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Metabolomics and its Applications in
Cancer Cachexia
Pengfei Cui1, Xiaoyi Li 2, Caihua Huang3, Qinxi Li 4 and Donghai Lin5*

1College of Food and Pharmacy, Xuchang University, Xuchang, China, 2Xuchang Central Hospital, Xuchang, China, 3Department
of Physical Education, Xiamen University of Technology, Xiamen, China, 4State Key Laboratory of Cellular Stress Biology, School
of Life Sciences, Xiamen University, Xiamen, China, 5Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory
of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,
China

Cancer cachexia (CC) is a complicated metabolic derangement and muscle wasting
syndrome, affecting 50–80% cancer patients. So far, molecular mechanisms underlying
CC remain elusive. Metabolomics techniques have been used to study metabolic shifts
including changes of metabolite concentrations and disturbed metabolic pathways in the
progression of CC, and expand further fundamental understanding of muscle loss. In this
article, we aim to review the research progress and applications of metabolomics on CC in
the past decade, and provide a theoretical basis for the study of prediction, early diagnosis,
and therapy of CC.

Keywords: cancer cachexia, metabolomics, metabolic alterations, progress, biomarker

INTRODUCTION

Cancer cachexia (CC) is a multifactorial syndrome, which is characterized by disturbed metabolism,
declined body weight, depleted muscle mass, and reduced food intake (Evans et al., 2008; Fearon
et al., 2011). Overall, CC affects approximately 50–80% of cancer patients and leads to around 30% of
mortality, with the highest incidence reported in gastrointestinal and pancreatic cancers (Loberg
et al., 2007; Kumar et al., 2010). Lately, four stages of CC have been proposed to define the guidelines
(Bozzetti and Mariani, 2009; Blum et al., 2010). Initially, CC begins in a pre-cachexia stage with
unwitting body weight loss, along with a more severe and noninvertible fat tissues and skeletal
muscles loss, followed by disturbances in metabolic pathway and immune system, ultimately
resulting in death (Hamerman, 2002; Deans et al., 2009).

Declined body weight primarily arise from skeletal muscle loss, which is recognized as the major
feature of CC. Muscle loss makes routine activities difficult and results in tiredness, in addition to the
tremendous damage to quality of life and poor response to surgery or chemotherapy (Lok, 2015).
Study showed that treatment on skeletal muscle loss could not only attenuate the symptoms of CC,
but also remarkably prolongs lifespan (Zhou et al., 2010). Previous studies have found that CC is
linked to various factors including fasting hormones, pro-inflammatory cytokines, such as
interleukin 1 (IL-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) (Nagaya
et al., 2006; Gupta et al., 2011; Argiles et al., 2013; Argiles and Stemmler, 2013). The two main cell
proteolysis pathways including ubiquitin-proteasome pathway and autophagy pathway regulate
protein turnover inmuscle tissues (Bonaldo and Sandri, 2013; Halle et al., 2020; Lim et al., 2020; Yang
et al., 2020). In addition, several major signaling pathways including IGF1-Akt-FoxO pathway,
TGFβ-myostatin pathway, NF-κB signaling, and glucocorticoids pathway have all been implicated in
muscle atrophy of CC (Bodine et al., 2001; Musaro et al., 2001; Lee, 2004; Sandri et al., 2004; Waddell
et al., 2008; Peterson et al., 2011). Identification of signaling pathways associated with CC andmuscle
atrophy has achieved great progress in recent decades. Given that CC is a typical metabolic
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syndrome, metabolomic techniques can be applied to explore
biomarkers for early diagnosis of CC, address metabolic
characteristics for mechanistic understanding of the
pathogenesis of CC, and develop therapeutics strategies for
treatments of CC.

As an omics technology developing after genomics,
transcriptomics and proteomics, metabolomics has rapid
developments at present, which can simultaneously analyze all
of metabolites with small molecular weights in a biological system
(Newgard, 2017). Compared to genomics, transcriptomics and
proteomics, metabolomics is based on extensively used detection
equipment including either mass spectrometry (MS) or nuclear
magnetic resonance spectroscopy (NMR), which has the features
of high sensitivity, high precision, good resolution, and small
sample volume (Beckonert et al., 2007; Ma et al., 2018). In the last
2 decades, metabolomic techniques have been extensively used to
exploring various diseases such as cancer (Wishart, 2016; Schmidt
et al., 2021), type 2 diabetes (Newgard et al., 2009; Ma et al., 2018),
fatty liver (Gao et al., 2009; Lallukka and Yki-Jarvinen, 2016), and
cardiovascular diseases (Shah et al., 2012a; Shah et al., 2012b).

Metabolomic techniques create ideas and clues for scholars to
predict and screen CC at early stage. Recently, researchers have
applied metabolomic analysis to perform global and in-depth
studies for identifying metabolic signatures in patients or animal
models or cell models with CC, and also for identifying potential
biomarkers and crucial metabolic pathways to mechanistically
understand the pathogenesis of CC.We searched for articles from
PubMed, Scopus and Google Scholar relevant to cancer cachexia
by using the keywords “cancer cachexia and metabolomics,”
“cancer cachexia and metabonomics,” “cancer cachexia and
metabolic,” “muscle atrophy and metabolomics,” “muscle loss
and metabolomics” and so on. We have only included the studies
based on the animal models or clinical samples related to CC by
using metabolomics methodologies. So far, only two reviews of
omics studies on CC have been reported (Gallagher et al., 2016;
Twelkmeyer et al., 2017). However, these reviews did not pay
much attention to the field of metabolomics. To widely expand
the knowledge of CC and give inspirations for the cachexia
studies from the view of biomarkers, signatures and
therapeutic targets, we focus on the progress made in the past
decade, novel developments, and latest discoveries in the study of
CC using metabolomic techniques, and look forward to its future
developments. To the best of our knowledge, this article presents
the first review on the progress of metabolomic applications
in CC.

METABOLOMIC RESEARCH
METHODOLOGIES AND TECHNIQUES

Followed by genomics, transcriptomics, and proteomics,
metabolomics is a promising subject that has promptly
developed in recent years. It can be qualitatively and
quantitatively employed to analyze various sample sources,
which include cells or tissues extract, bio-fluids, and
microorganisms caused by genetically engineered or drug
treatment. Metabolomic analyses usually focus on small

molecular metabolites such as amino acids, lipids, small
molecular peptides, and organic acids with a relative molecular
weight of less than 1,000 Da (Nicholson et al., 1999; Fiehn et al.,
2000; Xia and Wan, 2021). Generally, metabolomics includes two
tools: non-targeted and targeted metabolomics. Non-targeted
metabolomics is most widely used in CC studies to explore
biomarkers (Yang et al., 2018), signatures (Cui et al., 2019b),
and therapeutic targets (Fukawa et al., 2016). The process of
metabolomic analysis in CC is depicted in Figure 1, which
contains sample sources, analytical platforms, data collection
and analysis, biomarkers identification, metabolic pathways
exploration, and biological significance elucidation.

Sample Sources
The most commonly used type of samples for metabolomic
studies in CC are serum/plasma, urine, tumor tissues, liver
and skeletal muscle, and other tissues. The collected blood
samples are further processed with cell separation to obtain
sera and plasma at 4°C before analysis. This step might be one
of the major factors of pre-analysis errors in blood metabolomics
research (Beckonert et al., 2007; Nikolic et al., 2014). It is
generally suggested that the interval between blood sample
collection and cell separation should be finished in 35 min to
avoid the increased lactate levels. In addition, repeated freezing
and thawing steps should be avoided in the whole experiment
(Yin et al., 2015). Compared with blood samples, the biological
composition of urine samples is relatively simple, the protein
content is low, and additional metabolite extraction steps are not
usually required. The commonly used pretreatment method for
skeletal muscle and tumor tissues in CC studies is liquid-liquid
extraction. In general, tissue samples are initially extracted with
cold solutions which contains chloroform, methanol and water in
a certain ratio to generate a two-phase system. The polar and non-
polar metabolites are separated, lyophilized and dissolved in
corresponding solvents, respectively (Jonsson et al., 2005;
Beckonert et al., 2007; Legido-Quigley et al., 2010).

Data Collection Techniques
Metabolomic techniques are applied to measure the number,
type, condition, and level of metabolites and to explore metabolic
profiles (Beckonert et al., 2007). Compared to other detection
techniques, NMR and MS are the two mostly used techniques for
metabolomic analysis (Emwas, 2015).

NMR technology is a spectroscopic technology that uses
different atomic nuclei to absorb ratio-frequency radiation
with different resonance frequencies, which are converted into
molecular chemistry and structural information related to
environments of the nuclei (Bothwell and Griffin, 2011). With
the development of NMR technology, researchers can directly
analyze intact gastrocnemius muscle without any pretreatment of
samples by using high-resolution magic angle rotation (HRMAS-
NMR) spectroscopy in a CC mouse model (Yang et al., 2015).
Overall, NMR spectroscopy has many advantages such as simple
sample preparation, non-invasive and unbiased measurement of
the sample, good objectivity and reproducibility (Li et al., 2015).
However, signal overlap and low sensitivity are two obvious
shortcomings in complicated 1H-NMR spectra.
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MS spectroscopy uses electric and magnetic fields to separate
moving ions and detect them according to the mass-to-charge
ratio (m/z) (Tsiropoulou et al., 2017). At present, MS combined
with chromatography are divided into three types including
capillary electrophoresis-mass (CE-MS), gas chromatography-
mass (GC-MS), and liquid chromatography-mass (LC-MS).
CE-MS has high performance for polar and ionic compounds
with high resolution and sensitivity rather than uncharged
compounds (Ramautar et al., 2019; Stolz et al., 2019).
Compared to GC and LC, CE has a superiority over them for
the resolution of charged molecules along with the isomers due to
the excellent separation. GC-MS is generally conducted to analyze
non-polar, low-boiling and volatile molecules, and samples
usually need to be derivatized. LC-MS has relatively high
sensitivity and strong detection ability for polar and thermally
unstable compounds, by which a wider range of metabolites with
low detection limit can be analyzed. It can be used for trace
analysis and is more suitable for metabolomic analysis of complex

biological samples (Römisch-Margl et al., 2011; Xiao et al., 2012).
Cala and colleagues performed a combination of 3 types of MS
(GC-MS, CE-MS, and LC-MS) to obtain plasma metabolite
fingerprinting in a CC clinical study (Cala et al., 2018).

Compared with NMR spectroscopy, MS has several
advantages such as high sensitivity and resolution, which
could detect thousands of metabolites in a large dynamic
range at the same time. However, MS also has its own
shortcomings such as complicated sample preparation and low
reproducibility. The advantages and drawbacks of MS and NMR
detections are listed in Table 1. To promote the entire
performance of metabolomics studies, Pin and colleagues
combined MS and NMR to investigate differences between CC
and chemotherapy induced cachexia (Pin et al., 2019).

Data Preprocessing and Analysis
Data analysis includes data preprocessing, multivariate statistical
analysis, model establishment and verification, and selection of

FIGURE 1 |Metabolomics analysis workflow. Abbreviations: NMR, nuclear magnetic resonance; CE, capillary electrophoresis; GC, gas chromatography; LC, liquid
chromatography; MS, mass spectrometry.

TABLE 1 | Summarization of advantages and drawbacks of MS and NMR detections.

Features NMR MS

Sample preparation Simple Complex
Sample measurement Simple Complex, various chromatography methods
Sample recovery Good, non-invasive Destructive
Selectivity and targeted analysis capabilities General, mostly in untargeted analysis Good, untargeted and targeted analysis
Sensibility Low, <100 metabolites per test High, >1,000 metabolites per test
Resolution General General
Repeatability High low
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difference variables, etc. Prior to obtaining metabolomics data for
statistical analysis, it is necessary to preprocess the data, which
mainly includes baseline correction, peak screening (peak
identification, peak alignment and correction), noise filtering,
missing value processing, normalization and scaling (Dunn et al.,
2011). Thereafter, multivariate statistical analysis is conducted to
decrease the dimensionality of acquired data and extract
information, including principal component analysis (PCA),
clustering analysis, partial least square analysis (PLS), PLS-
discriminant analysis (PLS-DA), orthogonal PLS (OPLS)-DA
and random forests (RF) (Idborg-Bjorkman et al., 2003;
Wiklund et al., 2008; Sugimoto et al., 2012; Schwammle et al.,
2015). PCA, PLS-DA, OPLS loading plot and heatmap analysis
were most commonly used in CC metabolomics studies. Besides,
general statistical analyses including analysis of variance
(ANOVA) and Student’s t-test are also applied to
quantitatively analyze the abundance of metabolites between
different groups. When performing the multiple comparisons,
the familywise error rate (FWER) might cause false-positive
detection, which could be diminished by the procedures of
false discovery rate (FDR) with Holm, Bonferroni and
Benjamini-Hochberg corrections in metabolomic analysis
(Sugimoto et al., 2012; Muroya et al., 2020). Overall, the
combination of multivariate statistical analysis and classical
statistical analysis can improve the reliability of the data analysis.

Data Elucidation
After multivariate statistical analysis, one can uncover and
illustrate metabolic signatures based on several databases,
including significantly altered concentrations of metabolites
and certain disturbed metabolic pathways corresponding to
external metabolic stimuli. These databases include HMDB
(http://www.hmdb.ca/), METLIN (https://metlin.scripps.edu/),
SMPDB (https://smpdb.ca), MassBank (http://www.massbank.
jp/), The Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.genome.jp/kegg/), and software such as
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (Pang
et al., 2021). A growing number of studies have been using
MetaboAnalyst website to conduct the pathway analysis and
ROC analysis in CC studies (Yang et al., 2018; Cui et al.,
2019b; Sadek et al., 2021).

ADVANCES IN THE PATHOGENESIS OF
CANCER CACHEXIA BASED ON
METABOLOMICS
Skeletal muscle loss might occur in the early stage, whichmight be
masked by dysfunction and symptoms of other tissues. Methods
used to assess muscle loss involve diagnostic imaging techniques,
including computed tomography (CT), dual energy X-ray
absorptiometry (DXA), and magnetic resonance imaging
(MRI). However, these methods are associated with several
shortcomings such as time consuming, expensive, complicated,
and invasive when clinicians wish to screen the early or slow
muscle loss (Heymsfield et al., 1997; Mitsiopoulos et al., 1998;
Shen et al., 2004; Mourtzakis et al., 2008). In order to exploit the

progress of muscle loss dynamically, several methods have been
developed to detect CC syndromes and shorten the period for
early prevention (Evans et al., 2008). Recently, metabolomic
analysis is widely being applied to uncover novel biomarkers,
explore certain metabolic pathways associated with the
pathogenesis of various diseases including CC, and ultimately
exploit potential therapeutic strategies in the future (Twelkmeyer
et al., 2017). Applications of metabolomics analysis in CC are
depicted in Figure 2, which cover biomarkers, signatures and
therapeutic targets.

Biomarkers
Metabolomics can be applied to detect hundreds of small
metabolites simultaneously for providing better elucidation of
metabolic pathways related to the pathological mechanisms of
CC, ultimately identifying reliable biomarkers for diagnosis and
monitoring of cachexia.

Metabolomics studies in CC began in 2008 relied on the
classical colon-26 (C26) mouse model. Connell and colleagues
demonstrated that metabolomic analysis has the ability to
diagnose and discover the surrogate serum biomarkers in CC
for the first time (O’Connell et al., 2008). They conducted NMR-
based metabolomic analysis on serum samples, and observed
significant metabolic alterations including elevated amounts of
very low-density lipoprotein (VLDL) and low-density lipoprotein
(LDL) related to aberrant glycosylation of β-Dystroglycan
(O’Connell et al., 2008). In a recent study based on the same
C26 model, Lautaoja and colleagues identified free phenylalanine
in sera and muscle tissues as a promising biomarker of cachectic
muscle atrophy by using GC-MS-based metabolomic analysis
(Lautaoja et al., 2019).

Furthermore, Kunz and colleagues performed untargeted LC-
MS-based metabolomic analysis of plasma and skeletal muscle in
a Lewis lung carcinoma (LLC) mouse model. They detected
increased levels of asymmetric dimethylarginine, and NG-
monomethyl-L-arginine in LLC group relative to normal
group. In order to further explore the function of these two
methylarginines in muscle turnover, the researchers treated the
cultured myotubes with these two metabolites and found
impaired muscle protein synthesis in vitro study. Surprisingly,
increased levels of asymmetric dimethylarginine were also
observed in muscle tissues from clinic patients. This study not
only discovered two novel potential biomarkers, but also
provided therapeutic ideas for CC (Kunz et al., 2020).

In addition, Yang and colleagues revealed dynamically
changing metabolic profiles in sera and intact muscle of CC in
the C26 mouse model from pre-cachexia to the refractory
cachexia period. They identified five unique metabolic features
including declined levels of serum glucose and BCAAs, increased
levels of ketone bodies, neutral amino acids and 3-
methylhistidine (Yang et al., 2015). Using HRMAS-NMR
spectroscopy, they performed metabolic profiling of cachectic
gastrocnemius muscle for the first time. To further validate the
metabolic features identified from the mouse model, recently,
Yang and colleagues recruited 33 pre-cachectic, 84 cachectic and
105 cancer patients with stable body weights and 74 healthy
controls, according to the international definition and
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classification of CC (Fearon et al., 2011). They conducted NMR
metabolomic analyses on sera and urine of CC patients to reveal
the metabolic profile of CC, and identified 15 metabolites for
discriminating different disease states (Yang et al., 2018). Based
on three identified metabolites (carnosine, leucine and phenyl
acetate), they established a diagnostic model for predicting the
presence of cachexia with high accuracy.

In a previous study, Fujiwara and colleagues enrolled 21 advanced
pancreatic cancer patients with or without cachexia, collected serum
samples at different time point, and performed GC-MS-based
metabolomic analysis (Fujiwara et al., 2014). They observed
intraday differences in serum metabolite concentration, which
were observably altered in the evening but basically identical in
the daytime. Specifically, abundance of paraxanthinewas significantly
decreased in CC patients compared to those without cachexia all day
long, which was potentially associated with cachexia. Additionally,
another study performed NMR-based metabolomics analysis on 170
patients with head and neck squamous cell carcinoma cancer
(HNSCC). These patients experienced radical treatments with
radio-/chemo-radiotherapy (RT/CHRT) (Boguszewicz et al., 2019).
Boguszewicz and colleagues indicated that serum metabolic
alterations primarily related to high 3-hydroxybutyrate levels could
be detected at an early stage of the treatment experienced by HNSCC
patients. Thus, 3-hydroxybutyrate could be exploited as a fast and
sensitive biomarker of malnutrition or cachexia.

Similarly, Miller and colleagues conducted LC-MS-based
metabolomic analysis and identified potential biomarkers related

to weight loss in patients with upper gastrointestinal cancer, which
could be applied for the assessment of therapeutic intervention
(Miller et al., 2019). Cancer patients with ≥5% weight loss
displayed plasma metabolic profiles distinguished from those with
<5% weight loss. Totally, six metabolites were highly discriminative
of body weight loss, including lysoPC18.2 and 16:1, hexadecanoic
acid, octadecanoic acid, phenylalanine.

Metabolites in urine samples have also been investigated to
discover novel biomarkers for CC. Eisner and colleagues did the first
attempt to use single time-point urinary metabolite profiles to
diagnose muscle wasting occurring in CC humans (Eisner et al.,
2011). After analyzing 93 random urine samples from cancer
patients, the researchers found that some metabolites such as
creatinine and methylhistidine arising from muscle proteolysis
were particularly released into urine. This study provides an
inspiration that it might also be convenient, cheap and safe to
detect muscle wasting based on 1H-NMR urine metabolomic
analysis. Overall, these results obtained from previous studies on
biomarkers for CC mostly depend on the samples derived from
animal models and human, and also on tumor type, bio-fluids and
analytical platforms.

Metabolic Signatures and Metabolic
Pathways
Although numerous researches have been exploring molecular
mechanisms underlying muscle wasting in CC, the effect of

FIGURE 2 |Metabolomics applications covering biomarkers, signatures and therapeutic targets in CC. Red, upregulated metabolites and pathways in CC group.
Green, downregulated metabolites, microbes and pathways in CC group.
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muscle wasting on muscle function and metabolic signatures
remains unclear (Diffee et al., 2002). Metabolic impairments in
the skeletal muscle are related to its physiological dysfunction.
Thus, metabolic derangements might be involved in molecular
mechanisms underlying protein synthesis and breakdown
(Tisdale, 2003; Santarpia et al., 2011).

Yang and colleagues indicated that serum metabolic
disturbances associated with promoted tricarboxylic acid
(TCA) cycle and amino acid metabolism were the major
features of CC in C26 mouse model. Amino acids, ketone
bodies and metabolites involved in TCA cycle were recognized
as potential biomarkers related to the corresponding metabolic
pathways (Quanjun et al., 2013). Furthermore, Torossian and
colleagues performed GC-MS-based and LC-MS-based
metabolomic analyses to reveal metabolic distinctions between
cachectic gastrocnemius muscles and control muscles in the C26
mouse model (Der-Torossian et al., 2013b). They showed
predominant effects of CC including: enhanced oxidative
stress, impaired redox homeostasis, altered metabolite
concentrations in glycolysis and declined carbon flow through
TCA cycle. This study found the tumor Warburg-like metabolic
pattern in skeletal muscle of CC for the first time, which is
considered as novel metabolic signature in CC research.

Compared to malabsorption, fasting, age-induced muscle loss,
and sarcopenia, CC has its own metabolic features (Fearon, 1992;
Tisdale, 2009; Evans, 2010; Rolland et al., 2011). Consistently,
Torossian and colleagues performed a NMR-based metabolomic
analysis of sera, and indicated that metabolic alterations including
hyperlipidemia, hyperglycemia and reduced BCAAs distinguish
cachexia from effects of starvation (Der-Torossian et al., 2013a).
Another previous study explored metabolic differences between
sarcopenia and CC in senile cancer animals. The researchers
conducted NMR-based metabolomic analysis dynamically on
sera derived from adult and ageing rats. The metabolic
alterations mostly focused in several metabolic pathways,
including amino acid biosynthesis which was upregulated in
the aging group and downregulated in the tumor groups
(Viana et al., 2020). Recently, they also performed NMR-based
metabolomic analysis on gastrocnemius derived from weanling
and young adult rats, aiming to explore metabolic alterations in
cachectic hosts during the whole lifespan (Chiocchetti et al.,
2021). They indicated that the most significant variations of
metabolites such as glutamate, glutamine, glycine, and
methylhistidine, might be associated with the early muscle
catabolism and declined energy generation in cachectic muscles.

Chemotherapy is widely used to cancer patients in the clinical
treatment, however, growing evidences have shown that several
chemotherapeutic drugs could also lead to the occurrence of
cachexia and deterioration of muscle mass. To date, only one
metabolomics investigation has been done in chemotherapy-
induced cachexia. Based on the C26 mouse model, Pin and
colleagues revealed significant differences in amino acid
catabolism, TCA cycle, and β-oxidation between CC and
chemotherapy-induced cachexia by a combination of NMR-
based metabolomics with targeted MS analysis (Pin et al., 2019).

Although skeletal muscles are the main tissue impaired
dramatically in CC, other tissues such as liver and gut may

also be affected and involved in the pathophysiology of this
complex syndrome (Rohm et al., 2019). As an essential
metabolic organ, liver regulates body energy metabolism and
maintains its homeostasis. Dysfunction of liver metabolism are
prone to cause promoted energy consumption in CC.
Furthermore, gut microbial species play key roles in nutrients
supplementation, cytokines and gut hormones regulation, and
gut barrier function improvement. Based on these beneficial
effects, scholars are exploring if these micrograms could act as
novel therapeutic targets for CC (Valdes et al., 2018). Based on the
C26 mouse model, Pötgens and colleagues explored the crosstalk
in four different samples including caecal, portal vein, vena cava
and liver by a combination of NMR-based metabolomics with gut
gene sequencing and hepatic transcriptomics. Their results
showed depressed glycolysis and gluconeogenesis, activated
hexosamine pathway and phosphatidylcholine pathway,
reduced abundances of hepatic carnitine and caecal acetate
and butyrate, and decreased levels of aromatic amino acids
(Potgens et al., 2021). Given that CC also induces anorexia
and reduced food intake, Uzu and colleagues focused on
studying metabolic signatures of brains and conducted a CE-
MS-based metabolomic analysis on brain samples derived from a
CC mouse model. They observed activated purine metabolism
and increased xanthine oxidase activity in brains of cachexic mice
relative to controls (Uzu et al., 2019).

Ni and colleagues conducted a comprehensive analysis on 31
patients with lung cancer by a combination of plasma
metabolomics and gut microbiota metagenomics (Ni et al.,
2021). For the first time, they explored gut microbiota
functions in the clinical CC study, and observed remarkably
decreased levels of BCAAs, methylhistamine, and vitamins in
CC blood. They further discovered that increased levels of BCAAs
and 3-oxocholic acid in non-CC blood were closely related to gut
microbiota especially Prevotella copri and Lactobacillus gasseri,
respectively. These results shed lights on molecular mechanisms
underlying host-microbiota crosstalk in CC, and provided new
strategies for preventing or treating CC through regulating gut
microbiota in the future nutritional supplements.

Previously, preclinical mouse models (mainly C26 and LLC)
were established by using subcutaneous implantation methods to
conduct CC studies. Few murine models of CC with orthotopic
implantation have been employed. Thus, our group established
two orthotopic models including glioma cachexia and gastric
cancer cachexia to mimic clinical characteristics of CC. In the first
study, we conducted NMR-based metabolomic analysis to
explore metabolic profiles in cachectic muscle based on a
glioma induced cachexia murine model (Cui et al., 2019b).
Our results indicated that significantly impaired pathways
including energy metabolism, muscle protein breakdown and
synthesis, and profoundly increased amino acids involved in TCA
cycle anaplerotic. After that, we established a gastric CC murine
model and performed NMR-based metabolomic analysis of
gastric tissues (tumor), blood and skeletal muscle. Cachectic
mice exhibited impaired glucose and nucleic acid metabolisms
in tumor, hyperlipidemia and hypoglycemia in blood, and
disturbed carbohydrate and amino acid metabolism in
gastrocnemius (Cui et al., 2019a). Besides, we further explored
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the role of α-ketoglutarate in muscle protein turnover, and found
α-ketoglutarate can alleviate the myotubes atrophy induced by
glucose deprivation.

At present, only one study was performed using a combination
of three metabolomics techniques (GC-MS, CE-MS, and LC-MS)
to access a markedly different metabolic pattern in human plasma
(Cala et al., 2018). Cala and colleagues collected two groups of
plasma samples from 8 cachectic and 7 non-cachectic patients
(Cala et al., 2018). Their results exhibited significantly decreased
levels of amino acids and glycerophospholipids, and increased
cortisol levels associated with cachexia. The disturbed metabolic
pathways in CC included amino acid metabolism, aminoacyl-
tRNA biosynthesis, fatty acid elongation, and TCA cycle. In
another study, Stretch and colleagues investigated metabolic
profiles of urine and plasma derived from 55 weight-losing
patients by conducting NMR-based and direct injection MS-
based metabolomics analyses. Their results indicated that large
amounts of glycerophospholipids variations can be used to
discover sarcopenia in cancer patients (Stretch et al., 2012).
This study addressed one main issue that the variability of
tissue mass might impact metabolic profiles, and thus could
provide hints for the field of nutrition and metabolism studies.
Overall, numerous researchers have investigated the metabolic
signatures for CC from various aspects such as starvation,
sarcopenia, chemotherapy, gut microbes, orthotopic
implantation and analytical platforms, in order to give clues
and inspirations to better elucidate the pathogenesis of CC
and therapeutic targets discovery.

Therapeutic Strategies by Using
Metabolomics
As discussed above, metabolomics is being extensively used to
uncover biomarkers, metabolic signatures and metabolic
pathways of CC, and to exploit novel drug targets. In this
section, we discuss studies on how metabolomics contributes
to the discovery of new targets for therapy.

Gut microbiota could depress inflammation response and
tumor development (Bindels et al., 2012). Some researchers
have been exploring the roles of gut microbiome in CC and
addressing certain metabolic signatures in the last section. Bindels
and colleagues performed a further study on gut microbiota with
the expectation of finding novel interventions for CC treatments.
They integrated gene sequencing and metabolomics as well as
molecular profiling of the host, so as to obtain a comprehensive
view on the pathophysiology of CC (Bindels et al., 2016). The
portal metabolome reflected significantly decreased glucose and
lipoproteins levels, increased creatine and lactate levels. These
data demonstrated that gut microbiota can impact intestinal
homeostasis, confer benefits to the host, prolong survival and
attenuate cachexia.

Increased expressions of inducible nitric oxide synthase
(iNOS) have been observed in muscle tissues of cancer, AIDS,
chronic heart failure, and COPD cachexia patients, suggesting
that iNOS may be involved in the onset of cachexia under various
conditions (Adams et al., 2003; Agusti et al., 2004; Ramamoorthy
et al., 2009). Sadek and colleagues identified a signature of amino

acids that were altered by iNOS activity in muscle by performing
LC-MS-based and GC-MS-based metabolomic analyses based on
the C26 murine model (Sadek et al., 2021). Notably, iNOS could
significantly increase levels of arginine, lysine, tryptophan and
methylhistidine, which could be decreased by inhibiting iNOS.
Furthermore, they also found iNOS-induced significant decreases
in levels of pyruvate, α-ketoglutarate and succinate, which were
restored by KO iNOS. These results demonstrated that drug
blockade or gene knockout of iNOS could rescue muscle loss and
improve metabolic disorders in CC. This study provided the idea on
how to use metabolomic techniques to identify potential targeted
metabolic pathways. Initially, the researchers clarified metabolic
alterations in animal models by conducting metabolomics
analysis, thereafter they conducted genetic or pharmacological
inhibition of iNOS on certain metabolic pathways including
glycolysis, TCA cycle and fatty acid oxidation, which were all
related to the energy production. Ultimately, they clearly
elucidated the role of the iNOS/NO pathway in promoting
energy crisis during cachexia-induced muscle wasting.

In addition, Ballarò and colleagues found that abnormal
muscle mitochondrial function is correlated with excessive
proteolysis, autophagy and mitophagy in the established CC
model (Penna et al., 2019). They conducted NMR-based
metabolomic analyses of skeletal muscle, liver and plasma.
They identified significantly altered energy and protein
metabolism such as decreased muscle NADH, increased
glutamine, BCAAs and phenylalanine in tumor hosts.
Partially, mitochondria-targeted compound SS-31 could
modulate both skeletal muscle metabolome and liver
metabolome, restore levels of alanine and ATP, as well as
liver glycogen and glutathione. This study suggested that
targeting mitochondrial function might be an efficient
therapeutic approach for CC (Ballaro et al., 2021).

Researches have illustrated that intervening targeted metabolic
pathways could attenuate CC symptoms and prevent muscle loss.
Yang and colleagues investigated metabolic signatures of CC and
the contribution of formoterol to serum metabolites in the C26
mouse model with NMR-based metabolomics approach. They
identified several potential biomarkers including amino acids,
ketone bodies and citrate cycle metabolites, which well reflected
the effects of formoterol treatment (Quanjun et al., 2013). In a
later study, this group conducted NMR-based metabolomic
analysis based on the C26 mouse model. They exhibited that
primary disturbedmetabolic pathways in CCwere biosynthesis of
the BCAAs and glycine, serine, and threonine metabolism.
Significantly, treatment with curcumin changed glycolysis with
declined levels of lactate, alanine and glucose (Quan-Jun et al.,
2015). In addition, Ohbuchi and colleagues exploited molecular
mechanisms under the effects of rikkunshito (RKT) acting as a
Japanese traditional herbal medicine (Kampo) for the treatment
of CC. The researchers performed GC-MS-based plasma
metabolomic analysis based on a rat model, and indicated that
increased plasma glucarate following the RKT administration
could delay body weight loss, reduce muscle wasting and ascites
content (Ohbuchi et al., 2015). These studies shed lights on
applications of traditional medicines for alleviating the
progression of CC.
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TABLE 2 | Overview of metabolic characteristics of CC.

References Study
object

Sample
information

Analytical
technology

Metabolic characteristics

O’Connell et al. (2008) Mice Serum NMR UP: VLDL/LDL;
DOWN: glucose.

Eisner et al. (2011) Patients Urine NMR UP: creatine, creatinine,
3-OH-isovalerate.

Stretch et al. (2012) Patients Urine, NMR, Glycerophospholipids and metabolites associated with amino acid metabolism.
Plasma MS

Quanjun et al. (2013) Mice Serum NMR Enhanced citrate cycle and amino acid metabolism.
Der-Torossian et al.
(2013a)

Mice Serum NMR Hyperlipidemia, hyperglycemia;
DOWN: BCAAs.

Der-Torossian et al.
(2013b)

Mice Muscle LC-MS Enhanced Warburg effect;
Disrupted TCA cycle, promoted oxidative stress,
impaired redox homeostasis.

Fujiwara et al. (2014) Patients Serum GC-MS Down: paraxanthine.
Ohbuchi et al. (2015) Rat Plasma GC-MS DOWN: glucarate;
Yang et al. (2015) Mice Serum, Muscle NMR UP: neutral amino acids, creatine, ketone bodies, 3-methylhistidine;

DOWN: BCAAs, glucose.
Quan-Jun et al. (2015) Mice Serum NMR UP: phenylalanine;

DOWN: BCAA, acetoacetate.
Tseng et al. (2015) Mice Muscle LC-MS Impaired glycolysis, glycogen synthesis; protein degradation.
Viana et al. (2016) Rat Serum, NMR UP: tryptophan, lactate, ketone bodies.

Tumor
Bindels et al. (2016) Mice Portal plasma NMR UP: creatine, lactate;

DOWN: glucose, lipoproteins.
Fukawa et al. (2016) Mice Muscle, cell LC-MS Excessive fatty acid oxidation, enhanced oxidative stress.
Yang et al. (2018) Patients Serum, urine NMR UP: Carnosine, phenylacetate;

Down: leucine.
Cala et al. (2018) Patients Plasma LC-MS, UP: cortisol;

GC-MS, DOWN: Glycerophospholipids,
CE-MS Sphingolipids.

Lautaoja et al. (2019) Mice Serum, Muscle GC-MS UP: phenylalanine.
Boguszewicz et al.
(2019)

Patients Serum NMR UP: 3-hydroxybutyrate.

Miller et al. (2019) Patients Plasma LC-MS UP: lysoPC 18.2, L-proline, hexadecanoic acid, octadecanoic acid, phenylalanine
and lysoPC 16:1.

Pin et al. (2019) Mice Plasma, Muscle,
Liver

NMR, MS UP: low-density lipoprotein particles;
DOWN: circulating glucose, liver glucose and glycogen.

Uzu et al. (2019) Mice Brain CE-MS Activated purine metabolism, Enhanced xanthine oxidase activity.
Cui et al. (2019a) Mice Tumor, NMR UP (tumor): pyruvate and lactate;

DOWN (tumor): hypoxanthine, inosine, inosinate;
Serum, UP (serum): lactate and glycerol;

DOWN (serum): glucose;
Muscle UP (muscle): α-ketoglutarate;

DOWN (muscle): glucose.
Cui et al. (2019b) Mice Muscle NMR UP: glutamate, arginine, BCAAs;

DOWN: glucose, glycerol,
3-hydroxybutyrate.

Kunz et al. (2020) Mice Plasma, LC-MS UP: asymmetric dimethylarginine; and NG-monomethyl-L-arginine.
Muscle

Viana et al. (2020) Rat Serum NMR Promoted amino acid biosynthesis and metabolism.
Miyaguti et al. (2020) Rat Serum, NMR UP: tryptophan, phenylalanine, histidine, glutamine.

Muscle
Chiocchetti et al. (2021) Rat Muscle NMR Increased amino acid levels and disordered energetic metabolism.
Potgens et al. (2021) Mice Caecal, portal vein,

liver,
NMR Suppressed glycolysis and gluconeogenesis, hepatic carnitine and

phosphatidylcholine pathway activity; activated hexosamine pathway.
vena cava

Ni et al. (2021) Patients Plasma, Gut LC-MS DOWN: methylhistamine, BCAAs, vitamins.
Ballaro et al. (2021) Mice Muscle, Liver,

Plasma
NMR UP: glutamine, isoleucine, leucine, valine and phenylalanine;

DOWN: NADH and succinate.
Sadek et al. (2021) Mice Muscle LC-MS UP: arginine, lysine, tryptophan, and methylhistidine;

GC-MS DOWN: pyruvate, α-ketoglutarate and succinate.
Zhou et al. (2021) Mice Muscle NMR Enhanced muscular proteolysis, suppressed glycolysis and ketone body oxidation.
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On the other hand, Tseng and colleagues performed in-depth
assessments of anti-cachectic activities of a novel histone
deacetylase inhibitor AR-42 in C26 and LLC mouse models
(Tseng et al., 2015). The LC-MS-based metabolomic analysis
displayed that impaired glycolysis, glycogen synthesis and
protein turnover in cachectic muscle tissues, could be
improved by AR-42 and maintain the homeostatic
metabolism relative to controls. Furthermore, Fukawa and
colleagues conducted LC-MS-based metabolomic analysis
integrated with transcriptomic analysis in muscles in a
subcutaneous kidney murine model. They found that tumor-
secreted factors induced excessive fatty acid oxidation, leading
to muscle tissue dysfunction and activated p38 pathway.
Afterwards, they indicated that drug inhibition of fatty acid
oxidation could ameliorate human myotubes atrophy in vitro,
and further restore muscle mass and body weight of mice in vivo
(Fukawa et al., 2016). This work provided the inspiration on
how to use non-targeted metabolomic techniques to explore
new therapeutic targets. Initially, the researchers elucidated
metabolic alterations mainly related to excessive fatty acid
oxidation in animal models by performing metabolomics
analysis. Then, they conducted pharmacological inhibition of
fatty acid oxidation based on in vivo and in vitro models.
Ultimately, they successfully rescued body weight loss and
muscle atrophy in CC mice.

Recently, our group performed integrative NMR-based
metabolomic and transcriptomic analyses of gastrocnemius in
two murine models of CC (CT26 and LLC), and evaluated the
beneficial effects of amiloride for CC treatments (Zhou et al.,
2021). We identified significantly impaired metabolic pathways
including enhanced muscular proteolysis, suppressed glycolysis
and ketone body oxidation in cachectic gastrocnemius. Our
results indicated that amiloride can alleviate muscle loss and
the progression of CC through blocking exosome release
originated from cancer cells. Our study suggests that tumor-
released exosome can be a potential target to attenuate muscle
wasting during the progression of CC in the future.

In addition to the drug prevention, nutritional
supplementation of metabolites such as BCAAs has been
applied to improve impaired skeletal muscle metabolisms in
diseases like AIDS and diabetes (Viana and Gomes-
Marcondes, 2013). Furthermore, previous studies have
demonstrated that leucine supplementation can promote
nitrogen balance and restore muscle mass (Ventrucci et al.,
2004; Salomao and Gomes-Marcondes, 2012). This team
assessed if a leucine-rich diet could affect metabolic profiles of
sera and tumor tissues in a rat model. The results exhibited down-
regulated levels of tryptophan and lactate associated with a
suppressed hypermetabolic state, and up-regulated levels of β-
hydroxybutyrate and acetoacetate, which might indirectly
contribute to the prevention of CC (Viana et al., 2016).
Recently, this group conducted metabolomic analyses of sera
and gastrocnemius derived from rats with leucine
supplementation. The tumor-bearing rats displayed distinctly
altered metabolic pathways including protein biosynthesis,
glycine, serine and threonine metabolism, and ammonia
recycling. Significantly, the leucine-rich diet rats showed

attenuated Warburg effect and improved lipid metabolism
(Miyaguti et al., 2020).

Ketone body supplementation might also contribute to
regulation of glucose and lipid metabolism and prevent body
weight loss (Kennedy et al., 2007). Shukla and colleagues
addressed anti-cancerous and anti-cachectic properties of a
ketogenic diet in vitro, and assessed the effects of ketone
bodies on tumor mass and CC symptoms of mice by
conducting NMR-based metabolomic analysis in vivo (Shukla
et al., 2014). They observed reduced glycolytic flux and
diminished glutamine uptake, decreased overall ATP content
in tumor cells. These results suggest that treatment with
ketone bodies could prevent cachexia phenotype. Collectively,
we anticipate that exploitation of the global metabolome with
metabolomics techniques can achieve more comprehensive
knowledge of CC and discover effective therapeutic strategies.

CONCLUSION

Even though metabolomics is relatively less used compared with
other omics approaches, it is able to provide key information for
further exploration of CC, including mechanistic understanding,
potential biomarkers, metabolic signatures, and therapeutic
strategies. With the rapid development and wide application of
metabolomics analysis in the field of CC research, in-depth
understandings of CC have been broadly expanded and
systemized. Researchers propose novel hypotheses and develop
approaches using metabolomic techniques, to exploit the features
of CC and therapeutic targets for the treatments of CC.
Metabolomics can be employed to identify potential
biomarkers for screening early symptoms and monitoring the
progression of CC, through measuring alterations in
concentrations of hundreds of endogenous metabolites in bio-
fluids and tissues derived from animal and human beings. In
addition, numerous studies have shown that targeting specific
metabolic pathways could regulate abnormal metabolisms
induced by CC and ultimately alleviate syndromes of CC.
Table 2 displays the summary of the metabolomics studies on
CC in the past decade with novel discoveries.

Current studies indicate that the metabolites of carbohydrates,
lipids and amino acids are closely linked to the development and
progression of CC (Figure 2). Carbohydrates related to CC
primarily include glucose and lactate, TCA cycle metabolites
such as citrate, succinate, and α-ketoglutarate. Lipids relevant
to CC mainly include glycerophospholipids, LDL and lipid
derivatives. Amino acids participating in the pathogenesis of
CC mostly include BCAAs, phenylalanine and their
metabolites. In addition, three kinds of ketone bodies and
methylhistidine and its metabolites are also important
substances involved in the pathological mechanisms of CC.

Significantly impaired metabolic pathways are associated with
the pathogenesis of CC, including two main types: energy
metabolism and amino acid metabolism (Figure 2). The
metabolism of amino acids is usually disordered in CC mainly
due to muscle turnover imbalance, such as BCAAs metabolism,
arginine metabolism, glutamate and glutamine metabolism,
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phenylalanine and tyrosine metabolism. Glycolysis, fatty acid
oxidation, and TCA cycle are mostly disturbed because of the
shifted energy needs. Additionally, impaired metabolisms of
carbohydrates and lipids contribute to the progression of CC
via a series of metabolic pathways.

FUTURE PERSPECTIVES

Although the metabolic signatures of cachectic muscle are being
investigated in the past decade, we still need to know how to
elucidate the molecular mechanisms based on the results
obtained from metabolomic analyses. The chemical complexity
and large number of metabolites might be one of the challenges
associated with metabolomic analyses. For example, metabolite
compositions of sera, plasma and urine are manifestations of
tumor, liver, muscle, and functions of gut microbes, type of diets,
clinical cancer treatment, and other tumor-derived factors like
exosomes and cytokines. Compared with other omics
approaches, metabolomics has many advantages and also some
drawbacks. No techniques are really flawless as a fact. Expectedly,
metabolomic analyses should be integrated with other omics
approaches, bioinformatics, biophysical techniques and
signaling pathway analysis, which would provide

comprehensive views on the complicated pathogenesis of CC,
and expand our knowledge of fundamental mechanisms
underlying metabolic disorder and muscle wasting. As unified
workflows, inexpensive equipment, and humanized acquisition
software and high throughput measurements as well as powerful
computational analysis become more broadly available,
metabolomics will play increasingly vital roles in the studies of
molecular biosciences.
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Integrated Transcriptomics and
Metabolomics Analyses of
Stress-Induced Murine Hair Follicle
Growth Inhibition
Xuewen Wang1,2†, Changqing Cai3†, Qichang Liang1,2†, Meng Xia4, Lihua Lai4, Xia Wu1,2,
Xiaoyun Jiang1,2, Hao Cheng1,2*, Yinjing Song1,2* and Qiang Zhou1,2*

1Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou,
China, 2Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 3Yonghe
Medical Group Co. Ltd., Beijing, China, 4Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China

Psychological stress plays an important role in hair loss, but the underlying mechanisms are
not well-understood, and the effective therapies available to regrow hair are rare. In this
study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse
model and performed a comprehensive analysis of metabolomics and transcriptomics.
Metabolomics data analysis showed that the primary and secondary metabolic pathways,
such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were
significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed
significant changes of genes expression profiles involved in regulation of metabolic
processes including arachidonic acid metabolism, glutathione metabolism, glycolysis
gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol
metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found
that numerous genes associated with metabolism were significantly changed, such as
Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the
hair growth inhibition induced by CRS from the perspective of integrated metabolomics and
transcriptomics analyses.

Keywords: metabolomics, transcriptomics, hair growth inhibition, chronic restraint stress, hexokinase-1

INTRODUCTION

As one of the most common skin diseases, hair loss has negative effects on patient’s psychological
well-being and reduces their life quality (Williamson et al., 2001). Previous studies indicate that
psychoemotional stress plays a pivotal role in triggering and aggravating hair loss, such as alopecia
areata (AA), telogen effluvium and androgenetic alopecia (Hadshiew et al., 2004; Peters et al., 2006;
Alexopoulos and Chrousos, 2016; Dainichi and Kabashima, 2017). Numerous studies reveal that hair
loss is highly related to hair follicle (HF) pathophysiological changes (Cotsarelis and Millar, 2001;
Pratt et al., 2017). HFs go through successive cycles of anagen (growth), catagen (regression), and
telogen (rest) phases (Millar, 2002; Rishikaysh et al., 2014). The hair follicle cycling is modulated by
various signals which control quiescence and activation of hair follicle stem cells (HFSCs) (Chai et al.,
2019; Feng et al., 2020).

Psychological stress has been reported to alter the hair cycle via neuroendocrine or
neuroimmunological signaling pathways (Paus et al., 2008; Ito, 2010; Paus et al., 2014). The
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generation of HFs can be affected by numerous neuromediators
which regulate HF growth, pigmentation, remodeling, immune
status, stem cell biology, and energy metabolism (Peters et al.,
2006; Paus et al., 2014; Choi et al., 2021). Numerous studies
demonstrate that stress increases apoptotic cells, inhibits hair
bulge stem cells and hair bulb keratinocytes proliferation,
promotes mast cell degranulation, and induces premature
catagen and neurogenic inflammation. In addition, it has been
reported that chronic restraint stress (CRS) induces the delay of
hair cycle via autophagy (L. Wang et al., 2015). But other
researchers find that supplementation of a metabolite
a-ketobutyrate (a-KB) in old mice can increase longevity and
prevent alopecia by inducing autophagy (Chai et al., 2019). Thus,
the mechanisms of CRS on hair growth remains to be further
investigated.

Metabolomics is an omics category focused on
simultaneous qualitative and quantitative analyses of low
molecular-weight metabolites within an organism or cell
during a specific physiological period (Christodoulou et al.,
2020; Huang et al., 2021). Changes in metabolites play a critical
role in various diseases, including hair loss. Clinical
investigations have suggested that androgenic alopecia
(AGA) patients showed significant abnormal lipid profiles
(Antoni and Dhabhar, 2019; Kim et al., 2017). Lipid-
modulatory therapies have been reported to alter hair
growth (Lattouf et al., 2015; Cervantes et al., 2018; Shin
et al., 2021). Moreover, cholesterol is involved in
proliferation and differentiation of HF cell population. It is
reported that primary cicatricial alopecia is also related to
cholesterol metabolism disorders (Palmer et al., 2020).

Intriguingly, psychological stress can trigger metabolic
changes and psychological stress is also associated with many
metabolic-related diseases including diabetes, cardiovascular
disease, as well as cancers (Gu et al., 2012; Hackett and
Steptoe, 2017; Antoni and Dhabhar, 2019). CRS also
drastically increases the expression of genes related to fatty
acid/lipid/sterol metabolism in the liver of mice (Ha et al.,
2003). Some researchers also report that HFSCs maintain a
dormant metabolic state and could utilize glycolytic
metabolism, thus producing more lactate than other cells in
the epidermis (Flores et al., 2017). Small molecules that
activate autophagy could initiate anagen and stimulate hair
growth, including some metabolites associated with
carbohydrate metabolism, a-ketoglutarate (a-KG), and
a-ketobutyrate (a-KB) (Chai et al., 2019). Obesity-induced
stress, such as that induced by a high-fat diet accelerates hair
loss mainly through depletion of HFSCs, which indicates
metabolic changes may affect hair growth via stem cell
inflammatory signals (Morinaga et al., 2021). However, the
metabolic pathways and molecules involved in the
mechanisms of psychological stress effects on hair growth are
still unclear.

Therefore, in order to elucidate the pathogenesis and
explore potential therapeutic strategies, our study
investigated important biological metabolites, genes and
signaling pathways that were related to CRS-induced hair
growth inhibition. Our results not only provided a validated

and comprehensive understanding of integrated
transcriptomics and metabolism analyses in CRS-induced
hair growth inhibition but also found some genes including
Hk-1 which might be new targets for the treatment of CRS-
induced hair growth inhibition.

MATERIALS AND METHODS

Mice
All experiments were approved by the center of experiment
animal, Zhejiang University (China). C57BL/6 male mice were
obtained at 6–8 weeks of age from Shanghai SLAC Laboratory
Animal Co., Ltd. All mice were acclimated for 7 days before the
onset of studies at Experimental Animal Center of Zhejiang
University (China). The standard conditions of animal facility
were maintained as following: temperature 21–24°C; 12 h light/
dark cycle (lights on 06:00–18:00); humidity 50–60%. Sterilized
water and food were provided ad libitum during this period. The
study was approved by the Ethics Committee of Sir Run Run
Shaw Hospital of Zhejiang University School of Medicine
(Approval no. SRRSH2021401).

Stress Application and Anagen Induction
The procedure of CRS was conducted as previously reported
method and lasted for 20 days (Q. Wang et al., 2019). Mice
were placed into 50 ml conical tubes, without physically
compressed for 6 h (10:00–16:00) each day (Liu et al., 2013;
Zhao et al., 2013). During the period of stress application,
control mice were kept undisturbed in their original cages,
and all groups of mice were not provided with food and water.
On day 8 of the experiment, wax/rosin mixture (1:1 on weight)
was applied to the dorsal skin (from neck to tail) of mice to
induce anagen. Then we peeled off the mixture and removed
all hair shafts to induce synchronization of hair cycle, as
evidenced by the homogeneously pink skin color in the
back, which indicated all hair follicles in telogen (Müller-
Röver et al., 2001). Mice were not exposed to CRS on the day
of depilation.

Assessment of Hair Cycle
Assessment of Hair cycle were based on the appearance of skin
pigmentation and hair shaft which were monitored by
pictures, as previously described (Stenn and Paus, 2001). To
quantify the stage of the hair follicles, skin pigmentation score
values from 0 to 100 were calculated based on skin
pigmentation levels and hair shaft density, with 0 indicating
no hair growth (and no pigmentation) and a higher number
corresponding to darker skin and larger areas of dense hair
growth (Chai et al., 2019). Briefly, skin pigmentation scored 50
refers to 50 percent of full-length hair shaft on back skin or 100
percent of skin pigmentation without visible hair growth. Skin
pigmentation scored 70 refers to 70 percent of full-length hair
shaft in back skin or 100 percent of skin pigmentation with 40
percent of full-length hair shaft. Skin pigmentation scored 100
refers to 100 percent of full-length hair shaft on back skin
(Feng et al., 2020).
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Tissue Preparation and
Immunohistochemistry Staining
C57BL/6J mouse dorsal skin specimens were harvested about 2 ×
4 cm on day 21 of the experiment before being collected for
histological and molecular analyses. Full-thickness skin tissues
(measured thickness 400–700 um) were then fixed in 4% formalin
and dehydrated for embedding in paraffin. 5 mm paraffin
sections were subjected to hematoxylin and eosin (H&E)
staining and immunohistochemistry. The Ki67 (ab15580)
antibody was purchased from Abcam. Images were captured
using an Olympus microscope (IX73) at X40 and X400
magnification. The remaining skin specimens were
immediately snap frozen in liquid nitrogen and stored at
−80°C for subsequent use.

Library Construction, RNA Sequencing and
Primary Analysis
Three replicate samples of control and CRS C57BL/6 mice dorsal
skin specimens were used for library construction and RNA
sequencing, respectively. Total RNA was isolated from skin
tissues and purified using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States) following the manufacturer’s
procedure. The NanoDrop ND-1000 (NanoDrop, Wilmington,
DE, United States) was used to quantify the amount of RNA and
purity of each sample. The Bioanalyzer 2,100 (Agilent, CA,
United States) with RIN number >7.0 was used to assess the
integrity of RNA, which was also confirmed by electrophoresis
with denaturing agarose gel. Poly (A) RNAwas purified from 1 μg
total RNA by Dynabeads Oligo (dT)25–61,005 (Thermo Fisher,
CA, United States) and was fragmented into small pieces using
Magnesium RNA Fragmentation Module (NEB, cat. e6150,
United States) under 94°C 5–7 min. The SuperScript™ II
Reverse Transcriptase (Invitrogen, cat. 1896649, United States)
was used to reverse-transcribe the cleaved RNA fragments to
create the cDNA, which were then transform to the U-labeled
second-stranded DNAs with E. coli DNA polymerase I (NEB, cat.
m0209, United States), RNase H (NEB, cat. m0297, United States)
and dUTP Solution (Thermo Fisher, cat. R0133, United States).
An A-base was then added to the blunt ends of each strand,
preparing them for ligation to the sequencing adapters.
Subsequently, the ligated products were amplified with PCR
amplification. At last, the Illumina Novaseq™ 6,000 (LC-Bio
Technology CO., Ltd., Hangzhou, China) was used to perform
the 2 × 150bp paired-end sequencing (PE150). The differentially
expressed mRNAs were selected with fold change >2 or fold
change <0.5 and p value <0.05 by R package edgeR (https://
bioconductor.org/packages/release/bioc/html/edgeR.html).

Metabolite Extraction and LC-MS Analysis
Metabolomics sample collection, preparation, and metabolome
profiling were carried out as previously described (Ruiying et al.,
2020). The back skin tissues from mice treated with CRS or
control were thawed on ice, and metabolites were extracted from
20 µL of each sample using 120 µL of precooled 50% methanol
buffer (methanol and distilled water were mixed in a 1:1 ratio).

Then the mixture of metabolites was vortexed for 1 min and
incubated for 10 min at room temperature, and stored at −20°C
overnight. The mixture was centrifugated at 4,000 g for 20 min,
subsequently the supernatant was transferred to 96-well plates.
The samples were stored at −80 °C prior to the LC-MS analysis.
Pooled quality control (QC) samples were also prepared by
combining 10 μL of each extraction mixture. All samples were
detected by a Triple TOF 5600 Plus high-resolution tandem mass
spectrometer (SCIEX, Warrington, United Kingdom) with both
positive and negative ion modes. Chromatographic separation
was performed using an ultraperformance liquid
chromatography (UPLC) system (SCIEX, United Kingdom).
The data acquisition mode was DDA.

Data Processing and Annotation
The XCMS software was used to acquire the LC-MS pretreatment
data including peak picking, peak grouping, retention time
correction, second peak grouping, and annotation of isotopes
and adducts. Raw data files were transformed into mzXML
format and then processed by the XCMS, CAMERA and
metaX toolbox included in R software. The comprehensive
information of retention time and m/z data was identified for
each ion, recorded the intensity of each peak, generated a three-
dimensional matrix containing arbitrarily assigned peak indices
(retention time-m/z pairs), sample names (observations) and ion
intensity information (variables), and matched to the in-house
and public database. The metabolites by matching the exact
molecular mass data (m/z) to those from the database within
a threshold of 10 ppm was annotated by the open access
databases, Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Human Metabolome Database (HMDB). The
metaX was used to further preprocess the peak intensity data.
Those features that were detected less than 50 percent of QC
samples or 80 percent of test samples were removed, and values
for missing peaks were imputed with the k-nearest neighbor
algorithm to improve the quality of data. Principal component
analysis (PCA) was used to identify outliers and batch effects
using the pre-processed dataset. To minimize signal intensity
drift over time, QC-based robust LOESS signal correction was
used to fit to the QC data. Besides, the relevant standard
deviations of the metabolic features were calculated across all
QC samples, and those with standard deviations >30 percent were
removed. All the annotated secondary metabolites and their
Metabolomics Standard Initiative (MSI) level are showed in
Supplementary Table S1.

The group datasets were normalized before analysis was
performed. Data normalization was carried out using the
probabilistic quotient normalization algorithm. Differential
enrichment of metabolite features between CRS and control
groups was analyzed by Student’s t-test FDR-adjusted p-value
less than 0.05. Then, QC-robust spline batch correction was
performed using QC samples. Supervised partial least-squares
discriminant analysis (PLS-DA) was conducted throughmetaX to
discriminate the different variables between the groups. The
Variable Important for the Projection (VIP) cut-off value of
1.0 was set to select important features.
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FIGURE 1 | CRS significantly suppresses hair growth. (A) Flow chart of the animal experiment. The CRS treatment was applied from day1 and lasted for 20 days.
The depilation of mice was on day 8 of the experiment, without applying CRS. On day 21 of the experiment, all animals were sacrificed for histological and metabolomics
and transcriptomics analysis. (B) Photograph shown was taken on day 21 of experiment in (A), by which time mice treated with CRS exhibited hair growth inhibition
versus control. (C) Skin melanin pigmentation scores (described in Materials and Methods) of murine dorsal skins treated with CRS versus control. Data are
represented as mean ± SD. n = 5mice in each group. p values are determined by Student’s t-test. **p < 0.01 compared with control group. (D)H&E staining showed the
morphological changes in hair follicle. Magnification: 40×on the left; 400× on the right. (E) Immunohistochemistry for Ki-67 in back skin sections obtained from CRS
group and control group. Magnification: 40× on the left; 400× on the right.
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Joint Analysis of Metabolites and Genes
Metabolites and genes in the same pathways were always
dysregulated together, so we utilized a pathway-based
approach and integrated different levels of omics in the
biological process. Enriched differential genes and metabolites
were used in the joint pathway module for integrative analysis in
MetaboAnalyst5.0. After uploaded our differential metabolites on
MetaboAnalyst (https://www.metaboanalyst.ca/), the metabolites
were then mapped to KEGG metabolic pathways for enrichment
analysis.

Statistical Analyses
The statistical analyses were expressed as the mean ± SD and
performed using GraphPad Prism software (v.8.0). Statistical
significance between two groups was determined by Student’s
t-test. All experiments are repeated three times independently.
Asterisk coding is indicated in Figure legends as **, p < 0.01.

RESULTS

CRS Significantly Suppresses Hair Growth
To confirm the inhibition of hair growth induced by CRS, we
established the inhibition of hair growth affected by CRS model
on C57BL/6 mice (Figure 1A). The dorsal skin color of the mice
was pink in the telogen phase on the day of depilation and
gradually became black, as the melanogenic activity of follicular
melanocytes is related to the anagen stage of the hair cycle (Q.
Wang et al., 2019). As shown in Figure 1B, on day 12 after
depilation, no pigmentation or only a few scattered pigmented
spots were visible on the dorsal skin of mice in the CRS group. In
contrast, skin pigmentation was apparent in the control group,
and some of the hair shafts were visible (Figure 1B). Statistical
analyses also showed the skin pigmentation scores of murine
dorsal skins in CRS group are significantly less than the control
group on 10 days after depilation (day 18 of experiment) (p <
0.01) (Figure 1C).

Next, we took advantage of H&E staining and
immunohistochemistry to detect the formation and
proliferation of hair follicles. Compared to controls, CRS
dramatically decreased the number of hair follicles, the
length of hair shafts, and the thickness of dermal layers
(Figure 1D). The expression of proliferation marker Ki-67
(Magerl et al., 2001) was lower in hair follicles of the CRS
group than that of control group (Figure 1E). Our results
demonstrated that CRS significantly suppressed the hair
growth of dorsal skin in mice.

CRS Significantly Regulates Metabolic
Profile of the Skin Tissue
To systematically analyze the metabolic changes affected by
CRS in hair growth, we performed the metabolomic analysis
of dorsal skin between CRS group and control group.
Compared to the control group, 158 features were
significantly down-regulated and 138 features were
significantly up-regulated in skin tissues of CRS group

(Supplementary Figure S1A). PCA based on metabolite
analysis showed that skin tissues of CRS-treated group
were distinct from control group (Supplementary Figure
S1B). PLS-DA was used to supervise the data analysis, and
the permutation test was used to prevent PLS-DA model
overfitting (Supplementary Figure S1C). In this study, the
CRS group and control group were easily distinguished and
the PLS-DA model was reliable (Supplementary Figure S1D).
The aligned total ion chromatograms (TICs) and retention
time width of all the groups in negative mode were shown in
Supplementary Figure S2A, and those in positive modes were
shown in Supplementary Figure S2B. Analysis of other
checking parameters, including average m/z distribution,
metabolite intensity distribution and coefficient of variation
distribution, indicated effective sample preparation and high-
quality raw data (Supplementary Figures S3A,B).

As shown in Supplementary Figure S4, we identified the
primary metabolites with positive and negative ion modes by
HMDB database. Among these features, the largest group was
“lipids and lipid-like molecules”. The amino acids and the
carbohydrates that we identified were belong to “Organic
acids and derivatives” HMDB super class and “Organic
oxygen compounds” HMDB super class, respectively. To
facilitate the observation of metabolic changes, we
normalized significantly differential metabolites and created
a heatmap of all the secondary metabolites (Supplementary
Figure S5).

CRS Significantly Affects the Profiles of
Primary Metabolites in Skin Tissues
Metabolic pathways identified by MetaboAnalyst 5.0 for
primary metabolites differentially identified by positive and
negative polarity ionization in the skin tissue of CRS-treated
mice compared to those in control mice are shown in
Figure 2A. Among the relevant pathways identified,
galactose metabolism (C00095, C00031, C00124, C00159,
C00984, C00267, C00137, C00446, C00103, C00668,
andC01097), fructose and mannose metabolism (C00095,
C00267, C00159, C01094, C05345, C00275, and C00636),
amino sugar and nucleotide sugar metabolism (C00984,
C00267, C02336, C00159, C00085, C00446, C00103,
C00668, C05345, C00275, and C00636), starch and sucrose
metabolism (C00095, C00031, C00092, C00085, C00103),
phenylalanine, tyrosine and tryptophan biosynthesis
(C00082), glutamine and glutamate metabolism (C00217,
C00025) were found to be the most important significant
metabolic pathways (Figures 2B,C). These pathways were
mainly involved in carbohydrate metabolism (fructose and
mannose metabolism, galactose metabolism, amino sugar and
nucleotide sugar metabolism, starch and sucrose metabolism)
(Figure 2B) and amino acid metabolism (phenylalanine,
tyrosine and tryptophan biosynthesis, glutamine and
glutamate metabolism) (Figure 2C). It has been reported
glutamine and glutamate metabolism play important roles
in the epidermis and stem cells metabolism (C. S. Kim
et al., 2020; Simsek et al., 2010; Takubo et al., 2013). Details
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FIGURE 2 | CRS significantly affects the profiles of primary metabolites in skin tissues. (A) Scatterplot of enriched KEGG pathways in primary metabolites when
comparing CRS group with control group using theMetaboAnalyst 5.0 pathway analysis module. Color shift indicates level of significance, size of dots correlates with the
number of differential metabolites. The darker the color and the larger the dot, the stronger is the significance. Top enriched metabolic pathways were labeled. (B)
Heatmap analysis showed differential metabolites in galactose metabolism (C00095, C00031, C00124, C00159, C00984, C00267, C00137, C00446, C00103,
C00668, and C01097), fructose and mannose metabolism (C00095, C00267, C00159, C01094, C05345, C00275, and C00636), amino sugar and nucleotide sugar
metabolism (C00984, C00267, C02336, C00159, C00085, C00446, C00103, C00668, C05345, C00275, and C00636), starch and sucrose metabolism (C00095,
C00031, C00092, C00085, and C00103) between CRS group and control group. The ordinate was the KEGG ID matched to database. (C) Heatmap analysis showed
differential metabolites in phenylalanine, tyrosine and tryptophan biosynthesis (C00082), glutamine and glutamate metabolism (C00217, C00025) pathways between
CRS group and control group. The ordinate was the KEGG ID matched to database. The color blocks represented the relative expression of metabolites, red
represented up-regulation, and blue represented down-regulation.
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of differential metabolites in skin tissues are shown in
Supplementary Table S2.

CRS Significantly Affects the Profiles of
Secondary Metabolites in Skin Tissues
The significant differential secondary metabolites were
subjected for KEGG pathway analysis. As shown in
Figure 3A, the most significantly changed pathway was the
glycerophospholipid metabolism. Pentose phosphate pathway,

glycerolipid metabolism, pentose and glucuronate
interconversions were also significantly altered after CRS
treatment. A total of six significant differential secondary
metabolites were identified, including DG 22:3; DG (2:0/20:
3) which was significantly upregulated, LysoPC 19:1-neg-
M580T328, LysoPC 19:1-pos-M536T328,
glycerophosphocholine, xylulose 5-phosphate and
D-Glucose 6-phosphate which were significantly
downregulated (Figures 3B,C). Among them, D-Glucose 6-
phosphate was the most drastically reduced metabolite. In

FIGURE 3 | CRS significantly affects the profiles of secondary metabolites in skin tissues. (A) Scatterplot of enriched KEGG pathways in secondary metabolites
when comparing CRS group with control group using theMetaboAnalyst 5.0 pathway analysis module. Top enrichedmetabolic pathways were labeled. (B)Comparison
of secondary metabolites level between control group and CRS group in the top 4 significant pathways. (C) Heatmap analysis showed differential metabolites in
glycerophospholipid metabolism, pentose phosphate pathway, glycerolipid metabolism, pentose and glucuronate interconversions pathways. (D) Heatmap
analysis showed metabolites changes in TCA cycle.
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addition, D-Fructose 6-phosphate was also significantly
downregulated in CRS group in primary metabolites. Both
D-Glucose-6-phosphate and D-Fructose 6-phosphate are
involved in glycolytic metabolism pathways, which
indicated that glycolytic metabolism might play a critical
role in the inhibition of hair growth induced by CRS.
Conversely, metabolites in TCA cycle were not significantly
changed between the CRS group and control group
(Figure 3D). Collectively these results suggested that

although skin tissue use the TCA cycle to generate energy,
CRS could not regulate TCA metabolism to inhibit hair
growth.

Furthermore, KEGG pathway enrichment analyses were
conducted to further analyze the metabolic profiles in skin
tissues of CRS-induced hair growth inhibition. The top 20
KEGG pathways were shown in Supplementary Figure S6.
These results demonstrated that biosynthesis of amino acids,
central carbon metabolism in cancer, protein digestion and

FIGURE 4 | CRS significantly affects genes expression associated with primary metabolites. (A) Volcano plot showed regulation of genes expression in amino
sugar and nucleotide sugar metabolism. Significantly DEGs were labeled. FC is for gene expression fold change in CRS group compared to control group. The DEGs
were selected with fold change >2 or fold change <0.5 and p value <0.05. (B) Volcano plot showed regulation of genes expression in galactose metabolism. (C) Volcano
plot showed regulation of genes expression in fructose and mannose metabolism. (D) Volcano plot showed regulation of genes expression in phenylalanine,
tyrosine and tryptophan biosynthesis. (E) Volcano plot showed regulation of genes expression in starch and sucrose metabolism.
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absorption, ABC transporters, glycerophospholipid metabolism,
carbon metabolism pathways were the most significantly altered
pathways.

CRS Significantly Affects Genes Expression
Associated With Primary Metabolites
Among these pathways above, we identified several
differentially expressed genes (DEGs) based on KEGG
pathway analysis in transcriptomic. Volcano plot analysis
indicated that a total of 5 pathways were matched to
significantly DEGs for primary metabolites, including
galactose metabolism, fructose and mannose metabolism,
amino sugar and nucleotide sugar metabolism,
phenylalanine, tyrosine and tryptophan biosynthesis, starch
and sucrose metabolism. As shown in Figure 4, Hk-1 was
significantly downregulated in all 5 metabolic pathways,
suggested that Hk-1 played a very important role in relative
biological process of CRS inhibiting hair growth. Furthermore,
some other genes expression was also significantly changed. In
amino sugar and nucleotide sugar metabolism, Nanp, and
Cmah expression were significantly down-regulated and

Cyb5r2 was significantly up-regulated (Figure 4A). The
Nanp gene is related to synthesis of substrates in N-glycan
biosynthesis and metabolism of proteins pathways, Cmah
encodes cytidine monophosphate-N-acetylneuraminic acid
hydroxylase, an enzyme responsible for Neu5Gc
biosynthesis (Burzyńska et al., 2021), and Cyb5r2 encodes
Cytochrome B5 Reductase 2 which participates in many
processes including cholesterol biosynthesis, fatty acid
desaturation and elongation. Agl, Gbe1, and Amy1 were
significantly up-regulated which related to starch and
sucrose metabolism (Figure 4E). Agl encodes the glycogen
debrancher enzyme that is involved in glycogen degradation,
Gbe1 encodes the glycogen branching which is important to
increase the solubility of the glycogen molecule and,
consequently, reducing the osmotic pressure within cells
(Malinska et al., 2020). Amy1 encodes amylase alpha
produced by the salivary gland. Amylases catalyze the first
step in digestion of dietary starch and glycogen. Previous
researches have repeatedly demonstrated the activation of
salivary alpha-amylase induced by psychosocial stress
(Skosnik et al., 2000; Rohleder et al., 2004), which may
explain the up-regulation of Amy1 in starch and sucrose

FIGURE 5 | CRS significantly affects genes expression associated with secondary metabolites. (A) Volcano plot showed regulation of genes expression in
glycerophospholipid metabolism. Significantly DEGs were labeled. FC is for gene expression fold change in CRS group compared to control group. The DEGs were
selected with fold change >2 or fold change <0.5 and p value <0.05. (B) The fragments per kilobase of transcript per million mapped reads (FPKM) values of DEGs in
glycerophospholipid metabolism. (C) Heatmap analysis showed regulation of genes expression in glycerophospholipid metabolism. The color blocks represented
the relative genes expression, red represented up-regulation, and blue represented down-regulation. Volcano plot showed regulation of gene expression in glycerolipid
metabolism.
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FIGURE 6 |CRS significantly alters genes expression related tometabolism pathways based on RNA-seq. (A) Volcano plot showed regulation of genes expression
in arachidonic acid metabolism between CRS group and control group. Significantly DEGs were labeled. FC is for gene expression fold change in CRS group compared
to control group. The DEGs were selected with fold change >2 or fold change <0.5 and p value <0.05. (B) Volcano plot showed regulation of genes expression in
glutathione metabolism between CRS group and control group. (C) Volcano plot showed regulation of genes expression in glycolysis gluconeogenesis between
CRS group and control group. (D) Volcano plot showed regulation of genes expression in nicotinate and nicotinamide metabolism between CRS group and control
group. (E) Volcano plot showed regulation of genes expression in purine metabolism between CRS group and control group. (F) Volcano plot showed regulation of
genes expression in retinol metabolism between CRS group and control group. (G) Volcano plot showed regulation of genes expression in ABC transporters between
CRS group and control group.
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FIGURE 7 | CRS significantly alters genes expression related to metabolism pathways based on RNA-seq. D. Heatmap analysis showed regulation of genes
expression in arachidonic acid metabolism between CRS group and control group. (A) Heatmap analysis showed regulation of genes expression in glutathione
metabolism between CRS group and control group. (B) Heatmap analysis showed regulation of genes expression in glycolysis gluconeogenesis between CRS group
and control group. (C) Heatmap analysis showed regulation of genes expression in nicotinate and nicotinamide metabolism between CRS group and control
group. (D) Heatmap analysis showed regulation of genes expression in purine metabolism between CRS group and control group. (E) Heatmap analysis showed
regulation of genes expression in retinol metabolism between CRS group and control group. (F) Heatmap analysis showed regulation of genes expression in ABC
transporters between CRS group and control group.
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FIGURE 8 | CRS significantly alters genes expression related to metabolism pathways based on RNA-seq. (A) The FPKM values of DEGs associated with
arachidonic acid metabolism between CRS group and control group. (B) The FPKM values of DEGs associated with glutathione metabolism between CRS group and
control group. (C) The FPKM values of DEGs associated with glycolysis gluconeogenesis between CRS group and control group. (D) The FPKM values of DEGs
associated with nicotinate and nicotinamide metabolism between CRS group and control group. (E) The FPKM values of DEGs associated with purine metabolism
between CRS group and control group. (F) The FPKM values of DEGs associated with retinol metabolism between CRS group and control group. (G) The FPKM values
of DEGs associated with ABC transporters between CRS group and control group.
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metabolism after treated with CRS. The FPKM values of
differentially expressed genes associated with primary
metabolites were shown in Supplementary Table S3.

CRS Significantly Affects Genes Expression
Associated With Secondary Metabolites
Consistent with the metabolomics analysis for secondary
metabolites, the expression of genes associated with
glycerophospholipid metabolism and glycerolipid
metabolism pathways were also significantly changed.
Among a total of 97 genes involved in the pathway of
glycerophospholipid metabolism, 9 genes (Agpat2, plb1,
Gpd1, Pla2g2e, Pla2g2d, Gapt3, Lpin3, Lpin1, and Chpt1)
were significantly changed (Figure 5A). Among these genes,
Agpat2 and Gpd1 were markedly up-regulated (Figures 5B,C).
Gpd1 plays a critical role in carbohydrate and lipid
metabolism. Agpat2 converts lysophosphatidic acid to
phosphatidic acid, the second step in de novo phospholipid
biosynthesis. In addition, Lpl which encodes lipoprotein lipase
was involved in the glycerolipid metabolism, and the gene
expression was also drastically increased (Figure 5D). The
FPKM values of differentially expressed genes associated with
secondary metabolites were shown in Supplementary Table
S4. The remarkable regulation of these genes suggested the
impact of CRS on hair growth is strongly linked to lipid
metabolism.

