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Editorial on the Research Topic

Genomic alteration landscapes of aging, metabolic disorders, and

cancer: Emerging overlaps and clinical importance

The biology of aging, cancer, and various metabolic disorders shows a clear

association with genetic and epigenetic changes. These genomic alterations arise

from diverse intrinsic and extrinsic/environmental factors. The efficiency of a cell to

proofread its newly synthesized DNA strand gradually decreases with age hampering its

genomic integrity. An increased burden of genomic changes, therefore, gives rise to

multiple health issues like metabolic disorders (Abou Ziki and Mani, 2016; Varshavi

et al., 2018). However, on the other hand, recent studies provide evidence for the role of

metabolic perturbations in accelerated aging (Spinelli et al., 2020). These

transformations, following either way, involve diverse interactions between

molecular players of aging, metabolism, and redox biology (including mitochondria

fitness, Ca2+ signaling, and bioenergetics); all encrypted in the genomic sequence.

Accumulation of irreversible genomic changes over a long time then leads to the onset

and progression of cancer. Cancer cells have been shown to operate with reengineered

metabolic processes to satisfy their surplus needs during uncontrolled proliferation (Liu

et al., 2022). Therefore, aging, metabolic changes, and cancer exist as a network of

crossroads (Tidwell et al., 2017; Golubev and Anisimov, 2019; Poljsak et al., 2019).

These broadly categorized pathologies share common genomic signatures that further

strengthen the link between aging, metabolic disorders, and cancer (Aunan et al., 2017;

Lacroix et al., 2020). Along with metabolic alterations, occurrence of aberrant mutations

in the mitochondrial genome is also a common characteristic of aging and cancer (Smith
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et al., 2022). Therefore, it becomes important to uncover the

contribution of genomic changes in the context of these cellular

health states and the sequential order that defines these states, if

any. In line with this, the original research articles and reviews

published in the present Research Topic focus on genomic

alteration landscapes of aging, metabolic disorders and cancer,

the existing and emerging overlaps, and its clinical importance

for therapeutic interventions (Figure 1).

The role of autophagy has been recently established in the

pathogenesis of aortic dissection; however, the complete

molecular mechanism has not been uncovered yet. In an

original report, Huang et al. has studied the correlation

between the family of ULK (UNC51-like enzymes) genes

and the age of first onset of type B aortic dissection

(TBAD). The authors analyzed the genome of 159 TBAD

patients from Chinese population. A pool of 1,180,097 SNPs

was included. Among the different ULK genes, only

ULK4 was found to be significantly associated with the

first onset age. They concluded that high level of

ULK4 gene expression was related to delayed onset of

TBAD among these patients. Further experimental

validation of these findings can suggest ULK4 to be a

diagnostic target for TBAD.

Telomere shortening is one of the important hallmarks of

cellular senescence, however, telomere length related cellular

senescence has been shown to have varying effects in different

cancers. To delineate this paradoxical relationship, Son et al.

made use of 42 telomere length associated SNPs, and performed

Mendelian randomization analysis to explore the causal

relationship between telomere length, skin aging and the

susceptibility risk of different skin cancer types. The authors

found that telomere shortening can promote aging of the skin

and reduce the risk of cutaneous melanoma and non-melanoma

skin cancer.

As mentioned before, cellular senescence has often been

correlated to oncogenic activation and tumor suppression

leading to cancer development. In line with this, Dai et al. has

constructed a prognostic risk score signature using the

senescence related genes differentially expressed in gastric

cancer samples. A total of 135 such genes were identified with

significant dys-regulation. Integration of survival data associated

24 of these genes with gastric cancer prognosis. Patients with

high expression of SMARCA4 (gene with highest mutational

frequency) were associated with higher overall survival and

progression-free survival. A total of 11 genes were then

identified using LASSO Cox regression analysis to develop the

prognostic risk score signature. Testing using an independent

data showed that this signature could accurately distinguish low-

risk and high-risk samples. The authors further showed that the

low-risk score group was also more susceptible to chemotherapy

and immunotherapy, and hence can be used for better decision

making for treatment to be given. Another study by Dai et al. on

similar grounds looked into the cellular senescence related genes

that can be used for prediction of prognosis and immunotherapy

response in colon cancer patients. Dong et al. and Sun et al. also

reported a senescence-related prognostic model that has been

shown to predict the prognosis, immunotherapeutic response,

and identify potential drug targets for colorectal and

hepatocellular carcinoma patients, respectively. These studies

show the potential of using huge amount of publicly available

clinical data for learning and developing predictive models to

design personalized treatment regimen for cancer patients.

Intracellular calcium levels play an important role in

homeostasis and various cell signalling processes. Dysregulated

levels of calcium have been shown to be remarkably associated

with cancer growth, angiogenesis, andmetastasis. Elevated serum

calcium level is a proposed diagnostic marker for head and neck

malignancy. In association with this, Hegde et al. carried out in

silico analysis to demonstrate the role of store-operated calcium

channels in regular mitochondrial function, and further suggest

that alteration in these calcium channels might be a predictive

and prognostic marker for head and neck squamous cell cancer

patients.

Though cancer in general is thought to arise from

accumulation of somatic mutations, they do have a substantial

hereditary component. To look at the contribution of the

pathogenic germline variants in the development of bowel

cancer in Chinese population, Xie et al. analyzed the mutation

profile of 573 patients accounting for various stages of bowel/

colorectal cancer. The profiled germline mutations were

categorized as pathogenic, likely-pathogenic and non-

pathogenic. Some rare germline alterations in genes like

ANCD2, CDH1, and FLCN were also observed. The other

germline mutations were enriched in genes involved in DNA-

damage repair and homologous recombination. Patients carrying

germline mutations also showed a distinctive somatic mutation

profile and tumor mutation burden, which also affected the

overall survival of these patients. This study provides an

assessment of a wider range of susceptibility genes in Chinese

bowel/colorectal patients.

Along with accumulating genetic mutations, cancer cells also

reprogram the other biochemical processes to generate conditions

favorable for sustenance and continuous proliferation. Metabolic

reprogramming to switch fromoxidative phosphorylation to aerobic

glycolysis is one of the major hallmarks of cancer. In this Research

Topic of articles, Sharma et al. has presented a comprehensive review

highlighting the role of hypoxia-inducible factor-1 (HIF-1) in

imparting aggressive behavior in cancer cells through hypoxic

glycolysis, and novel therapeutic strategies currently available for

targeting HIF-1 in cancer.

Not only gene expression, but its regulation by non-coding

RNAs like miRNA also plays a crucial role in onset and progression

of various diseases. A review article from Chhichholiya et al. gives

information about the reported single nucleotide polymorphisms in

miRNA(s) and their target sequences known to be involved in

cancer and diabetic pathologies.
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In summary, the present Research Topic gathers original

research and comprehensive reviews highlighting the

genomic factors behind aging, metabolic perturbations and

cancer. These studies confirm the interconnecting links

between these pathologies, and the need to understand

these to identify the cross-points that can be further

explored for diagnosis, prognosis and other therapeutic

interventions.

FIGURE 1
Schematic diagram showing research summarized majorly on three themes including cell senescence/aging and cancer, metabolism and
cancer gene mutations/signatures. Research Topic articles are marked by serial number within the related schematic section.
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miRNAs are fascinating molecular players for gene regulation as individual miRNA can
control multiple targets and a single target can be regulated by multiple miRNAs. Loss of
miRNA regulated gene expression is often reported to be implicated in various human
diseases like diabetes and cancer. Recently, geneticists across the world started reporting
single nucleotide polymorphism (SNPs) in seed sequences of miRNAs. Similarly, SNPs are
also reported in various target sequences of these miRNAs. Both the scenarios lead to
dysregulated gene expression which may result in the progression of diseases. In the
present paper, we explore SNPs in various miRNAs and their target sequences reported in
various human cancers as well as diabetes. Similarly, we also present evidence of these
mutations in various other human diseases.

Keywords: miRNA, microRNA, target genes, seed sequences, SNPs, cancer, diabetes mellitus

INTRODUCTION

MicroRNAs (miRNAs) are endogenous single stranded, non-coding, 20–22 nucleotides long
molecules that are processed from pre-miRNA. miRNAs have been demonstrated to be
tremendously versatile in their function. miRNAs have significant roles in the nucleus as well as
cytoplasm in terms of controlling gene expression. They play a significant role in post-transcriptional
regulation of gene expression either via translational repression or mRNA degradation (Iorio and
Croce, 2012; Peng and Croce, 2016). miRNAs recognize targets by specific base-pairing
complementarity between their seed sequence of miRNA (5′ end) and untranslated region
(3′UTR) of target gene/mRNA (Ling et al., 2011; Si et al., 2019).

However, in some exceptional cases, base pairing is also reported between 5′ UTR region of the
specificmRNA and coding regions (O’Brien et al., 2018; Valinezhad Orang et al., 2014). The standard
size of 3′UTR in the human gene is about 950 nucleotides whereas the seed sequence of miRNA is
around 6 to 8 nucleotides. The 3′UTR region of a particular mRNA may be recognized by a specific
miRNA or by multiple miRNAs. Sequence complementarity is shared by miRNAs with respect to
their mRNA targets, resulting in the interaction of a single miRNA with many genes whereas a single
gene can probably be regulated by multiple miRNAs (Hashimoto et al., 2013; Mariella et al., 2019).

Around 10 million SNPs are known to be present in both coding as well as non-coding regions of
the human genome at a frequency of one in every 300 bp (Moszyńska et al., 2017). Since SNPs have
also been reported to be present in seed sequence, it is most likely that the presence of these
alterations might disrupt or create new interaction of miRNAwith its target site (Palmero et al., 2011;
Bhattacharya and Cui, 2017). Furthermore, the SNPs in the 3′UTRs of gene/mRNA can also
modulate miRNA-mRNA interactions, protein-mRNA interactions, polyadenylation, all of which
might have a serious impact on translation efficiency and mRNA stability (Malhotra et al., 2019a).
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This in turn might result in the development of various diseases
including neurodevelopment disorders, cardiovascular diseases,
cancer, autoimmune diseases, and many more (Bruno et al., 2012;
Moszyńska et al., 2017).

Cancer and diabetes are multifactorial life threatening human
diseases in which various miRNAs have been reported in the
pathogenesis as well as the severity of these diseases (Ayaz
Durrani et al., 2021). Tens of millions of people are diagnosed
with cancer each year around the world, with more than half of
those diagnosed dying from it. miRNA profiling and high
throughput sequencing in the recent past revealed that
miRNA expression is dysregulated in cancer and that its
fingerprints might be utilized to classify, diagnose, and
prognosis of tumors. miRNAs have been reported to act as
oncogenes or tumor suppressors under certain biological
conditions. Cancer hallmarks such as sustaining proliferative
signals, evading growth suppressors, resisting cell death,
activating invasion and metastasis, and initiating angiogenesis
have been linked to dysregulated miRNAs (Peng and Croce,
2016).

Diabetes mellitus (DM) affects 347 million people worldwide.
Diabetes-related fatalities are expected to double between 2005
and 2030, according to the World Health Organization (Chen
et al., 2014a). High blood glucose levels are a defining feature of
DM. Diabetes is classified into two types. A deficiency of insulin
synthesis in pancreatic cells causes type 1 diabetes (T1D), whereas
type 2 diabetes (T2D) is caused by insulin resistance, which
causes the body to utilize insulin inefficiently. In both T1D and
T2D, long-term hyperglycemia can cause macrovascular
(coronary artery disease, peripheral arterial disease, and
stroke) as well as microvascular complications (diabetic
nephropathy, neuropathy, and retinopathy) (Fowler, 2008).
miRNAs are implicated in the etiology and pathogenesis of
diabetes and associated complications (Chen et al., 2014a).
However, the role of miRNAs in diabetes and its
complications are comparatively explored less.

Very few reports are available on SNPs reported in the seed
sequence of miRNAs and the 3′UTR region of their target genes.
The current review has been compiled with an aim to evaluate the
role of genetic variation in the seed sequence of the miRNA and
the 3′UTR of their specific target genes in association with the
development of the two most common prevalent
diseases—cancer and diabetes.

SNPS IN THE SEED SEQUENCE OF MIRNA
AND THE 39UTR OF SPECIFIC TARGET
GENE IN CANCER
Many miRNAs have been discovered to play a role in the genesis
of cancer, either as tumor suppressor genes or as oncogenes. The
study of tumor-specific miRNA expression profiles in a variety of
malignancies revealed extensive dysregulation of these molecules,
some of the overexpression and underexpression of various
miRNA (Song and Chen, 2011). As evidenced by multiple
findings demonstrating the importance of miRNAs in
carcinogenesis, miRNA dysregulation leads to modulation of

tumor cell signaling, changes in DNA repair or stress
response, and function of the effector protein (Moszyńska
et al., 2017; Malhotra et al., 2019a; Galka-Marciniak et al., 2019).

SNPs in the Seed Sequence of miRNA
SNPs in the mature or primary miRNA or seed sequence might
affect miRNA processing or binding. Several SNPs present in
miRNA main sequences or upstream regulatory regions have
been linked to increased cancer risk as well as its prognosis (Duan
et al., 2007). In cancer, SNPs reported in seed sequence of various
miRNA include rs2910164 in miR-146a; rs3746444 in miR-499;
rs12975333 in miR-125a; rs34059726 in miR-124; and
rs11614913 in miR-196-a2. Information about SNPs in the
seed sequence of miRNAs is summed up in Table 1 and
elaborated functional role of these miRNAs in the
development of cancer has been depicted in Figure 1.

miRNA-146a
miR-146a is a widely expressed miRNA in mammalian cells.
Multiple studies have shown that miR-146a is involved in
inflammation, differentiation, and function of adaptive and
innate immune cells. miR-146a has been found to be a
regulator of cell function and differentiation in innate and
adaptive immunity. A subset of human T cells exhibits
different expression level of niR-146a. Memory T cells and
naive T lymphocytes have different levels of miR-146a
expression (Nahand et al., 2020). This miRNA is produced by
T-cell receptor activation, and the binding sites of c-ETS and
transcription factor nuclear factor-κB (NF-kB) are required for
miR-146a transcription in T lymphocyte cells (Curtale et al.,
2010; Lu et al., 2010). Some studies observed an association
between the NF-kB signaling pathway and miR-146a
expression (Rusca and Monticelli, 2011). Taganov et al. (2006)
found that LPS stimulation enhanced miR-146a expression in an
NF-kB-dependent manner and that miR-146a targeted the
IRAK1 and TRAF6 genes (Taganov et al., 2006; Rusca and
Monticelli, 2011). After a cell surface receptor (such as TLR4)
is activated, a biochemical cascade involving IRAK1 and TRAF6
causes IkBa to be phosphorylated and degraded, resulting in the
activation of NF-kB and its nuclear translocation. Furthermore,
NF-kB activation causes some genes, such as pri-miR-146a, to be
expressed. miR-146a matures on the RISC and contributes to the
attenuation of receptor signaling by downregulating TRAF6 and
IRAK1. As a result, miR-146a inhibits the signaling pathway
leading to NF-B activation (Taganov et al., 2006; Taganov et al.,
2007; Labbaye and Testa, 2012).

miR-146a polymorphism, rs2910164, involves a G>C nucleotide
alteration on the seed region of miR146a-3p, resulting in G:U pair to
a C:U mismatch pairing in the stem of the miR-146a affecting the
specificity of mature miR-146a binding to its targets and results in
elevated expression of miR-146a (Brincas et al., 2020). Previous
studies have established the association of rs2910164 in pre-miR-
146a with strong association with breast cancer (BC), hepatocellular
carcinoma (HCC), papillary thyroid carcinoma (PTC), esophageal
squamous cell carcinoma (ESCC), primary liver cancer, and
colorectal cancer (Hu et al., 2009; Vitale et al., 2011; Xiang et al.,
2012; Zhou et al., 2012).
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A microarray-based expression study carried out in a Chinese
population found that miR-146a was significantly upregulated in
breast carcinoma tissues compared to normal tissues (Omrani
et al., 2014). Its expression level was three times higher in triple
negative tumors in comparison with other tumor subgroups.
However, this association has been reported to vary in different
ethnic groups. The allele C is associated with BC risk in the
European population but did not show any association with BC in
the Asian population. This discrepancy might be on account of
ethnicity, different exposure to carcinogens, or linkage
disequilibrium with different causal variants (Brincas et al., 2020).

Molecular targets of miR-146a include BRCA1, TRAF6,
IRAK1, and NUMB genes (Brincas et al., 2020). The variant
allele of rs2910164 leads to increased levels of mature miR-
146a that binds with greater affinity to the BRCA1 gene.
Alternatively, rs2910146 might disrupt the well-documented
role of miR-146a as a mediator of the pro-apoptotic
transcriptional factor NF-κB. Also, the expression levels of
miR146a-5p were observed three times higher in triple
negative tumors compared to other subgroups of mammary
tumors (Brincas et al., 2020). Two other significant targets of
miR-146a, TRAF6, and IRAK1 are important adapter

molecules downstream of the toll-like and cytokine
receptors that have a vital role in signaling cell growth and
immune recognition (Omrani et al., 2014). Both the genes have
been associated with progression and metastasis. The reduced
TRAF6 and IRAK1 levels reduce the activity of NF-kB, a
potential inducer of proliferation, survival, angiogenesis,
and metastasis (Brincas et al., 2020).

rs2910164 of miR-146a has been reported to induce liver
metastasis in colorectal cancer (CRC) via Notch and JAK/
STAT signaling pathways. Migratory response of NUMB has
been observed in CRC cell lines (RKO, HT29, LoVo). NUMB
protein is a negative regulator of Notch signaling, miR-146a
activates Notch and JAK/STAT3 signaling through
suppression of NUMB protein thereby enhancing the
metastatic risk. Further, patients of gastric cancer bearing
the altered genotype showed a higher expression of miR-146a
than the ones bearing the normal genotype (Iguchi et al.,
2016). In addition, this polymorphism has also been reported
to increase the risk of PTC in a heterozygous condition
(Vitale et al., 2011). The reduction in expression level of
miR-146a led to less efficient inhibition of target genes
TRAF6 and IRAF1 involved in the Toll-like receptor and

TABLE 1 | SNPs reported in seed sequence of miRNA in various cancers.

S.
No

miRNA Gene SNP reported Tumor type Reference

1 miR-379 SEMA3F rs61991156 Gastric cancer Cao et al. (2016)
A>G

2 miR-627 SEMA3F rs2620381 ESCC- esophageal squamous cell carcinoma Cao et al. (2016)
A>C

3 miR-
499-3p

PBX1, FOXO1A rs3746444 BC, ALL, colorectal, liver, SCC of head and
neck, gallbladder cancer

Xiang et al. (2012); Cao et al. (2016); Ahmad et al. (2019)
A>G

4 miR-124 VAMP3, CD164,
PTPN12, ITGB1

rs34059726 Lung cancer Yang et al. (2016); Fawzy et al. (2017)
G>T

5 miR-642a ATP6VOE1 rs78902025 Leiomyoma Pelletier et al. (2011); Cao et al. (2016)
T>G

6 miR-4293 SLC43A2 rs12220909 NSCLC Malhotra et al. (2019b)
A>C

7 miR-
146a-3p

BRCA1, TRAF6,
IRAK1, NUMB

rs2910164 BC, HCC, PTC, ESCC, colorectal and primary
liver cancer

Yekta et al. (2004); Vitale et al. (2011); Xiang et al. (2012);
Zhou et al. (2012); Iguchi et al. (2016)C>G

8 MiR-4707 CARD10 rs2273626 Rectal cancer Shvarts et al. (1996); Erturk et al. (2014)
C>A

9 miR-4707 HAUS4 Rs2273626 Rectal cancer Marine et al. (2006); Erturk et al. (2014)
C>A

10 miR-125a Lin-28, lin-41,
ERBB2, ERBB3

rs12975333 Breast cancer Jin et al. (2008); Tian et al. (2009); Ristori et al. (2017)
G>A

11 miR-662 ATPVOE1 rs9745376 Ovarian cancer Jin et al. (2008)
G>A/C/T

12 miR-
196-a2

HOX, ANXA1 rs11614913 HCC, BC, NSCLC, bladder, renal, gastric, lung,
glioma, head and neck, squamous cancer

Solito et al. (2001); Dou et al. (2010); Nicoloso et al.
(2010); Ferracin et al. (2011); Peng and Croce (2016);
Malhotra et al. (2019a); Zhao, (2020)

C>T

13 miR-585 SLIT3 rs62376935 Pharynx squamous cell carcinoma Pelletier et al. (2011); Fawzy et al. (2017)
C>T

14 miR-605 PRKGI rs113212828 Ovarian cancer Pelletier et al. (2011)
A>G

15 miR-
367-5p

LARP7 rs150161032A
> G

Testicular germ cell tumor, leukemia Strachan et al. (2003); Matijasevic et al. (2008)

16 miR-627 ATP6VOE1 rs2620381 Ovarian cancer, osteoblastoma Jin et al. (2008); Cao et al. (2016)
A>C

17 miR-3161 PTPRJ rs11382316 Colorectal cancer Fawzy et al. (2017)
-/A
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cytokine signaling pathways and thereby increase risk of PTC
(Slaby et al., 2012).

miRNA-499
miR-499 is a microRNA that regulates multiple genes and
signaling pathways post-transcriptionally, especially in
hypoxic-ischemic situations like cancer and myocardial
infarction (Wilson et al., 2010; Ando et al., 2014). Wang
et al. (2015) observed reduced expression of miR-499-5p
disrupted the PI3K/AKT/GSK signaling pathway (Liu et al.,
2011). miR-499 functions as a tumor suppressor by decreasing
cell proliferation causing apoptosis, which inhibits cancer
progression. In addition, it also prevents metastases.
FOXO4 and programmed cell death 4 (PDCD4) genes have
been reported to be the targets of miR-499 (Liu et al., 2011).
PDCD4 is an RNA-binding protein that stops particular
mRNAs from being translated (Ohnheiser et al., 2015).
PDCD4 modulates several signal transduction pathways and
impacts the translation and transcription of many genes as a
tumor suppressor (Wang et al., 2013a). It may play a key role in
halting cell cycle progression and preventing tumor metastasis
by inhibiting cell proliferation (Wei et al., 2012). Wei et al.
(2012) demonstrate that PDCD4 may be important in stopping
cell cycle progression at a critical checkpoint, limiting cell
proliferation and suppressing tumor spread. In ovarian cancer
cells, the PI3K-Akt pathway was thought to be involved in the
regulation of PDCD4 degradation (Wei et al., 2012).

An SNP rs3746444 (T>C) has been reported in the seed region
of mature miR-499 (Chen et al., 2014b). This SNP has been
associated with increased susceptibility to various cancers like BC,
cervical squamous cell carcinoma, acute lymphoblastic leukemia
(ALL), colorectal cancer, liver cancer, gallbladder cancer, lung
cancer, gastric cancer, squamous cell carcinoma of the head and
neck, and prostate cancer. rs3746444 has been reported to be
associated with an elevated risk of BC in the Chinese, German,
and Italian populations; gastric cancer in the Japanese population;
prostate cancer in the Indian population; cervical squamous cell
carcinoma and lung cancer in the Chinese population, and ALL in
the Iranian population (Tian et al., 2009; Catucci et al., 2010; Liu
et al., 2010; Srivastava et al., 2010; Zhou et al., 2010; George et al.,
2011; Okubo et al., 2011; Hasani et al., 2014). In contrast, Asian
populations with the T allele of the miR-SNP are thought to have
a lower risk of BC whereas Caucasians bearing the same variant
allele have been reported at a higher risk of BC (Chen et al.,
2014c).

rs3746444 leads to overexpression of miR-499 resulting in its
enhanced binding to its target genes including FOXO4, PDCD4,
and SOX6 gene (Dai et al., 2016). FOXO transcription factors
regulate a variety of physiological activities, including fuel
metabolism, oxidative stress response, and redox signaling, cell
cycle progression, and apoptosis (Urbánek and Klotz, 2017).
FOXO4 is a tumor suppressor protein that has associated with
metastasis (Yang et al., 2006; Lee et al., 2009; Zhang et al., 2009).
PDCD4 is a well-known tumor suppressor regulating the

FIGURE 1 | SNPs reported in seed sequence of miRNA involved in cancer: miR-146 (rs2910164) targets include BRCA1, TRAF6, IRAKS, and NUMB gene and
associated with cancer metastasis; miR-125a (rs1297533) found to be involved in invasion and metastasis and known targets include ERBB2, ERBB3, lin-40, and lin-28
gene; miR-499 (rs3746444) promotes invasion and inhibits cell apoptosis by targeting FOXO1A, FOXO4, PDCD4, PBX1, and SOX6 gene; miR-124 (rs34059726) has
target genes DCC, CREB gene, and enhances invasion; miR-196-a2 (rs1614913) inhibits apoptosis and promotes invasion having target genes ANXA1 and HOX
gene.
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growing, invading, or metastasis of the tumors. The study
reported that prometastatatic action of miR-499 is on account
of the suppression of FOXO4 and PDCD4 expression (Liu et al.,
2011). PDCD4 inhibits the expression of mitogen-activated
protein kinase (MAP4K1) via Jun N-terminal kinase (JNK)
pathway. This was established by cDNA microarray analysis of
PDCD4-overexpressing in RKO human colon cancer cells (Yang
et al., 2006).

rs3746444 has also been reported to regulate the expression
level of SOX gene. The anti-apoptosis action of miR-499
(rs3746444 T>C) can be reversed by up-regulating the SOX6
gene (Li et al., 2013a). Deregulation of the SOX gene activates the
Wnt/-catenin signaling pathway, which has been linked to cancer
development (Yan et al., 2017).

miRNA-125a
miR-125 plays a role in disease prevention and promotion,
especially in cancer and host immunological responses. miR-
125 inhibits a variety of genes, including transcription factors,
matrix metalloproteinases, Bcl-2 family members, and others,
causing aberrant cell proliferation, metastasis, and invasion, as
well as carcinomas (Sun et al., 2013). BC, stomach cancer, and
medulloblastoma all have lower levels of miR-125a, which
promotes disease development. In human medulloblastoma
cells, overexpression of miR-125a resulted in cell growth arrest
and apoptosis. Furthermore, in stomach cancer cells, identical
ectopic expressions inhibited growth. In BC cells, overexpression
of miR-125a resulted in decreased anchorage-dependent
proliferation. It was discovered that miR-125a modulates these
cellular processes through Erbb2 in the context of gastric cancer
and BC investigations (Scott et al., 2007; Ferretti et al., 2009).

The polymorphism rs12975333 (G>T) in miR-125a is in the
seed sequence at the 8th nucleotide of mature miRNA. The T
allele has been shown to inhibit the conversion of pri-miRNA to
pre-miRNA precursor and is extremely rare, having been found
only once in a panel of 1200 people from various ethnic origins
and correlated with an elevated risk of BC in the Belgium
population (Peterlongo et al., 2011). The reduced expression of
mature miR-125a leads to the overexpression of the target genes.

The known targets of miR-125a like ERBB2 and ERBB3 have
previously been reported to be associated with BC tumorigenesis
(Morales et al., 2018). ERBB2 encodes the BC marker HER2 and
alterations of ERBB2 and ERBB3 have been reported to promote
malignancy. For example, ERBB2 overexpression is associated
with approximately 25% of all human BC which drives the key
aggressive features including cell proliferation, motility, and
invasion (Lehmann et al., 2013). Malignant transformation can
be induced by deregulation of ERBB2 and ERBB3 alone or in
combination. Amplification and overexpression of ERBB2 have
been associated with 25% of all human breast tumors.
Overexpression of ERBB2 in particular promotes cell survival,
proliferation, motility, and invasion, all of which are hallmarks of
this aggressive form of human BC (Scott et al., 2007).

miRNA- 124
miR-124 is one of the most abundant miRNAs in the adult brain
and is expressed primarily in the CNS. Mature miR-124 family

includes three members, namely miR-124-1, miR-124-2, and
miR-124-3. miR-124 has been demonstrated to induce cell
differentiation while inhibiting cell proliferation in general
(Ristori et al., 2017). Several cancers, including colon, breast,
and lung cancers, as well as leukemia and lymphoma, are linked
to miR-124 (Pal et al., 2015).

A G>T (rs3405972) has been reported in the seed sequence of
miR-124-3 (Gong et al., 2012; Beretta et al., 2017). The major
miR-124-3 targets include vesicle-associated membrane protein 3
(VAMP3), sialomucin core protein 24 (CD164), tyrosine-protein
phosphatase non-receptor type 12 (PTPN12), neuronal growth
regulator 1 (NEGR1), cyclin-dependent kinase 6 (CDK6),
integrin Beta 1 (ITGB1), and insulin-like growth factor-
binding protein 7 (IGFBP7) (Leong, 2013).

The 3′UTR of oncogene CDK6 is the target of mature miR-
124. miR-124 epigenetic masking causes CDK6 activation and
subsequent phosphorylation of retinoblastoma (Rb), resulting in
cell growth acceleration which is directly involved in brain cancer
(Pal et al., 2015). miR-124 expression leads to the downregulation
of PTPN12 protein which regulates tyrosine phosphorylation and
is implicated in cancer and cellular physiology. As PTPN12
reduces mammary cell proliferation and transformation, the
targeting of PTPN12 by miR-124 suppresses its tumor
suppressor behavior which promotes the oncogenic shift in
breast and lung cancer (Sun et al., 2011). Leong Pei predicted
that miR-124-3 with a variant allele targets novel genes DCC
(deleted in colorectal cancer) and CREB5 (cyclic AMP-responsive
element-binding protein 5) rather than PTPN12 (as predicted by
public databases). The variant miR-124-3 is unable to suppress
PTPN12 tumor suppressor and may alternatively behave as a
tumor suppressor instead of an oncogene in breast or lung cancer
(Leong, 2013). Hunt et al. (2011) reported miR-124 reduces oral
squamous cell carcinoma (OSCC) invasion by targeting ITGB1,
which is responsible for regulating intracellular signaling cascades
and tissue homeostasis. Thus, miR-124 has a strong potential to
be used as a prognostic marker in OSCC (Sun et al., 2011).

miRNA-196-a2
miR-196 family of molecules can operate as tumor suppressors.
miR-196a, for example, inhibits metastasis in melanoma and BC
cells, while miR-196b is downregulated inmany types of leukemia
cells. Bioinformatics research revealed that miR-196a2 could
target multiple genes involved in cell cycle regulation, survival,
and apoptosis, all of which could be relevant in GI malignancies.
Cell proliferation, migration, invasion, and radio resistance are all
functions of miR-196 family molecules’ carcinogenic impacts
(Fawzy et al., 2017).

The polymorphic C>T (rs11614913) is in the mature sequence
of miR-196a-3p that negatively affects the processing of precursor
miRNA to mature and subsequently its capability to regulate its
target genes. Variant T allele influences the stability of the
secondary structure of miR-196a2 (Wojcicka et al., 2014). This
variant has been associated with an increased risk of bladder
cancer; renal cancer; gastric cancer; lung cancer, HCC; glioma;
head and neck squamous carcinoma; NSCLC and familial BC
(Hu et al., 2008; Tian et al., 2009; Dou et al., 2010; Stenholm et al.,
2013; Dai et al., 2015; Liu et al., 2018).
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C allele impairs mature miRNA expression, resulting in lower
levels of mature miR-196a2 (Yekta et al., 2004; Hoffman et al.,
2009). In the Chinese population thus miR-SNP-induced
decrease in miRNA expression could be used as a predictive
biomarker for assessing BC risk (Qi et al., 2015). Other studies, on
the other hand, have suggested that in some groups, the
rs11614913 polymorphism predicts a lower risk of BC (Dai
et al., 2016). A meta-analysis of 16 studies was carried out and
observed that Caucasian patients had a lower risk of BC, with no
significant influence on total risk (Zhang et al., 2017). It has been
found that people with the CC genotype of this SNP were more
likely to develop BC (Ferracin et al., 2011; Wang et al., 2013b).

rs11614913 associated with decreased risk of glioma and BC in
Chinese populations and it has been found to be associated with
reduced risk of cervical cancer in the Indian population (Hu et al.,
2009; Dou et al., 2010; Thakur et al., 2019). According to recent
studies, miR-196a2 TT genotype was associated with decreased
risk for cervical cancer whereas miR-196a2 and CC/CT genotype
was associated with higher risk. In another study, it was shown
that C allele exhibited association with HCC in the Asian
population but not in Caucasians whereas it increased the risk
of colorectal, glioma, and prostate cancer in the non-African
population compared to the African population (Zhao, 2020).

The potential molecular targets of miR-196a2 include HOX
and annexin-A1(ANXA1) genes. ANXA1 was shown to be a key
modulator of apoptosis and has since been linked to
glucocorticoid activities such as cell proliferation suppression
and cell migration control. ANXA1 plays a significant role in
membrane trafficking, exocytosis, signal transduction, cell
differentiation, and apoptosis, among other biological roles
(Luthra et al., 2008). Overexpression of miR-196a2 due to
variant rs11614913 leads to the suppression of ANXA1
thereby promoting cell proliferation and suppressing apoptosis
(Solito et al., 2001; Luthra et al., 2008; Rahim et al., 2019). ANXA1
exhibits varied expression in different cancers. It is upregulated in
glioma and oropharyngeal cancer and downregulated in prostate
cancer, esophageal squamous cell, and head and neck squamous
carcinoma (Rahim et al., 2019). As an upstream regulator, miR-
196a has been found to partially direct the cleavage of the mRNA
of the HOX gene clusters. HOX genes were shown to be
abnormally expressed in BC, and HOXD10 was found to
initiate tumor invasion and metastasis (Yekta et al., 2004).

SNPs in 39UTR of miRNA Target Sequence
Several SNPs in miRNA binding sites or miRNA target gene
(3′UTR) disrupt the capability to recognize the specific target.
This results in dysregulation of target genes due to changes in
miRNA and mRNA interactions (Nicoloso et al., 2010; Zheng
et al., 2011). The presence of SNPs in the 3′UTR in an oncogene
or a tumor regulatory gene might cause changes in gene
regulation can shift the balance of cellular homeostasis toward
cancer (Zheng et al., 2011). Variations in the 3′UTR of target
genes involved in the stress response or DNA repair modify the
activity of effector proteins, resulting in changes in the ability to
repair damaged DNA and raising the risk of cancer (Cao et al.,
2016). SNPs reported in 3′UTR of target genes of specific miRNA
includes rs3092995, rs12516, rs8176318 in BRCA1 gene;

rs4245739 in MDM4; rs1042538 in IQGAP1; rs7963551 in
RAD52; rs9341070 in ESRI; and rs1071738 in PALLD gene.
Information about genetic variation (SNPs) reported in 3′UTR
of miRNA target gene along with functional outcome implicated
in the pathogenesis of cancer have been summed up in Table 2
and Figure 2.

BRCA 1
BRCA is one of the well-studied genes associated with BC. This
gene has a highly conserved 3′UTR of 1381 nucleotides encodes a
1863 amino acid protein and functions as a tumor suppressor
gene that regulates various cellular processes including cell cycle
checkpoint control, chromatin remodeling, DNA repair,
regulation of transcription, protein ubiquitination, and
apoptosis (Yang et al., 2016; Ahmad et al., 2019). The 3′UTR
region of the BRCA1 gene plays a pivotal role in the localization,
stability, and mRNA transport. SNPs in 3′UTR of this gene might
alter genes expression and therefore increase the risk of BC. The
prevalence of SNPs in 3′UTR of BRCA1 modulating the miRNA
binding site that can emerge as a significant biomarker of the
disease (Ahmad et al., 2019).

SNPs including rs3092995, rs12516, and rs8176318 are in the
3′UTR of this gene. rs3092995 (G>A, C) is in the sequence of
BRCA1 gene that interacts with the seed sequence of miR-103.
rs3092995 is strongly associated with increased risk of BC in
African American women. The variant alleles of rs8176318
(G>T) and rs12516 (G>A,T) are associated with ovarian and
familial BC in Thai women (Pelletier et al., 2011). rs8176318 is
located at the region where miR-639 is assumed to bind.
Enhanced risk of BC was reported in individuals with GT or
GG compared to TT genotype in the Pakistani population
(Ahmad et al., 2019). This SNP is also associated with the risk
of TNBC and ovarian cancer in an Irish population. The bearer of
the rs8176318 variant allele has been linked to an increased risk of
BC in menopausal women, as estrogen levels in these women
drop after menopause (Malhotra et al., 2019b).

SNP rs12516 in the 3′UTR of BRCA1 gene alters the binding
site of miR-1264, affecting its binding affinity and at the same
time creating a binding site for other miRNAs including miR-
4278, miR-4704-5p, and miR-637. Binding of these miRNAs to
the 3′UTR of BRCA1 has been associated with higher NC risk.
This rs12516 present in the 3′UTR of BRCA1 has been reported
to be a genetic marker in the Turkish population associated with
an increased risk of BC development (Erturk et al., 2014;
Malhotra et al., 2019a).

MDM4
The murine double minute 4 (MDM4) protein was found as a
p53-binding protein and has a fundamental amino acid
sequence that is very similar to MDM2 (Shvarts et al.,
1996). Over half of all human malignancies have a mutation
in p53, the most frequently inactivated gene in cancer. p53
functions as a transcriptional factor that transactivates a set of
genes involved in multiple cellular processes such as cell cycle
arrest, cellular senescence, energy metabolism, and apoptosis
in response to various extra- and intracellular stresses such as
oncogene activation, DNA damage, and hypoxia. High
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concentrations of p53 inhibitors can also inactivate p53
signaling. MDM2 and MDM4, two main negative regulators
of p53, are substantially responsible for p53 activity
suppression (Marine et al., 2006). MDM4 has also been
reported to bind with p21 and direct it to proteasomal
destruction without ubiquitination. Mdm4-mediated p21
degradation is independent of MDM2, yet it works together
with MDM2 to break the G1 cell cycle arrest (Jin et al., 2008).
Deletion of MDM4 causes multipolar spindle formation,
increased chromosomal loss, higher proliferative potentials,
and increased spontaneous tumor transformation in p53-null
cells (Matijasevic et al., 2008). Because MDM4 and MDM2
form heterodimers, Mdm4 depletion may stimulate MDM2
interaction with other proteins such as Rb and p21, enhancing
carcinogenesis. MDM4 also inhibits E2F1 transactivation by
disrupting E2F1-DNA binding or changing the location of the
E2F1 transcription complex (Strachan et al., 2003). E2F1
overexpression enhances the G1/S transition in cells and
has been linked to cancer development. E2F1
overexpression, on the other hand, causes both p53-
dependent and p53-independent apoptosis (Crosby and

Almasan, 2004; Wunderlich et al., 2004; Stanelle and
Pützer, 2006). These findings point to MDM4 upregulation,
which is found in many malignant malignancies (Markey,
2011).

An SNP rs4245739 (A>C) is located within the 3′UTR region
of MDM4. The C allele creates a new binding site for three
miRNAs, miRNA-191-5p, miR-887, and miR-3669 (Wynendaele
et al., 2010; Stegeman et al., 2015; Anwar et al., 2017). The variant
allele of this polymorphism has been reported as a risk factor for
many cancers including ovarian cancer, lung cancer, prostate
cancer, BC, non-Hodgkin’s lymphoma, esophageal cancer, and
retinoblastoma (Wynendaele et al., 2010; Zhou et al., 2013; Gao
et al., 2015a; Stegeman et al., 2015; Xu et al., 2016; Anwar et al.,
2017).

miR-191-5p showed a greater binding affinity with C allele of
rs4245739. In a genotype-basedmRNA expression analysis, it was
found that C allele was associated with decreased risk of ovarian
cancer and retinoblastoma in an Asian population (Xu et al.,
2016). MDM4 is overexpressed in A allele genotype and enhances
the risk of BC and ESCC in a Chinese population (Zhou et al.,
2013; Stegeman et al., 2015). The patients bearing homozygous

TABLE 2 | SNPs reported in target site of mi-RNA (mRNA-3′UTR region) in cancer.

S.
No

Gene miRNA SNP reported Tumor type Reference

1 BRCA1 miR-639 rs8176318 G>T TNBC Markey (2011); Malhotra et al. (2019a)
miR-1264 rs12516 C>T
miR-103 rs3092995 G>A,C
miR-637

2 CD86 miR-337/200a-
5p/184/212

rs17281995 G>C Colorectal cancer Moszyńska et al. (2017)

3 CDKN2B miR-323-5p rs1063192 Osteosarcoma Cao et al. (2016); Elfaki et al. (2019)
G>A,T

4 DROSHA miR-27b rs10719 Bladder cancer Moszyńska et al. (2017)
T>C

5 ESRI miR-206 rs9341070 Breast cancer Moszyńska et al. (2017)
C>T

6 ESRI miR-453 rs2747648 Breast cancer Wynendaele et al. (2010); Shankaran et al. (2020)
C>T

7 HIF1A miR-199a rs2057482 Pancreatic ductal adenocarcinoma Moszyńska et al. (2017)
T>C

8 INSR miR-612 rs1051690 G/A Colorectal cancer Moszyńska et al. (2017)
9 IQGAP1 miR-124 rs1042538 BC, ovarian, colorectal, glioblastoma,

lung, gastric cancer
Stanford et al. (1986); Olefsky (2001); Sommer and Fuqua (2001);
Wunderlich et al. (2004); Brekman et al. (2011); Erturk et al. (2014);
Malhotra et al. (2019a)

T>A,G,C

10 ITGB4 miR-34a rs743554 Breast cancer Wynendaele et al. (2010)
G>A

11 MDM4 miR-191-5p,
miR-887

rs4245739A > C SCLC, prostate, ovarian, breast, lung,
non-Hodgkin’s lymphoma

Balenci et al. (2006); Dong et al. (2006); Moszyńska et al. (2017);
Galka-Marciniak et al. (2019)

12 PALLD miR-96 rs1071738 Breast cancer Moszyńska et al. (2017); Alipoor et al. (2018)
miR-182 C>G

13 PRKD3 miR-145-5p rs2160395 CRC- colorectal cancer (Zhuang and Wang, 2017; Abo-Elmatty and Mehanna, 2019)
miR-27b-3p C>A,T
miR-27a-3p

14 PSCA miR-342-5p rs10216533 GAC-gastric adenocarcinoma Cao et al. (2016); Wu et al. (2019)
G>A,C

15 RAD52 Let-7 rs7963551 (C
allele)

Breast cancer increase Adams et al. (2007); Malhotra et al. (2019a)

16 TGFBR1 miR-628-5p rs334348 Breast cancer Malhotra et al. (2019a); Shankaran et al. (2020)
A>G,T

17 TP63 miR-140-5p rs35592567 C>T Bladder cancer Moszyńska et al. (2017)
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AA allele were found to have 5.5-fold increased risk of tumor-
associated mortality and 4.2-fold increased risk of recurrence
(Guo et al., 2016). In an in vitro study carried out in PC3 cells in
the case of C allele bearers, since it binds with miR-191-5p and
miR-887. On other hand, A allele is un-targeted, that is, it directly
enhances the risk of prostate cancer (Stegeman et al., 2015).
Individuals carrying the rs4245739 C allele express low levels of
MDM4 resulting in high DNA repair ability mediated by p53 and
thus decreased cancer risk (Zhou et al., 2013).

IQGAP1
IQ-domain GTPase-activating proteins (IQGAPs) are a multi-
domain protein family that regulate a variety of cellular processes
such as cell adhesion, migration, extracellular signaling, and
cytokinesis (Brown and Sacks, 2006). The first of three human
IQGAP homologues, IQGAP1 is expressed throughout the body,
whereas IQGAP2 and IQGAP3 are mostly found in the liver and
intestine, the brain, and the testis (Weissbach et al., 1994; Nojima
et al., 2008; Schmidt et al., 2008). IQGAP1 is hypothesized to
contribute to the changed cancer cell phenotype by modulating
signaling pathways involved in cell proliferation and
transformation, cell-cell adhesion weakening cell motility and
invasion stimulation (Johnson et al., 2009). Calmodulin, a
ubiquitous calcium-binding protein, regulates IQGAP1

function via the IQ motifs, which are common calmodulin-
interacting domains present in many proteins. Calmodulin is
thought to affect IQGAP1 function by producing a
conformational shift that affects IQGAP1-protein interactions
and/or IQGAP1 subcellular localization (Briggs and Sacks, 2003).
Both ERK and b-catenin-dependent signaling are aided by
IQGAP1. IQGAP1 binds to B-Raf, MEK, and ERK leading to
the activation of MAPK cascade. Constitutive MAPK pathway
activation is a common oncogenic trigger in a variety of cancers,
particularly those caused by Ras and B-Raf activating mutations.
H-Ras and R-Ras were shown to have no detectable binding
whereas active M-Ras had a favorable association (Roy et al.,
2005; Nussinov et al., 2018). IQGAP1 is overexpressed in several
cancers including ovarian cancer, colorectal cancer, glioblastoma,
lung cancer, and gastric cancer (Nabeshima et al., 2002;
Nakamura et al., 2005; Balenci et al., 2006; Dong et al., 2006).

miR-124 regulates IQGAP1 through a binding site in its 3′UTR.
This target site sequence is disrupted by rs1042538 (T>A,C,G) in the
core binding region. The presence of this variation at the miR-124
binding region has been suggested as a possible predictor of BC risk
and prognosis. Based on a case-control study carried out in the
Chinese population, the TT genotype was associated with a lower BC
in comparison AA genotype, depicting that the T allele protects
against BC (Zheng et al., 2011).

FIGURE 2 | SNPs reported in 3′UTR region of the target gene involved in cancer: Due to SNPs in the BRCA gene (rs3092995, rs176318, rs12516) and RAD52
gene (rs7963551) binding site for miR-639, miR-1264, and miR-103 within BRCA and for let-7 within the RAD52 gene found to be disrupted and as tumor suppressor
genes they promote cell apoptosis, decrease the DNA repair mechanism and maintain cell homeostasis; PALLD (rs1071738), IQGAP1 (rs1042538), ESR1 (rs9341070),
and MDM4 (rs4245739) genes act as oncogenes and they are responsible for metastasis, cell migration, and invasion.
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RAD52
Radiation sensitive 52 (RAD52) is a DNA strand exchange
protein that mediates the DNA-DNA interaction required for
complementary DNA strands to anneal during homologous
recombination in DNA damage repair in order to maintain
cell viability and homeostasis. Recent research has found that
RAD52 plays a key function in mammalian cell genomic stability
and cancer suppression (Feng et al., 2011; Lok et al., 2013).
RAD52 stimulates the creation of nuclear foci, which appears to
correspond to DNA repair sites, in response to DNA damage.
RAD52 activity increases progressively as cells enter phase S,
peaking in the S phase, and then disappearing at the start of G2.
Phosphorylation and sumoylation are two post-translational
changes that RAD52 can undergo. All these processes appear
to work together to control the timing of RAD52 recruitment, as
well as its stability and function (Liu et al., 1999; Barlow and
Rothstein, 2010; Nogueira et al., 2019). RAD52 has also been
shown to have a role in the response to oncogene-induced DNA
replication stress (Sotiriou et al., 2016). High levels of RAD52
expression have been reported in tumor cells, particularly in lung
squamous cell carcinomas and nasopharyngeal carcinoma tissues
(Lieberman et al., 2016).

An SNP (C>A) rs7963551 is in the 3′UTR of RAD52 that is the
binding site of let-7 miRNA (Jiang et al., 2013). In Chinese
women, this SNP has been linked to an increased risk of BC.
The presence of this variation reduces the binding capacity of let-
7 to its target regions in the RAD52 3′UTR that has been
suggested to boost its expression (Jiang et al., 2013). rs7963551
polymorphism with A allele was found to be strongly related with
a lower incidence of SCLC in the Chinese population, according
to a study. The functional genetic variant was only substantially
associated with SCLC susceptibility among smokers but not with
nonsmokers (Han et al., 2015).

ESR1
The nuclear hormone receptor and oncoprotein estrogen
receptor alpha/estrogen receptor 1 (ER/ESR1) is overexpressed
in around 70% of breast tumors (Stanford et al., 1986; Sommer
and Fuqua, 2001). The ESR1 gene encodes estrogen receptor
(ER), which is primarily a nuclear protein that operates as a
ligand-dependent transcription factor (ER’s genomic activity)
(Olefsky, 2001). In primary human BC and human BC cell
lines, MDM2 expression has been reported to be correlated
with ER expression. The ER has been postulated to upregulate
MDM2 expression (Baunoch et al., 1996; Hori et al., 2002;
Brekman et al., 2011). MDM2 also forms a protein complex
with ER, making it easier for ER to be ubiquitinated and degraded
resulting in a negative feedback loop. However, the ability of ER
and MDM4 (another member of the MDM family) to interact
and regulate each other’s expression in a comparable way has yet
to be established (Liu et al., 2000).

The SNP rs9341070 (C>T) is one of the known
polymorphisms located at 3′UTR of ESR1 gene at the
binding site of miR-206. This variant influences the binding
between miRNA and 3′UTR of ESR1 results in lower
expression of ESR1 gene (Brucker et al., 2017). The T allele
at 3′UTR allows binding of miR-206 to ESR1 and it is

significantly downregulated (Adams et al., 2007). This SNP
has been associated with an increased risk of BC (Anwar et al.,
2017; Brucker et al., 2017).

