis sections. Scale is 20mm. (B). Spermatogenesis in men is a 16
day cycle with a complete duration that was classically determined to be 64 days but modern methods show to be closer to 74 days (16–21). In humans,
spermatogenesis is divided into 6 stages (I-VI) and 6 spermatid developmental steps. Adark, Apale and B are type A dark, type A pale and type B spermatogonia,
respectively. Pl, L, Z, P, D, M, A and 2º are preleptotene, leptotene, zygotene, pachytene, diplotene, meiotic metaphase, meiotic anaphase and secondary
spermatocytes, respectively. Steps of spermatid development are labeled Sa, Sb1, Sb2, Sc, Sd1 and Sd2. Sections were stained with Periodic Acid Schiff’s regent-
hematoxylin (PAS-H), which is a conventional staining for human testis histology assessment. Scale is 20mm.
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Paracrine signaling from Sertoli to germ cells by exosomes
containing microRNA would putatively be to silence genes.
Indeed, a recent report by Li et al. 2021, revealed that Sertoli
exosomes contain the microRNA miR-486-5p (54). The
authors used a culture system of adult Sertoli cells and P6
germ cells enriched for spermatogonial stem cells. Using this
system demonstrated that Sertoli cell exosomes with miR-486-
5p down-regulated spermatogonial stem cell expression of Pten
by targeting of the Pten-3’UTR by miR-486-5p. The authors
further identified that both Stra8. and Sycp3 were indirectly up-
regulated in spermatogonial stem cells by the decrease in
repressive PTEN. Ultimately this exosome exchange would
seem to be part of the differentiation signal from Sertoli cells
to spermatogonia (54).

The observations of Li et al. 2021 about Sertoli cell miR-486-
5p containing exosomes adds to the evolving school of thought
on how undifferentiated spermatogonia enter meiosis (54).
Spermatogonial differentiation and meiotic entry is established
to be highly dependent on retinoic acid (RA) signaling (55, 56).
The commonly proposed paracrine source of germ cell
stimulating RA is Sertoli cells and spermatocytes (32, 57–60).
Much like AR, RA levels in the seminiferous epithelium are also
cyclic and peak at stage VIII, the same stage at which
undifferentiated spermatogonia commit to meiosis (61).
Timing for meiotic entry is critically important, and inherent
in understanding the control of this timing is the need to define
how spermatogonia control RA-responsiveness. In the fetal testis
CYP26B1, which catabolizes RA, is a key regulator in blocking
fetal male germ cell meiotic entry (62–65). Using the first wave of
spermatogenesis as a synchronized model of spermatogenesis,
Velte et al. 2019 (66) showed that CYP26 also blocks meiotic
entry at postnatal day 6 (P6) in undifferentiated spermatogonia
that are poised to respond to RA. Spermatogonial poising for RA
responsiveness is generally thought to be accomplished through
RARG (RA receptor gamma) expression (66). Indeed, this model
was eloquently validated by in Suzuki et al. (67), who defined two
sub-populations of undifferentiated spermatogonia in the adult
mouse testis. Early-undifferentiated spermatogonia did not
express RARG, while late-undifferentiated spermatogonia did
express RARG (67). However deeper analysis in a follow-up
study further sub-divided late-undifferentiated spermatogonia
into a group expressing Dppa3 (Dppa3+) and RARG that quickly
transition to a differentiating spermatogonia (KIT+) state upon
RA stimulation. While the other group of late-undifferentiated
spermatogonia express RARG but not Dppa3 (Dppa3-) and have
delayed differentiation (68). Whether or not Dppa3 transcript
presence is the product of exosome-mediated microRNA
silencing is still an open question.
SERTOLI CELL TRANSPLANTATION
AND TRANSITIONAL ZONE SERTOLI
CELL NICHE

Clinically, men can suffer from an array of Sertoli cell-origin
infertility. In some cases the ligand is the issue: gonadotropin-
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deficient men, mutations (69) and androgen dysregulation (70).
In other cases the receptor is the issue, such as complete or
partial androgen insensitivity syndromes resulting from
polymorphisms or deletions of the androgen receptor (71, 72).
Extracellular vesicles may offer the possibility of a cell-free
treatment for some forms of infertility due to specific types of
Sertoli cell deficiencies. Theoretically extracellular vesicles could
be injected clinically through the rete testis using the ultrasound-
guided injection technique (73–76). Although these types of
therapeutics are still years away, extracellular vesicles could
become clinically relevant sooner due to their diagnostic
potential. Two recent studies demonstrated the value of
seminal exosome analysis as markers of Sertoli cell damage by
varicocele (77), and predictive of testicular sperm presence in
NOA men (78).

Another exciting technology that has seen a surge of progress
lately is Sertoli cell transplantation. Ralph Brinster pioneered
germ cell transplantation over a quarter century ago, his
technique was later applied to transplant the somatic cells of
the seminiferous epithelium, Sertoli cells (79). Some of the
earliest reporting of Sertoli cell transplantation as a method for
repairing the spermatogonial stem cell niche goes back to the
early 2000’s (80, 81). A challenge to restoring Sertoli cell function
through transplantation of functional Sertoli cells is what to do
about clearing out the dysfunctional Sertoli cells from the
seminiferous epithelium to make space. Previously transgenic
lines and cadmium has been used for Sertoli cell ablation (81–
84). Although effective, from a clinical perspective these methods
are not feasible and pose adverse risks, respectively.

Yokonishi et al. 2020 (85) recently identified a safe alternative
to cadmium, benzalkonium chloride (BC), which is an FDA-
approved non-toxic agent present in over-the-counter eye drops
and hair conditioner (86). The authors show that admission of
0.02% benzalkonium chloride through the mouse rete testis is
sufficient to ablate Sertoli cells. Further this group defines the
temporal windows for host Sertoli cell ablation, donor Sertoli cell
transplantation, and donor germ cell transplantation. The
window for host germ cell survival is also detailed, the method
is tested with cryopreserved testicular cells, and a culture version
of the method demonstrates benzalkonium chloride utility in
large mammals (dog) (85). In a follow-up study the same group
shower that fetal mouse gonadal cells transplanted into an
ablated adult mouse testis are competent to colonize, mature,
and support host germ cell spermatogenesis (87). An added level
of temporality in transplanted donor Sertoli cell colonization
after ablation, was recently defined in another robust ablation
study. Using a transgenic system of Sertoli cell ablation, Imura-
Kishi et al. 2021 showed that donor Sertoli cells first colonize the
transitional zone where they resume repression of
spermatogenesis. After reaching an equilibrium in the
transitional zone Sertoli cells then proliferate further,
repopulating the host seminiferous epithelium where the donor
Sertoli cells will support host spermatogenesis (88).

The transitional zone of the testis goes by many names
(Sertoli valve, transitional region, tubulis rectus, intermediate
region, terminal segment) expertly reviewed in (89). Foundation
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papers first describing this area between the rete testis and
spermatogenic seminiferous epithelium date back to the 60’s
(90–97). Sertoli cells in the transitional zone are morphologically
distinct having long string-like cell bodies that extend distally
into the rete testis, structurally giving the zone a valve
appearance histologically (98). At least a sub-population of
these transitional zone Sertoli cells has been documented by
multiple labs to be proliferatively competent (99–103).
Specifically, because some transitional zone Sertoli cells do not
express the maturation markers p27, GATA4 and AR (101). AR
is not just a marker for Sertoli cell maturation and proliferative
cessation (104, 105). Loss of AR has been shown to inhibit Sertoli
cell maturation (106). In men and rodents, germ cells that reside
in this region are exclusively spermatogonia that seem to be
predominantly undifferentiating spermatogonia (88, 92, 99, 107).
Collectively the transitional zone represents a unique Sertoli-
germ cell niche within the testis.

During their ablation experiments, Imura-Kishi et al. 2021,
identified transitional zone Sertoli cell Cyp26a1 expression that is
at least partially responsible for blocking RA signaling to the
spermatogonia in the transitional zone. Due to the proximity to
the rete testis, the authors also showed retrograde rete derived
FGF signaling may also competitively inhibit RA signal in the
transitional zone (88). A separate recent report defined two sub-
populations of transitional zone Sertoli cells that were KRT8+,
DMRT1- or KRT8+,DMRT1+ (108). DMRT1 is essential in
differentiation of Sertoli cells into a non-proliferative state
(109). These studies elucidated the molecular uniqueness of the
transitional zone niche, but there is still much we do not
understand about cell identity and function in the transitional
zone. Given the recent reports on exosomes, one cannot help but
wonder if there is also a unique population of transitional zone
Sertoli cell extracellular vesicles that are part of maintaining
this niche.

DISCUSSION
Ablation and transplantation are done via injection through the
rete testis (110). Even when done by the most skilled pair of
hands, this represents a traumatic event to the surrounding
tissue. The plasticity of the Sertoli cell population in the
transitional zone and the robustness of this epithelium is a
fortunate coincidence for this method, but also represents an
intriguing source for discoveries in reversing Sertoli cell
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dysfunction and repopulating a Sertoli cell deficient testis.
Sertoli cells in human testes partially resume proliferation after
gonadotropin suppression with coincident reduction of AR
(111). Continued research into maintenance and control of
proliferative transitional zone Sertoli cells in conjunction with
Sertoli cell transplantation has the potential to unlock new
therapeutics for treatment of Sertoli cell based male infertility,
and reversing the reproductive harm done by gonadotoxic
cancer treatment.
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and final layouts were done by VAR in FIJI (version 2.3.0/1.53f)
(112) and Adobe Photoshop (version 23.1.0). Support provided
by the National Institute of General Medical Sciences
(F32GM129956 to VAR); the Frederick J. and Theresa Dow
Wallace Fund of the New York Community Trust (DJL); the
National Institute of Diabete and Digestive and Kidney Diseases
(1R01DK078121 to DJL); the Small Business Innovation
Research fund (1R43HD108826-01 to Inherent Bio and DJL);
the Eunice Kennedy Shriver National Institute of Child Health
and Human Development (1P50HD106793-01 to The
Population Council Inc and DJL); and grants 1P50HD100549-
01 (L. Levin), and 5P01HD087157 (M.M. Matzuk) from the
Eunice Kennedy Shriver National Institute of Child Health and
Human Development of the National Institutes of Health (DJL).
REFERENCES

1. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and
Histopathological Evaluation of the Testis. St. Louis, MO: Cache River Press
(1990).

2. Russell LD, Griswold MD. The Sertoli Cell. Clearwater, FL: Cache River Press
(1993).

3. Russell LD, RenHP, SinhaHikim I, SchulzeW, SinhaHikimAP. AComparative
Study in Twelve Mammalian Species of Volume Densities, Volumes, and
Numerical Densities of Selected Testis Components, Emphasizing Those
Related to the Sertoli Cell. Am J Anat (1990) 188:21–30. doi: 10.1002/
aja.1001880104
4. Skinner MK, Tung PS, Fritz IB. Cooperativity Between Sertoli Cells and
Testicular Peritubular Cells in the Production and Deposition of
Extracellular Matrix Components. J Cell Biol (1985) 100:1941–7. doi:
10.1083/jcb.100.6.1941

5. Tung PS, Fritz IB. Morphogenetic Restructuring and Formation of Basement
Membranes by Sertoli Cells and Testis Peritubular Cells in Co-Culture:
Inhibition of the Morphogenetic Cascade by Cyclic AMP Derivatives and by
Blocking Direct Cell Contact. Dev Biol (1987) 120:139–53. doi: 10.1016/0012-
1606(87)90112-6

6. Smith LB, Walker WH. Hormone Signaling in the Testis. In: TM Plant and AJ
Zeleznik, editors. Knobil and Neill’s Physiology of Reproduction, 4th ed.
Cambridge, MA: Elsevier Science (2014). p. 637–90.
May 2022 | Volume 13 | Article 897196

https://doi.org/10.1002/aja.1001880104
https://doi.org/10.1002/aja.1001880104
https://doi.org/10.1083/jcb.100.6.1941
https://doi.org/10.1016/0012-1606(87)90112-6
https://doi.org/10.1016/0012-1606(87)90112-6
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ruthig and Lamb Sertoli Cell Niche and Transplantation
7. Smith LB, Walker WH. The Regulation of Spermatogenesis by Androgens.
Semin Cell Dev Biol (2014) 30:2–13. doi: 10.1016/j.semcdb.2014.02.012

8. Walker WH. Androgen Actions in the Testis and the Regulation of
Spermatogenesis. Adv Exp Med Biol (2021) 1288:175–203. doi: 10.1007/978-3-
030-77779-1_9

9. Miyaso H, Ogawa Y, Itoh M. Microenvironment for Spermatogenesis and
Sperm Maturation. Histochem Cell Biol (2022) 157:273–85. doi: 10.1007/
s00418-021-02071-z

10. Neto FTL, Flannigan R, Goldstein M. Regulation of Human
Spermatogenesis. Adv Exp Med Biol (2021) 1288:255–86. doi: 10.1007/
978-3-030-77779-1_13

11. Ni FD, Hao SL, Yang WX. Multiple Signaling Pathways in Sertoli Cells:
Recent Findings in Spermatogenesis. Cell Death Dis (2019) 10:541. doi:
10.1038/s41419-019-1782-z

12. Oakberg EF. A Description of Spermiogenesis in the Mouse and its Use in
Analysis of the Cycle of the Seminiferous Epithelium and Germ Cell
Renewal. Am J Anat (1956) 99:391–413. doi: 10.1002/aja.1000990303

13. Oakberg EF. Duration of Spermatogenesis in the Mouse and Timing of
Stages of the Cycle of the Seminiferous Epithelium. Am J Anat (1956)
99:507–16. doi: 10.1002/aja.1000990307

14. Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, et al.
The First Round of Mouse Spermatogenesis is a Distinctive Program That
Lacks the Self-Renewing Spermatogonia Stage. Development (2006)
133:1495–505. doi: 10.1242/dev.02316

15. Ray D, Pitts PB, Hogarth CA, Whitmore LS, Griswold MD, Ye P. Computer
Simulations of the Mouse Spermatogenic Cycle. Biol Open (2015) 4:1–12.
doi: 10.1242/bio.20149068

16. Clermont Y. Renewal of Spermatogonia in Man. Am J Anat (1966) 118:509–
24. doi: 10.1002/aja.1001180211

17. Clermont Y. Spermatogenesis inMan. A study of the spermatogonial population.
Fertil Steril (1966) 17:705–21. doi: 10.1016/S0015-0282(16)36120-9

18. Ehmcke J, Schlatt S. A Revised Model for Spermatogonial Expansion in Man:
Lessons From non-Human Primates. Reproduction (2006) 132:673–80. doi:
10.1530/rep.1.01081

19. Heller CG, Clermont Y. Spermatogenesis in Man: An Estimate of its
Duration. Science (1963) 140:184–6. doi: 10.1126/science.140.3563.184

20. Hess RA, Renato de Franca L. Spermatogenesis and Cycle of the
Seminiferous Epithelium. Adv Exp Med Biol (2008) 636:1–15. doi:
10.1007/978-0-387-09597-4_1

21. Muciaccia B, Boitani C, Berloco BP, Nudo F, Spadetta G, Stefanini M, et al.
Novel Stage Classification of Human Spermatogenesis Based on Acrosome
Development. Biol Reprod (2013) 89:60. doi: 10.1095/biolreprod.113.111682

22. Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, et al. Single-Cell RNA-Seq
Uncovers Dynamic Processes and Critical Regulators in Mouse
Spermatogenesis. Cell Res (2018) 28:879–96. doi: 10.1038/s41422-018-
0074-y

23. Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, et al. A
Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell
RNA-Seq. Dev Cell (2018) 46:651–667.e610. doi: 10.1016/j.devcel.2018.07.025

24. Zimmermann C, Stevant I, Borel C, Conne B, Pitetti JL, Calvel P, et al.
Research Resource: The Dynamic Transcriptional Profile of Sertoli Cells
During the Progression of Spermatogenesis. Mol Endocrinol (2015) 29:627–
42. doi: 10.1210/me.2014-1356

25. Bremner WJ, Millar MR, Sharpe RM, Saunders PT. Immunohistochemical
Localization of Androgen Receptors in the Rat Testis: Evidence for Stage-
Dependent Expression and Regulation by Androgens. Endocrinology (1994)
135:1227–34. doi: 10.1210/endo.135.3.8070367

26. Shan LX, Zhu LJ, Bardin CW, Hardy MP. Quantitative Analysis of Androgen
Receptor Messenger Ribonucleic Acid in Developing Leydig Cells and Sertoli
Cells by in Situ Hybridization. Endocrinology (1995) 136:3856–62. doi:
10.1210/endo.136.9.7649092

27. Vornberger W, Prins G, Musto NA, Suarez-Quian CA. Androgen Receptor
Distribution in Rat Testis: New Implications for Androgen Regulation of
Spermatogenesis. Endocrinology (1994) 134:2307–16. doi: 10.1210/
endo.134.5.8156934

28. Suarez-Quian CA, Martinez-Garcia F, Nistal M, Regadera J. Androgen
Receptor Distribution in Adult Human Testis. J Clin Endocrinol Metab
(1999) 84:350–8. doi: 10.1210/jc.84.1.350
Frontiers in Endocrinology | www.frontiersin.org 672
29. Chang C, Chen YT, Yeh SD, Xu Q,Wang RS, Guillou F, et al. Infertility With
Defective Spermatogenesis and Hypotestosteronemia in Male Mice Lacking
the Androgen Receptor in Sertoli Cells. Proc Natl Acad Sci USA (2004)
101:6876–81. doi: 10.1073/pnas.0307306101

30. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos
A, et al. A Sertoli Cell-Selective Knockout of the Androgen Receptor Causes
Spermatogenic Arrest in Meiosis. Proc Natl Acad Sci USA (2004) 101:1327–
32. doi: 10.1073/pnas.0308114100

31. Holdcraft RW, Braun RE. Androgen Receptor Function is Required in
Sertoli Cells for the Terminal Differentiation of Haploid Spermatids.
Development (2004) 131:459–67. doi: 10.1242/dev.00957

32. Raverdeau M, Gely-Pernot A, Feret B, Dennefeld C, Benoit G, Davidson I,
et al. Retinoic Acid Induces Sertoli Cell Paracrine Signals for Spermatogonia
Differentiation But Cell Autonomously Drives Spermatocyte Meiosis. Proc
Natl Acad Sci USA (2012) 109:16582–7. doi: 10.1073/pnas.1214936109

33. Larose H, Kent T, Ma Q, Shami AN, Harerimana N, Li JZ, et al. Regulation
of Meiotic Progression by Sertoli-Cell Androgen Signaling. Mol Biol Cell
(2020) 31:2841–62. doi: 10.1091/mbc.E20-05-0334

34. Fine AD, Ball RL, Fujiwara Y, Handel MA, Carter GW. Uncoupling of
Transcriptomic and Cytological Differentiation in Mouse Spermatocytes
With Impaired Meiosis. Mol Biol Cell (2019) 30:717–28. doi: 10.1091/
mbc.E18-10-0681

35. De Gendt K, Verhoeven G, Amieux PS, Wilkinson MF. Genome-Wide
Identification of AR-Regulated Genes Translated in Sertoli Cells In Vivo
Using the RiboTag Approach. Mol Endocrinol (2014) 28:575–91. doi:
10.1210/me.2013-1391

36. Lindsey JS, Wilkinson MF. Pem: A Testosterone- and LH-Regulated
Homeobox Gene Expressed in Mouse Sertoli Cells and Epididymis. Dev
Biol (1996) 179:471–84. doi: 10.1006/dbio.1996.0276

37. Pitman JL, Lin TP, Kleeman JE, Erickson GF, MacLeod CL. Normal
Reproductive and Macrophage Function in Pem Homeobox Gene-
Deficient Mice. Dev Biol (1998) 202:196–214. doi: 10.1006/dbio.1998.8978

38. Sutton KA, Maiti S, Tribley WA, Lindsey JS, Meistrich ML, Bucana CD, et al.
Androgen Regulation of the Pem Homeodomain Gene in Mice and Rat
Sertoli and Epididymal Cells. J Androl (1998) 19:21–30. doi: 10.1002/j.1939-
4640.1998.tb02466.x

39. Verhoeven G, Willems A, Denolet E, Swinnen JV, De Gendt K. Androgens
and Spermatogenesis: Lessons From Transgenic Mouse Models. Philos Trans
R Soc Lond B Biol Sci (2010) 365:1537–56. doi: 10.1098/rstb.2009.0117

40. Hu Z, Dandekar D, O’Shaughnessy PJ, De Gendt K, Verhoeven G,
Wilkinson MF. Androgen-Induced Rhox Homeobox Genes Modulate the
Expression of AR-Regulated Genes. Mol Endocrinol (2010) 24:60–75. doi:
10.1210/me.2009-0303

41. Hu Z, MacLean JA, Bhardwaj A, Wilkinson MF. Regulation and Function of
the Rhox5 Homeobox Gene. Ann New York Acad Sci (2007) 1120:72–83. doi:
10.1196/annals.1411.011

42. MacLean JA2nd, Hu Z, Welborn JP, Song HW, Rao MK, Wayne CM, et al.
The RHOX Homeodomain Proteins Regulate the Expression of Insulin and
Other Metabolic Regulators in the Testis. J Biol Chem (2013) 288:34809–25.
doi: 10.1074/jbc.M113.486340

43. MacLean JA2nd, Wilkinson MF. The Rhox Genes. Reproduction (2010)
140:195–213. doi: 10.1530/REP-10-0100

44. Bhardwaj A, Sohni A, Lou CH, De Gendt K, Zhang F, Kim E, et al. Concordant
Androgen-Regulated Expression of Divergent Rhox5 Promoters in Sertoli Cells.
Endocrinology (2022) 163:1–17. doi: 10.1210/endocr/bqab237

45. Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K,
et al. Spermatogenesis and Sertoli Cell Activity in Mice Lacking Sertoli Cell
Receptors for Follicle-Stimulating Hormone and Androgen. Endocrinology
(2008) 149:3279–85. doi: 10.1210/en.2008-0086

46. Soffientini U, Rebourcet D, Abel MH, Lee S, Hamilton G, Fowler PA, et al.
Identification of Sertoli Cell-Specific Transcripts in the Mouse Testis and the
Role of FSH and Androgen in the Control of Sertoli Cell Activity. BMC
Genomics (2017) 18:972. doi: 10.1186/s12864-017-4357-3

47. Hoy AM, Buck AH. Extracellular Small RNAs: What, Where, Why? Biochem
Soc Trans (2012) 40:886–90. doi: 10.1042/BST20120019

48. Lo Cicero A, Stahl PD, Raposo G. Extracellular Vesicles Shuffling
Intercellular Messages: For Good or for Bad. Curr Opin Cell Biol (2015)
35:69–77. doi: 10.1016/j.ceb.2015.04.013
May 2022 | Volume 13 | Article 897196

https://doi.org/10.1016/j.semcdb.2014.02.012
https://doi.org/10.1007/978-3-030-77779-1_9
https://doi.org/10.1007/978-3-030-77779-1_9
https://doi.org/10.1007/s00418-021-02071-z
https://doi.org/10.1007/s00418-021-02071-z
https://doi.org/10.1007/978-3-030-77779-1_13
https://doi.org/10.1007/978-3-030-77779-1_13
https://doi.org/10.1038/s41419-019-1782-z
https://doi.org/10.1002/aja.1000990303
https://doi.org/10.1002/aja.1000990307
https://doi.org/10.1242/dev.02316
https://doi.org/10.1242/bio.20149068
https://doi.org/10.1002/aja.1001180211
https://doi.org/10.1016/S0015-0282(16)36120-9
https://doi.org/10.1530/rep.1.01081
https://doi.org/10.1126/science.140.3563.184
https://doi.org/10.1007/978-0-387-09597-4_1
https://doi.org/10.1095/biolreprod.113.111682
https://doi.org/10.1038/s41422-018-0074-y
https://doi.org/10.1038/s41422-018-0074-y
https://doi.org/10.1016/j.devcel.2018.07.025
https://doi.org/10.1210/me.2014-1356
https://doi.org/10.1210/endo.135.3.8070367
https://doi.org/10.1210/endo.136.9.7649092
https://doi.org/10.1210/endo.134.5.8156934
https://doi.org/10.1210/endo.134.5.8156934
https://doi.org/10.1210/jc.84.1.350
https://doi.org/10.1073/pnas.0307306101
https://doi.org/10.1073/pnas.0308114100
https://doi.org/10.1242/dev.00957
https://doi.org/10.1073/pnas.1214936109
https://doi.org/10.1091/mbc.E20-05-0334
https://doi.org/10.1091/mbc.E18-10-0681
https://doi.org/10.1091/mbc.E18-10-0681
https://doi.org/10.1210/me.2013-1391
https://doi.org/10.1006/dbio.1996.0276
https://doi.org/10.1006/dbio.1998.8978
https://doi.org/10.1002/j.1939-4640.1998.tb02466.x
https://doi.org/10.1002/j.1939-4640.1998.tb02466.x
https://doi.org/10.1098/rstb.2009.0117
https://doi.org/10.1210/me.2009-0303
https://doi.org/10.1196/annals.1411.011
https://doi.org/10.1074/jbc.M113.486340
https://doi.org/10.1530/REP-10-0100
https://doi.org/10.1210/endocr/bqab237
https://doi.org/10.1210/en.2008-0086
https://doi.org/10.1186/s12864-017-4357-3
https://doi.org/10.1042/BST20120019
https://doi.org/10.1016/j.ceb.2015.04.013
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ruthig and Lamb Sertoli Cell Niche and Transplantation
49. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al.
Biological Properties of Extracellular Vesicles and Their Physiological
Functions. J Extracell Vesicles (2015) 4:27066. doi: 10.3402/jev.v4.27066

50. Mancuso F, Calvitti M, Milardi D, Grande G, Falabella G, Arato I, et al.
Testosterone and FSH Modulate Sertoli Cell Extracellular Secretion:
Proteomic Analysis. Mol Cell Endocrinol (2018) 476:1–7. doi: 10.1016/
j.mce.2018.04.001

51. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B,
et al. Proteomic Comparison Defines Novel Markers to Characterize
Heterogeneous Populations of Extracellular Vesicle Subtypes. Proc Natl
Acad Sci USA (2016) 113:E968–977. doi: 10.1073/pnas.1521230113

52. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization
of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle
Research. J Extracell Vesicles (2013) 2:1–25. doi: 10.3402/jev.v2i0.20360

53. Tkach M, Thery C. Communication by Extracellular Vesicles: Where We
Are and Where We Need to Go. Cell (2016) 164:1226–32. doi: 10.1016/
j.cell.2016.01.043

54. Li Q, Li H, Liang J, Mei J, Cao Z, Zhang L, et al. Sertoli Cell-Derived
Exosomal MicroRNA-486-5p Regulates Differentiation of Spermatogonial
Stem Cell Through PTEN in Mice. J Cell Mol Med (2021) 25:3950–62. doi:
10.1111/jcmm.16347

55. Endo T, Mikedis MM, Nicholls PK, Page DC, de Rooij DG. Retinoic Acid
and Germ Cell Development in the Ovary and Testis. Biomolecules (2019)
9:1–20. doi: 10.3390/biom9120775

56. Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC.
Periodic Retinoic Acid-STRA8 Signaling Intersects With Periodic Germ-Cell
Competencies to Regulate Spermatogenesis. Proc Natl Acad Sci USA (2015)
112:E2347–2356. doi: 10.1073/pnas.1505683112

57. Griswold MD. Spermatogenesis: The Commitment to Meiosis. Physiol Rev
(2016) 96:1–17. doi: 10.1152/physrev.00013.2015

58. Kent T, Arnold SL, Fasnacht R, Rowsey R, Mitchell D, Hogarth CA, et al.
ALDH Enzyme Expression Is Independent of the Spermatogenic Cycle, and
Their Inhibition Causes Misregulation of Murine Spermatogenic Processes.
Biol Reprod (2016) 94:12. doi: 10.1095/biolreprod.115.131458

59. Tong MH, Yang QE, Davis JC, Griswold MD. Retinol Dehydrogenase 10 is
Indispensible for Spermatogenesis in Juvenile Males. Proc Natl Acad Sci USA
(2013) 110:543–8. doi: 10.1073/pnas.1214883110

60. Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon
P, Ghyselinck NB, et al. Retinoic Acid Metabolism and Signaling Pathways
in the Adult and Developing Mouse Testis. Endocrinology (2006) 147:96–
110. doi: 10.1210/en.2005-0953

61. Hogarth CA, Arnold S, Kent T, Mitchell D, Isoherranen N, Griswold MD.
Processive Pulses of Retinoic Acid Propel Asynchronous and Continuous
Murine Sperm Production. Biol Reprod (2015) 92:37. doi: 10.1095/
biolreprod.114.126326

62. Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, et al.
Retinoid Signaling Determines Germ Cell Fate in Mice. Science (2006)
312:596–600. doi: 10.1126/science.1125691

63. Hogarth CA, Evans E, Onken J, Kent T, Mitchell D, Petkovich M, et al.
CYP26 Enzymes Are Necessary Within the Postnatal Seminiferous
Epithelium for Normal Murine Spermatogenesis. Biol Reprod (2015)
93:19. doi: 10.1095/biolreprod.115.129718

64. Li H, MacLean G, Cameron D, Clagett-Dame M, Petkovich M. Cyp26b1
Expression in Murine Sertoli Cells is Required to Maintain Male Germ Cells
in an Undifferentiated State During Embryogenesis. PloS One (2009) 4:
e7501. doi: 10.1371/journal.pone.0007501

65. MacLean G, Li H, Metzger D, Chambon P, Petkovich M. Apoptotic
Extinction of Germ Cells in Testes of Cyp26b1 Knockout Mice.
Endocrinology (2007) 148:4560–7. doi: 10.1210/en.2007-0492

66. Velte EK, Niedenberger BA, Serra ND, Singh A, Roa-DeLaCruz L,
Hermann BP, et al. Differential RA Responsiveness Directs Formation
of Functionally Distinct Spermatogonial Populations at the Initiation of
Spermatogenesis in the Mouse. Development (2019) 146:1–16. doi:
10.1242/dev.173088

67. Suzuki S, McCarrey JR, Hermann BP. An Mtorc1-Dependent Switch
Orchestrates the Transition Between Mouse Spermatogonial Stem Cells
and Clones of Progenitor Spermatogonia. Cell Rep (2021) 34:108752. doi:
10.1016/j.celrep.2021.108752
Frontiers in Endocrinology | www.frontiersin.org 773
68. Suzuki S, McCarrey JR, Hermann BP. Differential RA Responsiveness
Among Subsets of Mouse Late Progenitor Spermatogonia. Reproduction
(2021) 161:645–55. doi: 10.1530/REP-21-0031

69. Bashamboo A, Ferraz-de-Souza B, Lourenco D, Lin L, Sebire NJ, Montjean
D, et al. Human Male Infertility Associated With Mutations in NR5A1
Encoding Steroidogenic Factor 1. Am J Hum Genet (2010) 87:505–12. doi:
10.1016/j.ajhg.2010.09.009

70. Dimitriadis F, Tsampalas S, Tsounapi P, Giannakis D, Chaliasos N,
Baltogiannis D, et al. Effects of Phosphodiesterase-5 Inhibitor Vardenafil
on Testicular Androgen-Binding Protein Secretion, the Maintenance of Foci
of Advanced Spermatogenesis and the Sperm Fertilising Capacity in
Azoospermic Men. Andrologia (2012) 44 Suppl 1:144–53. doi: 10.1111/
j.1439-0272.2010.01153.x

71. Ferlin A, Vinanzi C, Garolla A, Selice R, Zuccarello D, Cazzadore C, et al.
Male Infertility and Androgen Receptor Gene Mutations: Clinical Features
and Identification of Seven Novel Mutations. Clin Endocrinol (Oxf) (2006)
65:606–10. doi: 10.1111/j.1365-2265.2006.02635.x

72. Hiort O, Holterhus PM, Horter T, Schulze W, Kremke B, Bals-Pratsch M,
et al. Significance of Mutations in the Androgen Receptor Gene in Males
With Idiopathic Infertility. J Clin Endocrinol Metab (2000) 85:2810–5. doi:
10.1210/jc.85.8.2810

73. Brook PF, Radford JA, Shalet SM, Joyce AD, Gosden RG. Isolation of Germ
Cells From Human Testicular Tissue for Low Temperature Storage and
Autotransplantation. Fertil Steril (2001) 75:269–74. doi: 10.1016/S0015-0282
(00)01721-0

74. Gul M, Hildorf S, Dong L, Thorup J, Hoffmann ER, Jensen CFS, et al. Review
of Injection Techniques for Spermatogonial Stem Cell Transplantation.
Hum Reprod Update (2020) 26:368–91. doi: 10.1093/humupd/dmaa003

75. Kaponis A, Yiannakis D, Tsoukanelis K, Tsalikis D, Tsabalas D, Baltogiannis D,
et al. The Role of Ultrasonographically Guided Puncture of the Human Rete
Testis in the Therapeutic Management of Nonobstructive Azoospermia.
Andrologia (2003) 35:85–92. doi: 10.1046/j.1439-0272.2003.00526.x

76. Ning L, Meng J, Goossens E, Lahoutte T, Marichal M, Tournaye H. In Search
of an Efficient Injection Technique for Future Clinical Application of
Spermatogonial Stem Cell Transplantation: Infusion of Contrast Dyes in
Isolated Cadaveric Human Testes. Fertil Steril (2012) 98:1443–1448.e1441.
doi: 10.1016/j.fertnstert.2012.08.023

77. Ma Y, Zhou Y, Xiao Q, Zou SS, Zhu YC, Ping P, et al. Seminal Exosomal
miR-210-3p as a Potential Marker of Sertoli Cell Damage in Varicocele.
Andrology (2021) 9:451–9. doi: 10.1111/andr.12913

78. Xie Y, Yao J, Zhang X, Chen J, Gao Y, Zhang C, et al. A Panel of Extracellular
Vesicle Long Noncoding RNAs in Seminal Plasma for Predicting Testicular
Spermatozoa in Nonobstructive Azoospermia Patients. Hum Reprod (2020)
35:2413–27. doi: 10.1093/humrep/deaa184

79. Brinster RL, Zimmermann JW. Spermatogenesis Following Male Germ-Cell
Transplantation. Proc Natl Acad Sci USA (1994) 91:11298–302. doi: 10.1073/
pnas.91.24.11298

80. Kanatsu-Shinohara M,Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al.
Germline Niche Transplantation Restores Fertility in Infertile Mice.HumReprod
(2005) 20:2376–82. doi: 10.1093/humrep/dei096

81. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Restoration of
Spermatogenesis in Infertile Mice by Sertoli Cell Transplantation. Biol Reprod
(2003) 68:1064–71. doi: 10.1095/biolreprod.102.009977

82. Rebourcet D, O’Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L,
Jeffrey N, et al. Sertoli Cells Maintain Leydig Cell Number and Peritubular
Myoid Cell Activity in the Adult Mouse Testis. PloS One (2014) 9:e105687.
doi: 10.1371/journal.pone.0105687

83. Rebourcet D, O’Shaughnessy PJ, Pitetti JL, Monteiro A, O’Hara L, Milne L,
et al. Sertoli Cells Control Peritubular Myoid Cell Fate and Support Adult
Leydig Cell Development in the Prepubertal Testis. Development (2014)
141:2139–49. doi: 10.1242/dev.107029

84. ShinomuraM, Kishi K, Tomita A, KawasumiM, Kanezashi H, Kuroda Y, et al. A
Novel Amh-Treck Transgenic Mouse Line Allows Toxin-Dependent Loss of
Supporting Cells in Gonads. Reproduction (2014) 148:H1–9. doi: 10.1530/REP-
14-0171

85. Yokonishi T, McKey J, Ide S, Capel B. Sertoli Cell Ablation and Replacement
of the Spermatogonial Niche in Mouse. Nat Commun (2020) 11:40. doi:
10.1038/s41467-019-13879-8
May 2022 | Volume 13 | Article 897196

https://doi.org/10.3402/jev.v4.27066
https://doi.org/10.1016/j.mce.2018.04.001
https://doi.org/10.1016/j.mce.2018.04.001
https://doi.org/10.1073/pnas.1521230113
https://doi.org/10.3402/jev.v2i0.20360
https://doi.org/10.1016/j.cell.2016.01.043
https://doi.org/10.1016/j.cell.2016.01.043
https://doi.org/10.1111/jcmm.16347
https://doi.org/10.3390/biom9120775
https://doi.org/10.1073/pnas.1505683112
https://doi.org/10.1152/physrev.00013.2015
https://doi.org/10.1095/biolreprod.115.131458
https://doi.org/10.1073/pnas.1214883110
https://doi.org/10.1210/en.2005-0953
https://doi.org/10.1095/biolreprod.114.126326
https://doi.org/10.1095/biolreprod.114.126326
https://doi.org/10.1126/science.1125691
https://doi.org/10.1095/biolreprod.115.129718
https://doi.org/10.1371/journal.pone.0007501
https://doi.org/10.1210/en.2007-0492
https://doi.org/10.1242/dev.173088
https://doi.org/10.1016/j.celrep.2021.108752
https://doi.org/10.1530/REP-21-0031
https://doi.org/10.1016/j.ajhg.2010.09.009
https://doi.org/10.1111/j.1439-0272.2010.01153.x
https://doi.org/10.1111/j.1439-0272.2010.01153.x
https://doi.org/10.1111/j.1365-2265.2006.02635.x
https://doi.org/10.1210/jc.85.8.2810
https://doi.org/10.1016/S0015-0282(00)01721-0
https://doi.org/10.1016/S0015-0282(00)01721-0
https://doi.org/10.1093/humupd/dmaa003
https://doi.org/10.1046/j.1439-0272.2003.00526.x
https://doi.org/10.1016/j.fertnstert.2012.08.023
https://doi.org/10.1111/andr.12913
https://doi.org/10.1093/humrep/deaa184
https://doi.org/10.1073/pnas.91.24.11298
https://doi.org/10.1073/pnas.91.24.11298
https://doi.org/10.1093/humrep/dei096
https://doi.org/10.1095/biolreprod.102.009977
https://doi.org/10.1371/journal.pone.0105687
https://doi.org/10.1242/dev.107029
https://doi.org/10.1530/REP-14-0171
https://doi.org/10.1530/REP-14-0171
https://doi.org/10.1038/s41467-019-13879-8
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ruthig and Lamb Sertoli Cell Niche and Transplantation
86. Merchel Piovesan Pereira B, Tagkopoulos I. Benzalkonium Chlorides: Uses,
Regulatory Status, and Microbial Resistance. Appl Environ Microbiol (2019)
85:1–13. doi: 10.1128/AEM.00377-19

87. Yokonishi T, Capel B. Differentiation of Fetal Sertoli Cells in the Adult
Testis. Reproduction (2021) 162:141–7. doi: 10.1530/REP-21-0106

88. Imura-Kishi K, Uchida A, Tsunekawa N, Suzuki H, Takase HM, Hirate Y,
et al. Low Retinoic Acid Levels Mediate Regionalization of the Sertoli Valve
in the Terminal Segment of Mouse Seminiferous Tubules. Sci Rep (2021)
11:1110. doi: 10.1038/s41598-020-79987-4

89. Figueiredo AFA, Hess RA, Batlouni SR, Wnuk NT, Tavares AO, Abarikwu
SO, et al. Insights Into Differentiation and Function of the Transition Region
Between the Seminiferous Tubule and Rete Testis. Differentiation (2021)
120:36–47. doi: 10.1016/j.diff.2021.06.002

90. DymM. The Fine Structure of Monkey Sertoli Cells in the Transitional Zone
at the Junction of the Seminiferous Tubules With the Tubuli Recti. Am J
Anat (1974) 140:1–25. doi: 10.1002/aja.1001400102

91. Hermo L, Dworkin J. Transitional Cells at the Junction of Seminiferous
Tubules With the Rete Testis of the Rat: Their Fine Structure, Endocytic
Activity, and Basement Membrane. Am J Anat (1988) 181:111–31. doi:
10.1002/aja.1001810202

92. Lindner SG, Holstein AF. On the Morphology of the Transitional Zone of
the Seminiferous Tubule and the Rete Testis in Man. Andrologia (1982)
14:352–62. doi: 10.1111/j.1439-0272.1982.tb02277.x

93. Marin-Padilla M. The Mesonephric-Testicular Connection in Man and
Some Animals. Anatomical Rec (1964) 148:1–14. doi: 10.1002/
ar.1091480102

94. Nykanen M. Fine Structure of the Transitional Zone of the Rat
Seminiferous Tubule. Cell Tissue Res (1979) 198:441–54. doi: 10.1007/
BF00234189

95. Osman DI, Ploen L. The Mammalian Tubuli Recti: Ultrastructural Study.
Anatomical Rec (1978) 192:1–17. doi: 10.1002/ar.1091920102

96. Perey B, Clermont Y, Leblond CP. The Wave of the Seminiferous
Epithelium of the Rat. Am J Anat (1961) 108:47–77. doi: 10.1002/
aja.1001080105

97. Wrobel KH, Sinowatz F, Kugler P. The Functional Morphology of the Rete
TestisTubuli Recti and Terminal Segments of the Semeniferous Tubules in
the Mature Bull. Anat Histol Embryol (1978) 7:320–35. doi: 10.1111/
j.1439-0264.1978.tb00671.x

98. Takahashi K, Naito M, Terayama H, Qu N, Cheng L, Tainosho S, et al.
Immunomorphological Aspects of the Tubuli Recti and the Surrounding
Interstitium in Normal Mice. Int J Androl (2007) 30:21–7. doi: 10.1111/
j.1365-2605.2006.00704.x

99. Aiyama Y, Tsunekawa N, Kishi K, Kawasumi M, Suzuki H, Kanai-Azuma
M, et al. A Niche for GFRalpha1-Positive Spermatogonia in the Terminal
Segments of the Seminiferous Tubules in Hamster Testes. Stem Cells
(2015) 33:2811–24. doi: 10.1002/stem.2065

100. Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh AL, et al.
Characterization and Functionality of Proliferative Human Sertoli Cells.
Cell Transplant (2011) 20:619–35. doi: 10.3727/096368910X536563

101. Figueiredo AF, Franca LR, Hess RA, Costa GM. Sertoli Cells are Capable of
Proliferation Into Adulthood in the Transition Region Between the
Seminiferous Tubules and the Rete Testis in Wistar Rats. Cell Cycle
(2016) 15:2486–96. doi: 10.1080/15384101.2016.1207835

102. Figueiredo AFA, Wnuk NT, Tavares AO, Miranda JR, Hess RA, de Franca
LR, et al. Prepubertal PTU Treatment in Rat Increases Sertoli Cell Number
and Sperm Production. Reproduction (2019) 158:199–209. doi: 10.1530/REP-
19-0127
Frontiers in Endocrinology | www.frontiersin.org 874
103. Kulibin AY, Malolina EA. Only a Small Population of Adult Sertoli Cells
Actively Proliferates in Culture. Reproduction (2016) 152:271–81. doi:
10.1530/REP-16-0013

104. Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, Handelsman DJ,
et al. Temporal Role of Sertoli Cell Androgen Receptor Expression in
Spermatogenic Development. Mol Endocrinol (2013) 27:12–24. doi:
10.1210/me.2012-1219

105. Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PT,
et al. The Role of Androgens in Sertoli Cell Proliferation and Functional
Maturation: Studies in Mice With Total or Sertoli Cell-Selective Ablation of
the Androgen Receptor. Endocrinology (2005) 146:2674–83. doi: 10.1210/
en.2004-1630

106. Willems A, Batlouni SR, Esnal A, Swinnen JV, Saunders PT, Sharpe RM,
et al. Selective Ablation of the Androgen Receptor in Mouse Sertoli Cells
Affects Sertoli Cell Maturation, Barrier Formation and Cytoskeletal
Development. PloS One (2010) 5:e14168. doi: 10.1371/journal.pone.0014168

107. Nagasawa K, Imura-Kishi K, Uchida A, Hiramatsu R, Kurohmaru M, Kanai
Y. Regionally Distinct Patterns of STAT3 Phosphorylation in the
Seminiferous Epithelia of Mouse Testes. Mol Reprod Dev (2018) 85:262–
70. doi: 10.1002/mrd.22962

108. Malolina EA, Kulibin AY. The Rete Testis Harbors Sertoli-Like Cells Capable
of Expressing DMRT1. Reproduction (2019) 158:399–413. doi: 10.1530/REP-
19-0183

109. Raymond CS, MurphyMW, O’SullivanMG, Bardwell VJ, Zarkower D. Dmrt1, a
Gene Related to Worm and Fly Sexual Regulators, is Required for Mammalian
Testis Differentiation. Genes Dev (2000) 14:2587–95. doi: 10.1101/gad.834100

110. Ogawa T, Arechaga JM, Avarbock MR, Brinster RL. Transplantation of
Testis Germinal Cells Into Mouse Seminiferous Tubules. Int J Dev Biol
(1997) 41:111–22.

111. Tarulli GA, Stanton PG, Loveland KL, Rajpert-De Meyts E, McLachlan RI,
Meachem SJ. A Survey of Sertoli Cell Differentiation in Men After
Gonadotropin Suppression and in Testicular Cancer. Spermatogenesis
(2013) 3:e24014. doi: 10.4161/spmg.24014

112. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat
Methods (2012) 9:676–82. doi: 10.1038/nmeth.2019

Conflict of Interest:DJL serves on the Ro advisory board, and as a consultant, and
has equity; and for Fellow has equity; and serves as Secretary-Treasurer for the
American Board of Bioanalysts with honorarium.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Ruthig and Lamb. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
May 2022 | Volume 13 | Article 897196

https://doi.org/10.1128/AEM.00377-19
https://doi.org/10.1530/REP-21-0106
https://doi.org/10.1038/s41598-020-79987-4
https://doi.org/10.1016/j.diff.2021.06.002
https://doi.org/10.1002/aja.1001400102
https://doi.org/10.1002/aja.1001810202
https://doi.org/10.1111/j.1439-0272.1982.tb02277.x
https://doi.org/10.1002/ar.1091480102
https://doi.org/10.1002/ar.1091480102
https://doi.org/10.1007/BF00234189
https://doi.org/10.1007/BF00234189
https://doi.org/10.1002/ar.1091920102
https://doi.org/10.1002/aja.1001080105
https://doi.org/10.1002/aja.1001080105
https://doi.org/10.1111/j.1439-0264.1978.tb00671.x
https://doi.org/10.1111/j.1439-0264.1978.tb00671.x
https://doi.org/10.1111/j.1365-2605.2006.00704.x
https://doi.org/10.1111/j.1365-2605.2006.00704.x
https://doi.org/10.1002/stem.2065
https://doi.org/10.3727/096368910X536563
https://doi.org/10.1080/15384101.2016.1207835
https://doi.org/10.1530/REP-19-0127
https://doi.org/10.1530/REP-19-0127
https://doi.org/10.1530/REP-16-0013
https://doi.org/10.1210/me.2012-1219
https://doi.org/10.1210/en.2004-1630
https://doi.org/10.1210/en.2004-1630
https://doi.org/10.1371/journal.pone.0014168
https://doi.org/10.1002/mrd.22962
https://doi.org/10.1530/REP-19-0183
https://doi.org/10.1530/REP-19-0183
https://doi.org/10.1101/gad.834100
https://doi.org/10.4161/spmg.24014
https://doi.org/10.1038/nmeth.2019
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Frontiers in Endocrinology | www.frontiersi

Edited by:
Erwin Goldberg,

Northwestern University,
United States

Reviewed by:
Toshinobu Tokumoto,

Shizuoka University, Japan
Martine Culty,

University of Southern California,
United States

*Correspondence:
Daiji Kiyozumi

kiyozumi@biken.osaka-u.ac.jp
Masahito Ikawa

ikawa@biken.osaka-u.ac.jp

Specialty section:
This article was submitted to

Reproduction,
a section of the journal

Frontiers in Endocrinology

Received: 15 February 2022
Accepted: 28 March 2022
Published: 04 May 2022

Citation:
Kiyozumi D and Ikawa M (2022)

Proteolysis in Reproduction:
Lessons From Gene-Modified

Organism Studies.
Front. Endocrinol. 13:876370.

doi: 10.3389/fendo.2022.876370

REVIEW
published: 04 May 2022

doi: 10.3389/fendo.2022.876370
Proteolysis in Reproduction:
Lessons From Gene-Modified
Organism Studies
Daiji Kiyozumi1,2* and Masahito Ikawa1,3,4*

1 Research Institute for Microbial Diseases, Osaka University, Suita, Japan, 2 PRESTO, Japan Science and Technology
Agency, Kawaguchi, Japan, 3 The Institute of Medical Science, The University of Tokyo, Tokyo, Japan, 4 CREST, Japan
Science and Technology Agency, Kawaguchi, Japan

The physiological roles of proteolysis are not limited to degrading unnecessary proteins.
Proteolysis plays pivotal roles in various biological processes through cleaving peptide
bonds to activate and inactivate proteins including enzymes, transcription factors, and
receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities
or dysregulation of such proteolytic processes therefore often cause diseases. Recent
genetic studies have clarified the inclusion of proteases and protease inhibitors in various
reproductive processes such as development of gonads, generation and activation of
gametes, and physical interaction between gametes in various species including yeast,
animals, and plants. Such studies not only clarify proteolysis-related factors but the
biological processes regulated by proteolysis for successful reproduction. Here the
physiological roles of proteases and proteolysis in reproduction will be reviewed based
on findings using gene-modified organisms.

Keywords: protease, fertilization, proteolysis, protease inhibitor, pseudoprotease, gene-modified animal models,
ubiquitin-proteasome system, sperm maturation
INTRODUCTION

Although a simple peptide bond between two amino acids in water at room temperature has a half-
life of several years (1), the hydrolysis of a peptide bond is significantly accelerated under the
presence of proteases. As well as mediating non-specific protein hydrolysis, proteases also act as
processing enzymes that perform highly selective, limited, and efficient cleavage of specific
substrates. As many biological processes are influenced by this irreversible post-translational
protein modification, dysregulation of the expression and/or function of proteases underlie many
human pathological processes and have therefore been an intensely studied class of targets for
drug discovery.
Abbreviations: ACE, angiotensin converting enzyme; ADAM, a disintegrin-like and metalloproteinase domain; ADAMTS, a
disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif; CSN, constitutive photomorphogenic-9
signalosome; EMS, ethylmethane-sulfonate; GGT, glutamyltranspeptidase; IaI, inter-a-trypsin inhibitor; KI, knock-in; KO,
knockout; OVCH2, ovochymase 2; S-Lap, sperm-Leucylaminopeptidase; SUMO, small ubiquitin-related modifier; TASP1,
threonine aspartase 1; TMP,trimethylpsoralen; TNFa, tumor necrosis factor-a; UPS, ubiquitin-proteasome system; USP,
ubiquitin-specific protease.
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By searching Saccharomyces cerevisiae , Drosophila
melanogaster, and Caenorhabditis elegans genome databases
with a gene ontology term “peptidase activity” (GO:0008233),
51, 506, and 448 genes encoding proteases, respectively, can be
identified (2–4). In the mouse and human genome, 628 and 553
protease genes exist, respectively (5). In Arabidopsis thaliana,
723 protease genes were reported (6). Based on catalytic
mechanisms, proteases can be divided into five classes: cysteine
proteases, serine proteases, metalloproteases, threonine
proteases, and aspartic proteases. After activation of the amide,
cysteine, serine, and threonine proteases utilize the namesake
residue to attack the amide carbonyl group, whereas
metalloproteases and aspartic proteases use an activated water
molecule as a nucleophile. As proteases bind their substrates
between the substrate side chains and well-defined substrate-
binding pockets within the active site, they have their own
preference for substrate amino acid sequence proximal to the
cleavage site (7). There are some enzymatically inactive
pseudoproteases encoded in the mammalian genome in which
the amino acid residues indispensable for catalytic activity are
substituted. As proteases are potentially toxic, their activities are
strictly regulated as such by pH, specific ion concentrations,
posttranslational modifications, and spatiotemporal expression
of protease inhibitors.

The contribution of proteases depends on their intracellular
or extracellular localization where they act on substrate proteins.
The ubiquitin-proteasome system (UPS) is a complex but
sophisticated intracellular proteolytic system in eukaryotes; this
complex system degrades unneeded or damaged proteins by
proteolysis. When target proteins are post-translationally labeled
with ubiquitin, a protein of 76-amino acid residues exhibiting
high sequence conservation among eukaryotes, they will be
recognized and degraded by the proteasome.

Proteolytic processing events are fundamental in reproductive
processes including gametogenesis, fertilization, and embryonic
development. Recent advances in generating gene-modified
animals have identified many proteases and their regulators
associated with reproduction in various species including yeast,
invertebrates, vertebrates, and plants. In the following sections
the physiological importance of proteolysis in reproduction will
be overviewed based on findings obtained by gene-modified
organism studies. Proteolysis-related genes essential in
reproduction identified by gene-modified animal studies are
listed in Table 1. Few proteins are known to be proteolytically
processed under certain reproductive situations. They are,
however, not included in this review as the physiological roles
of such processing in reproduction are not fully clarified
at present.
UNICELLULAR ORGANISMS

Saccharomyces cerevisiae
S. cerevisiae, Baker’s yeast, is a model diploid unicellular
organism. S. cerevisiae can stably exist as either a diploid or a
haploid. When stressed, S. cerevisiae can undergo meiosis to
Frontiers in Endocrinology | www.frontiersin.org 276
produce four haploid spores. Haploid cells are capable of fusing
with other haploid cells of the opposite mating type (an ‘a’ cell
can only mate with an ‘a’ cell, and vice versa) to produce a stable
diploid cell. a and a cells produce mating peptide pheromones a-
factor and a-factor, respectively. Ste24p and Axl1p encoded by
ste24 and alx1, respectively, are metalloendopeptidases that
process precursor peptide to produce mature mating a-factor
pheromone (8, 9).
MULTICELLULAR ORGANISMS
I: INVERTEBRATES

The body of multicellular organisms consists of two types of cells
with different lineages, i.e., germ cells and somatic cells. Germ
cells produce gametes for fertilization, whereas somatic cells
develop reproductive organs to support gametogenesis and
fertilization by germ cells. Therefore, dysfunction of proteolysis
in either cell lineage can result in fertility defects.

Nematodes
Caenorhabditis elegans is androdioecious; i.e., it has two sexes,
hermaphrodite and male, whereas Ascaris suum is dioecious,
being either male or female. They develop two U-shaped gonads
in which gametes are generated and fertilization occurs. Several
proteases and inhibitors have been identified to regulate
nematode reproductive processes.

Oogenesis and fertilization are affected when cpi-2a, encoding
a cystatin-like cysteine protease inhibitor, is mutated (10).
Nullification of dss-1 encoding a 26S proteasome subunit
provokes sterility because of deficient oogenesis (14).
Knockdown of puromycin-sensitive aminopeptidase encoded
by pam-1 causes delayed oocyte maturation and subfertility
(17). Deletion of dpf-3 encoding a serine protease causes
sterility because of impaired spermatogenesis (15). gon-1
encoding a disintegrin-like and metalloproteinase domain with
thrombospondin type 1 motif (ADAMTS) is necessary for
morphogenesis of U-shaped gonads (11, 12). A mutant worm
lacking timp-1 encoding a tissue inhibitor of metalloproteinase
also shows deficient gonadal development (13). A double mutant
in which sup-17 and adm-4, encoding nematode orthologs of
mammalian membrane metalloproteases ADAM10 and
ADAM17, respectively, are sterile because of aberrant
spermathecal function (16).

Unlike mammalian flagellated sperm, nematode sperm are
amoeboid cells. For successful fertilization, sperm must be
activated prior to contacting an oocyte in both C. elegans and
A. suum. This sperm activation is called spermiogenesis through
which round immobile spermatids transform into motile,
fertilization-competent spermatozoa. Mechanistically,
spermiogenesis occurs by sensing extracellular signals and can
be reproduced in vitro by exposing spermatids to proteases such
as Pronase and proteinase K. A trypsin-like secreted protease
encoded by try-5 is expressed in the vas deferens and triggers
activation of spermatids (18). swm-1 encodes a secreted protein
with a trypsin inhibitor-like domain, and swm-1 mutant males
May 2022 | Volume 13 | Article 876370
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TABLE 1 | Proteolysis-related genes associated with reproduction.

Gene Protein feature Protein localization Gene-modified
organism

Fertility Phenotype Refs.

S. cerevisiae
ste24 Prenyl protein-

specific
endoprotease

Intracellular
membrane

Ethylmethane-
sulfonate (EMS)
mutagenesis

Sterile MAT a-specific sterility. (8)

axl1 Metalloprotease Intracellular UV exposure Sterile Defect in a-factor pheromone secretion. (9)
C. elegans
cpi-2a Cystatin-like

cysteine protease
inhibitor

Extracellular Deletion mutant Sterile Oocyte-specific sterility. (10)

gon-1 Metalloprotease Extracellular EMS mutagenesis Sterile Gonadal developmental defect. (11,
12)

timp-1 Metalloprotease
inhibitor

Extracellular Trimethylpsoralen
(TMP)–UV-
mutagenesis

Sterile Gonadal growth defect. (13)

dss-1 26S proteasome
subunit

Intracellular Deletion mutant Sterile Defects in oogenesis. (14)

dpf-3 Serine protease Intracellular Deletion mutant Sterile Impaired spermatogenesis. (15)
sup-17; adm-4 ADAM

metalloproteases
Cell membrane EMS mutagenesis;

TMP)–UV-
mutagenesis

Sterile Aberrant spermathecal function. (16)

pam-1 Metalloprotease Intracellular RNAi
knockdown

Subfertility Decreased brood size. Expanded pachytene. (17)

try-5 Serine protease Extracellular Deletion mutant Fertile try-5 functions in parallel to spe-8 for male fertility. (18)
swm-1 Trypsin inhibitor-

like
Extracellular EMS mutagenesis Reduced male

fertility
Ectopic sperm activation within the male reproductive
tract. Failure of sperm transfer to hermaphrodite.

(19)

gcna-1 Metalloprotease Nucleus Deletion by
CRISPR/Cas9

Fertility
defects

Decrease of fertility in later generations because of
genomic instability

(20)

T12E12.6 Metalloprotease Intracellular RNAi
knockdown

Subfertility Decreased brood size. (17)

zmp-2 Metalloprotease Extracellular RNAi
knockdown

Subfertility Reduced offspring production. (21)

D. melanogaster
CG9000; CG9001;
CG9002

Yeast ste24p
ortholog
proteases

Intracellular
membrane

Ends-out gene
targeting

Male fertility
defects

Abnormal spermatid maturation. (22)

Prosalpha6T Proteasome
subunit

Intracellular KO Male infertility Spermatogenic defects in sperm individualization and
nuclear maturation.

(23)

Duba Deubiquitylating
enzyme

Intracellular Imprecise P-
element excision

Male infertility Defects in spermatid individualization. (24)

Dronc Cysteine
protease

Intracellular Transgenic
expression of
dominant-negative
DRONC

Uncertain Defects in spermatid individualization. (25)

Dredd Cysteine
protease

Intracellular EMS mutagenesis Fertile Defects in spermatid individualization. (25)

Dark Caspase
activator

Intracellular Enhancer trap Male infertility Defects in spermatid individualization. (25)

Htra2 Serine protease Mitochondria P element
mobilization

Male infertility Sperm were completely immotile (26)

EMS mutagenesis Male infertility Defective spermatogenesis. (27)
S-Lap1-8 Leucylamino-

peptidase
Intracellular Classical mutant,

CRISPR/Cas9
Male infertility
or subfertility

Deficient accumulation of paracrystalline material in
mitochondria.

(28)

Sems Trypsin-like
protease

Extracellular Knockdown Male
subfertility

Females laid fewer number of eggs when mated to Sems
knockdown males. Sperm remained in storage in the
seminal receptacle.

(29)

Nep4 Metalloprotease
Mmel1 ortholog

Cell membrane KO Male infertility Mutant sperm are quickly discarded
by females.

(30)

Dcp-1 Cysteine
protease

Intracellular Female carrying
germline 　 KO
clone

Female
infertility

Defective oogenesis. (31)

(Continued)
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TABLE 1 | Continued

Gene Protein feature Protein localization Gene-modified
organism

Fertility Phenotype Refs.

mh Metalloprotease Nucleus EMS mutagenesis,
P element
mobilization

Female
infertility

The integration of paternal chromosomes in the zygote
was specifically affected.

(32,
33)

Ance Angiotensin-
converting
enzyme

Extracellular EMS mutagenesis Male infertility Compound heterozygotes for two different lethal alleles
are male sterile.

(34)

Slfc Serine protease Extracellular RNAi
knockdown

Male infertility Details are unknown. Females also show slightly
decreased fertility.

(35)

ome Serine protease Cell membrane EMS mutagenesis Male
subfertility

Details are uncertain. (36)

Mmp2 Metalloprotease Extracellular RNAi Female
subfertility

Ovulation was blocked. (37)

A. socius
ejac-sp Serine protease Extracellular RNAi knockdown Male

subfertility
Reduced ability to induce a female to lay eggs. (38)

Bombyx mori
Osp Serine protease Cell membrane KO Female

infertility
Mutant females laid fewer eggs than wild-type females
and eggs did not hatch

(39)

Ser2 Serine protease Extracellular KO Male infertility Wild-type females mated with mutant males laid eggs
normally but the eggs did not hatch.

(40)

Spodoptera litura
Osp Serine protease Cell membrane KO Female

infertility
Mutant females laid fewer eggs than wild-type females
and eggs did not hatch.

(39)

Plutella xylostella
Ser2 Serine protease Extracellular KO Male infertility Mutant sperm morphology is normal but they do not

enter eggs.
(40)

Hyphantria cunea
Hcser2 Serine protease Extracellular RNAi knockdown,

KO
Male infertility The growth, development, mating behavior, or egg laying

was not affected.
(41)

Bactrocera
dorsalis
Bdcp-1 Cysteine

protease
Intracellular RNAi knockdown Female

infertility
Impaired ovary development. (42)

M. musculus
Psma8 Proteasome

component
Nucleus KO Male infertility Arrested spermatogenesis at spermatocyte stage. (43)

Psme3 Proteasome
activator

Intracellular KO Male
subfertility

Decreased sperm number and motility. (44)

Psme4 Proteasome
activator

Nucleus KO Severe male
subfertility

Defective spermatogenesis. (45)

Psme3;
Psme4

Proteasome
activator

Intracellular Double KO Male infertility Morphologically normal sperm with motility defect. (46)

Cops5 Metalloprotease　 Intracellular KO Male infertility Male infertility. Germ cells undergo significant apoptosis
at a premeiotic stage.

(47)

Usp2 Ubiquitin-specific
protease

Nucleus KO Male
subfertility

Defects in sperm motility. (48)

Usp9x Ubiquitin-specific
protease

cytoplasm Vasa-cre; Usp9xfl/Y Male infertility Apoptosis of spermatocytes. (49)

Usp26 Ubiquitin-specific
protease

Intracellular KO Severe male
subfertility

Unsynapsed chromosomes in pachynema and defective
chiasma formation in diplonema, apoptosis of metaphase
spermatocytes and decrease of spermatids.

(50,
51)

Usp1 Ubiquitin-specific
protease

Nucleus KO Male infertility Impaired spermatogenesis. (52)

Apaf1 Caspase
activator

Intracellular KO Male infertility Degeneration of spermatogonia resulting in the absence
of sperm.

(53)

Agbl5 Metalloprotease Intracellular KO Male infertility Defective spermatogenesis (54,
55)

Gcna Metalloprotease Nucleus KO Male infertility Nearly devoid of sperm. (56)
Tasp1 Endopeptidase Nucleus KO Male infertility Release immature germ cells. (57)
Tysnd1 Serine protease Peroxisome KO Male infertility Globozoospermia, no acrosomal cap. (58)
Spink2 Serine protease

inhibitor
Extracellular KO Male infertility Oligoasthenoteratozoospermia in heterozygotes,

azoospermia in homozygotes.
(59)

(Continued)
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TABLE 1 | Continued

Gene Protein feature Protein localization Gene-modified
organism

Fertility Phenotype Refs.

Serpina5 Serine protease
inhibitor

Extracellular KO Male infertility Abnormal spermatogenesis due to destruction of the
Sertoli cell barrier.

(60)

Adamts2 Metalloproteinase Extracellular KO Male infertility Marked decrease in testicular sperm. (61)
Acr Serine protease Acrosome KO Male

subfertility
Delayed fertilization. (62,

63)
Pcsk4 Serine protease Acrosomal

membrane
KO Male

subfertility
Putatively due to impaired fertilization. (64,

65)
Tmprss12 Serine protease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (66)
Prss55 Serine protease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (67,

68)
Tryx5 Serine protease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (69)
Prss37 Pseudoprotease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (70)
Ace Metallo-

carboxypeptidase
Plasma membrane KO Male

subfertility
Deficient sperm migration into oviduct. (71)

Adam1a Pseudoprotease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (72)
Adam2 Pseudoprotease Plasma membrane KO Male

subfertility
Deficient sperm migration into oviduct (73)

Adam3 Pseudoprotease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (74,
75)

Adam6 Pseudoprotease Plasma membrane KO Male infertility Deficient sperm migration into oviduct. (76)
Cst8; Cst9; Cst11;
Cst12; Cst13;
Cstdc1; Cstdc2;
Cstl1

Cystatin-like
inhibitor

Extracellular Multiple KO Male infertility Deficient sperm migration into oviduct. (77)

Ovch2 Serine protease Extracellular KO Male infertility Deficient sperm migration into oviduct. (78)
Mmel1 Metalloprotease Extracellular KO Male infertility Normal spermatogenesis but reduced egg fertilization. (79)
Prss21 Serine protease Plasma membrane KO Male

subfertility,
decreased in
vitro fertility

Mutant spermatozoa possessed decreased motility,
angulated and curled tails, and fragile necks. Decreased
in vitro zona pellucida binding and acrosome reaction.

(80,
81)

Cpe Metalloprotease Extracellular Spontaneous
mutation

Male
subfertility

Abnormal sexual behavior. Abnormal testis morphology in
older mutant males.

(82)

Adam24 Pseudoprotease Plasma membrane KO Male
subfertility

Polyspermic fertilization. (83)

Adam7 Pseudoprotease Plasma membrane KO Male
subfertility

Decreased cell height in caput epididymis, spermatic
granuloma, kinked sperm flagellum and reduced sperm
motility.

(84)

Cst3 Cysteine
protease inhibitor

Extracellular KI
(Leu68Gln)

Male
subfertility

Reduced viability of spermatozoa and large agglutinated
clumps.

(85)

Serpine2 Serine protease
inhibitor

Extracellular KO Male
subfertility

Inadequate semen coagulation and deficient vaginal plug
formation upon copulation

(86)

Tmprss6 Serine protease Plasma membrane KO Female
infertility

Marked retardation in ovarian maturation. (87)

Ambp Serine protease
inhibitor

Extracellular KO Female
subfertility

Defective cumulus matrix expansion. (88,
89)

Psen1 Aspartic protease Endoplasmic
reticulum, Golgi,
endosome, plasma
membrane

KI
(Leu166Pro)

Female
infertility

Primordial follicles near the ovarian cortex and consisting
largely of ovarian stromal elements.

(90)

Adamts1 Metalloprotease Extracellular KO Female
subfertility

Fewer numbers of mature follicles in ovary, thick and
convoluted uterus.

(91,
92)

Lonp Serine protease Mitochondria Gdf9-cre or Zp3-
cre; Lonp1fl/fl

Female
infertility

Impaired follicular development, progressive oocyte
death, ovarian reserve loss.

(93)

Furin Serine protease Golgi, endosome,
plasma membrane,
extracellular

Gdf9-cre or Zp3-
cre; Furinfl/fl

Female
infertility

Arrest of early secondary follicles. (94)

Pappa Metalloprotease Extracellular KO Female
subfertility

Reduced litter size and reduced ovulatory capacity,
probably because of decreased bioavailability of ovarian
insulin-like growth factor.

(95)

Astl Metalloprotease Extracellular KO Female
subfertility

No ZP2 cleavage after fertilization. (96)

(Continued)
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TABLE 1 | Continued

Gene Protein feature Protein localization Gene-modified
organism

Fertility Phenotype Refs.

Fetub Metalloprotease
inhibitor

Extracellular KO Female
infertility

Premature zona pellucida hardening. (97)

Serpinc1 Serine protease
inhibitor

Extracellular KI
(Arg48Cys)

Female
subfertility

Thrombosis in placenta and penile vessels. (98)

Adam10 Metalloprotease Cell membrane Tie2-cre;
Adam10fl/fl

Female
subfertility

Impaired decidualization. (99)

Adamts18 Metalloprotease Extracellular KO Female
infertility or
subfertility

Fifty percent of mutant females are infertile because of
vaginal obstruction due to either a dorsoventral vaginal
septum or imperforate vagina.

(100)

Plg Serine protease Extracellular KO Female
subfertility

Compromised female fertility. (101,
102)

Timp1 Metalloprotease
inhibitor

Extracellular KO Female
subfertility

Reduction in reproductive lifespan. (103)

Pcsk2 Serine protease Extracellular KO Female
subfertility

Details are uncertain. (104)

Espl1 Cysteine
protease

Nucleus KI
Meox2cre;
Espl1+/S1121A

Male infertility Spermatogonia cell depletion. (105)

Zp3-cre;
Espl1fl/fl

Female
infertility

Prevention of chiasmata resolution. Failure to extrude
polar bodies in Meiosis I.

(106)

Meox2cre;
Espl1+/S1121A

Female
infertility

Primordial germ cell depletion by apoptosis during
embryonic oogenesis.

(105,
107)

Zp3-cre; KI
(Ser1121Ala)

Female
infertility

Failure in preimplantation development. (108)

Agtpbp1 Metalloprotease Intracellular Spontaneous
mutation,
insertional
mutation

Male infertility Defective spermatogenesis.
(109–
112)

Female
subfertility

Poor development of secondary follicles into antral
follicles.

(113)

Clpp Serine protease Mitochondria KO Male infertility Disrupted spermatogenesis at the spermatid stage. (114)
Female
infertility

Ovarian follicular differentiation failure, premature
reproductive aging.

(114)

Npepps Metallo-
aminopeptidase

Nucleus,
cytosol

Gene trap Male infertility Lack of copulatory behavior, impaired spermatogenesis. (115)

Female
infertility

Impaired formation of corpus luteum in pregnancy. (116)

Ggt1 Protease Plasma membrane KO Male infertility Reduced testis and seminal vesicle size, reduced
seminiferous tubule diameter.

(117)

Female
infertility

Hypogonadal, absence of antral follicles and corpora
lutea and follicular degeneration.

(117)

Immp2l Serine protease Mitochondria KO Severe male
subfertility

Erectile dysfunction. (118)

Female
infertility

Defective folliculogenesis and ovulation. (118)

Adam17 Metalloprotease Extracellular Sox9-cre;
Adam17fl/fl

Male
subfertility

Details are uncertain. (119)

Female
infertility

Details are uncertain. (119)

Mesocricetus
auratus
Acr Serine protease Acrosome KO Male infertility Sperm failure in zona pellucida penetration. (120)
R. norvegicus
Adamts16 Metalloprotease Extracellular KO Male infertility Cryptorchidism. (121,

122)
D. rerio
adamts9 Metalloprotease Extracellular KO Female

infertility
Ovary malformation. (123)

H. sapiens
SPINK2 Serine protease

inhibitor
Extracellular Spontaneous

mutation
Male infertility Azoospermia. (59)

(Continued)
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are infertile because of ectopic premature activation of sperm
(19). Like in C. elegans, activation of spermatozoa by exposure to
extrinsic protease in vitro can also be seen in several insect
species (132, 133). spe-4 encoding a presenilin, an aspartyl
protease with intramembrane proteolytic activity prevents
spermatid activation because spe-4 mutant males progress
directly to functional spermatozoa without the need for an
activation signal (134).

gcna-1 encodes nuclear metalloprotease. gcna-1 deletion causes
genomic instability decreasing fertility in later generations (20).
T12E12.6 encodes intracellular metalloprotease whereas zmp-2
encodes secreted metalloproteases. Knockdown of either of them
results in reduced offspring production (17, 21).

Insects
The reproductive system of Drosophila melanogaster is more
complex compared with nematodes; it is composed of gonads,
genital ducts, and accessory structures. Several proteases have
been implicated in D. melanogaster spermatogenesis. In the D.
melanogaster genome, there are five genes paralogous to S.
cerevisiae ste24 encoding a type I prenyl protease. Deletion of
three tandemly arrayed ste24 paralogs results in male fertility
defects manifesting late in spermatogenesis (22).

All Drosophila spermatid nuclei descended from a primary
spermatocyte remain connected to each other via an extensive
network of cytoplasmic bridges. Spermatids should therefore be
physically dissociated from each other by a process referred as
individualization and a ubiquitin-proteasome system regulates
this process. Males in which Prosalpha6T encoding a testis-
specific proteasome core particle subunit was ablated are sterile
because of defects in sperm individualization and nuclear
maturation (23). Duba encodes a deubiquitylating enzyme and
Duba null mutants are male sterile and display defects in
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spermatid individualization (24). The non-apoptotic function
of caspases also contributes to individualization. DARK is a
Drosophila homolog of mammalian caspase activator Apaf-1,
whereas DRONC and DREDD are Drosophila apical caspases.
Flies deficient in DARK or expressing a dominant-negative
version of DRONC failed individualization (25, 135). Dredd-
null flies also often show individualization defects (25).

In D. melanogaster sperm, mitochondrial derivatives run
along the entire flagellum to provide structural rigidity for
flagellar movement. Two mitochondrial derivatives (i.e., major
and minor) differentiate and major one accumulates
paracrystalline material by the end of spermatogenesis. S-Lap1-
8, Sperm-Leucylaminopeptidase (S-Lap) family members are
constituents of paracrystalline material. S-Lap mutants possess
defects in paracrystalline material accumulation and abnormal
structure of the elongated major mitochondrial derivatives and
male sterility (28). Htra2 encodes a mitochondrial serine
protease. In one Htra2-null mutant line males are infertile
because sperm are completely immotile (26), whereas
spermatogenesis is defective in another Htra2 mutant line (27).

Seminal fluid produced in the accessory gland includes
proteases and protease inhibitors and is thought to contribute
to fertilization in a post-mating manner. Seminase is a trypsin-
like protease encoded by Sems and included in seminal fluid.
When females mated with Sems knockdown males, they laid
significantly fewer eggs (29). In cricket, Allonemobius socius, an
ejaculate serine protease encoded by ejac-sp is expressed in male
reproductive accessory glands. RNAi knockdown of ejac-sp
resulted in a significant reduction of the male’s ability to
induce a female to lay eggs (38). Nep4, a drosophila ortholog
of mammalian Mmel1, encodes a metalloprotease expressed in
male gonads (136). Nep4 mutant males are infertile; mutant
sperm are quickly discarded by females (30). When Dcp-1
TABLE 1 | Continued

Gene Protein feature Protein localization Gene-modified
organism

Fertility Phenotype Refs.

GCNA Metalloprotease Nucleus Spontaneous
mutation

Male infertility Non-obstructive azoospermia and cryptoospermia. (124,
125)

A. thaliana
A36 Aspartic protease Plasma membrane T-DNA insertion Decreased

male
transmission

Reduced pollen germination. (126)

A36; A39 Aspartic protease Plasma membrane Double KO by
T-DNA insertion

Severely
compromised
male
transmission

Programmed cell death of microspores. Compromised
micropylar guidance of pollen tubes.

(126)

PCS1 Aspartic protease Endoplasmic
reticulum

T-DNA insertion Reduced male
and female
transmission

Degeneration of both male and female gametophytes. (127)

UND Aspartic protease Mitochondria siRNA and artificial
microRNA

Partial male
sterility

Apoptosis-like programmed cell death in tapetum and
pollen.

(128)

CEP1 Cysteine
protease

Vacuole,
endoplasmic
reticulum

T-DNA insertion Male
subfertility

Mutants exhibited aborted tapetal PCD and decreased
pollen fertility with abnormal pollen exine.

(129)

SPF1; SPF2 SUMO-specific
cysteine protease

Double KO by
T-DNA insertion

Male and
female sterility

Severe abnormalities in microgametogenesis,
megagametogenesis, and embryo development.

(130)

O. sativa
OsAP65 Aspartic protease Vacuole T-DNA insertion Male sterility No germination or elongation of mutant pollen. (131)
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encoding a cysteine protease was ablated in their germline, the
resulting females were infertile because of defective
oogenesis (31).

Several proteases also of concern in Drosophila reproduction
include maternal haploid or mh encodes the Drosophila homolog
of SPRTN, a conserved metalloprotease essential for resolving
DNA–protein cross-linked products. Paternal chromatids of mh
mutants are unable to separate in the anaphase of the first
embryonic mitosis and form a chromatin bridge. As a
consequence, haploid nuclei of maternal origin rapidly separate
from the damaged paternal chromosomes and haploid embryos
develop but become lethal in a maternal effect manner (32,
33, 137). Ance encodes a putative homologue of mammalian
angiotensin-converting enzyme (ACE). Compound heterozygote
for two different Ance lethal alleles exhibit male sterility (34), but
the molecular details are unknown. RNAi knockdown of Slfc
encoding a secreted serine protease causes male infertility (35).
When a membrane serine protease encoded by ome was mutated,
males became subfertile (36). RNAi knockdown of a secreted
metalloprotease encoded by Mmp2 caused female subfertility
because ovulation was blocked (37).

Several pest control attempts target reproduction-associated
proteases. In pests Spodoptera litura and Plutella xylostella,
targeted inactivation of serine protease genes Osp and Ser2,
respectively, resulted in female and male infertility as also
observed in silkworm moth Bombyx mori (39, 40). In other
pests Hyphantria cunea, and Bactrocera dorsalis, RNAi
knockdown of Hcser2, and Bdcp-1 encoding serine protease
and cysteine protease, respectively, also resulted in infertility
(41, 42). Thus, proteases are potential targets for pest
population control.
MULTICELLULAR ORGANISMS II:
VERTEBRATES

Findings in vertebrates were obtained by genetic studies in
rodents, fish, and human patients. Genes disrupted in these
species include those encoding proteases, protease inhibitors,
and non-catalytically active pseudo-proteases. Proteolysis-
related factors are included in various aspects of male and
female reproductive processes such as gamete production,
gamete maturation, fertilization, post-fertilization events, and
mating behavior.

UPS in Gamete Production
For the fine-tuning of cellular processes, intracellular proteins are
timely degraded by UPS. The proteasome localizes in the nucleus
and cytoplasm where it degrades ubiquitylated proteins.
Spermatoproteasome, a testis-specific proteasome, is one of the
three tissue-specific proteasomes identified together with the
immunoproteasome and the thymoproteasome in mammals
(138). Deletion of Psma8, which encodes a testis-specific 20S
proteasome component, leads to spermatogenesis arrest at the
spermatocyte stage (43). Psme3 encodes REGg, a proteasome
activator. Psme3-null males are subfertile with decreased sperm
Frontiers in Endocrinology | www.frontiersin.org 882
number and motility (44). This is probable because REGg
regulates p53-mediated transcription of Plzf, a transcription
factor necessary for spermatogonial stem cell self-renewal and
proliferation (139). Psme4 encodes PA200 proteasome activator.
Psme4-null males have reduced fertility due to defects in meiotic
spermatocytes and post-meiotic spermatids (45). Psme3;Psme4
double KO males were infertile; mutant sperm appeared
morphologically normal but exhibited remarkable defects in
motility and decreased proteasome activity (46).

Proteasome target proteins are ubiquitylated by E3 ubiquitin
ligases which transfer the ubiquityl group from E2 ligase to the
target protein. There are ∼600 E3 ligases encoded in the
mammalian genome (140). The ubiquitin ligases, which are
not proteases but included in ubiquitin-proteasome system-
mediated protein degradation, indispensable for mammalian
reproduction are listed in Table 2. Here only Huwe1 is
mentioned as how E3 ligases function in reproductive
processes. Huwe1 ubiquitylates histone H2AX, which is
phosphorylated in response to DNA damage and is essential to
the efficient recognition and repair of DNA double-strand
breaks. Germline-specific Huwe1 ablation increased histone
H2AX level, elevated DNA damage response, and caused
Sertoli cell only phenotype. Thus Huwe1 likely regulates the
response to spontaneous DNA damage by UPS-mediated H2AX
degradation to maintain cell survival (156).

Cullin-RING E3 ubiquitin ligases are known to be reversibly
neddylated, i.e., conjugated with NEDD8, a ubiquitin-like
protein. By conjugation with NEDD8, cullin-RING E3 ligases
increase their stability and ligase activity. The constitutive
photomorphogenic-9 signalosome (CSN) deneddylates cullin-
RING E3 ligases by cleaving the isopeptide bond of neddylated
lysine to regulate the cellular ubiquitylation status. COPS5 is the
fifth component of the CSN and abundant in mouse testis (185).
Cops5-null males were infertile because of significant reduction
of sperm number caused by premeiotic apoptosis of germ
cells (47).

Ubiquitylated proteins can be deubiquitylated by
deubiquitylating enzymes such as ubiquitin-specific
proteases (USPs), cysteine endopeptidases encoded by Usp
genes, thereby expression levels and activity of target proteins
are regulated. USP1 deubiquitylates FANCD2 which is
included in the repair of DNA crosslinks. Usp1 null males
were infertile and the seminiferous tubules were markedly
atrophic and mostly devoid of spermatogenic cells in the
mutant testis. Usp2-null males possessed severely reduced
fertility and the mutant sperm were defective in sperm
motility and egg fertilizing ability in vitro (48). Germ cell-
specific ablation of Usp9x using Vasa-cre possessed
spermatogenic cell apoptosis at the early spermatocyte stage
and resulted in complete infertility (49). Usp26 is an X-linked
gene exclusively expressed in testis (186). Usp26 -null males
are subfertile because of reduced number of haploid cells in
testis (50, 51). Usp1-null female mice showed reduced fertility
probably because of a reduced number of oocytes in ovaries
(52). Thus, UPS is critically important for germ cell
production in both sexes.
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TABLE 2 | The ubiquitin ligases indispensable for mammalian reproduction.