CRS Significantly Alters Genes Expression
Related to Metabolism Pathways Based on
RNA-Seq
To further analyze broadmetabolic pathways of CRS participation
in hair growth inhibition, KEGG pathway enrichment analyses
were conducted and revealed that CRS also affected gene
expression in numerous other metabolic pathways, including
arachidonic acid metabolism, glutathione metabolism, glycolysis
gluconeogenesis, nicotinate and nicotinamide metabolism, purine
metabolism, retinol metabolism and ABC transporters. A total of
97 genes associated with metabolism were significantly
differentially expressed in the skin of CRS group compared to
that of control group (Supplementary Figure S7).

Among a total of 89 genes involved in the pathway of
arachidonic acid (AA) metabolism, 12 genes were
significantly changed between CRS group and control group,
including 5 genes that were upregulated and 7 genes that were
downregulated. The upregulated genes included Gpx7, Gpx3,
Cyp2e1, Ptges, Ptgis while Ptgds, Plb1, Cyp2b19, Ggt1, Pla2g2e,
Pla2g2d, Alox12 were dramatically downregulated (Figures 6A,
7A, 8A). Arachidonic acid is one of the major polyunsaturated
fatty acids in mammals (Yu and Wang, 2021). In consideration
of the significant decrease of AA-residue-enriched LPCs (e.g.,
LysoPC 19:1-neg-M580T328, LysoPC 19:1- pos-
M536T328etc.), we speculated that arachidonic acid (AA)
metabolism was critical for CRS-induced hair growth inhibition.

CRS also affected the expression of genes clustered into
glutathione metabolism, including 3 downregulated genes

(including Chac1, Oplah, Ggt1) and 3 upregulated genes
(including Gpx7, Gpx3, Gsta3) (Figures 6B, 7B, 8B). For
glycolysis gluconeogenesis, CRS significantly suppressed the
expression of 2 genes (Hk1, Aldh1b1) and increased the
expression of 2 genes (Adh1, Aldh3a1) (Figures 6C, 7C, 8C).
For nicotinate and nicotinamide metabolism, 7 genes exhibited
increased expression in CRS group (Aox4, Aox1, Aox3, Nnmt,
Nmnat2, Bst1, Qprt) and 1 gene exhibited decreased expression
(Nnt) (Figures 6D, 7D,8D). In addition, there were 12 DEGs
between CRS group and control group that clustered to the
purine metabolism pathway of which expression was decreased
for 2 genes, including Gucy2c and Entpd8, and increased for 10
genes, including Adcy7, Pde1a, Pde3b, Pde3a, Gucy1b1, Gucy1a1,
Pde2a, Pde4d, Pde10a, Pde7b (Figures 6E, 7E, 8E). A total of 10
DEGs clustered to the pathway of retinol metabolism after CRS
treatment, including 3 genes with decreased expression (Cyp2b19,
Dhrs9 and Bco1), and 7 genes with increased expression,
including Aldh1a1, Adh1, Aox4, Aox1, Aldh1a7, Cyp1a1, Aox3
(Figures 6F, 7F, 8F). CRS also significantly upregulated the
expression of genes important for ABC transporters including
Abca8a, Abca9, Abcd2, Abca8b, Abcc6 (Figures 6G, 7G, 8G). The
FPKM values of differentially expressed genes associated with
arachidonic acid metabolism, glutathione metabolism, glycolysis
gluconeogenesis, nicotinate and nicotinamide metabolism,
purine metabolism, retinol metabolism, ABC transporters were
shown in Supplementary Tables S5–11. These results showed
that the gene expression profiles of multiple metabolic pathways
were significantly different between CRS group and
control group.

DISCUSSION

Previous studies have reported that CRS influences hair growth
via various hormones, neuropeptides, and neurotransmitters, but
little is known about its regulation from the perspective of
metabolic signals (Paus et al., 2014). Substance P(SP),
Calcitonin gene-related peptide (CGRP) and nerve growth
factors (NGF) have been regarded as the critical mediators in
stress-induced hair loss (Arck et al., 2005; Samuelov et al., 2012).
It has also been demonstrated that the existence of a “brain-hair
follicle axis” (BHA), and some neuropeptides such as CGRP, SP
and NGF could induce apoptosis of murine follicular
keratinocytes and stimulate mast cell degranulation, thus
inhibiting hair growth (Arck et al., 2001; Arck, Handjiski,
Peters, Hagen, et al., 2003; Arck, Handjiski, Peters, Peter,
et al., 2003).

However, psychological stress could also affect metabolic
levels, but the underlying molecular mediators are poorly
defined (Noerman et al., 2020). Our results suggested that
CRS significantly suppressed hair growth and showed
significant changes in metabolites between CRS and control
group. In this study, we found that some metabolites related
to lipid metabolism were significantly changed. Notably, DG
22:3; DG (2:0/20:3) was increased in both
glycerophospholipid metabolism and glycerolipid
metabolism pathways, while lysophosphatidylcholine
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(LysoPC 19:1) was decreased robustly. Diacylglycerol (DG),
as one of the primary lipid sub-groups in living systems and a
second messenger in multiple cell activities, serve as a critical
role in hastening the β-oxidation of fatty acids, as well as
influence the expression of lipid metabolism-linked genes
(Almena and Mérida, 2011; Eichmann and Lass, 2015).
Importantly, it has been shown that chronic stress alters
the levels of DG in stress-susceptible brain regions (Patel
et al., 2009; Oliveira et al., 2016). The high level of DG, such as
DG 22:3; DG (2:0/20:3), in the dorsal skin of CRS group might
be linked to signal transduction and structural components of
epidermis under chronic stress (Lee, 2011). It is also reported
that lysophosphatidylcholine (LPC) levels in the prefrontal
cortex in brain are directly correlated with blood
corticosterone levels (Oliveira et al., 2016). Another
research shows that excessive expression of LPCs is
correlated with high oxidative stress (Hung et al., 2020).
Typically, stress is characterized by activation of the
sympathetic nervous system and
hypothalamic–pituitary–adrenal axis, resulting in release of
glucocorticoids (Marin et al., 2007). Chronic stress increases
the levels of corticosterone to extend HFSC quiescence and
inhibit hair growth in mice, which indicates that LPC may be
related to hair growth under stress (Choi et al., 2021).

Lipid metabolism is thought to play an essential role in
maintaining normal physiological cellular functions and
involving in hair development and function (W. S. Lee,
2011; Palmer et al., 2020). Thus, our current investigation
took advantage of metabolomics and transcriptomics analysis
to further verify the metabolomics results and showed mRNA
levels of the relevant glycerophospholipid metabolism were
significantly increased, such as Agpat2, Gpd1, Gapt3, Chpt1,
and Lpin1; while others such as plb1, Pla2g2e, Pla2g2d, and
Lpin3 were decreased. The expression of Lpl involved in the
glycerolipid metabolism was also significantly increased.
Changes in these genes might suggest the underlying
connection between CRS inhibit hair growth and lipid
metabolism. We also found that genes related to ATP-
binding cassette (ABC) transporter, such as Abca8a, Abca9,
Abcd2, Abca8b, and Abcc6 are all significantly up-regulated.
ABC transporters mediate the transport of lipids. In
particular, the ABCA family is involved in both cholesterol
efflux and intracellular transport (Quazi and Molday, 2011;
Tarling et al., 2013). It has been revealed that cholesterol
modulates HF cycling by regulating bone morphogenic
protein (BMP) family members, Wnt/β-catenin and Notch
pathways (Cooper et al., 2003; Lee and Tumbar, 2012; Mathay
et al., 2011; Sheng et al., 2014), which indicates the
importance of cholesterol homeostasis in stress inhibit hair
growth.

Other metabolic pathways involved in carbohydrate
metabolism (fructose and mannose metabolism, galactose
metabolism, amino sugar and nucleotide sugar metabolism,
starch and sucrose metabolism, pentose phosphate pathway,
pentose and glucuronate interconversions) are also changed
significantly after CRS treatment during the hair growth.
Compared to control group, expression of Hk-1 decreased

markedly in skin tissues of CRS group in all 5 primary
metabolic pathways. Hk-1 encodes a ubiquitous form of
hexokinase which localizes on the outer membrane of
mitochondria. Hexokinases catalyzes the conversion of
glucose to glucose-6-phosphate in the first step of
glycolytic metabolism. Then glucose-6-phosphate convert
to fructose-6-phosphate catalyzed by glucose-6-phosphate
isomerase (GPI) in glycolysis. As mentioned above,
D-glucose 6-phosphate was the most significantly down-
regulated metabolite in secondary metabolites. This is
usually attributed to Hk-1 activity decrease or to G6P
dehydrogenase (G6PD) activity increase (Rodriguez-
Rodriguez et al., 2013). G6PD catalyzes the oxidation of
glucose-6-phosphate to 6-phosphogluconate (Kotaka et al.,
2005). This transformation is a rate-limiting step of the
pentose-phosphate pathway, which represents a route for
the dissimilation of carbohydrates besides glycolysis
(Kirsch et al., 2009). However, the two genes we identified
relating to G6P Dehydrogenase, G6pdx and G6pd2 exhibited
no significant difference between CRS group and control
group. Thus, we presume that Hk-1 may contribute to the
decrease of D-glucose 6-phosphate, which was another piece
of evidence proving the disturbances in the glycolytic
metabolism. However, the function of Hk-1 in CRS
induced hair growth inhibition is still unknown. Therefore,
we will assess the hexokinase activity and construct the
conditional knockout Hk-1 mice in hair follicle stem cell
to research the mechanisms and function of Hk-1 in vivo
and vitro.

However, most metabolites in TCA cycle were not
significantly changed between the CRS group and control
group, which suggested that glycolytic metabolism rather
than TCA cycle might play an important role in hair growth
under CRS. It has been reported that HFSC likely have relatively
higher levels of glycolysis compared to the rest of the epidermis,
which indicates the changes of glycolysis metabolite may be
linked to metabolic status of HFSC(Flores et al., 2017). HFSCs
quickly in response to the barrage of cues which is dependent on
increasing glycolytic rate that orchestrates the onset of a new
hair cycle, whereas chronic stress may prolong HFSC quiescence
and maintain hair follicles in an extended resting phase (Choi
et al., 2021). Glutamine metabolism also regulates hair follicle
stem cell progenitor state (C. S. Kim et al., 2020). In our study,
we found the metabolic features such as glutamine and
glutamate were downregulated in skin tissues of CRS group.
The rapidly proliferating stem cells required ATP as well as
nucleotides, aerobic glycolysis, which could also explain the
alter of genes involved in purine metabolism (Ahmed et al.,
2018). Although, there are numerous researchers take advantage
of mouse model to explore the mechanisms of hair loss and the
regulation of hair follicle cycling. For example, it has been
reported that JAK inhibition regulates the activation of key
hair follicle populations to promote the hair growth in both
mouse and human by topical treatment (Harel et al., 2015).
Furthermore, there has been reported that the retinoid
metabolism is altered in human and mouse cicatricial
alopecia (Everts et al., 2013). However, the function of these

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 78161914

Wang et al. Metabolomics of Stress-Inhibiting Hair Growth

31

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


pathways still needs to be further investigated and the
differences between the model of murine hair growth and
human scalp hair growth should be concerned. Moreover, we
will further explore the metabolism changes in hair-loss patients
caused by stress and compare with the mouse model to find the
similar metabolic changes.

CONCLUSION

In this study, we discovered that CRS suppressed hair growth,
found the metabolism pathways including carbohydrate
metabolism, amino acid metabolism, lipid metabolism were
significantly changed, and revealed the metabolism associated
DEGs such as Hk-1 by transcriptomics and metabolomics
analyses in skin tissues of C57BL/6 mice. Our results provided
new insights into the molecular mechanisms of CRS-induced hair
growth inhibition and indicated that targeting to specific
metabolic pathways might be useful for therapy of CRS inhibit
hair growth.
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Graves’ disease (GD) is an autoimmune thyroid disease (AITD), which is one of the most
common organ-specific autoimmune disorders with an increasing prevalence worldwide.
But the etiology of GD is still unclear. A growing number of studies show correlations
between gut microbiota and GD. The dysbiosis of gut microbiota may be the reason for the
development of GD by modulating the immune system. Metabolites act as mediators or
modulators between gut microbiota and thyroid. The purpose of this review is to
summarize the correlations between gut microbiota, microbial metabolites and GD.
Challenges in the future study are also discussed. The combination of microbiome and
metabolome may provide new insight for the study and put forward the diagnosis,
treatment, prevention of GD in the future.

Keywords: graves’ disease (GD), metabol(n)omics, gut microbiome, autoimmunity, metabolites

INTRODUCTION

Autoimmune thyroid disease (AITD) are common organ-specific autoimmune disorders with an
increasing prevalence worldwide, which involves Hashimoto thyroiditis (HT) and GD
(Moshkelgosha et al., 2021). GD is caused by the autoantibodies of the thyrotropin receptor
(TSHR), which leads to thyroid hyperplasia and hyperthyroidism (Bahn, 2003; Ishaq et al., 2018;
Shi et al., 2019a; Moshkelgosha et al., 2021). Hyperthyroidism, fatigue, weight loss, tachycardia, and
heat intolerance are common symptoms of GD. Approximately 50% of patients may develop Graves’
ophthalmopathy (GO), leading to eyelid retractions and exophthalmos (Byeon et al., 2018; Yan et al.,
2020). GD is the most common cause of 60–80% of hyperthyroidism and influence about 0.5% of the
general population (Cooper and Stroehla, 2003; Smith and Hegedüs, 2016; Ejtahed et al., 2020). It
frequently occurs in the population between 30 and 50 years old. Resemble in other autoimmune
diseases, the incidence of GD is higher in women than men, the ratio of about 5/1 (Cooper and
Stroehla, 2003; Ji et al., 20188; Nyström et al., 2013; Menconi et al., 2014). The risk factors of GD
include genetic predisposition, environmental factors, immune factors (Covelli and Ludgate, 2017).

Hyperthyroidism is a common disease that is difficult to cure completely. Although modern
medicine has brought great changes to the prevention, diagnosis, and treatment of autoimmune
diseases, the etiology and pathogenesis of these diseases have not been fully illuminated. Abnormal
thyroid-related indices often occur repeatedly during clinical treatment (Yang et al., 2019).
Furthermore, although current treatment methods for GD can achieve a good effect, clinicians
still have some concerns about the choice of treatment for safety reasons (Heyma et al., 1986; Yang
et al., 2019). At present, a large number of studies have proved the relationship between intestinal
microorganisms and autoimmune diseases, including Type 1 diabetes (Gianchecchi and Fierabracci,
2017; Mullaney et al., 2018), inflammatory bowel disease (Ni et al., 2017; Cao, 2018), systemic lupus
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erythematosus (Corrêa et al., 2017), rheumatoid arthritis (Sato
et al., 2017; Teng et al., 2017; Jubair et al., 2018; Picchianti-
Diamanti et al., 2018) and autoimmune thyroid disease (Zhou
et al., 2014). Metabolites are also considered as important
mediators or modulators between gut microbiota and the
thyroid. Therefore, metabolomics investigations may provide a
new inside view of GD’s study.

In this review, we explore the inside relationships between gut
microbiota, microbiota-related metabolites and GD, and propose
new ideas for prevention, diagnosis, and treatment of GD.

Brife Knowledge of Gut Microbiota
The human body is a superorganism due to the residence of
trillions of prokaryotes symbiosis. Approximately 66% of the total
bacteria are mainly live in the gut. Gut microbiota includes more
than one thousand known species of bacteria with at least three
million genes (Hehemann et al., 2010; Relman, 2012; Docimo
et al., 2020). Apart from absorbing nutrients from the human
body that they depend on for survival, intestinal flora also
provides beneficial or harmful metabolites to the human body
through their metabolic process (Turnbaugh and Gordon, 2009;
Relman, 2012). These microflorae participate in the body’s energy
metabolism through various mechanisms, affecting the
conversion of food to energy in the host, and play an essential
role in the healthy state of the host (Lozupone et al., 2012;
Sommer et al., 2017). When the human body is healthy,
microorganisms and various organs and tissues depend on
each other and act on either to form a microecological balance
and jointly maintain the body’s health. If the microecological
balance is disturbed, it may lead to disease (Sekirov et al., 2010).
Therefore, the intestinal flora is considered an “organ” with
multiple regulatory functions, which greatly impacts people’s
health. Understanding the symbiotic relationship between
microorganisms and the human body is of great significance
for people to understand their health and the occurrence and
development of disease (Turnbaugh and Gordon, 2009; Relman,
2012; Schmidt et al., 2018).

The technological breakthroughs in the microbiome boost the
research of gut microbiota. The method of bacterial culture is a
restriction of traditional bacterial research. The intestinal flora is
cultured with various mediums, and the number of bacterial
colonies is measured by dilution and colony count (Lagier et al.,
2018). This method is sensitive but is constrained. More than 85%
of the bacteria in the human intestine are anaerobic bacteria,
which is difficult to cultivate in the culture medium (Lagier et al.,
2015). Recently, the newly established strategy of culturomics
enables the culture of microbiota that cannot be cultured before.
These new methods initiate the rebirth of culture in microbiology
(Kaeberlein et al., 2002; Nichols et al., 2010; Lagier et al., 2018).
The development of new techniques has made it possible to study
unknown gut flora.16Sr RNA high-throughput sequencing and
metagenomics are commonly used methods for detecting gut
microbiota. 16Sr RNA sequencing mainly studies the species
composition, the evolutionary relationships among species and
the diversity of communities (Laudadio et al., 2018). On the basis
of 16Sr RNA sequencing analysis, metagenomic sequencing can
also carry out in-depth research on gene and function, and its

detection depth can reach the level of species (Wang et al., 2015;
Laudadio et al., 2018; Shakya et al., 2019).

With the increasing understanding of the metabolic function
of intestinal flora, the narrow sense that host metabolism is
regulated by its genes is gradually expanded to co-metabolic
regulation of host-symbiotic intestinal bacteria. These
metabolites are often from tryptophan metabolic pathways,
tyrosine and phenylalanine metabolic pathways, glucose and
fatty acid metabolic pathways, classified into indoles, phenols,
amino acids, peptides, etc. (Zheng et al., 2011; Van Treuren and
Dodd, 2020; Fan and Pedersen, 2021). Microbiome dysbiosis is
associated with various diseases, asthma, allergies, inflammatory
bowel disease (Arrieta et al., 2015; Bunyavanich et al., 2016;
Nishino et al., 2018), autism spectrum disorder (ASD) (Needham
et al., 2021), diabetes (Giongo et al., 2011), irritable bowel
syndrome (IBS) (Mars et al., 2020), obesity (Schwiertz et al.,
2010a), cardiovascular disease (Jie et al., 2017), chronic kidney
disease (Sircana et al., 2019). Under different disease states, the
species abundance of intestinal flora and its related metabolites
have various characteristics. Some studies have found that in
patients with IBS, the key findings include an increase in
Firmicutes to Bacteroidetes ratio (Krogius-Kurikka et al., 2009;
Rajilić-Stojanović et al., 2011; Jeffery et al., 2012l; Mars et al.,
2020), a decrease in Bifidobacteria and Lactobacilli (Malinen
et al., 2005; Kerckhoffs et al., 2009), and an increase in
Ruminococcus and Streptococci species (Kassinen et al., 2007;
Rajilić-Stojanović et al., 2011; Saulnier et al., 2011; Hong and
Rhee, 2014). A more coincident finding has been decreased alpha
diversity. ASD showed lower levels of phylum Firmicutes and a
higher abundance of Bacteroidetes (Mangiola et al., 2016;
Fattorusso et al., 2019; Sharon et al., 2019). Kang and others
observed significant ASD-related behavioral changes in mice with
fecal microbiota transplantation (FMT) from ASD (Sharon et al.,
2019) and they have developed microbiome transfer therapy
(MTT) and observed a reduction in ASD-related symptoms
(Kang et al., 2017).

The intestines are also the largest immune organ, gathering
more than 70% of the immune cells as a vital digestive organ. Gut
microbiota is also related to the host’s immune system (Vatanen
et al., 2016). Gut microbiota and metabolites can induce the
production of helper T cells (Th) and regulator T cells (Tregs),
which contribute to the maturation of host adaptive and innate
immunity (Rooks and Garrett, 2016; Shi et al., 2017; Kayama
et al., 2020). It can be inferred that autoimmune diseases are
closely related to intestinal flora (Levy et al., 2017). There are
several studies on the gut microbiota and metabolome among GD
patients, and many results strongly support a role for the gut
microbiota in GD and GO (Moshkelgosha et al., 2021).

GD and Gut Microbiota
Some previous studies demonstrated the connections between the
gut microbiome and AITD (Köhling et al., 2017). Many studies
showed that GD is related to yersinia enterocolitica, e.g., mice fed
only with yersinia enterocolitica did not develop GD (Weiss et al.,
1983;Wang et al., 2010). There were also significant differences in
the microbiota profile between HT patients and healthy controls
(Zhao et al., 2018). Zhou et al. characterized the gut microbiota in
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hyperthyroid patients (Zhou et al., 2014). There is limited
research on the relationships between Graves’ disease and the
gut microbiome. However, thyroid hormone levels correlate with
the gut microbiome and the diversity of gut bacteria in patients
with GD (Ejtahed et al., 2020). Bacteroidetes and Firmicutes are
dominant species in the human gut. The ratio of Firmicutes to
Bacteroidetes is commonly considered a representative of health
status (Chen et al., 2016; Indiani et al., 2018). In the disease state,
these two phyla tend to show significant changes. For example,
Jiang et al. showed that GD patients had reduced alpha diversity
compared with healthy individuals. At the phylum level, GD
patients had a significant higher proportion of Bacteroidetes and
a significantly lower proportion of Firmicutes than the controls
(Jiang et al., 2021). Ishaq et al. also demonstrated this
phenomenon in their study (Ishaq et al., 2018). They found
that the diversity of gut bacteria in GD patients was less
diverse in terms of richness than in healthy people. The
proportion of Firmicutes in GD was lower than that in the
control group, while the proportion of Bacteroidetes was
higher than in the control group (Ishaq et al., 2018).
Interestingly, this finding is consistent with what was observed
in obese patients. Previous studies have found that obese people
tend to have more Firmicutes, while lean people tend to have
more Bacteroidetes (Schwiertz et al., 2010b; Riva et al., 2017).
Further research work is required about the effects of thyroid
hormones on gut microbiota. Besides Firmicutes and
Bacteroidetes, there were also significant changes in the ratios
and abundances of other phyla. Yan et al. showed that the number
of Lactobacillales, Bacilli, Megamonas, Prevotalla and Veillonella
strains were increased among GD patients (Yan et al., 2020).
However, the number of Rikenellaceae, Ruminococuus and
Alistipes strains was decreased among GD patients. In
addition, the diversity of gut flora was decreased in patients
with GD (Yan et al., 2020). There were also significant changes in
gut microbiota in GO patients. Shi et al. found that the bacterial
diversity (Simpson and Shannon) was reduced in patients with
GO compared to the controls. At the phylum levels, the
proportion of Bacteroidetes increased and Firmicutes
decreased significantly in GO than that in controls. There
were obvious differences in bacterial profiles between the two
groups (Shi et al., 2019a). Then, Shi et al. further explored the
differences in the compositing of gut microbes between GO and
GD patients (Shi et al., 2021). At the phylum levels, the
proportion of Chloroflexi was decreased significantly in GO
patients. At the genus levels, Bilophila and Subdoligranulum
were increased (Shi et al., 2021). It is reported that there are
three gut bacteria genera (Bacteroides, Prevotella, Alistipes) that
could separate GD patients from healthy individuals with 85%
accuracy (Su et al., 2020).

Thyrotropin receptor antibody (TRAb) is a characteristic
indicator of GD, with sensitivity and specificity greater than
95% for GD diagnosis (Massart et al., 2001; Cooper, 2003). Shi
et al. believed that TRAb was significantly correlated with
different levels of gut microbiota. At the family level, the
proportion of Succinivibrionaceae was positively correlated to
TRAb. At the genus level, Subdoligranulum was positively related
to TRAb. At the species level, Parabacteroides distasonis showed

an opposite correlation with TRAb. Their studies also suggested
that GD patients with positive TRAb showed an increased risk of
developing GO (Shi et al., 2019a). Prevotella and Bacteroides are
positively correlated with TRAb in GO patients (Shi et al., 2019b).

Metabolomics in the Study of GD
The dynamic balance of Th17 and Treg is closely related to the
occurrence and development of various autoimmune diseases
(Fasching et al., 2017). Treg cells are a subset of regulatory T cells
that regulate the body’s autoimmune response. Tregs are
characterized by the transcription factor Foxp3 (major
regulators of Treg) and mainly exert immune suppressive
effects. Maintaining immune homeostasis by secreting
inhibitory factors (TGF-B, IL-10, IL-35) mediate immune
suppressive effects by regulating TCR signaling promotes
secretion and differentiation of anti-inflammatory cytokines
(Göschl et al., 2019). The decrease of Treg cells increases the
incidence and severity of AITD. And the number of Treg cells is
significantly reduced in patients with GD (Saitoh and Nagayama,
2006; Nakano et al., 2007). The Th17 cells are also a subset of T
helper cells by secreting interleukin 17 (IL-17, IL-22) induces
inflammation and spread. IL-17 is involved in many
inflammatory and autoimmune diseases, including systemic
and organ-specific autoimmune diseases (Takeuchi et al., 2020;
Yasuda et al., 2019). Th17 and IL-17 were increased in GD and
participated in the development of GD. In patients with AITD,
the proportion of Th17 cells in peripheral blood mononuclear
cells (PBMCs) increased and higher mRNA level of their specific
transcription factor RORγt in PBMCs (Li et al., 2016; Li et al.,
2019). However, the level of Tregs and expression of Foxp3
mRNA were greatly decreased in AITD (Li et al., 2016; Li
et al., 2019). Figueroa Vega et al. found that IL-17 was
elevated in the thyroid tissues of GD RORγt mRNA patients,
and both IL-17 and IL-22 levels were higher than healthy controls
(Figueroa-Vega et al., 2010). Di. Peng observed that the
concentration of IL-17 and IL-22 in plasma of GD patients
was significantly higher than that of healthy controls, which
was consistent with the increase of Th17 cells and positively
correlated with TSAb (Peng et al., 2013). However, some studies
have shown the opposite results (Yuan et al., 2017). The
metabolites of the gut microbiome have been associated with
the generation of proinflammatory cytokines and the production
of Th17 cells. Commensal bacteria and their metabolites can also
promote Treg generation and suppress the immune system
(Haase et al., 2018). SCFAs are produced by the fermentation
of non-digestible carbohydrates such as dietary fiber by gut
bacteria, including butyrate (C (Shi et al., 2019a)), propionate
(C (Ishaq et al., 2018)) and acetate (C (Bahn, 2003)), are essential
metabolites in maintaining homeostasis (Luu and Visekruna,
2019). SCFAs have been proved to alter chemotaxis and
phagocytosis, changes in cell function and proliferation,
induction of reactive oxygen species (ROS), anti-tumor and
anti-inflammatory (Tan et al., 2014). SCFAs contribute to the
maintenance of intestinal barrier integrity and its regeneration
effect on the intestinal epithelium (Memba et al., 2017). SCFAs
are valuable sources of nutrients for enterocytes, together with
thyroid hormones (chiefly triiodothyronine), stimulating
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enterocyte differentiation (Cayres et al., 2021; Meng et al., 1999).
It also increases intercellular integrity and reduces the risk of a
“leaky gut” by improving the adhesion of intestinal cells and
reducing the PH in the intestinal tract, thus avoiding the invasion
of pathological organisms (Memba et al., 2017; Bargiel et al.,
2021). It is suggested that GD’s development is often linked to a
compromised intestinal barrier (Knezevic et al., 2020). Recent
studies emphasized the immunomodulatory potential of SCFAs
in various autoimmune diseases and inflammatory disorders such
as multiple sclerosis (MS), colitis, rheumatoid arthritis and AITD.
The relation between SCFAs and thyroid function seems to be
confirmed by several studies in the scientific literature describing
changes in the gut microbiota, including concentrations of SCFAs
in impaired thyroid status (Virili et al., 2018; Liu et al., 2020).
Currently, two essential functions for SCFAs have been identified,
inhibition of histone deacetylases (HDACs) and activation of
G-protein coupled receptors (GPCRs), particularly GPR43,
GPR41 and GPR109 A (Tan et al., 2014) (Sivaprakasam et al.,
2016). Butyrate has been shown to have a positive effect on
rheumatoid arthritis (Hui et al., 2019), inflammatory bowel
disease (IBD) (Zhou et al., 2018) and autoimmune hepatitis
(AIH) (Hu et al., 2018) by rebalancing between Treg and
Th17 and increasing the number of Treg cells and decreasing
Th17 cells in the system (Figure 1). Propionate is found to affect
multiple sclerosis (MS) (Duscha et al., 2020) and GD (Su et al.,
2020). However, little is known about the role of the SCFAs in
Graves’ disease.

Struja et al. predicted the relapse of hyperthyroidism based on
the assessment of metabonomics differences. Pyruvate and
triglycerides are considered as predictors with AUCs of 0.73
and 0.67 (Struja et al., 2018). Al-Majdoub and others reported
changes in the carnitine metabolism of GD patients prior to
treatment compared to posttreatment (Al-Majdoub et al., 2017).
The level of short-chain acylcarnitine decreased, medium-chain
acylcarnitine increased, and long-chain acylcarnitine remained
unchanged. The authors speculated that these phenomena reflect
a starvation process that induced by hyperthyroidism (Al-
Majdoub et al., 2017). Lipid profile from plasma and urine
samples of GD patients was significantly different compared to
controls. Some of Glycerophosphoethanolamine (PE),
Glycerophosphoinositol (PI), Triacylglycerol (TG) and

Glycerophosphoglycerol (PG) have changed significantly
(Byeon et al., 2018). Polyamine metabolic profiles are also
altered in AITD. GD and HT patients showed the same
change relative to the control group for most of the polyamine
metabolites. L-arginine (L-ARG), L-omithine (L-ORN), lysine
(LYS) agmatine (AGM) are significantly and
N-acetylputrescine (NPUT), spermine (SPM), 1,3-
diaminopropane (DAP) are lower than the control group.
However, GD and HT have different characteristics of change.
GD patients had significantly lower cadverine (CAD) and higher
N-acetylspermidine (NSPD), spermidine (SPD) and
r-Aminobutyric (GABA) acid than the control group. But
N-acetylspermine (NSPM) was decreased in HT. The anti-
inflammatory effect of SPM was better than that of SDP.
SPM/SPD can be more effective for estimating the anti-
inflammatory effect. A decrease in SPM/SPD in patients with
AITD indicated reduce in protective polyamines. SPM/SPD was
negatively correlated with inflammatory chemokine IP-10 and
TPOAb (Rider et al., 2007; Song et al., 2019). Ji et al. performed a
non-targeted metabolomics analysis on the blood and orbital
tissues of GD, GO and healthy controls. They identified ten
differential metabolites in the disease group (gluconic acid,
glucose, pelargonic acid, threose, fumaric acid, glycerol,
mannose, pentade canoic acid, pyruvate, and 2- (4-
hydroxyphenyl)ethanol) (Ji et al., 20188). The metabolite panel
achieved an accuracy of 0.931 and the sensitivity and specificity
are 0.787 and 0.875, respectively (Ji et al., 20188). Among the
metabolite panel, almost all metabolites showed a positive
correlation with the levels of TRAb (Ji et al., 20188).
Propionate was significantly reduced in GD patients, which
was negatively correlated with FT3, FT4, TRAb level, and
positively correlated with TSH level (Su et al., 2020). At
present, there are not many studies on GD metabolomics, and
the specific association and mechanism still need to be further
studied.

Gut dysbiosis can lead to changes in metabolites such as
SCFAs. As a consequence, the balance of Th17 and Tregs
would be damaged, leading to an autoimmune response and
causing autoimmune thyroid diseases. AITD: autoimmune
thyroid diseases; IL: interleukin; Th: T helper cell; Tregs:
regulatory T cells.

FIGURE 1 | Association between gut microbiota, metabolites, and thyroid autoimmune diseases.
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Microbiome and Metabolome in GD Study
In the last 20 years, it has been established that the gut
microbiome plays an essential role in maintaining host health
and the occurrence and progression of the disease. Metabolites
are the primary way that gut microbes interact with hosts. The
small molecules generated or modified from microorganisms can
be detected in urine, serum, feces, cerebrospinal fluid, and other
tissues (Holmes et al., 2011; Del Rio et al., 2017). The homeostasis
of a healthy intestinal environment is regulated by the balance of
microbiota, metabolites, and immune systems. In the state of
disease, the intestinal balance is usually destroyed. Studies showed
that gut dysbiosis leads to Treg/Th17 imbalance through the
propionic acid regulation pathway, which, together with other
pathogenic factors, promotes GD occurrence (Su et al., 2020). Gut
dysbiosis was mainly manifested by a significant decrease in
SCFAs-producing bacteria and SCFAs. Bacteroides fragilis
YCH46 strain in GD patients was obviously reduced
compared to healthy controls. It can produce propionic acid,
increase the number of Treg cells and reduce the number of Th17
cells. Therefore, B. fragilis YCH46 was a natural activator of Treg
cells and inhibitor of Th17 cells (Rios-Covian et al., 2015). YCH46
strain of B. fragilis provides a new direction for the treatment of
GD. It can improve immune dysfunction in GD patients and be
used as an immunomodulator or as an auxiliary treatment for GD
patients to reduce recurrence rate (Su et al., 2020). A recent study
found significant differences in metabolic pathways between GD
groups and healthy controls. Formaldehyde assimilation and
allantoin degradation, mevalonate and isoprene biosynthesis
significantly increased in the GD patients. In contrast, the
microbial metabolic abilities of fatty acid biosynthesis,
pyruvate fermentation to hexanol, anaerobic energy
metabolism, creatinine degradation and gluconeogenesis
decreased significantly in relative abundance in the patients.
The change of gut microbiota is Butyricimonas faecalis,
Faecalibacterium prausnitzii, Akkermansia muciniphila and
Bifidobacterium adolescentis decreased in the GD, whereas
Veillonella parvula, Eggerthella lenta, Fusobacterium
mortiferum, Streptococcus parasanguinis, and Streptococcus
salivarius were enriched. And use propionic acid, acetic acid,
cholate and chenodeoxycholate as potential biomarkers (Zhu
et al., 2021). Jiang et al. found that Blautia, Eubacterium and
Anaerostipes were decreased in GD. Eubacterium and
Anaerostipes produce butyric acid and maintain the integrity
of the intestinal epithelium as well as induce the generate of Treg

cells to strengthen the tightness of the intestinal mucosal barrier
(Duncan et al., 2004; Venkataraman et al., 2016; Jiang et al., 2021).
The primary metabolite of Blautia is butyric acid and has been
shown to have anti-inflammatory effects (Jenq et al., 2015). The
decrease of these three butyric acid-producing bacteria leads to
the reduction of butyric acid and inhibits the differentiation of
Treg cells, resulting in immune system dysfunction and
eventually the development of AITD (Jiang et al., 2021).

DISCUSSION

Autoimmune diseases are still challenging for the clinic. Changes
in the composition and abundance of the gut microbiota, as well
as related metabolites, are closely linked to the occurrence of GD.
These findings provide some potential biomarkers for early
diagnosis of GD, and some new probiotics related to GD can
be used for adjunctive treatment and prevention of recurrence.
However, related studies on gut microbiota metabolome in
patients with GD are relatively lacking, and further studies are
needed. It is believed that probiotics have positive effects on
thyroid diseases, which has been confirmed in vitro cell studies
and animal studies. However, these effects on human beings
still require intensive investigations. Accurate qualitative-
quantitative characterization of probiotics according to
different pathological stages are also needed. Current
metabolomics studies provide the correlations between gut
micrbiota and the disease, however, the molecular mechanism
between gut microbiota and GD remain unclear. One of the
key point is how the metabolites synthesized by the gut
microbiota. This is essential for the following development
of related medicines.

The ultimate goal for the multi-omics study is to develop new
diagnostic standards (microbial/metabolite biomarkers) and
treatment strategies (probiotics/targeted microbial therapy or
functional metabolites) for GD, with an individual treatment
plan for each patient to achieve a complete cure and prevent a
recurrence.
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Assessment of Greenhouse Tomato
Anthesis Rate Through Metabolomics
Using LASSO Regularized Linear
Regression Model
Ratklao Siriwach1†, Jun Matsuzaki 1†, Takeshi Saito2, Hiroshi Nishimura3, Masahide Isozaki3,
Yosuke Isoyama3, Muneo Sato1, Masanori Arita1,4, Shotaro Akaho5, Tadahisa Higashide2,
Kentaro Yano6 and Masami Yokota Hirai 1*

1RIKEN Center for Sustainable Resource Science, Yokohama, Japan, 2Institute of Vegetable and Floriculture Science, NARO,
Tsukuba, Japan, 3Mie Prefecture Agricultural Research Institute, Matsusaka, Japan, 4National Institute of Genetics, Mishima,
Japan, 5National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan, 6Bioinformatics Laboratory,
Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan

While the high year-round production of tomatoes has been facilitated by solar greenhouse
cultivation, these yields readily fluctuate in response to changing environmental conditions.
Mathematic modeling has been applied to forecast phenotypes of tomatoes using
environmental measurements (e.g., temperature) as indirect parameters. In this study,
metabolome data, as direct parameters reflecting plant internal status, were used to
construct a predictive model of the anthesis rate of greenhouse tomatoes. Metabolome
data were obtained from tomato leaves and used as variables for linear regression with the
least absolute shrinkage and selection operator (LASSO) for prediction. The constructed
model accurately predicted the anthesis rate, with an R2 value of 0.85. Twenty-nine of the
161 metabolites were selected as candidate markers. The selected metabolites were
further validated for their association with anthesis rates using the different metabolome
datasets. To assess the importance of the selected metabolites in cultivation, the
relationships between the metabolites and cultivation conditions were analyzed via
correspondence analysis. Trigonelline, whose content did not exhibit a diurnal rhythm,
displayedmajor contributions to the cultivation, and is thus a potential metabolic marker for
predicting the anthesis rate. This study demonstrates that machine learning can be applied
to metabolome data to identify metabolites indicative of agricultural traits.

Keywords: metabolome, metabolites, tomato, anthesis rate, machine learning, LASSO, trigonelline

1 INTRODUCTION

Tomatoes (Solanum lycopersicum L.) are produced worldwide, with the highest rates of production
among non-grain crops after potatoes (FAOSTAT, 2018). The high year-round production of
tomato fruits has been facilitated by greenhouse cultivation in many countries. Greenhouse
cultivation provides the optimal environmental conditions, such as temperature, humidity, and
light conditions, needed to grow plants (Peet and Welles, 2005). However, in addition to the
automatic control of environmental conditions, prompt treatment by tomato growers is necessary to
mitigate the effects of extreme weather conditions. For example, extreme heat causes pre-harvest
physiological disorders, resulting in fruit cracking and blossom drop in tomato plants. For such
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extreme heat, temporary equipment and/or manual control is
required to lower the temperature in the greenhouse (Liebisch
et al., 2009; Saure, 2014). Therefore, for greenhouse cultivation,
there is a need to continuously and adequately manage the
environmental conditions inside greenhouses. Moreover, the
morphological or physiological status of tomato plants can be
used to infer subsequent plant growth and outcome (crop
harvest). This means that more favorable growth conditions
could be investigated and elucidated to enhance plant growth
and maximize tomato fruit production. At present, tomato
growers empirically control the growth conditions in
greenhouses according to extreme weather conditions and
plant vigor.

Recently, omics data have been utilized in phenotype
prediction and the identification of genes that control traits of
interest. Among the omics data, gene expression data have been
employed, as gene expression profiles can be easily collected by
microarray experiments or sequencing technologies (Yamamoto
et al., 2016; Gao et al., 2018; Liabeuf et al., 2018). Yano et al.
(2006) introduced an accurate prediction method for phenotypes
with comprehensive gene expression profiles using a model on a
statistical index and correspondence analysis (CA). In addition to
transcriptome analysis, comprehensive metabolite profiles
(patterns of metabolite contents across a wide range of
experimental conditions) have also become practical with
high-throughput mass spectrometry-based technologies. Since
metabolites are directly related to phenotypes rather than
events of gene expression, phenotype prediction using
metabolome data is a promising strategy with which to
considerably improve predictability.

There are both direct and indirect approaches to the omics
analysis of a target trait. Omics data (e.g., gene expression and/or
metabolic profiles) obtained from a given organ represent the
genetic and physiological status of the same organ. Therefore,
omics data are directly available to identify genes and/or
metabolites controlling a given trait in an organ. For example,
omics data from the fruit of tomato plants rather than other
organs (e.g., leaves) are suitable for the detection of genes and
metabolites that play a key role in fruit development. However,
the direct approach is unfavorable because for the collection of
omics data, fruits need to be removed from the plant. To
maximize the quantity of fruit production in the greenhouse,
it is better to use vegetative organs, such as, rather of the fruit, for
the collection of omics data. If omics data from vegetative organs
is able to accurately represent the status of tomato fruit, the
indirect approach could also prove to be effective and efficient for
the identification of genes and metabolites for a trait, as well as for
phenotype prediction.

The metabolic profiling of vegetative organs has been reported
to be highly correlated with the quantity of tomato fruit
produced. For example, the association between vegetative and
reproductive growth of greenhouse tomatoes has been studied for
a long time (Khan and Sagar, 1969; Tanaka and Fujita, 1974). The
allocation of assimilated carbon between vegetative organs
(leaves) and reproductive organs (flowers and fruits) is
controlled by genetic and environmental factors, such as light
intensity and temperature (Dinar and Rudich, 1985; Heuvelink

and Buiskool, 1995). Previous studies have also suggested that the
metabolic profiles of vegetative organs, rather than reproductive
organs, are attractive and suitable for the construction of a
prediction model for fruit yield.

When the metabolic profiles in a vegetative organ are effective
in accurately predicting fruit yield, the profiles of a metabolite(s)
must be strongly associated with yield. The metabolite(s) allows
us to predict not only the yield, but also the traits that are highly
correlated with the yield. For example, the effective number of
flowers that eventually develop mature fruits is correlated with
the yield. This suggests that the effective number of flowers newly
generated within a period (e.g., a week) in the greenhouse,
referred to as the “anthesis rate” in this study, is an effective
index for the prediction of fruit production. In addition, this
index has practical and diagnostic advantages for maximizing
fruit production. When the predicted anthesis rate is too low for
commercial fruit production, the environmental condition can be
reconsidered to increase the rate. The improvement enhances the
subsequent plant growth and increases the effective number of
flowers, then maximizes tomato fruit production.

In this study, we present a statistical model with
comprehensive metabolic profiles aimed at maximizing tomato
fruit production in greenhouses, wherein the metabolic profiles in
leaves were employed to predict the anthesis rate. Because
metabolome data is a high-dimensional multivariate data,
variable selection is a crucial step to characterize the
underlying patterns of these variables and narrow them down
to find significant variables. Sparse modeling including the least
absolute shrinkage and selection operator (LASSO)model that we
applied in this study is widely used in various areas of data-driven
science (Rasmussen and Bro, 2012; Rish and Grabarnik, 2014).
LASSO model has the ability to perform variable selection by
reducing the number of variables. In the LASSO model,
significantly contributing variables are weighted with large
coefficients, while non-contributing variables are weighted
with zero or near-zero coefficients. Consequently, we also
identified metabolites that strongly contributed to the
prediction of the anthesis rate. To date, the control of the
environmental conditions in greenhouses has mainly relied on
the experience and knowledge of experts in tomato fruit
production. However, the use of machine learning and
multivariate analysis with comprehensive metabolic profiles in
vegetative organs allows us to not only predict fruit production,
but also to adjust the environmental conditions for the
enhancement of tomato growth without a need for abundant
practical experience. This novel strategy will provide innovative
knowledge and skills in greenhouse cultivation for all tomato
growers, as well as facilitate the economically efficient production
of other crops under greenhouse conditions.

2 MATERIALS AND METHODS

2.1 Plant Materials and Growth Conditions
Tomato plants were grown in greenhouses located in Tsukuba
(36°2′4.88″ N, 140°6′2.9″ E) and Matsusaka (34°37′51.7″ N,
136°29′39.5″ E), Japan.
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2.1.1 Tsukuba Greenhouse (TK01)
In Tsukuba, in the experiment designated TK01, the seeds of the
tomato cultivar Ringyoku (National Agricultural Research
Organization, Tsukuba, Japan) and rootstock cultivar Maxifort
(S. lycopersicum × S. habrochaites; De Ruiter Seeds,
Bergschenhoek, Netherlands) were sown on 16 May 2016. CF
Momotaro York (CFMY) seeds (Takii Seed, Kyoto, Japan) were
sown on 23 May 2016. On day 14 after sowing (DAS), Ringyoku
scions were grafted onto Maxifort rootstocks. On DAS 28 (13
June 2016), all seedlings were transplanted into rockwool blocks
(Delta4, Grodan, Roermond, Netherlands) and placed on
rockwool slabs (Grotop expert, Grodan) in a greenhouse with
a plant density of 3.3 plants/m2. Culture liquid with an electrical
conductivity (EC) of 3.4 mS/cm (15.8 me/L nitrate, 4.5 me/L P,
9.8 me/L K, 9.3 me/L Ca, 4.6 me/L Mg, 0.07 me/L Fe, 0.103 me/L
B, 0.017 me/L Mn, 0.076 me/L Zn, 0.00120 me/L Cu, and
0.00083 me/L Mo) was administered via a drip. After 14 days
of transplanting, culture liquid with an EC of 2.6 mS/cm was
administered. To control the cultivation environment, a
ubiquitous environment control system (Fujitsu, Kawasaki,
Japan) was used. The greenhouse was ventilated during the
day and heated overnight so that the daily mean temperature
was maintained at 25°C. A heat pump (Green Package; Nepon,
Tokyo, Japan) was operated from 20:00 to 04:00, with a target
range of 16–20°C. The daytime relative humidity was controlled
at 75% until 30 days after transplanting, and maintained at 70%
thereafter. Nineteen days after transplanting, CO2 was added
from 05:00 to 07:00 to reach a concentration of 800 ppm. Then,
and until 105 days after transplanting (26 September 2016), CO2

was added to a concentration of 400 ppm all day.

2.1.2 Matsusaka Greenhouse (IA04)
In Matsusaka, two sets of experiments (IA04 and IA06) were
conducted. In the experiment designated IA04, the seeds of the
tomato cultivars CFMY, C5-159 (Sakata Seed Co., Japan), C5-160
(Sakata Seed Co.), and C6-164 (Sakata Seed Co.) were sown on 27
July 2016. The seedlings grafted onto Maxifort rootstocks were
transplanted on 1 September 2016. The plant density was set at
2.4 plants/m2 and then rearranged to be 3.6 plants/m2 in late
January 2017. A rockwool culture system with drip fertigation
was used in the greenhouse. The culture liquid was supplied with
an EC of 3.0 mS/cm (16 me/L N, 4 me/L P, 8.0 me/L K, 8 me/L
Ca, and 4 me/L Mg). The interior air temperature was controlled
within the range of 13–27°C. The ideal humidity was 80%, and the
CO2 concentration was 800 ppm normally without ventilation
and 400 ppm with ventilation during cloudy weather.

2.1.3 Matsusaka Greenhouse (IA06)
In another experiment, designated IA06, the seeds of the tomato
cultivars CFMY, Ringyoku, and Managua (RIJK ZWAAN,
Netherlands) were sown on 4 October 2016. The seedlings
grafted onto Maxifort rootstocks were transplanted on 31
October 2016. The plant density was 2.4 plants/m2 in the first
3 months and then rearranged to 3.6 plants/m2. A rockwool
culture system with drip fertigation was used in the
greenhouse. The culture liquid was supplied with an EC of
3.0 mS/cm (16 me/L N, 4 me/L P, 8.0 me/L K, 8 me/L Ca, and

4 me/L Mg). The environmental conditions were controlled as in
experiment IA04.

2.2 Measurement of Anthesis Rates
To measure the anthesis rates, we periodically counted the
number of flowers that had not fallen off of each plant. The
cumulative numbers of flowers (“cumulative anthesis”) were
plotted (see Section 3 for details). From the cumulative
anthesis plot, the anthesis rates were calculated from the
gradients of a straight line between two neighboring time-
points on the horizontal axis.

2.3 Metabolome Analysis
2.3.1 Sampling of Tomato Leaves
In Tsukuba (TK01), the most basal leaflet of a fully developed and
sunlit leaf was sampled for two replications every 2 h
continuously for 24 h at one-week intervals for 4 weeks. A
total of 192 leaf samples were collected from 16 August 2016
to 6 September 2016 (Ringyoku; n = 96, CFMY; n = 96). In
Matsusaka, the fully developed upper leaves were sampled during
10:00–14:00 on 13 October 2016, and 19 January 2017, for IA04
for three replications, except for C5-160 for two replications
(CFMY; n = 6, C5-159; n = 6, C5-160; n = 4, C6-164; n = 6) and on
19 January 2017 (6 replications) and 9 March 2017 (8 replicates)
for IA06 (Ringyoku; n = 14, CFMY; n = 14, Managua; n = 14). The
leaves were collected and flash-frozen in liquid nitrogen.

2.3.2 Widely Targeted Metabolomic Analysis
The frozen leaf samples were freeze-dried and powdered. A small
amount of samples (0.5–8.9 mg dry weight) was weighed and 1 ml/
10mg (TK01) or 4 mg (IA04 and IA06) dry weight of extraction
solvent [80% (v/v) methanol and 0.1% (v/v) formic acid, with
8.4 nmol/L lidocaine and 210 nmol/L 10-camphorsulfonic acid as
internal standards] was added. This mixture was shaken using a
ShakeMasterNeo for 2 min at 1,000 rpm to extract themetabolites.
After centrifugation for 1 min at 9,100 × g, the supernatant was
diluted with the extraction solvent to obtain 0.4 mg/ml extracts.
Next, 25 µL of the extract was dried, dissolved in 250 µL of ultra-
pure water, and filtered using Millipore MultiScreenHTS384 well
(Merck KGaA, Darmstadt, Germany). A 1-µL aliquot of this filtrate
(0.04mg/ml) was subjected to widely targeted metabolomics using
liquid chromatography coupled with a tandem quadrupole mass
spectrometer (LC-QqQ-MS) (UPLC coupled with Xevo TQ-S,
Waters, Milford, MA, United States) (Sawada et al., 2009;
Sawada et al., 2019). The analytical conditions are described in
detail in Supplementary Tables S1–S3. Themetabolome data were
deposited in the DROP Met in PRIMe (the Platform for RIKEN
Metabolomics) (DM0041, http://prime.psc.riken.jp/archives/data/
DropMet/059/).

2.3.3 Measurement of Relative Metabolite Contents
For the Tsukuba data (TK01), the peak areas of 501 target
metabolites (including two internal standards) were processed
as follows. Values below the detection limit were set to zero. The
peak area of each metabolite in a leaf sample was divided by the
mean peak area in the extraction solvent control from the same
leaf sample to obtain the signal-to-noise ratio. In total, 161
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metabolites were detected with signal-to-noise ratios above two in
more than half of the leaf samples (Supplementary Table S3).
The peak area of each metabolite was divided by that of the
internal standard (lidocaine or 10-camphorsulfonic acid) to
obtain the relative metabolite content.

The peak areas from theMatsusaka data (IA04 and IA06) were
processed in the same manner as those from the Tsukuba data
(TK01). After calculating the signal-to-noise ratio, the peak area
of each metabolite was divided by that of the internal standard
(lidocaine or 10-camphorsulfonic acid) to obtain the relative
metabolite content.

2.4 Least Absolute Shrinkage and Selection
Operator Regularized Linear Regression
Model Analysis
LASSO regularization was used to extract essential metabolites to
predict an anthesis rate. We constructed a predictionmodel of the
anthesis rate using LASSO regularized linear regression analysis,
called the LASSO model, to identify the “predictor metabolites”
for the anthesis rate.

2.4.1 Least Absolute Shrinkage and Selection
Operator Model to Predict the Anthesis Rate in TK01
A LASSO model using metabolome data from TK01, named “M-
model”, was constructed. Before training the model, the relative
metabolite contents of each metabolite in all leaf samples were
normalized to have a mean of zero and a standard deviation of
one (that is, standardization). The LASSO model was
implemented using sklearn.linear_model.Lasso in the Scikit-
learn package (McKinney, 2010; Pedregosa et al., 2011).

The M-model was constructed by training the metabolic
profiles of 161 metabolites from 192 leaf samples. The linear
regression is expressed as:

yi � w0 + w1Xi1 + . . . + wmXim, i ∈ [1, n], (1)
where yi is the anthesis rate of the plant with the ith leaf samples
(1 ≤ i ≤ n, n = 192), Xij is the relative metabolite content of the jth
metabolite in the ith sample (1 ≤ j ≤m,m = 161), wj is the model
coefficient of the jth metabolite (1 ≤ j ≤m), and w0 is an intercept
term. Here, yi and Xij are elements of a vector y = (y1, . . . , yn)

T and
an n × mmatrix X, respectively. The linear regression was trained
with L1 regularization to perform both feature selection and
regularization. The objective function to minimize is:

min
w

1
2n

∣∣∣∣
∣∣∣∣Xw − y

∣∣∣∣
∣∣∣∣
2

2
+ α

∣∣∣∣
∣∣∣∣w
∣∣∣∣
∣∣∣∣1, (2)

where ||Xw − y||22 = ∑n
i�1 (Xiw − yi)2 is the sum of the squared

errors, ||w||1 = ∑m
j�1 |wj| is the L1-norm of the coefficient vector,

and α ≥ 0 is the penalty constant (Tibshirani, 1996). Thus, in the
M-model, significantly contributing metabolites, called the
selected metabolites, were weighted with large coefficients
(either positive or negative), while non-contributing
metabolites were weighted with zero coefficients. R2 value of
the M-model was calculated. The prediction accuracy was
assessed by 10-fold cross-validation. R2 value and the mean
squared error (MSE) were used as accuracy metrics.

In addition, the second and third LASSO model training with
environmental data (E-model) and combined metabolome and
environmental data (C-model), respectively, were constructed in
the same manner as the M-model. In the E-model, the X matrix
contained only environmental factor data (solar irradiance,
ambient temperature, relative humidity, and CO2

concentration). The X matrix in the C-model consisted of the
metabolic profiles of 161 metabolites and environmental
factor data.

2.4.2 Least Absolute Shrinkage and Selection
Operator Model for the Assessment of the Prediction
Accuracy of the Predictor Metabolites
We also used the LASSO model to assess the ability and strength
of the predictor metabolites in the M-model by expanding the
metabolome data from different experimental designs. The
predictor metabolites selected from the M-model were used to
reconstruct the LASSO model with additional leaf samples from
IA04 and IA06. Themodel was reconstructed in the samemanner
as the M-model by training the metabolic profiles of the predictor
metabolites of 256 leaf samples from three greenhouses (TK01,
IA04, and IA06).

2.5 Classification of Leaf Samples by
Principal Component Analysis
The differences in leaf samples were evaluated by the PCA of their
metabolic profiles. The relative metabolite content of each
metabolite in all leaf samples was standardized. The PCA tool
in the Scikit-learn package was used. The first two principal
components of each leaf sample were used to project the leaf
samples into a two-dimensional space. PCA was performed with
two datasets, TK01 and a combined data of TK01, IA04, and
IA06. For the PCA of TK01, the metabolic profiles of 161
metabolites from 192 leaf samples were used. For the PCA of
data combined from TK01, IA04 and IA06, the metabolic profile
of the predictor metabolites of 256 leaf samples from the three
greenhouses (TK01, IA04, and IA06) were used.

2.6 Hierarchical Clustering Analysis of the
Predictor Metabolites
To evaluate the similarities among the predictor metabolites, the
metabolic profiles of 256 leaf samples from the three greenhouses
(TK01, IA04, and IA06) were used for HCL. The Pearson
correlation coefficient (r) of the relative metabolite contents
for each pair of metabolites was calculated (Supplementary
Figure S3 and Supplementary Table S4). Then, the distances
between metabolites, namely, the “correlation distance” (1–r),
were employed for agglomerative clustering. Linkage methods
were applied to compute the distances between sub-clusters; then,
a dendrogram was generated to mine metabolites showing similar
profiles. The optimum linkage method was determined based on
the cophenetic correlation coefficient. The best linkage method,
which yielded the maximum cophenetic correlation coefficient,
was used to create a hierarchical dendrogram (Jones et al., 2001).
HCL was implemented using the Python library Scipy.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8390514

Siriwach et al. LASSO on Tomato Anthesis Rate

46

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 1 | Experimental design of TK01. (A) Experimental timeline for leaf sampling and observation of anthesis of cultivars CFMY and Ringyoku. The blue
rectangle indicates the period of the measurement of environmental factors (e.g., temperature). (B) Cumulative anthesis. The arrows and gray vertical lines indicate the
dates of leaf sampling for metabolome analysis. (C) Distributions of anthesis rates were statistically the same between cultivars (Mann-Whitney U test, p > 0.05, CFMY;
n = 21, Ringyoku; n = 21). (D)Box plot of the standardized relative metabolite contents of 161metabolites in 192 leaf samples (CFMY; n = 96, Ringyoku; n = 96). (E)
PCA score plot of the first two components (PC1 and PC2) of leaf samples (CFMY; n = 96, Ringyoku; n = 96). The metabolic profiles of the 161metabolites were used for
PCA. The numbers in parentheses in the axes are contribution ratios. (F) Environmental conditions measured in the experimental timeline. The environmental data in the
blue background color used for LASSO analysis (E-model and C-model). The period in the blue background color is consistent with the period for leaf sampling.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8390515

Siriwach et al. LASSO on Tomato Anthesis Rate

47

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2.7 Network Analysis of the Predictor
Metabolites With Correspondence Analysis
CA is a multivariate technique and is conceptually similar to PCA.
In previous studies, CA has been used to clarify the associations
between genes and experimental conditions in microarray analyses
(Yano et al., 2006; de Tayrac et al., 2009). We employed CA for
network analysis to discover the associations between the predictor
metabolites and the associations between the predictor metabolites
and the leaf sample characteristics, that is, experimental designs,
cultivars, and sampling times.

CA was executed against metabolic profiles. The metabolome
data were arranged in a matrix where the columns and rows
correspond to the predictor metabolites selected by the M-model
and 256 leaf samples from the three experimental designs,
respectively. The relative metabolite contents of each
metabolite in all leaf samples were standardized, and the
minimum value was subtracted to prevent negative values. CA
was performed using the FactoMineR library in R (Lê et al., 2008).
Coordinates with m-1 dimensions were assigned to each
metabolite and leaf sample, where m is the number of
predictor metabolites. The coordinate values of all dimensions
were retrieved (Supplementary Table S5).

2.7.1 Network Analysis Between the Predictor
Metabolites and the Leaf Sample Characteristics
The Euclidean distances for each pair of a metabolite and leaf
sample were calculated using coordinates in all dimensions from
CA. Theoretically, a smaller Euclidean distance indicates a higher
association. Based on the histograms of the Euclidean distance
(Supplementary Figure S4A), the 15th percentile of all distances
was set as a threshold value to define a significant association.
Pairs of a metabolite and leaf sample with distances less than the
threshold were selected (Supplementary Table S6). The mean of
the distances between each metabolite and each leaf sample
characteristics were integrated to construct metabolic
networks. Networks were constructed using py2cytoscape and
NetworkX libraries in Python, and Cytoscape software (version
3.6.1) (Shannon et al., 2003; Hagberg et al., 2008; Ono et al.,
2015). The associations between the metabolites were also
evaluated in the same manner.

2.7.2 Network Analysis Among the Predictor
Metabolites
CA was used to determine the association among the predictor
metabolites. The same process was performed to obtain pairwise
Euclidean distances between the metabolites (Supplementary
Tables S7, S8). The distances that passed the threshold were
integrated to construct the metabolite networks.

Statistical Analysis for the Anthesis Rates
In TK01, the significance of the anthesis rates between the
cultivars was analyzed using the Mann-Whitney U test. The
significance of the anthesis rates among the experimental
designs (TK01, IA04, and IA06) was analyzed using the
Kruskal–Wallis test with Conover’s multiple comparison test.
Scipy in Python was used for the statistical analyses.

3 RESULTS

3.1 Data Collection for Anthesis Rate, Leaf
Metabolome, and Environmental Factors
In the experiment designated TK01, two tomato cultivars,
Ringyoku and CFMY, were grown in Tsukuba, Japan. After
transplanting the tomatoes into a greenhouse, the cumulative
number of anthesis occurrences was recorded in parallel with
leaflet sampling (Figure 1A). The cumulative number of anthesis
occurrences was used to calculate anthesis rates (Figures 1B,C,
respectively). The anthesis rates of the Ringyoku and CFMY
cultivars were similar and gradually decreased over the growing
period. No significant differences were observed between
cultivars. During the growing period, fully developed basal and
sunlit leaves were collected from plants. Leaf sampling every 2 h
for 24 h was conducted four times at one-week intervals. The
sampled leaves were subjected to a widely targeted metabolome
analysis using a liquid chromatography-mass spectrometer. From
a total of 499 targeted metabolites, 161 metabolites above the
signal-to-noise ratio threshold were selected (Supplementary
Table S3). The relative metabolite contents of each metabolite
in all leaf samples were standardized prior to further analysis. The
boxplot (Figure 1D) and PCA score plot (Figure 1E) indicated
that Ringyoku and CFMY had similar metabolic profiles. Thus,
we pooled the metabolic profile data obtained from the two
cultivars (192 leaf samples × 161 metabolites) for further
analysis. In addition, environmental data (solar irradiance,
ambient temperature, relative humidity, and CO2

concentration) were also obtained (Figure 1F).

3.2 Least Absolute Shrinkage and Selection
Operator Model for Anthesis Rate
Prediction in TK01
We constructed three models (M-model, E-model, and C-model)
to predict the anthesis rates in TK01. The model was trained and
optimized to obtain predictor metabolites.

For the construction of the M-model, the metabolic profiles of
161 metabolites in 192 leaf samples were employed. During
model training, we optimized the model by assigning a range
of the penalty constant (α) and then measuring the prediction
accuracy by cross-validation. The penalty constant (α) of the
M-model was fine-tuned to optimize the best prediction model
with the selected metabolites. The iteration training was
performed by varied α from 5 × 10−5 to 0.5 (Supplementary
Figure S1A). At each given α, different sets of metabolites with
optimized LASSO coefficients (w) were selected (Supplementary
Figure S1A). In each loop of a given α, the R2 value of the
M-model was calculated, and the prediction accuracy of the
M-model was assessed by 10-fold cross-validation. The R2

value and the mean squared error (MSE) of the 10-fold cross-
validation were also calculated (Supplementary Figure S1B). The
R2 values of the training and cross-validation were used to
determine an optimum M-model that contained the selected
metabolites as the predictor metabolites for the anthesis rate
(Figure 2A).
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Frommodel optimization, increasing the number of metabolites
in the model increases the predictive accuracy (R2 values) in both
training and cross-validation. Until cross-validation R2 stopped
improving while model R2 continued to increase, this indicates
overfitting in a high number of metabolites. Thus, we selected α,
where the cross-validation R2 started to plateau and was closest to
training R2 as our optimal model. In Figure 2A, the optimum
number of metabolites was determined to be 29 at the elbow point
on the graph that yielded the closest R2 values between the training
and cross-validation. Using the contributions of these 29
metabolites (Figure 2B) as predictor metabolites, we constructed
a prediction model for TK01 (M-model). The M-model provided
good prediction performance for the anthesis rates (Figure 2C).
The R2 value of the M model, R2 s value, and MSE of the 10-fold
cross-validation are summarized in Table 1.

To examine the possibility of including environmental factors in
the prediction model, we also attempted to construct a LASSO
model, the E-model, using four environmental parameters (interior
air temperature, interior relative humidity, interior CO2

concentration, and cumulative solar irradiance) recorded at 5-

min intervals (Figure 1F). The prediction performance of the
environmental parameters was poor (Table 1 and Supplementary
Figure S2A). Finally, the C-model model was constructed using a
combination of metabolites and environmental factors. The
combination slightly improved the prediction accuracy of the
anthesis rate (Table 1 and Supplementary Figure S2B).

3.3 Assessment of the Accuracy of Anthesis
Rate Prediction Using the Predictor
Metabolites
To assess the prediction accuracy of the anthesis rates by the
contents of the 29 selected metabolites as the predictor
metabolites from the M-model, datasets from two greenhouses
(IA04 and IA06) were used.

3.3.1 Differences in Metabolic Profiles Among
Experimental Designs
In IA04 and IA06, the experimental designs were conducted at a
different greenhouse location (Matsusaka) from TK01 (Tsukuba).

FIGURE 2 | LASSOmodel with ten-fold cross-validation for the prediction of the anthesis rate in TK01. For LASSO regression analysis, the metabolic profiles of 161
metabolites in 192 leaf samples were employed. (A) The numbers of metabolites used for predictor variables versus R2 value. The elbow point suggests the optimum set
of metabolites for the prediction model. (B) Comparison of anthesis rates between observed and predicted values. Predicted values were obtained from the M-model
with 29 selectedmetabolites. The dotted line represents the agreement between the observed and predicted values. (C)Coefficients (w) of 29metabolites selected
by the M-model. Red dots are positive coefficients, while blue dots are negative coefficients.
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In addition, these three experiments were performed in different
growth seasons. Moreover, in addition to Ringyoku and CFMY,
four additional cultivars were also used in IA04 and IA06 (section
2.1). During the recording of the cumulative numbers of anthesis
occurrences, the leaflets were sampled for metabolome analysis at
one time point around noon on 2 days (Figure 3A). Therefore,
metabolic profiles must be varied by differences in the
experimental designs. The relative metabolite contents of the
29 predictor metabolites on TK01, IA04, and IA06 is shown in a
boxplot in Figure 3B. The distribution of the relative metabolite
contents in TK01 was relatively compact, while the IA04 and
IA06 data exhibited relatively larger variances. This was caused by
the mixed effects of different cultivars, greenhouse conditions,
and seasons. In addition, PCA for the relative metabolite contents
of the 29 predictor metabolites and all leaf samples (n = 256) from
the three greenhouses were performed to investigate the
differences among the experimental designs. The TK01 leaf
samples were noticeably separable from the IA04 and IA06
leaf samples, while the IA04 and IA06 leaf samples were
clustered together (Figure 3C). In addition to the metabolic
profiles, the anthesis rates differed among the three
experimental designs (Figure 3D). The anthesis rate in IA04
was slightly higher than that in TK01, while IA06 showed the
highest anthesis rate among the three experimental designs. The
differences in the metabolic profiles and anthesis rate of TK01
and the two experimental designs (IA04 and IA06) made it
difficult to obtain a good prediction by imputing data from
IA04 and IA06 into the M-model.

3.3.2 Least Absolute Shrinkage and Selection
Operator Model to Assess the Prediction Accuracy of
the Predictor Metabolites
We evaluated the predictive ability of 29 predictor metabolites
selected from the M-model. If the predictor metabolites are
biologically associated with the anthesis rate, broaden number
of leaf samples from different experimental designs should
provide a good prediction model. To clarify whether a more
universal model could be established, the relative metabolite
content of the 29 predictor metabolites and the anthesis rates
obtained in TK01, IA04, and IA06 were combined and subjected
to the LASSO model. A total of 13 out of the 29 metabolites that
yielded the minimum MSE were selected (R2 = 0.75)
(Figure 3E). The 10-fold cross-validation results
demonstrated the acceptable fitting and prediction accuracy
of the model (MSE = 0.26). The model showed good prediction
performance across the three datasets (cross-validated R2 =
0.69) (Figure 3F). This result indicates that the predictor
metabolites selected by the LASSO model as contributing

variables in a specific dataset (TK01) could be effective for
the prediction of the anthesis rate in general.

Among the two sets of metabolites selected from the M-model
and this combined data model, the LASSO coefficients of the
selected metabolites showed that tyramine, trigonelline,
glycerophosphocholine, and L-threonic acid had a high
association with the anthesis rate in both models.

3.4 Candidate Metabolites Associated With
the Anthesis Rate
Metabolites showing significant associations with anthesis rates
are attractive candidates for markers of reproductive traits,
including anthesis rates, fruit development, and production.
We detected candidate metabolites related to anthesis rates by
LASSO analysis (Section 3.3). To understand the biological
characteristics of the 29 predictor metabolites and identify
candidate metabolites for future use as prediction markers, we
investigated the association between the 29 selected metabolites
and anthesis rates using hierarchical clustering analysis (HCL)
and correspondence analysis (CA).

First, HCL was used to visualize the metabolic profiles of
TK01, IA04, and IA06. Pearson correlation coefficients (r)
between each pair of the 29 predictor metabolites were
obtained to evaluate the similarity in the profiles
(Supplementary Figure S3). Strong correlations were
observed, particularly in the top selected metabolites, such as
tyramine, trigoneline, glycerophosphocholine, and serotonin, of
the M-model (Figure 4A). This result suggests that each of these
metabolites plays a similar and important role in anthesis rate
estimation. It indicates that it is possible to choose only a small
number of metabolites as key predictors of anthesis rates.

Next, CA was conducted for network analysis to elucidate the
associations among the 29 predictor metabolites. In the metabolic
network (Figure 4B), all of the connected metabolites were
amines, except for chlorogenic acid, rhoifolin, and L-threonic
acid. Thus, the nitrogen-containing metabolites showed similar
accumulation patterns across the leaf samples (Figure 4B).
Among all metabolite-to-metabolite edges, trigonelline has the
most edges linked to other metabolites, indicating that
trigonelline is a major coexisting metabolite with others.

CA was also conducted for network analysis to elucidate the
associations between the 29 predictor metabolites and leaf sample
characteristics, that is, experimental designs, cultivars, and
sampling times. Among the leaf sample characteristics, the
experimental design was the only factor displaying a clear
separation in PCA (Figure 3C), whereas the cultivars and
sampling times did not show distinct separation

TABLE 1 | The prediction accuracies of the three models in TK01.

Variable used for LASSO model construction R2 value (LASSO model) Cross-validation

R2 value MSE

The M-model with metabolic profiles of 29 metabolites 0.85 0.75 0.013
The E-model (only environmental factors) 0.11 0.10 0.055
The C-model with metabolic profiles of 36 metabolites and environmental factors 0.89 0.83 0.010
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FIGURE 3 | Predictability assessment of the 29 predictor metabolites with expanding metabolome datasets. (A) Experimental timeline for leaf sampling and
anthesis measurements in IA04 (cultivars: CFMY, C5-159, and C5-16) and IA06 (cultivars: CFMY, Ringyoku, and MNG). (B) Box plot of standardized relative metabolite
contents of the 29 predictor metabolites in each cultivar in three experimental designs (TK01, IA04, and IA06). The numbers of leaf samples (n): CFMY (n = 96) and
Ringyoku (n = 96) in TK01, CFMY (n = 6), C5-159 (n = 6), C6-164 (n = 6), and C5-160 (n = 4) in IA04, and Ringyoku (n = 14), CFMY (n = 14), and Managua (n = 14) in
IA06. (C) PCA score plot of leaf samples (n = 256) by using metabolic profiles of the 29 predictor metabolites from three experimental designs (TK01, IA04 and IA06). The
contribution ratio is shown in parentheses for the first and second principal component (axis). The colors indicate the experimental designs, and the markers represent
the cultivars. (D) Anthesis rates used for the LASSO model (TK01, n = 16; IA04, n = 8; IA06, n = 6). Asterisks indicate significant differences according to the Kruskal-
Wallis test with Conover’s multiple comparison test (*, p < 0.05; **, p < 0.01; and ***, p < 0.001). (E)Model coefficients (w) of 13metabolites selected in the LASSOmodel
construction with metabolome datasets from three experimental designs (TK01, IA04 and IA06). The red dots are positive coefficients, while the blue dots are negative
coefficients. (F) Comparison of anthesis rates between observed and predicted values obtained from the model constructed by the three datasets. The dotted line
represents the agreement between the observed and predicted values.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8390519

Siriwach et al. LASSO on Tomato Anthesis Rate

51

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


(Supplementary Figures S4B,C). Thus, in CA, we first examined
the network between the predictor metabolites and the
experimental designs (TK01, IA04, and IA06). In the network
(Figure 5A), IA04 and IA06 shared seven similarly dominant
metabolites. Four out of the seven metabolites,
glycerophosphocholine, serotonin, trigonelline, and tyramine,

were in the top five of the 29 predictor metabolites
(Figure 2C). TK01 had nine highly associated metabolites.
Among them, one metabolite, trigonelline, was linked to all
three experimental designs in the network (Figure 5A). Next,
we examined the association between metabolites and cultivars.
In the metabolite to cultivar network (Figure 5B), a network

FIGURE 4 | Metabolite association of 29 predictor metabolites. (A) Dendrogram representing agglomerative clustering of the correlation distances of the 29
selected metabolites in average linkage. The cluster threshold was 0.5, as indicated by the black dotted line. Lines of the same color represent the same clusters. (B)
Network for metabolites (threshold: ≤15th percentile of Euclidean distances). The node size represents the number of edges linked to other metabolites.
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FIGURE 5 | Metabolite association with experimental designs, cultivars, and sampling times. (A) Network of metabolites and growth conditions. (B) Network of
metabolites and cultivars. The cultivars were divided into subcategories of experimental design; for example, the CFMY samples were divided into three and labeled
CFMY_TK01, CFMY_IA04, and CFMY_IA06. (C) Network of metabolites and sampling times. (D) Diurnal changes of the relative content of phosphocholine (scaled
between 0 and 1).
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pattern similar to the experimental design was observed. The
cultivars IA04 and IA06 shared highly associated metabolites but
did not share with the cultivars in TK01, except trigonelline,
which was associated with all cultivars (Figure 5B).