PALLD
Palladin (PALLD), an actin-associated protein whose expression
is intimately linked to the pathogenic cell motility properties of
aggressive cancer cells, is encoded by the PALLD gene. Palladin
expression is higher in invasive and malignant BC cell types than
in noninvasive and normal cell lines. Palladin stimulates
podosome formation, modulates the actin cytoskeleton via
numerous routes, participates in matrix breakdown, and hence
it aids in BC spread (Goicoechea et al., 2009; von Nandelstadh
et al., 2014).

miR-96 and miR-182 inhibit BC cell migration and invasion
by downregulating Palladin protein levels. This mechanism is
disturbed by an SNP rs1071738 in the 3′UTR of the PALLD gene.
The variation rs1071738 (C>G) is a very normal functional
variant of the PALLD gene. The alternate G allele is
substantially more prevalent than the ancestral minor C allele.
The mRNA target sequence at the 3′UTR of PALLD is entirely
complementary to the miR-96 and miR-182 seed areas. The
presence of C allele favors the interaction of these miRNAs
with the 3′UTR of PALLD. However, the presence of the
variant G allele results in a mismatch between the two. miR-
96 and miR-182 regulate the expression of PALLD reducing its
expression by about 30 and 70%, respectively, in the presence of
the normal CC genotype. However, the presence of the G allele
leads to abolition of interaction between the two regulatory
miRNAs and PALLD, on account of the mismatch between
these two miRNAs and seed sequence of PALLD. In normal
conditions miR-96 and miR-182 are involved in the prevention of
BC metastasis. However, the G allele counteracts this impact
(Gilam et al., 2016). The functional significance of rs1071738 has
been proved by in vitro study carried out byMCF-7 (non-invasive
BC cell lines) and Hs578 (highly invasive BC cell line) (Gilam
et al., 2016; Moszyńska et al., 2017).

SNPS IN SEED SEQUENCE OF MIRNA AND
THE 39UTR OF SPECIFIC TARGET GENES
IN DIABETES
SNPs in Seed Sequence of miRNA
SNPs reported in the seed sequence of miRNA associated with
diabetes or its complications including rs3746444 in miR-499a;
rs2910164 in miR-146a; rs7247237 in miR-3188; and rs34059726
in miR-124-3p. A detailed information involving SNPs in seed
sequence of miRNA associated with diabetes and their functional
implications has been given in Table 3 and Figure 3.

miRNA-499a
The diabetic neuropathy including cardiovascular autonomic
neuropathy (CAN) and diabetic neuropathy (DPN) have been
reported to impact the quality of life in diabetics since these
complications have been reported in a large percentage of
diabetics. The miR-499a is an antiapoptotic and
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cardioprotective miRNA (Wang et al., 2011; de Carvalho et al.,
2019). It has been reported that polymorphisms in miR499 are
involved in perturbed insulin secretion, CAN, and peripheral
neuropathy (Ciccacci et al., 2018).

The genetic variation in miR-499a has been associated with
the development of diabetic neuropathies. Especially the
patients carrying the GG genotype of rs3746444 (A>G)
present in the seed region of this miRNA are at higher risk
of developing the CAN (Ciccacci et al., 2018). A study carried
out in an Italian population investigate the association

between mitochondrial DNA (mtDNA) copy number and
rs3746444 in DPN patients. A decline in the mtDNA copy
number in T2DM patients affecting DPN was observed in
comparison with healthy controls (Latini et al., 2020). The
increase in the copy number of mtDNA in association with the
variant allele has been hypothesized to be on account of
mitochondrial fission due to oxidative stress (Ghaedi et al.,
2016). Increased ROS and mitochondrial injury might be
contributing to nervous system dysfunction (Wang et al.,
2011).

TABLE 3 | SNPs reported in seed sequence of miRNA involved in diabetes.

S.
No

miRNA Target gene SNP reported Association with DM Reference

1 miR-
124a

Mtpn1, FOXA3, Sirt1, AKT1 rs531564 Protective role, facilitates glucose metabolism and
insulin exocytosis

Wang et al. (2019); Zhao et al. (2013);
Hribal et al. (2011)G>C

2 miR146a NF-kB, TNF associated factor 6, IL1R
associated kinase 1

rs2910164
(C>G)

β-cell apoptosis Zhao et al. (2013); Klöting et al. (2009)

3 miR3188 GSTM1, TRIB3 rs7247237
(C>T)

Impaired insulin signaling and apoptosis of human
endothelial cells

Fawcett et al. (2010); Zhao et al.
(2013)

4 miR126 PI3K Subunit-2 and SPRED-1 rs4636297
(A>G)

Protective factor against diabetic retinopathy,
maintains vascular system integrity

Zhao et al. (2013)

5 miR125a ENPP1 rs12976445
(T>C)

Regulates IL6R leading to diabetic nephropathy Fonseca et al. (2005); Bantubungi
et al. (2014)IL6R

6 miR375 ADIPOR2 rs6715345
(G>C)

T1DM, T2DM, Insulin resistance syndrome Mead et al. (2002); Zhao et al. (2013)

7 miR-499 PTEN rs3746444 Diabetic neuropathy, impaired insulin signaling Wang et al. (2019)
A>G

FIGURE 3 | SNPs reported in seed sequence of miRNA involved in diabetes: (A) miR146a with SNP rs2910164 (C>G) raises vascular complications caused by
upregulation of inflammatory factors (TNF associated factor 6 and IL1 associated kinase 1) in endothelial cells and induces apoptosis in pancreatic β-cells via NF-kB
mediated pathway. (B) Reduced expression of miR499a due to SNP rs3746444 (A>G) provokes mitochondrial stress, impairs insulin signaling via PTEN mediated
pathway, and promotes hepatic insulin resistance. (C) The miR124 rs34059726 (G>T) creates complimentary sequence for INSR; causing failure to transport
GLUT4 transporter vesicle to outer membrane. This SNP also inhibits glycogenesis process via GSK-3β activation. (D) miR-3188 with rs7247237 (C>T) inhibits PI3K/
AKT pathway dysregulating protein synthesis. Its target genes overexpression (GSTM1 and TRIB3) curtails nitric oxide pathway which increases vascular complications
and induces β-cell apoptosis.
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Apart from mitochondrial dysfunction, dyslipidemia was also
observed in patients. Dyslipidemia plays a significant role in the
pathogenesis of DN, synergistically with hyperglycemia (Vincent
et al., 2009). An excess of long-chain fatty acids in T2D can lead to
an accumulation of acetyl-CoA, as a product of mitochondrial
beta-oxidation (Fan et al., 2020). miR499a-5p over-expression
can enhance the glycogen level and improve insulin signaling by
PTEN inhibition. Reduced miR-499-5p level is observed in
hepatic insulin resistance (Wang et al., 2015a). miR-499-5p is
involved in the signaling pathway of IRS1/PI3K/AKT and in
particular miR-499-5p targets PTEN, which is an important
regulator of the insulin signaling pathway (Peyrou et al.,
2015). Therefore, unstable secondary structure with GG
genotype reduces miR-499-5p levels, as a consequence an
increase in PTEN impairs the insulin signaling.

miRNA-146a
The key biological role of miR146a is as immunosuppressive
modulator which regulates inflammatory response. It
downregulates innate immune response by suppressing
expression of IRAK1 and TRAF2, decreasing NFkB activity
(Gholami et al., 2020). Therefore, it functions as a negative
regulator of NFkB and its inflammatory cascade and promotes
apoptosis and inhibits migratory capacity by negative regulation
of EGFR signaling pathway (Chen et al., 2013; Park et al., 2015).

SNP rs2910164 C>G is present within the seed sequence of
miR146a which reduces its expression (Alipoor et al., 2018). This
SNP plays a significant role in the pathogenesis of diabetes by
participating in β-cell metabolism, proliferation, and death. The
suppressed expression of miR146a enhances the activity of NFkB
inflammatory events and induction of β-cell apoptosis
responsible for diabetes and related complications (Elfaki
et al., 2019). The potential targets of miR146a include TNF
associated factor 6 and IL-1 receptor associated kinase 1 which
regulate endothelial inflammation. The C>G transition causes
overexpression of these target mRNAs resulting in T2DM
(Shankaran et al., 2020). This polymorphism also increases the
incidence of preeclampsia in gestational diabetes mellitus (GDM)
(Abo-Elmatty and Mehanna, 2019).

In a study involving the Chinese population, rs2910164 was
associated with an increased risk of T2DM. In some other studies,
this SNP is also responsible for risk like diabetic nephropathy in
T1DM patients and diabetic macular edema in T2DM patients of
Caucasian population. Further it is also associated with diabetic
polyneuropathy and GDM in the Italian and Egyptian
populations (Zhuang and Wang, 2017).

miRNA-3188
miR-3188 is involved in regulation of the mTOR-P-PI3k/AkT
pathway and has been reported to affect the pathogenesis of
diabetic complications. It is one of the miRNAs discovered
quite early.

rs7247237 (C>T) is considered to be located in the seed
sequence of miR-3188 and has been associated with T2DM in
the Chinese population. In vitro studies on HUVEC cell lines
showed that the C allele expression was five times higher than
T allele suggesting that C>T transition reduces its level which

results in the overexpression of its targets; GSTM1
(glutathione S-transferase M1) and Trib3 (Tribbles
pseudokinase3). This in turn reduces nitric oxide (NO)
production in the endothelial cells through inhibition of
endothelial NO synthase. There is also evidence that the
overexpression of TRIB3 is associated with apoptosis in
human endothelial cells, which could probably have an
important role in the progression and pathogenesis of
vascular complications in diabetes. As according to a study,
miR3188 regulating mTOR and PI3K/AKT pathway involved
in insulin signaling in endothelial cell; its reduced expression
on account of the presence of rs7247237 resulting in T2DM
(Wang et al., 2017; Wu et al., 2019).

RhoA/ROCK is another downregulated pathway by miR-3188
is RhoA/ROCK pathway via targeting ETS transcription factor
ELK4. Elk4 is involved in various cancers and atherosclerosis. Its
potential role via RhoA/ROCK pathway needs to be further
elucidated (Li et al., 2017). The potential therapeutic value of
miR-3188 could be further explored to mitigate the effect of
pathogenic SNP (Wang et al., 2019)

miR-124-3p
The miR-124 is highly expressed in the brain and involved in
epigenetic regulation of neurogenesis (Coolen et al., 2015).
However, the in vitro studies miR124 overexpression of miR-
124 in MIN6 pseudoislet cells caused impaired glucose induced
secretion of insulin. Its silencing in MIN6 pseudoislet cells
resulted in upregulation of its target genes FOXA2, Mtpn,
Flot2, AKT3, Sirt1, and NeuroD1. All these targets are
involved in normal Beta-cell functioning (Sebastiani et al.,
2015). A study carried out in a mouse model demonstrated
that miR-124 mediates triglyceride accumulation in the liver
induced by high fat diet by directly targeting tribbles
pseudokinase 3 (TRB3) and enhancing AKT signaling (Liu
et al., 2016). An SNP rs34059726 located in the seed region of
miR-124-3p, curated in PolymiRTS database is predicted to target
insulin receptor transcript (INSR) (Gong et al., 2012). INSR
belongs to tyrosine kinase receptor family which mediates
insulin signaling via PI3K/AKT pathway. This pathway is
responsible for maintaining glucose homeostasis, proliferation,
and differentiation and inhibition of apoptosis (Chen et al., 2019).
Down regulation of INSR via miR-124-3p leads to dysregulation
of glucose uptake due to inhibition of GLUT4 vesicle transport to
membrane and glucose transfer into cells (Jaakson et al., 2018).
Lower PI3K/AKT signaling stimulates GSK-3β and inhibits
glycogenesis. Failure of AKT to inhibit proapoptotic protein
expression leads to apoptosis of the cells.

SNPs in 39UTR of miRNA Target Sequence
The SNPs in 3′UTR of miRNA target genes reported in
diabetes include rs11724758 in FABP-2; rs1046322 in
WFS-1; rs2229295 in HNF1B; rs1063192 in CDKN2B; and
rs13702 in LPL genes. Further details of other SNPs in 3′UTR
of miRNA target genes implicated in pathogenesis of diabetes
have been summed up in Table 4 and the functional role in
Figure 4.
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TABLE 4 | SNPs reported in 3′UTR of miRNA target genes in diabetes.

S.
No

Target
gene

miRNA SNP reported DM association Ref

1 HNF1B miR-214 5p, miR-
550a-5p

rs2229295 C>A Susceptibility to T2DM Xiang et al. (2012)

2 SLC30A8 miR- 183 rs3802177 G>A T2DM Grillari and Grillari-Voglauer (2010)
3 WFS1 miR-668 rs1046322 T2DM Martin et al. (2007)

G>A
4 NLRP3 miR-223 rs10754558 Protective against T1DM, increased risk of T2DM via insulin

resistance
Scutt et al. (2020)

C>G
5 WFS1 miR-185 rs9457 G>C T2DM Liu et al. (2014)
6 CDKN2A/B miR- 323b-5p rs1063192 Gestational DM Jeon et al. (2013)

CC
7 ENPP1 miR-9 rs7754586 T2DM, end-stage renal disease Marzec et al. (2007); Marczak et al.

(2012)miR- 125 a/b A>C
8 ENPP1 miR-9, miR- 125 a/b rs7754561 Insulin resistance and hypertriglyceridemia. Diabetic

retinopathy in T2DM.
Thumser et al. (2014)

A>G
9 PYY miR-663 rs162431 T2DM von Otter et al. (2014)

G>A
10 LPL miR-410 rs13702 T2DM Schmidt et al. (2000)

T>C
11 PIK3RI miR-29 a/b/c rs3756668 Insulin resistance, T2DM Sussan et al. (2008)

G/G
12 INSR1 Let-7a, miR27a rs3745551 T2DM Sussan et al. (2008)

G/G
13 INSR1 miR-106 rs1366600 GDM, T2DM Tan et al. (2007); Shimoyama et al.

(2014)T>C
14 SLC30A8 miR-181a-2-3p rs2466293 Impaired glucose regulation, reduced β cell function, GDM,

T2DM
von Otter et al. (2014)

T>C
15 RNLS miR-96 rs1048956 Affects insulin exocytosis, T2DM Tan et al. (2007)

A>G
16 GSTA4 miR-200a rs405729 Glucose stimulated insulin secretion Tan et al. (2007)

G>A
17 TRIB3 miR-132 rs2295491 Obesity related impaired insulin secretion Tan et al. (2007)

G>A
18 PRKCE miR-410 rs41281467 Regulation of insulin secretion Tan et al. (2007)

C>T
19 ACSL1 miR-34a rs2292899 T2DM Tan et al. (2007)

G>A
20 PDP2 miR-9 rs17767794 Negative control on insulin release Tan et al. (2007)

G>C
21 SLC37A2 miR-9 rs3824926 Negative control on insulin release Tan et al. (2007)

T>C
22 INSR1 miR-20b rs1366600 T2DM Tan et al. (2007)

T>C
23 FABP2 miR-132 rs11724758 G>A Impaired insulin sensitivity Tan et al. (2007)
24 IL10 miR-523 rs6687786 T1DM Scutt et al. (2020)

G>A
25 CTLA4 miR-302a rs13384548 T1DM Scutt et al. (2020)

G>A
26 VDR miR125b rs3847987 C>A T1DM Michan and Sinclair (2007)

miRdSNP
27 ESR1 miR-122 rs9341070 T2DM and breast cancer North et al. (2003) miRdSNP
28 SLC15A4 miR-124 rs3765108 T2DM Vaquero et al. (2006)
29 PPAR-δ miR-1827 rs3734254 T2DM Inoue et al. (2007)
30 ADIPOR2 miR-124, miR-375 rs1044471 Insulin resistance, T2DM de Oliveira et al. (2012), miRdSNP
31 ADIPOR2 miR-1197 rs12342 Insulin resistance syndrome, T2DM de Oliveira et al. (2012), miRdSNP

miR-375
32 LPIN2 miR-1227, miR-27a rs3745012 T2DM Crocco et al. (2015) miRdSNP

G>A,C
33 IL7R miR-135b-5p, miR-

135a-5p
rs6897932 T1DM Sebastiani et al. (2015)

34 VPS26A miR-381-3p rs1802295 T2DM Sebastiani et al. (2015)
35 HMG20A miR-134-5p and miR-

494-3p
rs7119 Impaired β-cell function Sebastiani et al. (2015)
C>T

36 MAPK1 miR7-5p rs12158121 β–cell proliferation by regulating mTOR pathway Sebastiani et al. (2015)
(Continued on following page)
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FABP-2
Fatty acid binding protein-2 belongs to ubiquitous lipid chaperones
family is expressed in intestines which regulate fat absorption by
intracellular trafficking of long chain fatty acids, eicosanoids, and
other lipids (Haunerland and Spener, 2004). Its dysregulation has
been associated with non-alcoholic hepatic liver disease and obesity
(Thumser et al., 2014). Around 20–30% T2DM patients have renal
impairment and FABP 2 is a novel biomarker for diabetic
nephropathy (Tsai et al., 2020). FABP2 has been associated with
insulin resistance mechanisms, indicating its essential role in
protection against T2DM (Baier et al., 1995).

The 3′UTR polymorphism of rs11724758 (G>A) in FABP2
gene causes loss of binding site for miR-132. The miR-132 plays a

significant role in adipose tissue dysfunction and obesity
associated diabetes (Klöting et al., 2009). The AA genotype of
FABP2 has been associated with decreased risk of T2DM
compared to GG genotype (Zhao et al., 2013). Therefore, G>A
transition functions as a protective factor against T2DM. FABP2
is involved in intracellular fatty acid transportation and fat
absorption via PPAR signaling (Zhao et al., 2013).

WFS-1
Wolframin or WFS1 gene encodes for endoplasmic reticulum
trans-membrane protein highly expressed in brain, pancreas, and
heart (Hofmann et al., 2003). Mutation in this gene leads to a
metabolic condition known as Wolfram Syndrome inherited in

TABLE 4 | (Continued) SNPs reported in 3′UTR of miRNA target genes in diabetes.

S.
No

Target
gene

miRNA SNP reported DM association Ref

A>C
37 LIN28A Let-7a rs3811463 T>C GDM Hiratsuka et al. (2003)
38 LIN28A miR-125a rs3811463 T>C T2DM Hiratsuka et al. (2003)
39 PAX4 miR-125a, miR-223 rs712699 Influences β-cell differentiation and survival Li et al. (2013b)

G>A
40 KCNB1 miR- 448, miR-214,

miR-153
rs1051295 B-cell compensatory secretory function and reduced insulin

sensitivity
(Li et al., 2013b) miRdSNP

T>C

FIGURE 4 | SNPs in 3′UTR of target genes associated with diabetes: (A) Downregulation of WFS1 due to SNPs rs1046322 (G>A) and rs9457 (G>C) via miRNAs
miR185 andmiR668 induces β-cell apoptosis and declines insulin secretion due to ER Ca+2 stress. (B) SNP rs13702 (C>T) in LPL gene disrupts binding site for miR410.
Its overexpression has pathological impact on liver and muscles leading to insulin resistance; whereas in adipose tissue it increases glucose metabolism. (C) SNP
rs2229295 (C>A) of HNF1B creates new binding site for miR214-5p and miR550-5p, increasing glucose metabolism. (D) CDKN2B’s downregulation due to SNP
rs1063192 (T>C) by miR323-5p maintains glucose homeostasis and promotes proliferation of β-cells. (E) Over-expression of FABP2 due to SNP rs11724758 (G>A)
activates PPAR signaling pathway which in-turn leads to lipid metabolism.
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an autosomal recessive manner (Harel et al., 2015). Two SNPs
within 3′UTR of WFS1—rs1046322 and rs9457—have been
reported to be as risk factors for T1DM and T2DM,
respectively (Fawcett et al., 2010; Kovacs-Nagy et al., 2013;
Elfaki et al., 2019). WFS1 is an ER transmembrane protein
highly expressed in pancreas and insulinoma β-cell lines. It
plays a significant role in maintaining Ca+2 ER homeostasis
(Hofmann et al., 2003). In T2DM, it indicated that glucose
induced insulin secretion has been found to increase WFS1
expression. The increased insulin production caused by insulin
resistance in T2DM leads to chronic ER stress contributing to the
death of β-cells by apoptosis. It was demonstrated that glucose
induced insulin secretion leads to increased WFS1 expression in
wild-type mice, whereas ER stress and β-cell dysfunction can be
observed in WFS1 knock-out animals (Fonseca et al., 2005). In
vitro interaction between WFS1 3′ UTR and miR-668 signified
the rs1046322 influenced the affinity of miR-668 to WFS1
mRNA. In an in vitro luciferase assay it was observed that
variation in 3′utr of WFS1 gene rs1046322 “A” and rs9457
“C” is sensitive to both miR-185 and miR-668, although the
effect of miR-185 seemed to be stronger (Elek et al., 2015). miR-
185 was reported to be strongly associated with diabetes mellitus
via its targets SOCS3 andWFS1 (Bao et al., 2015; Elek et al., 2015).
They showed that these different pathways can be in the
background of the same phenotype, as miR-185 is suggested
to be related to diabetes mellitus via WFS1 target (Bao et al.,
2015).

HNF1B
HNF1B encodes for HNF1β (hepatocyte nuclear factor 1-β)
homeodomain containing transcription factor expressed in
pancreas, liver, and kidney (Coffinier et al., 1999). It regulates
the critical function of pancreatic development, glucose
metabolism, and hepatic insulin activity (Goda et al., 2015). It
is the most common transcription factor associated with
monogenic diabetes leading to young adult onset of T1DM
with dominant inheritance patterns in familial cases. An SNP
rs2229295 (C>A) within 3′-UTR of HNF1β acts as a protective
factor against T2DM (Moszynska et al., 2017). In silico analysis
revealed that rs2229295 in 3′UTR of HNF1β creates the binding
site for miR-214-5p and miR-550-5p. The A allele of HNF1β is
responsible for post-transcriptional regulation by miR214-5p and
miR-550-5p. Therefore, due to this variation, expression of
HNF1β is downregulated and thereby it acts as a protective
factor against T2DM (Goda et al., 2015).

CDKN2B
CDKN2A/B highly expressed in pancreas is considered as a
strong determinant of diabetes mellitus. The SNP
rs1063192 T>C located within 3′UTR region of CDKN2A/B is
associated with increased risk of GDM in pregnant Chinese Han
women population (Wang et al., 2015b). The tumor-suppressor
products of CDKN2A/B, p15INK4b, and p16INK4a inhibit
important CDKs, i.e., CDK4 and CDK6, essential for β-cell
proliferation and regeneration (Krishnamurthy et al., 2006).
The T>C transition creates complimentary sequence of miR-
323-5p which reduces the expression of CDKN2A/B (Hribal et al.,

2011). The decreased expression of CDKN2A/B due to
rs1063192 T>C results in reduced inhibition of CDK6 by
p15INK4b and facilitates β-cell proliferation, lowering DM
risk. On the other hand, increased expression of p15INK4b
regulates glucose homeostasis. It can be speculated that miR-
323-5pmay also regulate other crucial genes responsible for β-cell
hyperplasia and insulin signaling. Moreover, duality of p15INK4b
in glucose homeostasis and deficiency of p16INK4a inducing in
vivo hepatic glucose production via PKA-CREBPGC1a pathway
possibly explains its role in GDM (Bantubungi et al., 2014).

LPL
Lipoprotein lipase enzyme is involved in hydrolysis of low-
density lipoproteins and circulating chylomicrons into non-
esterified fats which can be absorbed by the tissues.
Disturbance in this conversion could lead to various
abnormalities such as Alzheimer’s, dyslipidemia, and diabetes
(Mead et al., 2002). In liver and muscle tissues, the free fatty acid
generated by LPL activity gets accumulated, leading to insulin
resistance (Kim et al., 2001). The SNP rs13702 C>T in 3′UTR of
LPL mRNA is located within the seed recognizing region of miR-
410 (Hatefi et al., 2018). This C>T transition disrupts the binding
site of miR-410 which leads to increased expression of LPL
(Richardson et al., 2013). However, in adipose tissue, LPL
increases glucose metabolism and insulin tolerance (Walton
et al., 2015). Knockdown studies in MIN6 cells indicated
decreased ability of glucose induced insulin secretion. In the
Iranian population, the T allele of rs13702 showed protective
association whereas C allele was found to be a risk factor against
T2DM (Hatefi et al., 2018).

SNPS IN THE SEED SEQUENCE OF MIRNA
AND TARGET GENES ASSOCIATED WITH
VARIOUS DISEASES
SNPs within seed sequence of miRNA and their target genes have
been also implicated in the development of various human
diseases like Parkinson disease, asthma, periodontal disease,
neurodegenerative disease, cardiovascular disease, and kidney
and liver diseases (Martin et al., 2007; Tan et al., 2007;
Rademakers et al., 2008; Wang et al., 2008; Schaefer et al.,
2010; Bruno et al., 2012). The presence of SNPs in miRNA
seed regions has a major impact on miRNA target loss and
gain (generates a new repertoire of target genes), resulting in a
considerable change in miRNA biological function (Xu et al.,
2013; Zhang et al., 2019).

Among human diseases, ischemic stroke is one of the
complicated diseases that consist of a variety of conditions
with different hereditary and environmental risk factors.
miRNAs played a role in a variety of physiopathological
processes, and frequent SNPs in pre-miRNAs have been
linked to disease vulnerability in humans (Liu et al., 2014).
According to a case-control study, SNP (A>G) rs3746444
located within seed sequence of miR-499 may be
significantly linked with higher risk of ischemic stroke in
the Chinese community (Liu et al., 2014). miR-499 has been
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associated with ischemia condition, apoptosis, and cell death
in anoxia via knockdown or calcineurin over-expression,
inhibiting Drp1 dephosphorylation and mitochondrial
fragmentation caused by anoxia (Wang et al., 2011). The
rs3746444 polymorphism changed the stem structure of the
miR-499 precursor from an A:U pair to a G:U mismatch,
which changed the function or expression of mature miR-499,
as well as the regulation of target mRNAs, influencing the risk
of ischemic stroke (Hu et al., 2009; Xiang et al., 2012). Its
targets includes peptyl arginine deiminase type 4, regulatory
factor X4, IL-2, IL-2 receptor B (IL-2R), IL-6, IL-17 receptor B
(IL-17RB), IL-18 receptor (IL-18R), IL-21, IL-23a, and B and T
lymphocyte attenuator (Yang et al., 2012). miR-499/rs3746444
bound to its mentioned targets and can influence
inflammation, fibrinogen, and CRP formation. Higher
plasma CRP levels can raise blood pressure, BMI, insulin
resistance, and lipids making CRP one of the common
causes of cerebral ischemia (Yang et al., 2012; Jeon et al.,
2013). Increased CRP, inflammation, and fibrinogen in the
allele G and carried G genotypes of rs3746444 A/G may play a
predisposing role in the development of ischemic stroke (Liu
et al., 2014).

SNP in the 3′UTR of mRNA/target gene might disrupt or
create the binding sites for miRNA. The renin-angiotensin system
(RAS) is a key player in blood pressure regulation and is thought
to be a contributing element in the development of hypertension
(Laragh et al., 1991). Angiotensin II is a key player in the RAS
pathway, inducing vasoconstriction, salt retention, and water
retention, and is closely linked to the inflammatory,
thrombotic, and fibrotic factors. Angiotensin II receptor type 1
(AGTR1) and type 2 (AGTR2) mediate these effects both directly
and indirectly (AGTR2). AGTR1 is mostly found in vascular
smooth muscle cells, as well as the heart, adrenal gland, and
kidney (Oparil and Weber, 2000). A study on miR-155 and SNPs

in the angiotensin II receptor, type 1 gene has been conducted by
Sethupathy et al. (2007). They discovered that miRNA miR-155
could bind to the A allele of the SNP rs5186 (A>C) in the 3′UTR
of the AGTR1 mRNA more efficiently than the C allele (which is
more common in essential hypertension) (Sethupathy et al.,
2007). In persons with the A allele, the binding of miR-155
has the capacity to reduce the level of AGTR1 mRNA and hence
cause the pressor effect of Angiotensin II. Protein levels of
AGTR1 in untreated essential hypertension patients
homozygous for the C allele of rs5186 were also favorably
linked with systolic and diastolic blood pressure. The
expression levels of miR-155 were also negatively linked with
AGTR1 protein levels, andmiRNA levels were lower in those with
the CC genotype that is directly associated with hypertensions
(Ceolotto et al., 2011). Tables 5 and 6 give a brief glimpse of SNPs
reported in miRNAs or target gene sequences in various diseases.

SNPs Role in Aging
Human aging is a complicated process that has been related to
dysregulation of a variety of cellular and molecular processes,
including telomere shortening, altered DNA damage response,
protein homeostasis loss, cellular senescence, and mitochondrial
failure. These cellular and molecular processes can result in a
wide range of illnesses, including cancer, cardiovascular disease,
and neurological disease, as well as an increased chance of death
(Huan et al., 2018). The study of the mechanics of the aging
process could also benefit from the determination of an
individual’s SNPs. A comparison of the DNA sequences of
healthy young individuals with the DNA sequences of healthy,
extremely elderly people could reveal genes that play a big role in
determining how long people live. Animal models had already
been researched, and specific genes, such as DNA repair genes,
had also been studied because of the role of repair processes in
aging (Schmidt et al., 2000; Ruttan and Glickman, 2002). In

TABLE 5 | SNPs reported in seed sequence of miRNA involve in various disease.

S.No miRNA Gene SNP reported Disease Reference

1 miR-1304 SEMA3F rs79759099 Pulmonary valve disease, pulmonary valve stenosis Cao et al. (2016)
A>G

2 miR-662 ATP6VOE1 rs9745376 SLE Cao et al. (2016)
G>A/C/T

3 miR-96-3p - rs546098287 Non-syndromic hearing loss Malhotra et al. (2019b)
A>G

4 miR-548 NS1ABP, MAPK, CDK13 rs515924 Influenza virus infection Kim et al. (2011); Erturk et al. (2014)
A>G

5 miR-122 rs41292412 AMD-age related degeneration Erturk et al. (2014); Fawzy et al. (2017)
C>T

6 miR-431 RTL1 rs12884005 Autism Hulf et al. (2011); Fawzy et al. (2017)
A>G

7 miR-3161 PTPRJ rs11382316 Androgen insensitivity syndrome Fawzy et al. (2017)
-/A

8 miR-
499-3p

BCL2 rs3746444 Ischemic stroke Cao et al. (2016)
A>G

9 miR-3618 DGCR8 rs12159555 Digeorge syndrome Pelletier et al. (2011); Fawzy et al. (2017)
C>G

10 miR-4284 STX1A rs11973069 C>T Arteriosclerosis obliterons and pediatric ulcerative colitis Pelletier et al. (2011)
11 miR-221 rs113054794 Crohn’s disease Gao et al. (2015b); Fawzy et al. (2017)

A>C
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recent years, it has also been suggested that post-transcriptional
control by miRNAs may play a role in the phenotypic changes
seen throughout aging by epigenetically modifying the expression
of important regulatory proteins (Grillari and Grillari-Voglauer,
2010; Liu et al., 2012).

Human aging is linked to increased susceptibility to adverse
drug reactions (ADRs), multimorbidity, and frailty, however, the

intensity and age at which people become ill varies greatly.
Identifying genetic indicators for this phenotype’s higher risk
might aid in the stratification of individuals who would benefit
from specialized intervention. Nuclear factor (erythroid-derived
2)-like 2 (Nrf2) controls the expression of enzymes involved in
drug metabolism, as well as the cell’s response to stresses. In
animal aging models, its expression has been demonstrated to

TABLE 6 | SNPs in 3′UTR in target gene of miRNA involved in various disease.

S.
No

Gene miRNA SNP reported Disease Reference

1 APOC3 miR-4271 rs4225 Coronary heart disease Moszyńska et al. (2017)
G>T

2 APOA5 miR-485-5p rs2266788 G>A Hyper-triglyceridemia Moszyńska et al. (2017)
3 PLIN4 miR-522 rs8887 Antropometrics (Obesity related) Moszyńska et al. (2017)

T>C,G
4 FXN miR-124-3p rs1145043 Friedrich’s atria FRDA Moszyńska et al. (2017)

G>T
5 SNCA miR-34b rs10024743 Parkinson’s disease Moszyńska et al. (2017)

T>G
6 EFNB2 miR-137 rs550067317 Schizophrenia Moszyńska et al. (2017)

A>C
7 FGF20 miR-433 rs12720208 Parkinson’s disease Cao et al. (2016); Moszyńska et al. (2017)

C/T
8 AGTR1 miR-155 rs5186 Hypertension Jin et al. (2008); Cao et al. (2016); Moszyńska et al.

(2017)A>C Renal disease
9 DHFR miR-24 rs34764978 C>T Methotrexate resistance Moszyńska et al. (2017)
10 HLA-G miR-48a rs1063320 C>G Childhood asthma Moszyńska et al. (2017)

miR-152
11 HTR1B miR-96 rs13212041 A/G Arson/property damage Moszyńska et al. (2017)
12 HTR3E miR-510 rs56109847 G>A Diarrhea irritable bowel syndrome Moszyńska et al. (2017)
13 TGFB1 miR-187 rs1982073

(rs1800470)
Frozen shoulder development Wynendaele et al. (2010); Hoss et al. (2014)

G>A,C
14 MMP9 miR-491-5p rs1056628 SLE, Early neurologic deterioration Wynendaele et al. (2010); Sondermeijer et al. (2011)

A>C
15 HTR3E miR-510 rs62625044 Irritable bowel syndrome Usiello et al. (2000); Cao et al. (2016)

G>A rs56109847
16 PFAS miR-149-3p rs1132554 Alcohol related neurodevelopment disorder Cao et al. (2016)

C>T
17 TRIB2 miR-877-5p rs1057001 Obesity Olefsky (2001); Cao et al. (2016)

T>A
18 TMCO1 miR-296-3p rs6660601 Skeletal anomalies, mental retardation

syndrome
Cao et al. (2016)

C>T
19 SRSF3 miR-7f-2-3p rs7344 POAG- primary open angle glaucoma Crocco et al. (2015); Cao et al. (2016)

T>C
20 CAV2 miR-244-5p rs1052990 POAG Cao et al. (2016)

T>C,G
21 AAGAB miR-329-5p rs1050285 Punctuate palmoplantar keratoderma type1 Cao et al. (2016)

T>C
22 ABO miR-855-3p rs8176751 Hematological phenotype Cao et al. (2016)

C>A,T
23 MTPN Let-7/miR-98 rs17168525 Cardiac hypertrophy Jin et al. (2008); Wang et al. (2013a)

G>A
24 MS4A6A miR-382-3p rs610932 LOAD- Late onset Alzheimer disease Bäckman et al. (2006); Erturk et al. (2014)

T>G
25 TCF-21 miR-224-5p rs12190287 C>G,T Acute Coronary syndrome Noble (2003); Erturk et al. (2014)
26 POCRID miR-425-3p rs7097 DLBCL Abo-Elmatty and Mehanna (2019)

miR-5444a/
miR-507

C>T Diffuse large B-cell lymphoma

27 PRKD3 miR-329-3p rs8243 Polycystic kidney and liver disease Abo-Elmatty and Mehanna (2019)
mir495-3p C>A

28 ZNF155 miR-708-5p rs442220 Herpes simplex virus 1 Abo-Elmatty and Mehanna (2019)
miR-28-5p G>A,C
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diminish (Scutt et al., 2020). In the promoter region of the human
Nrf2 gene (NFE2L2), there are many single-nucleotide
polymorphisms (SNPs) that influence Nrf2 expression in vivo.
Specific age-related disorders, such as acute lung damage, reduced
forearm vasodilator response, and Parkinson’s disease, have been
linked to these SNPs. Individuals with a variant allele may be
more susceptible to the negative effects of medications, have a
higher number of comorbidities, and be frailer in the setting of an
age-related reduction in Nrf2 (Marzec et al., 2007; Marczak et al.,
2012; von Otter et al., 2014). According to a recent study,
polymorphism rs35652124 (T>A,C,G) in NFE2L2/Nrf2 gene
was found to be associated with aging. Because the G allele is
linked to lower NFE2L2/Nrf2 expression, another possible reason
for the AA genotype’s higher risk of multimorbidity and frailty is
that high NFE2L2 levels are harmful in some disorders. When
compared to control mice, Nrf2 knockout animals had a smaller
atherosclerotic plaque (Sussan et al., 2008). Furthermore, the
rs35652124 AA genotype is linked to a higher risk of high blood
pressure and cardiovascular death in adults (Shimoyama et al.,
2014). As a result, it is possible that cardiovascular pathology is to
blame for the increased levels of multimorbidity and frailty (Scutt
et al., 2020).

SIRT2 is one of seven mammalian sirtuins (Sir2-like
proteins) that play critical roles in cellular activities such as
metabolism and differentiation (Michan and Sinclair, 2007). It
is mostly found in the cytoplasm, where it deacetylates -tubulin,
but it also migrates to the nucleus during the G2/M phase, where
it deacetylates histones, influencing cell cycle progression
(North et al., 2003; Vaquero et al., 2006; Inoue et al., 2007).
SIRT2 also deacetylates numerous additional substrates
(PEPCK1, FOXO1, FOXO3a, p65, and p53) that are involved
in key cellular processes linked to organism health, such as
homeostasis, oxidative stress management, inflammation, and
cell growth and death regulation (de Oliveira et al., 2012). SIRT2
variation rs45592833 (G>T) is located inside a binding region
identified by three distinct miRNAs (miR-3170, miR-92a-1-5p,
and miR-615-5p), all of which were expected to bind more
firmly to the T allele, causing SIRT2 production to be reduced
(Crocco et al., 2015). SIRT2 levels have been discovered to be
low in various human malignancies, and SIRT2-deficient
animals have been reported to develop tumors as they age
(Hiratsuka et al., 2003; Kim et al., 2011; Li et al., 2013b).
miR-615-5p, which has the highest binding energy change
caused by rs45592833, has been found to be deregulated in
cancer cell lines, patients with aging-related conditions such as
Huntington’s and cardiovascular diseases, and in the muscles of
old mice, implying that miR-615-5p downstream targets may be
involved in signaling pathways that are important in the aging
process (Hulf et al., 2011; Sondermeijer et al., 2011; Hoss et al.,
2014; Gao et al., 2015b).

An SNP in the DRD2 gene, rs6276 (A>G), which encodes a G
protein-coupled receptor found on postsynaptic dopaminergic
neurons, was also found to have a substantial connection with the

longevity phenotype. DRD2 signaling is required for the
appropriate control of a variety of physiological activities,
including locomotion, behavior, and hormone synthesis
(Usiello et al., 2000). Six distinct miRNAs were projected to
bind to the region containing the polymorphism rs6276 using
in silico analysis, with miR-485-5p having the greatest energy
binding level to the 3′UTR with the minor G allele (Crocco et al.,
2015). As a result, G allele binding is likely to be linked to
enhanced miRNA–mRNA binding, resulting in more severe
DRD2 expression regulation. DRD2 expression has been found
to be downregulated in both striatal and extrastriatal areas of the
brain in elderly adults, and that changes in DRD2 receptor
density or activity have been linked to age-related declines in
motor and cognitive abilities (Noble, 2003; Bäckman et al., 2006;
Crocco et al., 2015).

CONCLUSION

Dysregulation of miRNAs and their targets is often reported to be
involved in cancer progression. Multiple mechanisms for
regulation of target gene expression by miRNAs have been
proposed. However, recent evidence suggested another layer of
complexity in terms of SNPs in either the miRNA seed or their
target sequences. These mutations may cause dysregulated gene
expression leading to cancer progression. Similar evidence is
emerging in diabetes mellitus as well. There is limited
scientific literature reporting SNPs in miRNA seed sequences
highlighting scope of further exploration.

Overall, the current evidence suggests the need for the in-
depth sequence analysis of miRNAs and target genes as well
as to correlate the genetic evidence with functional studies.
Since single miRNA can target multiple genes and similarly
single genes can be targeted by multiple miRNAs,
understanding the functional implications of these SNPs
can provide new information regarding mechanisms of
disease progression.
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Prevalence and Spectrum of
Predisposition Genes With Germline
Mutations Among Chinese Patients
With Bowel Cancer
Zhengyong Xie†, Yongli Ke†, Junyong Chen, Zehang Li, Changzheng Wang, Yuhong Chen,
Hongliang Ding and Liyang Cheng*

General Surgery Department, General Hospital of Southern Theatre Command, People’s Liberation Army of China (PLA),
Guangzhou, China

Background:Bowel cancer is the third-most common cancer and the second leading cause of
cancer-related death worldwide. Bowel cancer has a substantial hereditary component;
however, additional hereditary risk factors involved in bowel cancer pathogenesis have not
been systematically defined.

Materials andMethods:A total of 573 patients with bowel cancer were enrolled in the present
study, of whom 93.72% had colorectal cancer (CRC). Germline mutations were integrated with
somatic mutation information via utilizing target next-generation sequencing.

Results: Pathogenic/Likely Pathogenic (P/LP) germline alterations were identified in 47 (8.2%)
patients with bowel cancer and the ratio of the number of these patients with family history was
significantly higher in the P/LP group than that noted in the non-pathogenic (Non-P) group.
Certain rare germline alterations were noted, such as those noted in the following genes:
FANCD2, CDH1, and FLCN. A total of 32 patients (68.1%) had germline alterations in the DNA-
damage repair (DDR) genes and homologous recombination (HR) accounted for the highest
proportion of this subgroup. By comparing 573 patients with bowel cancer with reference
controls (China_MAPs database), significant associations (p< 0.01) were observed between the
incidence of bowel cancer and the presence of mutations in APC, ATM, MLH1, FANCD2,
MSH3, MSH6, PMS1, and RAD51D. Somatic gene differential analysis revealed a marked
difference in 18 genes and a significant difference was also noted in tumor mutation burden
(TMB) between germline mutation carriers and non-germline mutation subjects (p < 0.001). In
addition, TMB in DDRmutation groups indicated a dramatic difference compared with the non-
DDR mutation group (p < 0.01). However, no statistically significant differences in TMB were
noted among detailed DDR pathways for patients with bowel cancer, irrespective of the
presence of germline mutations. Moreover, a significantly higher level (p < 0.0001) of
mutation count was observed in the DDR group from The Cancer Genome Atlas (TCGA)
database and the DDR and non-DDR alteration groups displayed various immune profiles.

Conclusion: Chinese patients with bowel cancer exhibited a distinct spectrum of germline
variants, with distinct molecular characteristics such as TMB and DDR. Furthermore, the
information on somatic mutations obtained from TCGA database indicated that a deeper
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understanding of the interactions among DDR and immune cells would be useful to further
investigate the role of DDR in bowel cancer.

Keywords: bowel cancer, germline, somatic, P/LP (pathogenic/likely-pathogenic), TMB, DDR

INTRODUCTION

Bowel cancer ranks third with regard to cancer morbidity and
mortality worldwide (Thanikachalam and Khan, 2019).
According to the Chinese Cancer Registration Report of 2018,
387,600 bowel cancer new cases and 187,100 bowel cancer-related
deaths occurred in China during 2015, ranking it the fourth
(9.87%) and fifth (8.01%) highest incidence and mortality rates,
respectively, among all cancers (Arnold et al., 2020; Yang et al.,
2020). In addition, the rates of bowel cancer steadily increased
from 2000 to 2018 (Bhui et al., 2009; Bray et al., 2018). Although
lower rates compared with the world average (incidence rate of
17.81/100,000 persons and mortality rate of 8.12/100,000
persons) (Bray et al., 2018), the number of new bowel cancer
cases and bowel cancer-related deaths in China is the highest in
the world due to its relatively large population. Genetic factors
resulting in the early development of cancers account for a
substantial number of bowel cancer (Medina Pabón and
Babiker, 2021). Therefore, it is necessary to explore the
prevalence of hereditary bowel cancer and the contribution of
the pathogenic germline variants in the development of this
disease in the Chinese population.

In general, hereditary cancer syndromes have been
implicated in 3–5% of overall cases with bowel cancer
(Medina Pabón and Babiker, 2021). Individuals who
harbor germline mutations in specific genes are at high
risk for developing bowel cancer. Clinically, individuals
with hereditary bowel cancer syndromes may be alert to
this situation and more likely to undertake frequent early
screening (Sokic-Milutinovic and eng, 2019). It is known that
germline mismatch repair (MMR) gene mutations, together
with APC gene mutations, contribute significantly to
inherited bowel cancer (Sa et al., 2020). Lynch Syndrome,
the most common hereditary cancer syndrome associated
with predisposition to bowel cancer, is associated with
germline mutations in DNA mismatch repair (MMR)
genes such as MLH1, MSH2, MSH6, PMS2, and EPCAM
(Engel et al., 2020). Familial adenomatous polyposis (FAP)
is associated with germline mutations in the APC tumor
suppressor gene and has been implicated in 1% of cases
with bowel cancer. Germline mutations in additional high
and moderate penetrance cancer genes such as BRCA1,
CDH1, and MUTYH, have also been associated with
increased risk for the developing colorectal neoplasia (Ma
et al., 2018). Recent studies have demonstrated that germline
variants in various cancer predisposition genes have been
identified in 1 out of 10 adults and children diagnosed with
advanced cancer types, as well as those with colorectal
(Mueller et al., 2021), pancreatic (Gentiluomo et al., 2020),
and metastatic prostate (Giri et al.eng, 2019) cancers. The
impact of an individual germline variant for clinical decision-

making depends on the specific characteristics of the variant
(Bertelsen et al., 2019), which classify whether the variant is
pathogenic/likely pathogenic (P/LP), or whether it is known
and/or it is likely to affect the function of its gene.

Accurate interpretation of genetic test results is of vital
importance, notably for patients who are identified with one
or more P/LP germline variant associated with a hereditary
cancer syndrome. Due to the development of next-generation
sequencing (NGS) technology, it has been found that various
ratio of patients with bowel cancer harbor germline
mutations (Bien et al., 2019). However, despite germline
variants in genes related to cancer susceptibility being
more common than initially expected, identification of
germline mutations of Chinese patients with bowel cancer
and the correlation between germline mutations and somatic
mutations has not been studied in detail. The present study
sought to determine the characteristics of P/LP germline
variants in Chinese patients with bowel cancer. The results
revealed that a wider panel of predisposition genes are
recommended for Chinese patients with bowel cancer,
which will be helpful to aid the establishment of
prevention and surveillance strategies that can be used to
reduce the incidence of this disease.

MATERIALS AND METHODS

Samples Source and Ethic Data
Patients with bowel cancer gave written informed consent
prior to their participation in General Hospital of Southern
Theatre Command, PLA. Formalin-fixed, paraffin-embedded
(FFPE) tumor tissues and matched blood samples in EDTA
tubes (for germline tests) from 573 diagnosed bowel cancer
patients (Information on clinicopathological status of
patients is provided in Supplementary Table S2) were
collected. All tumor FFPE sections were evaluated by
pathologist to contain at least 20% tumor cells. Family
history here is defined as the confirmed bowel cancer
patient who has at least one family member (first and
second-degree relatives) who had a history of tumor
diagnosis. The immediate family member includes father,
mother, brother(s), sister(s), son(s), daughter(s); second
degree relatives include grandparent(s), uncle(s), aunt(s).

Deoxy Ribonucleic Acid Isolation and
Targeted Next-Generation Sequencing
The FFPE tissues and peripheral white blood cells were
collected to extract DNA using QIAamp DNA FFPE Tissue
Kit and DNeasy Blood and Tissue Kit (Qiagen, Inc.),
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respectively. And the purified gDNA was quantified using the
Qubit 3.0 Fluorometer (Life Technologies, Inc.).

For the matched germline and tumor samples, 100 ng of DNA
was shared with a Covaris E210 system (Covaris, Inc.) to obtain
an average of 200 bp fragments. Accel-NGS 2S DNA Library Kit
(Swift Biosciences, Inc.) and xGen Lockdown Probes kit (IDT,
Inc.) were used for NGS library preparation of the tumor gDNA
matched germline gDNA. The custom xGen Lockdown probe
was synthesized by IDT, Inc. to target the exons and selected
intronic regions of 499 genes (Gene list is provided in
Supplementary Table S1).

Interpretation of Pathogenicity of Germline
Mutations and Calculation of Somatic
Tumor Mutation Burden
Pathogenicity of germline mutations was defined and
predicted based on the five-grade classification system
according to the American College of Medical Genetics
and Genomics (ACMG) Guidelines for the Interpretation
of Sequence (Li et al., 2017). It was modified here that
pathogenic/likely-pathogenic germline variants were
depicted as P/LP and the variant of undetermined
significance (VUS), benign, likely benign, and somatic
mutations were defined as the non-pathogenic group
(Non-P) in our results. Therefore, all mutations were
categorized into P/LP or Non-P groups in this study.

Tumor mutation burden of each sample was calculated
according to a published and the method of Chalmers et al
(2017).

Data Processing
Germline mutation data and incidence rates were obtained
from the ChinaMAP database (http://www.GenomAD.org).
The Cancer Genome Atlas (TCGA) database (https://tcga-
data.nci.nih.gov/tcga/) provides several expression profiles
and mutation data of CRC, as well as corresponding clinical
data. Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway terms were considered
statistically significant when FDR < 0.01. CIBERSORT was
used for evaluating diverse immune cell types in the cancer
microenvironment. The violin software package was used to
visualize differentially infiltrated immune cells between the
two groups through the Wilcoxon test.

Statistical Analysis
Statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS) statistical package
and Graphpad (Prism 8). Student’s t-test was performed
when two groups were compared, and ANOVA and post
hoc tests were performed when three or more groups were
compared. Gene prevalence between different groups was
analyzed by Chi-Square test or Fisher exact test under/with
a dominant model. A two-sided p value of less than 0.05 was
considered to be statistically significant.