Gene Type Gene-modified
organism

Phenotype Refs.

D. melanogaster
rae1 E3 ligase

component
ms (2)Z5584 mutation Male infertile, striking defects in primary spermatocyte nuclear integrity, meiotic chromosome

condensation, segregation, and spindle morphology.
(141)

parkin E3 ligase P element insertion Female infertility. (142)
cul3 E3 ligase EMS mutagenesis Male infertility (143)
C. elegans
mel-26 E3 ligase EMS mutagenesis Germ cell depletion and sterility. (144)
skr-1, skr-2 E3 ligase

component
RNAi
knockdown

Hermaphrodites are sterile. Arrested germline development in pachytene stage, expanded
transition zone, and the presence of gaps in the gonad arm.

(145)

vhl-1 E3 ligase RNAi
knockdown

Reduced fertility. (146)

M. musculus
Chfr E3 ligase KO 30% of KO male were infertile. (147)
Cul4a E3 ligase

component
KO Male infertility phenotype resulted from a combination of decreased spermatozoa number,

reduced sperm motility and defective acrosome formation.
(148,
149)

Cul4b E3 ligase Vasa-cre;
Cul4bfl/Y

Male infertility. (150)

Cul4b-/Y Male infertility. (151)
Dcaf17 E3 ligase KO Male infertility due to abnormal sperm development. (152)
Dcaf8 E3 ligase KO Pronounced sperm morphological abnormalities with typical bent head malformation. (153)
Dcun1d1 E3 ligase

component for
neddylation

KO Malformed spermatozoa with supernumerary and malpositioned centrioles. (154)

Fbxw7 E3 ligase
component

Amh-cre;
Fbxw7fl/fl

Impaired testis development, which is characterized by age-dependent tubular atrophy,
excessive germ cell loss, and spermatogenic arrest, and the mutant males were infertile at 7
months old

(155)

Huwe1 E3 ligase Ddx4-cre;
Huwe1fl/Y

Male infertile, Sertoli cell only phenotype. Increased level of histone H2AX and an elevated
DNA damage response.

(156)

E3 ligase Stra8-cre;
Huwe1fl/Y

Male infertile, spermatogenesis arrest. Accumulation of DNA damage response protein
gH2AX.

(157)

E3 ligase Zp3-cre;
Huwe1fl/fl

Oocyte death and female infertility. (158)

Mdm2 E3 ligase Pgr-cre; Mdm2fl/fl Female infertility. Impaired oocyte maturation, ovulation, and fertilization. (159)
Gdf9-cre;
Mdm2fl/fl

Female infertility. Complete lack of follicular structures resembling human premature ovarian
failure.

(160)

Zp3-cre;
Mdm2fl/fl

Female infertility. (160)

Amh-cre;
Mdm2fl/fl

Male infertile. degenerated testes with no organized seminiferous tubules and a complete
loss of differentiated germ cells.

(161)

Mgrn1 E3 ligase Spontaneous Male infertility. (162)
Phf7 E3 ligase KO Male infertility due to impaired protamine replacement in elongated spermatids. (163)
Rnf20 E3 ligase Stra8-cre;

Rnf20fl/fl
Male infertility because of arrested spermatogenesis at the pachytene stage. (164)

Rnf216 E3 ligase KO Disrupted spermatogenesis and male infertility. (165)
Rnf8 E3 ligase KO Male infertility. (166)

Gene trap Male infertility. (167)
Siah1a E3 ligase KO Female subfertility and male infertility. Interrupted spermatogenesis because of impaired

progression past meiotic metaphase I.
(168)

Spop E3 ligase Pgr-cre;
Spopfl/fl

Female infertility because of impaired uterine decidualization. (169)

Syvn1 (Hrd1) E3 ligase Alb-cre;
Hrd1fl/fl

Female infertility. (170)

Trim37 E3 ligase KO Male and female infertility. (171)
Trim71 E3 ligase Nanos3-cre;

Trim71fl/–
Male infertility because of Sertoli cell-only phenotype. (172)

Ubr2 E3 ligase KO Male infertility caused by arrested spermatogenesis at meiotic prophase I. (173)
Uhrf1 E3 ligase Stra8-cre; Uhrf1fl/fl Failure of meiosis and male infertility. (174)

Zp3-cre;
Uhrf1fl/fl

Female infertility. (175)

Rad6b E2 ligase KO Male infertility because of the loss of spermatogenesis (166)
Ube2i E2 ligase Gdf9-icre;

Ube2ifl/fl
Female infertility with major defects in stability of the primordial follicle pool, ovarian
folliculogenesis, ovulation and meiosis.

(176)

(Continued)
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Non-Proteasomal Intracellular and
Extracellular Proteolysis Factors in
Sperm Production
Intracellular and extracellular proteolysis factors critically
function in spermatogenesis. Cleavage of specific peptide
bonds also contributes to spermatogenesis. Apaf1 encodes a
caspase activator, and Apaf1-null males are infertile because of
degeneration of spermatogonia, which results in the absence of
sperm (53). Agbl5 encodes an intracellular metalloprotease.
Agbl5-null males are infert i le because of defective
spermatogenesis (54, 55). A cytosolic carboxypeptidase 1,
another metalloprotease encoded by Agtpbp1 deglutamylates
polyglutamylated proteins. Agtpbp1 mutant mice known as
Purkinje cell degeneration (pcd) possess male infertility (109–
112) because of defective spermatogenesis (110). A germ cell
nuclear antigen encoded by Gcna contains a metalloprotease
domain. Gcna-null males are nearly devoid of sperm and infertile
(56). In human, GCNA spontaneous mutations were identified in
spermatogenic failure patients (124, 125).

Separin, a caspase-like cysteine protease encoded by Espl1,
plays a central role in chromosome segregation by cleaving the
SCC1/RAD21 subunit of the cohesin complex (187–189). A
point mutation in Espl1 which substitutes inhibitory
phosphorylation site Ser1121 to Ala depletes spermatogonia
because of chromosome misalignment during proliferation of
the postmigratory primordial germ cells and following mitotic
arrest, aneuploidy, and cell death (105). Threonine aspartase 1
(TASP1) is an intracellular endopeptidase that cleaves after
distinct aspartate residues of the conserved IXQL(V)D/G motif
(190). TASP1 cleaves general transcription factor TFIIAa−b to
enable testis-specific transcription; Tasp1-null male mice were
unable to activate spermatogenic gene activation, which lead to
the release of immature germ cells and infertility (57). A serine
protease ClpP is located in the mitochondrial matrix and
participates in mitochondrial protein quality control by
Frontiers in Endocrinology | www.frontiersin.org 1084
degrading misfolded or damaged proteins. In Clpp-null
mutants spermatogenesis was disrupted by the spermatid stage
(114). Tysnd1 encodes a serine protease that processes
peroxisomal leader peptides. Tysnd1-null mutant males possess
globozoospermia and their spermatozoa lack the acrosomal cap
(58). Spink2 encodes a Kazal-type serine protease inhibitor
abundantly expressed in testis and epididymis (191). Spink2-
null males had azoospermia, and a homozygous splice mutation
of SPINK2 was found in infertile men (59). Ablation of Serpina5
encoding another serine protease inhibitor also results in an
abnormality in sperm production in the testis (60).

Puromycin-sensitive aminopeptidase encoded by Npepps is
also an intracellular protease. It appears to contribute indirectly
to spermatogenesis. Npepps-null testes and seminal vesicles were
significantly reduced in weight, spermatogenesis was impaired,
and copulatory behavior was lacking. It is suggested that the
defects in the testes likely arises from dysfunction of Sertoli cells,
whereas the lack of copulatory behavior results from defects in
the brain (115).

A nul l mutat ion of Adamts2 encoding secreted
metalloproteinase caused male infertility (61). Decreased
spermatogenesis was observed but copulatory behavior and/or
copulatory plug formation may also be impaired because a
copulatory plug was never observed (61).

Proteolysis Factors Associated With
Sperm Function
Acrosomal Function
The acrosome is a Golgi-derived sperm head organelle in which
many digestive enzymes such as proteases and hyaluronidases
are included to penetrate egg surroundings. Acrosin is a serine
protease and a major component of the acrosome. Although
acrosin-deficient male mice are fertile (62, 63), disruption of
hamster acrosin resulted in complete male infertility (120). In
vitro, mutant hamster spermatozoa attached to the zona
TABLE 2 | Continued

Gene Type Gene-modified
organism

Phenotype Refs.

Ube2j1 E2 ligase KO Male infertility because of deficient spermatogenesis. (177)
Ube2q1 E2 ligase KO Reduced female fertility. Altered estrus cycle, abnormal sexual behavior and reduced

offspring care, and significantly increased embryonic lethality in the uterus of mutant females.
(178)

H. sapiens
RNF220 E3 ligase Spontaneous mutation Small-headed sperm. (179)
A. thaliana
PUB4 E3 ligase T-DNA

insertion
Male sterility. (180)

SAP E3 ligase
component

Two-element Enhancer-
Inhibitor transposon
system

Male and female sterility. Severe aberrations in inflorescence and flower and ovule
development. Carpelloid sepals, short and narrow or absent petals, and degenerated
anthers.

(181)

SIZ1 SUMO E3 ligase T-DNA
insertion

Arrest of funicular and micropylar pollen tube guidance. (182)

MMS21 SUMO E3 ligase T-DNA
insertion

Severely reduced fertility, deficient gametogenesis. (183)

O. sativa
SIZ1 SUMO E3 ligase T-DNA

insertion
Spikelet sterility caused by defective anther dehiscence. (184)
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pellucida, but failed to penetrate it (120), suggesting that
acrosomal function can be attributed to specific factors in a
species-specific manner.

Proprotein convertases convert inactive precursor proteins
into their mature and active forms. PCSK4 is a member of
proprotein convertases expressed on the sperm surface overlying
the acrosome (64). Pcsk4-null males showed impaired fertility
(64, 65) and mutant sperm exhibited accelerated capacitation,
precocious acrosome reaction, reduced binding to egg zona
pellucida (64). Acrosome formation during spermatogenesis
was also abnormal (192).

Sperm Maturation
A group of genes encoding proteases, enzymatically inactive
pseudoproteases, and protease inhibitors is apparently associated
with the same physiological function, i.e., maturation of sperm
conferring abilities to migrate into female oviduct and bind with
zona pellucida. Ablation of Tmprss12 (66), Prss55 (67, 68), Tryx5
(69), Prss37 (70), Ace (71), Adam1a (72), Adam2 (73), Adam3
(74, 75), and Adam6 (76) results in deficient sperm migration into
the oviduct and binding to the zona pellucida of eggs. Among
them, Adam1a, Adam2, Adam3, Adam6, and Prss37 encode
catalytically inactive pseudoproteases. A disintegrin and
metallopeptidase domain (ADAM) 3, a catalytically inactive
transmembrane pseudoprotease appears to be central to a
molecular mechanism that governs sperm migratory and
adhesion abilities, because ADAM3 expression is a prerequisite
for sperm to acquire these abilities (193).

ADAM3 is expressed as a precursor and the processed into
mature form as spermatozoa mature in epididymis (194).
Similarly, enzymatically inactive pseudoproteases ADAM2 and
ADAM6 are processed during sperm maturation in epididymis
(195, 196). Therefore, they are rather substrates for other
proteases. Ablation of ADAM2 or ADAM6 also results in
significant decrease or loss of ADAM3 from epididymal sperm
(74, 76) indicating the involvement of both ADAM2 and
ADAM6 in ADAM3 expression. PRSS37 supports ADAM3
precursor translocation to the sperm cell surface by
collaborating with PDILT, a testis-specific protein disulfide
isomerase indispensable for ADAM3 surface expression (197,
198). TMPRSS12, PRSS55, and TRYX5, all of which are serine
proteases and retain catalytic triad residues, are necessary for the
production or stable localization of processed ADAM3 on the
cell surface of epididymal spermatozoa (66–69), although it
remains uncertain whether these proteases directly
cleave ADAM3.

Cystatins are secreted cysteine proteinase inhibitors. Cystatin
genes Cst8, 9, 11, 12, 13, dc1, dc2, and l1 are clustered on mouse
chromosome 2 and expressed in both testis and epididymis.
Their simultaneous ablation resulted in the loss of ADAM3 from
epididymal sperm and deficient sperm migration into the
oviduct (77), implying the importance of regulated proteolysis
in sperm maturation. Ovochymase 2 (OVCH2) is a
chymotrypsin-like serine protease. OVCH2 is specifically
expressed in the caput epididymis under the regulation of
lumicrine signaling, in which testis-derived secreted protein
Frontiers in Endocrinology | www.frontiersin.org 1185
NELL2 transiting through the luminal space acts on the
epididymal epithelium by binding to its receptor ROS1
tyrosine kinase to differentiate (78). Ablation of Ovch2 results
in abnormal sperm ADAM3 processing and deficient sperm
migration into the oviduct (78). Thus, regulated proteolysis on or
outside spermatozoa apparently modulates sperm maturation.

NL1 encoded by Mmel1 is a zinc metallopeptidase expressed
in testis. NL1 is expressed as a type II transmembrane protein but
released as a soluble form. Mmel1-null mice show normal
spermatogenesis but reduced egg fertilization, suggesting the
role of NL1 in sperm maturation (79). It remains, however,
uncertain whether NL1 is included in ADAM3-mediated sperm
maturation. Testisin encoded by Prss21 is a GPI-anchored serine
protease. Prss21 KO males are subfertile because mutant
spermatozoa possessed decreased motility, angulated and
curled tails, and fragile necks (80). In another Prss21 mutant
line in vitro sperm binding to egg zona pellucida, acrosome
reaction, and fertility were decreased (81).

Other Proteolytic Factors Associated With
Male Reproduction
Several cell surface and extracellular proteases and inhibitors
seem to regulate male fertility in more indirect manners.
Adamts16 homozygous mutant rat males resulted in
cryptorchidism and male sterility (121). The mutant testis
undescended during development because of the failure of
gubernacular migration (122). g-glutamyltranspeptidase 1
(GGT1) is a type II transmembrane protein which cleaves g-
glutamyl bond of extracellular glutathione (g-Glu-Cys-Gly),
glutathione conjugates, and other g-glutamyl compounds. The
resulting cysteinyl-glycine is further cleaved by dipeptidase into
free amino acids. Ggt1-null males are infertile because of
decreased epididymal sperm number and failure in copulatory
plug formation (117). Although Ggt1-null testis was small,
spermatogenesis inside seminiferous tubules appeared normal
and seminal vesicles were hypoplastic. As N-acetylcysteine-fed
mutant mice were fertile, the observed infertility is a consequence
of cysteine deficiency (117),. Carboxypeptidase E (CPE) is a
metallo-carboxypeptidase and functions as a prohormone
processing exopeptidase. Cpefat/fat males are infertile and
deficient in Pro-gonadotropin-releasing hormone processing in
the hypothalamus (82). ADAM24 is a metalloproteinase
localized on the mature sperm surface. Adam24-null males are
subfertile and polyspermic fertilization increased in vitro and in
vivo, suggesting a physiological role of ADAM24 for prevention
of polyspermy (83). ADAM7 is a membrane-anchored protein
with a catalytically-inactive metalloproteinase domain
abundantly expressed in the epididymis (199). Adam7 ablation
resulted in a modest reduction of male fertility; impaired
epididymal morphology and integrity may affect sperm
maturation (84).

Cystatin C encoded by Cst3 is a cysteine protease inhibitor
abundantly expressed in testis and epididymis. Substitution of
Leu68 to Gln is an amyloid-forming mutation found in a
hereditary form of cystatin C amyloid angiopathy.
Heterozygous male mice were infertile and increased levels of
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amyloid was observed in the epididymal fluid (85).
Nonpathological function of amyloid during epididymal sperm
maturation is also suggested (200).

Immp2l encodes an inner mitochondrial membrane peptidase
2-like. Immp2l-null homozygous males were severely subfertile
because of erectile dysfunction (118). Tumor necrosis factor-a
(TNFa) converting enzyme encoded by Adam17 is involved in
the proteolytic release of the ectodomain of diverse cell surface
proteins. Conditional ablation of Adam17 with Sox9-cre severely
impaired male fertility but the details are uncertain (119).

Serpine2 encodes protease nexin-1, a serine protease inhibitor
expressed in seminal fluid. Serpine2-null males possessed
reduced fertility because of impaired semen coagulation and
copulatory plug formation (86).

Proteolytic Factors in Ovary and Follicle
Development
Both intracellular and extracellular proteolytic factors are
included in ovary and follicle development. Conditional
ablation of separase under the control of Zp3-cre hindered
extrusion of the first polar body and caused female sterility
(106). Introduction of a Ser1121 to Ala deregulatory mutation into
separase led to primordial germ cell apoptosis during embryonic
oogenesis (107). Ablation of cytosolic carboxypeptidase 1
encoded by Agtpbp1 results in female subfertility because
secondary follicles poorly develop into antral follicles (113).
Oocyte-specific ablation of nuclear cysteine protease separase
causes female infertility because mutant oocytes are able neither
to extrude polar bodies in meiosis I nor to resolve
chiasmata (106).

A deregulatory mutation into separin encoded by Espl1 at
early embryonic period caused primordial germ cell depletion by
apoptosis during embryonic oogenesis, which led to female
infertility (105, 107). The introduction of the same mutation at
later oocyte development by using Zp3-cre also resulted in female
infertility but because of failure in preimplantation
development (108).

Matriptase encoded by Tmprss6 is a type II transmembrane
serine protease which functions in iron homeostasis by cleaving
cell surface proteins associated with iron absorption. Tmprss6-
null females possessed marked retardation in ovarian maturation
(87), probably because of severe decrease in plasma iron levels.
The defective ovarian follicle development and female infertility
can be mimicked by a low iron diet (201).

The inter-a-trypsin inhibitor (IaI) family are abundantly
found in body fluids including blood plasma and urine and
possess inhibitory activity for serine proteases. They are
composed of bikunin, a proteoglycan with a single chondroitin
sulfate chain, and heavy chains covalently bound to chondroitin
sulfate chain of bikunin. IaI family members are able to transfer
their heavy chains from IaI to hyaluronan in the presence of
tumor necrosis factor-stimulated gene-6. This reaction results in
the modified hyaluronan covalently linked heavy chain and is
necessary for hyaluronan-rich cumulus matrix expansion. When
the bikunin-coding region was deleted from Ambp gene, the
resulting homozygous females ovulate oocytes deficient in
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hyaluronan-rich cumulus matrix expansion, leading to female
infertility (88, 89).

g-secretase is an endoprotease complex that catalyzes the
intramembrane cleavage of integral membrane proteins. Psen1
encodes presenillin-1, a catalytic subunit of g-secretase. Female
mice homozygous with a Leu166 to Pro mutation, an aggressive
mutation found in familial Alzheimer’s disease patients, are
infertile and their ovaries consisted largely of stromal elements
with primordial follicles near the cortex (90).

ADAMTS1 is a secreted metalloproteinase expressed in the
granulosa cell layer of mature follicles in the ovary (91).
Adamts1-null females possessed lower numbers of mature
follicles in the ovary and a thick and convoluted uterus (92).
In another mutant mouse line, ovulation in null females was
impaired because mature oocytes remained trapped in ovarian
follicles (91). In zebrafish, adamts9-null females possess ovarian
malformation and are unable to ovulate (123).

Lonp encodes a mitochondrial serine protease. Oocyte-
specific Lonp ablation by Gdf9-cre or Zp3-cre; Lonp1fl/fl results
in female infertility because of impaired follicular development,
progressive oocyte death, ovarian reserve loss (93). Furin encodes
a transmembrane serine protease localized in Golgi appratus,
endosome, plasma membrane; it is necessary for mature protein
release by cleaving at RX(K/R)R consensus motif. Conditional
ablation of Furin by Gdf9-cre or Zp3-cre; Furinfl/fl result in female
infertility because of the arrested oogenesis at early secondary
follicles (94). Pappa encodes an extracellular metalloprotease.
Pappa KO females decreased their litter size and ovulatory
capacity, probably because of decreased bioavailability of
ovarian insulin-like growth factor (95).

Loss of GGT1 causes infertility in not only males but females.
In the Ggt1-null females, antral follicles and corpora lutea were
absent and follicles degenerated due to the reduced intracellular
cysteine levels (117).

Mitochondrial proteases also affect ovarian follicle
development. Ablation of Clpp encoding mitochondrial matrix
ClpP protease caused relatively small ovaries in which follicular
differentiation was impaired probably because of the reduction of
the granulosa cell layers (114). When the inner mitochondrial
membrane peptidase 2-like encoded by Immp2l was ablated, the
resulting mutant females were deficient in folliculogenesis and
ovulation and infertile, probably because of low availability of
nitric oxide caused by mitochondrial dysfunction (118).

Proteolytic Factors in Post-Fertilization
Events of Female Reproduction
Several proteolysis-associated secreted proteins contribute to
post-fertilization events including the hardening of the egg-
surrounding zona pellucida. Ovastacin encoded by Astl is a
secreted metalloendopeptidase deposited in cortical granules of
oocytes. Ovastatin is secreted into the extracellular space in
response to egg activation triggered by fertilization. In Astl-null
eggs, ZP2 cleavage necessary for zona pellucida hardening and
the postfertilization block to polyspermy did not occur after
fertilization (96). Fetuin is a cystatin family protease inhibitor
abundantly expressed in blood plasma. Fetuin-B prevents
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premature ZP hardening probably by inhibiting ovastacin
derived from spontaneous cortical granule release, as fetuin-B
inhibited ovastacin protease activity in vitro and Fetub-deficient
oocytes undergo premature zona pellucida hardening (97).

Antithrombin encoded by Serpinc1 inhibits thrombin and
some other coagulation factors by binding heparin and heparan
sulfate. When an Arg48 to Cys mutation, which corresponds to
human thrombosis mutation, was introduced into mice, the
resulting homozygous females had decreased their litter size,
probably because thrombosis occurred in placenta (98).

Adam10 encodes a membrane metalloprotease. Conditional
ablation of vascular Adam10 by Tie2-Cre; Adam10fl/fl causes
impaired decidualization and female subfertility (99). Adamts18
encodes a member of secreted metalloprotease ADAMTS.
Adamts18-null females suffer from vaginal obstruction, due to
either a dorsoventral vaginal septum or imperforate vagina and
infertility or subfertility (100).

Other Proteolytic Factors in
Female Reproduction
Several proteolysis-associated factors regulate female
reproduction in a more indirect manner. Npepps-null females
lacking a puromycin-sensitive aminopeptidase impairs corpus
luteum formation and are infertile, probably because of
disruption of the hypothalamic-pituitary axis (116). Plasmin is
a secreted serine protease generated from plasminogen through
activation by tissue-type or urokinase-type plasminogen
activators. The fertility of plasmin-deficient Plg-null female
mice appeared to be compromised (101, 102). It seems not to
be the consequence of the impaired proteolytic process essential
for ovulation, as plasminogen-deficient mice had normal
ovulation efficiency (202). Timp1 encodes a tissue inhibitor of
metalloproteinases 1, an inhibitor for matrix metalloproteinases.
Timp1 mutation reduced the reproductive lifespan of female but
not male mice (103). When Pcsk2 encoding neuroendocrine
convertase 2 was ablated, the number of consecutive litters
from mutant female mice was small and Pcsk2-null female
mice sometimes gave birth to dead pups (104) for uncertain
reason. Conditional ablation of TNFa converting enzyme by
Sox9-cre; Adam17fl/fl resulted in female infertility but details are
uncertain (119).
FERTILITY-ASSOCIATED PROTEASES
IN PLANTS

Several aspartic proteases are associated with pollen development
and function. In Arabidopsis thaliana, A36 and A39 are GPI-
anchored putative aspartic proteases predominantly expressed in
pollen and the pollen tube. In a36; a39 double mutant, pollen
grains underwent apoptosis-like programmed cell death and the
pollen tube compromised micropylar guidance (126). UND
encodes a secreted aspartic protease UNDEAD, and its
silencing using small interfering RNA caused premature tapetal
and pollen programmed cell death (128).
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In Oryza sativa, OsAP65 encodes an aspartic protease
localized in the pre-vacuolar compartment. T-DNA-inserted
OsAP65 mutant alleles could not be transmitted through the
male gamete; the mutant pollen matured normally, but did not
germinate or elongate, indicating its essentiality in pollen
germination and tube growth (131). PCS1 encodes an aspartic
protease and its loss-of-function mutation caused degenerated
male and female gametophytes (127).

A cysteine protease also contributes to pollen development;
when a papain-like vacuolar cysteine protease encoded by CEP1
was ablated, the resulting mutants are male subfertile because of
aborted tapetal programmed cell death and decreased pollen
fertility with abnormal pollen exine (129).

Some aspect of A. thaliana reproduction includes Small
Ubiquitin-related Modifier (SUMO). SPF1 and SPF2 are
cysteine proteases and function in desumoylation of
sumoylated proteins. spf1; spf2 double mutants exhibit severe
abnormalities in microgametogenesis, megagametogenesis, and
embryo development (130). There are SUMO-E3 ligases
involved in gametophyte development (182, 183) in A.
thaliana and in anther dehiscence in O. sativa (184).
CONCLUSION AND PERSPECTIVE

By a comprehensive survey, it has been demonstrated that
proteolysis regulates reproduction in various species including
yeast, insects, nematodes, vertebrates, and plants. Regulation of
reproduction by proteolysis already exist in unicellular yeast. In
multicellular organisms, proteolysis regulates the formation and
function of gametes derived from germ cells as well as the
development and function of reproductive organs by somatic
cells, thereby securing successful reproduction. In these cell
lineages, both limited proteolysis and degrative proteolysis by
ubiquitin-proteasome system play critical roles.

One of intriguing paradigms emerging in this review is that
many sperm surface and extracellular proteases, pseudoproteases,
and inhibitors are included in the acquisition of mammalian
sperm conferring abilities to migrate into the oviduct and to
bind to the zona pellucida of eggs. As spermatozoa are
transcriptionally and translationally silent, post-translational
modification mechanisms such as proteolysis may largely
contribute to sperm maturation.

Many compounds have been designed to inhibit the
enzymatic activity of proteases. Clinically, there have been
numerous successes including angiotensin-converting enzyme
inhibitors for cardiovascular disorders (203), thrombin
inhibitors for thromboembolism and bleeding disorders (204,
205), and HIV protease inhibitors in the treatment of HIV and
AIDS (206), among others (207, 208). In addition, enzymatically
active proteases could also be good druggable targets
for contraceptives.

Genome editing techniques developed in recent years will
identify fertility-associated proteolytic factors further. In
addition to identifying novel factors, more intense studies on
the molecular basis of proteolysis including the identification of
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substrates will clarify how proteolytic events govern
reproduction. It will also clarify the physiological significance
of molecular events governed by proteolysis in reproduction.
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140. Jevtić P, Haakonsen DL, Rapé M. An E3 Ligase Guide to the Galaxy of Small-
Molecule-Induced Protein Degradation. Cell Chem Biol (2021) 28(7):1000–
13. doi: 10.1016/j.chembiol.2021.04.002

141. Volpi S, Bongiorni S, Fabbretti F, Wakimoto BT, Prantera G. Drosophila
Rae1 is Required for Male Meiosis and Spermatogenesis. J Cell Sci (2013) 126
(Pt 16):3541–51. doi: 10.1242/jcs.111328

142. Ottone C, Galasso A, Gemei M, Pisa V, Gigliotti S, Piccioni F, et al.
Diminution of Eif4e Activity Suppresses Parkin Mutant Phenotypes. Gene
(2011) 470(1–2):12–9. doi: 10.1016/j.gene.2010.09.003

143. Arama E, Bader M, Rieckhof GE, Steller H. A Ubiquitin Ligase Complex
Regulates Caspase Activation During Sperm Differentiation in Drosophila.
PloS Biol (2007) 5(10):e251. doi: 10.1371/journal.pbio.0050251

144. Luke-Glaser S, Pintard L, Tyers M, Peter M. The AAA-ATPase FIGL-1
Controls Mitotic Progression, and its Levels are Regulated by the CUL-3mel-
26 E3 Ligase in the C. Elegans Germ Line. J Cell Sci (2007) 120(Pt 18):3179–87.
doi: 10.1242/jcs.015883

145. Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET. The
Caenorhabditis Elegans Skp1-Related Gene Family: Diverse Functions in
Cell Proliferation, Morphogenesis, and Meiosis. Curr Biol (2002) 12(4):277–
87. doi: 10.1016/S0960-9822(02)00682-6

146. Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, et al.
Proteasomal Regulation of the Hypoxic Response Modulates Aging in C.
elegans Sci (2009) 324(5931):1196–8. doi: 10.1126/science.1173507

147. Lu L-Y, Yu X. CHFR is Important for the Survival of Male Premeiotic Germ
Cells. Cell Cycle (2015) 14(21):3454–60. doi: 10.1080/15384101.
2015.1093701

148. Yin Y, Lin C, Kim ST, Roig I, Chen H, Liu L, et al. The E3 Ubiquitin Ligase
Cullin 4A Regulates Meiotic Progression in Mouse Spermatogenesis. Dev
Biol (2011) 356(1):51–62. doi: 10.1016/j.ydbio.2011.05.661

149. Kopanja D, Roy N, Stoyanova T, Hess RA, Bagchi S, Raychaudhuri P. Cul4A
is Essential for Spermatogenesis and Male Fertility. Dev Biol (2011) 352
(2):278–87. doi: 10.1016/j.ydbio.2011.01.028

150. Yin Y, Liu L, Yang C, Lin C, Veith GM, Wang C, et al. Cell Autonomous and
Nonautonomous Function of CUL4B in Mouse Spermatogenesis. J Biol
Chem (2016) 291(13):6923–35. doi: 10.1074/jbc.M115.699660

151. Lin C-Y, Chen C-Y, Yu C-H, Yu I-S, Lin S-R, Wu J-T, et al. Human X-Linked
Intellectual Disability Factor CUL4B Is Required for Post-Meiotic Sperm
Development and Male Fertility. Sci Rep (2016) 6:20227. doi: 10.1038/
srep20227

152. Ali A, Mistry BV, Ahmed HA, Abdulla R, Amer HA, Prince A, et al. Deletion
of DDB1- and CUL4- Associated Factor-17 (Dcaf17) Gene Causes
Spermatogenesis Defects and Male Infertility in Mice. Sci Rep (2018) 8
(1):9202. doi: 10.1038/s41598-018-27379-0

153. Zhang X, Xia Z, Lv X, Li D, Liu M, Zhang R, et al. DDB1- and CUL4-
Associated Factor 8 Plays a Critical Role in Spermatogenesis. Front Med
(2021) 15(2):302–12. doi: 10.1007/s11684-021-0851-8

154. Huang G, Kaufman AJ, Ryan RJH, Romin Y, Huryn L, Bains S, et al. Mouse
DCUN1D1 (SCCRO) is Required for Spermatogenetic Individualization.
PloS One (2019) 14(1):e0209995. doi: 10.1371/journal.pone.0209995

155. Zhang H, Chen F, Dong H, Xie M, Zhang H, Chen Y, et al. Loss of Fbxw7 in
Sertoli Cells Impairs Testis Development and Causes Infertility in Mice†.
Biol Reprod (2020) 102(4):963–74. doi: 10.1093/biolre/ioz230

156. Fok KL, Bose R, Sheng K, Chang C-W, Katz-Egorov M, Culty M, et al.
Huwe1 Regulates the Establishment and Maintenance of Spermatogonia by
Suppressing DNA Damage Response. Endocrinol (2017) 158(11):4000–16.
doi: 10.1210/en.2017-00396

157. Bose R, Sheng K, Moawad AR, Manku G, O’Flaherty C, Taketo T, et al.
Ubiquitin Ligase Huwe1 Modulates Spermatogenesis by Regulating
Spermatogonial Differentiation and Entry Into Meiosis. Sci Rep (2017) 7
(1):17759. doi: 10.1038/s41598-017-17902-0
Frontiers in Endocrinology | www.frontiersin.org 1892
158. Eisa AA, Bang S, Crawford KJ, Murphy EM, Feng WW, Dey S, et al. X-
Linked Huwe1 Is Essential for Oocyte Maturation and Preimplantation
Embryo Development. iSci (2020) 23(9):101523. doi: 10.1016/
j.isci.2020.101523

159. Haraguchi H, Hirota Y, Saito-Fujita T, Tanaka T, Shimizu-Hirota R, Harada
M, et al. Mdm2-P53-SF1 Pathway in Ovarian Granulosa Cells Directs
Ovulation and Fertilization by Conditioning Oocyte Quality. FASEB J
(2019) 33(2):2610–20. doi: 10.1096/fj.201801401R

160. Zhang C-X, Zhang Q, Xie Y-Y, He X-Y, Xiang C, Hou X-S, et al. Mouse
Double Minute 2 Actively Suppresses P53 Activity in Oocytes During Mouse
Folliculogenesis. Am J Pathol (2017) 187(2):339–51. doi: 10.1016/
j.ajpath.2016.09.023
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Low NAD+ Levels Are Associated
With a Decline of Spermatogenesis in
Transgenic ANDY and Aging Mice
Mirella L. Meyer-Ficca1,2*, Alexie E. Zwerdling2, Corey A. Swanson1, Abby G. Tucker2,
Sierra A. Lopez1,2, Miles K. Wandersee1,2, Gina M. Warner3,4, Katie L. Thompson3,4,
Claudia C.S. Chini 3,4, Haolin Chen5†, Eduardo N. Chini 3,4 and Ralph G. Meyer1,2*

1 School of Veterinary Medicine, Utah State University, Logan, UT, United States, 2 Department of Animal, Dairy, and
Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States, 3 Signal
Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative
Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States, 4 Department of Anesthesiology and Perioperative
Medicine Mayo Clinic, Jacksonville, FL, United States, 5 Department of Biochemistry and Molecular Biology, Johns Hopkins
Bloomberg School of Public Health, Baltimore, MD, United States

Advanced paternal age has increasingly been recognized as a risk factor for male fertility
and progeny health. While underlying causes are not well understood, aging is associated
with a continuous decline of blood and tissue NAD+ levels, as well as a decline of testicular
functions. The important basic question to what extent ageing-related NAD+ decline is
functionally linked to decreased male fertility has been difficult to address due to the
pleiotropic effects of aging, and the lack of a suitable animal model in which NAD+ levels
can be lowered experimentally in chronologically young adult males. We therefore
developed a transgenic mouse model of acquired niacin dependency (ANDY), in which
NAD+ levels can be experimentally lowered using a niacin-deficient, chemically defined
diet. Using ANDY mice, this report demonstrates for the first time that decreasing body-
wide NAD+ levels in young adult mice, including in the testes, to levels that match or
exceed the natural NAD+ decline observed in old mice, results in the disruption of
spermatogenesis with small testis sizes and reduced sperm counts. ANDY mice are
dependent on dietary vitamin B3 (niacin) for NAD+ synthesis, similar to humans. NAD+-
deficiency the animals develop on a niacin-free diet is reversed by niacin supplementation.
Providing niacin to NAD+-depleted ANDY mice fully rescued spermatogenesis and
restored normal testis weight in the animals. The results suggest that NAD+ is
important for proper spermatogenesis and that its declining levels during aging are
functionally linked to declining spermatogenesis and male fertility. Functions of NAD+ in
retinoic acid synthesis, which is an essential testicular signaling pathway regulating
spermatogonial proliferation and differentiation, may offer a plausible mechanism for the
hypospermatogenesis observed in NAD+-deficient mice.

Keywords: vitamin B3, niacin, nicotinamide, testis, aging, retinoic acid, spermatogonia, male fertility
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INTRODUCTION

Associated with socioeconomic considerations, for example
increased time needed for education and professional
development, mean paternal age has increased over the past 44
years from 27.4 to 30.9 years (1). This is concerning because
paternal age has been shown to negatively affect fertility,
pregnancy rates and children’s health (2, 3). How exactly the
aging process exerts its negative effects on male fertility is not
clear, because of its pleiotropic effects on the body, including the
testis (4, 5). Although underlying mechanisms are not yet well
understood, one of the hallmarks of aging is a steady decline of
cellular, tissue and plasma NAD+ concentrations, observed
during chronological aging in humans, worms, flies, and mice
(6–10). NAD+ and NADP+, and their reduced forms NADH and
NADPH, are important coenzymes for most cellular redox
reactions, and as such essential for maintaining cellular
metabolism and respiration. In addition to its function as a
redox cofactor, NAD+ is also consumed by enzymes involved in
chromatin modification, gene regulation, and DNA repair,
including poly(ADP-ribose) polymerases (PARP family of
enzymes), as well as NAD-dependent protein deacetylases
(sirtuins) and CD38 (11–13).

Unfortunately, the links between aging, low NAD+ levels and
declining fertility are not well understood because systematic
investigations have been hampered by basic metabolic
differences present between laboratory rodents and humans in
their ability to generate NAD+ from their diet.

In certain mammals, including humans, nicotinic acid (NA),
nicotinamide (Nam) and Nam riboside (NamR), collectively
referred to as niacin or vitamin B3, are the main nutritional
precursors of NAD+ and its phosphorylated form, NADP+.
Humans depend on dietary niacin as their main source of
NAD+ and NADP+ precursors and can become niacin-
deficient when their food lacks sufficient amounts of vitamin
B3. Niacin deficiency is characterized by very low levels of NAD+

and in its most extreme form, pellagra, can be debilitating and
even deadly, which is now rare in western countries. However,
milder forms of clinical niacin deficiency are commonly seen
with increasing age, and in cancer patients, alcoholics and people
without access to quality food (14, 15). While this may be
clinically relevant on its own, it is unlikely that a lack of
dietary vitamin B3 intake is at the root of age-related NAD+

decline. Instead, age-related increases in the activity of NAD+-
consuming enzymes such as PARP1 and CD38, or potential
mitochondrial dysfunction, or both, provide a more plausible
explanation [(12, 16, 17), reviewed in (18)].

Physiological effects of low NAD+ status and their potential
impact on male fertility have been difficult to study because of a
lack of suitable animal models. Wild-type laboratory rodents are
able to completely satisfy their NAD+ needs by metabolizing
tryptophan (Trp) to NAD+ via the kynurenine (de novo
synthesis) pathway and, unlike humans, do not depend on
intake of dietary niacin. In order to address this problem and
to investigate the impact of low NAD+ levels as a potential factor
contributing to the decline of fertility in aging males, we therefore
generated mice with tetracycline-inducible overexpression of a
Frontiers in Endocrinology | www.frontiersin.org 295
transgene encoding the enzyme human aminocarboxymuconate
semialdehyde decarboxylase (hACMSD) to create a mouse model of
human-like NAD+ metabolism (ANDY, acquired niacin
dependency) (19). In this mouse, hACMSD overexpression
diverts the central kynurenine pathway in the liver and kidney to
produce acetyl-CoA instead of NAD+ which makes the animals
dependent on dietary niacin intake as the main source of NAD+
synthesis, similar to humans (19) (Figure 1A). ANDY mice with
hACMSD overexpression reproducibly become NAD+-deficient in
various tissues over the course of 6 weeks on a defined diet that is
devoid of niacin (ND diet), but not on a control diet that is
chemically identical to ND but supplemented with 30 mg/kg
nicotinic acid (CD diet). Previous data showed that ANDY mice
had significantly lower NAD+ and NADP+ levels in blood, liver, and
other tissues when they received a niacin-free ND diet and
doxycycline (Dox, a water-soluble tetracycline) in their drinking
water (19). If maintained at very low NAD+ levels, male ANDY
mice sired smaller litters than control males (data not shown).

The goal of the current study has therefore been to investigate the
impact of NAD+ deficiency on spermatogenesis in young adult
ANDY mice to test the hypothesis that low NAD+ levels have a
negative impact on male fertility, independent of chronological age.
MATERIALS AND METHODS

Animal Model and Induction of
NAD Deficiency
Details of the generation of the transgenic animalmodel C57BL/6J-
Gt(Rosa)26Sortm1(rTTa*M2)JaeCol1a1tm6(tetO-hACMSD)MMF and the
biochemical basis of NAD-dependency in these mice has been
described previously (19). Briefly, administration of doxycycline, a
water-soluble tetracycline, in the drinking water induces
overexpression of the human aminocarboxymuconate
semialdehyde decarboxylase (hACMSD) gene. Increased ACMSD
activity renders these transgenic mice dependent on dietary niacin
uptake in a manner similar to humans. In the absence of dietary
niacin, these ANDY mice become measurably NAD+ deficient in
blood and body tissues (19). Mice were bred and housed under
standard conditions. Transgene expression was only induced in
adult mice during the feeding trials. Breeding, postnatal and
pubertal development occurred in the absence of doxycycline-
induced transgene overexpression and on normal, niacin-
containing chow diet. Animal studies and experimental
procedures were approved by the Institutional Animal Care and
Use Committees (IACUC protocol number 10056) of Utah State
University and of Mayo Clinic, Rochester, Minnesota.

Defined Feeds and Feeding Trials
Standard chow diet was Teklad Rodent diet 8604 (24% crude
protein, 63 mg/kg niacin, Envigo, Madison, WI, USA). Niacin-
deficient diet (ND, TD.140376) and control diet (CD,
TD.140375) were defined, purified diets compounded by
Teklad laboratory animal diets (Teklad Custom Diets, Envigo)
as modifications of AIN-93G standard chow (19). Both, ND and
CD contained 10% alcohol-washed casein as a vitamin-free
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protein source, either without niacin (ND) or with 30 mg/kg
niacin (CD).

Age- and weight-matched animals were randomly assigned for
the experiments when theywere sexually mature, young adultmice
between 7-14 weeks of age. During each feeding trial, mice were
either fed ND or CD. Doxycycline (Sigma Aldrich, D9891; Alfa
Aesar J6057922) was added to the drinking water [2 mg/ml] to
induce ACMSD expression. Drinking water was changed twice per
week. Durations of feeding trials are indicated in the results and
figure legends. In recovery studies, animals were first kept on ND
+Dox for the indicated time interval to induce NAD+-deficiency,
then switched back to CD for the indicated recovery time.

At termination of each study, animals were euthanized,
heparinized blood samples and tissues were collected rapidly,
tissues weighed, snap frozen in liquid nitrogen and stored at
-80°C until further analyses. Samples for histology were fixed
immediately. Sperm numbers were determined in epididymal
sperm isolated from the cauda epididymides and the vas deferens
using a Neubauer hemocytometer.

Histology and Evaluation
Tissues for histological analyses were fixed in Bouin’s solution
(Sigma Aldrich, HT10132) or 10% neutral buffered formalin
(Sigma Aldrich, HT501128-4L) immediately after tissue
collection. Paraffin embedding, sectioning and hematoxylin
eosin staining was performed by the Utah Veterinary
Diagnostic Laboratory’s histology core facility according to
standard histological procedures.

Testicular tubules were analyzed for abnormalities in a blinded
manner by an individual that had been trained in identifying
spermatogenic stages in the mouse. Hematoxylin/eosin stained
paraffin sections of testes were analyzed using bright field
microscopy (Axio Scope A.1, Zeiss, Jena, equipped with
AxioVision software). Tubules were classified as abnormal if they
weremissing a complete layer of cells that are normally present in a
given tubular stage and that are used for classificationof tubules, e.g.
the absence of spermatocytes or round spermatids in stages I-VIII,
or absence of spermatocytes and/or condensing spermatids in
stages IX-XII, and/or if absence of several cell layers prevented
stage identification. One hundred tubules were evaluated per
animal and testis section, and statistical analysis was performed
using 1-way ANOVA with Tukey’s multiple comparison test.

NAD Measurements
Testicular tissue NAD+ was quantified using an enzymatic
cycling assay method described previously (19–21). Briefly,
frozen testis tissue was lysed in NaOH, and neutralized with
H3PO4. Protein was removed by HClO4 precipitation, and
supernatant was treated with KOH. NAD+ was quantified in
the supernatant in a 96-well microplate format on a SpectraMax
Plus 384 plate reader (Molecular Devices, Sunnyvale, CA). All
chemicals were from Sigma, Aldrich (St Louis, MO).

Testosterone Measurements
Testicular testosterone was quantified by radio immuno-assay as
described previously (22, 23). In brief, snap-frozen pieces of
testicular tissue were extracted in 2 ml of assay buffer and
A

B

D E

F G

C

FIGURE 1 | Dietary niacin deficiency altered NAD metabolite profiles in ANDY
mice. ANDY mice were kept on niacin-deficient (ND) for up to 12 weeks (ND
+Dox_S) or longer (ND+Dox_L) or on control diet with Dox for ACMSD
transgene induction (CD+Dox) or without Dox (CD+H2O). Old mice were 31
months old. (A) The NAD de novo synthesis pathway from tryptophan can
provide all of the NAD in wild-type rodents in absence of all other dietary NAD
precursors such as nicotinic acid (NA, nicotinate), nicotinamide (Nam), or
nicotinamide ribonucleotide (nicotinamide riboside, NamR). Dox-mediated
induction of a human ACMSD transgene overexpression diverts the central
kynurenine pathway in the liver and kidney from NAD+ production towards
acetyl-CoA formation, and ultimately makes these mice dependent on dietary
niacin to maintain tissue NAD+ levels similar to humans (B) Testicular NAD+

levels decline in ANDY mice on vitamin B3 (niacin) – free diet (ND). Data were
generated using enzymatic cycling assays. (C) Metabolomic analyses
confirms data in B, and indicates that a short-term period on ND diet (ND
+Dox_S) results in a milder decline of NAD+ that is comparable to old mice.
(D) Nam levels declined already after short-term dietary niacin-deficiency,
while NamR (E) values appeared to increase again in mice with long-term
niacin deficiency. Hypothetically, the latter may result from loss of
spermatogonia, spermatocytes and spermatids that occurs at later stages of
NAD+ decline. (F) Whole NA (nicotinate/nicotinic acid) did not change on the
ND diet, while NMN (G) was significantly lowered in both short-and long-term
ND fed mice compared to controls, but not old mice. Identical letters indicate
group categories that are not significantly different from each other; different
letters indicate statistically significant differences (One-way ANOVA with
Tukey’s multiple comparison analysis, p<0.05 considered a significant
difference; ***p > 0.001).
May 2022 | Volume 13 | Article 896356

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Meyer-Ficca et al. NAD+ Requirements of the Testis
testosterone was measured using standard RIA procedure with a
testosterone specific antibody (ICN Biomedicals, Costa Mesa,
CA) and 3H-T (NEN Life Science Products, Boston, MA).

Quantification of Metabolites in
Testicular Tissue
Testicular testosterone, nicotinamide adenine dinucleotide (NAD),
nicotinamide (Nam), nicotinamide riboside (NamR), nicotinic acid
(NA) and Nam mononucleotide (NMN) were quantified with
Ultrahigh Performance Liquid Chromatography-Tandem Mass
Spectroscopy (UPLC-MS/MS) on the Metabolon Platform
(Metabolon, Norrisville, NC). Frozen testis samples were
prepared using the automated MicroLab STAR® system
(Hamilton), proteins were precipitated with methanol followed
by centrifugation. The resulting extract was analyzed by two
separate reverse phase (RP)/UPLC-MS/MS methods with positive
ion mode electrospray ionization (ESI), by RP/UPLC-MS/MS and
byHILIC/UPLC-MS/MS, bothwithnegative ionmode ESI. UPLC-
MS/MS was performed on a Waters ACQUITY UPLC and a
Thermo Scientific Q-Exactive high resolution/accurate mass
spectrometer interfaced with a heated electrospray ionization
(HESI-II) source and Orbitrap mass analyzer operated at 35,000
mass resolution.The sample extractwasdried, then reconstituted in
solvents compatible to each of the four spectroscopymethods. Each
reconstitution solvent contained a series of standards at fixed
concentrations to ensure injection and chromatographic
consistency. The MS analysis alternated between MS and data-
dependent MSn scans using dynamic exclusion. The scan range
varied slighted between methods but covered 70-1000 m/z. Raw
data was extracted, peak-identified and QC processed using
Metabolon’s hardware and software. Compounds were identified
by comparison to library entries of purified authenticated
standards, and peaks were quantified using area-under-the-curve.

Graphing and Statistical Analyses
GraphPad Prism software versions 7.04 & 9.2.0 (GraphPad
Software, San Diego, CA) were used for graphing and
statistical analyses (One-way ANOVA, Tukey’s multiple
comparison, Welch’s t-test, Pearson Correlation analysis;
p<0.05 was considered significant).
RESULTS

ANDY Mice on Niacin Free Diet Have
Significantly Reduced Testicular NAD+

In the absence of dietary niacin, blood NAD of ANDY mice
declined steadily over time a time span of 6 weeks, and then
remained at significantly lower levels compared to those in
control animals (Supplementary Figure 1). Similar to blood,
testes of ANDY mice became niacin-deficient, i.e. had
significantly decreased NAD+ tissue concentrations. NAD+

levels in ANDY mice that were maintained on ND+Dox for 24
weeks dropped to about 1/3 of the NAD+ content measured in
ANDY mice fed niacin-containing CD diet or chow (Figure 1B),
as measured using a sensitive enzymatic cycling assay
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(Supplementary Table 1). Similar changes were observed
using comparative metabolomics analyses of testes from
animals fed ND for 24 weeks (long-term, ND+Dox_L) or 12
weeks (short-term, ND+Dox_S). The metabolomic LC-MS/MS
quantification confirmed the significant lowering of testicular
NAD+ levels in the ND+Dox_L group (long-term on ND diet, i.e.
>12 weeks, one-way ANOVA, p-values from <0.0001 to 0.0052
with Tukey’s multiple comparison test, Figure 1C). Compared to
this group, NAD+ levels were higher in ANDY mice kept on ND
for 12 weeks (ND+Dox_S, p=0.0052), but still significantly lower
than the control groups (p-values from 0.0004 to 0.0055). NAD+

contents in controls CD+Dox and CD+H2O were not
significantly different from each other, indicating that ACMSD
overexpression and doxycycline administration on their own did
not have any measurable effect on NAD+ levels in the testis.
Interestingly, NAD+ content in the testes of the ND+Dox_S
group was not significantly different from that of old mice at 31
months of age. Nam levels were low in both short- and long-term
ND groups (Figure 1D). Unexpectedly, NamR levels were
significantly higher in the ND+Dox_L group than ND+Dox_S
(p=0.0011), but not significantly different from the CD+Dox
control and the old mice (Figure 1E). NA values did not vary
between the different treatment groups (Figure 1F). Similar to
NAD+ and NamR, NMN was not significantly different between
mice in the ND+Dox_S group and old mice (Figure 1G).

Taken together, ACMSD overexpression in combination with
niacin-free feed significantly lowered testicular NAD+ levels of
ANDY mice, which is also reflected in an altered NAD+

metabolite profile. Moreover, the NAD+ levels created in
ANDY mice of the ND+Dox_S group were similar to those in
old mice at 31 months of age.

Declining Testicular Weight and Sperm
Counts in NAD+-Deficient ANDY mice
Sperm counts of mice that were kept on ND diet for ten weeks
decreased significantly compared to control animals, and were
similar to sperm numbers in old mice (Figure 2A). After two
additional weeks on deficient diet, sperm numbers declined
abruptly (Figure 2A). Along with falling sperm counts, testes
of mice in the ND+Dox group became significantly smaller than
testes of any other treatment group as soon as 10 weeks on this
diet, and continued to shrink until week 24 (Figure 2B). When
recovered on the CD diet for 9 weeks, testis weights returned to
normal values (Figures 2B, C). These results demonstrate that
declining NAD+ levels resulted in testicular shrinkage that was
reversed by niacin supplementation which restored NAD+ levels.

NAD+-Deficiency Causes a Reversible
Cessation of Spermatogenesis
Histological evaluation of the testicular shrinking process (Figure 3)
in testis fromanimals on theniacin-freeNDdiet revealed progressive
seminiferous epithelial defects compared to control animals on CD
+Dox (Figures 3A–D). Seminiferous tubules showed a lack of
ongoing spermatogenesis with severely decreased numbers of
spermatogonia and spermatocytes, as well as an abnormal spatio-
temporal organization (Figures 3C, D). Seminiferous epithelia of
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animals kept on ND+Dox for 24 weeks, followed by recovery on
niacin-containing CD+Dox for 9 weeks, were restored to full cell
complements, consistent with the observed reversal of testicular
shrinkage (Figures 2B,D). Seminiferous tubules of oldermice at 20
month-old appeared mostly normal, except for the appearance of
sporadic abnormal seminiferous tubules (asterisk in Figure 3F),
while seminiferous tubules in testes of 31month-oldmicedisplayed
marked and frequent disorganization of the seminiferous tubules
(Figure 3G). After 24weeks onND+Doxdiet, seminiferous tubules
were lined mostly by Sertoli cells and some spermatogonia, and
contained cells that appeared to bemostly residual round and some
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elongated spermatids (Figure 3H). Quantification of abnormal
tubules in testis sections after 16 weeks on the indicated diets
showed that NAD+-deficient testes contained significantly more
tubules with abnormal composition of the seminiferous epithelium
than controls or mice that were first kept on ND+Dox diets for 24
weeks and then recovered on CD for 9 weeks (Figure 3I). Taken
together, the histological results suggested that a lack of
spermatogonial proliferation led to a paucity of promeiotic and
meiotic germ cells, which together make up more than half of the
testicular weight and size in a normal animal. The remarkable
recovery of spermatogenesis and subsequent doubling of testicular
volume to a normal state in animals recovered on CD diet further
indicates that spermatogonial stem cells remained intact and
capable of restoring full spermatogenesis once NAD+ levels
returned to normal levels (Figures 2B, C and 3E).

NAD+-Deficiency Did Not Affect Testicular
Testosterone Content, but Was
Associated With Increased Testicular
Retinol Concentrations
We initially hypothesized that the pronounced, but reversible,
detrimental effect of low NAD+ levels on testicular function could
result from impaired testosterone synthesis and metabolism.
Unexpectedly, however, significant differences in testosterone
levels due to individual NAD+ status could be detected neither by
radioimmuno-assays (Figure 4A) nor by LC-MS/MS analyses
(Figure 4B). Each diet group contained animals with markedly
higher testosterone levels than those in their groupmates, indicating
that the ability to synthesize testosterone was not principally
suppressed in any of the diet groups. Because retinoic acid (RA)
signaling is essential for spermatogonial proliferation and
differentiation, we used LC-MS/MS to analyze vitamin A
metabolites in ANDY mice on different diets. Retinal and RA
were not detectable using this method, but levels of the precursor
molecule retinolwere determined to be significantly elevated inND
+Dox_L, ND+Dox-_S, and old mice compared to control animals,
with concentrations being the highest in the ND+Dox_L group
(Figure 4C), suggesting a possible negative correlation of testicular
retinol- and NAD+-levels (Figure 1C). Testicular retinol and
testicular NAD content were highly significantly inversely
correlated (Figure 4E). The accumulation of testicular retinol
may be interpreted as resulting from a reduction or block of the
rate-limiting step in the RA synthesis pathway that oxidizes retinol
to retinal (Figure 4D), which is mediated by the NAD+-dependent
enzyme retinol dehydrogenase (RDH10).Retinal is furtheroxidized
to RA by aldehyde dehydrogenases ALDHA1/2/3, which are NAD
(P)+ dependent enzymes as well. Therefore,NAD+ deficiency could
lead to an inhibition of RA in the testis, potentially contributing to
the observed spermatogonial proliferation and differentiation
defect observed in ND+Dox mice.
DISCUSSION

The main results of this study are (i) that NAD+ deficiency can be
produced in ANDY mouse testes on a niacin-free diet, and that
A B

C

FIGURE 2 | Testicular decline when NAD+ levels are low. (A) Sperm counts
of old mice and ANDY mice on ND+Dox diet (10 weeks) were significantly
lower than controls, but not statistically different from each other. Sperm
counts of ND+Dox fed mice were dramatically lower after 12 weeks and
remained low after that (one-way ANOVA with Dunett’s multiple comparison
analysis comparing % of sperm count at indicated time points with sperm
counts at start of study, only sperm from ND diets were significantly different;
P-values range was 0.0001 to 0.01). (B) Testes of ANDY mice on ND diet
were significantly smaller on average (1-Way ANOVA, p= 0.0001 Tukey’s
multiple comparisons: ND group is significantly different from recovered ND
(9 weeks recovery on CD diet): p<0.0001; Chow:: p<0.0001 CD1: p<0.0001.
ND recovered and CD- or chow-fed group chow were not significantly
different from each other. (C) Testis weights significantly declined in ANDY
mice on niacin-deficient (ND) diet over the course of 24 weeks compared to
ANDY mice on control diet (CD, 30 mg/kg niacin). After changing ANDY mice
that had initially been on ND diet to CD diet for 9 weeks, testis weights
recovered in these animals and were no longer significantly different from the
CD-fed group. Multiple t tests of row stats, significant difference in weeks 10-
30, p<0.0039 and smaller; * indicates significant difference to the control
value, values at time points 0 and after recovery not significantly different.
Groups marked with the identical letter (a, b or c) were not significantly
different from each other; differing letters indicate a significant difference; n.s.
indicates no significant difference.
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the degree of this deficiency increases over time (Figure 1). To
our knowledge, this is the first time this has been accomplished
in a laboratory research animal. (ii) The degree of NAD+ decline
that was achieved by keeping ANDY mice on niacin-free diet for
10-12 weeks was typical of an aging mouse (Figure 1). (iii) Low
testicular NAD+ levels resulted in the attenuation of
spermatogenesis and testicular atrophy due to impaired
spermatogonial proliferation and differentiation (Figure 3). (iv)
Recovery of mice on a niacin-containing control diet fully
reversed testicular shrinkage and fully restored spermatogenesis
(Figure 3E). Because NAD+ decline resulted in attenuation of
spermatogenesis in ANDY mice, it may represent a link between
low NAD metabolism as a hallmark of aging, and the decline of
male fertility as males age.

Based on our data, low testosterone levels were not the
determining factor for the observed hypo- and aspermatogenesis
(Figure 4). However, the loss of mature germ cell stages in severely
NAD+ depleted testes and overall seminiferous tubule histology was
reminiscent of vitamin A-deficient males, where tubules appear to
have only Sertoli cells and early stages of spermatogonia left in the
tubular lumen (24). Vitamin A1 (retinol) is essential for
spermatogenesis because it is the dietary precursor for RA
synthesis (25) (Figure 4i). RA signaling is indispensable for
Frontiers in Endocrinology | www.frontiersin.org 699
spermatogonial proliferation and differentiation. If blocked by the
inhibitor WIN 18,446 in adult rodents or humans, spermatogonial
differentiation is disrupted and a vitamin A deficiency phenotype is
created in the testis (24, 26–28). The rate-limiting step of RA
synthesis is the oxidation of retinol to retinal by retinol
dehydrogenase (RDH10), which is entirely dependent on the
availability of NAD+ as a cofactor. In addition, the next step in
RA synthesis is the conversion of retinal to retinoic acid, which is
dependent on NADP+, whose levels are linked to cellular NAD+

stores (Figure 4D). This step, which is mediated by the aldehyde
dehydrogenase (ALDHA) family of enzymes is also essential for
testicular RA synthesis, and thus for the execution of
spermatogenesis (27). Our finding that retinol appeared to
accumulate to significantly higher levels in both NAD+-deficient
and aging mice in a manner significantly inversely correlated with
NAD+ levels (Figure 4E) therefore provides an intriguing clue that
low NAD+ levels may block RA synthesis and thus cause the
observed spermatogenic failure. However, additional
investigations will be necessary to provide further confirmation of
this hypothesis. Mechanisms underlying the aging process are still
poorly understood, in part because effects of chronological aging are
numerous and difficult to separate from environmental and intrinsic
factors affecting a given individual over time. The NAD+ decline
FIGURE 3 | Impact of testicular NAD+ levels and male age on the seminiferous epithelium. Hematoxylin/eosin-stained testicular sections of testes from young adult
male fed (A) CD+Dox control diet, (B) ND+Dox diet for 8 weeks, (C) ND+Dox for 14 weeks; damaged tubules (D) ND+Dox for 24 weeks; normal tubules +/- absent
(E) ND for 24 weeks followed by 9 weeks of recovery on niacin-containing CD diet; tubules mostly restored. (F) Control testis at 20 months of age. Asterisk marks a
tubule with abnormal seminiferous epithelium. (G) Control testis of 31 month-old mouse. (H) After 24 weeks on ND diet, seminiferous tubules are lined mostly by
Sertoli cells (SC, blue arrow heads) interspersed with spermatogonia (SG, red stars), as identified by histological morphology of the cells. Tubular lumen contain
mostly cells resembling round spermatids (RS, black arrow) and occasionally elongated spermatids (ES)). (I) NAD+-deficient testis contain significantly more tubules
with abnormal composition of the seminiferous epithelium in testis of mice that were on indicated diets for 16 weeks (CD+Dox, CD+water, ND+Dox) or ND+Dox that
were subsequently recovered on niacin containing diet for 9 weeks. One hundred tubules were evaluated per testis section, ANOVA with Tukey’s multiple
comparison, b is significantly different from a, p=0.0003 to 0.001. Scale bar: 250 mm in a.-f., 40 mm in (g) & h.
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observed in aging animals and humans appears to be a consequence
of the aging process, for example by means of failing mitochondrial
activity, or through elevated consumption of NAD+ by PARP
enzymes or elevated tissue activity of the NAD glycohydrolase
CD38 (7, 16–18, 29–32). However, to what extent NAD+ decline
itself may also be a driver of the aging process has remained an open
question. The current study takes full advantage of the novel ANDY
mouse model that allows for the first time that NAD+ levels in
rodents can be lowered significantly, independent of the
chronological age of the animal. The results of this initial
investigation suggest that low and very low levels of NAD+ result
in testicular decline in mice, similar to that observed in aging males.
This finding suggests that NAD+ decline itself may promote aspects
of the pathophysiology of aging.

NAD and NADP serve not only as an essential cofactor for
enzymatic reaction in energy metabolism; they are also essential
cofactors for several cellular mechanisms that protect the genome
against DNA damaging insults, e.g. from reactive oxygen species
(ROS). There is an age-related increases in ROS, the so-called “free
radical theory of aging”, that is also evident in context of
spermatogenesis and sperm quality (33–35). In fact, aging has
been associated with reduce genetic quality in spermatogenic cells
and sperm (36–38). BecauseNADandNADPare required for both,
maintaining a sufficient pool of the active antioxidant glutathione
Frontiers in Endocrinology | www.frontiersin.org 7100
GSH, and for the enzymatic activity of PARP1, an important DNA
repair factor, lower testicular NAD could potentially contribute to
the aging-related accumulation of ROS and decline in sperm
quality. S Investigations are currently underway to address this
important question.

A potential limitation of the present study is that the degree of
testicular NAD+-decline produced in ANDY mice that were on
ND for a long period of time (exceeding 12 weeks) may arguably
be more severe than the NAD+ deficiency measured in the 31
month-old mice. On the other hand, while the spermatogenic
defects observed in these old mice may be less severe, they were
clearly detectable and may at least in part be caused by NAD+

deficiency. Furthermore, the dynamics of human testicular
NAD+ decline with age may be different from mice, along with
its importance for human male fertility, which will require
further research. Additional investigations are currently
underway to determine the role of NAD+-decline in the aging
process in ANDY mice. In summary, this study is the first one to
show that experimentally induced low testicular NAD+ levels
result in reversible disruption of spermatogenesis, adding
vitamin B3 to the list of vitamins that are essential for proper
spermatogenesis in humans. The study also provides clues to the
role of NAD+ decline in the age-related decline of testicular
function and male fertility.
A B

D E

C

FIGURE 4 | Unchanged testicular testosterone, elevated retinol levels in niacin-deficient ANDY mice with NAD+ decline. (A) Testicular testosterone levels were not
significantly different between ND+Dox and CD+Dox groups (one-tailed unpaired students t-test, p=0.238). (B) Metabolomic analysis confirmed that result. (C) Mice
in the ND+Dox groups had significantly elevated testicular retinol (vitamin A) concentrations (1-Way ANOVA, p= 0.0005; Tukey’s multiple comparisons: ND+Dox_L is
significantly different from CD+Dox: p=0.0005; CD+H2O: p=0.0015, but not different from ND+Dox_S and old mice. Differences between CD+Dox, CD+H2O, ND
+Dox_S and old mice did not reach statistical significance. Groups marked with the identical letter (a, b) were not significantly different from each other; differing
letters indicate a significant difference; ns indicates no significant difference. (D) Retinol metabolism to form retinoic acid, which is an essential signal molecule in
spermatogonial differentiation and proliferation and regulator of meiosis. Retinol (vitamin A) is transported into the testicular germ and Sertoli cells, and then converted
into retinal by NAD+-dependent oxidation mediated by retinol dehydrogenase 10 (RDH10), which is the rate-limiting step (*) in the conversion to retinal. Alternatively,
retinol can be converted to retinal in an NADPH-dependent fashion by RDH11, or by DHRS3 and DHRS4. Retinal is then further oxidized by aldehyde
dehydrogenases ALDHA1/2/3 in an NAD(P)+-dependent way to form the active compound retinoic acid [**, after Gewiss, Topping and Griswold, 2019 (26)].
(E) Pearson’s correlation analysis reveals highly significant inverse correlation between testicular NAD (Y-axis) and testicular retinol (X-axis), with p=0.0011.
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Supplementary Figure 1 | Time course of blood NAD levels in ANDY mice kept
on indicated diets. Adult, sexually mature ANDY males ranging in age from 7-14
weeks were placed on indicated diets. Blood samples were taken prior to initiation
of diet (pre-diet), after 2, 4, 6 and 11 weeks on diet. NAD content was determined
using enzymatic cycling assays. Blood NAD levels decline between 2-6 weeks on
diet. No further drop in blood NAD levels were observed between 6 and 11 weeks
on diet. Significance of differences in A. was determined using 2-way ANOVA with
Tukey’s multiple comparison, in B. 1-way ANOVA. **p < 0.01, ***p < 0.001, ****p <
0.0001.Letters a, b, c in figure B indicate significant changes with p-values in the ***
to **** range. Identical letters indicate that there was no statistically significant
difference.
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Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as
the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-
renewal to maintain the stability of the stem cell pool and differentiation to produce mature
spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the
regulatory network of SSCs is of great significance in understanding the fundamental
molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the
pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will
allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-
based therapy for assisted reproduction. This review summarizes the latest research
progress on the regulation of SSCs, and the potential application of SSCs for fertility
restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge
gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro
spermatogenesis from SSCs sets the stage for the production of SSCs from induced
pluripotent stem cells (iPSCs) and subsequent spermatogenesis.

Keywords: spermatogonia, spermatogenesis, in vivo, in vitro, stem cell, 3D culture, male infertility
INTRODUCTION

Early in human development, a small group of cells is set aside or allocated to become the germ cells
that give rise to the sperm and oocytes that will transmit genetic and epigenetic information to
subsequent generations (1). In males, the process of spermatogenesis maintains the production of
spermatozoa, the final cell carrier of inheritable material, throughout the lifetime of male mammals
(2). Continuous spermatogenesis depends on the appropriate self-renewal and differentiation of
spermatogonial stem cells (SSCs) throughout the life of the male (3). The SSCs are the resident stem
cell population that resides at the basal membrane of seminiferous tubules of the testis (4, 5). The
SSCs can undergo mitotic divisions for self renewal to maintain a steady stem cell pool or they can
differentiate through sequential and extensive processes into spermatozoa (6). The balance of self-
renewal and differentiation of SSCs is critical, not only for maintaining normal spermatogenesis but
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also for sustaining lifelong fertility (7). A tilt to self-renewal is a
risk factor for germ cell tumors, while a tilt towards
differentiation results in exhaustion of germ cell pools, leading
to male infertility (8). Numerous studies have demonstrated that
the balance between self-renewal and differentiation is precisely
controlled by a combination of intrinsic genetic and epigenetic
factors within SSCs as well as the extrinsic signals that eminate
from the somatic niche (9, 10).

Significantly, SSCs have extraordinary therapeutic potential
in assisted reproduction for male infertility (11, 12).
Transplantation of SSCs can restore spermatogenesis in
patients who suffer from impaired spermatogenesis (13). One
application example is fertility preservation of prepubertal boys
with cancer and undergoing chemotherapy (14). SSCs can be
isolated from testicular biopsy and cryopreserved before
chemotherapy, followed by stem cell transplantation into the
seminiferous tubules to restore fertility (15, 16). In addition,
germline gene therapy using SSCs has been proposed, albeit with
obvious concerns regarding legitimate ethical issues, as a
promising and feasible approach to treat endocrine disease and
metabolic disorders with germline gene mutations (17).
Currently, the major hurdle to the use of SSCs in assisted
reproductive technology is the difficulty of identificating and
isolating endogenous SSCs and directing their differentiation to
haploid cells in vitro.

This review provides a brief overview summary of some of
the existing knowledge and research progress regarding use of
SSCs for inducing spermatogenesis in vivo and in vitro for
fertililty restoration. We hope that this summary review may
spur further inquiries into details and ongoing studies of
practical applications of SSCs in human reproduction and
regenerative medicine.
REGULATION OF SSCS

Human germ cell development begins with the specification of a
small group of cells to form the primordial germ cells (PGCs)
(18), which are thought to arise from the dorsal amnion at the
onset of gastrulation (19). Following their specification, PGCs
actively proliferate and migrate to the developing gonad (20–22)
where they will occupy the genital ridge and undergo sex-
determination by entering either male or female sex-specific
developmental pathways (23). External signals from the somatic
environment determine the sex of PGCs (24). For male germ cell
development, once PGCs occupy the seminiferous tubules of the
male gonad, they are termed gonocytes (25), which later interact
with the niche cells to become spermatogonia (26). Note that
nomenclature is not universal or all inclusive as subtypes exist
(example: type A, type b, light and dark spermatogonia), different
stages of development are sometimes indicated (examples: early
or late spermagonia or undifferentiated and differentiating), or
reference to marker content (example: c-kit+ spermatogonia).

The Niche
The architecture of the testes is characterized by two structurally
distinct compartments (Figure 1), the seminiferous tubule and
Frontiers in Endocrinology | www.frontiersin.org 2104
the interstitial tissue (27). Within the seminiferous tubule, Sertoli
cells form a tight blood-testis barrier to divide the seminiferous
epithelium into basal and luminal compartments (28).
Developing spermatogonia reside on the basal membrane and
are further defined by three types of cells: undifferentiated
spermatogonia (quiescent SSCs), differentiating spermatogonia
(SSCs that undergo active mitosis), and differentiated
spermatogonia (29, 30). The Sertoli cells are the supporting
cells for the germ cell population in the testes and are essential
for maintaining normal spermatogenesis by providing the
cellular matrix and by secreting specific growth factors (31).
The surrounding interstitial space consists of various cell types
that include the Leydig cells, mesenchymal cells, and immune
cells, in addition to lymph vessels, nerve fibers, and connective
tissues (27). Leydig cells produce the hormone testosterone and
cytokines that may function both directly and indirectly to
regulate self-renewal of SSCs (32).

External and Intrinsic Factors
The fine-tuned balance between self-renewal and differentiation
of SSCs is regulated by the interplay of extrinsic and intrinsic
factors. GDNF, a growth factor produced by the somatic niche
cells, is critical for the maintenance of SSCs both in vivo and in
vitro (33). It regulates several essential downstream genes,
including the germ cell specific and ubiquitously-expressed
genes Nanos2, Etv5, Lhx1, T, Bcl6b, Id1, and Cxcr4, to promote
SSC self-renewal and inhibit differentiation (34–39). CXCL12/
CXCR4 (39), FGFs (33, 40), and VEGF-A (41) act in synergy
with GDNF to maintain SSC stem cell status. In contrast, retinoic
acid (RA), a hormone secreted primarily by Sertoli cells, plays an
indispensable role in inducing differentiation of SSCs by
downregulation of GDNF expression and activation of
differentiation-promoting factors, such as BMP and SCF (42–
45). Genetic ablation studies in mice indicate that several
transcription factors are involved in regulating SSC
maintenance and recruitment to spermatogenesis. The PLZF
transcription factor is expressed by SSCs and interacts with
GDNF signaling as one of the master regulators to promote
the self-renewal of SSCs (46, 47). Loss of PLZF results in
progressive germ cell loss, testicular hypoplasia, and infertility
(46–48). One of the downstream targets of PLZF is the SALL4
protein, which is required for the self-renewal of SSCs and
maintenance of ability to enter spermatogenic differentiation
(49). A potential upstream regulator of PLZF is PRMT5.
Disruption of the PRMT5 gene results in a dramatic reduction
of PLZF gene expression, and subsequent progressive loss of
SSCs leading to male infertility (50). Another transcription factor
important for maintenance of SSC self-renewal is FOXO1, which
regulates a number of genes that are preferably expressed in SSCs
(51). Deletion of the FOXO1 gene results in defects in SSC
maintenance and ultimately spermatogenic failure. In addition,
recent research has identified numerous microRNAs as critical
regulators in spermatogenesis. Some microRNAs regulate the
self-renewal of SSCs. For example, miR-202 plays a crucial role in
the maintenance of SSC stemness or self-renewal of the stem cell
population (52). Other microRNAs, such as miR-1908-3p (53),
miRNA-122-5p (54), and miRNA-31-5p (55), enhance the
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proliferation and inhibit the early apoptosis of human SSCs via
targeting key downstream pathways. Conversely, several
microRNAs facilitate differentiation via regulation of the
expression of genes associated with SSC differentiation. MiR-
34c promotes SSC differentiation by inhibiting the function of
the NANOS2 gene, leading to the up-regulation of meiotic-
related proteins, STRA8, in mice (56). Similarly, miR-486-5p
secreted by Sertoli cells stimulates differentiation of SSCs in mice
by up-regulating the expression of STRA8 and SYCP3 (57).
Further, impaired spermatogenesis is observed in mice carrying
a deficiency in miR-17-92 or a gene deletion of miR-17-92 (58,
59). miR-202 similarly regulates spermatogenesis via
orchestration meiotic initiation by preventing precocious
differentiation of mouse SSCs (52). Taken together, numerous
genes act to balance self-renewal and differentiation of SSCs.
FERTILITY RESTORATION THROUGH
IN VIVO SPERMATOGENESIS

SSCs within the testicular tissues have the potential to complete
the entire process of spermatogenesis in vivo and produce
functional spermatozoa for fertility restoration (Figure 2).
Thus, cryopreservation of testicular tissue prior to gonadotoxic
treatment for prepubertal boys is proposed as a helpful strategy
for fertility preservation (60). To restore fertility through in
vivo spermatogenesis, testicular tissues could be either
autotransplanted to the same individual or the tissues might
be dissociated to obtain SSCs for autotransplantation.
Xenotransplantation would carry the obvious complication of
mixing of sperm from different individuals.
Transplantation of Testicular Tissues
Autotransplantation of testicular tissues has achieved success in
multiple animal models, which results in live offspring (61–65).
However, the approach has the risk of re-introducing
malignancy is a concern (66). Studies of xenotransplantation,
which transplants immature testicular tissue under the back skin
of immune-deficient animals, have been used to examine
potential complications including malignancy. In 2002, Nagano
and colleagues, for example, transplanted human SSCs into
immunodeficient mice for the first time (67). Human SSCs
survived in mouse testes for at least six months and
proliferated during the first month after transplantation.
Transplantation of SSCs
To avoid potential complications of malignancy, isolation of
SSCs from cryopreserved testicular tissues followed by
transplantation has been proposed as the leading alternative
stratgey. To separate SSCs from somatic cells, antibodies that
recognize human SSC-specific proteins are used for FACS
(fluorescent-activated cell sorting) or MACS (magnetic-
activated cell sorting) for sorting SSCs from other cell types.
Antibodies that have been shown to be useful for sorting SSCs
Frontiers in Endocrinology | www.frontiersin.org 3105
include GFRa (68), GPR125, ID4 (69), ITGA6 (70), SSEA4 (71),
PLPPR3 (72), and OCT4 (73). An alternative to cell sorting is to
take advantage of different physical properties between SSCs and
somatic cells such as velocity sedimentation and differential
affinity to extracellular matrices on the culture plate (74–78).
Once isolated, SSCs are cultured with growth factors shown to be
optimal or essential for SSC maintenance [GDNF, BFGF, EGF,
and LIF (79–81)].

A major limitation of SSC transplantation in vivo, for fertility
restoration in clinical practice, is the scarcity of SSCs within the
testicular tissue. This has necessitated exploration of alternatives
including the establishment of a robust in vitro culture system to
maintain and expand human SSCs. Extensive effort has been
focused on optimization of culture conditions for long-term
maintenance and propagation of human SSCs. Multiple culture
substrates, including hydrogel, matrigel, and laminin, have been
shown to promote the propagation of human SSCs under feeder-
free conditions (82). Currently, several markers are used for the
verification of human SSCs. However, many of these markers are
also expressed in testicular somatic cells. For example, UCHL1,
which was used to identify SSCs from humans, is also expressed in
Leydig cells and nerve fibers (83). The most stringent assay to
assess the function of SSCs is to generate offspring after
homologous transplantation. However, despite success in animal
models, including non-human primates, no studies are reporting
the generation of human functional spermatozoa following
autotransplantation or xenotransplantation of testicular tissue or
isolated human SSCs for fertility restoration.
FERTILITY RESTORATION THROUGH
IN VITRO SPERMATOGENESIS

The establishment of a system to recapitulate spermatogenesis and
generate spermatozoa in vitro can not only be directly applied in
assisted reproduction, such as in vitro fertilization (IVF) or
intracytoplasmic sperm injection (ICSI), but also provide a
convenient system to study the molecular mechanisms and
genetic causes for male infertility. Building a functional somatic
microenvironment is critical for in vitro spermatogenesis. Several
strategies, including exploitation of intrinsic somatic
microenvironment by organotypic culture, two-dimensional
culture, and three-dimensional culture of testis cell suspensions.

Organotypic Culture
Since 1959, a gas-liquid interface was used to culture testicular
fragments of the adult rats (84). In this culture system, the
differentiation of SSCs was limited up to pachytene
spermatocytes (85). In 2003, round spermatids were observed
after two weeks of culture in a gas-liquid interface culture system
(86). Several other organotypic culture systems have been
developed to recapitulate the entire process of spermatogenesis
in vitro. One of the breakthroughs in the research was reported in
2011 with the demonstration of live offspring that were generated
from in vitro-produced haploid germ cells (87). In this study,
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testicular tissue fragments from neonatal mice were cultured on
an agarose gel-based organ culture system. Subsequently,
microfluidic technology was adopted for organ culture, with
the goal of providing a better culture environment for SSCs by
facilitating the exchange of gases, nutrients, and waste products
(88). Recently, successful recapitulation of human testicular
organogenesis from fetal gonads was achieved, and in vitro-
derived haploid spermatids were shown to undergo meiotic
recombination (89).

Two-Dimensional Culture
2D culture systems with testis cell suspensions have been widely
used for SSC proliferation and differentiation with two primary
types of 2D culture systems most common: (1) SSCs cultured on
mitotically-inactivated feeder cells, (2) SSCs co-cultured with
somatic cells (90). Using the support of 2D culture sytems,
numerous studies have reported that haploid male germ cells
could be induced (91–95), and offspring can be produced from
these in vitro derived haploid male germ cells in rodent (96).
However, the 2D culture system has not been optimized for
human germ cells. This may be due to the lack of spatial structure
of seminiferous tubules and proper interactions between germ
cells and somatic cells.

Three-Dimensional Culture
To better mimic the testicular niche, various 3D culture systems
have been developed. In 2006, testicular cells isolated from rats
were cultured on collagen gels to mimic the composition of the
basal membrane of seminiferous tubules (97). Later, the soft-agar
culture system (SACS) was developed (98), and mice haploid
germ cells from undifferentiated germ cells were generated in this
Frontiers in Endocrinology | www.frontiersin.org 4106
system in 2012 (99). The SACS system also supports the
differentiiation of SSCs of non-human primates. The most
commonly used alternate material in 3D culture system is
methylcellulose. The methylcellulose culture system (MCS) also
supports the differentiation of immature germ cells.

In order to artificially reproduce the in vivo form and function
of the seminiferous epithelium, a 3D engineered blood-testis
barrier (eBTB) system was designed in 2010 (100). Testicular
peritubular myoid cells were first cultured on the underside of
culture inserts, and then germ cells and Sertoli cells were added
on top of the inserts. The testicular cells from neonatal mice form
the aggregate by culturing on a V-shaped plate. The aggregate
plated on the top of agarose gel blocks, and the haploid male
germ cells were obtained after 30-51 days of incubation (101).

The 3D decellularized testicular scaffold with hyaluronic acid
and chitosan provides the condition for the differentiation and
proliferation of mice SSCs (102). The proliferation and self-
renewal of mice SSCs was stimulated by culturing on the 3D
scaffold consisting of alginate hydrogel with Sertoli cells (103).
The mice germ cells were cultured in 3D printed one-layer
scaffolds at the air-medium interface simulating the tubule-like
structure. This culture system provided the condition for long-
term survival and differentiation (104).