3.5 Candidates of Stable Metabolites for the
Prediction of the Anthesis Rate
Taking into account the leaf sampling time, metabolite content
generally changes according to the circadian rhythm. For future
use as key indicators of anthesis rate, metabolites whose contents
do not change depending on the leaf sampling time are preferred.
Because the leaf samples from TK01 were collected every 2 h for a
day in time-series format, we constructed a Euclidean distance
network of TK01 samples to identify the metabolite associated
with leaf sampling time, namely day (06:00‒18:00) or night (20:
00‒04:00) (Figure 5C). Among the nine metabolites strongly
associated with TK01, phosphocholine was highly associated only
at night. This result is consistent with the accumulation pattern of

phosphocholine, which showed a diurnal bell-shaped pattern
peaking at night (Figure 5D). Eight other metabolites,
including trigonelline, shared associations during both day and
night, indicating high metabolite production, which may produce
stable production throughout the day.

To further evaluate the diurnal fluctuations of the 29 LASSO-
selected metabolites in TK01, the relative contents of each
metabolite were scaled between 0 and 1. The distribution of
the standard deviations (SD) of the 29 metabolites is shown in
Figure 6A. The standard deviations of the metabolite contents
ranged from 0.148 to 0.230. Among these, the standard deviation
of trigonelline was relatively small (SD = 0.167). In addition, the
trigonelline content was relatively stable over the course of a day
(Figure 6B) compared to that of the other metabolites, such as
phosphocholine, glycerophosphocholine, L-glutamic acid, and 4-
aminobutyric acid, which exhibited strong diurnal fluctuations
(Supplementary Figure S5).

Taken together, our results suggest that trigonelline is an
attractive metabolite for use as a marker of the anthesis rate of

FIGURE 6 | Diurnal fluctuations of metabolite content in tomato leaves. (A) Distribution of the standard deviations of 29 metabolites. The red arrow indicates the
standard deviation of trigonelline at 0.167. (B) Diurnal fluctuations of the relative content of trigonelline (scaled between 0 and 1).
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tomatoes. Trigonelline was one of the top five LASSO-selected
metabolites for the prediction of the anthesis rate (Figures 2C,
3E), showed no diurnal changes, and exhibited stable content
among the different cultivation conditions and varieties (Figures
6A,B). Other metabolites among the top five, such as tyramine,
were also available not only for the prediction of the anthesis rate,
but also as markers under specific cultivation conditions.

4 DISCUSSION

Machine learning approaches have the potential to provide
prediction models for agricultural traits and effectively identify
metabolites, genes, or environmental factors associated with these
traits (Menéndez et al., 2011; Acharjee, 2013; Das et al., 2018; Du
et al., 2019; Sawada et al., 2019). Our study employed LASSO
regularized linear regression model analysis to construct a
prediction model of the anthesis rate using leaf metabolome
data as predictor variables and identify the 29 predictor
metabolites as candidate biomarkers. Importantly, we
identified trigonelline as a key metabolite for anthesis rate
prediction using the LASSO models and CA. Moreover,
because the trigonelline content in the leaf was relatively stable
over the course of a day, it was identified as an attractive
biomarker of anthesis rate.

4.1 Possible Uses of Least Absolute
Shrinkage and Selection Operator-Selected
Metabolites as Biomarkers
The prediction of reproduction and fruit development in tomato
is a powerful tool for the diagnosis of plants and the optimal
management of the environmental conditions to maximize
plant yields. Since anthesis is directly linked to tomato fruit
production, it is a good index with which to evaluate tomato
cultivation. The identification of metabolites involved in
anthesis can be employed as metabolite markers for the
prediction of anthesis and yield.

In the construction of the models using LASSO, unimportant
metabolites were penalized by L1 regularization, leaving more
prominent metabolites after variable selection. A reduction in
the number of metabolites is desirable, because a smaller
number of metabolites can be more easily measured for
future use as biomarkers. As a result, 29 metabolites,
including both primary and specialized (secondary)
metabolites, were selected from among 161 metabolites. Most
of the 29 selected metabolites were nitrogen-containing
compounds, such as amino acids and their derivatives,
alkaloids, amines, and phospholipids. The LASSO-selected
metabolites could indicate the nitrogen status associated with
the anthesis rate in tomatoes.

Among the 29 metabolites, trigonelline (N-methylnicotinate),
a quaternary ammonium, exhibited a metabolic profile similar to
that of the majority of the selected metabolites. (Figure 4B). In
addition, trigonelline demonstrated the greatest association with
all three growth conditions and all cultivars, while other
metabolites were associated with only leaf samples from

particular experiments (Figures 5A–C). Moreover, compared
to other metabolites, trigonelline showed a relatively stable
accumulation over the course of a day (Figures 5D, 6B and
Supplementary Figure S5). Among 29 metabolites associated
with anthesis rate, trigonelline was shown to be a key metabolite
related to anthesis rate. These results support that trigonelline is a
suitable biomarker without diurnal fluctuations.

Trigonelline is known to increase in tomato leaves in
response to increased nitrogen content in nutrient
solutions (Tyihák et al., 1988), and can thus serve as a
possible indicator of nitrogen status within the plant body.
Therefore, we investigated the correlation between
trigonelline content in leaves and nitrogen fertilizer
absorption in IA04 and IA06 (Supplementary Table S9).
The results showed a positive correlation (r = 0.56, p <
0.05) in IA06 and a weak correlation (r = 0.30, p < 0.05) in
IA04, supporting this hypothesis. Trigonelline is synthesized
from nicotinic acid, which is a metabolite of the nicotinamide
adenine dinucleotide (NAD) synthesis/degradation
(Ashihara, 2006). The functions of trigonelline in plants
have been reported in terms of various aspects, such as cell
cycle regulation, nodulation, and reduction of oxidative stress
(Minorsky, 2002). A recent study reported on the function of
trigonelline as a detoxified metabolite of excess nicotinic acid
in the NAD cycle (Li et al., 2017). The demethylation of
trigonelline regenerated nicotinic acid for utilization in
NAD synthesis as a reservoir metabolite. Demethylating
activity has also been observed in the leaves of some plants,
as well as in coffee plant seeds, during germination (Ashihara,
2006). In Arabidopsis thaliana, NAD is known to play an
important role in growth phase transition (Hashida et al.,
2016). In a previous study, the perturbation of NAD redox
homeostasis due to the overexpression of genes involved in
NAD synthesis resulted in the ectopic generation of reactive
oxygen species, leading to early flower stalk wilting and
shortened plant longevity (Hashida et al., 2016). In
addition, NAD accumulation was reported in pollen before
germination, indicating that NAD metabolism plays a crucial
role in pollen maturation (Hashida et al., 2013). Our
hypothesis is that trigonelline may be involved in flower
development via NAD homeostasis, however, further
experiments are required to confirm this hypothesis.

4.2 Improving Predictability by Using
Environmental Data
Although we attempted to use environmental factors to predict
reproductive traits, the prediction performances of the generated
models were poor (Table 1 and Supplementary Figure S2A).
These results support our understanding that short-term
environmental data are insufficient for yield prediction.
Accumulated historic datasets of environmental factors may be
required to achieve more accurate predictions (Adams, 2002;
Qaddoum et al., 2013; Saito et al., 2020). On the other hand, the
combination of metabolome and environmental factor data
resulted in improved prediction performance (Table 1).
Considering a plant as an autotrophic production system, it is
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reasonable that a combination of environmental factors (system
inputs) and metabolic status (a system internal condition) can
produce more accurate production estimates (system outputs)
than either one individually. Thus, monitoring both types of
factors in a greenhouse system management is likely to yield the
best prediction performance.

4.3 Machine Learning Algorithms for
Metabolome Data
Among the machine learning approaches, LASSO linear
regression analysis was chosen for the following reasons. First,
linear regression is often used to estimate biological rates
(Schneider et al., 2010). Thus, linear regression seems to be an
appropriate choice for our experiments. Second, our dataset
contained more variables than samples, which could lead to
severe overfitting in a more complex model (Trunk, 1979). A
simpler model, such as a linear regression model combined with
LASSO regularization, is preferred; therefore, the LASSO linear
regression method is employed in this study. In fact, we have
previously tested several other regression algorithms, including
ridge regression, random forest regressor, k-nearest neighbor
regression, and support vector regression (Pedregosa et al.,
2011; VanderPlas, 2016), all of which performed worse than
or the same as the LASSO model with our dataset (data not
shown). A detailed comparison of these algorithms will be
described elsewhere. Based on this knowledge, LASSO was
chosen for this study.
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Both targeted and untargeted mass spectrometry-based metabolomics approaches are
used to understand the metabolic processes taking place in various organisms, from
prokaryotes, plants, fungi to animals and humans. Untargeted approaches allow to detect
as many metabolites as possible at once, identify unexpected metabolic changes, and
characterize novel metabolites in biological samples. However, the identification of
metabolites and the biological interpretation of such large and complex datasets
remain challenging. One approach to address these challenges is considering that
metabolites are connected through informative relationships. Such relationships can be
formalized as networks, where the nodes correspond to the metabolites or features (when
there is no or only partial identification), and edges connect nodes if the corresponding
metabolites are related. Several networks can be built from a single dataset (or a list of
metabolites), where each network represents different relationships, such as statistical
(correlated metabolites), biochemical (known or putative substrates and products of
reactions), or chemical (structural similarities, ontological relations). Once these
networks are built, they can subsequently be mined using algorithms from network (or
graph) theory to gain insights into metabolism. For instance, we can connect metabolites
based on prior knowledge on enzymatic reactions, then provide suggestions for potential
metabolite identifications, or detect clusters of co-regulated metabolites. In this review, we
first aim at settling a nomenclature and formalism to avoid confusion when referring to
different networks used in the field of metabolomics. Then, we present the state of the art of
network-based methods for mass spectrometry-based metabolomics data analysis, as
well as future developments expected in this area. We cover the use of networks
applications using biochemical reactions, mass spectrometry features, chemical
structural similarities, and correlations between metabolites. We also describe the
application of knowledge networks such as metabolic reaction networks. Finally, we
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discuss the possibility of combining different networks to analyze and interpret them
simultaneously.

Keywords: metabolic network, untargeted metabolomics, graph-based analysis, knowledge network, experimental
network, metabolism, systems biology

INTRODUCTION

Metabolomics research is based on various opportunities to
uncover the metabolites contained in biological samples. To
characterize and quantify metabolites in biological samples,
different types of metabolite separation techniques - such as
Liquid Chromatography (LC), Gas Chromatography (GC),
Capillary Electrophoresis (CE), or Ion Mobility (IM)–are
coupled to a Mass-Spectrometry (MS) system. High-
performance mass spectrometry systems generate increasingly
complex datasets. Two major approaches are used in
metabolomics: targeted methods look for a pre-selected list (or
class) of metabolites, and untargeted metabolomics covers as
many metabolites as possible (Schrimpe-Rutledge et al., 2016).
However, in untargeted metabolomics research, processing,
analyzing, and interpreting the complex datasets that are
generated are major challenges. Nuclear Magnetic Resonance
(NMR) techniques are also used in metabolomics (Emwas et al.,
2019), but most of the network and graph methods covered here
are rather focused on MS-based metabolomics. As multiple
network constructions approaches presented here are relying
on the specificity of data generated by MS (e.g., fragmentation
or adducts).

The analysis of untargeted metabolomics datasets is frequently
limited by the ability to annotate and identify metabolites at a
large scale (hundreds or thousands of metabolites). Data
interpretation is often reductionist and limited to a few
specific metabolic processes or metabolites, found to be

statistically significantly associated with a phenotype of
interest. This implies that a potentially large part of the
detected metabolites will be ignored if they appear not
statistically significant to the question at hand. Importantly,
the recent use of network and graph-based methods to analyze
metabolomics data opened the possibility of metabolomics data
systematic analysis (Kell and Goodacre, 2014; Perez De Souza
et al., 2020).

There are two major types of networks used with
metabolomics data: knowledge and experimental (Figure 1).
Knowledge networks are generated from biochemical or
biological knowledge and allow interpreting metabolomics data
in the context of prior biological knowledge, such as metabolic
pathways and enzymatic reactions. For instance, a metabolic
network is a knowledge network, where metabolites and their
known biochemical conversions are represented as nodes and
edges, respectively. On the other hand, experimental networks are
generated from the metabolomics data itself, based on
relationships between possible or identified metabolites in the
data (e.g., spectral similarity, or correlation). Notably, both types
of networks (i.e., knowledge and experimental) can be used with
advanced statistical methods, graph analysis, and data analysis
approaches to study the interconnected data.

The words “network” and “graph” are often used
interchangeably, and preferred terms depend on fields and
traditions. We will refer to the curated lists of biochemical
reactions and their participants (e.g., substrate, products,
enzymes, and genes) as “metabolic networks” (following

FIGURE 1 | Graphical Abstract. In this review we will be presenting two major types of networks and graphs used to analyze and interpret metabolomics data,
knowledge networks and experimental networks.
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current usage). We will refer as “metabolic graphs” the different
entity-relationship structures that can be derived from such
biochemical reaction lists to perform topological analysis (such
as compound graphs and reaction graph), to avoid the ambiguity
with their source material.

Metabolism consists of enzymatic and non-enzymatic
reactions converting metabolites to produce energy
(catabolism), build up biomass (anabolism), or respond to
external stimuli. Metabolism is often seen as functional
modules conserved across organisms. Examples of such
functional modules are the central carbon metabolism, which
is highly conserved, and the secondary (AKA specialized)
metabolism, which differs vastly among organisms.
Furthermore, co-metabolism in communities (such as
microbiomes) increases metabolic capacities and leads to a
very high diversity of metabolites. In this context, the
unilateral interpretation of metabolomics data may hide
complex systemic changes spanning across several pathways.
This is especially the case with metabolic chart representations
that are designed to focus on knowledge-based biochemical
pathways and ignore the interconnections between pathways.
Additionally, the lack of consensus on the partitioning of
metabolic pathways or modules from one database to another
can lead to major discrepancies in the analysis (Stobbe et al., 2012;
Altman et al., 2013). Instead, it is possible to represent the
metabolism as a network of metabolites connected by specific
or promiscuous enzymatic and non-enzymatic reactions.
Importantly, in such a network, we can also represent
interconnections between metabolites which may look
unrelated but that are connected via different pathways.
Genome-Scale Metabolic Networks (GSMNs) are designed to
represent this information based on genomics knowledge,
providing a systemic view of the metabolism. Nevertheless,
GSMNs are based on metabolism knowledge coming from
genome annotation, which prevents the integration of many
metabolites since there are gaps in knowledge (e.g., secondary
metabolism) (Frainay et al., 2018). These gaps require us to
expand those metabolic networks using experimental data
from metabolomics experiments.

UntargetedMS data, either based on direct infusion or coupled
to different types of separation techniques (e.g., LC, GC, CE, or
IM), is characterized by features for which wemeasured the mass-
to-charge ratio (m/z value with a mass accuracy of just a few ppm,
depending on the instrumentation), the abundance (either a peak
intensity or a peak area), an additional separation index
(retention or migration time, mobility, or collisional cross-
section value), and the associated fragmentation pattern, if
collected. Based on these data, metabolites can be annotated or
identified with different confidence levels, according to the
Metabolomics Standard Initiative (MSI) (Fiehn et al., 2007;
Sumner et al., 2007; Schymanski et al., 2014). The highest level
of confidence (i.e., level 1) is achieved by a matching in at least
two independent and orthogonal data (e.g., mass spectrum and
retention time/index) between the metabolite feature and its
authentic reference standard, both of which must be analyzed
under identical conditions. This identification level is often only
possible for metabolites for which reference standards are

available in the respective laboratory. Indeed, recent work has
shown that only a small part of the metabolites found in
metabolic networks of different organisms is covered by at
least one reference spectrum (Frainay et al., 2018). Lower-
confidence annotations (i.e., levels 2 and 3) can be achieved by
matching the metabolite feature with spectral libraries or using
in-silico tools, such as MetFrag (Ruttkies et al., 2019) or CSI:
FingerID (Dührkop et al., 2015), among others (Misra and van
der Hooft, 2016; Spicer et al., 2017; Misra, 2021). Assessing the
structural similarity relationship via spectral similarity has
proven to be a powerful tool to guide annotation of unknown
metabolites (Wang et al., 2016), since chances of having
structurally homologous metabolites detected in parallel are
high. However, metabolites are generally not detected as
isolated entities, but as part of larger sets of metabolites of the
same chemical classes.

Here, we will describe the current state of the art in terms of
networks and graphs usage for metabolomics, detailing their
characteristics and applications. We will first focus on
experimental networks (such as those based on mass
differences, adducts and features, structure similarities, and
correlation), which are generated from metabolomics data.
Notably, experimental networks have been used to annotate
and identify metabolites (Loos and Singer, 2017; Schmid et al.,
2021), as well as to better understand biochemical
relationships between metabolites (Schollée et al., 2017;
Naake and Fernie, 2019). We will also describe knowledge
networks (such as ontology-based networks (Dührkop et al.,
2020) and GSMNs), which are increasingly used to interpret
metabolomics data (Kell and Goodacre, 2014; Frainay and
Jourdan, 2017) and to annotate metabolites (Silva et al., 2014;
Schmid et al., 2021). While each network (experimental or
knowledge-based) covers a specific aspect of the studied
biology, there are benefits in integrating them. For instance,
experimental networks can help in filling the gaps in current
knowledge-based networks by mapping the nodes in the
knowledge-based network (i.e., metabolites) with the
corresponding nodes in the experimental networks
(i.e., features) and identifying missing metabolites.
Importantly, knowledge-based networks provide a biological
context to help interpret and analyze experimental networks.
To emphasize this, we finish this review by presenting
combined networks analysis approaches, such as multi-layer
networks applied to the field of metabolomics.

EXPERIMENTAL NETWORKS

Experimental networks are directly derived from the acquired
untargeted metabolomics data. Depending on the type of
network, either MS1, MS2, or MSn data is used. Each network
tackles a different aspect of the compounds “metabolic
relatedness”, with specific assumptions and shortcomings,
which we will describe in the following sections. We will
discuss how mass differences, adducts and features, structure
similarities and correlation data can be used to build different
experimental networks.
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It is important to highlight that experimental networks
complement each other to decipher the metabolic relationships
between compounds. As two faces of the same coin, spectral
similarity networks can suggest substrate-product links from
expected global chemical similarity (Figure 2C); while mass
difference networks represent the substrate-product links
from characteristic differences due to local chemical
structure changes (Figure 2A). Extra evidence of the
existence of such substrate-product links can come from
correlation networks, which reveal possible causal
relationships between the changes in the metabolites’
abundances (Figure 2D). Finally, the adduct and feature
networks can increase the confidence in metabolites’

annotations in the networks, based on characteristic
patterns, associated to individual compounds in mass
spectrometry (Figure 2B).

Mass Difference Networks

The biochemical transformations are characterized by the gain or
loss of atoms, which lead to changes in the metabolites’molecular
formula and, therefore, variations in the exact mass of pairs of
molecules connected by a reaction. These changes can be
measured in MS-based metabolomics as differences between
pairs of m/z values (Figure 2A) to generate a mass difference
network (Table 1).

FIGURE 2 |Metabolomics-based experimental networks. (A)Mass difference networks: the biochemical transformations entail gains and/or losses of atoms that
lead to changes in the metabolites’ molecular formula and, therefore, changes in the exact mass of molecules connected via a reaction. Here, the biochemical
transformation by a phosphatase causes the loss of a phosphate group (HPO3), leading to a mass difference of 79.966 between the substrate metabolite (Molecule (B)
and the product metabolite (Molecule A). (B) Adduct and feature networks: metabolites have multiple possible adducts and features associated with them. Each
detected adduct, isotopologue, and ion-source fragments can be represented as nodes. Adducts (e.g., M + H) are connected to corresponding or potential metabolites.
Similarly, the isotopologues of an adduct are linked to the associated adduct nodes (e.g., 13C isotopologue of M + H). Finally, ion-source fragments (here in-source
fragment 1) with their associated adducts and isotopologues can be linked to the corresponding node metabolite. (C) Structure similarity networks: the structural
similarity between metabolites detected by MS methods can be observed and calculated based on their MS/MS spectra. The fragmentation patterns will be similar for
two metabolites with a shared core structure (represented as circles, squares, and polygons), but a difference due to a chemical reaction (i.e., the residue represented by
the red rectangle). The calculated similarity (i.e., 0.85) between two MS2 spectra is the weight of the edge linking the corresponding metabolite pair. (D) Correlation
networks: the correlation between the abundances of twometabolites can be calculated and used as a weight for the edge (i.e., 0.88 or −0.69) between twometabolites’
node (i.e., betweenmolecules A and B, or betweenmolecules B and C). The correlation levels considered as non-significant (i.e., 0.18) can be ignored and excluded from
the correlation network (i.e., the edge between molecules A and C).
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The mass difference approach can be used with known
biotransformations and their corresponding mass differences
to find potential biochemical reactions explaining the
difference between m/z values (Breitling et al., 2006; Tziotis
et al., 2011). Therefore, in a mass difference network, the
features with their corresponding m/z values are represented
as nodes, and the mass differences between pairs of m/z values
that match a pre-defined transformation as edges (Figure 2A).
Potential transformations can be derived frommetabolic reaction
databases, such as KEGG, MetaNetX, MetExplore, etc. (Jeffryes
et al., 2015; Hadadi et al., 2016; Kanehisa et al., 2017; Cottret et al.,
2018; Ebastien Moretti et al., 2021). If seed formulae (e.g., from
identified metabolites) are available, information on known
biochemical transformations can also be used to calculate
molecular formulae, by propagating the difference formulae
within the network. By comparing the frequency of certain
mass differences between different conditions, conclusions on
potential biochemical responses can be drawn (Moritz et al.,
2016). However, this approach requires a priori hypothesis on
data to generate an appropriate transformation list. Notably,
features connected by a mass difference that is not included in
the transformation list will not be connected in the mass
difference network. Moreover, if metabolites from a reaction
series are not detected by the instrument, there will be gaps
(missing nodes) in the reconstructed network. For certain
instances, this can be overcome, e.g., by combining several
mass differences into one corresponding to multiple
biotransformations. For example, gaps in the network for
series of alkyl chains (CnH2n+1) can be filled by adding C2H4

to the transformation list to cover for two times CH2 or by adding
C4H8 to cover two times C2H4.

Another approach frequently used is to include all mass
differences between all pairs of features, to generate mass
difference networks. The result is a fully connected graph
where all features are connected to each other, and their
edges represent their mass differences. It is challenging to
find meaningful network motifs in such a graph, since even
non-biochemically related features would still be connected by
an edge, with the sole purpose of holding the mass difference
attribute. One solution to reduce irrelevant links is to filter out
edges connecting features with low intensity/concentration
correlation. It is also possible to filter edges following a
specific Retention Time (RT) trend. For example, there is a
predictable RT and mass difference between products and
substrates of a specific reaction, which can be propagated
from a known metabolite in the network to neighboring

metabolites. This approach can result in the discovery of
new biochemical transformations unbiased, as it does not
use biotransformation-based mass differences (Morreel
et al., 2014). However, the interpretation of the results
might become complicated, as it represents a combination
of several losses and gains of atoms. As an example, in the
transamination reaction, transamination of pyruvate (C3H4O3

to alanine (C3H7NO2 is accompanied by the gain of one
nitrogen and three hydrogens (NH3 = 17.03) and the loss of
one oxygen (O = 15.99), yielding to a net mass difference of
1.0316, from which no meaningful formula can be calculated.

There are different tools for the generation of mass difference
networks. The tool mzGroupAnalyzer can generate a mass
difference network based on an input list of transformations
atom differences, it allows visualization of the metabolites
elements composition with a van Krevelen diagram (based on
H/C and O/C ratios) to identify patterns of structural similarity
between compounds (Doerfler et al., 2014). MetaNetter is a
Cytoscape plugin that performs ab initio prediction of mass
difference networks from high-resolution data, such as
Orbitrap or Fourier transform ion cyclotron resonance mass
spectrometer (FT-ICR-MS) (Jourdan et al., 2008; Burgess
et al., 2017). MetNet is an R package that represents one of
the most prominent tools to generate mass difference networks
based on pre-defined transformations lists; in combination with
other types of information (such as RT shifts or correlations)
(Naake and Fernie, 2019). The inclusion of such
additional information reduces the connection degree between
features, as it constrains the creation of edges between
nodes with a threshold of correlations and/or with specific RT
shifts.

Adducts and Features Networks
Mass differences do not only occur due to biological
transformations between metabolites, but might also appear
due to different physicochemical effects when introducing the
metabolites to the MS. These “non-biological”mass differences
can be represented in adducts and feature networks (Table 2).
The relationships between features are used for grouping and
deconvoluting the detected m/z signals, as in the R package
CAMERA (Kuhl et al., 2012). Analysis of mass differences is
greatly enhanced using chromatographic separation, as the RT
windows help to separate metabolites features. Isotopes,
adducts, as well as in-source fragments of the same
metabolite show (theoretically perfect) co-elution. A
particular example of co-elution is the annotation of [M +

TABLE 1 | Description of the key characteristics of mass difference networks.

Mass difference networks’ main characteristics

Nodes Features, low level annotations (m/z + RT)
Edges Putative substrate-product relationships from biochemical transformations’ characteristic patterns
Main Hypothesis Many biochemical reactions involve functional group transfer, yielding a characteristic mass shift. Feature pairs with mass

differences matching those patterns might be involved in a reaction transferring the corresponding group
Limitations The mass differences between a pair of features may correspond to an existing reaction, but it can happen that these two

features do not correspond to a real biotransformation between the corresponding metabolites, leading to spurious edges
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H]+ and [M-H2O + H]+, while [M-H2O + H]+ normally co-
elutes with [M + H]+, metabolites that differ in H2O in their
formulas have different chemical structures and therefore
different RTs.

In-source fragmentation (ISF) is a common phenomenon that
occurs in Electrospray ionization (ESI). ISF is the dissociation of a
molecule that occurs within the ionization source of the mass
spectrometer. During ESI, molecules gain additional internal
energy that is released, resulting in the fragmentation of the
molecule. This fragmentation generates additional precursor ions
that can lead to false positive annotations of molecular features
(Gathungu et al., 2018). There are several tools that can help with
the identification of ISF of the samemetabolite, e.g., CliqueMS, an
R package that groups co-eluting features, based on similarity
networks (Senan et al., 2019). Another recently developed R
package that recognizes in-source fragments is ISFrag. ISFrag
checks for co-elution, presence of the in-source fragment in
the precursor MS2 spectra, and spectral similarity (Guo et al.,
2021).

Ion identity networking is used to generate a network based on
the relationships between ion species linked to the same
compound as well as structurally similar compounds, which
enhances compound annotation (Nothias et al., 2020). The
detected ion-source fragments and their associated adducts
and isotopologues can be represented in the network as nodes
with edges linking them to their associated metabolite nodes
(Figure 2B).

Certain mass differences might be found in a consecutive
manner, e.g., CH2 or C2H4 for a homologous series, through an
increase in an acyl chain length. Longer acyl chains lead to a
higher RT in Reverse-Phase (RP) chromatography. Loos and
Singer developed functionalities for the identification of
homologous series by detecting series of mass differences
following a given RT trend (Loos and Singer, 2017).

Structure Similarity Networks
Typically, molecules connected via biochemical reactions are
chemically similar since they often share common
substructures. This resemblance can be expressed by chemical
similarity measures, such as the Tanimoto similarity (Bender and
Glen, 2004; Bajusz et al., 2015). It is important to note that
similarity measures can only be calculated between identified
compounds, since they require chemical structures as input
(Table 3).

In untargeted metabolomics, the MS2 fragmentation data is
mostly generated using Data-Dependent Acquisition (DDA),
which results in the fragmentation of the most abundant
features. Fragmentation data can be used to infer (to a certain
degree) structural similarity. Consequently, chemically similar
compounds are likely to show at least partially similar
fragmentation patterns. Note that the spectral differences can
be both varying fragment masses and neutral loss differences.
Molecules that have a shared core structure (e.g., an aglycon) can
have differences due to the chemical reaction (e.g., additions of
glycosyl groups) linked by the similarity of their MS2 spectra.
Additionally, metabolites within the same compound class also
show similar fragmentation patterns, even if they are not
connected via biochemical reactions. An example is the
fragmentation of glycerolipids, such as di- and tri-
acylglycerols, which show characteristic neutral losses of fatty
acid chains (Murphy et al., 2007).

Spectral similarity networks connect MS2 spectra of features or
metabolites that show spectral similarity values above a certain
threshold (Figure 2C). Therefore, finding metabolites within the
same compound class or a similar one connected by biochemical
reactions.

Different algorithms have been developed to use spectral
similarity (based on different metrics, such as cosine or
modified cosine similarities) to construct molecular similarity

TABLE 2 | Description of the key characteristics of adducts and features networks.

Adducts and features networks’ main characteristics

Nodes Features, intermediate level annotations (m/z + RT + adduct information)
Edges Putative relationships between features, such as adducts of a metabolite, in-source fragments of a metabolite, or

isotopologues of an adduct
Main Hypothesis Same as mass difference networks, but with more detailed description using RT separation and characteristic patterns

associated to adducts ions formation, ion-source fragmentations, and isotope patterns
Limitations The mass differences between two features can correspond to a chemical relationship between two features (e.g.,

isotopologues or adducts), but these features correspond to the same metabolite

TABLE 3 | Description of the key characteristics of structure similarity and MS/MS networks.

Structure similarity networks’ main characteristics

Nodes Features, high level annotations (m/z + RT + MS2)
Edges Calculated similarity between two MS/MS spectra of two fragmented adducts
Main Hypothesis Reactions tend to involve substrate-products pairs with high structural similarity. Thus, detected compounds with high

structural similarity might be substrate/product of the same reaction
Limitations Many compounds with structural similarity are not involved in the same reactions or pathways, which yields to false positives

Depending on the methods and instruments, not every feature corresponding to a metabolite will be fragmented
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networks, as a proxy for structural similarity (Demuth et al., 2004;
Aguilar-Mogas et al., 2017). The first application of molecular
similarity networks was proposed by Watrous et al. Their
similarity measure was based on a modified cosine score,
which considers the mass difference between precursor masses.
The mass differences between the precursor masses are applied to
the fragments in the MS2 spectra, leading to a match of fragment
peaks, either directly within a specific mass error or matching the
mass plus the differences of the precursor masses. However, such
spectral similarity networking only works on MS2 spectra and
merges all spectra from the same precursor m/z, ignoring the fact
that different isomers might elute at different RTs (Watrous et al.,
2012).

In DDA, the intensities of the fragments are often not
representative of a feature abundance in different samples
since the measurement of an MSn spectrum is, in most cases,
not triggered at the apex of a chromatographic peak. Feature-
based molecular networking uses the abundance of the MS1

feature (peak area or intensity), its RT, and the corresponding
MS2 spectra as input and therefore allows the differentiation of
isomeric structures based on chromatography (Nothias et al.,
2020). In the resulting networks, abundances can be used as an
added criterion for data analysis, revealing potential biological
links. However, in such networks, different adducts from a single
compound might end up in separated sub-networks, based on
highly similar fragmentation of adducts. Ion identity networking
has been introduced to combine these sub-networks to group
those adducts by combining molecular networking and MS1

adduct detection algorithms, such as feature grouping and
shape correlation (Schmid et al., 2021). This approach can also
incorporate features into the network that have been identified as
adducts but lack MS2 information.

The most prominent tool-set used for molecular networking
has been developed by the Global Natural Product Social

Molecular Networking (GNPS; http://gnps.ucsd.edu)
community (Wang et al., 2016). GNPS is an open-access
platform that allows storing and analyzing MS2 data, including
molecular network generation using a modified cosine score and
spectral library matching, followed by possible online
visualizations.

Another example for generating molecular networks based on
spectral similarity is MetGem, which utilizes the t-distributed
stochastic neighbor embedding (t-SNE) algorithm to visualize the
cosine scores calculated in the GNPS molecular networks. The
t-SNE eases the interpretation of the molecular network by
clustering together compounds that show high cosine scores,
which eases the interpretation of the molecular network (Olivon
et al., 2018).

There are different metrics to calculate spectral similarity.
Indeed, cosine and modified cosine score might not often be the
optimal choice for the construction of similarity networks. For
example, compounds that show the same fragmentation pattern
(i.e., the same neutral loss) but differ in the observed m/z show
low cosine scores. It has been shown that Spec2Vec, a recently
developed Python package that calculates spectral similarities
based on fragmental relationships between large datasets, shows
better overall performance than cosine-based scores, which were
originally developed for matching fragmentation-rich electron
ionization (EI) spectra (Huber et al., 2021).

Another approach to estimate spectral similarities is the use of
hypothetical neutral loss spectra. An algorithm called core
structure-based search (CSS) has been developed to calculate
the spectral similarity between the mass difference between pairs
of fragments ions. The CSS algorithm showed good performance
in finding structurally relevant similarities (Xing et al., 2020). MS2

data and its analysis are crucial for accessing the chemical
structure of unknown metabolites. It has been shown that the
combination of different bioinformatic tools further enhances

FIGURE 3 | Representation of knowledge as networks. (A) Genome-scale metabolic networks: reconstructed from different sources of knowledge, such as from
the enzymes identified in the annotated genome of the organism under study, the metabolic reactions databases, and/or biochemical knowledge and literature. The
knownmetabolic reactions in an organism are the basis to generate a genome-scale metabolic network, where the metabolites are represented as nodes that are linked
by (directed or undirected) edges, which represent the reactions converting the metabolites. (B) Chemical ontology networks: structure of relationships
represented as a semantic network, where the nodes represent chemicals or chemical classes as “concepts”, bearing all their properties and definition, and that are
connected by class membership.
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annotation success, which is of great importance, especially in
untargeted metabolomics (Schmid et al., 2021).

Correlation and Association Networks
Metabolites that are connected in metabolic pathways often show
co-dependency, which can be seen by their orchestrated
concentration (i.e., abundance) changes. So, the metabolites’
concentrations are correlated between metabolites that are
associated or co-regulated within metabolic pathways (Rosato
et al., 2018). Correlations of untargeted LC-MS metabolomics
data are calculated by pairwise comparison of the peak intensity
of all features, which results in a correlation adjacencymatrix. In a
correlation network, two metabolites are linked if their
correlation value reaches a given (user-defined) threshold,
which is considered as a significant correlation level (Table 4).

Most commonly, Pearson correlation is used to calculate
correlations. However, due to tight metabolic control and the
presence of long reaction sequences, standard Pearson correlation
typically yields to highly connected and dense networks, which
are hard to analyze and interpret. Gaussian graphical modeling
uses partial instead of full correlation, and corrects for indirect
correlation (i.e., when two metabolites are correlated just because
they are both correlated with a third one). Therefore, using
Gaussian graph modeling, only direct correlations can be
found, which in turn allows us to construct meaningful
networks containing potential direct reaction partners
(Krumsiek et al., 2011). Benedetti et al. further compared the
networks obtained using Pearson correlation, exact partial
correlation, and partial correlation determined by GeneNet
(Benedetti et al., 2020). They observed a dense network with
an increased number of edges at increasing sample size for the
Pearson correlation, whereas the partial correlation network
(established with GeneNet) remained more stable.
Furthermore, the statistical cut-off filter used to define the
correlation threshold was more stable at varying the sample
size using GeneNet than Pearson or partial correlations.

Another approach to statistically create metabolic networks is
the weighted correlation network analysis, also known as
weighted gene co-expression network analysis (WGCNA). In
contrast to canonical correlation network analysis, the edges
(which represent the correlation coefficients between features)
are weighted by an exponent, such that the distribution of the
weighted coefficients follows a power-law distribution,
i.e., WGCNA assumes a priori a scale-free topology of the
underlying network (Zhang and Horvath, 2005; Langfelder
and Horvath, 2008). Nevertheless, to the best of our

knowledge, it has not been proved yet if the statistical
associations of the metabolites (or the subset acquired by GC-
and LC-MS-based technologies) underlie such a scale-free
topology.

WGCNA was originally applied to transcriptomics data, but it
has also been recently employed for network generation using
metabolomics data from human and human microbiome
(Osterhoff et al., 2014; Pedersen and Sofia, 2018; Vernocchi
et al., 2020; Murga-Garrido et al., 2021; Petersen et al., 2021),
animal (Wu et al., 2021), and plants (DiLeo et al., 2011). (Samal
and Martin, 2011).

KNOWLEDGE REPRESENTATION AS
NETWORKS
Genome-Scale Metabolic Networks and
Graphs
Genome-Scale Metabolic Networks (GSMNs) are based on the
current knowledge of the metabolism of a given organism (e.g.,
human metabolic network Human 1 with 13,417 reactions and
4,164 metabolites) (Robinson et al., 2020). They are usually
drafted from genome annotations and reaction databases,
before manual curation by domain experts, using available
literature and simulation results (Table 5). They encompass
the gene–reaction–metabolite information with the matrix
associating metabolites to reactions, and the association of
reactions to their corresponding genes and enzymes (Thiele
and Palsson, 2010) (Figure 3A). GSMNs are frequently used
to simulate metabolic fluxes via constrained-based metabolic
modeling (Becker et al., 2007; O’Brien et al., 2015).
Nonetheless, we will focus here on the use of GSMNs as
graphs, which we will refer to as Genome-Scale Metabolic
Graphs (GSMGs). Different graphs (directed or undirected)
can be derived from GSMNs (Lacroix et al., 2008). For
instance, reaction graphs represent the reactions as nodes, and
two reactions are connected by an edge if the product of the first
reaction is the substrate of the second one. On the other hand, the
nodes of a compound graph represent metabolites that are
connected by edges if they are substrates and products of the
same biochemical transformation. Graph-based analysis methods
can be applied to GSMGs to study both the metabolism and
metabolomics data (Lacroix et al., 2008; Cottret and Jourdan,
2010; Frainay and Jourdan, 2017). For instance, path searches in
GSMGs have been used to infer metabolic pathways connecting
metabolites of interest. While supplanted by flux methods for

TABLE 4 | Description of the key characteristics of correlation and association networks.

Correlation and association networks’ main characteristics

Nodes Features (intensity), low-level annotations (m/z)
Edges Correlation between the abundances of two metabolites
Main Hypothesis Metabolic processes imply metabolites’ abundance that depends on other metabolites’ abundance. Thus, metabolites with

correlated abundance might be metabolically related
Limitations The correlation or association between two metabolites (or features) does not systematically represent a metabolic

relationship (e.g., substrate-product) or interdependence (e.g., co-regulation). Thus, correlation does not necessarily imply
causal, biological, or chemical relationships
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such goals, path searches are still used for metabolomics data
clustering and visualization (Liggi and Griffin, 2017; del Mar
Amador et al., 2018). While GSMG analysis has been mainly
focused on path search, graph theory encompasses a vast range of
applications. Centrality analysis, for example, aiming at
identifying key nodes in a graph, is quite popular for
regulation and protein interaction network analysis, and has
been applied a few times to metabolic networks as well (Faust
et al., 2010; Bánky et al., 2013; Frainay et al., 2019). Beyond
metabolomics data analysis, graph-based metrics have been used
more to characterize and compare whole metabolic networks (Ma
and Zeng, 2003; Mazurie et al., 2010).

It is important to note that GSMNs do not cover all the
metabolic products identified by metabolomics analysis,
suggesting the absence of metabolic reactions and metabolites
in the networks, as previously shown with the human GSMN
(Frainay et al., 2018). This is a well-known problem as the
GSMNs are biased by a reconstruction based on available
genome annotations and knowledge of enzymatic reactions
(Thiele et al., 2014; Pan and Reed, 2018). In consequence,
gaps in the metabolic pathways are not always filled, as such
gaps may also be due to enzymatic promiscuity and underground
metabolisms (Notebaart et al., 2014; Pan and Reed, 2018).

The format in which GSMNs are stored can impact the graph
structure and therefore the analysis of the graph, which is
inconvenient. GSMNs are mainly shared in SBML format,
which is an exchange format for computational models (not
restricted to biochemical reactions) in biology (Hucka et al.,
2003). SBML is mainly oriented towards quantitative models,
which is why it has become the main support for GSMNs, given
the popularity of GSMNs application for flux analysis. Building a
network from a file in SBML format implies that the nodes
correspond to a particular “species”. It should be noted that
the species nodes can represent other biological entities than
metabolites (such as proteins, generic degradation products or
even the whole “biomass”). Furthermore, due to the GSMNs
being tailored for flux modeling, the species actually represent
pools of available biological entities at a given time and location.
Consequently, SBML tends to represent the same metabolite as
multiple species (“pool”) in different compartments, with a
specific quantity that will be used for flux simulations. While
SBML standard allows linking the species describing the same
metabolites since version 2, in practice, those links are rarely
defined. This leads to “duplicated” compartment-specific
metabolites in many GSMNs, which differ from experimental
networks in general, as compartment location is rarely available

for metabolomics data. An alternative to SBML to represent
metabolism knowledge is the BioPAX standard (Demir et al.,
2010), oriented towards a semantic description of biological
processes for indexing, sharing, and integration purposes,
rather than quantitative modeling (Strömbäck and Lambrix,
2005). A network built from a BioPAX standard will have
nodes that correspond to resources that describe biological
entities, which are described using ontology vocabulary and
linked to multiple information. However, BioPAX standard is
mainly used at the individual pathway-level rather than the
genome-scale level. Both exchange formats (SBML and
BioPAX) represent knowledge about metabolism through
lists of biochemical reactions, referencing metabolites as
substrates or products (Strömbäck and Lambrix, 2005). A
direct network translation would lead to a “bipartite
metabolic graph”, where both reactions and compounds are
explicitly represented as nodes. Compounds are thus never
directly connected by an edge, but always through a reaction
node, which differs from the structure of experimental
networks, where related compounds are directly linked
by edges.

Chemical Ontology Networks
Chemical ontologies aim at providing a structured and
formalized representation of chemical concepts. By describing
an explicit structure of relationships among compounds, it can
easily be represented as a semantic network that can be processed
(Table 6).

One of the main differences with the other presented networks
is that, in chemical ontologies, the links do not represent (or
suggest) biochemical/metabolic relationships that involve the
transformation of one node into another. Rather, they
represent subsumption relations between chemical compounds
and broader chemical classes. For example, the ChEBI ontology
links the node “paracetamol” to “carboxamide” and “phenols”,
and each class back to higher classes, such as organic aromatic
compounds (see Figure 3B). These graphs are directed acyclic
graphs since they are organized hierarchically, are directed, and
do not contain cycles. Importantly, in an ontology, molecules can
belong to multiple parent classes. The compounds typically found
in experimental networks lie as terminal nodes, and the rest of the
nodes represent chemical classes. It is also mostly the case for
GSMNs, but it is not rare to find nodes corresponding to classes
(e.g., “a fatty acid”) (Poupin et al., 2020). Chemical ontologies can
also integrate other kinds of relationships directly linking
molecules, such as tautomers or conjugates (which can create

TABLE 5 | Description of the key characteristics of genome-scale metabolic networks and graphs.

Main characteristics of genome-scale metabolic networks and graphs

Nodes A “pool” of compounds (not restricted to small molecules)
Edges Substrate-product relationships from known reactions
Main Hypothesis Using genome annotation, reaction databases, and manual/semi-auto curation to generate a model of an organism’s

metabolism
Limitations There are gaps in the knowledge or predicted metabolic reactions in organisms, which creates an incomplete network of the

metabolism
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cycles in the networks). The ChEBI ontology also links chemical
compounds and classes to other concepts: their chemical/
biological “roles” (e.g., emulsifier or neurotransmitter)
(Degtyarenko et al., 2007). It is important to note that the
class hierarchy of chemical ontologies is built manually by
domain expert consortia, and the annotation of chemical
instances to classes is either done manually or automatically if
a class definition can be expressed as a set of formal rules.

Graphs built from ontologies allow detecting related
compounds through their belonging to a shared class.
Moreover, beyond finding “sibling” compounds, a graph
distance between terminal nodes through their most precise
common class can be computed to quantify relatedness
between any pair of compounds. Such distances based on the
ontology’s graph structure are a common form of semantic
similarity, which found many applications in functional
ontologies, such as the Gene Ontology (GO) (Ashburner et al.,
2000).

Some specific tools allow fetching the chemical classification of
a compound, which can then be used to generate the chemical
ontology network of each compound. For example, ClassyFire
allows to automatically assign chemical classification based on the
compound’s structure (e.g., SMILES), using the ChemOnt
ontology (Feldman et al., 2005; Djoumbou Feunang et al.,
2016). Another tool, CANOPUS, can predict the chemical
class based on MS2 data using ClassyFire and the ChemOnt
ontology (Dührkop et al., 2020).

COMBINING NETWORKS ANALYSIS AND
MULTI-LAYER NETWORKS

Each of the previously presented networks (both knowledge-
based and experimental) represents a different aspect of
metabolism. The combination of two or more of such
networks brings more comprehensive and informative analysis
than a single network, by bringing different angles to the data and
combining specific advantages of each network.

For instance, to improve annotations of metabolite features,
spectral similarity networks can be combined with different
information, such as chemical ontologies or mass difference
networks. ChemRICH, for example, is a chemical similarity
enrichment analysis that uses Tanimoto chemical similarity
and ontologies to associate the metabolic structures from the
similarity network with possible metabolic classes in the
ontologies network (Barupal and Oliver, 2017). The main
benefit of ChemRICH, as compared to classical pathway

mapping, is a higher coverage because missing compounds in
chemical ontologies can be mapped. Another tool developed to
improve metabolite annotation is MolNetEnhancer, which
combines molecular networks with chemical ontologies
generated by ClassyFire and results from diverse in-silico
annotation tools (Ernst et al., 2019). MolNetEnhancer shows
great improvement in annotations, even without a prior library
match in GNPS. FT-BLAST is a tool that uses fragmentation trees
and their comparison to compounds in databases to annotate
unknown compounds.

A fragmentation tree illustrates the fragmentation pattern of a
compound by representing the molecular formulae of the
fragments as nodes, and the neutral losses as edges (Rasche
et al., 2012). Note that the in-silico annotation tool CSI:
FingerID is also based on fragmentation trees (Dührkop et al.,
2015). Moreover, iMet deals with the issue of metabolite
annotations that were not present in any database. It uses the
spectral similarity and the mass difference of the unknown
compounds, and the metabolites present in the databases, in
order to find putative neighbor metabolites that show high
similarity and that are connected by chemical transformations
(Aguilar-Mogas et al., 2017). This way, mass difference networks
can be greatly enhanced by combining them with other
approaches, such as correlation or spectral similarity networks
(Aguilar-Mogas et al., 2017).

To further improve annotation, correlations between the
concentration (i.e., abundance) of metabolites that are
spectrally similar can be included to analyze metabolomics
data. Indeed, it is very likely that, besides having a high
spectral similarity, the concentration of metabolites that are
connected via biochemical reactions also have a high
correlation. Gaquerel et al. utilize in-source fragmentation
patterns and correlation networks to improve MetFrag
annotation results (Gaquerel et al., 2013). The combination of
correlation networks with other metabolic networks can bring
new insights into the metabolomics data. For example, Quell et al.
demonstrated the potential of combining correlation networks
(using Gaussian graphical modeling) with GSMNs and
metabolite-gene association networks (derived from genome-
wide association studies) to identify unknown metabolites
from cohort studies (Quell et al., 2017). However, correlations
and associations, in general, emerge due to different mechanisms,
so the interpretation is not always straightforward (Steuer, 2006).
For example, many associations between metabolite levels (e.g.,
strong correlations) do not happen between metabolites that are
neighbors in the GSMN or that are directly involved in the same
metabolic pathways. Analyzing and interpreting the association

TABLE 6 | Description of the key characteristics of knowledge networks and graphs.

Main characteristics of knowledge networks and graphs

Nodes Chemical compounds and chemical classes
Edges Class membership (subsumption) and other optional semantic relations
Main Hypothesis Knowledge can be organized and represented as a network/graph by manual curation from domain experts and semi-

automatic class assignments
Limitations Ontologies representing the same things might still differ and can be mapped to different concepts
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and correlation networks alongside complementary networks,
such as GSMNs, help reduce spurious associations by using the
biological knowledge incorporated in GSMNs (Benedetti et al.,
2020).

GSMNs can help annotate untargeted metabolomics datasets,
as the metabolites and their relationships via metabolic reactions
can be analyzed to enhance metabolites’ annotations based on
the biochemical context (Silva et al., 2014). First, metabolites
(and potentially their structures) present in a GSMN
represent a knowledge base of the metabolome/lipidome
of a given organism. It must be noted that, in the past,
GSMNs often lacked detailed structural curation
and chemical identifiers, and metabolite names are often
rather arbitrary. However, different improvements were
suggested and are slowly adopted by the GSMN
community (Witting, 2020).

Here, untargeted metabolomics data could be used to help to
improve the GSMNs by identifying missing metabolites and
filling missing metabolic pathways. For example, metabolites

predicted from the WormJam GSMN have been compared
against detected metabolites in the nematode Caenorhabditis
elegans (C. elegans) in different studies (Salzer and Witting,
2021). Interestingly, the overlap of detected and predicted
metabolites was rather modest (less than 40%). Plenty of
metabolites beyond the consensus model were found, and
structural similarity (based on chemical similarity using
Tanimoto distances) has been suggested as an option to
identify structurally related molecules (Witting et al., 2018).

Combining experimental network methods with biochemical
knowledge-based networks can open new avenues. For example,
the recently published tool LINEX allows to analyze lipidomics
data by combining lipid metabolic reactions networks analysis
with correlation networks (Köhler et al., 2021). With this method,
Kohler et al. interpreted the lipidomics correlation networks in
the context of biochemical reactions and found new insights on
lipid metabolism in three previously published datasets (Köhler
et al., 2021). In the same context, MetDNA usesMS/MS similarity
networks and metabolic reaction networks. When two

FIGURE 4 | Multi-layer networks principle. Every network (either knowledge-based or experimental) is an independent layer. Common nodes (i.e., identified
metabolites) are connected to themselves across the different layers by inter-layer edges. The set of nodes is common in the experimental layers, but we omitted some
nodes for the sake of simplicity. The edges of the individual layers and between them can be used, for example, to identify potential metabolite annotations (Example I)
and metabolic reactions (Example II). Multi-layer networks allow preserving the topology and organization of each individual network. In Example I, features 3 and 4
were identified as metabolites C and D, respectively. In both experimental layers, these two features are connected with each other and with feature 5. Similarly, in the
knowledge-based layer, metabolites C and D are connected with each other and with metabolite E. Therefore, it is likely that feature 5 corresponds to metabolite E. In the
same way, features 1 and 2, identified as metabolites A and B, respectively, are connected to each other in the experimental layers but not in the knowledge-based one.
In Example II, the metabolite A and B are separated by a mass difference corresponding to known biotransformation (e.g., a phosphatase as in Figure 2A) in the layer 1
and are connected by a high structural similarity in layer 2. This represents a potential novel metabolic reaction occurring between metabolites A and B in layer 3.
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metabolites are connected by a reaction in the metabolic reaction
network (i.e., when they are neighbor nodes), it is likely that they
also show high similarity in the MS/MS similarity network, which
can be used to weight their annotation confidence (Shen et al.,
2019). By providing a controlled vocabulary, chemical ontologies,
such as ChEBI or ChemOnt (Feldman et al., 2005; Degtyarenko
et al., 2007), also contribute to the ease of interoperability between
networks and data, notably by being frequently referenced in
GSMNs and used in many chemical libraries. The controlled
vocabulary combined with the distances between the nodes in the
ontology offer a useful opportunity for handling partial
identification of metabolites in metabolomics data (e.g., in case
of lipids (PC(32:1)), since they allow to map such data onto
metabolic pathways, using ontology from one specific compound
(as identified in the data) to a more generic class (as annotated in
the network) (Poupin et al., 2020).

Another approach to combine networks and analyze them
could be to construct multi-layer networks. Multi-layer networks
are particularly interesting as they allow viewing the metabolism
from different but complementary perspectives (one per layer)
while keeping the individual features (such as the topology) of
each layer (Figure 4). Multi-layer networks are a useful approach
to bring together multiple networks and interlink information
across network types, for example between experimental and
knowledge networks. As shown in Figure 4, the links between
identified metabolites (i.e., nodes with interlayer edges between
the experimental layers and the knowledge-based layer,
represented as dotted lines) can be used to identify unknown
features (Figure 4, Example I) or to identify a potential novel
metabolic reaction (Figure 4, Example II). Multi-layer networks
methods are already applied to multi-omics data (Hammoud and
Kramer, 2020; Malek et al., 2020), but would benefit
metabolomics data analysis by integrating metabolomics
experimental and knowledge-based networks.

CONCLUSIONS AND FUTUREDIRECTIONS

Fundamentally, metabolites are the small molecules that are the
components of the metabolism. Metabolites are consumed or
produced via metabolic reactions mostly driven by biomolecules,
such as proteins and genes. In order to study the metabolism and
to have a global overview, we can represent the reactions as a
network. Current knowledge of metabolism and chemical
compounds can be used to generate genome-scale metabolic
networks (Figure 3A) and ontology-based networks
(Figure 3B), respectively.

In addition, we can generate other types of networks using
experimental data. Indeed, metabolomics data capture different
aspects and properties of the chemical compounds that constitute
the metabolism. In this review, we described the most common
networks that can be built based on the interactions and

relationships between the measured compounds. We divided
the experimental networks into four types: mass difference
networks (Figure 2A), adduct and feature networks
(Figure 2B), structure and MS/MS similarity networks
(Figure 2C), and correlation networks (Figure 2D). The
capabilities of those networks to represent the relationships
between components are used to annotate and identify
metabolites in untargeted MS-based metabolomics data.

In the end, each of the networks described here is useful for
specific aspects of metabolomics data analysis and/or
interpretation, but they also have limitations. Hence,
integrating different networks into multi-layer networks holds
great promise to combine all the information and derive new
biological insights (Figure 4). Particularly, the combination of
knowledge-based networks with experimental networks would
help to use prior metabolic or chemical knowledge to improve the
metabolites’ identification and interpretation in biologically
relevant contexts.

In the future, with improved metabolite coverage, annotation,
and identification, the combination of networks will enable new
data analytical approaches. We therefore think that the
development of approaches and algorithms for the analysis of
metabolomics multi-layer networks will be at the center stage and
will gain more and more attention. The multi-layer networks’
approach goes beyond mere metabolomics data and will allow
integrating multiple omic data (as independent layers), including
metabolomics. This will finally enable the analysis of metabolism
with a systems biology approach.
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1H NMR spectra of sera have been used to define the changes induced by vaccination with
Pfizer-BioNTech vaccine (2 shots, 21 days apart) in 10 COVID-19-recovered subjects and
10 COVID-19-naïve subjects at different time points, starting from before vaccination, then
weekly until 7 days after second injection, and finally 1 month after the second dose. The
data show that vaccination does not induce any significant variation in the metabolome,
whereas it causes changes at the level of lipoproteins. The effects are different in the
COVID-19-recovered subjects with respect to the naïve subjects, suggesting that a
previous infection reduces the vaccine modulation of the lipoproteome composition.

Keywords: SARS-CoV-2, vaccine, NMR, metabolomics, lipoproteins

INTRODUCTION

While health systems worldwide race to vaccinate people against SARS-CoV-2, several studies have
appeared where the measured levels of antibodies in the blood before vaccination and then after each
of the two vaccine doses (Ebinger et al., 2021, 2; Mazzoni et al., 2021, 19). These studies have
highlighted different response in COVID-19-recovered or naïve subjects in terms of antibody levels,
which is the most relevant information for the design and implementations of efficient mass
vaccination campaigns in the context of COVID-19 emergency. One of the main outcomes of such
studies in mRNA vaccines indicates that subjects who previously had COVID-19 get a strong
immune response from a single dose (Levi et al., 2021; Mazzoni et al., 2021).

1H nuclear magnetic resonance (NMR) spectroscopy analysis of biofluids produces profiles that
show characteristic responses to changes in physiological status and has been used in a few studies in
the past to monitor changes in urinary metabolite levels in mice administered different types of
influenza vaccines (Sasaki et al., 2019) or to identify serum markers predictive of adverse reactions
against smallpox (McClenathan et al., 2017) as well as metabolic signatures of responses induced by a
series of commonly used human vaccines, as reviewed in (Diray-Arce et al., 2020). On the other
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hand, 1H NMR has been also successfully used to monitor
changes in metabolites and lipoproteins induced by SARS-
CoV-2 infection (Bruzzone et al., 2020; Kimhofer et al., 2020;
Ballout et al., 2021; Baranovicova et al., 2021; Bizkarguenaga et al.,
2021; Julkunen et al., 2021; Lodge et al., 2021; Masuda et al., 2021;
Meoni et al., 2021).

Here, we monitored the time-dependent response to the mRNA
Pfizer-BioNTech vaccine in a cohort of 20 healthcare workers, 10 of
them had a previous history of COVID-19 and 10 were COVID-19
naïve. All of them received two doses, 21 days apart. The NMR
spectra of serum samples collected at six different time points were
analyzed to monitor time-dependent intra-individual changes
induced by vaccination and to explore possible differences
between individual previously infected with COVID-19 and
individuals without prior infection. While no significant
differences between the two groups exist before vaccination, the
first dose is sufficient to induce changes in the lipoproteins levels (but
not in metabolites), whose size and nature depends upon absence or
presence of previous infection. Differences between the two groups of
individuals are maintained along the monitored timeline. The second
dose is essentially inconsequential in the group of COVID-19-
recovered subjects.

MATERIAL AND METHODS

Study Design
The study was conducted at the beginning of the Italian vaccination
campaign against COVID-19 using the Pfizer-BioNTech mRNA
vaccine (January-February 2021). Twenty Caucasian healthcare
workers of the Careggi University Hospital of Florence were
recruited, 10 of them had a previous history of COVID-19
(hereafter called “COVID-19-recovered”), and 10 were COVID-19
naïve (“COVID-19-naïve”) (Figure 1A). The main features of the
cohort are provided in Figure 1B. The COVID-19-recovered subjects
have been infected in the period March-April 2020, with the Wuhan
strain; they recovered from the disease on average 255 days before
vaccination (range 208–280 days). The inclusion/exclusion criteria
were those used for Pfizer-BioNTech vaccine administration for
healthcare workers.

The study was conducted in accordance with the Declaration of
Helsinki. The study was approved by the Careggi University Hospital
Ethical Committee (n. 19466_spe). Written informed consent was
obtained from recruited subjects.

For all subjects blood serum samples were collected at six
different time points: before the first dose (T0); 7 and 14 days after

FIGURE 1 | (A) Schematic representation of the study design. (B) Table summarizing the main demographic characteristics of the subjects included in the study;
the COVID-19-recovered and - naïve subjects are indicated with C and N, respectively; for the COVID-19-recovered group the column “Grade” refers to the grade of the
disease severity, i.e. mild, moderate (mod.) or critical; the column “Time” refers to the time (in days) from COVID-19 diagnosis to the first dose of vaccine. (C) Individual
metabolic phenotype as it results from a PCA-CA score plot (binned NOESY spectra). Each color represents a different subject; squares: COVID-19-naïve; circles:
COVID-19-recovered. Numbers indicate the collection time: T0 = 0, T7 = 7, T14 = 14, T21 = 21, T28 = 28, T1M = 1M.
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the first dose (T7 and T14, respectively); 21 days after the first
dose, just before the second dose (T21); 28 days after the first dose
and 7 days after the second dose (T28); 1 month after the second
dose (T1M) (Figure 1A). Blood samples were collected (4 h after
breakfast) in a BD vacutainer clot-activator tube for serum
collection and processed within 1 hour from sample collection.
After processing, all the serum samples were immediately stored
at −30°C until NMR analysis (February-March 2021).

NMR Sample Preparation and Data
Acquisition
NMR samples were prepared according to standard procedures
(Takis et al., 2019; Vignoli et al., 2019). Frozen serum samples
were thawed at room temperature. A total of 350 μl of sodium
phosphate buffer (70 mM Na2HPO4; 20% (v/v) 2H2O; 6.1 mM
NaN3, 4.6 mM sodium trimethylsilyl [2,2,3,3−2H4] propionate
(TMSP), pH 7.4) was added to 350 μl of each serum sample; the
mixture was homogenized by vortexing for 30 s. A total of 600 μl
of each mixture was transferred into a 5.00 mm NMR tube
(Bruker BioSpin) for the analysis. 1H-NMR spectra were
acquired using a Bruker 600 MHz spectrometer (Bruker
BioSpin) operating at 600.13 MHz proton Larmor frequency
and equipped with a 5 mm PATXI 1H−13C−15N and
2H-decoupling probe including a z axis gradient coil, an
automatic tuning-matching (ATM) and an automatic and
refrigerated sample changer (SampleJet, Bruker BioSpin). A
BTO 2000 thermocouple served for temperature stabilization
at the level of approximately 0.1 K at the sample. Before
measurement, samples were kept for 5 min inside the NMR
probe head, for temperature equilibration at 310 K.

For each serum sample, three one-dimensional (1D) 1H NMR
spectra were acquired with water peak suppression and different
pulse sequences that allowed the selective observation of different
molecular components: 1) a standard NOESY 1Dpresat
(noesygppr1d.comp; Bruker BioSpin) pulse sequence (using 32
scans, 98,304 data points, a spectral width of 18,028 Hz, an
acquisition time of 2.7 s, a relaxation delay of 4 s and a mixing
time of 0.01 s); 2) a standard CPMG (cpmgpr1d.comp; Bruker
BioSpin) pulse sequence (using 32 scans, 73,728 data points, a
spectral width of 12,019 Hz and a relaxation delay of 4 s); 3) a
standard diffusion-edited (ledbgppr2s1d.comp; Bruker BioSpin)
pulse sequence (using 32 scans, 98,304 data points, a spectral
width of 18,028 Hz and a relaxation delay of 4 s). All spectra were
recorded at the Magnetic Resonance Center of the University of
Florence (CERM).

Free induction decays were multiplied by an exponential
function equivalent to a 0.3 Hz line-broadening factor before
applying Fourier transform. Transformed spectra were
automatically corrected for phase and baseline distortions and
calibrated (glucose doublet at δ 5.24 ppm) using TopSpin 3.5
(Bruker BioSpin).

Assignment and Quantification
The metabolites, whose peaks in the NMR spectra were well
defined and resolved, were assigned and their concentrations
determined; the assignment procedure was performed using an

1H NMR spectra library of pure organic compounds
(BBIOREFCODE, Bruker BioSpin). The concentrations of 22
metabolites (Supplementary Table S1) were analysed using In
Vitro Diagnostics research (IVDr) B.I.-Quant PS tool (Bruker,
BioSpin). One hundred fourteen components associated to
lipoprotein main parameters, i.e. triglycerides (TG), bound and
free cholesterol (Chol and Free Chol), phospholipids (PL),
apolipoproteins A1, A2 and B100 (ApoA1, ApoA2 and
ApoB100) in each of the main lipoprotein classes, i.e. very
low-density lipoproteins (VLDL), high-density lipoproteins
(HDL), intermediate-density lipoproteins (IDL), and low-
density lipoproteins (LDL) and in their respective subfractions
were also analysed (Supplementary Table S2) through the IVDr
Lipoprotein Subclass Analysis B.I.-LISA tool (Bruker, BioSpin)
(Jiménez et al., 2018).

Statistical Analysis
All data analyses were performed using the “R” software.
Multivariate analyses were applied on NOESY binned spectra.
To this aim, each spectrum in the region 10.00–0.2 ppm was
divided into 0.02 ppm chemical shift bins, and the corresponding
spectral areas were integrated using the AMIX software. The area
of each bin was normalized to the total spectral area, calculated
with exclusion of the water region (4.50–5.00 ppm). Principal
component analysis (PCA) was used as unsupervised exploratory
analysis to obtain an overview of the data to detect the presence of
clusters (function prcomp); canonical analysis (CA) was used in
combination with PCA to increase the supervised separation
among individuals (in house developed script) and to define
their individual metabolomic fingerprint (Assfalg et al., 2008;
Bernini et al., 2009). The global accuracy for classification was
assessed by means of a Monte Carlo cross-validation scheme.

For univariate analyses, the non-parametric Wilcoxon-Mann-
Whitney test was used to infer differences between the
metabolite/lipoprotein levels in the comparison between
COVID-19-recovered group and COVID-19-naïve group.
Instead, for pairwise comparison within each group, the paired
Wilcoxon signed-rank test was used to analyzed the differences
between the samples of a given individual at each time point with
respect to T0 (Neuhäuser, 2011).

RESULTS

It is known that the NMR detectable part of the blood
metabolome/lipoproteome contains a strong signature that
defines the individual metabolic phenotype that, in the
absence of pathophysiological perturbations, remains stable
over a time span of the order of years (Holmes et al., 2008;
Yousri et al., 2014; Ghini et al., 2015). The distribution of the
metabolic phenotype of the 20 subjects under study is shown in
Figure 1C. Notably, we don’t observe any clustering in the
metabolic space of the samples from COVID-19-naïve subjects
with respect to those of COVID-19-recovered subjects; this result
is not unexpected given the fact that COVID-19-recovered
subjects are sampled after more than 7 months from infection
and do not report any long-COVID symptoms.
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As shown in Figure 2, in our cohort the differences that exists
at T0 between the two groups are not significant, although the two
groups are not identical, as it is normal to expect for the

comparison of any 10 randomly selected individuals against
any other 10. The intra-individual differences (Figure 2)
remain smaller than the inter-individual ones upon

FIGURE 2 | Level plot of Log2(FC) of (A) lipoprotein related parameters and (B) metabolites; red/blue values indicate higher/lower concentration at T0, T7, T14,
T21, T28 and T1M samples of COVID-19-recovered group with respect to COVID-19-naïve group. The brightness of each color corresponds to themagnitude of the FC.
Asterisks indicate statistical significanceThe level plot has been created using the function levelplot implemented in the R package “Lattice”.
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vaccination, which therefore does not represent a major
modification of the metabolic phenotype. The inter-individual
discrimination considering the six samples collected for each
subject is >85%. Nevertheless, in response to vaccination we
could observe some common changes that are consistently
occurring in all subjects within each group at a given time. As
shown in Figure 2, the differences between the two groups are
essentially restricted to a small number of lipoprotein parameters.
They mainly involve HDL4 subfractions (with some p-value <
0.05) and appear from T14. Although not statistically significant,
a clear trend is observed also for all the VLDL subfractions along
the time line T0-T1M; the log2(FC) is maximum at T7 and T14
and then decreases, until at T1M it tends towards the re-
establishment of the pattern observed at T0.

To better analyze the origin of the time-dependent changes, we
performed a paired analysis, so to highlight the common intra-
individual variations in each group. To this purpose the
concentration of all measurable species for a given individual
at each time point was compared to that of the same individual at
T0. Figure 3 reports the log2(FC) of the lipoprotein parameters
that were observed to change significantly in the COVID-19-
naïve and COVID-19-recovered groups, separately. The pattern
of changes is clearly different between the two cohorts. In the

former case (Figure 3A), we observe an overall decrease in
concentration of lipoproteins with average absolute values
decreasing from T7 to T21, and then increasing again after the
second dose (T28) and again decreasing at T1M. Contemporarily,
when the time distance from dose administration increases, we
observe an increase in the number of dysregulated features. With
the help of Figure 4, we can identify the following trends. In
terms of main parameters, the most affected along the time series
are the ApoB100 and total cholesterol. In terms of main fractions,
we observed a continuous dysregulation of the LDL parameters,
with the only exception of that associated to triglycerides; these
changes persist up to T1M. The earliest (T7) changes are
associated to the LDL5 subfraction. For VLDL, the affected
main parameters are phospholipids and triglycerides; the
largest changes are observed at T7 and T28 (i.e. at the first
time point evaluated after the first and second dose,
respectively), where the absolute values of their Log2(FC) is
>0.7; these changes do not persist after T28. The HDL
subfractions, with the exception of those associated to
triglycerides, change significantly only at T1M, but the extent
of the changes is quite small. A completely different trend is
observed when looking at the lipoproteins in the COVID-19-
recovered subjects (Figure 3B), where the changes are much

FIGURE 3 |Bar plots of Log2 (FC) of lipoprotein related parameters significantly different for the comparison at T7, T14, T21, T28 and T1Mwith respect to T0, in (A)
COVID-19-naïve (green plots) and (B) COVID-19-recovered (orange plots) groups. Features with Log2(FC) positive/negative values have higher/lower concentration in
T7, T14, T21, T28 and T1M samples with respect to T0.
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smaller in size, of the opposite sign (with the only exception of the
decrease in Free Cholesterol- and Phospholipids-VLDL5), and
essentially negligible after the second dose. Also the number of
affected features is very small and substantially limited to HDL4
and LDL5 parameters (Figure 3, Figure 4). In neither case,
COVID-19-naïve and recovered groups, the measured levels of
lipoproteins exceeded the range of values typical of a population
of healthy adults (Jiménez et al., 2018). Interestingly, no
consistent changes could be observed for any of the
metabolites at any of the sampled time points, in neither group.

DISCUSSION
1H NMR provides a unique tool to measure the levels of lipoprotein
main parameters, main fractions and subfractions (Jiménez et al.,
2018), in addition to metabolites. Here, NMR allowed us to monitor
the effects of the Pfizer-BioNTech vaccine in people who never had a
contact with the virus and in those with prior COVID-19 infection. In
the former group, changes are relatively large in size and mainly
involve a downregulation of LDL -cholesterol, -free cholesterol,
–phospholipids and–apolipoprotein B100 along with a
downregulation of VLDL-phospholipids and–triglycerides; LDL5
emerges as the main dysregulated subfraction. In the latter group
instead, the overall changes are small and limited to few lipoprotein
components (HDL4 and LDL5 features).

Although this is a small-size pilot study, those described above
are clear-cut differences that is extremely unlikely to happen due
to chance. The interpretation of the observed changes is far from
straightforward. An obvious comparison is with the
immunological response. Indeed, the same subjects have been
analyzed by some of us in terms of their immune response
(Mazzoni et al., 2021). The anti–SARS-CoV-2 serum antibody
levels in COVID-19–recovered subjects reach a plateau after the
first dose (T7-T14), without any additional improvement after
the second one. Instead, in the COVID-19-naïve subjects these
levels are not reached even after the second dose (T28).

There is not a common pattern in the timeline trend of immune
response and lipoprotein alterations, the only common trait being a
reduced response to the second dose in the COVID-19-recovered
subjects. What we observe by NMR is most probably an interplay of
multiple effects, with a different modulation in the two groups of
vaccinated subjects. The fact that previous infection limits the extent
of the observed effects suggests that whatever process remodulates the
lipoproteins following vaccination in COVID-19-recovered subjects,
it has to be related to the “new” encounter with the spike protein. It is
worth noting that lipid stripping from cell membrane is a
phenomenon associated to the specific action of the spike protein
andmight be differently operative in recovered and naïve individuals.
It is also known that LDL and cholesterol are key mediators of
inflammation (Chróinín et al., 2014), which could also have a
different extent in recovered and naïve subjects following
vaccination. Notably during acute COVID-19 infection, where
both lipid bilayer degradation induced by the spike protein and

FIGURE 4 | Level plot of Log2(FC) of the lipoproteome: for COVID-19-
naïve and COVID-19-recovered groups (second and third columns,
respectively), red/blue parameters indicate higher/lower concentration at T7,
T14, T21, T28, and T1M serum samples with respect to T0 samples. For
COVID-19 positive subjects (first column), red/blue parameters indicate
higher/lower concentration in serum samples of 30 COVID-19 patients with
respect to 30 sex- and age-matched control subjects (Meoni et al., 2021). The
brightness of each color corresponds to the magnitude of the FC. Asterisks
indicate statistical significance. The level plot was created using the function
levelplot implemented in the R package “Lattice”.
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severe inflammation occur, cholesterol and LDL5 are also
significantly altered with respect to healthy values, Figure 4, first
column (Bruzzone et al., 2020; Kimhofer et al., 2020; Ballout et al.,
2021; Bizkarguenaga et al., 2021; Lodge et al., 2021; Masuda et al.,
2021; Meoni et al., 2021).

Although aware of the intrinsic limitations of the study, we
believe the results could stimulate future research addressing a
number of relevant aspects. This type of results, if confirmed in
larger and diverse (by age, sex, ethnicity, morbidities)
populations, might help defining abnormal response to
vaccination with the Pfizer-BioNTech formulation and
adverse events. A comparison between the effects induced by
the different vaccines (Pfizer vs. Moderna; mRNA vs. DNA
vaccines, etc.) might shed light on the existence of correlations
between fluctuations in the lipoprotein profiles and immune
status and to dissect them from the response to the specific
formulation.
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Studying Metabolism by NMR-Based
Metabolomics
Sofia Moco*

Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam
Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

During the past few decades, the direct analysis of metabolic intermediates in biological
samples has greatly improved the understanding of metabolic processes. The most used
technologies for these advances have been mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy. NMR is traditionally used to elucidate
molecular structures and has now been extended to the analysis of complex mixtures,
as biological samples: NMR-based metabolomics. There are however other areas of small
molecule biochemistry for which NMR is equally powerful. These include the quantification
of metabolites (qNMR); the use of stable isotope tracers to determine the metabolic fate of
drugs or nutrients, unravelling of newmetabolic pathways, and flux through pathways; and
metabolite-protein interactions for understanding metabolic regulation and
pharmacological effects. Computational tools and resources for automating analysis of
spectra and extracting meaningful biochemical information has developed in tandem and
contributes to a more detailed understanding of systems biochemistry. In this review, we
highlight the contribution of NMR in small molecule biochemistry, specifically in metabolic
studies by reviewing the state-of-the-art methodologies of NMR spectroscopy and future
directions.

Keywords: metabolomics, NMR, metabolism, qNMR, stable isotopes, metabolite-protein interactions

INTRODUCTION–NMR, A TOOLSET OF STRATEGIES IN STUDYING
METABOLISM

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique that takes advantage of the
energetic transition of nuclear spins in the presence of a strong magnetic field. Since the first NMR
spectrum published in 1940s, the use of NMR as an analytical chemistry discipline has matured into
numerous areas (Claridge, 2006). NMR has proven to be an essential tool in life sciences including in
the identification and structure elucidation of organic molecules and specifically metabolites; in
studying the dynamics of macromolecules such as proteins and nucleic acids; and more recently in
the field of metabolomics (Cohen et al., 1995; Vignoli et al., 2019). Because NMR measurements of
molecules are so sensitive to the chemical environment, it offers selective chemical information about
molecules in their physiological setting.