RESULTS

Demographic Characteristics and
Landscape ofMutational Profiles in Chinese
Patients With Bowel Cancer
Briefly, paired tumor/germline analysis was conducted using a
customized next generation sequencing (NGS) panel of 499
selected genes (Supplementary Table S1). Somatic variants
were determined by comparing the data between tumor and
blood samples and all participants were included as a result of
successful germline sequencing, which resulted in an evaluable
population of 573 patients with bowel cancer. The demographic,
clinical, and pathological characteristics of this patient cohort are
shown in Table 1. In this cohort (n � 573), 21.64% (n � 124)
participants who were diagnosed with bowel cancers were <
50 years old and 78.36% (n � 449) > 50 years old.
Approximately 39.62% (n � 227) patients were female, 66.32%
(n � 380) exhibited colon cancer, 27.4% (n � 157) owned rectal
cancer, and 52.53% (n � 301) patients were reported to have the
stage IV tumors. A total of 108 (18.85%) participants had one or
more first-degree relatives with a history of tumor diagnosis, and
13 (2.27%) had one ormore second-degree relatives with a history
of tumor diagnosis.

Characteristics of Pathogenic Germline
Mutations in the Chinese Cohort and Their
Impact on Bowel Cancer Risk
Overall, 47 patients were found to carry P/LP germline mutations
(Table 2). The age and sex of the patients were not associated with
the presence or absence of a P/PL germline mutation (p � 0.19

TABLE 1 | Description of cohort.

Characteristic Subgroups Total evaluable
cohort, no. (%)

No. of participants 573
Age, year <50 124 21.64%

≥50 449 78.36%
Sex female 227 39.62%

male 346 60.38%
Family history Yes* 121 21.11%

First-degree 108 18.85%
Second-degree 13 2.27%
No 275 48%
NA 177 30.89%

Stage Ⅰ 7 1.22%
Ⅱ 202 35.25%
Ⅲ 63 10.99%
Ⅳ 301 52.53%

Tumor Location Colon cancer 380 66.32%
Rectal cancer 157 27.40%
Duodenal Cancer 27 4.71%
Small bowel cancer 6 1.05%
Cecal cancer 3 0.52%

Yes*: the confirmed colorectal cancer patient has at least one family member (first- and
second-degree relatives) who had a history of tumor diagnosis.
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and p � 0.21, respectively, Table 2). Interestingly, the ratio of
patients with bowel cancer with at least one family member (first-
and second-degree relatives) with family history of cancer(s),
such as colon, breast, endometrium, ovary, and/or pancreas was
significantly higher in the P/LP group than that of the Non-P
group (p � 0.037, Table 2).

A total of 30 genes with P/PL germline variants were
detected among 47 patients (Figure 1A). Besides, this
study identified 5 out of 47 patients who carried MUTYH
P/LP mutations (5/47), followed by APC (4/47)MLH1 (3/47),
TP53(3/47), and ATM (3/47) (Supplementary Table S2,
Figure 2A). Moreover, it was found that 8 patients carried
LS related mutations (3 MLH1, 2 MSH2, 2 MSH6, and
1 EPCAM) and 39 carried non-LS mutations (Figure 1A).
These findings were consistent with those reported in the
previous studies (Latham et al., 2019). Notably, certain novel
P/LP mutations were present, including those in FANCD2,
RAD51D, BLM, CDH1, FLCN, MEN1, SDHB, and SLX4 were
newly discovered in our cohort and have been rarely reported
in the previous publications. The detailed distribution data
and information on the germline mutations are presented in
Supplementary Table S2. The functions of these genes with
newly discovered P/LP mutations were mainly involved in
DNA damage repair pathways (DDR-related genes were
shown in Supplementary Table S3) and exerted a very
broad impact. They included the following components: i)
Those contributing to homologous recombination (HR), such
as BRCA1, RAD51D, MRE11A, and RAD51B; ii) Those
involved in Fanconi anemia (FA), such as FANCG,
FANCA, SLX4, BLM, FANCD2, FANCL, and BRIP1; iii)
Those involved in base excision repair (BER), such as
MUTYH; iv) those involved in nucleotide excision repair
(NER), such as ERCC2; v) those involved in mismatch
repair (MMR), such as MLH1, MSH2, MSH3, MSH6,
PMS1, and EPCAM; vi) those contributing to DNA sensor
(DS), such as ATM and CHEK2 (Figure 1B).

Mutations in the DNA damage repair genes increase the
risk of subsequent mutations and therefore confer high
cancer susceptibility. Previous studies verified the
association between alterations in 34 DDR genes that
exhibited higher TMB levels in urothelial cancer and
demonstrated that DDR inactivation was associated with
higher levels of TMB (Wang et al., 2018). Therefore, the

TMB of CRC patients harboring germline mutations was
compared among different DDR subgroups. Although
there were no statistically significant differences with
regard to the incidence of TMB in these pathways, the
average value of MMR was the highest with the exception
of the group of others, while HR exhibited the lowest
(Figure 1C). This phenomenon is in line with the previous
studies showing that over 90% of MMR-deficient tumors
exhibit high TMB levels (Stadler et al., 2016). In addition,
the data indicated that the majority of germline mutations
were located in or affecting protein functional domains and
that they may have a significant impact on protein function
(Supplementary Figure S1).

To investigate the risk of bowel cancer in individuals carrying
P/LP germline mutations, the mutation prevalence of all germline
mutations was searched in the total population and in different
populations derived from the China_MAPs database (Table 3).
Eight genes were significantly associated with CRC compared
with control subjects derived from the China_MAPs database.
These included the following: i) APC, with mutations in 0.70% of
cases and in 0.01% of control subjects (OR, 74.32); ii) ATM, with
mutations in 0.52% of cases and in 0.03% of control subjects (OR,
18.56); iii)MLH1, with mutations in 0.52% of cases and in 0.01%
of control subjects (OR, 111.50); iv) FANCD2, with mutations in
0.35% of cases and in 0.03% of control subjects (OR, 12.35); v)
MSH3, with mutations in 0.35% of cases and in 0.04% of control
subjects (OR, 9.27); vi) MSH6, with mutations in 0.35% of cases
and in 0.01% of control subjects (OR, 74.07); vii) PMS1, with
mutations in 0.35% of cases and in 0.30% of control subjects (OR,
10.59); viii) RAD51D, with mutations in 0.35% of cases and in
0.01% of control subjects (OR, 74.07) (Table 3). These findings
suggested that these P/LP germline mutations were risk factors
for the development of bowel cancer.

Furthermore, the bowel cancer germline mutation frequency
found in the present study was compared with that reported in
other studies including the investigations performed in Japan
(Fujita et al., 2020) and in America (Yurgelun et al., 2017). For the
incidence of APC and MUTYH in the Japanese cohort were
significantly lower than those noted in the present (p � 0.02, p <
0.001 respectively). The P/PL prevalence did not differ
significantly of genes including MLH1, MSH2, MSH6, BRCA1,
TP53, CHEK2, ATM, and BRIP1 among the three cohorts
investigated. (Table 4).

TABLE 2 | The summary of clinicopathological and history information for bowel cancer patients with or without distinct germline mutation pathogenicity.

Characteristic Subgroups P/LP (N = 47) Non-pathogenic (N = 526) p Value

Age, year <50 14 29.79% 110 20.91% 0.194
≥50 33 70.21% 416 79.09% —

Sex female 23 48.93% 204 38.78% 0.213
male 24 51.07% 322 61.22% —

Family history Yes* 14 29.79% 107 20.34% 0.037
First-degree 12 25.53% 96 18.25% —

Second-degree 2 4.26% 11 2.09% —

No 15 31.91% 260 49.43% —

NA 18 38.30% 159 30.23% —

Yes*: the confirmed colorectal cancer patient has at least one family member (first and second degree relatives) who had a history of tumor diagnosis.
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Molecular Analysis of Somatic Mutations of
Patients With Bowel Cancer Carrying
Germline P/LP Mutations
The relationship between germline mutation carriers and patients
with somatic mutations has been studied in other cancer types,

such as lung cancer (Liu et al., 2020). However, the connection of
germline variations and somatic mutations in bowel cancer has
not been explored in detail. The somatic mutation spectrum was
classified by pathogenicity/likely pathogenicity of germline
mutations for all patients with bowel cancer (P/LP and Non-P
groups) (Figures 2A,B). TP53, APC, KRAS, NOTCH1, ARID1A,
FBXW7, PIK3CA, KMT2C, NOTCH3, and TCF7L2, were found
to be the top 10 mutated genes in the P/LP group. With regard to
the Non-P group, the top 10 mutated genes were TP53, APC,
PIK3CA, SMAD4, NOTCH3, FAT1, ARID1A, KMT2D, RECQL4,
and FBXW7. According to the different mutation classification
categories, the missense mutation was the one that obtained the
highest proportion in the bowel cancer samples in the presence or
absence of germline variants.

To determine the presence of germline variants in the patients
examined, the comparison of somatic alterations was conducted
between P/LP and Non-P groups, and the results revealed
dramatic differences (p < 0.001) in several gene mutations
between these two groups (Figure 3A). A total of 17 gene
mutations such as TCF7L2, KMT2D, PRKDC, NOTCH1,
KMT2C, ERBB3, and TSC2, and others were more common in
patients with bowel cancer with P/LP germline mutations;
strikingly, SMAD4 exhibited the opposite prevalence and its
mutation frequency in the Non-P group was significantly
higher than that in the P/LP group (Figure 3A). Subsequently,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were further conducted
to explore the biological roles of the identified differential genes.
GO as well as KEGG enrichment analysis revealed that these
genes were mainly enriched in the biological process (BP) terms,
such as PI3K signaling, DNA recombination, HR, and MMR
(Supplementary Figure S2). Furthermore, the identification of
specific driver genes in the present study has been previously
reported (Eklöf et al., 2013; Dow et al., 2015). The mutation rate
(frequency) of APC was the highest among all genes both in the
P/LP and non-P groups followed by the mutation rate of TP53,
KRAS, PIK3CA, SMAD4 and BRAF (Figure 3B).

Association Between Tumor Mutation
Burden and the Incidence of DNA-Damage
Repair Mutations in the Chinese Cohort
TMB is considered a vital biomarker in a variety of cancer types
(Samstein et al., 2019; Wu et al., 2019), which may reflect the
degree of genomic instability at the nucleotide level. Therefore,
the TMB was initially compared in the P/LP and Non-P groups
and the data indicated a significantly higher level of TMB in the
P/LP group (14.56 vs. 6.39 mutations/Mb, p � 0.0056, Figure 4).
Furthermore, the DDR system plays an important role in
maintaining genome stability, based on this notion, a focused
analysis was performed, specifically on the DDR-altered genes in
all bowel cancer cases. In the P/LP group, DDR alterations were
present in 68.1% (n � 32) of cases and were involved in the DDR
pathways including HR (31.36%), DS (20.82%), FA (19.28%),
MMR (12.85%), BER (9%) and NER (6.68%), respectively
(Figure 5A). In the Non-P group, DDR gene mutations
occurred in 30% (n � 157) of cases, including HR (26.97%),

FIGURE 1 |Gene names, functions, and number of variations of all P/LP
germline mutations. (A) Gene names and the ratio of mutations of P/LP
germline variations. (B) Specific gene mutation number with each DDR
pathway in the P/LP group. (C) Comparison of the TMB with somatic
mutations among different pathways in the P/LP group. pathogenic/likely-
pathogenic: P/LP; DDR: DNA damage response; TMB, tumor mutation
burden; HR, homologous recombination; FA, fanconi anemia; MMR,
mismatch repair; NER, nucleotide excision repair; BER, base excision repair;
DS, DNA sensor.
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MMR (20.22%), FA (20.22%), BER (13.48%), DS (11.24%) and
NER (7.67%) (Figure 5B). In the P/LP group, FANCA, ATM, and
MUTYH were the most commonly altered DDR genes, followed
by BRCA2, MSH3, and POLE; whereas in the Non-P group,
BRCA2 exhibited the highest DDR gene alterations, followed by
ATM, POLE, and MSH6 (Figure 5C). Furthermore, the highest
average TMB value was observed in DDR-altered Non-P cases
with bowel cancer compared with that of DDR-altered P/LP cases
pf bowel cancer or Non-DDR altered cases (p < 0.001,
Figure 5D). The data demonstrated that tumors with DDR
mutations in the Non-P group exhibited increased genomic
instability than that of the P/LP group. The lowest average
TMB appeared in the non-DDR group, which is in line with
the evidence reported in the previous studies.

Comparison of Somatic Mutations Between
the Chinese Cohort and the Independent
The Cancer Genome Atlas Cohort
A total of 223 bowel cancer samples with somatic mutation
profiles were downloaded from the TCGA database. The

relevant clinical information was listed in Supplementary
Table S4. DDR gene mutation analysis was also conducted in
the TCGA cohort, and the FA pathway accounted for the highest
proportion (25.22%), while NER accounted for the lowest
proportion (7.42%) (Figure 6A). Moreover, a similar finding
was obtained regarding specific gene mutations in these pathways
between TCGA cohort and the Chinese cohort, such as ATM (the
highest mutation frequency) and EPCAM (relative lower
mutation frequency) (Figure 6B).

Subsequently, the TMB in the Chinese cohort was compared
with the mutation count in the TCGA cohort (TMB was not
accessible and therefore the mutation count was adopted here).
The selection of mutation genes with P/LP was performed via the
cBioportal website. In concordance with the previous results, a
significantly higher level of TMB was observed in bowel cancer
harboring DDR somatic mutations compared with cases with
non-DDR bowel cancer in TCGA cohort (p < 0.0001, Figure 7). A
similar finding was obtained from the Chinese cohort
(Figure 5D). Especially, although there was no statistically
significant difference among the DDR pathways examined in
the TCGA and the Chinese cohort, the lowest TMB or mutation

FIGURE 2 | Heatmap of full SNV and INDEL somatic mutation for patients with P/LP (A) or Non-P (B) germline mutations. (A) Somatic mutation spectrum for 47
patients with P/LP germline mutations. (B) Somatic mutation spectrum for 526 patients with Non-P germline mutations. Details of mutations are labeled beneath each
panel, and somatically mutated genes are listed in the left of the figures. The right bars represent the overall number of mutations for each gene. Y-axis above each panel
represents the number of somatic mutations detected for each patient. Colors represent mutation types as indicated by the figure legend.
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count was observed in NER pathway. In addition, the HR
pathway displayed an increased mutation count in the TCGA
cohort, while the Chinese cohort harbored the highest TMB of
somatic mutations in BER pathway (Supplementary Figure S3).

Association Between DNA-Damage Repair
Mutation and Immune Cell Infiltration
Pattern in The Cancer Genome Atlas Cohort
Previous study has demonstrated that mutations can generate
novel peptide sequences, which may affect the immune response

(Chalmers et al., 2017). The TMB noted in the DDR mutation
group was higher in the Chinese cohort and the TCGA cohort
(Figure 5D, Figure 7). Thus, higher immune cell abundance was
expected in the DDR somatic mutation. By applying the
CIBERSORT algorithm, the differential variation of immune
cell infiltration was estimated in the DDR and non-DDR
groups of bowel cancer. The Wilcoxon rank-sum test indicated
that the proportion of B cell naive (p � 0.017), T cell follicular
helper (p � 0.0069), Macrophage M1 (p � 0.0038), and
Neutrophils (p � 0.0163) were significantly elevated in the
DDR group. By contrast, the infiltration levels of T cell

TABLE 3 | Comparison of mutation carriers by panel gene between colorectal cancer cases and China_MAPs control cases.

Cases China_MAPs Cases Cancer Risk

Genes Cases
With

Mutations, No

Individuals
Tested, No

Carrier
Frequency, %

Controls
With

Mutations, No

Individuals
Tested, No

Carrier
Frequency, %

Odds
Ratio(95%CI)

p
Value

Genes Significantly Associated with Colorectal Cancer
APC 4 573 0.70 2 21,176 0.01 74.32 (10.63–833.35) ˂0.001
ATM 3 573 0.52 6 21,176 0.03 18.56 (3.00–87.19) 0.001
MLH1 3 573 0.52 1 21,176 0.01 111.50 (8.92–5,589.64) ˂0.001

FANCD2
2 573 0.35 6 21,176 0.03 12.35 (1.22–69.42) 0.02

MSH3 2 573 0.35 8 21,176 0.04 9.27 (0.96–46.56) 0.03
MSH6 2 573 0.354 1 21,176 0.01 74.07 (3.85–4,220.60) 0.002
PMS1 2 573 0.35 7 21,176 0.03 10.59 (1.07–55.73) 0.02

RAD51D
2 573 0.35 1 21,176 0.01 74.07 (3.85–4,220.60) 0.002

Genes Not Significantly Associated with Colorectal Cancer
BLM 1 573 0.17 11 21,176 0.05 4.62(0.10–34.60) 3.36
BRCA1 1 573 0.17 8 21,176 0.04 5.29 (0.12–41.26) 4.62
BRIP1 1 573 0.17 7 21,176 0.03 12.33 (0.23–153.20) 5.29
CHEK2 1 573 0.17 3 21,176 0.01 18.50 (0.31–354.76) 12.33
EPCAM 1 573 0.17 2 21,176 0.01 6.17 (0.13–50.98) 18.50
ERCC2 1 573 0.17 6 21,176 0.03 5.29 (0.12–41.26) 6.17
FANCA 1 573 0.17 7 21,176 0.03 9.25 (0.19–93.72) 5.29
FANCL 1 573 0.17 4 21,176 0.02 36.98 (0.47–2,826.49) 9.25
SLX4 1 573 0.17 9 21,176 0.01 4.11 (0.09–29.76) 36.98
VHL 1 573 0.17 3 21,176 0.04 12.33 (0.23–153.20) 4.11
MEN1 1 573 0.17 1 21,176 0.01 4.62(0.10–34.60) 12.33

TABLE 4 | Comparison of germline mutation carriers with specific genes among different countries.

China Japan America

Genes Individuals
Tested, No

Carrier
Frequency,

%

Individuals
Tested, No

Carrier
Frequency,

%

China
vs.

Japan
p

Value

Individuals
Tested, No

Carrier
Frequency,

%

China
vs.

America
p

Value

APC 573 0.70 12,503 0.16 0.02 1,058 0.47 0.73
MUTYH 573 0.87 12,503 0.10 ˂0.001 1,058 1.80 0.20
MLH1 573 0.52 12,503 0.28 0.23 1,058 1.18 0.20
MSH2 573 0.35 12,503 0.29 0.68 1,058 0.66 0.51
MSH6 573 0.35 12,503 0.31 0.70 1,058 0.57 0.72
BRCA1 573 0.17 12,503 0.17 1.00 1,058 0.28 1.00
TP53 573 0.52 12,503 0.15 0.07 1,058 0.09 0.13
CHEK2 573 0.17 12,503 0.12 0.51 1,058 0.19 1.00
ATM 573 0.52 12,503 0.37 0.47 1,058 0.95 0.56
BRIP1 573 0.17 12,503 0.14 0.57 1,058 0.28 1.00
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regulatory Tregs (p � 0.0291) and Myeloid dendritic cell resting
(p � 0.0163) were lower in the DDR group (Figure 8A). However,
no association was observed between the different DDR pathway
alterations and immune cell abundance (Figure 8B).

Association Between DNA-Damage Repair
Mutations and Survival Outcomes
In addition, the present study further investigated whether the
number of somatic mutations in the DDR genes of P/LP group
was associated with improved survival following programmed
cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1)
or cytotoxic T-lymphocyte-associated protein 4 immunotherapy
in CRC patients. The clinical data of immunogenomic studies
were downloaded from the cBioportal website. The overall
survival (OS) was defined as the time from initial surgery to
the date of death or last contact (censored). As expected,
alteration in the mutation status of P/LP DDR conferred
superior OS compared with patients without altered DDR
gene(s) (HR, 0.3358; 95% CI, 0.1767 to 0.638; p � 0.0009) in
the immunotherapy cohort (Figure 9A). However, patients with
DDRmutations did not obtain a significantly prolonged OS when
the MMR pathway was excluded (HR � 0.2998, 95%CI 0.1051 to
0.8556; p � 0.0549, Figure 9B).

DISCUSSION

Germline variants transmit genetic information that determines
the heritability of complex disorders (McClellan et al., 2010). The
presence of individually-rare but collectively common germline
variants can explain a fraction of the missing genetic
predisposition to bowel cancer. However, the major percentage
of bowel cancer heritability is still not fully characterized,
especially for the Chinese population. In the present study, an
NGS-based analysis of germline mutations was performed for 573
Chinese patients with various stages of bowel cancer. The analysis
provided a representative germline mutation landscape. The
present study is the first to elucidate a more comprehensive
germline mutation profile of Chinese patients with bowel cancer
with the aim of identifying the novel candidate genes for
hereditary bowel cancer. In addition, genetic testing and
identification of germline mutations may have implications for
the relatives of patients with bowel cancer because of the
associated risks of CRC and other cancer types. In the present

FIGURE 3 | The somatic gene variation rate between P/LP and Non-P
groups for all patients in this study. (A) Differential expressing Mutation genes
in P/LP and Non-P groups. (B) Comparison of the variation rate (mutational
frequency) for driver genes with somatic mutations between P/LP and
Non-P groups. P/LP: pathogenic/likely-pathogenic; Non-P: non-pathogenic.

FIGURE 4 | Comparison of the TMB from somatic mutations of the P/LP
and the Non-P groups. P/LP: pathogenic/likely-pathogenic; Non-P: non-
pathogenic; TMB, tumor mutation burden.
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Chinese cohort, the ratio of patients with bowel cancer with at
least one family member (first- and second-degree relatives) with
tumor history was significantly higher in the P/LP group than that
in the Non-P group, indicating that pathogenic cancer-
predisposing variants were associated with the incidence of
bowel cancer and resulted in familial clustering. On the other
hand, the patients with bowel cancer and their family members
with a history of other cancers were included in the family history
examined in the current study indicating that the presence of
pathogenic germline mutations increased the incidence of other
cancer types.

Germline pathogenic variants in genes encoding for DNA
mismatch repair proteins cause Lynch syndrome, which is
considered the most prevalent form of hereditary bowel cancer
(Arora et al., 2015). Classic hereditary bowel cancer syndromes,
including Lynch syndrome are mainly due to germline mutations
in APC, MUTYH, and the MMR genes (such as MLH1, MSH2,
MSH6, and PMS2). The data reported in the current study
demonstrated that the top three genes with the highest
number of germline mutations were MUTYH (5/47), APC (4/
47), and MLH1 (3/47), which was consistent with the findings of
previous publications (Esteban-Jurado et al., 2015; Reilly et al.,
2019). Meanwhile, the recent study also revealed the most
common mutated genes of TP53, APC, KRAS, SMAD4,

PIK3CA etc., besides, the mutation frequencies of TP53 and
APC in the left CRC were significantly higher than that of
right CRC (Huang et al., 2021). While the germline alterations
in certain susceptibility genes were also detected in the bowel
cancer samples including FANCD2, CDH1, FLCN, MEN1, SDHB,
and SLX4, which have been rarely reported in the Chinese
population. As is known, FANCD2 is the frequently mutated
gene in colorectal cancer (Offman et al., 2005). CDH1 mutations
are more predisposed to familial colorectal cancer (Richards et al.,
1999). Besides, it was reported that the frameshift mutations in
the FLCN exon 11 which would suppress the activation of FLCN
could lead to the increased incidence of colorectal cancer
(Nahorski et al., 2010). While MEN1 was reported that it
could be a novel driver causing the dysregulation of Wnt
signaling pathway in colorectal cancer (Fennell et al., 2020).
SDHB is the catalytic core of succinate dehydrogenase (SDH),
of which dysfunction would exert an influence on the TGF-beta
signaling pathway contributing to the colorectal cancer formation
(Wang et al., 2016). Moreover, the mutation of the tumor
suppressor gene SLX4 was recently shown to be associated
with the early-onset of CRC in the population of Kazakhstan
(Zhunussova et al., 2019).Among these germline variants,
mutations in SLX4, FANCD2, and FLCN are associated with
FA pathway alteration (provided by RefSeq, NCBI). In other

FIGURE 5 | Percentage of patients with bowel cancer harboring DDR genemutations and the TMB in our cohort. The proportion of different DDR pathways in P/LP
(A) and Non-P groups (B). (C) Comparison of the number of patients with gene mutations in DDR pathways for P/LP and Non-P groups. (D) Comparison of the TMB
from somatic mutations of the DDR somatic, DDR germline, and non-DDR groups. P/LP: pathogenic/likely-pathogenic; DDR: DNA damage response; TMB, tumor
mutation burden.
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geographical regions, germline mutations of CRC patients mainly
occur in the HR, DS, NER, BER, and MMR pathways (Berginc
et al., 2009; Yurgelun et al., 2017; Ma et al., 2018; Schneider et al.,

2018; Fujita et al., 2020). Although the present study detected
germline mutations in these DDR pathways, a higher number of
genes were identified which were involved in the FA pathway
compared with the previous studies, such as FANCD2, FANCA,
FANCG, FANCL, and SLX4. The identification of a wider
causative mutation in bowel cancer has implications that can
apply to genetic counseling practices that are of vital importance
for the family under investigation (Wells and Wise, 2017). Once
established in a particular family with carriers and non-carriers,
prevention strategies can be directed more precisely to those
subjects carrying the causative mutation and who are therefore at
risk of developing bowel cancer and other related malignancies.

The frequency of mutations queried in the China_MAPs
database represents the frequency of a certain mutation site in
the general population. The OR of the cases investigated in the
present study suggested that the germline mutations were risk
factors for bowel cancer. In this case-control study, mutations in 8
genes (APC, ATM, MLH1, FANCD2, MSH3, MSH6, PMS1, and
RAD51D) were found to be associated with bowel cancer and
were present in 3.5% of patients with bowel cancer. Mutations in

FIGURE 6 | The proportion of the detailed DDR pathways (A) and the number of patients with specific DDR pathway genes in TCGA (B). TCGA: The Cancer
Genome Atlas; DDR: DNA damage response.

FIGURE 7 | Comparison of somatic mutation count between non-DDR
and DDR groups from TCGA cohort. DDR: DNA damage response; TCGA:
The Cancer Genome Atlas.
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APC, ATM, and MLH1 were associated with the highest risks of
bowel cancer. The frequency of latter two germline variants was
also the highest among patients with bowel cancer (0.7, 0.52,
and 0.52%, respectively). In addition to commonly mutated
genes such as APC, ATM, and LS-related genes that have been
previously reported (Bernstein and Concannon, 2017;
Snowsill et al., 2017; Aghabozorgi et al., 2019), the current
analysis further revealed significantly higher rates of
FANCD2 and RAD51D mutations in bowel cancer
germline mutation carriers than those of the general
population, suggesting that FANCD2 and RAD51D can be
considered as bowel cancer-susceptibility genes. FANCD2 is
monoubiquinated in response to DNA damage, resulting in
its localization to nuclear foci with other proteins (BRCA1
and BRCA2) involved in homology-directed DNA repair.
Furthermore, RAD51D is involved in the homologous
recombination and repair of DNA (provided by RefSeq,
NCBI). However, these genes are rarely reported in bowel
cancer. Therefore, the current results provide preliminary

evidence of potential susceptibility genes that can be used for
hereditary bowel cancer.

The integration of germline and somatic genomic data can
provide insight into the mechanisms that drive tumor
progression (Ramroop et al., 2019). Therefore, an in-depth
integrated analysis was performed on germline and somatic
NGS data derived from the patients with bowel cancer. The
present study identified several distinct somatic mutation rates
between the carriers of germline mutations and the non-carriers.
For example, differential expression gene analysis indicated that
the mutation incidence of specific genes, such as TCF7L2,
KMT2D, PRKDC, and NOTCH1 was significantly higher in the
P/LP group than that of the Non-P group, suggesting a higher risk
compared with subjects without germline mutations. It is
interesting to note that the SMAD4 mutation rate in the P/LP
group was dramatically lower than that of the Non-P group.
Mutations or deletions in this gene have been shown to result in
the development of juvenile polyposis syndrome, whereas weak
expression of SMAD4 is known to associate with poor survival in

FIGURE 8 | DDR was correlated with the infiltration of immune cells from the TCGA cohort. (A) Differentially infiltrated immune cells between DDR and non-DDR
groups. (B) Comparison of infiltrated immune cells in different altered DDR pathways. DDR: DNA damage response; TCGA: The Cancer Genome Atlas.
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patients with bowel cancer (Yan et al., 2016). The results in this
study confirmed that SMAD4 mutation mainly occurred in
somatic mutation patients rather than germline carriers. One
possible explanation for this outcome could be that the
environmental factors mainly affected the Non-P germline
mutation carriers.

It is noteworthy that somatic mutations in patients with
P/LP germline mutations showed distinct characteristics in
the present study. TMB, which is considered to be a predictive
biomarker of immune checkpoint inhibitor (ICIs) (Wang and
Li, 2019), may reflect the degree of genomic instability at the
nucleotide level. The TMB in the P/LP group was significantly
lower than that in the non-germline mutant group. It was
speculated that somatic mutations in patients with P/LP
germline mutations may be more focused on certain key
genes and key pathways, whereas somatic mutations in
patients without P/LP germline mutations may be more
sporadic. Therefore, patients with P/LP germline
mutations may be more likely to have abnormalities in key
genes and pathways, leading to an increased risk of bowel
cancer. Moreover, TMB in the non-altered DDR group was
significantly lower than that noted in the altered DDR groups.
In addition, higher TMB was observed in the DDR of the non-
germline mutation group compared with that of the DDR
germline mutation group. A possible interpretation is that the

further alteration in DDR may induce a hypermutated
phenotype with a higher TMB, which could be established
as a biomarker of ICI treatment (Rizvi et al., 2015).

In the current comprehensive analysis, we also explored the
association between DDR mutation and the number of
immune cells among patients with bowel cancer from the
TCGA cohort. The results found that the number of B cell
naive, T cell follicular helper, Macrophage M1, and Neutrophil
were elevated in the DDR group. Previous studies have
demonstrated that the infiltration of B cells plays an
important role in tumor immunotherapy (Cabrita et al.,
2020; Helmink et al., 2020; Petitprez et al., 2020). Wei,
et al. (2016) reported that B cell naive could suppress the
antitumor adaptive immune response in the patients with
ovarian cancer. An additional study proposed that B cell
naive could be considered as a readily available and
effective source of antigen-presenting cells in clinical
research on tumor immunotherapy (Ren et al., 2014). Based
on these findings, it was speculated that DDR alteration in
bowel cancer might modulate the response to ICIs to a
certain extent (Ren et al., 2014). In addition, the present
study indicated that patients with DDR gene alterations
were more likely to experience improved OS than patients
with unaltered DDR genes. Although MMR mutations
were excluded from the DDR pathway, patients with DDR

FIGURE 9 | Survival curves of OS comparing DDR mutation (A) or DDR without MMR mutation (B) (blue) with Non-DDR (red) in colorectal patients from
immunotherapy cohort. OS: overall survival; DDR: DNA damage response.
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alterations did not show a significantly prolonged OS, and
the p value(p � 0.0549) is nearly close to the significance
cutoff. The limited samples (n � 6) may contribute to
this phenomenon. Therefore, it is suggested that the
predicted value of this association is investigated
further in larger data sets from randomized studies
that have led to the FDA approval of several anti-PD-1/
PD-L1 agents. DDR alterations may represent a useful
predictive bowel cancer biomarker for of the patient
response to anti-PD-1/PD-L1 provided these findings are
validated in a larger cohort (Samstein and Riaz, 2018;
Zhang et al., 2020).

The ratio of DDR pathway alteration and other molecular
results varied between the TCGA cohort and the Chinese cohort.
The baseline characteristics, such as sex and tumor stage, may
also contribute to the distinction.

One limitation of the present study is that the germline
mutations were unavailable from TCGA cohort. This cannot
comprehensive assessment of the differences between P/LP
germline mutation carriers and Non-P germline mutation
carriers in distinct bowel cancer populations. In addition,
although the mutations were identified in the genomic
sequences, their exact effects on the altered protein function
were not assessed. Despite these limitations, the results can
still provide a reasonable basis for exploring the applications
of the DDR germline mutations in the prognosis of hereditary
bowel cancer.

In conclusion, the present study identified unique genomic
and molecular characteristics such as TMB and DDR between
P/LP germline alteration carriers and Non-P bowel cancer
patients. A preliminary basis was provided for the assessment
of a wider range of susceptibility genes in Chinese CRC
patients. Moreover, the TCGA database indicated that a
deeper understanding of the interactions between DDR and
immune cell infiltration would be useful to further investigate
the role of DDR in bowel cancer.
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Identification of a Novel
Glycosyltransferase Prognostic
Signature in Hepatocellular
Carcinoma Based on LASSO
Algorithm
Zhiyang Zhou1, Tao Wang2, Yao Du1, Junping Deng1, Ge Gao1* and Jiangnan Zhang1*
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Although many prognostic models have been developed to help determine personalized
prognoses and treatments, the predictive efficiency of these prognostic models in
hepatocellular carcinoma (HCC), which is a highly heterogeneous malignancy, is less
than ideal. Recently, aberrant glycosylation has been demonstrated to universally
participate in tumour initiation and progression, suggesting that dysregulation of
glycosyltransferases can serve as novel cancer biomarkers. In this study, a total of
568 RNA-sequencing datasets of HCC from the TCGA database and ICGC database
were analysed and integrated via bioinformatic methods. LASSO regression analysis was
applied to construct a prognostic signature. Kaplan–Meier survival, ROC curve,
nomogram, and univariate and multivariate Cox regression analyses were performed to
assess the predictive efficiency of the prognostic signature. GSEA and the “CIBERSORT”
R package were utilized to further discover the potential biological mechanism of the
prognostic signature. Meanwhile, the differential expression of the prognostic signature
was verified by western blot, qRT–PCR and immunohistochemical staining derived from
the HPA. Ultimately, we constructed a prognostic signature in HCC based on a
combination of six glycosyltransferases, whose prognostic value was evaluated and
validated successfully in the testing cohort and the validation cohort. The prognostic
signature was identified as an independent unfavourable prognostic factor for OS, and a
nomogram including the risk score was established and showed the good performance in
predicting OS. Further analysis of the underlying mechanism revealed that the prognostic
signature may be potentially associated with metabolic disorders and tumour-infiltrating
immune cells.

Keywords: glycosyltransferase, hepatocellular carcinoma, overall survival, prognostic signature, lasso regression
analysis
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a highly aggressive solid
malignancy and the fourth leading cause of cancer-related
death, which imposes a tremendous health and socioeconomic
burden globally (Singal, et al., 2020). Studies have shown that
hepatitis virus infection, alcohol-related liver disease (ALD), non-
alcoholic fatty liver disease (NAFLD) and non-alcoholic liver
steatohepatitis (NASH) are the main aetiological risk factors for
the development of HCC. Chronic infections with hepatitis virus
are still the strongest risk factors for HCC in developing
countries, nevertheless, NAFLD is gradually becoming the
leading cause of HCC in Western countries (Huang, et al.,
2021a). Despite all efforts made in the past to improve the
prognosis of HCC, the prognosis remains poor, with an
overall 5-years survival rate of approximately 18%, which is
only slightly better than that of pancreatic cancer (Jemal,
et al., 2017).

Of note, the prediction of clinical outcomes provides vital and
necessary medical information. The traditional TNM staging
system, which mainly relies on clinicopathological parameters,
cannot provide a precise prediction of prognosis in clinical
practice. In particular, HCC is a malignant tumour with the
characteristic of high heterogeneity, which adds to the complexity
of accurately predicting prognosis. One possible strategy to
improve predictive outcome is to better understand the
fundamental biological processes of cancer cells, and to
identify prognostic signatures to stratify patients for
individualized precision therapies based on prognosis and
metastatic potential.

Glycosylation, the most universal protein post-translational
modification, is an enzymatic process that catalyses the transfer of
carbohydrate chains to proteins by glycosyltransferases (GTs)
and glycosidases (Pinho and Reis, 2015). So far, 14 distinct
human protein glycosylation pathways have been outlined,
which are directed by at least 173 different GTs (Schjoldager,
et al., 2020). They are divided into four main types: N-
glycosylation, O- glycosylation, C-mannosylation and
glypiation. Modified proteins are involved in nearly all
biological processes, especially intercellular signal transduction
and the immune response (Johannssen and Lepenies, 2017;
Indellicato and Trinchera, 2021).

Alterations in cellular glycosylation have been recognized as
hallmarks of malignant tumours, which contribute to sustaining
proliferative signalling and metabolism, promoting invasion and
metastasis, and immune evasion (Munkley and Elliott, 2016;
Thomas, et al., 2021; Dobie and Skropeta, 2021; Rodrigues,
et al., 2021). The under- or overexpression of GTs is the main
contributor to cancer initiation and progression. Fucosylation is
one of the most common modifications in the glycosylation
pattern of HCC (Zhang, et al., 2017). The core fucosylation of
α-fetoprotein (AFP-L3), a typical modified product, has already
been confirmed as a biomarker in detecting early HCC (Wu, et al.,
2014a; Noda, et al., 1998). As key enzymes of fucosylation, FUT1
(Kuo, et al., 2017), FUT8 (Cheng, et al., 2016) and POFUT1 (Ma,
et al., 2016) are highly expressed and positively associated with
advanced stage and poor prognosis in HCC. Other members of

the FUT family, such as FUT2 (Wu, et al., 2014b), FUT4 (Cheng,
et al., 2013), FUT6 (Guo, et al., 2012), and FUT7 (Wang, et al.,
2005), are also known to support the development of HCC.
Similarly, aberrant O-GlcNAcylation due to dysregulation of
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT)
expression has been shown in HCC (Makwana, et al., 2019).
OGT can promote migration by regulating FOXA2 stability and
transcriptional activity (Huang, et al., 2021b), and the stem-like
cell potential through O-GlcNAcylation of eIF4E (Cao, et al.,
2019). In addition, abnormal expression of other kinds of GTs has
been described in HCC, including C1GALT1, GALNT1,
GALNT2, GALNT4, MGAT4A, MGAT5, B3GALT5,
B4GALT4, ST3GAL1, ST3GAL2, ST3GAL6 and ST6GAL1.
Cumulative findings indicate that abnormal expression of GTs
seems to be a general feature of cancer cells and contributes to
tumorigenesis and additional malignant characteristics.

Given the diversity of GTs and the high heterogeneity in
individuals, a comprehensive understanding of the crucial role of
aberrant glycosylation in HCC progression can further provide
assistance in predicting prognosis. Therefore, the development of
a novel evaluation index of glycosylation may be very useful for
prognosis research. In this study, we developed a 6-gene
prognostic signature that focused on the prognostic value of
GT in HCC and validated its predictive capability through a
variety of computational approaches.

MATERIALS AND METHODS

Data Screening and Gene Integration
Both the complete clinicopathologic information and matched
RNA-sequencing FPKM data (HTSeq-FPKM) of HCC samples
were extracted from The Cancer Genome Atlas (TCGA) data
portal (up to September 23, 2021,https://portal.gdc.cancer.gov/).
We also downloaded clinical and mRNA expression data of a
Japanese cohort from the International Cancer Genome
Consortium (ICGC) data portal (up to November
27,2019,https://dcc.icgc.org/).

Two glycosylation-related gene sets were obtained from the
GlycoGene DataBase (GGDB: https://acgg.asia/ggdb2/index) and
Hugo Gene Nomenclature Committee (HGNC: https://www.
genenames.org/data/genegroup/#!/group/424). Gene set
intersections were regarded as GT sets. Differentially expressed
genes (DEGs) of the GT set between HCC and normal samples
were identified using the “limma” package in R, and the screening
criteria were FDR <0.05. Meanwhile, univariable Cox regression
was employed to evaluate the association of each DEG with
survival and results with a p value <0.05 were selected as
prognosis-related genes. Finally, prognosis-related differentially
expressed GTs were obtained.

Construction and Validation of the
Prognostic Signature
All incorporated HCC samples from the TCGA database were
randomly assigned to training and testing cohorts at a 1:1 ratio. A
prognostic signature was constructed by applying the Least
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Absolute Shrinkage and Selection Operator (LASSO) regression
method, and the product of gene expression i and the
corresponding coefficient βi of each gene were added to
establish the risk score: risk score = ∑n

i�1βipi.
Utilizing the risk score formula, samples in the training cohort

were categorized into high-risk and low-risk groups via the
threshold of the median score. The Kaplan-Meier method was
performed to compare survival differences between the two
groups, and the prognostic value of the prognostic signature
was shown by the receiver operating characteristic (ROC) curve.
Simultaneously, we validated its prognostic performance with the
TCGA testing cohort and ICGC external validation cohort.

Clinicopathological Features and
Development of a Nomogram
Univariate and multivariate Cox regression analyses were
performed to display the prognostic performance of this
signature with other clinicopathological features.

A nomogram was developed to calculate individual’s
probability of overall survival (OS) by using the risk scores
and clinical indicators. The final sum of the scores was
expected to be the corresponding 1-, 2-, and 3-years survival
probability.

Gene Set Enrichment Analysis and
Correlation of Tumour-Infiltrating Immune
Cells
GSEA was performed based on the gene matrix
(“c2.cp.kegg.v7.4.symbols” and “c5.go.v7.4.symbols”) between
the high-risk and low-risk groups.

The CIBERSORT algorithm was used to calculate the relative
abundance of 22 tumour-infiltrating immune cells in each sample
of the TCGA dataset and ICGC dataset.

Cell Culture and the Experimental Validation
in vitro
The LO2 human hepatocyte cell line and HepG2 human
hepatoma cell line were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, United States) supplemented
with 10% foetal bovine serum (FBS, Gibco, United States) and
incubated in a humidified atmosphere at 37 °C with 5% CO2.

Total RNA was extracted by using TransZol Up (TransGen
Biotech, China) following the manufacturer’s protocols. cDNA
was synthesized using the PrimeScript RT reagent kit with gDNA
Eraser (Takara, Japan), and mixed with primers (Supplementary
Table S1) and TB Green Premix Ex Tap II (Takara, Japan), and
run in the CFX96 Real-Time PCR Detection System (Bio–Rad,
United States). The relative expression of the prognostic signature
mRNA was calculated by the 2−ΔΔCt method with GAPDH as the
reference.

Total protein was prepared with RIPA buffer (Solarbio, China)
with protease and phosphatase inhibitor cocktails (Solarbio,
China). The protein levels were quantified by the BCA protein
assay kit (Solarbio, China). Next, proteins were loaded onto 10%

SDS-PAGE gel, separated electrophoretically, and transferred to
PVDFmembranes (Millipore, United States). After blocking with
5% non-fat milk for 1 h, the membranes were incubated at 4°C
overnight with primary antibodies against POMGNT1
(Immunoway, YT6311), B4GALT3 (Immunoway, YT5009),
DPM1 (Proteintech, 12403-2-AP), B4GALT2 (Proteintech,
20330-1-AP), B4GALNT1 (Proteintech, 13396-1-AP), B3GAT3
(ABclonal, A20618), and GAPDH (Immunoway, YT5052). The
next day, we incubated the PVDF membranes with HRP-
conjugated secondary antibodies (mouse or rabbit) at room
temperature for 1 h. The immunoblot signals were visualized
using the hypersensitive ECL chemiluminescence detection kit
(Proteintech, PK10003).

The protein expression levels of the prognostic signature
were verified between normal tissues and cancer tissues from
The Human Protein Atlas (HPA: https://www.proteinatlas.
org/).

Statistical Analysis
All statistical analyses were performed with R software (version
4.0.4) and Strawberry Perl (version 5.32.0.1). LASSO regression
analysis was applied to construct the prognostic signature.
Nomogram construction and validation were performed using
Iasonos’ guide. The survival predictive accuracy of the risk
assessment model was evaluated using time-dependent ROC
curve analysis. Differences with p < 0.05 were considered
statistically significant.

RESULTS

Dataset Characteristics and Candidate
Gene Identification
The flow chart of this study design is depicted in Figure 1. In the
TCGA dataset, 337 primary HCC samples and 39 normal samples
were screened as training cohort and testing cohort. In the ICGC
dataset, a total of 231 tumour samples with HCC were available
for external validation. The detailed characteristics are shown in
Table 1.

A total of 154 GT-related genes were generated by merging
two gene sets, (Supplementary Table S2). Through initial
analysis, 34 prognosis-related differentially expressed GTs
overlapped as candidate genes for further analysis
(Supplementary Table S3 and Figures 2A,B).

Construction and Validation of Prognostic
Signatures
Thirty-four candidate genes were used in LASSO regression
analysis to confirm the core prognostic genes and to fit a risk
prognosis model in the training cohort (n = 169). Finally, a
prognostic risk score model comprising six genes (POMGNT1,
DPM1, B4GALT3, B4GALT2, B4GALNT1, and B3GAT3) was
constructed (Table 2 and Figures 2C,D). The following formula
was utilized: risk score = (0.002*expression level of POMGNT1) +
(0.231*expression level of DPM1) + (0.222*expression level of
B4GALT3) + (0.122* expression level of B4GALT2) + (0.212*
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expression level of B4GALNT1) + (0.304*expression level of
B3GAT3).

This formula was used to evaluate outcomes in each sample
and the optimal cut-off value for samples in the high-risk group
and low-risk group was set at the median risk score in the training
cohort. Kaplan-Meier analysis revealed that a significantly
inferior OS was reflected in the high-risk group than in the
low-risk group in the training cohort, testing cohort and

validation cohort (Figures 3A–C). Then, ROC curves were
plotted to verify how well the risk score predicted the risk of
death at years 1, 2, and 3 (Figures 3D–F). In Figures 4A–C, the
risk score curves, risk gene expression heatmap and patient
survival status are shown based on the risk score values.
Furthermore, principal component analysis (PCA) was
implemented to visualize the sample information by risk
group (Figure 4D). The results proved that the prognostic

FIGURE 1 | Flowchart of our study.

TABLE 1 | Clinical characteristics of samples involved in this study.

Characteristics TCGA dataset ICGC dataset

Training cohort Testing cohort Validation cohort

No. of samples 169 168 231
Age at diagnosis, years
≤65 112 106 89
>65 57 62 142

Gender
Female 52 55 61
Male 117 113 170

Grade
G1-2 115 96 NA
G3-4 54 72 NA

TNM-stage
StageI-II 127 123 141
StageIII-IV 42 45 90

T classification
T1-2 128 125 NA
T3-4 41 43 NA
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signature based on these 6 candidate genes had good predictive
performance for HCC patients.

Associations Between Risk Score and
Clinicopathological Features
In the TCGA dataset, the risk score was significantly associated
with OS in univariate Cox regression analysis (HR = 3.915, 95%

CI = 2.516–6.092, p < 0.001, Figure 5A). Likewise, multivariate
analysis showed that the risk score was an independent
prognostic indicator in HCC (HR = 3.443, 95% CI =
2.163–5.481, p < 0.001, Figure 5B). The results from the
ICGC dataset were consistent with the above (Figures 5C,D).

For further analyses, we created prognostic subgroups of
patients based on multiple classification approaches in both
datasets. The results showed that OS between the two groups

FIGURE 2 | Visualization of candidate genes. (A) Heatmap of the expression levels of candidate genes. (B) Forest plot of candidate genes. (C) Partial likelihood
deviance of different combinations of variables calculated via the LASSO Cox regression model. (D) LASSO coefficient profiles of candidate genes.
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was significantly different in patients aged >65 years (Figure 6A,
p = 0.018), ≤65 years (Figure 6B, p < 0.001), males (Figure 6C,
p < 0.001), stage I-II (Figure 6E, p = 0.010) and stage III-IV
(Figure 6F, p = 0.010). The difference in females did not reach
significance (Figure 6D, p = 0.084). Furthermore, we used
additional information from the TCGA to verify the above
result (Figures 6G–J).

The Construction of a Nomogram and
Calibration Curve
The nomogramwas constructed by integrating the risk score with
other clinicopathological features (Figures 7A,B). Furthermore,
the calibration curve displayed linear concordance in the
predicted and actual survival rates at 1, 2, and 3 years (Figures

7C,D). The findings suggested that the nomogram had high
accuracy in predicting OS.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was done using Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). GO term analysis was used to evaluate the
functional assessment of the different risk score groups, and the
results demonstrated that the high-risk group was reportedly
associated with protein folding, protein targeting to
mitochondrion, endoplasmic reticulum protein containing
complex, vacuolar membrane, catalytic activity acting on a
tRNA and chaperone binding (Figures 8A–C). Additionally,
monocarboxylic acid catabolic process, amino acid betaine
metabolic process, microbody lumen, high density lipoprotein

TABLE 2 | Detail information of the prognostic gene signatures.

Gene symbol Gene name Lasso coefficient

POMGNT1 Protein O-linked mannose beta 1,2- N-acetylglucosaminyltransferase 1 0.00221148
DPM1 Dolichyl-phosphate mannosyltransferase polypeptide 1 0.23073783
B4GALT3 Beta-1,4-galactosyltransferase 3 0.22198892
B4GALT2 Beta-1,4-galactosyltransferase 2 0.12189376
B4GALNT1 Beta-1,4-N-acetyl-galactosaminyltransferase 1 0.21161694
B3GAT3 Beta-1,3-glucuronyltransferase 3 0.30439163

FIGURE 3 | Validation of the prognostic signature. The Kaplan–Meier survival plots of high-risk and low-risk groups in the training cohort (A), testing cohort (B) and
validation cohort (C). The ROC curves of the prognostic signature in 1-, 2-, and 3-years survival in the training cohort (D), testing cohort (E) and validation cohort (F).
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particle, aromatase activity and steroid hydroxylase activity were
significantly downregulated in the low-risk group (Figures
8D–F). KEGG analysis showed that pyrimidine metabolism,
purine metabolism, and N-glycan biosynthesis pathways were
enriched in the high-risk group (Figure 8G); in contrast, some
pathways in the low-risk group were enriched, including drug
metabolism cytochrome P450, retinol metabolism and
tryptophan metabolism (Figure 8H). We hypothesized that
the prognostic signature may be potentially associated with
metabolic disorders.