Soft agar and agarose gel are the most common material used
to establish the 3D culture system for human SSCs. A soft agar
culture system has been shown to support the proliferation and
differentiation of human SSCs (105). Another material that has
been used in 3D culture systems for human SSCs is a
polycaprolactone (PCL) nanofiber matrix (106). This material
may mimic the physical form of collagen fibers in the natural
extracellular matrix (107).
FIGURE 1 | Schematic diagram of the niche of SSCs and the regulatory factors involved in maintaining the stemness and self-renewal of SSCs. Undifferentiated SSCs
are localized at the basement membrane. Germ cells maintain the close contact with the Sertoli cells inside the seminiferous epithelium. Peritubular myoid cells surround
the seminiferous tubules to form testicular cords. The interstitial compartment consists of many somatic cell types including Leydig cells, mesenchymal cells and immune
cells. Bioactive factors in the niche play crucial role in self-renewal and differentiation of SSCs. CXCL12/CXCR4, FGFs, and VEGFA act in synergy with GDNF to maintain
SSCs. Retinoic acid (RA) induces the differentiation of SSCs by downregulation, at least in part, of GDNF expression and activation of SCF and BMP4. Transcription
factors, PLZF and FOXO1, are involved in regulating SSCs maintenance and spermatogenesis by acting on a subset of downstream target gene. MicroRNAs, including
miR-1908-3p, miR-112-5p and miR-31-5p, also act as critical regulators in spermatogenesis.
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CONCLUSION AND PERSPECTIVES

With the development of technologies, including -omics at the
single-cell level, lineage-tracing, spermatogonial transplantation,
and in vitro culturing and differentiation, we start decoding the
secrets of SSCs. However, the application of SSCs to treat male
infertility necessitates extensive studies to ensure safety and
efficacy. An efficient culture condition for human SSCs to
ensure their propagation, as well as proper animal models for
xenotransplantation, will assist in assessing safety and efficacy as
indicated by recent studies (108). Furthermore, establishing a
robust system for in vitro spermatogenesis is also helpful for
pharmaceutical or toxicological studies for new drugs. Finally, in
vitro spermatogenesis from SSCs sets the stage for the production
of SSCs from induced pluripotent stem cells (iPSCs) and
subsequent spermatogenesis. For example, studies are
underway to integrate data and practices from divergent fields
to promote spermatogenesis from iPSCs via co-culture with
Frontiers in Endocrinology | www.frontiersin.org 5107
Sertoli cells in a 2D-, 3D- or a modified environment, similar
to those used in other physiological systems, that might more
faithfully mimic spermatogenic dynamics including circulation
(109, 110).
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Male reproductive function depends on the formation of spermatogonial stem cells from their
neonatal precursors, the gonocytes. Previously, we identified several UPS enzymes
dynamically altered during gonocyte differentiation. The present work focuses on
understanding the role of the RING finger protein 149 (RNF149), an E3 ligase that we
found to be strongly expressed in gonocytes and downregulated in spermatogonia. The
quantification of RNF149 mRNA from postnatal day (PND) 2 to 35 (puberty) in rat testis, brain,
liver, kidney, and heart indicated that its highest levels are found in the testis. RNF149 knock-
down in PND3 rat gonocytes was performed to better understand its role in gonocyte
development. While a proliferative cocktail of PDGF-BB and 17b-estradiol (P+E) increased
both the expression levels of the cell proliferationmarker PCNA andRNF149 inmock cells, the
effects of P+E on both genes were reduced in cells treated with RNF149 siRNA, suggesting
that RNF149 expression is regulated during gonocyte proliferation and that there might be a
functional link between RNF149 and PCNA. To examine RNF149 subcellular localization,
EGFP-tagged RNF149 vectors were constructed, after determining the rat testis RNF149
mRNA sequence. Surprisingly, two variant transcripts were expressed in rat tissues,
predicting truncated proteins, one containing the PA and the other the RING functional
domains. Transfection in mouse F9 embryonal carcinoma cells and C18-4 spermatogonial
cell lines showed differential subcellular profiles of the two truncated proteins. Overall, the
results of this study support a role for RNF149 in gonocyte proliferation and suggest its
transcription to variant mRNAs resulting in two proteins with different functional domains.
Future studies will examine the respective roles of these variant proteins in the cell lines and
isolated gonocytes.
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INTRODUCTION

Spermatogenesis is a process that encompasses numerous steps
including phases of quiescence, proliferation, differentiation,
migration, and apoptosis to ensure the production of sperm
throughout the lifetime of a male (1). At the origin of sperm
formation is the existence of a pool of germline stem cells, the
spermatogonial stem cells (SSCs), originating from neonatal
precursors, the gonocytes, also known as pre- or pro-
spermatogonia (1, 2). We have previously shown that rat neonatal
gonocytes undergo proliferation in response to platelet-derived
growth factor (PDGF)-BB (P) and 17b-estradiol (E) while
activating both the PDGF receptor (PDGFR) and Estrogen
Receptor (ER) signaling pathways (3, 4). Furthermore, we have
shown that gonocyte differentiation is induced by retinoic acid (RA)
with activation of the PDGFR, JAK2, STAT5, and SRC signaling
pathways (5, 6). While studying genes involved in gonocyte
apoptosis, we also found that pro-apoptotic genes Cycs and
Gadd45a were significantly upregulated in differentiating
gonocytes, indicating their possible role in gonocyte apoptosis, a
necessary step for eliminating gonocytes that failed to differentiate to
spermatogonia (7). Studies have suggested that improper
development of gonocytes can lead to the formation of testicular
germ cell tumors (TGCTs), the most common type of cancer in
young men (8, 9). Testicular cancer rates have been steadily
increasing for the past few decades for reasons that are not
completely known (10) and as a result, a better understanding of
gonocyte development can help provide a more thorough insight
into how testicular tumors form and why the incidence has
been increasing.

We have previously shown that the ubiquitin proteasome
system (UPS) is involved in gonocyte differentiation and that
proteasome inhibition significantly reduced RA-induced
gonocyte differentiation (11). UPS is the main pathway by
which proteins are degraded in eukaryotes, involving a
succession of enzymatic reactions involved in the attachment
of an ubiquitin chain to a substrate protein targeted for
degradation, including an E1 activating enzyme, an E2
conjugating enzyme, and an E3 ligase (12, 13). UPS activity
regulates a variety of developmental and biological functions,
such as myogenesis, bone formation and immune function
(14–16). During the ubiquitination process, the E1 activating
enzyme activates the ubiquitin molecule which is then
transferred to the E2 conjugating enzyme and finally to an
E3 ligase. The E3 ligase attaches the ubiquitin tag to the
substrate to be targeted, which is then recognized by the 26S
proteasome and degraded. Deubiquitinating enzymes
modulate the pathway by removing ubiquitin molecules as
needed (17, 18). Besides its major role in protein degradation,
the UPS has been shown to be involved in other processes
including signal transduction, kinase activation, cell cycle
progression, cell proliferation, and protein interaction
regulation (12, 13, 19, 20), while also playing an important
role in the later stages of spermatogenesis (21). Given that
spermatogenesis occurs via multiple tightly timed biological
events (1), it is not surprising that the UPS is involved in this
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process, as spermatogenesis requires a large amount of protein
turnover and degradation. Our study of UPS gene and protein
expression in rat PND3 gonocytes and PND8 spermatogonia
showed that the E3 ubiquitin ligase RNF149 (also known as
DNA polymerase-transactivated protein 2; DNAPTP2) was
downregulated in spermatogonia compared to neonatal
gonocytes, as well as in gonocytes that had undergone RA-
induced differentiation compared to undifferentiated germ
cells of the same age (11). This suggested a likely role of
RNF149 in neonatal gonocyte development. The present
study further examined the role of E3 ubiquitin ligase
RNF149 in gonocyte development, revealing its involvement
in cell proliferation, and the existence of two variant forms of
the protein with distinct functional moieties observed in
different subcellular compartments.
MATERIALS AND METHODS

Animals and Tissue Collection
Newborn male Sprague Dawley rats obtained from Charles Rivers
Laboratories (Saint-Constant, QC, CA). Rats aged from PND2 to
PND35 were euthanized and handled according to protocols
approved by the McGill University Health Centre Animal Care
Committee and the Canadian Council on Animal Care. Several
organs, including brain, heart, liver, kidneys and testes, were
collected and either frozen for gene expression analysis by
quantitative Real Time PCR analysis (qPCR), or fixed in 4%
paraformaldehyde for immunohistochemical analysis.

Gonocyte Isolation
Gonocytes were isolated from PND3 rat testes following a well-
established protocol as previously described (3, 4, 6). In short,
testes from 40 rats were isolated and decapsulated. Gonocytes
were isolated by sequential tissue enzymatic digestion and
differential plating overnight in RPMI 1640 medium
(Invitrogen, Thermo Fisher Scientific, ON, CA) with 5% fetal
bovine serum (FBS) (Invitrogen), 2% penicillin/streptomycin
(CellGro, Manassas, VA, USA), and 1% amphotericin B
(CellGro). During overnight plating, somatic cells adhered to
the culture plates while germ cells remained non-adherent. The
next day, non-adherent germ cells were further separated using a
2-4% bovine serum albumin (BSA) (Roche Diagnostics,
Indianapolis, IN, USA) gradient. Gonocytes were judged by
morphology and larger size compared to Sertoli/myoid cells by
phase contrast microscopy. Fractions containing the most
gonocytes were pooled, centrifuged, and collected for
treatments or RNA analysis with a purity of at least 85%. Cell
viability was assessed by trypan blue exclusion assay, together
with live gonocyte quantification on hemacytometer. The
enrichment efficacy, viability, and identity of the gonocytes
were validated using a variety of approaches in previous
studies (3, 7, 11, 22). Samples with lower purity were used for
immunocytochemical analysis. All experiments were performed
using a minimum of three independent gonocyte preparations.
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RNF149 Silencing and
Gonocyte Treatment
For RNF149 silencing, after gonocyte collection from BSA
gradient, cells were plated at a density of 10000 cells/well in a
24-well plate using RPMI 1640 media free of antibiotics, 2.5%
FBS, and amphotericin B, as they are not recommended while
using siRNA protocols. Gonocytes were then treated with Mock,
Scrambled (10nM), or RNF149 silencing duplexes (at various
concentrations) (siRNA TriFECTa Kit, IDT Inc., San Jose, CA,
USA) using Lipofectamine RNAiMAX (Invitrogen) and Opti-
MEM transfection medium (Invitrogen). The three silencing
duplexes used were: (1) Sense Strand: 5’-GGAAUUGUGAA
AUGUAGUUCCUUAT-3’, Antisense Strand: 5’-AUAAGGAA
CUACAUUUCACAAUUCCAC-3’, (2) Sense Strand: 5’-
ACCUGUAAAGUGAGAAAUCUUGCCA-3’ , Antisense
Strand: 5’-UGGCAAGAUUUCUCACUUUACAGGUUC-3’,
(3) Sense Strand: 5’-GGAAACUAAGAAGGUUAUUGG
CCAG-3’, Antisense Strand: 5’- CUGGCCAAUAACCUUCUU
AGUUUCCUU-3’. A red fluorescent dye was transfected at
10nM and served as a positive control. Cells were transfected
for 48 hours and were then treated with or without PDGF-BB
(Sigma Aldrich, Oakville, ON, CA) and 17b-estradiol (Sigma
Aldrich) for an additional 24 hours. This additional 24 hour
treatment contained 2.5% FBS and antibiotics. Cells were then
collected for RNA analysis and immunocytochemical analysis on
microscopic slides.

F9 Mouse Embryonal Teratocarcinoma
Cell Culture
As previously described, F9 cells were maintained in DMEM
medium (Invitrogen) containing 10% fetal bovine serum (FBS)
(Invitrogen) at 37°C and 5.0% CO2 (5, 6). Cells were plated on
gelatin-coated culture dishes on day 1 and treated on day 2. Cells
were plated at a density of 30000 cells/well in a 6-well plate using
DMEM media free of antibiotics, FBS, and amphotericin B, as
they are not recommended while using siRNA protocols. Cells
were then treated with Mock, Scrambled (10nM), or RNF149
silencing duplexes (20nM/duplex) (siRNA TriFECTa Kit, IDT
Inc., San Jose, CA, USA) using Lipofectamine RNAiMAX
(Invitrogen) and Opti-MEM transfection medium (Invitrogen).
The three silencing duplexes used were: (1) Sense Strand: 5’-
GGCAUACAGUAAUGUCUUUAAAUGA-3 ’, Antisense
Strand: 5’- UCAUUUAAAGACAUUACUGUAUGCCUA-3’,
(2) Sense Strand: 5’- AGCGGAGACUGUAGAACUUGG
AAAT-3’, Antisense Strand: 5’- AUUUCCAAGUUCUACA
GUCUCCGCUCA-3’, (3) Sense Strand: 5’- CGCGGGAACA
GGAAACAUAGUCGTC-3’, Antisense Strand: 5’- GACGAC
UAUGUUUCCUGUUCCCGCGUG-3’. A red fluorescent dye
was transfected at 10nM and served as a positive control. Cells
were transfected for 48 hours and were then treated with or
without Glial Cell-Derived Neurotrophic Factor (GDNF, 100ng/
ml, Millipore, Etobicoke, ON, CA), Fibroblast Growth Factor
(FGF2, 10ng/ml, Millipore) and GDNF Family Receptor 1A
(GFRa1, 300ng/ml, R&D Systems, Minneapolis, MN, USA) to
promote proliferation or retinoic acid (RA, 10-7M, Sigma
Aldrich) to promote differentiation for an additional 24 hours.
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This additional 24 hour treatment contained 10% FBS and
antibiotics. Cells were then collected for RNA analysis.

C18-4 Mouse Spermatogonia Cell Culture
C18-4 cells (a gift from MC Hofmann, Houston TX, USA) were
maintained in DMEM medium (Invitrogen) containing 10%
fetal bovine serum (FBS) (Invitrogen) at 34°C and 5.0% CO2.
Cells were plated on day 1 and treated on day 2 similarly to how
F9 cells were treated above.

RNA Extraction and cDNA Synthesis
Total RNA was extracted from cell pellets using the PicoPure
RNA isolation kit (Arcturus, Mountain View, CA, USA) and
digested with DNase I (Qiagen, Valencia, CA, USA) as previously
described (11). Tissue total RNA of testis and other organs in
PND2 to PND35 rat pups were extracted using QIAGEN
RNAeasy Mini kit (Qiagen, Santa Clarita, CA) as previously
described (19). For quantitative PCR (qPCR) analysis, cDNA was
synthesized from the extracted RNA by using the single strand
cDNA transcriptor synthesis kit (Roche Diagnostics) following
the manufacturer’s instructions.

Reverse Transcriptase (RT)-PCR Analysis
RNF149 gene expression in various tissue samples was examined
by PCR and gel electrophoresis. Two primer sets were used: (1)
RNF149 cloning primers (Reverse, 5’- CGAGCGGTCTC
ACTCTTCC-3’; Forward: 3’-TGAGGCTGTCAATGAAGACG-5’),
and variant (VA) form testing primers (Reverse: 5’-
AAGGAATTCCAGTAAAAATGAGG; Forward : 3 ’ -
TTAAAGTTTTCAATACACACTGC-5’). PCR reactions were
carried out using GoTaq® DNA polymerase (Promega,
Madison, WI, USA) and amplified using the iCycler thermal
cycler (Bio-Rad, Hercules, CA, USA). PCR cycle conditions: 95°
C for 3 min; 45 cycles of 95°C for 60 sec, 55°C for 60 sec, and 72°
C for 2 min; followed by a 10 minute extension at 72°C and a cool
down to 4°C. PCR products were then run alongside molecular
weight standards (New England BioLabs, Whitby, ON, CA) on a
1.5% agarose gel. Gel densitometry analysis was performed using
Multi-Gauge software (FujiFilm, Mississauga, ON, CA).

Quantitative Real Time PCR (qPCR)
QPCR was performed using a LightCycler 480 with a SYBR
Green PCR Master Mix kit (Roche Diagnostics) as previously
described (6, 22). The primer sets used were designed using the
Roche primer design software (Roche Diagnostics) and are listed
in Table 1. QPCR cycling conditions: initial step at 95°C followed
by 45 cycles at 95°C for 10 sec, 61°C for 10 sec, and 72°C for 10
sec. The comparative threshold cycle (Ct) method was used to
analyze the data and 18S rRNA was used for data normalization.
We initially determined the Ct values of three potential
housekeeping genes, GAPDH, Tubulin, and 18S rRNA in
cDNA samples from isolated gonocytes cultured for 1 day after
siRNA interference, and 18S rRNA showed that it presented
minimal changes in Ct values between samples. Assays were
performed in triplicate. All experiments were performed using a
minimum of three independent sample preparations and the
mean ± SEM are plotted.
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Immunohistochemistry
RNF149 protein expression was determined in paraformaldehyde
fixed, paraffin-embedded sections of PND2-35 testes and PND3
and PND10 brain, heart, liver, and kidney sections. Slides were
stained using previously described methods (22). In brief, slides
were first dewaxed and rehydrated using Citrosolv (Fisher
Scientific, Toronto, ON, CA) and Trilogy solution (Cell Marque
IVD, Rocklin, CA, USA). Following treatment with Dako Target
Retrieval solution (DAKO, Burlington, ON, CA), the sections were
incubated with PBS (Invitrogen) containing 10% goat serum
(Vector Laboratories, Burlington, ON, CA), 1% BSA (Roche
Diagnostics) and 0.02% Triton X100 (Promega) for one hour to
block non-specific protein interactions. Slides were subjected to a
30% hydrogen peroxide/methanol solution incubation. The
sections were then treated with the RNF149 antibody (Santa
Cruz, Dallas, TX, USA) diluted in PBS (Invitrogen) containing
1% BSA (Roche Diagnostics) and 0.02% Triton X100 (Promega)
overnight at 4°C. Once the overnight incubation was complete,
sections were incubated with biotin-conjugated goat anti-rabbit
secondary antibody (BD Pharmingen, San Jose, CA, USA) diluted
in PBS (Invitrogen) containing 1% BSA (Roche Diagnostics) for 60
minutes at room temperature. Immunoreactivity was detected
using streptavidin-peroxidase (Invitrogen) and AEC single use
solution (Invitrogen). The sections were then counter-stained with
hematoxylin (Sigma Aldrich), coated with Crystal Mount
(Electron Microscopy Sciences, Hatfield, PA, USA) and dried,
and then cover-slipped using Permount (Fisher, Thermo
Scientific) and glass coverslips (Fisher Scientific). Slides were
then examined under bright-field microscopy with a BX40
Olympus microscope (Olympus, Center Valley, PA, USA)
coupled to a DP70 Olympus digital camera (Olympus). Negative
controls were performed by incubating sections with pre-immune
Rabbit IgG (Invitrogen).

Immunocytochemistry
Microscopic slides were prepared on a cytospin centrifuge using
Mock, Scrambled, and siRNA treated gonocytes (with or without
PDGF-BB and 17b-estradiol) for protein analysis. C18-4 cells
(detailed above) were also cultured in 8-well chamber slides (BD
Falcon, Oakville, ON, CA) and analyzed using immunocyto
chemistry. The protocol used for immunocytochemistry, as
previously described, was as follows (11). In brief, slides were
treated with Dako Target Retrieval solution (DAKO) and then
blocked with PBS (Invitrogen) containing 10% goat serum (Vector
Laboratories), 1%BSA (RocheDiagnostics) and 0.02%TritonX100
(Promega) for one hour to block non-specific protein interactions.
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Slides were then incubated with the phospho-ERK antibody (Cell
Signaling, Danvers, MA, USA) for gonocyte analysis and the
RNF149 and PCNA antibodies (Santa Cruz) for C18-4 cell
analysis. Antibodies were diluted in PBS (Invitrogen) containing
1% BSA (Roche Diagnostics) and 0.02% Triton X100 (Promega)
overnight at 4°C. Once the overnight incubation was complete, the
slides were incubated with a biotin-conjugated goat anti-rabbit or
anti-mouse secondary antibody (BD Pharmingen) diluted in PBS
(Invitrogen)containing1%BSA(RocheDiagnostics) foronehourat
room temperature. Immunoreactivity was then detected using a
combination of streptavidin-peroxidase (Invitrogen) and AEC
single use solution (Invitrogen). Slides were counter-stained with
hematoxylin (SigmaAldrich), coated with CrystalMount (Electron
Microscopy Sciences) and dried, and then cover-slipped using
Permount (Thermo Scientific) and glass coverslips (Fisher
Scientific). The slides were then viewed using a BX40 Olympus
microscope (Olympus, Center Valley, PA, USA) coupled to aDP70
Olympusdigital camera (Olympus). ForRNF149 silencing analysis,
phospho-ERKpositivegonocyteswere easilydistinguished fromthe
remaining somatic cells by their much larger size on the cytospin
slides. They were counted and their number was normalized to the
total gonocyte number for each treatment condition, and the data
means plotted as percent of the total gonocyte numbers.

Recombinant DNA Constructs
and Amplification
Template RNF149 cDNA was cloned from PND3 testis total
cDNA with RNF149 cloning primers by GoTaq® DNA
polymerase (Promega) to create poly-A tailing. PCR products
were then separated and extracted from 1.5% agarose gels.
Purified segments were then ligated to pGEM®-T Easy Vector
System I (Promega) and transformed into DH5-a competent
cells (Invitrogen) overnight at 37°C. Single colonies were
collected and cultured in LB (Invitrogen) for 8 hours. Plasmids
were purified by QIAprep Spin Miniprep kit (Qiagen) and sent
for sequencing (Genome Quebec, Montreal QC, CA). After
sequencing, two confirmed variant forms of RNF149 were then
further amplified and purified with HiSpeed Plasmid Maxi Kit
(Qiagen). These two variant forms were ligated into pEGFP-N1
and pEGFP-C2 (Clontech, Mountain View, CA, USA). Based on
gene maps constructed using SnapGene® software (Version 2.8,
GSL Biotech, Chicago, IL, USA), restriction sites were selected at
HindIII and KpnI with the 2.1 buffer (New England BioLabs).
The following constructs were used: N-terminal EGFP-tagged
VA1 (pPA-EGFP) and VA2 (pRING-EGFP), C-terminal EGFP-
tagged VA1 (pEGFP-PA) and VA2 (pEGFP-RING). Gene maps
TABLE 1 | Quantitative real time PCR Primers.

Species Gene Forward Primer Reverse Primer

Rat Rnf149 TGCACCTTCAAGGACAAGGT GCGCTCCTGGTTGTAGACC
Rat Pcna CGTAGTATCACCAGATGGCATCTTTA GGACTTAGACGTTGAGCAACTTGG
Rat Ccnb2 AAAACCTCACCAAGTTCATCG GAGGGATCGTGCTGATCTTC
Rat 18S cgggTGCTCTTAGCTGAGTGTCCcG CTCGGGCCTGCTTTGAACAC
Mouse Rnf149 CGGTCAGTCTGTGGTGTTTG CCTTCTTAGTCTCCTTCCTATGATTC
Mouse Stra8 CTCTCCCACTCCTCCTCCACTC CGGTATTGCTTGTAAAAGTTGAGATA
Mouse 18S CGGAATCTTAATCATGGCCTCAGTTC ACCGCAGCTAGGAATAATGGAAT
M
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of RNF149-EGFP plasmids are shown as Supplementary
Figures 1, 2.

Transfections and Live Cell Imaging
Both cell lines were grown on 35mm fluoro-dish cell culture
dishes (World Precision Instruments, Sarasota, FL, USA) at a cell
density of 25 million cells/dish before transfection. Cells were
transfected with the plasmids mentioned above with either Set 1:
BFP-KDEL (Blue ER tubule marker, Addgene, Cambridge, MA,
USA) and DsRed-Mito (Red mitochondria marker, Clontech) or
Set 2: pDsRed2-ER (Red ER marker, Clontech), one day before
confocal microscopy observation, using Lipofectamine™ 3000
(Invitrogen) according to the manufacturer’s protocol.
LysoTracker Blue DND-22 (60nM, Life Technologies) is added
to Set 2 cells before observation for 30 minutes. Before
observation under confocal microscope, cells are gently washed
with culture medium, and then 1ml Opti-MEM medium (Life
Technologies) is added to replace culture medium. Cell samples
were analysed by Zeiss LSM880 Laser Scanning Confocal and
Super-Res SIM/PALM/dSTORM system (Zeiss) at the McGill
University Health Centre Research Institute Molecular Imaging
Core Facility. Images were collected over a 60 minute
time period.

Statistical Analysis
Statistical analysis was performed using an unpaired two-tail
Student’s t-test using statistical analysis functions in the
GraphPad Prism 5.0 program (GraphPad Inc., San Diego, CA,
USA). All experiments were performed where N equals a
minimum of three independent experiments. A P-value less
than 0.05 was considered statistically significant.
RESULTS

RNF149 Expression Profile in Neonatal to
Pubertal Rat Organs
As previously mentioned, we have shown that RA-induced
gonocyte differentiation requires an active ubiquitin
proteasome system (UPS), and identified a number of UPS
genes and proteins differentially expressed between PND3
gonocytes and PND8 spermatogonia (11). Amongst those
identified, RNF149 was found to be more abundant in
gonocytes than spermatogonia, suggesting that this UPS gene
is decreased during the process of differentiation and remains
low thereafter. In order to confirm this hypothesis and to
understand the role of RNF149 in rat development, tissues
such as testis, kidney, liver, heart, and brain were collected
from rat pups aged from PND2 to PND35 for gene expression
and immunohistochemistry studies.

Using qPCR analysis, we found that RNF149 mRNA
expression was highest in the testis at all ages analyzed when
compared to RNF149 mRNA expression levels in the brain,
heart, liver, and kidney at the same ages (Figure 1A). In neonatal
testes, RNF149 was mainly expressed in gonocytes and was
found in Sertoli cells only at older ages (Figure 1B).
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Interestingly, RNF149 was found highly expressed in the
nucleus of PND2 and PND3 gonocytes, with a weaker staining
in gonocyte cytoplasm. RNF149 also appeared to translocate to
the cytoplasm in spermatogonia (Figure 1B). Although gene
expression levels of RNF149 in other organs were lower than in
the testis, we also observed weak RNF149 staining in the brain,
liver, and heart at PND3, a more robust staining in the PND10
liver and a strong signal in cells of kidney tubules at both ages
(Figure 1C). This suggests that RNF149 might play an important
role in regulating the development of different tissues, mainly
testis and kidney.

RNF149 Silencing Leads to Reduced Cell
Proliferation in Neonatal Gonocytes
To understand the possible mechanism of RNF149 in regulating
gonocyte development, we started by testing the function of
RNF149 in gonocyte proliferation. RNF149 mRNA was
efficiently knocked down after 48 hours of treatment with a
triad of siRNA duplexes using Lipofectamine transfection
(Figure 2A). Compared to mock treatment conditions and
those of scrambled, there was a significant decrease in Rnf149
expression in gonocytes treated with siRNA, indicating an
efficient knockdown (Figure 2A). We have previously shown
that a combination of PDGF-BB (P) and 17b-estradiol (E)
induces gonocyte proliferation. Here, we found that when
gonocytes were treated with P+E, there was a significant
increase in Rnf149 mRNA expression in the mock treated cells,
indicating a possible role of RNF149 in gonocyte proliferation.
When analyzing Proliferating Cell Nuclear Antigen (Pcna)
mRNA levels as a marker for gonocyte proliferation, we found
that silencing RNF149 led to a significant decrease in
proliferation (Figure 2B). Furthermore, as expected, the
addition of P+E to gonocytes in the mock or scrambled
conditions significantly upregulated Pcna expression. We also
found that when P+E was added to the treated cells, siRNA-
treated gonocytes had significantly lower Pcna expression
compared to Mock cells treated with P+E, indicating that
regardless of P+E stimulation, silencing RNF149 had a negative
effect on proliferation. To confirm these findings, we also
analyzed cyclin B2 (Ccnb2) mRNA expression (Figure 2C),
which is another marker used to assess cell proliferation as it is
an essential part of the cell cycle regulatory machinery involved
in controlling the G2/M transition (23). However, unlike PCNA,
we found that Ccnb2mRNA levels were significantly upregulated
upon RNF149 silencing, although Ccnb2 induction by P+E was
reduced upon RNF149 silencing, suggesting that RNF149
disrupts Ccnb2 expression in basal and proliferative conditions.
Taken together, the analysis done on PCNA and CCNB2 gene
expression indicates a complex and dynamic role of RNF149 in
gonocyte proliferation.

To further explore the role of RNF149 in gonocyte proliferation
we analyzed the activation of ERK, since we had previously shown
that the MEK/ERK signalling pathway is involved in gonocyte
proliferation (4). Thus, we examined whether there were any
changes in levels of ERK phosphorylation upon P+E treatments
in control cells and cells in which RNF149 was knocked down with
May 2022 | Volume 13 | Article 896507
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siRNA. Gonocytes were immunostained to determine the levels of
phosphorylated ERK, and the number of gonocytes positively
stained for phospho-ERK in each condition was determined. As
expected, there was a significant increase in phospho-ERK-positive
gonocytes treated with P+E compared to Mock gonocytes alone
(Figure 2D). Furthermore, there was a decrease in ERK activation
when RNF149 was silenced in gonocytes with or without P+E
treatment, similarly to Pcna mRNA expression. Taken together,
these data suggest that when RNF149 is knocked down, there is a
significant decrease in the expression of markers for gonocyte
proliferation, further supporting its role in gonocyte proliferation.

RNF149 Knockdown in C18-4
Mouse Spermatogonia Cells Does
Not Affect Proliferation or Differentiation
Although there is no cell line model available for gonocytes, the
mouse-derived C18-4 spermatogonia cell line is commonly used
to study type A- spermatogonial development (24). Here, we
used C18-4 cells to determine whether RNF149 knockdown had
a similar effect on spermatogonial development. After
confirming efficient RNF149 mRNA knockdown by qPCR
Frontiers in Endocrinology | www.frontiersin.org 6116
(Figure 3A), we found that upon RNF149 mRNA silencing,
there was a significant increase in Stra8 mRNA levels
(Figure 3B). Stra8 mRNA level increases were also seen when
Mock C18-4 cells were treated with RA (Figure 3C), confirming
its use as a marker for spermatogonial differentiation. Unlike
gonocytes, there was no significant change in the mRNA levels of
PCNA upon RNF149 silencing (data not shown). Furthermore,
when treating C18-4 cells with a cocktail of glial-cell derived
neurotrophic factor (GDNF), fibroblast growth factor (FGF2),
and GDNF family receptor alpha 1 (GFRa1), known to promote
proliferation (25), there was no significant change seen in PCNA
mRNA expression (data not shown). Taken together, this data
indicates that unlike in gonocytes, RNF149 is likely negatively
involved in spermatogonial differentiation, and not proliferation.

RNF149 Silencing in F9 Mouse Embryonal
Teratocarcinoma Cells Does Not Affect
Their Proliferation or Differentiation
Our lab previously showed that F9 cells, considered as surrogate
for embryonic stem cells, also share similar traits with gonocytes,
especially in their ability to express the spermatogonial marker
A

B

C

FIGURE 1 | RNF149 expression profile in various organs in rats at various ages. (A) RNF149 mRNA levels in various tissues from PND2 to PND35. (B) RNF149
protein expression in testes from PND2 to PND35. Arrowhead: germ cell; arrow: Sertoli cell. (C) RNF149 expression in brain, heart, liver, and kidney at PND3 and
PND10. 20mm scale shown. Representative images shown.
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STRA8 in responses to RA treatment, and in the existence of
crosstalk between RA and PDGFR signaling pathways (6).
Moreover, F9 cells proliferate in response to PDGF-AA,
similarly to gonocytes that proliferate in response to PDGF-
BB. Due to their similarities, F9 cells can be used as a model for
the study of gonocyte differentiation. Here, we used F9 cells to
determine whether RNF149 knockdown had a similar effect on
these cells as it did on gonocyte proliferation. Upon confirmation
of efficient RNF149 mRNA knockdown (Figure 4A), we found
that independent of F9 cells being treated with siRNA or not,
there was a significant increase in Stra8 mRNA levels upon RA
treatment, as expected (Figures 4B, C). Silencing RNF149
mRNA had no significant effect on F9 cell proliferation also
(data not shown). Furthermore, there was no significant change
seen in PCNA mRNA expression in cells where RNF149 was
silenced (data not shown). Taken together, these data suggest
that although there are many similarities between the
development of F9 cells and gonocytes, the involvement of
RNF149 in their proliferation is not a common characteristic
between these two cell types.
Frontiers in Endocrinology | www.frontiersin.org 7117
Two Variant Forms of RNF149 Transcripts
Are Expressed in Rat Tissues
Given that there is limited information about RNF149 and its
possible role in germ cell development, we proposed to build
EGFP-tagged RNF149 vectors to better understand its cell
localization and mechanism of action (Figure 5A). Interestingly,
with primers designed based on a predicted sequence that would
generate a single product approximately 1185bp in size, three
major variant forms were found in all tissue sample examined,
showing stronger expression in the testis and kidney than in the
liver (Figure 5B). This finding was in agreement with both the
qPCR and tissue staining results presented above. Furthermore,
the three major variant forms were also present in the rat testes at
ages PND2 to PND35 at varying intensities (Figure 5C).

Two PCR products that were approximately 1000bp in size
were then cloned into pGEM®-T Easy Vectors for sequencing.
The largest band obtained was 1400bp but because it was much
larger than the expected size of full length RNF149 (1185bp), this
band was not further used. However, one cannot exclude that it
may correspond to a true RNF149 variant mRNA with intron
A B

C D

FIGURE 2 | RNF149 knockdown in PND3 gonocytes. (A) RNF149 mRNA expression in gonocytes first treated with mock (M), scrambled siRNA (Sc), or
RNF149 siRNA (Si) for 48 hours and then treated with or without PDGF-BB (10-9M) and 17b-estradiol (10-6M) [with 2.5% fetal bovine serum (FBS)] for an
additional 24 hours. Results shown are from N=3-5 independent germ cell preparations (each done in duplicate) and are plotted mean ± SEM. *p-value<0.05.
(B) PCNA mRNA expression and (C) CCNB2 mRNA expression in similarly treated cells. **p-value<0.01. (D) Treated gonocytes were immunostained using
phospho-ERK antibody. Total number of gonocytes and positively stained cells were counted. Percentage of phospho-ERK-positive cells was graphed. Results
shown are from N=3 independent germ cell preparations. *p-value<0.05.
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retention, as found for a number of germ cell and cancer
variant transcripts.

Sequencing results indicated that there are two variant forms
in rat tissues: VA1 (1066bp) that expresses the PA domain and
VA2 (862bp) that expresses the TM-RING domain (Figure 6A).
Although a great number of mutated RNF protein expressions
have been found in cancer patients, these might be the first
naturally expressed variant forms of RNF proteins in rat. Based
on sequencing results, a primer set was designed to verify the
expression of these two variant forms in other organs, which for
VA1 would produce a 182bp product, and for VA2, a 301bp
product. The results showed that almost all organs tested had
three bands, two of which matched our predictions (Figure 6B).
Taken together, this data suggests the presence of variant
RNF149 forms present in the rat testis. The exact functions of
these variants remain to be elucidated.

Subcellular Localization of
EGFP-Tagged RNF149 Isoforms
in C18-4 and F9 Cell Lines
C18-4 cells are immortalized spermatogonial cells that exhibit the
general properties of type-A spermatogonia and we found these
Frontiers in Endocrinology | www.frontiersin.org 8118
cells to express both RNF149 and PCNA (Figure 7A). RNF149
protein expression was found mainly to be cytosolic, in agreement
with the cytosolic expression observed in PND8 spermatogonia
(data not shown). Given that C18-4 cells express RNF149, this cell
line can be used as a potential model to study its role in various
germ cell related mechanisms. Four vectors that express either C-
termini or N-termini EGFP-tagged VA1 and VA2 forms of
RNF149 were transfected into both F9 and C18-4 cell lines
independently, with or without the co-transfection of either blue
or red ER marking plasmid and lysosome tracker. In C18-4 cells,
the location of EGFP on either C-termini or N-termini changed
the distribution of RNF149 (Figure 7B). Therefore, C-terminal
EGFP plasmids were used for subsequent studies. To test where
RNF149 isoforms localized in C18-4 cells, two C-terminal EGFP
plasmids were co-transfected with markers for the ER and
mitochondria. The RING domain-containing RNF149 isoform
was widely expressed in C18-4 cell cytoplasm and nucleus
(Figure 7C), whereas the PA domain-containing isoform co-
localized with ER, but not with the mitochondria or lysosome
(Figures 7D, E). The differential localization of the two variant
forms suggests differential functions. Moreover, the PA domain
might be required for RNF149 to reside in the ER membrane.
A

B C

FIGURE 3 | RNF149 knockdown in C18-4 cells. (A) RNF149 mRNA expression in C18-4 cells treated with mock and siRNA for 48 hours. Results shown are from
N=3 independent cell passages and are plotted mean ± SEM. *p-value<0.05. (B) Stra8 mRNA expression in C18-4 cells treated with mock and siRNA for 48 hours.
*p-value<0.05. (C) Stra8 mRNA expression in mock cells treated with or without RA (10-7M) for an additional 24 hours. **p-value<0.01.
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Interestingly, similar expression patterns were observed in F9
cells transfected with PA-EGFP plasmid with markers for ER and
mitochondria, where PA-EGFP RNF149 co-localized with the
ER rather than mitochondria (Figure 8A). When co-transfected
with an ER marker and stained with lysosome tracker, PA-EGFP
RNF149 did not co-localize with lysosomes in F9 cells, which
corresponds to the expression pattern seen in C18-4 cells
(Figure 8B). However, RING-EGFP RNF149 did not co-
localize with ER, but was highly aggregated in lysosomes
(Figure 8C). These results suggest that in both C18-4 and F9
cells, the PA-domain of RNF149 is a key factor for RNF149
localization in the ER, and that the PA variant protein might
have a role in ER, while the RING-domain variant protein might
be an essential element for RNF149 localization in the lysosome,
related to the protein degradation pathway.
DISCUSSION

The ubiquitin proteasome system has been widely studied due to
its multiple functions in regulating protein degradation, kinase
activation, DNA repair, trafficking, translation, and signal
Frontiers in Endocrinology | www.frontiersin.org 9119
pathway activation (12–17). In addition, among the three key
enzymes of the UPS, E3 ligases play the most important role as
they provide specificity to the entire process (14). RING-type E3
ligases have been reported to be important regulators in many
diseases, such as Mdm2, that can ubiquitinate P53 (26), and
Skp2, that can degrade c-Myc (27), thus their involvement in
various disease states. Some studies have been conducted on
transmembrane RING-type E3s such as RNF128 (also called
GRAIL) and RNF5, which were reported to participate in cell
proliferation and differentiation processes (28). While a
functional UPS is required for the regulation of cell
proliferation and differentiation in physiological processes such
as the formation of ocular lenses, its dysregulation leading to
improper proliferation or differentiation is associated with
diseases such as cancer and osteoporosis (15, 29, 30).
Interestingly, RNF128 was proposed to be linked to cancer and
sepsis via its role in immunologic tolerance (31).

In contrast, little is known about RNF149, our protein of
interest. A study carried in human colon cancer and embryonic
kidney cell lines reported that RNF149 indirectly regulated cell
differentiation by reducing BRAF, a kinase known for its pro-
proliferation function (32). On the other end, a recent study
A

B C

FIGURE 4 | RNF149 knockdown in F9 cells. (A) RNF149 mRNA expression in F9 cells treated with mock and siRNA for 48 hours. Results shown are from N=3
independent cell passages and are plotted mean ± SEM. *p-value<0.05. (B) Stra8 mRNA expression in F9 cells in mock cells treated with or without RA (10-7M)
for an additional 24 hours. *p-value<0.05. (C) Stra8 mRNA expression in siRNA treated cells also treated with or without RA (10-7M) for an additional 24 hours.
**p-value<0.01.
May 2022 | Volume 13 | Article 896507

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Manku et al. E3-Ligase RNF149 Regulates Gonocyte Proliferation
searching germline modifier genes possibly associated with
aggressive prostate cancer, by GWAS and human prostate
tumor expression data set analyses, identified RNF149 among
four genes that could contribute to disease aggressiveness in PC
patients. Ectopic overexpression of these genes in in vitro cell
growth and in vivo tumor growth assays found that the
overexpression of only one gene, CCDC115, decreased tumor
growth, while the other genes had not significant effects in these
assays (33). This finding agrees with their observation that
RNF149 expression was associated with an increase in disease
burden and tumor stage in the patients, whereas CCDC115 high
expression was associated with decreased tumor burden (33).

Our previous study showing that RNF149 is strongly
expressed in gonocytes and is downregulated during their
differentiation to spermatogonia (11), suggests that RNF149
may need to be removed before gonocytes can undergo
differentiation to form spermatogonia. This trend is also
observed in testes sections, where RNF149 has the highest
Frontiers in Endocrinology | www.frontiersin.org 10120
protein expression in PND2 and PND3 gonocytes, especially in
the nucleus, in contrast to its expression in Sertoli cell cytosol in
older, pubertal testis. While the full-length rat RNF149 does not
have an obvious nuclear signal sequence according to the
Nuclear Localization Signal Data Base website (https://rostlab.
org/services/nlsdb/), it is possible that RNF149 translocates to
the nucleus as part of a protein complex. In addition, RNF149 is
found highly expressed in certain cell types in kidney and other
organs from PND2 to 35 (puberty), the strongest being in cells
from kidney tubules. It is interesting to note that RNF149 profiles
reported in the Human Protein Atlas public website (data not
shown) were similar to our findings at younger ages in the rat.
Indeed, RNF149 was strongly expressed at the surface of
spermatocytes and in Sertoli cell cytoplasm in adult human
testes, in kidney tubule cells, and in bile duct cells. We also
found strong RNF149 expression in adult PND120 Sertoli cell
cytoplasm as well as in the cytoplasm of elongated spermatids
(data not shown). Thus, our results indicate that RNF149 might
A

B

C

FIGURE 5 | PCR analysis of RNF149 sequences cloned from tissues of rat pups at different ages. (A) Gene map of RNF149. Blue bar represents total predicted
gene, green bar represents the RNF149 coding sequence that includes the PA domain (red), transmembrane TM domain (purple), and RING domain (orange).
(B) PCR products of RNF149 in rat testes at various ages. (C) PCR products of RNF149 in various rat organs and various ages. T, testis; K, kidney; L,liver.
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be an essential regulator for the postnatal development of
different organs. Moreover, its expression varies in testicular
germ cells from a nuclear expression in neonatal gonocytes to a
cytoplasmic localization in spermatogonia and elongated
spermatids, suggesting specific roles in restricted phases of
germ cell development. Also of interest is its presence in the
cytoplasm of pubertal to adult Sertoli cells, suggesting a potential
role in differentiated, but not immature, Sertoli cells.

The analysis of neonatal gonocyte proliferation in response to a
mixture of PDGF-BB and 17b-estradiol (P+E), previously found to
induce gonocyte proliferation (3, 4), in cells expressing normal levels
of RNF149 showed that the expression levels of RNF149 were
increased in mock cells simultaneously to PCNA by the proliferative
agents, whereas blocking RNF149 expression with siRNA reduced
its P+E driven induction by nearly 70% and decreased PCNA
induction by more than 50% of the levels found in P+E-treated
mock cells. Together with the fact that phospho-ERK, a
downstream effector of gonocyte proliferation, was similarly
affected by knocking down RNF149, these results suggest that
RNF149 may be a positive regulator of gonocyte proliferation.
Moreover, the role of RNF149 in neonatal gonocytes appeared
specific to this stage of germ cell development, since RNF149
silencing did not affect spermatogonial proliferation. Similarly, the
Frontiers in Endocrinology | www.frontiersin.org 11121
lack of effect of RNF149 silencing on the proliferation of F9 cells
suggested that it may not be involved in stem cell proliferation.
However, one cannot exclude the possibility that the data obtained
with the C18-4 immortalized spermatogonial and the F9 teratoma
cell lines might not reflect the function of RNF149 in primary
spermatogonia or embryonic stem cells, since these cell lines have
deficient cell cycle regulation that could mask a potential role of
RNF149 in their proliferation.

A study published in a Chinese journal proposed that RNF149
might be directly involved in cell proliferation via degrading CD9
(34). Other studies have linked CD9 to the maintenance of stemness
in spermatogonia and its presence in humanmale germ cells related
to their ability to repopulate rodent testes after transplantation (35).
It is possible that the target(s) of RNF149 in gonocytes is different
from CD9 or that it requires the recruitment of other proteins to
affect CD9. Another ubiquitin ligase, RNF144A, was reported to
exert a positive effect on cell proliferation in EGF-dependent human
cancer and immortalized embryonic cell line models, by
maintaining EGFR expression (36). In this study, RNF144A was
shown to prolong EGF effects by promoting EGFR ubiquitination,
and that RNF144A depletion using CRISPR/Cas9 system decreased
EGF-dependent cell proliferation. Subcellular localization studies
led to the hypothesis that RNF144A may regulate EGFR transport
A

B

FIGURE 6 | PCR analysis of RNF149 variant forms in rat testes, kidney, and liver at various ages. (A) Gene map of RNF149 coding sequence. Green bar represents
total RNF149 coding sequence that includes the PA domain (red), transmembrane TM domain (purple), and RING domain (orange). Blue bars represent two variant
forms of RNF149 found in the rat. (B) PCR products of RNF149 in PND3 rat testes, and VA1 and VA2 plasmids compared to kidney and liver at various ages. T,
testis; K, kidney; L, liver.
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to intracellular vesicles in EGF-treated cells (36). These findings
extend the possibility of RNF proteins regulating cell proliferation
not only by regulating the ubiquitination of their target proteins, but
also their subcellular localization.

Although very little is known about RNF149, it has been
reported to be a transmembrane protein mostly expressed on ER
membranes and lysosomes. Besides its potential role in cell
proliferation, RNF149 might also participate in the regulation of
recycling endosome trafficking. Goliath and Godzilla, two
Frontiers in Endocrinology | www.frontiersin.org 12122
Drosophila members of the PA-TM-RING RNF protein family
and their human homologue RNF167, were reported to regulate
recycling endosome trafficking via ubiquitylation of the VAMP3
(vesicle-associated membrane protein 3) SNARE (soluble N-
ethylmaleimide-sensitive factor attachment protein receptor)
protein and induce enlargement of EEA1 (early endosome
antigen 1)/Rab5-positive early endosomes both in vitro and in
vivo (37). Moreover, a study conducted on LGR5+ stem cells
demonstrated that two other PA-TM-RING family proteins
A
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FIGURE 7 | C18-4 cells as a potential model for studying RNF149 function. (A) Colorimetric analysis of C18-4 cells positively expressing RNF149 and PCNA. 20mm
scale shown. Representative cells shown. (B) Single transfection of EGFP-tagged RNF149 isoforms. (C) RNF149 is co-localized with ER by PA domain. RING-EGFP
vector co-transfected with mitochondria marker (red) and ER marker (blue). (D) PA-EGFP vector co-transfected with mitochondria marker (red) and ER marker (blue).

Both co-transfections were performed using Lipofectamine™ 3000 (Invitrogen) 24 hours before microscopic observation (according to the manufacturer’s protocol).
(E) RNF149 is co-localized with ER by PA domain but not the lysosome. PA-type RNF149 isoform is co-transfected with ER marker (red) and lysosome marker
[blue; LysoTracker Blue DND-22 (Life Technologies)]. Representative images shown.
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RNF43 and ZNRF3, were able to reduce Wnt signals by enhancing
endocytosis of Frizzled receptors via its ubiquitylation, hence cell
growth arrest (38). As a matter of fact, massive activation of Wnt
signaling is found in either mice lacking these genes or cancer cells
harboring loss-of-function mutations of RNF43 (39). These results
implicate a shared regulatory function for PA-TM-RING ubiquitin
ligases in intracellular trafficking/sorting and suggest that
abrogation of their function may lead to cellular signaling
disorder, which can eventually cause cancer.

Our next goal was to generate overexpression vectors coding for
rat RNF149 mRNA and to express the recombinant protein in cell
lines to determine its subcellular localization. Using publicly
available rat RNF149 mRNA sequence, we cloned the gene from
rat testes and other tissues. Interestingly, two variant mRNA forms
of RNF149, VA1 and VA2, were found in rat testes, liver, and
kidney cDNA libraries. Sequence analysis and the positions of start
Frontiers in Endocrinology | www.frontiersin.org 13123
and stop codons showed that VA1 included the sequence of the PA
domain but lacked the RING domain. On the other hand, the start
codon and stop codon of VA2 defined a sequence including TM
and RING domains. Thus, VA2 was referred to as the RING form.
These two constructs were then ligated to N1/C2 EGFP vector for
mammalian expression of RNF149, to examine their subcellular
localization in F9 and C18-4 cells used as models.

Weak RNF149 protein expression was observed in primary rat
spermatogonia cytoplasm in PND6-8, in agreement with its
expression in mouse C18-4 cells, an immortalized cell line
considered as type-A spermatogonia, including spermatogonial
stem cells (24). Interestingly, RNF149 expression appeared to be
stronger in some but not all C18-4 cells than in vivo PND8
spermatogonia, suggesting two subpopulations in growing C18-4
cells, in support of this cell line containing type A spermatogonia
at different phase of differentiation, as observed with isolated
A
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FIGURE 8 | F9 cells as a potential model for studying RNF149 function. (A) RNF149 is co-localized with ER by PA domain but not the mitochondria. PA-type
RNF149 isoform is co-transfected with ER marker (blue) and mitochondria marker (red). (B) PA-domain potentially co-localizes with ER while RING-domain is co-
localized with lysosomes. RING-EGFP vector is co-transfected with ER marker (red) and lysosome marker (blue). (C) PA-EGFP vector is co-transfected with ER
marker (red) and lysosome marker (blue). Representative images shown.
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spermatogonia from juvenile mice (40–42). Alternatively, these
different patterns in RRNF149 expression levels could be related to
the cells being at different phases of the cell cycle. As a type I
transmembrane protein, RNF149 shares common features, such as
N-terminal signal peptides (NS) and transmembrane domains,
with other members, suggesting that a C-terminal fusion protein
of EGFP and RNF149 should not disrupt the N-terminal signal
peptides, allowing the fusion protein to remain in the cytoplasm,
whereas the fusion of EGFP at the N-terminal might affect its PA-
domain function. In RNF protein-related studies, due to the
existence of predicted N-terminal signal peptides, EGFP is
mostly conjugated to the C-termini. Here, EGFP ligated at the
N-termini changed the localization of VA1 and VA2 RNF149,
making them either widely spread in the nucleus and cytoplasm,
likely due to EGFP hindering the PA domain, resulting in the loss
of ability to reside in the ER and other potential sites in the cell, or
leading to condensation into smaller spots as seen with VA2. This
further suggests that the RING domain participates in intracellular
trafficking/sorting. Therefore, to reduce the interference effect
caused by EGFP, C-terminal EGFP tagged VA1 and VA2 RNF
plasmids will be used in further studies.

In C18-4 and F9 cell lines co-transfected with either the ER,
mitochondria, or lysosome marker, VA1 RNF149 was localized
in the ER, suggesting a potential function of the PA domain, in
agreement with other studies. In contrast, VA2 is localized
mainly to lysosomes in F9 cells, which was not observed in
C18-4 cells. These results suggest that in both C18-4 and F9 cells,
the PA-domain of RNF149 potentially exhibits its function in the
ER, while in F9 but not C18-4 cells, the RING-domain may be an
essential element for RNF149 translocation to the lysosome, in
relation to the protein degradation pathway.

The apparent difference in RING domain localization between
F9 cells and C18-4 cells is interesting, since F9 cells correspond to
pluripotent embryonic stem cells with both somatic and germ line
potentials, whereas C18-4 cells represent more advanced
undifferentiated spermatogonia. To date, only BRAF and CD9
are known targets for RNF149, and how they take part and react
with both the PA and RING domains of RNF149 remains unclear.
Therefore, further studies focused on finding other potential
substrates of RNF149 and its actual mechanism of action in
these cell lines and gonocytes are required.

In summary, this study demonstrated the potential function of
RNF149 in gonocyte development, highlighting the correlation
between RNF149 expression and proliferation marker PCNA
during PDGF-BB+17b-estradiol co-treatment, the variant forms
of RNF149 found in rat tissues, and the potential roles of PA and
RING domain-containing variant proteins. Although these studies
were not able to fully identify the role of RNF149 and the identity of
its substrates in response to proliferation or differential stimulation
in gonocytes, C18-4 cells, and F9 cells, they revealed the possibility
of RNF149s involvement in gonocyte proliferation and tested the
potential use of F9 and C18-4 cell lines as models to study the
function of RNF149. The importance of the UPS system in
preventing the accumulation of misfolded proteins was recently
highlighted, in parallel to the role of autophagy in maintaining cell
integrity and functionality (43). Our previous finding that inhibiting
Frontiers in Endocrinology | www.frontiersin.org 14124
proteasome activity impaired gonocyte differentiation (11) and the
present study emphasizing RNF149 role in gonocyte proliferation,
suggest that multiple UPS enzymes exert different effects in the
regulation of these cells and that RNF149 is only a piece of the
puzzle. Taken together, the findings that RNF149 expression is
induced by proliferating agents, that its silencing decreases
proliferation and increases differentiation genes, and that it is
downregulated during differentiation, supports the hypothesis that
RNF149 plays a role in gonocyte proliferation, while its
downregulation may be part of the differentiation process.
Moreover, the perturbation of RNF149 function might lead to
disorder in membrane protein trafficking and degradation.
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Human spermatogenesis is a qualitatively and quantitatively different process than that
observed for most other mammals. In contrast with most other mammals, human
spermatogenesis is characterized by reduced quantitative production and more
abnormal sperm morphology. Until recently, direct evaluation and observations of
human sperm production has been limited and the majority of scientific knowledge
regarding spermatogenesis was derived from rodent models of study. Unique
opportunities to observe human spermatogenesis have occurred as a consequence of
the treatment of severe male infertility. These patients have sperm production so limited
that no sperm reach the ejaculate so their fertility treatment involves surgical sperm
retrieval from the testis, coupled with use of those sperm with advanced assisted
reproductive techniques. Treatment of men with severe male infertility has enhanced
identification of new genetic abnormalities that may cause this condition, since they now
seek medical care. Three key novel concepts have resulted: (a) spermatogenesis is
spatially heterogeneous in the human male, especially when sperm production is
compromised, (b) genetic abnormalities are common in men with severe male infertility,
particularly in men with diffuse maturation arrest and (c) rodent studies may not be an ideal
model for understanding human male infertility. Scientific understanding of human
spermatogenesis has been enhanced by these clinical observations.

Keywords: human, spermatogenesis, male infertility, genetics, treatment
INTRODUCTION

With the advent of assisted reproductive technologies, the ability to treat severe forms of male
infertility has been significantly enhanced. Spermatozoa that would have had limited chances of
oocyte fertilization can now routinely be used for fertilization and subsequent pregnancy. In
addition, the ability to make direct observations from use of single male gametes in assisted
reproduction further increases our ability to understand the role of a male factor in human fertility.
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The treatment of severe male factor infertility, where sperm
production is so limited that no viable sperm are present in the
ejaculate requires surgical sperm retrieval. This surgical
intervention has also given us opportunities to directly
investigate the internal function of the testis through clinical
observation. The most effective form of sperm retrieval for non-
obstructive azoospermia is microdissection testicular sperm
extraction (microTESE) (1, 2) where direct evaluation of the
seminiferous tubules within the testis is done to identify the sites
of sperm production. In many cases, dissection is used to
examine hundreds of the seminiferous tubules inside of the
testis; a unique opportunity to evaluate and characterize
spermatogenesis for these men. These observations provide the
basis for some of the novel concepts described in this
perspective manuscript.

Evaluation of men with severe male infertility now occurs
routinely as part of their treatment process. The routine genetic
testing for potential abnormalities such as Y chromosome
microdeletions (3) prior to treatment has provided the
opportunity to examine their genome on a broader scale than
may otherwise have occurred. Our experience with treatment of
men has resulted in a large number of men being referred for
treatment, and, fortunately, most of them are willing to allow
additional genetic testing under IRB oversight for novel
conditions that may cause infertility, as well as the known
causes of severe male infertility including karyotypic
abnormalities and Y chromosome microdeletions (4).
HETEROGENEITY OF HUMAN
SPERMATOGENESIS

Spermatogenesis in the rodent has been carefully characterized
since the 1800s (5) and qualitatively documented since Clermont’s
work in 1952 to have specific carefully coordinated and timed
facets for the spermatogenic process (6). The documentation of 12
specific stages in the mouse reflects a uniquely organized process
for spermatogenic development (7). Central to the observations of
rodent spermatogenesis in nearly every publication is that the
germ cell developmental process is uniform throughout the testis,
with variations from tubule to tubule only based on tightly
organized specific spermatogenic stages.

In distinction, human spermatogenesis has been typically
characterized as being chaotic, with no reliable staging within
the seminiferous tubule. Although attempts to define
spermatogenic cycles in the human have been proposed by
Nikkanen (8), and a complex interlocking spiral process of
spermatogenic cell development was described by Schulze (9),
human spermatogenesis is widely observed to be more chaotic
than organized.

The treatment of men with non-obstructive azoospermia is
complex since, by definition, these men have spermatogenesis so
impaired that no sperm are observed in the ejaculate. As a result,
surgery coupled with assisted reproduction is needed for fertility.
Frontiers in Endocrinology | www.frontiersin.org 2128
Testicular histology is uniformly abnormal in these men.
Interestingly, even men with predominant Sertoli cell-only
pattern will have focal areas of sperm production identifiable
with mTESE (10). Since sperm production is grossly abnormal in
these testes, heterogeneity of sperm production is required for
sperm production to be present in the testes; only men with at
least focal spermatogenesis (different from their baseline or
overall pattern of spermatogenesis) will have sperm retrieved.
The microsurgical exploration and dissection of testicular tissue
is needed to find these isolated areas of sperm production,
reflecting why microTESE is the preferred method of sperm
retrieval. Men with diffuse, uniform-appearing maturation arrest
can be very challenging to treat. However, these men with diffuse
maturation arrest will often have rare sperm in the ejaculate,
even if wide dissection of their testicular tissue shows no obvious
evidence of focally normal sperm production. So, even they have
focal differences in sperm production despite a nearly uniform
histologic appearance in the testes.

Large studies examining men with a normal karyotype have
shown that only 52% of men will have normal spermatogenesis
on testis biopsy, with the remainder showing globally decreased
sperm production or late defects in spermatogenic development
(11). Taken together, especially for men with impaired
spermatogenesis, it is clear that human spermatogenesis is
typically a heterogeneous process. This is markedly different
from the process of spermatogenesis in other mammals,
especially rodents.
GENETIC ABNORMALITIES IN NON-
OBSTRUCTIVE AZOOSPERMIA

Defined genetic abnormalities causative of non-obstructive
azoospermia are detected in approximately 20% of men
with severely impaired sperm production, and include
microdeletions of the AZFa, AZFb or AZFc regions of the Y
chromosome as well as karyotypic abnormalities. Although
Klinefelter syndrome is the more common karyotypic
abnormality associated with non-obstructive azoospermia,
autosomal translocations can also be found in men with this
condition. Another 5% of men have a history of chemotherapy
or radiation associated with their azoospermia, and about 10%
of men have a history of cryptorchidism and prior orchiopexy.
That leaves another 65% of men for whom we can either
characterize their etiology based on histologic appearance
(Sertoli cell-only and/or maturation arrest) or simply refer to
them as being idiopathic. Since histologic characterization does
not reflect an etiology, the majority of men with non-
obstructive azoospermia could have a genetic cause for their
severely impaired sperm production.

The recognition that infertility could be hereditary is not a
new concept. In 1981, well before advanced genetic techniques
identified specific genetic abnormalities, Cantu et al. recognized
the presence of maturation arrest in 3 of 13 brothers from a
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consanguineous marriage, suggesting the possibility of an
autosomal recessive genetic defect that could be causal for
disordered spermatogenesis (12). In a limited population study,
Fakhro et al. examined a cohort of 8 families using whole-exome
sequencing to identify genes associating with non-obstructive
azoospermia. They found that 10 of 16 men with infertility had
novel genes with homozygous mutations segregating with the
men who had infertility (but not present in their siblings). Of
note, the majority of these five novel genes were associated with
maturation arrest, with one associated with a Sertoli cell-only
pattern. Gene expression was noted to be remarkably testis-
specific, with evidence in experimental animals for their potential
role in spermatogenesis for 4 of 5 genes. Among an additional 75
unrelated men, they found a 13% frequency of additional
recessive variants, with no variants in fertile controls (13).

More recent evaluation of a population of 96 men from
Northern Africa who were negative for karyotypic or Y
microdeletion defects found 23% of these men had highly
deleterious variants identified using a panel of only 151 genes.
Six of the 16 variants identified in these 22 men had novel genes
associated with their infertility (14). As discussed below, seven of
the men had variants in piwi or DNA repair pathways with 12
having meiotic process gene defects identified. Of note, the men
with defects in meiotic pathways did not have sperm retrieved,
suggesting a potential prognostic role of such genetic testing.

Despite having a uniform, identifiable genetic abnormality,
men may still result in a variable spermatogenic pattern within
the testis. Deletions of AZFc are uniformly associated with
impaired spermatogenesis; about 40% of these men are
azoospermic and the remainder have severe oligospermia or
even cryptozoospermia. However, within the testis, we
commonly observe heterogeneity between different
seminiferous tubules. So, although the AZFc deletion is the
same in every cell of the body, individual tubules may have
Sertoli cell-only, maturation arrest or hypospermatogenesis.
Typically, each tubule will have the same pattern of
spermatogenesis within the tubule, but an adjacent
seminiferous tubule will often have a different histologic
pattern. The explanation for such variation between tubules
remains elusive, even when the genetic defect is uniform
within the testis.

Unfortunately, genetic variants that cause spermatogenic
failure may have unique or varied roles when evaluated in
different ethnic groups or countries. For example, when Iberian
investigators looked for 6 variants found in an Asian population,
they observed that 3 variants were associated with spermatogenic
failure in both additive and dominant models, with an associated
negative predictive value for sperm retrieval for one of the variants.
Of note, some of the variants are associated with lincRNAs, non-
coding RNAs longer than 200 bp that are transcribed
autonomously and do not overlap coding genes. It is widely
accept that these lincRNAs control the expression of nearly
genes in a tissue-specific manner. Of note, the testis represents
the most enriched tissue in lincRNAs in humans (15).
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The search for specific causal variants in populations with
male infertility has been slow and tedious with only rare
mutations identified using large study groups of well-
characterized patients with severe male infertility. The
genetic variants have also been identified as having a broad
series of potential roles in spermatogenesis, including roles in
genome integrity (16) as well as piRNA processing (16, 17).
Definition of the specific cause of male infertility is
particularly important, as it is now recognized that severe
male infertility is a risk factor for future cancer development
(4, 18). Testing that would allow clearer identification of the
patient’s risk would be much more useful than simple
counseling about “increased risk”. Patients are obviously
confused and frustrated when increased risk exists but
clinicians are unable to provide focused recommendations
on how prior infertility patients should be screened for
cancers. Specific identification of the causal etiology for
infertility, whether a DNA repair defect or otherwise, would
be critical for clinical recommendations in long-term follow
up for cancer risk. Although accumulating evidence suggests
that a genetic cause is common for severe male infertility, a
clinically informative gene testing panel to aid in diagnosis is
not currently widely available.
TRANSLATION BETWEEN RODENT AND
HUMAN MODELS

Rodents have remarkably high spermatogenic efficiency, and
uniform patterns of histology, both of which are very different
from human spermatogenesis. It is likely that a toxic effect on
human fertility can occur without detection during screening in a
rodent model. One example where rodent models have not been
helpful is in the detection of the adverse effects of selective
serotonin antagonists on male fertility potential. Whereas
testosterone levels drop by 200 ng/dL and 50% of a cohort of
normal men will have abnormal sperm DNA integrity produced
within weeks of taking the SSRI (19), paroxetine, this defect was
not detected in rodent models at high dose. This may be related
to the fact that SSRIs act on sperm transport rather than sperm
production, it is possible that the qualitatively and quantitatively
limited human sperm production can be adversely affected by a
drug, such as finasteride, without observing such an effect in a
rodent model.

Another area where rodent models were limited in their
ability to identify and/or quantify the role of specific genetic
defects in spermatogenesis was for genes on the Y chromosome.
In part, this relates to the observation that mammalian Y
chromosomes can be highly divergent, but also that Y-gene
targeting is made more difficult by the highly repetitive nature
of the Y, also limiting genetic sequencing difficult with classical
approaches (20). From a clinical standpoint, we know that
several regions on Yq are critical for human spermatogenesis,
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including genes on AZFa as well as AZFb and SRY. However, it
has been proposed by some that only two Y genes are essential
for murine male fertility (21).

Certainly, there continue to be roles for murine models of
spermatogenesis, to detect or confirm a putative genetic cause of
male infertility. At a minimum, such data help to support
statistical evaluations of an association between genetic
variants and impaired spermatogenesis. However, there are
substantial limitations to using a rodent model to predict
human spermatogenesis.
SUMMARY

Human spermatogenesis is unique in mammalian models of
testicular function. Not only should we avoid assuming that an
observation in a rodent model will predict human testicular
function, but continued work to evaluate human spermatogenesis
directly will be required to understand male fertility.
Frontiers in Endocrinology | www.frontiersin.org 4130
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The retinoblastoma (RB) protein family members (pRB, p107 and p130) are key regulators
of cell cycle progression, but also play crucial roles in apoptosis, and stem cell self-renewal
and differentiation. RB proteins exert their effects through binding to E2F transcription
factors, which are essential developmental and physiological regulators of tissue and
organ homeostasis. According to the canonical view, phosphorylation of RB results in
release of E2Fs and induction of genes needed for progress of the cell cycle. However,
there are eight members in the E2F transcription factor family with both activator (E2F1-3a)
and repressor (E2F3b–E2F8) roles, highlighting the functional diversity of RB-E2F
pathway. In this review article we summarize the data showing that RB-E2F interaction
is a key cell-autonomous mechanism responsible for establishment and maintenance of
lifelong male fertility. We also review the expression pattern of RB proteins and E2F
transcription factors in the testis andmale germ cells. The available evidence supports that
RB and E2F family members are widely and dynamically expressed in the testis, and they
are known to have versatile roles during spermatogenesis. Knowledge of the function and
significance of RB-E2F interplay for testicular development and spermatogenesis comes
primarily from gene knock-out (KO) studies. Several studies conducted in Sertoli cell-
specific pRB-KO mice have demonstrated that pRB-mediated inhibition of E2F3 is
essential for Sertoli cell functional maturation and cell cycle exit, highlighting that RB-
E2F interaction in Sertoli cells is paramount to male fertility. Similarly, ablation of either pRB
or E2F1 in the germline results in progressive testicular atrophy due to germline stem cell
(GSC) depletion, emphasizing the importance of proper RB-E2F interplay for germline
maintenance and lifelong sperm production. In summary, while balanced RB-E2F
interplay is essential for cell-autonomous maintenance of GSCs and, the pRB-E2F3
system in Sertoli cells is critical for providing GSC niche thus laying the basis
for spermatogenesis.
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RB-E2F PATHWAY

Strict regulation of the cell cycle is critical during testicular
development and steady-state spermatogenesis. The mechanisms
that define whether a cell stays in the G1 state or transits to S phase
or G0 are ultimately responsible for normal development of any
tissue and its function under homeostasis. The G1/S transition is
controlled by the interaction between retinoblastoma (RB) tumor
suppressor proteins and E2F transcription factors. In G1 RB family
proteins form complexes with E2Fs and various chromatin
modifiers to repress E2F activity on the promoters of the genes
that are needed to enter the S phase. The function of RB is thus
growth-inhibitory and misregulation of RB-E2F interplay is one of
the hallmarks of cancer (1). The RB-dependent repression on E2F-
driven transcription is relieved upon phosphorylation of RB by
cyclin-dependent kinases (CDKs) resulting in cellular growth,
DNA synthesis and advancement of the cell cycle (Figure 1). It
is considered that many different stimuli that affect cell fate
decisions are channeled through CDKs to control the
phosphorylation status of RB to ultimately control the progress
or arrest of the cell cycle at G1 (2).

Efficient entry in the S phase depends on numerous
phosphorylation events on RB resulting in the dissociation of
the RB-E2F complex and activation of E2F transcription factors.
While numerous different kinases have a capacity to
phosphorylate RB (3), the role of CDK4/6 and CDK2 in G1/S
transition is probably the most critical (4). The transcriptional
targets of E2F include cyclin E, Cdk1, DNA polymerase-alpha and
E2fs themselves (5). While the molecular control of CDK-RB-
Frontiers in Endocrinology | www.frontiersin.org 2132
E2F pathway has been much studied and relatively well
understood, the versatility in RB and E2F protein families
brings a layer of complexity to the big picture.

The retinoblastoma protein family consists of three proteins
(pRB, p107 and p130; also known as RB1, Retinoblastoma-like 1
and Retinoblastoma-like 2 (RBL1-2), respectively) that share
significant homology, yet only pRb is found frequently mutated
in cancer (6). While some degree of functional redundancy in the
RB protein family is apparent - especially between p107 and
p130, as observed in mouse knock-out studies - the data support
an indispensable role for pRB in development and oncogenesis
[reviewed in (7)]. Yet, in a physiological context evaluation of
such aspects is often irrelevant due to cell-type dependent
expression patterns, as we will later see also in the testis. Thus
far eight different E2f genes (E2f1-8) are known, giving rise to
nine distinct E2F proteins. E2F1, E2F2 and E2F3A are generally
considered as transcriptional activators, whereas E2F3B and
E2F4-8 have been assigned transcriptional repressor functions.
However, at least in some developmental contexts E2Fs display
functional plasticity and may interconvert between repressor and
activator functions (8–12). While activator E2Fs are generally
considered to function in cell proliferation, repressor E2Fs are
involved in cell cycle exit and differentiation (13). However, such
clear-cut functional dichotomy in a physiological context barely
exists, and the downstream effects of E2F activation are context-
dependent. A notable feature in the E2F protein family is
functional redundancy, and in many cases two or more E2f
genes need to be ablated in order to achieve a phenotypic
change (14).

RB family proteins are so called pocket proteins that interact
widely with different proteins (>300 proteins have been identified
as possible binding partners), not just with E2Fs (15, 16). Within
the E2F family they show preferences in terms of interaction
partners, and while E2F1-3 predominantly associate with pRB,
E2F4-5 preferentially interact with p107 or p130 (7). Conversely,
E2F6 is an RB-independent transcriptional repressor and instead
forms a complex with Polycomb group proteins (17), and E2F7/
8-driven transcriptional repression is also independent from
CDK-mediated phosphorylation of RBs (18). Notably, the
function of RBs goes beyond gatekeeping G1/S transition and
they play critical roles in quiescent, senescent and differentiating
cells by maintaining G0/G1. Among E2Fs the interaction of E2F1
with pRB is considered unique and even hyperphosphorylation
of pRB does not fully preclude this interaction (19, 20).
Conspicuously, E2F1 is also the most extensively studied of the
E2F family members and future investigations will be required to
elucidate the nuances in tissue-, cell- and context-dependent
action of different E2Fs.

In addition to its canonical role in control of the cell cycle and
proliferation, the RB-E2F pathway has also been implicated in
regulation of heterochromatin and chromosome stability, and
apoptosis (2), all of which are very relevant to spermatogenesis.
A number of studies have shown that increased E2F activity due to
RB loss-of-function has an adverse effect on chromosome stability
and causes aneuploidy (2, 21). One of the underlying mechanism
may be deregulation of the pericentric heterochromatin, an
FIGURE 1 | The canonical RB-E2F pathway in control of G1 to S phase
transition. Intra- and extracellular mitogenic signals are considered to
converge on CDK/cyclin activation resulting in phosphorylation of
RB, release of E2F and transcription of S phase genes.
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essential chromosomal region for proper segregation during
mitosis and meiosis (22, 23). Considering the role of activator
E2Fs in cell cycle progression, it is somewhat counterintuitive that
increased E2F activity is also able to induce apoptosis via DNA
damage signaling pathways. According to a model proposed by
Dick & Rubin (2013) this involves extensive post-transcriptional
modifications in both RB and E2F1 allowing expression of pro-
apoptotic genes, but repression of E2F-dependent cell cycle genes
(2). All these different functional aspects of RB-E2F pathway make
it a key regulator of testicular development and physiology, as will
be highlighted in this article.
Frontiers in Endocrinology | www.frontiersin.org 3133
DYNAMIC EXPRESSION OF RBS
AND E2FS IN RODENT TESTIS

mRNA Expression in Mouse
Spermatogenic Cells
Application of single-cell RNA-sequencing technology (scRNA-
seq) for the analysis of gene expression during spermatogenesis
has provided a powerful tool to better understand its molecular
regulation and identify the genes/pathways involved in it in
various organisms (24–32). We took advantage of a previously
published adult mouse testis scRNA-seq dataset (26) and Loupe
FIGURE 2 | Expression of retinoblastoma protein family and E2F transcription factor family mRNAs along a pseudotime trajectory of adult mouse spermatogenic
cells. The data is extracted from Hermann et al. 2018 (26) using Loupe Cell Browser v6.0.0 from 10x Genomics. Stra8, Sycp3 and Prm2 are included to denote
spermatogonia/preleptotene spermatocytes, spermatocytes and spermatids, respectively.
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Cell Browser v6.0.0 from 10x Genomics to visualize the
distribution of RB and E2F family mRNAs along the entire
spermatogenic trajectory (Figure 2), or specifically in
spermatogonia (Figure 3) and round spermatids (Figure 4). We
chose the dataset of Hermann et al. (2018) because it is the first
comprehensive scRNA-seq analysis of adult mouse spermatogenic
cells distinguishing 11 cell types (26) and enabling feasible analysis
Frontiers in Endocrinology | www.frontiersin.org 4134
of their gene expression signature. For this analysis spermatogonia
were further divided into clusters (1-13; Figure 3), with clusters 1,
3, 5 and 10 representing undifferentiated spermatogonia as defined
by expression of Gfra1 (33, 34) and Eomes (35, 36), and clusters 2,
3, 6, 8, 11 and 13 representing differentiating spermatogonia with
characteristic expression for Kit (37, 38), Stra8 (39, 40) and Sycp3
(41, 42). Round spermatids were divided into early, mid and late
FIGURE 3 | Violin plots displaying the expression of Eomes, Gfra1, Kit, Stra8, Sycp3, pRb, p107, p130 and E2f1-E2f8 in spermatogonial cells of an adult mouse.
The data is extracted from Hermann et al. 2018 (26) using Loupe Cell Browser v6.0.0 from 10x Genomics. Spermatogonia are divided into clusters 1-13 (C1-13).
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steps (Figure 4) based on expression of Speer4e, Catsper1 and
Tnp1 (26). Besides the entire spermatogenic trajectory (Figure 2),
we decided to focus on GSCs/spermatogonia (Figure 3) because
they are the foundation of spermatogenesis, and round spermatids
(Figure 4) because p130, E2f4 and E2f5 display intriguing
expression patterns in these cells. It should be noted that the
data presented in Figures 2–4 are from a previously published
dataset (26) and their reliability have not been validated with
independent approaches.

pRB (Rb1)
pRB is expressed rather uniformly throughout spermatogenic
differentiation (Figure 2), and also in most cell clusters within
the spermatogonial compartment (Figure 3).

p107 (Rbl1)
p107 is expressed in spermatocytes, and to a lesser extent in early
spermatids (Figure 2) and spermatogonia (Figure 3).

p130 (Rbl2)
p130 is expressed in spermatids (Figure 2) with the highest levels
in mid-to-late round spermatids (Figure 4).

E2f1
E2f1 is expressed in spermatogonia and early spermatocytes
(Figure 2), which is also supported by RNA in situ results
(43). E2f1 expression is rather uniform in all spermatogonial
clusters (Figure 3) from GSCs (Eomes/Gfra1+; clusters 1 and 10)
to differentiating spermatogonia (Kit/Sycp3/Stra8+; clusters 2, 3,
6, 8, 11 and 13).

E2f2
There are very few cells expressing E2f2 along the spermatogenic
trajectory (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 5135
E2f3
E2f3 is expressed in a limited fashion in spermatogonia and
preleptotene spermatocytes (Figure 2).

E2f4
E2f4 is expressed in spermatogonia, spermatocytes and round
spermatids (Figure 2). In spermatogonia (Figure 3) the highest
E2f4 levels are seen in clusters 2, 6, 8 and 13 (Kit/Sycp3/Stra8+)
corresponding to differentiating spermatogonia. In round
spermatids E2f4 levels are highest in early andmid steps (Figure 4).

E2f5
E2f5 closely follows the expression pattern of E2f4 but is clearly
less expressed in spermatocytes and early round spermatids
(Figure 2). Within the round spermatid population the highest
levels are seen in mid to late steps (Figure 4). Expression in
spermatogonial clusters is rather uniform but with highest levels
in differentiating spermatogonia (Figure 3).

E2f6
E2f6 expression is restricted to spermatogonia andonly sporadically
detected elsewhere (Figure 2). Within the spermatogonial
compartment E2f6 is enriched in clusters that are also positive for
Gfra1 (1, 3, 5 and 10) and thus potential GSCs (Figure 3).

E2f7-8
Spermatogenic expression for E2f7 and E2f8 is low. Late
spermatocytes and/or early round spermatids show limited
E2f8 expression (Figure 2).

Protein Expression in Rodent Testis
The protein expression of all RB and most E2F family members
have been studied in a handful of articles. The expression pattern
for each protein is summarized in Figure 5.
FIGURE 4 | Expression of p130, E2f4 and E2f5 along a pseudotime trajectory of sorted mouse round spermatids. The data is extracted from Hermann et al. 2018
(26) using Loupe Cell Browser v6.0.0 from 10x Genomics. Expression for Speer4e, Catsper1 and Tnp1 are included to demarcate early, mid and late round
spermatids, respectively.
May 2022 | Volume 13 | Article 903684

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mäkelä and Toppari Retinoblastoma-E2F Interplay in the Testis
pRB (RB1)
In themouse testis Nalam et al. (2009) reported the staining of pRB
in Sertoli cells and spermatogonia (44), while Rotgers et al. (2014)
observed the same but extended the staining to preleptotene
spermatocytes (45). In the rat testis Yan et al. (2001) confirmed
pRBstaining inSertoli cells and spermatogoniabut also showed that
the highest levels of Sertoli cell pRB in seminiferous epithelial stages
VII-VIII (46). The protein expression of pRB in spermatogenic cells
is to some extent in conflict with mRNA level findings (Figure 2),
and suggests that pRB mRNA is not translated to protein in post-
mitotic male germ cells.

p107 (RBL1)
Rotgers et al. (2014&2019) reported p107 staining solely in pachytene
spermatocytes in adult WT mouse (45), which is in agreement with
single-cell RNA-sequencing data (Figure 2). In the rat testis p107 was
localized to spermatogonia and spermatocytes (46).

p130 (RBL2)
In the mouse testis Sertoli cells were found positive for p130 (45,
47). Interestingly, the authors did not mention a weak staining
for p130 in spermatocytes and round spermatids that would also
be supported by enrichment of p130 mRNA in these germ cells
(Figure 2). In the rat testis p130 protein expression is seen in
Sertoli cells, Leydig cells and peritubular myoid cells, and
excluded from differentiating germ cells (46).

E2F1
The expression of E2F1 in the mouse testis has been reported
only in one study. El-Darwish et al. (2006) showed the expression
in Intermediate to type B spermatogonia and in leptotene to early
pachytene spermatocytes (48). The highest levels of E2F1 were
observed in stages IX-XI, i.e leptotene and zygotene
spermatocytes. These findings align with mRNA expression
analysis, although leave the protein expression in type A
Frontiers in Endocrinology | www.frontiersin.org 6136
spermatogonia elusive. Based on functional analyses (discussed
later in the text) it is probable that E2F1 is expressed at the
protein level already in type A spermatogonia. In the rat testis the
E2F1 staining differs slightly with type A spermatogonia already
expressing it, and the expression extending to mid-to-late
pachytene spermatocytes (48).

E2F2
El-Darwish et al. (2006) also studied the localization of E2F2 in
rodent testis. In the rat testis E2F2 is most highly expressed in
pachytene and diplotene spermatocytes of stages VII-XIII, but
also in secondary spermatocytes (48). In the mouse the results
show abundant E2F2 staining in nearly all mouse testicular cell
types, excluding condensing spermatids. Compared to the very
restricted pattern of expression in the rat and the scanty mRNA
expression in mouse (Figure 2) the results concerning the
staining in the mouse would require further investigation
and validation.

E2F3
The data concerning E2F3 expression in the mouse testis is
contradictory. While the expression in Sertoli cells is supported
by all available data (45, 47, 48), germ cell expression remains
somewhat elusive. While El-Darwish et al. (2006) and Rotgers
et al. (2014) reported E2F3 staining in spermatogonia and
preleptotene spermatocytes (45, 48), which is compatible with
mRNA expression (Figure 2), Rotgers et al. (2019) did not
confirm spermatogonial staining with E2F3a-specific or pan-
E2F3 antibodies in the adult mouse testis (47). Isoform
unspecific E2F3 antibody, however, did stain spermatogonia in
the juvenile testis. In the adult rat testis E2F3 expression was seen
in Sertoli cells and spermatogonia (48).