The use of NMR in metabolic studies has a long history. 31P NMR was firstly used to monitor
phosphorous-containing metabolites, such as nucleotide and sugar phosphates, including redox
species, in cells and tissues (Hoult et al., 1974; Shulman et al., 1979; Gadian and Radda, 1981).
Researchers in the late 1970s optimistically stated ‘it is now possible to obtain on metabolites in vivo
the kinds of detailed information about structure, motion, reaction rates, and binding sites that have
been obtained by NMR studies of purified biomolecules in solution’. (Shulman et al., 1979). Many of
these topics are still the subject of research using NMR methodologies today.
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Radioactive tracers were the gold standard in studying
metabolic fate of molecules in biological systems with
widespread application in fields such as medicine, nutrition,
toxicology, environmental sciences, and pharmacology.
Radioactive isotopes have been progressively replaced by safe
stable isotope tracers with the development of labelled supplies
and improved detection strategies (Matwiyoff and Ott, 1973;
Jang et al., 2018). Stable isotope resolved metabolomics (SIRM)
can determine activities of many metabolic reactions across a
wide variety of metabolic pathways and has been used to
determine absolute metabolic fluxes (Buescher et al., 2015;
Lane et al., 2019). Mass spectrometry (MS) and NMR are the
techniques of choice in analysing labelling experiments (Lane
et al., 2019). NMR is able to provide positional labelling
information, a recognisable advantage in discerning
metabolite information (Fan et al., 2012).

The establishment of a new era of biological mixture analyses -
metabolomics - has emerged because of the development of
advanced technologies. Confidence in measuring metabolites
has become widespread. These technological advancements, in
addition to the pressing societal need in understanding metabolic
diseases, boosted a refreshed interest in metabolic studies over the
past decade. After all, metabolism pervades every aspect of
biology (Deberardinis and Thompson, 2012). While mass
spectrometry (MS) has been adopted in many laboratories for
metabolic and metabolomics studies because of its wide coverage

and high sensitivity, NMR remains used by a smaller community
of scientists. NMR gathers several advantages (Emwas et al.,
2019). NMR measurements are highly robust: inter-laboratory
measurements are reproducible (Ward et al., 2010) and the
stability of instrumental response can be months to years if
samples are appropriately stored (Pinto et al., 2014). In regular
NMR experiments, samples are in tubes and no chromatographic
methods are used: hence, the sample is not in contact with the
instrument eliminating the need for cleaning the instrument.
NMR spectrometers can easily be shared among users with
diverse applications, without risk of contamination or carry-
over. NMR is quantitative, so both relative and absolute
metabolite concentrations can be obtained. Most isomers lead
to distinct spectra, making NMR an indispensable tool in
structure elucidation.

In this review, we will focus on several NMR strategies of
interest in studying metabolism: i) metabolomics analyses; ii)
metabolite identification and structure elucidation; iii)
quantification (qNMR) of metabolites; iv) the use of stable
isotopes in metabolism studies; and v) metabolite-protein
interactions, Figure 1. The versatility of NMR makes this
spectroscopy a powerful toolset in tackling metabolism
questions in a variety of biological systems, aiding in
unravelling fundamental aspects of biochemistry including
metabolite identification, quantification and turnover,
metabolic activities, organelle compartmentalisation, and

FIGURE 1 |NMR spectroscopy: a toolset in metabolism studies. Pictorial representation of the various ways NMR spectroscopy can be used in metabolic studies,
such as (A) structure elucidation, (B) quantitative NMR (qNMR), (C) metabolomics, (D)metabolite-protein interactions, and (E) isotope-tracing metabolomics or stable
isotope resolved metabolomics (SIRM).
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metabolite interaction with macromolecules for enzymology or
regulatory events.

NMR METABOLOMICS AND METABOLIC
PROFILING

The analysis of complex mixtures (as in metabolomics) by NMR
has been used in the characterisation of foods, natural extracts,
and biological samples (Moco et al., 2007; Larive et al., 2015;
Hatzakis, 2019). A variety of biological samples, such as extracts
of microorganisms from the gut microbiome (Klünemann et al.,
2021), mammalian cell systems (Kostidis et al., 2017),
mammalian (Beckonert et al., 2007) and plant (Kim et al.,

2011) tissues, and clinical tissues and biofluids such as plasma,
urine, cerebral spinal fluid or faecal water (Beckonert et al., 2007;
Martin et al., 2012; Da Silva et al., 2013) have been described,
Figure 2A. 1H NMR spectra, such as NOESY-1D (1D Nuclear
Overhauser Effect Spectroscopy), are commonly utilised
generating catalogues of profiles of a large number of
metabolites. About 60 metabolites can be identified in an
untargeted 1H NMR spectrum using a 600 MHz NMR
spectrometer in samples (such as human urine) with little
effort in sample preparation (Takis et al., 2017; Vignoli et al.,
2019). The 1H NMR analysis of blood matrices such as serum, in
addition to small molecules (metabolites) also allows for the
detection of lipoprotein classes (Soininen et al., 2009). For
example, the analysis of a human cell system detects amino

FIGURE 2 | Examples of 1H NMR spectra of metabolomics analyses of (A) human biofluids (prepared in phosphate buffer saline in D2O pH 7.4): plasma, cerebral
spinal fluid (CSF), urine, and extract of faecal water (stool) and, (B) a human liver cell model (HepG2) after 24 h of culture: intracellular content (cell extract prepared by
methanolic extraction) and extracellular content (cellular medium), indicating some of the detected metabolites.
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acids, organic acids, sugars, and other metabolites mainly
belonging to central carbon metabolism and connected
pathways, Figure 2B (Kostidis et al., 2017). While in most
metabolomics applications, biological samples are placed in
solution, analysis of intact tissues can be done by high
resolution (HR) magic angle spinning (MAS)-NMR (Chan
et al., 2009). However, all obtained 1H NMR spectra in
metabolomics suffer from considerable signal overlap since
sample preparation is minimal, each metabolite often leads to
several signals in the spectrum, and many metabolites can be
detected.

The use 1HNMR spectra for metabolomics requires consistent
solvent suppression and a flat baseline. Since many biological
matrices are water-based, suppressing the solvent signal allows
for a better detection of lower abundant compounds and
increased sensitivity. Solvent suppression also decreases
radiation damping in cryoprobes (Barding et al., 2012).
Although there are different pulse sequences that suppress
solvent signals, such as WET, WATERGATE or PURGE,
NOESY-1D with presaturation and Carr-Purcell-Meiboom-Gill
(CPMG) are probably the most widely used in metabolomics
(Giraudeau et al., 2015). A flat baseline is essential for subsequent
statistical analysis and metabolite quantification (Barding et al.,
2012; Emwas et al., 2015; Giraudeau et al., 2015).

While 2D NMR experiments such as 1H,13C-Heteronuclear
Single Quantum Coherence (HSQC) (Bingol et al., 2014), 1H-
1H-Total Correlation Spectroscopy (TOCSY) (Jiang et al., 2020),
2D-1H-J-resolved (JRes) or 2D-1H-Diffusion-ordered NMR
spectroscopy (DOSY) or Concentration-ordered NMR
spectroscopy (CORDY) (Huang et al., 2015) offer a more
deconvoluted picture of a mixture, these experiments take
considerably more time and are computationally more
intensive to process. Consequently, 2D NMR experiments are
infrequently used for fingerprinting purposes in large studies.
Even though 1H NMR is the mostly widely nucleus used in
metabolomics, other nuclei such as 13C (Clendinen et al., 2015),
15N (Bhinderwala et al., 2018) and 31P (Bhinderwala et al., 2020)
have been applied in direct NMR analyses. These nuclei are
usually studied through 1H magnetisation in 2D NMR
experiments. The ubiquity of 1H in most metabolites and its
high NMR sensitivity make 1H NMR the ideal nucleus in NMR-
based metabolomics.

An important advantage of NMR-based metabolomic studies
is the reproducibility among laboratories (Ward et al., 2010).
Given the robustness of the NMR measurement, standardisation
of procedures has become progressively easier, especially in
clinical applications such as the analysis of human urine,
blood serum and plasma. Urine samples are obtained (of
course) non-invasively which has led to the development of
research and clinical diagnostics. Standardisation of procedures
is essential for clinical applications (Emwas et al., 2015). The
speed and robustness of sample biomarker profiling with NMR
spectroscopy has been extended to thousands of samples. For
example, human blood plasma samples of approximately 121,000
participants from UK Biobank have been analysed, leading to an
extended clinical chemistry panel consisting of 249 biomarkers
and ratios, based on metabolite signals of lipoproteins, lipids,

amino acids and a few glycolysis intermediates (Ritchie et al.,
2021).

Since metabolomics relies on the comparative analysis of a
system challenged by a perturbation relative to its control, it can
be applied to a many biochemical questions related to
metabolism: such as drug-induced metabolic perturbations
(Vinaixa et al., 2011), aetiology of metabolic diseases, like
cancer (Vignoli et al., 2021), or cellular development and
differentiation (Moussaieff et al., 2015).

METABOLITE STRUCTURE VERIFICATION
AND ELUCIDATION

NMR is perhapsmostly known for its ability to elucidate chemical
structures of small molecules, Figure 3. A 1H NMR spectrum of a
given molecule provides information about functional groups
(position of chemical shifts), spatial or connecting protons
(multiplicity of signals and coupling patterns), and number of
equivalent protons (signal integrals). The interpretation of these
signals can in many cases lead to an unambiguous identification
of the molecule. NMR is efficient in distinguishing many isomers,

FIGURE 3 | Structure elucidation strategies using NMR. Acquisition of a
1H NMR spectrum on an isolated compound provides essential information
about the molecule’s structure such as the chemical shift (electronegativity of
neighbouring protons and possible functional groups), coupling
constants (multiplicity of signals reflects the influence of neighbouring
protons), signal integral (assessment of equivalent protons). Atom connectivity
can be assessed by homonuclear and heteronuclear 2D NMR spectra, usually
1H–1H or 1H-13C. In certain cases, other 2D or 3DNMR experiments are useful
to obtain more detailed information. Identification and spectral deconvolution
in NMR benefits from available computational approaches, including
databases, multivariate statistical approaches (MVS) and quantum-mechanic-
based algorithms. And the availability of complementary information, such as
the use of authentic standards or mass spectrometry is generally helpful. In the
case of complex mixtures, as in metabolomics, scale-up and metabolite
isolation are often unavoidable, in particular in the case of unknown
metabolites.
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by their unique spectra. The exception are enantiomers, that
require chiral agents to be derivatised into diastereomers for
analyses by regular NMR spectroscopy. While 1H NMR provides
crucial and sometimes sufficient information to resolve a
structure, the complexity of certain molecules requires
additional strategies. The interpretation of certain 1D 1H
NMR spectra, in particular in the presence of complex
multiplicities and second order effects, can profit from
quantum-chemistry algorithms (Elyashberg et al., 2016; Pauli
et al., 2021). For example, the web-based Cosmic Truth (CT)
software uses experimental spectra to calculate coupling
constants in complex multiplets, and thereby provide higher
certainty on metabolite identification in 1H NMR spectra
(Achanta et al., 2021; Pauli et al., 2021).

The next level of obtaining structural information came with
the establishment of 2D homonuclear and heteronuclear NMR
pulse sequences, which obtains enhanced atom connectivity and
spatial information within spin systems. While identification of
most purified metabolites can be done using a combination of
standard 1D NMR 1H and 13C NMR and 2D NMR (as 1H,
1H-COSY (COrrelation SpectroscopY); 1H, 1H-TOCSY; 1H,
13C-HSQC; 1H, 13C-HMBC (Heteronuclear Multiple Bond
Correlation)) experiments, identifying certain molecules
requires additional information because of their complexity
(Elyashberg, 2015). Methods such as ADEQUATE (Adequate
Sensitivity Double-Quantum Spectroscopy), INADEQUATE
(Incredible Natural Abundance DoublE QUAntum Transfer
Experiment), HSQC-TOCSY and LR-HSQMBC (long-range
heteronuclear single quantum multiple bond correlation) aid
in putting in evidence certain properties towards resolving
more complex spin systems in, for example, natural
compounds (Elyashberg, 2015). Pure shift NMR spectroscopy
that includes methods such as PSYCHE (Pure Shift Yielded by
Chirp Excitation Suppressing) collapse multiplet signals into
singlets in 1H NMR spectra to improve spectral resolution
(Foroozandeh et al., 2014). For complete structure elucidation,
nested super-pulse sequences that encompass a series of existing
2D NMR methods (e.g., HMQC-HSQC-COSY-NOESY) can be
used. One example is NOAH: NMR by Ordered Acquisition
using 1H-detection (Kupče and Claridge, 2017). A sample
containing 50 mM cyclosporine in benzene-d6 was acquired
with the NOAH-5 super-sequence (that combines 1H-15N
HMQC, multiplicity edited 1H-13C HSQC, 1H-13C HMBC,
COSY and NOESY pulse sequences), producing five 2D
spectra in one experiment in 44 min (Kupče and Claridge, 2017).

Metabolite identification by NMR benefits from additional
chemical information which can be done by integration of
complementary pieces of information. Mass spectrometry (MS)
can assist in providing the molecular mass of a molecule, and
thereby a putative molecular formula, as well as some structural
information byMS/MS fragmentation. The combination of chemical
information provided by NMR and MS in combination is highly
efficient inmetabolite identification (Moco et al., 2007). The access to
online resources with experimental and/or predicted NMR spectral
databases, such as HMDB (Wishart et al., 2021), BMRB (Ulrich et al.,
2007) andNMRShiftDB (Steinbeck et al., 2003) are important tools to
deduce possible molecules.

Metabolite identification in metabolomics can be challenging
given the presence of many overlapping signals. Libraries of
metabolites found in common matrices such as urine, plasma,
and serum are useful resources (Wishart et al., 2021). Structure
verification in metabolomic studies is done by comparing profiles
to standards in spectral databases, as well as acquisition of 2D
NMR and MS directly on mixtures. The integration of NMR and
MS analyses can provide confirmatory and complementary
information on the underlying metabolites, avoiding
metabolite isolation (Moco et al., 2008). Multivariate statistical
tools as Statistical Total Correlation Spectroscopy (STOCSY)
(Cloarec et al., 2005), Subset Optimization by Reference
Matching (STORM) (Posma et al., 2012) or Resolution
EnhanceD SubseT Optimization by Reference Matching (RED-
STORM) (Posma et al., 2017), have been used in biofluid spectra,
highlighting spectral regions of differential metabolites. The
multiple resonances of a metabolite can be correlated across
metabolite datasets.

Concentrating the sample or compound isolation prior to
NMR analysis in inevitable when dealing with unknown
molecules or unknown matrices. Hyphenated techniques, such
as liquid chromatography (LC)-NMR-MS or LC-solid phase
extraction (SPE)-diode array detection (DAD)-MS/NMR
(Moco and Vervoort, 2012; Garcia-Perez et al., 2020) have
been developed. For example, the identification of the uremic
toxins N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-
pyridone-5-carboxamide in C57BL/6 mice’s urine was possible
through a combination of sequential 1D NMR, STOCSY, 2D
NMR, SPE, 2D NMR and spiking of standards (Garcia-Perez
et al., 2020). Complex matrices such as a plant extract or a
biological sample can be separated by LC, detected byMSwith the
NMR spectra acquired in a subsequent integrated step
(Wolfender et al., 2019). Experimental data in combination
with computational tools, including chemometrics, are used in
concerted ways to fully describe complex mixtures, often with few
if any sample separation steps (Wolfender et al., 2019).

METABOLITE QUANTIFICATION

NMR is inherently quantitative. However, for many applications,
qualitative analyses suffice, and the quantitative aspect is overlooked.
Quantitative NMR (qNMR) is progressively gaining attention, with
applications to drugs, vaccines, natural products, and mixtures such
as biological samples and plant extracts (Holzgrabe, 2010; Simmler
et al., 2014; Giraudeau, 2017; Li and Hu, 2017; Giancaspro et al.,
2021). The basic principle of qNMR relies on the intensity of the
NMR signal of an analyte being proportional to the number of nuclei.
One of the important determinants in quantitative analysis is the
optimisation of longitudinal relaxation time, T1, of protons in 1H
qNMR. To obtain truly quantitative spectra, long delays are often
required to allow full proton relaxation, as the delay is set to be at least
5 times T1 to have >99.3% of protons to return to original position
(Holzgrabe, 2010). For example, the T1 of maleic acid in D2O
phosphate buffer saline pH 7.4, a commonly used internal
standard in qNMR, is ~6.5 s. If this is the longest T1 of the
resonances found in the sample to quantify, the inter-scan
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relaxation delay should be set to >30 s. The challenging part of
implementing a qNMR routine is maintaining the exactness of
procedures, from consistently using the same acquisition and
processing parameters to taking into account the physico-chemical
properties of the sample (pH, ionic strength, solubility, chemical
interactions and interferences, storage) and calibration of scales and
pipets (Bharti and Roy, 2012). The quantification of pure compounds
or simple mixtures is done by purity analysis and often reference
materials are used. This is quite commonplace in pharmaceutical
formulations. When implemented, qNMR can lead to superb results
in accuracy (<1% error) and robustness (Holzgrabe, 2010; Mahajan
and Singh, 2013).

qNMR in 1D-1H NMR of complex mixtures acquired for
metabolomic studies is usually less accurate, yielding a trueness of
10–20% (Giraudeau, 2017) since many of the analytical and
instrumental parameters are cannot be optimised. qNMR on
2D homonuclear and heteronuclear NMR spectra have also been
reported (Giraudeau, 2017; Li and Hu, 2017), which has the
advantage of additional metabolite deconvolution compared to
1D NMR. The increased use of fast 1D 1H NMR metabolomics
analyses has generated interest in developing quantification
strategies in these spectra. Internal reference signals as
ERETIC and PULCON avoid the use of external references
that crowd spectra (Wishart, 2008; Holzgrabe, 2010).

qNMR in metabolomics is often performed by chemometric
analyses (Wishart, 2008; Madrid-Gambin et al., 2020).
Metabolomic analytical procedures require high consistency to
obtain (semi-) quantitative values. Standardized pre-laboratory
procedures (sample collection, storage), sample preparation,
spectral acquisition, pre-processing of spectra (referencing,
phasing, baseline correction, etc) and statistical analyses or
machine learning are all necessary to obtain quantitative results
(Wishart, 2008). Signal identification and integration across a
series of spectra, including either binning or dynamic integration
with alignment and normalisation before quantification are common
steps. Given that certain metabolite signals are likely to overlap, it is
important to define the least overlapped signals as the metabolite
quantifier. While other techniques such as LC-MS, require the use of
labelled internal standards and laborious method development and
validation, qNMR is easier to implement. Metabolites quantification
within the μMtomMrange is feasible inNMRmetabolomics spectra.
For example, the extracellular metabolites in media of mammalian
cells was quantified byNMRwith a ~15% error (Kostidis et al., 2017).
Lineshape fitting models have been used in deconvoluting
metabolites in 1H NMR spectra of ultrafiltrated human serum
samples, integrating 42 metabolites and explaining >92% of the
spectrum (Mihaleva et al., 2014). Computational strategies for
qNMR are likely to be further developed for metabolite
quantification especially for clinical research studies and
acceptance for use in clinical diagnostics.

STABLE ISOTOPE RESOLVED
METABOLOMICS

Metabolite analysis of cells, organelles as mitochondria, and
organs was initiated by Shulman and co-workers in 1970s. By

using 31P and 13C NMR they were able to study aspects of cellular
metabolism as oxidative phosphorylation and kinetics of
glycolysis in E. coli and rat liver cells (Radda and Seeley, 1979;
Shulman et al., 1979). Metabolic networks are often highly
homeostatic and branched making it difficult to understand
metabolic regulation by assessing metabolite concentrations in
steady state conditions. A more informative approach is to assess
metabolite turnover, defined as the quantity of the metabolite
moving through its pool per unit time (McCabe and Previs, 2004;
Fan and Lane, 2008). Metabolic turnover is studied with (usually
isotope) tracers. Labelled compounds allow the determination of
rates of a metabolic flux. Stable isotopes have largely replaced
radioactive tracers and use MS or NMR as technologies.

NMR is particularly useful in metabolic studies because it can
provide quantitative information of manymetabolites at the same
time as well as to distinguishing positional labelling. Stable
isotope tracer analysis (or stable isotope resolved
metabolomics, SIRM) by NMR commonly uses 13C, but also
15N (Lapidot and Gopher, 1997) or 2H (Mahar et al., 2020)
labelled tracers. Different tracers may be used according to the
pathway of interest. For example [13C1,2]-glucose can be used to
distinguish between oxidative and non-oxidative branches of the
pentose phosphate pathways because of the distribution of 13C in
different downstream metabolites; [U-13C]-Glutamine is used to
study glutaminolysis, as well as TCA cycle, amino acid
metabolism and pyrimidine biosynthesis; and [U-13C]-palmitic
acid is often used to study ß-oxidation (Fan and Lane, 2008; Jang
et al., 2018; Saborano et al., 2019), Figure 4. Since NMR allows to
measure isotopomers and metabolites in biological samples,
compartmentalisation and exchange dynamics of metabolic
pools can be studied. Spatial and temporal events are
fundamental to understand metabolism of a given system (Fan
and Lane, 2008).

The majority of isotopomer analysis in NMR makes use of 13C
tracers for direct measurements of labelled carbons. Specifically,
direct 1D 1H NMR experiments allow detecting 13C satellite
signals, enable isotopomer distribution analysis, and are generally
used for quantification of label incorporation (Fan and Lane, 2008;
Vinaixa et al., 2017). Since labelled and non-labelled signals are
detected in crude cell extracts, the 1H NMR spectrum is often
crowded because of the number of metabolites present. Therefore
2D homonuclear and heteronuclear NMR experiments are used to
detect characteristic labelling patterns (COSY, TOCSY, HSQC,
HMBC and HCCH-TOCSY and HSQC-TOCSY) (Fan et al.,
2005; Fan and Lane, 2008; Lane and Fan, 2017). 1H–13H HSQC
are regularly used for 13C metabolic flux analysis, even if there is a
large range of coupling constants (typically 120–210Hz) in the
metabolites detected (Reed et al., 2019). To make up for lengthy
acquisition times of 2D NMR experiments, ultrafast 2D NMR has
been applied to specific isotopic enrichments in complex biological
mixtures, considerably reducing acquisition times (Giraudeau et al.,
2011). 13C-filtered 1D spectra (and 2D spectra to reduce signal
overlap) appear to be accurate in calculating label incorporation in
sparsely labelled metabolic samples (Reed et al., 2019). Combining
MS and NMR-based SIRM can be a strategy to obtain isotopomer
distributions in a model-free way and a wider coverage of the
involved intermediates (Chong et al., 2017).
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Stable isotope administration can be combined with magnetic
resonance spectroscopy (MRS), allowing for in vivo metabolic
phenotyping in pre-clinical and clinical settings (Leftin et al.,
2013). The use of dynamic nuclear polarization (DNP) has
offered a major advantage in achieving metabolic studies in
vivo, as it leads to an outstanding increase of sensitivity,
>10,000 (Ardenkjær-Larsen et al., 2003), by using
hyperpolarised substrates. For example, the use of
hyperpolarized [13C1]pyruvate allowed to study skeletal muscle
stimulation in vivo (Leftin et al., 2013).

Since central metabolism (including glycolysis,
gluconeogenesis, TCA cycle and pentose phosphate pathway)
is the heart of metabolism and bioenergetics, most SIRM is being
performed on these pathways. For example, patients with early-
stage non–small-cell lung cancer were infused with U-
13C-glucose before tissue resection. Through SIRM analysis, it
was determined that the cancerous tissues in these patients had
enhanced pyruvate carboxylase (PC) activity over glutaminase 1
(GLS1), compared to non-cancerous tissues. Both PC and GLS1
are important enzymes in anaplerotic reactions, replenishing
TCA cycle intermediates, needed in highly proliferating cells,
as cancer cells (Sellers et al., 2015). An example of using NMR to
trace other metabolic pathways besides central metabolism, is the
comparison of two cancer cells line models (bladder, UMUC3,
and prostate, PC3) to assess lipid metabolism turnover (Lin et al.,
2021). The use of isotope tracers has also been discussed for
studying nucleotide metabolism (Lane and Fan, 2015).

To perform SIRM, detection of metabolic intermediates is
required, and of course, knowledge of the metabolic map
(Kanehisa et al., 2014; Wishart et al., 2021). Reconstructions of
metabolic models are valuable, even if certain aspects remain
challenging such as compartmentalization and tissue specificity
(Magnúsdóttir et al., 2016). Informatic tools become increasingly
important for metabolic flux analysis calculations (Arita, 2003;
Rahim et al., 2022).

Isotopes are also used to unravel metabolic fate of certain
drugs or unknown molecules. In this case the aim is to study
ADMET (absorption, distribution, metabolism, excretion, and
toxicity) of a therapeutic agent. Many pharmaceutical drugs
contain 19F, so 19F NMR can be used to monitor parent
compounds and resulting metabolic products (Rietjens and
Vervoort, 1989; Lindon et al., 2004; Keun et al., 2008; Reid
and Murphy, 2008). 13C- or 15N-labelled drugs can also be
analysed for metabolic fate using 1D- and 2D-NMR in cells
and animals (Fan and Lane, 2008; Mutlib, 2008; Fan et al., 2012).

METABOLITE-PROTEIN INTERACTIONS

Interactions between metabolites and proteins are a pre-requisite
in enzymatic and allosteric events, defining metabolism and its
regulation. While many methodologies to study interactions
between macromolecules (e.g., protein-protein interactions)
have been developed, methods to systematically assess protein-
metabolite interactions are still scarce and often limited to
hydrophobic metabolites (Li et al., 2010; Nikolaev et al., 2016;
Piazza et al., 2018). NMR has a long history of studying protein
dynamics in vitro, including changes in protein conformation
upon ligand binding (Cohen et al., 1995) specifically by
monitoring amino acid residues in the protein backbone.
However, a set of ligand-observed NMR experiments can be
used to specifically monitor the binding event via the ligand (in
opposition to monitoring the protein). Saturation transfer
difference (STD) (Mayer and Meyer, 1999; Viegas et al., 2011),
Figure 5, water−ligand observation with gradient spectroscopy
(WaterLOGSY) (Dalvit et al., 2001), time constant of spin-lattice
relaxation in rotating frame (T1rho) and CPMG (Gossert and
Jahnke, 2016) are some examples of NMR methods to monitor
ligand binding to purified (non-isotopically labelled) proteins
(Gossert and Jahnke, 2016). Ligand-observed NMR has been

FIGURE 4 | Examples of label incorporation schemes in central metabolism by NMR. Certain tracers are better suited to study specific pathways. In this scheme,
the colour of the tracer is indicated next to the pathway name it is used for. 13C-tracers are represented, however alternative tracers with other labelled (2H, 15N) nuclei
might be used, as well as other available labelled precursors.
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primarily used in high throughput fragment screening conducted
for drug discovery (Pellecchia et al., 2008; Gossert and Jahnke,
2016).

Ligand-observed NMR methods depend on certain
conditions. The ligand is added in excess (10–20 fold to the
protein amount) to a large protein (>30 kDa), and the
interactions are typically weak, with dissociation constants
(KD) 1 μM-10 mM. The ligand is in a fast exchange with the
protein, and upon binding, the signal experiences a strong
relaxation as evidenced by proton signal broadening or
disappearance from the spectrum, Figure 5. By analysis of
bound and unbound states, binding can be obtained via NOEs
(STD and water-mediated NOEs, WaterLOSGY) on ligand
signals (Meyer and Peters, 2003; Gossert and Jahnke, 2016).
Calculation of KD and even epitope mapping of the ligand
interaction can be obtained. Competition between ligands in

ligand mixtures can also be assessed (Viegas et al., 2011;
Monaco et al., 2017).

Ligand-observed NMR has been applied to the systematic
identification of endogenous metabolites-protein interactions, an
example of which are the central carbon metabolism proteins of
E. coli (Nikolaev et al., 2016; Diether et al., 2019). Solutions of up
to 55 metabolites were exposed to 29 purified metabolic enzymes.
This approach identified 76 novel interactions between
endogenous metabolites and central metabolism enzymes
(Diether et al., 2019).

While this type of approach is quite fast to set-up from the
NMR acquisition side, it remains dependent on the availability of
purified proteins (or at least enriched protein cell suspensions)
with a defined number of metabolites. There are however efforts
underway to test small molecule-macromolecule interactions in
cellular environments (Siegal and Selenko, 2019). For example,
whole-cell STD measurements have been used to determine the
binding mode of ligands to an intracellular protein in live bacteria
(Bouvier et al., 2019) and cancer cells (Primikyri et al., 2018).

COMPUTATIONAL TOOLS AND
RESOURCES

Data analysis is inherent to data acquisition. Many NMR
applications have been traditionally processed manually, as for
example in the elucidation or confirmation of small molecule
structures. However, all NMR applications benefit from
computational tools and resources, for faster and more
accurate extraction of biochemical information. Some of these
tools and resources were mentioned in previous sections of this
review. Overviews of the many publicly available resources and
open source metabolomics tools have been comprehensively
listed, so readers should consult them (Eghbalnia et al., 2017;
Stanstrup et al., 2019; Shea and Misra, 2020).

Parsing of data into signal lists or matrices in NMR-based
metabolomics is a requirement for performing multivariate
statistical or machine learning analyses. This pre-processing
step can be done by binning spectral data or by peak picking
and integration using commercial software or public algorithms,
such as, for example, AlpsNMR (Madrid-Gambin et al., 2020). 1H
NMR spectra are sensitive to solvent, pH, ionic strength, and
temperature, and thus slight shifts in proton resonances are likely
to occur. This can be corrected with alignment algorithms before
signal integration. There are many algorithms able to handle
NMR data for various purposes, including automated putative
metabolite identification according to spectral databases as
HMDB (Wishart et al., 2021). Multivariate analyses or
machine learning methods for NMR metabolomics spectra can
be done prior to or after metabolite assignment. Typically, these
analyses will assist in identifying differential significant
metabolites (or metabolite features) in datasets. Details on
various possibilities of handling NMR-based metabolomics
data can be consulted elsewhere (Blaise et al., 2021; Debik
et al., 2022). Beyond statistical treatment, web-based tools like
MetaboAnalyst (Chong et al., 2018) allow to visualise
metabolomics data in an user-friendly way, and are able to

FIGURE 5 | Scheme of Saturation Transfer Difference (STD)-NMR for
studying protein-metabolite interactions. The protein is exposed to an excess
of ligand(s) or metabolite(s) and a 1H NMR spectrum is recorded (off-
resonance spectrum), (A) Given the low amount of protein in solution,
only the metabolite(s) signals are visible. On a second acquisition, selected
saturation is applied to the protein that is transferred to the bound metabolite
through the nuclear Overhauser effect, inducing the bound ligand resonances
to broaden or disappear (on-resonance spectrum), (B) The difference
spectrum (off-resonance on-resonance), STD spectrum, (C) exhibits the
resonances of the metabolite bound to the protein, and confirms the presence
of the protein-metabolite interaction.
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perform additional tasks, as for example pathway enrichment
analysis (Wieder et al., 2021).

Overviews of metabolic pathways can be consulted in
databases like KEGG (Kanehisa et al., 2017), HMDB (Wishart
et al., 2021), WikiPathways (Kutmon et al., 2016) and Recon3D
(Brunk et al., 2018) and are valuable to map metabolites from
NMR spectra to specific pathways. Labelling patterns obtained
from SIRM are useful for metabolic network reconstruction,
however it remains challenging to fully exploit it (Lane et al.,
2019).

Reports on integration of metabolome data with other omics
has been attempted since genes, proteins, and metabolites
collectively contribute to metabolism and its regulation. Even
though multiple strategies are necessary (Jendoubi, 2021), no
single or universal method is applicable for all experiments given
the limitation of detections, time scales of the different omics, and
specific research questions of each study.

SUMMARY AND FUTURE DIRECTIONS

NMR spectroscopy can be used to study various aspects of
metabolism. This review discussed metabolomics analyses
qNMR, structure elucidation, SIRM, metabolite-protein
interactions and computational approaches studied by NMR.

One of the disadvantages of NMR is its relative lower signal-
to-noise, compared to other analytical techniques. The
development of microprobes and cryoprobes (Anklin, 2016),
as well as the use of hyperpolarised substrates by DNP (Lerche
et al., 2015; Plainchont et al., 2018) are some of the strategies
being used to enhance sensitivity in NMR measurements.

The development of novel methods capable of deconvoluting
complex signals, such as pure shift experiments (Zangger, 2015)
and fast experiments based on non-uniform sampling (Mobli and
Hoch, 2014), are developments that will assist in obtaining more
and faster structural information.

Efforts to standardize procedures for NMR-based
metabolomics, and in particular for clinical applications, are
on-going (Ritchie et al., 2021). Development of guidelines are
likely to allow the use of NMR measurements as an enhanced
clinical chemistry panel with applications in screening large
biobanks. In this case, quantification of metabolites directly
from biofluids will be essential. Hence development of

computational tools for spectral deconvolution, integration
and quantification will be needed.

With the worldwide increase of metabolic diseases, studying
metabolic turnover of pathways through SIRM is likely to be
more frequently used in research and clinical settings. Thus,
diversification of tracers and NMR strategies, as well as
computational tools, are likely to be further developed in
this area.

The shift towards human systems and particularly in-cell
environments are inevitable since these systems better mimic
physiological conditions. It will be important to develop strategies
to monitor metabolite-protein interactions in these environments.
Studying interaction will contribute to further knowledge of catalytic
and allosteric events essential in metabolic regulation.

A more detailed overview of metabolism and its dynamics at
the organelle-level - in its cellular compartments - and at the
organism level - in specific organs - will be essential to dissect.
The interplay between these metabolite pools is indispensable to
understand metabolic regulation in health and disease at a
systems biochemistry level. While NMR will never make up
for its lack of sensitivity, it will enable the study of the many
aspects of the spectroscopy of life.
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The Effects of Carbon Source and
Growth Temperature on the Fatty Acid
Profiles of Thermobifida fusca
Dirk C. Winkelman and Basil J. Nikolau*

Department of Biochemistry, Biophysics andMolecular Biology and the Center of Metabolic Biology, Iowa State University, Ames,
IA, United States

The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an
organism to be used for the efficient conversion of plant biomass to fatty acid-derived
precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to
catabolize plant biomass, there is remarkably little data available concerning the natural
ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that
T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose,
cellulose and avicel) and at two different growth temperatures, namely at the optimal
growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses
establish that T. fusca produces a combination of linear and branched chain fatty acids
(BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-
carbons in length. Although different carbon sources and growth temperatures both
quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth
temperature is the greater modifier of these traits. Additionally, genome scanning enabled
the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.

Keywords: Thermobifida fusca, Actinomycete, fatty acid biosynthesis pathway, principal component analysis, gas
chromatography- mass spectrometry, branched chain fatty acids, fatty acid synthase

INTRODUCTION

Plants possess the photosynthetic ability to chemically reduce atmospheric carbon dioxide and
generate lignocellulosic biomass, providing the world with a feedstock that could be utilized for
production of bio-based chemicals or biofuels (Zoghlami and Paës, 2019). Because plant
lignocellulosic biomass can be derived from agricultural waste, it can serve as a feedstock
without compromising global food security (Brethauer and Studer, 2014; Li et al., 2021). Fatty
acids are a class of energy-dense biomolecules that are similar to petroleum-derived fuels and
chemicals, making them potential replacements of fossil-carbon products currently in the
marketplace if they can be produced from biorenewable feedstocks (Nikolau et al., 2008; Janssen
and Steinbüchel, 2014; Shanks and Keeling, 2017). Unfortunately, this process is hindered by the
composition of plant lignocellulosic biomass (i.e., a mixture of cellulose, hemicelluloses, and lignin),
which is difficult to catabolize and naturally recalcitrant to microbial and enzymatic degradation
(Zoghlami and Paës, 2019). Current methods for breaking down lignocellulosic biomass are costly as
they require chemical pretreatments, which inhibit subsequent enzymatic catabolism and add to
economic infeasibility (Isikgor and Becer, 2015). Several lignocellulosic degrading microbes are
under consideration to serve in consolidated bioprocessing (CBP) strategies in an effort to lower
costs (Xiong et al., 2018). A CBP approach would take advantage of a microbe’s natural cellulolytic
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capabilities and allow simultaneous fermentation of derived sugar
monomers to synthesize the desired bioproducts, such as
fatty acids.

Thermobifida fusca is a thermophilic, cellulolytic
Actinobacterium that is capable of breaking down
lignocellulose. It naturally resides in warmer organic materials,
including manure piles, compost heaps, and rotting hay
(Mccarthy and Cross, 1984; Zhang et al., 1998). Its ability to
hydrolyze plant biomass at higher temperatures (optimum
growth at 50°C) and grow over a broad pH range makes it a
prime candidate for larger scale CBP applications. The readily
available T. fusca genome sequence reveals that it has the capacity
to express many enzymes useful for hydrolyzing biomass,
including numerous cellulases, xylanases, and carbohydrate
transporters for sugar uptake (Lykidis et al., 2007). Many of
these thermally stable enzymes have been heterologously
expressed in alternative microbial hosts and analyzed for their
applicability to biomass conversion (Ghangas and Wilson, 1987;
Ali et al., 2015; Klinger et al., 2015; Saini et al., 2015; Zhao et al.,
2015; Setter-Lamed et al., 2017; Yan and Fong, 2018; Ali et al.,
2020).

Although T. fusca shows a high propensity to degrade plant
biomass, little is known about the fatty acid products that it
naturally produces or the fatty acid biosynthetic machinery that
the microbe possesses. In this manuscript, we identify many of
the fatty acid biosynthetic genes encoded by the T. fusca genome.
Furthermore, we have determined the fatty acid profiles of T.
fusca when it is grown on four different carbon sources
(i.e., glucose, cellobiose, cellulose, and avicel) at both the
optimal growth temperature (50°C) or at a suboptimal
temperature (37°C). T. fusca has the ability to produce linear
saturated and unsaturated fatty acids, but primarily produces a
suite of branched-chain fatty acids (BCFAs), particularly iso-,
anteiso-, and 10-methyl BCFAs that are primarily between 14-
and 18-carbons in length. In addition, T. fusca fatty acid profiles
can be affected by environmental changes associated with carbon
source and growth temperature, with the latter being the more
significant factor driving the fatty acid composition.

MATERIALS AND METHODS

Thermobifida fusca Media and Growth
Conditions
T. fusca (strain BAA-629) was obtained from the American Type
Culture Collection (ATCC) (Manassas, Virginia). The frozen
stock was revived as directed by ATCC using their standard
TYG 741 media, and cultures were incubated at 50°C.
Experimental cultures were grown in 100 ml of Hagerdahl
media (ATCC medium 2382) supplemented with 0.5% (w/v)
of a carbon source: glucose, cellobiose, cellulose, or avicel. Each
culture was initiated with 3 ml of inoculum and cultures were
grown at either 37°C or 50°C for up to 2 days.

Harvesting Thermobifida fusca Cells
Cells were collected from each culture by centrifugation at 5000 ×
g for 5 min, and the wet weight of the cell pellet was determined.

Cultures grown at the suboptimal temperature (37°C) did not
consume all of the insoluble solid carbon source (i.e., cellulose or
avicel). These cell pellets were washed with sterile water and the
final, washed cell pellet was weighed. Cell pellets were flash frozen
in liquid nitrogen, lyophilized for 48 h, and the dry weight was
recorded prior to fatty acid extraction.

Fatty Acid Analysis
Fatty acids were extracted from three aliquots of cells taken from
a T. fusca culture. Cells were pelleted and lyophilized. Lyophilized
cell pellet aliquots (10 mg each) were transferred to a glass tube
and spiked with 10 µg of nonadecanoic acid as an internal
standard. The pellets were then suspended by vortexing for
15 min in a solution of 5% (v/v) sulfuric acid in methanol and
the suspension was incubated at 80°C for 1 h. After cooling to
room temperature, 1 ml of hexane: chloroform (4:1 v/v) solution
and 1 ml of 0.9% (w/v) NaCl were added to each tube, and the
mixture was vortexed for 5 min. The organic and aqueous phases
were separated by centrifugation, and the organic phase
containing the resulting fatty acid methyl esters was
transferred to a separate test tube. The aqueous phase was
extracted an additional time with hexane: chloroform (4:1 v/v)
solution, and the organic phases were collected and pooled. The
extracts containing fatty acid methyl esters were concentrated by
evaporation under a stream of nitrogen gas. GC-MS analysis was
performed with an Agilent 6890 GC equipped with a DB-1 MS
capillary column (Agilent 122–0112). Chromatography was
performed using helium gas at a flow-rate of 1.2 ml/min, using
an inlet temperature set at 280°C. Individual fatty acid methyl
esters were identified by GC-MS fragmentation patterns in
tandem with NIST AMDIS software (Stein, 1999), as well as
by comparing their retention times to known fatty acid methyl
ester standards obtained from Supelco Inc. (Bellefonte, PA) and
Metraya LLC (State College, PA). Peak areas of individual fatty
acid methyl esters were integrated with AMDIS software, and
these were converted to fatty acid concentrations relative to the
peak area of the known amount of nonadecanoic acid internal
standard that was added to each sample.

Principal Component Analysis
Principal component analysis was conducted using
Metaboanalyst software (Pang et al., 2021) with data from all
replicates of T. fusca cultures grown in each of the eight growing
conditions. Quantitative fatty acid abundance data (µmoles/g dry
cell weight) were uploaded from Microsoft Excel to
Metaboanalyst statistical software and autoscaling was done as
enabled by Metaboanalyst to create a PCA plot and a PCA biplot.

Computational Identification of Enzymatic
Components of the Thermobifida fusca
Fatty Acid Biosynthesis Machinery
The sequenced T. fusca genome was queried with the BLASTP
algorithm (Altschul et al., 1990) using query sequences of
experimentally confirmed acetyl-CoA carboxylase (ACCase)
and Type II fatty acid synthase (FAS) components, either
originating from Actinomycetes or from Escherichia coli
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(Cronan and Thomas, 2009; Shivaiah et al., 2021). Additionally,
genes were identified using the KEGG genome browser (Kanehisa
et al., 2002) based on sequence homology, key processes, and
operon organization.

RESULTS

Fatty Acids Produced by Thermobifida
fusca at Optimal Growing Conditions
Fatty acid analyses show that when T. fusca was grown at 50°C
it primarily synthesizes fatty acids that are between 14 and 18
carbons in length, although trace amounts of 13-carbon fatty
acids were also detected. The majority of the fatty acids
produced were BCFAs, particularly iso- or anteiso-BCFAs
(i.e., the methyl branch is present at the ω-1 or ω-2
position of the acyl chain, respectively) (Figure 1). Small
amounts of mid-chain BCFAs were also detected, these
being 10-methyl BCFAs ranging between 16 and 18 carbons
in length. Linear fatty acids were also present, accounting for
approximately 10% of total fatty acids produced. Additionally,

we determined that T. fusca can produce minor amounts
(<5%) of mono-unsaturated C16 and C18 fatty acids with a
single double bond at the 9th position.

Fatty Acid Profiles Are Affected by Carbon
Source and Growth Temperature
Overall fatty acid yield was 2- to 3- fold higher when T. fusca
was grown at the optimal growth temperature (50°C) as
compared to growth at the suboptimal temperature (37°C)
(Figure 2), and this phenomenon was observed independent of
the carbon sources that were evaluated. Principal component
analysis of the fatty acid compositional data visualized the
factors contributing to the different fatty acid profiles of T.
fusca through generation of a PCA plot (Figure 3). Principal
component 1 accounts for ~52% of the sample variation,
indicating that the samples are primarily separated by
growth temperature, whereas carbon source contributed to
~26% of the sample variation (represented by principal
component 2). Indeed, the data points in the PCA plot
cluster distinctly by growth temperature, and to a lesser

FIGURE 1 | GC profiles of T. fusca fatty acids. Typical GC profiles of fatty acid methyl esters isolated from T. fusca cultures grown on cellobiose at the indicated
growth temperatures. Fatty acids were identified by mass-spectrometry and by comparing retention time with commercial standards. a = iso-15:0; b = anteiso-15:0; c =
n-15:0; d = iso-16:0; e = n-16:0; f = 10-methyl-16:0; g = iso-17:0; h = anteiso-17:0; i = n-17:0; j = unknown; k = 10-methyl-17:0; l = iso-18:0; m = unknown; n = n-18:0; o
= 10-methyl-18:0; p = n-19:0.
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extent by carbon source, with soluble and insoluble carbon
sources typically clustering together within each growth
temperature cluster. The conclusion that growth
temperature is the primary driver of fatty acid composition
is indicated by the PCA biplot (Supplementary Figure S1), as
most of the vectors representing the different fatty acids are
pointed horizontally, indicating that they contributed more to
principal component 1. Additionally, some of the longer-chain
fatty acids (18-carbons and longer) and the 10-methyl BCFAs
are more associated with changes in the carbon source, as their
vectors point more vertically.

The fatty acid profile of T. fusca shifted when it was cultured at
its suboptimal temperature; the relative abundance of BCFAs was
increased when the bacterium was cultured at 37°C
(Supplementary Figure S2). Growth temperature also affected
the acyl-chain lengths of the fatty acids produced by T. fusca.
While C13, C14, and C15 fatty acid species account for
approximately 10–15% of the fatty acids present at 50°C, they
are almost completely absent from the cultures grown at 37°C
(Supplementary Figure S3). Although unsaturated fatty acids

were only detected at trace amounts at the optimum growth
temperature, they make up a more significant proportion of the
total fatty acid content when T. fusca was cultured at 37°C (~5%).

While growth temperature was the primary factor
determining the types of fatty acids produced, carbon
source also contributed to a shift in fatty acid profiles.
Changes were primarily observed when comparing cultures
grown on soluble versus insoluble carbon sources. Specifically,
the fatty acid profiles of T. fusca grown on cellulose were very
similar to those obtained when T. fusca was grown on Avicel,
while fatty acid profiles of cultures grown on cellobiose
resembled those grown on glucose. The main shift between
the cultures grown on the soluble versus insoluble carbon
sources can be attributed to the types of BCFAs present. While
iso-BCFAs are the main species present in all growth
conditions, when T. fusca was grown on soluble carbon
sources we observed an even higher proportion of iso-
BCFAs at 37°C. This relationship is reversed when using
insoluble carbon sources; namely there is a higher
proportion of iso-BCFAs at 50°C. In both cases,

FIGURE 2 | Fatty acid yield generated by T. fusca in various growing conditions. Total accumulation of all identified fatty acid products (µmoles/g dry weight) when
T. fuscawas grown on glucose, cellobiose, cellulose, or Avicel as carbon source and cultured at either 37°C or 50°C, respectively. Fatty acid species are stacked in order
of increasing chain length. Error bars represent standard error from three replicates.
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the change in abundance of iso-BCFAs is complemented with
a corresponding change in the abundance of anteiso-BCFAs.

Identification of Thermobifida fusca Fatty
Acid Biosynthesis Machinery
Although many of the enzymes involved in fatty acid biosynthesis
have not been specifically characterized from T. fusca, they are
identifiable by their sequence homology to enzymes from other
bacteria, and by the operon organization in the T. fusca genome
(Table 1). Querying the sequence of the T. fusca genome indicates
that like many other bacteria, T. fusca utilizes a Type II fatty acid
synthase (FAS) system to assemble fatty acids (Cronan and
Thomas, 2009; Gago et al., 2011; Gago et al., 2018). In most
organisms, FAS utilizes acetyl-CoA and malonyl-CoA as
substrates, and the latter substrate is generated by the
carboxylation of the former, a reaction catalyzed by acetyl-
CoA carboxylase (Waldrop et al., 2012). Multiple iterations of
the FAS cycle using these two substrates generates linear,
saturated fatty acids, but these are minor components in T.
fusca. The iso-and anteiso-BCFAs that account for a large
portion of the fatty acids of T. fusca are produced by this FAS
system by using branched-chain acyl-CoA substrates, rather than
acetyl-CoA, which can be generated by the deamination of
branched chain amino acids (i.e., valine, leucine, or isoleucine)

(Kaneda, 1991; Beck et al., 2004; Zhu et al., 2005). Thus, the fatty
acid biosynthetic machinery of T. fusca can be considered as
consisting of at least four modules (Figure 4): 1) the module that
generates the acyl-CoA starting substrate for FAS; 2) the module
that generates the malonyl-CoA elongating substrate for FAS; 3)
the FAS system itself; and 4) a fatty acid modifying module which
generates the unsaturated and the internally BCFAs.

The acyl-CoA substrates required by this organism’s FAS
system are products of primary metabolism from sugars,
generating acetyl-CoA, as well as products of branched
chain amino acid metabolism, generating isobutyryl-CoA
and 2-methylbutrylyl-CoA. Sequence homology identified
multiple candidates for both the branched chain
aminotransferase (Tfu_0616, Tfu_2112) and branched chain
α-keto acid dehydrogenase (Tfu_0180, Tfu_0181, Tfu_0182)
enzymes required to generate isobutyryl-CoA and 2-
methylbutyryl-CoA from valine, leucine, or isoleucine.
Alternatively, these branched chain acyl-CoAs may be
generated from the α-keto acids that are intermediates of
branched chain amino acid biosynthesis. Indeed, the
branched chain aminotransferase encoded by Tfu_0616 is
located in the genome adjoining genes that encode enzymes
involved in branched chain amino acid biosynthesis, including
genes with high sequence homology to acetolactate synthase
(Tfu_0611, Tfu_0612), keto-acid isomeroreductase

FIGURE 3 | PCA analysis. PCA analysis was conducted with Metaboanalyst software. An ellipse indicating 95% confidence regions for each heterotic group (37°C
or 50°C growth temperature) is provided. Only one replicate of T. fusca supplemented with glucose at 37°C is depicted.
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(Tfu_0613), 3-isopropylmalate dehydrogenase (Tfu_0615), 2-
isopropylmalate synthase (Tfu_0617), and 3-isopropylmalate
dehydratase (Tfu_0626, Tfu_0627). (Franco and Blanchard,
2017). Acetyl-CoA can be produced through several biological
processes (Krivoruchko et al., 2015), including the oxidative
decarboxylation of pyruvate catalyzed by the pyruvate
dehydrogenase complex (PDH) (Tfu_3049, Tfu_3050,
Tfu_3051). Alternatively, acetyl-CoA can be generated
through the activation of acetate catalyzed by: 1) an acetate
kinase (Tfu_2971); 2) an AMP-forming acetyl-CoA synthetase
(Tfu_1546, Tfu_2808, Tfu_2856); or 3) an ADP-forming
acetyl-CoA synthetase (Tfu_1302, Tfu_1473). T. fusca also
possesses three genes that encode for proteins that resemble
citryl-CoA lyase (Tfu_0341, Tfu_1285, Tfu_1313), a
component of the reductive TCA cycle capable of
converting citryl-CoA to acetyl-CoA and oxaloacetate
(Aoshima et al., 2004; Hügler et al., 2005; Hügler et al.,
2007; Katiyar et al., 2018).

The biotin-containing enzyme, acetyl-CoA carboxylase
(ACCase) converts acetyl-CoA to malonyl-CoA, a reaction
that is classically considered the first and rate-limiting reaction
of fatty acid biosynthesis. As with all biotin enzymes, sequences of
these proteins can be recognized by sequence homology among
three different functional domains: the biotin carboxylase (BC),
biotin carboxyl carrier protein (BCCP), and the carboxyl

transferase (CT) domains (Cronan and Waldrop, 2002; Tong,
2013). The tertiary and quaternary organization of these domains
varies considerably, depending on the phylogeny of the organism.
E. coli, for examples, has ACCase components that are organized
as individual proteins that come together to form the enzyme
complex. In contrast, several ACCases from Actinomycetes
consist of two subunits: the A subunit that encompasses both
the BC and BCCP functional domains, and the B subunit that
encompasses the CT domain (Gago et al., 2011; Gago et al., 2018).
Additionally, some Actinomycete ACCases have a third non-
catalytic subunit, E, that is needed for proper assembly of the
holoenzyme complex (Shivaiah et al., 2021). Moreover, the A and
B subunit quaternary organization of biotin enzymes is also
common to propionyl-CoA carboxylase (Tong, 2013) and
methylcrotonyl-CoA carboxylase (Song et al., 1994; McKean
et al., 2000; Wurtele and Nikolau, 2000), which complicates
the sequence-based identification of ACCase in the T. fusca
genome.

Previous studies have experimentally characterized the T.
fusca operon (Tfu_2555, Tfu_2556, Tfu_2557) that encodes
the B, E, and A subunits of an acyl-CoA carboxylase
(AcCCase) (Shivaiah et al., 2021). This enzyme is
promiscuous and can carboxylate acetyl-CoA, propionyl-
CoA, and butyryl-CoA. Other Actinobacteria (e.g.,
Streptomyces coelicolor) also express such a promiscuous

TABLE 1 | Identification of T. fusca fatty acid biosynthesis machinery. Genes were identified using the BLASTP algorithm using query sequences of experimentally confirmed
enzymes from E. coli or from Actinomycetes.

Enzyme Description Gene name

ACCase A ACCase BC and BCCP subunits Tfu_0947
ACCase B ACCase CT subunit Tfu_0948
AcCCase A AcCCase BC and BCCP subunit Tfu_2557
AcCCase B AcCCase CT subunit Tfu_2555
AcCCase E AcCCase E subunit Tfu_2556
ACCase B Additional ACCase CT subunit Tfu_1228, Tfu_1215
BCCP Biotin Carboxyl-Carrier Protein Tfu_1513
LCCase LCCase Tfu_1530
AcpP Acyl-carrier protein (ACP) Tfu_1975
MCAT Malonyl-CoA:ACP transacylase Tfu_1231, Tfu_1973
FabH 3-ketoacyl-ACP synthase III Tfu_1229, Tfu_1974
FabF 3-ketoacyl-ACP synthase III isozyme Tfu_1976
FabG 3-ketoacyl-ACP reductase Tfu_1841, Tfu_1843, Tfu_2308
FabA 3-hydroxyacyl-ACP dehydratase Unknown
FabI Enoyl-ACP reductase Tfu_1842
PlsX Glycerol-3-phosphate acyltransferase Tfu_0271
PlsC Glycerol-3-phosphate acyltransferase Tfu_1417, Tfu_1036
BCAT Branched chain amino acid aminotransferase Tfu_0616, Tfu_2112
BCAD Branched Chain alpha keto acid dehydrogenase Tfu_0180, Tfu_0181, Tfu_0182
Des1 Delta-9 acyl-CoA desaturase Tfu_0413
BfaB Δ9 unsaturated fatty acid methyl transferase Tfu_2160
BfaA 10-methylene BCFA reductase Tfu_2161
PDH Pyruvate Dehydrogenase Complex Tfu_3049, Tfu_3050, Tfu_3051
ACK Acetate Kinase Tfu_2971
ACS-AMP AMP-Forming Acetyl-CoA Synthetase Tfu_1546, Tfu_2808, Tfu_2856
ACS-ADP ADP-Forming Acetyl-CoA Synthetase Tfu_1302, Tfu_1473
CCL Citryl-CoA lyase Tfu_0341, Tfu_1285, Tfu_1313
ALS Acetolactate synthase Tfu_0611, Tfu_0612
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carboxylase, in addition to a highly specific propionyl-CoA
carboxylase (Gago et al., 2018). The more promiscuous
AcCCase enzymes can thereby generate not only malonyl-
CoA, but also methylmalonyl-CoA and ethylmalonyl-CoA,
and may therefore have multiple metabolic functions. For
example, the catabolism of valine, isoleucine and odd-
numbered fatty acids generates propionyl-CoA, which is
further metabolized via the TCA cycle after the sequential
conversion to methylmalonyl-CoA and succinyl-CoA

(Wongkittichote et al., 2017). Alternatively, methylmalonyl-
CoA and ethylmalonyl-CoA can be used as substrates by
polyketide synthases, generating polyketides with methyl-
or ethyl-branches in the final structure (Khosla and
Keasling, 2003; Risdian et al., 2019).

Our BLAST-based search of the T. fusca genome identified
additional genes that encode homologs of biotin-containing
carboxylase proteins, namely Tfu_0947, Tfu_0948, Tfu_1215,
Tfu_1228, Tfu_1513, and Tfu_1530. The adjacent Tfu_0947

FIGURE 4 | Fatty acid biosynthesis pathway. Acyl-CoA starting substrates for FAS are generated from glycolytic catabolism of glucose or from α-keto acids that
can be produced via the catabolism of branched-chain amino acids or as the penultimate intermediates in the biosynthesis of branched chain amino acids. The malonyl-
ACP substrate used for the elongation reaction of FAS is synthesized from acetyl-CoA by ACCases. The acyl-CoA and malonyl-ACP substrates are used by the FAS
system to elongate iso-, ante-iso, and linear n-fatty acids, which can be modified to produce unsaturated and 10-methyl branched chain fatty acids.
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and Tfu_0948 genes suggest that they are on a single operon, with
Tfu_0947 encoding a subunit with the BC and BCCP domains,
and Tfu_0948 encoding a subunit carrying the CT domain. This
subunit/domain organization suggests that this operon may
encode either a propionyl-CoA carboxylase (Gago et al., 2018)
or methylcrotonyl-CoA carboxylase (Tomassetti et al., 2018),
although ACCases with such quaternary subunit organizations
also occur in many Actinomycetes, including Streptomyces
coelicolor and Mycobacterium tuberculosis (Gago et al., 2011;
Tong, 2013).

The Tfu_1228 and Tfu_1215 genes encode proteins that
resemble CT subunits of biotin-carboxylases, but neither gene
lies within an operon that houses other functional subunits
necessary to form the holoenzyme complex. It is a common
feature among Actinomycetes to mix and match different CT-
subunits with a common BC/BCCP subunit, and thus generate
different enzymatic capability with a single BC/BCCP subunit
(Gago et al., 2011; Gago et al., 2018). The Tfu_1228 and Tfu_1215
genes may instill such a mechanism, and thus these genes could
also provide a means for generating malonyl-CoA for FAS. A
similar mechanism may occur in T. fusca, as Tfu_1228 and
Tfu_1215 could be part of additional ACCase complexes that
use an A subunit from another operon (such as Tfu_2557 or
Tfu_0947). An additional gene with sequence homology to
known ACCase components is Tfu_1513, which encodes a
protein with high sequence homology to a BCCP that is not
located near a BC or CT domain. Such a genome organization is
similar to that found in E. coli, where the BC, BCCP, and CT
components are separated into four individual proteins encoded
by 3 separate operons (Cronan and Waldrop, 2002; Gago et al.,
2018).

The Tfu_1530 gene encodes a large protein of 1849 residues,
and it appears to encompass all three catalytic domains required
for the carboxylation reaction (i.e., BC, BCCP and CT domains).
This homomeric domain organization is common to such biotin
carboxylases as ACCases from eukaryotes (i.e., plants, fungi, and
animals) (Nikolau et al., 2003; Sasaki and Nagano, 2004),
pyruvate carboxylases (Jitrapakdee and Wallace, 1999) and a
long chain acyl-CoA carboxylase from Mycobacterium species
(Tran et al., 2015; Lyonnet et al., 2017). The latter enzyme is
involved in the biosynthesis of mycolic acid, a fatty acid
specifically associated with the Mycobacterium genus
(Marrakchi et al., 2014). Thus, the specific enzymatic function
encoded by the Tfu_1530 gene is not recognizable by sequence
homology but may include the ability to generate malonyl-CoA
for FAS.

Type II FAS systems use cyclic iterations of four reactions that
are each catalyzed by distinct enzymes (Cronan and Rock, 2008).
Each cycle of the process adds two carbon atoms to the growing
acyl-chain, with the donor of these two carbon subunits being the
malonyl moiety of malonyl-CoA. The malonyl-moiety is first
loaded onto the acyl-carrier protein (ACP) subunit of the FAS
system, a reaction catalyzed by malonyl-CoA: ACP transacylase
(MCAT). Subsequently, each FAS cycle begins with a Claisen
condensation reaction between a preexisting “starting” acyl-CoA
or acyl-ACP and malonyl-ACP to generate a 3-ketoacyl-ACP
intermediate, which is 2-carbons longer than the initial acyl

moiety. The first of these Claisen condensation reactions is
between an acyl-CoA and malonyl-ACP, catalyzed by a 3-
ketoacyl-ACP synthase III (encoded by the FabH gene). The
chemical nature of the acyl-CoA substrate used in this
condensation reaction determines the nature of the ω-end of
the resulting fatty acid product; namely, utilizing acetyl-CoA,
isobutyryl-CoA or methylbutyryl-CoA as the substrate leads to
the generation of linear, iso-BCFA or anteiso-BCFA, respectively.
The subsequent three reactions of each FAS cycle involve
sequential reduction, dehydration and further reduction,
catalyzed by 3-ketoacyl-ACP reductase (FabG), 3-hydroxyacyl-
ACP dehydratase (FabA), and enoyl-ACP reductase (FabI),
respectively. The product of each FAS cycle results in the
generation of an acyl-ACP product that is two carbons longer
than the pre-loaded acyl chain, and it serves as the substrate for
the Claisen condensation reaction of the next round of the FAS
cycle; these subsequent Claisen condensation reactions with a
malonyl-ACP substrate are catalyzed by a 3-ketoacyl-ACP
synthase II isozyme (FabF). These catalytic processes generate
saturated fatty acids, and typically the process is terminated by
transfer of the acyl moiety from acyl-ACP to glycerol-3-
phosphate (glycerol-3-P), a reaction catalyzed by glycerol-3-P
acyltransferases (GPATs) (Yao and Rock, 2013). The substrate
specificity of GPATs determine the chain-lengths of the fatty
acids produced by FAS, and in most bacteria they are typically of
between 14 and 18 carbon atoms.

The T. fusca genome contains multiple operons that could
encode for FAS genes, although the similarity to enzymatic
functions associated with polyketide biosynthesis, catalyzed by
Type II polyketide synthase or a nonribosomal peptide
biosynthetic system (Corre and Challis, 2009), may confound
these identifications. Specifically, Tfu_1973 (MCAT) is part of a
large operon that includes Tfu_1974 (FabH), Tfu_1975 (ACP),
and Tfu_1976 (FabF). Another copy of MCAT is encoded by
Tfu_1231, which is also positioned near an additional copy of
FabH (Tfu_1229). We found three FabG genes in the T. fusca
genome that appear to encode for the 3-ketoacyl-ACP reductase.
Two of these FabG genes, Tfu_1841 and Tfu_1843, are located in
the same operon that also contains Tfu_1842 (FabI). A third copy
of FabG (Tfu_2308), is found separately and does not appear to be
part of a larger operon.

The fatty acid modification module includes genes that are
required to generate unsaturated and 10-methyl BCFAs. Recent
studies have indicated thatActinomycetes express a three-reaction
pathway that metabolically links these two fatty acids. Specifically,
a Δ-9 acyl-CoA desaturase (Tfu_0413) (Lykidis et al., 2007) can
generate monounsaturated fatty acids, which are substrates for
BfaB (Tfu_2160) and BfaA (Tfu_2161) enzymes, which
transform the monounsaturated acyl-CoA to 10-methylene
BCFA and to 10-methyl BCFA, respectively (Blitzblau et al.,
2021).

DISCUSSION

While plants have presented the world with a large renewable
feedstock of lignocellulosic biomass, the recalcitrant nature of this
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material has provided a challenge to make its utilization
economically feasible (Isikgor and Becer, 2015; Zoghlami and
Paës, 2019; Li et al., 2021). Fortunately, biological evolution has
produced organisms capable of breaking down plant biomass
(Brethauer and Studer, 2014; Saini et al., 2015; Xiong et al., 2018).
One such organism that has received attention for its ability to
catabolize biomass is T. fusca (Lykidis et al., 2007; del Pulgar and
Saadeddin, 2014; Deng et al., 2016; Vanee et al., 2017). However,
the breakdown of lignocellulosic biomass must be coupled to the
conversion of the derived carbon to molecular structures that
have utility as replacements of fossil-carbon based chemicals,
fuels andmaterials. Biologically produced fatty acids have chemo-
physical properties that make them highly desirable as substitutes
of fossil-carbon products (Nikolau et al., 2008; Janssen and
Steinbüchel, 2014; Shanks and Keeling, 2017). We have
therefore evaluated the types of energy-dense fatty acid
molecules that T. fusca is capable of producing.

Specifically, we have profiled the fatty acids that T. fusca
produces in eight different growth conditions, and in parallel
we have queried the sequenced genome of this organism to
identify many of the genes that may be involved in the
conversion of lignocellulosic-derived carbon to fatty acids. In
these analyses fatty acids were chemically converted to methyl
esters, which facilitated their subsequent GC-based identification
and quantification. Because this conversion was based on
transmethylation chemistry, which converts existing fatty acyl
esters to methyl esters, we infer that the fatty acids that we
profiled are acyl moieties of more complex lipids. Such lipids
could include membrane associated polar lipids (e.g.,
phospholipids) or non-polar storage lipids (e.g.,
triacylglycerols). Although some Actinomycetes are capable of
producing triacylglycerols, the absence of a gene for
diacylglycerol acyltransferases in the T. fusca genome (Lykidis
et al., 2007) that is necessary for triacylglycerol biosynthesis
would preclude the occurrence of these lipids. Moreover, in
Actinomycetes, triacylglycerols usually accumulate during the
stationary phase of growth (Olukoshi and Packter, 1994;
Alvarez and Steinbüchel, 2002; Comba et al., 2013; Santucci
et al., 2019). Thus, we surmise that the fatty acids identified in
this study are primarily membrane-associated phospholipids,
which accumulate to facilitate the exponential growth of bacteria.

The primary fatty acids of T. fusca are three types of BCFAs:
iso-branched, anteiso-branched, and mid-chain branched. We
evaluated the metabolic responsiveness of T. fusca in relation to
different growth temperature and different carbon sources and
found that the fatty acid profiles shifted particularly in response
to growth temperature. This temperature induced change in the
fatty acid profile is consistent with the need to maintain
membrane fluidity at the cooler temperature and results in
increased proportion of BCFAs (Mansilla et al., 2004;
Mendoza, 2014), although this shift in fatty acid composition
is also dependent on carbon source. For example, when grown on
glucose or cellobiose, there is a proportional increase in iso-
BCFAs at 37°C. In many organisms, maintaining membrane
fluidity at lower temperatures is achieved by increasing the
degree of fatty acid unsaturation, which also occurs in T.
fusca. Because the proportion of unsaturated fatty acids was

always <5% of the total recovered fatty acids, it is difficult to
envision that the unsaturated fatty acids are solely responsible for
maintaining membrane fluidity at the cooler temperature. Thus,
as with other microbial species (Klein et al., 1999; Saunders et al.,
2016; Hassan et al., 2020), we suggest that the alteration in BCFAs
is the main mechanism by which T. fusca maintains membrane
fluidity at colder temperatures.

BFCAs have chemo-physical attributes that make them of
particular interest for engineering applications. Specifically, the
methyl-branch in the alkyl chain has the effect of lowering the
melting point of the fatty acid, as compared to the linear-chain
fatty acids of the same number of carbon atoms (Yao and
Hammond, 2006). Therefore, BCFAs can maintain a fluid
state at lower temperatures, which is desirable for biodiesel or
lubrication application purposes in colder climates (Bart et al.,
2013). Although unsaturated fatty acids can be used for these
purposes, they are more susceptible to oxidation in these
applications that expose them to oxygen at higher
temperatures and pressures, as occurs in combustion engines.
Thus, T. fusca can be viewed as a source of saturated BCFAs, with
enhanced application potential as biofuels and biolubricants.

Despite this potential for producing desirable bioproducts, the
yield of fatty acids from T. fusca cultures is relatively low as
compared to such oleaginous organisms, such as plant oil seed
crops (e.g., sunflower, canola, safflower), yeasts (e.g., Yarrowia
lipolytica and Rhodosporidium toruloides) and microalgae (e.g.,
Botryococcus braunii). These later organisms hyperaccumulate
fatty acid containing neutral lipids that can account for 20–60% of
the dry biomass (Banerjee et al., 2002; Sharafi et al., 2015; Patel
et al., 2019; Liu H. et al., 2021; Liu Y. et al., 2021; Petraru et al.,
2021; Zemour et al., 2021). In contrast, T. fusca accumulates fatty
acids at approximately 1 mg/g dry biomass. Increasing fatty acid
titers from non-model organisms such as T. fusca is becoming
increasingly viable, either by mutagenesis and selection strategies
(Guo et al., 2019; Südfeld et al., 2021), or direct targeted genetic
engineering strategies (Zhang et al., 2019; Racharaks et al., 2021).
The latter strategy needs prior knowledge of the fatty acid
biosynthesis machinery that would be targeted for genetic
engineering, whereas the former strategy can be informative of
regulatory mechanisms, once mutant alleles can be genetically
mapped relative to the fatty acid biosynthesis machinery encoded
by the target genome. We therefore examined the T. fusca
genome to identify the components of the fatty acid
biosynthesis machinery, which would facilitate these strategies
for improving fatty acid yields.

T. fusca appears to possess much of the fatty acid biosynthesis
machinery that is common to other bacteria, particularly
Actinomycetes (Gago et al., 2011; Lyonnet et al., 2017; Gago
et al., 2018). At the core is the Type II FAS system, which appears
to be encoded primarily within two operons, encompassing the
genes Tfu_1973 to Tfu_1975 and Tfu_1841 to Tfu_1843.
Additional homologs of some of the FAS enzymatic
components are also encoded in the genome, but these may be
associated with a polyketide synthase system or the nonribosomal
peptide biosynthetic system responsible for the biosynthesis of
the siderophore, fuscachelins (Dimise et al., 2008; Corre and
Challis, 2009).
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The FAS system needs to be provided with four different
substrates: acetyl-CoA, isobutyryl-CoA, 2-methylbutyryl-CoA and
malonyl-CoA. The former substrates are used to initiate FAS
reactions, and thereby generate linear fatty acids and two types of
BCFAs; whereas malonyl-CoA is the substrate that is used to elongate
the fatty acid in the FAS catalyzed reaction.We identifiedfive potential
enzymatic systems that can generate acetyl-CoA: the pyruvate
dehydrogenase complex, AMP-forming acetyl-CoA synthetase,
ADP-forming acetyl-CoA synthetase, acetate kinase, and citryl-
CoA lyase. These systems give T. fusca the ability to produce
acetyl-CoA from multiple carbon sources, including pyruvate and
acetate. Citryl-CoA lyase represents the final step in the reductive TCA
cycle that also requires a 2-oxoglutarate: ferredoxin oxidoreductase
(Tfu_2674, Tfu_2675). The presence of these enzymes potentially
gives T. fusca the ability to synthesize acetyl-CoA from carbon dioxide
(Aoshima et al., 2004;Hügler et al., 2005), a process that has previously
been explored in Mycobacterium tuberculosis (Boshoff and Barry,
2005; Watanabe et al., 2011; Katiyar et al., 2018). The reductive TCA
cycle can be considered the reversal of the oxidative TCA cycle that is
prevalent in aerobic organisms and oxidizes carbon from acetyl-CoA
to generate carbon dioxide. The reductive TCA cycle is considered to
be a primordial pathway for carbon dioxide fixation facilitating
autotrophic metabolism in the earliest life-forms on earth, possibly
prior to the advent of the currently prevalent photosynthetic pentose
phosphate cycle (Buchanan and Arnon, 1990; Romano and Conway,
1996; Smith and Morowitz, 2004). Thus, T. fusca has the metabolic
flexibility for generating this important intermediate in metabolism,
andmoreover these mechanisms provide opportunities for improving
acetyl-CoA generation via genetic engineering strategies, as has been
done in a number of microbial systems (Lian et al., 2014; Liu et al.,
2017; Soma et al., 2017; Ku et al., 2020).

Several biotin-containing enzyme systems were identifiable via
sequence homology, which could generate the malonyl-CoA
substrate that is used by FAS to elongate the fatty acid. These
enzymes carboxylate acyl-CoA substrates, including acetyl-CoA,
and thereby generate malonyl-CoA (Nikolau et al., 2003), which
is considered to be the rate-limiting reaction for fatty acid
biosynthesis (Davis et al., 2000; Chaturvedi et al., 2021). Prior
experimental characterization has identified one of these biotin-
containing enzymes as being capable of carboxylating acetyl-
CoA, propionyl-CoA, or butyryl-CoA (Shivaiah et al., 2021), but
whether T. fusca encodes other proteins that can also carboxylate
acetyl-CoA will require similar characterizations.

Finally, the T. fusca genome features enzymes capable of
modifying fatty acids following their assembly by the FAS
system. These include an acyl-CoA desaturase to produce
unsaturated fatty acids, which are substrates for a methylase
and reductase needed to generate 10-methyl BCFAs (Blitzblau
et al., 2021). These three enzymes, in addition to the flexibility
of the FAS system to use an assortment of α-carboxyl acyl-
CoAs, indicate that T. fusca possesses the metabolic

machinery to convert plant biomass to a wide array of fatty
acids that have applications as biorenewable products. In
particular, T. fusca appears to be an organism that can
generate unique combinations of BCFAs, including those
with a mid-chain branch, which have potential applications
as feedstocks for novel bioproducts, such as bio-lubricants
(Blitzblau et al., 2021).

Collectively the fatty acid profiling data integrated with the
genomics data identified the genetic potential of T. fusca.
Additional data that evaluates the expression of this genetic
potential would precisely deduce the catalytic and regulatory
circuit(s) that define the metabolic system that generates the
diversity of fatty acids produced by this organism. Such genetic
expression data will require extensive steady state
transcriptomics, proteomics and metabolomics data, integrated
with flux analyses to further expand the comprehension of the
metabolic system that converts sugar-feedstocks to fatty acids,
and thereby make T. fusca an even more attractive candidate to
produce energy-dense biomolecules in a consolidated
bioprocessing system.
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Supplementary Figure S2 | Proportion of fatty acid classes identified in T. fusca
cultures. Mole percent of total fatty acids produced by T. fusca in different growth
conditions, organized by lipid species. “n-FA” indicates linear fatty acid chain.