Correlation of Risk Score With
Tumour-Infiltrating Immune Cells
The relative abundance of 22 infiltrating immune cells was
calculated by the CIBERSORT algorithm between the groups
in both datasets. In the ICGC dataset, the infiltration levels of
follicular helper T cells, regulatory T cells (Tregs) and M0
macrophages were higher in the high-risk group; however,
naive B cells and gamma delta T cells were significantly
enriched in the low-risk group; meanwhile, the correlation

between immune cell infiltration and risk score was analysed
(Figures 9A,B). Then, we observed higher levels of immune-
infiltrating of M0 macrophages, regulatory T cells (Tregs),
memory B cells, activated CD4 memory T cells, follicular
helper T cells and resting dendritic cells in the TCGA’s high-
risk group. In contrast, increased levels of naive B cells, resting
CD4 memory T cells, resting NK cells, monocytes, M2
macrophages and resting Mast cells were found in the low-risk
group. Similarly, we analysed the correlation between the risk
score and TICS in the TCGA dataset (Figures 9D,E). By taking
the intersection of results, the two most relevant TICS were
identified as M0 macrophages and naive B cells (Figures
9C,F–G).

Validating the Expression of Six Genes
To validate the differential expression at the mRNA level, we used
qRT–PCR to compare the expression of the six genes in the HCC
cell line (HepG2) and normal liver cells (LO2) (Figure 10). The
mRNA levels of DPM1, B4GALT3, B4GALT2, B4GALNT1, and
B3GAT3 were significantly higher in HepG2 cells than in LO2
cells. Subsequently, to validate the differential expression at the

FIGURE 4 | Characteristics of prognostic signature. Distribution of risk score, Survival status of HCC samples and Heat map of the expression of prognostic
signature in the training cohort (A), testing cohort (B) and validation cohort (C). Principal component analysis (PCA) plot in the training cohort, testing cohort and
validation cohort (D).
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protein level, total cellular protein was analysed for the signature
gene’s expression by western blot (Figure 11). Likewise, these six
genes were compared in normal versus cancer tissues derived
from the HPA, and the results are shown in Figure 12. Similar
expression of POMGNT1 and B3GAT3 was observed in normal
versus cancer tissues by immunohistochemical staining.
However, the degree of staining in DPM1, B4GALT3,
B4GALT2, and B4GALNT1 was stronger in cancer tissues
than normal tissues.

DISCUSSIONS

Protein glycosylation, as the most common post-translational
modification, plays an indispensable regulatory role in diverse
biological functions (Pinho and Reis, 2015). Almost all proteins
exert their functions through one or more of the 14 distinct
glycosylation pathways (Schjoldager, et al., 2020). Given its
critical role in tumour biology, aberrant glycosylation is
regarded as a new hallmark of cancer (Munkley and Elliott,
2016), and offers a novel direction to predict cancer prognosis
and treat cancer. In essence, aberrant glycosylation is due to
dysregulation of GTs, and many of them are implicated in
tumorigenesis as tumour suppressors or oncogenes. For

instance, as a major metabolic integration point, OGT is
upregulated in many tumours, including HCC, and it has been
shown to be involved in the regulation of stem-like cell potential
through modification of eIF4E (Cao, et al., 2019). Likewise,
several studies have reported associations between dysregulated
GTs and patient outcomes. Wu et al. detected the expression level
of the sialyltransferase ST3GAL1 in 273 patients with HCC and
found that upregulation of ST3GAL1 was an independent
predictor of OS and disease-free survival (DFS) (Wu, et al.,
2016). Liu et al. demonstrated that the polypeptide
N-acetylgalactosaminyltransferase GALNT4 promoted the
development of cancer as a tumour suppressor gene, and the
level of expression could act as an independent favourable
prognostic factor for recurrence-free survival (RFS) and OS
(Liu Y. et al., 2017). In addition, integrating multiple genes
could better predict the clinical outcome in the study of Kuo
et al. (Kuo, et al., 2017). For this purpose, it is necessary to explore
the prognostic signature of GTs for the accurate prediction of
prognosis or response to therapy, which provides a reliable basis
and reference for cancer management.

In this study, 34 prognosis-related differentially expressed GTs
were first obtained. Then, LASSO regression was applied to
construct a prognostic signature, as used in previous
studies(Ueno, et al., 2021). The final screening result identified

FIGURE 5 | Forest plot of prognostic signature and clinical risk factors. The univariate Cox regression analysis in the TCGA dataset (A) and ICGC dataset (C). The
multivariate Cox regression analysis in the TCGA dataset (B) and ICGC dataset (D).
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6 genes (POMGNT1, DPM1, B4GALT3, B4GALT2, B4GALNT1,
and B3GAT3); consistent with the screening results, we
confirmed their differential expression in cells and tissues. The

prognostic signature had strong robustness and stable prediction
performance in the training and validation cohorts by a series of
significance tests, and the risk score was identified as an

FIGURE 6 | Independent prognostic analysis of risk scores and clinicopathological features. The Kaplan–Meier survival plots of patients with age >65 and
≤65 (A,B); Males and females (C,D); Stage I-II and Stage III-IV (E,F) in both TCGA and ICGC dataset. The Kaplan–Meier survival plots of patients with tumour stage T1-2
and T3-4 (G,H); tumour grading G1-2 and G3-4 (I,J).
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independent prognostic indicator. Then, a nomogram
comprising the risk score and clinicopathological data was
generated to predict OS and showed superior performance in
its validity. To gain more insight into the potential biological
mechanism of the prognostic signature, we further used GSEA for
the identification of biological functions. As expected, the results
revealed that the prognostic signature was enriched in
metabolism-related signalling pathways. Meanwhile, we know

that glycosylation can modify protein structure and function;
likewise, glycosylation affects immune cells with diverse functions
and therefore modifies the tumour-immune microenvironment.
M0 macrophages and naive B cells were identified as the most
relevant TICS in our risk score group.

Coincidentally, the gene signature showed a tumour-
promoting effect in our study. POMGNT1 has been examined
in depth in glioblastoma (GBM), and it can promote proliferation

FIGURE 7 | Nomograms and calibration curves for the prognostic signature. Nomograms for predicting the OS of 1-, 2-, and 3-years in the TCGA dataset (A) and
ICGC dataset (B). Calibration curves of nomograms in the TCGA dataset (C) and ICGC dataset (D).
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and invasion by regulating EGFR/ERK signalling (Lan, et al.,
2015); Furthermore, it induces temozolomide resistance of
tumour cells in GBM by regulating the expression of factors in

EMT signalling (Liu, et al., 2017b). In addition, it acts as a
prognostic and predictive novel marker in GBM, similar to
our results (Lan, et al., 2013). DPM1 acts as a core catalytic

FIGURE 8 |Gene set enrichment analysis between high-risk and low-risk groups. The result of top 3 in GO analysis in the high-risk group (A–C). The result of top 3
in GO analysis in the low-risk group (D–F). The upregulated KEGG pathways of top 3 in the high-risk group (G). The upregulated KEGG pathways of top 3 in the low-risk
group (H).
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component of Dolichol phosphate mannose synthase (DPMS)
(Tomita, et al., 1998). Li et al. reported that DPM1 serves as a
biomarker for HCC patients’ prognostic prediction because the
level of expression is significantly associated with
clinicopathological parameters (Li, et al., 2020). The beta-1,4-
1galactosyltransferase (B4GALT) family is a class of key enzymes
that have crucial roles in many biological events, and catalyses the
biosynthesis of N-acetyllactosamine on N-glycans by
transferring UDP-galactose. It has been reported that
upregulation of B4GALT2 induces p53-mediated apoptosis
in HeLa cells and reveals a relationship with cisplatin-
resistance in ovarian cancer cells (Zhou, et al., 2008; Zhao,
et al., 2017). On the other hand, B4GALT3 has been evaluated
more in-depth in tumour research than the former and it
mainly plays a functional role by directly modifying β1-
integrin glycosylation (Chen, et al., 2014; Chang, et al.,
2013; Sun, et al., 2016). However, B3GALT3 develops
different effects in different tumours, research shows that
B4GALT3 overexpression can promote tumour growth and
invasion in cervical cancer, neuroblastoma and GBM (Chang,
et al., 2013; Sun, et al., 2016; Wu, et al., 2020), opposite to the
tumour suppressor effects in colorectal and bladder cancer
(Chen, et al., 2014; Liu, et al., 2018). In our study, we also
found a high level of expression of this gene in HCC.
B4GALNT1 (also known as GM2/GD2 synthase) functions
as the key enzyme that transfers N-acetylgalactosamine
(GalNAc) to GM3/GD3, catalysing the biosynthesis of
gangliosides GM2/GD2 (Yoshida, et al., 2020). In breast
cancer stem cells (CSCs), the upregulation of B4GALNT1
plays key roles in maintaining the CSC phenotype (Liang,
et al., 2013). Jiang et al. confirmed that B4GALNT1 promoted
the progression and metastasis of lung adenocarcinoma
through the JNK/c-Jun/Slug signalling pathway and was
involved in the tumour development of melanoma and
clear cell renal cell carcinoma (Yoshida, et al., 2020; Jiang,
et al., 2021; Yang, et al., 2019). B3GAT3 participates in the
biosynthesis of the glycosaminoglycan (GAG) linker region of
proteoglycan (PG) (Barré, et al., 2006). Given its important
role in tumour metabolism, which was used repeatedly as a
candidate gene for constructing prognostic models (Zhao,
et al., 2021; Zhao, et al., 2020; Bingxiang, et al., 2021), its
function of promoting the process of tumour EMT in HCC
was confirmed by experimental verification (Zhang, et al.,
2019). Based on the analysis above, the cancer-promoting
effects of dysregulated expression are in accordance with our
prediction results.

Risk prediction models have been developed as a powerful tool
to provide references for clinical decision-making. A large
amount of evidence has identified that dysregulation of GT
expression plays critical roles in tumorigenesis, affecting the
prognosis of HCC. For this reason, we developed a risk model
and tried to explore its prognostic value. Although promising
prediction results were displayed in our study, there is still room
for improvement. First, we took a bioinformatics approach to
mine GT data, which should be taken prudently and further
validated by experimental studies before it is developed for
clinical use. Second, to improve the efficiency of risk

FIGURE 9 | (1–2) Correlation of risk score with tumor-infiltrating
immune. Results of the infiltrating level of 22 immune cell types in
the ICGC dataset (A) and TCGA dataset (D). Correlations of risk
scores with immune infiltration level in the ICGC dataset (B) and
TCGA dataset (E) (only significant correlations were plotted). Venn
diagram of immune cells by the results of difference analysis and
correlation analysis in the ICGC dataset (C) and TCGA dataset (F). Result
of the overlapping immune cell in the ICGC dataset and TCGA
dataset (G).
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FIGURE 10 | Validation of the mRNA expression levels of the prognostic genes in HCC cell line (HepG2) and normal hepatocyte cell line (LO2) using qRT–PCR.

FIGURE 11 | Validation of the protein expression levels of the prognostic genes in HCC cell line (HepG2) and normal hepatocyte cell line (LO2) using Western blot.
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prediction in heterogeneity, further studies on larger sample sizes
are needed.

CONCLUSION

In summary, a computational risk model combining six GTs was
developed to aid in the clinical prediction of HCC prognosis. The
model showed good prediction efficiency after verification by the
internal testing and the external validation cohort. Furthermore,
these prognostic markers were validated by western blot and
qRT–PCR. However, further studies should be conducted to
explore the clinical value of our current study.
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Therapeutic Targeting Hypoxia-
Inducible Factor (HIF-1) in Cancer:
Cutting Gordian Knot of Cancer Cell
Metabolism
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Metabolic alterations are one of the hallmarks of cancer, which has recently gained great
attention. Increased glucose absorption and lactate secretion in cancer cells are
characterized by the Warburg effect, which is caused by the metabolic changes in the
tumor tissue. Cancer cells switch from oxidative phosphorylation (OXPHOS) to aerobic
glycolysis due to changes in glucose degradation mechanisms, a process known as
“metabolic reprogramming”. As a result, proteins involved in mediating the altered
metabolic pathways identified in cancer cells pose novel therapeutic targets. Hypoxic
tumor microenvironment (HTM) is anticipated to trigger and promote metabolic alterations,
oncogene activation, epithelial-mesenchymal transition, and drug resistance, all of which
are hallmarks of aggressive cancer behaviour. Angiogenesis, erythropoiesis, glycolysis
regulation, glucose transport, acidosis regulators have all been orchestrated through the
activation and stability of a transcription factor termed hypoxia-inducible factor-1 (HIF-1),
hence altering crucial Warburg effect activities. Therefore, targeting HIF-1 as a cancer
therapy seems like an extremely rational approach as it is directly involved in the shift of
cancer tissue. In this mini-review, we present a brief overview of the function of HIF-1 in
hypoxic glycolysis with a particular focus on novel therapeutic strategies currently available.

Keywords: genomic alterations, cancer, metabolism, warburg effect, hypoxia-induced tumor microenvironment,
metabolic reprogramming, cancer therapies, clinical outcomes

INTRODUCTION

Increased incidence of cancer patients around the globe clearly alarms for more comprehensive
research of this life-threatening problem. The initiation of cancer is a multi-step process that includes
genomic alterations. Hannah and Weinberg have extensively described the “hallmarks of cancer”,
one of which is “metabolic reprogramming” that has recently emerged as a core trait of tumors
(Hanahan and Weinberg, 2011; Hanahan, 2022). Specifically, the altered glycolytic metabolism
pathway results in switching from oxidative phosphorylation (OXPHOS) in the mitochondria to
aerobic glycolysis even in the abundance of oxygen in various cancer types. The “Warburg effect”,
proposed by Otto Warburg over a century ago, was the first to reveal basic metabolic distinctions
between differentiated cells and rapidly proliferating tumor cells (Otto, 2016). Warburg effect is the
result of the interplay between (normoxic/hypoxic) HIF-1 upregulation, activation of an oncogene
(cMyc, Ras), loss of function of tumor suppressors (mutant-p53, mutant-PTEN, micro RNAs and
sirtuins with suppressor functions), activation of (PI3K/Akt/mTOR; Ras/Raf/Mek/Erk/cMyc; Jak/
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Stat3) or deactivation of (LKb1/AMPk) signalling pathways
(Arora et al., 2015; Vaupel and Multhoff, 2021). Although
Warburg’s and others’ findings have had a significant impact
on our understanding of tumor biology, they constitute only one
aspect of tumor metabolism.

In fact, cancer metabolism alterations span a wide range of
metabolic pathways that serve a multitude of functions such as
apoptosis, angiogenesis, anti-anoikis, and anchorage-
independent expansion in cancer cells and in the tumor
microenvironment (TME), in addition to glucose metabolism
and energetics (Casero and Pegg, 2009; Platten et al., 2012; Zhang
and Du, 2012; Jeon and Hay, 2018). Therefore, targeting the
energy metabolism of cancer cells, which takes advantage of the
metabolic differences between cancer cells and normal cells opens
the doorway to novel therapeutic interventions.

The TME endures biochemical alterations during the growth of
the solid tumor, including depletion of glucose, bicarbonate, and
oxygen (i.e., hypoxia and anoxia), high amounts of lactate and
adenosine, and low pH value (Wang et al., 1995; Ke and Costa,
2006). Hypoxia, a prevalent characteristic of cancer especially solid
tumors, is hypothesised to enhance tumor invasiveness and
metastasis (Ke and Costa, 2006). Tumor hypoxia has been
attributed to a variety of factors. First, angiogenesis inability to
keep up with cancer growth, such as the need for the cancer cell
mass “outstripping” the ability of blood vessels to carry oxygenated
blood. Second, ischemia-induced by arteriovenous shunting or
microvessel ‘steal’ syndromes induced by abnormal vessel
arborization and aberrant vascular connections inside
malignancies. Lastly, elevated hydrostatic pressure within the
tumor, results in compression of the microvasculature (Heldin
et al., 2004). Several mechanisms, notably the hypoxia-inducible
factor-1 (HIF-1) pathway, which promotes the elevated expression
of glycolytic enzymes, can govern themetabolic transition state above
at the transcriptional level. As a result, tumor hypoxia and HIFs
influence the majority of cancer “hallmarks”, including cellular
proliferation, apoptosis, metabolism, immunological responses,
genomic instability, vascularization, neovascularization, invasion,
and metastasis (Wigerup et al., 2016). Moreover, HIFs seem to
impact chemo and radiation resistance through multiple
pathways. Additionally, HIFs expression has been linked to poor
prognosis and treatment relapse in clinical tumor samples (Sørensen
and Horsman, 2020). Thus, HIFs appear to be critical therapeutic
targets that can be used to enhance current cancer treatment for
metastatic and treatment-resistant cancers.

The primary intent of this mini-review is to provide a brief
overview of the metabolic processes that are regulated by a
hypoxia-inducible factor. In this review, we outline the
relevance of HIFs in glycolysis, cancer progression and the
epithelial-mesenchymal transition (EMT). A further goal of
the review is to overview the currently available therapeutic
strategies.

Relevance of HIF-1 Stimulated Glycolysis in
Hypoxia
Hypoxia affects metabolic pathways in a variety of ways. For
example, by blocking the oxygen-dependent process of

mitochondrial OXPHOS, hypoxia reduces ATP synthesis, and
thus makes O2-independent glycolysis a more important energy
source (Denko, 2008; Frezza and Gottlieb, 2009). Increased
glycolysis generates ATP quickly, but at the price of a
substantial amount of glucose, as seen by elevated lactic acid
levels. Intra-tumoral acidosis is mediated by the latter, in
conjugation with mitochondria’s impaired capacity to use
protons in ATP synthesis (Zhou et al., 2006). Surprisingly,
rather than being anti-cancer, the stress placed on cancer cells
appears to promote the formation of more aggressive subclones
with a greater ability to penetrate tissues and metastasis (Gatenby
and Gillies, 2004; Gatenby et al., 2007). Hypoxia-induced events
are mostly determined by the activity of the transcriptional
regulators’ hypoxia-inducible factor-1α (HIF-1α) and its
partner HIF-1β.

HIF-1, a transcription factor, regulates the activation of several
genes involved in glucose uptake and metabolism, cell survival/
proliferation, angiogenesis, invasion, and metastasis (Semenza
et al., 1994; Carmeliet et al., 1998). It is a heterodimer of HIF-1α
and a constitutively expressed subunit HIF-1β which also forms a
dimer with HIF-2α and regulates gene activation (Wang et al.,
1995; Carmeliet et al., 1998). HIF-1α is generally targeted for
ubiquitin-mediated destruction by proline hydroxylation and
association with the Von Hippel-Lindau (VHL) tumor
suppressor complex under normoxic conditions, but it is
stabilised when the partial pressure of oxygen is low
(Figure 1). Moreover, overexpression of HIF-1α is linked to a
poor prognosis in various patients with human malignancies
including breast, colon, gastric, lung, skin, ovarian, pancreatic,
prostate, and renal cancer (Bos et al., 2001; Dales et al., 2005;
Chen et al., 2007; Simiantonaki et al., 2008). Thus, HIF-1α
significantly enhances our molecular understanding of cancer
progression and metastasis which is discussed in detail in the
following sections.

Hypoxic Tumor-Microenvironment: Leading
to Cancer Progression and
Epithelial-Mesenchymal Transition
Mammalian cancer cells within a Hypoxic tumor
microenvironment (HTM) undergo tremendous alterations,
eventually intensifying their malignant activity. As a result,
emphasis has been laid on identifying processes involved in
cancer cell adaptation to the HTM in order to identify targets
for potential therapeutic treatments (Liu et al., 2011; Kogita et al.,
2014; Yang et al., 2015). Basically, in hypoxia conditions, HIF-1α
forms the HIF complex, which functions as a transcription factor
in the activation of a wide range of genes, orchestrating major
phenotypic alterations and eventually leading to EMT. Following
EMT, cells lose their normal morphology and gain mesenchymal
traits (Kalluri and Weinberg, 2009; Singh and Settleman, 2010),
including the development of stemness (Sutherland, 1988),
increased invasiveness, and metastasizing capacities (Vaupel,
2004). All of these alterations have been associated with poor
prognosis and chemotherapy resistance in a variety of tumor
types (Yang et al., 2008; Chou et al., 2012). EMT is characterised
by the loss of cell adhesion protein (for instance E-cadherin) and
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the elevated expression of mesenchymal-specific proteins such as
SNAIL, Vimentin, and TWIST. As a matter of fact, this
phenotypic shift has been highlighted as a major phase in the
intricate process of developing distant metastasis (Chaffer and
Weinberg, 2011; Valastyan and Weinberg, 2011).

As represented in Figure 2, the HIF-1α complex activates a
number of key genes that mediate hypoxia > HIF > EMT axis.
This axis has been extensively investigated in many aggressive
tumors including lung, triple-negative breast cancer (TNBC),
pancreatic ductal adenocarcinoma (PDAC) and renal cell
carcinoma (RCC). For instance, autophagy markers (BECN1
and MAP1LC3) are activated in lung and PDAC (Zhu et al.,
2014; Zou et al., 2014); overexpression of CAIX, the acidosis
modulator has been reported in TNBC and RCC (Tan et al.,
2009); further overexpression of epigenetic regulator (DNA
methyltransferase, histone acetyltransferases, chromatin-
remodelling enzymes, etc) and long-non coding RNA has been
reported in gastric cancer, TNBC and PDAC (Krishnamachary
et al., 2012; Onishi et al., 2012; Fujikuni et al., 2014; Liu et al.,
2014; Wang et al., 2014); the chemokines are overexpressed in
gastric cancer and multiple myeloma (Azab et al., 2012; Oh et al.,
2012; Tao et al., 2014). Similarly, overexpression of cyclosporin
binding protein cyclophilin A (CYPA) in PDAC (Zhang et al.,
2014), endothelin in melanoma (Spinella et al., 2014); fascin in
PDAC (Zhao et al., 2014); MMPs in PDAC, lung and ovarian
cancer cell lines (Quintero-Fabián et al., 2019); protein kinase
receptors in gastric, RCC, melanoma cancer (Chuang et al., 2008;
Marconi et al., 2013) has been reported. HIF-1α also activates
another critical cell signaling pathway i.e., HGF/MET signaling.

Several studies suggest that MET, together with its ligand HGF,
promotes cancer cell hallmarks including cell proliferation,
survival, migration, angiogenesis in multiple mammalian
cancer including hepatocellular carcinoma, head and neck
cancer etc., (Goyal et al., 2013; Huang et al., 2020; Raj et al., 2022).

Additionally, in a positive feedback mechanism, ILK (Integrin
Linked kinase) is activated by HIF-1α and is responsible for
elevated HIF-1α expression through the regulatory loop
(Matsuoka et al., 2013). Furthermore, E-cadherin, which was
previously thought of as a tumor suppressor, was shown to have
an unanticipated involvement in regulating genes involved in
response to hypoxia and thus posing a potential role in metastatic
breast cancer (Chu et al., 2013; Tam et al., 2020).

Moreover, intratumoral hypoxia alters the immune response
of tumor in a variety of ways, all of which indicate an
immunosuppressive impact (Palazón et al., 2012). HIF-1α, for
example, can recruit myeloid-derived suppressor cells, regulatory
T-cells, tumour-associated macrophages with
immunosuppressive properties, as well as limit cytotoxic
T-lymphocyte invasion (Corzo et al., 2010; Doedens et al.,
2010; Imtiyaz et al., 2010; Barsoum et al., 2014). Besides that,
HIF-1α stimulates the synthesis of the immunological checkpoint
protein PD-L1(programmed death ligand-1), which aids in
immune suppression and evasion (Noman et al., 2014; Abou
Khouzam et al., 2021). As a result, the majority of the data implies
that HIFs promote tumor growth through immunosuppression.

Collectively, these recent discoveries have motivated the
scientific community to focus its efforts on developing novel
drugs that can inhibit HIF-1α or its target genes. Further, we

FIGURE 1 |HIF-1α regulation in normoxic and hypoxic conditions. HIF-1α is hydroxylated at conserved residue (Proline 564) under normoxic conditions, a process
mediated by prolyl-4- hydroxylases (PHDs) and factor inhibiting HIF-1 (FIH-1) enzymes. PHD hydroxylation promotes HIF-1α protein destabilization, whereas FIH-1
hydroxylation inhibits transcriptional activity by preventing interaction with CBP/p300. HIF-degradation is mediated by a ubiquitin-dependent process carried out by the
Von Hippel-Lindau (VHL) E3 ubiquitin ligase complex. Under hypoxic circumstances, inactivation of PHDs and FIH-1 causes HIF-stabilization, followed by
translocation into the nucleus and dimerization with HIF-1/ARNT to create the HIF transcription factor. During hypoxia, HIFs, in collaboration with the coactivator CBP/
p300, promote transcription of a wide range of target genes.
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have focused on the compounds that have been developed as
HIF-1α inhibitors and are now undergoing clinical trials.
These novel compounds may pave the way for more
effective therapy and might improve the prognosis of
aggressive cancer patients.

Advanced Clinical Trials Targeting the
Adaption to Hypoxia Tumor
Microenvironment Therapeutic Targets
The ability to specifically target cancer cells while causing
minimal harm to normal cells is one of the “Holy Grail” of
cancer therapy. The propensity to exploit abnormalities between
normal and malignant cells has significantly aided the discovery
of novel anti-cancer drugs. Various small compounds discovered
have been briefly summarized in the following section, albeit the
bulk of them are still in the early stages of clinical trials.

As discussed above, HIF-1α activation has been found to have
a significant impact on cancer cell metabolism as it influences the
expression of several genes leading to increased glycolysis and
impaired mitochondrial function in tumor cells. Several
anticancer drugs that modulate the activity or levels of HIF-1α
in cells influence HIF-1 without directly targeting it.

Digoxin (DIG) (PubChem CID: 2724385), a cardiac glycoside,
has been demonstrated to have an anti-cancer effect in vitro and
in vivo in various solid tumors by inhibiting HIF-1α production
(Newman et al., 2008; Zhang et al., 2008; Lin et al., 2009). DIG is
now being studied in phase 2 clinical trial (https://clinicaltrials.
gov/ct2/show/NCT01763931) as a new HIF-1α inhibitor in breast
cancer. This clinical trial will also be valuable in evaluating
adverse events, as well as the safety and tolerability of DIG in
pre-surgical breast cancer patients using the Common
Terminology Criteria for Adverse Events, version 4.
Additionally, Ganetespib (PubChem CID: 135564985), (5-[2,4-
dihyroxy-5-(1-methylethyl)phenyl]4-(1-methyl-1H-indol-5-yl)-
2,4-dihydro-3H-1,2,4-triazol-3-one) have been reported to
increase the proteasome-mediated degradation of Hsp90.
Hsp90, a chaperone, is implicated in tumor development,
angiogenesis, and the generation of cancer stem cells (Pillai
and Ramalingam, 2014; White et al., 2016). Its route triggers
the activation of multiple oncogenic proteins including HIF-1α.
Thus by targeting Hsp90, Ganetespib inhibits HIF-1α in TNBC
mouse model (Xiang et al., 2014). Ganetespib is now being studies
in a phase 3 trial in patients with advanced non-small cell lung
cancer (NSCLC) in conjunction with docetaxel (https://www.
clinicaltrials.gov/ct2/show/NCT01798485). This clinical trial

FIGURE 2 |Genes whose expression has been linked to the activation status of HIF-1α, resulting in EMT. HIF-1α induces expression of BECN1, MAP1lC3 which is
an autophagy marker; CAIX, acidosis modulators: epigenetic regulators: KLF8, cell surface glycoproteins (CD24, CD44), JMJ2DB which is lysine-specific demethylase
jumonji domain, Nanog homeobox (NANOG), Octamer-binding transcription factor 4(OCT4), SRY sex-determining region Y-box (SOX2), sonic hedgehog (SHH),
smoothened frizzled class receptor (SMO), GLI family zinc finger 1 (GLI1); AK058003- long non-coding RNA; multiple chemokines: CXCR4, CCL2, CCR7,
CX3CR1; cyclosporin bind protein cyclophilin A (CYPA); endothelins: EDN1 (endothelin1; fascins: fascin actin-bundling protein 1(FSCN1); GTPase proteins: Rho family
GTPase 3 (RND3): insulin growth factor which includes IGF1, IGF1R, IGFBP3; mucin 1, cell surface-associated (MUC1); matrix metalloproteinase; MMP2, protein
kinases receptors including TGFb/TGFBR1, TNFAR, AXL; hepatocyte growth factor (HGF) which is a ligand of MET tyrosine kinase receptor; adrenomedullin (ADM).
These activated genes are known to play a crucial role in EMT transition and result in increased invasiveness, cellular proliferation, migration, spindle-like cellular
appearance, resistance to chemo/radiotherapy and tumor relapse.
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seeks to identify a potential synergism between ganetespib
(150 mg/m2) and docetaxel (75 mg/m2) in order to suggest a
more effective anti-cancer therapy than docetaxel alone.

Amongmultiple factors that influence hypoxia-induced tumor
acidosis, CAIX is a hypoxia-inducible metal enzyme that
promotes cancer cell survival/proliferation and invasion via
HIF activation (Lock et al., 2013). It regulates cellular pH by
catalyzing the reversible hydration of carbon dioxide to
bicarbonate and protons. It is expressed exclusively on the cell
surface of tumor cells, particularly CSCs (cancer stem cells), and
is one of the key factors influencing cancer cell survival and
metastasis (Lock et al., 2013). Moreover, CAIX is abundantly
expressed in pancreatic ductal adenocarcinoma and breast cancer
and has been implicated as a biomarker of poor prognosis for
metastatic development and survival (Touisni et al., 2011; Lock
et al., 2013). Additionally, research has proven a vital role for
CAIX expression in the maintenance of the EMT phenotype,
“stem cell” function, and hypoxia-induced tumor heterogeneity
(Touisni et al., 2011; Ledaki et al., 2015). SLC-0111 (PubChem
CID: 310360) is a small molecule that reaches the hypoxic niches
and selectively binds and inhibits CAIX. Presently SLC-0111 is in
phase I clinical trial (https://clinicaltrials.gov/ct2/show/
NCT02215850) and the study focuses on its safety, tolerability,
and pharmacokinetics, and efficacy in treating cancers. Similarly,
another molecule DTP348 (PubChem CID: 57413968) namely 2-
(2-methyl-5-nitro-1H-imidazol-1-yl) ethylsulfamide, is reported
to target CIAX (Rami et al., 2013). Presently, this oral dual CAIX
inhibitor/radiosensitizer is being researched in phase I clinical
trial (https://clinicaltrials.gov/ct2/show/NCT02216669). This
clinical study will consider the effects of DTP348 alone and in
combination with radiation in patients with solid tumors to
establish the appropriate phase II clinical trial dosage, safety,
and tolerability.

Interestingly, HGF is the natural ligand of MET, a proto-
oncogene. The HIF-1α induced HGF/MET pathway activation
has been reported to induce EMT transition, resulting in a
mesenchymal population that is more tumorigenic and
chemoresistant than the preceding ones (Cañadas et al., 2014).
Rilotumumab, Crizotinib/axitinib and cabozantinib are designed
to effectively target HGF/MET pathway. Rilotumumab
(PubChem SID: 135262715), is a human monoclonal antibody
that is reported to significantly block the binding of HGF/SF to its
MET receptor. Presently, it is being tested in phase 3 clinical trial
(https://clinicaltrials.gov/ct2/show/NCT01697072) to evaluate if
the treatment with epirubicin, cisplatin, and capecitabine in
combination with rilotumumab results in better clinical
outcomes in metastatic MET positive gastric cancers. Axitinib
(PubChem CID: 6450551), with crizotinib (PubChem CID:
11626560), is currently being tested in a phase 1b clinical trial
in patients with advanced solid tumors (https://clinicaltrials.gov/
ct2/show/NCT01999972) (Kwak et al., 2010; Chen Y. et al., 2015).
Moreover, cabozantinib is an oral inhibitor of MET, RET, ROS1,
NTRK1, and AXL. It has been found to shrink tumor cells and
significantly reduce cellular proliferation in medullary thyroid
and prostate cancer. Cabozantinib (PubChem CID: 46830297), is
currently being investigated to determine objective response rate
(ORR), overall survival (OS) and progression-free survival (PFS)

in advanced non-small cell lung cancer with RET fusions and
those with ROS1 or NTRK1 fusions or elevated MET or AXL
activity (https://clinicaltrials.gov/ct2/show/NCT01639508).

According to the current research, several phytocompounds
also have been shown to play a significant role in cancer therapy
and have numerous potential targets in tumorigenesis, including
HIF-1 (Deng et al., 2019). Baicalein (PubChem CID: 5281605),
(5,6,7- trihydroxyflavone), a flavonoid derived from Scutellaria
baicalensis has been reported to have potent cytotoxic activity
against a wide range of cancer (Bie et al., 2017; Dou et al., 2018;
Wang et al., 2019). Surprisingly, baicalein when administered
leads to the inhibition of hypoxia-induced Akt phosphorylation
as a result of increased PTEN accumulation and decreased HIF-
1α expression. Thus baicalein is a potential therapeutic sensitiser
against gastric cancer since it inhibits glycolysis via PTEN/Akt/
HIF-1α (Chen F. et al., 2015). Other investigations have
corroborated the inhibitory effects of phytochemicals on HIF-1
in control of glucose metabolism. For instance,
methylalpinumisoflavone (MF) (PubChem CID: 15596285), a
flavonoid isolated from Lanchocarpus glabrescens,
demonstrates a strong anti-cancer effect on T47D cells by
suppressing HIF-1 and targets genes including CDKN1A,
VEGF, and GLUT-1 in T47D cells (Liu et al., 2009).
Moreover, oroxylin A (PubChem CID: 5320315) treatment has
been linked to a reduction in cancer-related glycolysis via sirtuin-
3 mediated destabilization of HIF-1 in MDA-MB-231 cells (Wei
et al., 2015). Furthermore, EGCG (PubChem CID: 65064) is
known to decrease the HIF-1α and glycolysis-related enzymes in
T47D cells (Wei et al., 2018). Additionally, resveratrol (PubChem
CID: 445154) has been shown to reduce the cellular uptake of
glucose and induce glycolysis in cancer cell lines. Resveratrol
inhibited intracellular reactive oxidative species (ROS) and hence
lowered HIF-1 accumulation, decreased GLUT-1 expression, and
induced glycolytic flow, according to measurements of cellular
absorption of the glucose analogue 18F-fluorodeoxyglucose
following resveratrol exposure (Jung et al., 2013).

Further using a combination of anti-cancer therapies is more
likely to be successful than using a single drug (Maschek et al.,
2004). Another concept has been proposed that takes the use of
underlying metabolic variations between malignancies and
healthy tissues (Payne, 2007). For instance, many tumors’
reliance on glycolysis has been addressed using a variety of
glycolytic pathway enzyme inhibitors that are also being
evaluated as possible treatment drugs (Maher et al., 2004;
Maschek et al., 2004; Xu et al., 2005; Pelicano et al., 2006;
Gogvadze et al., 2009; Marín-Hernández et al., 2009;
Mathupala et al., 2009). The major targets thus far have been
glucose absorption (mediated mostly by GLUT-1), glucose
retention (mediated by hexokinase) and lactate generation
(catalyzed by lactate dehydrogenase-A). Unfortunately,
inhibiting glycolysis has a significant complication; unlike
organs that may easily utilise carbon sources other than
glucose, the brain, retina, and testes are extremely glucose
dependent. As a result, different metabolic targets such as
specific glycolytic pathway enzyme isoforms which are
transcriptionally overexpressed in response to HIF-1 elevations
must be taken into account (Marín-Hernández et al., 2009).
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Targeting proteins such as GLUTs, HK1, HKII, PFK-L, ALD-A,
ALD-C, PGK1, ENO-α, PYK-M2, LDH-A, PFKFB-3 along with
HIF-1α may be more trackable for drug development than HIF-
1α itself. Identifying metabolic alterations that are specific to
malignancies is inevitably a critical research goal.

CONCLUSION

Metabolic reprogramming is a frequent cancer cell
mechanism for dealing with elevated energy demands. The
growing interest in cancer metabolism has already resulted in
a slew of novel potential therapeutics. In conclusion, several
reports have shown that hypoxic cells may adapt to low
oxygen levels by changing transcriptional and translational
responses to increase glucose absorption and anaerobic
catabolism. Since HIF-1 has been proven to be a master
regulator of a wide range of proteins and enzymes involved
in glucose metabolism and the glycolytic pathway. Thus
modulation of the HIF-1 pathway is a promising
therapeutic strategy. It is envisaged that a deeper insight
into the molecular mechanisms involved in HIF-1
regulation and the Warburg effect in carcinogenesis would
unlock new therapeutic interventions. Nonetheless, due to the
present generation of agents’ limited selectivity and

specificity, there are possible challenges and concerns.
Additionally, the recent metabolism-based therapeutics
have shown some harmful effects on normal cells.
Therefore, we propose combining the drugs to target
distinct elements of cancer bioenergetics and hypoxia-
induced factors in order to develop synergistic cancer
treatments. Furthermore, directing these molecules to
their targets would limit off-target effects while increasing
efficacy.
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GLOSSARY

ATP adenosine triphosphate

AXL AXL receptor tyrosine kinase

BECN1 beclin-1

CAIX carbonic anhydrase 9 precursor

CRC colorectal cancer

DIG digoxin

EGCG epigallocatechin gallate

EMT epithelial-mesenchymal transition

ENO-α alpha-enolase

GLUT glucose transporter

HIF 1α-hypoxia-inducible factor-1α

HIF-1 hypoxia-inducible factor-1

HGF hepatocyte growth factor

HK1 hexokinase-1

hsp90 heat shock protein 90

HTM hypoxic tumor microenvironment

ILK Integrin Linked kinase

LDH lactate dehydrogenase

MAP1LC3 microtubule-associated proteins 1A/1B light chain 3B

MF methylalpinumisoflavone

MET mesenchymal-epithelial transition

NTRK1 neurotrophic receptor tyrosine kinase 1

NSCLC non-small lung cancer

OXPHOS oxidative phosphorylation

PDAC pancreatic ductal adenocarcinoma

PD-L1 programmed death ligand-1

RCC renal cell carcinoma

RNA ribonucleic acid

RET rearranged during transfection

PGK1 phosphoglycerate kinase 1

PFKFB 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PFK Phosphofructokinase

PTEN phosphatase and tensin homolog

PYK M2-M2 isoform of pyruvate kinase

ROS1 ROS proto-oncogene 1

TME tumor microenvironment

TNBC triple-negative breast cancer

VEGF vascular endothelial growth factor

VHL Von Hippel-Lindau
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Regulation of intracellular concentration of calcium levels is crucial for cell signaling,
homeostasis, and in the pathology of diseases including cancer. Agonist-induced entry
of calcium ions into the non-excitable cells is mediated by store-operated calcium channels
(SOCs). This pathway is activated by the release of calcium ions from the endoplasmic
reticulum and further regulated by the calcium uptake through mitochondria leading to
calcium-dependent inactivation of calcium-release activated calcium channels (CARC).
SOCs including stromal interaction molecules (STIM) and ORAI proteins have been
implicated in tumor growth, progression, and metastasis. In the present study, we
analyzed the mRNA and protein expression of genes mediating SOCs—STIM1,
STIM2, ORAI1, ORAI2, ORAI3, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7,
TRPV1, TRPV2, TRPM1, and TRPM7 in head and neck squamous cell cancer (HNSC)
patients using TCGA and CPTAC analysis. Further, our in silico analysis showed a
significant correlation between the expression of SOCs and genes involved in the
mitochondrial dynamics (MDGs) both at mRNA and protein levels. Protein-protein
docking results showed lower binding energy for SOCs with MDGs. Subsequently, we
validated these results using gene expression and single-cell RNA sequencing datasets
retrieved from Gene Expression Omnibus (GEO). Single-cell gene expression analysis of
HNSC tumor tissues revealed that SOCs expression is remarkably associated with the
MDGs expression in both cancer and fibroblast cells.

Keywords: head and neck cancer, store-operated calcium channels, mitochondrial dynamics, TCGA database,
CPTAC database, gene expression omnibus
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INTRODUCTION

Calcium (Ca2+) is a ubiquitous intracellular second messenger that
controls a wide range of physiological and pathological processes
(Berridge et al., 2003). In metazoans including humans, the store-
operated calcium channel entry (SOCE) is the predominant calcium
entry mechanism in non-excitable cells (Parekh and Putney, 2005).
The concept of SOCE was first described by James Putney in 1986;
however, the molecular signatures and functional validation of SOCE
were identified more recently (Putney, 1986). SOCs are activated
when Ca2+ is released from the endoplasmic reticulum, which is
necessary for cells to replenish Ca2+ after signaling processes (Parekh
and Putney, 2005). SOCE is implicated in a wide range of biological
processes such as transcriptional regulation of gene expression,
exocytosis, cellular metabolism, and cell motility (Lewis, 2007;
Parekh and Putney, 2005). Among the SOCs, STIM1, and ORAI1
have been shown to be widely expressed. Additionally, closely
associated channel subfamilies like transient receptor potential
channels (TRPC), TRPV (vanilloid), and TRPM (melastatin) have
also been shown to be involved in SOCEmediatedCa2+ influx (Authi,
2007; Ma et al., 2011; Bastián-Eugenio et al., 2019). A plethora of
studies showing the involvement of Ca2+ in various stages of cancer
development and progression led Yang et al. (2009) to investigate the
role of STIM1 and ORAI1 in breast cancer cell migration, invasion,
andmetastasis (Yang et al., 2009). In addition, transcriptomic analysis
of glioblastoma tumor tissues showed overexpression of STIM1,
ORAI1, and TRPC1 (Scrideli et al., 2008; Alptekin et al., 2015).
Moreover, Zhang et al. (2013) demonstrated that SOCE mediated
influx of Ca2+ regulated the migration and metastasis of
nasopharyngeal carcinoma both in vitro and in zebrafish models
(Zhang et al., 2013). Further, Jiang et al. (2007) revealed that TRPM7
is necessary for the proliferation and growth of FaDu and SCC25 cells
in vitro by siRNA-mediated knockdown of TRPM7 (Jiang et al.,
2007). SOCs have also been proposed as potential therapeutic targets
for various inflammatory disorders and cancer (Feske, 2019; Khan
et al., 2020; Chang et al., 2021). Recent studies have shown that non-
steroidal anti-inflammatory drugs (NSAIDs) including sulindac,
salicylate, flurbiprofen, and indomethacin inhibited SOCEs in
colon cancer cells (Hernández-Morales et al., 2017; Villalobos
et al., 2019). Furthermore, Gualadani et al. (2019) demonstrated
the requisite of SOCE for the anti-cancer effect of cisplatin in non-
small cell lung carcinoma (Gualdani et al., 2019). Therefore, these
studies suggest that SOCs can be used as cancer diagnostic
biomarkers and therapeutic targets.

According to the latest GLOBOCAN report on cancer burden
worldwide, the prevalence of head and neck cancer is steadily
increasing (Sung et al., 2021). Apart from the well-known risk
factors such as tobacco, alcohol, and human papillomavirus
(HPV), vitamin D insufficiency and defects in calcium
signaling have recently been found to play a significant role in
the initiation and progression of head and neck cancer (Orell-
kotikangas et al., 2012; Singh et al., 2020).

Recently, studies have shown that ORAI, ORAI2, and STIM1were
significantly elevated in tissues from oral squamous cancer patients
compared to normal samples. These studies also reported the
significant reduction in proliferation, migration, and invasion upon
siRNA-mediated knockdown of ORAI1, ORAI2, and STIM1 in oral

cancer cell lines in vitro (Singh et al., 2020; Wang et al., 2022). In the
present study, we analyzed the gene and protein expression of
SOCs—STIM1, STIM2, ORAI1, ORAI2, ORAI3, TRPC1, TRPC3,
TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPM1, and
TRPM7 in HNSC using The Cancer Genome Atlas (TCGA) and
Clinical Proteomic Tumor Analysis Consortium (CPTAC) analysis.
In addition, mitochondrial regulation of calcium ions has shown to
play an important role in SOCs mediated calcium entry, and tumor
cell mitochondrial dysfunction is proposed to be responsible for SOCs
upregulation (Villalobos et al., 2018). Hence, we further analyzed the
genes involved in mitochondrial dynamics (MDGs) and found a
significant correlation between the expression of SOCs and MDGs
both at mRNA and protein levels. Further, docking results showed
lower binding energy for SOCs with MDGs. Subsequently, the
validation of these results was carried out using datasets
downloaded from gene expression omnibus (GEO). Interestingly,
single-cell RNA sequence analysis revealed that gene expression of
SOCs is remarkably associated with the MDGs in both cancer and
fibroblast cells.

MATERIALS AND METHODS

The methodology of the overall study have been represented in
the form of graphical abstract (Supplementary Figure 1).

Gene Ontology Analysis
As a preliminary analysis to show the role of SOCs in signaling
pathways we conducted functional enrichment analysis (FEA) to
annotate gene ontology (GO) including biological processes (BP),
cellular components (CC), molecular function (MF), and pathway
enrichment analysis using the Kyoto Encyclopedia of Genes and
Genomics (KEGG: http://www.genome.jp) (Kanehisa and Goto,
2000). The MF which showed the highest score for SOCs was
visualized using gProfiler (Raudvere et al., 2019). The molecular
function with significant p adj values are shown. These functions are
assigned based on either the experiment or SequenceModel (ISM) or
Sequence Alignment (ISA) or Sequence Orthology (ISO) or
Sequence or structural similarity (ISS) or Genomic context (IGC)
or Biological aspect of ancestor (IBA) or Rapid divergence (IRD) or
Reviewed computational analysis (RCA) or Electronic annotation
(IEA). The disease ontology analysis was conducted to understand
the involvement of SOCs in various cancers. The analysis and
visualization for disease ontology were performed using the
clusterProfiler package developed by Bioconductor for R
statistical environment (Yu et al., 2012; Wu et al., 2022). The
adjusted p-value of less than 0.05 are considered to be significant.

The Cancer Genome Atlas (TCGA) Analysis
In the next step, we carried out the TCGA analysis to understand the
clinical relevance of SOCs in head and neck cancers. The HiSeqV2
TCGA level 3 gene expression data was downloaded using TCGA
biolinks version 2.15.1 developed for R statistical environment
(Mounir et al., 2019). The data contained 546 tumor samples
and 44 normal samples. Correlation analysis was conducted using
Corrplot and ggplot2 packages (Wickham et al., 2016; Wei et al.,
2017) and survival analysis was performed using Kaplan-Meier
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FIGURE 1 | Molecular function and disease ontology of SOCs. (A) Ridge plot showing the predominant Gene ontology analysis using ClusterProfile R package.
Inset- MF: Molecular function (blue); CC: Cellular component (green); BP: Biological processes (orange) (B) Gene ontology analysis using g:Profiler. Molecular function
(MF) which showed significant adjusted p-value of SOCs is showed. Cumulative hypergeometric padj values are used to dentify the most significant molecular functions.
The −log10padj column is colored according to the rank with highest being purple to lowest being yellow. The color for each gene is given as follows: red for inferred
from the experiment; brown for Sequence Model (ISM), Sequence Alignment (ISA), Sequence Orthology (ISO) or Sequence or structural similarity (ISS), Genomic context
(IGC) or Biological aspect of ancestor (IBA), Rapid divergence (IRD); blue for Reviewed computational analysis (RCA), Electronic annotation (IEA); green for traceable
author or non traceable author or inferred by curator (C) Disease enrichment analysis of SOCs using ClusterProfile R package. The enriched diseases with p value less
than 0.05 are shown. The dots represent the enrichment of genes with red color being high enrichment and blue being low enrichment. The size of the dot represent the
count of each term in the particular row.
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plotter (http://kmplot.com) (Lánczky and Győrffy, 2021; Nagy
et al., 2021). The significance and hazard ratio are shown.
Further, we conducted mutational analysis to determine the
genomic plasticity of SOCs in head neck cancers. Mutations in
potential genes encoding SOCs across the TCGA fire hose
dataset for HNSC (n = 504) are represented as oncoprint plot
downloaded from http://cbioportal.org (Cerami et al., 2012).
The row of the plot indicates a gene and column indicates the
tumor sample.

Expression Array Data
To further validate the results, we analysed the various expression
datasets. Expression profiling dataset GSE171898 contained a total
of 323 samples including 208 OSCC tissues from patients treated at
Washington University St. Louis and 115 OSCC tissues from
patients treated at Vanderbilt University. Illumina Hiseq 3,000
expression profile array data for these samples are available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171898.
The patients were stratified based on the HPV data. The platform
used for the GSE17898 expression profiling array was GPL21290
and the spot ID is available at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GPL21290 (Liu et al., 2020).

Single-cell RNA-Seq analysis of head and neck cancer data
(GSE103322) were downloaded from the NCBI GEO (Gene
Expression Omnibus) database (https://www.ncbi.nlm.nih.gov/
geo/). The data consists of an expression profile of 5,902 single
cells from 18 patients. The platform used for the GSE103322
expression profiling array was GPL18573 and the spot ID is
available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GPL18573 (Puram et al., 2017).