E2F4
Strong E2F4 staining is seen in the nuclei of testicular somatic
cells: Sertoli cells, Leydig cells and peritubular myoid cells both in
FIGURE 5 | Expression of RB and E2F family proteins in spermatogenic cells and Sertoli cells. Mitotic/premeiotic germ cells are divided into type A (A), type
Intermediate (Int) and type B (B) spermatogonia. Meiotic germ cells are presented as preleptotene (Pl), leptotene (L), zygotene (Z), early and late pachytene (P) and
diplotene (D) spermatocytes, and secondary spermatocytes, m2m. Post-meiotic germ cells are round spermatids (RS) and elongating spermatids (STD).
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mouse and rat (48). The authors speculate though, that only the
Sertoli cell staining is specific because parallel staining of E2f4
KO mouse testis sections show that only Sertoli staining was
absent. Interestingly, there is a granular staining for E2F4 from
spermatocytes to elongated spermatids both in mouse and rat.

E2F5
E2F5 is expressed from type Intermediate spermatogonia to mid-
Pachytene spermatocytes in the rat testis (48). To our knowledge
E2F5 localization in the mouse testis has not been studied.

As far as we know there are no studies where the localization
of E2F6, E2F7 or E2F8 in rodent testis would have been studied.

FUNCTIONAL CONSEQUENCES
OF RB-E2F PATHWAY LOSS-OF-
FUNCTION IN THE TESTIS

pRB Is Essential for Establishment
and Maintenance of GSCs
The fact that pRB-null mice are embryonically lethal (49–51) has
complicated the study of pRB's tissue-specific functions. In the
testicular context, however, this limitation has been
circumvented by creation of cell type-specific conditional KO
mice (44, 45, 52–54) and ex vivo culture (55). Of note, p107- and
p130-deficient mice are viable, healthy and fertile (56, 57). We
will first focus on the effects of germ cell-specific ablation of pRB
and then summarize the role of pRB in Sertoli cells. The available
literature indicates that pRB is indispensable for formation and
maintenance of germline stem cells (GSCs). Lifelong ability of
sperm production depends on GSCs, whose cell fate decisions
need to be tightly balanced in order to maintain high and
continuous production of sperm throughout the reproductive
life span. In theory, GSCs must undergo both self-renewal
divisions to sustain the GSC pool and differentiation divisions
to give rise to transit-amplifying progenitor spermatogonia that
are destined to complete spermatogenesis. Mechanistically it is
not entirely clear to what extent these cell fate decisions are cell-
autonomous and how/when the molecular cues in the GSC niche
microenvironment are incorporated into the regulation of these
events. The stem cell capacity in the mouse testis is thought to
reside in a subset of undifferentiated spermatogonia (Aundiff),
although in regenerative conditions Aundiff display functional
plasticity suggesting that the number of potential stem cells
markedly exceeds that of steady-state stem cells (58, 59).

Given its role as the gatekeeper of G1/S transition, or
quiescence vs. proliferation, pRB is understandably a critical
regulator of GSCs. The evidence for this comes from various
mouse models where pRB has been conditionally deleted from
germ cells at different ages: prenatally from primordial germ cells
(pRB-KOBlimp1) (53) or ED15.5-17 gonocytes (pRB-KODdx4) (52,
54), and postnatally from progenitor-Aundiff (pRB-KO

Ngn3) (54)
and progenitor/differentiating spermatogonia (pRB-KOStra8)
(54). Contrary to its role in somatic stem cells where
inactivation of RB family proteins often results in stem cell
expansion, increased apoptosis, altered cell fate/differentiation
Frontiers in Endocrinology | www.frontiersin.org 7137
defects, and initiation of cancer (60), pRB-deficient male GSCs
have been reported to lose their capacity to self-renew, possibly
explaining why no testicular tumors were observed (52, 54).
Notably, the differentiation capacity of pRB-null germ cells was
not affected but young adult males (until 2-3 months of age) were
able to sire offspring. However, due to gradual depletion of GSCs
they became infertile with age (52, 54).

Despite the fact that pRB is expressed very early in the germ
lineage, its absence does not seem to have any effects on fetal
germ cells, termed gonocytes (or prospermatogonia), before
ED14.5 (53, 55) which is the time when WT gonocytes start to
enter mitotic quiescence (61). Recently, Du et al. (2021)
discovered that at ED16.5, when practically all control
gonocytes had stopped proliferating, the majority of pRB-
KOBlimp1 were still engaged in the cell cycle resulting in two-
fold higher number of germ cells at the same time point.
Subsequently, there is a massive wave of apoptosis in pRB-
KOBlimp1 testes that ablates the germline by the time of onset
of the first round of spermatogenesis (PND3.5-6.5) (53).
Interestingly, in this time window the classical effects of pRB-
deficiency are also recapitulated in the germline: mitotic
overexpansion followed by increased apoptosis. It is not exactly
clear what induces programmed cell death in practically all pRB-
KOBlimp1 germ cells perinatally, but there are a number of factors
that might contribute to it, including a failure of pRB-KOBlimp1

gonocytes to inhibit the onset of meiosis, a demarcating feature
of all fetal male germ cells (53). It has been well documented that
the gonocyte population experiences a wave of apoptosis
between ED13.5 and ED17.5 (62, 63), which is considered to
eradicate genetically or epigenetically defective male germ cells
that are developmentally incompetent (64). Considering that the
cellular functions of pRB are not limited to cell cycle regulation,
it is likely that the reason for germline ablation in pRB-KOBlimp1

mice is due to failure of pRB-deficient gonocytes to pass this
developmental quality control check-point.

Perinatal testicular development in pRB-KODdx4 mice (pRB
deleted in ED15.5-17 gonocytes) is apparently normal although
the number of spermatogonia in the pre/peripubertal testis is
higher than in control mice (52). Despite a previously established
role for pRB in control of gonocyte cell cycle exit before birth
(55), this is not due to extended proliferation of gonocytes and
pRB-KODdx4 mice are born with a normal number of germ cells
(52), suggesting that conditional deletion of pRB at the time of
gonocyte quiescence, does not disrupt this state. Notably, and in
contrast to pRB-KOBlimp1 mice, the GSC pool is formed in pRB-
KODdx4 mice because GFRa1-positive (GDNF family receptor
alpha 1) cells are observed at the basement membrane of the
seminiferous epithelium (52). These GSCs, however, show very
limited, if any, self-renewal capacity (52, 54). Although it has not
been studied whether the GSC niche forms properly in pRB-
KODdx4 mice, it is conceivable that inability to self-renew is likely
GSC-intrinsic rather than due to extrinsic factors, such as lack of
GDNF (glial cell line-derived neurotrophic factor) (36, 65). Hu
et al. (2013) also report that pRB-KODdx4 GSC exit from self-
renewal is followed by expansion of progenitor-Aundiff

population (52). This is supported by increased density of
May 2022 | Volume 13 | Article 903684

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mäkelä and Toppari Retinoblastoma-E2F Interplay in the Testis
spermatogonia in peripubertal mice but suffers some limitations
because the authors use PLZF (promyelocytic leukemia zinc
finger) as a marker of Aundiff, while PLZF is also expressed in
differentiating spermatogonia (66, 67). Nonetheless, these data
support that pRB regulates the timely and stage-dependent cell
cycle entry and exit in spermatogonia.

If pRB is ablated in progenitor-Aundiff or differentiating
spermatogonia, as in pRB-KONgn3 and pRB-KOStra8 mice, there
are no effects on male fertility, but the testes of respective mice are
often cystic and have areas that are devoid of spermatogenic cells,
and sometimes, as Yang et al. (2013) report, house cells with
neoplastic features (54). These results suggest that the
consequences of pRB-deficiency in differentiation-committed and
differentiating germ cells and all subsequent spermatogenic cell
types are significant but possibly compensated by other RB family
members, as also suggested by Figure 2, given the continuation of
qualitatively normal spermatogenesis in adult pRB-KONgn3 and
pRB-KOStra8 mice.

To summarize, the spermatogenic phenotype that germ cell-
specific pRB deletion inflicts highly depends on the developmental
stage where the deletion has been induced. While pRB-KOBlimp1

mice are sterile, pRB-KODdx4 mice undergo 1-2 rounds of
spermatogenesis, and both pRB-KONgn3 and pRB-KOStra8 mice
display qualitatively normal spermatogenesis and are fertile (52–
54). These data demonstrate that pRB is a critical regulator of
formation and maintenance of GSCs but dispensable for
spermatogenic differentiation of their progeny.

RB-E2F3 in Sertoli Cell Maturation
In addition to germ cells, the developmental and functional
consequences of pRB ablation have also been studied in Sertoli
cells (44, 45). Sertoli cells are the only somatic cell type inside the
seminiferous tubules and they are paramount to testicular
development, function and spermatogenesis (68). It is
considered that the number of Sertoli cells ultimately defines
sperm production capacity because each Sertoli cell is able to
support a finite number of spermatogenic cells (69). Therefore,
any factors that impinge on Sertoli cell proliferation or apoptosis
are a potential threat to male fertility. Sertoli cells are specified in
the mouse XY gonad following the expression Sry (sex-
determining region Y) and its most significant downstream
target gene Sox9 (SRY-box 9) at ED10.5-11 (61). Sertoli cells
then coordinate the differentiation of all other testicular cell
types, including the germ cells. Sertoli cells undergo maturation
in pubertal testis involving polarization, formation of the blood-
testis barrier, a profound change in the transcriptome/proteome
and exit from the cell cycle. Notably, Sertoli cells of an adult
mouse do not proliferate but are in a seemingly terminally-
differentiated state. However, under specific in vitro
circumstances they are able to resume the cell cycle (70, 71).
As discussed in detail below, similar to many other somatic cells,
but not germ cells, Sertoli cells fail to enter a functionally mature
mitotically-quiescent state if lacking pRB (44, 45, 52, 60).

The consequences of Sertoli cell-specific ablation of pRB have
been explored in three studies, all of which relied on Cre
expression under Anti-Müllerian hormone promoter (pRB-
KOAmh) resulting in pRB loss of function from ED14.5 (44, 45,
Frontiers in Endocrinology | www.frontiersin.org 8138
47). The studies show congruent results: pRB-deficiency leads to
rapid testicular atrophy and male infertility. However, while the
gene expression is misregulated at least as early as in PND10
testis, testicular development and onset of spermatogenesis in
juvenile mice appear unaffected in pRB-KOAmhmice, and until 6-
weeks of age there are no obvious changes in testicular histology
(44, 45). Subsequently, the changes in the phenotype are fast and
the male mice become infertile by early adulthood. The testicular
phenotype of pRB-KOAmh mice also includes Sertoli cell
vacuolization, sloughing of Sertoli cells and immature germ
cells from the seminiferous epithelium, increased germ cell
apoptosis and Leydig cell hyperplasia (44, 45, 47). Interestingly,
this might present an evolutionarily conserved function of RB
proteins given a comparable phenotype in Drosophila following
somatic deletion of Rbf (a pRB homolog) (72, 73).
A

B

C

FIGURE 6 | Known developmental roles of pRB in the testis. (A) In ED14.5-
16.5 gonocytes, pRB is needed for cessation of proliferation and entry into a
mitotically quiescent state. pRB likely also inhibits the expression of meiotic
genes. (B) In the perinatal testis, pRB is needed for cell cycle re-entry and
formation of the GSC pool. (C) In pubertal and adult testis, pRB is required
for functional maturation of Sertoli cells, including their exit from the cell cycle,
and self-renewal of GSCs.
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There are a few remarkable changes in pRB-ablated Sertoli
cell physiology that have a common nominator: inability to
mature functionally. First of all, while WT Sertoli cells exit the
cell cycle at around PND15, pRB-KOAmh Sertoli cells continue to
proliferate at a constant rate at least until PND30 (45). This is
followed by increased apoptosis probably due to activation of p53
pathway, thus precluding tumor formation (44). While the likely
reason for spermatogenic failure in these mice is complex and
multifactorial [loss of BTB (blood-testis barrier) integrity,
apoptosis of pRB-deficient Sertoli cells to nurture and maintain
spermatogenic cells etc.] it has not been carefully studied at
which step spermatogenesis fails and whether functional GSCs
were sustained in adult pRB-KOAmh mice. Considering the
critical cell-autonomous role of pRB in GSCs, as described
above, this is an interesting question and would deserve further
investigation. Given the timeline of male infertility in these mice
[2-3 months (44) and 3-6 months (45)] it is conceivable that
GSCs are able to undergo at least some rounds of self-renewal in
these conditions. This is also supported by qPCR data showing
reduced but measurable levels of GSC-associated transcripts:
Gfra1 and Lin28 (47). However, Pou5f1 (Oct4) expression is
lost in pRB-KOAmh testis suggesting a loss of progenitor-Aundiff,
where Pou5f1 expression is enriched (36).

Interestingly, according to Rotgers et al. (2014) the BTB first
organizes normally in 6-week old pRB-KOAmh mice but then
disintegrates (45). However, the data from Nalam et al. (2009)
indicate that the BTB is not functional even at this early time
point and allows the leakage of a tracer from the interstitium to
the adluminal compartment of seminiferous tubules, an
immune-privileged site in normal testis (44). These findings
suggest that pRB is not developmentally needed for formation
of the BTB but is indispensable for its integrity and maintenance,
which is another sign of Sertoli cell dedifferentiation and
immaturity in pRB-KOAmh mice. Interestingly, Sertoli cells
deficient for pRB display seminiferous epithelial cyclic activity,
as judged by fluctuation of androgen receptor (AR) staining
intensity between seminiferous tubule cross-sections (47). AR is
one of the proteins that are known to be expressed in Sertoli cells
in a seminiferous epithelial stage-dependent manner with the
highest levels in early-to-mid stages and lowest levels in late
stages (74, 75).

In WT testis pRB interacts with E2F3, the only activator E2F
that is expressed in Sertoli cells (45). E2f3 gene encodes two
isoforms, E2f3a and E2f3b, both of which are expressed in the
mouse testis. Interestingly, while Sertoli cells also express p130,
Rotgers et al. (2014) do not confirm an interaction between E2F3
and p130 in WT testis. In pRB-KOAmh testis, however, E2F3 is
found to form a complex with both p130 and p107, whose
expression is induced in pRB-deficient Sertoli cells (45). This is
in agreement with previous findings showing that when pRB is
absent p107 and p130 also bind to activator E2Fs (E2F1-3), not
just the repressors (E2F4-5) (76). While these findings imply that
there might be a compensatory mechanism, the severity of the
phenotype indicates that such a mechanism does not have any
functional relevance. Already in their original paper Rotgers et al.
(2014) provide data showing that impairment of spermatogenesis
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due to pRB-deficiency is attenuated by simultaneous silencing of
E2f3 in vivo (45). These results were corroborated by a follow-up
study where pRB-E2f3 compound-KOAmh mice were created (47).
These mice display full spermatogenesis but interestingly the litter
size is markedly reduced when compared to control. This might be
due to disturbance of non-canonical, i.e. non-E2F-mediated, pRB
functions in compound-KOAmh mice, including chromatin
organization and nuclear architecture which are pronouncedly
relevant in the spermatogenic context (77, 78). While
spermatogenesis is qualitatively normal in pRB-KOAmh/E2f3-
haploinsufficient mice, they display age-dependent testicular
atrophy, and continuously cycling Sertoli cells, suggesting that
E2f3 gene dosage is critical for spermatogenesis. Notably, adult
Sertoli cells of pRB-E2f3 compound-KOAmh mice are non-
proliferative and seem to be functionally comparable to their
WT counterparts (47). In summary, these data show that
spermatogenic failure, prolonged proliferation, increased
apoptosis and dedifferentiation of Sertoli cells are mediated by
adverse and non-restricted action of E2F3 in Sertoli cells of pRB-
KOAmh mice, and highlights the role of pRB as a key regulator in
life-long maintenance of the non-renewable Sertoli
cell population.

Considering the spermatogenic rescue experiments by
simultaneous deletion (47) or shRNA-mediated in vivo knock-
down of E2f3 (45) on a pRB-KOAmh background, it is surprising
that E2f3-KOAmh mice, where E2f3 has been deleted from fetal
Sertoli cells, are fertile and show no signs of impaired
spermatogenesis (47). The authors hypothesize that E2F4
might fully compensate for lack of E2F3 in these mice. While
this might be possible there are, however, at least two obvious
pitfalls in this interpretation. Firstly, E2F4 is considered a
transcriptional repressor, whereas E2F3a isoform is classically
considered a transcriptional activator. Secondly, E2F4 primarily
associates with p107 and p130, not with pRB. Thus, further
investigations are warranted to address this question. Results
from these studies further support the concept that Sertoli cells
are not terminally-differentiated but in a state of continuous cell
cycle repression (79), and show that pRB is responsible for
maintaining this non-proliferative state. These conclusions,
however, suffer some limitations because pRB is ablated
already in fetal Sertoli cells. An inducible pRB-deletion in adult
Sertoli cells would be required to further elucidate this question.
The developmental roles of pRB in the testis are summarized
in Figure 6.

pRB Is Not Involved in
Testicular Tumorigenesis
To our knowledge, there are only very limited data available
supporting a relationship between pRB-deficiency and increased
tumorigenesis in the testis. Targeted deletion of pRB from
prenatal germ cells results in germline ablation and infertility
(44, 53, 54), and focal GCNIS-like (germ cell neoplasia in situ)
like cells are only observed when pRB is deleted from progenitors
and/or differentiating spermatogonia, arguably due to inability to
commit to the spermatogenic lineage (54), an interpretation that
might have some merit given that progenitor-Aundiff are enriched
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for pluripotency-associated transcripts (36). Ablation of pRB in
Sertoli cells leads to continued engagement in the cell cycle but
also increased apoptosis thus precluding tumor formation (44).
Interestingly, Nalam et al. (2010) also studied the compound
effects of pRB ablation on an inhibin-a-knockout (Inha KO)
background (80). Inha KO mice are known to develop
gonadotropin-dependent gonadal stromal tumors, which
originate from Sertoli cells (81). Unexpectedly, the double-KO
mice did not display exacerbation of the tumorigenic phenotype
but Sertoli cell dysfunction took place earlier in these mice when
compared to pRB-KOAmh mice (80). In summary, there are no
strong indications that pRB would have tumor suppressor
properties in the mouse testis.
E2F1 Has a Multifaceted Role in the Testis
Similar to other tissues and cellular contexts, E2F1's role in the
testis has deserved most attention within the E2F family. E2F1
transcription factor is a critical regulator of the cell cycle, and a
direct target of pRB. However, like all activator E2Fs, E2F1 in
particular displays intriguing functional dichotomy and is able to
induce both proliferation and apoptosis (13). This is apparent
also in the testis. E2F1 has been associated with progressive
degeneration of the seminiferous epithelium (43, 82–84), GSC
maintenance (43, 84), apoptosis of germ cells (43, 85) and Sertoli
cells (44), germ cell neoplasia in situ (86), testicular tumors (82),
testicular descent in human (87, 88) and mouse (84), and human
male infertility (87, 88).

Our understanding of E2F1's testicular function comes
primarily from mouse work and use of E2f1tm1Meg mouse strain
(89) (referred to E2f1-null hereafter). E2f1-null mice display
characteristics of progressive testicular atrophy that is manifested
in a background strain-dependent manner implying that genetic
background of the mice has an impact on the time course and
severity of the phenotype (43, 82–84, 89). Interestingly, on C57Bl/6
background the first signs of spermatogenic impairment can be
observed as early as 20 days of agewhen the number ofmeiotic cells
is reduced inE2f1-nullmicewhen compared to control (43). E2F1 is
an early regulator of the spermatogonial compartment and likely
promotes spermatogonial apoptosis during the first wave of
spermatogenesis (43). Somewhat counterintuitively, loss of E2F1
does not result in accumulation of spermatogonia during steady-
state spermatogenesis but their gradual depletion and occurrence of
tubules with Sertoli-cell-only phenotype (43, 82, 84). While the
underlying mechanisms are not fully understood it is likely that
GSCs inE2f1-nullmice are lost via loss of self-renewal capacity and
escape todifferentiation. Thephenotype thus shares remarkable but
limited resemblance to pRB-KODdx4 mice (52). While E2f1-null
males remain fertile for at least 5-6 months (43, 82, 84), pRB-
KODdx4 mice become infertile by 2-3 months (52, 54). This is a
significant difference because it shows that GSCs are able to self-
renew in E2f1-null but not in pRB-KODdx4 mice.

While the exact explanation for the discrepancy in time
course is yet to be discovered, there are a couple of likely
explanations: compensation by other E2F activators and non-
E2F-mediated effects of pRB (discussed above). Notably, apart
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from E2f1 no other E2fs were differentially expressed in E2f1-null
testis casting doubts for compensation at the transcriptional level
(43), yet leaving the door open for post-transcriptional
mechanisms. Interestingly, when human E2F1 is overexpressed
in the mouse testis, increased germ cell apoptosis is observed,
accompanied with accumulation of undifferentiated spermatogonia
(85), thus parallelling GDNF or NANOS2 overexpression
phenotype (65, 90). Together these data demonstrate that
E2F1 is a critical regulator of GSC maintenance and germ cell
apoptosis. Although the definitive data are missing, as how
E2F1 might be involved in GSC fate decisions, the literature
provides some clues about the potential mechanisms.
Transcriptomic changes in E2f1-null testis have been studied
at 20 days of age by Rotgers et al. (2015) (43), and 3 and 7
months of age by Jorgez et al. (2021) (84). However, choice of
the time point and method of study (microarray vs. qPCR)
makes the results of these studies hard to compare. While the
histological differences in a 20-day-old E2f1-null and WT
mouse testis are relatively small making comparison between
the genotypes feasible at this time point, the transcriptome at
this age is different from adult testis with full spermatogenesis
which complicates the comparison between the time points.
Then again, the cellularity already in a 3-month-old and
particularly in a 7-month-old E2f1-null testis is dramatically
different from WT testis thereby complicating the analysis. For
these reasons we will look at the findings separately.

Rotgers et al. (2015) identify a couple of E2F1 candidate target
genes in a 20-day old mouse testis that, based on available
studies, might be relevant for the development of the
phenotype: Cnot1 (CCR4-NOT Transcription Complex Subunit
1) and Chd1 (Chromodomain Helicase DNA Binding Protein 1)
both of which are downregulated in E2f1-null testes (43).
CNOT1 is particularly interesting because it directly interacts
with NANOS2, a key intrinsic regulator of the male germline (90,
91). NANOS2 is involved in both degradation and sequestration
of specific mRNA molecules in ribonucleoprotein complexes,
and its loss results in GSC depletion and rapid germline ablation
(59, 90–93). CNOT1 mediates NANOS2 interaction with CCR4-
NOT, a major cytoplasmic deadenylase that primes mRNAs for
degradation (91, 93). Importantly, CCR4-NOT–CNOT1–
NANOS2 interaction is critical for NANOS2 function and
maintenance of the male germline (91), a plausible mechanism
also explaining GSC depletion in E2f1-null mice. Another
interesting E2F1-candidate gene discovered by the microarray
analysis is Chd1. While its role in spermatogenesis has not been
studied, two of its family members CHD4 and CHD5 are critical
for sperm production, albeit at the opposite ends of this complex
process. CHD4 has been shown to be highly expressed in GSCs
where its involved in their maintenance and self-renewal (94),
whereas CDH5 is required for spermiogenesis and especially for
chromatin condensation in elongating spermatids (95, 96).

Jorgez et al. (2021) studied the expression of select 66 mRNAs
by qPCR and subsequent proteomic analyses (84). They found
changes in the expression of cyclin genes and other E2F1 cell cycle
targets. Interestingly, Wnt signaling pathway genes were
differentially expressed between the genotypes, and all studied
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Wnt ligands were found generally upregulated, especially WNT4.
Wnt signaling has been thought to prime GSCs for differentiation
and promote exit from the self-renewing state (97–101). Boyer
et al. (2012) reported that treatment of cultured GSCs with WNT4
reduces their stemness both in vitro and after transplantation
(100). These data would support a model where GSCs in E2f1-null
testis are subjected to differentiation-priming environment at the
expense of self-renewal, thus resulting in their depletion over time.
To explore this possibility Jorgez et al. (2021) generated a
compound E2f1-null/Wnt4-null mouse line, where Wnt4 was
conditionally deleted from Stra8-expressing germ cells, that is
progenitor-Aundiff/differentiating spermatogonia. Remarkably, the
spermatogenic capacity is qualitatively restored in these mice and
they display nearly normal fertility parameters, demonstrating that
many of the adverse effects of E2F1-deficiency can be overcome by
simultaneous removal ofWNT4.While the above findings provide
a mechanism for GSC loss in E2f1-null mice, further studies are
needed to address how the RB-E2F pathway is integrated in the
control of GSC fate in WT mice, and how is it mechanistically
linked with GDNF signaling (36, 65, 102) and mTOR
(mammalian target of rapamycin) pathway (67, 103, 104) to
balance self-renewal and differentiation of GSCs.

A typical feature of spermatogenic impairment when E2F1 is
either deleted or over-expressed is spermatocyte apoptosis (43, 82,
85). While this leads to subfertility, E2f1-null male mice are able to
sire viable offspring because some spermatocytes manage to avoid
cell death. The reason for E2f1-null spermatocyte apoptosis is not
known but there is data to support that DNA damage is not the
underlying cause (43). Further studies are needed to unveil what
induces spermatocyte apoptosis if E2F1 is either absent or
overexpressed. Considering the expression pattern of E2F1
(highly expressed in premeiotic cells and early spermatocytes;
Figures 2, 5) and its role as a transcriptional activator, it is
conceivable that the expression of E2F1-target genes needs to be
delicately balanced for successful meiosis. It is likely that
spermatocyte apoptosis is induced in a cell-intrinsic manner,
also considering the fact that despite being expressed in
peritubular cells and in the testicular interstitium, E2F1-
deficiency was not found to affect testicular somatic cells or
gonadotropin or androgen levels (43, 84). However, albeit not
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known to express E2F1, the Sertoli cells of E2f1-null mice display
some transcriptomic changes when compared to controls.
Surprisingly, while some of the changes may be explained by a
change in cellularity in E2f1-null vs. control mice testis (43),
misregulation of genes involved in tight and adherens junctions
were shown to have functional consequences and the blood-testis
barrier of 3-month-old E2f1-null mice was found leaky (84).

Table 1 provides a summary of the spermatogenic
phenotypes of different KO mouse strains where one or two
genes encoding proteins of RB-E2F pathway has been deleted.

Repressor E2Fs E2F4 and E2F5 Are
Needed for the Development of Male
Reproductive Tract
Compared to activator E2Fs, the functions of repressor E2Fs have
been less investigated.While both E2f4 and E2f5-deficient mice are
viable, they have a shortened lifespan (105–107). E2f4-mutants
display developmental defects in multiple tissues and have a high
early postnatal lethality due to susceptibility to infections (106,
107). E2f4-deficient male mice were found subfertile/infertile
although the histology of male reproductive organs was reported
normal (106, 107), and the underlying basis for this observation
therefore remains elusive. There is a lack of knowledge concerning
fertility of E2f5-mutant mice. However, e2f5 mutation in the
zebrafish results in male infertility due to a spermatogenic arrest
in prophase I, and subsequent apoptosis of spermatocytes (108).
Rotgers et al. (2014, 2019) report a clear decrease in E2f4 and E2f5
expression in pRB-KOAmh mouse testis which is, however, likely
due to lack of meiotic and postmeiotic germ cells (cf. Figure 2).
Interestingly, E2F4 and E2F5 have been shown to display
redundant roles in controlling the development of the male
reproductive tract. E2f4-deficiency within the efferent ducts on a
E2f5 heterozygous background leads to a loss of multiciliated cells
from the efferent ducts, dilation of the seminiferous tubules and
the rete testis, and infertility.

The other repressor E2Fs have been even less studied in the
testis. E2f6-deficient mice are born at an expected Mendelian
frequency, are viable and fertile, and grow and develop normally
(109). Pohlers et al. (2005) have reported that E2F6 is needed to
suppress the expression of germline genes in somatic tissues (109).
TABLE 1 | Summary of spermatogenic phenotypes in different mouse strains with a deletion in gene(s) encoding RB-E2F pathway proteins.

Mouse strain Time of
deletion

Lineage where
deleted

Normal establisment
of the GSC pool

Qualitatively/Quantitatively
normal 1st round

of spermatogenesis

Qualitatively/Quantitatively
normal spermatogenesis

in adulthood

Ref

pRB-KOBlimp1 ED6.5 germline No No/No No/No (53)
pRB-KODdx4 ED15.5-17 germline n.a. Yes/No No/No (52, 54)
pRB-KONgn3 postnatal germline Yes Yes/n.a Yes/No (54)
pRB-KOStra8 postnatal germline Yes Yes/n.a Yes/No (54)
pRB-KOAmh ED14.5 Sertoli Yes Yes/Yes No/No (44, 45)
E2f3-KOAmh ED14.5 Sertoli Yes Yes/Yes Yes/Yes (47)
pRB-KOAmh/E2f3-KOAmh ED14.5 Sertoli Yes Yes/n.a Yes/No (47)
pRB-KOAmh/E2f3+/- ED14.5 Sertoli Yes Yes/n.a Yes/No (47)
E2f1tm1Meg zygotic universal Yes Yes/No No/No (43, 84)
E2f1tm1Meg/Wnt4-KOStra8 zygotic/

postnatal
universal/
germline

Yes Yes/n.a Yes/No (84)
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However, the significance or functions of E2F6 in the germline
cells are not known but mRNA level analysis (Figure 2) suggests
they might be subtle. No fertility problems have been reported in
mice deficient for E2f7 or E2f8, whereas the double-null mice are
early embryonically lethal precluding any analysis on germline
effects (110).
CONCLUDING REMARKS

Considering its role as the gatekeeper of cell cycle, it is no wonder
that the RB-E2F pathway is critically important for development
and function of the testis. Both the germline and the somatic
Sertoli cells depend on proper regulation of its activity during
formation of the testis and under steady-state spermatogenesis.
Continuous production of sperm relies on lifelong maintenance of
GSCs and functionally mature Sertoli cells, two fundamental
outcomes of normal function of RB-E2F pathway, highlighting
its importance for male fertility. Despite the fact that the functional
consequences of pRB, E2F1 and E2F3-deficiency in the testis have
been relatively well characterized, further studies are warranted to
elucidate how RB-E2F is integrated into the regulation of the
germline at the mechanistic level plus shed light on the diversity of
RB-E2F signaling beyond pRB and E2F1 and E2F3. Notably,
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despite relatively high level of mRNA expression in germ cells,
the spermatogenic functions of p107, p130, E2F4 and E2F5 are
virtually undefined. Examining their roles would probably require
creation of compound inducible KO mouse models to circumvent
functional redundancy within both the RB and E2F families, and
for targeted analyses of spermatogenic functions. Their temporally
restricted patterns of expression along the spermatogenic
trajectory are intriguing and worthy of deeper investigation.
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18. Ouseph MM, Li J, Chen H-Z, Pécot T, Wenzel P, Thompson JC, et al.
Atypical E2F Repressors and Activators Coordinate Placental Development.
Dev Cell (2012) 22:849–62. doi: 10.1016/j.devcel.2012.01.013

19. Dick FA, Dyson N. pRB Contains an E2F1-Specific Binding Domain That
Allows E2F1-Induced Apoptosis to be Regulated Separately From Other
E2F Activities. Mol Cell (2003) 12:639–49. doi: 10.1016/S1097-2765(03)
00344-7

20. Cecchini MJ, Dick FA. The Biochemical Basis of CDK Phosphorylation-
Independent Regulation of E2F1 by the Retinoblastoma Protein. Biochem J
(2011) 434:297–308. doi: 10.1042/BJ20101210

21. van Harn T, Foijer F, van Vugt M, Banerjee R, Yang F, Oostra A, et al. Loss of
Rb Proteins Causes Genomic Instability in the Absence of Mitogenic
Signaling. Genes Dev (2010) 24:1377–88. doi: 10.1101/gad.580710

22. Yadav RP, Mäkelä J-A, Hyssälä H, Cisneros-Montalvo S, Kotaja N. DICER
Regulates the Expression of Major Satellite Repeat Transcripts and Meiotic
Chromosome Segregation During Spermatogenesis. Nucleic Acids Res (2020)
48:7135–53. doi: 10.1093/nar/gkaa460
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The X-linkedmiR-465 cluster is highly expressed in the testis, sperm, newborn ovary, and
blastocysts as well as in 8-16 cell embryos. However, the physiological role of the miR-
465 cluster is still largely unknown. This study aims to dissect the role of the miR-465
cluster in murine development. Despite abundant expression in the testis, ablation of the
miR-465 miRNA cluster using CRISPR-Cas9 did not cause infertility. Instead, a skewed
sex ratio biased toward males (60% males) was observed among miR-465 KO mice.
Further analyses revealed that the female conceptuses selectively degenerated as early as
embryonic day 8.5 (E8.5). Small RNA deep sequencing, qPCR, and in situ hybridization
analyses revealed that the miRNAs encoded by themiR-465 cluster were mainly localized
to the extraembryonic tissue/developing placenta. RNA-seq analyses identified altered
mRNA transcriptome characterized by the dysregulation of numerous critical placental
genes, e.g., Alkbh1, in the KO conceptuses at E7.5. Taken together, this study showed
that themiR-465 cluster is required for normal female placental development, and ablation
of the miR-465 cluster leads to a skewed sex ratio with more males (~60%) due to
selective degeneration and resorption of the female conceptuses.

Keywords: miR-465, microRNA, sexual dimorphism, sex ratio, extraembryonic tissues, placenta, CRISPR-Cas9
INTRODUCTION

Sexual dimorphism refers to different characteristics beyond the sex organs between the two sexes
within the same species, e.g., appearance, structure, behavior, etc. (1). Data from a recent study of
14,250 wild-type (WT) and 40,192 mutant mice suggest that 9.9% of qualitative and 56.6% of
quantitative traits display sexual dimorphism (2). Sexual dimorphism commences as early as
embryonic development, e.g., X chromosome inactivation in the female embryo. Sexual
dimorphism is also reflected by differential gene expression profiles in placental, fetal, and adult
tissues (3–5). To date, a role of miRNAs in sexual dimorphism has not been reported although
miRNAs are well known to be critical for early development (6–9). miRNAs are ~22 nucleotide
small non-coding RNAs that regulate gene expression at post-transcriptional levels (10).
Inactivation of either DICER or DROSHA, the two enzymes required for miRNA biogenesis,
leads to early embryonic lethality in mice, indicating an essential role of miRNAs in early
n.org May 2022 | Volume 13 | Article 8938541146
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development (6–9, 11–13). Our previous studies have shown that
the X-linked miR-465 cluster, which encodes 6 pre-miRNAs and
12 mature miRNAs, belongs to a large X-linked miR-506 family
(14). Their high abundance in the testis, sperm, newborn ovary,
blastocysts, and 8-16-cell embryos (14–17) suggests a potential
role in gametogenesis and early embryonic development in mice.
However, their physiological role has not been investigated in
vivo. Here, we report that the miR-465 cluster miRNAs are also
abundantly expressed in the developing placenta, and ablation of
the miR-465 cluster does not affect fertility but causes a skewed
sex ratio favoring males due to selective degradation of the
female placenta during early embryonic development.
MATERIALS AND METHODS

Generation of miR-465 KO Mice
The animal use protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) of the University
of Nevada, Reno (Protocol# 00494). Generation of global miR-
465 KO mice and mouse genotyping were performed as
described (14, 18, 19). gRNA and genotyping primers are listed
in Table S1.

DNA and RNA Isolation, Library
Construction, and qPCR Analyses
DNA and RNA were extracted from WT and KO embryos using
the mirVana™ miRNA Isolation Kit as previously described
(19). The sexes of the conceptuses were determined based on
PCR amplification of DYzEms3 (a Y chromosome-specific
repetitive sequence) and Rn18s (a housekeeping transcript as
the internal control). Males display two bands (DYzEms3 and
Rn18s), while females show only one band (Rn18s). Large RNA
libraries were constructed using KAPA Stranded RNA-Seq Kits
with RiboErase (Cat. # 07962282001, Roche) according to the
manufacturer’s instructions. Small RNA libraries were
constructed using NEBNext® Small RNA Library Prep Set for
Illumina® (Cat. # E7330L, NEB) according to the manufacturer’s
instructions. miRNA qPCR was performed as described (14). All
oligos for sex determination and qPCR are listed in Table S1.

In Situ Hybridization
Cryosections (10 mm) were adhered to poly-L-lysine-coated
slides and fixed in 4% paraformaldehyde (Cat. # P6148, Sigma-
Aldrich) solution in PBS for 1 h at room temperature. The
sections were then washed 3 times in PBS for 5 min each,
acetylated for 10 minutes (0.25% acetic anhydride), washed 2
times in PBS for 5 min each, and hybridized with DIG-labeled
probes overnight at 50°C. Hybridization buffer contained 1X
salts (200 mM NaCl, 13 mM Tris, 5 mM sodium phosphate
monobasic, 5mM sodium phosphate dibasic, 5 mM EDTA), 50%
formamide, 10% (w/v) dextran sulfate, 1 mg/ml yeast tRNA (Cat.
# 10109509001, Roche), 1×Denhardt’s [1% (w/v) bovine serum
albumin, 1% (w/v) Ficoll, 1% (w/v) polyvinylpyrrolidone], and
RNA probe (final concentration: 1 mM). Post-hybridization
washes were followed by an RNase treatment (20 mg/ml
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RNase A). After blocking in 20% heat-inactivated sheep serum
(Cat. # ZLI-9021, Beijing Zhongshan Jinqiao Biotechnology
Company) and 2% blocking reagent (Cat. # 12039672910,
Roche) for 1 h, sections were incubated overnight in blocking
solution containing anti-DIG antibody (1:2500 dilution; Cat. #
11093274910, Roche) at room temperature. After washing, the
color was developed using NBT/BCIP according to the
manufacturer’s instructions (NBT: Cat. # N1332, Gentihold;
BCIP: Cat. # B1360, Gentihold). Sections were counterstained
in Nuclear Fast Red (Cat. # G1321, Solarbio), dehydrated in
gradient alcohol, cleared in xylene, and mounted in neutral
resins. All oligos used for RNA ISH were listed in Table S1.

RNA-Seq Data Analysis
The Sailfish (20) and SPORTS1.0 (21) pipelines were used to
quantify the large RNA expression and small RNA expression,
respectively. Transcript per million reads (TPM) was used as the
unit of gene expression level. Groupwise differential expression
was estimated by the likelihood ratio test and the RNAs with a
false discovery rate < 5% were deemed differentially expressed.

Luciferase Assay
Luciferase assays were performed as described (22). cel-mir-67
was used as a negative control. Renilla luciferase signals were
normalized to Firefly luciferase signals to correct the transfection
efficiency. All oligos for constructing 3’UTR luciferase vectors are
listed in Table S4.

Statistical Analyses
Data are presented as mean ± SEM, and statistical differences
between datasets were assessed by two samples t-test unless
stated otherwise. p < 0.05, 0.01, 0.001, and 0.0001 are
considered statistically significant and indicated with *, **, ***,
and ****, respectively.
RESULTS

Ablation of the miR-465 Cluster Leads to a
Male-Biased Sex Ratio
The miR-465 cluster consists of 6 miRNA genes encompassing a
~16.4 kb region on the X chromosome in mice (Figure 1A).
Although 6 pre-miRNAs and 12 mature miRNAs are produced
in mice, only 6 mature miRNAs can be distinguished based on
their sequences, including miR-465a-5p, miR-465b-5p, miR-
465c-5p, miR-465d-5p, miR-465a/b/c-3p and miR-465d-3p
(Figure 1A). The miR-465 cluster has orthologs in humans,
monkeys, and chimpanzees, which have been annotated as miR-
892b in the miRBase and contain some U-to-C or A-to-G
substitutions (Figure 1B). Like the miR-465 cluster, miR-892b
is also flanked by Slitrk2 and Fmr1 on the X chromosome (14).
To define their physiological roles, we deleted the entiremiR-465
cluster in the mouse genome using CRISPR-Cas9 (Figures 1A;
S1A), as previously described (14, 18, 19). PCR genotyping
and Sanger sequencing confirmed that the genomic loci of
these miRNAs were successfully deleted (Figures S1B, C).
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The miR-465 KO mice were fertile with normal testis size
(Figure 1C). Both the litter size (8.4 ± 0.85, n=35) and litter
interval (25.4 ± 0.86, n=34) of the KO mice were comparable to
those of WT controls (Litter size: 8.6 ± 1.59, n=23; litter interval:
26.6 ± 1.42, n=22) (Figure 1D), suggesting that these miRNAs
are dispensable for both spermatogenesis and folliculogenesis.
Interestingly, unlike the equal distribution of the two sexes
(~50%) among pups from the WT breeding pairs (+/Y × +/+),
the sex ratio is significantly skewed toward the male (61%,
p<0.05) among the miR-465 KO pups derived from the
homozygous breeding pairs (-/Y × -/-) (Figure 1D). Of
interest, ~60% appears to be the most common skewed sex
ratio observed in previous reports (Table S2) (23–28).

The Skewed Sex Ratio Occurred During
Early Embryonic Development
The skewed sex ratio could result from either a distorted X/Y sperm
ratio or a loss of female embryos/fetuses during development. If the
sex ratio is already skewed in X/Y sperm, the bias should be
observed among pups from the breeding pairs of KO males (-/Y)
and WT females (+/+), but not in those from the breeding pairs of
WT males (+/Y) and homozygous KO females (-/-). However, the
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sex ratio among the pups from the -/Y × +/+ breeding pairs was
slightly, but not significantly, skewed toward males (54%)
(Figure 1D), suggesting that the significantly skewed sex ratio
likely occurs during development. To identify when the skewed sex
ratio occurs, we collected early embryos at E3.5, E7.5, and E10.5 in
the homozygous breeding pairs (-/Y × -/-). Males accounted for
~50% among all of the KO embryos at E3.5 and E7.5, whereas the
ratio of the males increased to ~61% at E10.5 (Figure 2A),
suggesting that some female embryos are lost between E7.5 and
E10.5. Indeed, we observed that on average 1-2 conceptuses per
uterus were either being resorbed or had already been resorbed
between E8.5 and E10.5. More intriguingly, 6 out of 7 conceptuses
that appeared to degenerate were all female KOs (Figures 2B, C).
Together, these data suggest that inactivation of themiR-465 cluster
leads to selective degeneration and absorption of female
conceptuses between E7.5 and E10.5.

The miR-465 miRNAs Are
Abundantly Expressed in the
Extraembryonic Tissues at E7.5
Although the loss of the miR-465 cluster leads to female-biased
lethality, it remains unknown whether the primary defects lie in
A

B C D

FIGURE 1 | Generation of miR-465 KO mice. (A) The genomic location and sequences of the miR-465 cluster on the X chromosome of mice. The red lightning
bolts represent the gRNAs used, and their right and left orientations indicate the reverse and forward strands targeted by the gRNAs, respectively. (B) The orthologs
of the miR-465 cluster in primates and rodents. Bases highlighted in the grey background are the potential seed regions. (C) A representative image of the testis and
epididymis of WT and miR-465 cluster KO mice. One unit on the ruler is 1 mm. (D) The sex ratios among pups from different breeding schemes. *, p<0.05; NS,
statistically not significant.
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the embryos or the extraembryonic/placental tissue. To address
this question, we collected both WT and KO embryos and
extraembryonic/placental tissues from both sexes at E7.5 and
E10.5 and performed small RNA sequencing (sRNA-seq)
(Figures 3A–C; S2). sRNA-seq data confirmed that the miR-
465 cluster miRNAs were indeed absent in the KO embryos and
extraembryonic/placental tissues (Figures 3A; S2A–C). While
no significant sex differences in miRNA levels were observed in
WT embryos and extraembryonic tissues at E7.5 (Figures S2D,
E), the miR-465 cluster miRNAs were predominantly expressed
in extraembryonic tissues, as compared to embryos of both sexes
at E7.5 (Figures 3B; S2F), and these miRNAs were significantly
downregulated from E7.5 to E10.5 (Figures 3C; S2G–I). Indeed,
the TaqMan real-time PCR analyses further confirmed the
sRNA-seq results (Figure 3D). We next further performed
miRNA in situ hybridization (ISH) assays (Figure 3E) to
corroborate the cellular localization of the miR-465 cluster.
Consistent with the sRNA-seq and qPCR data, miRNA ISH
results showed that the miR-465 cluster miRNAs were
predominantly expressed in extraembryonic tissues, especially
in the ectoplacental core and chorion (Figure 3E). Although the
miR-465 cluster miRNAs were also detected in maternal decidua
(Figure 3E), potential decidual defects are highly unlikely based
on our breeding data showing normal sex ratio among offspring
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of the +/Y × -/- breeding pairs (Figure 1D). Given the
predominant expression of the miR-465 cluster in the
extraembryonic tissues, it is highly likely that the loss of some
female embryos was secondary to placental defects.

Ablation of the miR-465 Cluster Leads to
Dysregulated mRNAs in the Female, but
Not the Male, Extraembryonic Tissues
To identify the targets of the miR-465 cluster miRNAs, we then
conducted RNA-seq assays on WT and KO embryos and
extraembryonic tissues of both sexes at E7.5. We chose E7.5
because, at this point, despite no obvious degeneration and
resorption, the transcriptomic alterations should have
accumulated in the implicated female KO conceptuses
(Figure 2B). Principal component analyses (PCA) identified
two major clusters, each containing either embryos or
extraembryonic tissues of both WT and most of the KO of
both sexes except for two outliers (Figure 4A). The two outliers
turned out to be one female KO embryo and its extraembryonic
tissue, suggesting that this conceptus most likely represents a “to-
be-degenerating” KO female. While WT and non-degenerating
KO embryos and extraembryonic tissues of both sexes displayed
similar mRNA transcriptomes (Figure 4B; Table S3), numerous
differentially expressed genes (DEGs) were identified between
A

C

B

FIGURE 2 | The phenotype of miR-465 KO mice. (A) The sex ratios of pups from homozygous inbreeding (-/Y × -/-) at E3.5, E7.5, and E10.5. (B) Representative
images of the KO uteri and conceptuses collected between E7.5 and E10.5. Arrows point to the degenerating/degenerated conceptuses (D) among the normal-
looking (N) ones. Scale bars = 1mm. (C) A representative gel image of genotyping results. DYzEms3, a Y-linked genomic fragment, was amplified to identify male
conceptuses, and Rn18s, which encodes 18s ribosomal RNA, was used as a loading control in the PCR-based genotyping analyses.
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the extraembryonic tissues from the “to-be-degenerating” KO
female and those from non-degenerating KO females
(Figure 4B; Table S3). Gene ontology (GO) term analyses
identified that the DEGs were primarily involved in
extraembryonic/placental development (Figure 4C). Among
the dysregulated genes responsible for placental development,
8 out of 44 were either imprinted genes or sex-biased genes
(Table S4). Luciferase assays further confirmed that some of the
Frontiers in Endocrinology | www.frontiersin.org 5150
dysregulated genes were indeed the targets of themiR-465 cluster
miRNAs (Figure S3). Given the similar expression levels of the
miR-465 cluster miRNAs in the extraembryonic tissues of both
sexes (Figures S2D, E), it is likely that the sexually dimorphic
role of themiR-465 cluster is achieved through miRNA-mediated
post-transcriptional regulation of the sex-biased target genes. For
example, Alkbh1, a target of miR-465 (Figure S3), is a tRNA
demethylation enzyme (29) highly expressed in chorion and the
A

D

E

B C

FIGURE 3 | Expression profiles of the miR-465 cluster. (A) Differentially expressed miRNAs between WT and KO female extraembryonic tissues at E7.5. (B) Differentially
expressed miRNAs between WT female extraembryonic tissues and embryos at E7.5. (C) Differentially expressed miRNAs between WT female extraembryonic tissues/
placentas at E7.5 and E10.5. Data points representing the miR-465 cluster miRNAs are marked in red. sRNA-seq analyses were conducted in biological triplicates (n=3).
(D) TaqMan qPCR analyses of expression levels of the miR-465 cluster miRNAs in extraembryonic tissues/placenta and embryos at E7.5 and E10.5. M, male; F, female;
Em, embryo; ExE, extraembryonic tissue; Pl, placenta. *, p<0.05; **, p<0.01; *** p<0.001, **** p<0.0001. (E) Representative miRNA-ISH results showing localization of the
miR-465 cluster miRNAs in female conceptuses at E7.5. Ch, chorion; EPC, ectoplacental core; Al, allantois; De, decidua. Scale bars = 200 µm.
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ectoplacental cone at E8.5 (30); its ablation also induces female-
biased lethality (27).
DISCUSSION

The X chromosome is known to be enriched in protein-coding
genes critical for reproduction and fertility (31, 32). Our earlier
work has also shown that several large miRNA clusters, including
the miR-465 cluster, are either exclusively or preferentially
expressed in the testis, suggesting a role in controlling
spermatogenesis and male fertility (14, 33). Although ablation
of the miR-506 cluster compromises the male fertility (14),
inactivation of the miR-465 miRNA cluster does not affect
either gametogenesis or fertility. Surprisingly, a lack of the
miR-465 miRNAs leads to a skewed sex ratio biased toward
males due to selective degeneration of the female conceptuses
Frontiers in Endocrinology | www.frontiersin.org 6151
between E7.5 and E10.5. Given its predominant expression in the
extraembryonic tissue, the selective degeneration and absorption
of female conceptuses in the absence of miR-465 miRNAs likely
reflect the compromised development of the extraembryonic/
placental tissue rather than the embryos/fetuses. Therefore, the
miR-465 miRNAs appear to be required for proper development
of the female, rather than the male, extraembryonic/placental
tissue, supporting a role in sexual dimorphism in placental
development. While sexual dimorphism is believed to mainly
result from the differential gene expression between the male and
female embryos (5), our study provides evidence that the
placental development also displays sexual dimorphism, which
can lead to a screwed sex ratio in offspring.

The 60% sex ratio seems subtle, but it is quite common in all
the previous studies involving biased sex ratios (Table S2) (23–
28). The X-linked miR-465 cluster belongs to the SpermiRs/miR-
506 family (14, 34), and these X-linked miRNAs have no
A

B

C

D

FIGURE 4 | RNA-seq analyses of miR-465 KO and WT conceptuses. (A) Principal component (PC) analyses of RNA-seq data from embryonic (Em) and extraembryonic (ExE)
tissues of miR-465 KO and WT mice. The red arrows indicate the degenerating embryo and extraembryonic tissues from a miR-465 KO female conceptus. (B) Differentially
expressed genes (DEGs) identified in the following three comparisons: between the miR-465 KO and WT males (left), between the miR-465 KO non-degenerating and WT
females (middle), and between miR-465 KO degenerating and non-degenerating females (right). (C) GO term enrichment analyses of DEGs between the degenerating and non-
degenerating miR-465 KO female extraembryonic tissues. GO terms related to extraembryonic development are highlighted in red. (D) Schematics showing a critical role of the
miR-465 cluster in supporting the full developmental potential of the female placenta and embryos.
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homologs on the Y chromosome. Member miRNAs of the miR-
506 family share numerous targets despite their different seed
sequences (14, 34). One previous study has shown that miR-
465a-5p is upregulated when the miR-741 is inactivated in the
cultured mouse spermatogonial stem cells (SSCs) (34),
suggesting genetic compensation between these two miRNAs
during spermatogenesis. Indeed, a similar phenomenon was
observed in the miR-465 KO testes. Other miR-506 family
members, including miR-201, miR-463, miR-471, miR-741,
miR-871, miR-883a, and miR-883b, were upregulated in the
miR-465 KO testes when compared to the WT testes (Figure
S4A; Table S5A). Comparisons between WT male and female
extraembryonic tissues at E7.5 yielded no differentially expressed
miRNAs. However, comparisons between the KO counterparts,
the miR-10a, miR-10b, and miR-196b were upregulated in the
KO male extraembryonic tissues (Figure S4B; Table S5B).
Although miR-10a, miR-10b, and miR-196b do not belong to
the miR-506 family, they share a large number of target genes
with the miR-465 cluster (Figure S4C), indicating that these
miRNAs may compensate for the loss of the miR-465 cluster in
the male extraembryonic tissues, and that the miR-465 cluster
plays a sexual dimorphic role during extraembryonic tissues
development. Comparisons between the miR-465 KO male and
WT male or between the KO non-degenerating female and WT
female extraembryonic tissues at E7.5 found no upregulated
miRNAs, whereas 74 miRNAs were found dysregulated in
between the KO degenerating and KO non-degenerating
females (Figures S4D, E; Tables S5C–S5E), suggesting that the
degenerating females are more “sensitive” to themiR-465 KO. Of
interest, 26 miRNAs of the 74 dysregulated miRNAs all target
Alkbh1, one of the validified targets of the miR-465 cluster that
has a sex dimorphic role during extraembryonic development
(27). No significant changes in mRNA transcriptome were
detected between either WT and KO males, or between WT
and the KO non-degenerating females; however, drastic changes
were observed between the KO degenerating and KO non-
degenerating females. Among these dysregulated genes, some
of them are either sex-specific (e.g., Alkbh1 and Rlim) or
imprinted genes, further confirming that the miR-465 cluster
influences the extraembryonic development in a sex-specific
manner through mediating sex differential genes.

Spontaneous embryonic resorption during early pregnancy is
common in most mammalian species, including mice, rats, rabbits,
voles, ewes, red pandas, swine, and humans (35–44). Moreover,
spontaneous embryonic resorption during early pregnancy does
not necessarily lead to reduced litter size (35, 36). Given that the
embryonic resorption occurs randomly without obvious sex ratio
bias, it is highly likely that both male and female embryos are
resorbed at a similar rate to maintain a balanced sex ratio. Some
studies have correlated embryonic loss with aberrant placental
development (44). A recent in-depth survey of 103 knockout mice
lines that display embryonic lethality has revealed that ~68% of
these embryonic resorption cases are caused by placental
dysfunction (45). Our data that almost all of the resorbed miR-
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465 KO embryos are females suggest a sexual dimorphic role of the
miR-465 cluster in extraembryonic/placental development. Like the
other X-linked miRNA clusters (14), the miR-465 has its
orthologue in humans, which was named miR-892b, suggesting
that the findings in mice may apply to humans. Supporting this
hypothesis, a recent study in humans showed that the miR-892b
was downregulated in the plasma collected from preeclampsia
pregnancies (46), which is often accompanied by fetal growth
restriction and placental abruption (47).

Taken together, our study uncovered an essential role of the
miR-465 cluster in supporting the full developmental potential of
the female, but not the male, extraembryonic tissues/placentae
(Figure 4D). The male-biased sex ratio amongmiR-465 KOmice
results from selective degeneration of the female placenta and
resorption of the female embryos in the absence of the miR-
465 cluster.
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Activin A, a TGFb superfamily member, is important for normal testis development through
its actions on Sertoli cell development. Our analyses of altered activin A mouse models
indicated gonocyte abnormalities, implicating activin A as a key determinant of early
germline formation. Whether it acts directly or indirectly on germ cells is not understood. In
humans, the fetal testis may be exposed to abnormally elevated activin A levels during
preeclampsia, maternal infections, or following ingestion of certain medications. We
hypothesized that this may impact fetal testis development and ultimately affect adult
fertility. Germ cells from two mouse models of altered activin bioactivity were analysed.
RNA-Seq of gonocytes purified from E13.5 and E15.5 Inhba KO mice (activin A subunit
knockout) identified 46 and 44 differentially expressed genes (DEGs) respectively, and 45
in the E13.5 Inha KO (inhibin alpha subunit knockout; increased activin A) gonocytes. To
discern direct effects of altered activin bioactivity on germline transcripts, isolated E13.5
gonocytes were cultured for 24h with activin A or with the activin/Nodal/TGFb inhibitor,
SB431542. Gonocytes responded directly to altered signalling, with activin A promoting a
more differentiated transcript profile (increased differentiation markers Dnmt3l, Nanos2
and Piwil4; decreased early germ cell markers Kit and Tdgf1), while SB431542 had a
reciprocal effect (decreased Nanos2 and Piwil4; increased Kit). To delineate direct and
indirect effects of activin A exposure on gonocytes, whole testes were cultured 48h with
activin A or SB431542 and collected for histological and transcript analyses, or EdU
added at the end of culture to measure germ and Sertoli cell proliferation using flow
cytometry. Activin increased, and SB431542 decreased, Sertoli cell proliferation.
SB431542-exposure resulted in germ cells escaping mitotic arrest. Analysis of FACS-
isolated gonocytes following whole testis culture showed SB431542 increased the early
germ cell marker Kit, however there was a general reduction in the impact of altered activin
A bioavailability in the normal somatic cell environment. This multifaceted approach
identifies a capacity for activin A to directly influence fetal germ cell development,
highlighting the potential for altered activin A levels in utero to increase the risk of
testicular pathologies that arise from impaired germline maturation.
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INTRODUCTION

The complex processes governing the successful transformation
of a primordial germ cell into a spermatogonial cell requires
signals from the dynamic somatic milieu of the growing testis.
There are gaps in our knowledge of these cues in the fetal testis
which are particularly evident in the interval following
assignment of a male fate and birth. In mouse, male sex
determination initiates around embryonic day (E) 10.5, with
Sry expression in pre-Sertoli cells which proliferate and
surround the proliferating germ cells as testis cords are
formed. Germ cells commit to the male fate by about E12.5
in response to signals from somatic cells (1, 2). From E13.5,
these male germ cells, called gonocytes or pro-spermatogonia,
enter mitotic arrest in an asynchronous manner to become
uniformly quiescent by E15.5 (3). During this interval,
transcripts that indicate their more differentiated status
increase significantly, including Nanos2, Dnmt3l and Piwil4,
while markers expressed in their less-differentiated precursors,
such as Kit, Nodal and Tdgf1, decrease (4–6). These are
hallmark indicators of the male germ cell genome
transitioning to an epigenetically more stable state, as the
piRNA pathway components, Piwil4, Dnmt3l, Mov10l1,
Tdrd1, Tdrd9, are upregulated in a sex-specific manner.

Proteins in the transforming growth factor b (TGFb)
superfamily produced by several testis cell types shape the
growing fetal and postnatal testes and affect germ cell
development. This superfamily contains over 30 different
ligands, including transforming growth factor-betas (TGFbs),
bone morphogenetic proteins (BMPs), activins, Nodal and
growth and differentiation factors (GDFs) (7, 8). They share a
conserved dimeric ligand structure, and signal through both
shared and distinct signalling moieties, making the potential for
signalling crosstalk and synergy of context-dependent
importance (Figure 1A). For example, both activin A and
TGFb1 are implicated in stimulating germline exit from the
cell cycle; genetically modified mice with decreased signalling by
either one leads to a modest but significant increase in the
proportion of germline cells that continue to proliferate at
E15.5 (10, 11). However in vitro exposure to an inhibitor that
blocks both pathways, SB431542, yielded a more robust outcome
when testis fragments were cultured from E12.5 to E15.5 (12),
suggesting that these pathways are partially redundant in the
context of fetal germline maturation. In the context of human
pregnancy, the premature elevation of activin A is an established
indicator of pre-eclampsia that has been identified as early as the
first trimester (13–15), the period of development in humans
during which the germline initiates and progresses through sex-
specific development. Understanding how disruptions to activin
A signalling affect fetal germline development may provide clues
to human reproductive pathologies.

In mouse and human, there are four activin subunits,
inhibin bA (encoded by Inhba), inhibin bB, inhibin bC and
inhibin bE, which can form either hetero- or homo-dimeric
ligands to signal. As with all other TGFb superfamily members,
the mature activin A protein consists of two INHBA subunits
Frontiers in Endocrinology | www.frontiersin.org 2156
joined by a disulphide bond (16). Indicative of its importance,
activin A mature protein subunits are 100% identical between
these species. A mouse model with global knockout of the gene
encoding the mature activin A subunit, Inhba, was first
reported in 1995; pups with homozygous deletion of Inhba
die within 24 hours of birth primarily due to their inability to
suckle, amongst other defects that illustrate widespread
contributions of activin A to fetal organ development (17).
Within the mouse testis, Inhba transcript levels increase from
E11.5 until shortly after birth (10). At postnatal day 0, Inhba
KO mice have smaller testes, fewer Sertoli cells and higher
gonocyte numbers compared with testes of wildtype littermates.
This phenotype emerges after E13.5, with a small but significant
increase in gonocyte numbers at E15.5 in KO testes (10),
highlighting the potential for activin A to directly suppress
germ cell proliferation.

Circumventing the neonatal lethality of Inhba KO mice,
Amhr2-cre driven deletion of Inhba in Leydig cells resulted in
smaller testes at E19.5, reduced coiling of the fetal testis cords
and reduced Sertoli cell proliferation (18). This identified fetal
Leydig cells as a key source of activin A. An Sf1-cre conditional
knockout of Inhba in Sertoli and other somatic cells further
revealed that activin A synthesized by gonocytes or immune cells
did not rescue this phenotype (19). Adults with either of these
conditional Inhba deletions had smaller testes, larger
seminiferous tubule diameters, and tubules with abnormal or
absent spermatogenesis. Such results demonstrated the potential
for long term effects of reduced activin A on adult male fertility,
some of which could be attributed to its roles in postnatal Sertoli
cell proliferation and immunomodulatory functions (20–23).

More recently, activin A levels were shown to determine both
steroidogenesis and lipid metabolism in the fetal testis. Activin
A-deficient E13.5 and E15.5 testes in Inhba KO mice have
drastically reduced levels of the Hsd17b1 and Hsd17b3
transcripts which encode the enzymes that convert
androstenedione (A4) to testosterone. In the fetal testis, these
enzymes are exclusively synthesized in Sertoli cells, and
consequently, A4 produced from cholesterol in Leydig cells is
not efficiently converted into testosterone (T) in Inhba KO testes.
At E17.5 these testes exhibit an abnormal accumulation of lipid
droplets within the testis cords and an elevated A4/T ratio (9),
both indicating a profound impact of activin A signalling
pathway on processes central to masculinization in a key
developmental window (24).

The present study addresses the poorly understood question
of how altered activin A signalling affects germ cell development,
focussing on events that occur in the fetal testis after sex
determination while testis Inhba transcript levels are rising and
phenotypic changes in the Inhba KO testes are emerging between
E13.5 and E15.5. Utilising a multi-pronged approach, we
examined the impact of both the chronic (in vivo) and
transient (in vitro) changes in activin A bioactivity on fetal
male mouse germ cells. The results presented identify that
both direct and indirect affects/mediators are likely to influence
germline development depending on local levels of activin A
during this key developmental window.
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A B

FIGURE 1 | Activin and Nodal signalling component expression profiles in somatic and germ cells from wildtype E13.5 and E15.5 testes. (A) Overview of
activin/Nodal/TGFb signalling pathway and modulators. Dimeric ligands bind to two Type 2 receptors with a constitutively active serine-threonine kinase (STK)
(purple) which then recruit, phosphorylate and thereby activate Type 1 receptor subunits with STK activity (pink). The complex can phosphorylate SMADs 2
and 3, and two of these complex with SMAD4 for transport into the nucleus, where interactions with nuclear co-factors effect changes in gene transcription.
Crosstalk between family members is a feature of this pathway. This is mediated by the shared utilization of receptors (e.g. between activin A and Nodal),
SMADs (common to activin/Nodal/TGFb), and the inhibitory impact of Nodal pathway components (e.g. Cripto and Lefty1/2) on activin A signaling. (B) RNA-
sequencing was performed on somatic and germ cell populations isolated from E13.5 and E15.5 Inhba x Oct4-Gfp mouse testes. The somatic cell data was
published previously (9). Transcript levels of activin and Nodal ligands, type 1 and type 2 receptors, intracellular Smads, and activin and Nodal inhibitors in
wildtype somatic (black columns) and germ cells (green columns) are shown in counts per million (cpm). Data are presented as mean ± SD. The detection limit
for the Inhba x Oct4-Gfp RNA-Seq data set was 2.2 cpm (dotted line).
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MATERIALS AND METHODS

Animals
All animal procedures were carried out in accordance with the
Australian Code of Practice for the Care and Use of Animals for
Scientific Purposes under Monash University Animal Ethics
Committee approval. Mice were housed at Monash Medical
Centre Animal Facility under a 12-hour dark/light cycle and
with food and water available ad libitum. For all experiments
except RNA-Seq, timed-mates were set up between Swiss females
and transgenic Oct4-eGfp males (OG2; pure 129T2svJ
background) (25, 26). Females were checked daily and the
presence of a vaginal plug marked as E0.5. At E13.5, pregnant
females were culled by cervical dislocation and the uterine horns
removed and placed in phosphate buffered saline (PBS).
Embryos were removed and euthanised by decapitation and
the developmental stage was determined by the time since
mating, and fore- and hind-limb morphology. The gonad/
mesonephros complex was dissected out of each embryo and
the mesonephros removed. Sex of the embryo was identified by
the absence or presence of testis cords in the gonads, visualised
using an upright dissecting microscope (MZFLIII, Leica,
Wetzlar, Germany).

For RNA-Seq, mice lacking the inhibin bA [encoded by
Inhba; no activin A (17)] or inhibin alpha subunits [Inha; high
activin A (27)] on a C57/Bl6 background were crossed withOct4-
eGfp mice (9, 25, 26). For each line, heterozygous timed mates
were set up and fetal gonads from E13.5 and E15.5 embryos
collected as above. Tails were collected from each embryo for
commercial genotyping (Transnetyx, USA).

Whole Gonad Culture
E13.5 testes were randomly assigned treatment groups. Testes
were cultured on 0.4 µM Millicell cell culture inserts (Merck
Millipore, Germany) in 6-well plates with each well containing
1.4 mL media (DMEM/F12, Thermo Fisher Scientific, Waltham,
MA, USA; 10% FBS, Bovogen, Keilor East, VIC, Australia; 1%
penicillin-streptomycin, Thermo Fisher Scientific) (28). Previous
cell culture experiments with mouse postnatal day 6 and 15
Sertoli cells revealed SMADs localise to the nucleus following
exposure to 5 ng/mL activin A (29). Further, the human germ
cell-like line, TCam-2, is responsive to activin A at 5 ng/mL (30).
However, the local concentration of activin A in the fetal testis is
unknown, therefore we determined the optimum concentration
of activin A by culturing whole testes with 0 (vehicle control; 4
µM HCl), 5, 25, 50 or 100 ng/mL human recombinant activin A
(R&D Systems, Minneapolis, MN, USA) and activin-responsive
genes measured. Following analysis of changes in activin A-
responsive genes, testes were cultured in media containing 50 ng/
mL activin A as the optimal dose (described in Results), or 10 µM
SB431542 (Sigma-Aldrich, St Louis, MS, USA) and their
respective controls (DMSO for SB431542). PBS was placed in
the gaps between wells to maintain humidity. E13.5 testes were
cultured for 48 hours with a full media change at 24 hours.
Following culture, gonads were imaged using bright field and
fluorescence using an Olympus IX70 inverted microscope to
visualize gross gonad structure and GFP-positive germ cells.
Frontiers in Endocrinology | www.frontiersin.org 4158
Gonads were removed from the membrane, washed in PBS and
individually snap-frozen on dry ice for transcript analysis, fixed
in 4% paraformaldehyde (PFA) for histological analysis, or
dissociated for flow cytometry.

Testis Dissociation and Germ Cell
Isolation by Fluorescent Activated
Cell Sorting (FACS)
For RNA-Seq experiments, paired testes from one embryo
yielded a single biological replicate. From whole gonad cultures
(E13.5 + 48h), single testes were a biological replicate. For E13.5
germ cell cultures, 6 - 10 paired testes were pooled. Testis
dissociation and isolation of germ and somatic cells were
performed as previously described (9). Briefly, testes were
dissociated in 0.25% Trypsin-EDTA. Dissociation was halted
with media containing 10% FBS. Cells were passed through a 35
µM strainer to obtain a single-cell suspension then centrifuged.
Cell pellets were resuspended in 0.4% BSA/PBS and propidium
iodide was added for exclusion of non-viable cells. GFP-positive
and GFP-negative cells were sorted by Monash FlowCore staff
using either an Influx or ARIA Fusion (BD Biosciences)
machine. Sorted cells were pelleted, supernatant removed, and
stored at -80°C for transcript analyses. Gonocyte cell culture is
described below.

EdU Incorporation and Flow Cytometry
This protocol was based on a previously published method
using the Click-iT™ Edu Alexa Fluor™ kit (Thermo Fisher
Scientific) (31). For EdU incorporation, a final concentration of
20 µM was added to culture media two hours before collection.
Then testes were washed in PBS and dissociated in 0.25%
Trypsin-EDTA at 37°C for 5 to 10 minutes. Dissociation was
halted with DMEM/F12 containing 10% FCS, and the cells were
passed through a 35 µm mesh cell strainer to obtain a single cell
suspension. Following centrifugation and removal of
supernatant, cells were resuspended in 4% PFA and fixed for
15 minutes at room temperature. After 3 washes in permwash
(1X saponin-based permeabilisation reagent (Thermo Fisher
Scientific) in 1% BSA/PBS) cells were stored in permwash for
no more than one week before immunostaining. For all steps,
solutions were made up in and washes done with permwash and
performed at room temperature.

Cells were centrifuged and resuspended in 5% donkey serum
(Sigma) for 15 minutes. Cells were incubated with anti-DDX4
(detection of germ cells; R&D Systems; AF2030; goat polyclonal;
1:100) and anti-DNMT3L (Abcam; ab194095; rabbit polyclonal;
1:200), or anti-SOX9 (Millipore; AB5535; rabbit polyclonal, 1:300)
and anti-AMH (Anti-Mullerian Hormone; Santa Cruz; sc6886;
1:300), or anti-DDX4 and anti-SOX9 in combination for 45
minutes. Dissociated mesonephros was used as a negative
control for DDX4 staining, and dissociated E13.5 ovaries were
used as a negative control for SOX9 staining. Cells were washed
twice then incubated 45 minutes with secondary antibodies
(Donkey anti-rabbit biotin, Thermo Fisher Scientific; Donkey
anti-goat Alexa Fluor 488, Thermo Fisher) diluted 1:300. Cells
were washed twice then resuspended and incubated in the Click-iT
reaction cocktail containing Alexa Fluor 647 for 30 minutes.
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Following two washes, samples were incubated with Streptavidin
Pacific Blue (Thermo Fisher Scientific; 1:500) for 30 minutes. Cells
were washed twice, then resuspended in 300 µL permwash
containing 20 µg/mL propidium iodide (Sigma) to measure
cellular DNA content. Samples were run on the same day on
the BD Biosciences FACS CANTO-II at Monash FlowCore
(Monash Health and Translational Precinct (MHTP) Node) and
data analysed using FlowJo X.0.7 software (Ashland, OR, USA).
Single, intact cells were analysed following gating using forward
and side scatter characteristics, and DNA content.

Double Immunofluorescence Staining of
Mouse Testis Sections
Cultured and uncultured testes were fixed in 4% PFA for
immunofluorescence (IF) analysis. After standard ethanol
processing conditions, they were paraffin embedded and
sectioned at 4 µM onto Superfrost Plus slides.

Unless stated, all steps were performed at room temperature.
Sections on slides underwent dewaxing in histosol, followed by
rehydration in a graded ethanol series (100%, 95% and 70%
ethanol). Slides were briefly washed in water and incubated for
30 mins at 98°C in Citrate buffer (pH 6; DAKO) for antigen
retrieval. After cooling, slides were rinsed in distilled water,
washed once in PBS, then sections permeabilised in 0.1%
Triton-X-100 (Merck) in PBS for 30 mins. Slides were washed
twice in PBS and a wax circle drawn around sections using a PAP
pen (Cederlane Laboratories, Burlington, Canada). Non-specific
antibody binding was blocked by incubation with 10% donkey
serum (Sigma-Aldrich) in 5% bovine serum albumin (BSA)/PBS
for 1 hour. The blocking liquid was tapped off and primary
antibodies in dual combination were diluted in 1% BSA/PBS and
added to sections, with 1% BSA/PBS serving as a control lacking
primary antibody. Primary antibodies against the following
proteins were used: DNMT3L (Abcam; ab194094; 1:200),
VASA (R&D Systems; AF2030; raised in goat; 1:400), VASA
(Cell Signalling Technologies; 8761S; raised in rabbit; 1:400),
cKIT (R&D Systems; AF1356; 1:100), Laminin (Sigma; L9393;
1:200) and AMH (Santa Cruz; sc6886; 1:200). Slides were
incubated overnight at 4°C in a humid chamber. The next day,
primary antibodies were removed, and slides washed 3 x 5
minutes in PBS. Secondary antibodies (Donkey anti-Rabbit
Alexa Fluor 594, Invitrogen, A21207; Donkey anti-Goat Alexa
Fluor 488, A11055) were diluted 1:300 in 1% BSA/PBS and
added to sections for 2 hours. Slides were washed one time in
0.1% Triton-X-100 in PBS, then twice for 5 minutes each in PBS.
DAPI (Thermo Fisher Scientific) was applied to sections at 5 µg/
mL in PBS for 15 minutes. Following three washes in PBS, slides
were mounted under glass coverslips with ProLong Gold Anti-
fade Mountant (Thermo Fisher Scientific) and set overnight.
Imaging was performed by Monash Histology Platform (MHTP
node) using the VS120 Slide Scanner (Olympus, Tokyo, Japan)
and images were processed using OlyVIA software (Olympus).

Gonocyte Cell Culture
Following dissociation of Swiss x Oct4-Gfp E13.5 testes and
isolation of gonocytes via FACS, germ cells were counted using
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a haemocytometer. In each well (48-well plate), 20,000 germ cells
were added in 500 µL media (MEM-a, 10% FBS, 1% penicillin-
streptomycin) containing 10 µM SB431542, 5 ng/mL activin A,
or relevant vehicle control. A lower concentration of activin A
was used compared with the whole testis cultures, as cells grown
as a monolayer have been demonstrated to be robustly
responsive to 5 ng/mL activin A (29, 30). Cells were cultured
for 24 hrs in 5% CO2/air, after which the cells were collected for
transcript analysis. Because the germ cells were lightly adherent,
media and one PBS wash were collected to avoid losing cells, and
200 µL of 0.1% Trypsin-versene added per well and incubated for
approximately 5 minutes or until all remaining cells were
detached. Trypsin was quenched with media containing 10%
serum, and all contents were transferred to a 1.5 mL tube
containing the original media and PBS wash. Cells were
centrifuged at 1020 g, supernatant removed, and cell pellets
stored at -80°C.

RNA Extraction, cDNA Synthesis
and qRT-PCR
All RNA extractions and on-column DNase treatment were
performed using the NucleoSpin RNA XS kit (Machery-Nagel,
Germany) according to the manufacturer’s protocol. RNA
concentration was quantified using a NanoPhotometer
(Implen, Munchen, Germany). RNA was subjected to reverse
transcription in a reaction containing 200 Units SuperScript III
Reverse Transcriptase (Thermo Fisher Scientific), 50 ng random
primers and 500 ng oligo dTs (Promega, Madison, USA) per
sample. For whole gonads, 100 ng RNA was added to the
reaction. For isolated cell cultures and cells isolated following
culture, 40 ng and 15 ng respectively, was used in each cDNA
reaction and RNaseOUT Recombinant Ribonuclease Inhibitor
(Thermo Fisher Scientific) added to each 20 µL reaction as per
the manufacturer’s protocol.

Real time PCR was conducted on the QuantStudio Fast Real-
time PCR System at the MHTP Medical Genomics Facility
(Clayton, Australia), and data generated using SDS software
(Applied Biosystems). Each reaction contained power SYBR
Green Master Mix (Thermo Fisher) and specific primer pairs
(Table 1; Integrated DNA Technologies, Coralville, IA, USA)
facilitating transcript measurements in 384 well plates. Primers
pairs were designed to span exon-exon junctions or have pairs
separated by an intron where possible. Each cDNA was diluted
1:20 or 1:10 for whole testes and isolated cells respectively. Every
sample was measured in triplicate, and amplification of a single
product was indicated by detection of a single peak in a melt
curve analysis. Data were normalised to the Canx housekeeper
gene (33) and analysed using the 2-DCt method.

Additionally, transcript levels in isolated E13.5 germ cell
cultures were measured using the Fluidigm Biomark™ 96x96
Dynamic Array IFC by the MHTP Medical Genomics Facility.
Taqman assays (Thermo Fisher Scientific; Table 2) were used for
amplification of specific transcripts. The geometric mean of two
housekeeper genes, Canx and Mapk (33), was used for
normalisation of data following a Pearson correlation between
the two Ct values (R2>0.92). Data were normalised to the
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housekeepers, stable across samples, and analysed using the 2-DCt

method. Multiple experiments were analysed on the same array,
accounting for the remaining samples and Taqman assays which
make up the 96x96 array.

RNA-Sequencing
RNA-Sequencing was performed on gonocyte and somatic cells
isolated from E13.5 and E15.5 Inhba x Oct4-Gfp, and germ cells
isolated from E13.5 Inha x Oct4-Gfp wildtype and knockout
testes. RNA sample quality was assessed on the Agilent 2100
Bioanalyzer using the Eukaryote total RNA Pico Kit, providing a
measure of RNA integrity (RIN). All samples were high quality
(RIN 8.4 – 9.9). Double stranded cDNA was prepared from 2-20
ng total RNA using Trio RNA-Seq or RNA-Seq V2 kits and SPIA
amplification (Tecan/NuGEN, Leek, The Netherlands). These
methods both use full length linear amplification to minimise
bias. RNA-Seq libraries were then prepared with unique
barcodes to allow multiplexing during sequencing. Illumina
single end sequencing was performed on the HiSeq 3000 or
NextSeq2000 (Illumina, San Diego, CA, USA). All RNA quality
control, library preparation, and sequencing were performed by
staff at the MHTP Medical Genomics Facility.
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RNA-Sequencing Analysis
Sequencing from E13.5 and E15.5 Inhba x Oct4-Gfp returned 35-
40 million 80 base pair reads. Sequencing from E13.5 Inha x
Oct4-Gfp returned 65-85 million 100 base pair reads. The Inhba
and Inha datasets were analysed independently of each other.
RNA sequencing data were processed and analysed by Monash
University Bioinformatics Platform. Sequencing reads were
aligned to the Ensembl mouse reference genome GRCm38
(Ensembl release 84) and analysis was performed using the
RNAsik pipeline with STAR aligner (34). Differential gene
analysis was performed on Degust V4.1.5 (David R. Powell,
Monash Bioinformatics Platform), using Limma-Voom (35, 36).
Heatmaps were generated using ClustVis (37). RNA-Seq data are
available via accession number GSE201520.

Inhba x Oct4-Gfp analysis: Following principal component
analysis of the samples, two samples were excluded as outliers:
one sample from the E13.5 Inhba KO somatic cell group, and one
sample from the E13.5 Inhba WT gonocyte group. Further
scrutiny of these samples led us to conclude these may have
been contaminated or swapped, and their exclusion was
supported following consultation with a bioinformatician
(Monash Bioinformatics Platform).

The detection limit was determined by calculating the median
of the entire array of counts per million (cpm) values for the
datasets. For the entire dataset (germ and somatic cells), the
detection limit was determined as 2.2 cpm, while the detection
limit for the germ cell only dataset was calculated at 2.391 cpm.
Values greater than these were determined as being detectable.
Analysis of these data confirmed the purity of the germ and
somatic cell populations through absence or presence of
Ddx4 (germ cells), and Sox9 and Nr5a1 (somatic cells)
(Supplementary Figure 1A). Absence of Inhba in knockout
animals was confirmed in the somatic cell population with a 4-
TABLE 1 | Forward and reverse primers for qRT-PCR (SYBR Green).

Gene Accession Forward (5’- 3’) Reverse (5’- 3’)

Canx NM_001110499.1 TTCCAGACCCTGATGCAGA TCCCATTCTCCGTCCATATC
Piwil2 NM_021308.2 TTGGCCTCAAGCTCCTAGAC GAACATGGACACCAAACCTACA
Piwil4 NM_001368831.1 GGGGCTCGTTGTCCTTACCA ACTGCCTTCATCAGGCGGAA
Tdrd1 NM_001002241.2 TCTTCCCACAGCACCATCTGTA CACTCTTCACTTCAATGGCCT
Tdrd9 NM_029056.1 TGGCGAGTTGACCTTCCTGG CTGAACGCCTCCACAAGTGC
Dnmt3a NM_007872.4 GGCCCGTTACTTCTGGGGTA TGGCTATTCTGCCGTGCTCC
Dnmt3l NM_001284197.1 ATGATCAAGAGGGAGCGGGC CGAGCCGTACACCAGGTCAA
Mov10l1 NM_031260.2 AAGAGTACCTGGTCATCGTCATCTC CAGCAGTGCTTTGGGTCTTG
Mvh NM_001145885.1 CATCGAATTGGACGCACTG GGCAATCTCTTCTAGCCATGC
Oct4 NM_013633.3 GTTGGAGAAGGTGGAACCAA CTCCTTCTGCAGGGCTTTC
Kit NM_001122733.1 TCATCGAGTGTGATGGGAAA GGTGACTTGTTTCAGGCACA
Nodal NM_013611.5 ACATGTTGAGCCTCTACCGAGAC AACGTGAAAGTCCAGTTCTGTCC
Tdgf1* NM_011562.2 GGCCATTTCCAGTGCGTTT GCAAGGTCTCTCCCAGCAAC
Nanos2 NM_194064.2 TCTCCATGGACCATTCACG CTTCCTCTTATTCCTGATGGACA
Sox9 NM_011448.4 TGAACGCCTTCATGGTGTG TTCTCGCTCTCGTTCAGCAG
Mmp2 NM_008610.3 TCGCTCAGATCCGTGGTGAG TCATTCCCTGCGAAGAACACA
Ccl17 NM_011332.3 AATGTAGGCCGAGAGTGCTG TGGCCTTCTTCACATGTTTG
Cldn11 NM_008770.3 AGTTCTCCCCTGCATCCGAA TCACAGCACCGATCCAACCT
Gja1 NM_010288.3 AGGAGTTCCACCACTTTGGCG AAATGAAGAGCACCGACAGCC
Serpina5 NM_172953.3 TCTTCACCACCCATGCTGAC GAATGTGAAGATGGCTCCTGTG
Hsd17b1 NM_010475.2 CACTACCTGCGTGGTTATGAGC GAAGCGGTTCGTGGAGAAGTAG
May 2
*Souquet et al., (32).
TABLE 2 | Taqman assays for Fluidigm analysis.