Supplementary Figure S3 | Proportion of fatty acid chain lengths identified in T.
fusca cultures. Mole percent of total fatty acids produced by T. fusca in different
growth conditions, organized by chain length.
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in Wide-Target LC-MS-Based Trace
Bioanalysis of Small Molecules
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Covering a wide spectrum of molecules is essential for global metabolome assessment. While
metabolomics assays are most frequently carried out in microbore LC-MS analysis, reducing
the size of the analytical platform has proven its ability to boost sensitivity for specific -omics
applications. In this study, we elaborate the impact of LC miniaturization on exploratory small-
molecule LC-MS analysis, focusing on chromatographic properties with critical impact on
peak picking and statistical analysis.We have assessed a panel of small molecules comprising
endogenous metabolites and environmental contaminants covering three flow
regimes—analytical, micro-, and nano-flow. Miniaturization to the micro-flow regime yields
moderately increased sensitivity as compared to the nano setup, where median sensitivity
gains around 80-fold are observed in protein-precipitated blood plasma extract. This gain
resulting in higher coverage at low µg/L concentrations is compound dependent. At the same
time, the nano-LC-high-resolution mass spectrometry (HRMS) approach reduces the
investigated chemical space as a consequence of the trap-and-elute nano-LC platform.
Finally, while all three setups show excellent retention time stabilities, rapid gradients jeopardize
the peak area repeatability of the nano-LC setup. Micro-LC offers the best compromise
between improving signal intensity and metabolome coverage, despite the fact that only
incremental gains can be achieved. Hence, we recommend using micro-LC for wide-target
small-molecule trace bioanalysis and global metabolomics of abundant samples.

Keywords: miniaturization, chromatography, LC-MS, metabolomics, exposomics, coverage, sensitivity

1 INTRODUCTION

The physicochemical diversity and wide concentration ranges of metabolites in biological samples to
date prevent comprehensive coverage of the metabolome by a single (or even a few) analytical
methods. Methods based on liquid chromatography coupled tomass spectrometry (LC-MS) offer the
best sensitivity, highest versatility regarding physicochemical coverage and dynamic ranges between
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two and four orders of magnitude. Specifically, chromatographic
separation supports the identification of isomers, reduces ion
suppression and improves detection of low-abundant
compounds (Lu et al., 2017; Alseekh et al., 2021). LC-MS-
based metabolomics experiments are most frequently carried
out in microbore scale (i.e., 1.5–3.2 mm inner column
diameter and flow rates of 100–500 μl/min) (Vasconcelos
Soares Maciel et al., 2020). Microbore systems are robust and
convenient to use, accommodate short and steep gradients and
provide high-performance chromatography with peak widths
around 3 s (full width at half maximum). The workflows
established for high resolution mass spectrometry (HRMS)-
based analysis depend on highly repeatable features with
regard to retention time and signal intensity. Microbore LC
systems allow robust plug-and-play operation while providing
reproducible retention times, peak shapes and signal intensities,
supporting automated data processing in the course of non-
targeted experiments. Likewise, narrow peak shape, technical
reproducibility of signal intensities, minimal system carryover
and linear detector response build the basis for (relative and
absolute) quantification.

In contrast to small-molecule -omics, proteomics and peptide
LC-MS-analyses are commonly carried out on the nano-scale
(i.e., 10–150 µm column i.d. and flow rates of 0.1–1 μl/min).
Gradients in proteomics and peptide analysis are typically
much longer (in the order of an hour) and eluent composition
covers a narrower span of organic eluent content. Nano-LC
coupled to nano-ESI-MS offers unrivalled mass sensitivity
essential for the analysis of low-volume samples. The assets
but also challenges of nano-LC are related to the low flow
rates employed. On the one hand, sensitivity can be vastly
increased by reduced on-column sample dilution and
compatibility with nano-ESI, offering itself unique benefits for
ionization (Juraschek et al., 1999; Schmidt et al., 2003; Kourtchev
et al., 2020). On the other hand, the low flow rates and small
column dimensions make the whole system more susceptible to
void volumes, clogging of column and capillaries/emitter, mass
overload and associated system carryover, etc. (Noga et al., 2007).
In principle, these stressors also affect microbore LC, but are
more pronounced at the very low flow rates of nano-LC, and
complicate successful handling in practice. Hence, nano-LC is not
as widely established in small-molecule -omics as it is in
proteomics, but it has been successfully applied for (xeno-)
metabolomics analysis especially for cases where low available
sample volumes demanded the smallest possible analysis
platform (Lanckmans et al., 2006; Nakatani et al., 2020; Geller
et al., 2022). In fact, LC miniaturization for small-molecule
analysis is iteratively discussed in literature as a means of
increasing sensitivity when dealing with low sample amounts
(Chetwynd and David, 2018; Nakatani et al., 2020; Sanders and
Edwards, 2020).

While analytical flow and nano-flow LC-MS platforms are
routinely used in metabolomics and proteomics analyses (Shi
et al., 2004; Wilson et al., 2015; Yi et al., 2017), the interest for
micro-flow platforms is increasing in both research communities
as a means to enhance sensitivity and save analysis cost (coming
from analytical flow) (Greco et al., n.d.; Gray et al., 2016; Cebo

et al., 2020; King et al., 2020) or to enhance robustness and
reproducibility of the analysis (coming from nano-flow) (Bian
et al., 2020). LCminiaturizationmaximizes signal intensities from
a given amount of injected sample and potentially extends the
analysis scope toward molecules with low abundance or detector
response. Signal intensity is key for compound identification as
signal intensity thresholds determine the triggering, acquisition
and quality of MS/MS spectra.

A handful of studies have compared the performance of
specifically optimized miniaturized LC-MS platforms with
their established microbore LC-MS workflows for
metabolomics or other multi-residue small-molecule analyses
(Chetwynd et al., 2014; Nakatani et al., 2020; Zardini Buzatto
et al., 2020; Geller et al., 2022). With the present study, we address
the following question: Assuming that sample volume is not a
limiting factor, would LC miniaturization allow to broaden the
analyte scope by extending coverage toward low abundant
analytes? Injecting the same sample volume on a smaller
analytical platform equals a large volume injection, which is
successfully applied for, e.g., proteomics or environmental
analysis, but without increasing the actual amount of injected
sample–a considerable asset for metabolomics experiments since
they usually deal with dense sample matrices and long sequence
runs. LC miniaturization holds the potential for maximizing
sensitivity without the cost of polluting ion source and mass
spectrometer with additional sample. Here, we pinpoint the
benefit and challenges of LC miniaturization for non-targeted
multicomponent small molecule analysis in practice by
transferring a typical metabolomics method from analytical to
micro- and nano-flow regime while holding injection volume,
mobile and stationary phases, gradient and detection parameters
constant.

2 EXPERIMENTAL

We compared a standard analytical scale (250 μl/min) reversed-
phase metabolomics method with two grades of miniaturization,
micro- (57 μl/min) and nano-flow (0.3 μl/min) (Vasconcelos
Soares Maciel et al., 2020), by injecting a series of standards
and matrix samples on each platform. We analyzed spiked
exogenous compounds at different concentrations and
endogenous human plasma metabolites at natural abundance
levels. The analytes were selected to cover a wide range of
physicochemical properties and show different grades of
reversed phase retention (see Figure 6) to monitor
chromatographic enrichment and retention-related impacts on
signal intensity.

2.1 Standards and Solvents
Acetonitrile (ACN) and water were of LC-MS grade and ordered
at Sigma-Aldrich (Vienna, Austria) and Fisher Scientific (Vienna,
Austria). Formic acid ≥99% and methanol (MeOH) were also of
LC-MS purity and ordered at VWR International (Vienna,
Austria).

The mycotoxins aflatoxin B1 and G2, ochratoxin A,
sterigmatocystin, T2-toxin and zearalenone were obtained

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8575052

Fitz et al. LC-Miniaturization in Small-Molecule -Omics

107

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


from RomerLabs (Tulln, Austria). Aflatoxin M1, aflatoxicol,
alternariol, and ochratoxin alpha were obtained from Toronto
Research Chemicals (Ontario, Canada). A total of 10 mycotoxins
were analyzed. Pharmaceutical and agrochemical standards were
kindly provided by Eurofins Umwelt Österreich GmbH & Co KG
(39 and 9 compounds, respectively). Standards were obtained in
dissolved form or weighed and dissolved in appropriate solvent to
obtain single stock solutions. All standards were of HPLC-grade
or LC-MS-grade purity. Molecules and sum formulas are listed in
Supplementary Table S1.

In the following, we compare peak width and peak shape,
repeatability of detector response, retention time stability, signal
intensity and peak concentration for model molecules that are
detected in all three setups in spiked plasma extract at a
concentration of 1 μg/L, except ceftiofur and coumaphos,
which are assessed at 10 μg/L. Linear range, sensitivity, matrix
effect and limit of detection are assessed and compared for
molecules with a linear relation of concentration and detector
response in all three setups. Coverage and signal intensity ratios
are additionally assessed using a panel of molecules detected in
plasma extract at naturally occurring abundances (48 endogenous
metabolites, 3 xenobiotics). Details are listed in Supplementary
Tables S2–S5.

2.2 Spiking Solutions
Single stocks were stored at −20°C until they were volumetrically
combined to give two multicomponent mixtures: one containing
pharmaceuticals/agrochemicals and one containing mycotoxins.
For bothmixtures, single stocks were combined volumetrically and
evaporated to dryness in a vacuum centrifuge at room temperature.
The pharmaceutical/agrochemical residue was reconstituted in
MeOH to give a multicomponent standard with a concentration
of 50,000 μg/L. Further 1:10 dilution steps with MeOH yielded
multicomponent standards with concentrations of 5,000, 500, 50, 5
and 0.5 μg/L. The mycotoxin residue was thoroughly reconstituted
in 5% (v/v) ACN to give a multicomponent standard with a
concentration of 500 μg/L. Further 1:10 dilution steps with 5%
(v/v) ACN yieldedmulticomponent standards with concentrations
of 50 and 5 μg/L.

2.3 Plasma Extraction
Pooled human blood plasma (two donors) was purchased in
frozen form (dry ice) at Innovative Research, Inc. (46430 Peary
Court, Novi, Michigan, United States) and stored at −20°C
until sample preparation. After thawing at room temperature,
2 ml of plasma was transferred to a 15 ml Falcon tube and
mixed with 6 ml acidified ACN (ACN +0.1% (v/v) formic
acid). The mixture was vortexed for 3 min and kept at
−20°C for 1 h to allow protein precipitation, then it was
vortexed again and mildly centrifuged for 5 min at 2,000 rcf.
The supernatant was collected and transferred to Eppendorf
tubes for high-speed centrifugation (14,000 rcf, 10 min).
Centrifugation steps were performed at room temperature
on a HERMLE Z446K centrifuge. The supernatants were
carefully aspirated and mingled in 5 ml Eppendorf tubes.
Seven aliquots of 400 µl each were prepared in brown 1.5 ml
HPLC glass vials with screw caps and septum.

2.4 Samples
Experiments were based on spiked plasma extract (matrix
samples) and spiked neat solvent. For neat solvent samples,
2 ml of LC-MS-grade water were taken through the same
sample preparation procedure as described for plasma extracts
(Section 2.3). Next, 400 µl aliquots of plasma extract or solvent
were spiked with the previously prepared multicomponent
mixtures (pharmaceuticals/agrochemicals and mycotoxins,
respectively), giving six concentration levels (5,000, 1,000, 100,
10, 1, and 0.1 μg/L) plus one zero sample for each of the two
matrices. Mycotoxins were not spiked to samples of the highest
concentration and were diluted 1:10 in all other concentration
levels as compared with the spiked pharmaceuticals/
agrochemicals, giving sample concentrations of 100, 10, 1, 0.1,
and 0.01 μg/L plus zero sample. Spiked samples were evaporated
to dryness, thoroughly reconstituted in 5% (v/v) ACN and
transferred to 1.5 ml brown-glass HPLC-vials with 200 µL glass
inserts and screw caps with slit septum for analysis. Portions of
sample that were not needed at the moment were kept in their
original HPLC-vials and stored at −20°C in dissolved form.

2.5 Instrumental Setups
Three analytical setups were compared in this analysis. All were
based on C18HSS T3 column chemistry with acidified H2O/ACN
as eluent system, and on detection via HRMS with a Q Exactive
HF quadrupole-Orbitrap mass spectrometer (Thermo Scientific).
The microplatform was stringently scaled to maintain the same
linear flow velocity as in the analytical flow equivalent. The three
platforms employed the same sub-2µm stationary material and
were operated with volumetric flow-rates close to their van
Deemter optima.

Owing to the great structural diversity of metabolites, it is
impossible to assess the entire metabolome with one analytical
platform (Patti, 2011; Lu et al., 2017). Nevertheless, the aim is to
capture as many molecules as possible and separations in global
metabolomics are not tailored to specific molecules but most
frequently use generic LC gradients spanning very low to very
high organic eluent content and medium run times. Fully
wettable stationary phases tolerate 100% (v/v) aqueous eluent
composition and offer retention for the more polar analytes that
would be flushed away with minimal organic solvent in the eluent
compared with conventional C18 phases. Next to analyte
enrichment, several other parameters along the analytical
process influence the intensity of the resulting detector signal:
Matrix density, dilution, solvent and volume of the injected
sample, extra-column volumes and flow-rate, amount and
mass loadability of the stationary phase, ionization efficiency
depending on analyte chemistry, eluent, coeluting matrix, droplet
size related to emitter geometry, spray voltage; and finally, ion
transfer, width ofm/z scan window, ion suppression effects in the
c-trap and detection efficiency in the mass analyzer. All of these
parameters should be adapted to the type of sample and analytes
of interest and should finally suit the analytical platform to
achieve the highest possible sensitivity. Optimization of the
whole analytical procedure is indeed quite specific for each
application. With this study, we want to elaborate the
sensitivity potential enabled by LC miniaturization,
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i.e., reduced column inner diameter and reduced flow-rate, for
wide-target small-molecule analysis. It serves comparability to
keep as many of the parameters constant as possible (injection
volume, mass spectrometer, detection parameters) and adapt
only parameters that are directly related to the flow rate (LC
instrument, flow rate, ion source parameters). For the adapted
parameters, we followed vendor recommendations as far as
possible to ensure we operated each instrumental platform
under the respective optimal conditions while offering suitable
conditions for a wide variety of analytes.

An overview of the key method features is given in Table 1.
Further details can be found in the text below.

2.5.1 Analytical Flow Setup
The standard LC-setup was built upon a Vanquish Duo UHPLC
system (Thermo Scientific) consisting of a solvent rack, two
binary pumps, a split sampler with two injection valves, and a
column compartment. The capillary setup was optimized for
analytical flow regimes and consisted of 100 µm i.d. Viper-
capillaries (Thermo Fisher Scientific) pre- and post-column.
An Acquity UPLC HSS T3 column (2.1 mm i.d. × 150 mm,
100 Å, 1.8 µm, Waters) equipped with a VanGuard Pre-
Column (2.1 mm i.d. × 5 mm, Waters) was eluted in gradient-
mode with a flow rate of 250 μl/min at 35°C. Mobile phase A was
H2O + 0.1% (v/v) formic acid, mobile phase B was ACN +0.1% (v/
v) formic acid. The following gradient was applied: 0–1 min 1% B,
1–5 min ramp to 50% B, 5–12 min ramp to 99% B, 12–15 min
hold at 99% B, at 15 min switch to 1% B, followed by 15–22 min
re-equilibration at 1% B. The injection volume was 3 µl and the
injector needle was washed with 80% ACN for 15 s after each
injection. The column was connected to an IonMax Source with a
Heated Electrospray Ionization (HESI-II) Probe and a 100 µm i.d.
stainless steel emitter (Thermo Fisher Scientific) via a 100 µm i.d.
Viper-capillary, a zero dead-volume grounding union, and a piece
of 100 µm i.d. PEEK-capillary.

2.5.2 Micro-Flow Setup
This LC-setup was built upon the same Vanquish Duo UHPLC
system (Thermo Scientific) as the analytical flow setup. An
Acquity UPLC HSS T3 column (1 mm i.d. × 150 mm, 100 Å,
1.8 µm, Waters) equipped with a VanGuard Pre-Column
(2.1 mm i.d. × 5 mm, Waters) was eluted in gradient-mode.
The flow rate was volumetrically scaled to maintain the same

linear flow velocity as in the analytical setup and was held
constant at 57 μl/min. Column temperature, eluents, and
gradient were the same as described for the analytical setup.
The same 100 µm i.d. Viper capillaries were used pre-column as
described above, which led to slight gradient delay in
combination with the lower flow rate. It was necessary to
prolong the re-equilibration step to 9 min, resulting in a total
runtime of 24 min: 0–1 min 1% B, 1–5 min ramp to 50% B,
5–12 min ramp to 99% B, 12–15 min hold at 99% B, at 15 min
switch to 1% B, followed by 15–24 min re-equilibration at 1% B.
Injection volume, needle wash and column temperature were the
same as in the analytical flow setup. To avoid post-column peak
broadening, the post-column flow path was adapted to the lower
volumetric flow rate: The column was connected to an Ion Max
Source with a Heated Electrospray Ionization (HESI-II) Probe via
a 50 µm i.d. × 350 mm nanoViper-capillary, a zero dead-volume
grounding union, and 50 µm i.d. × 150 mm nanoViper-capillary.
The ion source was equipped with a 50 µm i.d. stainless steel
emitter. Flow-path adaptations were made according to (Greco
et al., n.d.).

2.5.3 Nano-Flow Setup
For the nano-flow setup, a trap-and-elute configuration was
chosen to increase loading capacity and loading flow rate. An
UltiMate 3000 RSLCnano system (Thermo Scientific) consisting
of SRD-3400 solvent rack, NCS-3500RS pump module
containing the column compartment and an 850 bar 10-port
switching valve, and a WPS-3000TPL RS temperature-controlled
autosampler equipped with a 350-bar 8-port-valve and an 850-
bar injection valve. Fluidic setup and capillary dimensions
followed vendor recommendations to minimize pre-column
extra-column volumes. Micro-flow (30 μL/min) was delivered
by a ternary micro pump for preconcentrating the sample on a
trapping column. The loading pump delivered the flow through
the autosampler injection valve via the 10-port switching valve in
the column compartment onto the trapping column. Nano-flow
(0.3 μL/min) was delivered by a nano/capillary pump and
directed onto the nano-column. Flow rate was regulated with
an integrated ProFlow flowmeter. The nano/capillary pump
delivered the flow to the nano-column via the 10-port
switching valve in the column compartment. A 3 µL sample
plug was drawn in microliter-pickup mode through a 2.4 µL
injection needle and into a 20 µL sample loop. LC-MS-grade

TABLE 1 | Key features of the three analytical setups.

Analytical setup Micro-setup Nano-setup

LC instrument Vanquish Duo UHPLC Vanquish Duo UHPLC UltiMate 3000 RSLCnano
Column i.d. 2.1 mm 1.0 mm 0.075 mm (separation)

0.3 mm (trap)
Flow rate 250 μL/min 57 μL/min Separation: 0.3 μL/min

Loading: 30 μL/min
Inject. volume 3 µL 3 µL 3 µL
ESI source Ion Max with HESI-II-probe Ion Max with HESI-II-probe Nanospray Flex
Emitter i.d. 100 µm 50 µm 30 µm
Spray voltage 3.5 kV 3.5 kV 1.9 kV
Other source parameters Flow rate default for temperatures and gas flows Flow rate default for temperatures and gas flows Manually adjusted emitter position
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water with 0.1% (v/v) formic acid served as pickup-fluid. The
sample was injected into the loading-flow path and accumulated
on the trapping column for 1 min. The trapping column effluent
was directed to waste during the loading procedure. Subsequent
analysis was carried out in back-flush mode, i.e., the trapping
column was switched in line with the nano-column by rotating
the column compartment 10-port valve, now carrying the entire
nano/capillary-pump-gradient through the trapping column in
reversed direction and through the nano-column to the MS. Pre-
concentration setups with commercial equipment typically
employ the same stationary phase chemistry for trap column
and analytical column (Wilson et al., 2015), but with larger
particle size and hence less retentivity of the trap column. A
nanoEase M/Z HSS T3 trap column (0.3 × 50 mm, 100Å, 5 μm,
Waters) was used for pre-concentration and a nanoEaseM/ZHSS
T3 nano-column (0.075 × 150 mm, 100Å, 1.8 µm, Waters) for
analyte separation. The column compartment was kept at 35°C.

Eluent composition was the same for trapping and separation:
Eluent A was H2O + 0.1% (v/v) formic acid and eluent B was
ACN +0.1% (v/v) formic acid. Trapping was pursued for
1 minute with 0% B (isocratic). While the aliphatic groups of
ordinary C18 material collapse in 100% aqueous environment,
the HSS T3 chemistry is fully wettable. We chose this material to
allow a loading step without organic modifier to retain polar
compounds as far as possible. The trapping column was switched
in line with the nano-column 1 min after injection and with
another 1-min delay, a gradient from 1 to 99% B in 11 min was
delivered by the nano/capillary-pump for separation on the nano-
column. The gradient was followed by a 6-min flush with 99% B
and 23 min re-equilibration at 1% B. The nano-column was
connected to a nano-ESI source with a piece of 20 µm i.d./
280 µm o.d. fused silica tubing, a PTFE sleeve and a zero dead
volume PEEK union. Considering the complexity of samples
obtained by non-selective liquid-liquid-extraction and
centrifugation, a stainless-steel emitter with an i.d. of 30 µm
was chosen to ensure longer durability and avoid clogging as
compared to silica emitters with lower inner diameter. Emitter
position was adjusted manually. Spray voltage was 1.9 kV in
positive ionization mode.

2.5.4 Mass Spectrometry
HRMS was performed with a Q Exactive HF quadrupole-
Orbitrap mass spectrometer (Thermo Scientific). The
following parameters were used for all three setups: MS1
spectra (profile mode), scan range 80–1200m/z, positive
polarity, resolution 120,000, AGC target 3e6, maximum
injection time 200 ms, and S-lens RF-level 50. For ionization,
two different electrospray sources were used: A Nanospray Flex
ion source equipped with a 30 µm i.d. steel emitter for the nano-
scale setup, and an Ion Max source equipped with a HESI-II-
probe and steel emitter for micro- and analytical setup. Both
sources were purchased from Thermo Fisher Scientific. Emitter
i.d. was 100 µm for the analytical setup, while the micro-setup
required a reduced emitter i.d. of 50 µm. We optimized the ESI
parameters and carried out the experiments under optimum
condition for the respective flow regime. Spray voltage was
1.9 kV for the nano-setup and 3.5 kV for micro- and analytical

setup, respectively. Flow rate sensitive parameters for HESI-
ionization were adapted according to vendor recommendations:
for micro-setup (57 μL/min), capillary temperature was 250°C,
sheath gas 30.70, auxiliary gas 10.00, spare gas 1.00, and probe
heater temperature 157°C. For analytical setup (250 μL/min),
capillary temperature was 253.13°C, sheath gas 46.25, auxiliary
gas 10.63, spare gas 2.13, and probe heater temperature
406.25°C.

2.6 Data Evaluation
After data acquisition, vendor-specific profile mode files were
centroided with the msConvert GUI application (version
3.0.19014-f9d5b8a3b) from the ProteoWizard Toolkit applying
the peakPicking-filter (vendor msLevel = 1-1) and mzML as
output format (Chambers et al., 2012). Centroided data were
subjected to targeted data evaluation in Skyline (Adams et al.,
2020). A mass extraction window of 10 ppm was used to generate
extracted ion chromatograms of the target compounds. The
chosen procedure outweighed calibration-related differences in
mass accuracy between the datasets and avoided loss of peak area
in the m/zm/z dimension for all three setups (Vereyken et al.,
2019). Evaluation of chromatographic parameters focused on [M
+ H]+ adducts of the monoisotopic peaks. For selected
compounds, extracted ion chromatograms were generated
based on [M]+, [M + NH4]

+ or [M + H-H2O]
+ adducts. For

spiked exogenous compounds, area values of monoisotopic EICs
were used to characterize signal intensity, signal reproducibility,
matrix effect, slope and linear range of calibration curves, and
limit of detection. Furthermore, we assessed chromatographic
peak width and symmetry, retention time stability and peak
concentration. Signals with less than three consecutive data
points per peak were dismissed. Since some compounds
showed background noise, signals below 2× the averaged
signal of a matrix-specific zero sample (solvent or plasma
extract with a spiked concentration of 0 μg/L, n = 4) was put
in place as additional filter. Formulas for the calculation of the
parameters can be found in the results section.

The same method characteristics were assessed for a panel of
metabolites detected in non-spiked plasma extract, except for
matrix effect, calibration curve and LOD. Peak concentration
was expressed relative to the analytical flow setup. The chosen
metabolites representmajormetabolite groups found in the human
serum metabolome database (Psychogios et al., 2011): Small
organic acids, nucleobases, steroid hormones, sugar phosphates,
amino acids, and lysophospholipids. The molecules were identified
by retention time comparison with authentic standards or
literature as noted in Supplementary Table S1.

3 RESULTS

This study elaborates the impact of LC miniaturization in small-
molecule LC-MS analysis. We compared two miniaturized
platforms with different grades of miniaturization, micro- and
nano-flow, with the standard analytical flow platform, for
depicting the metabolome of an abundant sample. The
platforms were characterized by performance parameters
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critical for current practices of non-target bioanalysis-like peak
picking and statistical analysis, emphasizing sensitivity and
metabolome coverage. We compared analytical figures of merit
for model molecules that were detected in all three setups in
spiked plasma extract at a concentration of 1 μg/L, except
ceftiofur and coumaphos, which were assessed at 10 μg/L, or
for molecules that showed a linear relation of signal intensity and
concentration in all three setups (linear range, sensitivity, matrix
effect, limit of detection), respectively. Coverage and signal
intensity ratios were additionally assessed using a panel of
endogenous metabolites detected in plasma extract at naturally
occurring abundances. We analyzed a panel of molecules with
wide chemical diversity with logP values between −4.4 and 7.7
and molecular weights spanning approximately 85–550 Da. The
results are listed in Supplementary Tables S2–S5.

Non-targeted experiments should cover both ionization
polarities since some metabolite classes ionize more effectively
as anions (constituents of the central energy metabolism like
small organic acids, sugars and their di-/triphosphates, etc.) and
others as cations (amino acids, nucleobases, nucleosides and
nucleotides, steroids, several lipid classes, etc.). Acquiring
positive and negative mode data in an automated fashion or
even in one chromatographic run is desirable. In particular, the
Orbitrap mass analyzer supports fast polarity switching, which
allows to record positive and negative ionization mode data near-
simultaneously and offers a substantial increase in analysis
throughput. The used nanoESI source, however, did not allow
fast polarity switching. The emitter position needs to be adjusted
for each ionization mode manually, precluding automated
acquisition of positive and negative mode data in one run.
Additionally, the nanoESI spray is less stable in negative mode
especially for eluent compositions with a high aqueous content, as
observed by us and others (Nguyen-Khuong et al., 2018). For our
experiments we therefore used positive ionization mode. The
described chromatographic phenomena apply to both polarities.
When interpreting our results it should be kept in mind that
ionization efficiency and matrix effect can differ in negative
ionization mode.

3.1 Chromatographic Quality, Repeatability,
and Peak Shape
3.1.1 Peak Width and Symmetry
Peak width (here: width at half-maximum) and peak symmetry are
related to chromatographic resolution and enrichment success.
Narrow peaks ensure maximal separation efficiency and signal
intensity, resulting in cleaner MS/MS spectra and better detection
limits. Peak width homogeneity affects the quality of fragment
spectra as the average peak width is set for data-dependent MS/
MS acquisition (average peak width for dynamic exclusion and apex
trigger). It also influences the quality of peak picking by commonly
applied software like XCMS, where a window of peak widths needs
to be defined to help differentiate chromatographic peaks from
background signals. Miniaturization to modular LC-systems holds
the risk of peak broadening because the ratio of column-volume and
flow rate to extra-column volumes tends to be less favorable
compared to columns with a greater inner diameter even with

optimized flow-path connections. Median peak width was
comparable between the setups (Figure 1). Phospholipids eluted
as broader peaks on all platforms with median peak widths around
5 s under micro- and analytical flow, and around 7 s under nano-
flow conditions. Sn-1 and sn-2 positional isomers were fully
separated in the former two setups but were not baseline
separated in the nano-platform. Thiophosphates (acephate,
coumaphos, methamidophos), sulfonamides (sulfachlorpyridazine,
sulfadiazine, sulfadimethoxine, sulfamethazine, sulfamethoxazole,
sulfamethoxypyridazine, sulfaquinoxaline, sulfathiazole) and the
sulfonate florfenicol, as well as several nitrates-containing
compounds (dimetridazole, dinoterb, furazolidone, ronidazole)
eluted as very broad peaks in the nano-setup, while the same
compounds exhibited excellent peak shapes in the micro- and
analytical flow regime. Since the same was observed for direct
injection mode without enrichment column (data not shown),
we assume that the pronounced compound-class specific peak
shape distortion in the nano-setup is linked to surface
interactions. Unwanted surface interactions are enhanced in
nano-LC systems, leading to unexpected chromatographic effects
even for compounds with otherwise good retention, which
complicates the choice of optimal peak width for data-dependent
MS/MS acquisition and non-targeted peak picking. Additionally,
most molecules displayed compound-specific tailing in the nano-
setup at all tested concentrations. Analytical andmicro-platform, on
the other hand, showed almost perfect peak symmetry. Tailing peaks
reduce chromatographic resolution and hold the risk ofmasking low
abundant analytes through ion suppression. Overlapping peaks lead
to chimeric spectra during fragmentation, undermining the
accuracy of compound identification.

3.1.2 Signal Stability
Among the molecules that were detected in all setups, the median
repeatability of area values was around 3.7% relative standard

FIGURE 1 | Peak width. Full width at half maximum was assessed for 53
molecules comprising endogenous (ceftiofur and coumaphos 10 μg/L,
caffeine, paraxanthine and theobromine at naturally occurring abundance; all
others 1 μg/L) molecules in plasma extract. Lysophospholipids were
broader compared to the rest in all setups. Further, thiophosphate,
sulfonamide/sulfonate and nitrate-containing compounds had distorted peak
shapes in the nano setup.
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deviation in the analytical flow setup for the spiked exogenous test
molecules and excellent 2.3% for the endogenous molecules
investigated. Repeatability improved upon miniaturization for
well-retained exogenous compounds with previously low signal
intensity. We observed a decrease of area repeatability with
retention time in the analytical flow regime and to a lesser
extent in the micro-flow regime (Figure 2). The nano-flow
platform showed elevated but satisfactory area repeatability for
most of the exogenous compounds. Sulfonamides and florfenicol
(sulfonate), nitrates, and thiophosphonates-displayed reduced
area repeatability. Notably, the nano-setup displayed optimum
repeatability only for a specific retention segment, while the more
hydrophilic metabolites (amino acids) were less reproducible due
to suboptimal chromatographic enrichment in the trap-and-elute
configuration and area rsd had a tendency to increase for the very
lipophilic metabolites (lysophospholipids) due to spray
destabilization at high proportions of organic solvent in the
eluent. Additionally, repeatability did not improve analogously
with signal intensity in the nano-flow setup. It is difficult to
maintain a stable electrospray throughout the wide gradient with
only one spray voltage setting and the delicate stability of the
nanospray is even more affected by rapidly changing eluent
conditions.

3.1.3 Retention Time Stability
We assessed retention time stability based on repeated injections
of a quality control sample throughout the injection sequence (c =
1 μg/L, n = 6) spanning 8.5 h (analytical), 9 h (micro) and 15 h
(nano). Retention times were adequately stable for all three
investigated setups, as retention times deviated from the mean
less than 5 s during 23 injections (Figure 3). Retention time
stability of the nano-setup was comparable to micro- and
analytical flow regime, even though absolute retention times
were around twice as high due to pronounced gradient delay
and resulting duration of the method. However, compounds that

eluted as broad peaks (sulfonamides/sulfonate, nitrates,
thiophosphates) also displayed reduced retention time
repeatability.

3.2 Sensitivity
3.2.1 Signal Intensity/Sensitivity
Yielding the highest signal intensity out of a given amount of
sample is the principal goal of LC miniaturization. The
assumption for our study is that abundant sample material is
available and sample volume is not a limiting factor for sensitivity
(e.g., plasma analysis of adult humans). Hence, we injected the
same sample volume on each platform. Signal intensity was
assessed for all molecules, sensitivity (expressed as slope of
calibration curves in linear range) was additionally reported
for the spiked exogenous compounds. On average, signal
intensity and sensitivity were improved through both
miniaturized setups. Area ratios increased with retention time
in the nano-setup, underlining that chromatographic enrichment
was an important factor to maximize sensitivity. For the micro-
setup, this relation was not as straightforward. The actual extent
of intensity increase depended on the specific molecule in both
setups (Figure 4). Using the micro-flow setup we observed a
median increase of signal intensity of around 2-fold for spiked
plasma extract, with individual signal intensity ratios ranging
between 0.7 and 20 (excluding LPC 20:1, which increased to 100-
fold due to very low signal intensity in the analytical flow setup).
Downscaling to nano-flowmultiplied signal intensities compared
to the analytical flow regime: a median 45-fold for the
investigated endogenous metabolites and around 75-fold for
exogenous molecules. Signal intensity ratios of the more polar
compounds fell below 30-fold increase, while individual rather
lipophilic molecules exceeded 1,000-fold increase.

3.2.2 Peak Concentration
Volumetric flow rate of the analytical setup (250 μL/min) had
been scaled to the smaller column dimensions of the micro-setup
(1 mm i.d. vs. 2.1 mm i.d.) to maintain approximately the same
linear flow velocity (Eqs 1, 2). Under the assumption that peak
width in the miniaturized setups is as narrow as under analytical
flow regime, the analyte band is more concentrated and signal
intensities theoretically increase by a factor of 4.4 after injecting
the same amount of sample. Likewise, the theoretical increase in
signal intensity using the nano-setup is 880-fold. However,
transferring the whole analytical platform to a lower flow
regime opens a multitude of factors that can influence actually
obtainable signal intensities. First, chromatographic effects like
peak broadening and tailing upon miniaturization can hamper
signal intensity and signal-to-noise ratios; second, the different
flow rates and peak concentrations can impact ionization
efficiency, ion transmission and collection, and Orbitrap
analysis. We compared peak concentrations (Eq. 3) and found
that (mild) peak broadening affected the concentration of the
analyte band in the miniaturized setups. Broader peaks elute in a
higher volume of eluent and the concentration reaching the
detector is therefore reduced. The theoretical gain in peak
concentration as described above is therefore not reached in
practice. While both, peak concentration gain and signal

FIGURE 2 |Repeatability of signal intensity based on repeated injections
(N = 4) of spiked plasma extract. Endogenous metabolites and caffeine/
caffeine metabolites were assessed at natural abundance; ceftiofur and
coumaphos at 10 μg/L, all other exogenous compounds at 1 μg/L. Area
values are background corrected.
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intensity, increase were lower than in theory, the actual profit in
signal intensity was again lower than for peak concentrations.
This finding points to factors beyond chromatographic

enrichment that influence detector response. The most polar
analytes including amino acids were quantitatively lost during
the loading step in the nano-setup. Detector response of the other

FIGURE 3 | Retention time stability. A quality control sample (c = 1 μg/L) was injceted six times (n = 6) spanning 8.5 h (analytical), 9 h (micro) and 15 h (nano).
Replicates 4–6 were injected right after another. The dashed line marks 5 s deviation from the mean retention time. Molecules with distorted peak shapes also display
reduced retention time stability due to imprecise automatic detection of the peak apex.

FIGURE 4 | Signal intensity of endogenous (natural abundance) and exogenous molecules (ceftiofur and coumaphos 10 μg/L, caffeine, paraxanthine and
theobromine naturally occuring abundance, all others 1 μg/L) in plasma extract. Areas are background corrected. Endogenous molecules are marked with an asterisc.
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molecules and in the micro-setup was affected (i.e., mostly
reduced) by extra-column effects, for example, signal
suppression (during ionization or in the C-trap) due to up-
concentrated analyte and matrix, up-concentration of analytes
altering adduct formation, and non-linear ESI-response (Yu et al.,
2020).

Za � Ya*60*
4

πpd2
a

, (1)

Ym � Za

60
*
πpd2

m

4
, (2)

cPeak � IVpc

Ypfwhm
, (3)

where Ya. Ym = volumetric flow rate of analytical and micro-
setup [mL/min]
Za, Zm = linear flow velocity of analytical and micro-setup
[cm/h]
da, dm = column inner diameter of analytical and micro-
setup [cm]
cPeak = peak concentration, average conc. across whole peak
volume [µg/L]
IV= injection volume (3 µL)
c = concentration of injected sample (1 μg/L)
Y = flow rate of respective setup [µL/min]
Fwhm = peak width at half maximum [min]

3.2.3 Linear Range
Non-targeted exploratory -omics investigation typically involves
fold-change analysis of signal intensities between studied sample
groups and ideally, the linear range of the analytical platform
should cover the range of analyte concentrations in the different
sample groups to properly compare them (Alseekh et al., 2021).

Linear range was estimated for a panel of exogenous molecules
according to The Fitness for Purpose of Analytical Methods: A
Laboratory Guide to Method Validation and Related Topics
(Eurachem, 2nd ed. 2014) and spanned between 2 and 4 orders
of magnitude (Eurachem, 2014). On average, it was shorter and
reached lower concentrations in the nano-setup compared to
micro- and analytical flow platform (Supplementary Figure
S1). Linear range length of individual molecules was affected by
matrix effects in all setups. A wide linear dynamic range is
advantageous in assays where the individual analyte is expected
to appear in a wide concentration span, as in metabolomics, and
the shorter linear range in the nano-setup arguably complicates
quantitative comparison of samples or sample types that contain
vastly different quantities of analyte. However, quantification of
low abundant analytes profits from higher sensitivity. It depends
on expected analyte concentration and goal of the analysis which of
these aspects is given more importance.

3.2.4 Limit of Detection
The limit of detection (LOD) estimates the concentration at
which an assay can accurately predict if a compound is
present in the sample or not. As such, it views signal intensity
in conjunction with a level of certainty, which is represented by
signal repeatability at concentrations on the verge of being

undetectable. To account for possible compound-specific
carryover and background and consistently select
appropriately low concentrations for each platform, LOD was
calculated based on relative area standard deviation of four
repeated injections of the lowest standard/sample
concentration in the linear range (Eq. 4). In account of the
lower linear range concentrations of the nano setup
(Supplementary Figure S1), the average concentration of
standards used for LOD calculation were lower for the nano-
setup than for the other two. LOD values averaged around 0.09
and 0.32 μg/L for standard and plasma extract in the analytical
flow setup, respectively. LODs in the micro-setup reflected the
gains in signal intensity (0.06 and 0.15 μg/L for standard and
plasma extract, respectively). For the nano-setup, the gains in
signal intensity did not equally translate to higher reproducibility
of chromatographic peak area, resulting in LOD values much
higher than expected judging from the high signal intensities
(median values of 0.08 μg/L and 0.21 μg/L for standard and
plasma extract, respectively). Drawing on the retention time,
specific distributions of signal intensity and repeatability in the
three setups, the actually obtainable profit regarding LOD was
very much compound dependent. For some compounds finding
already ideal chromatographic conditions and sufficient signal
intensity in the analytical flow setup, LODs nominally even
decreased upon miniaturization (Supplementary Figure S2).
There are several ways to calculate the LOD and all give
slightly different results, favoring systems with high signal
stability over those with high signal intensity, or vice versa. At
any rate, detection limits need to be understood as an estimate
only. Regarding the nano-setup, we can draw from this
comparison that LODs did not improve equally to signal
intensity due to practical instrumental issues like carryover
and impaired signal stability.

Limit of detection � 3psd
slope

, (4)

where sd = standard deviation of the chromatographic peak
area (background corrected) of repeated injections of
standard/spiked plasma extract with a concentration equal
to the lowest calibration point in the linear range (n = 4)
slope = slope of calibration curve in the linear range

3.2.5 Matrix Effect
Matrix effect was calculated as the ratio of calibration curve slopes
between plasma extract and standard for a panel of exogenous
molecules. A crude human plasma extract was chosen as model
matrix to challenge the systems with matrix complexity often
encountered in -omics experiments of biological samples. On
average, all setups showed signal suppression and the steepness
of calibration curves was reduced through the matrix (Figure 5)
without any obvious relation to retention time. The effect was
especially notable in the nano-setup with an average sensitivity loss
of almost 50% compared to matrix-free samples. The trap-and-
elute configuration removed hydrophilic matrix components like
salts that hamper ionization, but other matrix components were
retained on the trap column and eluted in the relevant retention
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time window together with the targeted analytes in up-
concentrated form. The nano-system showed even higher ion
suppression compared to micro- and analytical setup. This is
attributed to reduced chromatographic resolution due to the
observed chromatogram compression. In fact, this experiment
showed that the nano-system is hardly compatible with the fast
and steep gradients applied in wide-target small-molecule analysis.

4 DISCUSSION

For the present study we selected three platforms representing
practical solutions in different -omics disciplines and
demonstrated how different grades of LC miniaturization
fundamentally affect chromatographic parameters related to
successful non-targeted LC-ESI-MS-based -omics analysis. From a
chromatographic perspective, system optimization for quantitative
assays includes adjustments of separation, minimizing peak widths
and maximizing signal intensity and chromatographic compound
resolution (determined by retention, selectivity and efficiency) in the
shortest possible time. In the application of non-target HRMS, this
optimization strategy needs to be reassessed.

Miniaturization to micro-flow regime on average yielded
moderately increased sensitivity as expected. The flow rate for
the micro-flow setup ranged in a similar magnitude as the one
used for the analytical flow setup and used the same ion source.
The theoretical signal intensity increase is 4.4-fold based on
reduced radial dilution on column. In practice, we saw that
the actual profit is largely compound-dependent, and does for
most of the molecules not entirely reflect enrichment success
(expressed as peak concentration). This is related to the detection
process. ESI-MS does not necessarily respond with twofold
intensity when analyzing a sample with twice the
concentration (Patti, 2011). Rather, increasing (peak)
concentration to n-fold leads to a lower than n-fold increase

in signal intensity, an effect coined as fold-change compression
(Yu et al., 2020). Micro-LC falls far behind nano-LC regarding
sensitivity increase, but the gain comes at almost no cost: Micro-
LC can be installed on the same instruments as microbore LC and
thus offers equal robustness, method adaptability and ease of use.
An indispensable feature for the employed workflow was facile
stopping and re-starting of the eluent flow, which enabled just-in-
time (offline) mass calibration and optimum mass accuracy
conditions, thus exploiting the full identification selectivity of
HRMS. Notably, while offering only incremental improvement of
signal intensity, micro-LC-ESI-MS equals the analytical flow
platform regarding chromatographic selectivity, positive-
negative-switching ability, peak shape, handling of eluent
compositions, and steep gradients. Micro-LC suits the
chemical diversity of small molecules as much as established
analytical flow platforms with slightly increased signal intensities
for most of the molecules (Figure 6A) and around ¼ of the eluent
consumption.

Nano-LC coupled to MS is valued for enhancing ionization
(Wilm, 2011) and reducing matrix effects, which potentially
allows increasing signal intensities beyond chromatographic
enrichment. Exploiting the benefits of “true nano-ESI” would be
a unique argument in favor of using nano-LC for -omics analysis and
could make up for the practical complications of using a nano-
platform even when sample size is not limited. In practice and
comparable to the micro-flow setup, we found that signal intensities
were far below the theoretical 880-fold increase derived from the
large-volume injection, and we did not see more efficient ionization
or reduced matrix effect. The nano-platform was configured in
accordance with practical proteomics solutions to maximize
robustness, whereas the benefits of “true nano-ESI” only emerge
at lower flow-rates (<50 nL/min) and with narrower spray tips
(outer diameter of few µm) (Schmidt et al., 2003). The hardware
setup we employed offers advantageous practical handling for
metabolomics analysis–the (relatively) higher flow-rates can be
precisely controlled and the larger inner diameter prevents the
emitter from clogging, thus enabling serial analysis of protein-
precipitated samples. Signal intensity and sensitivity were
multiplied for many molecules upon miniaturization to the nano-
flow platform, including several compounds below LOD under
micro- and analytical flow. However, the platform’s unrivaled
mass sensitivity based on chromatographic enrichment is tightly
connected to a specific logP and m/z segment and was limited for
smaller (<200 Da) and more hydrophilic (logP < −0.5) metabolites
of the investigated panel. Some of the more polar compounds
including most amino acids were completely lost to the nano-LC
investigation (Figure 6B). Additionally, the nano-platform did not
allow automated positive-negative-switching as the emitter needs to
be positioned manually for negative ionization mode. This is
necessary to maximize sensitivity and avoid corona discharge or
breakdown of the spray. The chemical range covered by one run is
thus reduced and the manual adjustments compromise
automatability and quantitative reproducibility. Moreover,
electrospray obtained with the nano-ESI source is not as stable as
with the heated ESI source when adopting a wide range of eluent
compositions (1–99% (v/v) organic). Overhead times for spray
stabilization forbid just-in-time offline mass calibration and create

FIGURE 5 | Matrix effect. Matrix effect is calculated for exogenous
compounds as the calibration curve slope (linear range) obtained for spiked
plasma extract relative to the slope obtained for pure solvent. Ratio <1: matrix-
related ion suppression, ratio >1: matrix-related signal enhancement,
ratio = 1: signal intensity was not influenced by matrix effects. Molecules are
ordered from low to high retention time (left to right).
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reluctance toward spontaneous method adaptations once the system
is successfully running. Varying chromatographic peak shapes
complicate parameter optimization for data-dependent
fragmentation and peak-picking in non-targeted assays.

LC miniaturization is most promising for analyte panels with
similar chemical properties, which make it possible to tailor
chromatography and maximize chromatographic enrichment.
As such, miniaturized chromatography has been successfully

FIGURE 6 | Signal intensity (relative) and physicochemical coverage. Endogenous and exogenous molecules (ceftiofur and coumaphos 10 μg/L, caffeine,
paraxanthine and theobromine naturally occuring abundance, all others 1 μg/L) in plasma extract. Panel (A)micro, panel (B) nano. Ratio = area in miniaturized setup/area
in analytical flow setup. Triangles represent endogenous metabolites, circles represent exogenous analytes. Large icon =molecule has been found in miniaturized setup,
small icon: molecule has been found in analytical flow setup. Areas are background corrected. LPC 20:1 was excluded to facilitate visual comparison (ratio ~6,000
in nano and ~200 in micro).

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 85750511

Fitz et al. LC-Miniaturization in Small-Molecule -Omics

116

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


applied for highly sensitive peptidomics and lipidomics and has
facilitated chemical residue analysis in environmental research
(Wilson et al., 2015; Yi et al., 2017; Zardini Buzatto et al., 2020).
However, is it also a viable approach for global metabolomics
considering the broad diversity of metabolites? The covered
physicochemical spectrum was demonstrably reduced under
high degrees of miniaturization and we conclude that
specificity of enrichment and the need to adapt
chromatographic parameters more stringently to the
compounds of interest, the problematic implementation of
steep gradients and gradient extremes and the lack of positive-
negative-switching capability contradict wide-spectrum small-
molecule analysis with trap-and-elute nano-LC. Only by
focusing specific compound classes with similar
physicochemical properties or equalizing retention and
ionization properties through chemical derivatization (Luo and
Li, 2017), miniaturization to nano-flow regime will exert its true
potential. Conversely, micro-LC offers the best compromise
between improving signal intensity and metabolome coverage,
despite the fact that only incremental gains can be achieved.
Hence, we recommend using micro-LC for global metabolomics
experiments.
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Cellular glutamine synthesis is thought to be an important resistance factor in

protecting cells from nutrient deprivation and may also contribute to drug

resistance. The application of ‟targeted stable isotope resolved metabolomics”

allowed to directly measure the activity of glutamine synthetase in the cell. With

the help of this method, the fate of glutamine derived nitrogen within the

biochemical network of the cells was traced. The application of stable isotope

labelled substrates and analyses of isotope enrichment in metabolic

intermediates allows the determination of metabolic activity and flux in

biological systems. In our study we used stable isotope labelled substrates of

glutamine synthetase to demonstrate its role in the starvation response of

cancer cells. We applied 13C labelled glutamate and 15N labelled ammonium and

determined the enrichment of both isotopes in glutamine and nucleotide

species. Our results show that the metabolic compensatory pathways to

overcome glutamine depletion depend on the ability to synthesise glutamine

via glutamine synthetase. We demonstrate that the application of dual-isotope

tracing can be used to address specific reactions within the biochemical

network directly. Our study highlights the potential of concurrent isotope

tracing methods in medical research.
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1 Introduction

Reprogramming of cellular metabolism was the earliest

molecular phenotypes described in cancer cells; Otto Warburg

described the preference of cancer cells to ferment pyruvate into

lactic acid even in the presence of oxygen and Hanahan and

Weinberg finally included metabolic reprogramming into their

list of hallmarks of cancer (Warburg, 1956; Vander Heiden et al.,

2009; Hanahan and Weinberg, 2011). Nowadays more and more

detailed studies show a complex deregulation of cancer cell

metabolism that is connected to growth and proliferation,

immune cell evasion and also drug resistance mechanisms.

Despite a profound activation of glucose metabolism, cancer

cells metabolise amino acids, such as glutamine (Lieu et al., 2020).

Glutamine is a non-essential amino acid, and the most abundant

in human blood plasma. Besides providing a source of energy,

glutamine is required for several processes, including

macromolecule biosynthesis, amino acid uptake, inhibition of

autophagy and it triggers target of rapamycin (mTOR) kinase

activation (Nicklin et al., 2009). Glutamine derived carbon fuels

the tricarboxylic acid (TCA) cycle. The amino group of

glutamine contributes to the synthesis of non-essential amino

acids via the transaminase network and the amido-group serves

as an obligate nitrogen donor for de novo nucleotide synthesis

and hexosamine synthesis, specifically reactions that use the

amido-nitrogen make glutamine a conditional essential

metabolite (Altman et al., 2016; Bott et al., 2019).

Four different glutamine transport systems are characterized

so far. These are known as SNAT3 (SystemN, SLC38A3) which is

important in glutamine uptake in periportal cells in liver and in

renal proximal tuble cells. SNAT1 (SLC38A1) is important in

glutamine uptake by neuronal cells and ASCT2 (SLC1A5) is

essential for glutamine uptake by rapidly growing epithelial cells

and tumour cells in culture; the brush border membrane

transporter B0 AT1 (SLC6A19) facilitates the uptake of

glutamine across the kidney and intestinal brush border

(McGivan and Bungard, 2007).

In the absence of sufficient extracellular glutamine,

intracellular de novo synthesis can provide this essential

metabolite. Glutamine synthetase (GS), also referred to as

glutamate-ammonia ligase (GLUL) ligates glutamate with

ammonia in an ATP-dependent condensation reaction

(Nicklin et al., 2009). Several studies have revealed that the

depletion of glutamine causes cell death (Eagle, 1955; Yuneva

et al., 2007). This phenomenon, termed glutamine addiction, has

been observed in a variety of cancer types in in vitro and in vivo

studies (Wise and Thompson, 2011). Additionally, the

reprogrammed metabolism of glutamine was shown to be

crucial in tumorigenesis and tumour development (Yoo et al.,

2020). Nevertheless, the molecular mechanisms underlying

glutamine addiction are still not fully resolved.

Recent studies have demonstrated that glutamine deprived

cells can be rescued by asparagine supplementation, for unclear

reasons (Zhang et al., 2014). In the absence of glutamine, cells

were rescued to a greater extent by asparagine supplementation

relative to α-ketoglutarate, aspartate or glutamate (Zhu et al.,

2017). In summary, asparagine has been demonstrated to

regulate cell growth and rescue glutamine deficiency via

several potential mechanisms (Zhang et al., 2014; Krall and

Christofk, 2015; Zhang et al., 2017; Zhu et al., 2017; Pavlova

et al., 2018). Understanding these mechanisms is fundamental to

the development and efficacy of metabolic therapies targeting

asparagine and glutamine metabolism. Interestingly rat stem cells

transformed by the oncogenic Kaposi’s sarcoma-associated

herpesvirus (KSHV) demonstrated the capacity to utilise the

amido group from both glutamine and asparagine for purine and

pyrimidine biosynthesis (Zhu et al., 2017). In our study we have

shown that the ability of colon cancer cells to compensate

glutamine withdrawal by asparagine supplementation did

solely depend on intracellular de novo glutamine synthesis by

glutamine synthetase (GLUL).

Dejure and Royla examined the growth behaviour of a panel

of cell lines under glutamine supplemented and glutamine

depleted conditions (Dejure et al., 2017). All tested colon

cancer cells (HCT116, GEO, HT29, SW480, RKO) stopped

proliferation in glutamine depleted conditions, while

HEK293 cells were able to proliferate. Our investigations

revealed that the ability of HEK293 cells to proliferate in

glutamine deprived conditions was abolished when dialyzed

serum was used in the growth medium. Therefore, the

previously observed “glutamine independency” of

HEK293 cells may be attributed to remaining small molecules

enabling glutamine synthesis. To identify which amino acids

enable cell growth in glutamine depleted conditions, cell growth

assays were performed with supplementation of either glutamine,

asparagine, glutamate, aspartate and alanine with or without

ammonium. GLUL’s substrates, glutamate and ammonium, were

associated with the greatest proliferation rate in the absence of

glutamine in HEK293 and HCT116 cells. RKO cells were unable

to proliferate in the absence of glutamine. The application of a

competitive inhibitor of GLUL, methionine sulfoximine (MSO),

prevented proliferation in the absence of glutamine also in

HEK293 and HCT116 cells. Taken together, these findings

pointed towards a key role for GLUL in adaptation to

glutamine depletion.

To demonstrate GLUL activity and to determine the

metabolic fate of GLUL’s substrates, a dual-tracer and targeted

Stable Isotope Resolved Metabolomics (SIRM) method was

established. We developed a “targeted SIRM” dual isotope

tracing technique in which substrates specific to a biological

reaction are differentially labelled and monitored via high

resolution mass spectrometry. In this case, the simultaneous

application of 13C-glutamate and 15N-ammonium allowed us

to detect the relative contribution of extracellular glutamate

and ammonium to intracellular glutamine synthesis, as well as

monitor the downstream contribution of glutamine’s carbon and
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nitrogen to de-novo nucleotide biosynthesis. We also performed a

time resolved dual-isotope tracing analysis and found the kinetics

of glutamine synthesis in HEK293 and HCT116 cells are distinct,

RKO cells did not show de novo glutamine synthesis, although

the protein could be detected in proteomics analyses and western

blot experiments.

Furthermore, we present growth conditions that preserve the

viability of glutamine-dependent cancer cells under glutamine

depletion. Our data show that all different amino acid

supplementations that enable cell survival and proliferation

with or without ammonium depend finally on the intracellular

activity of GLUL. With the new established method of dual

tracing and targeted pulsed stable isotope resolved metabolomics

we could analyze the dynamics of intracellular glutamine

synthesis.

2 Materials and methods

2.1 Cell culture

The standard cell culture medium (glutamine-supplemented

medium) comprised Dulbecco’s Modified Eagle Medium

(DMEM, Thermo Fisher) without glucose (Glc), glutamine

(Gln), phenol red or sodium pyruvate, supplemented with

10% dialyzed fetal bovine serum (dFBS), 2.5 g/L Glc, and

2 mM Gln. HEK293, HCT116 and RKO cells were grown in

10 cm plates at 37°C, 5% CO2, 21% O2, and 85% relative

humidity, and were passaged every 3,4 days to avoid contact

inhibition and supply new media. When a confluency of at least

70% was reached, cells were washed once with 1x PBS and

detached from the plate via trypsinization with TrypLE

(GIBCO). Pre-warmed medium was added to cease

trypsinization. The volume of medium added was calculated

according to the desired splitting ratio and the cells were

resuspended before the appropriate fraction of the cell

suspension was transferred to a new plate. For cell growth

assays and subsequent experiments, cells were harvested at a

confluency of 80%–90% before being transferred to new plates at

a seeding density of 2×106 cells which prevents contact

inhibition.

2.2 Cell growth analysis

For the cell growth assays, pre-cultivated cells were seeded on

10 cm plates. The following day, the viable cell count was

measured for the 0 hour time point and the cell culture

medium was changed to that containing the appropriate

condition (Gln: 2 mM; Alanine (Ala), Asparagine (Asn),

Aspartate (Asp), Glutamate (Glu): all 1 mM, NH4
+: 0.8 mM).

Cells were passaged once they reached a confluency of at least

60%, upon which the cell count was determined. Media was

replaced every 3,4 days to avoid limiting nutrients. Viability and

cell number were monitored using the TC20 automated cell

counter (Biorad).

2.3 Methionine sulfoximine inhibitor
proliferation assay

Pre-cultivated cells were seeded on 6-well plates at a seeding

density of 3×105 cells and 12×105 cells for HCT116 and

HEK293 cells, respectively. The following day, the viable cell

count was measured for the 0 hour time point and the cell culture

medium was changed to that containing the appropriate culture

condition (see Section 2.1) treated with either 500 µM

Methionine Sulfoximine (MSO, Sigma Aldrich) or, as a

negative control, sterile water (H2O). The viable cell count

was determined at 24, 48, 72, and 96 h post-treatment. Media

was replaced daily to replenish substrates and remove secreted

reaction products.

2.4 Western blotting

Cells grown in standard media conditions (not starved for

glutamine) were washed with PBS and harvested in 1 ml ice-cold

RIPA buffer. Cell lysates of HCT116, RKO and HEK293 were

denatured in loading buffer for 5 min at 95°C. 40 µg of proteins

were loaded and separated on a 10% SDS gel and run for 1 h at

70 V and 1 h at 120 V. The gel was transferred to a nitrocellulose

membrane (0.2 µm, Biorad) at 25 V, 1 A for 30 min (Biorad

TransBlot Turbo V1.02). The membrane was blocked for 1.5 h in

5%milk in TBS-T at room temperature and cut below the 70 kDa

band. The membranes were incubated with primary antibodies

against Vinculin (1:2,000 dilution, Sigma, V9131) and against

GLUL (1:1,000 dilution, Thermo Fisher, PA1-46165) in 5% milk

in TBS-T over-night at 4°C. After washing the membranes in

TBST, the membranes were incubated in the HRP-conjugated

secondary antibodies (NEB, 7074S; NEB, 7076S) for 1 h at room

temperature. After washing the membranes in TBST and TBS,

the membrane was developed using an ECL Western Blotting

detection reagent (Amersham, RPN2109) according to the

manufacturer’s protocol. The Vilber FX gel system was used

to record the luminescence (Vilber Lourmat, France).

2.5 Targeted stable isotope resolved
metabolomics and pSIRM

Cells were pre-cultivated in Glu + NH4
+-supplemented

medium for at least 3 days prior to stable SIRM analysis.

HEK293 and HCT116 cells were able to proliferate in Glu +

NH4
+-supplemented dFBS medium and were therefore pre-

cultivated for over one month for cell growth assays before
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being seeded at a density of 2E+6 cells on 10 cm plates. RKO cells

were unable to proliferate in Glu + NH4
+-supplemented medium

and were therefore pre-cultivated in Gln-supplemented dFBS

medium and changed to medium containing Glu + NH4
+

performed 3 days prior to the SIRM experiment.

For SIRM experiments, cells were then labelled for 24 h with
13C labelled glutamate and 15N labelled ammonium and treated in

parallel with either 500 µM Methionine Sulfoximine (MSO,

Sigma Aldrich) or, as a negative control, sterile water (H2O).

For pSIRM experiments, cells were pre-treated for 6 h with either

1 mMMSO or, as a negative control, sterile water, in fresh Glu +

NH4
+-supplemented dFBS medium. Afterwards, cells were

labelled for 15 min, 30 min, 1 h, and 3 h with 13C labelled

glutamate and 15N labelled ammonium, with or without 1 mM

MSO. In both experiments, SIRM and pSIRM, 1 mM 13C labelled

glutamate was used. However, for SIRM experiments 96 µM 15N

labelled ammonium were used, whereas for pSIRM 0.8 mM 15N

labelled ammonium were used. Cells were harvested and

extracted in a methanol-chloroform-water solution as

described elsewhere [DOI: 10.1016/B978-0-12-801329-

8.00009-X].

Intracellular amino acids were measured as TBDMS

derivatives by high-resolution GC-MS. Dried cellular extracts

were mixed with 25 µl MTBSTFA (Sigma) and 25 µl ACN and

incubated at constant shaking for 1 h at 80°C. Derivatization was

automatized on a TriPlus RSH auto-sampler (Thermo Fisher)

and each sample was injected immediately after the

derivatization. Samples were injected into a Q Exactive GC

Orbitrap system (Thermo Fisher) with a splitof 1:5 (1 µl

injection volume) in a temperature-controlled injector

(TriPlus RSH auto-sampler, Thermo Fisher) with a baffled

glass liner. The initial temperature was 80°C for 15 s, followed

by an increase of 7°C/s up to 260°C, which is held for 3 min at the

end of the temperature program. Gas chromatographic

separation was carried out on a Trace 1,300 GC (Thermo

Fisher) equipped with a TG-5SILMS column (30 m length,

250 µm inner diameter, 0.25 µm film thickness (Thermo

Fisher). Helium was used as the carrier gas (1.2 ml/min flow

rate). Gas chromatography was performed with an initial

temperature of 68°C for 2 min, followed by an increase of 5°C/

min up to 120°C, followed by an increase of 7°C/min up to 200°C,

followed by an increase of 12°C/min up to 320°C which is held for

6 min. The spectra were recorded in a mass range of m/z =

60––600 with resolution at 200 m/z set at 120,000.

The elemental composition of different fragments for

glutamine were calculated based on the exact mass and

compared with known literature-values. To extract the

intensities for the different isotopic masses we constructed a

compound library including the mass shifts induced by 13C and
15N. Mass shifts were calculated via a custom R-Script based on

the known masses for the fragments and the number of

potentially incorporated carbon and nitrogen atoms. Each

incorporated 13C or 15N increased the target mass by

1.0033548 or 0.99693689, respectively.

For the SIRM experiment, samples were then processed and

peaks were integrated with Tracefinder 5.0 (Thermo Fisher), by

importing this target list as a Tracefinder Compound database

and extracting the extracted ion chromatograms (EIC) within a

5 ppm window. For the pSIRM experiment, samples were

processed and peaks integrated in Xcalibur Quanbrowser

(Thermo Fisher), extracting EIC with a mass tolerance of

2.5 ppm. For both, peak integration quality was visually

checked and finally all peak areas were exported.

2.6 Measurement of free nucleotides

Free nucleotides were measured by direct infusion MS on a Q

Exactive HF (Thermo Fisher) coupled to a Triversa Nanomate

(Advion) nanoESI ion source. The Triversa Nanomate was

operated in negative mode, with 1.5 kV spray voltage and

0.5 psi head gas pressure. The spectra were recorded for a

duration of 3 min in a mass range of m/z = 140–850 m/z

mass units with resolution at 200 m/z set at 240,000. A target

list with 48 compounds was prepared in a similar way as

described above. The M-H fragment was further calculated by

subtracting 1.00728 from the exact mass of the uncharged

molecule. For the extraction of the peak intensities the raw

files were first converted to.dta2d files using TOPPAS

FileConverter tool (Kohlbacher et al., 2007a; Kohlbacher et al.,

2007b; Sturm et al., 2008).

The.dta2d files were then processed with a custom R script.

Briefly, zero intensities and TIC intensities were removed from

the datafiles as well the first and last five scans as these scans tend

to be instable. All masses that fit into a 5 ppm window for each

mass in the target list was associated to that specific compound.

To extract only the apex the most intense mass per compound

and scan was kept. Finally, the median and the standard

deviation for all the scans was calculated to obtain a single

readout per compound and sample.

Natural abundance correction for both types of experiment

was performed using the Accucor package (URL: https://doi.org/

10.1021/acs.analchem.7b00396).

3 Results

3.1 Cell growth assay in fetal bovine serum
vs. dialyzed fetal bovine serum

Dejure and Royla, tested the effect of glutamine starvation on

GEO, HCT116, HEK293, HT29, RKO and SW480 cells and

found that all cell lines were not able to proliferate except

HEK293 (Dejure et al., 2017).
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We investigated as to whether two colon cancer cell lines

HCT116 and RKO can can adapt to glutamine depletion and

removed glutamine from the medium for several days (Figure 1).

Also in this experiment HEK293 cells exhibited glutamine

independence, but RKO and HCT116 cells were not able to

proliferate. In order to exclude that the glutamine independence

of HEK293 cells is not caused by small molecules provided by the

fetal bovine serum (FBS) we used dialyzed FBS and repeated the

proliferation experiment (Figure 2). Interestingly, in this case also

HEK293 cells were not able to proliferate when glutamine was

deprived. Thus, glutamine was also essential for HEK293 cells

when using dialyzed FBS.

3.2 Cell growth assay in supplemented
dialyzed fetal bovine serum

In order to identify which metabolic pathways are efficiently

utilised in glutamine-depleted condition, we monitored cell

survival and growth upon supplementation with substrates of

the glutamine-centric metabolic network. To achieve this, we

supplemented: Alanine (Ala), Ala + ammonium (NH4
+),

Asparagine (Asn), Aspartate (Asp), Asp + NH4
+, Glutamate

(Glu), Glu + NH4
+ in dialyzed FBS medium (Figure 3).

Viable cell count was determined at every passage over the

course of 31 days. Cell count data were log2-transformed and

graphically represented. Cell doubling time was calculated based

on the division of culture duration by delta in log2-transformed

cell counts. All three tested cell lines exhibit the highest

proliferation rate and lowest doubling time in Gln-

supplemented medium (Figure 3). In HEK293 and

HCT116 cells the proliferation rate in Glu + NH4
+-

supplemented medium is close to that in Gln-supplemented

medium. For HCT116 cells proliferation in Asp + NH4
+-

supplemented media is remarkably high. In HEK293 cells also

the addition of glutamate leads to intermediate cell proliferation

rates. Contrary, RKO cells can not compensate glutamine

withdrawal under any condition. RKO cell viability decreased

and cell death occurred, preventing the possibility of obtaining

viable cell count data after 5 days onwards. Therefore, the

FIGURE 1
Cell growth assay for HEK293, HCT116, and RKO cells in non-dialyzed FBS with 2 mM or 0 mM glutamine (Gln) in the cell culture media. Cell
count was determined every 24 h over the course of 96 h and is shown relative to t = 0 as mean ± SD.

FIGURE 2
Cell growth assay for HEK293, HCT116, and RKO cells in dialyzed FBS with 2 mM or 0 mM glutamine (Gln) in the cell culture media. Cell count
was determined over the course of 7 days and is shown relative to t = 0 as mean ± SD.
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proliferation rate for Ala, Ala + NH4
+, Asn, Asp- Asp + NH4

+,

Glu, Glu + NH4
+-supplemented media is 0.

3.3 Methionine sulfoximine inhibitor
proliferation assay

The cell growth assays show that in glutamine-depleted

dialyzed FBS conditions, HEK293 and HCT116 cells

proliferate best when supplemented with the substrates of

GLUL: Glu and NH4
+(Figure 3). Based on this result, an

inhibitor assay was performed to assess the effect of blocking

de novo glutamine synthesis. Therefore, cells were treated with

MSO, a competitive inhibitor of GLUL. As RKO cells are unable

to proliferate in glutamine-depleted conditions, they were not

subjected to this assay.

A pilot experiment (data not shown) was performed in

HEK293 and HCT116 cells and an inhibitor concentration of

500 µM was found to be effective. The inhibitor-containing

medium was refreshed and viable cell count was determined

every 24 h over a 96 h time period. A parallel assay was

performed using water, the solvent control, instead of MSO.

Each measurement was taken from three biological replicates.

The mean and standard deviation of the viable cell counts for

each time point were graphically represented (Figure 4).

Untreated HEK293 and HCT116 cells exhibit similar

proliferation rates to those observed in the previous growth

assay for all tested different conditions. However, MSO-

treated HEK293 and HCT116 cells only show proliferation in

Gln-supplemented medium. Showing that the chosen inhibitor

concentration is not harmful to cells if glutamine is provided.

3.4 Targeted stable isotope resolved
metabolomics and methionine
sulfoximine-treatment

We designed a dual tracer stable isotope resolved

metabolomics (SIRM) study using 13C and 15N labelled

substrates (13C glutamate, 15N ammonium) to determine

whether the cells utilise extracellular substrates for de novo

glutamine synthesis and subsequent nucleotide biosynthesis.

Based on the results of the cell growth assays, Glu + NH4
+-

supplemented medium was chosen to trace nitrogen and carbon

FIGURE 3
Cell Growth Assay in supplemented dialyzed FBS in HEK293, HCT116, and RKO cells. Cell growth upon the application of various amino acid
substrates: Alanine (Ala): 1 mM; Ala: 1 mM + NH4

+: 0.8 mM; Asparagine (Asn): 1 mM; Aspartate (Asp): 1 mM; Asp: 1 mM + NH4
+: 0.8 mM; Glutamate

(Glu): 1 mM; Glu: 1 mM + NH4
+: 0.8 mM; Glutamine (Gln): 2 mM. Viable cell count was determined at every passage over the course of 31 days. Cell

count data (each n = 2) were Log2-transformed and are shown as mean ± SD. The doubling time was calculated based on the duration in
culture and the number of duplications underwent during this time (i.e., duration/Δlog2(cell count)).
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incorporation into glutamine. The experiment was performed in

three biological replicates.

Glutamine can be synthesised by GLUL-mediated ligation of

glutamate and ammonium, with ammonium providing the

amido-group. The ligation of 13C5-glutamate and
15N-ammonium was monitored by GC-MS detection of 13C5-,
14N1-, and

13C5-
15N1-glutamine isotopologues. Automated peak

extraction from GC-MS spectra was performed via Tracefinder

(Thermo Fisher) and mean 13C and 15N enrichment calculations

were performed using custom R scripts. In HCT116 and

HEK293 cells, 13C- and 15N-incorporation into glutamine was

detected in several characteristic glutamine-3TBDMS fragments,

as indicated by the corresponding 13C- and 15N-induced mass

shift of the peaks. Glutamine-3TBDMS fragments comprising a

5C skeleton and 2N atoms underwent a mass shift of

approximately 6 Da (m+6) while fragments comprising a 4C

skeleton and 2N atoms underwent a mass shift of 5 Da (m+5),

corresponding to 13C5-
15N1 and 13C4-

15N1 isotopologues,

respectively. The cleanest signal was obtained for the fragment

at 431 m/z and therefore this fragment was used for further

analysis.

In the pilot experiment HCT116 and HEK293 cells were

labelled for 24 h with 13C glutamate and 15N ammonium. In

HEK293 cells 51% enrichment of 13C and 2% enrichment of 15N

in the glutamine-3TBDMS fragment were monitored.

HCT116 cells have almost twice as much 13C enrichment at

87% and 15N enrichment at 22%. In both HEK293 and

HCT116 cells MSO treatment abolished 13C and 15N

enrichment to 0%. RKO cells do not demonstrate 13C or 15N

enrichment in untreated and MSO-treated conditions (Figure 5).

The contribution of newly synthesised glutamine

isotopologues to nucleotide biosynthesis was monitored by

direct-infusion MS detection of nucleotide isotopologues. Peak

extraction from direct infusion-MS spectra was performed

manually with XCalibur Qualbrowser (Thermo Fisher). In the

de novo purine biosynthesis pathway, glutamine donates two

nitrogen atoms to IMP and AMP, and three nitrogen atoms to

GMP. HEK293 and HCT116 demonstrate 15N enrichment in

AMP and GMP while RKO cells do not. In HEK293 and

HCT116 cells, one 15N atom (N1) is incorporated into each

AMP and GMP. HEK293 cells exhibit 25% enrichment of 15N1-

AMP and 20% enrichment of 15N1-GMP, while HCT116 cells

FIGURE 4
Proliferation inhibition assay for HEK293, HCT116, and RKO cells. Investigation of cell growth upon the application of GLUL inhibitor MSO
(500 µM) or H2O with Alanine (Ala): 1 mM; Ala: 1 mM + NH4

+: 0.8 mM; Asparagine (Asn): 1 mM; Aspartate (Asp): 1 mM; Asp: 1 mM + NH4
+: 0.8mM;

Glutamate (Glu): 1mM; Glu: 1 mM + NH4
+: 0.8 mM; Glutamine (Gln): 2 mM. Cell count (each n = 2) was determined every 24 h over the course of

96 h and is shown relative to t = 0 as mean ± SD.
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exhibit 35% enrichment of 15N1-AMP and 15% enrichment of
15N1GMP (Figure 6).

In a second step we analyzed the dynamics of glutamine

synthesis in HCT116 and HEK293 cells in a time course

manner. The cell lines were incubated for 15 min, 30 min 1 h

and 3 h with 13C labeled glutamate and 15N labeled

ammonium. Label incorporation in glutamine was

analyzed as described above (Figure 7). Interestingly label

incorporation in glutamine can be found already after 15 min

in HCT116 cells and after 30 min in HEK293 cells. Both cell

lines show a fast glutamine synthesis but the kinetics are

different. In HCT116 cells the incorporation of 15N labeled

ammonium into glutamine exceeds the formation of carbon

and nitrogen labeled glutamine, this argues for faster

ammonium import into HCT116 cells compared to

HEK293 cells.

Interestingly, we performed a western blot analysis to analyze

GLUL protein expression in the three cell lines and found that

GLUL protein is present in all cell line even under normal

conditions (Supplementary Material). We compared the

western blot result with proteomics data (not shown) and

could also find specific peptides for GLUL in all cell lines.

Thus, the reason for the lacking GLUL activity in RKO cells

cannot be explained by missing GLUL protein levels but must be

caused by other reasons, e.g., mutations in the GLUL gene or

impaired transport of substrates for GLUL reaction.

4 Discussion

So far stable isotope tracing studies with multiple isotopic

tracers were performed without specific applications to

demonstrate how this technology can add more information,

compared to single isotope tracing methods. Here we show for

the first time that this technology can be used to address specific

reactions in the metabolic network and to address clinically

relevant questions. In our study we analyzed the activity of

glutamine synthetase (GLUL) by applying both substrates

glutamate and ammonium labelled with stable isotopes.