Store-Operated Calcium Channels (SOCs)
in Mitochondrial Dynamics
The reorganization of ER and Ca2+ ion transfer have been
implicated in the mitochondrial fission and apoptosis of

cancer cells (Yedida et al., 2019). Hence, we next analsyed
the relevance of SOCs with genes involved in mitochondrial
dynamics. The correlation between expression of genes
involved in SOCs and genes involved in mitochondrial
genes for all HNSC patients, and HPV positive and
negative HNSC patients were downloaded using Timer 2.0
(http://timer.comp-genomics.org/) (Li et al., 2020). The data
was visualized using the heatmap function of Graphpad
Prism software version 9.2.1. Subsequently, the SOC
protein structures and proteins involved in mitochondrial
dynamics were downloaded from the protein data bank
(Berman et al., 2000). Protein structures for
SOCs—STIM1:PDB ID-6YEL (Rathner et al., 2021);
STIM2:PDB ID-2L5Y (Zheng et al., 2011); ORAI1:PDB ID-
4EHQ (Liu et al., 2012); TRPC5:PDB ID-6YSN (Wright et al.,
2020) and MDGs-DNM1L:PDB ID-3W6N (Kishida and
Sugio, 2013); MFN1:PDB ID-5GOF (Cao et al., 2017);
MFN2:PDB ID-6JFK (Li et al., 2019); OPA1:PDB ID-6JTG
(Yu et al., 2020) and FIS1:PDB ID-1PC2 (Suzuki et al., 2003)
were downloaded. The docking was performed using Clust
Pro version 2.0 (https://cluspro.bu.edu/login.php) (Kozakov
et al., 2013; Kozakov et al., 2017; Vajda et al., 2017; Desta et al.
, 2020) and binding energy was calculated using PRODIGY
(https://wenmr.science.uu.nl/prodigy/) (Vangone and
Bonvin, 2015; Xue et al., 2016; Vangone et al., 2019). Gene
regulatory network was analyzed using Geneck (https://lce.
biohpc.swmed.edu/geneck/) (Zhang et al., 2019) and protein-
protein interaction network was obtained from string
database (https://string-db.org/) (Szklarczyk et al., 2019;
Szklarczyk et al., 2021).

Clinical Proteomic Tumor Analysis
Consortium (CPTAC) Data Analysis
Since, the protein expression is critical for the signaling
pathways and physiological responses, we next analysed

FIGURE 2 | Mutations in SOCs. The mutations in genes associated with SOCs were analysed across the TCGA fire hose (n = 504) datasets using Cbioportal.
Oncoprint plot was downloaded from the Cbioportal website. The color for different genetic alterations are mentioned at the bottom. Each row in the plot represents a
gene and column represents a tumor sample. The percentage of reported mutation rate across the tumor samples (n = 504) are represented on the right-hand side.
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the proteomic and phopshoproteomic levels of SOCs in
HNSC. The CPTAC data for proteomics and
phosphoproteomics with clinical data for HNSC was
downloaded using Python version 3.0 (Huang et al., 2021).
The bar plots were plotted using Graphpad Prism
version 9.2.1.

Histology Analysis
The histopathology images for SOCs for HNSC were obtained
from Human Protein atlas (https://www.proteinatlas.org/)
(Uhlén et al., 2015) that is not active.

Correlation Analysis
The correlation analysis for SOCs and MDGs gene expression
and protein expression were performed using Corrplot package
for the R programming (Wei et al., 2017).

Statistical Analysis
Correlation between different parameters was calculated by Pearson
correlation analysis. Differences between the groups were evaluated
using nonparametric t-test. p-value < 0.05 was considered to be
significant for all the TCGA, CPTAC, and GEO datasets analysis.
Statistical analysis was performed using R programming version 3.6.1.

FIGURE 3 | Altered mRNA expression of SOCs in HNSC. The Hiseq2 gene expression and clinical details of TCGA-HNSC data was downloaded from the TCGA
biolinks–Bioconductor package for R statistical environment. The expression levels of SOCs (represented as fragments per kilobase per million mapped fragments-
FPKM) in normal versus tumor (A,C,E,G,I,K,M,O,Q,S,U,W, Y, AA, AC) and different stages- stage I, stage II, stage III, and stage IV of HNSC (B,D,F,H,J,L,N,P,R,T,V,X,
Z, AB, AD) are plotted. The statistical significance is represented as *p < 0.05, **p < 0.01, ***p < 0.0001.
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FIGURE 4 | Altered mRNA expression of SOCs are correlated with the expression of MDGs in HNSC. (A–P) The Hiseq2 gene expression TCGA-HNSC data was
downloaded. The expression levels of SOCs are compared with the expression of MDGs using Timer 2.0 tool. The statistical significance is represented in asterisk. *p <
0.05, **<0.01, ***p < 0.001. (Q–AJ) Protein structures for SOCs- STIM1 (PDB ID-6YEL), STIM2 (PDB ID-2L5Y), ORAI1 (PDB ID-4EHQ), TRPC5 (PDB ID-6YSN)- and
MDGs-DNM1L (PDB ID-3W6N), MFN1 (PDB ID-5GOF), MFN2 (PDB ID-6JFK), OPA1(PDB ID-6JTG) and FIS1 (PDB ID-1PC2) were downloaded in the. pdb format
from protein data bank and docked using ClustPro tool. The protein in green represents SOCs and pink represents MDGs. Prodigy was used to calculate ΔG.
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RESULTS

In the present study, we analyzed the expression of SOCs mRNA,
proteins, and phosphoproteins of HNSC by in silico approaches.
In addition, we have also shown the mutations in these genes to
understand the effect of genetic alterations on their expression in
HNSC patients. Next, we cohered the gene and protein expression
levels of SOCs versus MDGs and correlated their expression with
the survival risk of HNSC patients. Further, we performed
docking to understand the binding efficiency of SOCE proteins
with MDGs. To our knowledge, this is the first comprehensive
study that links the SOCs gene expression to MDGs and potential
risk of early death in HNSC.

Differential Expression of Store-Operated
Calcium Channel Entry in Head and Neck
Squamous Cell Cancer
In the first step, GO and KEGG pathway analysis was carried out
for fifteen SOCs genes- STIM1, STIM2, ORAI1, ORAI2, ORAI3,
TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1,

TRPV2, TRPM1, and TRPM7 using clusterProfiler to
understand their function in MF, CC, and BP. The genes were
enriched mainly for MF (Figure 1A). The molecular function
enrichment using gProfiler identified SOCs genes involvement in
inositol binding activity and ATPase binding activity which are
crucial for cell signaling and regulation of cellular functions apart
from the usual calcium transporter, ion transporter, and
transmembrane transporter activities of SOCs (Figure 1B).
The disease enrichment analysis using ClusterProfiler showed
that these genes are involved in pulmonary hypertension,
disorders related to muscles, lymphoproliferative disorders,
malignant eye tumors, cerebellar medulloblastoma, immune
system diseases, and inflammatory disorders (Figure 1C). This
indicated that SOCs play critical role in tumor development and
progression. Further, we analysed for the mutation in SOCs
across TCGA fire hose datasets containing 504 samples for
HNSC. The mutation analysis showed 1.2% mutation in
STIM1 (6/504), 2.2% mutation in STIM2 (11/504), 0.8%
mutation in ORAI1 (4/504), 4% mutation in ORAI2 (20/504),
0.4% mutation in ORAI3 (2/504), 13% in TRPC1 (64/504), 2%
mutation in TRPC3 (10/504), 4% mutation in TRPC4 (20/504),

FIGURE 5 | Protein-protein network analysis. Protein-protein interaction network with minimum node (A) and increased node (B) were downloaded from STRING
database (C) Gene interaction network is downloaded from GeNeck tool and Pearson correlation for each node is shown.
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4% mutation in TRPC5 (20/504), 9% mutation in TRPC6 (43/
504), 0.8% mutation in TRPC7 (4/504), 1.8% mutation in TRPV1
(9/504), 1.6% mutation in TRPV2 (8/504), 1.8% mutation in
TRPM1 (9/504), and 2.6% mutation in TRPM7 (13/504). This
low percentage of mutations indicated that mutation is solely not
responsible for the aberration in the SOCs expression (Figure 2).
Hence, we further analysed the mRNA expression of SOCs. The
mRNA expression of SOCs genes across TCGA-HNSC data was
downloaded from the TCGA biolinks R package. The data
showed significant upregulation of STIM2 (p < 0.05), ORAI1
(p < 0.001), ORAI2 (p < 0.001), ORAI3 (p < 0.001), TRPC1 (p <
0.001), TRPC3 (p < 0.001), TRPC4 (p < 0.001), TRPC5 (p <
0.001), TRPC6 (p < 0.001), TRPV1 (p < 0.001), TRPV2 (p <
0.001), and TRPM7 (p < 0.001) and downregulation of STIM1
(p < 0.001) and TRPM1 (p > 0.05) were observed across HNSC
samples. The expression level of TRPC7 was found to be low in
both controls and HNSC patients and was insignificant. We also
conducted the stage-wise expression analysis of these genes in
HNSC. The data showed significant upregulation of STIM2
(Normal vs. stage I: p < 0.01; Normal vs. stage II: p < 0.001;
Normal vs. stage III: p < 0.001; Normal vs. stage IV: p < 0.001),
ORAI1 (Normal vs. stage I: p < 0.01; Normal vs. stage II: p <
0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <

0.001), ORAI2 (Normal vs. stage I: p < 0.001; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), ORAI3 (Normal vs. stage I: p < 0.05; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), TRPC3 (Normal vs. stage I: p < 0.001; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), TRPC4 (Normal vs. stage I: p < 0.001; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), TRPC5 (Normal vs. stage I: p > 0.05; Normal vs. stage II:
p < 0.01; Normal vs. stage III: p < 0.05; Normal vs. stage IV: p <
0.001), TRPC6 (Normal vs. stage I: p < 0.001; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), TRPV1 (Normal vs. stage I: p < 0.05; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), TRPV2 (Normal vs. stage I: p < 0.001; Normal vs. stage II:
p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage IV: p <
0.001), and TRPM7 (Normal vs. stage I: p < 0.001; Normal vs.
stage II: p < 0.001; Normal vs. stage III: p < 0.001; Normal vs. stage
IV: p < 0.001) across all the stages of HNSC. TRPC1 (p < 0.001)
level was found to be significantly altered in stage IV disease.
STIM1, TRPC7, and TRPM1 were found to be non-significant
across the stages of HNSC compared to controls (Figures 3A-
AD). These results indicated that SOCs are differentially

FIGURE 6 | The altered expression of SOCs resulted in poor survival of HNSC patients. (A-O) Kaplan-meier plot for all the SOCs expression in HNSC patients was
downloaded from KMplotter. The probability of survival for high and low expression are shown. Inset- Hazard ratio (HR) with 95% confidence interval and logrank p value
are mentioned. The number of patients at risk during the time interval is given below the graph.
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expressed in various stages of head and neck cancers and could be
a potential biomarker of HNSC.

Correlation of Store-Operated Calcium
Channels Gene Expression and Genes
Involved in Mitochondrial Dynamics (MDGs)
The expression of SOCs genes and mitochondrial dynamics
regulatory genes- DNM1L, FIS1, MFF, MFN1, MFN2, OPA1-
across TCGA-HNSC data were conducted using Timer 2.0
webtool. The expression of SOCs genes was found to be
remarkably associated with the expression of DNM1L, FIS1,
MFN1, MFN2, and OPA1. Similarly, expression of SOCs genes
with MDGs in HPV positive and HPV negative HNSC patient
samples are also shown (Figures 4A–P). Next, we downloaded
available protein structures for SOCs (STIM1, STIM2, ORAI1,
TRPC5) and mitochondrial fission and fusion regulatory genes
(DNM1L, FIS1, MFF, MFN1, MFN2, and OPA1) from the
protein data bank. Protein-protein docking using ClustPro and
Prodigy showed high negative binding energy for these
proteins—STIM1 vs. DNM1L:ΔG = −19.4KCalmol−1, STIM1

vs. FIS1:ΔG = −7.5KCalmol−1, STIM1 vs. MFN1:ΔG =
−16.7KCalmol−1, STIM1 vs. MFN2:ΔG = −10.6KCalmol−1,
STIM1 vs. OPA1:ΔG = −11.2KCalmol−1; STIM2 vs. DNM1L:
ΔG = −17.0KCalmol−1; STIM2 vs. FIS1:ΔG = −15.9KCalmol−1,
STIM2 vs. MFN1:ΔG = −9.5KCalmol−1, STIM2 vs. MFN2:ΔG =
−11.0KCalmol−1; STIM2 vs. OPA1:ΔG = −11.8KCalmol−1;
ORAI1 vs. DNM1L:ΔG = −20.0KCalmol−1, ORAI1 vs. FIS1:
ΔG = −10.5KCalmol−1, ORAI1 vs. MFN1:ΔG =
−11.7KCalmol−1, ORAI1 vs. MFN2:ΔG = −13.5KCalmol−1,
ORAI vs. OPA1:ΔG = −11KCalmol−1; TRPC5 vs. DNM1L:ΔG
= −23.4KCalmol−1, TRPC5 vs. FIS1:ΔG = −22.7KCalmol−1,
TRPC5 vs. MFN1:ΔG = −23.1KCalmol−1, TRPC5 vs. MFN2:
ΔG = −22.8KCalmol−1, TRPC5 vs. OPA1:ΔG =
−25.2KCalmol−1 indicating higher chances of binding of SOCs
with proteins involved in mitochondrial dynamics (Figures
4Q–AJ). However, STRING analysis showed no known direct
link between SOCs and MDGs (Figures 5A–C).

Survival Analysis
To understand the clinical relevance of these SOCs genes, the
correlation between gene expression versus overall survival and

FIGURE 7 | Altered mRNA expression of SOCs lead to poor relapse survival of HNSC patients. (A-O) Kaplan-meier plot for relapse free survival of head and neck
cancer patients with altered expression of SOCs are shown. The survival probability versus time for high and low expression of SOCs are shown. Inset- Hazard ratio (HR)
with 95% confidence interval and logrank p value are shown. The number of patients at risk during each time interval for both high and low expression of SOCs is
represented below the graph.
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relapse-free survival of HNSC patients were explored. Kaplan-
Meier plotter was used to analyze overall survival analysis across
TCGA-HNSC samples. The expression of STIM2, ORAI1,
TRPV1, TRPV2, TRPC1, TRPC3, TRPC5, TRPC6, TRPC7,
and TRPM7 were found to be significantly (p < 0.05)
associated with HNSC patient survival (Figures 6A–O). The
effect of expression of SOCs along with MDGs on survival of

HNSC was visualized. Similar survival analysis was performed for
relapse-free survival across TCGA data sets and are shown in
Figures 7A–O. Next, the survival data were downloaded using
TCGA biolinks via R programming. We analysed the survival
probability for patients expressing SOCs in conjunction with the
MDGs and found that SOCs along with MDGs are potential
diagnostic and prognostic markers of HNSC (Figure 8).

FIGURE 8 | Survival analysis among Head neck cancer patients expressing altered levels of SOCs in conjunction with MDGs. The survival data from TCGA was
downloaded using TCGA biolinks package built for R statistical environment. The survival data for expression levels of each SOCs in conjunction with MDGs is plotted.
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FIGURE 9 | Altered protein expression of SOCs in HNSC. (A–J) The proteomics and (K–T) phosphoproteomics expression was downloaded from CPTAC-HNSC
database using Python 3.0. The protein and phosphoprotein expression of SOCs were plotted. The phosphoprotein sites which are considered to plot this graph
include: S257 for STIM1; S261 for STIM2; T295 for ORAI1; S751 for TRPV2; S1477 for TRPM7. Asterisk represents *p < 0.05, **<0.01, ***p < 0.001 the statistical
significance. (U–AD) Histopathology slides of tissue microarray were downloaded from Human Protein Atlas and the expression of the SOCs are presented.
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Expression of Store-Operated Calcium
Channels and Their Correlation With
Mitochondrial Dynamics Among Clinical
Proteomic Tumor Analysis Consortium
(CPTAC) and Gene Expression Omnibus
(GEO) Datasets
Furthermore, we analysed the protein expression of SOCs
and MDGs in HNSC. The proteomics, phosphoproteomics,
and clinical data were obtained for CPTAC-HNSC using

Python version 3.0. The protein expression was available
only for STIM1, STIM2, ORAI1, TRPV2, and TRPM7 in
CPTAC dataset. This might be due to the spatio-temporal
expression of proteins which is unrelated to the mRNA
expression of genes. The available data were analyzed and
visualized. The protein (Figures 9A–J) and phosphoprotein
levels (Figures 9K–T) showed significant alteration of
STIM1, STIM2, ORAI1, TRPV2, and TRPM7 in HNSC
patients both overall and stage-wise compared to control
samples. The histopathology slides downloaded from the

FIGURE 10 | Protein levels of SOCs correlated with the MDGs in HNSC. (A) The proteomics and (B) phospho-proteomics expression CPTAC-HNSC data was
downloaded using Python 3.0. The correlation was calculated and plotted using Corr plot package for R programming. The markings on right hand side indicates the
color code for correlation coefficient.
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human protein atlas also showed similar results (Figures
9U–AD). Additionally, the correlation of SOCs proteins and
phosphoproteins with MD proteins were analyzed using
Corr Plot package in R statistical environment (Figures
10A,B). In addition, the dataset GSE17898 consisting of
normalized expression data from a total of 323 HNSC
samples were downloaded and analyzed. The data showed
remarkable alteration of SOCs in both HPV positive and
HPV negative samples (Figure 11A). The correlation
analysis showed a significant association among SOCs and
MDGs expression which is in accordance with our TCGA
and CPTAC analysis (Figure 11B).

Single-Cell Gene Expression Analysis of
Store-Operated Calcium Channels and
Their Correlation With Mitochondrial
Dynamics
The tumor microenvironment consists of heterogenous
population of cells contributing separately to the proliferation,
development, metastasis, and therapeutic resistance (Da Silva-
Diz et al., 2018; Stanta and Bonin, 2018; El-Sayes et al., 2021).
Hence, we further analyzed single cell dataset for HNSC
(GSE130922) downloaded from NCBI GEO datasets. Our
analysis showed heterogeneous expression of SOCs in different

FIGURE 11 |mRNA expression levels of SOCs were correlated with the expression of MDGs in both HPV positive and negative HNSCs. The expression data from
GSE17898 was downloaded from GEO datasets consisting total of 323 samples (A) The levels of SOCs are plotted using Graphpad prism software and (B) correlation
analysis was performed and plotted using Corr Plot package for R statistical environment. The gradation on the right side denote the correlation coefficient.
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cells of HNSC tumor tissues (Puram et al., 2017). The data was
stratified across 10 different cell types- cancer cells and B cells,
dendritic cells, endothelial cells, fibroblasts, macrophages, mast
cells, monocytes, T-cells, and others among non-cancer stromal
cells. The percentage population of these cells in the dataset are
shown in Figure 12. STIM1, STIM2, ORAI1, ORAI2, ORAI3,
TRPV1, TRPV2, and TRPM7 were found to be differentially
expressed across all cell types in HNSC tumors (Figures 13A-O).
Among the immune cells, STIM1 is expressed in all the immune
cells with the highest expression in mast cells and lowest in
dendritic and B cells. STIM2 and ORAI2 are expressed nearly
equally in all the immune cells. ORAI1 levels were found to be nil
in B cells. ORAI3 is found to be least expressed in dendritic and
T cells. TRPC1, TRPC4, TRPC6, and TRPC7 are almost
completely absent in all immune cells types whereas TRPC3 is
expressed in T cells and dendritic cells, and TRPC5 is expressed
only in T cells. TRPV1, TRPM1, and TRPM7 are almost equally
expressed in all types of immune cells. TRPV2 is found to be
expressed highly in macrophages. However, expression of
ORAI2, TRPC5, and TRPV2 are high in B cells, T cells, and
macrophages respectively compared to parenchymal cells.
However, other SOCs are enriched in parenchymal cells
including cancer cells compared to immune cells. In addition,
SOCs were found to be highly expressed in cancer cells and
fibroblasts among the parenchymal cells (Figures 13A-O).
Further, a significant correlation of SOCs with MDGs were
observed in cancer cells (Figure 14) and fibroblasts
(Figure 15). The correlation coefficient and p-value are
represented in the Table 1.

These single-cell analysis revealed the comprehensive role of
SOCs together with MDGs in the tumor microenvironment.

Overall, our in silico approach depicted that SOCs might be
involved in the regulation of mitochondrial function in HNSC
and the expression of SOCs along with the MDGs can be a
predictive marker of HNSC and might have prognostic value in
these patients.

DISCUSSION

Dysregulated intracellular Ca2+ signaling in cancer cells is shown
to be remarkably associated with cancer cell growth, proliferation,
angiogenesis, and metastasis (Barr et al., 2008; Chen et al., 2011;
Wang et al., 2012; Bergmeier et al., 2013; Motiani et al., 2013;
Wang et al., 2022). Dysregulation of SOCE and Ca2+ imbalance
was reported in Sjögren’s syndrome and in head and neck cancers
treated with radiation (Cheng et al., 2012; Ambudkar, 2018).
Elevated serum calcium levels is a proposed diagnostic marker for
head and neck malignancy (Bradley and Hoskin, 2006). Recently,
Newton et al. (2020) demonstrated that monoclonal antibody
against PD-L1 enhances the functionality of T cells by
modulating calcium release-activated calcium channels
(Newton et al., 2020). siRNA-mediated knockdown of ORAI1
and STIM1 in Ca9-22 and OECM-1 oral cancer cell lines showed
reduced proliferation, migration, and invasion of these cells
(Wang et al., 2022). In the current study, we revealed that
SOCs might be involved in regular mitochondrial function,
and alteration in these might be a predictive and prognostic
marker.

Substantial evidence has been provided in several different
types of cells that SOCs are involved in cell interaction and
secretory Ca-ATPase-2 pathway (Bergmeier et al., 2013). In
addition, recent evidence suggests that the formation of a
complex of these proteins with phosphatase calcineurin
dephosphorylates cytoplasmic NFAT and induces nuclear
translocation. Nuclear NFAT transcriptionally activates the
expression of several genes including NANOG, OCT4, SOX2,
and FGF19 which are involved in cancer cell stemness (Wang
et al., 2021). In the current study, we conducted the gene
ontology analysis, as a preliminary analysis to show the
involvement of SOCs in the regulation of IP3 and ATPase
pathways. Due to the involvement of SOCs in signaling
pathways apart from their regular transport activities we
hypothesized that SOCs might be involved even in the
regulation of mitochondrial activities. Furthermore, disease
ontology analysis was conducted to show the involvement of
SOCs in several cancers.

Earlier studies have shown that the entry of Ca2+ ions
through store-operated channels begins with the stimulation
of plasma membrane receptors to phospholipase C and
synthesis of inositol triphosphate. Activated SOCE aid in
refilling Ca2+ stores for further stimulation (Putney, 1986;
Parekh and Putney, 2005). In the current study, disease
ontology analysis showed their involvement in
inflammatory diseases, eye tumors, and medulloblastomas.
This is in accordance with earlier in vitro studies (Wang et al.,
2022). Subsequently, the TCGA-HNSC mRNA expression of
SOCs showed that STIMs, ORAIs, TRPCs, TRPVs, and
TRPMs are significantly altered in HNSC patients. The
survival analysis clearly demonstrated that alteration in
SOCs mRNA expression remarkably decreases the survival
rate of these patients. Further, TCGA-HNSC based
correlation analysis using Timer 2.0 tool showed a
significant correlation in the expression of MDGs with
SOCs. Mitochondrial regulation of SOCE is due to the

FIGURE 12 | Composition of different cell types in tumor
microenvironment analysed using the dataset GSE103322. The percentage
composition of cancer cells, B cells, dendritic cells, endothelial cells,
fibroblasts, macrophages, mast cells, myocytes, T cells and other cells
are visualized using pie-chart representation.
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FIGURE 13 | Heterogenous expression of SOCs in tumor microenvironment. (A-O) The expression data from GSE103322 comprising the data of 5,902 cells from
18 head and neck cancer tissues was downloaded from NCBI GEO website. The data comprised of different cell populations including cancer cells, B cells, dendritic
cells, endothelial cells, fibroblasts, macrophages, mast cells, myocytes, T cells and other cells The expression levels of each SOCs in these different cell types are plotted
using Graphpad prism software version 9.2.1.
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ability to rapidly uptake the Ca2+ thus modulating the inositol
phosphate mediated signaling. Hoth et al. (1997) showed that
mitochondrial uncouplers inhibited Ca2+ exit from
mitochondria leading to the prevention of sustained entry
of Ca2+ into T-cells (Hoth et al., 1997). Further, Gilabert and
Parekh revealed respiring mitochondria are required for Ca2+

homeostasis by CRAC channels (Gilabert and Parekh, 2000).
In addition, FDA-approved drugs, leflunomide and
teriflunomide were shown to be inhibitors of SOCs at
clinically-relevant doses in neuroblastoma cells (Rahman
and Rahman, 2017). Miret-Casals et al. (2018)
demonstrated that leflunomide and teriflunomide induces
mitochondrial fusion through the activation of MFN2 in
cervical cancer cell lines (Miret-Casals et al., 2018).
Leflunomide has also been shown to promote

mitochondrial fusion via downregulating total and
phospho DNM1L and inducing MFN2 leading to growth
retardation in pancreatic adenocarcinoma cells (Yu et al.,
2019). Recently, Yedida et al. (2019) demonstrated that
apogossypol (a small molecule inhibitor of pan-Bcl2)
mediated endoplasmic reticulum (ER) reorganization
results in Ca2+ transfer between ER and mitochondria
leading to inhibition of mitochondrial fission and
apoptosis of HeLa cells (Yedida et al., 2019). This study
also showed that leflunomide, a potent inhibitor of SOCs,
inhibits apogossypol-mediated ER reorganization and
antagonizes its protective effect against apoptosis (Yedida
et al., 2019). In accordance with these studies, our docking
results showed higher negative binding energy for SOCs with
MDGs. To our knowledge, there are no in vitro or in vivo

FIGURE 14 | Correlation of SOCs expression with MDGs in cancer cells across dataset GSE103322. The correlation between each SOCs expression (STIM1,
STIM2, ORAI1, ORAI2, ORAI3, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPM1, and TRPM7) versus MDGs expression (DNM1L, FIS1, MFF,
MFN1, MFN2, and OPA1) among the cancer cells are plotted using Corr plot package of R statistical environment. The linear regression line per group is represented as
red colored line. Inset- R value (correlation coefficient) and p value are mentioned.
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studies showing the direct or indirect binding of SOCs with
mitochondrial proteins. The STRING database also showed
no known direct relation among these proteins. In the current
study, we analyzed phosphoproteomic data for head and neck
cancer from CPTAC. Mertins et al., 2016 integrated
proteomics and phosphoproteomics data of CPTAC to
identify distinct profiles in 77 genomically annotated
breast tumors. In this study, the authors also revealed
changes in phosphoproteomics of CDK12, PAK1, RIPK2,
and TLK2. This study also proposed the
phosphoproteomic changes in these proteins can be
utilized as druggable kinases beyond HER2 (Mertins et al.,
2016). Hence, we conducted the protein and phosphoprotein

analysis for clinical samples to show SOC proteins are also
valuable biomarkers alongside the mRNA expression in head
and neck cancers.

Among the post-translational modifications,
phosphorylation of the protein is central to signaling
mechanisms and is critical for various physiological
responses. There are about 50,000 known phosphorylation
sites that do not currently have any ascribed functions
(Mayya and Han, 2009). However, quantitative
phosphoproteomics has been an effective tool to identify
functional phosphorylation sites and putative substrates of
kinases. Immunoprecipitation followed by
phosphoproteomics using mass spectrometry demonstrated

FIGURE 15 | Correlation of SOCs expression with MDGs in fibroblasts across dataset GSE103322. The expression of each SOCs (STIM1, STIM2, ORAI1, ORAI2,
ORAI3, TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPV1, TRPV2, TRPM1, and TRPM7) versus expression of each MDGs (DNM1L, FIS1, MFF, MFN1, MFN2, and
OPA1) were compared among the fibroblasts and the correlation plots are plotted using Corr plot package of R statistical environment. TRPC7 is not expressed in the
fibroblasts and is omitted. Linear regression line is shown in red color. Inset- R value (correlation coefficient) and p value are shown.
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TABLE 1 | The correlation coefficient and p-value for SOCs and MDGs in cancer
cells and fibroblasts.

Cell type SOCs MDGs Correlation coefficient p-Value

Cancer cell STIM1 DNM1L 0.11 2.5 × 10−8

FIS1 0.18 <2.2 × 10−16

MFF 0.22 <2.2 × 10−16

MFN1 0.083 2.6 × 10−5

MFN2 0.017 0.38
OPA1 0.018 0.37

STIM2 DNM1L 0.12 4.8 × 10−10

FIS1 0.16 3 × 10−15

MFF 0.2 <2.2 × 10−16

MFN1 0.11 9.6 × 10−8

MFN2 0.011 0.57
OPA1 0.042 0.035

ORAI1 DNM1L 0.11 6.8 × 10−8

FIS1 0.13 1.7 × 10−11

MFF 0.17 <2.2 × 10−16

MFN1 0.096 1.4 × 10−6

MFN2 0.00079 0.97
OPA1 0.041 0.037

ORAI2 DNM1L −0.025 0.21
FIS1 0.027 0.17
MFF 0.0082 0.68
MFN1 0.013 0.52
MFN2 -0.011 0.56
OPA1 0.031 0.11

ORAI3 DNM1L 0.1 1.6 × 10−7

FIS1 0.13 1.1 × 10−10

MFF 0.16 2.2 × 10−16

MFN1 0.092 3.3 × 10−6

MFN2 7.3 × 10−5 1
OPA1 0.04 0.046

TRPC1 DNM1L 0.074 0.00019
FIS1 0.075 0.00015
MFF 0.095 1.7 × 10−6

MFN1 0.074 2 × 10−4

MFN2 −0.00095 0.96
OPA1 0.0015 0.94

TRPC3 DNM1L 0.043 0.029
FIS1 0.031 0.12
MFF 0.026 0.2
MFN1 0.057 0.0042
MFN2 0.0062 0.76
OPA1 −0.0094 0.64

TRPC4 DNM1L 0.081 4.2 × 10−5

FIS1 0.085 1.9 × 10−5

MFF 0.11 3 × 10−8

MFN1 0.075 0.00014
MFN2 −0.0043 0.83
OPA1 0.01 0.6

TRPC5 DNM1L 0.044 0.027
FIS1 0.033 0.098
MFF 0.028 1.6
MFN1 0.057 0.0039
MFN2 0.0057 0.77
OPA1 −0.014 0.49

TRPC6 DNM1L 0.05 0.012
FIS1 0.038 0.056
MFF 0.035 0.077
MFN1 0.068 0.00066
MFN2 0.0079 0.69
OPA1 −0.013 0.5

TRPC7 DNM1L 0.049 0.14
FIS1 0.025 0.21
MFF 0.03 0.14

(Continued in next column)

TABLE 1 | (Continued) The correlation coefficient and p-value for SOCs and
MDGs in cancer cells and fibroblasts.

Cell type SOCs MDGs Correlation coefficient p-Value

MFN1 0.05 0.012
MFN2 0.0038 0.85
OPA1 −0.0069 0.73

TRPV1 DNM1L 0.027 0.17
FIS1 0.02 0.32
MFF −0.0085 0.67
MFN1 −0.0011 0.95
MFN2 −0.0036 0.85
OPA1 0.0028 0.89

TRPV2 DNM1L 0.042 0.033
FIS1 0.031 0.06
MFF 0.037 0.065
MFN1 0.076 0.00012
MFN2 0.01 0.6
OPA1 −0.018 0.37

TRPM1 DNM1L 0.071 0.00035
FIS1 0.072 0.00031
MFF 0.084 2.4 × 10−5

MFN1 0.09 6.1 × 10−6

MFN2 −0.0068 0.73
OPA1 −0.0061 0.76

TRPM7 DNM1L −0.016 0.43
FIS1 −0.048 0.016
MFF −0.013 0.52
MFN1 0.015 0.46
MFN2 −0.038 0.055
OPA1 0.0025 0.9

Fibroblasts STIM1 DNM1L 1 <2.2 × 10−16

FIS1 0.7 <2.2 × 10−16

MFF 0.89 <2.2 × 10−16

MFN1 0.86 <2.2 × 10−16

MFN2 1 <2.2 × 10−16

OPA1 0.97 <2.2 × 10−16

STIM2 DNM1L 0.59 <2.2 × 10−16

FIS1 0.34 <2.2 × 10−16

MFF 0.45 <2.2 × 10−16

MFN1 0.78 <2.2 × 10−16

MFN2 0.62 <2.2 × 10−16

OPA1 0.69 <2.2 × 10−16

ORAI1 DNM1L 0.34 <2.2 × 10−16

FIS1 0.18 =2.2 × 10−16

MFF 0.25 <2.2 × 10−16

MFN1 0.44 <2.2 × 10−16

MFN2 0.36 <2.2 × 10−16

OPA1 0.4 <2.2 × 10−16

ORAI2 DNM1L 0.03 0.25
FIS1 -0.025 0.35
MFF 0.011 0.67
MFN1 0.063 0.018
MFN2 0.037 0.16
OPA1 0.047 0.074

ORAI3 DNM1L 0.65 <2.2 × 10−16

FIS1 0.38 <2.2 × 10−16

MFF 0.51 <2.2 × 10−16

MFN1 0.86 <2.2 × 10−16

MFN2 0.68 <2.2 × 10−16

OPA1 0.76 <2.2 × 10−16

TRPC1 DNM1L 0.59 <2.2 × 10−16

FIS1 0.34 <2.2 × 10−16

MFF 0.45 <2.2 × 10−16

MFN1 0.78 <2.2 × 10−16

MFN2 0.62 <2.2 × 10−16

(Continued on following page)
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that RTKs including ALK, ROS fusion proteins, PDGFRα, and
DDR were found to be highly phosphorylated in non-small cell
lung carcinoma cell lines and tumor samples (Rikova et al.,
2007). Recently, phosphotyrosine directed mass spectrometry
analysis conducted by Van Linde et al. (2022) showed the
complex kinase activities in glioblastoma. The study suggested
the potential of phosphoproteomic analysis for the
identification of targets for the treatment modalities (Van
Linde et al., 2022). In the current study, analysis of the
protein and phosphoprotein expression of SOCs were

crucial to show that they might be involved in the
regulation of mitochondrial dynamic changes. Also, high
levels of phosphoprotein expression of SOCs indicate their
activity in head and neck cancers. Further, the CPTAC-HNSC
dataset revealed a significant correlation in the expression of
SOCs with MDGs. The survival correlation analysis indicated
that the patients expressing altered levels of SOCs along with
MDGs possess less survival probability compared with those
who are expressing normal levels of either SOCs or MDGs.
This indicated that the evaluation of SOCs combined with
MDGs might be a potential biomarker in HNSCs.

Furthermore, single-cell analysis showed heterogeneity in
the expression of SOCs across the ten different cell types. The
co-culture of mouse embryonic fibroblasts with MDA-MB-
231 by Yang and Huang (2005) showed the critical role of
Ca2+ ions influx in fibroblast cells migration (Yang and
Huang, 2005). In addition, Davis et al. (2012)
demonstrated that altered function of ORAI1 and TRPC1
led to EGF-induced EMT changes in triple-negative breast
cancer cell lines (Davis et al., 2012). More recently, Zhang
et al. (2020) revealed serum- and glucocorticoid-inducible
kinase 1 (SGK1) regulates osteoclastogenesis via controlling
ORAI1 leading to bone metastasis of breast cancer both in
in vitro and in vivomodels (Zhang et al., 2020). In accordance
with these results, single-cell analysis described that the
expression of SOCs were found to be strongly correlated
with the expression of MDGs in cancer cells and fibroblasts
indicating the role of SOCs in conjunction with
mitochondrial dysfunction in driving the cancer cell
hallmarks. Additionally, our analysis showed the critical
role of tumor heterogeneity in the progression of cancer
and highlights the importance of developing targeted
therapy for the microenvironment niche. However, further
studies need to be conducted to validate the role of
differential expression of SOC in the different cell
populations of the tumor tissue.

Taken together, these results indicated that SOCs and MDGs
combined alteration might be a potential diagnostic and
prognostic marker in HNSC.

CONCLUSION

Our in silico analysis shows the altered mRNA and protein
expression of SOCs in head and neck cancer and suggests their
role as possible biomarkers. We also showed a strong
correlation in the expression of MDGs with SOCs in
TCGA-HNSC, CPTAC-HNSC, GSE171898, and GSE103322
datasets. We showed for the first time that the SOCs binds to
MDGs with very high efficiency. Mechanistic studies need to
be conducted further to validate their role in mitochondrial
dysfunction and in HNSC development. Based on our in silico
studies we propose that the expression of SOCs along with
MDGs might serve as a better early diagnostic and prognostic
marker in HNSC patients. However, further studies need to be
conducted to evaluate their potential use in clinical diagnosis
and management.

TABLE 1 | (Continued) The correlation coefficient and p-value for SOCs and
MDGs in cancer cells and fibroblasts.

Cell type SOCs MDGs Correlation coefficient p-Value

OPA1 0.69 <2.2 × 10−16

TRPC3 DNM1L 0.35 <2.2 × 10−16

FIS1 0.18 <2.2 × 10−16

MFF 0.25 <2.2 × 10−16

MFN1 0.44 <2.2 × 10−16

MFN2 0.37 <2.2 × 10−16

OPA1 0.4 <2.2 × 10−16

TRPC4 DNM1L 0.65 <2.2 × 10−16

FIS1 0.38 <2.2 × 10−16

MFF 0.51 <2.2 × 10−16

MFN1 0.86 <2.2 × 10−16

MFN2 0.68 <2.2 × 10−16

OPA1 0.75 <2.2 × 10−16

TRPC5 DNM1L 0.15 9.7 × 10−9

FIS1 0.076 0.0043
MFF 0.1 <2.2 × 10−16

MFN1 0.18 3.7 × 10−12

MFN2 0.16 5.9 × 10−10

OPA1 0.18 1.3 × 10−11

TRPC6 DNM1L 0.91 <2.2 × 10−16

FIS1 0.55 <2.2 × 10−16

MFF 0.74 <2.2 × 10−16

MFN1 0.98 <2.2 × 10−16

MFN2 0.92 <2.2 × 10−16

OPA1 0.98 <2.2 × 10−16

TRPV1 DNM1L 0.8 <2.2 × 10−16

FIS1 0.62 <2.2 × 10−16

MFF 0.71 <2.2 × 10−16

MFN1 0.89 <2.2 × 10−16

MFN2 0.81 <2.2 × 10−16

OPA1 0.85 <2.2 × 10−16

TRPV2 DNM1L 0.68 <2.2 × 10−16

FIS1 0.99 <2.2 × 10−16

MFF 0.88 <2.2 × 10−16

MFN1 0.85 <2.2 × 10−16

MFN2 1 <2.2 × 10−16

OPA1 0.97 <2.2 × 10−16

TRPM1 DNM1L 0.61 <2.2 × 10−16

FIS1 0.35 <2.2 × 10−16

MFF 0.47 <2.2 × 10−16

MFN1 0.7 <2.2 × 10−16

MFN2 0.63 <2.2 × 10−16

OPA1 0.67 <2.2 × 10−16

TRPM7 DNM1L 0.98 <2.2 × 10−16

FIS1 0.71 <2.2 × 10−16

MFF 0.87 <2.2 × 10−16

MFN1 0.93 <2.2 × 10−16

MFN2 0.98 <2.2 × 10−16

OPA1 0.99 <2.2 × 10−16
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Cellular Senescence-Related Genes:
Predicting Prognosis in Gastric
Cancer
Longfei Dai†, Xu Wang†, Tao Bai, Jianjun Liu, Bo Chen and Wenqi Yang*

Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China

Our study aimed to explore the effect of cellular senescence and to find potential
therapeutic strategies for gastric cancer. Cellular senescence-related genes were
acquired from the CellAge database, while gastric cancer data were obtained from
GEO and TCGA databases. SMARCA4 had the highest mutation frequency (6%), and
it was linked to higher overall survival (OS) and progression-free survival (PFS). The gastric
cancer data in TCGA database served as a training set to construct a prognostic risk score
signature, and GEO data were used as a testing set to validate the accuracy of the
signature. Patients with the low-risk score group had a longer survival time, while the high-
risk score group is the opposite. Patients with low-risk scores had higher immune
infiltration and active immune-related pathways. The results of drug sensitivity analysis
and the TIDE algorithm showed that the low-risk score group was more susceptible to
chemotherapy and immunotherapy. Most patients with mutation genes had a lower risk
score than the wild type. Therefore, the risk score signature with cellular senescence-
related genes can predict gastric cancer prognosis and identify gastric cancer patients
who are sensitive to chemotherapy and immunotherapy.

Keywords: cellular senescence, GC, prognosis, chemotherapy, immunotherapy

INTRODUCTION

Nowadays, cancer is the primary cause of threat to human health (Bray et al., 2021). It ranked fifth in
incidence and fourth in mortality worldwide, while the number of GC diagnosed in 2020 was more
than 1 million and the number of deaths was more than 700,000 (Sung et al., 2021). There are various
treatments for GC, such as surgery, radiotherapy, targeted therapy, and immunotherapy (Joshi and
Badgwell, 2021). Currently, early-stage GC is mainly treated by surgical resection (Eusebi et al.,
2020). It was found that early-stage GC treated by surgery has a 5-year survival probability above
60%, but late-stage GC is only between 18% and 50% (Sexton et al., 2020). Moreover, the appearance
of resistance to chemotherapy drugs has greatly reduced the effectiveness of chemotherapy (Zhang
et al., 2022). Therefore, a new therapeutic strategy is urgently needed to improve this situation.

Cellular senescence is an irreversible way of cell proliferation cessation. It not only stops the cell
division cycle but also activates the senescence-associated secretory phenotype (SASP), which affects
the cellular metabolism (Birch and Gil, 2020). Cellular senescence is a Jekyll and Hyde phenomenon,
that is, both beneficial in inhibiting the division of DNA-damaged cells to form tumors and
deleterious due to the promotion of cancer cell invasion and distant metastasis, especially in cells with
stronger SASP (Coppé et al., 2008; Demirci et al., 2021; Yasuda et al., 2021). Studying the effect of
cellular senescence in GC could help develop a new approach to cancer therapy (Zhou et al., 2022).
Therefore, the study of cellular senescence in GC is crucial.
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Machine-learning-derived signatures are useful in predicting
cancer prognosis and guiding immunotherapy (Liu Z et al., 2021;
Liu et al., 2022a; Liu et al., 2022b). In the study, we constructed a
cellular senescence prognostic risk score signature by analyzing
the role of cellular senescence in GC. The signature can
independently predict GC patients’ prognosis and effectively
differentiate patients who are more sensitive to chemotherapy
and immunotherapy. The findings of this study may provide new
strategies for exploring the therapy of GC.

METHODS

Acquisition of Gastric Cancer Samples and
Cellular Senescence-Related Genes
The process diagram is shown in Supplementary Figure S1. We
acquired transcriptome data, clinical information, and mutation
information of GC from TCGA databases. The gene symbol ID
was translated to gene name in transcriptome data. Tumormutation
load (TMB) was calculated. TMB refers to how many bases per
million bases are mutated. The platform file (GPL6947) and probe
matrix file (GSE84437) were extracted from GEO. The
correspondence between the probe matrix and gene names was
found according to the platform file annotation information. The
probematrix was converted to a genematrix to obtain the expression
of each gene. Cellular senescence-related genes were downloaded
from CellAge. A total of 279 cellular senescence-related genes were
included in this study (Supplementary Table S1).

Identification of Prognostic Differential
Genes
Differential analysis was conducted by the “limma” package to select
differentially expressed genes (DEGs) in normal samples and tumor

samples. DEGs were visualized by drawing heat maps and volcano
maps. Next, we also extracted the expression of DEGs. Expression
data and survival data were merged. Prognostic-associated genes
were identified based on univariate Cox analysis. The waterfall plot
of prognostic genes was plotted by the “maftools” package to obtain
the mutation frequency of each gene.

Constructing and Validating a Prognostic
Signature
TCGA data were used as a training set to construct the prognostic
model, and GEO data served as a testing set to validate the model
accuracy. Formula: riskscore = ∑i1(CoefipExpGenei). “Coef,”
regression coefficient; “ExpGene,” gene expression. The risk
score was acquired for each sample based on the model
formula. Training and testing sets were separated into two
groups of high and low risk according to the median risk
score. Principal component analysis (PCA) was performed to
demonstrate the accuracy of distinguishing the two groups based
on the signature. The survival difference in the two groups was
compared by Kaplan–Meier analysis. The predictive accuracy of
the signature was evaluated by plotting ROC curves using the
“survivalROC” package. The signature was explored as an
independent prognostic factor by univariate and multivariate
Cox analyses. The “ggpubr” package was employed to
investigate the differences in risk scores among clinical
features. Immunotyping analysis was conducted to explore
whether risk scores were different among different immunotypes.

Development of a Nomogram
By using “regplot” and “rms” packages, nomogram and
calibration curves were developed. Total points were obtained
based on summing the scores of the clinical characteristics in the
nomogram to predict patients’ survival. We also used the

FIGURE 1 | Cellular senescence-related differential genes between tumor samples and normal samples. (A) Heat map. (B) Volcano plot. Green, downregulated;
red, upregulated.
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“timeROC” package to draw ROC curves to compare the accuracy
of the nomogram and clinical characteristics in predicting
survival. Then, we confirmed whether the nomogram could be
used as an independent predictor of prognosis based on
univariate and multivariate Cox analyses. C-index curves were
constructed using the “survcomp” package.

Exploring the Association Between Risk
Scores and Immunotherapy
Immune cell infiltration analysis was undertaken to acquire the
immune cell content of each sample (Supplementary Table S2).
“reshape2” and “ggpubr” packages were performed to observe
immune cell differences and immune-related functional

FIGURE 2 | Developing a prognostic signature. (A) Forest plot. The 24 cellular senescence-related genes associated with GC prognosis. (B) Waterfall plot.
Mutation frequency of 24 cellular senescence-associated genes. A total of 98 sample mutations have occurred in 433 gastric cancer samples. (C) Mutation co-
occurrence and exclusion analysis. Green, co-occurrence; purple, exclusion. (D) LASSO regression coefficients. (E) Identified genes were used to construct a signature.
(F) PCA diagram. The high- and low-risk groups were distinguished by cellular senescence-associated genes. Groups marked in blue represent low-risk patients,
and groups marked in red represent high-risk patients. (G) PCA plot. The risk score signature genes distinguished high- and low-risk groups of patients with high
accuracy.
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differences between different risk groups. The “GSVA” package
was applied to explore the functional or pathway differences
between different risk groups. We acquired the reference gene set
“c2.cp.kegg.v7.1.symbols” from the Molecular Signature
Database (https://www.gsea-msigdb.org/gsea/msigdb). The
samples were categorized into mutation and wild type based
on the gene mutation status. The difference in risk scores between
mutation and wild type was observed by plotting box plots with
the “ggpubr” package. Drug sensitivity analysis was conducted by
the pRRophetic package (https://www.cancerrxgene.org/) to
investigate IC50 (the half-maximal inhibitory concentration)
differences between high- and low-risk groups. We also used
the TIDE (http://tide.dfci.harvard.edu/) algorithm to predict the
response of different risk groups to immunotherapy.

Enrichment Analysis of Differentially
Expressed Genes
The expression differences of cellular senescence-related genes in
tumor and normal samples were further analyzed by the “limma”
package. We also conducted GO and KEGG enrichment analyses
for DEGs with the “clusterProfiler” package.

Construction of the Protein–Protein
Interaction Network
A PPI network (interaction score >0.70) was constructed using
the STRING database (https://string-db.org/). PPI network data
were further processed using Cytoscape software (https://
cytoscape.org/). The plugin cytoHubba was applied to explore
the hub genes of DEGs. “limma” and “beeswarm” packages were
used to investigate the differentially expressed hub genes in
normal and tumor tissues. The samples were categorized into
high- and low-expression groups based on the median expression
values of the hub genes. Survival differences between the two
groups were investigated by Kaplan–Meier analysis. Finally, we
also explored the differences in the gene expression in immune
infiltration and different clinical features.

Statistical Analysis
R 4.1.2 and Strawberry-Perl-5.32.1.1 were employed in this
study. p-values less than 0.05 were regarded as statistically
significant. Survival differences between different groups were
investigated by performing a Kaplan–Meier analysis. The
independent predictors of GC were identified by univariate
and multivariate Cox analyses. The accuracy of the signature
and nomogram in predicting survival was explored by ROC
analysis.

RESULTS

Identification of Cellular
Senescence-Related Differential Genes
In TCGA data, we identified 135 differential genes by comparing
the difference in the expression of cellular senescence-related

genes in tumor and normal tissue samples (FDR <0.05 and logFC
= 0.585). The heat map (Figure 1A) and volcano map
(Figure 1B) visualized the aforementioned results. There were
32 genes significantly hyper-expressed and 103 genes significantly
down-expressed in the tumor tissue samples.

Construction of a Prognostic Signature
The 24 cellular senescence DEGs associated with GC prognosis were
identified through univariate Cox analysis, such as SMARCA4
(Figure 2A). Figure 2B shows the somatic mutations of 24 genes
with a mutation frequency of 22.63% (98 out of 433 GC samples
showed mutations in cellular senescence-related genes). Of these,
SMARCA4 had the highest mutation frequency (6%), while GNG11
and IGFBP6 were not mutated (0%). We also found a significant
difference between the high- and low-expression of SMARCA4, and
patients with high expression of SMARCA4 were associated with
higher overall survival (OS) and progression-free survival (PFS)
(Supplementary Figure S2). Interestingly, there was a mutation co-
occurrence relationship between SMARCA4 and ZFP36, ITGB4 and
TYK2, ITGB4 and NOTCH3, NOTCH3 and PDIK1L, NOTCH3
and TFAP4, TFAP4 and MAPKAPK5, TFAP4 and TYK2, EZH2
and SLC16A7, IGFBP1 and NOX4, and HSPB2 and MAPKAPK5
(Figure 2C). Next, we further identified 24 cellular senescence DEGs
associated with gastric cancer prognosis by using the least absolute
shrinkage and selection operator (LASSO) Cox regression analysis.
A total of 11 genes (AGT, CHEK1, GNG11, IGFBP1, MAPKAPK5,
NOX4, SERPINE1, TFDP1, TYK2, USP1, and ZFP36) were
identified (Figures 2D,E). Meanwhile, we developed a prognostic
risk score signature based on the 11 genes mentioned earlier in the
training set (Supplementary Table S3). Formula: risk score =
(0.0617318899456387) × AGT + (−0.004416679732613) ×
CHEK1 + (0.00146582976956934) × GNG11 +
(0.027549739978882) × IGFBP1 + (−0.0823743685561005) ×
MAPKAPK5 + (0.0337754127670565) × NOX4 +
(0.184215619451523) × SERPINE1 + (−0.00197579186740112) ×
TFDP1+ (−0.303214268137102) × TYK2 + (−0.0314400326211636)
× USP1 + (0.0400501256934474) × ZFP36 (Supplementary Table
S3). We found that the signature could accurately distinguish low-
risk and high-risk samples in GC by PCA (Figures 2F,G).