Gene Taqman assay

Mapk Mm00442479_m1
Canx Mm00500330_m1
Nodal Mm00443040_m1
Tdgf1 Mm03024051_g1
Lefty2 Mm00774547_m1
Dnmt3l Mm00457635_m1
Slc43a3 Mm00469627_m1
Msi1 Mm01203522_m1
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fold increase measured from E13.5 to E15.5 (Supplementary
Figure 1B), consistent with previously published data (10, 12).

Differentially expressed genes were identified as having a false
discovery rate (FDR) <0.05, a LogFC>0.585 and <-0.585 (i.e. a
1.5-fold change up or down, respectively), and two or more
samples across genotypes being greater than the detection limit
of 2.391cpm. There were 44 DEGs identified in the E15.5 Inhba
KO gonocyte dataset. None were identified in the E13.5 Inhba
KO dataset, therefore further analysis was performed to generate
a list of transcripts that are altered in E13.5 gonocytes, described
below. The data was processed in Degust using Limma-Voom,
and the p-value was calculated within the software using the
trimmed mean of M-values (TMM) normalised voom-
transformed expression levels. Differentially expressed genes
at E13.5 were identified using a LogFC> 0.585 and <-0.585,
p-value <0.01 and restriction to at least two samples across
wildtype and knockout animals being greater than the
detection limit of 2.391 cpm. This approach enabled less
abundant transcripts to be considered, and it resulted in the
identification of 46 DEGs.

Inha x Oct4-Gfp analysis: Two wildtype and knockout
littermate pairs were analysed using batch correction.
Mitochondrial genes were filtered out as they were highly
variable and genes with a minimum of 2 cpm in at least 2
samples included. Differentially expressed genes were identified
by FDR<0.05 and LogFC>0.585. This led to the identification of
45 DEGs. Germ cell purity was assessed by the presence of Ddx4
and absence of Sox9 and Nr5a1 (Supplementary Figure 1C).
Inha genotypes were confirmed in the somatic cell population by
qRT-PCR (Supplementary Figure 1D).

Gene lists obtained after analysis (Supplementary Tables 1–3)
were submitted to the PANTHER classification system (38, 39) to
identify molecular functions, biological processes, and protein
classes of the DEGs. A Venn diagram was created following
input of DEG lists to JVenn (40).

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
Software (San Diego, CA, USA). Normal distribution of control
and treatment groups was determined using a Shapiro-Wilk or
D’Agostino and Pearson normality test. qRT-PCR and flow
cytometric data from whole gonad cultures were analysed
using an unpaired Student’s t-test for normally distributed
data, or a Mann-Whitney test for data that was not normally
distributed. For statistical analysis of the isolated cell culture
experiments, a paired t-test or a Wilcoxon matched-pairs signed
rank test was performed. Data was determined as significantly
different when the p-value was less than 0.05.

RESULTS

Germ Cells Express the Signalling
Machinery to Respond to Activin A
Levels of transcripts encoding activin and Nodal ligands,
signalling machinery and inhibitors were obtained from RNA-
Seq analysis of germ and somatic cell populations collected from
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wildtype Inhba E13.5 and E15.5 testes (Figure 1B). These data
reveal the complexity and dynamic nature of signalling potential
of these selected components of the TGFb superfamily within the
testis during this window of development that is crucial to testis
and embryo masculinization.

Inhba and Inhbb, encoding activin A and B subunits,
respectively, were detected in somatic cells at both ages
(Figure 1B), while Inhbc was below the detection limit in all
samples (data not shown). Inhba increased 4-fold from E13.5 to
E15.5 (73.8 ± 27.1 to 295.7 ± 69.7 cpm), and Inhbb levels were
relatively constant (93.3 ± 6.7 cpm and 81.0 ± 10.9 cpm). At
E13.5, Nodal was measured in germ cells, but not somatic cells,
and it decreased to undetectable levels at E15.5 (Figure 1B). The
levels of Inhba, Inhbb and Nodal were consistent with previous
reports (12, 41). Transcripts encoding the Type 2 receptors for
activin A, activin B and Nodal, Acvr2a and Acvr2b, were present
in both somatic and germ cells at both ages highlighting the
potential for each of these to respond, however Acvr2a was
present at higher levels in both ages and cell types (Figure 1B).
Acvr1b, encoding the type 1 receptor for activin A, activin B and
Nodal, was present in both cell types at E13.5 and E15.5, while
the transcript encoding the Nodal and activin B receptor, Acvr1c,
was present only at low levels in E13.5 somatic cells (8.0 ± 2.3
cpm), indicating that Acvr1b, and not Acvr1c, is the predominant
receptor for Nodal actions in germ cells at E13.5. Nodal
signalling additionally requires the co-receptor, Cripto,
encoded by Tdgf1, also known to antagonise activin A (42);
this transcript was detected in E13.5 germ cells only (18.0 ± 1.2
cpm). These results illustrate the potential for Nodal to
specifically impact on the germline cells which are exiting their
proliferative state. Transcripts encoding the intracellular
signalling components required for activin/Nodal signalling,
Smad2 and Smad4, were present at both ages in somatic and
germ cells, however Smad3 was predominantly detected in the
somatic cell samples (Figure 1B).

Activin and Nodal inhibitors are also present during fetal
testis development, and these would be expected to fine-tune the
responsiveness of cells expressing their receptors (Figure 1A).
Inha, encoding the inhibin a subunit which forms a potent
activin A inhibitor when dimerised with an activin b subunit,
was detected only in somatic cells at both E13.5 (60.8 ± 8.1 cpm)
and E15.5 (85.9 ± 34.7 cpm). Follistatin (Fst) was detected at low
levels (<7 cpm) in all samples (Figure 1B), consistent with
previous studies demonstrating that Fst is only expressed in
the fetal ovary compared with the testis (43, 44). The transcript
encoding the decoy receptor Bambi (45) was expressed at both
ages in somatic and germ cells, with consistently higher levels in
somatic cell samples compared with those in germ cells (53.6 ±
2.3 and 37.3 ± 1.7 cpm in somatic cells, and 9.7 ± 1.6 and 9.6 ±
2.4 cpm in germ cells). Transcripts encoding the inhibitory
Smad6 and Smad7 were predominantly expressed in the
somatic cells, but were also measured in germ cells at both
ages. Betaglycan, encoded by Tgfbr3, is a co-receptor for TGFbs
which is required for TGFb2 signalling, and it can inhibit activin
A (46). It was highly expressed in somatic cells compared to germ
cells at both ages (Figure 1B).
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There are several Nodal antagonists which could dampen its
capacity to compete with activin A. Lefty1 was identified in germ
cells at E13.5 (Figure 1B; 63.6 ± 8.1 cpm) and undetectable by
E15.5, consistent with previous observations (12). Lefty2 was
expressed at higher levels in E13.5 germ cells (192.8 ± 49.9 cpm)
and dropped to 4.3 ± 1.5 cpm by E15.5. Lefty2 transcripts were also
low in the somatic cells at both ages (Figure 1B). The Cerberus
transcript, encoding another Nodal inhibitor, was below the
detection limit in all samples (data not shown). The Nomo/
Nicalin complex has been identified as a Nodal antagonist in
zebrafish (47), however its roles in the mouse are not known.
Transcripts for each component were present in the mouse fetal
testis (Nomo1 and Ncln) at E13.5 and E15.5 in both somatic and
Frontiers in Endocrinology | www.frontiersin.org 8162
germ cells (Figure 1B), indicating these proteins may also reduce
Nodal activity in the fetal testis.

Transcriptional Changes in Gonocytes in
the Absence of Activin A (Inhba Knockout)
In germ cells lacking activin A (Inhba KO), there were 46 and 44
differentially expressed genes (DEGs) at E13.5 and E15.5,
respectively (Figures 2A, B; Supplementary Tables 1, 2). At
E13.5, there were no DEGs by FDR (<0.05), therefore we utilised
p-value (<0.01) and LogFC (>0.585 and <-0.585) to assess any
differences between genotypes (Figure 2A). There were 21
downregulated, and 25 upregulated DEGs, which were primarily
associated with binding and catalytic functions, and cellular
A

D

B C

FIGURE 2 | Heatmaps generated from differentially expressed genes (DEGs) following RNA-Seq analysis. (A) 15 downregulated and 30 upregulated DEGs in E13.5
Inha knockout (KO) gonocytes compared with wildtype (WT) littermates (n=2 per genotype). DEG criteria: FDR<0.05, LogFC>0.585, <-0.585. (B) 21 downregulated
and 25 upregulated DEGs in E13.5 Inhba KO (n=3) compared with WT (n=4) gonocytes. DEG criteria: LogFC>0.585, p-value<0.01. (C) 27 downregulated and 17
upregulated DEGs in E15.5 Inhba KO compared with WT gonocytes (n=4 per genotype). DEG criteria: FDR<0.05, LogFC>0.585, <-0.585. (D) Venn diagram
demonstrating lack of overlap of DEGs from the E13.5 and E15.5 Inhba KO, and E13.5 Inha KO gonocytes.
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processes. The top protein class was identified as being metabolite
interconversion enzymes, which convert one small molecule to
another (PANTHER, Table 3), however, the function of these genes
in the testis are unknown. Interestingly, an association between
Galnt6 and piRNAs has been identified in an oral squamous cell
carcinoma mouse model (48).

At E15.5, there were 27 downregulated, and 17 upregulated
DEGs (Figure 2B), however there was no overlap in DEGs
between E13.5 and E15.5. These transcripts were similarly
associated with binding and catalytic activity (PANTHER,
Table 3). The top biological processes were cellular processes,
and biological regulation, with the top protein classes identified
as cytoskeletal proteins, gene-specific transcriptional regulators,
protein binding activity modulators, and transporters
(PANTHER, Table 3). Within the DEGs, Musashi-1 (Msi1), an
RNA-binding protein in the Musashi family of proteins which
function in translational regulation, was identified as lower in
KO germ cells compared with WT counterparts. Its essential
role in governance of postnatal transitions of murine
spermatogenesis has been established, and it was previously
shown to be expressed in gonocytes (49). There was no overlap
in DEGs between E13.5 and E15.5, indicating age-specific
responses of germ cells occurred in the absence of activin A.

A recent study identified that activin A promotes a less
differentiated transcript profile in the human germ cell-like cell
line, TCam-2 (30). To determine if germline differentiation was
similarly altered in Inhba KO mice, we examined early and
differentiation-associated germ cell transcripts in the Inhba WT
and KO RNA-Seq dataset. Early germ cell transcripts Nodal,
Tdgf1, Kit, Lefty1, Lefty2, and Nanog were all downregulated
between E13.5 and E15.5 in both WT and KO samples, while
differentiation markers Nanos2 and Dnmt3l were upregulated
(Supplementary Figure 2). We also observed higher expression
of piRNA pathway transcripts such as Piwil1, Piwil2 and Piwil4,
Dnmt3a, Dnmt3l, Tdrd1, Tdrd9, Mael and Mov10l1 at E15.5
relative to E13.5 in WT and KO samples. This is consistent with
the activation of the piRNA pathway and de novo methylation
from around E14.5-E15.5 in quiescent germ cells (50); the higher
level of piRNA pathway transcripts encoding components such as
in our dataset is consistent with the normal progression of
developmental events associated with this phenomenon
(Supplementary Figure 2). Of these transcripts, Mov10l1 was
decreased (p<0.05, Mann-Whitney test) in the KO germ cells at
E15.5, however this was not determined to be differentially
expressed in the RNA-Seq dataset by FDR and fold change, as
presented in Figure 2B. Transcripts associated with pluripotency
anddifferentiation showednodifferences in isolatedgermcells from
InhbaKO testes comparedwithWT counterparts at either E13.5 or
E15.5. The germ cell-specific transcripts, Ddx4 and Pou5f1 (Oct4),
were both detected at relatively high levels in germ cells, withDdx4
increasing 1.6-fold from E13.5 to E15.5 in WT cells.

While Inhba KO germ cells appear to differentiate normally
based on classical germ cell markers, a subset of genes was
altered, indicating that loss of activin A modulates some aspects
of early male germline transcription. However, the significance of
the outcomes remains to be determined.
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The E13.5 Germ Cell Transcriptome Is
Altered in the High Activin A Environment
of the Inha Knockout Testis
The elevation of activin A levels linked with pre-eclampsia in
human pregnancy can occur in the second and third trimesters
when male germ cells are mainly quiescent. The inhibin a
subunit encoded by Inha, forms a dimer with an INHBA
subunit to form the inhibin A protein, a potent inhibitor of
activin A. In Inha KO mice, activin A bioactivity is elevated due
to the combined absence of inhibitory inhibin proteins, and to
the greater availability of INHBA subunits for dimerization to
form activin proteins. In wildtype mice, Inhba is detectable from
E11.5, with its levels increasing until just after birth (10, 51). As
the phenotype of the E13.5 testis appears normal but is
significantly different by E15.5 (data not shown), we examined
the germ cell transcriptome in Inha KO compared to WT
littermates, prior to gross morphology changes. RNA-Seq
analysis of germ cells isolated from two independent wildtype
and knockout littermate pairs identified 45 DEGs (Figure 2C
and Supplementary Table 3; FDR<0.05, LogFC>0.585, <-0.585).
Thirty upregulated transcripts included ribosome structural
components such as Rps15, Rps25, Rps5, Rplp1 and Rps3.
These transcripts are also associated with RNA binding.
Pathway analysis revealed that the top molecular functions of
the 45 DEGs were binding and catalytic activity, with cellular
processes the top associated biological process. Inha KO DEG
were associated with translational proteins (primarily the
ribosomal structural component transcripts), and gene-specific
transcriptional regulators, which included Sox12, Egr1, Etv1
(upregulated), and Prdm10 (downregulated) (Table 3).
Interestingly, there were no reciprocal DEGs between Inha
E13.5 germ cells and the E13.5 or E15.5 Inhba germ cells
(Figure 2D). Collectively, these results demonstrate that
gonocytes which develop in an environment of altered activin
bioactivity are different from their wildtype counterparts, leading
us to investigate whether this effect is direct or indirect.
Germ Cells Can Respond Directly to
Activin A
RNA-Seq revealed differences in male germ cell mRNA profiles in
mice with altered activin A bioavailability (Figure 2). To test
whether activin A can directly affect germ cells, gonocytes isolated
from E13.5 testes were cultured for 24 hours in 5 ng/mL activin A
or 10 µM SB431542, and appropriate vehicle controls. After 24
hours in culture, germ cells retained Oct4-eGFP expression, as
observed by fluorescence microscopy (Figure 3A). Transcripts
encoding markers of germ cell differentiation were measured in
isolated E13.5 gonocytes and first compared with levels in cells
cultured for 24 hours in control conditions (Supplementary
Figure 3). After 24 hours in culture, the early germ cell marker
Kit had declined to 85% of E13.5 levels, and Nodal was at 10% of
E13.5 levels. The differentiation marker Nanos2 was moderately
increased (1.8-fold), while Dnmt3l, Piwil4, Tdrd1 and Mov10l1
were all higher after 24 hours in culture compared with E13.5
levels (16-, 11-, 6- and 3-fold, respectively). Interestingly, germ cell
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TABLE 3 | PANTHER analysis of RNA-Seq DEGs.

PANTHER analysis Inhba E13.5 Inhba E15.5 Inha E13.5

Molecular function Binding (GO:0005488) Binding (GO:0005488) Binding (GO:0005488)
Hist1h2ak Dkk3 Rplp1
Gng13 Pou2f2 Dek
Fscn1 Mob3c Tyk2
Ubc Lhx1 Cttn
Sema5a Slc9a3r1 Hif3a
Tbc1d24 Rorc Rps5
Itga4 Msn Etv1
Myo7a Crabp1 Lnpep
Catalytic activity (GO:0003824) Itpr1 Sox12
Atp10d Catalytic activity (GO:0003824) L1td1
Pusl1 Hibadh Egr1
Pnp Mob3c Rbm46
Tbc1d24 Abca17 Catalytic activity (GO:0003824)
Dgkh Rspry1 Rplp1
Dppys Kat2b Tyk2
Myo7a Plcg2
Abcc10 Mark2

Lnpep
Nagk

Biological processes Cellular Process (GO:0009987) Cellular Process (GO:0009987) Cellular Process (GO:0009987)
Atp10d Lzts1 Rplp1
Sdc2 Dkk3 Dek
Pusl1 Rsph4a Tyk2
Gng13 Arhgef10l Ifitm2
Fscn1 Pou2f2 Rps15
Ubc Mob3c Cttn
Sema5a Lhx1 Plcg2
Pclo Rspry1 Hif3a
Ppfibp2 Kat2b Mark2
Dgkh Slc93r1 Rps5
Itga4 Rorc Etv1
Dpys Msn Sdc4
Myo7a Cd86 Lrrc47
Abcc10 Tekt1 Cldn11
Rps2 Dnas1l3 Lnpep

Biological Regulation (GO:0065007) Sox12
Lzts1 L1td1
Dkk3 Egr1
Arhgef10l
Pou2f2
Mob3c
Lhx1
Kat2b
Rorc
Msn
Cd86

Protein Class Metabolite interconversion enzyme Cytoskeletal protein Translational protein
Pusl1 Rsph4a Rplp1
Pnp Msn Eif3j2
Dgkh Myl4 Rpl32
B3gnt7 Tekt1 Rps15
Dpys Gene-specific transcriptional regulator Rpl18a
Galnt6 Pou2f2 Rps5

Lhx1 Rps3
Rorc Lrrc47
Protein binding activity modulator Rps25
Arhgef10l Gene-specific transcriptional regulator
Mob3c Hif3a
Rgs16 Etv1
Transporter Sox12
Abca17 Egr1
Itpr1 Prdm10
Slc43a3
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FIGURE 3 | Germ cells can respond directly to activin A modulation. (A) E13.5 germ cells isolated via FACS were cultured with 5 ng/mL activin A or 10 µM
SB431542 for 24 hours. Early germ cell and differentiation-associated transcripts were measured by qRT-PCR and normalised to Canx or the mean of Canx and
Mapk housekeepers. Data was analysed using the 2^deltaCT method, and each individual experiment is graphed. Following the Shapiro-Wilk normality test,
significance was determined by a paired t-test or Wilcoxon test and indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). Top left-hand image represents
brightfield and fluorescent overlay of Oct4-positive germ cells after 24 hours in culture. Germ cells were lightly adherent, accounting for the overlap shift. Scale
bar represents 100 µm. (B) Transcript levels of Musashi-1 (Msi1) and Slc43a3, as described above. (C) Transcript levels of Msi1 and Slc43a3 in the Inhba x
Oct4-Gfp E13.5 and E15.5 WT and KO germ cell RNA-Seq dataset (counts per million; cpm), presented as mean ± SD.
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markers Oct4 and Mvh increased over time (Supplementary
Figure 3). The decrease in Nodal and increase in differentiation
markers suggests that E13.5 germ cells can autonomously
differentiate outside of the somatic environment.

Oct4 and Mvh transcripts were unaffected by activin A
exposure, however SB431542 resulted in a significant decrease in
Oct4 (0.8-fold). Nodal and Lefty2 levels were also unaffected by
activin A exposure, however both were lower in SB431542-treated
cells, consistent with previous reports (12). Kit was significantly
lower following activin A exposure (0.85-fold), and significantly
higher following SB431542 (1.75-fold), and Tdgf1, encoding the
Nodal co-receptor, was significantly reduced by activin A
(Figure 3A). The mRNA encoding the Nodal inhibitor Lefty2 is a
known activin A-responsive gene, demonstrated in mouse
embryonic stem cells and P19 embryonic carcinoma cells (52,
53), and in human TCam-2 cells (30). This responsiveness was
also demonstrated here in isolated gonocytes, with a 1.61-fold
increase in Lefty2 following activin A exposure (Figure 3A).

In addition, treatment of E13.5 gonocytes with activin A
resulted in a more differentiated transcript profile, with
significant elevation of Nanos2, Piwil4, Dnmt3l and Mov10l1.
Further, SB431542 decreased Nanos2, consistent with whole
gonad culture, and Piwil4, while Kit increased These results
demonstrate that gonocytes respond directly to activin A and the
inhibition of its pathway in culture (Figure 3A).

Two transcripts, Musashi-1 (Msi1) and Solute carrier family
43 member 3 (Slc43a3), identified as DEGs in the RNA-Seq data
from E15.5 activin A knockout mouse testes (Figure 2B), were
investigated in these samples. Following exposure to SB431542,
Msi1 was significantly decreased to 0.86-fold of control levels in
E13.5 gonocytes after 24 hours, but it was not affected by activin
A (Figure 3B). In InhbaWT germ cells,Msi1 normally increases
10-fold between E13.5 and E15.5. This was reduced to a 4-fold
increase between E13.5 and E15.5 in Inhba KO germ cells,
resulting in a significant difference in expression levels between
wildtype and knockout germ cells at E15.5 (60% decrease,
Figure 3C). In the isolated somatic cells of Inhba WT and
Inhba KO testes, examined using RNA-seq, the level of Msi1
recorded was greater than in germ cells (>20 cpm; data not
shown) (9) but was not different between genotypes. Thus, Msi1
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appears to be a germ cell-specific activin A target gene, a
conclusion supported by the results in the E13.5 isolated germ
cell cultures in which Msi1 was significantly decreased following
activin/Nodal/TGFb inhibition, and that it was significantly
reduced in germ cells of Inhba KO animals at E15.5.

Slc43a3, originally identified as an equilibrative nucleobase
transporter, has also been identified as influencing fatty acid
flux (54, 55) but its function in the testis is unknown. Slc43a3
was lower in the E15.5 Inhba KO germ cells compared to WT
(Figures 2B, 3C), and was significantly higher in activin A-
treated gonocytes (1.26-fold of controls) (Figure 3B)
suggesting that it is upregulated by activin A directly in germ
cells. While Slc43a3 was not altered following SB431542
exposure; this may be due to a difference between the chronic
absence of activin A in the Inhba KO mouse and acute
inhibition in these cultures via SB431542. It is also important
to consider that the germ cells may be developmentally
different, or that Slc43a3 transcript may be relatively stable
and therefore not reduced within the 24-hour window
examined in the isolated E13.5 germ cells.

Dose-Dependent Response of
Activin A Somatic Target Genes
in Whole Testis Culture
After determining that gonocytes can directly respond to activin
A and SB431542 through altered gene expression, we cultured
whole testes to assess the outcome of altered signalling on germ
cells within their somatic niche. We first performed a dose-
response, to determine the optimal concentration of activin A.
E13.5 testes were cultured with 5, 25, 50 or 100 ng/mL activin A
for 48 hours and compared with control samples cultured in the
vehicle. Levels of known activin A-induced somatic cell
transcripts, Hsd17b1, Ccl17 and Serpina5 (9), were monitored
to determine the optimal dose at which responses were evident.
Hsd17b1 was significantly higher in testes exposed to 25, 50 and
100 ng/mL, while Ccl17 and Serpina5 were significantly higher in
testes exposed to 50 and 100 ng/mL of activin A, when compared
with vehicle controls (Figure 4). Because all three transcripts
were increased following exposure to at least 50 ng/mL activin A,
this concentration was chosen for subsequent experiments.
FIGURE 4 | Dose-dependent response of activin A target genes. qRT-PCR analysis of transcripts of E13.5 whole gonads exposed to 5 to 100 ng/mL activin A for
48 hours in culture and compared with control (n=3 or 4 per group). Data were normalised to the Canx housekeeper and expressed as fold change compared to
control (no activin A). Data are presented as mean ± SD, and significance was determined by one-way ANOVA following the Shapiro-Wilk normality test. Significant
differences are indicated by different letters.
May 2022 | Volume 13 | Article 896747

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Moody et al. Activin A Impact on Gonocytes
Acute Effects of Activin A and SB431542
on Somatic Cells
E13.5 testes were cultured with 50 ng/mL activin A or with the
activin/Nodal/TGFb inhibitor, SB431542, which blocks ligand
access to the Type 1 receptors, ALK4, ALK7 and ALK5 (56).
Testes were photographed immediately after collection at E13.5
and after 48 hours of culture. Testis cords were easily observed in
the E13.5 testes, and after 48 hours of culture in either vehicle,
the cords appeared elongated, contained GFP-positive germ cells,
and were grossly of the shape normally observed in vivo at E15.5
(Figure 5A). In contrast, after 48 hours in culture the
effectiveness of inhibitor treatment was evident based on the
appearance of cords that were fatter and appear stunted,
compared with the DMSO controls (Figure 5A), previously
demonstrated by Miles and colleagues in cultures beginning at
E12.5 (12). Cords in testes cultured with activin A were grossly
similar to control testes but appeared to be slightly thinner.
Activin A target gene transcripts were measured by qRT-PCR.
Ccl17, Serpina5, Hsd17b1 and Gja1 (encoding gap-junction
protein Connexin 43, expressed in Sertoli cells) were
significantly higher than in corresponding control samples
following activin A exposure (5.8-, 3.5-, 4.5- and 1.7-fold,
respectively; Figure 5B), and significantly lower in SB431542-
treated testes (0.18-, 0.3-, 0.04- and 0.63-fold of control)
(Figure 5C), confirming the efficacy of these treatments and
demonstrating a dose-dependency of these transcript levels as
previously reported in vivo (9). Cldn11, also encoding a
component of Sertoli cell tight junctions, decreased in post-
pubertal rat Sertoli cell in vitro cultures following activin A
exposure (22). The finding that Cldn11 was significantly lower in
activin A-treated fetal testes (0.36-fold), and significantly
increased in SB431542-treated testes (3.3-fold) (Figures 5B, C)
indicates that the responsiveness of these genes to activin
bioactivity is likely to be conserved through the Sertoli
cell lifespan.

Matrix metalloproteinases are involved in tissue remodelling
and have been detected in the fetal testis (57, 58). Exposure of the
human gonocyte-like seminoma cell line, TCam-2, to activin A
increased both MMP2 transcript and protein levels (59).
Therefore, Mmp2 was also assessed as a potential activin A
target in the mouse fetal testis. Activin A exposure did not
alter Mmp2 transcript in fetal mouse testes, however SB431542
significantly decreased 0.43-fold of controls (Figures 5B, C).
Mmp2may not be solely upregulated by activin A, as its decrease
following SB431542 exposure could be due to the inhibition of
TGFbs or Nodal. Alternatively, Mmp2 synthesis could have
already been at the highest level normally reached by activin A
stimulation by the levels present at E13.5. Opposing regulation of
Ccl17, Serpina5, Hsd17b3, Gja1 and Cldn11 by activin A and
SB431542 demonstrates the effectiveness of each in culture, while
extending our knowledge of how transcripts encoding
extracellular matrix components are regulated in the fetal gonad.

To assess Sertoli cells, Sox9 transcription was measured
following whole gonad culture with activin A or SB431542.
Interestingly, Sox9 transcript was significantly lower in activin
A-treated gonads (0.76-fold) and significantly higher (1.33-fold)
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in SB431542-treated gonads (Figures 5B, C). This was consistent
with our RNA-sequencing analysis of fetal somatic cells from
Inhba KO mice (data not shown) which collectively suggests that
Sox9 transcription or turnover may be modulated by activin A.

Testes in fetal mice lacking activin A have a reduced
proportion of proliferative Sertoli cells (10, 19), and E12.5
testes exposed to SB431542 for 72 hours exhibited a five-fold
decrease in Sertoli cell proliferation (12). To assess the effects of
activin A and SB431542 on cell proliferation in cultured whole
testes, Edu-incorporation followed by flow cytometry was
emp loyed . Fe t a l S e r to l i c e l l s , d e t e c t ed by AMH
immunostaining, comprised 14% of the total cell population
after 48 hours in culture with vehicle controls (HCl, DMSO);
testes exposed to activin A had a significantly higher proportion
of fetal Sertoli cells, with a 1.5-fold increase to 21% of AMH-
positive cells. Conversely, SB431542 exposure significantly
reduced the proportion of Sertoli cells to 9% (0.65-fold of
DMSO levels) (Figure 5D). Consistent with this, we observed
a significant increase in the proportion of EdU-positive Sertoli
cells following activin A exposure (1.7-fold), demonstrating that
activin A increased Sertoli cell proliferation, and a decrease
following SB431542 exposure (0.37-fold), demonstrating
decreased Sertoli cell proliferation (Figure 5E). In addition, the
mean fluorescent intensity (MFI) of AMH in AMH-positive cells
was also measured as an indication of relative protein levels; Flow
cytometric analysis revealed that SB431542 significantly reduced
the AMHMFI (Figure 5F), and this was confirmed in sections of
SB431542-treated testes analysed using immunofluorescence
staining (Figure 5G).

Testis Culture Supports Germ
Cell Development
The Oct4-Gfp transgene allowed visualisation of germ cells by
fluorescent microscopy after culture. Based on GFP localisation,
germ cells appeared restricted to the cords (Figure 5A). Levels of
germ cell transcripts, assessed by qRT-PCR, were compared
between E13.5 whole testes and testes cultured for 48 hours in
vehicle. These were also examined against the RNA-seq data of
wildtype E13.5 and E15.5 gonocyte populations isolated from
Inhba x Oct4-Gfp mice. Early germ cell transcripts Kit, Nodal,
Nanog and Tdgf1 were lower in testes after 48 hours in culture
compared with E13.5 testes, and the differentiation markers
Nanos2, Dnmt3a, Dnmt3l, Mov10l1, Piwil2, Piwil4, Tdrd9 and
Tdrd1, normally upregulated by E15.5, were all increased after 48
hours in culture. These findings were consistent the changes
measured by RNA-Seq (Figure 6A) and demonstrate the
suitability of the culture system for investigating effects on
germ cell development.

A Small Proportion of Gonocytes
Escape Mitotic Arrest Following
SB431542-Exposure
Treatment of E12.5 testes with 10 µM SB431542 for 72 hours
previously resulted in an increased proportion of germ cells
escaping mitotic arrest, with a 4-fold increase (3% to 14%) in
germ cells incorporating EdU (12). This indicates that blocking
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FIGURE 5 | Acute activin A and SB431542 effects on fetal testicular somatic cells. E13.5 testes were cultured for 48 hours on membranes. (A) Representative
brightfield (top panel) and fluorescent (GFP, bottom panel) images of E13.5 testis and E13.5 testes cultured 48 h with 50 ng/mL activin A, 10 µM SB431542, or
vehicle controls (HCl and DMSO respectively). (B) Somatic cell transcripts of individual testes (n=3-5 per group) cultured for 48 hrs with 50 ng/mL activin A
(black bars) compared with control (white bars). (C) Somatic cell transcripts of individual testes (n=3-5 per group) cultured for 48 hrs with 10 µM SB431542
(black bars) compared with control (white bars). All transcripts were measured by qRT-PCR and data normalised to Canx housekeeper. (D–F) Flow cytometry
analysis of dissociated E13.5 testes cultured with 50 ng/mL activin A or 10 µM SB431542 for 48 hrs compared with controls. Proportion of (D) AMH-positive
(Sertoli) cells, (E) EdU-positive AMH-positive (proliferating Sertoli) cells, and (F) mean fluorescent intensity (MFI) of AMH-positive population. (G) Representative
images of AMH (green) and Laminin (red) immunofluorescence staining of 48hr-cultured E13.5 testes. Sections were counterstained with DAPI (blue) for nuclear
detection and scale bar is 50 µm. All graphical data are presented as mean ± SD and significant differences determined by a Student’s t-test or Mann-Whitney
test following the Shapiro-Wilk normality test and indicated by asterisk (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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FIGURE 6 | Effect of acute activin A and SB431542 exposure on germ cells. E13.5 testes were cultured for 48 hours on membranes. (A) Table presents the
fold change of transcript levels. The second column presents fold change of E15.5 compared to E13.5 germ cell transcripts measured by RNA-Sequencing
(counts per million (CPM); n=3-4 animals per age). The third column represents the transcript fold-changes of E13.5 testes cultured under normal conditions
for 48 hours compared with E13.5 testes measured by qRT-PCR (data was normalised to Canx; n=5 per group). (B, C) Flow cytometry analysis of E13.5
testes cultured with 50 ng/mL activin A or 10 µM SB431542 for 48 hours compared with respective vehicle controls (HCl and DMSO). (B) Proportion of germ
cells (MVH+ SOX9-) and (C) EdU-positive proliferating germ cells following culture with activin A or SB431542 (black columns) compared with controls (white
columns). For activin A and controls, n=5 per group, for SB431542 and controls, n=5 and n=4 respectively. (D, E) qRT-PCR analysis of early germ cell and
differentiation-associated markers in individual E13.5 testes cultured with (D) 50 ng/mL activin A (black bars; n=6) or HCl control (white bars; n=5) or (E) 10
µM SB431542 (black bars) or DMSO control (white bars; n=5 per group). Transcripts measured by qRT-PCR were normalised to Canx housekeeper and fold
change compared to control group shown. All graphical data are presented as mean ± SD and significant differences determined by a Student’s t-test or
Mann-Whitney test following the Shapiro-Wilk or D’Agostino and Pearson normality tests and indicated by asterisk (*p < 0.05, ***p < 0.001).
Frontiers in Endocrinology | www.frontiersin.org May 2022 | Volume 13 | Article 89674715169

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Moody et al. Activin A Impact on Gonocytes
ALK4/5/7 signalling has a robust effect on mitotic arrest. To
assess the window of vulnerability of germ cells to this
disruption, and to assess whether the proportion of germ cells
in this sub-population was sustained, we investigated whether
E13.5 testes were similarly susceptible to SB431542 treatment, an
age when most germ cells have already entered mitotic arrest. In
parallel, we sought to determine whether exposure to exogenous
activin A would influence germ cell numbers or proliferation.
For these studies, EdU-incorporation and flow cytometry were
employed detect proliferating MVH-positive (germ) cells after 48
hours in culture. Germ cells comprised approximately 20% of the
total cell population in the cultured testes. There were no
significant differences in this value between treatment and
control samples after 48 hours in culture, but there was a trend
to fewer germ cells following activin A treatment (0.86-fold,
p=0.0719) (Figure 6B). The proportion of Edu+ germ cells in the
SB431542 treatment group was increased (2% Edu+, compared
with controls, 0.5% Edu+) (Figure 6C). This was statistically
significant, and indicates that a small proportion of germ cells in
E13.5 testes retain the capacity to escape mitotic arrest.
Moreover, together the observations that SB431542 diverts a
greater proportion of the germ cell population from mitotic
arrest at E12.5 compared to E13.5, indicate that there is a window
at around E12.5 during which inhibiting AKL4/5/7 can divert
germ cells from their normal entry into mitotic arrest.

Activin/Nodal/TGFb Inhibition in E13.5
Mouse Testes Promoted a Less-
Differentiated Germ Cell Phenotype
To further examine the relevance of this pathway to fetal germ
cell differentiation in these whole fetal testis cultures, key
markers were measured by qRT-PCR. Early germ cell marker
transcripts Nodal, Kit and Oct4 were not different following
activin A treatment, and amongst key transcripts normally
upregulated between E13.5 and E15.5 (Nanos2, Dnmt3l,
Dnmt3a, Mov10l1, Tdrd1, Tdrd9, Piwil2 and Piwil4), only
Mov10l1 was affected and was 11% lower than in the control
sample. However, the germ cell markerMvh was reduced by 12%
following activin A treatment (Figure 6D).

E13.5 testes exposed to 10 µM SB431542 exhibited a less-
differentiated transcript profile. Nodal is highly expressed at
E13.5 in germ cells and decreases to <20% by E15.5
(Figure 1B). After 48 hours of culture with SB431542, Nodal
was downregulated to 54% of the control level (Figure 6E).
Nodal upregulates its own expression (32, 41), and because
SB431542 blocks Nodal signalling through ALK4/5/7
inhibition, this downregulation of Nodal was expected, and
consistent with findings from Miles and colleagues (12). The
early germ cell marker Kit was significantly higher following
SB431542 exposure (1.22-fold, compared with controls;
Figure 6E). While Kit is also expressed in somatic cells, the
Inhba KO RNA-Seq data shows that at E13.5, Kit is
predominantly expressed in germ cells (196 ± 5 cpm vs 36 ± 4
cpm in somatic cells; Figure 7A) suggesting that the increase in
Kit is most likely due to an effect of activin/Nodal/TGFb
inhibition on germ cells.
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In SB431542-treated testes, the gonocyte differentiation
marker Nanos2 was reduced to 70% of controls, and several
PIWI/piRNA pathway components, which normally increase by
E15.5 when germ cells are quiescent, were also reduced. The de
novo DNA methyltransferases Dnmt3a and Dnmt3l were both
reduced by 14% to 86% of control levels in SB431542-treated
gonads compared to controls. Similarly, Piwil4 was reduced to
76% of controls, but there was no change in Mov10l1, Tdrd1,
Tdrd9 or Piwil2 levels. The germ cell markers Oct4 andMvh were
reduced to 69% and 93% of control levels following SB431542
exposure, however there was no change in germ cell numbers
(Figure 6E). Collectively, these changes indicate a modest
transcriptional response of these genes to activin/Nodal/
TGFb inhibition.

Because the early germ cell marker Kit was upregulated, and
the differentiation marker Dnmt3l was downregulated following
SB431542 exposure, immunofluorescence staining for these two
markers was performed on E13.5 testes, and on the activin A and
SB431542 treatment samples. KIT was co-localised with MVH in
E13.5 germ cells, corresponding with transcript data, but was not
detectable in SB431542-treated testes (Figure 7B), despite
transcript up-regulation. Dnmt3l values in germ and somatic
cells at E13.5 are below 1 cpm and increase in germ cells to 115 ±
50 cpm at E15.5 (Figure 7A). By immunofluorescence,
DNMT3L was not detectable in any MVH-positive germ cells
at E13.5 but was detected in the nucleus of germ cells after 48
hours of culture in every treatment group, consistent with its
normal upregulation by E15.5 (Figure 7C). There were no
obvious differences between activin A- or SB431542-treated
testes compared with their respective controls. DNMT3L
appeared to be heterogeneously distributed, with bright and
dim staining present in individual germ cell nuclei
(Figure 7C), however flow cytometry revealed no difference in
DNMT3L-positve germ cells (Figure 7D) or its MFI between
treatment groups (Figure 7E). Further scrutiny of the data did
not reveal any distinct “bright” or “dim” populations, nor
differences in their distribution across treatment groups.

These data suggest that inhibition of activin/Nodal/TGFb
activity in E13.5 testes cultured for 48 hours results in a less-
differentiated germ cell transcript profile. Considering that a
small subpopulation of germ cells escaped mitotic arrest in SB-
treated gonads (Figure 6C), it is possible that the changes
observed in the transcript profiles may reflect only the small
population of germ cells that have not yet entered quiescence.

Delineating Direct and Indirect Effects of
Activin A and SB431542 on Gonocytes
After documenting the impact on fetal germ cells of chronic
activin A disruptions in transgenic mouse models and
demonstrating that isolated germ cells in culture can respond
directly to activin A, we wanted to extend our knowledge of how
exogenous activin A and SB431542 exposures each affect the
germ cells within the intact testis environment. Whole E13.5
testes were dissociated after 48h culture with activin A or
SB431542, and the gonocytes isolated by FACS for transcript
analysis. Known activin A target genes were analysed in the
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isolated somatic cells to confirm the effectiveness of activin A and
SB431542 treatments in the cultures. These results were
consistent with the previous whole gonad cultures
(Supplementary Figure 4). Transcript analysis of isolated
gonocytes after whole testis culture with activin A revealed no
changes in the early germ cell (Kit), or differentiation (Dnmt3l,
Nanos2, Mov10l1, Piwil4 or Dnmt3a) markers. SB431542
Frontiers in Endocrinology | www.frontiersin.org 17171
exposure resulted in significantly increased Kit levels (2-fold),
consistent with whole testis analysis and isolated germ cell
cultures (Figure 8). Interestingly, SB431542-exposure did not
result in decreased levels of the differentiation marker transcripts
Dnmt3l, Nanos2, Piwil4 or Dnmt3a. Unexpectedly, Mov10l1 was
significantly increased (1.4-fold; Figure 8). These data suggest
that, while gonocytes can directly respond to perturbed activin A
A
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D E

FIGURE 7 | KIT and DNMT3L expression in E13.5 testis cultures. (A) E13.5 and E15.5 transcript levels of Kit and Dnmt3l from FACS-sorted Inhba WT somatic and
germ cell RNA-Seq data, expressed in counts per million (CPM). (B, C) Immunofluorescence staining of E13.5 and cultured testes. (B) Detection of KIT (red) and
MVH (green) marking germ cell cytoplasm in E13.5 testis and E13.5 testes cultured for 48 hours with 10 µM SB431542 or DMSO control. (C) Detection of DNMT3L
(red) and MVH (green) in E13.5 testis and those cultured 48 hours with 50 ng/mL activin A or 10 µM SB431542 and respective vehicle controls. DAPI staining in blue
marks nuclei. Scale bars are 50 µm, insets represent controls lacking primary antibody. (D, E) Flow cytometry measuring (D) proportion of DNMT3L-positive MVH-
positive germ cells and (E) mean fluorescent intensity (MFI) of DNMT3L-positive population following 48 hr culture with activin A or SB431542. All graphical data are
presented as mean ± SD and significant differences determined by a Student’s t-test or Mann-Whitney test following the Shapiro-Wilk or D’Agostino and Pearson
normality tests.
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and TGFb signalling, the effects are minimized whilst they reside
in an intact somatic environment.
DISCUSSION

The outcomes of this study have demonstrated that germ cells
respond directly and indirectly to conditions with which levels of
activin A, or its signalling pathway are altered. These findings
highlight the value of understanding the contribution of TGFb
superfamily crosstalk to the complex processes required for
normal testis development, as the inhibition of receptors
shared by activin A, Nodal and TGFb had a robust impact.
The effects of acute pathway inhibition on germ cells was more
prominent in intact testes: they displayed a delayed
differentiation profile and a smaller proportion of germ cells
entered mitotic arrest. Although analyses of intact E13.5 testes
cultured for 48 hours with activin A identified minimal effects on
germ cells, those germ cells isolated from mice with chronically
altered activin A levels have altered transcriptomes at both E13.5
and E15.5. Analysis of cells isolated from Inhba mutant mice at
two different ages provides evidence of age-specific readouts of
activin A signaling, as there was no overlap in DEGs between the
ages. A general comparison of what were expected to be
equivalent samples (i.e. duplicates at each genotype and age)
show variations that would be expected for transcripts that are
undergoing dynamic regulation at each of these time points.
While culture of isolated germ cells demonstrated their cell-
intrinsic capacity to directly respond, with exogenous activin A
promoting advanced differentiation transcript profiles, we did
not observe reciprocal gene expression changes in the two
models. This may reflect signalling interactions between activin
A and other pathways.

Murine male germ cells enter mitotic arrest starting from
E13.5, and the vast majority are quiescent by E15.5 (3, 26). In the
present study, a small but significantly higher population of germ
cells (2% of population) were identified as mitotic (in S-phase) in
E13.5 whole testes cultured with SB431542 for 48 hours
compared with controls. A similar analysis of E12.5 testes
cultured with SB431542 for 72 hours reported that
approximately 20% of germ cells escaped mitotic arrest, an
outcome not observed using the TGFb-specific inhibitor Alk5i;
this result indicated that entry into quiescence was selectively
disrupted by activin and/or Nodal signalling in these cultures
(12). Thus, the findings in this study are consistent with previous
reports, and identify the potential for TGFb signalling
disruptions to alter the maturation pace of fetal male germ
cells, including by allowing a small proportion of germ cells to
delay mitotic arrest. This may be relevant to human pathologies
that arise from disruptions to the differentiation of just a small
number of cells. It is well documented that altered activin A
signalling disrupts normal testicular somatic cell development,
with the Sertoli cells the main target of activin A actions (9, 10,
18, 19). Because spermatogenic development is reliant on the
somatic niche, germ cells are susceptible to local environmental
changes that could include changes to hormones, growth factors,
FIGURE 8 | Germ cell transcripts in gonocytes isolated after 48-hour whole
testis culture. Germ cells were isolated via FACS from E13.5 testes cultured for
48 hours with 50 ng/mL activin A (Act A, black squares) or 10 µM SB431542
(SB, black circles) and their controls (white symbols). Transcripts of germ cell
genes were measured by qRT-PCR. Treatment groups are presented as fold
change compared to control (n=3 individual testes per group). Data were
normalised to the Canx housekeeper gene, and presented as mean ± SD.
Significance was determined by a Mann-Whitney test or Student's t-test
following the Shapiro-Wilk normality test, and indicated by asterisk (*p < 0.05).
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and extracellular matrix composition which influence somatic
cell functions. In humans, arrested or disrupted differentiation of
fetal germ cells is deemed to underpin the emergence of the
GCNIS cells which can progress to form testicular germ cell
tumours in young men (60). Therefore, minor disruptions to
TGFb signalling could lead to significant consequences in
adulthood that may be more impactful in species such as
humans which have a long pre-pubertal period.

The combined inhibition of several ligands using SB431542
resulted in a stronger phenotypic change in both culture systems.
It is therefore important to consider the combined actions of
TGFb superfamily ligands on testis development and their
potential for functional redundancy. TGFbs have a role in
regulating germ cell proliferation in the testis. Exogenous
TGFb1 and TGFb2 decrease the number of gonocytes and
increase the number of apoptotic germ cells in fetal rat testis
cultures (61). In mouse, 24-hour cultures of E13.5 testes with
TGFb2 decreased gonocyte numbers, and blocking TGFb
signalling in germ cells in vivo increased the proportion of
proliferative germ cells (11). Treatment of E11.5 and E12.5 XX
gonads with a combination of FGF9, TGFb1, activin A and
activin B led to a greater induction of male characteristics than
did exposure to a single ligand (62).

Germ cells isolated from E13.5 testes autonomously continue
to develop in culture in the absence of a somatic environment.
This was previously documented, as E13.5 male germ cells
cultured up to 6 days upregulated de novo DNA methylation,
autonomously establishing genomic imprints (63). The capacity
for isolated germ cells to develop in different culture conditions
(collagen-coated inserts with 20% serum in the Iwahashi study,
vs on plastic with 10% serum, used here) suggest that fetal germ
cells harbour a robust cell-autonomous developmental program.
In the present study, isolated gonocytes exposed to activin A
decreased the early germ cell marker Kit and increased
differentiation markers such as Nanos2 and Piwil4. In contrast,
SB431542 exposure increased Kit, and decreased Nanos2 and
Piwil4. These data are consistent with, and extend the findings by
Wu and colleagues (64).

In both whole testes and isolated germ cells cultured with
SB431542, Kit levels were increased, consistent with a delayed
differentiation profile. In contrast, Oct4, a pluripotency marker,
was lower in SB431542-treated testes and isolated germ cells.
However, Nodal has been shown to promote Oct4 transcription
in a mouse spermatogonial cell line (65), and Oct4 has been
demonstrated to be a direct target of SMAD2 binding in mouse
ES cells (52). Therefore, inhibition of activin/Nodal/TGFb
signalling may negatively regulate Oct4 levels. While isolated
germ cells retain their differentiation trajectory, they are
sensitive to external signalling cues such as altered TGFb
superfamily signalling.

The importance of identifying targets of activin A signalling
relates to the value of understanding how in utero environmental
exposures may impact on adult fertility. Entry into quiescence
signifies a key differentiation step of fetal germ cells and coincides
with an increase in the differentiation marker Nanos2 and of
transcripts encoding PIWI/piRNA pathway components such as
Frontiers in Endocrinology | www.frontiersin.org 19173
DNMT3L, DNMT3A and PIWIL4. The decreased levels of these
transcripts in E13.5 testes exposed to SB431542 during an
interval when they would normally be increasing indicates
their differentiation is delayed. The PIWI/piRNA pathway
plays an important role in the genomic methylation of
retrotransposons during epigenetic reprogramming (5, 50).
Mice lacking either PIWIL4 or DNMT3L are sterile, and to
various degrees exhibit reduced methylation and increased levels
of transposable elements (50, 66, 67), and DNMT3A methylates
the maternally imprinted H19 gene (68). Mov10l1, essential for
the primary processing of piRNA precursors that have
translocated to the cytoplasm (69), is decreased in Inhba KO
E15.5 gonocytes and increased in activin A-treated gonocytes.
Interestingly, Mov10l1 was increased in germ cells isolated
following whole testis culture with SB431542. Loss of primary
piRNAs in Mov10l1 mutant mice completely disrupts the PIWI/
piRNA pathway, leading to de-repression of retrotransposons
and increased levels of LINE1 and IAPs in postnatal germ cells
(70). Similar to other mouse models with genetic modifications
of the PIWI/piRNA pathway, the absence of Mov10l1 causes
male-specific sterility (50, 71–73). Because the consequences of
PIWI/piRNA pathway disruption often severely affect fertility, it
will be useful to determine if the functional consequences of
aberrant activin A signalling include altered DNA methylation,
increased levels of retrotransposons or reduced levels of piRNAs
in germ cells.

Musashi-1 (Msi1) encodes an RNA-binding protein, first
characterised in Drosophila as a regulator of germ cell
stemness (74) and shown to impact on germline development
in the postnatal testis in mice. MSI1 is present in the cytoplasm
of gonocytes and spermatogonia, and in the nucleus of the more
differentiated pachytene spermatocytes. Its overexpression
impairs spermatogenesis a finding linked to its role in nuclear
delivery of an mRNA required for meiotic progression (49, 75).
The present study identified Msi1 reduction in E15.5 germ cells
of Inhba mutant mice (lacking activin A), and also in E13.5
isolated germ cells exposed to SB431542, providing the first
evidence that Msi1 may be a novel target of activin/TGFb
superfamily signalling.

The somatic cell environment is ultimately essential for fetal
germ cell development and therefore crucial to consider when
investigating the effect of signalling pathways on testis growth.
Anti-Mullerian hormone (AMH), produced by fetal Sertoli cells
from E12.5 until puberty (76), is essential for Mullerian duct
regression. In the present study, AMH protein levels measured
by immunofluorescence on sections, was markedly reduced in
SB431542-treated testes. This is in accordance with the report
that exposure of human first trimester testes to SB431542 for two
weeks in a hanging drop culture system abolishes the AMH
signal in cells and reduces its secretion into the media (77).
Interestingly, MMP2 is also essential for Mullerian duct
regression, and mice lacking AMH have decreased Mmp2
expression in Mullerian ducts (78). Mouse testes also exhibited
reduced Mmp2 levels following SB431542 treatment, which may
be a consequence of reduced AMH levels. This result highlights
the challenges inherent in delineating indirect versus direct
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signalling pathway outcomes. Gonads of AMH-deficient mice
have been examined, but only up to E12.5; testis morphology
appeared normal (79), however they did not assess later
development in utero, when the testis cords are expanding and
elongating. AMH is phylogenetically conserved, and the ortholog
is present in species that lack Mullerian ducts, such as fish. In
medaka fish, AMH is essential for regulating germ cell
proliferation; loss-of-function mutations result in excessive
proliferation and premature meiosis in male fish (80). It will be
of interest to determine the roles of AMH on both somatic and
germ cells within the fetal testis.

The integration of cellular development in the fetal testis
provides the foundation for ongoing spermatogenesis
throughout adulthood. This study has shown that gonocytes
can respond directly to activin A and its inhibition. Chronic
absence or elevation of activin A can alter the gonocyte
transcriptome, and combined activin, Nodal and TGFb
inhibition leads to a less-differentiated phenotype. Importantly,
it appears that the somatic cell environment can dominate, and
potentially attenuate, gonocyte responsiveness to altered
TGFb superfamily pathway signalling. The use of several
complimentary approaches will be required to fully discern
how fetal germ cells develop normally in response to somatic
cues and to understand the impact of inappropriate cues arising
from maternal exposures or genetic factors. Studies such as this
one capitalise on the general similarities in the developmental
chronology of mouse and human testis growth to learn about
germ cell development. The identification of activin A target
genes, in addition to others potentially affected by TGFb
superfamily signalling disruptions, provides the opportunity to
unearth how germ cells respond to signalling cues and potential
outcomes within the complex cellular milieu of the fetal testis.
Such information can ultimately identify processes that are of
relevance to human pathologies.
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Rates of unplanned pregnancies are high and stagnant globally, burdening women,
families and the environment. Local limitations placed upon contraceptive access and
abortion services exacerbate global disparities for women. Despite survey data
suggesting men and their partners are eager for expanded male contraceptive options,
efforts to develop such agents have been stymied by a paucity of monetary investment.
Modern male hormonal contraception, like female hormonal methods, relies upon
exogenous progestins to suppress the hypothalamic-pituitary-gonadal axis, in turn
suppressing testicular testosterone production and sperm maturation. Addition of an
androgen augments gonadotropin suppression, more effectively suppressing
spermatogenesis in men, and provides androgenic support for male physiology.
Previous contraceptive efficacy studies in couples have shown that hormonal male
methods are effective and reversible. Recent efforts have been directed at addressing
potential user and regulatory concerns by utilizing novel steroids and varied routes of
hormone delivery. Provision of effective contraceptive options for men and women is an
urgent public health need. Recognizing and addressing the gaps in our contraceptive
options and engaging men in family planning will help reduce rates of unplanned
pregnancies in the coming decades.

Keywords: androgen, testosterone, sperm, male contraception, male contraception emerging market, population
growth, acceptability
INTRODUCTION

Globally, unplanned pregnancy rates have remained high over the last three decades, a time that has
coincided with global warming, population growth and increasing calls for policies that decrease
greenhouse gas emissions (1). Limited access, education and engagement in modern, effective
contraception remains a global problem that disempowers women, contributes to a cycle of poverty,
and impacts the health and welfare of girls and adolescents. However, even with increased access,
many women experience side effects from currently available contraceptives or have health
conditions that limit contraceptive use. While 16% (6% Africa, 29% North America) of current
global contraceptive use is male-directed (condoms, vasectomy and withdrawal) (2), male
engagement in contraception is variable around the globe and stymied by limited choices and
high rates of method failure (condoms, withdrawal). Vasectomy is effective but requires a highly
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skilled provider, is invasive and largely irreversible, limiting the
population willing to use this method. We are overdue for new
options for male contraception, including both reversible and
permanent methods.

Despite the imperatives of climate change and population
growth, investment in development of novel, reversible
contraceptives for men is minimal, compared with the late 20th

century when academia, non-governmental organizations,
pharmaceutical entities, and governmental agencies were
investors. In the last decade, pharmaceutical companies have
largely abandoned their male contraceptive development
programs. Can this trend be reversed? We believe we are at a
turning point with new male contraceptive methodologies
showing promise and strongly positive receptivity from both
men and their partners (3–6). It is time for a sea change in
investment in male contraception, a potential game-changer for
family planning, female agency and reproductive rights.
IS THERE A MARKET FOR NOVEL MALE
CONTRACEPTIVES?

Conceptually, male contraceptives, including hormonal male
methods, appear to have high acceptability amongst potential
users. Multinational survey data from the early 2000s suggest
interest and enthusiasm among men from a variety of countries
(3–6). Women in committed relationships state they are likely to
trust their partners to use these methods (5) and demand for
these methods is likely to grow with increasing public awareness.
Data obtained from participants in male contraceptive clinical
trials represent real user experience, albeit self-selected
volunteers with baseline willingness to engage in male
contraceptive development (7–10). Across multiple studies
employing various modes of administration, participants are
overwhelmingly positive regarding the products evaluated, with
50-85% of men reporting willingness to use the product and pay
out-of-pocket if commercially available.

Creative methods to demonstrate user desires and preferences
are needed to harness the interest of the pharmaceutical industry
to support male contraceptive development. Landscape surveys
of potential users in least-resourced regions to assess men’s
willingness to share the burden and costs for contraception are
necessary to advance the funding, development, and marketing
of new male contraceptive methods. A non-profit (Male
Contraceptive Initiative) committed to helping develop male
contraceptives has recently conducted consumer market
research among men in the United States. Their findings echo
earlier enthusiasm; approximately 50% of US men, ages 18-49
who have sex with women and do not wish to father a pregnancy
express a high level of interest in novel male contraceptives (11).
Data have long suggested that male attitudes toward family
planning, including child spacing and family size, have a
strong influence on contraceptive use by women and within a
couple (12), including in Africa and Southeast Asia where the
global burden of maternal death is the highest (WHO trends in
maternal mortality). Indeed, pilot projects in sub-Saharan Africa,
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such as the Malawi Male Motivation project, demonstrate that
contraceptive education programs aimed at men improve
contraceptive uptake and communication around sexual
health within couples, even among couples who have never
used contraception (13). As men become more engaged
in reproductive health, updated work is needed to better
understand the modern contraceptive landscape.

For effective uptake, novel contraceptives must be cost-
effective for users and for public health programs aimed to
assist family planning. In this context, it is noteworthy that in
the United States, long-acting reversible contraceptives (LARCs)
female intrauterine devices and implants, are the most cost-
effective contraceptive methods, despite high up-front costs (14).
Modelling predicts that introduction of novel, reversible male
methods could significantly decrease unintended pregnancies as
much as 30-40%, particularly in areas where contraceptive
uptake is currently low (15). The toll of unplanned
pregnancies, as well as medical abortions, is high, affecting
mental, physical and economic well-being of women and
families. Data on immediate health care costs alone support
significant cost-effectiveness for increased contraceptive use
among high-risk populations (16). Introduction of novel, cost-
effective male contraceptives could have important downstream
global health and economic benefits that, over time, could
decrease health disparities.
HORMONAL MALE CONTRACEPTION IS
EFFECTIVE AND REVERSIBLE

Like hormonal female methods, hormonal male contraceptives
utilize exogenous steroids to interrupt physiologic hypothalamic-
pituitary-gonadal pathways. Exogenous steroids suppress
secretion of gonadotropins, LH and FSH; lack of gonadotropins
impairs testosterone production and sperm maturation in the
testes, resulting in profound reductions in sperm output 4-12
weeks following initiation of the method. Proof-of-principle
studies in the 1980s performed by the World Health
Organization (WHO) demonstrated that exogenous high-dose
androgens given to healthy men markedly, and reversibly,
suppressed spermatogenesis and provided effective contraception
for couples (17–19). The use of exogenous progestins more
profoundly suppresses gonadotropin secretion in men and
allows for physiologic dosing of androgens, largely eliminating
hyper-androgenic side effects and minimizing time to suppression
to effective contraceptive thresholds (<1 million sperm/ml of
ejaculate) (20).

To date, a total of eight hormonal male contraceptive efficacy
studies have been conducted, five utilized only testosterone
derivatives and three administered a progestin plus testosterone
(9, 18, 21–26). Over 2000 couples have been enrolled in these
trials, with >1500 completing the efficacy phase (wherein the study
drug is relied upon as the sole contraceptive method) after
achieving a predetermined sperm threshold of <1-5 million
sperm/ml. The Pearl Index, a measure of failure rate, has ranged
from 0-2.3 pregnancies/100 person-years in male hormonal
June 2022 | Volume 13 | Article 891589
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contraceptive clinical trial when a sperm threshold of < 1 million/
ml. This compares favorably with female hormonal methods
ranging from 0 to 0.3 for intrauterine devices and implants to 1
to 3% for perfect use of the oral contraceptive pill. However, the
typical failure rate for female injectable contraceptives is estimated
as 6%, for female oral contraceptives is 7.2% and for male
condoms is 13%. Whilst regulators have yet to provide firm
guidance regarding acceptable failure rates for novel male
contraceptives, investigators have advocated for approval of new
male methods that fall in the typical use range of condoms. In all
studies of these male contraceptive regimens, the methods were
fully reversible (27). Thus, although data are limited to the clinical
trial context, hormonal male contraceptive methods are
highly effective.
WHAT IS IN THE MALE CONTRACEPTIVE
CLINICAL PIPELINE?

Hormonal male contraceptive trials over the last five decades have
largely centered upon longer-acting hormonal therapies
administered by a clinician (i.e. implants, intramuscular
injections). With the approval of transdermal formulations of
testosterone, research supported by the Eunice Shriver Kennedy
National Institute of Child Health and Human Development
(NICHD) in collaboration with the Population Council, has
evaluated transdermal gels delivering a novel progestin,
segesterone acetate (also known as Nestorone®) and testosterone
to inhibit sperm production. This transdermal NES/T gel has the
potential to provide more independence and less discomfort for
users than injections and implants and has few side effects whilst
delivering physiologic doses of androgens (28–31).

We are conducting a Phase 2b contraceptive efficacy study of
NES/T transdermal gel. This multi-national study enrolling 400
couples is the first to evaluate contraceptive efficacy of a daily, self-
delivered male contraceptive agent. Importantly, with sites in the
United States, Europe, South America and Africa, it will provide
information from a diverse group of potential users and is the first
male contraceptive efficacy study to include a site in Sub-Saharan
Africa. Early clinical studies of NES/T gel demonstrated high
effectiveness at suppressing gonadotropins and sperm production
(29–31), and very high acceptability amongst users (32) who were
eager to knowwhen this product will be commercially available for
male contraception. Clinical evaluation of the potential for transfer
of the transdermal hormones to a partner was reassuring when the
gel was used as instructed (33). Most men found the product easy
to use and they adapted the daily gel application to their routine
grooming. Results to date indicate that the product is highly
effective and acceptable to both partners. Large Phase 3 pivotal
studies to further demonstrate safety and contraceptive efficacy are
needed for regulatory approval and will require involvement of the
pharmaceutical industry.

A notable deficiency in hormonal male contraceptive
development and clinical testing has been candidate oral
formulations. Many men report they would prefer an oral
agent to other modes of contraceptive delivery (3). Until
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recently, approved oral testosterone formulations have been
associated with hepatoxicity (methyltestosterone). A recently
approved oral formulation of T undecanoate (34) is safe but
the requirement for twice-daily dosing with food is not
convenient for a contraceptive regimen. To fill this gap,
NICHD is developing several novel androgens as oral
formulations in an effort to design the elusive “male pill”.

Dimethandrolone undecanoate (7-alpha, 11-beta-dimethyl-
19-nortestosterone undecanoate (DMAU)) and 11-beta-methyl-
19-Nortestosterone 17-beta-dodecylcarbonate (11b-MNTDC),
are synthetic pro-drugs under investigation as both oral and
injectable contraceptive agents. DMAU is converted to the active
drug, DMA, and 11b-MNTDC to 11b-MNT, in vivo, by
endogenous esterases. DMA and 11b-MNT activate both
androgen and progesterone receptors (35). These progestogenic
androgens have potential to be single-agent male hormonal
contraceptives. Neither androgen requires 5alpha-reduction
(36) to exert maximal androgenic action and neither is
aromatized to an aromatic A-ring compound (37). In vitro,
DMAU is a more potent androgen, while 11b-MNTDC has
more balanced androgen and progestogenic activity (35, 38);
thus, they exhibit slightly different pharmacodynamics in men.

Preclinical studies in rodents demonstrated that DMAU
reversibly suppressed gonadotropins, spermatogenesis and
fertility while maintaining non-gonadal androgenic effects (39–
41). Both DMAU and 11b-MNTDC support androgenic body
composition and bone mineral density in mice (39). Initial studies
of single oral doses of DMAU and 11b-MNTDC in men
demonstrated that concomitant food ingestion is required for
effective oral absorption of these synthetic steroids (42, 43). A
subsequent dose-finding study in healthy men,100-400 mg of
DMAU taken once-daily for 28 days, provided further evidence
that oral DMAU is safe, well-tolerated and markedly suppressed
serum gonadotropins and sex-steroid concentrations (44).
Remarkably, participants receiving DMAU rapidly developed
castrate serum testosterone concentrations (<50 ng/dL), yet had
few or no symptoms of hypogonadism, a profound in vivo
demonstration of the androgenic activity of DMA previously
observed in vitro (35). A longer study of daily oral DMAU, 100-
400 mg, to determine its impact on spermatogenesis is underway.
A Phase 1 study of DMAU as an injectable male contraceptive is
also underway (NCT02927210). Intramuscular administration of
DMAU is unlikely to cause changes in serum lipids by avoiding
the well-recognized first-pass effects of oral androgen
administration on cholesterol metabolism (45) and may act as a
“depot” formulation allowing for injection intervals of 2-6 months.

Compared to other androgens, 11b-MNTDC is the least
hepatotoxic when given in repeated oral doses to rabbits (40),
making it a promising oral agent. Like DMAU, a 28-day daily
dosing study of 200- 400 mg doses of 11bMNTDC demonstrated
profound suppression of serum testosterone and gonadotropins,
particularly at the higher dose (46). Side effects noted were mild
and similar to DMAU. Longer studies of these dual-action
androgens are ongoing to determine their relative potency as
reversible inhibitors of spermatogenesis; they show considerable
promise as a male pill.
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Non-hormonal approaches to reversible male contraception aim
to reversibly disrupt testes or germ-cell specific targets. These targets
include structures and molecules involved in sperm transport,
spermiation, and sperm motility among others. A recent review
of these approaches has been published (47); major hurdles in
advancing development of non-hormonal contraception for men
includes ensuring specificity, drugability, safety, and efficacy in
animal models. With the exception of trials in India of reversible
vaso-occlusion (48), where reversibility remains a major challenge,
novel non-hormonal contraceptives for men have not reached
clinical trials. It is likely that hormonal male contraceptives will be
the first novel, reversible male method to reach the marketplace,
hopefully paving the way for additional methods to contribute to the
male contraceptive menu going forward.
RISKS AND BENEFITS OF HORMONAL
MALE CONTRACEPTIVES

Similar to female hormonal contraceptives, some men who use
investigational hormonal male contraceptives may experience
unwanted side effects. In general, side effects are seen in a
minority of men and mirror those experienced and tolerated
by, women who use hormonal methods; namely mild weight
gain, mood lability, and impacts on libido. Early hormonal male
contraceptive efficacy studies utilized supraphysiologic dosages
of intramuscular testosterone. Reported androgenic side effects
in some participants, included significant increases in
hematocrit, creatinine, and triglycerides across the studies (17–
19). Utilizing progestins facilitates physiologic androgen dosing
side effects were minimal in recent male contraceptive efficacy
studies (22) (21). Pre-efficacy studies in male volunteers
demonstrate that the frequency and severity of side effects may
be impacted by the progestin used (and its relative
androgenicity) and the mode of administration. For example, a
series of studies combining oral levonorgestrel with physiologic
doses of intramuscular testosterone demonstrated that
reductions in levonorgestrel dosing minimized side effects such
as weight gain without impacting sperm suppression (49–51).
Transdermal delivery of Nestorone®/Testosterone gel is well-
tolerated. The most common side effects some men experience
are modest weight gain (2-5kg) and acne (30). Fine-tuning the
dose of testosterone and the progestin may minimize some side
effects that were observed in earlier studies. Nestorone is a potent
progestin, that may have advantages over other progestins; its
lack of cross reactivity with androgen and estrogen receptors
may limit side effects (28).

Validated tools to prospectively identify and quantify potential
impacts on mood, libido and sexual function are critical to include
in all placebo-controlled Phase 1 and Phase 2 male contraceptive
studies, as well as in future efficacy trials, to better understand
possible effects of exogenous steroids on these health parameters in
men. A placebo-controlled sperm suppression study using a long-
acting progestin implant and long-acting TU injections for T
replacement, highlighted that male hormonal contraceptives
might have mood-related side effects in some men (52).
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A subsequent efficacy study of separate injections of a long-acting
progestin and TU was prematurely terminated due to similar
concerns (9). The potential for hormonal imbalance of progestin
and testosterone with long-acting formulations may explain the
mood effects observed in these trials. Studies of Nestorone and
Testosterone combined in a gel and applied once-a-day have been
reassuring to date, with no indication of changes in mood. Mild
changes in libido without impact on sexual function were observed
in a small minority of participants (30). Importantly, most
participants report high satisfaction and both partners express a
desire to continue to use this method, suggesting that side effects are
minimal and acceptable to most users (29, 32). DMAU and 11b-
MNTDC, despite leading to marked suppression of endogenous
testosterone, were able to maintain sexual function with minor
anticipated effects on hematocrit and lipid profiles (53–55). In short-
term studies, participants found the once–a-day oral capsules highly
acceptable (56, 57).

The risk/benefit ratio for male contraception is complex.
Women weigh the side effects of contraceptive methods
relative to effects of an unwanted pregnancy; however, the
personal risk/benefit health ratio is different for men, raising
questions regarding their tolerance for potential side effects.
Ideally, male methods that have positive health benefits for the
user (such as reductions in long-term disease risk, improvements
in well-being, improved metabolic or skeletal risk profiles) will be
identified, similar to benefits of some female hormonal methods.
While men do not experience medical risks of pregnancy,
exploring the mental and economic costs and benefits men
and their partners incur with unwanted pregnancy will be
important to quantify as we assess the potential impact of any
novel male contraceptive. Indeed, the concept of “shared risk” is
not novel in healthcare, and the importance of applying this
principle to male contraceptives that provide substantial benefits
to women and men must not be overlooked (58).
IS THERE A PATH TO THE MARKET FOR
NOVEL MALE CONTRACEPTIVES?

Amajor impediment to moving male contraceptive development
forward is a lack of regulatory guidance, inhibiting both scientific
and financial investment. While work is ongoing to develop
effective and well-tolerated products, it is not known what
regulatory agencies such as the US Food and Drug
Administration (FDA) and the European Medicines Agency
(EMA) will find permissible for initial approval of the first
hormonal male contraceptive. Consensus recommendations
from the research community have been published (59) but
whether these will be adopted by regulators is unknown

Along with scientific and clinical investment and innovation,
behavioral studies to understand and address the impact of user
variables, including product preferences, compliance, barriers to
uptake, social biases, and access to contraceptives are critical to
advancing the field of male contraception. Male-directed
contraception is not new, but the last novel method, the
condom, was introduced to the marketplace over 200 years
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ago. Novel male contraceptive methodologies demonstrate
strongly positive receptivity from both men and their partners.
Innovative experimental designs are needed to understand
behavioral aspects of modern male contraceptive use. In
parallel, engaging reproductive-age male and female advocacy
groups will be critical to disseminating accurate information
regarding novel male contraceptive methods, helping to reduce
misinformation and disparities in access to products. Engaging
pharmaceutical companies to co-develop products and initiate
new pathways to product development is critical to moving the
field forward. Lastly, fair pricing, prescribing practices and health
care coverage will be necessary to ensure male contraceptives
impact unplanned pregnancies and the global health of future
generations of men and women.
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The Regulation of Spermatogonial
Stem Cells in an Adult Testis by Glial
Cell Line-Derived Neurotrophic Factor
William W. Wright*

Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
United States

This review focuses on the in vivo regulation of spermatogonial stem cells (SSCs) in adult
testes by glial cell line-derived neurotrophic factor (GDNF). To study adult mouse testes,
we reversibly inhibited GDNF stimulation of SSCs via a chemical-genetic approach. This
inhibition diminishes replication and increases differentiation of SSCs, and inhibition for 9
days reduces transplantable SSC numbers by 90%. With more sustained inhibition, all
SSCs are lost, and testes eventually resemble human testes with Sertoli cell-only (SCO)
syndrome. This resemblance prompted us to ask if GDNF expression is abnormally low in
these infertile human testes. It is. Expression of FGF2 and FGF8 is also reduced, but some
SCO testes contain SSCs. To evaluate the possible rebuilding of an SSC pool depleted
due to inadequate GDNF signaling, we inhibited and then restored signaling to mouse
SSCs. Partial rebuilding occurred, suggesting GDNF as therapy for men with
SCO syndrome.

Keywords: GDNF (glial cell line-derived neurotrophic factor), spermatogonial stem cells (SSC’s), sertoli cell-only
syndrome, mature testis, male infertility, sertoli cell
INTRODUCTION

Spermatogonial stem cells (SSCs) are the foundation of male fertility. Preserving this foundation
requires that their replication sustains a stem cell pool of normal size and also produces sufficient
numbers of differentiating progenitor spermatogonia to ensure continuous production of the large
numbers of sperm required for fertility (1). As with all other stem cells, SSCs reside in a special
physiological environment or niche that in the testis is created by testicular somatic cells, including
Sertoli and peritubular myoid cells (2, 3). These somatic cells secrete numerous growth factors and
cytokines that regulate SSC replication and differentiation. Glial cell line derived neurotrophic factor
(GDNF) was the first growth factor demonstrated to be essential for the normal function of the SSC
niche (4). Prepubertal GDNF+/- mice do not generate the numbers of SSCs necessary to sustain
spermatogenesis in the adult. However, until recently, the role of GDNF in a normal adult testis had
not been evaluated.

Given this gap in our knowledge and the obvious importance of SSCs to human male fertility, we
focused our research on the role of GDNF in the regulation of SSCs within in a mature mouse testis.
Results of those studies then prompted us to ask whether a deficit in GDNF expression might
contribute to the most severe form of human nonobstructive azoospermia, Sertoli cell-only (SCO)
n.org June 2022 | Volume 13 | Article 8963901185
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Wright GDNF Regulation of Adult SSCs
syndrome. This syndrome is characterized by the apparent
absence of spermatogenic cells in histological sections of testes
(5). This review summarizes the results of our studies that
collectively address three hypotheses:

Hypothesis 1: GDNF is essential for sustaining SSCs in an
adult mouse testis. We predict that inhibition of GDNF signaling
causes numbers of these stem cells to rapidly decline, due to their
differentiation and cessation of self-renewing replication.

Hypothesis 2: Sertoli cells in human SCO testes express
abnormally low levels of GDNF.

Hypothesis 3: A mouse SSCs pool that has been partially
depleted due to inhibition of GDNF signaling will rebuild if
GDNF signaling is restored.

This review also places our results in the context of current
literature on the presence of multiple subtypes of SSCs in a
mature testis, the transcriptomes of human SSCs and Sertoli cells
and analyses by other laboratories of human SCO testes. Building
on this summary, we end with a proposal for a potential new
therapy for some men with SCO syndrome. As this proposal for
human therapy is founded on our analysis of the restoration of a
depleted pool of mouse SSCs, it is appropriate to begin with a
brief summary of similarities and differences between these stem
cells in mice and men (6). Obviously, the first important
similarity is that mice and men contain SSCs, as defined by
their abilities to survive and replicate when transplanted into a
germ cell-deficient mouse testes (7, 8). We acknowledge that
transplanted mouse but not human SSCs generate the entire
spermatogenic lineage when transplanted into mouse testes (7).
Hermann and colleagues attributed the results with human SSCs
as being due to the evolutionary distance between mice and men
(7). This suggestion is reasonable since testes of another primate
species, Rhesus macaques, contains SSCs as defined by their
ability to seed the entire spermatogenic lineage when
transplanted into germ cell-deficient monkey testes (9). The
second similarity is that mouse and human SSCs express many
of the same stem cell markers (7). These include: GFRA1, the
ligand binding subunit of the GDNF receptor (10), UTF1, a
stimulator of self-renewing stem cell replication (11), LIN28 a
regulator of stem cell pluripotency and metabolism (12),
ZBTB16, a transcription factor necessary for preservation of
SSC stemness (13), and ID4, a dominant-negative inhibitor of
basic helix-loop-helix transcription factors (14). Importantly,
SSCs of neither species express KIT, the receptor for Kit
ligand, a stimulator of spermatogonial differentiation (15).

There is, however, a major difference between mouse and
human SSCs. As discussed in detail in two excellent reviews by
Orwig and co-workers, numbers of SSCs per gram testis are
much higher in humans than in mice (6, 7). It has been
proposed that the higher number of human SSCs
compensates for fact that human spermatogonia replicate
fewer times before the start of meiosis (7). Based on the data
presented in those 2 reviews we estimate that numbers of SSCs
per gram testis are 4-fold higher in men than mice. This
estimate is consistent with our analyses; numbers of GFRA1+

spermatogonia per mm2 tubule surface are 4.2-fold higher in
men than mice (5, 16).
Frontiers in Endocrinology | www.frontiersin.org 2186
HYPOTHESIS 1: GDNF IS ESSENTIAL
FOR SUSTAINING SSCs IN AN
ADULT MOUSE TESTIS

The Experimental Model
A prerequisite for studying the role of GDNF in a normal mature
mouse testis was that experiments start with animals whose
testes contained a full complement of SSCs and differentiated
spermatogenic cells. Meeting this prerequisite required that
GDNF signaling to SSCs be altered only in the adult animal.
Furthermore, to test our third hypothesis, this alteration must be
reversible. Consequently, we developed a novel chemical-genetic
approach that allowed specific and reversible inhibition of
stimulation of SSCs by GDNF (Figures 1A–C). Our approach
had two components: First, we developed a line of mice with a
single amino acid mutation (V805A) in Ret, the kinase subunit of
the GDNF receptor (19). This mutation enlarged the size of the
ATP binding pocket of Ret, without affecting normal RET kinase
activity. However, this enlargement enabled Ret(V805A) to bind
a bulky, high affinity ATP competitive inhibitor, 1NAPP1-HCl
(hereafter called 1NAPP1). Ret(V805A) mice were normal and
fertile. However, injection of these mice with 1NAPP1, blocked
the ability of GDNF to stimulate its target cells (Figure 1C).
Surprisingly, while RET is expressed in many adult mouse organs
(https://www.gtexportal.org/), we only detected an effect of
1NAPP1 in the Ret (V805A) mouse testis (19). Of equal
importance, normal Ret signaling was restored to any
remaining SSCs when injection of the inhibitor ceased.
First Test of Hypothesis 1
Our first test of the hypothesis that GDNF is essential for sustaining
SSC s in an adult testis took advantage of the fact that the sustained
loss of SSCs from a seminiferous tubule is followed by the sequential
loss of all remaining spermatogonia, of spermatocytes and then of
spermatids. Eventually maturation depletion results in a tubule
devoid of all germ cells. It follows that the higher the percentage of
germ cell-deficient tubules, the lower the numbers of SSCs at the
time testes are collected for analysis. In several experiments, we
injected between three and five Ret(V805A) mice with 1NAPP1
once a day for 7 to 30 days and then waited 35 or 60 days for
maturation depletion to occur. We then prepared 1-micron cross
sections from 4 to 6 different areas of each testis, and determined the
percentage of tubule cross sections without germ cells, including
spermatogonia. Results demonstrated that this percentage increased
as the duration of inhibited GDNF signaling increased (Table 1).
Importantly, when mice were treated for 11 and 30 days, 97% and
100% of tubules, respectively lacked all spermatogenic cells
(Table 1). (We examined a total of 1200 (11 days) and 1500 (30
days) tubule cross sections in that experiment.) In contrast, when
mice were treated for 7 or 9 days, about 5% and 47% of tubules,
respectively, lacked germ cells. As SSCs are the foundational
spermatogenic cells, and as after 30 days of treatment, all
seminiferous tubules we examined were devoid of spermatogenic
cells, we conclude that GDNF is essential for maintenance of SSCs
in an adult mouse testis. However, because of the length of time
June 2022 | Volume 13 | Article 896390
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between treatment and analysis, those experiments did not reveal
whether inhibition of GDNF signaling caused rapid stem cell loss.

Second Test of Hypothesis 1
To address whether inhibition of GDNF signaling caused rapid
loss of SSCs, we injected mice for 9 days and used a functional
test for SSCs, their ability to seed spermatogenesis when
transplanted into a germ cell-deficient testis. Transplantation
of 1NAPP1- and vehicle injected animals occurred 2-4 days after
the last injection. Two months later, we enumerated colonies of
spermatogenic cells in the testes that received the transplants. As
shown in Figure 2A, inhibition of GDNF signaling for 9 days
reduced numbers of transplantable SSCs to 10% of control. Thus,
during a 9-day period, almost all SSCs depend on GDNF to
maintain their stemness. These results plus those obtained in the
first tests of hypothesis 1 support the conclusion all SSCs are
GDNF-dependent at some time during a 30-day period.

We acknowledge that other studies have identified SSCs that
do not express GFRA1, the ligand binding subunit of the GDNF
receptor. Cells that do not express the GDNF receptor are by
definition GDNF-independent. Some of the evidence for GDNF-
Frontiers in Endocrinology | www.frontiersin.org 3187
independent SSCs is as follows: First, some transplantable SSCs
in a mature mouse testis do not express GFRA1 (21). Second, 5-
10-day old mouse testes contain a subset of SSCs that can be
propagated in vitro in a GDNF-independent, FGF2-dependent
manner. These cells seed spermatogenesis when transplanted
into germ cell-deficient testes. Third, there is considerable
heterogeneity in expression of markers of SSCs within a
population of highly undifferentiated mouse spermatogonia, a
subset of which are SSCs (22). Some of these cells do not express
GFRA1 but do express other stem cell markers (6).

In comparing results demonstrating that some SSCs do not
express the GDNF receptor with our conclusion that all SSCs are
at some time GDNF-dependent, it is important to keep in mind
that the demonstration of GFRA1- SSCs represents a “snapshot” of
SSCs at one point in time. We examined the consequences of
inhibiting GDNF signaling over an extended period. We
demonstrated a duration-dependent effect of 1NAPP1-
treatment, not only on numbers of GFRA1+ A single (As)
spermatogonia but also on numbers of As cells that expresses a
different SSC marker, ZBTB16 (19). These As spermatogonia are
thought to encompass both SSCs and the most undifferentiated of
TABLE 1 | Effect of the duration of treatment of mice with 1NAPP1-HCl on the percent of Seminiferous Tubules that lack all Spermatogenic Cells 35 or 60 days after treatment.