Glutamine synthetase (GLUL), is of major interest, because

this enzyme may be a resistance factor in metabolic cancer

treatments; like the asparaginase treatment for acute

lymphoblastic leukemia (ALL) and solid cancer (Rotoli et al.,

2005). Glutamine is an important nutrient supporting cell growth

and proliferation, oncogenic mutations often render cancer cells

glutamine-dependent (Altman et al., 2016). In glutamine-

depleted conditions, α-ketoglutarate, aspartate and glutamate

supplementation have been demonstrated to rescue cell

growth of glutamine-dependent cancer cells to a certain

extend (Zhu et al., 2017).

In our study we analyzed the nature of glutamine

addiction of three selected cell lines. HEK293 cells were

partially glutamine auxotroph and HCT116 and RKO cells

glutamine addicted (Dejure et al., 2017). We found that the

FIGURE 5
13C and 15N enrichment in glutamine in untreated and MSO-treated HEK293, HCT116 and RKO Cells. Cells were cultivated with 13C5-glutamate and
15N-ammonium for 24 h. After obtainingmass spectra, peak areas were extracted and natural isotope abundance correction and isotope enrichment
calculations were performed. Data represent mean 13C and 15N enrichment (%).
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ability of HEK293 cells to proliferate under glutamine

deprived conditions did depend on the usage of non-

dialyzed FBS, if we used dialyzed serum also HEK293 cells

did depend on external glutamine supply. This demonstrates

that glutamine addiction is found in all tested cell lines in our

study.

In order to investigate the metabolic pathways that can

contribute to glutamine autotrophy we applied a selected set

of amino acids in a defined knock out medium. Although these

conditions are artificial or synthetic compared to the natural

environment of a cancer cell, this experiment can be used to

understand the metabolic wires around glutamine (Figure 8); we

supplemented: Alanine (Ala), Ala + ammonium (NH4+),

Asparagine (Asn), Aspartate (Asp), Asp + NH4+, Glutamate

(Glu), Glu + NH4+ in dialyzed FBS medium. Because of the

absence of GLUL activity in RKO cells none of the supplements

could contribute to cell growth and survival. This result clearly

shows that all pathways that allow glutamine independency

funnel into de-novo glutamine synthesis via GLUL. Similarly,

the application of the specific GLUL inhibitor MSO abolished the

capacity of HEK293 and HCT116 cells to proliferate without

glutamine using the supplemented nutrients. Our results

demonstrate once more that GLUL is the major player in

glutamine independence.

FIGURE 7
Isotope incorporation into glutamine after pulse labelling with 13C5-glutamate and 15N-ammonium in HCT116 and HEK293 cells. HCT116 and
HEK293 cells were incubated with 13C5-glutamate and 15N-ammonium for 15 min, 30 min, 1 h, and 3 h (n = 2 each). Shown are the relative pool sizes
of non-labelled (C0N0), 15N labelled (C0N1), 13C5 labelled (C5N0) 15N-13C5 labelled (C5N1) glutamine.

FIGURE 6
15N Enrichment in AMP/GMP (purine nucleotides) in HEK293, HCT116 and RKO cells. Cells were cultivated with 13C5-glutamate and 15N-ammonium for
24 h. Nucleotide isotopologues weremeasured via direct-infusion MS and relative quantities are graphically represented. Data represent mean ± SD
of three biological replicates.
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Using high resolution mass spectrometry, we were able to

monitor GLUL activity via a dual-tracer targeted SIRM

approach. This method allowed us to measure a specified

reaction by the application of multiple isotopic tracers. We

observed in the pilot experiment a cell-line specific

incorporation of extracellular ammonium into glutamine:

HCT116 cells displayed a higher incorporation of

extracellular ammonium for glutamine synthesis than

HEK293 cells. However, we do not know if the available

ammonium is spent within 24 h. In subsequent experiments

the ammonium concentration was increased. In order to

retrieve dynamic information about the uptake rates of

individual substrates, a time course experiment was

performed. The time and stable isotope resolved

metabolomics experiments using multiple tracers delivered

valuable information about the metabolic activity facilitated

in the cell lines. The data show that HCT116 cells have a faster

uptake of glutamate and that internal ammonium is used

within the first 15 min of the pulse experiment. The data

indicate that HCT116 cells possess higher

glutamine synthesis rates. Both cell lines show high levels

of stable isotope enrichment in glutamine after 30 min

labeling time.

By using direct-infusion MS, we detected 13C and 15N

enrichment in the de novo purine biosynthesis pathway in

HEK293 and HCT116 cells, when 13C glutamate and 15N

ammonium were supplied. To demonstrate the essentiality of

GLUL activity to de novo glutamine synthesis and downstream

nucleotide synthesis, inhibition of GLUL via MSO treatment

ablated 13C and 15N incorporation.

Interestingly, RKO cells do not demonstrate 13C and 15N

incorporation even in the absence of MSO treatment, indicating

that either GLUL is inactive or the import of these substrates is

compromised. The results from the dual-tracer targeted SIRM

study reflect the observations from the cell growth and inhibitor

assays (Figure 6). Taken together; the cell growth assays, inhibitor

studies and SIRM analyses reveal that, in glutamine depleted

conditions cell growth is dependent upon de novo glutamine

synthesis.

The usage of the dual isotope tracing strategy to measure

targeted and enzymatic activity in the cellular network in a

time resolved manner is an advantage. This was not done so

far, and our study is the first showing the power of this

technology also for a clinically relevant question. We could

show at multiple layers that, despite glutamine synthetases is

expressed at the protein level, GLUL activity is absent in RKO

cells, thus we show that expression levels alone cannot

explain all metabolic activities.

The complex growth experiment highlights the role of an

active glutamine synthesis to rescue glutamine withdrawal by

using other amino acids, or a combination of amino acids and

ammonium. We could also show that in all the reactions that

we tested GLUL is the key enzyme and consequently; blocking

glutamine synthetase with the inhibitor MSO abolishess

growth and proliferation in the tested cell lines. Therefore,

we propose that this method can be applied in clinical studies

assessing different kinds of tumour cells and measuring

glutamine synthetase activity in vivo.

Overall, we show that concurrent stable isotope labelling

serves as a powerful tool for probing not only metabolic

FIGURE 8
Schematic of glutamine metabolism and MSO inhibition of glutamine synthetase (GLUL).

Frontiers in Molecular Biosciences frontiersin.org10

Bayram et al. 10.3389/fmolb.2022.859787

128

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.859787


pathways, but also independent enzymatic reactions.

Leveraging this tool enabled us to validate our

observations from in vitro cell-based assays and

demonstrate an essential reaction underlying the capacity

of cells to adapt to glutamine-depletion. However, to detect

mass shifts induced by small molecules such as 13C and 15N

atoms, a very high resolution is needed (Su et al., 2017). In the

absence of such a high resolution, mathematical models can

be used to calculate the relative contribution of these

molecules. We utilised the R package IsoCorrectoR to

calculate the relative contribution of 13C and 15N in

glutamine. For the purine nucleotides, we were able to

resolve 13C and 15N incorporation from the raw data.

Our dual-tracer targeted SIRM study highlights the

potential for high resolution mass spectrometry to monitor

specific biological reactions at the atomic level. In future it

can be envisioned to study more enzymatic reactions using

concurrent isotope tracing techniques. We propose that all

metabolic reactions that require two or more substrates that

can be addressed with diverse isotopic labeling can be

analyzed using this method, e.g., reactions within the de

novo nucleotide biosynthesis or hexose amine biosynthesis.

This will be of mayor advantage if enzymatic activity essays

are not established.
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Trivialities in metabolomics:
Artifacts in extraction and
analysis

R. Verpoorte1*, H. K. Kim1 and Y. H. Choi1,2

1Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands,
2College of Pharmacy, Kyung Hee Univeristy, Seoul, South Korea

The aim of this review is to show the risks of artifact formation in metabolomics

analyses. Metabolomics has developed in a major tool in system biology

approaches to unravel the metabolic networks that are the basis of life.

Presently TLC, LC-MS, GC-MS, MS-MS and nuclear magnetic resonance are

applied to analyze the metabolome of all kind of biomaterials. These analytical

methods require robust preanalytical protocols to extract the small molecules

from the biomatrix. The quality of the metabolomics analyses depends on

protocols for collecting and processing of the biomaterial, including the

methods for drying, grinding and extraction. Also the final preparation of the

samples for instrumental analysis is crucial for highly reproducible analyses. The

risks of artifact formation in these steps are reviewed from the point of view of

the commonly used solvents. Examples of various artifacts formed through

chemical reactions between solvents or contaminations with functional groups

in the analytes are discussed. These reactions involve, for example, the

formation of esters, trans-esterifications, hemiacetal and acetal formation,

N-oxidations, and the formation of carbinolamines. It concerns chemical

reactions with hydroxyl-, aldehyde-, keto-, carboxyl-, ester-, and amine

functional groups. In the analytical steps, artifacts in LC may come from the

stationary phase or reactions of the eluent with analytes. Differences between

the solvent of the injected sample and the LC-mobile phase may cause

distortions of the retention of analytes. In all analytical methods, poorly

soluble compounds will be in all samples at saturation level, thus hiding a

potential marker function. Finally a full identification of compounds remains a

major hurdle in metabolomics, it requires a full set of spectral data, including

methods for confirming the absolute stereochemistry. The putative

identifications found in supplemental data of many studies, unfortunately,

often become “truly” identified compounds in papers citing these results.

Proper validation of the protocols for preanalytical and analytical procedures

is essential for reproducible analyses in metabolomics.
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artifacts, metabolomics, extraction, solvents, decomposition
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1 Introduction

In the past 2 decades metabolomics has rapidly developed as an

important tool in studying various biological and medical questions.

The aim of metabolomics is the qualitative and quantitative analysis

of all smallmolecules present in biological samples. By comparing the

metabolome of organisms under different conditions, information

can be obtained about the regulation of the metabolic network and

the potential biological role of specific compounds. The analysis of

the metabolome is complicated because a wide spectrum of

compounds with totally different physico-chemical properties are

present in a wide range of concentrations. That makes the

measurement of all small molecules in an organism in one

operation the major challenge for the 21st century’s (aL)chemistry.

The analysis of the small molecules is done by means of

chromatographic separations (TLC, LC or GC) coupled to UV-,

mass- (MS), or nuclear magnetic resonance (NMR) spectrometry.

Alternatively the analysis is done directly by MS/MS or NMR. Each

of these methods has its own advantages and disadvantages. These

aspects will be dealt with in other chapters. In this chapter we want to

focus on some basic problems that one should keep in mind when

developing a metabolomics analysis.

The goal of this chapter is to highlight the problems of

artifact formation in the preanalytical and analytical procedures.

Artifacts are described as the compounds that are not present in

an intact metabolome but are formed in the process of

harvesting, drying, grinding, extracting, and preparing samples

for analysis, and during the separation and detection phase of the

analysis.

Artifacts can be formed by a reaction of an analyte with the

solvents itself or with contaminants in solvents. In the books on

Chromatography of Alkaloids (Baerheim Svendsen and

Verpoorte 1983; Verpoorte and Baerheim Svendsen. 1984) we

have reviewed some of these problems in connection with

alkaloids. In other papers we discussed some basic aspects of

metabolomic analyses (Verpoorte et al., 2008) and artifact

formations with solvents (Maltese et al., 2009). The present

chapter summarizes these earlier papers as well as some more

recent examples. This information should be useful to have at

hand in a book onmetabolomics. This is not rocket science, but it

concerns trivial things that people forget when running

automated instrumental analyses. For newcomers not trained

in natural products chemistry or analytical chemistry this may be

new information. At least when reviewing papers in this field we

are often surprised by the ignorance about basic methods to

prepare the sample (extract) for the final high-tech analysis.

2 Solvents for extraction and
chromatography

To discuss artifact formation of all known compounds would

be a huge task, not to speak about all unknown compounds.

Instead, we will focus on the most common solvents and their

known contaminations (Table 1) that may play a role in

generating artifacts. For a comprehensive survey of

contaminations in solvents and reagents is referred to

Middleditch (1989) and Venditti (2020). In the former

publication, the molecular weights and mass spectra of

common solvents, additives, and contaminations like

plasticizers, paper whiteners, rubber constituents, and

antioxidants, are described. In addition, there are review

papers on specific group of metabolites. Capon (2020)

reviewed the artifact formation for marine natural products.

The possible mechanisms of the artifact formation are

discussed in depth. They vary from simple esterification,

solvolysis and oxidation to highly complex chemical

rearrangements. Artifact formation of various terpenoids was

reviewed by Hanson (2017). Dehydration, rearrangements, and

oxidation, among others, cause formation of artifacts from all

kinds of terpenes. Xu and colleagues (2020) reported methods to

predict potential artifacts by reactions with methanol or

oxidation. Venditti (2020) particularly discussed

monoterpenoid artifacts.

3 Stability of analytes

Papers describing stability of compounds under different

conditions often claim that a compound is not stable, but there

are very few papers that really have known standards as controls. In

our experience terpenoid indole alkaloids are not very stable. People

working with isoquinoline alkaloids claimed that these alkaloids were

very labile. However, working on both types of alkaloids, it was

obvious that most isoquinoline alkaloids were more stable than the

indole alkaloids. Apparently, there are more feelings, than there is

understanding. It is difficult to predict solubility and stability of pure

compounds. In general, the experience is that light and heat are an

important factors. Keep the compounds, when dissolved, always in

the dark, at the lowest possible temperature. This also means that

extractions using Soxhlet equipment are extremely detrimental for

the analysis of the true metabolome of an organism. Alcohols are in

general the best solvents to store compounds and extracts. In general,

the stability of compounds in the halogenated solvents is low,

compounds like the anhydronium indole alkaloids serpentine and

alstonine do not survive dissolving in chloroform (Verpoorte and

Sandberg 1971; Baerheim Svendsen and Verpoorte 1983). Also

reserpine and related indole alkaloids are rapidly oxidized in

chloroform (Wright and Tang, 1972). The pH does play a role,

though for each compound the optimum can be different. Moreover

in mixtures there can be differences, e.g. by the presence of natural

antioxidants in extracts. InNMR-basedmetabolomics the use of fully

deuterated solvents, like methanol and D2O, may cause the

replacement of certain protons with deuterium, e.g. in aldehydes

and ketones via a keto-enol equilibrium. For example, naringenin has

been shown to have two phloroglucinol protons to be completely
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exchanged in the presence of a solvent with a deuterated hydroxyl

group (Verpoorte et al., 2008). Finally, one should also keep in mind

that the stationary phases used in chromatography also play a role.

For example, Pauli and co-workers (Tang et al., 2021) showed that

silica affects the oxidation of prenyl groups in various natural

products.

4 Reactions of solvent or solvent’s
impurities with analytes

Many preanalytical protocols have been reported for

extraction and sample preparation. Here we will confine us to

the solvent itself as a chemical that may react with analytes and

illustrate this with some examples.

Alcohols Alcohols are often used in extraction. Methanol is

commonly used to extract biological samples for metabolomic

analysis. However, methanol is toxic and thus for applications in

food, medicines or cosmetics, ethanol, 1,2-dihydroxypropane,

glycol and glycerol are preferred. In liquid chromatography

methanol is often used as component of the mobile phase.

The reactive site of alcohols is a hydroxyl group. The reaction

of carboxyl group(s) of analytes with alcohols may yield esters.

Even, inter- and intra-molecular trans-esterifications may occur.

The fast isomerization of chlorogenic acid is a good example of

an intramolecular trans-esterification of the cinnamoyl

group. Within 3 min at 90°C in water pH 7, about 28% of the

pure chlorogenic acid was found to be isomerized (Hanson, 1965;

Clifford et al., 1989) (Figure 1). This example shows that one

should be very careful in drawing conclusions from any changes

in the levels of these compounds, which are ubiquitous in plants.

Methanol and ethanol have been reported to react with fatty

acids to generate esters during extractions (Lough et al., 1962;

Johnson et al., 1976; Xu et al., 2020). Brondz and colleagues

(2007) reported esterification of the carboxylic acid group in β-
carboline alkaloids. The effect of methanol was studied in more

TABLE 1 The example of impurities and reactions of the solvents most commonly used in phytochemistry.

Solvent class Solvents Contaminations artifacts

Alcohol Methanol, ethanol, propanediol, glycol,
glycerol

Aldehydes Esters, acetals, hemiacetals, carbinolamines

Ethers Diethyl ether, tetrahydrofuran Peroxides, aldehydes, alcohols N-oxides, carbinolamines, esters, acetals, hemiacetals

Esters Ethyl acetate Acetaldehyde Trans-esterifications, Esters, acetals, hemiacetals,
carbinolamines

Acetonitrile Acetonitrile Acetamide, BHT, dichlorobenzene, glutatonitrile, succinonitrile

Chloroform Chloroform Phosgene, CH2BrCl, CH2Cl2 Quaternary amines

Dichloromethane Dichloromethane CH2BrCl, CNCl Quaternary amines cyanides

Aromatic hydrocarbons Toluene Various Hydrocarbons

FIGURE 1
Isomerization of chlorogenic acids. Intramolecular migration of the cinnamoyl-group (cin) in pure chlorogenic acid (100% pure 3-
cinnamoylquinic acid) when 3 min in phosphate buffer pH 7, at 90°C (Hanson, 1965). Percentages given are quantities relative the pure chlorogenic
acid. cin = cinnamoyl.
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detail by Xu and coworkers (2020). They developed a

chemometric tool to predict potential artifacts by reactions

with methanol or oxidation. Some benzylisoquinoline

alkaloids and caffeic acid derivatives were used as examples.

Sauerschnig and colleagues (2018) reported many other

examples of artifact formation with methanol. By using

FIGURE 2
Chemical structure of secologanin and artifacts formed during isolation in alcoholic solvents (Verpoorte unpublished results, Tomassini et al.,
1995).

FIGURE 3
Various skeletons of terpenoid indole alkaloids formed through the intramolecular reaction of the aldehyde group and an amine function after
glucolysis of strictosidine (Verpoorte, 2000).
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deuterated methanol, they showed by LC-MS that 8% of the more

than 1,100 detected metabolites were artifacts containing a

deuterated OMe group.

Another reaction concerns aldehyde- and keto-groups. They

may react with alcohols to yield hemiacetals and acetals. In

chromatography a single pure compound may show several

peaks due to these reactions. Secologanin is an example of

such a compound (Figure 2). Both intra- and intermolecular

reactions may be involved. Acetone may even form adducts with

secologanin (Verpoorte unpublished results, Tomassini et al.,

1995). Aldehyde- and keto-groups maybe involved in all kinds of

internal rearrangements, like in the biosynthesis of terpenoid

indole alkaloids, in which strictosidine is the precursor for a large

number of pathways leading to different skeletons (Verpoorte,

2000) (Figure 3). The first reaction is the loss of a glucose. This

leads to the opening of the acetal containing ring, in which the

molecule unfolds to give two reactive aldehyde functions and two

reactive amino groups. This opens the biosynthetic pathways

leading to different structures. The reactions of an aldehyde- or

keto-group with an amine or an hydroxyl group are important

reactions to keep in mind as they are a major source for artifacts.

The alkaloid gentianine is an example of a non-natural

alkaloid that is formed during extraction with an ammonia

containing extraction solvent. The ammonia may react with

the aldehyde group in the iridoid sweroside, yielding

gentianine (Phillipson et al., 1974; Popov et al., 1988). Bunel

and coworkers (2014) showed that 2-hydroxy-4-

methoxybenzaldehyde reacts with ammonia to give an

alkaloid like compound. Wenkert and co-workers (1965)

reported the artifact formation of an abietane-type of

diterpene when ammonia was used in the extraction.

The hydroxyl group in carbinolamines easily reacts with

alcohols (just like hemiacetals) yielding an O-Methyl

derivative in case of methanol as extraction solvent. 16-

Methoxypseudostrychnine (Bisset et al., 1965) (Figure 4A) and

17-O-methylakagerine (Rolfsen et al., 1978) (Figure 4B) are

examples of such artifacts. In this connection the use of

ethanol as extraction solvent has advantages. First of all, it is a

greener solvent than methanol and is less toxic. Moreover, in case

of any reaction with an alcohol during the extraction one will find

an ethoxy group instead of a methoxy group. As ethoxy groups

are rare in nature, this is an excellent method for for identifying

potential artifacts.

A keto-group containing solvent like acetone, may form

adducts with ammonia or amines that give alkaloid-positive

color reactions, particularly when running preparative column

FIGURE 4
(A)Artifacts formed during isolation of pseudostrychnine in alcoholic solvent (Bisset et al., 1965). (B)Artifact formed during isolation of akagerine
in alcoholic solvent (Rolfsen et al., 1978).
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chromatography on silica (Householder and Camp 1965).

Alcohols may contain aldehydes and carboxylic acids as

contaminations. One should keep in mind that commercial

chloroform always contains 1–2% of ethanol. That means that

the above-mentioned reactions also occur in chloroform solution

(see below). In general, the experience is that dissolved in

alcohols compounds are reasonably stable.

Ethers Though ethers are rather inert in terms of reactivity if

compared to alcohols, their major problem is the formation of

peroxides. In the use of ethers, great caution is required when

evaporating ethers because of high risks of explosions. These

peroxides mediate artifact formation, as complex natural

products can be oxidized by these peroxides. The most

common one is the well-known N-oxidation of amines. The

N-oxides formed may further react and cause ring openings,

exemplified by the case of strychnine where the N-oxide

rearranges into the hydroxy derivative (pseudostrychnine)

(Figure 4A) (Bisset et al., 1965). Via this carbinolamine a ring

can be opened. N-oxidation is a common step in the catabolism

of alkaloids and nitrogen containing medicines. When choosing

for diethyl ether as solvent, one should always check for the

presence of peroxides.

Esters The intramolecular trans-esterifications in chlorogenic

acid and their analogues were mentioned above. Using esters (e.g.

ethyl acetate) as solvent incurs the risk of trans-esterifications.

The combination of ammonia and ethyl acetate may lead to

crystallization of acetamide.

Halogenated solvents For the extractions of medium polar

compounds and for liquid-liquid purifications, halogenated

solvents such as chloroform and dichloromethane are often

used. For toxicity reasons dichloromethane is recommended

to be used instead of the more toxic chloroform. Because of

FIGURE 5
(A) Artifact formed from berberine during its isolation using chloroform (Miana, 1973). (B) Artifacts derived from berberine formed during
column chromatography using chloroform:methanol (99:1) as eluting system (Shamma and Rahimizadeh, 1986).
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physico-chemical properties chloroform has some advantages

in better dissolving medium polar compounds, and in

particular alkaloids. In terms of artifacts both have serious

disadvantages (Baerheim Svendsen and Verpoorte 1983).

Besselièvre and coworkers (1972) asked the question “is

dichloromethane a solvent or a reagent”. They found that

the indole alkaloid tubotaiwine is rapidly converted to the

quaternary dichloromethotubotaiwine when dissolved in

dichloromethane. Strychnine, brucine (Phillipson and Bisset

1972; Verpoorte et al., 2008) and atropine (Vincze and Geven,

1978) have been reported to also give such quaternization of

an amine function with dichloromethane. These quaternary

dichlorometho alkaloids have lost the lipophilic properties of

the tertiary alkaloids. Also, with chloroform these artifacts

were formed, though at lower levels as they are formed with

dichloromethane and dichlorobromomethane present in

chloroform as contaminations (Phillipson and Bisset 1972).

Hansen (1977) reported on the artifact formation through

N-alkylation of amines. In case of strychnine and brucine, in

addition to dichlorometho artifacts and N-alkylation, also

N-oxides and the pseudo-strychnine and -brucine were

formed in the chlorinated solvents

In dichloromethane cyanogen chloride (CNCl) might be

present in variable quantities as contamination (Franklin,

et al., 1978). Primary and secondary amines may form nitriles

with this impurity. In chloroform, however, no CNCl could be

detected. Chloroform itself reacts with protoberberine type of

alkaloids. Especially, during column chromatography using

chloroform-methanol as mobile phase, a trichloro compound

was formed from berberine (Figure 5A) and related alkaloids

(Miana, 1973). Through oxidation other artifacts were formed

from the these alkaloids (Figure 5B) (Shamma and Rahimizadeh,

1986).

Another problem with chloroform is its oxidation in the

light, yielding phosgene, a well-known chemical warfare gas. This

highly reactive gas reacts with all kinds of compounds. To

neutralize phosgene, chloroform always contains 0.5–2% of

ethanol. Ethanol reacts with phosgene (Figure 6), and thus

keeps the level of phosgene low, but still there will be some

artifacts formed with analytes. In the analysis of normeperidine

the ethyl chloroformate derivative of the target compound was

detected (Siek et al., 1977). Cone and colleagues (1982) reported

artifact formation in the analysis of metabolites of codeine, when

chloroform was used to extract the alkaloids from biological

fluids. A similar study was published for the extraction of

anthracyclines (Maudens et al., 2007). The presence of ethanol

in chloroform may also be the cause of artifacts as described

above for alcohols. By distillation chloroform can be purified, but

always some alcohol should be added after distillation.

5 Chromatography related problems

5a Identification of compounds

Pimms et al. (1995) made an estimation of the number of

organisms on earth. The estimation was between 10 and

100 million organisms, among which 250.000 plant species. A

search made at the end of last century in the NAPRALERT

database (NAtural PRoducts ALERT, focused on natural

products and their bioactivities) showed that of total plant

biodiversity, around 15% of the species had been studied to

some extent for secondary metabolites and only about 5% for one

or a few biological activities (Verpoorte 1998, 2000; Verpoorte

et al., 2006). In the Dictionary of Natural Products (2022) the

present number of compounds is 328,000. If we assume that

every species can make one unique compound, there must be

millions of yet unknown compounds present in nature. Based on

the number of genes in a plant we estimate that a plant may

contain 20,000 to 50,000 different compounds with a very broad

range of polarities and with a huge dynamic range.

With the high resolution of the state-of-the-art hyphenated

metabolomics methods, we expect many new compounds to be

reported in the coming years. Putative identifications of

compounds are made through searching various databases

with information about retention behavior, molecular weight,

and MS-fragmentation patterns. Tools like the recently

developed molecular networking are helpful in identification

of known compounds, as well as in predicting the chemical

structures of novel compounds (Aron et al., 2020). However, for

proper identification of a compound and for structure

elucidation of novel compounds, the mentioned information

is not sufficient for a full identification. A complete set of

spectroscopic data is needed to confirm the chemical

FIGURE 6
Formation of ethyl chloroformate in chloroform and possible
resulting adducts (Siek et al., 1977; Cone et al., 1982; Maudens
et al., 2007).
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structures and the stereochemistry. Unfortunately, in literature

one may find publications with supplementary data with a long

list of putative “identified” compounds, based on retention time,

molecular weight, MS-fragmentation and comparison with

existing databases. These “identifications” are later often cited

in other papers as identified compounds, without further new

evidence for the identification. One may consider such

identifications also as artifacts generated by the automated

analytical methods. To avoid doubt about identifications,

recommendations have been made for the level of confidence

of an identification from metabolomics data (Blaženovic et al.,

2018). Whether it is acceptable to say that a component is with

90% confidence compound X, or similar “statistical” support, is

in our view doubtful. At least for any marker molecule identified

through metabolomics analysis, one should have hard spectral

evidence for the identity.

5b Injection samples

Extracts must be dissolved at a certain point in the

preanalytical processing for further separation or analysis.

There are numerous solvents to extract or to redissolve

extracts or molecules obtained from a biological sample. In

the different analytical procedures, different procedures are

needed. In the Liquid chromatography (TLC and HPLC) the

extract must be completely dissolved in a proper solvent. For

TLC the choice is based on the solubility of the extract, and on the

ease of applying the sample on the plate, where after application

the solvent has to be evaporated, before the development of the

TLC plate. In case of HPLC the solvent of the sample for injection

in the LC-system must be compatible with the column and the

eluent. For example, in developing a protocol for a metabolomic

analysis, the final solvent used to inject a sample in LC should be

as similar as possible to the mobile phase in terms of polarity and

pH, including the presence of compounds that may affect

retention behavior (e.g. ion-pairing). Ion-pairing LC is used in

the analysis of alkaloids, e.g. using long chain sulfonic acids as

additive in the mobile phase. But also, ions like acetate, formate,

trifluoroacetate, chloride, bromide, and iodide may act as ion-

pairing agents, and in liquid-liquid extractions they may cause

loss of analytes (Hermans and Verpoorte 1986). In case of large

differences between injection solvent and mobile phase the

retention of some analytes may be affected. Even the

formation of multiple peaks for a single molecule may occur

in case of a large difference. In the analysis of complex

chromatograms this may easily be overlooked, resulting in

errors in quantitation and identification. In case of GC the

solvent for dissolving an extract should enable the

derivatization required to volatilize the various components

FIGURE 7
Difference between NMR metabolomics data depending on the extraction solvent. Control Brassica nigra and infected Brassica nigra leaves
were extracted using two different solvents containing 50% MeOH (A) and 80% MeOH (B). There was less differences between control and infected
leaveswhen extractedwith 50%MeOH. However when it is extracted using 80%MeOH, a big difference could be found in both extracts, showing the
choice of extraction solvent is important (Verpoorte et al., 2007).

Frontiers in Molecular Biosciences frontiersin.org08

Verpoorte et al. 10.3389/fmolb.2022.972190

138

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.972190


present in themetabolome. In case of NMR the NMR-solvent can be

used to extract the biomaterial, the reduction in workload is a major

advantage of NMR. In case of mass spectrometry solid extracts or

biomaterials can be used when the equipment offers this option. The

analytical method applied determines the necessary preanalytical

procedures. Obviously there will be differences between the various

analytical procedures for risks of artifacts formation.

Metabolomics is used to identify markers for certain conditions,

by comparing metabolomes of different materials, and identifying

what signals correspond with what condition. Using a polar solvent

to extract biomaterials means that certain compounds are poorly

dissolved. Consequently, the signals of these compounds represent

the peak height of a saturated solution of those compounds and will

be similar for all samples. By only focusing on differences between

metabolomes one might miss markers that are poorly soluble. From

the fact that certain signals not seem to change, no conclusions can be

drawn. Changing the extraction solvent may have a great impact on

the visible metabolome and new markers might become visible (see

Figure 7) (Verpoorte et al., 2007).

Another example of this problem is in the extraction of a given

weight of sample with different amounts of solvent, e.g., 2 ml or

10 ml solvent. The total amount of a poorly dissolved compound

differs a factor 5 between these extracts. When these extracts are

taken to dryness and then redissolved in a well-defined amount of

another solvent in which the compound is very well soluble, you

will find a large difference for the amount detected in the two

samples, though they could be similar quantities in the extracted

materials. In liquid chromatography the choice of mobile phase is

crucial for the separation. The pH is an important factor to keep in

mind, as spectral datamay be quite different for a compoundwhen

measured at different pH. An example is magnoflorine, a

quaternary alkaloid. For many years there where two alkaloids

mentioned in the literature, N,N-dimethyllindcarpine and

magnoflorine, but finally it turned out that is was one and the

same compound, with quite different spectral data if measured at

high or low pH (Stermitz et al., 1980). Schripsema and colleagues

(1986) used the pH effect as a tool for structure elucidation, as with

trifluoroacetic acid one could deconvolute NMR spectra with a lot

of overlapping signals, because the pH strongly affected the shift of

protons close to nitrogen atoms. In identification of compounds by

spectral data of LC-MS or GC-MS one should keep in mind that

the pH of the injected sample may greatly affect retention andMS-

fragmentation.

Finally, one other experience we want to share is about salicylic

acid. An interesting compound as it is a signal compound that affects

the metabolome of plants. We noted in literature that reported

recoveries of salicylic acid varied from 30–60%. Un unacceptable

difference, that will invalidate any conclusions when measuring this

compound. We studied this in some detail and found that the

problem is that salicylic acid is volatile. When taking an extract to

full dryness, it disappears completely (Verberne et al., 2002). By

adding a small amount of sodium hydroxide the evaporation was

avoided, and high reproducible recovery was obtained.

6 Conclusion

Metabolomes of biological materials are complex, because of the

large number of compounds with a wide range of polarities and

concentrations. In preparing samples for metabolomic analysis

extraction with organic solvents is a common step. These solvents

may interact with various analytes through chemical reactions. Also

contaminations in the solvents may be involved in the formation of

artifacts. Particularly hydroxyl-, aldehyde-, keto-, carboxyl-, ester-,

and amine functional groups are involved in the artifact formation.

Oxidation, esterification, hydrolysis, glycolysis are common reactions

that may occur in the preanalytical steps of the sample preparation.

Considering the problems with some of the classic organic solvents,

in terms of artifacts formation, their toxicity and their ecological

damage, future research should be focused on developing novel green

solvents for analytical chemistry, like the use of ionic liquids or

natural deep eutectic solvents (Dai et al., 2013). In the LC analytical

steps it is differences in injection solvent and mobile phase that are

sources of artifacts, like distorted peaks or even double peak

formation. Saturated solutions of poorly soluble compounds may

hide markers. Finally the proper identification of compounds is a

major hurdle, as it requires the full set of spectral data (UV, IR, MS,

NMR), and methods for proving the full stereochemistry.

Identification on the basis of UV, MS and retention is not

sufficient. The development of a metabolomics analysis protocol

should include a proper validation. For reproducible results the

quality of all used chemicals and solvents should be controlled.

For future reference, registration of the metadata from all steps of the

protocol from collection to final chemometric analysis is essential.
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Machine learning has become a powerful tool for systems biologists, from

diagnosing cancer to optimizing kineticmodels and predicting the state, growth

dynamics, or type of a cell. Potential predictions from complex biological data

sets obtained by “omics” experiments seem endless, but are often not the main

objective of biological research. Often we want to understand the molecular

mechanisms of a disease to develop new therapies, or we need to justify a

crucial decision that is derived from a prediction. In order to gain such

knowledge from data, machine learning models need to be extended. A

recent trend to achieve this is to design “interpretable” models. However,

the notions around interpretability are sometimes ambiguous, and a

universal recipe for building well-interpretable models is missing. With this

work, we want to familiarize systems biologists with the concept of model

interpretability in machine learning. We consider data sets, data preparation,

machine learning methods, and software tools relevant to omics research in

systems biology. Finally, we try to answer the question: “What is interpretability?”

We introduce views from the interpretable machine learning community and

propose a scheme for categorizing studies on omics data. We then apply these

tools to review and categorize recent studies where predictive machine

learning models have been constructed from non-sequential omics data.

KEYWORDS

multi-omics, interpretable machine learning, deep learning, explainable artificial
intelligence, metabolomics, proteomics, transcriptomics

1 Introduction

Machine learning (ML) is advancing rapidly, with new methods introduced almost

daily. As the field progresses, also its methods become better accessible to researchers

from other disciplines due to the development and release of new software tools. Many

fundamental ML methods can be applied to almost any data set. Nonetheless, the real-

world goals of researchers that apply these methods to their own data sets may diverge

from the objectives of the ML model itself (Lipton, 2016). While a researcher may want to
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understand the molecular mechanisms of a disease or may want

to know why a ML model classifies a patient as having a disease,

the ML model may aim to minimize the number of wrong

predictions. Understanding predictions is especially important

in a clinical context, where medical professionals need to justify

healthcare decisions (Barredo Arrieta et al., 2020). Bringing real-

world and ML objectives into harmony asks for methods that

make ML models more interpretable (Lipton, 2016). The

research field behind this goal is interpretable machine

learning (Murdoch et al., 2019), which falls under the

umbrella of explainable artificial intelligence (XAI) (Barredo

Arrieta et al., 2020). Advances in this domain are becoming

even more important as MLmodels are increasing in complexity.

Further, using data-driven approaches like machine learning to

not just predict from data but also to learn about the biological

mechanisms that generate the data in the first place is an

attractive concept. Mechanistic approaches like kinetic models

take long to develop and require a detailed prior understanding

of a system, while machine learning models can make better

predictions and sometimes answer the same biological questions

with less effort (Costello and Martin, 2018).

Consequently, interpretable ML has received more and more

attention in biology in recent years. Various studies that apply

machine learning to biological data sets have been published,

many claiming to implement “interpretable” (Wang et al., 2020;

Oh et al., 2021; Sha et al., 2021), “explainable” (Manica et al.,

2019), “gray-box” (Nguyen et al., 2021), “white-box” (Yang et al.,

2019) or “visible” (Ma et al., 2018) machine learning frameworks.

All these terms refer to the urge to gain valuable biological

knowledge from data with the help of machine learning,

which falls under the keyword “interpretability” (Lipton, 2016;

Murdoch et al., 2019). Now, the question arises, what is

interpretability?, or, more specifically, what makes a machine

learning model interpretable? The answer to this fundamental

question is under debate in the machine learning community for

some time now. Many answers have been proposed (Lipton,

2016; Murdoch et al., 2019; Barredo Arrieta et al., 2020), but a

clear consensus is still missing. Generally, “interpretability [itself]

is a broad, poorly defined concept (Murdoch et al., 2019),” which

is probably the main reason why definitions in a machine

learning context are complicated to fix. Clearly, there are

different perspectives to view interpretability in machine

learning: e.g., it can mean how much we can learn from data

by using a ML model (Murdoch et al., 2019), how well we

understand the ML model itself (i.e., comprehend how it

makes a prediction), or how much extra information the

model can provide that supports predictions (Lipton, 2016).

Interpretation methods, the techniques by which we gain

biological insight from data with machine learning besides

predictions, may divide into “model-based” and “post hoc”

methods (Murdoch et al., 2019). While model-based methods

rely on adapting the model before training it, post-hoc methods

operate on already trained models (Murdoch et al., 2019).

In machine learning, there are three main ways to train

models, namely reinforcement learning, unsupervised learning,

and supervised learning. Throughout this review, we want to

focus on supervised learning because of its prevalence in general

(LeCun et al., 2015) and in the context of predictive systems

biology. Supervised learning presents models with a set of

training samples (e.g., omics profiles from multiple patients)

for which the outcome of a prediction (e.g., health conditions)

is already known (Presnell and Alper, 2019). Based on this

training data set, supervised learning tries to produce a model

that accurately predicts the target for samples without a known

solution (Angermueller et al., 2016). Supervised machine

learning techniques have been applied to high-throughput

omics data to predict a broad range of clinical, phenotypical,

and physiological observations.

While diagnosing various diseases (Leitner et al., 2017;

Trainor et al., 2017; Hu et al., 2018; Pai et al., 2019; Stamate

et al., 2019; Nguyen et al., 2021; Sha et al., 2021; van Dooijeweert

et al., 2021) or predicting clinical outcomes (Bahado-Singh et al.,

2019; Pai et al., 2019; Zhang et al., 2021) seem common, possible

applications reach up to inference of the fluxome (Alghamdi

et al., 2021) or growth rate (Culley et al., 2020) of a cell from

transcript levels. Besides using machine learning for predictions,

many studies attempt to gain additional biological knowledge by

implementing post-hoc or model-based interpretation methods

(Alakwaa et al., 2018; Date and Kikuchi, 2018; Hu et al., 2018;

Bahado-Singh et al., 2019; Wang et al., 2020; Nguyen et al., 2021;

Wang et al., 2021). Further, interpretability can improve by

incorporating prior biological knowledge into a research

project (Nguyen et al., 2021; Wang et al., 2021).

This review was written from an interdisciplinary perspective

and is intended for an audience with systems biological

background but not necessarily experience in machine

learning, who are interested in machine learning approaches

for generating biological insight. We aim to familiarize readers

with the term interpretability and equip themwith a fundamental

machine learning background necessary for understanding the

concept. To achieve this, we take an example-based approach by

highlighting studies that successfully extract biological insight

from non-sequential omics data sets with the help of

interpretation methods.

Furthermore, we present a scheme for categorizing research

papers based on two criteria, 1) the use of interpretation methods

and 2) at which point prior knowledge enters a research project.

With this categorization system, we hope to contribute to the

establishment of terms associated with interpretability and allow

ML projects to be compared in their interpretability. In this work,

we have assigned a total of 26 publications to 9 categories that our

scheme outlines.

We start with a characterization of the utilized data sets, what

studies predict from them, and how to prepare them for machine

learning. Then we present supervised learning methods that

systems biologists applied to omics data and showcase
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available software tools for data manipulation, visualization, and

up to fully automatic ML solutions for omics data analysis. We

try to answer the question: “What is interpretability?” by

introducing fundamental concepts, describing our

categorization scheme, and highlighting exemplary works in

systems biology. With this work, we want to raise awareness

for interpretable machine learning and its potential for gaining

insight from omics data.

2 Data sets

Due to the data-driven nature of machine learning, data is

essential for a successful ML project (Mendez et al., 2019).

Ultimately, any machine learning model tries to learn

discriminative features, relationships, patterns, or structures

found within a data set. In a data set for supervised learning,

a sample consists of variables that describe its properties (the

features, e.g., molecule abundances) and has one or more

outcome variables associated with it that provide the

corresponding prediction target (the labels) (Shalev-Shwartz

and Ben-David, 2013; Angermueller et al., 2016; Deisenroth

et al., 2020). Labels can be any variables we wish to predict,

ranging from categorical variables describing cancer (sub)types

(Alakwaa et al., 2018; Sharma et al., 2019; Zhang et al., 2021) to

continuous specifications of cell growth (Kim et al., 2016; Culley

et al., 2020). Based on whether labels are categorical or

quantitative variables, one differentiates between the two

supervised prediction tasks, classification or regression (Bishop,

2006, p. 3). A feature can be any variable we expect to be

predictive of a target variable, such as metabolite abundances

(Trainor et al., 2017; Stamate et al., 2019; Sha et al., 2021),

“traditional risk factors” (Liu et al., 2017), metabolic fluxes

(Culley et al., 2020), and even kinetic parameters when the

goal is to predict the feasibility of kinetic models (Andreozzi

et al., 2016). Samples with known labels provide the “ground

truth” enabling the ML model to learn how predictions for

unlabeled samples should optimally look like (Martorell-

Marugán et al., 2019).

Usually, the data set that holds all collected and labeled

samples is divided into at least a training set and an independent

test set (Trainor et al., 2017; Alakwaa et al., 2018; Sharma et al.,

2019; Culley et al., 2020; van Dooijeweert et al., 2021). A

learning algorithm uses the training set to improve/construct

a ML model (Bousquet and Elisseeff, 2002), e.g., by estimating

parameters or functional forms. Since the model is fit to the

training data, the model’s error on this data can be drastically

smaller on unseen data like the test set (Maceachern and

Forkert, 2021), which means that the model struggles on

new samples drawn from the same underlying distribution,

i.e., the model has a poor “generalization” ability (Shalev-

Shwartz and Ben-David, 2013, sect. 1.1). This phenomenon

is known as overfitting. Guiding high-level modeling decisions

(i.e., hyperparameters like the number of layers in a neural

network) with the test set can similarly overfit the model to this

data (Bishop, 2006, p. 32). It is, therefore, required to use a third

separate validation set (Angermueller et al., 2016) or, if samples

are rare, use other techniques like cross-validation that avoid

using the test set for such optimization purposes (Bishop, 2006,

p. 32f). After tuning the design and training, a model’s realistic

performance, i.e., “predictive accuracy” (Murdoch et al., 2019) is

measured on the out-of-sample test set (Angermueller et al.,

2016).

With omics data sets becoming more readily available,

they are also more frequently exposed to machine learning

algorithms. Alone in this review, the categorized studies

covered eight distinct data types characterizing a biological

system—not counting network-type data. Omics data sets

lend themselves to interpretable machine learning solutions

because of their sheer complexity, making them hard to

interpret by visual inspection or simple statistical methods.

Table 1 provides an overview of the reviewed studies that

demonstrates a wide diversity of prediction targets. We

compile some of the targets into the categories

“Diagnosis,” “Clinical Outcome,” and “Physiology.”

Physiology includes phenotypic predictions, genetic

properties, cellular state and dynamics, etc. Predictions

that did not fit any of these categories were regional origin

of an organism (Date and Kikuchi, 2018), type of a cell (Wang

et al., 2020; Wang et al., 2021), “feasibility” of kinetic models

(Andreozzi et al., 2016), and body region where a tumor

emerged (Zhang et al., 2021). The most common category was

Diagnosis with 16 examples. Among the diagnosed diseases,

cancer is most prevalent. One reason is the commendable

availability of large omics data sets enabled by The Cancer

Genome Atlas (TCGA) program. Unarguably, precision

medicine, especially cancer research and diagnostics has

benefited a lot from machine learning in recent years

(Grapov et al., 2018; Chiu et al., 2020). Another trend that

seems to arise is the application of machine learning to

problems that have been traditionally solved with

mechanistic models, like the estimation of metabolic fluxes

(Alghamdi et al., 2021) and metabolite changes over time

(Costello and Martin, 2018). Phenotypic discrimination is

also very apparent. This includes predicting cell growth (Kim

et al., 2016; Culley et al., 2020), patient biological sex (Zhang

et al., 2021), and organism body size (Asakura et al., 2018).

Zhang et al. (2021) demonstrated that even multiple

predictions, ranging from cancer type classification and

stratification over patient age and sex to patient survival,

are possible from the same integrated data source. Building

large “multi-task” (Zhang et al., 2021) machine learning

frameworks that can predict multiple biological system

properties for one sample seem promising as data

collections grow and become more well-curated, as

exemplified by Kim et al. (2016).

Frontiers in Molecular Biosciences frontiersin.org03

Sidak et al. 10.3389/fmolb.2022.926623

144

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.926623


TABLE 1 Overview of the categorized studies.

Omics data type Prediction
Method(s)

Effective raw
features

Effective raw samples Prediction type Ref

Metabolomics Ensemble DNN, DNN,
RF, SVM

106 NMR peaks 502 profiles Regression (Physiology; fish
body size)

Asakura et al.
(2018)

Metabolomics LogReg 24 metabolites 1571 profiles Binary Classification
(Clinical Outcome;
prospective type 2 diabetes)

Liu et al. (2017)

Metabolomics SVM 1737 metabolites 58 profiles Binary Classification
(Diagnosis; Diamond
Blackfan Anaemia)

van Dooijeweert
et al. (2021)

Metabolomics RF, AdaBoost, SVM, NBC 109 metabolites 12–18a profiles Binary Classification
(Physiology; pathway
presence in tomato pericarp)

Toubiana et al.
(2019)

Metabolomics DNN, XGBoost (DT), RF 347 metabolites 357 profiles Binary Classification
(Diagnosis; alzheimer-type
dementia)

Stamate et al.
(2019)

Metabolomics LGP, LogReg 70 metabolites 389 profiles Binary Classification
(Diagnosis; knee
osteoarthritis)

Hu et al. (2018)

Metabolomics LGP, SVM, RF 242 metabolites 114–115 profiles Binary Classification
(Diagnosis; alzheimer’s
disease, amnestic mild
cognitive impairment)

Sha et al. (2021)

Metabolomics DNN, PLS-DA, RF, SVM ≤106 NMR peaks 1022 profiles Binary Classification (Other;
regional origin of fish)

Date and
Kikuchi (2018)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

≤1032b metabolites 38 profiles Multi-class Classification
(Diagnosis; cardio vascular
disease)

Trainor et al.
(2017)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

≤431b metabolites not assigneda Binary Classification
(Diagnosis; adenocarcinoma
lung cancer)

Trainor et al.
(2017)

Metabolomics PLS-DA, Sparse PLS-DA,
RF, SVM, kNN,
NBC, ANN

not assigneda not assigneda Multi-class Classification
(Physiology; genotype)

Trainor et al.
(2017)

Metabolomics DNN, RF, SVM, DT, LDA,
NSC, GBM

162 metabolites 271 profiles Binary Classification
(Diagnosis; breast cancer
stratification)

Alakwaa et al.
(2018)

Metabolomics SVM, PLS-DA 16 and 131 metabolites 21 and 32 profiles Binary Classification
(Diagnosis; gestational
diabetes mellitus)

Leitner et al.
(2017)

Proteomics LDA, SVM, kNN, RF 123 peptides 183 profiles Multi-class Classification
(Physiology; genotypes)

Hoehenwarter
et al. (2011)

Transcriptomics CNN, RF, DT, AdaBoost 60483 genes 6216 profiles Multi-class Classification
(Diagnosis; different cancer
types)

Sharma et al.
(2019)

Transcriptomics SimNet ≤17814b genes 348 profiles Binary Classification
(Diagnosis; breast cancer
stratification)

Pai et al. (2019)

Transcriptomics SimNet not assigneda 194 profiles Binary Classification
(Diagnosis; asthma)

Pai et al. (2019)

Transcriptomics SVR, RF, DNN, BEMKL,
BRF, MMANN

≥68c genes 1229 profiles Regression (Physiology;
eukaryotic growth rate)

Culley et al.
(2020)

single-cell Transcriptomics GNN 862 genes 162 single-cell profiles Multi-class Classification
(Other; cell type)d

Alghamdi et al.
(2021)

single-cell transcriptomics CapsNet, SVM, RF, LDA,
kNN, ANN

3346 genes 17933a single-cell profiles Multi-class Classification
(Other; cell type)d

Wang et al.
(2020)

single-cell transcriptomics CapsNet 9437 genes 4993 profiles Multi-class Classification
(Other; cell type)d

Wang et al.
(2021)

Epigenomics VAE in combination with
different ML methods,
RBF SVM, RF,
ANN, DNN

438831 DNA
methylation sites

3905 profiles Multi-class Classification
(Diagnosis; brain cancer
subtypes)

Zhang et al.
(2021)

(Continued on following page)
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TABLE 1 (Continued) Overview of the categorized studies.

Omics data type Prediction
Method(s)

Effective raw
features

Effective raw samples Prediction type Ref

Multi-omics (DNA copy
number, Transcriptomics,
Proteomics)

modified NSC, SVM, NSC ≤16266a proteins,
≤17282a genes

103 profiles per omics-type Multi-class Classification
(Diagnosis; breast cancer
stratification)

Koh et al. (2019)

Multi-omics
(Transcriptomics,
Proteomics, microRNA
Transcriptomics, DNA
methylation, DNA copy
number)

SimNet not assigneda 150, 252, 77 and 155 profiles per
omics-type in four independent
data sets

Binary Classification
(Clinical Outcome; cancer
patient survival)

Pai et al. (2019)

Multi-omics (mRNA
Transcriptomics,
microRNA
Transcriptomics,
Epigenomics)

VAE in combination with
different ML methods,
RBF SVM(R), RF(R),
ANN(R), DNN(R),
CoxPH

58043 genes,
438831 DNA
methylation sites,
1881 miRNAs

9736–11538 profiles per omics-
type

Multi-class Classification
(Diagnosis; different cancer
types), Regression
(Physiology; patient age),
Binary Classification
(Physiology; patient
biological sex), Multi-class
Classification (Physiology;
tumour stage, Other; body
region of tumor emergence),
Regression (Clinical
Outcome; patient survival
function)

Zhang et al.
(2021)

Multi-omics (Proteomics,
Metabolomics)

SVM, GLM, NSC, RF,
LDA, DNN

≤141b metabolites,
≤ 27a proteins

26 profiles per omics-type Binary Classification
(Clinical Outcome; perinatal
outcome in asymptomatic
women with short cervix)

Bahado-Singh
et al. (2019)

Multi-omics
(Transcriptomics, SNP-
omics (genetic variants))

DNN with Lasso, DSPN,
AdaBoost, DT, SVM,
ANN, RF, kNN, GP, NBC,
RBM, RBF SVM, SVM
with Lasso, LogReg with
Lasso

2598 genes,
127304 SNPs

1378 profiles per omics-type Binary Classification
(Diagnosis; schizophrenia)

Nguyen et al.
(2021)

Multi-omics
(Transcriptomics, SNP-
omics (genetic variants))

DNN with Lasso, DSPN,
AdaBoost, DT, SVM,
ANN, RF, kNN, GP, NBC,
RBM, RBF SVM, SVM
with Lasso, LogReg with
Lasso

118 genes, 332 SNPs 248 profiles per omics-type Binary Classification
(Diagnosis; lung cancer
stage)

Nguyen et al.
(2021)

Multi-omics
(Transcriptomics,
Proteomics, Metabolomics,
Fluxomics)

RNN, LassoReg, Ensemble
LassoReg

4096 genes,
1001 proteins,
356 metabolites,
≤ 120b fluxes

≤3579b transcriptomics profiles,
≤71b proteomics profiles,
≤696b metabolomics profiles,
≤43b fluxomics profiles

Regression (Physiology;
expression level of mRNAs,
proteins and metabolites,
prokaryotic growth rate)

Kim et al. (2016)

Multi-omics (Fluxomics,
Metabolomics)

DT ≤106a metabolites,
≤175a fluxes

not assigneda Binary Classification (Other;
feasibility of kinetic
parameter sets)

Andreozzi et al.
(2016)

Multi-omics (time-series
Proteomics and
Metabolomics)

Models found by TPOT ≤86e metabolites,
≤76e proteins

21 profiles per omics-type Regression (Physiology;
metabolite time derivatives)

Costello and
Martin (2018)

aTrue number not clearly obvious from the descriptions found in the main body of the work.
bNumber might be lower because some (additional) raw features or samples might have been filtered out.
cValue varies between different prediction methods.
dThis prediction task was repeated on other data sets from the same omics type(s) that are not listed here.
eEstimated from provided supplementary material.

Table notes: Counts for effective raw features/samples are explained in detail in Section 2.1. Additionally, non-omics features are not listed. The listed prediction methods are generic types,

meaning that theymay describe any derivedmethod. Please consult the referenced publications for details on the utilizedmethod. Supervisedmethods that were not used for predictions but

e.g., in preprocessing, the post-hoc phase, or for additional analysis are not listed. Bold methods indicate which methods were presented as the authors’ methods of choice or which were

primarily used for predictions. Abbreviations: DNN, Deep Neural Network; RF, Random Forest; SVM, Support Vector Machine; DT, Decision Tree; LDA, Linear Discriminant Analysis;

NSC, Nearest Shrunken Centroid; GBM, Gradient Boosting Machine (Boosted Tree Model, Generalized Boosted Model, Gradient Boosted Tree); TPOT, Python package for automatic

model selection (see Supplementary Table S1); PLS-DA, Partial Least Squares Discriminant Analysis; RBF, Radial Basis Function Kernel; ANN, feed-forward Artificial Neural Network;

LogReg, Logistic Regression; XGBoost, Extreme Gradient Boosting; Lasso, Lasso (L1) Regularization; LassoReg, Lasso Regression; SVR, Support Vector Regression; BEMKL, Bayesian

EfficientMultiple Kernel Learning; BRF, Bagged RF; MMANN,Multi-Modal ANN; VAE, Variational Autoencoder; RNN, Recurrent Neural Network; EnsembleX, combination of multiple

base models of type X; GNN, Graph Neural Network; NBC, Naïve Bayes Classifier; CapsNet, Capsule Network; GLM, Generalized Linear Model; LGP, Linear Genetic Program; AdaBoost,

Adaptive Boosting; GP, Gaussian Process; RBM, Restricted Boltzmann Machine; SimNet, Similarity Network; X(R), Regression variant of method X; CoxPH, Cox Proportional Hazard

Model; miRNA, micro Ribonucleic Acid; SNP, Single-Nucleotide Polymorphism; kNN, k-Nearest Neighbors; CNN, Convolutional Neural Network; DSPN, Deep Structured Phenotype

Network.
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2.1 Data set dimension and size

The number of features (i.e., data set dimension) and

samples (i.e., data set size) can be an important factor for a

MLmodel’s performance. Alakwaa et al. (2018) found that their

neural network model under-performed when data set size was

low but out-performed other MLmethods when the training set

was sufficiently large. Further, Mendez et al. (2019) compared

the performance of several ML models on multiple

metabolomics data sets and suggested that, at least in their

study, classification error was impacted less by a change in the

ML method than by a change in the number of training

samples. We have, therefore, also included this information

in Table 1. However, one should be explicit when listing data set

dimensions and sizes. In a ML project, the original data set is

often heavily processed: original features are scaled, new

features are created, some original samples or features are

omitted, etc. In this work, we summarize the part of the

workflow that starts after raw data tables have been

constructed and manipulates data before it reaches the ML

model for prediction as data preprocessing. A raw data table in

this context summarizes one omics type and contains one value

per omics entity for every observed entity (e.g., one abundance

value per metabolite for every patient). Data preprocessing is

outlined in more detail in Section 2.2. Preprocessing often

changes the dimension and size of a data set, sometimes

creating completely new features and samples. As an

example, Toubiana et al. (2019) derived a set of 444 graph-

based features for 339 pathways from a few repeated profiles of

106 metabolites by characterizing pathways in metabolite

correlation networks. Sample conversions that change the

entity a sample belongs to, e.g., from a “biological replicate”

to a pathway (Toubiana et al., 2019), seem relatively rare.

However, since feature conversions are frequently

encountered (Andreozzi et al., 2016; Koh et al., 2019; Pai

et al., 2019; Sharma et al., 2019; Toubiana et al., 2019; Culley

et al., 2020; Zhang et al., 2021) we need to clarify what the

numbers found in Table 1 mean.

Typically, specifications of dimension and size

characterize only either the raw data set or the ML-ready

data set used in optimizing and testing a ML model. In our

opinion, a reasonable alternative approach to express data set

dimensions and sizes is one that quantifies the amount of raw

data that ultimately contributes to the ML-ready data set. We

call the corresponding values effective raw feature/sample

counts. These metrics describe the number of raw features (i.e.,

variables of genes, SNPs, DNA methylation sites, proteins,

metabolites, fluxes, etc.) and raw samples (e.g., omics feature

profiles) from the raw data sets that contribute information to a

single data set available for ML. Hence raw features or samples that

are not integrated into the ML-ready data set because they were

filtered out during preprocessing are not counted towards these

values. However, even if raw features partially become target variables

(Kim et al., 2016) they can still be considered effective. Since effective

raw features and samples are part of the rawdata set, it is important to

not confuse their counts with specifications that refer to final features

and samples of theML-ready data set, whichmight be quite different.

We argue that effective raw feature and sample counts allow

comparison of ML-ready data sets even under extreme data set

transformations and reductions. Although these numbers seem

relevant they are unfortunately often difficult to reconstruct from

a reader’s perspective without analysing the original data and code.

Further, when the same raw data set yields multiple distinct ML-

ready data sets, effective counts can vary a lot between models, as

noticeable in the study by Culley et al. (2020).

Figure 1 shows effective counts for ML-ready data sets in the

26 categorized publications. Generally, we find that studies that

use solely metabolomics data (Leitner et al., 2017; Liu et al., 2017;

Trainor et al., 2017; Alakwaa et al., 2018; Asakura et al., 2018;

Date and Kikuchi, 2018; Hu et al., 2018; Stamate et al., 2019;

Toubiana et al., 2019; Sha et al., 2021; van Dooijeweert et al.,

2021) use a lower number of effective raw features for predictions

than studies employing only transcriptomics (Sharma et al., 2019;

Culley et al., 2020; Wang et al., 2020; Alghamdi et al., 2021; Wang

et al., 2021). The two exceptions on the transcriptomics side

(Culley et al., 2020; Alghamdi et al., 2021) originally had more

raw features but some of themwere omitted for at least onemajor

analysis because some genes were not present in a metabolic

network model. Due to technical limitations, metabolomics still

FIGURE 1
Comparison of effective raw data set dimensions and sizes in
the categorized studies. Each point represents a data set that was
used for optimizing and testing at least one predictive model. In
multi-omics, a data set includesmeasurements frommultiple
omics sources. Each data set is plotted at the position that
corresponds to its effective raw dimension and size. Please refer to
the main text for explanations on the meaning of effective raw
feature and sample counts (Section 2.1). Note that the graph shows
only a selection of all ML-ready data sets from all studies.
Supplementary Figure S1 provides references to the shown data
points.
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struggles to reach high throughputs, such that either the number

of raw features or the number of raw samples is restricted. This

depends also on the experimental method. All metabolomics

studies in Figure 1 with more than 200 effective raw features

(Trainor et al., 2017; Stamate et al., 2019; Sha et al., 2021) use

liquid chromatography coupled to mass spectrometry (LC-MS)

or LC-MS together with another method, respectively. While the

study with the second-lowest number of effective raw features

(Liu et al., 2017) used LC-MS together with nuclear magnetic

resonance (NMR) spectrometry, in this case, the authors reduced

their raw feature count from originally 261 to 24 effective

metabolite features for predictions. Although methods of 2-

dimensional gas chromatography can detect respectable

amounts of molecules (Phillips et al., 2013), studies that used

solely gas chromatography (Alakwaa et al., 2018) or NMR

(Asakura et al., 2018; Date and Kikuchi, 2018) did not reach

more than 200 compounds. Another concern of metabolomics is

that the exact identity of some of the raw features is often unclear

(Weckwerth, 2011). Recently, some efforts have been made to

solve this metabolite annotation problem also with machine

learning approaches (Nguyen et al., 2019). The biological

meaning of features is especially important when results

should be interpreted. Consequently, interpretation methods

that evaluate the importance of individual features might

struggle to generate meaningful biological insight when

applied to metabolomics data with unreliable annotations.

On the other end of the scope, transcriptomics oftentimes

easily reaches over 3,000 effective raw features (Sharma et al.,

2019; Wang et al., 2020; Wang et al., 2021) and studies that use

measurements from multiple omics sources can have and retain

close to 500,000 raw features due to the high-dimensionality of

epigenomics data and strategies to condense this information

(Zhang et al., 2021). However, taking into account more features

for a prediction is not always favourable. Besides technical

difficulties linked to data sets with many features, like storing

large feature vectors and computational cost (Bommert et al.,

2022), working with high-dimensional samples causes diverse

issues. The machine learning literature summarizes challenges

that arise in high-dimensional data sets under the “curse of

dimensionality” (Bishop, 2006; Shalev-Shwartz and Ben-David,

2013; Forsyth, 2019). Especially, when relevant information in

the data is “sparse,” meaning that only a few features truly

influence the prediction target, like it is often the case for

transcriptomics data (Vikalo et al., 2007), considering

additional features only “add[s] noise to the data” (Culley

et al., 2020). Having high-dimensional samples, while the

number of samples is much lower, is even worse. One major

problem is that the same number of samples are often spread over

wider distances in a higher-dimensional space (Forsyth, 2019,

p. 77f) and it would, therefore, require much more samples to

similarly populate this space (Bishop, 2006, p. 35). In this case,

the risk of overfitting to the training data is increased (Kim and

Tagkopoulos, 2018; Jiang et al., 2020). A way to mitigate the

“curse” is by reducing the number of dimensions by combining

original features to find a new lower-dimensional description for

each original sample or by omitting some original features

(Zhang et al., 2021). The corresponding methods are often

called feature extraction and feature selection and summarized

as dimensionality reduction techniques (Reel et al., 2021). These

methods are frequently “unsupervised,”meaning that they do not

use the information stored in the labels (Cai et al., 2022) and are

almost always advisable when dealing with a large number of raw

features. Feature selection methods can make ML models more

accurate (Chen et al., 2020) and better interpretable (Bommert

et al., 2022). For more details, see the following section about data

preprocessing (Section 2.2).

In addition, sometimes omics data such as metabolite

amounts reference information that is changing over time.

These dynamics are important to consider when modeling

with data collected at multiple time points, as it may affect the

reliability of ML predictions. One possible innovation for

correcting algorithms that have to deal with input data

representing dynamic information is by analysing concept

drift (Agrahari and Singh, 2021). Concept drift in machine

learning arises when the statistical properties of the target

variable change over time, usually due to the fact that the

identity of the input data that the model was trained on has

significantly changed over time. Then, a model that is

unaware of this change can no longer make accurate

predictions. It has already been shown that metabolomics

data is subject to concept drift, making prediction models not

taking the dynamics into account less reliable (Schwarzerova

et al., 2021).

2.2 Data preprocessing

In the machine learning community there is a popular

saying: “garbage in, garbage out.” It means that every

successful machine learning project lives and dies with the

quality of the data set it uses. Besides the experimental

procedure that determines the raw data quality, data

preprocessing, the step that takes raw data and turns it

into a data set suitable for learning, is critical (Kotsiantis

et al., 2007), especially for omics data (Kim and Tagkopoulos,

2018). Figure 2 illustrates the flow of data and information

through a modeling framework, indicating the vital role of

data preprocessing. Data preprocessing can involve many

steps, and these often heavily depend on the raw data and

application. In particular, during preprocessing

• data from different sources might be combined (data

integration), e.g., microRNA and mRNA expression

levels might be “concatenated” (Cai et al., 2022),
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• samples might be deleted (cleaning), e.g., because a patient

might be an obvious outlier, the diagnosis is unclear, or a

value is obviously corrupted like a negative abundance

record,

• missing values need to be filled in (imputation), e.g., by

inferring them from other measurements,

• noise might be reduced (smoothing), e.g., by “smoothing

methods” (Simonoff, 1996),

• new features and data representations might be created

with the help of dimensionality reduction techniques and/

or expert knowledge (feature extraction [Guyon and

Elisseeff, 2006] and feature engineering [Kuhn and

Johnson, 2019]), e.g., an “autoencoder” (see Section

3.3.2 for explanation) might find a compact vector

description of a large epigenomics profile (Zhang et al.,

2021), or the fluxome might be inferred from transcript

levels via constraint-based models (Culley et al., 2020),

• the scale of variables might be changed (scaling), e.g.,

normalizing and/or standardizing gene expression values

within genes,

• the format of variables might be changed (encoding), e.g.,

“0” might indicate absence of a gene and “1” its presence

(Kim et al., 2016),

• a subset of the initial variables might be selected (feature

selection), e.g., some metabolite features can be

disregarded because they are linked to pharmacotherapy

of the disease of interest (Liu et al., 2017) or because they

were previously reported to be irrelevant for disease

prediction.

There is no universal recipe that, when applied to any data

set, will yield good results (Kotsiantis et al., 2007). Hence, finding

a preprocessing procedure that works well for a given problem

sometimes requires testing several methods (Forsyth, 2019,

p. 376). In many cases some preprocessing steps are not

needed or they might need to be done in a different order.

Additionally, prior biological knowledge might enter into the

modeling framework at several points throughout preprocessing.

A few examples are as follows: Culley et al. (2020) incorporated a

genome-scale metabolic model into their modeling framework to

derive simulated fluxome-level features by bounding reactions

with experimental transcriptomics data. Pai et al. (2019) created

features for groups of genes from transcript-level features by

using known gene-pathway associations. Andreozzi et al. (2016)

used prior knowledge about the kinetic properties of enzymes to

help create multiple kinetic models that served as input to their

machine learning model. Koh et al. (2019) used biological

networks to calculate interaction-level features from the

abundances of interaction partners (i.e., genes and proteins).

Possibilities in finding new data representations seem very

diverse. Omics profiles can be converted to images by

mapping expression levels of genes or pathways onto pixels

with unsupervised techniques, making them accessible for

“convolutional neural networks” (Sharma et al., 2019; Oh

et al., 2021), which are explained later in Section 3.3.

Autoencoders can condense almost 500,000 biological features

from three omics sources into a single feature vector with

128 entries informative for several subsequent predictions

(Zhang et al., 2021).

FIGURE 2
Data and information flow in a modeling framework. The modeling framework inhabits the complete work-flow of a machine learning project,
from the raw data set to producing a final prediction. Data preprocessing converts the raw data set into a data set suitable formachine learning. In the
machine learning phase, model-based or post-hoc interpretationmethodsmight be applied to generate novel biological knowledge. Prior biological
insight (see Table 2 for examples) might enter at different steps, sometimes improving the interpretability of the ML model.
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Although preprocessing can reduce computational cost and

significantly improve predictions (Zhang et al., 2019), it can also

hurt performance when valuable information is accidentally

thrown away during a preparation step (Bishop, 2006, p. 3;

Guyon and Elisseeff, 2006, p. 4). This is observable in the

work of Culley et al. (2020). In their performance comparison,

distinct regression models that were trained on original

experimental transcriptomic features consistently out-

performed those trained on artificial flux features derived

from the same experimental data. Culley et al. (2020)

observed only performances similar to ML models trained

solely on the original data when they combined information

from the original and converted data. In one case, the integrated

data slightly outperformed the original gene expression data.

This example may demonstrate that mechanistic insight (e.g.,

constraint-based modeling) can enrich experimental data (Culley

et al., 2020). Nonetheless, converting features from one omics

layer to another should be done with care, since blindly trusting

new features while disregarding the original data could lead to

poorer results (Guyon and Elisseeff, 2006, p. 4). For details on

how to prepare raw omics data sets for machine learning the

work of Kim and Tagkopoulos (2018) is a good starting point.

Further, there are great books (Guyon and Elisseeff, 2006; Kuhn

and Johnson, 2019) for learning how to manipulate and select

features in order to improve performance.

A common problem in omics data sets is that the number of

features is much higher than the number of samples. In that case,

dimensionality reduction through feature extraction,

engineering, or selection is useful to reduce the impact of data

sparsity on the prediction reliability.

3 Toolbox for supervised machine
learning

With the growing interest in machine learning in recent years,

the toolbox of available methods and platforms to apply them

grows constantly. As a consequence, selecting a method that works

well for a given task and data set can be daunting for non-experts in

the field of data science. There is “no free lunch” (Wolpert and

Macready, 1997) in supervised machine learning, meaning that

there exists no “universal” model that works well in any situation

(Shalev-Shwartz and Ben-David, 2013, sect. 5.1). Instead expertise

about the specific biological problem is important for a successful

ML project (Shalev-Shwartz and Ben-David, 2013, sect. 5.1.1). In

this section, we provide an overview of some of the supervised

learning methods that have been applied to omics data sets. Due to

the sheer diversity of methods that have been introduced to

systems biological problems (see Table 1), describing them all

in detail would go beyond the scope of this work.

From a very general point of view, supervised learning is the

task of learning a mapping (a “hypothesis”; Shalev-Shwartz and

Ben-David, 2013, sect. 2.1) between a set of variables (the

features) and one or more target variables (the labels) given a

set of pairs of these two (the training data) to discriminate among

target variables (Angermueller et al., 2016). The ML model

normally receives features in the form of a vector

(Angermueller et al., 2016). By convention this feature vector

is denoted x ∈ Rd, where d is the dimension of the vector

(Bishop, 2006; Forsyth, 2019; Deisenroth et al., 2020). For

simplicity, we will now consider only the case where there is a

single target variable. Depending on the type of this label one

discriminates between two categories of supervised machine

learning methods, namely classification and regression. In a

classification problem setting, a label, yi, describes to which

class a sample, i, belongs and can take one of two in binary

classification (yi ∈ {C0, C1}) or one of many possible values in

multi-class classification (yi ∈ {C0, C1, . . . , Cn}). If our goal is to

predict if a tumor belongs to a cancer subtype, possible classes

could be: “subtype-A,” “subtype-B,” or “subtype-C,” which could

be encoded to the numerical values {0, 1, 2}. For regression the

label is a real number, yi ∈ R (Deisenroth et al., 2020, p. 289).

When using a training set of the form T = {(x0, y0), (x1, y1), . . .,

(xN, yN)} (Deisenroth et al., 2020, p. 370) the task for a supervised

ML algorithm is now to select a suitable hypothesis (Shalev-Shwartz

and Ben-David, 2013, chpt. 2). A hypothesismaps a feature vector, x

∈ X, to a label, y ∈ Y, h: X → Y (Shalev-Shwartz and Ben-David,

2013, sect. 2.1). During learning, the algorithm picks from a set of

possible hypotheses, the hypothesis class, h ∈ H (Shalev-Shwartz

and Ben-David, 2013, sect. 2.3). To tell the learning algorithmwhich

hypothesis works well, we have to define a criterion that measures

how large the error is between the true label (yi; known from the

training data) and a prediction made by the model, ŷi � h(x). This
criterion is known as a loss function, lh(yi, ŷi) (Deisenroth et al.,

2020, p. 260). The optimization problem is now to minimize the

mean error over all our training samples (Deisenroth et al., 2020,

p. 260; Shalev-Shwartz and Ben-David, 2013, sect. 2.2 and 2.3). This

is known in statistical learning theory as empirical risk minimization

(ERM) with inductive bias (Shalev-Shwartz and Ben-David, 2013,

sect. 2.3).

It is important to note that we usually want to find a model

that minimizes the error on data not presented during training

(Deisenroth et al., 2020, p. 261), like samples from patients we

want to diagnose in order to give them the right medical

treatment. However, minimizing this error would require

unlimited training samples (Deisenroth et al., 2020, p. 261).

The fact that we have only access to a restricted training set

(Deisenroth et al., 2020, p. 262) is why one should always test a

trained model on data the model was not fit to. A predictor that

performs well on training data but poorly on new data has

learned a bad hypothesis, one that does not generalize to new

samples drawn from the same data-generating distribution

(Maceachern and Forkert, 2021), as mentioned earlier in

Section 2.
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3.1 Classification

3.1.1 Support vector machine
Support Vector Machines (SVM) are frequently used for

binary classification purposes (Leitner et al., 2017; Alakwaa et al.,

2018; Date and Kikuchi, 2018; Sha et al., 2021; van Dooijeweert

et al., 2021). In this basic setting, SVMs aim to find a “decision

boundary” in the form of a hyperplane (Bishop, 2006, p. 326f)

that segregates the two classes of data points (Forsyth, 2019,

p. 21). In the case where the two classes are perfectly separable

there exists an endless number of possible hyperplanes that

correctly classify all training samples (Deisenroth et al., 2020,

p. 374). SVMs select the hyperplane that lies half-way between

the two data point clusters. More specifically, they choose the

hyperplane that is farthest away (in terms of “perpendicular

distance”) from the nearest data point (Bishop, 2006, p. 327).

SVMs can also be applied to problems where classes are not

perfectly separable (Cortes et al., 1995) by permitting some data

points to be incorrectly labeled (Deisenroth et al., 2020, p. 379).

The error function that allows SVMs to find an optimal solution

is the hinge loss (Forsyth, 2019, p. 23). There are several great

books that introduce SVMs in detail (Bishop, 2006; Shalev-

Shwartz and Ben-David, 2013; Forsyth, 2019; Deisenroth

et al., 2020).

Support vector machines are probably one of the most

classical machine learning methods and frequently serve as

base-line models in performance comparisons for omics data

sets (Asakura et al., 2018; Date and Kikuchi, 2018; Koh et al.,

2019; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021). van

Dooijeweert et al. (2021) chose a SVM as their primarymethod to

classify individuals based on their metabolomics signatures as

either healthy or potentially having Diamond Blackfan

Anaemia (DBA).