Validation of Signature Genes in the HPA
Database
To investigate the protein expression of the signature genes in normal
and gastric cancer tissues, we downloaded immunohistochemical
images of gastric cancer tissues and normal tissues from the Human
Protein Atlas database (https://www.proteinatlas.org/). We found
that MAPKAPK5 and USP1 proteins were highly expressed in
gastric cancer tissues, while the ZFP36 protein was lowly
expressed in tumor tissues (Supplementary Figure S3).

Predicting Survival With the Risk Score
Signature
Through survival curves, we observed longer overall survival
(OS) and progression-free survival (PFS) in the low-risk
subgroup of the training set (Figures 3A,C). The
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aforementioned results were confirmed in the testing set
(Figure 3B). The results of univariate and multivariate Cox
analyses indicated that the risk score signature could be used as
an independent prognostic factor for gastric cancer patients
independently of other clinical characteristics (Figures 3D,E).
The signature was very accurate in predicting survival in
patients with gastric cancer, with an area under the ROC
curve (AUC) of more than 0.60 for predicting 1-, 3-, and 5-
year survival (Figure 3F). We found the largest area under the
ROC curve for the risk score (AUC = 0.744), which indicated

that the signature predicted survival better than other clinical
characteristics (Figure 3G). We further investigated whether
there were differences in risk scores across clinical
characteristics (age, gender, grade, stage, and TNM stage).
We found an increased risk for patients after the T1 stage
and no significant change in risk for patients after the T2
stage (Figure 3H). In contrast, there were no significant
differences in risk scores for other clinical characteristics
(Supplementary Figure S4). Interestingly, we also found no
difference in risk scores for immune subtypes (Figure 3I).

FIGURE 3 | Risk score signature predicted prognosis for gastric cancer patients. (A)Overall survival (OS) curves of the high- and low-risk groups in the training set.
(B)Overall survival (OS) curves of the high- and low-risk groups in the testing set. (C) Progression-free survival (PFS) curves of the high- and low-risk groups in the training
set. (D) Univariate Cox analysis. (E)Multivariate Cox analysis. (F) Area under the ROC curve (AUC) for the risk score signature that predicted 1-year, 3-year, and 5-year
overall survival. (G) ROC curves. The area under the ROC curve (AUC) for the risk score was the highest at 0.744. (H) Box plot of the difference in risk score for
patients with different T-stages. (I) Box line plot of the difference in the risk score for patients with different immune subtypes.
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Development of a Nomogram
We drew a nomogram to predict patients’ survival (Figure 4A).
When patients’ total point was 437, the predicted survival rate at
1-year was more than 0.858, the predicted survival rate at 3-year
was more than 0.617, and the predicted survival rate at 5-year was
more than 0.501. We found that the actual survival rate and
predicted survival rate were almost in agreement by observing the
calibration curve (Figure 4B). It validated the high accuracy of
the nomogram in predicting the survival rate of gastric cancer

patients. In addition, we also found the largest area under the
ROC curve for the nomogram (AUC = 0.740) (Figure 4C). It
implied that the nomogram predicted patients’ survival better
than other clinical characteristics. The nomogram was confirmed
to be an indicator of independent prognosis by the results of
univariate and multivariate Cox analyses (Figures 4D,E). We
randomly selected four prognostic signature articles of gastric
cancer in the latest 3 years from the PubMed website (https://
pubmed.ncbi.nlm.nih.gov/), including Dai’s signature (ITGAV,

FIGURE 4 | Constructed a nomogram for predicting survival. (A) Nomogram. (B) Calibration curves. The y-axis is the actual survival rate, and the x-axis is the
predicted survival rate. (C) Area under the ROC curve (AUC) of the nomogram. (D) Univariate Cox analysis. (E) Multivariate Cox analysis.
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DAB2, SERPINE1, MATN3, and PLOD2), Liu’s signature
(NOX4, NOX5, GLS2, MYB, TGFBR1, NF2, AIFM2, ZFP36,
SLC1A4 TXNIP, CXCL2, HAMP, and SP1), Meng’s signature
(CGB5, IGFBP1, OLFML2B, RAI14, SERPINE1, IQSEC2, and
MPND), and Yin’s signature (GPX3, ABCA1, NNMT, NOS3,
SLCO4A1, ADH4, DHRS7, and TAP1) (Meng et al., 2020; Liu SJ
et al., 2021; Dai et al., 2021; Yin et al., 2021). To highlight the
advantages of the cellular senescence signature, we compared
these five signatures, and the results are visualized in
Supplementary Figure S5. We found that the cellular

senescence signature was the best predictor of prognosis in
gastric cancer patients, with a C-index of 0.642.

Risk Score Guide Clinical Treatment
Due to the increase in tumor resistance to chemotherapeutic
drugs, most patients with gastric cancer currently have poor
chemotherapy outcomes. We explored whether risk scores
could play a role in chemotherapy. In our study, the risk
score was significantly and positively correlated with half-
maximal inhibitory concentration (IC50), and the low-risk

FIGURE 5 | Risk score-guided chemotherapy. (A) Box plot of IC50 differential analysis for high- and low-risk score groups. (B) Scatter plot of correlation between
risk score and IC50. (C) Heat map of the differential analysis of GSVA enrichment between high- and low-risk groups.
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score group had a lower IC50 value and was more sensitive to 5-
FU (Figures 5A,B). By performing GSVA, most of the
senescence pathways were found to be more active in the
low-risk score group (Figure 5C). The high-risk score group
had higher macrophage M2 infiltration, and the low-risk score
group had higher B-cell memory and T-cell follicular helper
infiltration (Figure 6A). In addition, immune function analysis
showed that type_II_IFN_response and parainflammation were
more active in the high-risk group, and MHC_class_I was more
active in the low-risk group (Figure 6B). It suggested that the
low-risk group might be more suitable for immunotherapy. It
was confirmed by the TIDE algorithm that patients in the low-
risk score group are more suitable for immunotherapy
(Figure 6C). The risk score signature constructed using

cellular senescence-related genes is a potential biomarker for
assessing the clinical response to immunotherapy in gastric
cancer patients. We also identified the top 10 mutated genes
(TTN, TP53, MUC16, ARID1A, LRP1B, SYNE1, FLG, FAT4,
CSMD3, and PCLO), SMARCA4, and ZFP36 in TCGA data
(Supplementary Table S4). The samples were classified into
mutation and wild types according to the mutation status of the
genes. Among them, the mutation type of the six genes (TTN,
ARID1A, LRP1B, FLG, FAT4, and PCLO) had lower risk scores
(Figure 6D). We also found no difference in risk scores between
mutation and wild type of SMARCA4 and ZFP36
(Supplementary Figure S6), so we speculated that co-
mutation of SMARCA4 and ZFP36 does not affect the
prognosis of gastric cancer.

FIGURE 6 | Risk score-guided immunotherapy. (A) Box plot of the differential analysis of immune infiltration between the two risk score groups. (B) Box plot of the
differential analysis of immune function between two risk score groups. (C) Violin plot of the response to immunotherapy between the two risk fraction groups calculated
by the IDE algorithm. (D) Box plot of the differential analysis of the risk score between wild type and mutant type for the top 10 mutated genes in TCGA data.
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Differential Gene Enrichment Analysis
We identified 186 differential genes in two risk groups. GO and
KEGG enrichment analyses were performed on the differential
genes, and the enrichment results were visualized in bubble plots.
We found that extracellular matrix organization, extracellular
structure organization, and external encapsulating structure
organization were significantly enriched in the GO bubble
map (Figure 7A), while cytokine–cytokine receptor
interaction, protein digestion and absorption, transcriptional

misregulation in cancer, and proteoglycans in cancer were
significantly enriched in the KEGG bubble plots (Figure 7B).

Identification of 10 Hub Genes
The expression profiles of DEGs in two risk score groups were
evaluated using the STRING database. PPI networks were
constructed (Supplementary Figure S7). By using Cytoscape
software, PPI network data were processed and displayed. The
interactions of DEGs are shown in Figure 8A. A total of 10 hub

FIGURE 7 | Differential gene enrichment analysis. (A) GO enrichment analysis bubble map. (B) Bubble plot of KEGG enrichment analysis.

FIGURE 8 | Protein–protein interaction (PPI) network. (A) Cytoscape-treated PPI network. Red, highly expressed DEGs in the high-risk score group; green, highly
expressed DEGs in the low-risk score group. (B) CytoHubba identified the top 10 hub genes.
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genes (FN1, IL6, CXCL8, THBS1, APOA1, FGG, MMP1, AFP,
MMP2, and MMP3) of DEGs were identified using Cytoscape
plugin cytoHubba and the extent method (Figure 8B). A total of
six upregulated genes (FN1, APOA1, CXCL8, MMP1, MMP3,
and THBS1) in tumor tissue were identified by the differential
analysis of 10 hub genes (Supplementary Figure S8). By further
analysis, five hub genes (FN1, APOA1, CXCL8, MMP1, and
THBS1) with survival differences were identified
(Supplementary Figure S9). Patients with low-expression
levels had a better prognosis. We also analyzed the differences
in the expression levels of genes in different clinical
characteristics. FN1 was significantly more expressed in
patients after stage T1 and unchanged in patients after stage
T2. The expression levels of FN1 and THBS1 were higher in G3
patients than those in G2 patients (Supplementary Figures S10,
14). The expression levels of APOA1 were higher in G2 patients
than those in G3 and in N2 than those in N0 (Supplementary
Figure S11). The expression level of CXCL8 was significantly
higher in patients over 65 years of age and after stage III
(Supplementary Figure S12). The expression level of MMP1
was significantly higher in patients over 65 years of age and in
stage IV than that in stage I (Supplementary Figure S13). Finally,
we also performed the differential analysis of immune cell
infiltration (Supplementary Figure S15). The FN1, APOA1,
CXCL8, MMP1, and THBS1 low-expression groups all had
higher immune cell infiltration and might be suitable for
immunotherapy.

DISCUSSION

Cellular senescence is the result of irreversible cessation of cell
division (Gorgoulis et al., 2019). Studies have shown that it can
occur in the context of oncogene activation and is involved in tumor
suppression (Di Micco et al., 2021). The latest studies have shown
that senescent cancer cells have not only antitumor activity but also
pro-tumor activity. Cellular senescence can play an essential role in
immune surveillance to ensure that senescent cancer cells are
eliminated (Prasanna et al., 2021). Nowadays, cellular senescence
is emerging as a potentially novel anticancer strategy (Ramu et al.,
2021). It could help guide effective anticancer therapy strategies by
exploring the cellular senescence patterns of GC.

The main purpose of this study was to discuss the effect of
cellular senescence on the prognosis and treatment of GC. We
constructed a prognostic risk score signature for cellular
senescence-related genes using TCGA data. Patients with low-
risk scores had longer survival times, while the opposite was true
for patients with high-risk scores. The same results were found in
the GEO data. It indicated that the prognostic risk score signature
could forecast the GC patients’ prognosis. We also observed that
the prognostic risk score signature could be an independent
prognostic factor for GC by further Cox analysis. In addition, a
nomogram was constructed for predicting gastric cancer patients’
survival. The calibration curve confirmed the predictive accuracy of
the nomogram. Encouragingly, the area under the ROC curve
(AUC) of the nomogram was significantly higher than other
clinical features, especially in traditional TNM stages. It showed

that the nomogram has higher accuracy in predicting 1-year, 3-
year, and 5-year survival rates of gastric cancer patients than
clinical TNM stages. Moreover, the cellular senescence signature
had the highest C-index and predicted the best prognosis among
other prognosis-related signatures of gastric cancer.

Although chemotherapeutic agents are helpful in the therapy
of GC, many GC patients appear resistant to chemotherapy,
resulting in poorer chemotherapy outcomes (Wei et al., 2020).
Therefore, it is increasingly essential to identify GC patients who
are sensitive to chemotherapeutic drugs. According to these
reasons, we investigated the differences in clinical response to
chemotherapeutic drugs in two risk groups. In our research, GC
patients with low-risk scores were more susceptible to 5-FU. It
suggested that using the risk score could identify gastric cancer
patients who are more suitable for chemotherapy. With the
development of technology, more and more therapeutic
approaches are available for GC (Hsu and Raufi, 2021).
Immunotherapy is an emerging cancer treatment that activates
the body’s immune system to clear tumor cells (Kawazoe et al.,
2021). The identification of patients with gastric cancer suitable
for immunotherapy is particularly critical in the clinical
environment. We observed higher immune infiltration levels
in the low-risk score group, including B-cell memory and
T-cell follicular helpers, and the high-risk score group had
higher infiltration levels of macrophage M2 (tumor-promoting
cells) (Xia et al., 2020; Overacre-Delgoffe et al., 2021). The results
of immune function analysis also showed that high-risk score
patients had active immune-related functions
“type_II_IFN_response” and “parainflammation,” whereas
“MHC_class_I” was more active in the low-risk score group.
Previous studies have shown that “type_II_IFN_response” is
considered an anticancer immune-related function (Liu M
et al., 2020). Interestingly, our findings showed the opposite
that “type_II_IFN_response” might promote the development
of gastric cancer. The immune-related function
“parainflammation” is thought to promote tumor progression,
which is consistent with our findings (Aran et al., 2016). The
immune-related function “MHC_class_I,” which mainly plays a
role in the immunosurveillance of cancer, inhibits the immune
escape of tumors and is considered a potential target for cancer
immunotherapy (Cornel et al., 2020; Dersh et al., 2021). We
speculated that patients with low-risk scores may be suitable for
immunotherapy. Next, we demonstrated that low-risk score
patients had a low immune escape potential and were more
sensitive to immunotherapy using the TIDE algorithm. In
conclusion, the prognostic risk score signature with cellular
senescence genes not only predicts prognosis but also
identifies patients with chemotherapy- and immunotherapy-
sensitive gastric cancer. We also analyzed the top 10 mutated
genes in the TCGA data. The mutation types of TTN, ARID1A,
LRP1B, FLG, FAT4, and PCLO had lower risk scores than the
wild type. This meant that patients with mutation types might
have a better prognosis and be more suitable for chemotherapy
and immunotherapy. We also identified a particular gene
SMARCA4. It has the highest mutation frequency (6%), and it
is linked to higher overall survival (OS) and progression-free
survival (PFS). There was a co-mutation relationship between
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SMARCA4 and ZFP36. But we found no difference between
mutation and wild type in SMARCA4 and ZFP36, so we
speculated that co-mutation of SMARCA4 and ZFP36 does
not affect the prognosis of gastric cancer.

Because of the significant differences between the two risk groups,
it is essential to study the differential genes in depth.We identified 10
hub genes (FN1, IL6, CXCL8, THBS1, APOA1, FGG, MMP1, AFP,
MMP2, and MMP3) by constructing a PPI network. FN1, APOA1,
CXCL8, MMP1, MMP3, and THBS1 were significantly upregulated
in the tumor samples. This result was confirmed in the HPA
database. We observed that FN1, APOA1, CXCL8, MMP1, and
THBS1 were correlated with GC prognosis, with higher expression
levels associated with a worse prognosis. This is consistent with
previously published research studies (Li et al., 2019; Chen X et al.,
2020; Chen YJ et al., 2020; Liu X et al., 2020; Zhang et al., 2021). We
also found higher immune infiltration (plasma cells and T cells) in
the low-expression group of FN1, APOA1, CXCL8, MMP1, and
THBS1, while macrophages M2 and resting T cells showed higher
infiltration in the high expression group. It suggested that patients in
the low-expression group of FN1, APOA1, CXCL8, MMP1, and
THBS1 might be more suitable for immunotherapy.

In summary, the cellular senescence risk score prognostic
signature could be used to assess the prognosis of GC patients
and guide clinical treatment. Our study not only provided a new
predictive signature for the prognosis of GC but also offered
guidance for the future therapy of gastric cancer.
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Background: Senescence, as an effective barrier against tumorigenesis, plays a critical
role in cancer therapy. However, the role of senescence in colorectal cancer (CRC) has not
yet been reported. This study aimed to build a prognostic signature for the prognosis of
patients with CRC based on senescence-related genes.

Methods: A prognostic signature was built from TCGA based on differentially expressed
senescence-related genes by the least absolute shrinkage and selection operator (LASSO)
and Cox regression analyses, which were further validated using two Gene Expression
Omnibus (GEO) cohorts. The CIBERSORT and ssGSEA algorithmswere utilized to analyze
the infiltrating abundance of immune cells. The relationship of signature with the immune
therapy and the sensitivity of different therapies was explored.

Results:We found 93 genes associatedwith senescence that were differentially expressed.
Based on expression and clinical parameters, we developed a senescence-related
prognostic signature and its effectiveness was verified using two external validation
cohorts. Overall survival was predicted using a prognostic nomogram that incorporated
the predictive values of the risk score and clinical traits. Additionally, the risk score was
significantly correlated with immune cells infiltration, tumor immune microenvironment (TME)
score, immune checkpoints, immunotherapeutic efficacy, and chemotherapy sensitivity.

Conclusion: The senescence-related prognostic model can well predict the prognosis,
immunotherapeutic response, and identify potential drug targets, which can help guide
individualized treatment.

Keywords: senescence, colorectal cancer, prognostic model, tumor immune microenvironment, immunothearpy

INTRODUCTION

Colorectal cancer (CRC) is one of the most commonmalignant tumors. Its incidence rate ranks third
in the world and the mortality rate is ranked second (Sung et al., 2021). There were nearly 1.9 million
(10.0%) new cases of CRC worldwide, followed by breast and lung cancer in incidence (Sung et al.,
2021). CRC is a malignant tumor of the digestive system and is the first tumor in the world in terms of
morbidity and mortality and seriously threatens the life and health of individuals (Siegel et al., 2020).
At present, the main treatment methods for CRC include a combination of endoscopic resection,
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surgical resection, chemotherapy, and radiotherapy (Modest
et al., 2019; Dariya et al., 2020). As the surgical intervention is
available for early CRC, a large majority of patients with advanced
CRC suffer from a poor therapeutic outcome with higher rates of
malignant recurrence and distant metastases, resulting in a 5-
years survival rate of less than 10% (Chen et al., 2021a). Hence, it
is particularly important to find a prognostic model that can
accurately classify CRC patients, so that appropriate treatment
method can be selected for patients with different precise
prognoses.

Cellular senescence is defined as a permanent state of cell cycle
termination. It is a response to endogenous and exogenous
stresses, including DNA damage, telomere dysfunction,
oncogene activation, and organelle stress, and is associated
with processes such as tumor suppression, tissue repair,
embryogenesis, and organ aging (López-Otín et al., 2013; Di
Micco et al., 2021). The current state of aging research shares
many similarities with cancer research over the past few decades.
In the newly proposed third edition of cancer hallmarks in 2022,
four new members have been added, and one of the hallmarks is
senescent cells (Hanahan, 2022). Cancer is the result of
abnormally enhanced cellular fitness, whereas senescence is
characterized by loss of fitness. On the surface, cancer and
aging appear to be opposite processes. However, at a deeper
level, the two may have a common origin. Cellular senescence is
caused by a time-dependent accumulation of cellular damage
(Gems and Partridge, 2013). Meanwhile, cell damage occasionally

confers abnormal benefits on certain cells, ultimately leading to
cancer. Therefore, cancer and aging can be thought of as two
distinct manifestations of the same underlying process, the
accumulation of cellular damage. Numerous genes have been
implicated in cellular senescence as biomarkers and causal drivers
(Giovannini et al., 2012; Jia et al., 2018; Li et al., 2019; Shaosheng
et al., 2021). Li et al. (Li et al., 2019) found that knockdown of
BAZ1A-KD results in up-regulation of SMAD3 expression,
which in turn activates transcription of the p21-encoding gene
CDKN1A and causes senescence-related phenotypes in human
cancer cells. However, it is unknown if these senescence-related
genes have an impact on CRC prognosis.

In this study, for the first time, we established a prognostic
signature based on differentially expressed senescence-related
genes (DEGs) and verified its accuracy in two external databases.
Following that, we developed a nomogram to predict the OS of
patients with CRC. In addition, we investigated the prognostic value,
and impact on tumor immune infiltration, immune checkpoint
expression, immunotherapy, and chemotherapeutic drug
sensitivity of senescence-related genes in HCC.

MATERIALS AND METHODS

Data Source
A total of 279 senescence-related genes were collected from
CellAge database (https://genomics.senescence.info/cells/

FIGURE 1 | Establishment of optimal senescence-related signature in the TCGA set. (A,B) Volcano and heatmap representations of lactate-related DEGs between
normal and CRC groups. (C) The prognostic genes were selected by univariate Cox regression analysis. (D,E) Lasso regression analysis. (F)Multivariate Cox regression
analyses of the association between genes and OS of patients.
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signatures.php?) and were listed in Supplementary Table S1. The
RNA-seq expression and clinical traits for CRC patients were
obtained and extracted from three independent CRC cohorts
(TCGA-COD, n = 477; GSE39582, n = 556; GSE17536, n = 175).

IMvigor210 with immunotherapy data and clinical information
were obtained from the IMvigor210CoreBiologies R package.
TCGA cohort was used to build the signature, and two GEO
cohorts were used to externally verify the signature.

FIGURE 2 | Validation of the prognostic prediction performance of the signature. Kaplan-Meier survival analysis in the training (A), GSE39582 (E), and GSE17536
cohort (I). Distribution of risk score and survival status in the training (B), GSE39582 (F), and GSE17536 cohort (J). PCA analysis in the training (C), GSE39582 (G), and
GSE17536 cohort (K). Time-dependent ROC curves of risk scores in the training (D), GSE39582 (H), and GSE17536 cohort (L).
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Establishment and Identification of
Prognostic Signature
The training cohort was employed to detect the senescence-related
DEGs between normal and CRC tissues via the R package “limma” in
RStudio, with the following cutoff for adjustment: p-value< 0.05 and |
fold change (FC)| > 1.5. To screen senescence-related genes with
prognostic significance, a univariate Cox regression analysis was
conducted on DEGs. Following that, the Least absolute shrinkage
and selection operator (LASSO) and multivariable Cox analysis was
performed to build a predictive signature. The following formula was
employed to calculate the risk scores of CRC samples:

Rish Score � ∑
n

i�1
coef(Xi) × exp (Xi)

“Coef”, “exp”, and “n” represented the coefficient of the gene,
the expression level, and the number of genes, respectively. The
median risk score was used as the threshold. Patients with risk
scores greater than the threshold (median risk score) were included
in the high-risk group and the rest in the low-risk group. Receiver
operating characteristics (ROC) and Kaplan-Meier survival curves
were employed to assess the effectiveness of the signature. Principal
component analysis (PCA) was conducted to verify whether the
risk score could distinguish high- and low-risk score groups.

Two GEO validation cohorts were recruited to vertify the
predictive accuracy of the model developed from the TCGA set.
The above cut-off value was used to divide all CRC patients into
high- and low-risk score groups, the same method was employed
for the predictive power of the signature in OS prediction.

Nomogram Construction and Assessment
We explored the risk score with the corresponding CRC samples’
clinical information, including age, gender, tumor site, and TNM
stage. Additionally, we also explored whether the risk levels would
affect the prognosis of patients in distinct clinical variable groups.
Univariate and multivariate models were employed to ascertain
whether the signature could be an independent predictive
indicator for the prognosis of CRC patients. Then, a
nomogram integrating risk score and clinical parameters was
built using the “rms” R packages. ROC and calibration curves
were employed to validate its accuracy is demonstrated.

Immune Activities Analysis
The ssGSEA algorithm was used to quantify the scores of 16
tumor immune infiltration cells (TIICs) and the function of
13 immune-related pathways. The proportion of 22 TIICs in
two risk score groups was further quantified with CIBERSORT
algorithm. The immune score, stromal score, ESTIMATE score
were calculated through ESTIMATE algorithm to quantify the
tumors microenvironment (Arbour et al., 2021). Two immune
checkpoints (PD-1 and PD-L1) were chosen to assess the
differences in their expression levels in two risk subgroups.

Targeted Drug and Immunotherapy
In this study, the capability of the signature in predicting
sensitivity of chemotherapy and immunotherapy was
investigated. In the aspect of chemotherapy, half maximal

inhibitory concentration (IC50) was used to predict the
sensitivity of chemotherapy drugs in the high- and low-risk
groups. Meanwhile, potential immune checkpoint inhibitors
(ICIs) response was predicted with TIDE algorithm (Jiang
et al., 2018).

Gene Set Enrichment Analysis
To investigate the biological pathways of the subgroups, we
further generated a gene set enrichment analysis (GSEA) for
functional enrichment analysis. Gene sets with p-value and
Q-value < 0.05 were the cutoff criterion for significant gene
enrichment.

Statistical Analysis
Data were analyzed by R software version 4.1.0. Log-rank test was
used for survival analysis. Wilcoxon rank-sum or Kruskal–Wallis
tests were utilized to compare differences between two or three
groups, respectively. The ROC curves were plotted to access the
prognostic value of the model.

RESULTS

PPI Network and GO and KEGG Enrichment
Analyses
Among 279 senescence-related genes, 93 DEGs in CRC
patients of the TCGA cohort were identified with FDR
<0.05 and FC > 1.5. Volcano and heatmap representations
of senescence-related DEGs are provided in Figures 1A,B.
Then, Protein-protein interaction (PPI) networks and
functional enrichment analyses were constructed to
comprehensively investigate these DEGs. As shown by PPI
analysis, 84 of these 93 DEGs formed interaction modules
(Supplementary Figure S1A). By using the cytoHubba
plugin, we screened 10 hubgenes (Supplementary Figure
S1B). GO functional annotation showed that the 93 DEGs
are mainly related to regulation of cell cycle phase transition,
transcription regulator complex, and DNA-binding
transcription factor binding (Supplementary Figure S1C).
KEGG signaling enrichment annotation showed that these
DEGs are mainly enriched in the cell cycle, cellular
senescence, p53 signaling pathway, and other tumor-related
signal pathways (Supplementary Figure S1D).

Establishment and Validation of the
Senescence-Related Signature
To explore whether these senescence-related genes are related
to the prognosis of CRC, univariate COX regression analysis
was applied. Based on the TCGA cohort, 15 genes were
identified (Figure 1C). As shown in Figures 1D,E, 15
genes were subject to LASSO Cox regression analysis to
avoid overfitting, and 11 out of 15 genes were chosen as
the appropriate candidates for constructing a risk
signature. Subsequently, multivariate Cox regression
analysis obtained 5 genes (CAV1, FOXM1, MAD2L1,
NDRG1, and VEGFA) to build a prognostic signature
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(Figure 1F). Risk score = expression (CAV1) × 0.024 +
expression (FOXM1) × (0.019) + expression (MAD2L1) ×
(-0.102) + expression (NDRG1) × (0.012) + expression
(VEGFA) × (0.041). Median risk scores divided the cohort
of CRC patients into the low- and high-risk subgroups. To
analyze the translational levels of the signature genes, the

Human Protein Atlas (HPA) database can be used, showing
the expression and localization of the corresponding protein.
The results showed that FOXM1, MAD2L1, NDRG1, and
VEGFA was highly expressed in CRC tissue, wihle CAV1
was lowly expressed in CRC tissue (Supplementary
Figure S2).

FIGURE 3 | Clinical value of the risk score. (A) Association of risk score with TNM stage. (B,C) Univariate analysis of risk scores and clinicopathological parameters
in the training (B) and GSE39582 cohort (C). (D,E) Multivariate Cox regression analysis of risk scores and clinicopathological parameters in the training (D) and
GSE39582 cohort (E). (F) Prediction of the nomogram based on clinical traits and risk score. (G,H) ROC curves of the nomogram for OS prediction at three (G) and
5 years (H). (I,J) Calibration curve of the nomogram for predicting OS rates at three (I) and 5 years (J).
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Internal and External Validation of the
Signature
In the training cohort, the Kaplan-Meier analysis revealed that
high-risk group had lower OS compared to low-risk group (p <
0.001, Figure 2A). Also, mortality was increased in CRC patients
with increasing risk scores (Figure 2B). PCA analysis revealed
that there was a clear division in two risk subgroups (Figure 2C).
ROC plots were also used to assess diagnostic efficiency, with
AUCs of 0.867 and 0.845 for 3 and 5-years survival, respectively
(Figure 2D).

To confirm the robustness of the signature, the risk scores of CRC
patients were calculated in two external validation sets (GSE39582
andGSE17536) using the same formula, and divided patients into the
high- and low-risk subgroups according to the cutoff of the training
cohort. Likewise, high-risk was associated with OS (Figures 2E,I),
and the number of deaths increased with increasing risk scores
(Figures 2F,J). PCA demonstrated overt separation of both
subgroups (Figures 2G,K). The ROC further indicated the
predicting accuracy of the signature (Figures 2H, 2L).
Additionally, the Imvigor210 dataset of the treatment response
data of patients who underwent anti-PD-L1 immunotherapy was
retrieved to validate the predictive ability of the senescence-based
signature in ICI therapy. Kaplan-Meier analysis showed that a high-
risk score was associated with a poorer survival rate than a low risk
score (Supplementary Figure S3).

Prognostic Value of the Signature
In our study, we analyzed the prognosis of patients in low- and
high-risk groups among distinct clinical variable subgroups. As
shown in Supplementary Figure S4, patients with high-risk
scores had poorer survival probabilities than those with low-
risk scores in all distinct clinical variable subgroups. In addition,
we further investigated the association between risk scores and
each clinical characteristic. The results showed that the risk score
was linked to the TNM stage (p < 0.01; Figure 3A). Subsequently,
we verified the independence and applicability of the risk score in
the training and GSE39582 sets. Univariate and multivariate Cox
regression analysis results showed that the signature could
independently predict the prognosis of CRC patients,
regardless of age, gender, tumor site, histological type, and
TNM stage (p < 0.001, Figures 3B–E).

Development and Assessment of the
Nomogram
An approach by which 3- and 5-years OS rates could be more
accurately predicted was to construct a nomogram model based
on Cox regression results (Figure 3F), which included risk score,
age, and TNM stage. As shown in Figure 3F, this nomogram can
predict the 3- and 5-survival for a patient based on the sum of the
scores. The ROC curve revealed the high accuracy of the
nomogram for 3-years (AUC = 0.80) and 5 -year (AUC =
0.788) survival rates (Figures 3G,H). The calibration curves
comparing the predicted and actual survival rates of CRC
patients indicated that the predicted survival rates were in
good agreement with those actual rates (Figures 3I,J).

Correlations Between the Risk Scores
and TME
To better investigate the relationship between risk score and immune
characteristics, ssGSEAwas used to calculate the enrichment scores of
various immune cells. According to Figure 4A, the relative scale of
fraction for CD8+ T cells and NK cells was obviously lower in the
high-risk group than that in the low-risk group. On the contrary, the
fraction of macrophages and T helper cells were much lower in the
low-risk group. We also found substantial variations in immune
function in terms of T cell co-stimulation, type I IFN response, and
type II IFN response (Figure 4B). Furthermore, CIBERSORT
algorithms were employed to calculate the scores of various TIICs.
Results suggested that the infiltration abundance of CD8+ T cells,
memory activated CD4+ T cells, macrophages M1, naive B cells, and
resting dendritic cells in the high-risk groupwas obviously lower than
that in the low-risk group, and their infiltration abundance decreased
with increasing risk score (Figure 4C). However, the infiltrative
abundance of M2 macrophages, T cells regulatory (Tregs), and
Tfh cells was distinctly higher in the high-risk group, and their
abundance increased prominently with risk scores increased
(Figure 4C). In addition, patients with a low-risk score presented
a higher level of the immune score, stromal score, and ESTIMATE
score than those with a high-risk score (Figure 4D).

Relationship Between the Signature and
CRC Therapy
Given the significance of checkpoint treatment, we investigate
more into the variations in immune checkpoint expression
between different risk subgroups. The results indicated that
the expression of PD-1 and PD-L1 in the low-risk group were
higher than those in the low-risk group (Figures 5A,B).
Furthermore, we applied the TIDE algorithms to evaluate the
effectiveness of the signatures in forecasting ICIs responsiveness
in CRC. TIDE scores were higher in the high-risk score group
compared to the low-risk group (Figure 5C). Taken together, the
signature can predict the benefit of CRC immunotherapy.

Chemotherapeutic drug sensitivity analysis will help guide the
optimal selection of commonly used chemotherapeutic drugs for
CRC. By comparing IC50 values in high- and low-risk groups,
Wilcoxon signed-rank test was used to evaluate chemosensitivity.
The result indicated that the patients with low-risk scores were
more sensitive to cisplatin, docetaxel, gemcitabine, epothilone B,
andMetformin, while patients with the high-risk score were more
sensitive to nilotinib, saracatinib (AZD0530), dasatinib, and
imatinib (Figure 5D-L).

GSEA Enrichment Analysis
To clarify the important pathway of signature enrichment related
to pyroptosis, we conducted GSEA. As shown in Supplementary
Table S2, 55 enrichment pathways with significant variations
between low and high-risk groups were identified at the criteria of
FDR <0.25, p < 0.05. The top five signaling pathways in the high-
risk group were axon guidance, complement and coagulation
cascades, ECM receptor interaction, focal adhesion, and
hematopoietic cell lineage (Figure 6A). The top five signaling
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pathways in the low-risk group were huntingtons disease,
oxidative phosphorylation, parkinsons disease, proteasome,
and ribosome (Figure 6B).

DISCUSSION

CRC is a highly heterogeneous disease, and survival time
varies widely among patients with similar clinical stages.
Cellular senescence is recognized as an effective barrier

against tumorigenesis and can be promoted by immune
surveillance (Ou et al., 2021). Most research on cellular
senescence has focused on non-tumor cells, but tumor cells
can also undergo senescence. The treatment of cancer
consisting of pro-senescence and senolytic therapy has also
been explored, which is expected to become new approaches
for targeted therapy of cancer (Wang et al., 2022). Increasing
evidence suggests that senescent cells can be eliminated by
senescence-associated secretory phenotype (SASP)-elicited
immune responses involving both innate and adaptive

FIGURE 4 | Correlations between the risk scores and TME. (A) The ssGSEA scores of immune infiltrating cells. (B) The ssGSEA scores of immune functions. (C)
The proportion of 22 immune infiltrating cells in two risk subgroups. (D) TME score in two risk subgroups.
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immunity, so activation of the host immune system is a
particularly attractive approach to clearing senescent cancer
cells (Schneider et al., 2021; Wang et al., 2022). However, the
correlation between cellular senescence and TME remains
unclear, and the value of cellular senescence-related genes

in assessing immune infiltration and clinical outcome in CRC
has not been reported. Therefore, this study aimed to establish
a new prognostic signature based on senescence-related genes
to help accurately predict the prognosis of CRC patients and
guide individualized treatment.

FIGURE 5 | Correlation between the predictive signature and CRC therapy. (A,B) The expression value of PD-1 and PD-L1 between two risk subgroups. (C)
Comparison of TIDE score between low- and high-risk subgroups. (D–L) Estimated drug sensitivity in patients with high- and low-risk subgroups.

FIGURE 6 | Functional enrichment analysis between low- and high-risk groups. The top five signaling pathways in the high- (A) and low-risk subgroup (B).
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In this work, we analyzed the role of senescence in CRC using
the public databases. And 93 differentially expressed senescence-
related genes were identified betweenCRC and normal samples. To
comprehensively explore the mechanism of senescence in CRC, we
performed univariate Cox regression analysis and LASSO Cox
regression analysis on these DEGs to develop a senescence-related
signature in the training cohort. The signature contained five
senescence-associated genes: CAV1, FOXM1, MAD2L1,
NDRG1, and VEGFA. CAV1 (caveolin-1) is a key structural
component of caveolae and plays an important role in a variety
of cellular processes including cholesterol homeostasis, vesicle
transport, and tumor progression (Ha and Chi, 2012). CAV1
has been shown to play a dual role in tumorigenesis, inhibiting
or promoting tumor growth depending on the cellular context (Ha
and Chi, 2012; Kamposioras et al., 20221080). Several studies have
reported the effect of CAV1 expression on CRC, but there were no
consistent results (Alshenawy and Ali, 2013; Xue et al., 2015; Zhao
et al., 2015). Typically, CAV1 expression is elevated in CRC tissue
compared to adjacent normal tissue (Alshenawy and Ali, 2013; Xue
et al., 2015). CAV1 expression was associated with
clinicopathological traits and prognosis of CRC patients (Xue
et al., 2015; Yang et al., 2018). CAV1 can affect the occurrence
and development of CRC through different mechanisms, including
via activation of SLC2A3/GLUT3 transcription (Ha and Chi,
2012), suppressing phosphorylation of epidermal growth factor
receptor (Yang et al., 2018), and stimulating HMGA1-mediated
GLUT3 transcription (Ha et al., 2012). FOXM1, a member of FOX
superfamily, has been implicated in CRC progression and
chemoresistance (Varghese et al., 2019; Yang et al., 2019; Yang
et al., 2020). Yang et al. (Yang et al., 2019) revealed that FOXM1
expression significantly elavated in CRC tissues and was positively
linked to tumor size, TNM stage, lymphatic and distant metastasis.
Overexpression of FOXM1 promoted oncogenic effects on CRC by
activating the β-catenin signaling pathway. Varghese et al.
(Varghese et al., 2019) showed that FOXM1 regulates 5-FU
resistance in CRC by regulating TYMS expression. Yang et al.
(Yang et al., 2020) FOXM1 simultaneously promote migration,
invasion, and drug resistance of CRC cells through upregulating
Snail. MAD2L1, as a member of the spindle checkpoint functional
complex, plays a crucial role in cell cycle regulation (Zhong et al.,
2015). MAD2L1 has been reported as a novel oncogene that plays a
role in regulating cancer cell growth and apoptosis (Ding et al.,
2020; Ding et al., 2022). NDRG1 has been reported to act as a
metastasis suppressor (Bae et al., 2013; Sahni et al., 2014). A recent
study shows that NDRG1 regulates filopodia-induced CRC
invasiveness by regulating CDC42 activity (Aikemu et al., 2021).
VEGFA is an endothelial growth factor and regulator of vascular
permeability (Claesson-Welsh and Welsh, 2013). Increasing
evidence suggests that VEGFA-dependent signaling pathways
play crucial roles in CRC progression (Terme et al., 2013; Dai
et al., 2020; Liu et al., 2020).

Furthermore, all CRC patients were categorized into low- and
high-risk subgroups depending upon the median value. Internal
and external validation results showed that risk scores
independently and effectively predicted 3- and 5-years survival
in CRC patients. We also conducted univariate and multivariate
Cox analyses to explore the effectiveness of the signature and

clinical parameters as indicators of patient prognosis. It was
concluded that the risk score served as an independent
prognostic predictor for CRC patients. To better quantify the
3- and 5-years survival of CRC samples, a nomogram, combined
with these independent indicators, was constructed. The
predictive accuracy of the nomogram was verified by the ROC
curve and calibration plot. Therefore, it may be used as a
supplementary tool to better assist the prognosis evaluation
and treatment of CRC.

We calculated the infiltration of immune cells and TME
scores in the high-and low-risk groups. The ssGSEA and
CIBERSORT results showed the risk score was closely
related to the relative contents of TIICs, especially for
T cells and macrophages. And with the increase of the risk
score in the prognostic signature, relative contents of CD8+

T cells tended to be downregulated, while the relative contents
of macrophages tended to be upregulated. This discovery is in
line with prior research that intratumoral T cell density has
been shown to be an independent prognostic factor in CRC
(Galon et al., 2006; Miller et al., 2021). CD8+ T cells are
considered major drivers of anti-tumor immunity (van der
Leun et al., 2020). Accumulating evidence suggests that
increased tumor-related macrophage infiltration results in a
poor prognosis in CRC (Wei et al., 2019). Tumor-associated
macrophage-induced immune responses were already
considered critical determinants of tumor progression (Pan
et al., 2020). Tumor-associated macrophages can also perform
pre-tumor activities such as enhancing tumor cell
proliferation, and invasion, angiogenesis, and inhibiting
anti-tumor immune surveillance (Chen et al., 2021b;
Boutilier and Elsawa, 2021). Also, patients with low risk
score have a higher TME score than those with high risk score.

Emerging therapeutic strategies, including PD-1/PD-L1
inhibitors, are used for treating CRC (Yaghoubi et al.,
2019). In our study, the expression levels of PD-1 and PD-
L1 in the low-risk group were higher compared to those in the
high-risk group, which implied that the signature would be
able to predict their expression levels and provide guidance
during immunotherapy with ICIs. Furthermore, we found
that patients with high-risk scores had a higher TIDE score
than those with the low-risk score. A lower TIDE score
indicates a lower possibility of tumor immune evasion and
may benefit from immunotherapy, which further explains the
better prognosis of patients in the low-risk group in our study.
These findings provide a basis for a more comprehensive
understanding of anti-tumor immune responses in CRC
patients, as well as guidance for personalized
immunotherapy treatments. Chemotherapy and
immunotherapy are the most important adjuvant therapies
for CRC, which are of great significance for improving both
the prognosis of patients and their quality of life. Patients with
low risk score was more sensitive to cisplatin, docetaxel,
gemcitabine, epothilone B, and Metformin, while patients
with the high-risk score were more sensitive to nilotinib,
saracatinib, dasatinib, and imatinib. The combination of
chemotherapy and immunotherapy can provide precise and
individualized therapy for patients with a different risk scores.
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CONCLUSION

This study successfully constructed a 5-gene senescence-related
signature that could be used to classify CRC patients. The
prognostic model shows the convincing clinical value and may
provide new ideas for improving the OS rate of CRC patients and
facilitating personalized treatment.
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Association Between Telomere
Length and Skin Cancer and Aging: A
Mendelian Randomization Analysis
Nannan Son, Yankun Cui* and Wang Xi*

Jiangxi University of Chinese Medicine, Nanchang, China

Background: Telomere shortening is a hallmark of cellular senescence. However,
telomere length (TL)-related cellular senescence has varying effects in different cancers,
resulting in a paradoxical relationship between senescence and cancer. Therefore, we
used observational epidemiological studies to investigate the association between TL and
skin cancer and aging, and to explore whether such a paradoxical relationship exists in skin
tissue.

Methods: This study employed two-sample Mendelian randomization (MR) to analyze the
causal relationship between TL and skin cancer [melanoma and non-melanoma skin
cancers (NMSCs)] and aging. We studied single nucleotide polymorphisms (SNPs)
obtained from pooled data belonging to genome-wide association studies (GWAS) in
the literature and biobanks. Quality control was performed using pleiotropy, heterogeneity,
and sensitivity analyses.

Results: We used five algorithms to analyze the causal relationship between TL and skin
aging, melanoma, and NMSCs, and obtained consistent results. TL shortening reduced
NMSC and melanoma susceptibility risk with specific odds ratios (ORs) of 1.0344 [95%
confidence interval (CI): 1.0168–1.0524, p = 0.01] and 1.0127 (95% CI: 1.0046–1.0209,
p = 6.36E-07), respectively. Conversely, TL shortening was validated to increase the odds
of skin aging (OR = 0.96, 95% CI: 0.9332–0.9956, p = 0.03). Moreover, the MR-Egger,
maximum likelihood, and inverse variance weighted (IVW) methods found significant
heterogeneity among instrumental variable (IV) estimates (identified as MR-Egger skin
aging Q = 76.72, p = 1.36E-04; melanoma Q = 97.10, p = 1.62E-07; NMSCsQ = 82.02,
p = 1.90E-05). The leave-one-out analysis also showed that the SNP sensitivity was robust
to each result.

Conclusion: This study found that TL shortening may promote skin aging development
and reduce the risk of cutaneous melanoma and NMSCs. The results provide a reference
for future research on the causal relationship between skin aging and cancer in clinical
practice.

Keywords: telomere length, skin cancer, skin aging, mendelian randomization, age
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1 INTRODUCTION

Telomeres are DNA–protein complexes, located at the
chromosome ends of eukaryotic cells, that protect the
chromosomes from degradation and fusion (Shay, 2018).
Defective telomere function has been shown to lead to genetic
instabilities in cancer, with the telomeres shortening as cells age
(Blasco, 2005). Telomere length (TL) in cells has been extensively
studied as an aging biomarker and risk factor for age-related
diseases. However, the extent to which TL can reflect cancer
relevance remains unclear (Arsenis et al., 2017). Telomere
shortening accelerates skin aging while acting as a mitotic
clock, preventing abnormal proliferation in cancer
(Buckingham and Klingelhutz, 2011). Skin is a highly self-
renewing tissue that must undergo extensive proliferation
throughout an organism’s life cycle. It is generally believed
that aging caused by telomere shortening can increase cancer
risk. However, many studies have found that cancers such as
melanoma may occur due to excessive telomere lengthening
(Ismail et al., 2021). Clarifying this contradiction requires
further clinical and epidemiological research.

The skin is the largest organ in the human body, accounting
for approximately 15% of an adult’s body weight. Skin aging is a
major problem and involves multiple complex factors, such as
cellular DNA damage and changes in mitochondrial function
(Lowry, 2020). As one of the most common cancers, the
prevalence of skin cancer has been increasing over the past
3 decades. Skin cancers are mainly divided into melanoma and
non-melanoma skin cancers (NMSCs); the latter includes basal
cell carcinoma and squamous cell carcinoma cancer (Linares
et al., 2015). According to the World Health Organization, as
many as 60,000 people worldwide die of skin cancer each year,

with melanoma being responsible for most cancer-related deaths.
Therefore, exploring the correlation between multiple risk
factors, skin cancer, and aging is necessary.

We conducted Mendelian randomization (MR) analysis to
explore the causal relationship between TL and skin aging and the
risk of skin cancer (NMSCs and melanoma). MR is also known as
“Mendelian deconfounding” because it aims to give an estimate of
causality without bias due to confounders. The instrumental
variables (IVs) in MR studies must satisfy three core
assumptions: 1) genetic IVs are related to exposure factors, 2)
genetic IV formation can be regarded as a random assignment
and has nothing to do with confounding factors, and 3) IVs can
only be associated with exposure factors that affect the outcomes
(Bowden and Holmes, 2019) (Figure 1). To avoid violating the
assumptions of MR, first, we need to perform horizontal
pleiotropy analysis to prevent IVs from directly affecting the
results without exposure factor (Morrison et al., 2020). Second,
removing SNPs in linkage disequilibrium (LD) (Cheng et al.,
2020), avoiding IVs associated with causal variants may
contribute to confounders. Third, intrinsic differences between
populations (confounding factors) can be mitigated by restricting
study populations to the same ethnic background.

2 MATERIALS AND METHODS

2.1 Study Design Overview
An overview of the study design is drawn in Figure 2. we used a
two-sample MR study to explore possible causal relationships
between our study’s exposure and outcome. We used genome-
wide association study (GWAS) datasets to estimate the effect of
the exposure (TL) on the outcomes (skin cancer and skin aging).

FIGURE 1 | MR basic requirements framework. Two-sample MR studies need to satisfy three assumptions. Assumption 1: Instrumental variables should be
associated with telomere length. Assumption 2: The selected instrumental variables should be independent of confounders. Assumption 3: Instrumental variables should
affect outcomes only through exposure and not through direct correlation.
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We selected single nucleotide polymorphisms (SNPs) closely
associated with TL as IVs based on previously published
GWAS databases and literature reports. The effects of the IVs
on the exposure and outcomes were obtained from two
independent samples. Ethical approval was provided in the
original article for the GWAS-pooled dataset used in this
study. Therefore, informed consent was no longer required.

2.2 Genetic Instrument Selection
Based on literature reports, SNP sites related to TL were screened.
The SNPs associated with TL used in the present study came from
a large GWAS of 7859 individuals from Europe. TL was measured
in a mixed population of leukocytes using the established
quantitative polymerase chain reaction technique, which
expresses TL as the ratio of the number of telomere repeats to
single-copy genes. Normalizing leukocyte TL measurements

required the use of calibration samples or the quantification of
a standard curve (Li et al., 2020). Statistics using cohort data
identified 17 genome-wide significant loci, including several
novel genes (SENP7, MOB1B, CARMIL1, PRRC2A, TERF2,
and RFWD3), and confirmed the presence of other relevant
genes (Table 1).

2.3 Skin Cancer and Skin Aging
Genome-Wide Association Studies
Selection
We searched the United Kingdom Biobank for aggregated GWAS
data on common skin aging and cancers (NMSCs andmelanoma)
(Sudlow et al., 2015). Data on skin aging were obtained from a
facial skin aging survey in 423,999 European participants; the skin

FIGURE 2 | Schematic diagram of the two-sample-MR analysis process. (A) Screening from GWAS data for selected SNPs significantly associated with exposure
(p < 5.00 E-08 at genome-wide threshold). (B) Obtaining independent SNPs and examining effect size outliers with linkage disequilibrium (LD) with r < 0.01 or physical
distance greater than 5000 kb. (C) Two-sample MR analysis by five algorithms. (D) Quality control by sensitivity analysis.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9317853

Son et al. Telomere and #160; Length With Skin Cancer and Aging

121

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


cancer GWAS included 3,751 melanoma cases and 23,694
NMSCs, while 372,016 European participants were collected as
controls. Analyses were adjusted for age, sex, and principal
components when necessary. In addition, all SNPs in the MR
analysis were derived from a GWAS of European ancestry to
minimize potential bias due to population heterogeneity.