Treatment 1NAPP1-HCl Days From Number of Total No. % Tubules Citation
Duration mg/kg body Treatment Treated Tubules Lacking
(days) weight to Tissue Animals in Examined in All Germ

Collection Experiment Experiment** Cells*

30 62.5 35 5 1500 100 6
11 62.5 35 4 1200 97 6
9 43.7 36 3 900 50 13
9 43.7 60 3 900 45 22
7 43.7 35 3 900 5 13
June 2
022 | Volume 13 | Articl
*1-micron histological sections were prepared from 4-6 different areas of each testis. 300 tubules from each testis were examined.
**Numbers of animals X 300 tubules analyzed/animal.
A B C

FIGURE 1 | The chemical-genetic approach to reversible inhibition of GDNF signaling in vivo. (A) GDNF and the components of the GDNF receptor: GDNF is secreted as a
disulfide-bonded dimeric protein (17). GFRa1 is the ligand binding subunit of the GDNF receptor, which is linked to the plasma membrane by glycosylphosphatidylinositol (18).
Ret is the receptor’s protein kinase subunit. The star on Ret denotes the enlarged ATP binding pocket of Ret(V805A). (B) The GDNF receptor-ligand complex and the initiation
of intracellular signaling: Dimeric GDNF cross-links two GFRa1 receptor subunits, which then recruit two Ret receptor subunits. Formation of the ligand-tetrameric receptor
complex stimulates Ret kinase activity, and Ret-bound ATP donates a phosphate to tyrosine residues on the intracellular domain of Ret. Phosphorylation initiates an
intracellular signaling cascade. The V805A mutation has no effect on normal Ret kinase activity. (C) How the chemical-genetic approach works: The bulky ATP-competitive
inhibitor, 1NAPP1 (structure shown on figure) binds with high affinity to the ATP binding pocket of Ret(V805A). Consequently, 1NAPP1 prevents RET phosphorylation. Daily
injections of 1NAPP1 are sufficient to inhibit GDNF signaling but signaling is restored when injections cease.
e 896390
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progenitor spermatogonia (1). When mice were injected for 11
consecutive days with 1NAPP1, numbers of ZBTB16+ cells
decreased to 12% of control. Thus, most ZBTB+ spermatogonia
are GDNF-dependent some time during that 11-day period.
Furthermore, it was reported that when GFRA1- cells are
transplanted, some transplanted cells began to express GFRA1
(21). It was proposed that niche factors stimulate GFRA1- SSCs to
express GFRA1. This is consistent with the proposals of both Guo
et al. (23), and of Sharma et al. (24) that SSCs exist in metastable
states that allow their adaption to a dynamic stem cell niche. Thus,
we propose than an individual SSC may be GDNF-dependent at
one point in time, but not at another. Finally, we acknowledge that
the isolation and passaging of FGF2-dependent, GDNF-
independent transplantable SSCs is experimentally more than
one snapshot in time. However immature testes were the source
of these SSCs, and the transcriptomes of these cells differ from the
transcriptomes of SSCs in adult mouse testes (25). Thus, our
experiments differ in a significant way from those that conclude
that some SSCs are GDNF-independent. We have examined the
effects of inhibition of GDNF signaling over time, not just at one
time. Furthermore, we have studied SSCs in mature testes, not
stem cells isolated from immature testes.

Inhibition of GDNF Signaling Causes
Differentiation of SSCs and
Suppresses Their Replication
There is abundant evidence that in vitro GDNF suppresses
differentiation and stimulates replication of SSCs, but evidence
Frontiers in Endocrinology | www.frontiersin.org 4188
that this was true in vivo was lacking when we began our
experiments (3, 8). Thus, we tested whether GDNF suppresses
differentiation and stimulates replication of SSCs within a
mature mouse testis (20). We defined SSCs morphologically, as
GFRA1+ A single (As) spermatogonia We used the expression of
Kit as a marker of stem cell differentiation, and incorporation of
the thymidine analogue, 5-ethynyl-2’-deoxyuridine (EdU), to
identify replicating cells. To examine SSC differentiation, we
treated Ret(V805A) mice for 3 or 7 days with 1NAPP1 or vehicle
and stained cells in whole mounts of seminiferous tubules for
both GFRA1 and Kit. Results demonstrated that in controls,
fewer then 1% of the GFRA1+ As spermatogonia expressed
Kit. However, after 3 and 7 days of treatment, 8% and 40%
of these cells, respectively, expressed this differentiation
marker (Figure 2B).

To test if GDNF is an acute regulator of SSC replication, mice
were injected with 1NAPP1 for 2 or 3 days and with EdU on the
last day of treatment. Tubules were collected and analyzed 24
hours later. Results showed that inhibition of GDNF signaling
for 2 or 3 days decreased SSC replication to 44% and 19% of
control, respectively. (Figure 2C). However, consistent with
these cells’ long cell cycle times, inhibition of GDNF signaling
for 2 or 3 days did not decrease cell numbers (20).

Taken together, our results support the hypothesis that
GDNF is essential for sustaining SSCs in a normal adult
mouse testis. Moreover, this growth factor suppresses SSC
differentiation and acts as an acute regulator of the replication
of SSCs in a normal adult testis.
A B C

FIGURE 2 | GDNF is essential for sustaining SSCs in an adult mouse testis. (A) Effect of inhibition of GDNF signaling for 9 days on numbers of transplantable SSCs.
The Ret (V805A) mice used in this study were heterozygous for bacterial b−galactosidase (Rosa 26) and for Id4-GFP. Adult mice were injected daily for 9 days with
1NAPP1 (treated) or with vehicle (control). Two to four days after the last injections, germ cells were isolated from these mice, transplanted into testes of germ cell-
deficient mice, and testes analyzed 2 months after transplantation. Numbers of transplanted SSCs were estimated by enumerating colonies of Rosa 26+ spermatogenic
cells in each testis. Data (mean + SEM) demonstrate that inhibition of GDNF signaling for 9 days results in loss of 90% of transplantable SSCs. Data are from: (16).
(B) Inhibition of GDNF signaling results in rapid differentiation of SSCs. In this experiment we defined SSCs as GFRa1+, A single (As) spermatogonia, and we used their
co-expression of Kit to identify differentiating cells (1). Adult Ret(V805A) mice were treated with vehicle or with 1NAPP1 for 3 or 7 days, seminiferous tubules collected
24 hours after the last injection, and tubules processed for identification of both GFRa1+ and GFRa1+, Kit+ As spermatogonia. Data (mean + SEM) are presented as
numbers of GFRa1+, Kit+ As spermatogonia divided by total numbers of total GFRa1+As spermatogonia. Results demonstrate that in control mice, only 0.0008 of all
GFRa1+, A single (As) spermatogonia express Kit. However, after 3 and 7 days of treatment with 1NAPP1, 0.08 and 0.42, respectively of all GFRa1+ As spermatogonia,
expressed Kit. Data are from: (20). (C) Acute inhibition of GDNF signaling causes a rapid decrease in replication of SSCs in normal, mature testes. Ret(V805A) mice
were injected with 1NAPP1 for 2 or 3 days, and also with the thymidine analogue, EdU on the last day of treatment. Tubules were collected 24 hrs. later and
processed for detection of GFRa1 and EdU incorporation. Data are expressed as fraction of all GFRa1+, As spermatogonia, that had incorporated EdU+. Results
(mean + SEM) demonstrate that inhibition of GDNF signaling results in a rapid decrease in SSC replication. After 3 days, this replication was reduced to 19% of
control. Data are from: (20).
June 2022 | Volume 13 | Article 896390
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HYPOTHESIS 2: SERTOLI CELLS IN
HUMAN SCO TESTES EXPRESS
ABNORMALLY LOW LEVELS OF GDNF

The results from our tests of Hypothesis 1 demonstrated that
inhibition of GDNF signaling for 11 days caused loss of SSCs
and, subsequently, all spermatogenic cells from almost all
semini ferous tubules of mature Ret(V805A) mice .
Consequently, the testicular histology that the mice developed
closely resembled that of human SCO syndrome (Figure 3).
However, it should be noted that testes of 15%-20% of men with
SCO syndrome contain one or more seminiferous tubules with
focal areas of active spermatogenesis, allowing sperm retrieval by
microdissection testicular sperm extraction (micro-TESE) (26,
27). As loss of mouse germ cells in the Ret(V805) mice resulted
Frontiers in Endocrinology | www.frontiersin.org 5189
from inhibition of GDNF signaling, and as Sertoli cells are the
sole and a major source of GDNF in rats and mice, respectively
(2, 28), we predicted that Sertoli cells in human SCO testes
expressed abnormally low levels of GDNF (5). This prediction
was consistent with a preliminary report that cultured Sertoli
cells isolated from 2 human SCO testes contained less GDNF
mRNA than Sertoli cells obtained from testes of patients with
active spermatogenesis. The SCO Sertoli cells also contained
significantly lower levels KITL mRNA, a growth factor which
stimulates progenitor spermatogonia to differentiate into Type A
spermatogonia (29, 30).

First Test of Hypothesis 2
We first tested hypothesis 2 by comparing GDNF mRNA levels
in normal and SCO human testes (5). Results showed that GDNF
A

B D

C

FIGURE 3 | A comparison of the testicular histology of control (A) and treated Ret(V805A) mice (C) with the histology of normal (B) and SCO (D) human testes. No
spermatogenic cells are evident in the image of testes from treated mouse testis or the image of a human SCO testis. Ret(V805A) mice were injected for 30 days
with vehicle (A) or with 1NAPP1 (C) for 30 days and testes collected 35 days later. Mouse testes were fixed with glutaraldehyde, embedded in epon and 1-micron
thick sections stained with Toluidine blue. Sections of human testes were prepared from biopsies collected as part of standard clinical care. Five-micron thick
sections were stained with hematoxylin and eosin and all patient identifiers were removed before sections became available for microscopic analysis. The white bars
on panels (A) and (C) are equal to 20 microns on the original section. The black bar on panel (B) is equal to 40 microns. Micrographs are from: (5, 19).
June 2022 | Volume 13 | Article 896390
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mRNA levels were 5.2-fold lower in SCO testes (Figure 4A).
However, in contrast to the previous report (29), we detected
significantly elevated amounts of KITL mRNA in SCO testes
(Figure 4B). As Sertoli cells are the only source of KITL in a
human testis (31), we propose that while we quantified this
transcript in testis samples, our results reflect KITL mRNA
expression by Sertoli cells. Therefore, we suggest that the
previous report of diminished KITL mRNA in SCO Sertoli
cells may be due to changes in gene expression caused by the
culture conditions.

Second Test of Hypothesis 2
We next used FACS to determine if Sertoli cells in SCO testes
contain markedly reduced levels of GDNF (5). Single cell
suspensions were prepared from normal and SCO testes, and
cells were immunolabeled for GDNF and for SOX9, a specific
marker of human Sertoli cells (23, 32) (Figure 4C). Results of 5
independent experiments demonstrated that in a normal human
testis, GDNF is produced by a single population of Sertoli cells.
Sertoli cells were also the only source of GDNF in SCO testes.
However, in SCO testes we identified two different Sertoli
Frontiers in Endocrinology | www.frontiersin.org 6190
populations based on GDNF content (Figure 4D). The content
of the smaller population was like Sertoli cells in normal testes,
but the GDNF content of the predominant population was
substantially lower. Thus, in SCO testes most but not all Sertoli
cells express abnormally low GDNF levels. This deficit in Sertoli
cell function results in GDNF concentration of SCO testes to be
only 30% of normal (5).

A recent report from Zhao et al. (32) supports our conclusion
that SCO testes contain two populations of Sertoli cells. Results
from single cell sequencing led the authors to conclude that SCO
testes contain one population of Sertoli cells that is similar to
healthy immature Sertoli cells, while the other population is
similar to Sertoli cells that have begun to mature. The authors
also demonstrated that culturing SCO Sertoli cells in
the presence of a Wnt signaling inhibitor resulted in
transcriptomes of those cells becoming more like those of
mature Sertoli cells. Therefore, they concluded that the
dysfunction of Sertoli cells in SCO testes is an intrinsic
characteristic to those cells and is not due lack of stimulus
from spermatogenic cel ls , with which Sertol i cel ls
normally interact.
A B

DC

FIGURE 4 | A comparison of the expression of GDNF, and KITL by normal and SCO human testes. RNA was extracted from testis biopsies and expression of GDNF
mRNA (A), and KITL mRNA (B) assayed by real-time PCR. Data were normalized for bactin mRNA in each sample. GDNF mRNA expression was 5.2-fold higher in
normal testes than in SCO testes, while KITL mRNA expression was 1.7-fold higher in SCO testes than in normal testes. (C, D) Fluorescence-activated cell sorting was
used to determine if human Sertoli cells express GDNF and if this expression is significantly reduced in SCO testes. Single cell suspensions were prepared from biopsies
of human normal (C) and SCO testes (D) and cells incubated with fluorochrome-labeled antibodies for GDNF and the human Sertoli cell specific marker, SOX-9 (23).
Data are presented as relative amounts of GDNF and of SOX 9 in each cell. Results, which are representative of 5 independent experiments, demonstrate that normal
testes contain a single GDNF-expressing population of Sertoli cells. However, SCO testes contain two populations of Sertoli cells, and the predominant population
contains less GDNF than cells in normal testes. Results are from: (5).
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While we are fascinated by the data presented by Zhao et al.
(32), we consider their conclusion premature, for there is
abundant evidence in rodents and in humans of extensive
morphological interactions between Sertoli and spermatogenic
cells (33). Furthermore, proteins, genes and pathways, that are
molecular bases for these interactions have been identified by
studying rats and mice. For example, formation of the blood-
testis barrier is considered an important milestone in Sertoli cell
maturation (34). However, when a mature seminiferous
epithelium experiences sequential loss and restoration of
spermatogenic cells, its blood-testis barrier is disassembled and
later reformed (16). Furthermore, spermatogenic cells have a
profound effect on gene expression by mature rodent Sertoli
cells. We identified 198 genes whose expression by rat Sertoli
cells waxed and waned from 4 to 900-fold as adjacent germ cells
progressed through the stages of the cycle of the seminiferous
epithelium (35). The rat cathepsin L (CTSL) gene has proven an
excellent model with which to understand how germ cells
regulate Sertoli cell gene expression. Stage specific CTSL
expression is controlled by sequential stimulatory and
inhibitory signals from germ cells, which regulate transcription
via transcriptional activators and repressors within the CTSL
gene promoter (36–39). We acknowledge that as of this date, no
one has investigated potential interactions between human germ
cells and Sertoli cells. However, Sertoli cells and spermatogenic
cells of all mammalian species are organized similarly within the
seminiferous epithelium, and developing spermatogenic cells in
all mammals translocate along the surface of Sertoli cells in a
similar manner. Furthermore, as occurs in all other mammals,
the human spermatogonia, spermatocytes and spermatids
adjacent to the same Sertoli cell mature synchronously and
progress through of the stages of the cycle (33, 40). It therefore
seems probable that in a fertile human testis, germ cells
significantly affect Sertoli cell gene expression. It follows that
an absence of germ cells may be one reason that the
transcriptomes of Sertoli cells in SCO testes differ from Sertoli
cells in normal testes.

Some SCO Testes Contain SSCs
When we measured GDNF and KITL mRNA levels in normal
and SCO human testes, we also measured DDX4 mRNA, a
specific human germ cell marker (41). Surprisingly, DDX4
mRNA was detectable in all SCO testes, albeit at very low
levels, which suggested that some SCO testes contain SSCs (5).
To explore this possibility, we used RNAseq to define the
transcriptomes of 4 normal and 7 SCO human testes. (RNA
was isolated from 5-40 mg testis biopsies. Patients gave informed
consent for their collection and analysis.) We then searched
those transcriptomes for the presence of 5 transcripts considered
to be selectively expressed by SSCs (42). All SCO testes contained
these transcripts. Shiraishi et al. (43) expanded our observation
when they reported that immunocytochemical analysis of some
SCO testes identified cells that express the germ cell-specific
marker, DDX4.

Since our analysis of the transcriptomes of SCO testes, several
laboratories published the transcriptomes of every cell type in the
human testes that were obtained by single cell RNA sequencing.
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We identified 13 transcripts that 3 different reports identify as
selectively expressed by human SSCs (23, 44, 45). We reasoned
that identification of these 13 SSC markers in SCO testes would
further support the hypothesis that some SCO testes contain
SSCs. All 13 markers were detected in the transcriptomes of the 4
normal testes. Nine were present in the transcriptomes of all 7
SCO testes (Figure 5A, arrowheads). Three were present 5 of
these transcriptomes (Figure 5A, arrows). One consensus SSC
marker, NANOS 2, was present in the transcriptomes of all 4
normal testes but in none of the SCO transcriptomes. This
absence of NANOS2 mRNA in SCO testes might be explained
by the facts that GDNF stimulates NANOS2 expression by
mouse SSCs (46), and that the GDNF concentration in SCO
testes is substantially lower than in normal human testes (5).

To illustrate the differences between SCO and normal testis in
the average abundance of each SSC marker, we first normalized
data by dividing the abundance of each SSC marker in each
transcriptome by abundance of b-actin mRNA. We then
calculated the average normalized abundance of each SSC
marker in the transcriptomes of normal testes and in SCO
testes. Finally, we divided the average normalized abundance
in each marker in SCO testes by the average normalized
abundance in normal testes (Figure 5A). Except for ID4, each
SSC marker was substantially less abundant in SCO testes than in
normal testes. The median abundance of the 13 SSC markers in
SCO testes was 7% of normal.

We previously reported that in SCO testes the expression of 2
putative markers of pachytene spermatocytes were reduced to
much greater extent than expression of putative SSC markers. To
further support for this observation, we used the same strategy
we used to compare abundance of each consensus SSC marker in
SCO and normal testes. We first identified 6 consensus
pachytene spermatocyte markers. All 6 were identified in two
recent reports as selectively expressed by human pachytene
spermatocytes, and proven to be essential for the fertility of
male mice (23, 45, 47–52). These 6 markers are identified in
Figure 5B. Four consensus markers were present in all 7 SCO
testes (Black arrows, Figure 5B). DMC1 and SPO11 were present
in the transcriptomes of 5 and 1 of the SCO testes, respectively
(Figure 5B). To compare the abundance of each of the 6
consensus markers in SCO testes with their abundance in
normal testes, we divided the average normalized abundance of
each transcript in SCO testes by their average normalized
abundance in normal testes (Figure 5B). The median
abundance of these 6 markers in SCO testes was 0.4% of
normal, which is much lower than the median abundance (7%)
of SSC markers in the same transcriptomes. Thus, while some
SCO testes contain SSCs, most do not give rise to
pachytene spermatocytes.

Reduced Expression of FGF2 and FGF8 in
SCO Testes
Studies of mice have identified numerous growth factors and
chemokines that in addition to GDNF regulate SSC replication,
differentiation and/or function. These include FGF8, FGF2,
CXCL12 and CSF1. Mouse SSCs express FGFR1, a receptor for
both FGF8 and FGF2 and Cre-mediated excision of this receptor
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from spermatogenic cells, results 24 months later in a significant
decrease in numbers of GFRA1+ spermatogonia (53). In vivo,
testicular overexpression of FGF8 causes numbers of
GFRA1+spermatogonia to double within 15 days of virus
injection, while injection of FGF2-containing microspheres
stimulates formation of large clusters of these cells (53, 54). In
vitro, CXCL12 stimulates proliferation and suppresses
differentiation of SSCs (55). Furthermore, in vivo, this
chemokine acts as a homing signal for SSCs, and, thus, may
play an important role in the migration of SSCs into empty
niches (56). In vitro, CSF1 stimulates self-renewing SSC
replication, and transient depletion of testicular macrophages,
a major CSF1, diminishes numbers of ZBTB16+ spermatogonia
(55, 57). As human SSCs and/or progenitor spermatogonia
express receptors for these growth factors, we examined the
transcriptomes of normal and SCO testes to determine whether
expression of any of these factors was markedly lower in human
SCO testes (Figure 6A) (58, 59). As a control, we also examined
the abundance of GDNF, to ensure that the RNAseq data
replicated our previous results (See: Figure 4). It did.
Furthermore, the transcriptomes of SCO testes revealed
significantly reduced abundance of FGF2 and FGF8 mRNAs,
but not of CXCL12 and CSF1 mRNAs. As the abundance of
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FGF8 mRNA in SCO testes was only 2% of control, we used
FACs analysis to evaluate if this reduced expression reflected a
specific deficit in Sertoli cell function. Result (Figure 6B) show in
normal testes, FGF8 is expressed by a single population of Sertoli
cells. In contrast, SCO testes contained two populations. One
population contained markedly lower amounts of FGF8 than
Sertoli cells in a normal testis (Figure 6C).

In summary most Sertoli cells in human SCO testes express
abnormally low levels of GDNF as well as reduced levels of FGF2
and FGF8. Furthermore, some human SCO testes contain SSCs,
though most do sustain production of pachytene spermatocytes.
However, since a subset of the Sertoli cells contain normal
amounts of GDNF, some of these cells may support the foci of
active spermatogenesis present in some SCO testes (26).

Why Do the SSCs in Human SCO
Testes Give Rise to So Few
Pachytene Spermatocytes?
As already discussed, a comparison of the transcriptomes of
normal and SCO human testes suggests that in SCO testes few
SSCs give rise to pachytene spermatocytes. The cause of this
apparent maturation arrest might be intrinsic to the cells,
themselves. Alternatively, it might result from inadequate
A B

FIGURE 5 | Comparing the abundance of 13 transcripts that are consensus markers of human SSCs (A) and 6 transcripts that are consensus markers of human
pachytene spermatocytes (B) in the transcriptomes of 7 human SCO testes and 4 normal testes. All 19 consensus markers were identified in the transcriptomes of the
4 normal testes. Nine of the 13 SSC markers were identified in the transcriptomes of all 7 SCO testes (Panel A, arrowheads). Three SSC markers were present in the
transcriptomes of 5 SCO testes (Panel A, black arrows). An additional SSC marker, NANOS2, was not present in the transcriptome of any SCO testes. (NANOS2 data
are not shown in panel (A). Four markers of pachytene spermatocytes, were present in all 7 SCO transcriptomes (Panel B, white on black arrows). DMC1 and SPO11
were present in 5 and 1 of the transcriptomes of SCO testes, respectively. To compare differences between SCO and normal testes in the abundance of each marker,
we first normalized data by dividing the abundance of each marker in each transcriptome by the abundance of b actin mRNA in the same transcriptome. We then
calculated the average normalized abundance of each marker in the transcriptomes of SCO testes and in the transcriptomes of normal testes. To illustrate the normalized
abundance of 18 of the 19 markers in SCO testes (NANOS2 not shown), data for each SSC consensus marker (A) and each pachytene spermatocyte consensus
marker (B) are presented as a ratio (SCO/Normal). Except for ID4, the abundance of each SSC marker is substantially lower in SCO testes than in normal testes. The
median ratio (SCO/Normal) for the abundance of the 13 SSC markers was 0.07. The median ratio for abundance of the 6 pachytene spermatocyte markers was 0.004.
Thus, some SCO testes contain SSCs, but few support the production of pachytene spermatocytes. The transcriptomes of normal and SCO human testes are described
in Paduch et al. (42), and RNAseq data deposited in the NCBI dbGAP database, accession number: phs001777.v1.p1.
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testicular levels of extrinsic stimulators of progenitor
spermatogonia differentiation. Kit ligand is one such stimulator
(1), but as already discussed, KITL mRNA levels are elevated in
SCO testes. However, there may be deficiencies in testis levels of
a second stimulator, retinoic acid, for a preliminary study
reported that testicular levels of 13-cis retinoic acid are lower
in men with an abnormal semen analysis than in men with a
normal one (60, 61). While we did not quantify testicular retinoic
acid concentrations, we reasoned that if RA levels were normal in
SCO testes, their transcriptomes should reveal normal expression
of the enzymes that catalyze the 2-step conversion of retinol to
retinoic acid (62). In the testis, the first and rate-limiting step, the
conversion of retinol to retinal, is catalyzed by retinal
dehydrogenase 10 (RDH10), and Cre-mediated excision of this
gene in both Sertoli cells and germ cells of prepubertal mice
results in maturation arrest of progenitor spermatogonia (63).
The second step, the conversion of retinal to retinoic acid can be
Frontiers in Endocrinology | www.frontiersin.org 9193
catalyzed by one of three different retinaldehyde dehydrogenases
expressed in testes, ALDH1A, ALDH1A2 and ALDH1A3 (62).
Human Sertoli and peritubular myoid cells express ALDH1A1,
pachytene spermatocytes and round spermatids express
ALDH1A2, and Sertoli cells and pachytene spermatocytes
express ALDH1A3 (64).

A comparison of the transcriptomes of normal and SCO
testes reveals that expression of RDH10 in SCO testes is only 10%
of normal (Figure 7). However, expressions of ALDH1A1 and
ALDH1A3 are normal, while expression of ALDH1A2 is
reduced, as would be expected for a gene expressed by germ
cells (Figure 7). As retinoic acid stimulates differentiation of
progenitor spermatogonia, as RDH10 is the rate limiting step in
the conversion of retinol to retinoic acid, and as expression of
this enzyme is markedly reduced in SCO testes, a comparison of
retinoic acid concentrations in normal and SCO human testis
is warranted.
A

B C

FIGURE 6 | The abundance of GDNF, FGF8, GF2, CXCL12 and CSF1 mRNAs in the transcriptomes of human normal and SCO testes. (A) CPMs of each transcript in
each of the transcriptomes of 4 normal and 7 SCO testes were normalized for CPM of b actin. Normalized data (mean + SEM) confirm that GDNF mRNA levels are
markedly lower in SCO testes and reveal that expression of both FGF8 and FGF2 mRNA are also significantly reduced in SCO testes. (B, C) Fluorescence activated cell
sorting was used to determine if human Sertoli cells express FGF8 and if this expression is significantly reduced in SCO testes. Single cell suspensions were prepared
from normal and SCO testes, cells were immunolabeled for FGF8 and the human Sertoli cell-specific marker SOX9 (23) and FGF8 and SOX9 expression analyzed.
Results, which are representative of 3 independent experiments, present FGF8 and Sox 9 expression by individual cells. This analysis demonstrates that normal human
testes contain a single population of FGF8-expressing Sertoli cells. SCO testes contain 2 populations, and cells in the larger population contain less FGF8 than Sertoli
cells in normal testes. Results are from: (42).
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HYPOTHESIS 3: A MOUSE SSCs
POOL THAT HAS BEEN PARTIALLY
DEPLETED DUE TO INHIBITION OF GDNF
SIGNALING WILL REBUILD IF GDNF
SIGNALING IS RESTORED

The fact that most Sertoli cells in human SCO testes express low
amounts of GDNF raised the question of whether a pool of SSCs
that has been depleted due to inadequate GDNF stimulation
would rebuild if adequate stimulation to the remaining stem cells
was restored. We took the first step to answering this question by
use of our mouse model. We injected mice for 9 days with
1NAPP1 and sacrificed mice 2-4 days or 2 months later after
injections ceased. Loss and restoration of SSCs were evaluated
using two different morphological approaches. The first
enumerated cells that co-expressed two different SSC markers,
ID4-GFP and GFRA1. The second counted seminiferous tubules
that 2 months after treatment were characterized as exhibiting
normal spermatogenesis, incomplete spermatogenesis, or SCO
syndrome (absence of all germ cells). Tubules exhibiting
incomplete spermatogenesis contained 2-4 generations of germ
cells, rather the normal 4 to 5 generations (33).

All images of control tubules, all images of tubules collected 2-4
days after treatment and 75% of the images from tubules collected 2
months after treatment, showed ID4-GFP+, GFRA1+ cells to be As

spermatogonia (Figure 8A), another morphological characteristic
of SSCs (1). However, 2 months after treatment, 25% of the images
revealed clusters or chains of ID4-GFP+, GFRA1+ spermatogonia.
We suggest that these clusters or chains exist at the interface
between areas of tubules with refilled stem cell niches and areas
with empty niches. Morphometric analysis demonstrated that 9
days of treatment reduced numbers of ID4-GFP+, GFRA1+ cells by
84%. Two months later, their numbers were normal (Figure 8B).
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Histological analysis demonstrated that 2 months after
treatment, 71% of tubule cross sections exhibited either normal
or incomplete spermatogenesis (Figure 8C). The remaining 29%
of the tubules were characterized as SCO.

Taken together, those data demonstrate that an SSCs pool
that has been substantially depleted due to inadequate GDNF
stimulation will substantially rebuild if the remaining SSCs are
provided adequate GDNF stimulation.
POTENTIAL THERAPY FOR SOME
INFERTILE MEN WITH SCO SYNDROME

The data presented in this review prove that GDNF is essential for
maintaining a normal pool of SSCs in an adult mouse testis. We
and others have demonstrated that most Sertoli cells in human
SCO testes express abnormally low levels of GDNF, and analysis of
GDNF+/- mice indicate that such levels are insufficient to sustain a
normal stem cell pool (4, 43). Our data also demonstrated that the
few SSCs remaining after 9 days of inhibited GDNF signaling will
partially rebuild the stem cell pool within 2 months if adequate
GDNF stimulation resumes. Taken together, these observations
suggest that increasing the concentration of GDNF in a human
SCO testis might stimulate the few SSCs they contain to increase in
numbers, whether those stem cells are in areas of a tubule without
other spermatogenic cells or whether they are present in foci of
active spermatogenesis. As GDNF stimulates the migration of
SSCs (65), an increase in GDNF testicular concentration, might
also stimulate SSCs to migrate to empty niches and potentially
seed active spermatogenesis in a previous barren area of tubule.
Such an increase in the size or number of spermatogenic foci
would increase the probability of successful sperm retrieval by
micro-TESE.
FIGURE 7 | The abundance in the transcriptomes of normal and SCO human testes of transcripts that encode the enzymes catalyzing the two-step conversion of
retinol to retinoic acid. CPMs of each transcript in each of the transcriptomes of 4 normal and 7 SCO testes were normalized for CPM of b actin. Normalized data
(mean + SEM) demonstrate that expressions of RDH10 and ALDH1A2 are substantially reduced in human SCO testes.
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Given the above considerations, how could GDNF be
developed as therapy for SCO syndrome? A potential
approach is suggested by methods that are being developed to
stimulate repair injured neurons by local administration of
GDNF. Three different methods have been described for this
local administration: Driving de novo expression of GDNF at
the site of injury by injection of non-replicating virus
that encode GDNF, implantation of GDNF-containing
microspheres, and implantation of cells that express
recombinant GDNF (66–70). In the last approach, GDNF-
secreting cells are encapsulated in matrices that protected
those cells from immune attack, while allowing free diffusion
of proteins to and from the cells.
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It is well established that chronically increasing
the concentration of testicular GDNF in rodent testes
substantially suppresses SSC differentiation, causing their
substantial overaccumulation (4, 69, 71). Eventually the
structure of the seminiferous epithelium is disrupted, and
spermatogenesis fails. As noted by Sharma et al. (71) the likely
reason for this overaccumulation is that normally, the expression
of GDNF by rodent Sertoli cells changes more than 10-fold as the
adjacent germ cells progress through the stages of the cycle of the
seminiferous epithelium (28, 71). We have proposed that this
cycle of GDNF expression results in SSC replication at some
stages of the cycle and SSC differentiation at others (28). We
anticipate that successful use of GDNF as therapy for SCO
A

B

C

FIGURE 8 | A mouse SSCs pool that has been partially depleted due to inhibition of GDNF signaling will rebuild if GDNF signaling is restored. Mice used for this experiment
were from the same liters that provided mice for enumeration of transplantable SSCs (See: Figure 2A). Ret(V805), Rosa 26 +/-, ID4-GFP +/- mice were injected for 9 days with
vehicle (control) or with 1NAPP1, tubules were collected 2 to 4 days or 2 months thereafter and GFRa1-expressing cells detected by immunocytochemistry. Tubules were
imaged by confocal microscopy and SSCs were defined as co-expressing GFRa1 (red fluorescence) and ID4-GFP (green fluorescence). Intact testes from additional control
and treated mice (n = 3/group) were collect 2 months after the last injections and process for light microscopy as described for Figure 3. Spermatogenesis in each tubule
cross section was examined. (A) Confocal micrographs of tubules of control mice, and of tubules from mice sacrificed 2 months after treatment with 1NAPP1. Cells that
expressed both GFRa1 and GFP are outlined by a box on the left had side of each image. Separate red and green channels for the same cells are shown in the boxes on the
right side. GFRa1+, ID4-GFP+ cells were identified as As spermatogonia in all images of tubules from control mice, in all images of tubules from mice sacrificed 2-4 days after
treatment and in 75% of the images of tubules collected 2 months after treatment. In the other 25% of those images, GFRa1+, ID4-GFP+ cells were present as chains or
clusters of cells. (B) Numbers of GFRa1+, ID4-GFP+ spermatogonia per mm2 of tubule in control mice, in mice sacrificed 2-4 days after treatment and in mice sacrificed 2
months after treatment. Data are presented as mean + SEM for 5 control animals and for 3 mice at each of the two time points. (C) Characterization of spermatogenesis in
seminiferous tubules of control mice and of mice sacrificed 2 months after treatment (n = 3/group). Tubules were characterized as having normal spermatogenesis, incomplete
spermatogenesis (containing 2-4 generations of germ cells) or lacking all germ cells and thus exhibiting SCO syndrome. Normal or incomplete spermatogenesis was observed
in 71% of tubules of treated mice. Taken together, these results demonstrate that when GDNF signaling is inhibited for 9 days and then restored, the depleted SSC pool is
partially rebuilt. Results are from: (16).
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syndrome will require that the therapy cycle the testes between
periods of elevated GDNF concentration and periods of lower
concentration. This goal might he achieved by implanting
SCO testes with encapsulated cells that drive GDNF expression
via a bacterial Tet operon (72). By interspersing days of oral
tetracycline administration with days of placebo administration,
a cycle of testis GDNF levels might be achieved.

We recognize that development of this proposed therapy will
take much effort, time, and resources. Defining the proper number
of implanted cells will be essential, as well as their placement within
a testis. Developing an efficacious tetracycline dosing schedule will
also be critical. Moreover, as FGF2 and FGF8 expression is also
abnormally low in SCO testes, implants of cells expressing one or
both of growth factors also may be required. However, the
successful development of this new therapy may allow some
infertile men with SCO syndrome to father their own children.
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An in vitro system to study testicular maturation in rats, an important model organism for
reproductive toxicity, could serve as a platform for high-throughput drug and toxicity
screening in a tissue specific context. In vitro maturation of somatic cells and
spermatogonia in organ culture systems has been reported. However, this has been a
challenge for organoids derived from dissociated testicular cells. Here, we report
generation and maintenance of rat testicular organoids in microwell culture for 28 days.
We find that rat organoids can be maintained in vitro only at lower than ambient O2 tension
of 15% and organoids cultured at 34°C have higher somatic cell maturation and
spermatogonial differentiation potential compared to cultures in 37°C. Upon exposure
to known toxicants, phthalic acid mono-2-ethylhexyl ester and cadmium chloride, the
organoids displayed loss of tight-junction protein Claudin 11 and altered transcription
levels of somatic cell markers that are consistent with previous reports in animal models.
Therefore, the microwell-derived rat testicular organoids described here can serve as a
novel platform for the study of testicular cell maturation and reproductive toxicity in vitro.

Keywords: testicular organoid, spermatogonia, MEHP, cadmium chloride, Sertoli cell
INTRODUCTION

Male factor infertility is responsible for 40-50% of all cases of infertility worldwide (1) and around 9-
16% of all men suffer from infertility (2). The causes of infertility are varied; some are due to
pathophysiological conditions, while others may be caused by environmental toxicants such as
exposure to phthalates and heavy metals (3–5).

Spermatogenesis is a highly orchestrated process that is dependent on a tightly regulated stem
cell niche (6). This spermatogonial stem cell niche is primarily composed of spermatogonia and
somatic cells, such as Sertoli cells, peritubular myoid cells and Leydig cells (6). The regulation of
spermatogonial cell fate is tightly modulated by these somatic cells (7, 8). In vitro culture systems to
model this niche have primarily been limited to conventional two-dimensional co-culture systems
(9), which fail to mimic the cell-cell signaling seen in vivo (10, 11). A three-dimensional organotypic
culture system can bridge the gap between cell cultures and whole animal models to better study
developmental processes such as spermatogonial differentiation and reproductive toxicology in vitro
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(12, 13). Several three-dimensional testicular organoid systems
have been developed with this goal in mind (11, 14–18).

Here, we describe the adaptation of microwell-derived
testicular organoids, previously established in porcine, murine,
human and primate models (11), to rat testicular organoids and
highlight the species-specific challenges encountered during this
endeavor. Rats have been extensively studied as an animal model
for testicular maturation and reproductive toxicology (19–22).
We report here that organotypic rat testicular organoids can be
derived and maintained for 28 days only at lower than ambient
(15%) O2 tension. We also characterize rat organoids cultured at
both 37°C and 34°C and show that rat organoids cultured at
lower temperature better support the differentiation of
spermatogonia. Finally, we present proof of principle with
known environmental toxicants to establish the utility of rat
testicular organoids for the study of reproductive toxicity.
MATERIALS AND METHODS

Preparation of Rat Starting Testicular
Cell Population
SAS Sprague Dawley rats (Strain: code 400, Charles River), aged
P4-P5, were euthanized and testes were removed. All animal
procedures were performed as approved by the Animal Care
Committee, University of Calgary. Using a pair of forceps, the
tunica albuginea was removed to release the tubules, which were
then washed in Hank’s Balanced Salt Solution (HBSS, Gibco, cat#
14025092) containing 1% penicillin-streptomycin (ThermoFisher
Scientific, cat# 15070063). The tubules were digested using
collagenase type IV (Worthington-Biochem, cat# LS004189) in
HBSS (2 mg/mL) for 25 min at 37°C. The tubules were then
sedimented by centrifugation at 90x g for 1.5 min and washed with
5 mL HBSS thrice. Finally, the tissue was digested with 0.25%
trypsin–EDTA (Sigma-Aldrich, cat# T4049) and DNase I (Sigma-
Aldrich, cat# DN25) in HBSS (10 mg/mL) for 5 min to obtain the
starting cell population (11). All experiments were replicated using
a minimum of three independently prepared cell suspensions.

Generation of Organoids
AggreWell 400 plates (STEMCELL Technologies Inc, Vancouver,
Canada, cat# 34450) were treated with Anti-adherence Rinsing
Solution (STEMCELL Technologies Inc, Vancouver, Canada, cat#
07010) according to the manufacturer’s instructions. Each well
was filled with 500 mL of organoid formation medium (OFM)
(Dulbecco Modified Eagle Medium F/12 (Gibco, cat# 11330-032)
supplemented with insulin 10 mg/mL, transferrin 5.5 mg/mL,
selenium 6.7 ng/mL (Gibco, cat#41400-045); 20 ng/mL
epidermal growth factor (R & D Systems, cat# 236-EG); 1%
Penicillin-Streptomycin) and the plates were then centrifuged at
2000x g for 2 minutes to release any trapped air bubbles (11). Each
well was then seeded with 6 × 105 rat testicular cells suspended in
500 mL OFM. Finally, the plates were centrifuged at 500x g for 5
minutes to sediment the cells in the microwells. 500 mL of media
were removed from each well and fresh media supplemented with
Corning Matrigel Growth Factor Reduced (GFR) Basement
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Membrane Matrix (1:100 dilution; Life Sciences, cat# 354230)
was used to replenish each well. Microwell plates were divided into
three groups and placed in 3 incubators setup for three conditions:
(i) ambient O2 tension (18.4% or 6.34 mMO2, 5% CO2, 37°C), (ii)
15% O2 tension at 37°C (15% or 5.18 mM O2, 5% CO2) and (iii)
15%O2 tension at 34°C (15% or 5.22 mMO2, 5% CO2). Culture in
OFM was carried out for 3-5 days with 50% media changes every
second day.

Maturation and Differentiation
of Organoids
After culturing the organoids for 3 days, which were designated as
day 0 undifferentiated organoids, the OFM media was completely
removed, and the culture was continued in organoid
differentiation medium (ODM). ODM was composed of
Minimum Essential Medium a (ThermoFisher Scientific, cat#
12571063) supplemented with 10% KnockOut Serum
Replacement (ThermoFisher Scientific, cat# 10828028),
hepatocyte growth factor (5 ng/mL) (R&D Systems, cat#
294-HG), activin A (100 ng/mL) (Sigma-Aldrich, cat# a4941),
follicle stimulating hormone (1 ng/mL) (Sigma-Aldrich, cat#
F4021), luteinizing hormone (1 ng/mL) (Sigma-Aldrich, cat#
L5259), testosterone (1 mM) (Steraloids, cat# A6950-000),
recombinant human BMP-4 (20 ng/mL) (R&D Systems, cat#
314-BP), recombinant human BMP-7 (20 ng/mL) (R&D
Systems, cat# 354-BP), 3,3’,5-triodo-L-thyronine sodium (2 ng/
mL) (Sigma-Aldrich, cat# T6397), l-ascorbic acid-2-glucoside (1
mM) (Matrix Scientific, cat# 092375) and 1% Penicillin-
Streptomycin (22, 23). Culture was carried out for an additional
28 days, with full media changes every second day. The organoids
were sampled every 7 days, including day 0, for analysis.

Immunohistochemistry
Testes tissue from 43-day old rats were fixed in 4%
paraformaldehyde, dehydrated with a gradient series of ethanol,
and embedded in paraffin wax to prepare sections of 5 µm
thickness. The rat starting cell populations and organoids were
fixed using 2% paraformaldehyde and spun down on slides using
cytospin centrifugation (1000 rpm for cells and 500 rpm for
organoids) (Cytospin 4, Thermo Scientific). The samples were
then permeabilized using a gradient series of methanol (24) and
blocked with 10% donkey serum. The testes tissue was incubated
with anti-g-H2AX (Gamma H2A Histone Family X) (25) and
anti-SYCP3 (Synaptonemal Complex Protein 3) (26)
(Supplementary Table 1). For rat testicular cells, the slides were
incubated with anti-GATA4 (GATA Binding Protein 4) (27), anti-
VASA (DEAD-Box Helicase 4) (28), anti-a-SMA(alpha-Smooth
Muscle Actin) (29), anti-3b-HSD (3 Beta-Hydroxysteroid
Dehydrogenase) (28) (Supplementary Table 1). In addition to
the antibodies mentioned above, rat organoids were also incubated
with anti-Collagen IV (30), anti-Laminin (31), anti-Fibronectin
(32), anti-Claudin 11 (33), anti-UCHL1 (Ubiquitin C-terminal
Hydrolase L1), anti-TNP1 (Transition Protein 1) (34), anti-PRM1
(Protamine 1) (35), anti-ACR (Acrosin) (36) and anti-AR
(Androgen Receptor) (37) antibodies overnight at 4°C
(Supplementary Table 1). Fluorescence labelling was done with
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secondary antibodies conjugated with Alexa Fluor 488 and 555
(Supplementary Table 1). DAPI (4′,6-diamidino-2-phenylindole)
(Vector, cat# H1200) was used for labelling the nuclei. The cells
were analyzed using Zeiss Imager.M2 fluorescence microscopy
and the percentages of testicular cell types were determined by
counting the cells with ImageJ software. The organoids were
analyzed using a Leica TCS-SP8 confocal laser scanning
microscope with the Leica Las X software.

Cell Number Quantification
Within Organoids
Immunohistochemistry for VASA was performed on day 7 and
28 organoids, while SYCP3 staining was performed on day 28
organoids. Using confocal microscopy, organoids were selected
blindly based on only DAPI and scanned across the z-axis to
quantify the number of VASA+ve and SYCP3+ve cells in each
organoid. From each of the three independent experiments (n =
3) performed, a total of 30 organoids were analyzed for VASA+ve

and 10 organoids were analyzed for SYCP3+ve cell counts.

Reverse Transcription Quantitative
Polymerase Chain Reaction
RNA was isolated from 1200 organoids using RNeasy Micro Kit
(QIAGEN, cat # 74004) and then reverse transcription was
performed using SuperScript™ IV VILO™ Master Mix
(Thermo Fisher Scientific, cat# 11756050). RT-qPCR with the
primers listed in Supplementary Table 2 was performed with a
7.500 Fast Real-Time PCR System (Applied Biosystems) using
SsoFast Eva Green Supermix with Low ROX (Bio-Rad
laboratories, cat# 1725211). The expression levels were
presented relative to Gapdh. Statistical analysis was performed
on the mean of DDCt.

MEHP and CdCl2 Treatment
Day 19 organoids were treated with 1 mM MEHP and 0.25 mM
CdCl2. Controls were treated with equivalent volumes of DMSO.
After 48 hours of treatment, at day 21, the organoids were
harvested and analyzed with immunofluorescence and
RT-qPCR.

Dose Determination
Day 5 organoids were treated with 0.5, 1 and 1.5 mM of MEHP
(Sigma, Cat# 796832) and 0.01, 0.05, 0.25 and 1.25 mM of CdCl2
(Sigma, Cat# 202908). The control groups for MEHP and CdCl2
were treated with equivalent volumes of DMSO for 1.5 mM of
MEHP and 1.25 mM of CdCl2, respectively. Controls of 1.5 mM
and 1.25 mM DMSO were treated with equivalent volumes of
phosphate buffered saline (Thermo Fisher Scientific, cat#
14190144). At day 7 (48 hours after treatment), the organoids
were harvested and approximately 60 organoids suspended in 50
mL ODMwere seeded in each well of a 96-well plate as duplicates
to perform the MTT assay (Abcam, cat# ab211091) according to
manufacturer’s instructions. Absorbance at OD 590 nm was
measured using SpectraMax i3x plate reader (Molecular
Devices). MTT assay was used to measure cellular metabolic
activity as an indicator of cell viability.
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Statistical Analysis
All the results described here are from at least three independent
experiments performed with three separately prepared rat
starting cell population (n = 3). Data were analyzed using the
GraphPad Prism 8 software. Unpaired two-tailed t-tests were
performed for single comparisons between two groups. For more
than two groups, one-way ANOVA with Tukey’s multiple
comparison tests were performed. A value of p < 0.05 was set
as the limit of statistical significance.
RESULTS

Rat Testicular Cells Generate and
Maintain Organotypic Testicular
Organoids at 15% O2 Tension
A rat (P4-P5) testicular starting cell population which contained
92.2 ± 1.28% GATA4+ve Sertoli cells (38), 1.7 ± 0.3% VASA+ve

germ cells (a marker for spermatogonia, spermatocytes and
round spermatids) (39), 2.6 ± 0.7% 3b-HSD+ve Leydig cells
(40) and 19.97 ± 2.8% a-SMA+ve peritubular myoid cells (41)
(n = 3) was used to generate rat testicular organoids with
organoid formation media (OFM). Since lower O2 tension is
known to support higher differentiation potential of rat testicular
cells (22), initial cultures were carried out in incubators set up for
ambient and 15% O2 tensions (37°C). Both culture conditions
supported the initial generation of testicular organoids (72
hours), with organotypic morphology similar to our previously
published porcine and murine model (11). However, unlike the
porcine or murine models (11), the rat organoids cultured in
ambient O2 tension underwent a loss of testis-specific tissue
architecture at day 6 of culture while day 6 organoids cultured at
15% O2 tension had distinct internal-interstitial and external-
seminiferous epithelial compartments. The two compartments
were separated by a collagen IV+ve, fibronectin+ve and laminin+ve

basement membrane (Figure 1A). The external compartment
was composed of VASA+ve germ cells and GATA4+ve Sertoli
cells. a-SMA+ve peritubular myoid cells were located lining the
basement membrane in the interior compartment, while 3b-
HSD+ve Leydig cells were distributed throughout the interior
compartment (Figure 1A). In contrast, the organoids cultured at
ambient O2 tension showed increased Sertoli cell numbers,
generation of large Sertoli cell clusters and complete or partial
separation of internal and external compartments (Figure 1B).
Thus, subsequent experiments were carried out at 15%
O2 tension.

Under Optimized Conditions, Rat
Testicular Organoids Undergo
Maturation and Support
Spermatogonial Differentiation
Matsumura et al. (22) and Sato et al. (23) reported efficient
spermatogenic differentiation of rodent testicular organ cultures
at 34°C. To evaluate the effect of temperature on somatic cell and
spermatogonial maturation, rat organoids were generated with
OFM (72 hours: day 0 undifferentiated organoid) and then
June 2022 | Volume 13 | Article 892342
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cultured with organoid differentiation medium (ODM) at 37°C
and 34°C (22, 42) for up to 28 days. Immunofluorescence analysis
revealed no morphological differences between the two groups at
day 28 (Figure 2A) and both cultures showed expression of
Claudin 11, a component of Sertoli cell tight junctions
(Figure 2B) (43). Except for expression of Shbg (sex hormone
binding globulin) (Sertoli and Leydig cells), which was increased
5.7-fold (n = 3, p < 0.05) in 34°C cultures, no significant differences
in transcription levels were observed between the two groups for
the somatic cell markers Fshr (follicle stimulating hormone
receptor) (Sertoli cells), Star (steroidogenic acute regulatory
protein), Cyp17a1 (cytochrome P450 family 17 subfamily a
member 1) (Leydig cells) and Hsd17b3 (hydroxysteroid 17-beta
dehydrogenase 3) (Sertoli and Leydig cells) (Supplementary
Figure 1A) (n = 3, p > 0.05) (44–47). At day 7, rat testicular
organoids contained UCHL1+ve undifferentiated spermatogonia at
both temperatures (Supplementary Figure 1B). Both at day 7 and
28, there was no difference in the number of VASA+ve germ cells
between 37°C and 34°C cultures (n = 3, p > 0.05) (Figures 2C, D).
However, the number of VASA+ve germ cells was lower at day 28
compared to day 7 at both temperature conditions (n = 3, p < 0.05)
(Figure 2D). SYCP3+ve spermatogenic cells were observed in both
conditions, with a staining pattern similar to spermatocytes in 43-
day old rat testes (Supplementary Figure 1E), starting from day
21. g-H2AX, which is induced by the DNA double stranded break
in leptotene and early zygotene, was also observed in both culture
conditions with a staining pattern similar to 43-day old rat testes
(Supplementary Figures 1D, E) (25). The number of SYCP3+ve

was quantified and their number was found to be higher at day 28
in the organoids cultured at 34°C compared to 37°C (n = 3, p <
0.05) (Figures 2E, F) (48, 49). Therefore, the 37°C cultures were
excluded from further analysis.
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To characterize maturation during the 28-day long culture,
transcription levels of the immature Sertoli cell marker Amh
(anti-mullerian hormone) and Sertoli and Leydig cell markers
Fshr, Shbg, Star, Hsd17b3 and Kitlg were analyzed for day 0, 7, 14,
21, 28organoids. The transcription levels ofAmhwere undetectable
within a week (n = 3, p < 0.05) while expression ofCyp17a1 showed
no significant changes over the duration of the culture (n = 3, p >
0.05). Fshr, Shbg and Kitlg were upregulated by 2.7-, 17.9- and 3.3-
fold at day 21 (n = 3, p < 0.05) (Figure 2G). Transcription levels of
Star andHsd17b3 increased 26.9- and 10-fold, respectively, by day
28 of culture (n=3, p<0.05) (Figure2G). In addition, an increasing
number of Sertoli cells in the organoids started to express AR with
subsequent weeks of culture, indicating cell maturation
(Figure 2H). Along with punctate SYCP3 staining (potentially
leptotene spermatocytes) (Figure 2E), an elongated pattern of
SYCP3 staining (as observed in early zygotene spermatocytes)
(50) (Supplementary Figure 1C) was also detected at day 28.
However, cells found with elongated SYCP3 expression were no
longer adhered to the organoids at the time of analysis
(Supplementary Figure 1C). In contrast, no PRM1+ve, TNP1+ve

or ACR+ve cells were observed in the cultures.

Rat Testicular Organoids to Model
Reproductive Toxicity: Proof of Principle
Initial dose-response experiments on monolayers of rat testicular
cells (P4-P5) were used to select the dosages of 0.5, 1 and 1.5 mM for
phthalic acid mono-2-ethylhexyl ester (MEHP); and 0.01, 0.05, 0.25
and 1.25 mM for the heavy metal cadmium chloride (CdCl2) to be
tested on organoids. Then, relative cell viability assessments were
performed on day 7 (treatment began on day 5) organoids treated
with the aforementioned dosages with a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, revealing
A B

FIGURE 1 | Rat testicular organoids cultured at 15% O2 tension maintained organotypic morphology. (A, B) Immunofluorescence images of day 6 rat testicular
organoids at 15% (A) and ambient (B) O2 tensions showing the distribution of basement membrane (collagen IV, fibronectin, laminin), Sertoli cells (GATA4),
peritubular myoid cells (a-SMA), germ cells (VASA) and Leydig cells (3b-HSD). Scale bars measure 25 mm.
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FIGURE 2 | Rat testicular organoids support somatic cell maturation and spermatogonial differentiation at 34°C culture. (A–C, E) Immunofluorescent images of day
28 rat testicular organoids cultured at 34°C and 37°C showing (A) basement membrane (collagen IV, fibronectin), Sertoli cells (GATA4), peritubular myoid cells (a-
SMA), (B) tight junction protein (Claudin 11) (inserts showing the magnified area on the right panel), (C) germ cells (VASA) and (E) meiotic cells (SYCP3) (indicated
with white arrows). Scale bars measure 25 mm. (D) Number of germ cells adhered to each organoid. Bars indicate mean ± SD, n = 3. Analysis was performed using
one-way ANOVA followed by Tukey’s multiple comparison test. (F) Number of meiotic cells adhered to each organoid. Bars indicate mean ± SD, n = 3. Analysis was
performed using unpaired two-tailed t-test. (G) Relative mRNA fold change of Fshr, Shbg, Star, Hsd17b3 and Kitlg for organoids cultured at 34°C. Bars indicate
mean ± SD, n = 3. Analysis for Fshr, Star, Hsd17b3 and Kitlg was performed using one-way ANOVA followed by Tukey’s multiple comparison test and analysis for
Shbg was performed using Kruskal-Wallis test with Dunn’s multiple comparison test. (H) Immunofluorescent detection of AR (indicated with white arrows) in the
34°C culture at day 0, day 14 and day 28. Scale bars measure 25 mm. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). Only significant differences are
indicated with asterisks.
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that 1 mM MEHP and 0.25 mM CdCl2 were the highest doses
without adverse effects on viability (n = 3, p < 0.05) (Figures 3A, B).
Thus, all other dosages were excluded from further analyses. Since
most of the maturation markers showed robust upregulation at day
21, toxicological effects of MEHP and CdCl2 were evaluated at day
21 by treating the organoids with MEHP and CdCl2 at day 19 and
then harvesting and analyzing 48 hours later. MEHP treatment was
associatedwith upregulation of Fshr and Star and downregulation of
the expression of Cyp17a1 (n = 3, p < 0.05) (Figure 3D). Expression
of Fshr, Shbg, Hsd17b3 and Cyp17a1 was drastically downregulated
upon exposure toCdCl2 (n = 3, p < 0.05) (Figure 3D). Transcription
of Star, in contrast, was upregulated 7-fold compared to DMSO
controls (n = 3, p < 0.05) (Figure 3D). In contrast to MEHP which
led to partial loss of tight-junction protein Claudin11, CdCl2
treatment caused a total loss of Claudin 11 (Figure 3C).
DISCUSSION

In the last few years, we and others have reported the generation
of testicular organoids from dissociated primary testicular cells
(11, 14–18). In the current study, we adapted our previously
Frontiers in Endocrinology | www.frontiersin.org 6204
established approach to generate porcine, murine, human and
primate testicular organoids (11) to the formation of organotypic
rat testicular organoids. Rats represent an important animal
model for studying spermatogenesis and have been the main
model for the study of reproductive toxicology (19–22). It was
therefore necessary to establish the optimal conditions required
for the generation and maturation of microwell-derived rat
testicular organoids to support spermatogonial differentiation.

Rat testicular organoids presented some unique challenges that
were not observed in our previously reported organoids (11).While
porcine andmurine organoids can bemaintained for up to 45 days
at ambient O2 tension, which translates to 18.4% or 6.34 mMO2 at
1084melevation inCalgary,Alberta,Canada (51, 52), rat organoids
collapsed at day 6 by purging the interstitial compartment. This is
likely due to the perturbationof the ratioof Sertoli cells to interstitial
cells, caused by increased Sertoli cell proliferation. Sertoli cell
proliferation levels are higher at high O2 tension compared to
more hypoxic conditions (15%, 10%, 5% O2) (53). Unlike porcine
andmurine testicular organoids,where organoid formation leads to
a contact inhibition effecton the cells, the Sertoli cells of rat testicular
organoids seem to retain their ability to proliferate, which is
exacerbated at ambient O2 tension. This increased number of
A B

D

C

FIGURE 3 | Rat testicular organoids allow for modeling reproductive toxicity. (A, B) Relative cell viability of organoids after MEHP and CdCl2 treatments.
(C) Immunofluorescent images of day 21 rat testicular organoids treated with MEHP and CdCl2 showing tight junction protein (Claudin 11) (inserts on the top
panels are showing the magnified area on the bottom panel). Scale bars measure 25 mm. (D) Relative mRNA fold change of Fshr, Shbg, Star, Hsd17b3 and
Cyp17a1 in day 21 organoids after MEHP and CdCl2 treatment. Bars indicate mean ± SD, n = 3. Analysis was performed using one-way ANOVA followed by
Tukey’s multiple comparison test. p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). Only significant differences are indicated with asterisks.
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Sertoli cells likely leads to a loss of their affinity for the basement
membrane of the organoids. As a result, the Sertoli cells migrate to
form separate aggregates which leads to complete or partial
expulsion of the interstitial compartment.

Culture at 37°C can impair the glucose transport of spermatids
and render spermatids and spermatozoa fragile (42, 54). It can also
have deleterious effects on testis tissue in vitro (55). We observed
higher expression of Shbg, increased numbers of early meiotic cells
and the presence of cells with elongated SYCP3 staining pattern in
34°C culture conditions, indicating a positive effect on Sertoli cell
maturation and spermatogonial differentiation, which is consistent
with previous work (22, 45, 50, 54). As expected, number of germ
cells were similar at both temperatures. This is consistent with
previous reports which have found that the proliferation and
survival of spermatogonia do not seem to be affected by
temperature (54). However, the number of germ cells decreased
over the duration of culture and zygotene spermatocytes,
identified by the typical elongated staining pattern of SYCP3,
were no longer adhered to the organoids. This gradual loss or
dislodgement of loosely adhered germ cells is likely due to
extensive media changes throughout the 28-day long culture.
Such loss of a critical cell type may be mitigated by adapting the
microwell system to support a continuous perfusion system (56).
This would allow a slow and constant perfusion of media and
reduce extensive handling for long-term cultures.

After establishing the optimal conditions for promoting
maturation and early spermatogonial differentiation, we
performed a proof of principle experiment to evaluate the
utility of rat organoids for toxicological evaluation of drugs
and environmental toxicants. Exposure to MEHP, a fairly
common plasticizer (57), led to increased expression of Fshr
and Star and decreased expression of Cyp17a1. This is consistent
with previous reports, which have shown that phthalates can
modulate basal steroidogenic machinery in both Sertoli and
granulosa cells (58–60). Cadmium, a heavy metal that is often
used as stabilizer in production of polymers and dyes, can cause
endocrine disruption in the testis (61). We observed cadmium
mediated disruption of Sertoli and Leydig cell function by
downregulation of Fshr, Shbg, Hsd17b3 and Cyp17a1, and
upregulation of Star, which has been reported previously (61,
62). Both MEHP and CdCl2 are known to disrupt the blood
testes barrier by downregulation of tight-junction proteins such
as Claudin 11 (63, 64). We witnessed a similar effect upon
exposure of organoids to MEHP and CdCl2. Human exposure
to CdCl2 and MEHP can depend on a number of factors such as
cumulative effects, metabolism by the liver, accumulation due to
continuous environmental and occupational exposure (65, 66).
While all of these considerations are beyond the scope of this
Frontiers in Endocrinology | www.frontiersin.org 7205
current study, the dosages used here show definite disruptive
effects on the steroidogenic machinery. This proof of principle
experiment shows that the rat testicular organoids can serve as
viable platforms for modeling male reproductive toxicity.

In conclusion, we report a rat testicular organoid system that
reflect testis specific morphology and can support early testicular
maturation. In addition, this system supports germ cell
development to early meiosis up to the zygotene stage. Further
optimization of the differentiation conditions may be warranted
to support full in vitro spermatogenesis.
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Rodrıǵuez J, et al. Recombinational DNA Double-Strand Breaks in Mice
Precede Synapsis. Nat Genet (2001) 27:271–6. doi: 10.1038/85830
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Paternal age at conception has been increasing. In this review, we first present the results
from the major mammalian animal models used to establish that increasing paternal age
does affect progeny outcome. These models provide several major advantages including
the possibility to assess multi- transgenerational effects of paternal age on progeny in a
relatively short time window. We then present the clinical observations relating advanced
paternal age to fertility and effects on offspring with respect to perinatal health, cancer risk,
genetic diseases, and neurodevelopmental effects. An overview of the potential
mechanism operating in altering germ cells in advanced age is presented. This is
followed by an analysis of the current state of management of reproductive risks
associated with advanced paternal age. The numerous challenges associated with
developing effective, practical strategies to mitigate the impact of advanced paternal
age are outlined along with an approach on how to move forward with this important
clinical quandary.

Keywords: spermatozoa, oxidative stress, animal models, artificial reproduction technologies, progeny outcome
INTRODUCTION

We are witnessing the progressive increase of paternal age at conception. The birth rate among 35 to
49 year old American men in 2015 was 69.1 per thousand compared with 42.8 per thousand in 1980
(1). Other countries have reported a similar trend (2) that appears to be consistent across all races,
ethnicities, regions and level of education (3). While controversies exist, a preponderance of
evidence from recent scientific literature affirms a negative impact of advanced paternal aging on
reproductive health. In this review we will begin by discussing the role of animal models as a
valuable research tools to study the effects of paternal aging. After presenting how advanced paternal
age impacts the fertility status of men, reproductive outcomes and offspring health, we will provide
an opinionated analysis on the challenges faced by healthcare providers and health authorities in the
development and implementation of practical strategies designed to reduce or mitigate the negative
impact of advanced paternal age from a public health point of view.
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ANIMAL MODELS FOR STUDYING
PATERNAL AGING

A wide range of animal models ranging from insects to worms,
birds, fish and mammals have been used to investigate the effects
of paternal aging on male reproduction function. However,
rodent models have become the predominant species for
determining the cellular and molecular changes with aging that
occur in the testis and epididymis (4–6). Outbred rodents are
often used in drug testing or environmental exposure studies so
to increase the genetic variability in the population. However,
inbred rodents are preferred for aging studies that focus
specifically on the mechanistic pathways in question. A
potential limitation is that several pathologies associated with
aging including pituitary, adrenal or testis tumors may
complicate result interpretation. An ideal animal model should
be long-lived and free from the systemic aging-related diseases,
while maintaining other reproductive changes that emulate those
in aging men.

Mouse Models
Studies using mouse models that lack any known or induced
mutations have demonstrated a quantitative reduction in
spermatozoa with increased age. Testicular architecture reveals
changes in tubule segments with impaired spermatogenesis,
increased number of vacuoles in Sertoli and germ cells, a
thinning of the seminiferous epithelia, and a reduction in the
number of spermatocytes and spermatids (7, 8). An increase in
age-related germ cell mutations has also been reported (9).

Several inbred strains of mice, such as the senescence-
accelerated mouse (10, 11), and transgenic mice, such as
Klotho mice (12, 13), have been developed to model
accelerated aging in humans. These mice exhibit defects in a
wide range of organs (e.g., vessels, lungs, kidney, brain, skin and
testes), and thus are poor models to study aging of male germ
cells as many interfering systems could be operant. However, an
advantage of the mouse model is the feasibility for genetic
manipulations for both over-expressed and knocked out genes,
and consequently allows for studies investigating mechanisms
involved in aging. Mice overexpressing catalase have reduced
ROS and do not exhibit the age-dependent loss of spermatozoa,
do show aging-associated loss in testicular germ and Sertoli cells,
and show reduced 8-oxodG lesions in spermatozoa (14). In
contrast, null mutations for superoxide dismutase show
exacerbated age-induced damage in both the testis histology
and spermatozoa quality (15).

Rat Models
With its long lifespan and relatively free of age-related pathologies
including tumors and obesity, the Brown Norway (BN) rat is a
highly robust model for the study of male reproductive aging (16–
19). Striking age-related changes in the seminiferous tubules (16),
Leydig cells (5) and epididymides (20) of these animals have been
reported. Several genes in the testis (Leydig and germ cells) and in
the epididymis have altered expression as a function of aging (21–
23). With advancing age, Sertoli cells, the niche-forming “nurse”
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cells that surround the germ cells and ensure their normal
development, display anomalies in the structure of the
endoplasmic reticulum and nuclei; large intracellular spaces are
observed between Sertoli cells, rather than the normally embedded
germ cells (24). Genes and proteins associated with the formation
of the blood-testis barrier decline prior to the barrier becoming
“leaky” (25). Effects of aging are also seen in the hypothalamic-
pituitary function (17, 26). Importantly, the changes seen in testis
and hypothalamic-pituitary functions in the BN rat with age
reflect those reported in aging men (27, 28).

Mating of male BN rats of increasing age (3–24 months) to
young females result in an increase in pre-implantation loss, a
decrease in the average fetal weight, and an increase in neonatal
deaths (29). Together, these results show that the quality of
spermatozoa decreases as BN male rats age. The basis for these
age-related declines in reproductive function remains unclear. In
isolated populations of testicular germ cells, the expression of a
number of genes is affected during ageing (21, 30). The findings
of a large increase in sperm with abnormal flagellar midpieces,
decrease in the percentage of motile spermatozoa and elevation
of immature spermatozoa retaining their cystoplasmic droplets
in the cauda epididymides of old rats suggests a defective
spermatozoa formation in aging testes (31) and impaired
epididymal function in supporting sperm maturation. We
reported previously aging related increase in basal sperm
chromatin damage with age (32) which suggest an
accumulation of DNA damage and/or mutations in the germ
line that may contribute to adverse health outcomes of
their offspring.

Advantages and Limitations of Animal
Models Over Human Studies
Animal models have clear advantages for control over the
homogeneity of the genetic pool, for conducting controlled
mating studies and for access to all cells of the reproductive
system for analyses. Indeed, studies using animal models have
unequivocally established that increased paternal age is
associated with decreased sperm number and chromatin
quality, and adverse progeny outcome. For therapeutic and
interventional studies, animal models allow for control of
confounders seen often in human studies such as obesity, diet,
exposure to toxins and the age of female mates. Finally, it is
possible to assess multi- transgenerational effects of paternal age
on progeny in a relatively short time window.

Aging studies with animal are not without limitations. The
relatively shorter lifespan of rodents limits the wide range of
environmental exposures to chemicals that can impinge on
sperm function and production. Further, quantitatively and
qualitatively, men are far less effective at producing sperm per
gram of testis (33), possibly due to postural position and bypass
of temperature regulation for optimal spermatogenesis. Finally,
although the number of genes in man and rodents are similar,
the human genome contains far more non-genomic DNA that
likely plays a role in epigenetic regulation of germ cell functions
(34). Thus, a comprehensive understanding of how paternal age
affects both the genome and epigenome of spermatozoa, and the
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consequences of these effects will require complementary animal
and human studies.
IMPACT OF ADVANCED PATERNAL AGE
IN MEN AND ON THEIR PROGENY

Impact of Advanced Paternal Age on Male
Fertility Status
Various studies have indicated an age-related decline of
conventional semen parameters including semen volume, total
sperm count, motility and morphology (35). Not surprisingly,
natural fertility rates decline as men age, as demonstrated by a
survey that conception at 1yr is 30% less for men >40yrs versus
those <30yrs (36). Similar findings were reported by Hassan and
Killick (37). Natural conceptions with men >35yrs were found to
be 1.26 times more likely to miscarry than those with men <35yrs
(38). In a retrospective cohort study from 1989–2005,
pregnancies sired by father >45yrs showed a 48% increased
risk of late stillbirth, a 19% increased risk of low birth weight,
a 13% increased risk of preterm birth and a 29% increased risk of
very preterm birth (39).

Impact of Advanced Paternal Age on
Assisted Reproductive Outcomes
Advanced paternal age has been associated with various adverse
outcomes with assisted reproductive technologies (ARTs)
including poor embryo quality, increased miscarriage rates,
reduced fertilization, implantation, pregnancy, and live birth
rates (40–48). Inconsistency and conflicting data exist (49–51)
likely due to the results of confounders and bias in the design of
the studies, small sample size, retrospective nature and
heterogeneity of the subjects. One proposed mechanism of the
adverse reproductive outcomes in natural and assisted
reproduction is impaired sperm chromatin integrity and
increased DNA fragmentation rates (52). In a recent systematic
review, 17 out of 19 studies demonstrated an association of
advanced paternal age with significant increase in DNA
fragmentation (53), mostly measured by Sperm Chromatin
Structure Assay ® and sperm chromatin dispersion test. The two
studies that did not find the effect of advanced paternal age on
sperm DNA fragmentation utilized terminal deoxynucleotidyl
transferase-mediated deoxyuridine triphosphate nick end
labelling (TUNEL) assay. Each sperm chromatin integrity and
DNA fragmentation examines different structural aspects of the
target molecule with intrinsic advantages and limitations; thus, it is
clearly important to use a complementary panel of assays to fully
assess sperm quality at the molecular level.

Impact of Advanced Paternal Age on
Offspring Perinatal Health
In a population based cohort study, advanced paternal age was
found to increase risk of premature birth, gestational diabetes and
newborn seizures (54). The odd ratios of birth defects including
cleft lip, diaphragmatic hernia, right ventricular outflow tract
obstruction, pulmonary stenosis was found to increase
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significantly, after adjustment for multiple confounders, with
each year of increase in paternal age (55).

Impact of Advanced Paternal Age on Risks
of Malignancy in Offspring
Results from a prospective cohort study of over 180,000 subjects
indicate that men >35yrs had a 63% higher risk of having offspring
who develop hematologic cancers compared with those whose
fathers were <25yr, with a significant linear dose-response
association noted (56). In a nationwide cohort study of close to
twomillion children born in Denmark from 1978–2010, the risk of
childhood acute lymphoblastic leukemia increases by 13% for
every 5 years increase in paternal age (57). Other offspring
malignancies associated with advanced paternal age include
central nervous system tumors and breast cancer (58–61). One
proposed mechanism for increased cancer risk with advanced
paternal age is telomeres lengthening (62, 63). Telomere
shortening is associated with various diseases and is thought to
be a limitation of longevity. Leukocytes telomeres are lengthened
in offspring of older fathers by 0.5 -2 times per year of paternal age
(62–64). While this may confer some health and longevity
advantage, a higher risk for malignancy has been noted (63, 64).

Impact of Advanced Paternal Age on Risks
of Offspring Mental Health
Advanced paternal age is also linked to psychological and
neurodevelopmental disorders in offspring (65). The relative
risk (RR) of offspring diagnosed with schizophrenia increase
progressively with paternal age from 34 years (RR 2.02, 95% CI,
1.17‐3.51 for the 45‐49 age group; RR 2.96, 95% CI, 1.6‐5.47 for
the older than 50 group) (66). Other investigators have also
reported an increased risk of offspring schizophrenia with
advanced paternal age (67–69) unaccounted by other factors
such as family history of psychosis, maternal age, parental
education and social ability, family social integration, social
class, birth order, birth weight or birth complications (70).
Additionally, the risk of obsessive-compulsive disorder in
offspring was reported to increase with advanced paternal age
(71). After adjusting for maternal and family history, the risk of
offspring of men >54yrs diagnosed with bipolar disorder was
found to be 1.37 times higher than those of men 20–24yrs old
(72). Using paternal sibling comparisons, another cohort study
reported a 24-fold increase of bipolar disorder in offspring born
to fathers 20–24yrs versus those aged 45yrs or older (73). In a
population-based cohort study of over 130,000 births, offspring
from men aged >40yrs were more than fivefold more likely to
develop autism spectrum disorders compared to offspring of
men <30yrs (74), consistent with a registry study using paternal
sibling comparisons (73).

Impact of Advanced Paternal Age on Risks
of Genetic Disorders in Offspring
Several genetic diseases that occur with a low frequency in the
general population are associated with advanced paternal age.
These include Apert, Crouzon and Pfeiffer syndromes,
achondroplasia and other conditions (75). Many of these
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disorders follow an autosomal dominant pattern, consistent with
the opinion that these are mainly de novo mutations in the
germline. Although the incidences of these conditions in
advanced paternal age are generally lower than 1% (76, 77),
they are nonetheless associated with severely debilitating
phenotypes. Hence, prospective parents with advanced paternal
age concerns should be informed and counselled for such risks.

Approximately 0.33% of infants are born with an altered
number of chromosomes. Aneuploidies derive mainly from
non-disjunction events during meiotic divisions, represent the
most common heritable chromosomal anomaly (78). Though
most constitutional aneuploidies originate in the female
germline (79), all men produce approximately 3–5% of
aneuploidy sperm (80) and non-disjunction events, particularly
in sex chromosomes, are more likely to occur with aging (81).
Most de novo structural chromosomal abnormalities are found to
be of paternal origin (82–87). Several studies have shown a
significant age related increase in sperm structural chromosomal
abnormalities (88–93). Results from studies on the association of
advanced paternal age and increased risks of offspring
aneuploidies and structural chromosome anomalies are
inconsistent (82, 94–101). This is in part related to the fact that
the vast majority of chromosome aneuploidies are not compatible
with fetal development, leading to implantation failure or early
miscarriage. Structural chromosomal rearrangements that are
balanced are usually phenotypically normal and are thus
undetected during childhood, while the vast majority of those
that are unbalanced are not compatible with fetal development.
PROPOSED MECHANISMS ON
ADVANCED PATERNAL AGE IMPACT

Studies in animal models suggest that the constitution of the
male germline is relatively robust with far fewer spontaneous
mutations compared to somatic tissues (102, 103). This high
level of genetic fidelity in part explains why even after exposure
to chemotoxic agents or radiation in men, no increase in the
incidence of birth defects, sperm DNA chromatin abnormalities
or de novo germline mutations are noted in their offspring (104,
105). In contrast, paternal aging has been shown to be unique for
the creation of de novomutations in male germline (106). Several
mechanisms of age-induced de novo germline mutations have
been proposed. Cumulative replication error from repeated cell
divisions represents a significant source of germline mutation
(107, 108). Based on whole-genome sequencing studies of
parent-offspring trios, approximately one to three de novo
mutations are introduced to the germline mutational load of
the offspring for each additional year in the father’s age at
conception (109, 110). Selfish spermatogonial selection from
preferentially amplified mitotic clonal expansion of mutated
spermatogonial stem cells (111–113) is another proposed
mechanism to explain why several genetic diseases associated
with advanced paternal age follow the autosomal dominant
pattern. Age-related epigenomic modifications in men, as
reported by our group (114) and others (115) are speculated to
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increase the risk of some rare epigenetic disorders in offspring
conceived with ARTs (116). Other proposed mechanisms involve
post meiotic damage of sperm DNA secondary to the combined
effects of increased oxidative stress (117) and nuclease activities
and aberrant or inadequate repair of such damage by
oocytes (118).
CURRENT STATE OF MANAGEMENT OF
REPRODUCTIVE RISKS ASSOCIATED
WITH ADVANCED PATERNAL AGE

Few professional organizations have provided a clear definition
of advanced paternal age. The American College of Medical
Genetics has defined advanced paternal age as >40yrs at
conception (76) for the purpose of risk counselling. While the
American Society of Reproductive Medicine states that the
sperm donor should be “young enough” (119), the Canadian
Fertility and Andrology Society have set an upper age limit for
sperm donation at 40yrs (120). However, no organizations have
made any clear statements as to whether access to reproductive
technologies after this age should be restricted.

The lack of clear, authoritative clinical guidelines not only
poses challenges to health providers to decline services, but it also
inadvertently allows patients to downplay or ignore the negative
impact of paternal aging. Additional factors further aggravate the
situation: increased access to contraceptives (121), delayed
marriage, high divorce and remarriage rates, increased life-
expectancy (122), increased access to erectile dysfunction
treatment (123) leading to extension of active sex-life
expectancy, continuous spermatogenic activities with aging,
social acceptance in delaying fatherhood as modeled by a
number of male celebrities having children at advanced age,
and widespread usage of social media and dating apps to increase
the odds of courtship (124). These factors have provided
elements for a perfect storm resulting in a rising number of
aging men entering or re-entering fatherhood.
CHALLENGES IN DEVELOPING
EFFECTIVE, PRACTICAL STRATEGIES TO
MITIGATE THE IMPACT OF ADVANCED
PATERNAL AGE

Though experts recognize the importance of disseminating
current knowledge on the negative impacts of advanced
paternal age to clinicians and prospective parents, in practice,
this task is far from simple to execute. For example, when
counselling a couple with an aging male partner seeking
fertility care, merely informing the couple of the potential
adverse outcomes serves little more than risk disclosure.
Obviously, the couple could do nothing to change the age
factor. Alternative options such as using donor gametes or
adoption are unlikely to be accepted when the male partner still
has functional sperm. From their perspectives, risk is
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not a certainty. Infertile couples who are determined enough to
pursue fertility treatment may feel entirely rational to accept such
risks (125). Additionally, there is ample evidence suggesting that
children born to parents of more advanced age may enjoy further
benefits in life chances such as financial security, parental
psychological maturity and a wider network of support for
upbringing, education and future career development (125,
126). Taken together, the impact of counselling solely for risk
disclosure may not be effective in modifying behavior or
improving treatment outcomes.

To add yet another layer of complexity, denying this couple
further fertility evaluation is not correct since there could be
significant medical conditions including varicoceles, obstruction
of the excurrent ductal system, genetic and endocrinological
disorders that can contribute to impaired semen parameters.
Some causes of male infertility may be correctable to improve
the fertility status of the male partner and allow for a better chance
of conception. Further, detection of impaired semen parameters
may lead to early detection of potential chronic diseases such as
cardiovascular diseases and diabetes mellitus, and even cancers
(127–129). It may be unethical not to diagnose and treat their
infertility. Even for these couples with no correctable male
infertility factors who choose to use ARTs, denying such care
based solely on age may be viewed as age-discrimination.
Additionally, there is a substantial number of children born to
aging fathers from natural pregnancies, yet healthcare providers
generally take no action in prohibiting aging men in the society at
large to have children. Is it rational for them not to intervene with
all men at advanced age who are attempting to have children?

One may propose that a more sensible strategy is perhaps
through general public education for a “preventative” approach.
Unfortunately, this will also encounter obstacles at a different
level. The message that “delayed parenthood could lead to
adverse outcomes” may be misinterpreted as “education and
career commitment are less important” (130, 131). which would
not echo well with the ambitious-minded youngsters Further, as
the negative impact of female aging on reproduction risks is
arguably stronger than that in male aging (44), if the message is
therefore more strongly emphasized to young females than to
young males, one could only imagine the severity of backlash it
would spark from the public.

With regards to reproductive technologies, though planned or
elective egg freezing for non-medical reasons is an established
strategy to reduce the reproductive risks associated with female
aging, planned or elective sperm freezing has not been shown to
be effective in mitigating reproductive and offspring health risks
associated with paternal aging. This is in part related to the fact
that the well-documented chromatin cryodamage from sperm
cryopreservation (132–136) can potentially offset any potential
benefits from sperm banking. Though sperm cryopreservation is
non-invasive and widely accessible, the fees associated with
semen storage for years can be significant. Of note, ARTs are
required when using cryopreserved sperm. Intra-uterine
insemination (IUI) can be used but given its lower success rate
compared to in vitro fertilization (IVF) and intracytoplasic
sperm injection (ICSI), multiple semen samples may have to
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be cryopreserved to allow for repeated trials of IUI to have a
reasonable success rate. In practice, advanced assisted
reproduction such as ICSI are often required when using
cryopreserved sperm. Aging men who previously banked
sperm at a younger age may opt to attempt conception
through intercourse when they realize the cost, invasiveness
and potential risks on the female partners and offspring
associated with using ICSI (137–139). Ultimately, large scale
studies to unbiasedly compare the reproductive outcomes and
long-term offspring health of with natural conception versus
long-term cryopreserved sperm with ICSI are required to
establish the benefits and cost-effectiveness of planned or
elective sperm freezing against male aging.

Accumulating evidence from the past two decades links
impaired sperm chromatin integrity and DNA fragmentation
to increased risk of pregnancy loss and reduced success rate with
assisted reproductive technologies. Growing interest in recent
years on various sperm selection strategies has led to studies that
provided preliminary evidence of improving reproductive
outcomes in selected infertile couples (140, 141). However, the
question of whether these sperm selection strategies are effective
in cases of advanced paternal age, particularly in lowering the
risks of health conditions linked to aberrant chromatin, remains
to be answered.
LOOKING FORWARD

In dealing with the risks association with advanced paternal age,
too often wrong questions were asked: “how old is too old?”,
“What is the paternal age cut-off at which we can justify
imposing restriction of access to reproductive care?” Although
most experts agree that the negative impacts of advanced
paternal age can be detected in some men after the age of 40
years, currently there is no consensus on the optimal definition
of advanced paternal age as studies have used different age
inclusion and different outcomes with different definitions. The
progressive nature of the physiological changes associated with
male aging is a main reason why it is challenging for investigators
to reach agreement on a clear definition for aging.