3.1.2 Decision trees, random forests and boosted
trees

Decision trees classify samples based on a tree-like

hierarchical decision process. Starting from a root node

and proceeding towards one of many leaf nodes, a sample

is classified by following a path within the tree that is

controlled by making a decision at each step (i.e., at each

“internal node”; Shalev-Shwartz and Ben-David, 2013, chpt.

18). A final decision leads to a leaf that determines the class

label for the given sample (Shalev-Shwartz and Ben-David,

2013, chpt. 18). Decisions within the tree use certain

properties of the sample, which can be viewed as asking a

yes/no question similar to, Is the expression of gene A higher

than a threshold? and then proceeding along the

corresponding branch (Shalev-Shwartz and Ben-David,

2013, chpt. 18). Decision trees can be automatically

constructed by repeatedly choosing questions (“splitting

rules”) from a pool of questions while each time evaluating

the benefit of using a particular question with the help of a

gain measure (Shalev-Shwartz and Ben-David, 2013,

sect. 18.2).

The ability to verbalize and visualize a decision tree in terms

of simple yes/no questions makes them a common example of a

likely interpretable machine learning method (Shalev-Shwartz

and Ben-David, 2013; Lipton, 2016; Murdoch et al., 2019). As

long as its “depth” [i.e., the number of decisions to reach a leaf

(Shalev-Shwartz and Ben-David, 2013, sect. 21.1)] stays within

the limits of human comprehension a decision tree is usually a

simulatable classifier (see Section 4.1 for explanation) as implied

by Lipton (2016). However, decision trees have a known

disadvantage, i.e., a single decision tree of arbitrary size tends

to overfit data (Shalev-Shwartz and Ben-David, 2013, sect. 18.1

and 18.2). By combining multiple decision trees into a random

forest (Breiman, 2001), letting them “vote” on labels, and

choosing the one that gets the most votes, overfitting can be

circumvented (Shalev-Shwartz and Ben-David, 2013, sect. 18.3).

Using a “bootstrap aggregating” (short “bagging”) method

(Breiman, 1996) is a common way to construct random

forests (Forsyth, 2019, p. 41f).

Another approach that combines decision trees is boosting

(Friedman, 2002). In short, boosting constructs a series of “base”

models (e.g., decision trees) in which each model has a different

voting power and they are trained such that more attention is

brought to samples incorrectly labeled by earlier models (Bishop,

2006, p. 657). For a more detailed description of random forests

and boosting please refer to the work of Breiman (2001) or to

Bishop’s (2006) book for bagging and boosting. Andreozzi et al.

(2016) provide an illustrative toy example of a decision tree and

demonstrate how the rules learned by the tree can be utilized to

improve the “feasibility” of a population of kinetic models.

Similar to support vector machines, random forests are

popular for performance comparisons in systems biology

(Alakwaa et al., 2018; Asakura et al., 2018; Date and Kikuchi,

2018; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021).

3.1.3 k-nearest neighbors
k-nearest neighbors (kNN) is a method that classifies new

data points based on how similar they are in their features to

samples in the training data set for which the true class label is

known (Forsyth, 2019, p. 7). More specifically, a new sample is

given the label that is most probable when looking at its k-nearest

neighbors (Bishop, 2006, p. 125f) in terms of an appropriate

measure of distance in feature space (Forsyth, 2019, p. 8). kNN

classifiers are sometimes used in performance comparisons

(Trainor et al., 2017; Wang et al., 2020; Nguyen et al., 2021),

however, from the 26 considered studies in this review, none

presented kNN as their method of choice for predictions.

3.1.4 Nearest shrunken centroid
Nearest shrunken centroid (NSC) is a modified version of the

nearest-centroid classifier and was proposed by Tibshirani et al.

(2002) for inferring tumor classes from trancriptomics data. Its
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advantage over the original classifier (i.e., nearest-centroid) lies in

that it allows for an inherent selection of features that are most

distinct between sample classes (Tibshirani et al., 2002). Thus, it

is suitable for data sets with a high number of features that may

simultaneously contain only a few relevant signals like

transcriptomics data.

Following the steps in the original publication (Tibshirani

et al., 2002): First, the algorithm calculates an average sample (i.e.,

the centroid) for each class and the whole data set. Then, the

similarity between the class centroids and the global centroid is

evaluated by a t-statistic for every feature and class. This

t-statistic is then numerically “shrunken” by subtracting a

constant, Δ. In the final classifier, a feature effectively loses its

ability to distinguish between classes if all of its corresponding

values dropped beneath zero or became zero in this step. This

way, features that are unimportant for predictions can be

gradually removed as Δ increases (Tibshirani et al., 2002).

Koh et al. (2019) modified the original version of NSC such

that it takes into account also related features when calculating

test statistics.

3.2 Regression

Regression is the task of finding a mapping from a feature

vector to a real number (Jiang et al., 2020). In a regression setting,

a fundamental assumption is that our labels are subject to some

random measurement error; hence, there is no relationship

between the labels and features in the form of a deterministic

function (Deisenroth et al., 2020, p. 289). An example of a

regression problem would be the prediction of an organism’s

body size from metabolomic measurements (Asakura et al.,

2018).

3.2.1 Linear regression
In linear regression we assume that a straight line that is

randomly displaced from the origin relates features and labels

(Forsyth, 2019, p. 209). Given a training data set, suitable model

parameters (a.k.a. fitting the line) are usually found by so-called

“maximum likelihood estimation” using a “gradient descent”

algorithm (Deisenroth et al., 2020, p. 293), which is, in this

context, the same as finding the minimum of the sum of squared

residuals between model predictions and the training labels

(Bishop, 2006, p. 141).

3.2.2 Lasso regression
Lasso is a regularization method that was proposed by

Tibshirani (1996) and can eliminate non-informative features

by setting their contributions to zero, potentially yielding a sparse

model (i.e., a model that effectively uses only some of the given

features; Forsyth, 2019, p. 262f). Generally, regularization tries to

avoid overfitting during training, e.g., by keeping parameters in

reasonable ranges, embedding feature selection into the model

(Jiang et al., 2020), or randomly switching neurons on and off in a

neural network (Angermueller et al., 2016). In lasso regression,

this is achieved by adding a regularization term to the loss

function of the regression model that shrinks some

parameters to zero, eliminating the contributions made by the

corresponding features (Bishop, 2006, p. 144f). Kim et al. (2016)

primarily used lasso regression in their modular ML approach to

predict quantities in several omics layers andNguyen et al. (2021)

incorporated lasso regularization into their deep neural network

for selecting predictive features. Lasso regression was also applied

to omics data as a feature selection strategy for the final predictive

model (Leitner et al., 2017; Liu et al., 2017; Pai et al., 2019).

Leitner et al. (2017) used this approach to select for the most

suitable set of metabolites for early prediction of gestational

diabetes mellitus (GDM). A combination of two different data

sets, blood and urine samples, showed the highest prediction

accuracy with a SVM model.

3.2.3 Partial least squares regression
Partial least squares (PLS) regression was introduced by

Wold (1975) and constructs a set of latent variables that are

most predictive of multiple target variables from the original

features (Abdi, 2010). PLS works well when there are less samples

than features and when features are suspected to be highly

correlated with each other (Abdi, 2010; Trainor et al., 2017).

Consequently, metabolomics data lends itself to PLS, e.g., because

of its oftentimes low number of samples with many features and

correlated metabolites (Mendez et al., 2019). Additionally, PLS is

well-accessible for post-hoc interpretations that measure feature

importance (Fonville et al., 2010; Leitner et al., 2017; Mendez

et al., 2019).

A variant of PLS that is sometimes used to classify omics

profiles is partial least squares discriminant analysis (PLS-DA)

(Trainor et al., 2017; Date and Kikuchi, 2018). In this case, the

target variables are categorical and a threshold on the predictions

made by a corresponding regression model determines the

predicted labels (Brereton and Lloyd, 2014).

For in-depth mathematical descriptions of the regression and

the classification approach, see Abdi (2010) and Brereton and

Lloyd (2014). Fonville et al. (2010) discuss some interpretability

aspects of PLS and related methods in metabonomics.

3.3 Neural networks

Neural networks comprise a large group of machine learning

methods that all have in common that they contain entities called

neurons (Sengupta et al., 2020). Real biological neurons and how

they wire and learn together initially served as a model for these

mathematical units (Macukow et al., 2016). Nonetheless, modern

artificial neural networks (ANN) have only little in common with

nervous systems. A neuron can be seen as a function that takes an

input feature vector, x, and returns a value, y, that represents its
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current activity (Angermueller et al., 2016). A typically non-

linear activation function determines how the neuron responds to

inputs weighted by learnable weight parameters (Mendez et al.,

2019; Sengupta et al., 2020). Another learnable parameter, the

bias, is added before the input-to-output conversion and

determines how easily the neuron activates (Sengupta et al.,

2020). Generally, one could speak of a neural network when a

neuron receives input from another neuron.

In the most classical type of neural networks, called “feed-

forward neural networks,” neurons are organized into layers

(Mendez et al., 2019). Each layer holds a number of neurons

that solely receive input from neurons in the previous layer and

pass their output only to neurons in the next layer. However,

some neurons might receive no input and instead show a steady

activation (Shalev-Shwartz and Ben-David, 2013, sect. 20.1).

Nonetheless, normally two consecutive layers are “fully

connected,” meaning that every neuron in a subsequent layer

receives a vector, y(i), corresponding to all outputs from a

preceding layer (Angermueller et al., 2016). In a feed-forward

neural network there are three types of layers. The input layer

feeds the feature vector of a sample for which a prediction is to be

made into the network. This input signal is then propagated

through one or more hidden layers until the last layer, the output

layer, is reached. The outputs, y(out), of the neurons in the output

layer can for instance represent probabilities for cancer classes

(Alakwaa et al., 2018) or even metabolite concentration change

over time (Costello and Martin, 2018). In a binary classification

task, the output layer often has only one neuron. At any hidden

layer, an output vector, y(h), can be seen as a new set of internal

“features” for an input sample abstracted automatically by the

hidden neurons from their input vector (LeCun et al., 2015). This

ability, to sequentially find new, more discriminative, features,

allows feed-forward neural networks to enrich the information

relevant for predictions (Forsyth, 2019, p. 367) and filter out less

relevant information (LeCun et al., 2015).

When neural networks contain more than one hidden layer

they are often termed “multilayer” or deep neural networks

(DNNs) (Shrestha and Mahmood, 2019; Zhang et al., 2019).

Deep neural networks have the advantage that they avoid having

to carefully construct (i.e., “hand-engineer”) input

features—instead the original raw features can be used directly

in most cases (LeCun et al., 2015). Backpropagation is the key

ingredient that allows DNNs to learn efficiently (Macukow et al.,

2016). During backpropagation, the model’s prediction error is

traced back to individual model parameters, hence allowing them

to be appropriately adjusted (LeCun et al., 2015).

Neural networks can be applied to a variety of problems

(Shrestha and Mahmood, 2019). When we allow neural networks

with a particular activation function to have an unlimited

number of hidden layers they can theoretically simulate any

function connecting input features and target variables (Hanin,

2019).

3.3.1 Specialized neural networks
There are a lot of different neural network architectures that

were mostly designed to perform well on one specific task.

Examples of specialized neural networks that have been

applied to omics data sets are convolutional neural networks

(Sharma et al., 2019; Oh et al., 2021), recurrent neural networks

(Kim et al., 2016), graph neural networks (Alghamdi et al., 2021),

capsule networks (Wang et al., 2020; Wang et al., 2021), and

autoencoders (Zhang et al., 2021).

Convolutional neural networks (CNNs) were developed to

work with data in which features have a known spatial relation,

e.g., sequential data, image-like data, and stacks of image-like

data (LeCun et al., 2015). They can learn to recognize complex

objects such as animals in pictures by internally decomposing

their input (LeCun et al., 2015). This ability is partly due to the

fact that consecutive layers are not fully linked such that a neuron

sees only a part of the whole picture, the “local receptive field”

(Shrestha and Mahmood, 2019). Sharma et al. (2019) applied

CNNs to transcriptomics data by assigning RNAs to pixels

according to their similarity in the training data and then

integrating RNA abundances into these pixels for every sample.

Recurrent neural networks (RNNs) perform well on time-

series data, where “information of previous time steps” needs to

be remembered because it is relevant for later time points

(Sengupta et al., 2020). Unlike in classical feed-forward

architectures (e.g., multi-layer feed-forward neural networks),

in RNNs, neurons receive information extracted from earlier

inputs additionally to the present input (Sengupta et al., 2020).

Kim et al. (2016) used a RNN to predict transcript levels in a cell

from genetic and environmental features in the hope of

replicating the behaviour of cycles frequently found in

transcriptional regulatory networks.

Graph neural networks (GNNs) is an umbrella term for

neural networks which can work with data that can be

represented as graphs (Zhou et al., 2018) and there are many

subtypes of them (Wu et al., 2019). For instance, “Message

Passing Neural Networks (MPNN)” (Gilmer et al., 2017) are a

type of “convolutional graph neural networks” (Wu et al., 2019)

in which vertices in the graph store information and share

information along edges with neighboring vertices in a step-

wise process until an output is generated by taking into account

the final states of vertices (Gilmer et al., 2017) for local “node-

level” or global “graph-level” predictions (Wu et al., 2019).

Alghamdi et al. (2021) used a GNN to infer metabolic

reaction rates in individual cells from transcriptomics data by

viewing the metabolic network as a factor graph.

In the next sections, we will discuss autoencoders and capsule

networks in more detail. We highlight autoencoders because of

their ability to serve as powerful feature extractors, as

demonstrated on multi-omics data (Zhang et al., 2021), and

capsule networks because of their young age and distinct nature

to “regular” neural networks. Shrestha andMahmood (2019) and
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Sengupta et al. (2020) review many more specialized neural

network architectures, and Zhou et al. (2018) and Wu et al.

(2019) discuss graph neural networks in great detail.

3.3.2 Autoencoders
An autoencoder is a special feed-forward neural network

architecture that, rather than trying to predict target variables

from an input, learns to output its given input (Martorell-

Marugán et al., 2019). Since they only use feature information

they can be classified as “unsupervised DNN[s]” (Shrestha and

Mahmood, 2019). The important detail about this architecture is

that it includes a hidden layer with usually only a few neurons

(Sengupta et al., 2020). This characteristic layer is sometimes

called the bottleneck. Since information is passed on from layer to

layer, at the bottleneck the model is forced to find a description of

the input with low dimension (Sengupta et al., 2020). In contrast

to principal component analysis for dimensionality reduction,

non-linear activation functions allow autoencoders to compress

their inputs non-linearly (Shrestha and Mahmood, 2019), which

can lead to more informative descriptions (Charte et al., 2018).

The bottleneck divides autoencoders into two parts, the encoder,

and the decoder (Shrestha and Mahmood, 2019). While the

encoder tries to extract the most relevant information from

the original input to condense it at the bottleneck, the

decoder tries to reproduce the input in the output layer from

it (Shrestha and Mahmood, 2019). Once an autoencoder was

trained, it can generate a compact description from a sample

which may then serve as input for predictive models or can be

used to plot the data when the new description has only two or

three dimensions (Zhang et al., 2021).

There is a wide variety of autoencoders that can serve other

purposes than just dimensionality reduction. For instance,

when an autoencoder is challenged to reproduce original

samples from samples that were randomly perturbed the

model can learn to remove similar “noise” from new

samples (Gondara, 2016). Another commonly used version

is a variational autoencoder (VAE). Rather than learning

discrete sample descriptions, VAEs learn the parameters of

a normal distribution from which new descriptions can be

drawn (Zhang et al., 2021). As such an VAE can act as a

sample generator that could theoretically come up with omics

measurements for imaginary patients when decoding a newly

drawn description (Shrestha and Mahmood, 2019; Zhang

et al., 2021). Furthermore, model parameters learned by an

autoencoder can serve as first drafts for those of a

supervised neural network, allowing effective “pre-training”

of supervised models (Erhan et al.,

2010) as demonstrated on omics data (Alakwaa et al., 2018).

3.3.3 Capsule networks
Capsule Networks (CapsNets) are a novel type of neural

network that was introduced by the team of Geoffrey E. Hinton

(Sabour et al, 2017). CapsNets have challenged the state-of-the-

art CNNs in image identification. CapsNets aim to overcome

some of the flaws of CNNs, like the loss of local information

during a typical filter operation and difficulties with recognizing

objects when they appear in new orientations (Sabour et al,

2017). CapsNets are exceptionally good at resolving objects

when they are shown on top of each other (Sabour et al, 2017).

According to the authors (Sabour et al, 2017), in a capsule

network multiple neurons are configured into “capsules” that

each detect the presence and characteristics of an associated

“entity.” In an transciptomics profile, an individual capsule can

be set up to predict the presence of a specific protein and

indicate its properties (Wang et al., 2021). A capsule returns a

vector that corresponds to the activities of its neurons and

indicates the probability that the entity is present with its scale

and the entity’s characteristics by its orientation (Sabour et al,

2017). Capsules are further organized into layers that follow a

child-parent like hierarchy. As an example, in the

implementation of Wang et al. (2020), the capsules in the

last capsule layer each indicated the presence of a cell class

that the authors aimed to predict. In a later work (Wang et al.,

2021), child capsules of these parent capsules representing cell

classes were encouraged to portray transcription factors or

groups of interacting proteins. When processing samples, an

innovative dynamic routing protocol ensures that each capsule

signals mostly to a single parent capsule, i.e., the one

whose output harmonizes well with its own,

which amplifies plausible relationships between

capsules and, consequently, between their entities (Sabour

et al, 2017).

3.4 Software implementation

In terms of software implementation, three main

programming languages, namely, Python, R and Matlab are

frequently used in omics analysis. Currently, Python is

coming to the fore in machine learning in general (Srinath,

2017). Despite many Python innovations, R offers numerous

libraries and packages for biological analyses, including ones

specifically for handling omics data (Chong and Xia, 2018;

Picart-Armada et al., 2018). This is mainly due to the history

of bioinformatics analysis using the Bioconductor repository

(Gentleman et al., 2005). Nevertheless, we must point out that

R has its original roots in statistical analysis. Thus, R also offers

methods developed at the borderline between computer science

and statistics (Torsten Hothorn, 2022).

The main difference in software implementations using

Python or R is usually the target application. Mostly, R

packages are created and tested for one data type with very

specific properties, see Supplementary Table S1. As a result, the

R language in omics analysis is seldomly used directly for

developing neural networks, but rather for optimizing more

classical learning methods such as linear regression or Bayesian
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methods. In addition, a large part of scientific research

regarding ML algorithms is conducted in Matlab. Nowadays,

Matlab also offers many new innovations related mostly to

training and proper optimization of error functions in neural

networks.

A combination of different languages also offers more

analysis options. Appropriate interfaces exist for example to

use Python in R1 and Matlab2. A summary of useful software

packages for (interpretable) machine learning can be found in

Figure 3 and Supplementary Table S1.

4 What is interpretability?

4.1 Basic concepts of interpretability

The concept of interpretability has been thoroughly

discussed in recent years in the machine learning

community, leading to a diversity of different perceptions,

terms, and attempts at its definition (Lipton, 2016; Murdoch

et al., 2019; Barredo Arrieta et al., 2020). Terms that are

strongly associated with interpretable machine learning are

transparency (Lipton, 2016; Barredo Arrieta et al., 2020),

white-box (Loyola-Gonzalez, 2019), explainability,

understandability, and comprehensibility (Barredo Arrieta

et al., 2020). While all of these terms might capture

different notions of the same overall concept (Lipton,

2016; Barredo Arrieta et al., 2020), they seem to refer to

the same underlying desires, which are to trust, understand,

or interpret the decision-making process or the results

obtained from a machine learning model. Besides its

controversial nature, there is a strong agreement that the

topic of interpretability is important in machine learning

(Lipton, 2016; Barredo Arrieta et al., 2020), especially for

experts and scientists that deploy ML models to real-world

problems (Murdoch et al., 2019).

Due to its many facets, it is necessary to fix a definition of

interpretability when writing about it (Lipton, 2016).

Interpretability can be defined as “the ability to explain or to

provide the meaning in understandable terms to a human”

(Barredo Arrieta et al., 2020) or to be able to extract “relevant

knowledge from a machine-learning model concerning

relationships either contained in data or learned by the

FIGURE 3
Overview of useful software packages for machine learning implementations from the most prevalent programming languages in
computational biology (i.e., R, Python, and Matlab). All listed packages have been applied in an omics data analysis context (see Supplementary Table
S1 for references). Most packages focus on either data pre-processing, themodeling phase (i.e., model-based interpretations and designing, training
or executing a ML model in general), or the post-hoc analysis phase (i.e., post-hoc interpretations and data visualization).

1 https://www.rstudio.com/blog/reticulate-r-interface-to-python/

2 http://mathworks.com/help/matlab/call-python-libraries.html
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model” (Murdoch et al., 2019). In this review, we would like to

adapt the second definition and define it in the context of this

work as the ability to generate biological insight from data with

the help of machine learning methods.

4.1.1 Reliability of interpretations
To gain real insight, any information we extract from a ML

model and interpret needs to be reliable. As Murdoch et al.

(2019) describe, this depends on two criteria: predictive

accuracy, i.e., performance of the model, and descriptive

accuracy, i.e., performance of the interpretation method.

They argue that interpretations would be unreliable if

either the ML model fails to model the data accurately or

the interpretation method is unable to correctly extract

information from the model. Furthermore, we argue that

interpretability relies on every step that leads towards an

interpretation. This includes the whole analysis framework:

we need to trust 1) that the raw data contains the desired

information in an unbiased manner, 2) that the data

preprocessing steps retain the relevant information from

the raw data, 3) that, as suggested by Murdoch et al.

(2019), the ML model correctly captures relevant

information from the training data, and 4) that the

interpretation method effectively conveys this information.

All of these points need to work correctly to avoid misleading

interpretations. In particular, raw data quality is very important.

If the raw data is flawed, both predictions and interpretations will

automatically be inaccurate/misleading. Raw data quality relies

on the experimental procedure, a topic we hardly touch on in this

review. This further demonstrates the broad scope of

interpretability.

Preprocessing depends on the properties of the available data,

the problem of interest, and the ML model. Thus, individual

preprocessing steps might need to be validated for every

implementation. Generally, it is crucial to not accidentally lose

valuable information during preprocessing, as discussed in

Section 2.2.

Regarding the ML model, Murdoch et al. (2019)

emphasize that “one must appropriately measure predictive

accuracy.” For this, samples in the test set must not be

involved in model optimization and training, since they

simulate how the model would predict labels of new/

unknown samples. Further, one should collect test samples

without bias, slight changes in the training set and model

should not heavily impact predictive accuracy, and

predictions should be equally accurate for all types of

samples (Murdoch et al., 2019).

Murdoch et al. (2019) suggest that descriptive accuracy

depends on the interpretation and ML method and that some

ML methods offer either superior descriptive or predictive

accuracy: while, e.g., a deep neural network may outperform a

decision tree, the decision tree may be easier to interpret. In

systems biology, we frequently want to achieve both, e.g.,

correctly diagnose a disease and understand the reasoning

behind the diagnosis. Therefore, we may have to balance the

two objectives (Murdoch et al., 2019).

FIGURE 4
Illustration showing the difference between model-based and post-hoc interpretation methods. A model-based interpretation strategy could
be to design a sparse model by limiting the possible connections in a neural network (e.g., with knowledge about biological networks). Once the ML
model is trained, post-hoc analysis can reveal the model parts that are most important for predictions, hinting on genes or biological interactions
relevant for the disease.
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4.1.2 Interpretation methods
There are two general classes of interpretation methods,

namely post-hoc (Lipton, 2016; Murdoch et al., 2019; Barredo

Arrieta et al., 2020) and model-based techniques (Murdoch

et al., 2019), which Figure 4 exemplifies. Model-based

interpretations rely on the implementation of ML models

“readily providing insight into the relationships they have

learned” (Murdoch et al., 2019), whereas post-hoc

interpretations only take place after the designing and

training process and try to produce relevant biological

knowledge just from the finalized model (Murdoch et al.,

2019; Barredo Arrieta et al., 2020).

Model-based interpretation methods

Model-based interpretability can be achieved by enforcing

three different properties in a model: “sparsity,” “simulatability,”

and “modularity” (Murdoch et al., 2019).

Sparsity arises when some parameters are set to zero by the

ML model itself or explicitly by the designer with prior

knowledge, thereby decreasing the number of variables that

need to be comprehended (Murdoch et al., 2019). Further,

sparsity can associate parts of the ML model with biological

entities, which allows additional interpretations and is

discussed in Section 4.4.1. Methods that enforce sparsity

require that there is indeed only a limited number of

relevant connections between the features and the

prediction target as indicated by Murdoch et al. (2019).

When too many or the wrong parameters are eliminated,

the model might learn an inaccurate/misleading relation.

Additionally, any parameter that influences an

interpretation should have similar values when we retrain

the model with a slightly different training set (Murdoch

et al., 2019), e.g., one where a single sample was changed or

omitted/added. This requirement is generally known as

stability in learning theory (Bousquet and Elisseeff, 2002).

Methods that offer sparsity are, for instance, lasso regularized

models (Murdoch et al., 2019) and nearest shrunken centroid

because they intrinsically eliminate contributions of

unimportant features.

Simulatability refers to the degree at which a person can

comprehend and could theoretically think/run through the

whole procedure of computing an output for a given input

(Murdoch et al., 2019; Barredo Arrieta et al., 2020) “in

reasonable time” (Lipton, 2016). Human comprehension

demands that the following properties are sufficiently low:

the complexity of the studied problem [referred to as the

complexity of “the underlying relationship” by Murdoch et al.

(2019)], the samples’ dimension (Murdoch et al., 2019), the

model’s overall complexity, and the number of steps from

input to output (Lipton, 2016). Therefore, making

simulatability a requirement would drastically shrink the

space of available methods and biological problems

(Murdoch et al., 2019). Examples of models that usually

exhibit a high level of simulatability are linear and logistic

regression models, single decision trees, k-nearest neighbor

classifiers, rule-based models, single neuron neural networks

(Barredo Arrieta et al., 2020), and linear genetic programs

(LGPs).

Modularity is a property where the model includes

elements (i.e., “modules”) that make the model partially

understandable because they are interpretable on their own

(Murdoch et al., 2019). In the two case studies of modular

designs (Kim and Tagkopoulos, 2018; Alghamdi et al., 2021)

we highlight later, modules allow restricted insight because

their inputs and outputs are biologically meaningful.

Consequently, the module as a whole depicts a biological

mechanism. It is the biological process that connects

transparent input and output [e.g., transcription and its

regulation; translating the genotype and environmental

context to the transcriptome (Kim et al., 2016)].

Nonetheless, the way a module mathematically models a

biological process could be elusive. This type of modularity

seems related to what Lipton (2016) and Barredo Arrieta et al.

(2020) call decomposability, which they describe as that the

model is fully composed of elements (i.e., features, internal

variables, computations) that make instinctively sense. Hence,

we might call these cases partially decomposable. Neural

network based models with a modular design and

“generalized additive models” offer modularity (Murdoch

et al., 2019), while decision trees and linear models can be

fully decomposable (Lipton, 2016).

Post-hoc interpretation methods

Post-hoc interpretation techniques act after training and

aim to reveal some of the hidden “relationships” the model has

internalized by viewing the training samples (Murdoch et al.,

2019). We see post-hoc interpretations more generally as the

action of extracting valuable information from a trained

model. Thus, a post-hoc interpretation could be as simple

as communicating naturally meaningful coefficients of a linear

model to a human interpreter. There exist various post-hoc

approaches for different ML models that try to interpret a

trained model by, e.g., assessing the importance of input

features or relationships between them (Murdoch et al.,

2019), visualizations, providing exemplary predictions,

simplifying the model, putting reasonings into words, or

elucidating individual properties of the model (Barredo

Arrieta et al., 2020).

For additional examples, and further clarifications on the

mentioned terms regarding interpretability great resources are

the works of Lipton (2016), Murdoch et al. (2019), and Barredo

Arrieta et al. (2020).
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4.2 Interpretability categorization scheme

In this work, we have developed a scheme which allows us to

categorize research studies that applied ML models to biological

data sets. In this scheme, studies are classified into a total of nine

combined categories according to two criteria, 1) the used

interpretation method and 2) if and at which point prior

biological insight was incorporated into the project. Table 2

summarizes similarities between the reviewed studies in these

two characteristics and states the corresponding categorizations.

4.2.1 Use of interpretation methods
Following the definitions laid out in Section 4.1 we

differentiate between:

• No interpretation methods. Studies that do not

implement post-hoc or model-based interpretation

methods.

• Post-hoc interpretations. Studies that gain biological

insight by analyzing a trained ML model with post-hoc

interpretation methods.

TABLE 2 Categorization of research studies applying machine learning techniques to non-sequential omics data sets. Summary of interpretation
methods, assigned category and the approach demonstrated in the publication that led to this classification (top). Summary of utilized modeling
frameworks, assigned category and prior knowledge that entered the modeling framework (bottom).

Interpretation Method

Approach Category Ref

Sparse model model-based Koh et al. (2019); Pai et al. (2019); Nguyen et al. (2021); Wang et al. (2021)

Modular design model-based Kim et al. (2016); Alghamdi et al. (2021)

Well-simulatable
model

model-based Andreozzi et al. (2016); Hu et al. (2018); Sha et al. (2021)

Input-response
analysis

post-hoc Alakwaa et al. (2018); Costello and Martin (2018); Wang et al. (2020); Zhang et al. (2021)

Feature importance post-hoc Leitner et al. (2017); Alakwaa et al. (2018); Asakura et al. (2018); Date and Kikuchi (2018); Bahado-Singh et al. (2019);
Culley et al. (2020); van Dooijeweert et al. (2021)

no interpretation
methods

Hoehenwarter et al. (2011); Liu et al. (2017); Trainor et al. (2017); Mendez et al. (2019); Sharma et al. (2019); Stamate et
al. (2019); Toubiana et al. (2019)

Modeling Framework

Incorporated Prior
Knowledge

Category Ref

Biological network information

Transcriptional regulatory network light gray-box Kim et al. (2016)a; Koh et al. (2019); Nguyen et al. (2021)a; Wang et al. (2021)a

Protein-protein interaction network light gray-box Kim et al. (2016); Koh et al. (2019); Wang et al. (2021)a

Co-expression protein network light gray-box Kim et al. (2016)

Metabolic network light gray-box Alghamdi et al. (2021)a

Pathways of metabolites dark gray-box Toubiana et al. (2019)b

Other biological relationships

Chromosomal allocation of CpG sites light gray-box Zhang et al. (2021)a

Expression quantitative trait loci light gray-box Nguyen et al. (2021)a

Chemical composition light gray-box Alghamdi et al. (2021)

Constraint-based metabolic modeling light gray-box Kim et al. (2016)b

dark gray-box Andreozzi et al. (2016)b; Culley et al. (2020)b

Reaction kinetics dark gray-box Andreozzi et al. (2016)b

No prior knowledge black-box Hu et al. (2018); Sha et al. (2021); Alakwaa et al. (2018); Date and Kikuchi (2018); Bahado-Singh et al. (2019), Wang
et al. (2020); van Dooijeweert et al. (2021); Leitner et al. (2017); Costello and Martin (2018); Asakura et al. (2018);
Sharma et al. (2019); Mendez et al. (2019); Stamate et al. (2019); Liu et al. (2017); Trainor et al. (2017);
Hoehenwarter et al. (2011)

aKnowledge was used to select connections in a neural network
bKnowledge was used to create new features/variables.
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• Model-based interpretations. Studies that gain biological

insight by either using a well-interpretable machine

learning model as their primary model or modifying a

machine learning model such that its sparsity,

simulatability, modularity or decomposability is increased.

We consider machine learning models to be “well-

interpretable” if they were explicitly declared to frequently

demonstrate sparsity, simulatability, modularity, or

decomposability by the interpretable machine learning

community, or if they obviously display one of these

properties. In particular, this includes, methods that use

lasso regularization or “sparse coding” (Murdoch et al.,

2019), decision trees (Lipton, 2016; Murdoch et al., 2019;

Barredo Arrieta et al., 2020), linear regression models,

logistic regression models, k-nearest neighbor classifiers,

single neuron neural networks, rule-based models, Bayesian

models (Barredo Arrieta et al., 2020), generalized additive

models (Murdoch et al., 2019; Barredo Arrieta et al., 2020),

neural network based models with a modular design (Murdoch

et al., 2019), nearest shrunken centroid, and linear genetic

programs.

4.2.2 Use of prior knowledge
Using prior knowledge to guide the design of aMLmodel can

boost interpretability and even performance, e.g., when

introducing sparsity (Murdoch et al., 2019). If neural

networks are wired according to known biological

relationships, elements of the ML model can be virtually

coupled to biological entities. This possibility was

demonstrated for cellular components (Ma et al., 2018), genes

(Nguyen et al., 2021), regulatory proteins, and protein interaction

clusters (Wang et al., 2021). For defining categories with respect

to the integration of prior biological knowledge, we adopt a view

from the field of system identification (SI). SI discriminates

between the three categories black-box, gray-box and white-

box for mathematical models based on the amount of

theoretical and experimental knowledge that went into their

construction (Sjöberg et al., 1995; Isermann and Münchhof,

2011).

Machine learning models are often tightly embedded into

a much larger modeling framework. This modeling

framework includes all data preprocessing steps as

explained in Section 2.2 and can be seen as anything that

supports the data flow from the initial raw data to a final

prediction. Sometimes, this modeling framework can be

enormous (Andreozzi et al., 2016), representing a

significant portion of the added scientific value of a study.

Because prior knowledge can enter not only in the ML model

itself but also during preprocessing, we want to utilize this

categorization criterion to capture a property of the

modeling framework. With this in mind, we differentiate

between:

• Black-box. Modeling frameworks that do not incorporate

any prior biological knowledge—they are purely

determined by measurement data (“data-driven”).

• Dark gray-box. Modeling frameworks that incorporate

prior biological knowledge in any step before the

machine learning model that makes the final prediction.

• Light gray-box. Modeling frameworks that incorporate

prior biological knowledge into their machine learning

model. This category also includes cases where prior

biological knowledge enters at both points, before the

machine learning model, and within it.

Please note that because of how SI (Sjöberg et al., 1995;

Isermann and Münchhof, 2011) defines “white-box” models, a

corresponding category would inherently exclude any approach

that includes a ML model. This is because in SI, the term white-

box describes models in which every mechanism and parameter

is known from theoretical knowledge (i.e., previous experience

and first principles), without relying on any measurement data

(Sjöberg et al., 1995). In machine learning, a learning algorithm

automatically integrates measurement data into mathematical

models, which contradicts with the white-box definition from SI.

Consequently, a white-box category does not appear in our

scheme. Please further consider that the terms “black-box”

and “white-box” frequently pop up in the machine learning

literature and try to convey the level of interpretability of a

MLmodel (Lipton, 2016; Loyola-Gonzalez, 2019; Murdoch et al.,

2019; Barredo Arrieta et al., 2020). However, we avoid these

notions because they seem vaguely defined and overused. We

want to emphasize that they should not be confused with the

well-established homonyms found in SI (Sjöberg et al., 1995;

Ljung et al., 1998; Isermann and Münchhof, 2011) upon which

we base our second criterion.

4.2.3 Additional considerations and examples
Although we try to outline clear categories, it is possible to

encounter studies whose allocation seems uncertain. In this

section, we provide additional considerations together with

examples to make assignments more conclusive.

The model-based interpretations category does not exclude

the use of post-hoc interpretation methods. From the fact that

data is the target of interpretations (Murdoch et al., 2019) and

how we defined post-hoc methods follows that post-hoc

interpretations must always accompany a model-based

strategy. For instance, the post-hoc method integrated

gradients (Sundararajan et al., 2017) is applied by Nguyen

et al. (2021) to a ML model that was modified to exhibit sparsity.

Whether a machine learning model is well-interpretable is

difficult to judge. For instance, the notion of simulatability

depends on the complexity of the model (Lipton, 2016;

Murdoch et al., 2019; Barredo Arrieta et al., 2020).

Decomposability demands that all features are meaningful

(Lipton, 2016; Barredo Arrieta et al., 2020), which depends on
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FIGURE 5
Examples of post-hoc interpretationmethods from Section 4.3 in simplified form. (A) The impact of perturbing individual features on the overall
performance of the ML model can indicate how important features are. This is the basic principle behind “mean decrease accuracy,” as it was
performed byDate and Kikuchi (2018). Thereby, entries of individual features are shuffled between test samplesmultiple times. Model performance is
measured each time and compared to the performance obtained by using the unchanged test set. (B) Activation patterns of neurons can allow
insight into the ML model, revealing important neurons that have learnt to discriminate between classes and important features that enable this
discriminative ability. This input-response analysis was part of the post-hoc interpretation strategy of Alakwaa et al. (2018). They used it to verify that
some neurons have learnt to distinguish between two cancer subclasses and to discover metabolites that are primarily associated with one subclass.
In the generalized version illustrated here, activities of neurons in the first hidden layer are recorded while the already trained neural network
processes the training samples. Comparing the activities between different classes can then identify characteristic neurons. Inputs that strongly
connect to these class-characteristic neurons are likely important. (C) Statements found in well-performing linear genetic programs (LGPs) can
reveal important input features and might further indicate important feature interactions. This was demonstrated by Hu et al. (2018) and Sha et al.
(2021) and is shown here in a simplified way. As described by Hu et al. (2018) and Sha et al. (2021), LGPs aremade up of a sequence of statements that
convert some input features, [X], to an output variable, y, and are generated by a process similar to biological evolution. Since LGPs do not need to use
all features, individual and pairwise counts of features that influence the output in well-performing programsmay indicate the importance of features
and their relationships (Sha et al., 2021).
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the raw data and preprocessing. For modular designs, individual

modules need to be interpretable on their own (Murdoch et al.,

2019), which depends on their nature, context, and relationship

to each other. Reducing the number of variables that need to be

comprehended by building sparse models (Murdoch et al., 2019)

might generally improve interpretability. However, if too many

variables remain in the sparse model, interpretations may still be

limited, as implied by Murdoch et al. (2019). All these factors

vary between implementations of the same general ML method.

To judge if a ML model is well-interpretable we have taken an

Occam’s Razor approach. We assume every implementation of a

ML method is well-interpretable if the interpretable

machine learning community (Lipton, 2016; Murdoch et al.,

2019; Barredo Arrieta et al., 2020) mentions that the method

usually displays sparsity, simulatability, modularity, or

decomposability.

All categories that assess aspects of the machine learning

method are based on primary ML models. Many studies

develop a machine learning approach and then compare

it to a set of well-established base-line models (Asakura

et al., 2018; Date and Kikuchi, 2018; Wang et al., 2020; Sha

et al., 2021; Zhang et al., 2021). We call the models that the

authors present as their methods of choice/interest (or

which they primarily use) for predictions the primary ML

models. We considered interpretability aspects only of

primary models and viewed the modeling framework

from their perspective. Consequently, any additional ML

models, e.g., base-line models, lasso regression to select

features for a primary model (Leitner et al., 2017; Liu

et al., 2017; Pai et al., 2019) or kNN for data imputation

(Alakwaa et al., 2018; Stamate et al., 2019) did not influence

our categorizations.

We considered models whose individual predictions were

combined (Kim et al., 2016) as one large primary model. On the

other hand, if models receive the same input but predict different

target variables (Costello and Martin, 2018) these were not seen

as one model.

Biological insight that is a direct consequence of a

prediction was not considered to be generated by an

interpretation method. For example, Toubiana et al. (2019)

mapped pathways onto correlation networks, derived graph-

based features and used these to predict if the pathways are

part of the tomato metabolism. By repeating this procedure

with unlabeled pathways testable hypotheses about their

affiliation to tomato can be proposed (Toubiana et al.,

2019). Here, the output is directly subject to

interpretation, while the model itself is left untouched. We

did not consider this case to be an interpretation method.

Hypothetically, any prediction made by a ML model could be

experimentally tested as long as the output has a biological

meaning.

With all of this in mind, we are now ready to highlight

some of the works we have categorized in Table 2 in more

detail in the next sections. These sections focus on post-hoc

and model-based interpretation methods. If studies have

integrated prior biological knowledge in an original way,

this will also be discussed.

4.3 Post-hoc interpretations

4.3.1 Discovering biomarkers by simple feature
importance measures

Probably the most frequent approach to extract knowledge

from a ML model is to assess feature importance in some way.

Knowing how individual genes or metabolites influence the

predicted probability of a disease can provide a first glimpse

into the mechanisms of the disease. Investigating in which

biological subsystems (e.g., pathways) predictive genes or

metabolites participate lets us narrow down the origin of the

disease within the system. A proposed set of relevant molecules

could serve as biomarkers, enabling us to develop diagnostic tools

that do not require untargeted omics screens. Further, reducing

the number of considered variables may lead to more accurate

predictions by lowering the noise brought by unnecessary

information (Culley et al., 2020). In order to gain biological

insight with feature importance scores, the inputs need to have a

clear connection to a biological entity. For instance, when

working with principal components as inputs, which could be

linear combinations of measurements from over 60,000 genes,

then, their relative importances most certainly provide no

immediate biological insight. Nonetheless, in this specific case,

importance scores could be backtraced to meaningful raw

features (i.e., genes) by knowing the PCA loadings.

An advantage of methods that evaluate feature importance is

that they are convenient to implement, as they come with many

software packages for machine learning. Bahado-Singh et al.

(2019) used functions from the packages caret and h2o in R

to score patient properties, including metabolomic and

proteomic measurements, according to their ability to

discriminate between clinical outcomes. This allowed them to

propose a single metabolite as a promising biomarker for

premature delivery in pregnant women with the same

physiology.

Leitner et al. (2017) ranked untargeted metabolomic features

according to their importance in a PLS-DA model. The top-

ranked metabolite in this analysis pointed them toward a specific

metabolic pathway. Experimentally targeting this pathway by

Stable Isotope Diluted Direct Infusion Electrospray Ionisation

Mass Spectrometry (SID-MS) yielded new metabolomic features

that improved predictions with a SVM model when combined

with untargeted features. This demonstrates that novel biological

insight from interpretations can also allow us to build better

predictive models.

Date and Kikuchi (2018) estimated the relevance of

metabolic markers in their deep neural network (DNN) in
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terms of “Mean Decrease Accuracy (MDA).” MDA measures

the impact of perturbing an individual feature on the

performance of the ML model (Figure 5A). To compute

MDA for a feature, the authors compared the original

performance of their ML model to multiple cases in which

the entries of the feature were shuffled between data samples. A

feature whose entries are mixed between samples loses some of

its predictive power because the labels stay fixed, disconnecting

many entries from their correct label. Multiple such iterations

dampen the stochastic effects of random shuffling. Date and

Kikuchi (2018) demonstrated that calculated MDA scores were

similar among different ML methods and they allowed them to

hypothesize about relevant metabolic markers for a sample’s

regional origin.

4.3.2 Biological insight from recording how the
model responds to different inputs

Since supervised MLmodels learn how to map their inputs to

different desired outputs, they can react very differently to

different samples. Apart from the output itself, there are often

internal responses that arise while processing a sample. For

instance, neurons in neural networks activate differently,

capsules in capsule networks couple to their parents

differently, decision trees follow different paths to get to a

leaf. Although these responses can be quite distinct, we can

expect that they are mostly similar for samples with similar labels

(e.g., those belonging to the same class). Monitoring these

responses can be a handy tool to extract novel biological

knowledge from a ML model. We call this general approach

input-response analysis.

Alakwaa et al. (2018) addressed feature importance with the

same method as Bahado-Singh et al. (2019) and additionally

identified relevant metabolites and pathways by tracking how

individual neurons in a neural network respond when

presented with distinct inputs (Figure 5B). They trained their

ML model on metabolite measurements from breast cancer

patients belonging to the estrogen receptor positive or negative

class, which are associated with distinct survival rates. Depending

on the input, neurons found in each layer will activate differently.

Alakwaa et al. (2018) noticed significant differences amongst the

two cancer classes in the responses of some neurons in the first

hidden layer of their trained model. By backtracing these

discriminative signals over the strongest neuronal connections

to the inputs, they could find relevant metabolites. The authors

reported that some of these molecules were indicated to be linked

to breast cancer by other studies. Finally, they looked at pathways

harbouring relevant metabolites to further investigate their role in

cancermetabolism. For this purpose, also data of enzymes showing

distinct expression levels between the cancer classes was used. This

study demonstrates how learnt connection weights together with

neuron response patterns can allow a glimpse into the

inner workings of a ML method often thought to be

incomprehensible.

Wang et al. (2020) implemented a capsule network (see

Section 3.3.3 for explanation) to predict a cell’s type based on

its single-cell gene expression pattern. They adopted an

interpretation strategy very similar to that of Alakwaa et al.

(2018). They analyzed how their capsule network responds to

samples from different classes and backtracked the observed

signals to the inputs of the network (i.e., transcript levels). This

enabled the authors to hypothesize about a set of “core genes”

typical for every cell class and allowing it to be discriminated

from other cell classes. Their model is divided into two parts, a

“feature extractor” and the actual capsule network. The feature

extractor consists of several neural networks that each aim to find

an informative vector description of the expression levels and

supply it to a different primary capsule. A process called

“Dynamic routing” connects the primary capsules to higher-

level capsules (Sabour et al, 2017). In the implementation of

Wang et al. (2020), the higher-level capsules each represent a cell

class and their activation levels are used to classify a single-cell

mRNA sample. During dynamic routing, so-called coupling

coefficients are calculated that determine the contribution a

primary capsule makes to the activity (Sabour et al, 2017) of a

“cell type capsule” (Wang et al., 2020). These coupling

coefficients depend on the input and the authors computed

their mean values for every cell class. This way, they were able

to find the primary capsules that received gene expression

information that was most valuable for identifying each cell

class. Since every primary capsule receives input from a single

neural network, analysis of the weights learned by each network

could identify genes characteristic of a cell class. Taken together,

the work of Wang et al. (2020) further demonstrates that even

very complex model architectures that have many parameters

can allow the extraction of novel biological insight.

Nguyen et al. (2021) used the method integrated gradients

(Sundararajan et al., 2017) to assess the relevance of their features

(i.e., SNPs and genes). Integrated gradients presents the trained

model with a series of artificial inputs that progressively contain

more information from a real sample while looking on how the

output changes in response (Sundararajan et al., 2017). With

their calculated scores, the authors found genes and SNPs that

most influenced probability for schizophrenia. Additionally, they

designed their neural network such that links between the input

and first hidden layer convey a biological interpretation,

representing either SNP-gene or gene-gene interactions. Using

a method derived from integrated gradients termed Conductance

(Dhamdhere et al., 2018) together with their special architecture

allowed Nguyen et al. (2021) to evaluate also the importance of

the biologically meaningful connections in the neural network.

They reported that many of their results are supported by

literature, and additional data, respectively. Since the step of

assigning neural network links to biological interactions

involves altering the ML model, this approach falls under

model-based interpretation methods and will be discussed in

more detail in Section 4.4.1. Implementations of integrated
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gradients and conductance are available in the Python package

Captum.

The work of Costello and Martin (2018) exemplifies how

input-output analysis of a trained ML model can provide

biological insight that is experimentally testable. The authors

trainedmultiple models to each predict the current rate of change

for another metabolite given metabolite and protein abundances

at the same time instant. This design was chosen with the hope of

challenging traditional kinetic models in their ability to pursue a

metabolic system over time. The models were trained with

samples from smoothed metabolite and protein trajectories of

measured time series from two biotechnologically interesting

pathways. Costello and Martin (2018) demonstrated how their

models can generate novel biological knowledge. For that,

synthetic data of multiple artificial “strains” was created. Each

strain differed in how its protein timeseries was generated (i.e., by

changing the parameters of hill function expression models).

Using their ML models, they predicted potential product yields

for each strain to identify proteins whose over-/underexpression

influence yield. This analysis was done with partial least squares

(PLS) regression. They also demonstrated that even if their ML

models were trained only on two experimental data sets, they

could exceed the accuracy of a carefully “handcrafted” kinetic

model in predicting metabolite trajectories within a pathway. The

ML framework of Costello andMartin (2018) as a whole could be

argued to be interpretable because of its modular appearance.

Every individual ML algorithm receives the same inputs and

predicts another quantity, while both inputs (i.e., protein and

metabolite levels) and output (i.e., dynamics of a single

metabolite) have a clear biological interpretation. Nonetheless,

we see their regression models as separate units and not parts of a

modular design since their predictions are not combined and

they are trained independently. Further, their ML models are

very distinct and rather incomprehensible, comprising

completely different methods discovered by the software tool

TPOT that automatically generates efficient machine learning

solutions for a given task (see Supplementary Table S1 for more

information on TPOT).

4.3.3 Biological insight from ML methods that
are frequently simulatable

Hu et al. (2018) utilized a supervised method that generates

so-called linear genetic programs (LGPs) (Figure 5C). The authors

used it to separate patients with osteoarthritis from healthy

individuals based on their metabolome characteristics. As

explained by Hu et al. (2018) and Sha et al. (2021), a linear

genetic program is a sequence of “statements” that describes how

features (i.e., metabolite abundances) should be combined with

themselves or with other variables and under which conditions.

At the end, a special variable constitutes the output of the

program (i.e., chance for osteoarthritis). LGP classifiers are

improved by an algorithm that essentially mimics biological

evolution (Hu et al., 2018; Sha et al., 2021). After “training,”

Hu et al. (2018) evaluated the number of times a metabolite

feature was present in one of their best performing models, and

how often two metabolites appeared in the same LGP. With this

information and the help of graph analysis they identified

potential metabolic markers and showed that they correlate in

their incidence in the top LGPs.

In their recent study (Sha et al., 2021), Hu et al. applied the

same method to discover metabolites that can differentiate

between patients with Alzheimer’s Disease (AD), patients with

amnestic mild cognitive impairment, and healthy individuals.

Many of the top metabolites found to be predictive of AD were

also suggested by two other ML methods (i.e., RF and SVM),

however, with some discrepancies.

Alakwaa et al. (2018), Wang et al. (2020), and Hu et al. (2018)

found their own method to rank features by their predictive

power. When extracting such importance scores from a model,

comparing the results to those obtained by established methods

can be critical. The result, which features are important, should

not depend on the utilized method because feature importance

should be fundamentally determined by the causal relationships

found in the biological process that created the data. Sha et al.

(2021) reported that from 20 relevant metabolites found by their

method, 10 overlapped with 20 they had identified using another

post-hoc interpretation method on another MLmodel. Although

in total 242 metabolites were considered, this could indicate that

some of the top-ranked metabolites from one method might not

be good biomarkers. Individual linear genetic programs

demonstrate high simulatability because they can be read like

a piece of computer code as suggested by Sha et al. (2021).

However, as demonstrated by the results of Hu et al. (Hu et al.,

2018; Sha et al., 2021), LGPs performing well on the same data

can be very diverse, using different features and relationships

between them. Hence, we note that one should be careful to not

over-interpret a single LGP.

Andreozzi et al. (2016) expanded their previously developed

“ORACLE” framework by a machine learning part. According to

the authors, ORACLE integrates experimental data, including

metabolomics and fluxomics, and theoretical knowledge about

enzyme kinetics and creates a collection of kinetic models. The

aim of their decision tree algorithm “iSCHRUNK” was then to

learn from these kinetic models what makes some of them

“feasible” and others not. Kinetic models generated by

ORACLE were labeled as either feasible or not feasible.

Models were considered feasible if they had a locally stable

steady state, and matched theoretical knowledge as well as the

available experimental data. The parameter values and feasibility

label of each kinetic model embody their training data set. After

training, the learned “splitting rules” (see Section 3.1.2 for

explanation) can be interpreted as kinetic parameter ranges

that partition the parameter space. Drawing from a feasible

region of the space allowed the authors to discover new

parameter sets corresponding to presumably feasible kinetic

models.
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Since decision trees are frequently outperformed by more

complex methods like random forests (Alakwaa et al., 2018;

Sharma et al., 2019), the work of Andreozzi et al. (2016) is an

excellent example of how supposably sacrificing predictive

accuracy by choosing a simple ML model can drastically

increase descriptive accuracy. Using a decision tree allowed

them to exploit it as a generator for high-quality kinetic

models, which could probably not have been

done so easily using more complex ML models like neural

networks.

4.4 Model-based interpretations

As outlined in Section 4.1.2, model-based interpretation

techniques rely on modifying the ML algorithm to increase

interpretability or choosing a well-interpretable model

(Murdoch et al., 2019). Note that the following examples

focus on improving interpretability by design choices rather

than selecting archetypally interpretable models. A general

pattern that can be recognized is that most studies mentioned

here couple parts of their MLmodel to biological entities with the

help of biological network information.

4.4.1 Sparse models allow more in-depth
interpretations

In their recent study, Wang et al. (2021) enhanced their

capsule network that we described earlier in Section 4.3.2 by

incorporating prior insight from biological networks. Their ML

model was designed to take a single-cell transcriptomics profile as

input and predict the type of the corresponding cell. Expression

information from all genes (the inputs) was fed into every

primary capsule via its own neural network. In this work

(Wang et al., 2021), sparsity was enforced because only genes

who are regulated by the same transcription factor (TF) or genes

whose proteins interact (i.e., participate in the same interaction

subnetwork) provide input to the same primary capsule. This

way, primary capsules are primed to represent individual TFs or

protein interaction clusters. Gene-TF and gene-cluster

relationships were inferred from a transcriptional regulatory

network (TRN), and a protein-protein interaction (PPI)

network, respectively. After training, they applied a similar

FIGURE 6
Examples of model-based interpretation methods from Section 4.4 in simplified form. (A) Guiding the topology of a neural network by a
biological network can increase interpretability. This example captures the fundamental principle of the model-based interpretation strategy
presented by Nguyen et al. (2021) and further by Wang et al. (2021). By assigning each neuron in the first hidden layer, H1, to a biological entity (i.e., a
transcription factor in this example), connections to biologically meaningful inputs (i.e., genes) can be wired according to a biological network.
This limits the possible connections in the neural network, introducing sparsity. After training, post-hoc techniques could measure the importance
(red glow) of the interpretable connections, revealing potentially relevant biological interactions. (B) Simplified version of the modular design
described by Kim et al. (2016) for predicting the growth phenotype, metabolic dynamics, and expression levels of a cell from its genetics and
environment. In general, a modular design may describe a sample or aspects of it in different biologically meaningful ways (i.e., interpretable sample
representations). Modules then convert between these transparent representations and may rely on machine learning or mechanistic principles. In
the portrayed example (Kim et al., 2016), ML modules connect the genetic and environmental inputs and different omics representations. A
mechanistic module (i.e., a metabolic model) is embedded into the design and infers the fluxome under constraints derived from multiple
representations. Finally, predictions from multiple ML modules are combined to estimate the phenotype.
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post-hoc interpretation strategy as in their previous study (Wang

et al., 2020). Again, by calculating mean coupling coefficients for

every cell type, the relationships between primary capsules and

their parents (the “cell type capsules”) could be unraveled. This

time, the mean coupling coefficients could be directly interpreted

as relevances of individual TFs and protein clusters for classifying

a certain cell type. Their results supported their interpretation

approach. They reported that important TFs and PPI clusters

were predominantly associated with only a single cell type and

many of these affiliations were known from literature. Wang

et al.’s work demonstrates that with the help of prior knowledge

more in-depth interpretations are possible [compare Wang et al.

(2020) with Wang et al. (2021)]. Their previous black-box

modeling framework was converted to a gray-box and by

invoking sparsity they successfully implemented a model-

based interpretation method.

Nguyen et al. (2021) deployed a sparse deep neural network

to learn about potential biological relationships. Their model

infers a diagnosis for schizophrenia from transcriptomics and

genetic variants (SNPs) data. Features from both biological data

types served as the inputs for the neural network. However,

neurons in the first hidden layer were allowed to receive only

information from inputs that are associated with the same gene

(Figure 6A). This way, these neurons were tied to individual

genes similar to the primary capsules in the work of Wang et al.

(2021). Associations between the gene neurons and inputs were

inferred from expression quantitative trait loci (the gene’s

expression is influenced by the input SNP), and

transcriptional regulatory interactions (the gene is regulated

by the input gene). Since, in their design, the inputs, the first

hidden neurons, and connections between them have a biological

meaning, more advanced post-hoc interpretations were possible,

as described in Section 4.3.2. Additionally, the authors’ neural

network was lasso regularized (see Section 3.2.2 for explanation)

such that inputs from genes and SNPs with low predictive power

are ignored. Both limited connectivity and lasso regularization

increase the sparsity of the ML model, making interpretations

easier.

Koh et al. (2019) employed a network-focused strategy to

classify breast cancer tumors based on their multi-omics

signatures and learn about molecular subsystems that

characterize tumor subclasses. Raw transcriptomics,

proteomics, and gene copy number features were converted

to one feature per molecular interaction. Considered

interactions were either TF-gene or protein-protein

interactions from a TRN, or PPI network, respectively. The

new interaction-level features should reflect the probabilities of

each interaction and were, thus, calculated such that they were

high if both interaction partners were overexpressed, and low if

both were underexpressed. Gene copy number information

served as a tool to scale mRNA abundances, reducing/

increasing them when the corresponding gene was over-/

underrepresented. For learning from the new features, the

authors modified the original nearest shrunken centroid

(NSC) algorithm. As many other supervised methods, vanilla

NSC cannot integrate any prior knowledge about how features

might influence each other. However, their modification

allowed NSC to consider also the features of interactions

that are close in the biological network context when

deciding whether an interaction’s feature is important for

discriminating between classes. This allowed the authors to

favor interactions that form subsystems. The authors suggested

that these subsystems are biologically more meaningful than

important interactions that are dispersed over the biological

network. Importantly, NSC chooses a set of relevant features for

every class separately (Tibshirani et al., 2002). Consequently,

the subsystems discovered by Koh et al. (2019) varied between

tumor subclasses. Further, identifying annotated pathways that

agree with important subsystems facilitated interpretability and

enabled the authors to hypothesize about pathway over-/

underexpression in breast cancer subclasses.

The work of Koh et al. (2019) demonstrates that biological

expertise can help us to carefully engineer new interpretable

features that allow us to view our data from a different (e.g.,

network) perspective. Notably, the authors reported that in

comparison to unmodified NSC applied directly on

proteomics and transcriptomics features, their method

performed worse on experimental data and better on

synthetic data. Although their interaction-level features

seem to have captured most of the valuable information

stored in the raw features while offering great

interpretability, this example again emphasizes that one

should be careful when replacing original features, as

mentioned earlier in Section 2.2.

4.4.2 Modular designs are partially transparent
Kim et al. (2016) curated a large data compendium for

E. coli “Ecomics,” which harbours measurements from five

different omics layers, together with data about the experiments

and network-type data. With this data collection they predicted

the complete state (i.e., levels of mRNA, proteins, metabolites,

and metabolic fluxes) and growth dynamics of a cell based on its

genetics (i.e., strain, genetic perturbations) and environmental

factors (i.e., medium, stress). Their design (Figure 6B) was

divided into modules that each predict quantities from only

one omics layer. The metabolic fluxes were predicted with

constraint-based metabolic modeling, while all other

modules used machine learning (i.e., a recurrent neural

network or lasso regression). Modules were partly

exchanging information, providing and/or receiving

predicted values to/from other modules. Information from

all modules was compiled to collectively predict growth rate.

Most interesting for this review is their recurrent neural

network (RNN) for predicting transcript abundances. The

RNN received a description of the experimental condition

and was trained to match experimental transcript profiles
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with its predictions. The authors selected a RNN for this task to

account for cycles (i.e., “feedback loops”) frequently found in

transcriptional regulatory networks. The authors hoped that

signals would propagate through the iterative layers of the RNN

similar to signals traveling in a loop in the biological network.

Further, they chose a sigmoid activation function partly because

of its similarity to the Hill function. Intriguingly, when neural

connections (referred to as “network topology” by the authors) in

the RNN were guided by a transcriptional regulatory network,

predictions were more accurate. As a whole their modeling

framework is a good example of an interpretable machine

learning framework due to its pronounced modularity. Every

input and output of a module has a clear biological meaning.

Besides providing transparency, modular designs have the

advantage that modules can be trained/tuned independently as

long as data for a module’s input and output is available, which

allowed Kim et al. (2016) to use most of their data collection as

training data. Further, they integrated prior knowledge at several

points in their design, including the metabolic model for fluxome

predictions. This makes their modeling framework a light gray-box.

Alghamdi et al. (2021) developed a graph neural network that

can estimate metabolic fluxes in one cell from single-cell

transcriptomics data. For that the metabolic network was

viewed as a directed factor graph (i.e., a special bigraph). In

this bigraph, “factor nodes” were individual metabolites and

“variable nodes” embodied the reactions in which connected

metabolites participate. Directed links indicated whether the

metabolite acts as a product or a substrate in a reaction. This

graph was constructed from the stoichiometry of a global

metabolic network, and then reduced in size to cope with the

computational cost linked to finding global flux solutions.

Reductions were realized by combining reactions and omitting

certain metabolites. To train their model a tailored loss function

(see Section 3 for explanation) was designed. Therein reasonable

solutions were defined to minimize the “flux imbalance” (i.e.,

influx versus outflux) of all metabolites, harbour zero or positive

fluxes with an appropriate scale, and possess consistency with

experimental data. Each rate of a combined reaction was

estimated from the transciptomic features of its associated

genes via a deep neural network (DNN), resulting in a total of

169 parallel DNNs that need to be trained in harmony. For

training, Alghamdi et al. (2021) used their own algorithm. They

tested their approach on various data sets, including their own,

where they compared predicted flux changes due to genetic and

environmental perturbations with experimentally observed

metabolite concentration changes, confirming the predictive

ability of their approach. We see their complete graph neural

network as a modular system with good model-based

interpretability. Every input (i.e., single-cell transcriptomic

features) and output (i.e., metabolic fluxes) of each DNN

module has a clear biological interpretation. Modules are

arranged/connected according to a biological network

topology, allowing network analysis. This possibility was

demonstrated by the authors: by specifically up- or

downregulating groups of genes (e.g., in glycolysis) certain

metabolic subnetworks (e.g., the Krebs cycle) were impacted

as expected. Further, they showed that targeting

individual genes can reveal the genes that most influence

certain fluxes.

5 Conclusions and outlook

In this review, we have categorized 26 scientific papers

according to their interpretation strategies and the integration

of prior knowledge and discussed some of them in detail. We

have found that despite the large diversity of machine learning

methods utilized in these studies, some parallels in their

interpretation methods can be established. The majority of

studies computed scores that assess the importance of input

features (Alakwaa et al., 2018; Asakura et al., 2018; Date and

Kikuchi, 2018; Hu et al., 2018; Bahado-Singh et al., 2019; Koh

et al., 2019; Wang et al., 2020; Nguyen et al., 2021; Sha et al., 2021;

Wang et al., 2021). These scores were then sometimes used to

discover molecular subsystems (e.g., pathways) of interest

(Alakwaa et al., 2018; Koh et al., 2019; Wang et al., 2020;

Nguyen et al., 2021). Most model-based interpretation

methods relied on either coupling parts of a machine learning

model to comprehensible biological entities [e.g., genes (Nguyen

et al., 2021), TFs (Wang et al., 2021), interacting proteins (Wang

et al., 2021), fluxes (Alghamdi et al., 2021)] or associations

between them [e.g., regulatory interactions (Wang et al.,

2021), SNP-gene links (Nguyen et al., 2021)] or implementing

MLmethods that can be considered simulatable (Andreozzi et al.,

2016; Hu et al., 2018; Sha et al., 2021). Many papers integrated

prior knowledge in the form of biological networks into their

modeling frameworks (Koh et al., 2019; Toubiana et al., 2019;

Alghamdi et al., 2021; Nguyen et al., 2021; Wang et al., 2021),

thereby turning them into gray-boxes; while some studies even

incorporated whole constraint-based models (Kim et al., 2016;

Culley et al., 2020). Whenever extracting knowledge from

machine learning approaches, it is important to make sure

that the results are in-line with available literature. One

reason why this is especially critical is that many ML models

use stochastic training algorithms that can produce drastically

different parameterizations on the same training set. When these

parameters then influence interpretation results, e.g., by

calculating importance scores, we need to make sure that the

results are not due to random effects. In other words, results

found by interpretation methods should be consistent between

different training runs and methods, to not fall into the trap of

overinterpretation.

Because we find that the combinatorial space of distinct

biological data sets (in source/type, dimension, and size) and what

we could learn from them seems endless, interpretation methods

might always need to be tailored to a specific scientific problem. Just
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like in data preprocessing (see Section 2.2) there is no universal recipe

for good results. This is, despite some fundamental similarities,

reflected in the diversity of approaches we highlighted in this

review. A consequence of this diversity is that putting

interpretation strategies into well-defined categories can be

complicated. One reason for this is the fuzziness of the notions

associated with interpretability. For instance, the definition of

simulatability is very subjective. At which point is a ML model

like a decision tree simple enough for a human to reconstruct its

decision-making process? Apart from the ambiguity in terminology

arising fromdifferent notions, we see a high relevance of interpretable

machine learning in systems biology research.
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Metabolic diversity in a collection
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Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites

that are important for plant defense and human health. This study aimed at

investigating themetabolite composition and variation among a large collection

of B. rapa genotypes, including subspecies and their accessions. Metabolite

profiling of leaves of 102 B. rapa genotypes was performed using ultra-

performance liquid chromatography coupled with a photodiode array

detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-

QTOF-MS/MS). In total, 346 metabolites belonging to different chemical

classes were tentatively identified; 36 out of them were assigned with high

confidence using authentic standards and 184 were those reported in B. rapa

leaves for the first time. The accumulation and variation of metabolites among

genotypes were characterized and compared to their phylogenetic distance.

We found 47 metabolites, mostly representing anthocyanins, flavonols, and

hydroxycinnamic acid derivatives that displayed a significant correlation to the

phylogenetic relatedness and determined fourmajor phylometabolic branches;

1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-

komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote

the selective pressure on the metabolic network during B. rapa breeding. We

present a unique study that combines metabolite profiling data with

phylogenetic analysis in a large collection of B. rapa subspecies. We showed

how selective breeding utilizes the biochemical potential of wild B. rapa leading

to highly diverse metabolic phenotypes. Our work provides the basis for further

studies on B. rapa metabolism and nutritional traits improvement.

KEYWORDS

Brassica rapa, metabolite profiling, mass spectrometry, multivariate data analysis,
phylogenetic analysis, specialized metabolism, selective breeding
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1 Introduction

Brassica rapa (B. rapa) is an economically important crop

species of the genus Brassica and is widely cultivated and

consumed worldwide. During the long history of selective

breeding, it reached an enormous morphological diversity

and a wide range of useful purposes, including leafy

vegetables (e.g., Chinese cabbage, pak choi, and mizuna),

inflorescence vegetables (e.g., caixin and broccoletto), floral

shoot and stem vegetables (e.g., purple caitai and turnip

top), enlarged root vegetables or fodders (e.g., turnip), as

well as oilseed crops (e.g., yellow sarson). Due to its strong

adaptability, short growth period, high yield, unique flavor, and

nutritional benefits, B. rapa is increasingly popular worldwide

(Salehi et al., 2021).

Brassica vegetables have been widely acknowledged for

their beneficial effects on human health. Epidemiological

studies have indicated that increased consumption of

Brassica vegetables is strongly associated with a reduced

risk of cancer, cardiovascular disease, diabetes, and

immune dysfunction (Raiola et al., 2018; Salehi et al.,

2021). These health-related properties have been attributed

to nutrients and health-promoting phytochemicals, such as

Brassica-specific glucosinolates, carotenoids, vitamins, and

phenolic compounds (Paul et al., 2019). Glucosinolates and

their breakdown products have been reported to reduce the

FIGURE 1
The phylogenetic distance tree of the 102 analyzed B. rapa accessions based on the DNA sequence variation—SNPs with MAF >0.05 as
described by Cheng et al. (2016). The tree is rooted in the wild-type cabbage genotype. Classification of the sub-species is represented by the color
code.
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risk of lung, colon, and other types of cancer (Mandrich and

Caputo, 2020). Phenolic compounds in plants possess

potential health-promoting effects, including antioxidant,

anti-inflammatory, anti-microbial, anti-obesity, and anti-

tumour activities (Cao et al., 2021).

The potential activity and bioavailability of dietary

phytochemicals in B. rapa depend on the chemical

structure, modifications, and content. Most previous studies

on B. rapa have focused on specific classes of targeted

compounds, such as glucosinolates, organic acids, or

phenolic compounds. For example, glucosinolate profiles in

different B. rapa varieties have been reported (Liu et al., 2020;

Zou et al., 2021). Phenolic compounds have been investigated

in turnip (Chihoub et al., 2019), Chinese cabbage (Managa

et al., 2020), pak choi (Jeon et al., 2018; Yeo et al., 2021), and

mizuna (Kyriacou et al., 2021), establishing flavonoids and

hydroxycinnamic acids as main phenolic compounds.

However, the morphological, flavor, and taste diversity of

B. rapa, suggest much wider metabolic complexity,

potentially including new interesting compounds and

biochemistry.

In the present study, we performed comprehensive metabolic

characterization of 102 representative B. rapa genotypes,

covering 14 subspecies and their individual accessions

exhibiting a wide variety of morphological traits (Figure 1).

Clustering analysis revealed similarities of accessions and

metabolites in metabolic composition and chemical structure,

respectively. Furthermore, we carried out phylogenetic analysis

and assessed the relationship between metabolic composition

and genetic relatedness of various B. rapa accessions. This

highlighted the biochemical effects of selective breeding of

B. rapa.

2 Materials and methods

2.1 Chemicals

All solvents were of HPLC grade. Methanol and acetonitrile

were purchased from Merck KGaA (Darmstadt, Germany).

Formic acid was purchased from J.T. Baker (Germany).

Ultrapure water was produced using a Milli-Q water

purification system (Millipore, Bedford, MA, United States).

2.2 Plant material

We selected 102 representative B. rapa genotypes belonging

to 14 main B. rapa subspecies groups for metabolite profiling

analysis, including accessions of Chinese cabbage, pak choi,

caixin, turnip, savoy, mizuna, taicai, komatsuna, purple caitai,

rapid cycling, yellow sarson, broccoletto, oil cabbage, and wild

cabbage (see Table 1 and Figure 1). All of selected B. rapa

accessions were previously genotyped (Cheng et al., 2016),

and SNPs with MAF (minor allele frequency) > 0.05 were

retrieved, as described by Cheng et al. (2016). Leaf samples

were obtained from the Institute of Vegetable and Flowers,

Chinese Academy of Agricultural Sciences (IVF-CAAS,

Beijing, China). All plants were cultivated in a greenhouse

under the same growth conditions in the fall of 2012. Fifty

days after seeding, two or three fresh leaves (about 15–20 g)

of uniform size and free from decay andmechanical damage were

harvested, snap-frozen in liquid nitrogen, and lyophilized. The

freeze-dried samples were then ground into fine powder and

stored at −80°C until further analysis. Three biological replicates

were taken for each genotype.

TABLE 1 Summary of the 102 B. rapa accessions in this study.

Accession name Subspecies Sample number Samples in total

Chinese cabbage ssp. Pekinensis #21–#67, #91 48

Pak choi ssp. Chinensis #01–#18 18

Purple caitai ssp. Chinensis var. Purpurea #93–#102 10

Turnip ssp. Rapa #87–#90, #92 5

Caixin ssp. Parachinensis #72–#75 4

Taicai ssp. Chinensis var. Tai-tsai #68–#71 4

Savoy ssp. Narinosa #19–#20 2

Rapid cycling #79–#80 2

Yellow sarson ssp. Tricolaris #81–#82 2

Komatsuna var. Pervidis #83–#84 2

Mizuna ssp. Nipposinica #85–#86 2

Broccoletto ssp. Broccoletto #76 1

Wild cabbage #77 1

Oil cabbage #78 1

Frontiers in Molecular Biosciences frontiersin.org03

Zheng et al. 10.3389/fmolb.2022.953189

172

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.953189


2.3 Metabolite extraction and sample
preparation

Powdered B. rapa leaf material (200 mg) was extracted with

80% (v/v) aqueous methanol containing 0.1% (v/v) formic acid

by 20 min sonication at room temperature. The extract was

centrifuged at 13,000 g for 15 min, and the supernatant was

filtered through a 0.22-μm syringe PVDF filter and transferred

to an HPLC vial for LC-MS analysis.

2.4 UPLC-PAD-QTOF-MS/MS analyses

Non-targeted metabolite analysis was performed on a UPLC-

qTOF system (Waters Synapt) with the UPLC column connected in-

line to a PDA detector and then to the MS detector (Synapt, Water

Corp, Manchester, United Kingdom) equipped with electrospray

ionization (ESI) source. Chromatographic separation was carried

out using an UPLC BEH C18 column (100 × 2.1 mm i. d, 1.7 µm,

Waters Acquity). The mobile phase consisted of two solvents: 0.1%

formic acid in acetonitrile/water (5:95, v/v) (A) and 0.1% formic acid

in acetonitrile (B). The linear gradient programwas as follows: 100%–

72% A over 22 min, 72%–60% A over 0.5 min, 60%–0% A over

0.5 min, held at 100% B for a further 1.5 min, then returned to the

initial conditions (100%A) in 0.5 min and conditioning at 100%A for

1 min. The flow rate was 0.3 ml min−1, and the column temperature

was maintained at 35 °C. The injection volume was 4 µl. UV-vis

spectra were recorded in the range of 210–500 nm.

The MS conditions were as follows: capillary voltage of 3.0 kV,

cone voltage of 28 V, source temperature of 125°C, desolvation

temperature of 275°C, desolvation gas flow rate of 650 L h−1, and

cone gas flow rate of 25 L h−1. Nitrogen was used as desolvation and

cone gas, and argon was utilized as the collision gas. Data were

acquired in MSE mode from m/z 50 to 1,500 in centroid mode at

negative ion mode, comprising two interleaved full scan acquisition

functions: the low energy function and the high energy function. The

low energy function employed collision energy at 4 eV to acquire

accurate mass data for intact precursor ions. For the high energy

function, a collision energy ramp of 10–35 eV was applied for

fragmentation information. The MS system was calibrated using

sodium formate. Leucine enkephalin was used as a reference lock-

mass compound to ensure mass accuracy. The [M-H]- ion at m/z

554.2615 was detected via the independent LockSpray™ channel. A

mixture of 15 standard compounds, injected after each batch of

10 biological samples, was used for instrument quality control.