2.4 Single Nucleotide Polymorphisms
Inclusion and Exclusion Criteria
To verify the validity of the IVs included in the MR analysis, we
set the following screening criteria for eligible SNPs in the
previously identified GWAS set. We selected SNPs that were
significantly associated with our exposure (p ≤ 5E-8) and that had
a certain probability of mutation (minor allele frequency, MAF ≥

5%) with no reported locus coincidence. To estimate LD between
SNPs, 1000 Genome Project samples were used (R2 < 0.01) (Siva,
2008). When there was an LD effect between SNPs, we selected
the genetic variant with the lowest p value. We excluded all
palindromic SNPs that could introduce ambiguity to the identity
of the effector allele in the exposure GWAS. To limit bias from
weak IVs, the F statistic should have been greater than 10. The
formula for calculating F was as follows: R2 × (n−k−1)/[(1−R2) ×
k], where n is the sample size of the GWAS, k is the number of
SNPs, and R2 is the proportion of telomere variability explained
by each SNP. Specifically, the R formula calculates: 2 × beta2 × (1-
EAF) × EAF, where EAF is the effect allele frequency, and beta is
an estimate of the genetic effect of each SNP on TL. To satisfy the
third core hypothesis, SNPs associated with skin aging, and skin
cancer were excluded, as were pathways that did not include TL.

TABLE 1 | Association of 42 TL SNPs.

SNP ID Closest gene EA NEA EAF Beta SE p value

rs10936600 LRRC34 T A 0.2430 −0.0858 0.0057 6.42E-51
rs7705526 TERT A C 0.3283 0.0820 0.0058 4.82E-45
rs4691895 TERT C G 0.7829 0.0577 0.0061 1.47E-21
rs9419958 STN1 C T 0.8616 −0.0636 0.0071 4.77E-19
rs75691080 STMN3 T C 0.0912 −0.0671 0.0089 5.75E-14
rs59294613 POT1 A C 0.2928 −0.0407 0.0055 1.12E-13
rs8105767 ZNF208 G A 0.2887 0.0392 0.0054 5.21E-13
rs3219104 PARP1 C A 0.8302 0.0417 0.0064 9.31E-11
rs2736176 PRRC2A C G 0.3134 0.0345 0.0055 3.41E-10
rs3785074 TERF2 G A 0.2628 0.0351 0.0056 4.50E-10
rs7194734 MPHOSPH6 T C 0.7816 −0.0369 0.0060 6.72E-10
rs34978822 RTEL1 G C 0.0148 −0.1397 0.0227 7.04E-10
rs34991172 CARMIL1 G T 0.0684 −0.0608 0.0105 6.03E-09
rs228595 ATM A G 0.4169 −0.0285 0.0050 1.39E-08
rs2302588 DCAF4 C G 0.1003 0.0476 0.0084 1.64E-08
rs13137667 MOB1B C T 0.9591 0.0765 0.0137 2.37E-08
rs55749605 SENP7 A C 0.5790 −0.0373 0.0067 2.38E-08
rs62053580 RFWD3 G A 0.1694 −0.0389 0.0071 3.96E-08
rs12909131 ATP8B4 T C 0.2309 −0.0308 0.0058 1.15E-07
rs1744757 MROH8 T C 0.8507 0.0359 0.0068 1.38E-07
rs2124616 TYMS A G 0.1400 −0.0374 0.0072 1.72E-07
rs2613954 RP11 T C 0.8858 −0.0381 0.0078 1.10E-06
rs12065882 MAGI3 G A 0.2084 0.0298 0.0062 1.36E-06
rs2386642 ASB13 A G 0.6732 −0.0256 0.0053 1.44E-06
rs56810761 UNC80 T C 0.2698 0.0275 0.0057 1.45E-06
rs62365174 TENT2 G A 0.0882 −0.0544 0.0113 1.50E-06
rs112655343 ATF7IP T C 0.1017 0.0425 0.0090 2.22E-06
rs60160057 DCLK2 A G 0.2115 −0.0287 0.0062 3.15E-06
rs117536281 CDCA4 G A 0.0342 0.0850 0.0183 3.31E-06
rs59192843 BBOF1 G T 0.0592 0.0655 0.0141 3.52E-06
rs57415150 CSMD1 A G 0.0417 −0.0584 0.0126 3.68E-06
rs6038821 LINC01706 T A 0.0383 0.0596 0.0129 3.98E-06
rs144204502 TK1 T C 0.0142 −0.0896 0.0196 4.92E-06
rs6107615 PROKR2 C T 0.4217 −0.0228 0.0050 5.30E-06
rs117037102 CEP295 T C 0.0179 0.0979 0.0218 6.81E-06
rs7276273 KRTAP10-4 C A 0.0074 −0.1502 0.0334 6.90E-06
rs11665818 IFNL2 A G 0.1946 0.0278 0.0062 7.04E-06
rs3213718 CALM1 T C 0.5828 0.0224 0.0050 7.22E-06
rs143276018 NMRK2 C T 0.0182 −0.1015 0.0229 9.02E-06
rs7311314 SMUG1 A G 0.3174 0.0240 0.0054 9.50E-06
rs35675808 CD247 G C 0.0281 0.0736 0.0166 9.54E-06
rs117610974 UNC13C G C 0.0094 −0.1540 0.0350 1.05E-05

EA, indicates effect allele; NEA, non-effect allele; SE, standard error; SNP, single nucleotide polymorphism; EAF, effect allele frequency.
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2.5 Method Selection
We estimated the risk relationship between TL and skin aging and
cancer using the MR Egger, inverse variance weighted (IVW),
weighted median, maximum likelihood, and weighted mode MR
methods. Considering the potential pleiotropic genetic variation
effects, to avoid bias, we focused on the MR-Egger regression
results, the slope of which can estimate the directed pleiotropy
magnitude. IVW is used to take a weighted average of random
variable measurements. Each random variable is weighted using
the inverse of its variance. This method minimizes the mean
variance and is often used in meta-analyses to integrate
independent measurement results. Maximum likelihood uses
known sample results to infer the parameter values that are
most likely (maximum probability) to lead to such an
outcome, which outperforms naive regression methods and
reduces bias in misspecification. In addition (Luque-Fernandez
et al., 2018), we also performed weighted median and weighted
mode analysis using IVs to accurately estimate causal effects for
more than 50% of the weights. Results were presented as odds
ratios (ORs) and 95% confidence intervals (CIs).

2.6 Sensitivity Analysis
A sensitivity analysis was performed using the heterogeneity,
pleiotropy, and leave-one-out tests. First, the MR-Egger
method was used to analyze pleiotropy and to verify
whether a single locus affected multiple phenotypes. The
pleiotropy refers to the phenomenon of a single locus
affecting multiple phenotypes. Horizontal pleiotropy occurs
when genetic variants are associated with multiple phenotypes
along multiple pathways, which can invalidate results derived
from MR analysis (Bowden et al., 2017). MR-Egger regression
analysis can be used to evaluate the bias generated by horizontal
pleiotropy, and its regression intercept can evaluate the size of
pleiotropy. The closer the intercept is to 0, the smaller the
possibility of gene pleiotropy. If p > 0.05, it is considered that
the possibility of gene pleiotropy in the causal analysis is weak,
and its effect can be ignored.Second, the SNPs were individually
removed through a leave-one-out sensitivity test, and the
drawn forest map was viewed after analysis. If a certain SNP
is eliminated, the result changes greatly, indicating that this
SNP is an outlier and needs to be eliminated. If the overall solid
line do not change much after removing a certain SNP (all solid
line are on the same side of 0), the results are reliable. Third,
there may be heterogeneity in IVs from different platforms or
populations affecting resultsthe. Combined MR-Egger,
maximum likelihood, and IVW methods were used for
heterogeneity analysis, and the Cochran Q statistic was used
to standardize the heterogeneity analysis. We used a two-sided
p-value, with statistical significance set at p < 0.05. Statistical
analyses were performed using the “TwoSampleMR” package
in R 3.4.2.

3 RESULT

By screening and selecting SNPs based on the above criteria, we
identified 42 SNPs that met the TL criteria by means of

multiple tests such as LD (Table 1). The analysis found that
the causal relationship between TL and skin aging was
consistent across the MR-Egger, weighted median,
maximum likelihood, and weighted mode calculation
methods.These scatterplots representing SNPs reflect the
effects of TL on skin aging and skin cancer, as shown in
Figure 3A. The results indicated that the risk of skin aging
increased with TL shortening. The MR-Egger test showed that
TL was significantly associated with skin aging (OR = 0.96,
95% CI: 0.9332–0.9956, p = 0.03). In addition, the weighted
median, maximum likelihood, and weighted mode methods
showed that TL shortening increased the risk of skin aging
(Table 2). However, IVW did not reveal any causal link
between TL and skin aging (OR = 0.9880, 95% CI:
0.9735–1.0027, p = 0.11). The IVW method produces
consistent causal estimates by combining the Wald ratios of
the causal effects of each SNP, but this may also introduce an
invalid IV (Bowden et al., 2016). IVW methods are susceptible
to being hampered by extreme propensity scores, leading to
biased estimates and excessive variance (Li et al., 2019). Based
on the above five analyses, we concluded that the causal
relationship between TL and skin aging was significant.
According to the forest map drawn by SNP (Figure 4), the
analysis for skin cancer was adjusted to exclude four
palindromic SNPs (rs55749605, rs59294613, rs2386642, and
rs59192843). The risk relationship between TL and melanoma
and NMSCs showed consistent results across the five methods.
As shown by the MR-Egger method, TL was significantly
associated with NMSCs (OR = 1.0344, 95% CI:
1.0168–1.0524, p = 4.60E-04) and melanoma (OR = 1.0127,
95% CI: 1.0046–1.0209, p = 6.36E-07). Three methods,
including IVW, also demonstrated that the risk of both
melanoma and NMSCs decreased with TL shortening. As
shown in Figure 3, the five methods could intuitively
determine the direction of agreement. Therefore, we
concluded that TL was significantly associated with both
melanoma and NMSCs.

The quality controls for this study included pleiotropy,
heterogeneity, and sensitivity tests. MR-Egger regression
was used to test the pleiotropic effects of TL on skin aging,
NMSCs, and melanoma. The results of each group showed that
the effect of TL on skin aging and skin cancer had no
significant horizontal pleiotropic bias (skin aging, p = 0.1;
melanoma, p = 0.72; NMSCs, p = 0.72) (Table 3). The funnel
plot according to IVW and MR-Egger also suggests that there
was no horizontal pleiotropy (Figure 5). We utilized three
algorithms (MR-Egger, maximum likelihood, and IVW) to
analyze whether there was statistical heterogeneity among the
IV estimates. We found that there was substantial
heterogeneity among these IVs across the three outcomes
(i.e., for skin aging, MR-Egger Q = 76.72, p = 1.36E-04; for
melanoma, MR-Egger Q = 97.10, p = 1.62E-07; for NMSCs,
MR-Egger Q = 538.50, p = 1.90E-05). We analyzed the
sensitivity by performing the leave-one-out sensitivity test
and found that regardless of which SNP was removed, it
would not fundamentally impact the results (all lines were
on the same side of 0) (Figure 6), This indicated that the MR
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FIGURE 3 | Scatter plot of genetic causality between TL and skin aging and cancer using different MR methods.(A) Skin aging; (B) Melanoma; (C) NMSCs. The
slope of the line represents the causality of the different methods. The dark blue line represents Maximum likelihood, the light green line represents MR Egger, the dark
green line represents Weighted median, the light blue line represents IVW, and the red line represents Weighted mode.
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results were robust. The solid line is completely to the left of 0,
indicating that the estimated result from this SNP is that TL
shortening can increase skin aging. The solid line is completely
to the right of 0, indicating that the estimated result from this
SNP is that TL shortening can reduce the risk of skin cancer.
All SNPs are on the side of 0, representing the stabilityof the
results.In Figure 6A, the solid line is completely to the left of 0,
indicating that the estimated result for this SNP is that TL
shortening increases skin aging. In Figure 6B,C, the solid line
is completely to the right of 0, indicating that the estimated
result for this SNP is that TL shortening reduces the risk of
skin cance.

4 DISCUSSION

Telomere shortening is observed in most human cancers, but
it is worth noting that this phenomenon is controversial.New
research suggests that longer-than-expected telomeres (made
up of repetitive DNA sequences) are associated with an
increased risk of several cancers, including melanoma (De
Vitis et al., 2018). A novel point of this study is the
paradoxical issue of factor analysis from genetics.Exploring
epigenetic drivers of skin cancer and skin aging by means of
TL-related SNPs.There are 42 SNPs that met the inclusion
criteria for the core assumption of MR. Utilizing these IVs
not only enables inferring a causal relationship between
outcomes and exposure, but also effectively avoids
confounding bias in traditional epidemiological studies
(Tin and Köttgen, 2021). For example, the two SNPs
(rs7705526, rs4691895) that we screened for maintaining
TL are located near the TERT gene (Table 1). TERT is a
cancer-related gene, and mutations in the noncoding region
of the TERT gene are considered to be the cause of most
melanomas (Toussi et al., 2020). The second innovation of
this study, the MR study used an epidemiological approach to
explore the association between skin aging and skin cancer.
This study uses TL genetic variants as probes, reduces

confounding factors and reverse causality and may be
more convincing than classical observational experiments
(Davey Smith and Hemani, 2014).

Telomeres are nuclear protein complexes at chromosome
ends that maintain chromosomal stability, upon which
normal cell division, differentiation, and regeneration
depend (Turner et al., 2019). Normal telomeres and
telomerase can regulate skin cell physiological function and
abnormal proliferation; therefore, TLs play an essential role in
skin aging and cancer development (Ventura et al., 2019). We
used a two-sample MR to assess the association between TL
and skin aging and cancer. We found an increased likelihood
of skin aging with TL shortening. In contrast, the risk of
NMSCs and melanoma was significantly reduced with TL
shortening. Contrary to the general belief that cell
senescence can trigger cancer, TL shortening as a risk
factor for skin aging did not increase the risk of skin
cancer. This is consistent with recent clinical reports that
long telomeres are associated with increased mortality in
more than 2000 melanoma patients from hospital clinics
and the general population (Ismail et al., 2021).

Telomeres are closely linked to cellular aging, especially in
dermal cells. Telomere shortening in skin fibroblasts may lead
to epidermal aging and barrier function defects (Quan et al.,
2015). Long-term exposure to ultraviolet (UVA) radiation has
long been recognized as the most important factor in skin
aging. Studies have found that in fibroblasts exposed to UVA at
doses of 1000 or 10,000 mJ/cm2, TL was significantly shorter
than in unirradiated controls, negatively correlating with the
UVA dose (Ma et al., 2012). In addition, reactive oxygen
species (ROS) are considered another cause of skin aging
(Kammeyer and Luiten, 2015). Studies have shown that
ROS cause cellular senescence owing to accelerated telomere
shortening (Anderson et al., 2014). In the present study, all
four MR methods showed a significant relationship between
TL shortening and skin aging. Each standard deviation of TL
shortening was genetically predicted to increase the risk of skin
aging by 4.61%. The sensitivity analysis verified the reliability

TABLE 2 | MR estimates for each method to assess the effect of TL on skin aging and skin cancer.

Outcome MR Methods Number of
SNPs

OR
(95%CI)

SE P

Neuroblastoma MR-Egger 39 0.9639 (0.9332~0.9956) 0.0164 0.03
Weighted median 39 0.9799 (0.9632~0.9969) 0.0087 0.01

Simple mode Inverse variance weighted 39 0.9880 (0.9735~1.003) 0.0075 0.11
Maximum likelihood 39 0.9878 (0.9777~0.9982) 0.0053 0.02
Weighted mode 39 0.9758 (0.9582~0.9900) 0.0200 0.01
MR-Egger 38 1.0344 (1.0168~1.0524) 0.0088 4.60E-04
Weighted median 38 1.0231 (1.0138~1.0324) 0.0045 1.19E-06
Inverse variance weighted 38 1.0166 (1.0084~1.0249) 0.0041 6.33E-05
Maximum likelihood 38 1.0178 (1.0126~1.0231) 0.0027 1.09E-10
Weighted mode 38 1.0282 (1.0120~1.0447) 0.0079 1.79E-03

melanoma MR-Egger 38 1.0127 (1.0046~1.0209) 0.0041 6.36E-07
Weighted median 38 1.0057 (1.0019~1.0095) 0.0019 4.99E-03
Inverse variance weighted 38 1.0057 (1.0020~1.0095) 0.0019 2.68E-03
Maximum likelihood 38 1.0059 (1.0036~1.0082) 0.0011 6.36E-07
Weighted mode 38 1.0058 (1.0017~1.0103) 0.0023 1.96E-02
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FIGURE 4 | Forest map of skin cancer and aging risk based on TL genetic variants. (A) Skin aging; (B)Melanoma; (C)NMSCs.SNPs of TL were analyzed using IVW
and MR-Egger. Black dots represent estimates of causal effects of TL on skin cancer and aging (beta coefficients). The black line represents the estimated 95%
confidence interval.

TABLE 3 | Heterogeneity and pleiotropy analysis by MR Egger, IVW, Maximum likelihood.

Outcome MR Methods Cochran Q statistic Heterogeneity p-value Pleiotropy p-value

skin aging MR-Egger 76.72 1.36E-04 0.10
Inverse variance weighted 82.55 3.86E-05
Maximum likelihood 82.30 4.15E-05

NMSCs MR-Egger 82.02 1.90E-05 0.10
Inverse variance weighted 93.12 9.78E-07
Maximum likelihood 90.62 2.15E-06

melanoma MR-Egger 97.10 1.62E-07 0.72
Inverse variance weighted 106.60 1.15E-08
Maximum likelihood 105.44 1.71E-08
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of all SNP results using the leave-one-out method. Therefore,
maintaining TL can protect chromosome stability and prevent
skin aging caused by DNA breakage damage.

TL is a key factor in cell proliferative potential, and much
evidence supports the vital role of altered TL in cancer
pathogenesis (Xu et al., 2013). However, studies analyzing
the association between TL and cancer risk have yielded
conflicting conclusions (Aviv et al., 2017). Studies have
found that most solid cancers originating from
proliferating tissues display short telomere characteristics,
and most cancer incidence increases with age. In contrast, in
the general population, individuals with constitutively long
telomeres also have an increased risk of some serious cancers
(Savage et al., 2013). From Table 1, the genes of SNPs that
maintain TL are all related to cancer. For example, the
protection of telomere 1 (POT1) protein is an important
subunit of the Shelterin telomere-binding complex, which
can promote the development of various cancers by leading to
immortalization (Wu et al., 2020). Therefore, combined with

the multiple related genes we screened (including STN1,
STMN3, PRRC2A), we speculate that the telomere
shortening inhibitory pathway in tumors has been
determined at birth.when telomeres are too long, the
telomere reserve will not be depleted in time, which will
provide additional divisions for cancer cells, especially for
familial-prone tumors (melanoma glioma, non-Hodgkin
lymphoma, etc.) (Nieters et al., 2012; Feng et al., 2018; Ali
et al., 2021).

4.1 Limitations
Because of the small study population, the effect of TL on skin
aging and cancer was not found to be very significant. To bring
our results closer to reality, we used five algorithms with
different characteristics, such as the MR-Egger method, as a
reference. This method assessed whether genetic variation had
pleiotropic effects on the results that differed from zero on
average (directional pleiotropy) and provided consistent
causal effect estimates under a weaker assumption–the

FIGURE 5 | Funnel plot of skin cancer and aging risk based on TL genetic variants. (A) Skin aging; (B)Melanoma; (C)NMSCs.Causal effects were expressed as log
odds ratios for skin aging and skin cancer per unit shortening of telomere length. Overall causal estimates (beta coefficients) of telomere length and skin aging and skin
cancer estimated by the IVW (light blue line) and MR-Egger (dark blue line) methods are shown.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9317859

Son et al. Telomere and #160; Length With Skin Cancer and Aging

127

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


InSIDE (instrumental strength independent of direct effects)
assumption (Burgess and Thompson, 2017). Furthermore, we
selected the largest and most reliable GWAS available to
explore the causal relationship between TL and skin aging
and cancer. In our MR research framework, the interference of
confounders and reverse causality were minimized. In
addition, the original United Kingdom Biobank study
lacked a breakdown of the population (including gender
and age) and was unable to conduct further subgroup
analyses. Clinically, the complex physiological mechanisms
of TL and skin aging and cancer go well beyond these simple
models. Further studies are needed to identify the underlying

mechanisms that provide insights into skin aging and cancer
and to facilitate prevention.

5 CONCLUSION

This study supported the causal relationship that TL shorteningmay
promote the development of skin aging and reduce the risk of
cutaneous melanoma and NMSCs. The results provide a reference
for future research on the relationship between skin aging and cancer
in clinical practice. Also, our study provides evidence for skin aging
and cancer (melanoma and NMSCs) treatment and diagnosis.

FIGURE 6 | Forest plot for leave-one-out sensitivity analysis. (A) Skin aging; (B)Melanoma; (C) NMSCs.Each horizontal solid line reflects the result estimated by a
single SNP using the Wald ratio method.The solid line is completely to the left of 0, indicating that the estimated result from this SNP is that TL shortening can increase
skin aging. The solid line is completely to the right of 0, indicating that the estimated result from this SNP is that TL shortening can reduce the risk of skin cancer. All SNPs
are on the side of 0, representing the stabilityof the results.
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Identification of a novel cellular
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The study was conducted to construct a cellular senescence-related risk score

signature to predict prognosis and immunotherapy response in colon cancer.

Colon cancer data were acquired from the Gene Expression Omnibus and The

Cancer Genome Atlas databases. And cellular senescence-related genes were

obtained from the CellAge database. The colon cancer data were classified into

different clusters based on cellular senescence-related gene expression. Next,

prognostic differential genes among clusters were identified with survival

analysis. A cellular senescence-related risk score signature was developed by

performing the LASSO regression analysis. Finally, PCA analysis, t-SNE analysis,

Kaplan-Meier survival analysis, ROC analysis, univariate Cox regression analysis,

multivariate Cox regression analysis, C-index analysis, meta-analysis, immune

infiltration analysis, and IPS score analysis were used to evaluate the significance

of the risk signature for predicting prognosis and immunotherapy response in

colon cancer. The colon cancer data were classified into three clusters. The

patients in cluster A and cluster B had longer survival. A cellular senescence-

related risk score signature was developed. Patients in the low-risk score group

showed a better prognosis. The risk score signature could predict colon cancer

patients’ prognosis independently of other clinical characteristics. The risk score

signature predicted the prognosis of colon cancer patients more accurately

than other signatures. Patients in the low-risk score group showed a better

response to immunotherapy. The opposite was true for the high-risk score

group. In conclusion, the cellular senescence-related risk score signature could

be used for the prediction of prognosis and immunotherapy response in colon

cancer.
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Introduction

Nowadays, colon cancer has high morbidity and mortality all

over the world, which seriously threatens human life (Sung et al.,

2021). Surgical resection is preferred for early-stage colon cancer,

while systemic chemotherapy is the main treatment for advanced

colon cancer (Chakrabarti et al., 2020; Body et al., 2021).

However, the effectiveness of chemotherapy for partial colon

cancer patients is often unsatisfactory due to the emergence of

drug resistance (Azwar et al., 2021). In recent years,

immunotherapy has brought new hope for the treatment of

cancer (Lichtenstern et al., 2020). Immunotherapy drugs

(PD1/PD-L1 blocker and CTLA-4 blocker) have been shown

to improve the prognosis of colon cancer patients (Yaghoubi

et al., 2019; Ben et al., 2021). Unfortunately, the prognosis and

immunotherapy responses of different colon cancer patients are

significantly differentiated due to the existence of tumor

heterogeneity (Marisa et al., 2021; Guo et al., 2022).

Therefore, it is particularly important to distinguish between

patients with colon cancer who show a better prognosis and

immunotherapy response.

Cellular senescence, the permanent cessation of cell

proliferation, is thought to be able to prevent the development

and metastasis of tumor cells (Calcinotto et al., 2019; Di Micco

et al., 2021). However, recent studies have shown that senescent

cancer cells promote tumorigenesis in neighboring cells through

the release of SASP (Prieto and Baker, 2019). Demirci et al.

revealed that it was the Jekyll and Hyde nature of cancer cell

senescence (Demirci et al., 2021). Furthermore, cellular

senescence had been demonstrated to be a potential target for

cancer in clinical therapy (Prasanna et al., 2021; Wang et al.,

2022). Lin et al. found that cellular senescence was important in

the prognosis and immunotherapy of lung cancer (Lin et al.,

2021). And Zhou et al. demonstrated that cellular senescence was

a potential marker of prognosis and therapeutic outcome in

gastric cancer (Zhou et al., 2022). However, the role of cellular

senescence in the prognosis and immunotherapy of colon cancer

is not well understood.

In this study, we aimed to investigate the significance of

cellular senescence in the prognosis and immunotherapy of colon

cancer. Meanwhile, a cellular senescence-related risk score

signature was constructed to distinguish patients with a better

prognosis and immunotherapy response.

Methods

Acquisition of colon cancer information
and cellular senescence-related genes

Transcriptome information, clinical information, and mutation

informationwere acquired fromTheCancer GenomeAtlas (TCGA)

database (https://portal.gdc.cancer.gov/). Next, the gene ID from the

transcriptome information was converted into gene names to obtain

TCGA expression data. Then the FPKM value of TCGA expression

data was converted into the TPM value. The survival time, survival

status, age, gender, pathological TNM stage, pathological T-stage,

pathological N-stage, and pathological M-stage were extracted from

the clinical information. The platform file GPL570 and probematrix

GSE39582 were also downloaded from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

The probe matrix was transformed into a gene matrix by finding

the correspondence between the probe matrix and gene names

based on the platform file information. The copy number data of

colon cancer were obtained fromUCSC Xena (http://xena.ucsc.edu/

). Finally, the TCGA expression data and GEO expression data were

merged to obtain the expression of genes in the merged data.

Cellular senescence-related genes were acquired from the CellAge

database (Supplementary Table S1). The expression of cellular

senescence-related genes was extracted from the merged data.

The workflow chart was visualized in Supplementary Figure S1.

Clusters based on cellular senescence-
related gene expression

The “ConsensusClusterPlus” package was used to perform a

Consensus Clustering analysis on the merged data. The principal

component analysis (PCA) was performed to validate the

accuracy of distinguishing different clusters based on cellular

senescence-related gene expression. Kaplan-Meier survival

analysis was performed with the “survival” and “survminer”

packages. The heatmap was plotted by using the “pheatmap”

package. The single-sample gene set enrichment analysis

(ssGSEA) and gene set variation analysis (GSVA) were

conducted based on the “GSEABase” and “GSVA” packages.

Differential analysis of clusters

Differential genes (DEGs) among clusters were identified

(adjusted p-value = 0.001). The Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed to explore enrichment pathways

on DEGs.

Gene clusters based on differential genes

Prognostic genes were identified by performing survival

analysis with the “survival” package (filtering condition:

p-value < 0.05). The “ConsensusClusterPlus” package was

applied to conduct the Consensus Clustering analysis on

DEGs among clusters. PCA analysis was performed to validate

the accuracy of distinguishing different gene clusters based on

DEGs among clusters. Kaplan-Meier survival analysis was
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applied with the “survival” and “survminer” packages. The

heatmap was plotted with the “pheatmap” package.

Constructing a risk score signature

The colon cancer data were classified into training and

testing sets. The selection operator (LASSO) Cox regression

analysis with 10-fold cross-validation was performed to

construct a prognostic risk score signature in the training set.

The testing set was used to validate the accuracy of the signature.

Formula:

Risk score � ∑ i1(Coefip ExpGenei)

“Coef”, regression coefficient; “ExpGene”, the expression of

genes. The training and testing sets were divided into high- and

low-risk groups based on the medium value of risk scores.

Principal component analysis (PCA) and t-distributed

stochastic neighbor embedding analysis (t-SNE) were applied

to confirm the signature’s accuracy to distinguish between high-

and low-risk score groups. The Kaplan-Meier survival curves and

ROC curves were plotted with “survival”, “survminer”, and

“timeROC” packages. The “ggplot2” and “pheatmap” packages

were applied to plot risk status, survival status, risk histogram,

and risk heatmap. Univariate and multivariate Cox regression

analyses were conducted to validate whether the signature

predicted colon cancer patients’ prognosis independently of

other clinical characteristics. C-index curves were plotted

based on the “survival”, “rms”, and “pec” packages. The

“timeROC” and “survcomp” packages were used to plot ROC

curves and C-index histograms for comparison of signatures. The

meta-analysis was performed to investigate the heterogeneity of

the risk score signature in predicting the prognosis of colon

cancer patients between training and testing sets with the “meta”

package. The forest diagram of the meta-analysis was drawn by

using the fixed-effects model.

Developing a nomogram

A nomogram was plotted with the “regplot”, “rms”, and

“survivor” packages. The ROC curve of the nomogram was

drawn based on the “timeROC” package.

Validating the risk score signature in
clinical subgroups

The Sankey diagram was plotted to illustrate the construction

process of the risk score signature with the “ggalluvial” package.

The “ggpubr” and “ggplot2” packages were used to plot box plots

to show the differences in different risk scores across clusters and

gene clusters. The heatmap and box plot were drawn to

investigate differences in patients’ risk scores across clinical

subgroups with the “ComplexHeatmap”, “ggpubr”, and

“limma” packages. We also performed Kaplan-Meier survival

analysis to further validate the application of the risk score

signature in different clinical subgroups.

The landscape of gene mutation in
different risk score groups

The “maftools” package was applied to visualize the gene

mutation landscape in high- and low-risk score groups.

Exploring immunotherapy response in
different risk score groups

Immune score files for colon cancer were downloaded from

the Cancer Immunome Database (TCIA, https://tcia.at/).

Immunotherapy analysis was performed to explore the

therapy differences of IPS-CTLA4, PD1, PDL1, and

PDL2 blockers in patients with different risk scores with the

“ggpubr” package. The“pRRophetic_0.5. tar.gz” was acquired

from the Genomics of Drug Sensitivity in Cancer (GDSC,

https://www.cancerrxgene.org/). Finally, the “pRRophetic”

package was used to analyze the differences in half-maximal

inhibitory concentration (IC50) values between different risk

score groups and to identify potential drugs for colon cancer

patients.

Validating the risk score signature

Differential expression of the signature between normal and

tumor samples was investigated by performing differential analysis.

Finally, we searched the Human Protein Atlas (HPA, https://www.

proteinatlas.org/) database for immunohistochemical results of the

signature genes. In addition, the gene mutation and copy number

variant of the signature genes were analyzed.

Statistical analysis

All scripts were run in Strawberry-Perl-5.32.1.1 and all codes

were run in R 4.1.2. The colon cancer data were classified into

different clusters by Consensus Clustering analysis. Then, DEGs

among clusters were identified. The prognostic DEGs were

identified by survival analysis. The colon cancer data were

again divided into different gene clusters by Consensus

Clustering analysis. Next, LASSO regression analysis was

performed to construct a risk score signature. Patients were

classified into high- and low-risk score groups. PCA analysis
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and t-SNE analysis were applied to confirm the accuracy of

signature in distinguishing high and low-risk score groups.

Kaplan-Meier survival analysis, ROC analysis, univariate

analysis, multivariate analysis, C-index method, and meta-

analysis were performed to explore the role of the signature in

the prognosis of colon cancer. And the TICA algorithm and

“pRRophetic” package were used to investigate the significance of

the signature in therapy for colon cancer. Finally, all signature

FIGURE 1
Three clusters based on cellular senescence-related gene expression levels. (A) Consensus Cluster Analysis. When cluster Num = 3, the
relationship in the cluster was tight and the correlation between clusters was weak. (B) PCA plot. Blue dots represent patients in Cluster A; yellow dots
represent patients in Cluster B; red dots represent patients in Cluster C. (C) Kaplan-Meier survival curves. The prognosis of patients was different
among the three clusters, p = 0.048. (D) Heat map. Cellular senescence-related genes were upregulated in Cluster C. (E) Box plots. The
horizontal coordinate represents immune infiltrating cells; the vertical coordinate represents immune scores; ns represents no difference in immune
cell scores among the three clusters; pppp < 0.001. (F) Differential GSVA enrichment pathways between Cluster A and Cluster C. Red represents the
high expression pathway and blue represents the low expression pathway. (G)Differential GSVA enrichment pathways between Cluster B and Cluster
C. Red represents the high expression pathway and blue represents the low expression pathway.
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genes were performed for differential analysis and validated in

the HPA database. p-values less than 0.05 were considered to be

statistically significant.

Results

Clusters based on cellular senescence-
related gene expression level

We acquired 41 normal samples and 473 colon cancer tissue

samples from the TCGA database. Another 585 colon cancer

samples were obtained from the GEO database. 279 cellular

senescence-related genes were acquired from the CellAge

database. When cluster Num = 3, the relationship in the

cluster was tight and the correlation between clusters was

weak (Figure 1A). So, all samples were classified into three

clusters. Other classification results were visualized in

Supplementary Figure S2. In the PCA plot, red points, yellow

points, and blue points were separated, which indicated that

cluster A, cluster B, and cluster C could be distinguished based on

the expression of cellular senescence-related genes (Figure 1B).

The prognosis of patients among three clusters showed

differences, with patients in cluster A and cluster B having

longer survival times than cluster C (Figure 1C). We observed

that cellular senescence-related genes were expressed at the

lowest level in cluster A and at the highest level in cluster C

(Figure 1D). And the three clusters showed no difference in the

different clinical subgroups. In addition, the differences in the

level of immune infiltration among the three clusters were

analyzed. Interestingly, cluster C not only contained high

immune cell infiltration, but also many immunosuppressive

cells, such as myeloid-derived suppressor cells (MDSCs),

regulatory T cells (Tregs), and macrophages (Figure 1E). It

might be associated with the worse prognosis of colon cancer

patients in cluster C.

We also investigated the differences in enrichment pathways

among the three clusters. The significantly enriched pathways in

cluster A included “PEROXISOME”, “PYRUVATE

METABOLISM”, and “HUNTINGTONS DISEASE”

(Figure 1F). And the predominantly enriched pathways in

cluster B were “BASE EXCISION REPAIR”,

“HOMOLOGOUS RECOMBINATION”, “PYRUVATE

METABOLISM”, “PARKINSONS DISEASE”, and

“HUNTINGTONS DISEASE” (Figure 1G).

While“GLYCOSAMINOGLYCAN BIOSYNTHESIS

CHONDROITIN SULFATE”, “ECM RECEPTOR

INTERACTION”, “FOCAL ADHESION”, and “TGF BETA

SIGNALING PATHWAY” were significantly enriched in

cluster C. The KEGG pathways in cluster A and cluster B

were mainly involved in tumor suppression processes, while

the KEGG pathways in cluster C were associated with

tumorigenesis and metastasis.

2334 differential genes among three
clusters

To further investigate the differences among the three

clusters, we identified 2334 DEGs in cluster A, cluster B, and

cluster C (Supplementary Figure S3A and Supplementary Table

S2). And the enrichment pathways for DEGs were visualized in

Supplementary Figure S3B,C. The results of the GO enrichment

analysis showed that “positive regulation of cell adhesion”,

“leukocyte migration” and “leukocyte cell−cell adhesion” were

significantly enriched in biological processes (BP);

“collagen−containing extracellular matrix”, “cell−substrate

junction”, and “focal adhesion” were significantly enriched in

molecular function (CC); “actin-binding” and “extracellular

matrix structural constituent” were significantly enriched in

the cellular component (MF). “PI3K−Akt signaling pathway”,

“Focal adhesion”, “Osteoclast differentiation”, “Rap1 signaling

pathway”, and “Proteoglycans in cancer” were significantly

enriched in KEGG. The significantly enriched pathways in

DEGs were associated with tumor development and metastasis.

Gene clusters based on prognostic DEGs

We further studied the association of DEGs among clusters

with prognosis, and 681 prognostic DEGs were identified

(Supplementary Table S3). Colon cancer samples were

classified into three gene clusters based on the expression of

prognostic DEGs. When cluster Num = 3, the relationship in the

gene cluster was tight and the correlation between gene clusters

was weak (Supplementary Figure S4). The prognostic DEGs were

significantly down-regulated in gene Cluster A and up-regulated

in gene Cluster C (Figure 2A). Gene cluster A had the best

prognosis, while gene cluster C had the worst prognosis

(Figure 2B). We further validated the accuracy of classifying

colon cancer samples into three gene clusters based on the

expression of prognostic DEGs (Figure 2C).

Construction and validation of a cellular
senescence-related risk score signature

We constructed a risk score signature to predict the

prognosis of colon cancer patients based on prognostic DEGs

(Figures 3A,B). The training set was used to construct the risk

score signature, while the testing set was applied to validate the

accuracy of the signature. Formula: Risk score = FITM2 exp. *

(-0.340377976707324) + APOL6 exp. * (-0.385962800820076) +

VWF exp. * 0.348549751087245 + PRRX2 exp.*

0.222316119860682 + CCL22 exp. * (-0.505065627522616) +

ALPL exp. * 0.427185163663466 + SON exp. *

0.403475482932549 + KIF7 exp. * 0.466822368846872 +

ZEB1-AS1 exp. * 0.509278568824046. The colon cancer
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sample was classified into high and low-risk score groups based

on the medium value of the risk score. The statistics of clinical

information for the training set and the testing set were visualized

in Supplementary Table S4. Red points and blue points were

significantly separated in the PCA plot and the t-SNE plot, which

demonstrated the accuracy of distinguishing high- and low-risk

score groups based on the risk score (Figures 3C–F).We observed

a better prognosis for patients in the low-risk score group

(Figures 3G–I). Moreover, the prediction of patient survival at

1, 3, and 5 years was more accurate based on the signature

(Figure 3J-3L). The high-risk score group had higher mortality

(Figures 4A–I). The expression levels of FITM2, APOL6, and

CCL22 decreased significantly with increasing risk scores, which

were low-risk genes. In contrast, the expression levels of VWF,

PRRX2, ALPL, SON, KIF7, and ZEB1-AS1 increased significantly

with increasing risk scores, which were high-risk genes.

We further confirmed the accuracy of the signature in

predicting the prognosis of patients with colon cancer.

p-values for the risk score were less than 0.001 in both

univariate and multivariate Cox regression analyses, which

indicated that the risk score could predict the prognosis of

colon cancer patients independently of other clinical

characteristics (Figures 5A–D). Moreover, the risk score

predicted prognosis more accurately than other clinical

characteristics, with the highest C-index value (Figure 5E). We

searched online for four risk score signatures (Wang signature,

Zhang signature, Zheng signature, and Ren signature) that

predicted the prognosis of colon cancer (Ren et al., 2020;

Zhang et al., 2020; Wang et al., 2021; Zheng et al., 2021).

Surprisingly, the cellular senescence-related signature

predicted the prognosis of colon cancer patients significantly

better than the other four signatures, with the highest C-index

value of 0.682 (Figure 5F). Supplementary Figure S5 visualized

the predicted survival ROC curves and survival curves for other

signatures. Furthermore, the meta-analysis showed less

heterogeneity when using the signature to predict the

prognosis of patients with colon cancer with I2 <50% (Figure 5G).

Development of a nomogram

Anomogramwas developed to benefit clinical work in predicting

1-year, 3-years, and 5-years survival probability in patients with colon

cancer. For example, when the total point was 328, the 1-year survival

probability of patients was more than 0.981, the 3-years survival

probability was more than 0.937, and the 5-years survival probability

wasmore than 0.898 (Figure 6A).Moreover, we found that predicting

the survival probability of colon cancer patients was significantly

better than other clinical characteristics based on the nomogram, with

the highest AUC value of 0.823 (Figure 6B).

FIGURE 2
Three gene clusters based on prognostic differential gene expression levels. (A) Heat map. Prognostic differential genes were upregulated in
gene Cluster C and down-regulated in gene Cluster A. (B) Kaplan-Meier survival curves. p < 0.001. (C) PCA plot. Blue dots represent patients in gene
Cluster A; yellow dots represent patients in gene Cluster B; red dots represent patients in gene Cluster C.
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Validation of risk score signature in clinical
subgroups

The construction process of the signature was illustrated in

Figure 7A. We further analyzed the differences in risk scores among

the different clusters. Cluster A and gene Cluster A had the lowest

risk scores, while cluster C and gene Cluster C had the highest risk

scores (Figures 7B,C). All colon cancer patients were also classified

into survival and death groups based on survival outcomes.

Interestingly, patients in the survival group showed lower risk

scores (Figure 7D). It further confirmed the above findings that

patients in the low-risk score group had a better prognosis.

FIGURE 3
Construction of a cellular senescence-related risk score signature. (A) LASSO regression analysis. (B) Cross-validation for tuning the parameter
selection. (C) The PCA plot of the training set. (D) The PCA plot of the test set. (E) The t-SEN plot of the training set. (F) The t-SEN plot of the testing
set. (G) The K-M survival curve of all colon cancer samples, p < 0.001. (H) The K-M survival curve of the training set, p < 0.001. (I) The Kaplan-Meier
survival curve of the testing set, p < 0.001. (J) The AUC values of 1-year, 3-years, and 5-years survival for all colon cancer patients were more
than 0.700. (K) The AUC values of 1-year, 3-years, and 5-years survival for the training set were more than 0.750. (L) The AUC values of 1-year, 3-
years, and 5-years survival for the testing set were more than 0.600.
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Next, we also explored whether there were differences in risk

scores across clinical characteristics (Figure 7E). Unexpectedly, the

risk scores showed no differences between men and women, nor

between different age groups (≤65 and >65). In contrast, there were

differences in risk scores amongT stage (T1, T2, T3, T4), N stage (N0,

N1, N2, N3),M stage (M0,M1), and pathological TNMstage (Stage I,

Stage II, Stage III, Stage IV). The risk score increased gradually after

T2 (Figure 7F). The risk score increased gradually after N0, except for

N3 (Figure 7G). The risk score of M1 was significantly higher than

that ofM0 (Figure 7H). The risk score increased gradually after Stage I

(Figure 7I). The immunotyping of colon cancer is classified into four

subtypes, C1 (Wound Healing), C2 (IFN-gamma Dominant), C3

(Inflammatory), andC4 (LymphocyteDepleted). Unexpectedly, there

was no difference in risk scores among subtypes, except for the

difference in risk scores betweenC1 andC2 (Figure 7J). AndC2 had a

lower risk score than C1.

We also observed that the signature was applicable to predict

the prognosis of colon cancer patients in different clinical

subgroups, including different ages, different gender, different

T stages, different N stages, different M stages, and different

pathological TNM stages (Figures 8A–L).

Gene mutation landscape in high- and
low-risk score group

We also investigated gene mutations in different risk score

groups. The gene mutation frequency of the low-risk score group

FIGURE 4
Risk curves. (A) Risk status plot of all colon cancer samples. The horizontal coordinate represented the ranked patients, and the risk scores of
patients gradually increased from left to right; the vertical coordinate represented the risk scores. (B) Risk status of the training set. (C) Risk status of
the testing set. (D) Survival status plot of all colon cancer samples. (E) Survival status plot of the training set. (F) Survival status plot of the testing set. (G)
Risk histogram of all colon cancer samples. The percentage of survival patients in the low-risk score group was higher than that in the high-risk
score group. (H) Risk histogram of the training set. (I) Risk histogram of the testing set. (J) Risk heat map of all colon cancer samples. The expression
of FITM2, APOL6, and CCL22 decreased with increasing risk scores; the expression of VWF, PRRX2, ALPL, SON, KIF7, and ZEB1-AS1 increased with
increasing risk scores. (K) Risk heat map of the training set. (L) Risk heat map of the testing set.
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was higher than the high-risk score group. The top 20 genes with

mutation frequencies in the high-risk score group were visualized in

Supplementary Figure S6A, while the low-risk score group was

visualized in Supplementary Figure S6B.

Immunotherapy response in high- and
low-risk score groups

In clinical work, patients with colon cancer have individual

differences and develop different responses to different

therapeutic drugs, resulting in different therapy outcomes.

Immunotherapy and chemotherapy are currently the main

tools in the systemic therapy of colon cancer. We observed

that patients in the low-risk score group had higher immune

scores (IPS) and better responses to immunotherapy drugs

(CTLA4, PD1, PDL1, PDL2) (Figures 9A–D). We also

identified 12 drugs suitable for colon cancer (Figures 9E–P).

In particular, the IC50 values of four drugs (Erlotinib,

Metformin, Methotrexate, and Mitomycin) were lower in the

low-risk score group and more suitable for patients in the low-

risk score group. In contrast, the IC50 values of eight drugs

(Bexarotene, Bleomycin, Dasatinib, Docetaxel, Embelin,

Imatinib, Pazopanib, and Shikonin) were lower in the high-

risk score group and more applicable to patients in the high-risk

score group.

FIGURE 5
Validation of the risk score signature. (A) Univariate Cox regression analysis of the training set. Risk scores, p < 0.001. (B) Multivariate Cox
regression analysis of the training set. Risk scores, p < 0.001. (C) Univariate Cox regression analysis of the testing set. Risk scores, p < 0.001. (D)
Multivariate Cox regression analysis of the testing set. Risk scores, p < 0.001. (E) C-index curves. C-index value of risk scores was higher than other
clinical characteristics (age, gender, pathological stage, T stage, N stage, and M stage). (F) Histogram for signature comparison with C-index
method. SnGs signature had the highest C-index value compared to other signatures, AUC = 0.682. (G) Forest plot. The multivariate Cox regression
analysis results of the training and testing sets were used to perform a meta-analysis, I2<50%.
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Validation of the signature genes in
normal and tumor tissues

ALPL, APOL6, SON, VWF, FITM2, and ZEB1-AS1 were

significantly differentially expressed in normal and colon cancer

tissues (Figures 10A–I). In particular, ALPL, APOL6, SON, and

VWF were lowly expressed in tumor tissues. In contrast,

FITM2 and ZEB1-AS1 were highly expressed in tumor tissues.

We also confirmed the differential expression of ALPL, APOL6,

SON, and VWF in the HPA database (Figure 10J). ALPL,

APOL6, SON, and VWF proteins were significantly

differentially expressed between normal and tumor tissues. In

contrast, the expression levels of KIF7 and PRRX2 showed no

difference between normal and tumor tissues.

Copy number variants and gene mutation
in signature genes

We further investigated the gene mutation and copy number

variants (CNV) for 10 signature genes in colon cancer. The gene

with the highest mutation frequency was VWF at 8%, while

ZEB1-AS1 had the lowest mutation frequency at 0%

(Figure 11A). Interestingly, we observed that all genes showed

amplification except PRRX2 and ALPL, which showed depletion

(Figure 11B). And the chromosomal location of the CNV

changes was visualized in Figure 11C. We also analyzed the

expression of signature genes in different clusters. We observed

that most of the signature genes were highly expressed in cluster

C and gene Cluster C (Figures 11D,E).

Discussion

Cellular senescence has been revealed to inhibit the

progression of colon cancer cells (Acosta et al., 2013; Cho

et al., 2013). However, paradoxically, cellular senescence has

also been found to promote the development of colon cancer

(Guo et al., 2019). It might be related to the fact that it is highly

heterogeneous (Sikora et al., 2021; Wang and Demaria, 2021). In

view of the importance of cellular senescence in colon cancer, we

would like to construct a cellular senescence-related risk score

signature to predict prognosis and immunotherapy response.

In this article, firstly, all colon cancer samples were classified

into three clusters based on cellular senescence-related gene

expression. Clusters A and B had a better prognosis. In

contrast, cluster C showed a worse prognosis since it

contained high levels of immunosuppressive cell infiltration

(MDSCs, Tregs, and macrophages) (Togashi and Nishikawa,

2017; Tian et al., 2019; Katopodi et al., 2021). The reasons for

the differential prognosis of the three clusters were also revealed

in the results of the GSVA analysis. The enrichment pathway in

cluster A was associated with anti-tumor (Kim, 2020; Wenes

et al., 2022). “PARKINSONS DISEASE” and “HUNTINGTONS

DISEASE” were significantly enriched in cluster B. Patients with

neurodegenerative diseases were considered to be at low risk of

FIGURE 6
Developing a Nomogram. (A)Nomogram.When the total point was 328, the nomogram predicted that the 1-year survival probability of patients
was more than 0.981, the 3-years survival probability was more than 0.937, and the 5-years survival probability was more than 0.898. (B)Nomogram
ROC curve. The horizontal coordinate represented the false-positive rate expressed by 1-Specificity and the vertical coordinate represented the
true-positive rate expressed by sensitivity.
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developing cancer (Leong et al., 2021; Panegyres and Chen,

2021). In contrast, the enriched pathways in cluster C were

involved in the development and metastasis of cancer (Zhao

et al., 2018; Bao et al., 2019; Pudełko et al., 2019; Wu et al., 2021).