To begin the mission to reduce risks associated with paternal
aging, paradoxically, the focus of discussion must first be shifted
away from chronological age to gamete-mediated risk on
reproductive outcomes and offspring health. In other words,
advanced paternal age should be treated as other male factor
infertility causes with a focus on identifying elements that can be
ameliorated, assessment of gamete functional status, and
selection of the gametes with the best chance for a successful
procreation. Health policy makers and healthcare providers may
have to accept the fact that the growing number of aging men
having children is an inevitable phenomenon in the current
direction of societal evolution. It is equally important to
recognize that strategies aiming to prohibit or dissuade this
behavior through establishing a clear paternal age limit for
provision of fertility care or through education and counselling
can readily be challenged and therefore deemed ineffective.
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An alternative approach is to have policy makers, clinicians and
investigators work closely together to synthesize information on the
risks that can be disseminated to prospective parents to allow them
to engage in a shared decision-making model with their healthcare
providers. Risks on adverse reproductive outcomes and offspring
health that are gamete mediated should be comprehensively
assessed and defined, using established diagnostic tools at the
molecular levels. It is important to emphasize that, in addition to
aging, gamete mediated risks may well be attributed to other health
conditions such as intrinsic genetic disorders, gonadotoxin
exposure, history of cytotoxic therapies, metabolic derangements,
obesity, smoking, and varicoceles. Thus, communication of gamete
mediated reproductive risks should be conducted across the board
as a standard of practice to all male partners seeking fertility care
and not just to those at an advanced age. Shifting the focus of
counselling from chronological age to gamete mediated risks allows
clinicians to formulate a treatment plan or decline treatment
without being accused of age discrimination. Finally, additional
psychosocial concerns beyond gamete quality in the context of
advanced paternal age such as life-expectancy of parents, should
also be an important consideration in this shared decision-
making model.

To minimize or mitigate the negative impact of advanced
paternal age, comprehension of the collective body of scientific
Frontiers in Endocrinology | www.frontiersin.org 6213
evidence is only the first step. Continued dialogues must be
maintained among stakeholders at all levels, including
investigators, healthcare providers, health policy makers and
patients, on emerging data and their implications at the
personal as well as societal levels. Most importantly, it is
imperative for all parties to collaborate rigorously, with the
goal of catalyzing a new agenda to reconceptualize the
management strategy of advanced paternal age in the context
of reproductive care of prospective parents.
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Male germ cell development depends on multiple biological events that combine
epigenetic reprogramming, cell cycle regulation, and cell migration in a spatio-temporal
manner. Sertoli cells are a crucial component of the spermatogonial stem cell niche and
provide essential growth factors and chemokines to developing germ cells. This review
focuses mainly on the activation of master regulators of the niche in Sertoli cells and their
targets, as well as on novel molecular mechanisms underlying the regulation of growth
and differentiation factors such as GDNF and retinoic acid by NOTCH signaling and
other pathways.

Keywords: Sertoli cell, germ cell, growth factors, self-renewal, differentiation
INTRODUCTION

The Niche Microenvironment
Maintenance, repair, and regeneration of many mammalian organs depend on adult stem cells.
Stem cells proliferate and differentiate to replace mature functional cells within tissues that have
either high turnover such as blood, testis, and epithelia (intestine, skin, and respiratory tract), or
tissues that have low turnover but a high regenerative potential upon disease or injury such as liver,
pancreas, skeletal muscle, and bone (1). Precise regulation of adult stem cell fate is therefore critical
for the support of tissue homeostasis, and stem cell maintenance must involve a fine balance
between genetic and epigenetic mechanisms, external factors from the microenvironment and
systemic support, and multiple signaling pathways elicited by paracrine and juxtacrine factors.

Over the years, evidence has accumulated showing that stem cell self-renewal depends on the
constituents of their microenvironment called the niche (2, 3) and that in turn stem cells influence
their own environment (4–6). The constituents of the niche can be classified into adjacent
supporting cells such as fibroblasts, tissue macrophages, glial cells (brain), osteoblasts (bone
marrow), Sertoli cells (testis) and myofibroblasts (gut), together with paracrine and juxtacrine
factors secreted by these supporting cells, and the extracellular matrix. Once they leave the niche,
stem cells become progenitor cells that are less plastic and differentiate at the expense of their
immortality. Over the last 15 years, critical cellular and molecular components of the specialized
niche microenvironment have begun to be unveiled in several tissues. Advanced techniques in
lineage-tracing, endogenous cell and gene/protein deletions in animal models, and high-resolution
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microscopy have significantly improved our understanding of
the molecular and cellular intricacies that maintain and integrate
the many activities required to sustain tissue homeostasis.

The Spermatogonial Stem Cell Niche
In the mammalian testis, the male germline produces a life-long
supply of haploid spermatozoa through the highly regulated and
coordinated process of spermatogenesis. This process starts with
the self-renewal of a small pool of diploid stem cells called
spermatogonial stem cells (SSCs or Asingle spermatogonia),
which can self-renew to maintain the pool or give rise to more
mature germ cells called Apaired and Aaligned spermatogonia.
Collectively, Asingle, Apaired and Aaligned spermatogonia are
called undifferentiated spermatogonia (7). These cells further
differentiate into differentiating spermatogonia and
spermatocytes that undergo meiosis, producing haploid
spermatids that will mature into spermatozoa. The longevity
and the high output of sperm cell production relies therefore
primarily on the proper maintenance of the pool of SSCs and
their proliferation. Like other types of stem cells, SSCs rely on
their micro-environment to sustain their growth and to initiate
differentiation that signals their release from the basal part of the
seminiferous epithelium and exit from the niche.

SSCs reside on the basement membrane that supports the
seminiferous epithelium. They are in intimate physical contact
with highly specialized somatic niche cells, the Sertoli cells,
which directly provide soluble growth factors and membrane-
bound signals to the germ cells (8). Other niche cell types have
been recently investigated, including peritubular myoid cells,
interstitial cells (macrophages and Leydig cells), and endothelial
cells from the vascular network, which all produce critical growth
Frontiers in Endocrinology | www.frontiersin.org 2218
factors (Figure 1) (9–15). Because of their direct physical
association with germ cells, their secretion of growth factors
and basement membrane components, and their architectural
support of the seminiferous epithelium, Sertoli cells are
considered the most important contributor of the testicular
niche, and the regulation of their molecular communications
with SSCs and more mature premeiotic germ cells will be the
subject of this review.
SERTOLI CELLS AS STRUCTURAL
NICHE ORGANIZERS

It is now established that the number of Sertoli cells increases
during fetal development due to growth stimulation through
FSH/FSHR signaling. Sertoli cells proliferate up to day 15 after
birth in mice and 17 days after birth in rats, after which the
number of Sertoli cells reaches its peak and remain constant
throughout life unless altered by insult and aging. Therefore,
the number of Sertoli cells is finite and its maintenance is
crucial for life-long spermatogenesis. Several years ago, de
Franca et al. induced experimental hypothyroidism in the rat
with propylthiouracil (PTU) administrated neonatally. The
treatment significantly increased the period of Sertoli cell
proliferation and therefore increased their number at puberty
and beyond. This also increased germ cell number and the
size of the testes (16). However, direct evidence that Sertoli
cells indeed provide a structural and functional SSC niche
support was provided by Oatley and colleagues (17).
The authors treated male mouse pups with PTU, which led to
FIGURE 1 | Seminiferous Epithelium Organization and the Spermatogonial Stem Cell Niche. The seminiferous epithelium consists of germ cells (blue) and the somatic Sertoli
cells (yellow). Sertoli cells produce many factors needed at various developmental steps during the spermatogenic process. The blood-testis barrier separates diploid germ
cells from more mature cells and provide an immuno-privileged microenvironment for the completion of meiosis. Like Sertoli cells, the spermatogonial stem cells (SSCs) are
attached to the basement membrane. They rely on specific growth factors for self-renewal and maintenance of the pool. These molecules are produced by Sertoli cells,
peritubular myoid cells, Leydig cells, and macrophages, as well as the vasculature. The components of the SSC niche are highlighted in the grey area.
June 2022 | Volume 13 | Article 897062

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hofmann and McBeath-Fujiwara Sertoli Cell-Germ Cell Interactions
increased Sertoli cell and germ cell numbers in the adult
testes. Next, by using these mice as germ cells recipients after
busulfan treatment destroyed their endogenous germ cells, they
showed a significant increase of colonization by normal donor
SSCs after transplantation. This demonstrated an increased
presence of functional niches. Because neither the vasculature
nor interstitial cell populations were altered in the PTU
recipient model, they concluded that Sertoli cells are the most
critical somatic cell type in the testis and that they create the
SSC niche.
MASTER REGULATORS OF THE NICHE

The germ cell and Sertoli cell behaviors leading to the
establishment of the spermatogenic stem cell niche in the early
postnatal testis are well known. In addition to Sertoli cell
proliferation leading to the expansion of the niche units until
puberty, one of the most striking cellular behavior is the
movement of pro-spermatogonia, or gonocytes, toward the
periphery of the cords at around day 3-4 after birth in rodents,
and 8-12 weeks after birth in humans (18, 19). By postnatal day 6
in the mouse, about 90% of pro-spermatogonia have reached the
basal lamina, have become SSCs and rapidly differentiate (20),
whereas germ cells that failed to migrate have died (21). The past
fifteen years have seen a growing interest in understanding how
these processes are regulated and the discovery of Sertoli cell-
specific genes that are master determinants of the niche has
become a priority.

DMRT1 (Doublesex and Mab-3 related transcription factor
1) is a conserved gene that is expressed in the testes of all
vertebrates. In the mouse, DMRT1 expression starts at the genital
ridge stage and continues throughout adult life. DMRT1 is
required for normal sexual development, and defective
expression leads to abnormal testicular formation and XY
feminization (22). While both germ cells and Sertoli cells
express the gene, Sertoli cell-specific knockout of Dmrt1 led to
testicular abnormalities at around day 7 post-partum (22–25).
Sertoli cells lacking DMRT1 re-expressed Forkhead box L2
(FOXL2), a female gonad determinant (26). The cells could not
polarize, reprogrammed into granulosa cells, and seminiferous
tubule lumens did not form (22). Consequently, SSCs and
undifferentiated spermatogonia were not maintained at the
tubule periphery, the germ cell population remained
disorganized, and germ cells died after meiotic arrest. This
indicated that DMRT1 antagonizes FOXL2 and functions as a
repressor of the female gonad development. Further, DMRT1 is
also a known activator of androgen receptor (AR) (27, 28) and is
crucial for cellular junction formation and function by driving
the expression of Claudin 11 (Cldn11), Vinculin (Vcl), and gap
junction protein alpha 3 (Gja3) (Table 1), therefore controlling
the structural niche as well (28, 48, 79, 120).

In 2015, Chen and colleagues demonstrated that targeted loss
of Gata4, a known Sertoli cell marker also involved in mouse
genital ridge initiation, sex determination, and embryonic testis
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development (72–74), resulted in a loss of the establishment and
maintenance of the SSC pool, and led to Sertoli cell-only
syndrome (41). Loss of Gata4 altered the expression of a
number of chemokines, including Cxcl12 (SFD1, binding to the
CXCR4 receptor) and Ccl3 (binding to the CCR1 receptor),
which are known to guide pro-spermatogonia toward the
basement membrane and the niche provided by Sertoli cells
(39, 40). Similarly, another Sertoli cell transcription factor,
ETV5, was found to directly bind to the promoter of the
chemokine Ccl9. CCL9 facilitated chemoattraction of stem/
progenitor spermatogonia, which express CCR1, the receptor
for CCL9 (42) (Table 1). Together, these results revealed a novel
role for GATA4 and ETV5 in organizing the SSC niche via the
transcriptional regulation of chemokine signaling shortly after
birth. More recently, Alankarage and colleagues demonstrated
that Etv5 in Sertoli cells is directly under control of SOX9, a
transcription factor that specifies the function of Sertoli cells and
their differentiation from somatic cell precursors (61).

Migration of pro-spermatogonia to the basement membrane
and niches provided by Sertoli cells is also dependent on AIP1, a
b-actin-interacting protein that mediates b-actin (ACTB)
disassembly (29, 31). Sertoli and germ cell-specific deletion of
mouse Aip1 each led to significant defects in germ cell migration
at postnatal day 4, which corresponded to elevated numbers of
actin filaments in the affected cells. Increased actin filaments
might have caused cytoskeletal changes that impaired E-cadherin
(CDH1) regulation in Sertoli cells and germ cells, decreasing
germ cell motility. Aip1 deletion in Sertoli cells did not affect the
expression and secretion of growth factors, suggesting that the
disruption of SSC migration and function results from
architectural changes in the postnatal niche.

Another determinant of the perinatal niche, CDC42, was
recently identified by Mori et al. (46). Together with RAC1 and
RHOA, CDC42 is a member of the RHO family of small GTP-
ases, which are mainly involved in cell polarity and migration
(43, 111). Importantly, a possible role of the small GTP-ases
CDC42 and RAC1 in the regulation of the blood-testis-barrier
(BTB), tight junction components, and Sertoli cell polarity was
suggested by several authors (45, 47, 109). While deletion of
Cdc42 expression in Sertoli cells in the Mori study did not lead to
major changes in the BTB integrity and cell polarity, it led to the
depletion of the growth factor glial cell line-derived neurotrophic
factor (GDNF), a major determinant of spermatogonial
proliferation, possibly through the downregulation of canonical
PAK1 activity downstream of CDC42 (44).
EPIGENETIC REGULATORS OF
THE NICHE

One of the first discovered epigenetic regulators of the SSC niche
was the Switch-insensitive 3a (SIN3A) co-repressor protein, part
of a massive transcriptional complex that interacts with a wide
array of epigenetic regulators (114). The SIN3A transcriptional
corepressor complex plays a role in diverse cellular processes
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TABLE 1 | Names and functions of proteins discussed in this review.

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

ACTB P60710 Sertoli cells Beta-Actin. Component of adherens junctions. 29, 30
AIP1
(WDR1)

P60710 Sertoli cells Actin-Interacting Protein 1. Functions as Actin disassembly factor, promotes germ cell
movement toward the basement membrane.

31

AIP1
(WDR1)

P60710 Pro-spermatogonia/
Undifferentiated
spermatogonia

Actin-Interacting Protein 1. Functions as Actin disassembly factor, promotes germ cell
movement toward the basement membrane.

31

AMH P27106 Sertoli cells, immature Anti-Mullerian Hormone. Regression of Müllerian ducts in male fetuses. 32, 33
AR
(NR3C4)

P19091 Sertoli cells Androgen receptor. Responsible for binding of Testosterone/Dihydrotestosterone. 27, 28, 34

ARID4A/
ARI4A

F8VPQ2 Sertoli cells AT-Rich Interaction Domain 4A. Maintains the blood-testis barrier. Knock-out induces
meiotic arrest.

33, 35

ARID4B/
ARI4B

A2CG63 Sertoli cells AT-Rich Interaction Domain 4B. Supports the SSC niche. Transcriptional coactivator for
AR.

33, 34, 36

BCL6B O88282 Spermatogonial stem
cells

B-Cell CLL/Lymphoma 6, Member B. Supports self-renewal. 37, 38

BEX1 Q9HBH7 (human) Human Sertoli cells,
Stage b (8-11 year old)

Brain Expressed X-Linked Protein 1. Transcription regulator. Plays a role in cell cycle
progression in Stage b human Sertoli cells.

30

CCL3 P10855 Sertoli cells, perinatal C-C Motif Chemokine Ligand 3. Guides pro-spermatogonia toward the basement
membrane.

39–41

CCL9 P51670 Sertoli cells, perinatal C-C Motif Chemokine Ligand 9. Guides pro-spermatogonia toward the basement
membrane. Maintains SSCs within the niche.

42

CCR1 P51675 Pro-spermatogonia,
undifferentiated
spermatogonia

C-C Motif Chemokine Receptor 1. Receptor for CCL3 and CCL9. 39

CDC42 P60766 Sertoli cells Cell Division Cycle Protein 42. Involved in cell polarity and migration. Regulation of the
blood-testis barrier and Sertoli cell polarity.

43–47

CDH1 P09803 Sertoli cells E-cadherin/cadherin-1. Calcium-dependent cell adhesion protein. 29
CLDN11/
CLD11

Q60771 Sertoli cells Claudin 11. Tight junction protein at the blood-testis barrier. 28, 48

CSF1 P07141 Leydig cells Macrophage Colony Stimulating Factor 1. Enhances self-renewal of spermatogonial stem
cells.

12

CST9L Q9H4G1 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

Cystatin 9 Like. Tissue remodeling during early testis development. Also present in adult
Sertoli cells.

30, 49

CTNNB1 Q02248 Spermatocytes and
spermatids

Catenin Beta 1. Maintenance of post-mitotic germ cells. 50–52

CXCL12/
SDF1

P40224 Sertoli cells C-X-C Motif Chemokine Ligand 12. Guides pro-spermatogonia toward the basement
membrane. Maintains SSCs within the niche.

41 53

CXCR4 P70658 Pro-spermatogonia,
undifferentiated
spermatogonia

C-X-C Motif Chemokine Receptor 4. Receptor for CXCL12. 40

CYP26B1 Q811W2 Sertoli cells, immature
and postnatal

Cytochrome P450 Family 26 Subfamily B Member 1. Inactivates retinoic acid through
oxidation.

54–56

DEFB119 Q8N690 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

Defensin Beta 119. Anti-microbial defense in the male reproductive tract. 30, 57

DMRT1 Q9QZ59 Sertoli cells, immature
and adult

Doublesex And Mab-3 Related Transcription Factor 1. Required for normal testis
development and maintenance. Antagonist of FOXL2.

22, 23, 28,
58

DMRT1 Q9QZ59 Germ cells Doublesex And Mab-3 Related Transcription Factor 1. Required for SSC maintenance
and germ cell mitosis/meiosis decision.

24, 25

EGF P01133 (human) Human Sertoli cells,
Stage a (2-5 year old)

Epidermal Growth Factor. Produced by Sertoli cells. Germ cell maintenance/proliferation. 30, 59

EGR3 Q06889 (human) Human Sertoli cells,
Stage a (2-5 year old)

Early Growth Response 3. Induced by mitogenic stimulation of Sertoli cells. 30

ENO1/
ENOA

P06733 (human) Human Sertoli cells,
Stage b (8-11 year old)

Enolase 1. Growth control, cell metabolism. 30

ERK5/
MAPK7

Q13164 (human) Human Sertoli cells,
Stage a (2-5 year old)

Mitogen-Activated Protein Kinase 7. Proliferation, differentiation, transcription regulation
and development of Sertoli cells.

30

ETV5 Q9CXC9 Sertoli cells ETS Variant Transcription Factor 5. Induces the production of chemokines and maintains
SSC homing within the niche

42, 60, 61
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TABLE 1 | Continued

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

ETV5 Q9CXC9 Spermatogonial stem
cells

ETS Variant Transcription Factor 5. Induces the production of CXCR4 and Brachyury (T)
and maintains SSC homing within the niche.

62
63

FGF2 P15655 Sertoli cells Fibroblast Growth Factor 2. SSC self-renewal. 38, 64–68
FOXL2 O88470 Granulosa cells Forkhead Box L2. Ovarian development and function. Repression of somatic testis

determination. Antagonist of DMRT1.
22, 26

FSH Q60687 Anterior pituitary cells Follicle Stimulating Hormone Subunit Beta. Induces Sertoli cell proliferation in early
development. Induces Sertoli cells to secrete androgen-binding proteins (ABPs), and
stimulates inhibin B secretion.

69, 70

FSHR P35378 Sertoli cells Follicle Stimulating Hormone Receptor 71
GATA4 Q08369 Sertoli cells GATA Binding Protein 4. Embryonic testis development, Sertoli cell maintenance,

production of chemokines, SSC niche maintenance.
41, 58, 72–
74

GDNF P48540 Sertoli cells, postnatal Glial Cell Derived Neurotrophic Factor. SSC self-renewal 66, 75;
GDNF P48540 Sertoli cells, prenatal Glial Cell Derived Neurotrophic Factor. Pro-spermatogonia maintenance. 76
GFRA1 P97785 Undifferentiated

spermatogonia
GDNF Family Receptor Alpha 1. Co-receptor of RET 77, 78

GJA3
(CX46)

Q64448 Sertoli cells Gap Junction Protein Alpha 3. Connexin 46. Gap Junction Protein, component of the
blood-testis barrier.

28, 79

HES1 P35428 Sertoli cells HES Family BHLH Transcription Factor 1. Target/mediator of NOTCH signaling. Inhibits
GDNF and CYP26B1 expression.

56, 80

HEY1 Q9WV93 Sertoli cells Hes Related Family BHLH Transcription Factor With YRPW Motif 1. Target/mediator of
NOTCH signaling. Inhibits GDNF and CYP26B1 expression.

56, 80

HOPX Q9BPY8 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

HOP Homeobox. Growth suppression and differentiation. 30, 81

IGF1 P05019 (human) Human Sertoli cells,
Stage a (2-5 year old)

Insulin-Like Growth Factor 1. Produced by Sertoli cells. Germ cell proliferation. 30, 82

INHBB Q04999 Sertoli cell Inhibin Subunit Beta B. Testis development. Marker of Sertoli cells function and germ cell
numbers. Regulation of FSH secretion by pituitary.

33, 83, 84

JAG1 Q9QXX0 Undifferentiated
spermatogonia

Jagged 1. Canonical NOTCH ligand. 55, 85

JUN P05627 Sertoli cell Jun Proto-Oncogene. AP-1 transcription factor complex subunit. Sertoli cell function,
maintenance of the blood-testis barrier.

30, 86

KIT P05532 Differentiating
spermatogonia

KIT Proto-Oncogene, Receptor Tyrosine Kinase. Proliferation and differentiation. 87–89

KIT P05532 Primordial germ cells KIT Proto-Oncogene, Receptor Tyrosine Kinase. Proliferation and Survival. 90
KIT P10721 (human) Seminoma cells KIT Proto-Oncogene, Receptor Tyrosine Kinase. Mutated and constitutively activated in

25% of seminoma.
91

KITL P20826 Sertoli cell KIT Ligand. Proliferation and differentiation of germ cells. 89, 92–95
LIF P42703 Sertoli cell Leukemia Inhibitory Factor. Maintenance of spermatogonial stem cell survival. 10, 66, 96
LIN28 Q8K3Y3 Pro-spermatogonia,

undifferentiated
spermatogonia

Lin-28 Homolog A. Pluripotency and SSC self-renewal. 97, 98

NFKB1 P25799 Sertoli cell Nuclear Factor Kappa B1. Pleiotropic transcription factor. 99
NOTCH1 Q01705 Sertoli cell NOTCH Receptor 1. Intercellular signaling pathway regulating cell fate specification and

differentiation
56, 80, 85,
100

NR3C1 P06537 Fetal and perinatal
Sertoli cell

Nuclear Receptor Subfamily 3 Group C Member 1. Glucocorticoid receptor. Possible link
between stress and testicular function.

33, 101,
102;

NR3C1 P06537 Germ cell
(spermatogonia)

Nuclear Receptor Subfamily 3 Group C Member 1. Glucocorticoid receptor. Possible link
between stress and testicular function.

101

NR4A1 P22736 (human) Human Sertoli cells,
Stage a (2-5 year old)

Nuclear receptor subfamily 4 group A member 1. Proliferation, chemotaxis. 30

PAK1 O88643 Sertoli cell P21 Protein (Cdc42/Rac)-Activated Kinase 1. Canonical target of RHO GTPases. 44
PDGFA P20033 Sertoli cells, perinatal Platelet-derived growth factor subunit A. Germ cell proliferation. 103–106
PDGFB P31240 Sertoli cells, perinatal Platelet-derived growth factor subunit A. Germ cell proliferation. 103–106
PLZF
(ZBTB16)

A3KMN0 Undifferentiated
spermatogonia

Zinc Finger And BTB Domain Containing 16. Represses KIT in undifferentiated
spermatogonia.

107, 108

RAC1 P63001 Sertoli cell Ras-related C3 botulinum toxin substrate 1. Sertoli cell polarity. 109
RARA/G P18911 Germ cells,

undifferentiated
Retinoic acid receptor alpha/gamma. Germ cell differentiation. 68

RBPJ P31266 Sertoli cells Immunoglobulin Kappa J Region Recombination Signal Binding Protein 1.
Transcription factor, mediator of all activated NOTCH receptors

80, 100,
100
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such as proliferation, differentiation, tumorigenesis, apoptosis
and cell fate determination (113). The classical mechanism of
action of this complex is transcriptional silencing through
histone deacetylation mediated by HDAC1/2. In the mouse
testis, Sertoli cell specific Sin3a deletion resulted in a decrease
of undifferentiated spermatogonia after birth. The Sertoli
cell markers Kit Ligand (KITL) and Gdnf, which support
germ cell proliferation, were not diminished. However,
chemokine signaling molecules such as CXCL12/SDF1
and CXCR4, expressed by Sertoli cells and germ cells,
respectively, were not detected. This again demonstrates that
regulators of germ cell movement toward the periphery of
testicular cords and the basement membrane after birth are
critical for the establishment of the initial postnatal niche.
However, the relationship between SIN3A and the signaling
networks governed by GATA4 and ETV5 in Sertoli cells are
not yet known.

In 2013, Wu and colleagues identified ARID4A and ARID4B
(AT-rich interactive domain-containing protein 4A/B) as
additional master regulators critical for the establishment of
the niche, in particular during the pro-spermatogonia to SSC
transition phase (35, 36). Interestingly, ARID4B is a subunit of
the SIN3A transcriptional repressor complex. Sertoli cell
ablation of Arid4B expression resulted in Sertoli cell
detachment from the basement membrane, which precluded
niche formation and the movement of pro-spermatogonia
Frontiers in Endocrinology | www.frontiersin.org 6222
toward the periphery of the testicular cords. Without niche
support, the germ cells underwent apoptosis. The authors also
showed that ARID4B can function as a transcriptional
coactivator for androgen receptor (AR) and identified
reproductive homeobox 5 (Rhox5) (124) as the target gene
critical for spermatogenesis (34).

Another epigenetic regulator of the niche is WTAP, or Wilms
Tumor 1-associated protein (33). WTAP regulates transcription
and translation of genes by depositing N6-methyladenosine (m6A)
marks directly on RNA transcripts or indirectly on transcriptional
regulators (125). Jia and colleagues demonstrated that conditional
deletion of Wtap in mouse Sertoli cells modified pre-mRNA
splicing, diminished RNA export and translation, and therefore
altered the transcription and translation of many Sertoli cell genes
normally marked by m6A modification. Many of these genes were
critical for SSC maintenance, spermatogonial differentiation,
retinol metabolism, and the cell cycle, including Inhbb, Wt1,
Arid4a, Arid4b, Etv5, Ar, Dmrt1, and Sin3a (Table 1) (23, 27,
35, 60, 83, 114, 126, 127). Consequently, progressive loss of
undifferentiated spermatogonia was observed in WTAP-deficient
testes and mice were sterile. Interestingly, while not normally
marked by m6A modification, Gdnf, which is required for SSC
maintenance and self-renewal, was also downregulated. The
authors surmised that several of the key transcription regulators
that have been reported to be important for Gdnf transcription
contained m6A sites and were dysregulated by Wtap knockout.
TABLE 1 | Continued

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

RET P35546 Germ cell,
undifferentiated

Ret Proto-Oncogene, Rearranged During Transfection. SSC self-renewal,
undifferentiated spermatogonia proliferation.

77, 78;

RET P35546 Germ cell, fetal Ret Proto-Oncogene, Rearranged During Transfection. Maintenance of fetal germ cells. 110
RHOA P61586 (human) Human Sertoli cells,

Stage b (8-11 year old)
Transforming protein RhoA. Sertoli cell polarity, junction remodelling 30, 111

RHOX5 P52651 Sertoli cells Homeobox protein Rhox5. Regulation of germ cell apoptosis. 34, 112,
S100A13 Q99584 (human) Human Sertoli cells,

Stage b (8-11 year old)
S100 Calcium Binding Protein A13. Cell cycle progression and differentiation. 30

SIN3A Q60520 Sertoli cell Switch-insensitive 3a (SIN3A). Co-repressor, regulation of chemokines expression. 113, 114
SOHlH1 Q6IUP1 Differentiating

spermatogonia
Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein
1. Upregulation of KIT receptor expression.

115;

SOHlH2 Q9D489 Differentiating
spermatogonia

Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein
1. Upregulation of KIT receptor expression.

115;

SOX9 Q04887 Sertoli cells SRY-Box Transcription Factor 9. Sex determination. Maintenance of Sertoli cell functions. 58, 61, 116
VEGFA Q00731 Sertoli cells, perinatal Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117, 118
VEGFA Q00731 Germ cells, perinatal Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117
VEGFA Q00731 Interstitial cells Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117
VEGFA164 Q00731 Sertoli cells Vascular endothelial growth factor A, VEGFA164 isoform. SSC self-renewal. 119
VCL Q64727 Sertoli cells Vinculin. Actin filament (F-actin)-binding protein. Cell-cell adhesion, adherens junction,

ectoplasmic specializtion.
28, 120

WNT5A P22725 Sertoli cells Wingless-Type MMTV Integration Site Family, Member 5A. SSC maintenance and
survival. CTNNB1 independent.

50, 121

WNT3A P27467 Sertoli cells Wingless-Type MMTV Integration Site Family, Member 5A. Proliferation of progenitor
spermatogonia exiting the SSC state. CTNNB1-dependent.

122

WT1 P22561 Sertoli cells, fetal and
adult

Wilms tumor protein homolog 1. Testis development, lineage maintenance of Sertoli cells. 27, 33

WTAP Q9ER69 Sertoli cell Wilms tumor protein homolog 1-associated protein. Mediates N6-methyladenosine
(m6A) methylation of RNAs.

33, 123
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SINGLE CELL RNA-SEQ AND SPATIAL
TRANSCRIPTIONAL DISSECTION OF
PERINATAL AND MATURE SERTOLI CELLS

Single cell characterization of developing and mature Sertoli cells
in rodents and humans, as well as their spatial transcriptional
dissection, uncovered many genes potentially important for the
organization of the niche, and are providing a large resource for
functional analysis of possible signaling pathway networks (102,
128–132). All studies demonstrated that mouse Sertoli cells
undergo stepwise changes during the perinatal period, which
are dependent on the expression of SOX9, AMH, GATA1-4,
DMRT1, NR3C1 and their target genes (Table 1) (32, 58, 101,
102, 116). Notably, as predicted, expression of cell cycle genes
decreases as Sertoli cells mature after birth. Further, these data
demonstrated a postnatal increase in expression of Sertoli-Sertoli
cell junctions and germ cell-Sertoli cell junction signaling (102).
Zhao and colleagues identified three stages of postnatal Sertoli
cells maturation in humans. In stage a (2-5 years old), the top
three differentially expressed genes were EGR3, JUN, and NR4A1
(Table 1) (30, 86). In stage b (8-11 years) S100A13, ENO1,
and BEX1 were prominently expressed, while in stage c (17 years
to adult) HOPX, DEFB119, and CST9L were upregulated
(Table 1) (49, 57, 81). Gene Ontology and Ingenuity Pathway
Analysis (IPA) at each of the three stages indicated that genes
ensuring proliferation and maintenance of cell numbers were
prominently expressed in stage a (EGF, IGF, and ERK5
signaling), RHOA/ACTB motility and remodeling of Sertoli-
Sertoli epithelial junctions were a feature of stage b, and
pathways of cholesterol biosynthesis and germ cell-Sertoli cell
junction signaling were increased in stage c (59, 82). In addition,
protein transmembrane transport, phagosome maturation, and
cellular metabolic processes were upregulated in stage c,
confirming that the most important functions of mature Sertoli
cells are the production of growth factors, phagocytosis of germ
cells and metabolites processing. Collectively, these data indicate
that single cell RNA-seq and spatial transcriptomic
characterization of Sertoli cells generate reliable resources for
future mechanistic studies of master regulators of the niche and
their targets at different time points.
SERTOLI CELL FACTORS
CONTROLLING SSC MAINTENANCE
AND SELF-RENEWAL.

In the seminiferous epithelium, Sertoli cells produce a number of
soluble factors that are under the control of the above-described
master regulators. These growth factors are critical for pro-
spermatogonial maintenance in the fetus, maintenance of the
SSC pool, self-renewal of SSCs after birth, and the onset of germ
cell differentiation. The most critical factors include glial cell
line-derived neurotrophic factor (GDNF) (75), colony-
stimulating factor 1 (CSF1) (12), fibroblast growth factor 2
(FGF2) (65, 66), leukemia inhibitory factor (LIF) (10) and
Frontiers in Endocrinology | www.frontiersin.org 7223
WNT family proteins (50, 122). They all bind to their cognate
receptors at the surface of SSCs or undifferentiated
spermatogonia and activate the MAPK or PI3K/AKT pathway
to drive the cell cycle. They also promote SSC proliferation in
vitro, which can be demonstrated by increased testes
colonization after transplantation. KITL, the ligand for KIT
receptor, and retinoic acid (RA) are considered major
determinants of germ cell differentiation after birth, promote
the switch between undifferentiated and differentiating
spermatogonia and trigger meiotic entry (94, 133, 134).

Glial Cell Line-Derived
Neurotrophic Factor
GDNF is a member of the transforming growth factor beta
(TGF-b) superfamily that binds to the GFRA1/RET receptor
complex at the surface of SSCs, Apaired and some Aaligned

spermatogonia (75, 77). Meng and colleagues were first to
demonstrate that GDNF haploinsufficiency in mice induced
fertility defects after birth (75). The mice were fertile but
exhibited increased numbers of seminiferous tubules lacking
spermatogonia as they aged. In addition, transgenic animals
overexpress ing Gdnf accumulated undi fferent ia ted
spermatogonia. In 2006, Naughton and colleagues disrupted
the expression of Ret and Gfra1 at the surface of SSCs, which
resulted in their loss and led to the definitive proof of the critical
function of this receptor-ligand interaction (78). Together with
FGF2 and LIF, GDNF is critical for the self-renewal of SSCs in
short- and long-term cultures (66). Because of its importance for
spermatogenesis, efforts were made to understand the temporal
regulation of its expression. Low levels of GDNF and RET are
already present in the fetal gonad (76, 110). Since pro-
spermatogonia do not proliferate until after birth, GDNF is
therefore only necessary for their maintenance, highlighting
the importance of its dosage (98). GDNF expression then
increases until it reaches a peak at days 3-7 after birth (110,
135, 136). One interesting feature of GDNF expression in the
adult is its cyclic pattern throughout the stages of the
seminiferous epithelium. Cyclical production of soluble factors
according to stages was demonstrated earlier by Johnston and
colleagues using transillumination-assisted microdissection and
microarray analysis (137). In the rat, GDNF expression is highest
at stages XIII-I, and lowest at stage VII of the seminiferous
epithelium (138), while in the mouse its expression is highest at
stages IX-I and lowest at stages V-VIII when most cells are
quiescent and the majority of Aaligned spermatogonia transition
to the differentiating A1-A4 cells (85, 98, 139). When GDNF was
ectopically overexpressed by Sertoli cells in Stages V-VIII, the
number of GFRA1+/LIN28- germ cells, a subtype of As

spermatogonia with enhanced self-renewal capacity, was
increased (97, 98).

Several mechanisms regulating GDNF expression have been
recently proposed. Garcia and colleagues established Sertoli cell-
specific gain-of-function and loss-of-function mouse models of
NOTCH receptor signaling (80, 100). Constitutive activation of
this pathway in Sertoli cells led to a complete lack of germ cells by
P2, and infertility. Expression of GDNF by Sertoli cells was
June 2022 | Volume 13 | Article 897062
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significantly downregulated in the perinatal and adult testis and
was due to upregulation of Hes/Hey transcription factors, which
are canonical NOTCH targets and transcriptional repressors that
bind to the GDNF promoter (80, 85). Further, loss-of-function of
Rbpj, a mediator of NOTCH, and downregulation of Hes/Hey,
led to upregulation of Gdnf expression (80) (Table 1).
Importantly, the NOTCH ligand JAG1 was expressed mainly
by undifferentiated spermatogonia (85). Consequently, the
accumulation of undifferentiated spermatogonia around stage
VII might increase NOTCH activity in Sertoli cells through
JAG1, triggering the observed increase of Hes/Hey inhibitors at
this stage and decrease in GDNF expression, leading to its cyclic
expression. Therefore, spermatogonia, when in sufficient
numbers , regulate their own homeostas is through
downregulation of GDNF (55). These data are consistent with
the observation that in wild type mice, the absence of germ cells
triggered by busulfan treatment correlated with higher
expression of GDNF (85, 135, 140) (Figure 2A).

Other interesting mechanisms of GDNF regulation have been
recently proposed. Given the fact that retinoic acid (RA)
concentration is high when GDNF is low during the cycles of
the seminiferous epithelium (141), Saracino and colleagues
tested whether RA was a direct inhibitor of GDNF expression
(142). Using ex vivo cultured immature testes and staged adult
seminiferous tubules, they showed that negative regulation of
Gdnf by RA indeed takes place in these models and
demonstrated that Gdnf expression is directly regulated by RA
through a mechanism involving a RARE-DR5 binding site on the
Gdnf promoter. Negative regulation requires retinoic acid
receptor (RARa) and induces a strong decrease of histone H4
acetylation levels around the transcription start. Further, because
of the existence of a NF-kappaB binding site in the GDNF
promoter, the same group investigated how TNF-alpha might
Frontiers in Endocrinology | www.frontiersin.org 8224
influence GDNF expression (99). They demonstrated that in
primary Sertoli cells, TNF-alpha induces the expression of the
transcriptional repressor Hes1 by a NF-KappaB-dependent
mechanism, which in turn downregulates GDNF. Therefore,
TNF-alpha and NOTCH signaling may converge to regulate
the expression of Hes1 and its target genes, including
GDNF (Figure 2A).

Fibroblast Growth Factor (FGF2)
While GDNF is a critical component of the niche, many in vivo
and in vitro experiments demonstrated that other factors are
needed to support maintenance and self-renewal of SSCs. Earlier
examination of perinatal Sertoli cells demonstrated that they
expressed FGF2, and that this expression was stimulated by
follicle-stimulating hormone in vitro (FSH) (64). Together with
EGF, LIF, and GDNF, fibroblast growth factor (FGF2) has been
used to sustain the long-term proliferation of SSCs in culture (66,
143). Further, Takashima and colleagues demonstrated that
FGF2 could induce SSC self-renewal alone in culture through
activation of the transcription factors ETV5 and BCL6B
(Table 1) (37, 38, 60, 62, 63, 67). They also showed that FGF2-
depleted mouse testes produced increased levels of GDNF, which
correlated with SSCs enrichment. This suggests that a balance or
complementation between FGF2 and GDNF exists to maintain
the stem cell pool (67). More recently, additional studies
comparing the effects of GDNF and FGF2 on the proliferation
of undifferentiated spermatogonia demonstrated that while both
factors expanded the GFRA1+ population, FGF2 rather
expanded a subpopulation of cells expressing RARG, which
were therefore more susceptible to differentiate (68). This
emphasizes the complex nature of signaling and a growth
factor demand that is modulated upon the need to maintain
germ cell homeostasis.
A B

FIGURE 2 | Proposed Model of Regulation of Germ Cell Homeostasis by NOTCH Signaling. (A) Regulation of GDNF expression in Sertoli cells. GDNF is produced
by Sertoli cells and normally increases Asingle, Apaired and some Aligned spermatogonia proliferation. However, as the number of undifferentiated spermatogonia
increases, more JAG1 ligand is available to activate NOTCH signaling in Sertoli cells. Activated NOTCH will down-regulate the expression of GDNF through HES/
HEY, which will decrease the number of undifferentiated spermatogonia, re-establishing GDNF production. Inhibition of GDNF by HES/HEY can be potentiated by the
TNF-alpha/NF-KappaB pathway. (B) Regulation of CYP26B1 expression in Sertoli cells. CYP2681 is produced by Sertoli cells and normally degrades retinoic acid.
However, as the number of undifferentiated spermatogonia increases, in particular Aaligned spermatogonia, more JAG1 ligand is available to activate NOTCH
signaling in Sertoli cells. Activated NOTCH will down-regulate the expression of CYP26B1, which a llows retinoic acid to trigger the transition from undifferentiated to
differentiating spermatogonia.
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Other Growth Factors
Platelet-derived growth factor (PDGF) is specifically produced by
Sertoli cells. In rodents, PDGF is critical for prospermatogonia
proliferation after birth (103, 104) and cooperates with estrogen
signaling (106). Exposure to xenoestrogens in the environment
might disrupt crosstalk between PDGF and estrogen-driven
signaling pathways. This could lead to alteration of
prospermatogonia behavior and induce preneoplastic states (105).
Vascular endothelial growth factor A (VEGFA) family members
and their receptors are all produced by germ cells, Sertoli, cells and
interstitial cells (117, 118). However, only the pro-angiogenic
isoform VEGFA164 promotes SSC self-renewal, as determined by
the SSC transplantation assay (119). WNT signaling plays a role in
SSCmaintenance (50, 144). WNT5A is produced by Sertoli cells but
does not induce self-renewal. It rather promotes SSCs survival
through a b-catenin (CTNNB1)-independent mechanism that
activates mitogen-activated protein kinase 8 (MAPK8 or JNK)
(50). Confirming this data, CTNNB1 ablation in germ cells led to
spermatogenesis disruption but not to SSC loss (51, 52). Finally,
leukemia inhibitory factor (LIF) has been used for decades to
maintain undifferentiated embryonic stem cells in vitro, therefore
an investigation of its expression in Sertoli cells and its effects on
SSCs, at least in vitro, was attempted early on (96). LIF production
in Sertoli cells was shown to depend on tumor necrosis factor
(TNFa) (96) and is still widely used in cultures of primordial germ
cells, pro-spermatogonia, and SSCs of many different species.
However, LIF does not induce SSC self-renewal, and is rather
used to maintain survival and start long-term SSC cultures (10).
SERTOLI CELL FACTORS CONTROLLING
SPERMATOGONIAL DIFFERENTIATION

Regulation of KIT/KITL
Activation of the KIT tyrosine kinase receptor by its ligand KITL is
required for the survival and proliferation of primordial germ cells
(PGCs) (90). KIT is downregulated in pro-spermatogonia, which
stop proliferating once they enter the fetal gonads. After birth, KIT
is re-expressed in differentiating spermatogonia (87, 88), which
proliferate under the influence of KIT ligand (KITL) produced by
Sertoli cells. Together with retinoic acid (RA), the KIT/KITL system
is important for triggering meiotic entry of type B spermatogonia
(92, 93), and KITL has been recently used in culture to differentiate
rat spermatogonia without serum or somatic cells (95). Because
KIT/KITL signaling is important not only for germ cells, but also for
haematopoietic stem cell and melanoblasts, mechanisms controlling
KIT transcription have been extensively studied. Further, KIT is
mutated in about 25% of seminoma (91), and accounts for
secondary mutations that confer resistance to drugs in other
cancers. Therefore, regulation of its expression and identification
of downstream effectors as druggable targets are of particular
interest. Earlier studies have demonstrated that KIT expression in
undifferentiated spermatogonia is repressed by PLZF
(promyelocytic leukemia zinc finger), which is a transcriptional
repressor with local and long-range chromatin remodeling activity
(107, 108). Further, Dann and colleagues demonstrated that RA
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triggered spermatogonial differentiation through downregulation of
PLZF (145). Thus, one mechanism by which PLZF maintains the
pool of spermatogonial stem cells is through a direct repression of
Kit transcription. The main mechanism of KIT upregulation
involves the helix-loop-helix transcription factors SOHLH1 and
SOHLH2 (Spermatogenesis and Oogenesis HLH1/2). Both factors
are expressed in differentiating spermatogonia and their deletion
leads to the disappearance of KIT-expressing spermatogonia.
Further, ChIP-PCR analysis demonstrated that SOHLH1 binds
the Kit promoter to activate its transcription (115). While
investigations have mostly focused on the regulation of KIT, few
studies have explored the regulation of KITL expression in the past
10 years. However, one study by Correia and colleagues
demonstrated that 100 nM estrogen induced a decrease in Kit
expression while increasing expression of Kitl in adult rat
seminiferous tubules cultured ex vivo (89). Altered expression of
the KIT/KITL system decreased germ cell proliferation and
promoted apoptosis, which is not in accord with the data of
previous studies (146).

Regulation of Retinoic Acid Activity
Rats and mice deprived of dietary retinoic acid (RA) can only
produce Aundiff spermatogonia and are sterile (147, 148). Since these
earlier studies, it has been well documented that retinoic acid (RA)
activity is a major determinant of the transition between
undifferentiated and differentiating germ cells, and that RA also
drives the meiotic process and spermatid maturation at stage VIII of
the seminiferous epithelium (134, 149). It has been proposed that
pulses of RA are triggered around this stage by somatic cells and
germ cells to allow proper germ cell differentiation and maturation
(150). This implies that RA must be degraded during the other
stages. Recently, Parekh and colleagues demonstrated an inverse
relationship between the expression of cytochrome P450 family 26
subfamily B member 1 (Cyp26b1), an enzyme that degrades RA (54),
and NOTCH activity in Sertoli cells (56). They further provided
evidence that in the adult testis activated NOTCH signaling in Sertoli
cells down-regulates Cyp26b1 expression through the HES/HEY
transcriptional repressors that bind to the Cyp26b1 promoter (56).
Importantly, expression of these inhibitors is highest at stage VIII of
the seminiferous epithelium (85). They also demonstrated that
Aaligned spermatogonia, through their expression of the NOTCH
receptor JAG1, were activating the NOTCH/HES/HEY axis in
Sertoli cells and were responsible for Cyp26b1 down-regulation at
stage VIII, allowing RA activity and therefore triggering their own
differentiation into A1 spermatogonia (Figure 2B).

CONCLUSION

The Sertoli cell orchestrates spermatogenesis and is a major
component of the SSC niche. The past decade has seen an increase
in our understanding of these processes at the molecular level. In the
perinatal testis, Sertoli cells support multiple aspects of germ cell
development through paracrine factors, but the master regulators of
the niche and the signaling networks regulating these soluble factors
have just begun to be identified. State-of-the-art technologies exist
that should help dissect the functions of novel genes and signaling
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pathways in Sertoli cells in the future. The efforts that were spent
understanding the cyclic regulation of GDNF and Cyp26b1, and by
extension RA, should be expanded to other growth and differentiation
factors. In particular, surprisingly little is known about the signals that
germ cells send to Sertoli cells and their neighboring germ cells. We
hope that the use of spatial transcriptomics will help uncover the
molecular signals and pathways that germ cells and Sertoli cells use to
communicate between each other to direct testis function and
maintain homeostasis. We have highlighted JAG1/NOTCH
signaling as one possible mechanism that fulfills this role, but other
modes of germ cell to Sertoli cell communication exist that still need
to be identified.
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Male fertility throughout life hinges on the successful production of motile sperm, a
developmental process that involves three coordinated transitions: mitosis, meiosis, and
spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round
spermatids, in which histones bound to the male genome are replaced with small nuclear
proteins known as protamines. During this transformation, the chromatin undergoes
extensive remodeling to become highly compacted in the sperm head. Despite its central
role in spermiogenesis and fertility, we lack a comprehensive understanding of the
molecular mechanisms underlying the remodeling process, including which remodelers/
chaperones are involved, and whether intermediate chromatin proteins function as
discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it
remains largely unknown whether more nuanced interactions instructed by protamine
post-translational modifications affect chromatin dynamics or gene expression in the early
embryo. Here, we bring together past and more recent work to explore these topics and
suggest future studies that will elevate our understanding of the molecular basis of the
histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.

Keywords: sperm chromatin, histone, epigenetics, chromatin remodeling, histone displacement
INTRODUCTION

Spermatogenesis ensures transmission of genetic information to the next generation by maintaining
male fertility throughout life. Three biologically distinct processes safeguard the continuous
generation of sperm: mitosis, meiosis, and spermiogenesis – the last of which involves extensive
remodeling of both cytoskeleton and chromatin to achieve a significant compaction of the sperm
head (1, 2). At both a molecular and structural level, sperm chromatin is highly distinct from the
chromatin in oocytes and somatic cells. While nucleosome-based packaging by histone octamers
produces a bead-on-a-string structure of chromatin in oocytes and somatic cell nuclei, the sperm
genome is packaged by small, arginine-rich basic proteins known as protamines (P1 and P2), which
presumably package the DNA into toroidal structures leading to a 10-fold greater chromatin
n.org June 2022 | Volume 13 | Article 8955021231
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compaction state than the somatic cell nucleus (2–4).
This differential packaging program evolved over 500 million
years ago, yet its biological and evolutionary significance
remains unknown.

Seminal work used biochemical and genetic approaches to
identify intermediate proteins involved in the histone-to-protamine
transition; however despite its biological importance, our insight into
how chromatin-associated factors/remodelers are involved remains
limited (5–9).We lackbothgenetic andmolecular reagents to identify
chromatin-associated factors as well as in vitro experimental systems
to investigate mechanisms. In this review, we summarize the current
understanding of chromatin dynamics during spermiogenesis and
the advancesmade to understand sperm chromatin 3Dorganization.
A greater understanding of sperm genome packaging andmolecular
organization will inform our understanding of how this process is
dysregulated in infertility and will aid in the development of clinical
assays and therapeutic approaches thatmayenhance clinical care and
reproductive outcomes.
CHROMATIN DYNAMICS DURING
SPERMATOGENESIS LEAD TO A
UNIQUE PACKAGING MECHANISM
OF SPERM CHROMATIN

The histone-to-protamine transition is one of the most poorly
understood aspects of spermiogenesis and the sequence of events
is also known to vary across species. However, this remodeling
process is believed to occur in a stepwise fashion, wherein
canonical histones are sequentially replaced by testis-specific
histone variants (10–13) followed by transition proteins
(TNPs) (14–16) and finally by protamines (17). These
sequential events are thought to loosen histone-DNA
interactions, thereby facilitating histone removal and
permitting protamine incorporation.

Mechanisms Contributing to Nucleosome
Destabilization: Histone Variants and
Histone Post-Translational Modifications
The hallmark of spermiogenesis is the dramatic reorganization of
chromatin in spermatids, in which most histones are sequentially
replaced with protamines (Figure 1) (5, 6, 18). To achieve this
reorganization, the spermatid nucleus undergoes a series of
intermediate state transitions, including the incorporation of
histone variants (H1t, H2A.X., H2A.Z., H3.3, H3t, TH2A,
TH2B) – many of which are testis-specific – during meiosis
(19–26) and throughout post-meiotic maturation in round
spermatids (H2AL.1/2, HILS) (11, 12, 27, 28). Several in vitro
studies have demonstrated that the incorporation of histone
variants such as H3T, H2AL2, and TH2B induces nucleosome
destabilization by altering histone-DNA binding and weakening
the associations between H2A/H2B dimers and H3/H4
tetramers, to ultimately promote reorganization of the
chromatin (10, 29–31).
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Although histone variants are presumed to instruct the
chromatin remodeling process, inferring specific roles of these
complexes in the exchange process through the analysis of gene
loss of function phenotypes is sometimes challenging due to
confounding functions outside of the histone-to-protamine
exchange. For instance, knockout of H3T results in defective
spermatogonial differentiation, ultimately leading to
azoospermia (26). On the other hand, H2AL2 knockout males
are infertile and exhibit defective genome packaging during
spermiogenesis (12). High-resolution electron microscopy
(EM) analysis of chromatin compaction in H2AL2 knockout
sperm identified more diffuse packaging and many translucent
areas, indicative of defective global genome compaction. This
defect is due to inefficient assembly of both TNPs and
protamines onto chromatin, raising the question of how a
histone variant, functioning upstream of both transition
proteins and protamines, prevents their proper incorporation
onto chromatin (12). However, not all variants incorporated
during spermiogenesis are essential for the histone-to-protamine
exchange. For example, mice lacking TH2B are fertile because
TH2B loss is compensated for by the retention of alternative H2B
isoforms and the addition of destabilizing PTMs such as arginine
methylation and lysine crotonylation within the histone fold
domains of H2A, H2B, H3, and H4, as opposed to the histone tail
(25). Similarly, mice lacking the testis-specific linker histone H1t
retain alternative H1 isoforms and are fertile (32–34). Therefore,
the differences in cellular phenotypes reported for each of the
histone variants may be attributed to gene family expansions and
the extent to which protein variants have retained ancestral or
acquired novel functions. A greater understanding of histone
variant evolution and phylogeny may help us predict and/or
reconcile reported phenotypes for the different proteins involved
in germ cell development and packaging (35–37).

In addition to nucleosome destabilization by the incorporation
of histone variants, histone PTMs can alter histone-DNA binding
dynamics and aid in promoting chromatin accessibility
(Figure 1). Preceding the histone-to-protamine exchange, well-
documented histone hyperacetylation mechanisms promote
chromatin accessibility by inhibiting folding of nucleosomes
into chromatin fibers (38–44). Accordingly, genetic knockout of
either EPC1 or Tip60, two components of the mammalian NuA4/
TIP60 nucleosome acetyltransferase complex, results in a global
decrease in H4 hyperacetylation, leading to aberrant spermatid
elongation, decreased TNP2 incorporation, and ultimately
impaired fertility (45). Similarly, the loss of GCN5, another
histone acetyltransferase, in differentiating spermatogonia
(using Stra8-Cre) leads to aberrant spermatid development and
impaired fertility (46). Indicative of defects in remodeling and
compaction, conditional GCN5 mutant sperm feature
morphological abnormalities such as rounded or blunted
triangular-shaped heads. Chromatin characterization further
reveals an increase in histone retention and concomitant
decrease in sperm protamine levels (46). In related work, loss of
the chromatin reader BRDT–which directly binds to acetylated
histones and facilitates their removal, thereby initiating
repackaging of the genome during spermiogenesis– results in
June 2022 | Volume 13 | Article 895502
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decreased chromatin compaction in spermatids, aberrant
spermatid elongation, decreased sperm counts, and infertility
(47, 48). Together, these studies illustrate that targeted
disruption of histone acetylation writers and readers leads
to similar phenotypes, underscoring the importance of
histone acetylation for histone-to-protamine exchange and
sperm function.

Although H4 hyperacetylation is a well-established
modification known to precede the histone-to-protamine
exchange in multiple species, other modifications, such as di-
and trimethylated H3K79, catalyzed by DOT1L, have been
reported to temporally overlap with H4 hyperacetylation in both
human and mouse spermatids (49, 50). H3K79me3 is enriched at
Frontiers in Endocrinology | www.frontiersin.org 3233
the chromocenter (the constitutive heterochromatin) of round
spermatids and at repetitive elements in mESCs, whereas
H3K79me2 accumulates at euchromatic regions, often
downstream of promoters of actively transcribed genes (51–55).
DOT1L loss of function mutants are embryonic lethal (56),
therefore preventing the analysis of H3K79 methylation in the
histone-to-protamine exchange or spermatid-specific cellular
functions. Therefore, a round spermatid-specific conditional
knockout of DOT1L or H3K79 point mutant mice will be
needed to dissect the impact of the K79 residue or its
methylation during spermiogenesis. In related work, histone
crotonylation, a newly identified modification, is reportedly
enriched in elongating spermatids concomitant with H4
FIGURE 1 | An overview of chromatin dynamics and intermediate stages of the histone-to-protamine exchange. Many histone variants are incorporated in meiotic
spermatocytes, including H3.3, TH2A, and TH2B. Histone variant incorporation continues in post-meiotic round spermatids (H2AL2), concomitant with various
histone PTMs that induce nucleosome destabilization. As spermatids begin elongation, TNPs and protamines are expressed and incorporated onto chromatin, but
whether these act as discrete steps or co-occur remains unknown. It is also established that protamines acquire various PTMs, but the genomic localization of these
PTMs (i.e. whether they occur randomly throughout the genome or localize into discrete domains) has not been determined. Ultimately, protamine-DNA binding
forms toroidal structures of sperm chromatin, making sperm chromatin distinct from that of both oocytes and somatic cells. The contribution of sperm chromatin
structure and the sperm epigenome to embryonic development will also be a fascinating area for future exploration. Cr,crotonylation; Ac, acetylation; Ub,
ubiquitination; P, phosphorylation.
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hyperacetylation (49, 57). Histone crotonylation in somatic and
germ cells is enriched at TSSs, and largely overlaps with active
histone modifications (57). Consistent with a possible role for
crotonylation in the histone-to-protamine exchange, CDYL
(chromodomain Y-like protein, an eraser of crotonylation)
knockout mice exhibit reduced levels of chromatin-bound
transition proteins, sperm motility defects, and decreased
fertility (58). Given the general enrichment in spermatids for
modifications canonically associated with transcriptional
activation in somatic cells, together with the well-documented
pervasive transcription observed in round spermatids (59–61) and
the lack of reported phenotypes for many spermatid-specific
expressed genes, this begs the question of whether the physical
process of gene transcription may be important in nucleosome
destabilization and subsequent exchange–a hypothesis that will
need to be evaluated in future studies (62–65).

Transition Proteins
Transition proteins are present in many species including mouse,
rat, human, ram, and boar (20, 66, 67). Two major TNPs–TNP1
and TNP2– are prominent in rodent spermatids (68). TNP1 is
highly expressed (~2.5x higher in spermatids than TNP2) and
conserved in various mammals, while TNP2 sequences are
poorly conserved across species and its expression level and
protein abundance vary between species (20, 67, 69, 70).
Knockout of TNP1 results in male sub-fertility, and sperm
exhibit abnormal morphology and decreased progressive
motility (71). A detailed analysis of sperm chromatin from
TNP1-/- sperm reveals alterations in protein composition–
including a compensatory increase in TNP2 in mature sperm
as well as an accumulation of unprocessed P2 (71). Interestingly,
fertility in TNP2-/- males is unaffected, although progressive
sperm motility is decreased, and sperm morphology is slightly
abnormal. Like TNP1-/- males, TNP2-/- males also exhibit an
increased level of unprocessed P2 in mature sperm. In both
TNP1-/- and TNP2-/- males, defects in progressive sperm motility
did not impact fertilization rates, as assessed by blastocyst
formation resulting from intracytoplasmic sperm injections
(ICSI) (72). However, double knockout mice are completely
infertile, with a near complete loss of progressive sperm
motility and alterations in sperm chromatin composition (72),
underscoring the importance of these proteins in finetuning
chromatin packaging.

Previous dogma posited that TNPs are incorporated onto
chromatin following histone eviction and occupy the majority of
the genome in elongating spermatids, thereby acting as
intermediates between histones and protamines (73). This
initial assumption was based on the knowledge that the two
transition proteins- TNP1 and TNP2, are both relatively small
and highly basic, with high lysine (~19%) and arginine (~21%)
content, that can mediate electrostatic interactions with the
phosphate backbone of DNA uniformly along the TNP
molecules (74). However, accumulating molecular, genetic, and
biochemical data suggest that TNPs may not replace histones
completely as initially predicted by the stepwise model.

First, numerous studies observed that transition protein
expression does not precede that of protamines, but rather
Frontiers in Endocrinology | www.frontiersin.org 4234
they are co-expressed in spermatids along with other histone
variants and can be directly visualized in the spermatid nucleus
in specific spermatogenic stages (IX-I, Figure 1) (12, 69, 75). This
observation suggests the possibility that these proteins act in
concert, rather than sequentially, to ensure successful chromatin
remodeling. Interestingly, early in vitro data shows that TNP1
has a >8-fold affinity for single-stranded DNA (ssDNA) over
double-stranded DNA (dsDNA), and in contrast to H1 histone,
TNP1 forms less stable structures with DNA even at higher ionic
strength (50 mM NaCl), which is still below physiological salt
concentrations (76). In contrast, TNP2 has a 40X higher affinity
for dsDNA and stabilizes and condenses DNA fibers in vitro at a
broad range of ionic strengths (77, 78). These observations reveal
that DNA binding and stabilizing properties of TNP1 and 2 differ
greatly, suggesting that it is unlikely that TNP1 binds dsDNA,
but rather it may intercalate between nucleic acid bases resulting
in local melting of the DNA duplex, while TNP2 physically
replaces histones. However, recent nucleosome invasion assays
show that TNP2 does not physically replace canonical
nucleosomes or testis-specific variant-containing nucleosomes,
but rather TNP2 intercalates the nucleosome, leading to
nucleosome destabilization/eviction or TNPs may serve as a
scaffold on histones to aid in protamine recruitment/deposition
onto chromatin (12). Therefore, various categories of nuclear
proteins (histone variants, transition proteins, protamines), act
in a concerted manner to mediate a direct transition from
histone-to-protamine states, as observed in certain species of
birds and fish (79, 80). The differences in the complexity of the
remodeling process are intriguing and makes us wonder whether
these differences may be due to biochemical and biophysical
properties of protamine proteins themselves or whether
analogous proteins (variants and TNPs) with similar properties
are needed in other species but have not yet been identified.

Protamines
During spermiogenesis, small, sperm-specific, and highly
arginine-rich protamines serve to compact paternal DNA,
allowing the sperm head to adopt a highly condensed,
hydrodynamic shape that protects the paternal DNA during
transit to the egg (81, 82). Most mammals, including mice and
humans, express two forms of protamine: protamine 1 (P1) and
protamine 2 (P2). Rapidly evolving across species (6, 83–86),
protamines are subject to strong positive selection that tightly
maintains arginine/serine-rich regions, but not strict sequences
(85–87). Whether protamines are possibly coevolving with the
DNA sequence or if protamines from different species have
different binding affinities to certain genomic regions within
and across species remains to be determined.

P1 is expressed in its mature form, while P2 is initially
expressed as a longer precursor (pro-P2) and undergoes
selective proteolytic processing to produce its mature form
(P2) once bound to DNA (88, 89). Truncation of the amino
terminus of P2, the portion of the protein that is typically cleaved
(cP2) in the nucleus, causes infertility due to inefficient import of
the protein into the nucleus, resulting in altered protamine ratios
and immotile sperm; suggesting that the longer isoform may be
required for protamine-chaperone interactions (90).
June 2022 | Volume 13 | Article 895502
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Across species, the P1:P2 ratio is highly variable but
maintenance of a species-specific P1:P2 ratio is critical for
normal fertility (91–94). Conversely, alterations in protamine
ratios in mice and humans are associated with increased sperm
DNA fragmentation, diminished fertilization rates, and defects
in sperm morphology and motility (12, 90, 92, 95). Consistent
with the importance of P1:P2 ratio correlations, initial
haploinsufficiency studies of either P1 or P2 genes resulted in
infertility (96). However, subsequent studies using CRISPR-Cas9
engineered P1 or P2-deficient mouse lines found that
haploinsufficiency of P1 is sufficient to cause infertility,
whereas loss of one P2 allele is tolerated and complete deletion
is necessary to cause infertility (97, 98). Together, these results
suggest that a defined composition of chromatin is necessary for
fertility, and deviations have negative consequences.

Given that protamines were assumed to bind uniformly in the
genome and not believed to bear PTMs, their potential role as
informational carriers has been largely overlooked. Recent
biochemical and mass-spectrometry analysis by us and others
led to the discovery that P1 and P2 proteins from mature sperm
carry multiple PTMs, including phosphorylation, acetylation,
and methylation (95, 99). Dynamic phosphorylation/
dephosphorylation of protamines was previously suggested to
have a role in modulating protamine-DNA dynamics in a variety
of species (100–103). Analysis of radiolabeled proteins from
mouse and rat seminiferous tubules by acid urea gel
electrophoresis revealed that newly synthesized protamines are
phosphorylated and subsequently dephosphorylated shortly after
their deposition onto DNA (88), a phenomenon also observed in
human sperm (101, 102). More recent studies reported
comprehensive catalogs of mouse and human protamine
PTMs, with ~53% of P1 peptides in mouse containing PTMs
and ~16% of P2 peptides (99, 104). Importantly, the sites of
protamine modifications are maintained within a species but not
conserved across species, suggesting that these modifications
may confer a lineage-specific function (95). The identification
of protamine PTMs was surprising since these proteins are
placed onto DNA after meiosis and during spermatid
maturation–when all transcription in germ cells has halted,
suggesting that these modifications have no effect on spermatid
gene expression. Rather, these modifications may be required for
either 1) mediating protamine protein deposition onto DNA
and/or regulating sperm genome packaging, 2) conveying
epigenetic information to the zygote, or 3) instructing paternal
genome chromatin reorganization.

Indeed, recent studies suggested that protamine
phosphorylation during spermiogenesis is important for
modulating protamine-DNA dynamics and maximizing
chromatin compaction (105, 106). Recently, Gou et al.
reported that phosphorylation of serine residues in P1 during
early embryogenesis is required to weaken protamine-DNA
interactions, thereby permitting male pronuclear remodeling
and protamine-to-histone exchange (106). Additionally, we
found that loss of acetylation at P1 lysine (K) 49 drastically
alters sperm chromatin composition and results in subfertility in
the mouse, premature dismissal of P1 from paternal chromatin
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in the zygote and altered DNA compaction and decompaction
rates in vitro (95). Together, these studies establish a regulatory
role for protamine PTMs in governing sperm chromatin
packaging and unpacking in the embryo. Whether PTMs on
human protamines similarly influence these processes remains to
be determined. Additionally, assessing whether alterations in
protamine PTM levels affect embryonic gene expression, as is the
case for alterations in histone levels/PTMs, will further provide
insight into the function of these modifications in vivo.

Although the histone and protamine packaging systems were
discovered decades ago, we know relatively little about whether
protamine protein placement varies along the sperm genome and
how they are placed onto DNA, relative to the wealth of data
available for histone proteins. The current models suggest that
protamine proteins bind uniformly throughout the genome, but
definitive data to support or refute such a model are lacking. The
super-condensed protamine-packaged chromatin state does not
easily lend itself to mechanistic investigations. Moreover, the
scarcity of lysine residues in protamines makes it difficult to
crosslink protamine proteins and DNA to prevent protamine on/
off dynamics, which can lead to non-biological associations
during sample processing.
CHROMATIN REMODELERS INVOLVED IN
HISTONE-TO-PROTAMINE EXCHANGE

Studies of chromatin-associated factors/remodelers involved in
sperm chromatin remodeling are hampered by the lack of genetic
and molecular reagents with which to identify chromatin-
associated factors in vivo and the lack of experimental systems
to model the histone-to-protamine exchange process in vitro.
However, candidate gene knockout studies have begun to shed
insights. For example, in a full body knockout of Chromodomain
Helicase DNA Binding Protein 5 (CHD5), with phenotypes
ranging from subfertility to infertility, the infertility is not
caused by changes in the hypothalamic pituitary axis or
somatic cell numbers. Instead, the infertility appears to be
germ cell-intrinsic; presenting as defects in spermatid
elongation and condensation defects, consistent with CHD5
expression in steps 7-10 of spermatid maturation, immediately
preceding and overlapping with the extensive chromatin
remodeling (107, 108). Biochemical fractionation of spermatids
shows that CHD5 deficiency perturbs histone hyperacetylation
and the histone-to-protamine transition, leading to aberrant
retention of histones and elevated levels of transition proteins
and protamines (107, 108). The overall higher level of protamine
mRNA and protein expression in CHD5-/- males, assessed by
qPCR and immunoblotting, indicates a possible role for CHD5
in protamine transcriptional and/or translational control (107).

Other studies have explored the roles of ATP-dependent
chromatin remodeling complexes SWI/SNF (SWItch/Sucrose
Non-Fermentable) and ISWI (Imitation SWItch). A knockout
of BRG1 (a SWI/SNF component and transcription activator) in
germ cell progenitors resulted in a mid-pachytene arrest,
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preventing investigations in post-meiotic round spermatids
(109). The zinc finger and bromo-domain protein ACF1/
BAZ1A, a component of ISWI, binds to the chromatin
remodeler SNF2H and plays an essential role during post-
meiotic spermiogenesis, as evidenced by its deletion resulting
in infertility with increased DNA damage and spermiation
defects (110). At a general level, deletion studies are
confounded by upstream functions in spermatogenesis,
making it difficult to investigate the specific role of
chaperones/remodelers in nucleosome eviction/protamine
deposition and to discern whether histone removal and
protamine deposition are functionally distinct processes that
require unique or shared proteins. As the process of
spermiogenesis occurs within the testis, and its byproduct is
sperm DNA compaction, monitoring the remodeling process in
a living organ is not possible. However, the combination of future
targeted proteomic analyses with an in vitro chromatin
remodeling system holds promise for identifying candidate
remodelers and uncovering molecular details of their roles in
the histone-to-protamine exchange.
SOMETHING OLD, SOMETHING NEW:
EXPERIMENTAL APPROACHES TO
UNDERSTAND SPERM STRUCTURE AND
3D ORGANIZATION

Decades of in vitro biochemistry and biophysics experiments
have provided fundamental insights into protamine-DNA
interactions and the structure of sperm chromatin imposed by
protamine binding. Early in vitro studies primarily relied on
measuring the behavior and properties of either polyarginine/
polylysine peptides or purified salmon or bull (domestic cattle,
Bos taurus) sperm protamine (111–116). Raman and nuclear
magnetic resonance (NMR) spectroscopy using a polyarginine
(R6WGR6) peptide – a representative sequence of the central
arginine-rich domain of bull P1 – suggested that protamines
bind preferentially to the major groove of DNA, with one
protamine molecule bound per turn of the helix (117). Using
Particle Induced X-ray emission, in vivo measurements of the
total amount of nuclear phosphorous and sulfur in sperm from
various species estimated that bull P1 binds ~10-11 base pairs of
DNA. Assuming that the P1 binding to DNA mode is conserved
across species, and given known P1:P2 ratios, calculations of
phosphorous:sulfur ratios predict that P2 binds ~15 base pairs,
although the exact footprints of P1 and P2 remain to be
determined (115).

Several early studies examining the 3-dimensional topology of
the sperm genome indicated that sperm DNA, like somatic cell
DNA, forms loops, as inferred by the formation of nuclear “halos”
when sperm are treated with SDS and stained with ethidium
bromide (118–121). The loops formed by hamster sperm were
noted to be smaller than those found in somatic cell nuclei by ~60%,
and to consist of ~50 kb of DNA on average. Furthermore, these
loops are anchored to a structural component of the sperm nucleus
– termed the nuclear matrix – at attachment sites known as matrix
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attachment regions, or MARs (120–126). When isolating DNA
loops or nuclear matrices and analyzing the localization of a handful
of genes, early data suggested that the 5SRNA gene enriches at the
nuclear matrix, while satellite DNA is detected in loops (120, 125,
127, 128), suggesting that DNA organization and sites of DNA
attachment to the matrix may not be random, but programmatic.
However, future studies are needed to explore such assumptions
genome-wide and determine whether MARs are associated with
specific DNA sequences or with specific chromatin (histone or
protamine-bound) in sperm.

The molecular nature of sperm genome organization was
initially difficult to resolve because sperm decondensation by
chemical agents was necessary to visualize sperm DNA, which
prevented the investigation of the structure of unperturbed sperm
chromatin in vivo. However, by examining intact native sperm or
reconstituted salmon sperm protamine with either lambda phage
DNA or linearized plasmid DNA, using a variety of techniques
including light scattering (129, 130), electron and atomic force
microscopy (116, 131), fluorescence microscopy (132, 133), and
DNA elasticity measurements (134), it was discovered that
protamine-DNA complexes both in vivo and in vitro were
organized into toroidal structures. The identification of a toroid
is intriguing given that other positively charged molecules,
including hexamine-cobalt (III), spermine, and spermidine, have
also been shown to form DNA toroids (135, 136). While toroids
are the identified packaging unit, the exact mechanism of folding
and unfolding of the toroid is unknown, but presumed to be
mediated by single loops coming together and then separating
back out. Recent studies using tethered particle motion assays and
AFM found that salmon protamine uses a multi-step process,
forming multiple independent loops of a roughly defined diameter
that come together before forming a larger toroidal structure
(137). Furthermore, the formation of these structures relies on
protamine binding-and-bending the DNA, whereby multiple
protamine molecules bind locally to a DNA segment to induce
bending of the DNA filament to form loops (138). These data are
in agreement with previous studies that identified loops formed by
sperm DNA in vivo (119, 121, 124) as well as our recent EMSA
and single molecule DNA curtain assays, which suggest that large-
scale genome compaction by protamines is achieved by protamine
protein cooperativity (95). Although these experiments provide a
basic foundation of knowledge of sperm genome packaging, these
data rely on protamines from teleost fish or bull P1 proteins, which
are highly divergent from both mouse and human protamines in
both sequence and amino acid composition. Therefore, we are
currently presuming that protamines from all species display a
stereotypic random association with DNA that is sequence-
independent. Future studies utilizing mammalian proteins or
multiple protamine protein proteoforms (P1, 2, and/or 3) are
needed to explore whether packaging is universal regardless of
source or combination of proteins used. By learning how
protamines guide sophisticated genome self-assembly, one may
utilize the inherent rules of cellular machineries to synthesize
designer molecular structures in vitro which can be used for gene
therapy delivery.

Multiple groups have taken advantage of chromatin capture
assays to allow high-resolution mapping of the 3D organization of
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not only sperm chromatin across a variety of species, but also of
pre-implantation embryos, providing foundational insight into
sequence-level 3D chromatin organization from gametes to the
next generation. Initial Hi-C studies in mouse sperm curiously
found that despite sperm being packaged by protamines, sperm
3D organization resembles both fibroblast (139) and mESC (140)
genome organization, with the exception that sperm from mouse
and macaque possess a significant number of long-range
interactions (>2 Mb), with a significant fraction of these
interactions being between TADs (141, 142). Likely, these extra-
long-range interactions aid in either establishing or maintaining
the hypercondensed state of the sperm nucleus. In contrast,
zebrafish sperm, which completely lack protamines, lack TADs
altogether, and resemble mitotic chromosomes. Contact matrices
exhibit “flare-like” structures, indicative of clustering of large
extended genomic loops at a set point that is equidistant for all
loops (143). Analysis of these flares illustrated that zebrafish sperm
do indeed display periodic domains of ~150 kb that repeat every 1-
2 mega bases–a chromatin structure resembling the mitotic cell
chromatin landscape, and suggesting that the overall 3D
chromatin architecture of the zebrafish sperm genome may be
distinct from protamine-bound sperm genomes (144). However,
since the 3D chromatin structure of a zebrafish sperm, which is
fully packaged in histone, is different from somatic cells, this begs
the question of whether the published structures of mammalian
sperm, which resemble somatic cells and mESCs, are truly
representative of the in vivo architecture. Given its hyper-
condensed state, the protamine-packaged genome is poorly
accessible to restriction enzymes. Therefore, applying current
Hi-C technology in mammalian sperm is likely to be
particularly technically challenging, requiring methodological
innovations before Hi-C can be leveraged towards generating a
comprehensive view of the in vivo sperm genome architecture.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Protamine-based compaction of paternal DNA and the unique
sperm chromatin state have fascinated scientists for decades. We
have gained foundational knowledge about the histone-to-
protamine transition, yet, we still lack a comprehensive
understanding of the mechanisms governing critical steps of
the exchange process. Specifically, it remains unknown which
specific factors are required for histone eviction/protamine
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deposition and importantly, how all basic proteins function
together to ensure successful exchange. Future studies
examining whether histone variants, transition proteins, and
protamines truly function as independent intermediates or act
in combined mechanisms will shed light on the regulation of this
process and inform development of targeted interventions to
treat infertility. The recent discovery of protamine PTMs suggest
that nuanced interactions may control aspects of the exchange
process and chromatin condensation during spermiogenesis, but
whether these modifications constitute a species-specific code
analogous to the histone code for instruction of development
remains to be determined. Lastly, while both classical and
modern approaches have been applied towards understanding
the structure of sperm chromatin, structure determination by
cryo-EM will undoubtedly provide a more complete picture.
These future studies will not only significantly increase our
understanding of sperm genome packaging, but may aid in our
understanding of idiopathic male infertility or eventually lead to
the development of clinical assays that can better predict
reproductive success.
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Spermatozoa Develop
Molecular Machinery to
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This study was designed to search for the possible mechanism(s) of male (in/sub)fertility
by following the molecular response of spermatozoa on acute psychological stress (the
most common stress in human society) and on a 20-h time-dependent recovery period.
To mimic in vivo acute stress, the rats were exposed to immobilization once every 3 h. The
recovery periods were as follows: 0 (immediately after stress and 3 h after the light is on—
ZT3), 8 (ZT11), 14 (ZT17), and 20 (ZT23) h after stress. Results showed that acute stress
provoked effects evident 20 h after the end of the stress period. Numbers of spermatozoa
declined at ZT17 and ZT23, while functionality decreased at ZT3 and ZT11, but recovered
at ZT17 and ZT23. Transcriptional profiles of 91% (20/22) of tracked mitochondrial
dynamics and functionality markers and 91% (20/22) of signaling molecules regulating
both mitochondrial dynamics and spermatozoa number/functionality were disturbed after
acute stress and during the recovery period. Most of the changes presented as increased
transcription or protein expression at ZT23. The results of the principal component
analysis (PCA) showed the clear separation of acute stress recovery effects during
active/dark and inactive/light phases. The physiological relevance of these results is the
recovered positive-acrosome-reaction, suggesting that molecular events are an adaptive
mechanism, regulated by acute stress response signaling. The results of the PCA
confirmed the separation of the effects of acute stress recovery on gene expression
related to mitochondrial dynamics, cAMP, and MAPK signaling. The transcriptional
patterns were different during the active and inactive phases. Most of the transcripts
were highly expressed during the active phase, which is expected given that stress
occurred at the beginning of the inactive phase. To the best of our knowledge, our results
provide a completely new view and the first presentation of the markers of mitochondrial
dynamics network in spermatozoa and their correlation with signaling molecules
regulating both mitochondrial dynamics and spermatozoa number and functionality
during recovery from acute stress. Moreover, the interactions between the proteins
important for spermatozoa homeostasis and functionality (MFN2 and PRKA catalytic
subunit, MFN2 and p38MAPK) are shown for the first time. Since the existing literature
suggests the importance of semen quality and male fertility not only as the fundamental
marker of reproductive health but also as the fundamental biomarkers of overall health and
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harbingers for the development of comorbidity and mortality, we anticipate our result to be
a starting point for more investigations considering the mitochondrial dynamics markers or
their transcriptional profiles as possible predictors of (in/sub)fertility.
Keywords: acute psychological stress, stress recovery, mitochondrial dynamics and functionality markers, cAMP
signaling markers, MAPK signaling markers, spermatozoa number and functionality
INTRODUCTION

Stress is an important adaptive response of an organism that
enables survival and maintains homeostasis (1). However, if it is
repeated or persistent/chronic, it can cause diseases (2–6). Many
epidemiological studies showed that DNA damage during stress
response is regulated through adrenergic signaling (7). It is clear
that different types of stress and stressful life events have been
linked to reduced adult male reproductive function (8–11).
Numerous studies reported connection between male (sub/in)
fertility and stressful life (8, 12–14). However, mechanisms
causing the (sub/in)fertility are not described yet.

Mitochondria are a very important linking point between stress
response and spermatozoa functionality since these organelles are
able to produce enormous levels of energy required for both
processes (2, 3, 6, 13). Moreover, signaling pathways activated by
stress hormone receptors are important for homeostasis of
mitochondrial network and spermatozoa functionality (10, 11,
15). The mtDNA is required for male fertility (16) and could be a
diagnostic marker for sperm quality in men (17). The disturbed
mtDNAwas observed in oligo-asthenozoospermic patients (18) and
in asthenoteratozoospermia-induced male infertility (19). Since the
mitochondrial morphology changes during spermatogenesis (20),
the disturbed ultrastructure of mitochondria can explain some of
the unexplained cases of asthenozoospermia (21). Moreover, the
mitochondrial membrane potential is also important for
spermatozoa functionality (22–25). The reduced mtDNA content
in human sperm (26) and the expression of TFAM gene correlate
with abnormal spermatozoa forms (27, 28). Furthermore, human
sperm motility and viability are regulated by mitophagy (29) as well
as UCP2 (30) and the MFN2 expression levels (31). Thus, the
mitochondria are a crucial organelle for spermatozoa wellbeing and
fertility (13).

The homeostasis of the mitochondrial network is regulated by
intriguing processes of mitochondrial dynamics including
mitochondrial biogenesis, mitofusion, mitofission, and
mitophagy (32–35). All processes involve a complex and
multistep molecular event required for renewal, adaptation, or
expansion of the mitochondrial network (26, 36–38). The main
molecular markers of mitochondrial dynamics are not only the
main markers of mitochondrial biogenesis (PGC1a, PGC1b,
NRF1, NRF2, and TFAM), mitofusion (MFN1, MFN2, and
OPA1), mitofission (DRP1 and FIS1), and mitophagy (PINK1
and PARKIN), but also important markers of the respiratory
chain function (32–35, 37, 38). In addition, maintaining
homeostasis of the mitochondrial network requires intriguing
and complex network of signaling pathways (33, 36, 38), which
are able to convey a wide variety of different environmental
n.org 2243
signals: stress (39, 40), temperature (41), energy deprivation (38),
availability of nutrients (38), and growth factors (42).

It is important to point out that all signaling pathways
regulating mitochondrial dynamics are required for
spermatozoa homeostasis (43). Similar signaling pathways are
involved in regulation of the function of sperm flagellum (44).
Additional complications related to understanding the
regulation of spermatozoa functionality are findings that show
that murine germ cells highly express genes involved in
steroidogenesis and other cell functions, such as genes involved
in fatty acid metabolism or synthesis. This supports the
possibi l i ty of an addit ional level of regulat ion of
spermatogenesis (45, 46).