Furthermore, the deficiencies of “BASE EXCISION REPAIR”

and “HOMOLOGOUS RECOMBINATION” in cluster C were

thought to be associated with a worse prognosis of cancer

(Wallace et al., 2012; Toh and Ngeow, 2021). Next,

2334 DEGs among three clusters were identified. We observed

that significantly enriched pathways in DEGs were associated

with tumor development and metastasis (Bourboulia and Stetler-

Stevenson, 2010; Huang et al., 2017; Izdebska et al., 2018; Li et al.,

2021; Lin et al., 2022). It confirmed that cellular senescence

played a crucial role in the prognosis of colon cancer. In order to

further validate the above speculation, 2334 DEGs among

clusters were performed consensus clustering analysis. All

FIGURE 7
(A) Sankey diagram. The construction process of the risk score signature. (B) Box plot of risk scores for the three clusters. (C) Box plot of risk
scores for the three gene clusters. (D) Box plot of risk scores for the survival status (Fustat). (E) Heatmap of correlation between risk and clinical
characteristics. pppp < 0.001. (F) Box plot of the risk score for the T stage. (G) Box plot of risk scores for the N stage. (H) Box plot of risk scores for M
stage. (I) Box plot of risk scores for pathological TNM stage. (J) A box plot of risk scores across the four immune subtypes. C1, Wound Healing;
C2, IFN-gamma Dominant; C3, Inflammatory; C4, Lymphocyte Depleted.
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colon cancer patients were divided into three gene clusters. Gene

cluster A had the best prognosis, while gene cluster C had the

worst prognosis. It suggested that cellular senescence could also

distinguish prognostic differences among gene clusters.

Therefore, we considered that patients with different

prognoses of colon cancer could be distinguished based on

cellular senescence.

Next, according to 681 prognosis-related DEGs among

clusters, a cellular senescence-related risk score signature

(FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7,

and ZEB1-AS1) was constructed to predict patients’

prognosis. Low-risk score group showed longer survival

and a lower percentage of deaths. The risk score could be

used independently of other clinical features (age, gender,

stage, T stage, N stage, and M stage) to predict patients’

prognosis with the highest accuracy. Moreover, compared

to other signatures, the cellular senescence-related risk

score signature had the highest predictive accuracy with a

C-index value of 0.682. Excitingly, we observed that the

cellular senescence-related risk score signature predicted

little heterogeneity in prognosis between the training set

and testing set by performing the prognostic meta-analysis

with I2 < 50%. It further confirmed the accuracy of the

signature in predicting the prognosis of colon cancer

patients. A nomogram predicting 1-year, 3-years, and 5-

years survival probability in patients with colon cancer was

constructed for the clinical work. It has the highest accuracy

compared to other clinical characteristics, with an AUC value

of 0.823. According to the comparison of risk scores in

different subgroups, we observed the following phenomena:

more advanced TNM stage was associated with higher risk

scores; cluster C had a significantly higher risk score than

cluster A and cluster B; gene cluster C had a significantly

higher risk score than gene cluster A; the clinical outcome

death group had a significantly higher risk score than the

survival group. It further confirmed that the high-risk score

group was associated with a worse prognosis, while the low-

risk score group was associated with a better prognosis. There

FIGURE 8
(A-L) visualized the risk score signature being applied to patients with different clinical subgroups, including different ages, different genders,
different T-stages, different N-stages, different M-stages, and different pathological stages. (A) Patients with age > 65. (B) Patients with age& 65. (C)
Female patients. (D)Male patients. (E) Patients with stages T1-2. (F) Patients with stage T3-4. (G) Patients with stage N0. (H) Patients with stages N1-3.
(I) Patients with stage M0. (J) Patients with stage M1. (K) Patients with stages I-II. (L) Patients with stages III-IV.
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was very high accuracy in distinguishing between high and

low-risk score groups based on the risk score signature. We

also demonstrated the suitability of the signature for

predicting prognosis in different clinical subgroups,

including different age groups (≤65 and >65), different

gender (female and male), different T stages (T-2 and T3-

4), different N stages (N0 and N1-3), different M stages

(M0 and M1), and different TNM stages (stage I-II and

stage III-IV). Since it is impossible to identify which colon

cancer patients benefit from immunotherapy in clinical work,

which often leads to misuse of immunotherapy drugs.

Therefore, we performed further analysis to explore

whether the signature could distinguish colon cancer

patients who have better immunotherapy responses for

targeted treatment. The low-risk score group had a better

immunotherapy response. While the low-risk score group had

FIGURE 9
Immunotherapy response and chemotherapy response in colon cancer. (A) Immunotherapy response of different risk score groups for CTLA4-
negative and PD1, PDL1, PDL2 negative. p = 7.3e-05. (B) Immunotherapy response of different risk score groups for CTLA4 positive and PD1, PDL1,
PDL2 negative. p = 8.7e-06. (C) Immunotherapy response of different risk score groups for CTLA4 negative and PD1, PDL1, PDL2 positive. p = 0.002.
(D) Immunotherapy response of different risk score groups to CTLA4 positivity and PD1, PDL1, PDL2 negativity. p = 0.00019. (E–P)
Chemotherapy response of different risk score groups to 12 chemotherapy drugs.
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a worse immunotherapy response. Therefore, better benefits

may be achieved when immunotherapeutic drugs (PD1/PDL-

1/PD-L2/CTLA-4 blockers) are used for colon cancer patients

in the low-risk score group.

Finally, FITM2, APOL6, VWF, PRRX2, CCL22, ALPL,

SON, KIF7, and ZEB1-AS were further investigated. In our

study, FITM2 was highly expressed in colon cancer tissues. It

was consistent with the findings of Yang et al. (Yang et al.,

2019). We demonstrated that TITM2 was a low-risk gene,

which was associated with a better prognosis in patients with

colon cancer. APOL6 showed a low expression level in colon

cancer tissues and was a low-risk gene. It was due to the ability

of APOL6 to induce apoptosis in colon cancer cells (Aryee et al.,

2013). In our article, VWF was low expressed in colon cancer

FIGURE 10
Validation of differential expression of FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7, and ZEB1-AS1 in normal samples and colon cancer
samples. (A–I) Box plots. ns represents no difference; pp < 0.05, ppp < 0.001, pppp < 0.001. (J) Immunohistochemical maps of ALPL, APOL6, KIF7,
PRRX2, SON, and VWF expression proteins in the HPA database.
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tissue and was a high-risk gene. It was because VWF could

promote a highly aggressive nature of colon cancer (Zanetta

et al., 2000). Our study showed that PRRX2 was a high-risk

gene. However, Chai et al. considered that PRRX2 inhibited

distant metastasis of colon cancer cells and was a protective

gene (Chai et al., 2019). This difference required further

verification in subsequent experiments. Chen et al. revealed

that high expression of CCL22 was associated with a better

prognosis in patients with colon cancer (Chen et al., 2021). It

was consistent with our findings. Luo et al. found that ALPL

inhibited the aggressiveness of ovarian cancer (Luo et al., 2019).

And Child et al. identified ALPL as a cancer suppressor gene for

prostate cancer (Tong et al., 2019). However, the opposite was

true for the role of ALPL in colon cancer. In our study, ALPL

was a high-risk gene that was lowly expressed in colon cancer

tissues. The significance of SON in colon cancer has not been

studied by anyone. We first identified SON as a high-risk gene

with low expression in colon cancer tissues. Hu et al. revealed

that downregulation of KIF7 promoted antitumor activity in

lung cancer and it was a cancer-promoting gene (Hu et al.,

2020). Surprisingly, we also found KIF7 as a high-risk gene in

colon cancer. In our article, ZEB1-AS1 was highly expressed in

colon cancer tissues and was associated with a worse prognosis.

This was associated with the ability of ZEB1-AS1 to cause the

malignant progression of colon cancer (Ni et al., 2020). We also

found that VWF had the highest mutation frequency, while

ZEB1-AS1 was not mutated. All genes showed amplification

except for PRRX2 and ALPL which showed depletion. Most of

the signature genes were upregulated in cluster C and gene

cluster C.

FIGURE 11
The landscape for mutation and expression of the 10 signature genes (FITM2, APOL6, VWF, PRRX2, CCL22, ALPL, SON, KIF7, and ZEB1-AS1). (A)
The gene mutation frequency waterfall plot of 10 signature genes. (B) CNV alteration frequency of the 10 signature genes; Red, CNV gain; Green,
CNV loss. (C) CNV changes in 10 signature genes on 23 chromosomes. Red, CNV increase; Blue, copy number loss. (D) Differential expression of
10 signature genes among three clusters. pppp < 0.001. (E)Differential expression of 10 signature genes among three gene clusters. pppp < 0.001.
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In conclusion, the cellular senescence-related risk score

signature could be used to predict prognosis and

immunotherapy response in colon cancer.
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Background: The association between autophagy, structural alterations of the

aortic wall, and endothelial dysfunction in humans has yet to be fully elucidated.

The family of ULK (UNC51-like) enzymes plays critical roles in autophagy and

development. This study aimed to evaluate the association between ULK gene

family members and patient age of first type B aortic dissection (TBAD) onset.

Methods: The genotype data in a TBAD cohort from China and the related

summary-level datasets were analyzed. We applied the sequence kernel

association test (SKAT) to test the association between single-nucleotide

polymorphisms (SNPs) and age of first onset of TBAD controlling for gender,

hypertension, and renal function. Next, we performed a 2-sample Mendelian

randomization (MR) to explore the potential causal relationship between ULK4

and early onset of TBAD at the level of gene expression coupled with DNA

methylation with genetic variants as instrumental variables.

Results: A total of 159 TBAD patients with 1,180,097 SNPs were included.

Concerning the association between the ULK gene family and the age of

first onset of the TBAD, only ULK4 was found to be significant according to

SKAT analysis (q-FDR = 0.0088). From 2-sample MR, the high level of ULK4

gene expression was related to a later age of first onset of TBAD (β = 4.58, p =

0.0214).

Conclusion: This is the first study of the ULK gene family in TBAD, regarding the

association with the first onset age. We demonstrated that the ULK4 gene is

associated with the time of onset of TBAD based on both the SKAT and 2-

sample MR analyses.
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Introduction

Type B aortic dissection (TBAD) is a rare while life-

threatening condition, in which a tear occurs in the

descending part of the aorta and may extend into the

abdomen (Prêtre and Von Segesser, 1997; Hagan et al., 2000;

Nienaber and Clough, 2015). Prevention of premature death

from TBAD depends on the early identification of high-risk

individuals, careful monitoring of the dissected aorta for

aneurysmal dilations, medications to slow the rate of growth

of aneurysms, and timely surgical repair of aneurysms (Mokashi

and Svensson, 2019).

Aortic expansion is one of the risk factors associated with the

need for intervention or adverse outcomes in patients with

TBAD. It was reported that younger age at presentation was a

clinical predictor of aortic expansion. Patient age <60 years was
significantly associated with increasing aortic diameter, which

was thought to be due to a less rigid aortic wall, making the aorta

more prone to dilation in younger patients (Kamman et al.,

2017). However, the essential reasons for this finding deserve

further research, and the association of genetic variants with the

age of first onset of type B aortic dissections is a valuable research

direction.

Autophagy is a process in which intracellular components

and dysfunctional organelles are delivered to the lysosome for

degradation and recycling. Therefore, autophagy has various

connections to many human diseases, as its functions are

essential for cell survival, bioenergetic homeostasis, organism

development, and cell death regulation. The association between

autophagy and structural alterations of the aortic wall and

endothelial dysfunction in humans has yet to be fully

elucidated (Yang and Klionsky, 2020). Previous studies have

shown that more than 20% of individuals with thoracic aortic

aneurysms and dissections have a family history of disease that

may be caused by a genetic syndrome, resulting from a single-

gene mutation such as Marfan syndrome (MFS [MIM:154700])

arising from a fibrillin-1 (FBN1 [MIM:134797]) mutation

(Biddinger et al., 1997). However, autophagy-related

biomarkers studies for aortic dissection diseases are still rare.

According to existing research, AMPK increases the process of

autophagy after its activation. Although the mechanisms of AD

and autophagy have not been fully elucidated, autophagy has

been observed to be activated in impaired vascular smooth

muscle cells (VSMCs). Excessive or impaired autophagy may

lead to VSMC death or dysfunction, which is thought to promote

aneurysm and AD (Clément et al., 2019).

It is known that the ULK (UNC51-like) enzymes are a family

of mammalian kinases and play critical roles in autophagy and

development. The mammalian ULK family of kinases comprises

5 genes: ULK1 to ULK4 and STK36 (Chan and Tooze, 2009).

These enzymes share a conserved N-terminal kinase domain,

which is homologous to C. elegans UNC51 and yeast Atg1, the

original kinase identified in the autophagy pathway. ULK kinases

can be found in all observed eukaryotes. ULK1 kinases are

involved in autophagy (Young et al., 2009), ULK3 is also

implicated in hedgehog signaling and in autophagy-mediated

senescence (Maloverjan et al., 2010), and several genome-wide

association studies (GWASs) show linkage to blood pressure

(Levy et al., 2009).ULK4 is a pseudo kinase in all species and may

be linked to neurogenesis, brain function (Liu et al., 2017), and

blood pressure (Levy et al., 2009). It has also been reported that

ULK4 is potentially associated with acute aortic dissections (Guo

et al., 2016). As can be seen, there is demonstrable link between

the ULK family, autophagy, and acute aortic dissection, and thus

an assessment of the effect of the ULK family on aortic dissection

is warranted.

We performed an association analysis between ULK gene

family members and the age of first onset of Chinese TBAD

patients. The association study was performed in Chinese TBAD

patients. The causal effect of ULK genes was subsequently

verified by 2-sample Mendelian randomization (MR) at the

gene expression and DNA methylation levels.

Materials and methods

Study population and data source

We obtained genotype data from a TBAD cohort enrolled

through the Vascular Surgery Department of Zhongshan

Hospital Fudan University, which included 162 Chinese

patients with TBAD from January 2018 to June 2019.

Each participant signed a consent form. The study was

approved by the relevant ethics committees (Ethical

approval No. B2019-110R) and was administered by

trained personnel.

Genotyping and quality control of whole
genome sequencing data

In association analysis, we obtained genotype data using

whole genome sequencing, using the Illumina NovaSeq

platform (Illumina, San Diego, CA, United States) in a

paired-end 150 bp mode on 162 TBAD patients. Briefly, the

samples were excluded if they met any of the following quality

control (QC) criteria (Supplementary Figure S1): 1) overall

genotype completion rate <95%, 2) unexpected duplicates or

probable relatives, 3) heterozygosity rates more than six times

the SD from the mean, or 4) gender discrepancies. SNPs were

excluded if they met any of the following QC criteria: 1) SNPs

had a low call rate of <95% in all samples, 2) the genotype

distributions of SNPs deviated from those expected by the

Hardy–Weinberg equilibrium (p < 0.000001), or 3) single-

nucleotide variants (SNVs) with minor allele frequencies were

less than 1%.
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Summary-level data of expression
quantitative trait loci and methylation
quantitative trait loci

Methylation quantitative trait loci (mQTL) data were

obtained from the Brisbane Systems Genetics Study (n = 614)

and Lothian Birth Cohorts of 1921 and 1936 (n = 1366) (Wu

et al., 2018). Details of the QC procedures were described in a

previous study. Briefly, all the individuals were of European

descent. Only the DNA methylation probes with at least a cis-

mQTL at p < 0.0001 and only SNPs within 500 kb distance from

each probe were included in the analysis. As for the summary

statistics of expression quantitative trait loci (eQTL), we used the

cis-eQTL in the prefrontal cortex from the PsychENCODE

project (n = 1387) (Gandal et al., 2018; Wang et al., 2018).

The eQTL analyses of PsychENCODE were performed by

including 100 hidden covariate factors as covariates. Only the

data of SNPs in a 500 kb window around the ULK4 gene were

included in the subsequent analysis.

Statistical analysis

Continuous variables are summarized as mean ± SD and

categorical variables are described as numbers and percentages.

The sequence kernel association test (SKAT), which is a

supervised, flexible, and computationally efficient regression

method was used to test for the association between a set of

genetic variants and a continuous or dichotomous trait with

adjustments made for relevant covariates (Ionita-Laza et al.,

2013). A total of 421 variants from the ULK family passed

QC and were included in SKAT analysis with controlling for

gender, hypertension, and smoking status and renal function

(Wu et al., 2011). Furthermore, separate analyses were conducted

for all variants (n = 421) and rare variants with minor allele

frequency (MAF) < 0.05 (n = 290).We used COXPRESdb (http://

coxpresdb.jp) to drawing the co-expressed gene network with

pathway and protein–protein interaction information.

COXPRESdb was first released for human and mouse models

in 2007 (Takeshi et al., 2007). One characteristic feature of

COXPRESdb is its ability to compare multiple co-expression

data derived from different transcriptomics technologies and

different species, which strongly reduces false-positive

relationships in individual gene co-expression data (Takeshi

et al., 2012; Takeshi et al., 2019). To clarify the molecular

mechanisms, we used COXPRESdb to perform co-expression

analysis on those genes that exerted significant effect on aortic

dissection.

The analysis workflow is shown in Figure 1. In general, we

adopted two analysis steps. First, we applied the SKAT to test the

association between a set of SNP and patients’ age of first onset of

TBAD, controlling for gender, hypertension, smoking status, and

renal function. Then, linear regression models were applied to

further detect significant SNPs in significant genes. Multiple

comparisons were adjusted with the false discovery rate

method (FDR) to control the overall false-positive rate at a

5% level. Biomarkers measured by a q-FDR value ≤0.05 were

included in further study (Benjamini and Hochberg, 1995).

To further explore the role of ULK4 in different clinical

features, we constructed a genetic score with the significant SNPs

and conducted subgroup analysis to compare the differences

between different categories of features. The genetic score (GS)

was calculated based on a weighted linear combination of

individual values of the significant SNPs, with weights derived

from the stepwise linear regression model. As a result, three SNPs

were finally included in the genetic score with the formula

defined as follows: GS = (−25.326 × rs191792955) + (12.408 ×

rs142574024) + (−4.425 × rs74282513).

In the second step, we performed a 2-sample MR to explore

the potential causal relationship between ULK4 and the early

onset of TBAD (Y) at the level of gene expression and DNA

methylation (X) using genetic variants (G) as instrumental

variables (Evans and Davey Smith, 2015). As shown in

Figure 4, SNPs with a q-FDR < 0.05 were regarded as

candidate instrumental variables and linkage disequilibrium

(LD) clumping with a window of 1 MB, and an r2 < 0.2 was

applied to remove SNPs with high LD (Hemani et al., 2018). In

addition, we performed sensitivity analyses using several

approaches to investigate potential pleiotropic bias and verify

the robustness of the results, including MR-Egger regression,

weighted median MR, weighted mode MR, simple mode MR,

funnel plots, and leave-1-variant-out analysis.

Statistical analyses were performed using R version 3.4.4

(The R Foundation of Statistical Computing, Vienna, Austria). A

2-sided p-value of less than 0.05 was considered to indicate a

statistically significant difference.

Results

A total of 162 Chinese TBAD patients from Zhongshan

Hospital were genotyped with two patients being excluded

because of gender mismatches, and one patient being

excluded because of familial relationships. Finally, 159 TBAD

patients with 1,180,097 SNPs after QC were included in further

analyses (Supplementary Figure S1). Demographics and clinical

characteristics are shown in Supplemetary Table S1. The mean

age of the enrolled TBAD inpatients was 56.11 years (SD 14.33),

and 78.62% of the patients were male. The mean age of the first

onset of TBADwas 54.89 years with a range of 18–85 years. Most

of the enrolled TBAD inpatients (88.68%) also had hypertension,

and 10.06% had diabetes.

Concerning on the association between the ULK gene family

and age of first onset of TBAD, only ULK4 was significant

according to SKAT analysis (q-FDR = 0.0088) based on our

TBAD samples. Among 361 variants in the ULK4 gene, there
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were 243 variants with MAF <0.05. In addition, SKAT analysis

for variants with MAF <0.05 of ULK4 was also significant (p =

0.0015) (Table 1). Further linear regression analysis of SNPs in

ULK4 revealed 17 SNPs, that were associated with age of first

onset of TBAD, and the most strongly associated SNP in ULK4

was rs191792955 (Figure 2; Supplementary Figure S2). The

details of the association results of the SNPs sites of ULK4 are

shown in Supplementary Table S2.

Among the significant 17 SNPs, three SNPs were maintained

for genetic score generation after stepwise regression with p <

0.05. As the genetic score increased, the age of first onset

decreased for TBAD patients with well-controlled

hypertension (coefficient 1.21, 95% CI: 0.677–1.751), and

similar results were found for complex, male, and normal

renal function TBAD patients. Heterogeneity details are

shown in a forest plot (Supplementary Figure S3).

For 2-sample MR, the individual instrument-gene expression

and instrument-age of first onset for TBAD are shown in

Supplementary Table S3. Among the 19 SNPs associated with

gene expression (q-FDR < 0.05), three were left after LD

FIGURE 1
Flow chart of the study design and statistical analysis.

TABLE 1 Results of the ULK family regional gene-based SKAT analysis for aortic dissection.

Candidate gene All variants MAF < 0.05

Number p-value q-FDR Number p-value q-FDR

ULK1 18 0.7312 0.7312 13 0.6788 0.6788

ULK2 40 0.2331 0.5828 32 0.2127 0.5317

ULK3 2 0.6032 0.7312 2 0.6032 0.6788

ULK4 361 0.0018 0.0088 243 0.0015 0.0074

STK36 10 0.5855 0.7312 6 0.5156 0.6788

Models adjusted for sex, hypertension controlling, and renal function. Data source: TBAD cohort.
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clumping. A similar process was followed for the instrumental

variable determination of ULK4 methylation, and there were

10 CpG probes with 25 SNPs found (Supplementary Table S4).

The details of the instrumental variable selections are shown in

Figure 3A. The intercept of MR-Egger for ULK4 gene expression

and DNA methylation indicated that there was no potential

horizontal pleiotropy, and the inverse variance weighted (IVW)

analysis with fixed effects was conducted for two sample MR

analyses. The high ULK4 gene expression was related to a later

age of onset for TBAD (β = 4.58, p = 0.0214) (Figures 3B, 4A).

Among MR analyses of the 10 CpG probes, eight SNPs in

cg25209153 were significant (p = 0.0155) (Figures 3B, 4A),

and the higher cg25209153 was related to the earlier age of

first onset (β = −4.02). In addition, several MR methods were

used to evaluate the robustness of results, and the direct of the

causal effects of both ULK4 and cg25209153 were consistent with

IVW, although the p values were not significant (Figures 4B, C).

The details of sensitively analyses are shown in Supplementary

Table S5.

According to the gene co-expression network of ULK4

(Supplementary Figure S4), it was found that OSCP1 acts on

smooth muscle cells in the tunica media layers of artery walls,

participates in the regulation of the extracellular matrix (ECM)

related to intimal proliferation after endothelial injury, and is

related to restenosis after vascular injury (Martí-Pàmies et al.,

2017). WDPCD is believed to be related to the development of

arteries. In the process of coronary vasculature development,

WDPCD participates in the regulation of

epithelial–mesenchymal transition (EMT) to enable migration

that gives rise to smooth muscle cells (Liu et al., 2018).

Discussion

Acute aortic dissection may be fatal without early

diagnosis and appropriate management, and thus

biomarker tests play an important role in preventing and

diagnosing aortic dissection disease (Ranasinghe and

Bonser, 2010). Several epigenetic studies of TBAD have

identified potential biomarkers relevant to the etiology of

TBAD (Wang et al., 2012; Erhart et al., 2020). Multiple

GWAS studies have identified a significant association of

the ULK4 SNPs with hypertension. Genetic variants in

ULK4 have also been reported to be associated with the

pathogenesis of sporadic thoracic aortic dissection (STAD)

(Guo et al., 2016). To the best of our knowledge, this is the first

FIGURE 2
Regional association plots for ULK4.
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study of the ULK gene family in TBAD to focus on the

association with age of first onset.

The ULK (UNC51-like) enzymes play critical roles in

autophagy and development. While ULK1, ULK2, and

ULK3 have been characterized, and very little is known

about ULK4. Recently, deletions in ULK4 have genetically

linked to increased susceptibility to developing schizophrenia,

which is a devastating neuropsychiatric disease with high

heritability (Khamrui et al., 2019). Similarly, TBAD has

also been identified as a suspected heritable characteristic.

In their single-institute study, Shalhub et al. (2021) found that

heritable TBAD was the cause of TBAD in one of four patients,

and familial TBAD was presented at an early age. Finally, it

has been established that hypertension is an essential

component of both familial TBAD and sporadic TBAD

(Shalhub et al., 2020).

Most patients in our TBAD cohort were male, most had

hypertension, and few of them had diabetes. These

population characteristics are consistent with the reported

TBAD in the Chinese population (Huang et al., 2021). Based

on whole genome sequencing data, we demonstrated that the

ULK4 gene is associated with the age of TBAD onset based on

both the SKAT and 2-sample MR analyses. Furthermore, we

found that DNA methylation of cg25209153ULK4 and

expression of ULK4 were associated with the age of first

onset. Furthermore, high DNA methylation of

cg25209153ULK4 was negatively correlated with age of first

onset. Inversely, high expression of ULK4 was positively

correlated with age of first onset.

Several GWASs have reported significant associations of

ULK4 SNPs with hypertension in individuals of European

(particularly those with high diastolic blood pressure), African

American, and East Asian descent (Guo et al., 2016). It is also

known that poorly controlled hypertension is a major risk factor

for TBAD, and our study demonstrated that the ULK4 gene,

involved in endocytosis and axon growth (Ostberg et al., 2020), is

associated with age of first onset of TBAD, suggesting that in

addition to the association with the control of hypertension,

genomic variants in ULK4 have a potential mechanism for

contributing to the early onset of TBAD. As autophagy is a

highly conserved catabolic process and a major cellular pathway

for the degradation of long-lived proteins and cytoplasmic

organelles, ULK4 plays critical roles in autophagy and

dysregulation of autophagy may lead to the early onset of

TBAD. Further studies are needed to validate the link between

ULK4 and the age of first onset of TBAD. ULK4 may be an

FIGURE 3
Two sampleMendelian randomization analyses. (A)Diagramof instrumental variable (IV) selection. (B) Results of Mendelian randomization (MR)
between gene expression, DNA methylation, and onset age of TBAD.
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effective companion diagnostic target in TBAD if it is confirmed

by further fundamental and clinical studies.

In addition, our studywill follow up the prognosis of the existing

cases so as to suggest early detection and early treatments for at-risk

patients. At the same time, we will also consider measuring different

omics data such as proteomics from the same batch to further

validate the importance of the ULK4 gene in TBAD.

Conclusion and limitations

Our study also has some limitations. First, the sample size was

limited, which may impact the robustness of the 2-sample MR

analyses. Second, because only TBAD patients were included in our

study, the association of ULK4 with type A dissections could not be

investigated; moreover, as a case-only study, which did not involve the

control group, the current study cannot conclude the effective

companion diagnostic target in TBAD. Third, the validated DNA

samples were not collected. In addition, the clinical information was

not comprehensive, such as concomitantmedication of antiplatelet and

statin, the potential bias risk may impact the robustness of the results.

In conclusion, this is the first study of the ULK gene family in

TBAD to focus on an analysis of the associationwith thefirst onset age.

We demonstrated that theULK4 gene is associated with the age of first

onset of TBAD based on both the SKAT and 2-sample MR analyses.

ULK4 may be an effective companion diagnostic target in TBAD.

Data availability statement

The data presented in the study are deposited through these

following websites. The eQTL summary data can be found in http://

www.psychENCODE.org/. The mQTL data from the meta-analyses

of Brisbane Systems Genetics Study and the Lothian Birth Cohorts

of 1921 and 1936 are available at http://cnsgenomics.com/software/

smr/#Download. The whole genome sequencing data of TBAD

cohort was provided by Yi Si, et al. Requests to access this dataset

should be directed to sysiy@yahoo.com.

FIGURE 4
Association plots between ULK4 or cg25209153 and first onset age. (A) Diagram of Mendelian randomization (MR) analysis. (B) Scatter plots for
association between cg25209153 and first onset age by different MR analytical methods. (C) Scatter plots for association between ULK4 and first
onset age by different MR analytical methods.
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Background:Cellular senescence is a typical irreversible form of life stagnation,

and recent studies have suggested that long non-coding ribonucleic acids

(lncRNA) regulate the occurrence and development of various tumors. In the

present study, we attempted to construct a novel signature for predicting the

survival of patients with hepatocellular carcinoma (HCC) and the associated

immune landscape based on senescence-related (sr) lncRNAs.

Method: Expression profiles of srlncRNAs in 424 patients with HCC were

retrieved from The Cancer Genome Atlas database. Lasso and Cox

regression analyses were performed to identify differentially expressed

lncRNAs related to senescence. The prediction efficiency of the signature

was checked using a receiver operating characteristic (ROC) curve,

Kaplan–Meier analysis, Cox regression analyses, nomogram, and calibration.

The risk groups of the gene set enrichment analysis, immune analysis, and

prediction of the half-maximal inhibitory concentration (IC50) were also

analyzed. Quantitative real-time polymerase chain reaction (qPCR) was used
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to confirm the levels of AC026412.3, AL451069.3, and AL031985.3 in normal

hepatic and HCC cell lines.

Results:We identified 3 srlncRNAs (AC026412.3, AL451069.3, and AL031985.3)

and constructed a new risk model. The results of the ROC curve and

Kaplan–Meier analysis suggested that it was concordant with the prediction.

Furthermore, a nomogrammodel was constructed to accurately predict patient

prognosis. The risk score also correlated with immune cell infiltration status,

immune checkpoint expression, and chemosensitivity. The results of qPCR

revealed that AC026412.3 and AL451069.3 were significantly upregulated in

hepatoma cell lines.

Conclusion: The novel srlncRNA (AC026412.3, AL451069.3, and AL031985.3)

signatures may provide insights into new therapies and prognosis predictions

for patients with HCC.

KEYWORDS

hepatocellular carcinoma, lncRNA, senescence, prognosis, immune landscape

1 Introduction

Cancer is one of the leading causes of death worldwide (Bray

et al., 2021). More than 19 million new cancer cases and nearly

10 million cancer-related deaths have been reported in 2020,

including over 900,000 new liver cancer cases and 800,000 related

deaths (Sung et al., 2021). Liver cancer has the seventh highest

incidence among all cancer types and the third highest mortality

rate. Hepatocellular carcinoma (HCC) is the most common type

of liver cancer. East Asia and Africa have the highest incidence

rates of HCC, and its incidence and mortality rates are still

increasing in Europe and other parts of the world (Llovet et al.,

2021; Sung et al., 2021). Owing to the progress of surgery and

chemotherapy, the prognosis of patients with HCC has greatly

improved, and the progress of tumor immunotherapy and the

use of immune checkpoint inhibitors have also improved the

treatment strategies for HCC treatment (Bagchi et al., 2021).

However, more efficient molecular biomarkers for the early

diagnosis of HCC are crucial for improving the clinical

outcomes of patients with HCC.

Cellular senescence is a typical irreversible form of life

stagnation that helps inactivate and eliminate diseased,

dysfunctional, and other unnecessary cells. It is usually

induced by various conditions, such as microenvironmental

stress, damage to organelles and cellular infrastructure, and an

imbalance of cellular signal networks. However, all these

conditions are related to the increase in senescent cell

abundance in various organs observed during the aging

process. It is considered to be one of the basic hallmarks of

cancer (Hanahan, 2022).

Long non-coding ribonucleic acids (lncRNAs) are composed

of >200 nucleotides that cannot be translated into functional

proteins (Iyer et al., 2015). In the human genome, there are more

than 100,000 identified lncRNAs, many of which have been

characterized (Heery et al., 2017). lncRNAs are usually the

main regulators of gene expressions and functions through

post-transcriptional, transcriptional, and epigenetic regulation

(Castro-Oropeza et al., 2018). Previous studies have shown that

lncRNAs can influence the immune microenvironment;

therefore, they may have a role in the occurrence and

development of malignancy (Atianand et al., 2017). The HOX

transcript antisense RNA was found to be upregulated in colon

tumor tissues and correlated with the tumor stage, invasion,

metastasis, and survival time of patients (Luo et al., 2016;

Tatangelo et al., 2018; Wei et al., 2020); it is also associated

with cancer growth and metastasis (Wei et al., 2020). Zhao et al.

(2019) reported that the knockdown of lncRNA myocardial

infarction–associated transcript significantly promoted cellular

senescence and inhibited HCC progression. Montes et al. (2021)

identified MIR31HG as a potential therapeutic target in the

treatment of senescence-related pathologies. The effects of

senescence-related (sr) lncRNAs on malignant tumors have

not been well studied; therefore, obtaining more knowledge

on srlncRNAs will help us better understand their roles in

cancer therapy.

In recent years, many studies have developed signatures for

predicting cancer prognosis based on coding genes or non-

coding RNAs. Kandimalla et al. (2020) identified a signature

for predicting the survival in pancreatic ductal adenocarcinoma.

Chen et al. (2021) constructed a prognosis index for head and

neck tumors using immune-related genes. Zhou et al. (2021)

identified an immune-related lncRNA signature to predict the

survival and the immune landscape in patients with HCC.

However, only a few studies have focused on signature

development using srlncRNAs.

This study aimed to determine the value of srlncRNAs in

predicting the prognosis and immune landscape of HCC, thus

contributing to this growing area of research. Our findings may
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help improve our understanding of the role of cellular senescence

in HCC and lead to progress in treatment strategies.

2 Materials and methods

2.1 Data collection

RNA-seq expression data derived from patients with HCC,

including 374 tumors and 50 non-cancerous samples, were

collected from The Cancer Genome Atlas (TCGA) database

with the TCGA-Assembler. Based on the patients’ IDs, the

clinical data of the patients were compared to their

transcriptome data, which were screened using the following

inclusion criteria: [1] histological diagnosis of HCC, [2] available

expression profiles, and [3] a minimum overall survival of

30 days (Song et al., 2021). The data satisfying the inclusion

criteria were extracted from the TCGA dataset (344 patients) for

subsequent analysis, and 279 senescence-related genes (explained

in Supplementary Table S1) were retrieved from the literature

search and the CellAge public database.

2.2 Identification of senescence-related
long non-coding ribonucleic acids

The association between lncRNAs and senescence-related

genes (SRGs) was assessed using Pearson’s correlations to

identify srlncRNAs. Using the Bioconductor limma package in

R software (version 4.1.3), HCC and non-neoplastic samples

were compared, and differentially expressed lncRNAs

(DElncRNAs) were defined with the following criteria: |log2

(fold change, FC) | >1 and false discovery rate < 0.05 (Ritchie

et al., 2015). A total of 279 senescence-related genes and those of

DElncRNAs were identified by using the correlation analysis.

Hence, 422 srlncRNAs were selected based on the following

criteria: Pearson’s correlation coefficients > 0.5 and p < 0.001.

2.3 Construction of the senescence-
related lncRNA prognostic model

First, we randomly divided the patients from the entire

sample (n = 342) into training or testing sets at a rate of 1:1.

Second, srlncRNAs (related to survival) in the training set were

screened using univariate Cox (uni-Cox) regression (p < 0.05).

Third, least absolute shrinkage and selection operator (LASSO)

and multivariate Cox (multi-Cox) regression analyses were used

for further filtering. Finally, a prognostic model for srlncRNAs

was established in HCC. We calculated the risk score for HCC as

follows: risk score=∑n k=1expression (lncRNAk) × coefficient

(lncRNAk) (Hong et al., 2020). Using the median value, we

divided the cases into two groups: high and low. Moreover,

testing sets were employed for signature validation. The signature

was associated with clinical variables using the chi-square test.

The Wilcoxon signed-rank test was performed to identify

differences in the risk scores between the groups for clinical

characteristics. Furthermore, the R package “rms” was used to

build a nomogram model that connected the signature risk score

and clinical factors, and calibration curves were used to assess the

model (Iasonos et al., 2008).

2.4 Gene set enrichment analysis

Using the curated gene set (kegg.v7.4.symbols.gmt),

broad GSEA v.4.2.3 was applied to detect high- and low-

risk group-correlation pathways with the criteria: NOM p <
0.05 and | NES |> 1 (Subramanian et al., 2005).

2.5 Infiltrating immune cell analysis

The immune infiltration statuses calculated in the datasets

(XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC,

CIBERSORT, and CIBERSORT) and the infiltration

estimation downloaded in TIMER2.0 (http://timer.cistrome.

org/) were used to analyze the differences in immune

infiltrating cell content using the Wilcoxon signed-rank test.

Using the profile of infiltration estimation for HCC on that

website, a bubble chart was created showing the differences in

immune infiltrating cell content using the Wilcoxon signed-rank

test and the following R packages—“limma”, “scales”, “ggplot2”,

and “ggtext” (Bagchi et al., 2021).

2.6 The investigation of the immune
checkpoints and immune-related gene
prognostic index

The “ggpubr” R package was used to compare the expression

of immune checkpoint-related genes between the two groups.

The multi-Cox regression analysis was used to construct an

IRGPI model to validate the impact of the prognostic model

on immunotherapy.

2.7 The sensitivity of different subgroups
to chemotherapeutic agents

We used the half-maximal inhibitory concentration (IC50) to

evaluate the therapeutic effects of common chemotherapeutic

drugs (paclitaxel, doxorubicin, bexarotene, bicalutamide,

imatinib, and tipifarnib) using the R package “pRRophetic”

with data collected from the Genomics of Drug Sensitivity in

Cancer.
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2.8 RNA isolation and quantitative real-
time PCR

Total RNA was extracted from hepatoma cell lines (Huh7,

HepG2, and Hep3B) and a normal hepatic cell line (LO2) using

TRIzol reagent (Life, United States). NanoDrop 2000 (Thermo

Scientific, America) was used to measure RNA purity and

content. Complementary DNAs were synthesized using a

RevertAid RT kit (Thermo, United States), and qPCR was

performed on a Bio-Rad CFX system using qPCR Master mix

(Universal, China). The sequences of the primers used for qPCR

were as follows: AC026412.3, forward: 5′-TGTGAGGTGAGG
GAGCGAT-3′, reverse: 5′-TGAGCCAAAGGGATCTACGC-3′;
AL451069.3, forward: 5′-GGGACACGGACCTAGACACT-3′,
reverse: 5′-CCTGCAAGACCGTAGCCTC-3′; ALO31985.3,

forward: 5′-TCTCACTATGTTGCTGGACTGG-3′, reverse: 5′-
CCACAGATCACTAACACGCC-3′. We used glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) as the internal reference,

and the data were analyzed using the 2–ΔΔCt approach. The

expression levels of the three lncRNAs were compared using

an unpaired t-test.

3 Results

3.1 Defining senescence-related lncRNAs

The flow-diagram of our study is shown in Figure 1. We

downloaded 50 normal samples and 374 tumor samples from the

TCGA database to identify the srlnRNAs. Next, 422 srlncRNAs

(Figure 2A) were obtained by using the co-expression analysis of

279 senescence-related genes and DElncRNAs between normal

and tumor samples. Of these, 402 were up-regulated

(Figures 2B, C).

3.2 Establishment and validation of the
model

Using the univariate-Cox regression analysis (Figure 3A),

33 srlncRNAs that significantly associated with the overall

survival were identified and are displayed in a heatmap

(Figure 3B). LASSO and multi-Cox regression analyses were

used to further screen these lncRNAs, and three lncRNAs related

FIGURE 1
Flow diagram of the study (LIHC: Liver hepatocellular carcinoma; N: Number; OS: Overall suvival).
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to senescence were extracted in HCC (Figures 3C, D). In

addition, all lncRNAs were up-regulated in the Sankey

diagram (Figure 3E).

The risk score was calculated using the following formula:

risk score = AC026412.3 × (1.6474) + AL451069.3 × (0.6620) +

AL031985.3 × (1.0340).

We then compared the distribution of the risk scores, survival

status, survival time, and associated expression criteria of these

lncRNAs for the low- and high-risk groups in the training,

testing, and entire sets. These results suggested that the high-

risk group had a poorer prognosis (Figures 4A–L).

According to chi-square tests (Figure 5A) and Wilcoxon

signed-rank test, the risk score was significantly associated with

the clinical grade (Figure 5B), American Joint Committee on

Cancer stage (Figure 5C), and T stage (Figure 5D). In addition,

conventional clinicopathological characteristics, including age,

sex, and stage, also showed that the high-risk group had worse

prognoses (Figures 5E–J). These results indicate that the risk

model is highly consistent with the American Joint Committee

on Cancer staging system and has a better ability to predict

prognosis.

Prognostic factors were detected in the uni- and multi-Cox

regression analyses (Figures 6A,B) and a nomogram was

constructed using the risk scores and other clinical

characteristics to better predict the survival of patients with

HCC (Figure 6C). What’s more, the nomogram correlated

with the actual observations, as shown in the calibration curve

(Figure 6D). The 1-, 3-, and 5-year areas under the ROC curve of

the entire set were 0.754, 0.675, and 0.670, respectively

(Figure 6E). Compared to other clinicopathological features,

FIGURE 2
(A)The network showing the correlation between DEsrlncRNAs and mRNAs and (B,C) the heatmap and volcano plots of DEsrlncRNAs from the
TCGA dataset.
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the risk score had the largest area under the ROC curve

(Figure 6F).

3.2.1 Gene set enrichment analysis
To explore the different biological functions in the two risk

groups, the GSEA software was used to identify the top five

pathways in the two risk groups with the criteria of false

discovery rate < 0.25, |NES| >1.5, and p < 0.05. In fact, most of

the pathways were associated with tumorigenesis or

immunity, such as the “fatty acid metabolism”,

“peroxisome proliferator-activated receptors signaling

pathway”, and “complement and coagulation cascades”

(Figure 7A). Therefore, we performed an immunity analysis

of the model.

3.3 The exploration of the risk model for
immunotherapy

Using Spearman’s correlation and Wilcoxon signed-rank

tests, the risk score was found to be related to several widely

studied immune cells (such as B cells, CD8+ T cells, and cancer-

associated fibroblasts) on different platforms (Figures 7B,C). The

expression of the immune checkpoint-related genes was higher in

the high-risk group than in the low-risk group (Figure 8A). This

implies that patients in the high-risk group could select

checkpoint inhibitors that are more appropriate for

immunotherapy (Kono et al., 2020). Moreover, the high-risk

group had a larger proportion of immune subtypes (IS) 1 and 2 in

the immunity landscape and a smaller proportion of 3

FIGURE 3
(A) 33 lncRNAs extracted by using the uni-Cox regression analysis, (B) the heat map of 33 prognostic lncRNAs, (C,D) senescence-related
lncRNAs screened by the Lasso regression analysis, and (E) the Sankey diagram of 33 senescence genes and related lncRNAs.
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(Figure 8B), which means that it had a poorer prognosis (the

immune landscape of cancer). Consistent with previous reports,

there were more chemotherapeutics with lower IC50 values in the

high-risk group (Figure 8C), such as paclitaxel (Liu et al., 2020)

(Figure 8C).

3.4 Validating the expression levels of
AC026412.3, AL451069.3, and AL031985.3

To explore the expression levels of AC026412.3,

AL451069.3, and AL031985.3, qPCR was performed to test

the normal hepatic and hepatoma cell lines. The expression

levels of AL451069.3 and AC026412.3 in hepatoma cell lines

were much higher than those in a normal hepatic cell line

(Figure 9). Furthermore, the expression levels of these

srlncRNAs were different in diverse hepatoma cell lines

(Supplementary Figure S1).

4 Discussion

4.1 Resource identification initiative

Cellular senescence has been found to play a role in the

development and progression of various types of malignant

tumors, including HCC, and is considered a barrier to the

progression from a chronic liver disease to HCC. Xiang et al.

(2021) reported that the lncRNA PINT87aa was upregulated in

senescent HCC cells and could induce cell cycle arrest by

blocking FOXM1-mediated PHB2. Mittermeier et al. (2020)

described the characteristics and functions of cellular

senescence in the development of novel drug targets for HCC

therapies. Karakousis et al. (2020) suggested that hepatitis B is a

link between cellular senescence and HCC development. A better

understanding of the role of cellular senescence in HCC may

provide a new perspective for HCC treatment and aid in the

development of new therapeutic methods.

FIGURE 4
The heat map (A–C), risk score (D–L), survival status (G–I), and Kaplan–Meier curves (J–L) of the two groups in the training, testing, and entire
sets, respectively.
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The expression patterns and clinical information of 377 patients

with HCC were downloaded from the TCGA database, senescence-

related genes were identified from the CellAge public database, and a

co-expression analysis was performed to identify the genes

potentially involved in HCC. Three prognosis-related

DEsrlncRNAs were screened to construct a signature using

FIGURE 5
The strip chart (A) and Scatter diagram (B–D) showing significant correlation of the tumor grade, American Joint Committee on Cancer stage,
and T stage with risk scores. *p < 0.05 and **p < 0.01. (E–J) The Kaplan–Meier analysis showing a longer survival time in low-risk group patients.
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LASSO and uni-Cox regression analyses: AC026412.3, AL451069.3,

andAL031985.3. Among the three srlncRNAs,AL031985.3 has been

identified as a potential therapeutic target in HCC in a previous

study (Jia et al., 2020). Moreover, the Sankey diagram showed that

the three srlncRNAs were associated with a few coding genes,

including PPT1, PTGDS, and ELOVL1. High PPT1 expression is

FIGURE 6
(A, B) Forest plots of the uni- and multi-Cox regression analyses in HCC, (C) the nomogram-combined risk score, age, and tumor stage to
predict the 1-, 3-, and 5-year OS in HCC and (D) evaluation of the nomogram by correlating it with the calibration curves. (E) The ROC curves of the
model for prognosis, and (F) the ROC curves of the risk score and clinicopathologic features.

FIGURE 7
(A) The top five pathways with enrichment in the high- and low-risk groups with the GSEA analysis, (B) the bubble chart showing risk groups and
immune cells, and (C) line graph demonstrating risk score and immune cells.
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associated with poor prognosis in patients with HCC, and

PPT1 inhibition could enhance the sensitivity to sorafenib

therapy in HCC (Xu et al., 2022). PTGDs are prognostic

biomarkers of breast cancer (Adekeye et al., 2022). Hama et al.

(2021) demonstrated that the expression of ELOVL1 was

significantly higher in CRC tissues than in normal tissues. These

FIGURE 8
(A) The difference of 38 checkpoint expressions in the risk groups, (B) the immune subtype of high- and low-risk groups, and (C) the
immunotherapy prediction of the risk groups.

FIGURE 9
The relative RNA level of AL031985.3 (A), AC026412.3 (B), and AL451069.3 (C) in normal hepatic and hepatoma cell lines. Data is presented as
Mean with SD, *p < 0.05, **p < 0.01, ***p < 0.001.
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results suggest that the three identified srlncRNAs may serve as

potential biomarkers for cancer diagnosis and treatment.

The risk score was calculated based on the expression levels

of the three srlncRNAs, and patients in each cohort were

separated into high- and low-risk groups according to the

calculated risk score. The Kaplan–Meier curve showed that

patients with a low risk score had a better prognosis. Based

on the results of the uni- and multi-Cox regression analyses, the

risk score could be an independent prognostic factor for patients

with HCC. In addition, nomograms are widely used as tools in

oncology, particularly for survival prediction (Iasonos et al.,

2008; Balachandran et al., 2015). The nomogram model and

calibration plot showed good prediction efficiency for HCC

prognosis. Moreover, the correlation between risk scores and

clinical features of HCC was also analyzed; the risk score was

significantly related to the tumor grade, AJCC stage, and T stage,

indicating that the risk score can be used for predicting the

occurence and development of HCC. However, the results of the

Wilcoxon signed-rank test showed that the advancing stages (G4,

stage IV, and T4) were not significantly related to the calculated

risk score. Because the sample content of the TCGA database is

too small, we will have to collect more samples to re-validate.

Based on the results of GSEA, we focused our attention on the

immunity factors. Previous research has suggested that tumor-

infiltrating CD4+ T cells can upregulate the immune checkpoint

genes (Toor et al., 2019). We used TIMER2.0 to assess the

relationship between the risk score and tumor-infiltrating

immune cells (Van Veldhoven et al., 2011; Newman et al.,

2015; Becht et al., 2016; Aran et al., 2017; Li et al., 2017;

Finotello et al., 2019; Tamminga et al., 2020). The results

revealed that the risk score was positively related to B cells,

CD8+ T cells, and cancer-associated fibroblasts. To further

explore the potential of checkpoint blockade therapy and

chemotherapy, we compared the two groups’ expression levels

of the immune checkpoint genes and found 38 checkpoint genes

that were differentially expressed between the two groups in this

study. Consistent with the alteration of the checkpoint genes, the

IC50 values of six common chemotherapeutics were higher in the

low-risk group. These findings suggest that patients with high-

risk scores may be more suitable for immunotherapy and

chemotherapy.

Thorsson et al. (2018) identified the ISs, including wound

healing (IS1), IFN-γ dominant (IS2), inflammatory (IS3),

lymphocyte-depleted (IS4), immunologically quiet (IS5), and

TGF-β dominant (IS6) types of cancer. It was observed that

IS1 and IS2 had worse outcomes, IS3 had a favorable prognosis,

and IS3 was enriched in PBRM1 mutation. Moreover, patients

with PBRM1 mutations were more responsive to

immunotherapy (Miao et al., 2018). Our study indicated that

patients with low-risk scores had a larger proportion of IS3,

which comports with the Kaplan–Meier curve.

However, our study has few limitations. First, our analysis

was based on public datasets and retrospectively collected

samples, which may have caused an inherent case selection

bias. Second, further experiments are required to confirm our

findings. Finally, clinical features related to surgery, neoadjuvant

chemotherapy, and tumor markers were not included in our

study, and clinical cases are required to further validate our

conclusions.

In conclusion, the cellular senescence-based prognostic

signature constructed in this study may be useful for

predicting the survival and guiding clinical therapies for HCC.

Our findings may improve the understanding of cellular

senescence in HCC and provide more effective treatment

strategies. However, additional experiments and clinical cases

are required to validate these findings.
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