In search for mechanisms activated by and during stress, we
explored molecular events in spermatozoa at four time points in
a 20-h time-dependent recovery period after acute stress (once
for the duration of 3 h, 7 a.m. to 10 a.m.). Acute stress was chosen
since it is the most common stress in human society. Recovery
was followed at a different time points during the day (light/
inactive and dark/active phase): immediately after acute stress
(ZT3) as well as 8 (ZT11), 14 (ZT17), and 20 (ZT23) h after acute
stress. Number and functionality of spermatozoa, as well as the
transcriptional profiles of 22 mitochondrial dynamics and
function markers and 22 related signaling molecules were
followed (Figures 1–13). Two rationales were prevalent in the
decision to follow spermatozoal functionality by acrosome
reaction. First, acrosome reaction is the event in the timeline
that is closer to fertilization than motility or other parameters.
Second, working with human samples (640 samples were
collected over the last 18 months) from men attending the
national IVF program, we came to learn that there are
significant numbers of normozoospermic samples with good
motility and other parameters of spermiogram, but with
negative acrosome reaction, suggesting the possible reason for
entering the IVF program.
MATERIALS AND METHODS

All experiments were carried out in the Laboratory for
Reproductive Endocrinology and Signaling and Laboratory for
Chronobiology and Aging, Faculty of Sciences at University of
Novi Sad (wwwold.dbe.pmf.uns.ac.rs/en/nauka-eng/lares).
Methods used in this study were carried out following relevant
guidelines and regulations and were reported previously [for all
references, please see (10, 11, 47)]. Key resource tables and tables
containing primers and antibody data are provided in the
Supplementary Material.
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Statement of the Institutional Review Board
The manuscript is approved by the Committee of the Faculty of
Sciences, University of Novi Sad, Novi Sad, Serbia.

The authors complied with ARRIVE guidelines and all
experiments were in adherence to the ARRIVE guidelines. All
experimental protocols were approved (statement no. 01-201/3)
by the local Ethical Committee on Animal Care and Use of the
University of Novi Sad operating under the rules of the National
Council for Animal Welfare and the National Law for Animal
Welfare (copyright March 2009), following the NRC publication
Guide for the Care and Use of Laboratory Animals and the NIH
Guide for the Care and Use of Laboratory Animals.

Animals and Experimental Model of Acute
Stress With a Recovery Period
Adult, 3-month-old, male Wistar rats were used in all
experiments. Animals were bred and raised in the accredited
Animal Facility of the Faculty of Sciences, University of Novi
Sad, Serbia, in controlled environmental conditions [22 ± 2°C; 14-
h light and 10-h dark cycle, lights on at 07:00 a.m. (ZT0)] with
food and water ad libitum. The experimental model of
psychophysical stress by immobilization (IMO) was performed
by the method previously described (10, 11, 47, 48). To analyze the
effects of acute stress with the recovery period (48), animals were
subjected to immobilization stress (IMO) for 3 h, once, from ZT0
to ZT3 (1x3hIMO), and allowed to recover (1x3hIMO+R) for 0, 8,
Frontiers in Endocrinology | www.frontiersin.org 3244
14, and 20 h after the IMO (ZT3, ZT11, ZT17, and ZT23; ZT0 is a
time when the light is turned on) (Figure 1). The experimental
model of psychophysical stress by immobilization was performed
by the method previously described (9–11). In short, rats were
bound in a supine position to a wooden board by fixing the rats’
limbs using thread, while the head motion was not limited.
Unstressed, freely moving rats were present as a control group
(Control) in each experiment. All activities during the dark phase
were performed under the red light. At the end of the experimental
period, control and stressed animals were quickly decapitated
without anesthesia and trunk blood was collected. In each
experiment, both control and stressed animals were randomly
divided into four time point groups, with a total of 4 animals in the
control group and 6 animals in the 1x3hIMO+R group per time
point. The sample size was checked by Power Analysis using the G
Power software (http://core.ecu.edu/psyc/wuenschk/Power.htm)
according to previously published results. The experiment was
repeated two times.

Spermatozoa Isolation and Their
Functionality Assessment (Capacitation
and Acrosome Reaction)
Isolation of caudal epididymides spermatozoa was carried out
following the WHO laboratory manual (https://www.who.int/
publications/i/item/9789240030787) with modifications for rat
spermatozoa isolation. In short, caudal epididymides were
FIGURE 1 | Experimental design of immobilization stress with recovery period used to assess spermatozoa number and functionality (% acrosome reaction) as well
as mitochondrial dynamics markers and related signaling molecule expression profiles of transcripts and proteins.
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quickly isolated, the surrounding adipose tissue was removed,
and epididymides were placed in a petri dish containing medium
for isolation and preservation of spermatozoa (1% M199 in
HBSS with 20 mM HEPES buffer and 5% BSA) or Whitten’s
Media (100 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM
MgSO4, 5.5 mM glucose, 1 mM pyruvic acid, and 4.8 mM lactic
acid), depending on the subsequent analysis. Isolated
epididymides were finely punctuated with a 25G needle to
enable spermatozoa to be released into the medium, and
incubated at 37°C for 10 min. Released spermatozoa were
collected and centrifuged for 5 min at 700×g at room
temperature. The supernatant was removed, and the pellet was
resuspended in the appropriate medium depending on the
subsequent analysis. Concentrations of isolated spermatozoa
were calculated using a Makler counting chamber (Sefi-
Medical Instruments, Ltd, Israel). Isolated spermatozoa were
used for the capacitation and acrosome reaction procedure and
the rest of the spermatozoa were stored at −70°C, before RNA
isolation and the subsequent gene transcription analysis. To
determine the spermatozoa functionality, approximately 1.5 ×
105 spermatozoa in 50 ml of Whitten’s Media were mixed with
350 ml of WH+ media [Whitten’s Media supplemented with the
10 mg/ml BSA (bovine serum albumin) and 20 mM of NaHCO3,
to stimulate the capacitation] with a drop of mineral oil, at 37°C
(5% CO2) for 1 h. Fifty microliters of capacitated spermatozoa
was transferred into two new tubes, one without the
progesterone, present as the control of the acrosome reaction,
and one with 15 mM progesterone (PROG) to activate the
acrosome reaction, with a drop of mineral oil, and incubated at
37°C (5% CO2) for 30 min. For the fixation of spermatozoa after
the acrosome reaction, 20 ml of the spermatozoa suspension from
each tube was mixed with 100 ml of the fixation solution (20 mM
Na2HPO4, 150 mM NaCl, and 7.5% formaldehyde) and
incubated for 20 min at room temperature. Subsequently, fixed
spermatozoa were centrifuged for 1 min at 12,000×g, and washed
with 100 mM ammonium acetate, pH 9. Smears of fixed
spermatozoa were prepared on microscopic slides and air-
dried. Dried spermatozoa smears were stained using staining
solution (0.04% Coomassie Blue–G250, 50% methanol and 10%
acetic acid) for 5 min at room temperature. Staining solution was
rinsed with distilled water and spermatozoa smears were allowed
to air-dry. Stained smears were analyzed using the Leica DMLB
100T microscope with 1,000× magnification, and up to 100
spermatozoa per slide were counted to determine the
acrosomal status. Blue staining in the acrosomal region of the
head indicated intact acrosome, while spermatozoa without blue
staining in the acrosomal region were considered to be
acrosome-reacted. Data are presented as the percentage of
acrosome-reacted spermatozoa ± SEM.

Isolation of RNA and cDNA Synthesis
Total RNA isolation was performed using the GenElute
Mammalian Total RNA Miniprep Kit according to the
protocol recommended by the manufacturer, followed by the
DNase I (RNase-free) treatment. The first-strand cDNA was
synthesized using the High-Capacity Kit for cDNA preparation.
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Relative Quantification of Gene Expression
Rat spermatozoa samples isolated from caudal epididymides
were stored at −70°C until they were used for the isolation of
total RNA. Total RNA isolation was performed using the
GenElute Mammalian Total RNA Miniprep Kit according to
the protocol recommended by the manufacturer (Sigma Aldrich,
Germany, https://www.sigmaaldrich.com). To eliminate DNA
from the samples, DNase I (RNase-free) treatment was carried
out according to the manufacturer’s instructions (New England
Biolabs, Massachusetts, United States, https://www.neb.com).
The concentration and purity of isolated total RNA were
measured using the BioSpec-nano spectrophotometer
(Shimadzu, Japan, https://www.shimadzu.com). Furthermore,
the first-strand cDNA was synthesized using the High Capacity
Kit for cDNA preparation according to the manufacturer’s
protocol (Thermo Fisher Scientific, Massachusetts, United
States, https://www.thermofisher.com). In each set of reactions,
negative controls consisting of non-reverse-transcribed samples
were included. Quality of RNA and DNA integrity was checked
using control primers for Gapdh, as described previously by our
group [for references, please see (10, 11, 47)]. Relative expression
of genes was quantified by real-time PCR (RQ-PCR) using SYBR
Green-based chemistry from Applied Biosystems. Each reaction
contained 10 ng of cDNA (calculated from starting RNA) in a
volume of 2.5 ml and specific primers at a final concentration of
500 nM. Primer sequences used for RQ-PCR analysis, average Ct
values, as well as GenBank accession codes for full gene
sequences are given in Supplementary Tables S5–S11. Relative
gene expression quantification of Gapdh was measured in each
sample and used to correct variations in cDNA content between
samples. Relative quantification of each gene was performed in
duplicate, three times for each sample of two independent in vivo
experiments. The real-time PCR reactions were carried out in the
Eppendorf Mastercycler ep realplex 4 Real Time PCR and post-
run analyses were performed using Mastercycler ep realplex
Software. The heat map image was generated with relative fold
change values, using the online tool CIMminer (http://discover.
nci.nih.gov/cimminer/home.do as of December 13, 2021) to
represent the gene expression profile of mitochondrial dynamic
and functionality markers and signaling molecules regulating
mitochondrial dynamics and functionality in different time
points after the acute immobilization stress.

Relative Quantification of Protein
Expression and Immunoprecipitation
Analysis
Rat spermatozoa samples isolated from caudal epididymides were
frozen and stored at −70°C until protein extraction. Cells were lysed
and Western blot analysis was performed as described previously
(9). Immune-reactive bands were detected using MyECL Imager
(Thermo Fisher Scientific Inc.; https://www.thermofisher.com) and
analyzed as two-dimensional images using Image J version 1.48
(http://rsbweb.nih.gov/ij/download.html). The optical density of
images is expressed as volume adjusted for the background,
which gives arbitrary units of adjusted volume. Normalization of
the data was done using GAPDH protein expression as the
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endogenous control. Immune detection was performed with
different antibodies (all details are listed in Supplementary Table
S12). Antibodies against PGC1, NRF1, NRF2, and GAPDH were
purchased from Santa Cruz Biotechnology (https://www.scbt.com).

Spermatozoa samples for immunoprecipitation analysis were
lysed in 1ml of buffer containing 20mMHEPES, 10mMEDTA, 2.5
mM MgCl2, 40 mM b-glycerophosphate, 1 mM DTT, 1% NP-40,
0.5 mM 4-(aminoethyl)-benzenesulfonyl fluoride hydrochloride, 1
µM aprotinin, 2 µM leupeptin, and phosphatase inhibitor cocktail
tablets [cont. (1R, 2S, 3R, 6S)-1.2-dimethyl-3.6-epoxycyclohexane-
1.2-dicarboxylic anhydride]. The concentration of proteins in each
sample was estimated by the Bradford method and set at a
concentration of 300 µg/ml. An equal amount of protein in each
sample (300 µg) was used for the immunoprecipitation. Pre-
clearing of the lysate was done using 5 µl of normal goat serum
[Santa Cruz Biotechnology, normal goat serum: sc-2043, (https://
www.scbt.com)] mixed with 1 ml of lysate and incubated on ice for
1 h. After the incubation, 100 µl of bead slurry was added to each
sample and incubated for 30 min at 4°C with gentle agitation. The
supernatant for the immunoprecipitationwas collected after 10min
and centrifuged at 14,000×g at 4°C. After the pre-clearing process,
lysates were mixed with MFN2 antibody (Santa Cruz
Biotechnology) and incubated at 4°C overnight with constant
rotation. During additional overnight incubation at 4°C with
constant rotation, immunoprecipitated complexes with MFN2
antibody were recovered by 80 µl of protein G agarose bead
slurry. Precipitated proteins were washed two times with 1 ml of
lysis buffer and the supernatantwas used for further protein analysis
(please see Supplemental Material file). Final pellets were mixed
with protein loading dye, incubated at 100°C for 5 min, and
resuspended in the SDS-PAGE 12% gels. Gels were analyzed by
one-dimensional SDS-PAGE and proteins were transferred to a
polyvinylidene difluoride membrane using a wet transfer. The
immunodetection of the MFN2, PRKAc, and p38 MAPK was
done with the use of MFN2 antibody (Santa Cruz Biotechnology),
PRKAc antibody (BD Transductions Laboratories), and p38
MAPK antibody (Cell Signaling Technology) (all details are
listed in Supplementary Table S12). Immune-reactive bands
were detected using MyECL Imager (Thermo Fisher Scientific
Inc.; https://www.thermofisher.com) and analyzed as two-
dimensional images using Image J version 1.48 (http://rsbweb.
nih.gov/ij/download.html). The optical density of images is
expressed as volume adjusted for the background, which gives
arbitrary units of adjusted volume. Normalization of the data was
done using MFN2 protein expression.

Statistical Analysis
Results of the experiments represent group means ± SEM values of
the individual variation from two independent experiments. In each
experiment, both control and stressed animals were randomly
divided into four time point groups, with a total of 4 animals in
the control group and 6 animals in the 1x3hIMO+R group per time
point. In each of the two experiments, both control and stress
animals were randomly divided into four time-points groups. In the
first experiment, spermatozoa samples of each individual animal
were used for the RNA extraction, individual cDNA, individual
real-time PCR for the analysis of relative expression of transcripts,
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individual for protein extraction. While in the second experiment
spermatozoa sample of each animal were pooled. Results from each
experiment were analyzed by Mann–Whitney’s unpaired
nonparametric two-tailed test (between the 1x3hIMO group and
the control group within the same time point), or by one-way
ANOVA followed by Dunnett’s test, for comparison with the ZT3-
Control group. All statistical analyses were performed using
GraphPad Prism 5 Software (GraphPad Software 287 Inc., La
Jolla, CA, USA). In all cases, p-value <0.05 was considered to be
statistically significant.

Principal Component Analysis
Principal component analysis (PCA) was done with the
dudi.PCA() function implemented in “ade4” package (49), on
scaled and centered data matrix, within the R environment. We
decided to retain the first two PCs based on eigenvalues and
cumulative variation. In support of such a decision, we
performed Horn’s parallel analysis for a PCA with the “paran”
package, to adjust for finite sample bias in retaining components
(50). Biplot visualization were performed with the “factoextra”
package (51).
RESULTS

In order to properly understand the connection between acute
stress, the most common stress in human society, and male (sub/
in)fertility, the immobilization (IMO) stress of 3 h once
(1x3hIMO) was applied to the adult male rats (11). The stress
period was followed by recovery periods. Immediately after acute
stress (ZT3) as well as 8 (ZT11), 14 (ZT17) and 20 (ZT23) h after
acute stress, the number and functionality of spermatozoa, as
well as the transcriptional profiles of 22 mitochondrial dynamics
and function markers and 22 signaling molecules regulating both
spermatozoa number/function and mitochondrial dynamics
were tracked (Figures 1–13).

Spermatozoa Number Is Lower 14 and 20 h
After Acute Stress, While Functionality
Declines Immediately After the Stress and
8 h Later, But Recovers 14 and 20 h After
the Stress
The number of spermatozoa (Figure 2A) declined in rats
having longer recovery periods, i.e., from the ZT17-1x3hIMO
+R group (1.5-fold compared to ZT17-Control and 1.6-fold vs.
ZT3-Control) and the ZT23-1x3hIMO+R group (2.9-fold
compared to ZT23-Control and 2.6-fold vs. ZT3-Control). In
contrast, the spermatozoa functionality (positive acrosome
reaction) (Figure 2B) declined in groups of rats having
shorter recovery periods, i.e., from the ZT3-1x3hIMO group
(3.6-fold compared to ZT3-Control) and the ZT11-1x3hIMO
+R group (1.4-fold compared to ZT11-Control and 1.5-fold vs.
ZT3-Control).

In search for the possible mechanism(s) beyond these
effects, the transcriptional profiles of mitochondrial dynamics
markers and signaling molecules regulating both mitochondrial
July 2022 | Volume 13 | Article 896193
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dynamics and spermatozoa number and functionality
(important for fertilization) were tracked. Results showed that
stress dramatically disturbed expression of transcripts for
markers of mitochondrial dynamics and functionality as well
as associated signaling pathways in spermatozoa. Expression
levels of 40 out of 44 (91%) markers were changed either
using ZT3-Control as a calibrator (Figures 3–9) or using
the corresponding control at a particular ZT time point
(Supplementary Figures S1–S7).

Significant Changes in Transcriptional
Profiles of Mitochondrial Dynamics and
Functionality Markers in Spermatozoa
From Acutely Stressed Rats Are Evident
Up to 20 h After Stress
The transcriptional profiles of molecular markers of
mitochondrial dynamics and functionality in spermatozoa are
disturbed by acute stress since the transcriptional levels of 20 out
of 22 (91%) markers were changed (Figures 3–7 and
Supplementary Figures S1–S5).

Mitochondrial biogenesis markers changed 8 out of 8 (100%).
The level of transcripts for genes encoding PGC1 (Ppargc1a and
Ppargc1b), very well known as the master regulator involved in
the transcriptional control of all the processes related to
mitochondrial homeostasis and integrator of environmental
signals (32, 33), was disturbed (Figure 3). Interestingly, a
circadian-like profile was observed in the expression of the
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Ppargc1a transcript since it was differently changed in
spermatozoa taken from undisturbed rats at different time
points: increased in the ZT11-Control (2.6-fold) and ZT17-
Control (2.9-fold) groups compared to ZT3-Control, but
decreased in ZT23-Control (2.1-fold). Changes were also
detected in spermatozoa obtained from acutely stressed rats
with different recovery periods: decrease in ZT11-1x3hIMO+R
group (4.8-fold compared to ZT11-Control), but increase in
ZT17-1x3hIMO+R (2.4-fold compared to ZT3-Control) and
ZT23-1x3hIMO+R (3.6-fold compared to ZT23) groups. Less
prominent effects were observed on the transcription of
Ppargc1b: increased in spermatozoa from the ZT17-Control
group (1.7-fold compared to ZT3-Control) and in the ZT23-
1x3hIMO+R group (1.4-fold compared to ZT23-Control).

Transcription profiles of PGC1 downstream targets (Nrf1,
Nrf2a, Tfam, mtNd1, and Ppard) that regulate genes for subunits
of the oxidative phosphorylation (OXPHOS) also changed.

Tfam transcription was disturbed only at ZT23: decreased in
the ZT23-Control group (2.3-fold compared to ZT3-Control),
but increased in the ZT23-1x3hIMO+R group (3.7-fold
compared to ZT23-Control and 1.6-fold vs. ZT3-Control).

Nrf1 transcript decreased in spermatozoa from ZT23-Control
(2.6-fold compared to ZT3-Control), but increased in all stressed
groups with recovery period: ZT11-1x3hIMO+R (1.5-fold vs.
ZT11-Control, 1.7-fold vs. ZT3-Control group), ZT17-
1x3hIMO+R (1.5-fold vs. ZT17-Control), and ZT23-1x3hIMO
+R (4.9-fold vs. ZT23-Control, 2.0-fold vs. ZT3-Control).
A B

FIGURE 2 | The acute psychophysical stress by immobilization (IMO) decreases functionality and number of spermatozoa in different time points after the IMO
stress. Number of spermatozoa (A) isolated from caudal epididymides of unstressed rats (control) and rats subjected to acute immobilization stress once for 3 h
(1x3hIMO) with recovery periods of 0, 8, 14 and 20 h. (B) The functionality of spermatozoa (% of acrosome reacted spermatozoa) isolated from control and acutely
(1x3hIMO) stressed rats. Capacitated spermatozoa were stimulated with progesterone (PROG 15 µM) in parallel with spermatozoa not treated with progesterone
(PROG 0 µM). Blue staining in the acrosome region of the head indicated intact acrosome, whereas spermatozoa without blue staining in the acrosome region were
considered to be acrosome reacted. Data are presented as green dots connected with a green line for the control group, and blue squares connected with a blue
line for the 1x3hIMO group, and are mean ± SEM values of two independent in vivo experiments. Statistical significance was set at p < 0.05: * vs. the control group
of the same time point, # vs. the control group of ZT3 time point.
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Nrf2a transcription was less disturbed than Nrf1: increased in
ZT11-1x3hIMO+R (1.6-fold compared to ZT11-Control, 1.8-
fold vs. the ZT3-Control group) and ZT23-1x3hIMO+R (2.7-
fold vs. ZT23-Control, 1.9- fold vs. ZT3-Control) groups.

Ppara transcription profile increased in spermatozoa
obtained from rats of all control groups compared to ZT3-
Control (1.8-fold in ZT11-Control, 2.5-fold in ZT17-Control,
2.8-fold in ZT23-Control). In spermatozoa from stressed
animals, an increased level of Ppara transcript was observed in
ZT11-1x3hIMO+R (2.0-fold vs. ZT3-Control group) and ZT17-
1x3hIMO+R (2.5-fold vs. ZT3-Control) groups, but Ppara
transcript decreased in the ZT23-1x3hIMO+R group (5.5-fold
vs. ZT23-Control, 1.95-fold vs. ZT3-Control).

Ppard transcription was less disturbed than Ppara since
change/decrease was observed only in the spermatozoa from
ZT23-Control (2.1-fold) compared to ZT3-Control. Increased
Ppard levels were registered in spermatozoa of all stressed
groups: ZT3-1x3hIMO+R (1.8-fold vs. ZT3-Control); ZT11-
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1x3hIMO+R (2.0-fold vs. ZT11, 1.6-fold vs. ZT3-Control),
ZT17-1x3hIMO+R (2.1-fold vs. ZT-17, 2.1-fold vs. ZT3-
Control), and ZT23-1x3hIMO+R (4.7-fold vs. ZT-23, 2.3-fold
vs. ZT3-Control).

mtNd1 transcription profile was similar to Ppargc1a.
Increased mtNd1 level was detected in spermatozoa from
ZT11-Control (1.6-fold) and ZT17-Control (1.9-fold) groups
compared to ZT3-Control, but mtNd1 decreased in ZT23-
Control (4.5-fold). Changes were also detected in spermatozoa
obtained from acutely stressed rats with different recovery
periods: decreased in the ZT11-1x3hIMO+R group (1.5-fold
compared to ZT11-Control), but increased in the ZT17-
1x3hIMO+R (1.5-fold compared to ZT3-Control) and ZT23-
1x3hIMO+R (5.0-fold compared to ZT23) groups.

Mitochondrial fusion markers changed 3 out of 3 (100%).
Changes in transcriptional profiles of all spermatozoal
mitofusion as well as mito-architecture markers (Mfn1, Mfn2
and Opa1) were observed at the ZT23 time point (Figure 4A).
FIGURE 3 | Transcription of mitochondrial biogenesis markers is significantly changed in spermatozoa of acutely stressed adult rats in a time-dependent manner.
Isolated RNA and proteins from spermatozoa of undisturbed and stressed rats were used for the analysis of the transcriptional profile and protein expression profile
of markers of mitochondrial biogenesis. The representative blots are shown as panels. Data from scanning densitometry were normalized on GAPDH (internal
control). Values are shown as bars above the photos of blots. Data are presented as green dots connected with a green line for the control group, and blue squares
connected with a blue line for the 1x3hIMO group, and are mean ± SEM values of two independent in vivo experiments. Statistical significance was set at
p < 0.05: * vs. the control group of the same time point, # vs. the control group of ZT3 time point.
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Mfn1 transcription decreased in spermatozoa from the ZT23-
Control group (3.9-fold vs. ZT3-Control), but increased in the
ZT23-1x3hIMO+R group (8.1-fold compared to ZT23 control,
2.1-fold vs. ZT3-Control).

Mfn2 transcription profile was similar to Mfn1. The level of
Mfn2 transcript decreased in spermatozoa from the ZT23-
Control group (4.3-fold vs. ZT3-Control), but increased in the
ZT23-1x3hIMO+R group (6.4-fold compared to ZT23 control,
1.5-fold vs. ZT3-Control).

Opa1 transcript profile was similar toMfn1 andMfn2. The level
of Opa1 transcript significantly decreased in spermatozoa obtained
from the ZT23-Control group (2.7-fold vs. ZT3-Control), but
increased in the ZT23-1x3hIMO+R group (5.3-fold compared to
ZT23-Control, 1.9-fold vs. ZT3-Control).

Considering the importance of MFN2 expression for
spermatozoa motility and viability as well as mitochondrial
network homeostasis (31), interactions of MFN2 and proteins
regulating both mitochondrial dynamic and spermatozoa number
and functionality were followed. Results show that MFN2 protein
interacts with the PRKA catalytic subunit in spermatozoa, but there
is no significant difference in spermatozoa of the 1x3hIMO+R group
compared to the ZT3-Control group. Immunoprecipitation analysis
of MFN2 followed byWestern blot analysis with p38MAPK protein
shows that the interaction between these proteins exists in
spermatozoa, and that there is significant decrease in the control
group of ZT17 and ZT23, as well as in the 1x3hIMO+R group of the
ZT23 time point, compared to the ZT3-Control group (Figure 4B).
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Mitochondrial fission markers changed 2 out of 2 (100%).
Levels of transcripts for Drp1 and Fis1 differently changed at
different the ZT time points (Figure 5).

Fis1 transcription increased in spermatozoa from ZT17-
Control (1.9-fold compared to ZT3-Control). In spermatozoa
from stressed rats, a decrease was observed in the ZT17-
1x3hIMO+R group (1.5-fold vs. ZT17-Control) and the
opposite effect (increase) was detected in the ZT23-1x3hIMO
+R group (1.8-fold vs . ZT23-Control , 2 .4-fold vs .
ZT3-Control).

Drp1 transcript profile was different from Fis1, since changes/
decreases were evident only in stressed groups: ZT11-
1x3hIMO+R (2.8-fold vs. ZT11-Control) and ZT17-1x3hIMO
+R groups (1.8-fold vs. ZT17-Control).

Mitochondrial autophagy markers changed 1 out of 3 (33%).
Significant changes were evident only on the transcription profile
of Prkn: decrease in ZT17-Control (3.8-fold compared to ZT3-
Control) and ZT17-1x3hIMO+R (5.3-fold vs. ZT3-Control)
groups. The transcriptional profile of Pink1 and Tfeb remained
unchanged (Figure 6).

Mitochondrial functionality markers changed 6 out of 6
(100%). Transcriptional profiles of NRF1/NRF2 downstream
targets (CytC, COX4, and UCPs) serving as mitochondrial
functional markers as well as the mediators of regulated proton
leak and controllers of the production of superoxide and other
downstream reactive oxygen species (41) were significantly
changed at the ZT23 time point (Figure 7).
A

B

FIGURE 4 | Transcription of mitochondrial fusion and architecture markers, as well as interactions of mitofusin 2 protein and PRKAc and p38 MAPK proteins are
significantly changed in spermatozoa of acutely stressed adult rats in a time-dependent manner. Isolated RNA from spermatozoa of undisturbed and stressed rats
was used for the analysis of the transcriptional profile of markers of mitochondrial fusion and architecture (A). Isolated proteins from spermatozoa of undisturbed and
stressed rats were used for immunoprecipitation analysis with MFN2 antibody, followed by Western blot for PRKAc and p38 MAPK (B). The representative blots are
shown as panels. Data from scanning densitometry were normalized on MFN2 (internal control). Values are shown as bars above the photos of blots. Data are
presented as green dots connected with a green line or green bars for the control group, and blue squares connected with a blue line or blue bars for the 1x3hIMO
group, and are mean ± SEM values of two independent in vivo experiments. Statistical significance was set at p < 0.05: * vs. the control group of the same time
point, # vs. the control group of ZT3 time point.
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FIGURE 5 | Transcription of mitochondrial fission markers is significantly
changed in spermatozoa of acutely stressed adult rats in a time-dependent
manner. Isolated RNA from spermatozoa of undisturbed and stressed rats
was used for the analysis of the transcriptional profile of markers of
mitochondrial fission. Data are presented as green dots connected a with
green line for the control group, and blue squares connected with a blue line
for the 1x3hIMO group, and are mean ± SEM values of two independent in
vivo experiments. Statistical significance was set at p < 0.05: * vs. the control
group of the same time point, # vs. the control group of ZT3 time point.
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FIGURE 6 | Transcription of mitochondrial autophagy markers is
significantly changed in spermatozoa of acutely stressed adult rats in a
time-dependent manner. Isolated RNA from spermatozoa of undisturbed
and stressed rats was used for the analysis of the transcriptional profile of
markers of mitochondrial autophagy. Data are presented as green dots
connected with a green line for the control group, and blue squares
connected with a blue line for the 1x3hIMO group, and are mean ± SEM
values of two independent in vivo experiments. Statistical significance was
set at p < 0.05: * vs. the control group of the same time point, # vs. the
control group of ZT3 time point.
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Cox4i1 transcription significantly decreased in spermatozoa
from the ZT23-Control group (3.4-fold vs. ZT3-Control) but
increased in the ZT23-1x3hIMO+R group (6.1-fold compared to
ZT23-Control, 1.8-fold vs. ZT3-Control).

Cox4i2 transcript level significantly decreased in spermatozoa
from the ZT23-Control (2.4-fold vs. ZT3-Control) as well as the
Frontiers in Endocrinology | www.frontiersin.org 10251
stressed groups ZT17-1x3hIMO+R (1.6-fold compared to ZT17-
Control, 1.9-fold vs. ZT3-Control) and ZT23-1x3hIMO+R (2.4-
fold compared to ZT3-Control).

Cytc transcription significantly increased only in spermatozoa
obtained from the ZT23-1x3hIMO+R group (1.8-fold compared
to ZT23-Control).
FIGURE 7 | Transcription of mitochondrial functionality markers is significantly changed in spermatozoa of acutely stressed adult rats in a time-dependent manner.
Isolated RNA from spermatozoa of undisturbed and stressed rats was used for the analysis of the transcriptional profile of markers of mitochondrial functionality.
Data are presented as green dots connected with a green line for the control group, and blue squares connected with a blue line for the 1x3hIMO group, and are
mean ± SEM values of two independent in vivo experiments. Statistical significance was set at p < 0.05: * vs. the control group of the same time point, # vs. the
control group of ZT3 time point.
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Ucp1 transcript level was significantly lower only in
spermatozoa obtained from the ZT23-1x3hIMO+R group (8.9-
fold compared to ZT23-Control, 4.3-fold vs. ZT3-Control).

Ucp2 transcript in spermatozoa (the most abundantly
expressed UCP gene in spermatozoa; Ucp2-Ct=22.07>Ucp3-
Ct=29.81>Ucp1-Ct=29.96) was changed at ZT17 and ZT23
time points. Ucp2 transcript level increased in spermatozoa
isolated from ZT17-Control (1.8-fold compared to ZT3-
Control), but decreased in spermatozoa from ZT23-Control
(1.7-fold vs. ZT3-Control). In spermatozoa from stressed rats,
increase was detected in ZT17-1x3hIMO+R (1.8-fold vs. ZT3-
Control) and ZT23-1x3hIMO+R (3.4-fold compared to ZT23-
Control, 2.0-fold compared to ZT3-Control).

Ucp3 transcription increased in spermatozoa from ZT11-
Control (1.6-fold compared to ZT3-Control) as well as ZT23-
Control (2.7-fold vs. ZT3-Control), but decreased in ZT23-
1x3hIMO+R (20.8-fold compared to ZT23-Control, 7.7-fold
compared to ZT3-Control).

The results of the PCA confirmed that separation of the effects
of acute stress recovery on mitochondrial dynamics marker
elements depends on the day phase. It is clear that the
transcriptional patterns were different during the active and
inactive phases. Most of the transcripts were highly expressed
during the active phase, which is expected given that stress
occurred at the beginning of the inactive phase. Expression of
the transcripts for proteins involved in mitochondrial dynamics
tends to separate across the first two PCs for 74.2% of the total
dataset of mitochondria-related gene variability. Also, the results
offer different acute stress recovery effects on transcript
expression: a pronounced cluster of genes encoding the
elements essential for mitochondrial dynamics in the active
phase opposes Ucp3, Ppara, and Ucp1 in the inactive phase
(Figure 12A, variable loadings are shown in Supplementary
Table S1).

Since the cAMP and MAPK signaling are crucial not only for
the regulation of spermatozoa number and functionality (43),
but also for the regulation of mitochondrial dynamics and
functionality (32, 33, 37), the transcriptional profiles of main
signaling molecules were tracked.

Significant Changes in Transcriptional
Profiles of Signaling Molecules Regulating
the Number and Functionality of
Spermatozoa, as Well as the Mitochondrial
Dynamics and Functionality in
Spermatozoa From Stressed Rats Are
Evident Up to 20 h After Stress
Markers of signaling pathways regulating the spermatozoa
number/functionality as well as mitochondrial dynamics/
functionality, both very important for male fertility,
significantly changed during the recovery time course.
Transcriptional levels of 20 out of 22 (91%) markers were
changed, and most of the changes were increases of the
expression (Figures 8, 9 and Supplementary Figures S6 and S7).
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cAMP signaling markers changed 11 out of 12 (92%). Most of
the changes in transcriptional profile of cAMP signaling markers
during stress recovery time periods were increased expression of
most of the adenylyl cyclases (Adcy3, Adcy5, Adcy6, and Adcy7)
except for Adcy8 (decreased), Adcy7 (remained unchanged), and
Adcy10 (decreased). In the same spermatozoa samples, the level
of the transcripts for all genes encoding the catalytic and the
regulatory protein kinase A subunits (Prkaca, Prkacb, Prkar1a,
Prkar2a, and Prkar2b) increased (Figure 8).

Adcy3 transcript levels increased in spermatozoa isolated
from ZT11-Control (2.4-fold compared to ZT3-Control) and
ZT17-Control (2.7-fold vs. ZT3-Control). In spermatozoa from
stressed rats, increases were detected in ZT11-1x3hIMO+R (2.8-
fold vs. ZT3-Control), ZT17-1x3hIMO+R (1.5-fold vs. ZT3-
Control), and ZT23-1x3hIMO+R (4.5-fold compared to ZT23-
Control, 4.5-fold compared to ZT3-Control).

Adcy5 transcriptional profile was changed/increased only in
spermatozoa from the stressed rats with recovery for 14 or 20 h:
ZT17-1x3hIMO+R (1.7-fold vs. ZT17-Control) and ZT23-
1x3hIMO+R (1.9-fold compared to ZT23-Control, 1.8-fold
compared to ZT3-Control).

Adcy6 transcription increased in spermatozoa isolated from
ZT11-Control (1.7-fold compared to ZT3-Control), as well as
from ZT23-1x3hIMO+R (2.5-fold compared to ZT23-Control,
1.6-fold compared to ZT3-Control). The opposite changes
(decreased expression) were detected in ZT3-1x3hIMO+R (1.9-
fold vs. ZT3-Control) and ZT11-1x3hIMO+R (1.4-fold vs.
ZT11-Control).

Adcy7 transcript levels decreased in spermatozoa from ZT23-
Control (1.6-fold compared to ZT3-Control). In contrast,
increased expressions were observed in the stressed group at all
recovery time points: ZT11-1x3hIMO+R (2.0-fold vs. ZT11-
Control), ZT17-1x3hIMO+R (2.1-fold vs. ZT17-Control), and
ZT23-1x3hIMO+R (4.3-fold compared to ZT23-Control, 2.7-
fold compared to ZT3-Control).

Adcy8 transcription increased in spermatozoa isolated from
ZT23-Control (1.7-fold compared to ZT3-Control). In
spermatozoa from the stressed rats, decreases were detected in
ZT3-1x3hIMO+R (2.3-fold vs. ZT3-Control), ZT17-1x3hIMO
+R (2.4-fold vs. ZT17-Control, 1.7-fold vs. ZT3-Control), and
ZT23-1x3hIMO+R (188.9-fold compared to ZT23-Control,
111.1-fold compared to ZT3-Control).

Adcy10 transcriptional profile was changed/decreased only in
spermatozoa from the stressed rats at all recovery time points:
ZT11-1x3hIMO+R (1.5-fold vs. ZT11-Control), ZT17-
1x3hIMO+R (1.4-fold vs. ZT17-Control), and ZT23-1x3hIMO
+R (2.5-fold vs. ZT23-Control, 2.5-fold vs. ZT3-Control).

Prkaca transcription was changed only at the ZT23 time
point: decreased in spermatozoa from the ZT23-Control group
(2.8-fold compared to ZT3-Control), but increased in
spermatozoa from the ZT23-1x3hIMO+R group (4.1 fold
compared to ZT23-Control, 1.5 fold compared to ZT3-Control).

Prkacb transcription profile was similar to Prkaca. The level
of Prkacb transcripts decreased in spermatozoa from the ZT23-
Control group (2.6-fold compared to ZT3-Control), but
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FIGURE 8 | Transcription of markers of cAMP signaling regulating mitochondrial dynamics and functionality as well as spermatozoa number and functionality is changed in
spermatozoa of acutely stressed adult rats in a time-dependent manner. Isolated RNA from spermatozoa of undisturbed and stressed rats was used for the analysis of the
transcriptional profile of markers of the cAMP signaling pathway. PCA of markers of the cAMP signaling pathway on active/inactive phase; Dim1 and Dim2 represent the
first two PCs and % of the retained variation. Cos2 estimates the qualitative representation of variables (Supplementary Table S2). Data are presented as green dots
connected with a green line for the control group, and blue squares connected with a blue line for the 1x3hIMO group, and are mean ± SEM values of two independent in
vivo experiments. Statistical significance was set at p < 0.05: * vs. the control group of the same time point, # vs. the control group of ZT3 time point.
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increased in the ZT23-1x3hIMO+R group (5.8-fold compared to
ZT23-Control, 2.2-fold vs. ZT3-Control).

Prkar1a transcription decreased in spermatozoa isolated from
ZT23-Control (3.8-fold compared to ZT3-Control). In contrast,
transcription increased in the ZT11-1x3hIMO+R (1.5-fold vs.
ZT11-Control) and the ZT23-1x3hIMO+R (4.6-fold compared
to ZT23-Control) groups.

Prkar2a transcriptional profile was similar to the profiles of
transcripts for catalytic subunits of PRKA: decreased in
spermatozoa from the ZT23-Control group (2.3-fold compared
to ZT3-Control) but increased in the ZT23-1x3hIMO+R group
(3.7-fold vs. ZT23-Control, 1.6-fold vs. ZT3-Control).

Prkar2b transcription profile was similar to Prkar2a. The level
of Prkar2b transcripts decreased in spermatozoa from the ZT23-
Control group (1.9-fold compared to ZT3-Control) but
increased in the ZT23-1x3hIMO+R group (3.3-fold compared
to ZT23-Control, 1.8-fold vs. ZT3-Control).

The results of the PCA confirmed the separation of the effects
of acute stress recovery on cAMP signaling pathway elements. It
is clear that the transcriptional patterns were different during the
active and inactive phases and that the transcripts were highly
expressed during the active phase. Most of the transcripts were
highly expressed during the active phase, which is expected given
that stress occurred at the beginning of the inactive phase.
Expression of the transcripts for proteins involved in cAMP
signaling accounts for 78.2% variability. Also, the results offer
different acute stress recovery effects on the transcripts’
expression: a pronounced cluster of Adcy8 and Adcy10 in the
inactive phase opposes gene clusters encoding the other elements
of cAMP signaling in the active phase (Figures 8, 12B, variable
loadings are shown in Supplementary Table S2).

MAPKsignalingmarkerschanged9outof10 (90%).Themarkers
ofMAPKsignaling(Mapk1,Mapk3,Mapk6,Mapk7,Mapk8,Mapk9,
Mapk11, Mapk12, Mapk13, and Mapk14) were affected at all time
points andmore than the above-mentionedmarkers in spermatozoa.
Transcripts of all markers significantly increase, except for the
decreased transcription of Mapk11, in spermatozoa isolated from
the groups of rats exposed to acute stress for 3 h and recovered for 20
h, while most of the markers increased in spermatozoa from the
stressed rats at all recovery time points (Figure 9).

Mapk1 transcription decreased in spermatozoa isolated from
ZT23-Control (2.7-fold compared to ZT3-Control). Increases were
observed in spermatozoa from the stressed rats at all recovery time
points: ZT3-1x3hIMO+R (1.9-fold vs. ZT3-Control), ZT11-
1x3hIMO+R (2.0-fold vs. ZT11-Control, 2.0-fold vs. ZT3-
Control), ZT17-1x3hIMO+R (1.4-fold vs. ZT17-Control, 1.8-fold
vs. ZT3-Control), and ZT23-1x3hIMO+R (7.2-fold compared to
ZT23-Control, 2.6-fold compared to ZT3-Control).

Mapk3 transcript levels decreased in spermatozoa from the
ZT23-Control group (2.3-fold compared to ZT3-Control) but
increased in the ZT23-1x3hIMO+R group (4.1-fold compared to
ZT23-Control, 1.8-fold vs. ZT3-Control).

Mapk6 transcriptional profile was similar to Mapk1. The
decline in the Mapk6 transcription was observed in
spermatozoa from ZT23-Control (2.4-fold compared to ZT3-
Control). The significant increase was evident in spermatozoa
Frontiers in Endocrinology | www.frontiersin.org 13254
from the stressed rats at all recovery time points: ZT3-
1x3hIMO+R (1.6-fold vs. ZT3-Control), ZT11-1x3hIMO+R
(2.8-fold compared to ZT11-Control, 1.8-fold vs. ZT3-
Control), ZT17-1x3hIMO+R (2.1-fold vs. ZT17-Control; 1.7-
fold vs. ZT3-Control), and ZT23-1x3hIMO+R (5.6-fold
compared to ZT23-Control, 2.3-fold compared to ZT3-Control).

Mapk8 transcriptional profile was similar to Mapk1 and
Mapk6, but the effect was absent at the ZT17 time point. The
decreasedMapk8 transcript level was evident in spermatozoa from
ZT23-Control (2.5-fold compared to ZT3-Control). A significant
increase was evident in spermatozoa from ZT3-1x3hIMO+R (1.4-
fold compared to ZT3-Control), ZT11-1x3hIMO+R (1.5-fold
compared to ZT11-Control), and ZT23-1x3hIMO+R (4.9-fold
compared to ZT23-Control, 1.9-fold vs. ZT3-Control).

Mapk9 transcription increased only in spermatozoa from the
stressed rats recovered for 20 h, i.e., ZT23-1x3hIMO+R (3.0-fold
vs. ZT23-Control, 1.9-fold compared to ZT3-Control).

Mapk11 transcriptional profile was changed/increased only in
spermatozoa from the stressed rats recovered for 14 and 20 h:
ZT17-1x3hIMO+R (1.5-fold compared to ZT3-Control) and
ZT23-1x3hIMO+R (2.1-fold compared to ZT23-Control).

Mapk12 transcription significantly decreased in
spermatozoa from ZT23-Control (3.3-fold compared to ZT3-
Control). In spermatozoa from stressed rats, increases were
detected in ZT11-1x3hIMO+R (2.0-fold compared to ZT11-
Control, 1.8-fold compared to ZT3-Control) and ZT23-
1x3hIMO+R (7.7-fold compared to ZT23-Control, 2.5-fold
compared to ZT3-Control).

Mapk13 transcript level significantly decreased in
spermatozoa from ZT23-Control (2.7-fold compared to ZT3-
Control). Significant increases were evident in spermatozoa from
the rats recovered at different time points: ZT11-1x3hIMO+R
(1.7-fold vs. ZT11-Control, 1.6-fold vs. ZT3-Control), ZT17-
1x3hIMO+R (1.7-fold vs. ZT17-Control), and ZT23-1x3hIMO
+R (3.4-fold vs. to ZT23-Control).

Mapk14 transcription was changed only at the ZT23 time
point: decreased in spermatozoa from ZT23-Control (2.1-fold
compared to ZT3-Control), but increased in spermatozoa from
ZT23-1x3hIMO+R (4.3-fold compared to ZT23-Control, 2.1-
fold compared to ZT3-Control).

The results of the PCA show significant separation of the effects
of acute stress recovery on MAPK signaling pathway elements
depending on the day phase. It is clear that the transcriptional
patterns were different during the active and inactive phases and
that the transcripts were highly expressed during the active phase
(Figures 9, 12C as well as Supplementary Table S3).

The results of the PCA confirmed the separation of the effects
of acute stress recovery on MAPK signaling. The transcriptional
patterns were different during the active and inactive phases.
Most of the transcripts were highly expressed during the active
phase, which is expected given that stress occurred at the
beginning of the inactive phase. Expression of the transcript of
the proteins involved in MAPK signaling accounts for 82.1% of
data variability. The results offered different acute stress recovery
effects on the transcript expression: a pronouncedMapk11 in the
inactive phase opposes clusters of other transcripts for elements
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FIGURE 9 | Transcription of markers of MAPK signaling regulating mitochondrial dynamics and functionality as well as spermatozoa number and functionality is
changed in spermatozoa of acutely stressed adult rats in a time-dependent manner. Isolated RNA from spermatozoa of undisturbed and stressed rats was used
for the analysis of the transcriptional profile of markers of the MAPK pathway. PCA of markers of the MAPK signaling pathway on active/inactive phase; Dim1 and
Dim2 represent the first two PCs and % of the retained variation. Cos2 estimates the qualitative representation of variables (Supplementary Table S3). Data are
presented as green dots connected with a green line for the control group, and blue squares connected with a blue line for the 1x3hIMO group, and are mean ±
SEM values of two independent in vivo experiments. Statistical significance was set at p < 0.05: * vs. the control group of the same time point, # vs. the control
group of ZT3 time point.
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of MAPK signaling (Figures 9, 12C, variable loadings are shown
in Supplementary Table S3).

For a better understanding, results showing the
transcriptional profiles of mitochondrial dynamics and
functionality markers and signaling molecules regulating
mitochondrial dynamics and functionality as well as
spermatozoa number and functionality in spermatozoa of
stressed adult rats with different periods for recovery are
summarized in Table 1.
DISCUSSION

It is very well known that life starts with fertilization. This
process requires highly energizing and perfectly functioning
spermatozoa. Unfortunately, many recent publications pointed
to increased incidence of unexplained cases of (sub/in)fertility in
men as well as a decrease in the fertility rate in men younger than
age 30 (8, 12, 13). The semen quality and fertility are important
not only as fundamental markers of reproductive health, but also
as fundamental biomarkers of overall health (13, 52). Also, the
World Health Organization (WHO) stated that the overall
burden of infertility in men is high, unknown, and
underestimated, and has not shown any decrease over the last
20 years. The WHO called for urgent investigations of the
mechanisms of (sub/in)fertility (https://www.who.int/
reproductivehealth/topics/infertility/perspective/en/).

In search for possible mechanisms of (sub/in)fertility as well
as the connection between stress and male (sub/in)fertility, an in
vivomodel of acute psychological stress, the most common stress
in human society, was applied on adult male rats and stress
period was tracked with different recovery periods. Four time
points were chosen (2 points during 12-h light/inactive phase
and 2 points during 12-h dark/active phase): immediately after
the 3-h acute stress (ZT3) as well as 8 (ZT11), 14 (ZT17), and 20
(ZT23) h later. The number/functionality (positive acrosome
reaction) of spermatozoa and the transcriptional profiles of 22
mitochondrial dynamics/function markers and 22 related
signaling molecules were tracked.

Results showed for the first time, to the best of our knowledge,
that the acute stress-provoked effects appeared 20 h after the end of
the stress, and this is very clearly shown on heat maps (Figure 10
and Supplementary Figure S8). Lower number of spermatozoa
was observed at ZT17 and ZT23, while decreased spermatozoa
functionality (positive acrosome reaction) was evident at ZT3 and
ZT11, but recovered at ZT17 and ZT23. Transcriptional profiles of
91% (20/22) of mitochondrial dynamics and functionality markers
and 91% (20/22) of signaling molecules regulating both
mitochondrial dynamics and spermatozoa number and
functionality were disturbed after acute stress and during the
recovery period (Figures 10, 11 and Supplementary Figure S8).
The results of the PCA show the significant separation of effects of
acute stress recovery during the active and inactive phase of the
day. It is clear that the transcriptional patterns were different
during the active and inactive phases and that most of the
transcripts were highly expressed during the active/dark phase of
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the day (Figure 12). The physiological relevance is the recovered
functionality (positive acrosome reaction), suggesting that
molecular events are adaptive mechanism regulated by
physiological stress response signaling. With this molecular
scenario, the spermatozoa may try to preserve the basic
mitochondrial network homeostasis and self-activity.

It is well known that stress signaling is involved in the
regulation of spermatogenesis and fertility in a very complex
and intriguing manner. Chronic intermittent stress irreversibly
decreases sperm number (53–55) as well as sperm motility (56)
and spermatozoa quality (57) in male rats. Our recently
published articles showed that repeated psychophysical stress
also lowered the number of spermatozoa (10, 11). The decline in
progressively motile sperm in humans is associated with stress
(58) and secondary infertility is significantly higher in patients
with post-traumatic stress disorder (59). However, there are no
published pieces of evidence related to the effects of stress
recovery on spermatozoa number and functionality as well as
signaling pathways associated with these processes. Here, we
show that the number of epididymal spermatozoa declines 14
and 20 h after stress. It is difficult to give a precise explanation,
but one of the reasons could be that mechanisms causing
reduction in the number of spermatozoa started at earlier
points, maybe as a consequence of stress hormone signaling
activation, but they are visible at ZT17 and ZT20. Also, the
reason could be, although not significantly, persistently higher
levels of cortisol (48).

Since mitochondria are very important for many highly energy-
driven processes including spermatozoa functionality and
fertilization as well as stress response, it was of interest to follow
the transcriptional profile of mitochondrial dynamics/functionality
markers as well as signaling molecules regulating mitochondrial
homeostasis and spermatozoa functionality. Results of
transcriptional analyses clearly showed that effects of acute stress
were visible up to 20 h later and most of the effects and prominent
effects were observed at ZT23 (Figures 10, 11). All those molecules
are very important for spermatozoa functionality. Our results
showed a circadian-like type of transcriptional profile of Ppargc1a/
PGC1 in spermatozoa from both unstressed and stressed rats. It was
published that PPARGC1A is changed in spermatozoa from patients
suffering from type 2 diabetes mellitus (60) and that increased
expression of Nrf2 diminished testicular inflammation (61). Also,
our preliminary results show protein interaction of PGC1 and NRF1
proteins in spermatozoa (data not shown). Moreover, expression of
the TFAM gene correlates with sperm DNA fragmentation and
mtDNA copy number (27, 28). Heat map analysis of the
transcriptional profile of mitochondrial dynamics and functionality
markers (Figure 10A and Supplementary Figure 8A) clearly
showed that during recovery from acute stress, spermatozoa most
abundantly express the main markers of mitochondrial fusion
(Mfn1, Mfn2, and Opa1). This is very important for keeping the
integrity of the mitochondrial network and energetic balance. These
results may explain the findings of others showing the relation of the
expression level of MFN2 tomotility and cryoprotective potentials of
human sperm (31, 62). Also, our results show for the first time, to the
best of our knowledge, the interaction of MFN2 and the catalytic
July 2022 | Volume 13 | Article 896193
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subunit of protein kinase A (PRKAc) in spermatozoa. This
interaction was already confirmed in other cell types, with PRKA
phosphorylation site at Serine 442 (63, 64). Presented results of
immunoprecipitation analysis (MFN2/PRKAc) show no difference
between the 1x3hIMO+R and the control group of all time points.
On the other hand, results of immunoprecipitation analysis show an
interaction betweenMFN2 and p38MAPK proteins, with a decrease
in ZT17-Control, ZT23-Control, and ZT23-1x3hIMO+R groups
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compared to the ZT3-Control group, suggesting that prolonged
acute stress recovery influences the interaction between these two
proteins in spermatozoa. Our results show the increased expression
of transcript for Cox4i1 in spermatozoa from stressed rats, the gene
that encodes the terminal enzyme in the mitochondrial respiratory
chain. It has been shown that this gene is also significantly increased
in spermatozoa from obese males (65), and it is important for
infertility treatment in men (66). Our results clearly show increased
A

B

FIGURE 10 | Heat map analysis of the transcriptional profile of the mitochondrial dynamic and functionality markers (A) and the signaling molecules regulating
mitochondrial dynamics and functionality (B) in spermatozoa of acute stressed adult rats. Heat map analysis showing different patterns of transcription at different
time points in spermatozoa after the acute immobilization stress. The relative fold change in gene expression for the aforementioned genes was compared in different
time points (ZT3, ZT11, ZT17, and ZT23). Color from red to green indicates low to high expression.
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expression of transcript for Ucp2 (most abundantly expressed UCP
protein in rat spermatozoa) probably as a consequence of the stress
hormone adrenaline (10). Our supplementary results show the trend
of the increased mitochondrial membrane potential of spermatozoa
Frontiers in Endocrinology | www.frontiersin.org 17258
treated with adrenaline (Supplementary Figure S10). These
molecular events can increase spermatozoa motility since it was
shown that UCP2 mitigates the loss of human spermatozoa motility
(30). The results of the PCA show that most of the transcripts for the
A

B

FIGURE 11 | The transcription pattern in spermatozoa of acutely stressed adult rats with different recovery periods (ZT3, ZT11, ZT17, and ZT23). Data shown
represent the transcriptional pattern of the genes for mitochondrial dynamics/functionality markers (A) as well as cAMP and MAPK signaling pathway-related
molecules (B). Points represent a deviation in the transcription of a particular gene at different ZT time points.
A B C

FIGURE 12 | PCA of mitochondrial dynamics (A), cAMP signaling pathway (B), and MAPK signaling pathway (C) gene expression on active/inactive phase; Dim1
and Dim2 represent the first two PCs and % of the retained variation. Cos2 estimates the qualitative representation of variables (Supplementary Tables S1–S3).
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FIGURE 13 | Acute stress, the most common stress in human society, significantly changes 91% of followed mitochondrial dynamics and functionality markers as
well as 91% of signaling molecules regulating spermatozoa homeostasis and mitochondrial dynamics/functionality. The most prominent changes were observed 20 h
after the end of the stress. The physiological significances are the recovery of spermatozoa number and functionality (positive acrosome reaction). Furthermore, the
interactions between the proteins important for spermatozoa homeostasis and functionality (MFN2 and PRKA catalytic subunit, MFN2, and p38MAPK) are shown for
the first time.
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main markers of mitochondrial dynamics were highly expressed
during the active/dark phase of the day (Figure 12A), suggesting the
importance of molecular timing in regulation of the above-
mentioned markers.
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New insights into the understanding of molecular events
related to the effects of acute stress on spermatozoa include our
finding that shows that 91% of markers of signaling pathways
regulating both mitochondrial dynamics and spermatozoa
TABLE 1 | The transcriptional profiles of mitochondrial dynamics and functionality markers and signaling molecules regulating mitochondrial dynamics and functionality
as well as spermatozoa number and functionality in spermatozoa of stressed adult rats.

Group Transcript Time points

ZT3 ZT11 ZT17 ZT23

Control 1x3hIMO Control 1x3hIMO Control 1x3hIMO Control 1x3hIMO

Ppargc1a 1.0 ± 0.11 1.0 ± 0.20 2.6# ± 0.54 0.5* ± 0.14 2.9# ± 0.82 2.4# ± 0.59 0.5# ± 0.18 1.7* ± 0.65

Ppargc1b 1.0 ± 0.11 0.6 ± 0.11 0.8 ± 0.01 0.8 ± 0.05 1.7# ± 0.32 1.2 ± 0.07 0.8 ± 0.13 1.4* ± 0.03

Tfam 1.0 ± 0.10 1.2 ± 0.13 1.0 ± 0.05 1.3 ± 0.02 1.0 ± 0.04 1.3 ± 0.01 0.4# ± 0.05 1.6*# ± 0.01

Nrf1 1.0 ± 0.11 1.1 ± 0.02 1.1 ± 0.04 1.7*# ± 0.18 0.8 ± 0.07 1.3* ± 0.03 0.4# ± 0.01 2.0*# ± 0.12

Nrf2a 1.0 ± 0.11 1.2 ± 0.07 1.1 ± 0.05 1.8*# ± 0.10 1.2 ± 0.09 1.4 ± 0.06 0.7 ± 0.03 1.9*# ± 0.12

Ppara 1.0 ± 0.11 1.4 ± 0.29 1.8# ± 0.32 2.0# ± 0.16 2.5# ± 0.17 2.5# ± 0.10 2.8# ± 0.36 0.5*# ± 0.08

Ppard 1.0 ± 0.12 1.8*# ± 0.14 0.8 ± 0.04 1.6*# ± 0.03 1.0 ± 0.02 2.1*# ± 0.00 0.5# ± 0.01 2.3*# ± 0.04

mtNd1 1.0 ± 0.12 1.1 ± 0.06 1.6# ± 0.01 1.1* ± 0.02 1.9# ± 0.04 1.5# ± 0.04 0.2# ± 0.01 1.1* ± 0.03

Mfn1 1.0 ± 0.11 1.0 ± 0.11 0.9 ± 0.06 1.2 ± 0.15 1.0 ± 0.15 1.3 ± 0.16 0.3# ± 0.02 2.1*# ± 0.12

Mfn2 1.0 ± 0.11 0.8 ± 0.11 0.7 ± 0.02 0.9 ± 0.09 0.7 ± 0.11 0.9 ± 0.03 0.2# ± 0.03 1.5*# ± 0.10

Opa1 1.0 ± 0.11 1.3 ± 0.01 0.8 ± 0.05 1.2 ± 0.05 1.1 ± 0.01 1.1 ± 0.06 0.4# ± 0.02 1.9*# ± 0.01

Fis1 1.0 ± 0.11 1.2 ± 0.12 0.8 ± 0.10 0.7 ± 0.06 1.9# ± 0.06 1.3* ± 0.06 1.3 ± 0.10 2.4*# ± 0.39

Drp1 1.0 ± 0.11 1.0 ± 0.13 1.4 ± 0.04 0.5* ± 0.32 1.1 ± 0.01 0.6* ± 0.02 1.3 ± 0.03 1.5 ± 0.07

Prkn 1.0 ± 0.05 0.5 ± 0.22 0.65 ± 0.15 0.6 ± 0.10 0.3# ± 0.09 0.2# ± 0.05 0.5 ± 0.12 0.7 ± 0.16

Cox4i1 1.0 ± 0.12 1.3 ± 0.10 1.4 ± 0.07 1.4 ± 0.07 1.2 ± 0.10 1.0 ± 0.12 0.3# ± 0.01 1.8*# ± 0.04

Cox4i2 1.0 ± 0.12 0.6 ± 0.27 1.8 ± 0.45 1.2 ± 0.31 0.8 ± 0.01 0.5*# ± 0.05 0.4# ± 0.03 0.4# ± 0.02

Cytc 1.0 ± 0.12 1.3 ± 0.05 1.2 ± 0.04 1.4 ± 0.05 1.2 ± 0.02 1.3 ± 0.01 0.7 ± 0.01 1.4* ± 0.01

Ucp1 1.0 ± 0.12 1.4 ± 0.47 2.1 ± 0.59 1.2 ± 0.42 2.5# ± 0.48 2.3# ± 0.88 2.1# ± 0.71 0.2*# ± 0.04

Ucp2 1.0 ± 0.11 1.2 ± 0.03 1.1 ± 0.04 1.3 ± 0.09 1.8# ± 0.02 1.8# ± 0.04 0.6# ± 0.01 2.1*# ± 0.07

Ucp3 1.0 ± 0.11 0.8 ± 0.09 1.6# ± 0.21 1.2 ± 0.31 1.0 ± 0.31 1.0 ± 0.15 2.7# ± 0.19 0.1*# ± 0.02

Adcy3 1.0 ± 0.11 1.1 ± 0.12 2.4# ± 0.13 2.8# ± 0.27 0.9 ± 0.20 1.5* ± 0.43 1.1 ± 0.18 4.5*# ± 0.77

Adcy5 1.0 ± 0.11 1.3 ± 0.07 1.0 ± 0.09 1.3 ± 0.01 0.8 ± 0.09 1.3 ± 0.07 1.0 ± 0.22 1.8 ± 0.18
Adcy6 1.0 ± 0.11 0.5 ± 0.01 1.7# ± 0.16 1.2 ± 0.01 1.4 ± 0.07 1.5 ± 0.05 0.6 ± 0.01 1.6*# ± 0.04

Adcy7 1.0 ± 0.10 1.2 ± 0.01 0.7 ± 0.07 1.3* ± 0.14 0.8 ± 0.18 1.5* ± 0.05 0.6# ± 0.03 2.7*# ± 0.13

Adcy8 1.0 ± 0.11 0.4* ± 0.13 1.1 ± 0.14 1.2 ± 0.16 1.4 ± 0.10 0.6*# ± 0.03 1.7# ± 0.14 0.01*# ± 0.0

Adcy10 1.0 ± 0.12 0.9 ± 0.01 1.4 ± 0.13 0.9* ± 0.08 1.3 ± 0.15 0.9* ± 0.08 1.0 ± 0.22 0.4*# ± 0.14

Prkaca 1.0 ± 0.11 0.7 ± 0.10 1.3 ± 0.08 1.0 ± 0.01 1.2 ± 0.09 1.1 ± 0.03 0.4# ± 0.03 1.5*# ± 0.09

Prkacb 1.0 ± 0.18 0.9 ± 0.07 1.3 ± 0.06 1.5 ± 0.07 1.0 ± 0.03 1.0 ± 0.12 0.4# ± 0.01 2.2*# ± 0.2

Prkar1a 1.0 ± 0.10 1.0 ± 0.08 0.9 ± 0.04 1.4* ± 0.16 1.0 ± 0.06 1.2 ± 0.09 0.3# ± 0.01 1.2* ± 0.02

Prkar2a 1.0 ± 0.13 0.7 ± 0.09 1.1 ± 0.09 1.0 ± 0.06 0.9 ± 0.07 0.9 ± 0.07 0.4# ± 0.05 1.6*# ± 0.14

Prkar2b 1.0 ± 0.09 0.7 ± 0.07 1.2 ± 0.10 1.0 ± 0.09 0.9 ± 0.01 1.1 ± 0.09 0.5# ± 0.06 1.8*# ± 0.05

Mapk1 1.0 ± 0.07 1.9*# ± 0.11 1.0 ± 0.06 2.0*# ± 0.15 1.2 ± 0.11 1.8*# ± 0.04 0.4# ± 0.01 2.6*# ± 0.16

Mapk3 1.0 ± 0.10 0.7 ± 0.07 1.1 ± 0.03 1.2 ± 0.04 1.1 ± 0.04 1.0 ± 0.04 0.4# ± 0.06 1.8*# ± 0.04

Mapk6 1.0 ± 0.11 1.6*# ± 0.13 0.6 ± 0.02 1.8*# ± 0.04 0.8 ± 0.05 1.7*# ± 0.03 0.4# ± 0.04 2.3*# ± 0.04

Mapk8 1.0 ± 0.11 1.4*# ± 0.11 1.2 ± 0.07 1.5# ± 0.07 1.1 ± 0.04 1.3 ± 0.05 0.4# ± 0.05 1.9*# ± 0.29

Mapk9 1.0 ± 0.17 1.0 ± 0.13 1.1 ± 0.05 1.2 ± 0.13 1.0 ± 0.05 1.2 ± 0.08 0.6 ± 0.05 1.9*# ± 0.14

Mapk11 1.0 ± 0.10 0.8 ± 0.09 1.3 ± 0.03 1.2 ± 0.09 1.2 ± 0.14 1.5# ± 0.07 1.4 ± 0.12 0.7* ± 0.10

Mapk12 1.0 ± 0.11 1.0 ± 0.12 0.9 ± 0.07 1.8*# ± 0.09 1.2 ± 0.03 1.4 ± 0.09 0.3# ± 0.04 2.5*# ± 0.15

Mapk13 1.0 ± 0.11 0.6 ± 0.07 1.6# ± 0.16 0.9* ± 0.06 1.3 ± 0.12 0.6* ± 0.29 0.4# ± 0.01 1.3* ± 0.05

Mapk14 1.0 ± 0.12 0.8 ± 0.01 1.0 ± 0.02 1.3 ± 0.05 1.1 ± 0.01 1.1 ± 0.01 0.5# ± 0.01 2.1*# ± 0.01
July 20
22 | Volume 13 |
Data are presented as means ± SEM values of two independent experiments. Statistical significance at p < 0.05: * vs. the control group of each time point; # vs. the control group of ZT3 time point.
Green arrow indicates the increased level of the transcript, while red arrow indicates decreased level of the transcript.
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functionality are changed during the recovery from acute stress.
Again, heat map analysis (Figure 10B, Supplementary Figure
S8) clearly showed that changes are most abundant at the ZT23,
and they are mostly increased expression. All increased
transcripts are, for the signaling molecules, very well known as
the essential regulators of spermatozoa number/functionality
(43), as well as regulators of PGC1, the biogenesis of OXPHOS,
mitofusion, mitofission, and mitophagy (32, 33, 37).
Furthermore, all affected molecules are part of the complex
signaling network in spermatozoa precisely regulated to provide
fertility homeostasis in health and diseases (67). The
consequences of the increased expression of transcripts are
restored spermatozoa functionality at the ZT17 and ZT23 since
it was shown that cAMP signaling improves sperm motility (68,
69) and it is important for the activation of CatSper channels (70).
Increased expressions of transcripts for all subunits of PRKA are
also a great adaptive and ameliorative mechanism since it was
reported that the PRKAR2A reduction in asthenozoospermic
patients decreases sperm quality (71), while Prkar2b is sensitive to
heat (72). The results of the PCA clearly showed that the
transcriptional patterns were different during the active and
inactive phases and that most of the transcripts were highly
expressed during the active/dark phase of the day. Interestingly,
the transcript for the most important spermatozoal ADCY,
ADCY10, was highly expressed during the inactive/light phase
of the day (Figure 12B). Last, but not least, increased transcripts
for Mapk1, Mapk3, and Mapk14 in spermatozoa from rats
recovered for 20 h could be compared with findings that
testicular hyperthermia induces both MAPK1/3 and MAPK14
(73) and that MEK1/2 and ERK2 regulate the spermatozoa
capacitation (74). The results of the PCA clearly showed that
the transcriptional patterns of all analyzed MAPKs, except
Mapk11, were highly expressed during the active/dark phase of
the day (Figure 12C). Moreover,Mapk8 significantly increased at
ZT3 and ZT23, and it was shown that phosphorylation ofMAPK8
is associated with germ cell apoptosis and redistribution of the
Bcl2-modifying factor (75). All molecular events could be
possible adaptive responses, and this was proven by recovery of
functionality at ZT23.

We believe that results presented here have a significant
translational aspect related to the effect of acute stress on male
fertility. To prove that our results have translational significance,
we started our analysis using spermatozoa obtained from human
subjects, and preliminary results showed the correlation of
different transcriptional profiles of the mitochondrial dynamics
markers and different types of spermiograms. Moreover,
according to the questionnaire completed by 115 patients from
a governmental ART clinic providing the IVF service for free,
105/115 (91%) reported some degree of stress: 51/115 (44%)
reported a low degree of stress, 41/115 (36%) reported frequent
stressful situations, and 13/115 (11%) reported a high degree of
stress (Tomanic et al., unpublished results).

It is important to point out that our investigation did not
consider a possible contribution of epididymal cells to the RNA
Frontiers in Endocrinology | www.frontiersin.org 20261
isolated from spermatozoa. This is important since spermatozoa
RNA is subjected to epididymal RNA contamination that is
transferred to spermatozoa via extracellular vesicles such as
epididymosomes. Also, the aim of our study was not to assess
motility, but certainly it is well known that mitochondria
produce energy for sperm movement. Last, but not least, it is
shown that structural abnormalities and decreased spermatozoa
motility are associated with decrease in mitochondrial activity
and decrease in basal oxygen consumption (76). Since stress
stimulates reactive oxygen species and higher concentrations of
reactive oxygen species can have detrimental effects on quality of
spermatozoa (77), our results showing the increase in the
expression of NRF1 and NRF2 transcripts and proteins could
be the possible mechanism of adaptation for the restored
spermatozoa functionality 20 h after acute stress.

Maybe it is noteworthy that all molecules involved in the
regulation of spermatozoa homeostasis and functionality could
be possible candidates and eventually responsible for male (in/
sub)fertility. Recently, it was described that the sperm-specific
form of lactate dehydrogenase is required for fertility and is an
attractive target for male contraception (78). Since the existing
literature suggests the importance of semen quality and male
fertility not only as the fundamental marker of reproductive
health but also as fundamental biomarkers of overall health and
harbingers for the development of comorbidity and mortality, we
anticipate our results to be a starting point for more
investigations considering the mitochondrial dynamics
markers, or their transcriptional profiles as possible predictors
of (in/sub)fertility.
CONCLUSIONS

Acute stress, the most common stress in human society,
significantly changes 91% of followed mitochondrial dynamics
and functionality markers as well as 91% of signaling molecules
regulating spermatozoa homeostasis and mitochondrial
dynamics/functionality. This leads to the recovery of
spermatozoa number/functionality (positive acrosome reaction),
which is important for male (in/sub)fertility. Stress-triggered
changes represent adaptive mechanisms to keep spermatozoa
functionality, and they are essential for fertility. Besides the
effects of stress recovery, our results show the circadian-like
nature in the expression of some important regulators of
spermatozoa function.
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GLOSSARY
1x3hIMO one time immobilization stress with a duration of 3 h
Adcy3 gene encoding adenylate cyclase 3
Adcy5 gene encoding adenylate cyclase5
Adcy6 gene encoding adenylate cyclase 6
Adcy7 gene encoding adenylatecyclase 7
Adcy8 gene encoding adenylate cyclase 8
Adcy10 gene encodingadenylate cyclase 10
COX4 cytochrome c oxidase subunit 4
Cox4i1 geneencoding cytochrome c oxidase subunit 4i1
Cox4i2 gene encoding cytochromec oxidase subunit 4i2
Cytc gene encoding cytochrome c
DRP1 dynamin 1-like;
Drp1 gene encoding dynamin 1-like
FIS1 fission mitochondrial 1
Fis1 geneencoding fission mitochondrial 1
IMO immobilization
MAPK mitogenactivatedprotein kinase
Mapk1 gene encoding mitogen-activated protein kinase 1
Mapk3 gene encoding mitogen-activated protein kinase 3
Mapk6 gene encoding mitogen-activated protein kinase 6
Mapk8 gene encoding mitogen-activated protein kinase 8
Mapk9 gene encoding mitogen-activated protein kinase 9
Mapk11 gene encoding mitogen-activated protein kinase 11;
Mapk12 gene encoding mitogen-activated protein kinase 12
Mapk13 gene encoding mitogen-activated protein kinase 13
Mapk14 gene encoding mitogenactivated protein kinase 14
MFN1 mitofusin 1
Mfn1 gene encoding mitofusin 1;
MFN2 mitofusin 2
Mfn2 gene encoding mitofusin 2
mtNd1 gene encoding
NADH
dehydrogenase
1

mitochondrial

NRF1 nuclear respiratory factor 1

(Continued)
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Continued

Nrf1 gene encoding nuclear respiratory factor 1
NRF2 nuclear respiratory factor 2;
Nrf2a gene encoding nuclear respiratory factor 2
OPA1 mitochondrial dynamin like GTPase
Opa1 gene encoding mitochondrial dynamin like GTPase;
OXPHOS oxidative phosphorylation
PGC1a peroxisome proliferator-activated receptor gamma coactivator

1-alpha
PGC1b peroxisome proliferator-activated receptor gamma coactivator

1-beta
PINK1 PTEN induced kinase 1
Ppara gene encoding peroxisome proliferator-activated receptor

alpha
Ppard gene encoding peroxisome proliferator-activated receptor delta
Ppargc1a gene encoding peroxisome proliferator-activated receptor

gamma coactivator 1-alpha;
Ppargc1b transcripts for gene encoding peroxisome proliferator-activated

receptor gamma coactivator 1-beta
PRKA protein kinase AMP-activated;
PRKAc protein kinase AMP-activated catalytic subunit
Prkaca gene encoding protein kinase cAMP-activated catalytic subunit

alpha
Prkacb gene encoding protein kinase cAMP-activated catalytic subunit

beta
Prkar1a gene encoding protein kinase cAMP-dependent type I

regulatory subunit alpha
PRKAR2A protein kinase cAMP-dependent type II regulatory subunit

alpha
Prkar2a gene encoding protein kinase cAMP-dependent type II

regulatory subunit alpha;
Prkar2b gene encoding protein kinase cAMP-dependent type II

regulatory subunit beta
T+DHT testosterone + dihydrotestosterone
TFAM transcription factor A mitochondrial
Tfam gene encoding transcription factor A mitochondrial
UCPs uncoupling proteins
Ucp1 gene encoding uncoupling protein 1
Ucp2 gene encoding uncoupling protein 2
Ucp3 gene encoding uncoupling protein 3
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INTRODUCTION

The field of contraception development has exciting new momentum. Novel, innovative approaches
will expand the contraceptive options available to men and women. However, the associated
innovations present fresh challenges to clinical development and regulatory approval. How can
stakeholders best ensure that obstacles will be overcome so the new discoveries will move from
bench to bedside?

Translational medicine came to prominence over 20 years ago and arose from the need to
improve the transfer of biological knowledge into medical utility. Critical components of
translational medicine are the formation and utilization of animal models relevant to the human
condition, as well as the development of diagnostics and biomarkers which are integral to drug
development by informing evidence-based preclinical and clinical decisions. This opinion piece
discusses the current need for biomarkers and diagnostics in the development of contraceptives and
suggests how the field can work together toward that goal.

Development of Tools
Biomarkers and diagnostics are generally named in connection to their usage. These include, but are
not limited to disease biomarkers, patient selection biomarkers, pharmacodynamic (PD)
biomarkers, and diagnostics to understand chemical concentration. For example, disease
biomarkers indicate potential disease (e.g., prostate specific antigen test for prostate cancer).
Patient selection biomarkers are predictive of a given person’s response to a drug, guiding
clinical use or potentially inclusion in a clinical trial (e.g., HER2 amplification for cancer).
Disease and patient selection biomarkers, not typically used directly for contraception, are
important for other therapeutic areas and clearly illustrate the application of such tools.

The PD biomarker is relevant to all drug development. It indicates the drug effect on the
molecular target in an organism and is typically as proximal to the target modulation site as feasibly
possible to minimize any indirect effects. If the target is an enzyme, the PD biomarker is usually the
product of the enzyme, and PD activity is read as a change in the concentration of the enzymatic
product. If the assay is appropriately sensitive, a small amount of target modulation will result in the
significant change in the PD biomarker.

However, other factors also impact the selection of a PD biomarker, such as sample
procurement. For example, if the target is a testis-specific enzyme and an invasive testicular
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biopsy is required for direct target activity measurement,
obtaining that sample for clinical development is unlikely. In
such cases, an indirect readout such as ejaculated sperm number,
sperm morphology or sperm motility may be employed as
an alternative.

Consider the potential use of a PD biomarker for the male
contraceptive target Soluble Adenylyl Cyclase (sAC), encoded for
by the ADCY10 gene. The enzyme converts ATP to cAMP: a
requirement of sperm motility. Targeted deletions of ADCY10 in
mice result in male infertility due to impaired sperm motility (1).
Two infertile men have been identified with identical frameshift
mutations leading to premature translation termination
upstream of the nucleotide binding site in sAC (2).
Importantly, treatment of sperm lacking sAC activity with a
cell-permeable cAMP analogue increases sperm motility
significantly. An excellent PD biomarker to evaluate a sAC
inhibitor’s function is the measurement of cAMP levels in
freshly ejaculated sperm prior to and following test subject
exposure of a putative sAC inhibitor.

To fully interpret the results of PD biomarker analysis, one
must understand the drug pharmacokinetics (PK) at the target
site by measuring the drug concentration associated with the
target site (e.g., plasma, rete testis fluid, ejaculate, vaginal cavity
secretions). The relationship of these two parameters, a “PK/PD
relationship,” is critical for determining whether the active
pharmaceutical ingredient is modulating the target of the drug
(indicated by the PD biomarker), and whether the active
ingredient concentration required to induce the observed
modification of the PD biomarker results in the desired clinical
endpoint. Although the science of PK is broader than local drug
concentration (it incorporates the absorption, distribution,
metabolism, and excretion of drugs), in the context of the PK/
PD relationship, ‘PK’ implies local drug concentration.

Deciding What to Use in the Clinic
For effective use in translational research, the development and
validation of biomarkers requires ample time and investment.
Novel biomarkers require significant pre-clinical research and
development to ascertain their suitability for the clinical
environment. Analytical validation, particularly evaluation of
the biomarker test’s precision and accuracy, is critical. In some
cases, biomarkers could be developed for use beyond the clinic
and become commercial companion diagnostics (e.g., patient
selection biomarkers, disease biomarkers), defined as medical
devices by the Food and Drug Administration (FDA).

Similar to constraints that may arise from sample
acquisition, the cost/benefit ratio of developing a PD
biomarker that is proximal to the target and the significant
time and resources needed to develop and validate a clinical
biomarker for testing may give reason for more distal PD
biomarker strategies to be considered. For example, as
discussed above with respect to sAC inhibition, cAMP
quantitation in ejaculated sperm is an excellent PD
biomarker; however, an indirect method for assessing sAC
activity could be evaluating sperm motility. This evaluation
may be sufficiently useful without incurring the time and cost of
developing a validated clinical cAMP assay for sperm.
Frontiers in Endocrinology | www.frontiersin.org 2267
Andrology laboratories associated with large medical
institutions are trained in standardized sperm evaluation
methods (e.g., World Health Organization Guidelines) (3).
The assumption is that the observed decrease in sperm
motility following exposure to a sAC inhibitor is the result of
target modulation (inhibition of sAC leading to a decrease in
intracellular sperm cAMP concentrations) ultimately leading to
decreased sperm motility.

A Changing Paradigm
Attempts to develop a male contraceptive via the suppression of
intratesticular androgen concentration has a long and well
documented history (4–8). Regulatory agencies have been
aware of the mechanism of suppressing endogenous androgen
production for more than 30 years. The biomarker of
azoospermia and its use as a biomarker of clinical utility for
contraception is accepted by regulatory agencies.

This is not true for potential male contraceptive products that
function via non-hormonal methods. The development of male
contraceptives directed against highly selective/specific
mechanisms of action (e.g., single gene products such as sAC)
will require thoughtful interaction with regulatory agencies to
efficiently establish a comfort level for each new paradigm (e.g.,
inhibition of meiosis, perturbation of spermiogenesis, inhibition
of capacitation, inhibition of sperm motility).

Discussion
We have attempted to demonstrate that the changing paradigm
in the field of contraceptive development will benefit from the
development of biomarkers and diagnostics to facilitate the
translation from preclinical to clinical research. These tools
will also facilitate interactions with regulatory agencies and
inform decision making during the clinical trial process. A key
question is how to stimulate progress to this end?

The Eunice Kennedy Shriver National Institute of Child
Health and Human Development (NICHD) has emphasized
the importance of biomarker development for contraceptive
research programs in recent years. Since 2017, Request for
Applications (RFAs) for the Contraception Research Centers
have emphasized the need to pursue these studies. Since 2019,
the NICHD’s Biological Testing Facility (PAR-21-078) and
Chemical Screening and Optimization Facility (PAR-19-261)
have supported contraceptive development to execute service
requests for the generation of data supporting novel contraception
development, including biomarker data. Despite these calls and
opportunities, applications including biomarker identification and
validation have been lacking and biomarker research has not been
incorporated into funded contraception development programs.

To stimulate focus more directly in this area, in 2021 the
NICHD published RFA-HD-22-018 specifically to support the
development of biomarkers and diagnostics for new
contraceptive methods by small business. Awards are expected
in 2022. This RFA was an important commitment and highlights
the priority placed on biomarkers/diagnostics. Hopefully, the
resulting research will directly support product development and
serve as a ‘seed crystal’ for programs that have yet to include
biomarkers/diagnostics in their product development strategies.
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HowDoWeBestMove Forward in the Field of Contraception?
The field would benefit from the organization and execution

of a focused workshop, highlighting late-stage preclinical
contraception programs and prioritizing discussions about
biomarker implementation. A critical component of such a
workshop would be the active participation of key opinion
leaders, industry representatives, and regulatory agency
personnel (e.g., regulatory agency pharmacology/toxicology
and clinical staff). Upon adjournment, timely communication
of the workshop outcomes would ideally broadcast the key
findings, next steps, and regulatory considerations, and thereby
deepen information available to the field and strengthen the
prospects of all worthy novel approaches.

Could There be Broader Implications for Reproductive
Biology/Health?

We believe so. In recent years industry has shown renewed
interest in the reproductive health space. Going forward, if a
consortium involving industry as well as innovative product
developers from academia and small business were to be
established, enormous benefit could be realized. Reaching
consensus on diagnostics and biomarkers and their validation
would expedite product development. The cumulative impact
Frontiers in Endocrinology | www.frontiersin.org 3268
would benefit not only the field of contraception, but all
stakeholders across the spectrum of reproductive biology/health.
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