MassLynx software version 4.1 (Waters) was used to control the

instrument and calculate accurate masses.

2.5 Data processing and statistical analysis

LC-MS raw data files were converted to NetCDF format

using MassLynx DataBridge (version 4.1; Waters Corp.). Peak

picking, retention time correction, and alignment were then

performed using R packages XCMS (Smith et al., 2006) and

CAMERA (Kuhl et al., 2012). Data normalization, analysis, and

visualization were performed using R 3.1.2 (Ihaka and

Gentleman, 1996). The relative peak intensities were

normalized to the median intensity of each chromatogram

and subsequently scaled between the minimum non-zero and

the maximum value of the original dataset. Hierarchical

clustering analysis (HCA) in heat map was performed using

Euclidean distance and average linkage on Z-transformed

variables (either rows/metabolites or columns/samples).

Significant differences in the accumulation of metabolites in

measured accessions were identified by one-way ANOVA

(Ritchie et al., 2015) with FDR ≤0.05 and followed by Tukey’s

HSD test (Supplementary Table S2).

2.6 Phylogenetic distance analysis

The neighbor-joining tree was constructed by the BioNJ

algorithm (Gascuel, 1997) using J-C distance in PHYLIP

3.6 software (Felsenstein, 2004) and all SNPs with

MAF >0.05. The tree was rooted using a midpoint method

(Farris, 1972). Phylogenetic signal was computed in a

“picante” R package (v1.8.2 2020; Kembel et al., 2010) using

Blomberg’s K statistics (Blomberg et al., 2003) on the background

of a Brownian motion model of the trait evolution. The

significance of the phylogenetic signal was obtained in

9,999 random permutations of the phylogenetic tree labels

(Supplementary Table S2).

2.7 Clustering of metabolites

For all metabolites SMILES codes have been obtained and

translated to the standard molecular fingerprints as described by

Faulon et al. (2003) using the rcdk R package (v3.6.0 2021; Guha,

2007). The Tanimoto similarity has been calculated according to

the method of Fligner et al. (2002) and the result has been

displayed as a hierarchical clustering tree using the complete

agglomerative linkage method. Metabolites sharing the same

fingerprint have been grouped and treated as one single

compound.

3 Result and discussion

3.1 Strategy for metabolite identification

To comprehensively characterize the metabolome of B. rapa

leaves, a total of 102 representative B. rapa genotypes, belonging

to 14 major B. rapa subspecies groups, were selected to cover

their large genetic and phenotypic variations (Figure 1).
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Untargeted metabolite analysis was performed using UPLC-

PDA-QTOF-MS/MS and representative total ion

chromatograms (TIC) of five B. rapa accessions are shown in

Supplementary Figure S1. Out of 7,286 quantified mass features,

a total of 346 metabolites were identified at different confidence

levels. In our study, two metabolite identification strategies were

used: 1) high-confidence metabolite identification based on

authentic standards and 2) putative identification based on

literature and public databases. In total, 37 metabolites were

identified with the “high confidence” strategy through

comparison of retention time (RT), UV/Vis spectra, accurate

mass, isotopic distribution, and fragmentation pattern with those

of authentic standards using the WEIZMASS library, a reference

spectral library comprising spectra of 3,540 highly pure plant

metabolites (Shahaf et al., 2016). Of these, 13 metabolites were

identified for the first time in B. rapa. Respectively,

309 metabolites were putatively identified in B. rapa leaves by

surveying the literature and public databases (KNapSack, DNP,

Massbank, KEGG, and ReSpect). Metabolites previously reported

in the Brassicaceae family were collected in a custom reference

database that included metabolite names, molecular formulas,

molecular weight, chemical structures, biological sources, and

literature or database resources. Mass features following XCMS

and Camera clustering were first searched against this reference

database using a homemade script. The accurate mass of the

molecule and adduct ions as well as their isotope distribution

patterns were considered as main search parameters. Next, the

structural information from UV/vis spectra and mass

fragmentation patterns of the hits were used for putative

identification. In this study, a large number of metabolite

isomers were identified and discriminated in B. rapa leaves

based on retention time and/or MS fragments (see

Supplementary Material).

3.2 Chemical complexity of the metabolic
profiles

The 346 putatively identified metabolites belong to various

chemical classes, including 105 flavonols, 93 hydroxycinnamic

acid derivatives, 51 monolignol and oligolignol derivatives,

33 glucosinolates, 14 anthocyanins, 10 organic acid, 8 indolics,

5 benzenoids, 3 amino acids, and 24 others. These metabolites are

mostly products and intermediates of specialized metabolism

pathways associated with nutritional and health-promoting

effects of B. rapa as well as flavor and aroma (Salehi et al.,

2021). To our knowledge, 184 of the detected metabolites were

identified in B. rapa for the first time. The complete list of all

identified metabolites with respective chemical, analytical, and

biological descriptors is provided in Supplementary Table S1.

Tanimoto similarity analysis showed that the identified

metabolites are linked to twelve major clusters based on their

chemical structure (Figure 2). Expectedly, most of these clusters

were enriched by a specific class of metabolites. However, the

non-biased grouping highlighted also four clusters containing

metabolites of diverse classes (clusters I, J, K, and L) and included

mostly precursors and intermediates upstream in the major

pathways of specialized metabolism.

3.3 Characterization of major specialized
metabolite classes in B. rapa

All putatively identified metabolites were categorized into ten

major chemical classes based on structures and fragmentation

patterns. Both the composition and relative content of

metabolites varied significantly among measured accessions

(Supplementary Table S2), indicating the impact of genetic

diversity on the metabolic variation within the B. rapa species.

3.3.1 Glucosinolates
Glucosinolates are a group of nitrogen- and sulfur-

containing specialized metabolites and are classified into

aliphatic, aromatic, and indole glucosinolates, according to

whether they originate from aliphatic amino acids, aromatic

amino acids or tryptophan, respectively. Glucosinolates

contain a β-D- glucopyranosyl common core moiety and a

variable side chain. Several studies presented the typical MS

fragmentation of glucosinolates (Fabre et al., 2007; Francisco

et al., 2009). First, based on the common core structure,

glucosinolate could produce characteristic fragments at m/z

96.96, 195.03, 241.00, 259.01, and 274.99 via the cleavage of

bonds on either side of the sulfur atoms. However, not all

fragments could always be observed in MSE fragmentation.

We used the most abundant fragment ions at m/z 96.96

(sulfate anion) and m/z 259.01 (sulfated glucose anion) as

diagnostic ions to preliminarily check the presence of

glucosinolates. In addition, glucosinolates undergo consistent

and characteristic neutral losses of sulfur trioxide (SO3,

79.96 amu), anhydroglucose (Glc, 162.05 amu),

dehydroxythioglucose (SGlc-OH, 178.03 amu), thioglucose

(SGlc, 196.04 amu) as well as combined loss of sulfur trioxide

and anhydroglucose (Glc + SO3, 242.01 amu), parameters that

could be used for identification of variable side chains. Finally,

the variable side chain could also produce unique fragments. For

example, glucohesperin is an aliphatic glucosinolate with a

deprotonated molecular ion at m/z 464.07 and formula as

C14H27NO10S3. The MS fragments showed characteristic

fragment ions at m/z 79.95, 274.99, 259.01, 241.00, and

195.03. Neutral loss fragments from deprotonated molecular

were observed at m/z 449.04 (loss of a methyl moiety from

the side chain, −15.03 amu), m/z 384.11 (loss SO3, −79.96 amu),

m/z 226.06 (loss Glc + SO3, −242.01 amu) andm/z 400.07 (loss of

a methylsulfinyl moiety from the side chain, −64.00 amu). In

addition, the dimethylsulfinyl fragment ion (m/z 400.07)

underwent further neutral loss to give the product ions at m/z
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238.02 (loss of Glc, −162.05 amu), m/z 204.03 (loss of

SGlc, −196.04 amu) and m/z 158.06 (loss of Glc +

SO3, −242.01 amu). Therefore, this long-chain

methylsulfinylalkyl glucosinolate was tentatively identified as

glucohesperin (Supplementary Table S1). Glucohesperin was

reported in Arabidopsis thaliana (van de Mortel et al., 2012),

while it was detected here in B. rapa for the first time. In total,

33 glucosinolates were putatively identified, consisting of

24 aliphatic glucosinolates, 4 aromatic glucosinolates, and

5 indole glucosinolates, including most of the glucosinolates

FIGURE 2
Tanimoto similarity-based clustering tree representing the chemical complexity of the obtained metabolic profiles. The distance matrix is
clustered using the complete linkage method. The classification of chemical compounds, according to the Dictionary of Natural Products (https://
dnp.chemnetbase.com), is represented by the color code. Twelve major compound cluster groups are marked by letters A to L. Metabolites
exhibiting identical fingerprints are represented by numbered groups from 1 to 32. Members of all groups are listed in the proximity of their
original position.
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reported earlier in B. rapa (Liu et al., 2020; Zou et al., 2021). To

our knowledge, 16 of the detected glucosinolates were found in B.

rapa leaves for the first time.

Glucosinolates are well-known for their roles in plant

defenses against herbivores and pathogens (Chhajed et al.,

2020). In addition, previous studies demonstrated that

aliphatic glucosinolates were predominant in B. rapa, with

gluconapin and glucobrassicanapin being the most abundant

(Klopsch et al., 2018). In the present study, gluconapin and

glucobrassicanapin were present in all investigated B. rapa

genotypes. Moreover, yellow sarson accession #82, (here and

further in the text “#” denotes genotype number in

Supplementary Table S2) and turnip #89 were found to

contain the highest contents of gluconapin and

glucobrassicanapin, respectively. Meanwhile, the lowest

contents of them were found in Chinese cabbage #57 and

pak choi #14, respectively. Among all genotypes, the relative

contents of gluconapin and glucobrassicanapin had 19,085- and

1,463-fold differences between the highest and the lowest

values, respectively, indicating a large variation in

glucosinolates. This is in line with previous studies that

demonstrated extensive variation in glucosinolates in

113 turnip varieties (Padilla et al., 2007), 91 different B. rapa

genotypes (Klopsch et al., 2018) and 82 B. rapa varieties (Yang

and Quiros, 2010). We found various glucosinolates

accumulation patterns among genotypes. For example,

epiglucobarbarin and glucohesperin were presented in most

genotypes, while glucocleomin and glucolesquerellin were

highly accumulated only in accession savoy #20, and at

lower levels in all mizuna, turnip, and purple caitai

accessions. Upon cell disruption, glucosinolates are

hydrolyzed to various breakdown products, which possess a

wide range of health-promoting properties. Sulforaphane, the

active hydrolysis product of glucoraphanin, has attracted

attention due to its significant anticancer properties (Haq

et al., 2021). We found that its precursor glucoraphanin was

highly enriched in yellow sarson #81 and #82 and rapid cycling

#79. Also, indole-3-carbinol, derived from the breakdown of

glucobrassicin, showed diverse biological properties with anti-

atherogenic, antioxidant, anti-carcinogenic, and anti-

inflammatory activities (Kim and Park, 2018). The precursor

glucobrassicin was found at the highest level in Chinese cabbage

#60, which is in line with earlier reports (Padilla et al., 2007;

Yang and Quiros, 2010). In the case of aromatic glucosinolates,

gluconasturtiin and glucotropaeolin have been reported to be

hydrolyzed by the plant enzyme myrosinase to yield phenethyl

isothiocyanate and benzyl isothiocyanate, which have anti-

cancer and antimicrobial activities (Cao et al., 2021). In this

study, we found that accessions savoy #20, komatsuna #83, and

pak choi #5 exhibited relatively higher levels of gluconasturtiin

as compared with other genotypes (highest in komatsuna). In

addition, glucotropaeolin was mainly accumulated in Chinese

cabbage #33. Therefore, these B. rapa genotypes with high levels

of glucosinolates might be used in future health-related

applications.

3.3.2 Flavonols
Flavonols are the predominant phenolic compounds in B.

rapa. Identification of flavonol glycosides was based on their

fragmentation pattern (Ferreres et al., 2004; Harbaum et al., 2007;

Lin et al., 2011). The breakdown of the O-glyosidic bond is a

typical fragmentation of flavonol glycosides. Previous studies

indicated that the O-glyosidic bond at the 7-position was the

weakest glycosidic linkage in the flavonols molecule (Ferreres

et al., 2004). Thus, the first loss usually was the glycose or acyl-

glycose moiety at the 7-position, and then the loss of glycose or

acyl moieties at position 3. For acylated flavonol glycosides,

neutral loss information was used to characterize acyl groups

by the losses of 42.01, 146.04, 162.03, 176.05, 178.03, 192.04, and

206.06 amu for acetyl, p-coumaroyl, caffeoyl, feruloyl,

hydroxycaffeoyl, hydroxyferuloyl, and sinapoyl, respectively. In

addition, losses of 180.06, 162.05, and 120.04 amu from

interglycosidic fragmentations suggested sophoroside or

sophorotrioside with 1→2 glycosidic linkage (Ferreres et al.,

2004; Lin et al., 2011). As an example, compounds

205–208 were found with the same deprotonated molecular

ion at m/z 977.26 and aglycone ions (m/z 285.04 and m/z

284.03), suggesting that they were the isomeric kaempferol

glycosides. First, for compounds 205 and 206, the fragment

ion at m/z 815.20 as a base peak was observed due to the loss

of a glucosyl moiety (−162.05 amu) at the 7-O position. Another

fragment ion atm/z 609.15 was due to the further loss of sinapoyl

moiety at the 3-position (−206.06 amu). After the loss of a

diglucosyl moiety at the 3-position (−324.11 amu), kaempferol

aglycone ions were detected. Moreover, compound 205 showed

the fragments at m/z 489.11 (−120.04 amu) and m/z 429.08 (−

180.06 amu) to confirm the sophorosyl moiety. Thus,

compounds 205 and 206 were putatively identified as

kaempferol 3-O-sinapoylsophoroside-7-O-glucoside and

kaempferol 3-O-sinapoyldiglucoside-7-O-glucoside,

respectively. For the other two isomers (compound 207 and

208), a fragment ion at m/z 609.15 was detected as a base peak

due to the simultaneous loss of a glucosyl moiety (−162.05 amu)

and a sinapoyl moiety (−206.06 amu) at the 7-position. Further

loss of diglucosyl moiety at the 3-position gave rise to the

kaempferol aglycone ions. Together with the characteristic

fragments of sophoroside, compounds 207 and 208 were

putatively identified as kaempferol 3-O-sophoroside-7-O-

sinapoylglucoside and kaempferol 3-O-diglucoside-7-O-

sinapoylglucoside, respectively (Supplementary Table S1). In

this study, a total of 105 flavonols, including 66 kaempferol

derivatives, 28 quercetin derivatives, and 11 isorhamnetin

derivatives were identified. To the best of our knowledge,

50 B. rapa flavonols are reported here for the first time.

Among flavonols, three aglycons (kaempferol, quercetin, and

isorhamnetin), 16 non-acylated glycosides, 61 monoacylated,
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and 25 diacylated glycosides were detected. B. rapa leaves showed

complex flavonols conjugate with different glycosylation and

acylation patterns. Some flavonols possess molecular weight

above 1,000 Da, and this increased the complexity of

metabolite identification. In one example, detailed

identification of compound 263, a diacylated quercetin tetra-

glycoside with m/z 1,317.34, is presented in the Supplementary

Material. In the case of non-acylated flavonol glycosides, mono-,

di-, and tri-glycosides of isorhamnetin and quercetin as well as

mono- to tetra-glycosides of kaempferol were found. Moreover,

86 flavonol glycosides were acylated with acetic, p-coumaric,

caffeic, sinapic, ferulic, hydroxyferulic, and hydroxycaffeic acids.

We found that mono-acylated glycosides widely existed as

kaempferol, quercetin, and isorhamnetin glycosides. However,

diacylated glycosides were only present as quercetin

tetraglycosides as well as tri-, tetra-, and pentaglycosides of

kaempferol. In good agreement with previous reports

(Chihoub et al., 2019; Wiesner-Reinhold et al., 2021),

kaempferol glycosides were the most diverse flavonols

derivatives in B. rapa, with 7 non-acylated, 39 mono-acylated,

and 19 di-acylated glycosides, respectively.

Remarkable variations of flavonols levels were observed

among all genotypes, especially for kaempferol and quercetin

glycosides. We found kaempferol 3-O-

disinapoylsophorotrioside-7-O-glucoside (compound 235) and

kaempferol 3-O-sinapoylsophorotrioside-7-O-glucoside

(compound 225) exhibited extremely different levels with

13,123- and 10,432-fold differences between the highest and

the lowest values among the tested genotypes, respectively.

Similarly, quercetin 3-O-triglucoside-7-O-sinapoylglucoside

(compound 258) and quercetin 3-O-triglucoside-7-O-

feruloylglucoside (compound 257) displayed 5,577- and 3,549-

fold change among all genotypes, respectively. Previous studies

have shown that kaempferol derivatives were the most abundant

flavonols in Chinese cabbage, pak choi, turnip, and mizuna

(Soengas et al., 2018; Dejanovic et al., 2021; Kyriacou et al.,

2021; Wiesner-Reinhold et al., 2021), with kaempferol-3,7-di-

O-glucoside (compound 176), kaempferol 3-O-

caffeoylsophoroside-7-O-glucoside (compound 194),

kaempferol 3-O-hydroxyferuloylsophoroside-7-O-glucoside

(compound 199), kaempferol 3-O-feruloylsophoroside-7-O-

glucoside (compound 201) and kaempferol 3-O-

sinapoylsophoroside-7-O-glucoside (compound 205) being the

most abundant kaempferol derivatives. These compounds have

been reported as antioxidants with high free radical scavenging

activity and antimicrobials with effective inhibition of Gram-

positive and -negative bacteria (Favela-González et al., 2020;

Abellán et al., 2021). In the present study, we found that

accessions Chinese cabbage #48, pak choi #10, turnip #88, and

mizuna #85 contained the highest levels of these compounds. In

addition, Chinese cabbage #48 and pak choi #11 also exhibited

high concentrations of isorhamnetin-3,7-di-O-glucoside

(compound 168) and isorhamnetin-3-O-glucoside (compound

112). These metabolites have been demonstrated to be active

compounds in Salicornia herbacea (Lee et al., 2021) and mustard

leaf (Brassica juncea) (Yokozawa et al., 2002), affecting insulin

secretion and blood glucose levels.

The wide variation of flavonols in B. rapa determines diverse

and important biological functions. Quercetin, kaempferol, and

isorhamnetin and their derivatives have diverse bioactivities

including antioxidant, antimicrobial, antifungal, and antiviral

potentials (Barreca et al., 2021). We found that Chinese cabbage

#33 contained the highest amount of isorhamnetin and

kaempferol. The highest amount of quercetin was found in

another Chinese cabbage accession #35. Previous studies

revealed that the caffeoyl moiety due to the O-dihydroxy

structure could enhance radical scavenging ability (Braca

et al., 2003). In our study, we found 18 caffeoyl kaempferol

and quercetin glycosides and one hydroxycaffeoyl kaempferol

glycoside. However, glycosylation has been reported to decrease

the scavenging activity of flavonoids (De Winter et al., 2015).

Considering caffeoyl moiety and glycosylation, kaempferol 3-O-

caffeoylsophoroside (compound 182), kaempferol 3-O-

caffeoyldiglucoside (compound 183), and quercetin 3-O-

caffeoyldiglucoside (compound 244) were expected to be

strong antioxidants in B. rapa leaves. The highest amounts of

compounds 182 and 183 were found in pak choi #11, while

Chinese cabbage #63 showed the highest level of compound 244.

Therefore, pak choi #11 and Chinese cabbage #63 may be

excellent sources of strong antioxidants in B. rapa.

3.3.3 Hydroxycinnamic acid derivatives
In B. rapa, hydroxycinnamic acid derivatives represent

another prominent class of phenolic compounds. The

fragmentation of hydroxycinnamic acid glycosides showed the

loss of glycosyl and hydroxycinnamoyl moiety to produce

hydroxycinnamic acid ions. In the case of hydroxycinnamoyl

diglycosides in Brassica vegetables, the diglycosyle moiety was

mainly characterized as a gentiobiose unit (1→6 glycosidic

linkage) (Harbaum et al., 2007; Olsen et al., 2009). For

example, compounds 133–136 were detected with a

deprotonated molecular ion at m/z 739.21. The fragment ion

at m/z 515.14 was formed by the loss of the sinapoyl

(−224.07 amu). The hydroxyferulic acid ion at m/z 209.04 was

formed by successive loss of gentiobiose moiety (−306.09 amu).

Further loss of H2O (−18.01 aum) from hydroxyferulic acid

resulted in a fragment ion at m/z 191.03. Thus, they were

putatively identified as isomers of sinapoyl hydroxyferuloyl

gentiobiose. Notably, many isomers of hydroxycinnamic acid

derivatives were detected in B. rapa leaves (Supplementary Table

S1). These isomers could be the result of a different linkage

position of the hydroxycinnamoyl group. Some isomers could be

distinguished using authentic standards. For example, four

caffeoylquinic acid isomers were characterized based on their

molecular ion (m/z 353.09) and predominant fragment ions (m/z

191.06 and 173.04 for quinic acid; m/z 179.03, 161.04, and
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135.04 for caffeic acid). Finally, three isomers were identified

with high confidence as 3-O-caffeoylquinic acid (chlorogenic

acid), 5-O-caffeoylquinic acid (neochlorogenic acid), and 4-O-

caffeoylquinic acid or 1-O-caffeoylquinic acid (Supplementary

Table S1). According to authentic standards and the previously

described fragmentation patterns (Harbaum et al., 2007; Lin

et al., 2011; Sun et al., 2013), in total 93 hydroxycinnamic

acid derivatives were identified in this study, including

4 hydroxycinnamic acids, 4 glycerol and shikimic acid esters,

10 malic acid esters, 14 quinic acid esters, and 61 glycosides. The

main derivatives were hydroxycinnamic acid glycosides,

including mono-, di-, or triglucose integrated with one, two,

or three hydroxycinnamoyl units.

Hydroxycinnamic acid derivatives displayed high variability

among the different B. rapa studied here. Generally,

hydroxycinnamoyl quinic acids accumulated to high levels in

all accessions of Chinese cabbage, savoy, pak choi, taicai, and

caixin, while they were present at low levels in broccoletto, rapid

cycling, yellow sarson, and wild cabbage. Similarly, low levels of

hydroxycinnamoyl malic acids were also detected in rapid cycling

and yellow sarson. In contrast, hydroxycinnamoyl glycosides

were highly abundant in rapid cycling and yellow sarson, as

well as in Chinese cabbage and komastuna, but low in caixin,

broccoletto, and wild cabbage. According to previous reports

(Soengas et al., 2018; Dejanovic et al., 2021), sinapic acid

derivatives were the major hydroxycinnamic acid derivatives

in B. rapa, including 1,2-disinapoyl gentiobiose (compound

147–149) and 1-sinapoyl-2-feruloyl gentiobiose (compound

124–128). These were reported to exhibit antioxidant and

anti-inflammatory effects in human plasma and human

peripheral blood mononuclear cells (Olszewska et al., 2020).

In our study, Chinese cabbage #31 contained the highest

amounts of disinapoyl gentiobiose and sinapoyl feruloyl

gentiobiose. In another study with pak choi (Heinze et al.,

2018) and mizuna (Wiesner-Reinhold et al., 2021), sinapoyl

malate was a major hydroxycinnamic acid derivative. Previous

studies showed that sinapoyl malate together with other

hydroxycinnamoyl malic acids may play an important role in

B. rapa jasmonate-mediated defense response (Liang et al., 2006).

The highest amount of sinapoyl malate was found in mizuna #85.

Free hydroxycinnamic acids have been reported to act as

powerful antioxidants (Coman and Vodnar, 2020). It was

found that hydroxycinnamates work as effective UV-B

protectants in Arabidopsis (Landry et al., 1995). In this study,

four hydroxycinnamic acids were detected in all tested genotypes.

The highest amounts of p-coumaric acid and hydroxyferulic acid

were found in turnip #92, while pak choi #16 contained the

highest levels of sinapic acid and ferulic acid.

3.3.4 Anthocyanins
Anthocyanins are important water-soluble pigments in

plants. In the negative ion mode, anthocyanins exhibited a

unique doublet of ions [M-2H]- and [M-2H + H2O]- for their

molecular ion, which could be used to identify anthocyanins and

differentiate them from other polyphenols (Sun et al., 2012). In

addition, doubly charged ions were observed for pelargonin and

cyanidin glycosides, in some cases as the base peak (Sun et al.,

2012). The MS fragmentation of anthocyanins occurred mainly

at the glycosidic bonds between the flavylium ring and sugar

moieties as well as ester bonds between the sugar moieties and

acyl groups (Wu and Prior, 2005). For example, compound

271 was an anthocyanin with the highest level in purple caitai

#101. Characteristic doublet ions [M-2H]- and [M-2H + H2O]-

were observed at m/z 1,239.31 and 1,257.31, respectively. In

addition, doubly charged ions at m/z 619.14 [M-2H]2- and m/

z 628.15 [M-2H +H2O]2- were found as themajor peaks. TheMS

fragmentation showed a double-charged ion at m/z 597.15 and a

single-charged ion at m/z 1,195.32 by loss of a carboxyl residue

(43.99 amu). In addition, two fragment ions at m/z 1,153.30 and

m/z 991.25 were observed by loss of malonyl residue (86.00 amu)

and malonylglucoside moiety (248.05 amu), indicating the

presence of a malonylglucoside moiety at the 5-position.

Furthermore, successive loss of a feruloyl residue

(176.05 amu) and a sinapoyl residue (206.06 amu) gave rise to

the fragment ions at m/z 609.14, revealing the presence of a

feruloyl-sinapoyl residue at the 3-position. Finally, the loss of a

diglucose moiety (324.11 amu) from the 3-position produced the

cyanidin aglycone ions atm/z 285.04 and 284.03. Based on earlier

reports (Guo et al., 2015; Song et al., 2020), compound 271 was

putatively identified as cyanidin 3-feruloylsinapoylsophoroside-

5-malonylglucoside.

All accessions of purple caitai and purple turnip were the

only accessions exhibiting purple color due to the presence of

anthocyanins. Interestingly, purple caitai only contained

cyanidin derivatives, while purple turnip contained exclusively

pelargonidin derivatives, indicating different biosynthetic

pathways of anthocyanins. In purple caitai, all nine

anthocyanins were acylated cyanidin-3-sophoroside-5-

glucoside derivatives, as previously shown in B. rapa (Guo

et al., 2015; Song et al., 2020). However, information on

anthocyanin composition in purple turnips was limited so far.

In this study, five acylated pelargonidin-3-O-diglucoside-5-O-

malonoylglucoside derivatives were putatively identified in

purple turnip, which were similar to the anthocyanins

reported in red radish (Wu and Prior, 2005; Jing et al., 2014).

Anthocyanins have been demonstrated to possess antioxidant

activity and preventive activities against cardiovascular disease,

metabolism disease, diabetes, and obesity (Ghareaghajlou et al.,

2021). The chemical structures of anthocyanins determine their

stability, color intensity, and potential biological activity.

Previous studies reported that diacylated anthocyanins were

characterized by higher antioxidant capacity than

monoacylated anthocyanins, while the latter had higher

antioxidant capacity than nonacylated forms (Wiczkowski

et al., 2013). In addition, acylation with sinapic acid leads to

higher antioxidant capacity than with ferulic acid, followed by p-
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coumaric acid (Wiczkowski et al., 2013). In this study, we found

that most of the anthocyanins identified in purple caitai and

purple turnip contained diacylation with sinapic acid and ferulic

acid, modifications that will contribute to good stability and high

antioxidant capacity.

3.3.5 Monolignol and oligolignol derivatives
Lignin, an aromatic biopolymer found in plant cell walls, is

essential for water transport and mechanical support, and plays

an important role in plant defense (Chantreau et al., 2014).

Lignin is derived from the combinatorial coupling of

monolignol radicals. The MS fragmentation pattern of lignin

oligomers has been described previously (Morreel et al., 2010a;

Morreel et al., 2010b; Morreel et al., 2014). In this study, we

characterized glycosylation and esterification groups, monolignol

units, and linkage types. First, for oligolignol glycosides and

malate esters, MS fragmentation occurred by loss of glycosyl

moiety (324.11 and 162.05 amu) or the malyl moiety

(116.01 amu). Second, small neutral losses provide

information on the three types of linkages. Third, the first

product ions resulting from the cleavage of the linkage yielded

the information on the units. For example, compound 298 was

detected as a deprotonated ion at m/z 581.19. The base peak in

MS fragmentation was at m/z 419.13 indicating a hexose loss

(−162.05 aum). Furthermore, a fragment ion at m/z 371.11 was

observed that likely resulted from the β-aryl ether, a combined

loss of water and formaldehyde (−48.02 amu). Fragmentations

yield ions at m/z 223.06 and 195.06, representing the units

derived from sinapic acid and coniferyl alcohol. Furthermore,

fragment ions at m/z 208.04 and 165.06 indicated a further

methyl radical loss from sinapic acid and formaldehyde loss

from the G unit, respectively. Therefore, compound 298 was

characterized as G(8-O-4)sinapic acid ester hexoside

(Supplementary Table S1). In this study, we identified

51 monolignol and oligolignol derivatives in B. rapa leaves,

including 20 monolignol, 21 lignans and neolignans, and

10 trimeric oligolignols derivatives. To the best of our

knowledge, 46 monolignol and oligolignol derivatives are

reported here in B. rapa leaves for the first time; eight of

them were identified with high-confidence levels.

In B. rapa leaves, monolignol and oligolignols were mainly

composed of guaiacyl (G) and syringyl (S) units that are derived

from coniferyl alcohol and sinapyl alcohol, respectively. Various

inter-monomeric linkages were observed, including β-aryl ether

linkage (8-O-4), resinol linkage (8-8), and phenylcoumaran

linkage (8-5). In the case of the 8-8 linkage, lignans belonging

to different classes were identified, including lariciresinol,

pinoresinol, secoisolariciresinol, syringaresinol, and

dehydrodiconiferyl alcohol derivatives. Due to the free

hydroxyl group from G and S units, most monolignols and

oligolignols were glycosylated with one or two hexoses. In

addition, monolignol, lignans, and neolignans were conjugated

with ferulic acid or sinapic acid, which were further esterified by

malate. Recently, a wide range of monolignol and oligolignol

derivatives have been found in seed coats of pomegranate (Qin

et al., 2020) and arabidopsis leaves (Dima et al., 2015). This

indicated that monolignols not only incorporated into lignin

polymer biosynthesis/assembly but also participated in other

metabolic pathways to form diverse metabolites.

Sinapyl alcohol, the only free monolignol detected in B. rapa

leaves, exhibited significantly higher amounts in all accessions of

oil cabbage, up to 60-fold higher as compared to other genotypes.

Monolignol derivatives were detected in higher amounts in all

accessions of mizuna and turnip, while the lower amount in oil

cabbage, rapid cycling, and yellow sarson. Lignan and neolignan

derivatives exhibited a similar accumulation pattern across the

accessions, with higher amounts detected in all accessions of

mizuna, turnip, and yellow sarson. Trimeric oligolignols

derivatives exhibited the highest levels in all accessions of

mizuna, turnip, yellow sarson, and broccoletto, while the

lowest levels were found in all accessions of oil cabbage. A

recent study demonstrated that lignans possess antimicrobial,

anti-inflammatory, and antioxidant activities (Hano et al., 2021).

Lariciresinol, pinoresinol glucoside (symplocosin), and

pinoresinol diglucoside have been proven to possess

considerable antioxidant potential in different in vitro assays

(Gülçin et al., 2006; Soleymani et al., 2020). Here, we found that

Chinese cabbage accession #48 contained the highest amount of

lariciresinol, while two turnip accessions #87 and #92 contained

the highest amount of pinoresinol glucoside and pinoresinol

diglucoside, respectively. A previous study showed that

lariciresinol glycoside exhibited potent anti-inflammatory

activity through the NF-κB signaling pathway (Bajpai et al.,

2018). The highest amounts of lariciresinol glycoside were

found in Chinese cabbage #48 and rapid cycling #79.

Syringaresinol glucoside, an effective regulator of lipogenesis

and glucose consumption (Wang et al., 2017), was mainly

abundant in mizuna #85 and oil cabbage #78. Finally, some

lignans and their glycosides, including secoisolariciresinol,

pinoresinol, and lariciresinol, are the precursors for

enterolignans with phytoestrogen activity (Hano et al., 2021).

Enterolignans are characterized by various biologic activities,

including tissue-specific estrogen receptor activation, together

with anti-inflammatory and apoptotic effects (Senizza et al.,

2020). In this study, the secoisolariciresinol, pinoresinol, and

lariciresinol glycoside characterized in B. rapa may also be the

precursors for the formation of enterolignans (compounds,

formed by the action of gut microflora on lignans).

3.3.6 Organic acids and other metabolites
Malic acid, citric acid, and ascorbic acid have been reported

as the predominant organic acids in B. rapa (Arias-Carmona

et al., 2014). Here, we putatively identified ten organic acids in B.

rapa leaves and they were common in all genotypes. It is well

known that malic acid and citric acid contribute to the sensory

characteristics due to their sour taste, while ascorbic acid is an
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important enzyme cofactor, radical scavenger, and donor/

acceptor in electron transport (Davey et al., 2000). Malic acid,

citric acid, and ascorbic acid showed similar distribution among

all genotypes with 2.2-, 6.7-, and 6.1-fold variations between the

lowest and the highest levels, respectively. The highest amounts

of malic acid, citric acid, and ascorbic acid were detected in

Chinese cabbage accession #33, pak choi #16, and a second pak

choi accession #10, respectively. The amino acids phenylalanine,

tyrosine, and tryptophan were detected in all accessions with 6.1-,

7.8-, and 19.8-fold variations between the lowest and the highest

amounts, and the highest amounts were all found in Chinese

cabbage #26. Roseoside vomifoliol 9-O-β-D-glucopyranoside
(compound 78) was identified with high confidence in B. rapa

for the first time. This compound characterized before in Leea

aequata L. showed anticancer activity due to the induction of

apoptosis (Rahim et al., 2021). A recent report showed potent

anti-inflammatory, antiallergic, and COVID-19 protease

inhibitory activities of roseosides (Ebada et al., 2020). In this

study, Chinese cabbage #43 had the highest level of vomifoliol 9-

O-β-D-glucopyranoside, followed by two additional Chinese

cabbage accessions #41 and #52, and turnip #92. Finally, Bn-

NCC-1 and Bn-NCC-2, compounds belonging to the

tetrapyrroles, were considered potential biomarkers of Brassica

plants (according to the Dictionary of Natural Products version

30.2 https://dnp.chemnetbase.com) and were both detected in all

B. rapa genotypes.

3.4 Metabolic diversity of the B. rapa
subspecies and their accessions

All except four measured metabolites exhibited significant

variation across the genotypes according to ANOVA (FDR-

adjusted p-value ≤ 0.05; Supplementary Table S2). The only

non-significant metabolites included rutin (compound 240),

N,O-diacetyl-L-tyrosine (compound 25), and two low-

abundant anthocyanins: pg 3-p-coumaroyldiglucoside-5-

malonoylglucoside (compound 275) and one of its isomers

(compound 277). At the same time, the total contribution of

the between-replicate variance was 12% across all measured

metabolites. This indicated high specificity of the specialized

metabolites composition in measured samples. It appeared that

the similarity between metabolic profiles across the B. rapa

genotypes of the same subspecies is much higher than the

similarity between the subspecies (Figure 3). This concerns

practically all measured metabolite classes, but most

FIGURE 3
Heatmap of the relative metabolite abundance across the accessions. The heatmap is scaled row-wise (Z-scores from the log values of the
metabolite intensity); thus, the colors represent the deviation from the average value obtained for a metabolite. The columns are ordered according
to the midpoint-rooted phylogenetic tree.
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remarkably anthocyanins, flavonols, and hydroxycinnamic acid

derivatives. For example, anthocyanins are found in high levels in

all Purple caitai accessions. Several flavonols are specifically

accumulated in all Chinese cabbage accessions but were found

at low levels in pak choi, caixin, savoy, turnip, and mizuna

accessions. Yellow sarson and rapid cycling accessions on the

other hand accumulated a group of lignans and several specific

hydroxycinnamic acid derivatives.

Knowing the phylogenetic relationship and quantitative

phenotype traits, across a population, it is possible to quantify

how much the value of a certain trait is related to the phylogeny.

In the case of the analyzed B. rapa subspecies and their

accessions, the evolutionary process is represented by

agronomical trait selection and the traits of interest are levels

of measured biochemical compounds. We explored this

phenomenon in a systematic way enumerating the trait-

phylogeny relationship.

Phylogenetic signal, a quantitative measure of the trait-

phylogeny relationship (Hillis and Huelsenbeck, 1992), has

been estimated for the metabolic profiles using the

phylogenetic neighbor-joining tree calculated from all

annotated polymorphisms. Specifically, we applied a well-

established method of Blomberg et al. (2003), using a

Brownian motion model to simulate the evolution of the traits

along the branches of the phylogenetic tree. The distribution of

the metabolic traits, for example, relative accumulation of each

FIGURE 4
(A) Comparison of the PIC values expected from the random Brownian motion model (black) and PIC observed for the measured metabolites.
Metabolites exhibiting significantly lower PIC (p-value ≤ 0.01) are labeled. (B) Phenogramof the disinapoyl feruloyl gentiobiose isomer 5—an example
of a metabolite exhibiting high and significant phylogenetic signal. (C) Phenogram of the km 3-O-hydroxyferuloylsophorotrioside-7-O-
sinapoyldiglucoside—another example of a metabolite exhibiting high and significant phylogenetic signal.

Frontiers in Molecular Biosciences frontiersin.org12

Zheng et al. 10.3389/fmolb.2022.953189

181

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.953189


metabolite, compared with the simulated model provides an

informative statistical output in terms of comparable K

statistic values. The method is adequate for rough

phylogenetic relatedness estimation using the SNP-based

neighbor-joining tree, as it was shown to be robust against

errors likely emerging in branch length estimation

(Münkemüller et al., 2012). For a test of significance

estimation, both the theoretical and empirical p-values have

been computed. Due to the sensitivity of the K statistics to the

differences in the trait values distribution, here we used only

empirical p-values derived from the 999-fold permutation test

(results attached in Supplementary Table S3).

A comparison between observed and randomized data is

shown in Figure 4A. PIC variance value (standardized

phylogenetic independent contrast scaled by the branch

length) is a measure reflecting how the independence of the

trait values decreases with the decreasing phylogenetic

distance. The PIC for randomized data without scaling is

affected by the total trait variance and thus individual tests

were performed for each metabolite. In Figure 4A, results for

individual metabolites were sorted according to the average

PIC obtained for 999 random permutations. In general,

observed PIC values are shifted towards lower values with

respect to the mean value obtained in 1,000 random

permutations (red marks are mostly below the black line);

however, only some of them deviate significantly. In

Figure 4A, 18 metabolites with an empirical p-value ≤
0.01 have been highlighted.

Among the 346 measured metabolites, 18 metabolites

exhibited a significant phylogenetic signal with a p-value ≤
0.01 and 47 with a p-value ≤ 0.05. To visualize the connection

between metabolite level and phylogeny, we show phylograms of

two highly significant metabolites: disinapoyl feruloyl

gentiobiose isomer 5 (compound 160) and kaempferol 3-O-

hydroxyferuloylsophorotrioside-7-O-sinapoyldiglucoside

(compound 239) (Figures 4B, C). In a phylogram, branches of a

phylogenetic tree are organized according to their phenotype

value (y-axis) and standardized time of the modeled evolutionary

process (x-axis). We observed that the phylogenetic branches of

Chinese cabbage are shifted towards higher levels of both

metabolites, whereas, for example, pak choi and yellow sarson

are much lower. There are also differences between both

metabolites, whereas for compound 160, pak choi accessions

exhibited a wide range of metabolite accumulation, overlapping

with the Chinese cabbage; in the case of compound 239, pak choi

accumulated much lower levels than the Chinese cabbage. The

47 compounds that have been selected as exhibiting significant

phylogenetic signals with an empirical p-value ≤ 0.05 are

enriched in hydroxycinnamic acid derivatives and indolics

(Figure 5; Fisher’s exact test p-values ≤ 0.01). Most of the

FIGURE 5
Heatmap of compounds exhibiting significant phylogenetic signal (p-value ≤ 0.05). The side color sidebar represents the classification of
measured compounds to 10 biochemical classes. The row-wise clustering tree is based on the Euclidean distance between Z-transformed
metabolite levels, and the average linkage method for cluster agglomeration. The column tree is a midpoint-rooted phylogenetic tree.
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significant metabolites are described by the differential

accumulation in four major phylogenetic branches: 1) the

Chinese cabbage, 2) the yellow sarson and rapid cycling,

3) the mizuna-komatsuna-turnip-caitai branch, and 4) the

rest of the genotypes. This separation highlights the major

metabolic effects of the selection pressure, leading to the

development of modern B. rapa subspecies and their

individual accessions. It is also an indication that the

stepwise changes in specialized metabolism during B.

rapa selective breeding processes are observable and can

be reconstructed from metabolomics data. Finally, it is

important to note that while the estimated phylogeny

stays in concordance with the population structure

(Supplementary Figure S6), it is only a rough

approximation of the evolutionary process leading to the

emergence of the analyzed genotypes. At this point, analysis

of the evolution of particular metabolic traits and

identification of evolutionary events and loci associated

with the accumulation of specific metabolites requires the

inclusion of more genotypes and the association mapping

with higher statistical power.

4 Conclusion

This study presents comprehensive metabolite profiling of B.

rapa leaves from 102 different genotypes. By this approach, a

total of 346 metabolites were identified. Among them,

36 metabolites were identified in high confidence, and

184 metabolites were reported in B. rapa leaves for the first

time. HCA and phylogenetic analysis were applied to reveal

metabolite diversity and accumulation patterns as well as to

identify species-specific metabolites. This work expanded the

current information on B. rapa metabolites. It provides valuable

information for developing new B. rapa accessions with high

levels of selected metabolites possessing health-promoting

activity or desired physiological function. The analysis also

exemplified how selective pressure in agriculture might utilize

the native biosynthetic capacity of the species to achieve highly

divergent metabolic phenotypes.
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Background: Assessing detailed metabolism in exercising persons minute-to-

minute has not been possible. We developed a “drop-of-blood” platform to

fulfill that need. Our study aimed not only to demonstrate the utility of our

methodology, but also to give insights into unknown mechanisms and new

directions.

Methods: We developed a platform, based on gas chromatography and mass

spectrometry, to assess metabolism from a blood-drop. We first observed a

single volunteer who ran 13 km in 61 min. We particularly monitored relative

perceived exertion (RPE). We observed that 2,3-bisphosphoglycerate peaked at

RPE in this subject. We next expanded these findings to women and men

volunteers who performed an RPE-based exercise protocol to RPE at Fi O 2

20.9% or Fi O 2 14.5% in random order.

Results: At 6 km, our subject reached his maximum relative perceived exertion

(RPE); however, he continued running, felt better, and finished his run. Lactate

levels had stably increased by 2 km, ketoacids increased gradually until the run’s

end, while the hypoxia marker, 2,3 bisphosphoglycerate, peaked at maximum

relative perceived exertion. In our normal volunteers, the changes in lactate,

pyruvate, ß hydroxybutyrate and a hydroxybutyrate were not identical, but

similar to our model proband runner.

Conclusion: Glucose availability was not the limiting factor, as glucose

availability increased towards exercise end in highly exerted subjects.

Instead, the tricarboxylic acid→oxphos pathway, lactate clearance, and thus

and the oxidative capacity appeared to be the defining elements in confronting

maximal exertion. These ideas must be tested further in more definitive studies.

Our preliminary work suggests that our single-drop methodology could be of

great utility in studying exercise physiology.
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1 Introduction

Physical exercise is healthy. (Castillo-Garzón et al., 2006;

Warburton et al., 2006) The benefits are the same whether the

exercise is recreational or occupational. (Lear et al., 2017) There

are numerous assessment signs, including maximal oxygen

consumption, muscle strength, muscular endurance, responses

in heart rate, and others. (Nindl et al., 2015) Exercisers

experience regular cycles of physiological stress accompanied

by transient inflammation, oxidative stress, and immune

perturbations. (Herrmann et al., 2015; Loprinzi, 2015; Palacios

et al., 2015) The relevance of such findings to normal healthy

individuals is not always clear. Furthermore, combining these

diverse variables into an understandable paradigm is difficult.

Metabolomics is the scientific study of chemical processes

involving metabolites, including an assessment of the unique

chemical fingerprints that specific cellular processes leave behind,

following a metabolic event. (Bassini & Cameron, 2014; Gong

et al., 2017) The metabolome represents the collection of all

metabolites in a cell, tissue, organ or organism, which are the end

products of cellular processes. Gas chromatography–mass

spectrometry (GC–MS) based metabolomics, as well as other

technologies, now enable us to vastly increase our panoramic

inspection of these processes. (Gong et al., 2017)

The field of exercise metabolomics is at its beginning. Klein

and others reviewed a number metabolomics studies of bio-fluids

and describe analytical platforms (Klein et al., 2021). The most

comprehensive analysis of molecular changes post exercise was

published recently by Contrepois and others (Contrepois et al.,

2020). In a number of individuals metabolites, proteins and

mRNA expression was studied post-exercise and all measured

parameters were correlated to insulin resistance or sensitivity.

Studies so far usually describe metabolic changes post exercise in

plasma or serum.

Concurrently, we were interested in developing an analytical

strategy that allows a simplified (dropwise) blood sampling that

can be generally applied clinically or even to monitor subjects at

or in the field. We have used a liquid–liquid sampling method for

whole blood sampling that stabilizes the metabolome instantly

and is optimal to monitor a broad spectrum of intermediates

from central metabolism that represents the energy providing

machinery. Our methods brings metabolomics into the

practicable clinical arena.

Applicability commonly results after initial clinical

observations. We performed initial observations in a model

proband runner (MPR) who recorded his relative perceived

(admittedly subjective) exertion (RPE). (Borg, 1982) Non-

etheless, we had obtained an “n-of-one” dataset. We therefore

aimed to investigate the practical utility of metabolomics. We

extracted nine key metabolic features that seem to describe the

feeling states observed in RPE on a personalized level. Many of

these nine metabolic features are directly involved with

oxygenation status. To test our observation that the subjective

state, RPE, is reflected in the metabolome in a wider population,

we designed a follow-up study in normal, recreationally active,

women and men across a broad fitness and age spectrum, to

inspect metabolomics outcomes.

We chose alterations of oxygen availability as additional

stressor corresponding to normobaric-altitude sea level versus

simulated 3,000 m (Fi O 2 14.5%) in a randomized setting, which

is also employed in terms of fitness strategies. (Hobbins et al.,

2017) We found that RPE is reflected in the metabolome in a

wider population and underscored the ratios for liver metabolism

previously established in 1967 by KREBS and associates. (Krebs,

1967; Williamson et al., 1967)

2 Results

Our MPR (Figure 1 and Table S1) ran six laps (about 13 km

in total) over an irregular terrain. He reported his perceptions of

energy availability on a qualitative exertion scale (relative

perceived exertion) RPE scale (Figures 1A–E). (Borg, 1982)

Our subject was confronted with exhaustion on lap 3. He

recovered, and remained approximately at the same

performance level till the end of the run. In the drops of

blood, we annotated 276 separate peaks of which 93 were

identified using a comparison mix of commercial standards

analyzed in the same batch (Table S2) (see methods and

Opialla et al., 2020) giving a general central carbon

metabolism coverage (Supplementary Figure S1). Lactate levels

increased early in our subject, glucose remained flat, acetoacetate

and ß-hydroxybutyrate increased progressively, while 2,3-

biphosphoglycerate (2,3-BPG) peaked in lap 3 (Figures 1B–E).

Succinate and other TCA intermediates also rose early, except for

citrate, which only increased concurrently with 2,3-BPG levels.

When we performed unsupervised hierarchical clustering, we

were surprised that the samples clustered according to feeling

state (“I am done”/“I feel ok”): most related to baseline and

recovery; namely relative perceived exertion (RPE, Figure 1F),

and not as one might expect according to exercise status.

We explored the co-behavior of metabolic changes and

subjective feeling states of our MPR. Using a factor analysis

we identified nine key metabolites that possessed the highest

eigen-values. Based on these nine key metabolites, we were able

to reproduce the clustering (Figure 1G, Supplementary Table S1)

of our subject’s “feeling” states. We assigned physiological states

to the metabolic features and set the dynamic changes in
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relationship to each other and show them in a circos plot

(Krzywinski et al., 2009) (Figure 1H). Beginning at rest, the

subject entered an initial anaerobic phase, which was followed by

an episode likely caused by insufficient oxygen availability. The

resolution was accompanied by a transient increase in indicators

of feeling more robust and immediately followed the successful

transition to oxidative KREBS’ tricarboxylic acid cycle (TCA)-

driven energy supply, that remained elevated until after

exercise completion (Figure 1H). We observed that creatine

and triethanolamine were elevated when perceived maximum

effort was “overcome”. We interpreted the 2,3-

bisphosphoglycerate, ribose-5-phosphate, and ribulose-5-

phosphate levels as indicating changes in oxygen homeostasis,

and pyruvate, lactate, citrate ratios, as a switch between anaerobic

and aerobic metabolism. Since 2,3-bisphosphglycerate is

involved in shifting the oxygen-hemoglobin-saturation curve

rightward (Benesch & Benesch, 1967; Chiba & Sasaki, 1978),

we connected the results into our subsequent research plan.

To study metabolism at exercise further (Figure 2) and the

influence of oxygen availability, we next recruited 26 normal

women and men volunteers across a broad age and fitness-level

spectrum (Supplementary Table S3), who were randomized

(cross-over) to perform at oxygen levels (Fi O 2) at sea level

or at a simulated 3,000 m altitude and at a running speed

corresponding to 65% of maximum power output according

to JONES et al. (Jones et al., 1985) (Figure 2A). The subjects all

lived in the area of Berlin, Germany (≈50 m NN), reported

various degrees of compliance to accepted healthy life styles

FIGURE 1
Single drop-blood analysis from an exerciser. (A–E) The rating of perceived exercise (RPE) variable is displayed as a subjective scale. Lactate (as
opposed to glucose) increases similar to TCA-intermediates (Supplemental Figure S14), except for citrate. (D) Citrate only increased when oxygen
release was promoted as indicated by rise of 2,3-BPG and PPP-intermediates Ribulose-5P and Ribose-5P above LOQ. (E) Glycerol showed two
phases (corroborated by fatty acids, Supplementary Figure S15) of release and reaches baseline value, while (B) ketone bodies accumulate. (F)
Hierarchical clustering of the technical replicates throughout the run onmetabolic features is shown. Clustering, using all polarmetabolites, grouped
the sampling time-points in accordancewith the volunteer’s self-perception. Lap 3 (L3), in which exhaustion occurred, was least related to beginning
recovery (PR), and the most at maximum RPE (L4, Lap 4), while these three timely very diverse laps were closest related. (G) Visualization of a nine-
metabolite principle-component analysis found by factor analysis representing the explanatory components of all data (relative activity of anaerobic
and TCA cycle activity (pyruvate/lactate vs. pyruvate/citrate), oxygen release, and oxidative stress, as well asmarkers of “feeling energetic” are shown.
These metabolites reproduced the principal relationships of metabolic states and transitions as observed within all data. (H) The visualization of the
progression through the exercise regime is summarized in a circos plot (Krzywinski et al., 2009) using the nine explanatory metabolic features and
relationships depicted in NIGHTINGALE plots below. The circos plot shows progression of each of the four factors determined in (G), both for each factor
(lower “root”) and through each lap (start at left “L0”). The NIGHTINGALE plots below show the progression of the nine key metabolites (see main text).
Beginning at rest, the subject entered an initial anaerobic phase, which was followed by an energy crisis caused by insufficient oxygen availability.
Resolution in Lap 4 was accompanied by a transient increase in indicators of feeling “energetic” (i.e. low RPE) and immediately followed the
successful transition to oxidative TCA cycle driven energy supply that remained elevated until after exercise completion.
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and a broad gamut of physical fitness activities ranging from very

little training to dedicated daily fitness schedules. The “normal”

running speed often was not appropriately challenging to some

subjects. As we were interested in a state of high RPE

(“exhaustion”), we encouraged repetition of the experiment on

another day with increased running speed at 30% or even 60%

faster (Supplementary Table S4).

The individual and mean exertional-related effects

(Supplementary Table S5) show a substantial load on most

subjects and demonstrated, that a 30% increase in effort and/

or hypoxia were successful challenges (Figures 2D,E). Principal

component analysis (PCA) shows the clinical variables in relation

to exhaustion, exertion, and oxygen partial pressure (Figure 2B).

A Spearman ranking of the variables is given (Figure S2), and a

comparison between sea level and 3,000 m (Figure 2C). The

exhaustion factor was certainly influenced by altitude as was the

oxygen factor. The change in individual variables with exercise at

two performance levels and two altitudes are most visible in the

arterial blood gases, pCO2, anion gap (AG), and lactate values

(Supplementary Table S5, Supplementary Figure S18). The

fraction of persons completing the run decreased at the

different exercise levels (Figure 2D), indicating that our

normal recruits also commonly experienced their limits

(Figure 2E). Obviously, there was a relationship between

rating of perceived exertion (RPE), running speed, and

oxygenation. Since the formula according to JONES et al. (Jones

et al., 1985) does not accommodate for the subjects’ training

status, we looked deeper into RPE and found that differences in

Fi O 2 only made a substantial difference at 30% running speed

and a higher level (Figure 2E).

FIGURE 2
Results from recreational (normal) volunteers. Sampling scheme for larger panel study of recreational athletes. (A) Study design outline. (B) PCA
of clinical parameters revealed three different items, namely exhaustion, exertion, and oxygen. (C)When plottingmean factor loadings of PCA of the
three principle components, the data indicate that the oxygen content factor was influenced by Fi O 2 albeit constant throughout the experiment.
Exertion was high at last exercise time-point and reaches baseline values during recovery, while the exhaustion increases under more hypoxic
conditions and remains elevated during recovery, error bars: SEM, n = 39 at each oxygenation level. (D) The fraction of subjects being able to
complete the exercise bouts reflects that FiO 2 had a stronger influence on that with increasing power output (running speed), n given in the figure
refers to each oxygenation level. (E) Individual RPE values were more different between power output levels; lower Fi O 2 led to more marked
exertion according to rating of perceived exertion (RPE), error bars: SEM, n-numbers as in (D). (F)Histogram of RPE-distribution at last exercise time-
point revealed a trimodal distribution, which was not explained by power output or FiO 2 alone (see Supplementary Figure S4). (G) PCA ofmetabolite
level-fold changes final exercise time-point vs. baseline from experiments leading to distinct levels of RPE, revealed a separation of less exerted
individuals from highly exerted individuals; density plot shows distribution along vector between confidence ellipses’ centers (Supplementary Figure
S5). Glucose (H) and lactate (I) were major contributors to the separation. A + indicates that exercise was not completed, • shows exercise
completed, color reflects RPE at last exercise time-point. (G–I): low RPE: n = 29, high RPE: n = 20.
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FIGURE 3
Time-profiles throughout exercise to recovery comparing single volunteer to recreational athletes. (A–F) Carbohydrate-based metabolite
values, (G–I) ketone bodies, and (J–L) metabolite ratios in a single volunteer (left, error bars demonstrate deviations of duplicate measurments to
anticipate the measurement accuracy) and recreational athletes (right) are shown (mean ± SEM). Difference between two technical replicate
measurements are grouped according to FiO 2 (solid: sea level, dotted: 3,000 m) and RPE at last exercise time-point. Dashed lines encompass
comparable time intervals in different setups. In panels on the left only one recovery time-point wasmeasured, while in the RPE right panels exertion
was not overcome; however, exercise was discontinued after 30 min. The samples between the vertical lines in the shaded, left plots depict a state,
after overcoming subjective exhaustion that could not be compared to samples from the larger cohort study (p-values from two sided WILCOXON-
rank-sum (BENJAMINI-HOCHBERG FDR-corrected), *p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.0001 of all values within one RPE-group, for clarity only
significance vs. lowest RPE group is shown, but all comparisons were accounted for p-value correction, §p < 0.05; §§p < 0.01 between hypoxia and
normoxia of lowest RPE group. Explanations see main text. Low RPE: n = 29, high RPE: n = 20).
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We found a trimodal distribution in RPE at final exercise

time-point based on 77 runs (Figure 2F). These results were not

based on performance level or Fi O 2 alone (Supplementary

Figures S3,4). Since RPE is somewhat subjective and because we

wanted to investigate reflection of feeling state (RPE) in the blood

metabolome, we concentrated on the runs finishing at low RPE

and high RPE in the further analysis (55 runs total). After

removing strong outliers according to HOTELLING’s-T2-test we

were left with 46 samples. Grouping of the data revealed a

separation of subjects with highest RPE-values from those

with lowest RPE-values (Figure 2G, Supplementary Figure S5),

indicated by very little overlap of 95% confidence ellipses.

Glucose and lactate values showed corresponding increases

(Figures 2H,I). These unsupervised analyses were performed

on fold changes between baseline and final exercise time-point

in the metabolomics data set (122 identified peak species across

all samples). We extracted the contributions of individual

metabolites along the vector between the 95% confidence

ellipse’s centers, similar to a dogleg plot of principal

components. We could not underscore a role of 2,3-

bisphosphoglycerate, but interpreted these data as indicating

that glucose availability was not among rate-limiting factors.

We next more closely examined the main contributing

metabolites and plotted their time-profiles of intensity-fold

changes relative to exercise start from start to recovery

(Figure 3). The data of our single runner and recreational

volunteers are clearly delineated. We were interested in

dissecting the mechanism involved in self-perceived maximal

exercise. Since we observed a separation in the PCA according to

RPE (Figure 2G, Supplementary Figure S5) and to a lesser extent

to Fi O 2 (Figure S7B), we separated the time-profiles (Figure 3)

according to RPE-group (red/blue) and Fi O 2 (solid/dashed

lines). Significance values are indicated by asterisks (*) and

significance represent FDR-adjusted (BENJAMINI–HOCHBERG)

p-values from WILCOXON-tests between RPE-groups, § denotes

false-discovery rate (FDR)-adjusted p-values from WILCOXON-

tests between Fi O 2 levels within the respective RPE-groups.

The separation observed in PCA (Supplementary Figures S5,6)

was mostly caused by glucose (Figure 3B), lactate (Figure 3C),

and pyruvate (Figure 3D), while citrate values (Figure 3E)

appeared less so. The ketone bodies, acetoacetate (Figure 3G)

and a-hydroxybutyrate (Figure 3I), other sugars and polyols such

as mannose, fructose, threonate, sorbitol, as well as alanine

(Supplementary Figure S19), tri-ethanolamine-phosphate,

TCA-intermediates, such as succinate (Figure 3F and

Supplementary Figure S6) and glucose-6-phosphate

(Supplementary Figure S20) also appeared discriminatory.

Some separation according to Fi O 2 was observed

(Supplementary Figure S7B); however, exercise bouts under

hypoxia, in which where RPE was low, group well with

normoxia samples where RPE in general was less challenged.

We interpret this result as indicating that exercise under hypoxia

tends to lead to higher RPE. Other factors such as sex

(Supplementary Figure S7C) or training state (Supplementary

Figure S7D) showed no separation. However, when examining

the main separator in our recreational volunteers, namely

glucose, the data showed a strong separation between Fi O 2

levels in individuals with high RPE.

Some individuals with higher RPE were not clearly separated

from the less exhausted group. We filtered out those in highest

RPE and already separated, and performed PCA again while

keeping all RPE groups (Supplementary Figures S8–S10). Those

individuals in the highest RPE, but not separated entirely from

the lower exertion groups, were now separated from the subjects

in the lower exertion groups along PC1 (Supplementary Figure

S11). These remaining samples in the high RPE-group exhibited

a similar but less pronounced phenotype for glucose and lactate

(Supplementary Figure S11).

In accordance with our data with increasing exercise

intensity, the amount of fat oxidized remained constant, while

the additional energy is derived from glycogen and glucose. (van

Loon et al., 2001) The glycerol values in our studies serve as a

marker for fatty acid mobilization and were similar across all

groups identified by RPE at the last exercise time-point

(Figure 3A and Supplementary Figure S13). In hypoxia under

high RPE less glycerol was mobilized, indicating a lower ability to

oxidize fatty acids. In our athlete (MPR) (Figures 3A–C), an

initial increase in glycerol and slight decrease in glucose was

observed; however, when he reached his maximum RPE (Lap 3),

these values had returned to baseline. In a second phase, while the

TCA cycle was running (Supplementary Figure S14), glycerol

again increased together with an increase in fatty acids

(Supplementary Figure S15) and fatty acid-derived ketone

bodies acetoacetate (Figure 3G), as well as ß-hydroxybutyrate

(Figure 3H). His lactate level quadrupled but was actually

decreasing when he reached his maximum RPE. In our

normal volunteers (Figures 3A–C), glucose levels increased,

compared to those values in the less-exhausted subjects. We

want to point out, that the increase in glucose was much more

prominent in our exercisers under highest RPE and more

pronounced at 3,000 m than at sea level. Under hypoxia, the

values in the exercisers remained elevated, whereas under

normoxia, the concentrations decreased coinciding with the

accumulation/formation of ß-hydroxybutyrate, most

pronounced during recovery. Lactate and pyruvate increased

with RPE in our exercising subjects (Figures 3C,D right),

while the difference between oxygen levels decreased with

increasing RPE. (Supplementary Figure S13) In our MPR,

lactate and pyruvate concentrations showed a profile quite

similar to the highly exhausted subjects. We therefore focused

our attention on TCA cycle that is downstream to glycolysis and

generates more ATP.

For citrate (Figure 3E), we observed similar profiles in both

studies, albeit with high variability between the different subjects.

Succinate and other TCA cycle intermediates (Figure 3F,

Supplementary Figure S16) also increased with RPE but less at
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3,000 m than at sea level. In a few selected individuals, we noted a

marked increase of citrate, similar as during RPE in our MPR

(Lap 3). The data suggests that not only single metabolites

account for the changes in feeling state, but instead their

interrelationships and ratios to one another. These

observations would be in accord with those of KREBS’ findings

of metabolite ratios in liver (see below), that show oxygenation

status according to lactate, pyruvate and ketone-bodies. (Krebs,

1967)

We were particularly interested in ketone bodies.

Acetoacetate (Figure 3G) concentrations increased both under

normoxia and hypoxia, more commonly in the subjects arriving

at maximal RPE. The ß-hydroxybutyrate values increased as well

(Figure 3H), but not for the highest RPE group at 3,000 m where

no increase was observed. In our MPR, acetoacetate increased

already at the first time-point but decreased thereafter

(Figure 3G), while in the larger subject panel at higher

exhaustion acetoacetate increased and remained elevated

(Figure 3G). The ß-hydroxybutyrate profile was similar in the

MPR as in exercisers who reached a high exhaustion state at sea

level but not in those under maximal RPE at 3,000 m. After the

exercise session, ketone bodies accumulated as in the lower

exhaustion-level groups, but to a much greater extent (16-

fold) in the single MPR. In our volunteers, these values versus

doubled in lower RPE group (Figures 3G–H).

The a-hydroxybutyrate concentration (Figure 3I) is a marker

for early-onset insulin resistance. (Gall et al., 2010) The values

increased according to RPE levels during exercise. The higher

levels coincided with runs leading to elevated blood glucose levels

and were already above baseline levels at the first exercise time-

point in the respective runs. The general profile shape was similar

in all RPE groups, while glucose and a-hydroxybutyrate exhibit a

correlation (Supplementary Figure S17) consistent with the

findings of GALL et al. (Gall et al., 2010) The data from our

MPR underscore our technical approach. Furthermore, the data

suggest that oxygen availability could be the energy-limiting

factor. The fact that the glucose values increased, suggested

that lack of glucose was not responsible for arriving at RPE.

We therefore chose to explore energy availability. For continuous

exercise, most energy is derived from oxidative-phosphorylation,

thus oxygen availability is a likely highly influential factor.

We next studied the ratios of lactate/pyruvate and ß-

hydroxybutyrate/acetoacetate which reflect the NAD+/NADH

ratio (redox-potential) in cytosol and mitochondria

respectively according to KREBS (Krebs, 1967) (Figures 3J,K).

Our observations are in accordance with these ratios that were

initially established in liver: in high RPE lower Fi O 2 led to a

more anaerobic and less aerobic metabolism, according to KREBS’

ratios. This state-of-affairs was too low to satisfy energy needs

from oxidative metabolism. The TCA cycle was apparently not

running as fast as necessary (in relation to glycolysis) and the

NAD+ required for glycolysis was regenerated by lactate

formation. Therefore, we observed a decrease in

pH (Supplementary Figure S18). This conclusion was also

underscored by the ratio of lactate/citrate. Relative lactate

concentrations increased similarly in our MPR, who was able

to overcome his discomfort, and in our subjects, who exerted

themselves to a maximal degree to about a 4-fold increase

(Figures 3C,D). The ratio of lactate/citrate increased similarly

in our MPR and in this highly exerted subject group. However, in

our MPR, the ratio decreased during exercise when he continued,

while in the high RPE group the ratio remained. These findings

suggest a higher citrate synthesis rate in our MPR after his

exhaustive episode, while the recreational subjects running

towards high RPE show many symptoms of metabolic

acidosis as one might expect in type-1 diabetes (low pCO2.

Low bicarbonate, low pH, and high anion gap, but also high

levels of lactate, acetoacetate, and glucose). During intense

exercise and low oxygen availability, we observed higher

glucose levels. High lactate-pyruvate ratios (Figure 3J) and

increased glucose at the same time suggest that metabolism

was not able to utilize the available glucose through glycolysis

and that lactate clearance was fully engaged. Integrating these

results, we suggest that mitochondrial metabolism was

insufficient to process the resulting pyruvate. Alanine levels

that were a separator between the RPE groups

(Supplementary Figure S19), coincide with increased pyruvate

levels and indicate a higher reliance on the CORI and CAHILL cycle.

The a-hydroxybutyrate (αOHB) and glucose levels were

directly correlated (Figures 3B,I and Supplementary Figure

S17). The αOHB concentration has been implicated as a

marker sensitive to changes in glucose levels in type

2 diabetes-prone patients. (Gall et al., 2010) We observed an

increase early during exercise in those subjects who later

developed the highest glucose levels during exercise. Overall,

the formation of lactate was similar within RPE groups; however,

lactate clearance was lower at the simulated 3,000 m altitude.

When similar exertional levels were achieved under different FiO

2 levels, we observed that glucose accumulated while the buffer

systems in the blood were maximally challenged (Supplementary

Figure S18). This observation suggests that lactate cannot be

further metabolized while glucose is being funneled into the

blood stream under high-energy demand conditions. Overall,

empty glucose stores do not appear

To explain exhaustion, while oxygen availability and

mitochondrial capacity would appear to be primarily responsible.

3 Discussion

We conclude that our translational experiment had utility.

From single blood drops during exercising individuals, we can

elucidate what is going on, better than singlularly measuring the

current parameters. We believe that the most important finding

in this study is that a single drop of capillary blood is useful in

evaluating metabolism during exercise in contrast to metabolic
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studies done so far. We initially studied a serious hobby MPR,

who led the way and then women and men volunteers who

subjected themselves to an exercise protocol designed to address

their perceived performance levels. The more strenuous exercise

in terms of oxidative capacity the more glucose is used. (van Loon

et al., 2001)We observed that glucose availability appeared not to

be the limiting factor, but rather implicate the tricarboxylic

acid→oxidative phosphorylation pathway. We were able to

reduce the metabolomics dataset from a single volunteer to

nine key metabolites and assessed these variables as the

defining elements for the individual RPE. (Borg, 1982) The

findings suggest that energy state in our setting is more

dependent on oxygen than on fuel (glucose) availability. No

elite athletes were represented here; however, more than 40% of

marathon runners experience severe and performance-limiting

depletion of physiologic reserves. The phenomenon has been

attributed to carbohydrate depletion and thousands of runners

drop out before reaching the finish lines. (Rapoport, 2010) This

interpretation has been questioned and exercise-induced muscle

damage has been suggested as being responsible. (Venhorst et al.,

2018) Muscle damage can best be studied invasively; however,

since exhaustion subjects recover to go on, we reasoned

metabolic causes were responsible.

We did not study trained marathon or similar runners.

However, we believe our findings have relevance to the

personally perceived RPE value. Each and every individual

must determine the exhaustion level. Although we picked the

extreme RPE groups found in our dataset for mechanistic

interpretation, the individuals with median RPE-levels show

profiles and PCA-grouping in-between the two more extreme

groups (Supplementary Figures S8–S10 and S13). Comparing

samples obtained under hypoxic and normoxic conditions alone

did not lead to interpretable results. Only when we grouped the

samples according to RPE at final exercise time point did we find

meaningful insights.

We observed known metabolic changes throughout exercise,

such as an initial reliance on glucose as the main fuel source, the

subsequent activity of the CORI cycle and CAHILL cycle, as well as

fatty-acid mobilization as indicated by increases in glycerol and

free fatty acids (Figure 3A, Supplementary Figure S13). This

observation makes us confident that our data reflect true

metabolite behavior. The potentially novel mechanism

responsible for the limit was identified by combining known

facts about single metabolites and pathways, such as 2,3-BPG

that changes the binding affinity of hemoglobin to blood oxygen.

Thus, by not only summarily considering the orchestrated

interplay of different tissues reflected in the blood

metabolome, but also by considering the fact that new

insights might arise from truly novel relationships, we accrued

new insights. We believe that these indicators could explain why

the MPR “felt badly” during exercise - most likely due to an

insufficient ATP supply stemming from oxygen shortage.

Succinate, which influences the carbon routing towards TCA-

cycle versus anaerobic metabolism increased about 2-fold in our

MPR, while it rose much higher in highly exhausted subjects.

This state-of-affairs might indicate that in our MPR who was

accustomed to exhaustion, the oxidative capacity, namely the

TCA-intermediates’ basal level, was so much higher. The

“mitochondrial ratio” according to KREBS shows an initial dip

in both the MPR (here much stronger) and the subjects that are

running towards exhaustion. However, in theMPRwe observed a

recovery of this ratio and, probably due to his higher oxidative

capacity, theMPRwas able to achieve an even higher ratio than at

beginning of exercise and towards the end an even higher ratio

than those subjects who were less exhausted by the exercise.

We succeeded in distilling the entire dataset of our single

MPR into nine key metabolites and their interrelationships.

Together, these nine metabolites accounted for four metabolic

states and their three transitions. This insight was possible by the

quantification of metabolites of different classes and pathways

that are not measured in any clinical panel, let alone a single

measurement. Erythrocyte-specific metabolites were especially

crucial, as for example 2,3-BPG reflects oxygenation status. The

diagnostic potential of erythrocytes is almost entirely ignored by

the near exclusive investigation of serum and plasma. Although

we do not have sufficient time resolution to determine in which

order the switches in metabolism occur, we do have the necessary

time resolution level to describe these for the first time. The

observations made in our cohort under high RPE exhibited

decreased pH, lowered pCO2 and reduced bicarbonate, while

the anion gap increased (Supplementary Figure S18). The

subjects’ lactate, acetoacetate, and glucose values were elevated.

TheLUEBERING-RAPOPORT shunt is a metabolic pathway in

mature erythrocytes involving the formation of 2,3-

bisphosphoglycerate (2,3-BPG), which regulates oxygen release

from hemoglobin and delivery to tissues. 2,3-BPG, the reaction

product of the Luebering-Rapoport pathway. Through the

Luebering–Rapoport pathway, bisphosphoglycerate mutase

catalyzes the transfer of a phosphoryl group from C1 to C2 of

1,3-BPG, giving 2,3-BPG. 2,3-bisphosphoglycerate, the most

concentrated organophosphate in the erythrocyte, forms 3-PG

by the action of bisphosphoglycerate phosphatase. The

concentration of 2,3-BPG varies proportionately with the pH,

since it is inhibitory to catalytic action of

bisphosphoglyceromutase. We have strong reason to believe

that this pathway played a role in our results and should be a

topic of intense future investigation.

We used a metabolomics methodology that allows the

quantitative determination of a large number of central

metabolites and have optimized the method to allow such

analysis from a single drop of full blood. Metabolomics

samples were taken in combination with the recording of

clinical parameters to characterize the impact of exercise on

the individuals. Because full blood also includes the hematocrit,

the values encompass all cellular components of the blood. As

there are some substantial differences in sample handling and

Frontiers in Molecular Biosciences frontiersin.org08

Opialla et al. 10.3389/fmolb.2022.1042231

193

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1042231


quenching of metabolism, we have not compared full blood

against serum or plasma. Our approach quenches metabolism

immediately as all cells are lysed, enzymes denatured and the

extracts cooled immediately to ca. –80°C. We employed a

sampling strategy that is potentially available including

outside of a clinical laboratory. From our data, we conclude

that we are able to detect drastic metabolic changes and that there

are additional features that are exclusively measurable in whole

blood. While we could not obtain absolute amounts for all

metabolites, our findings rely on changes relative to baseline

and on ratios of these changes. Samples of every subject under

one exercise condition and at two oxygen availability level were

kept in sets throughout extraction and measurement, but

measurement order was randomized within the sets. Glucose

and lactate, two metabolites on which are conclusions are based,

were in good agreement between well-established clinical

analyzers and GC–MS based measurements (Supplementary

Figure S21). We determined intermediates of glycolysis and

pentose phosphate pathway that were reflecting the metabolic

switch when exhausted. These specific markers were only

measurable from full blood during and after crisis in our

MPR and were observed only in the highest intensity exercise

in our second experiment. Thus they were deemed not to be

general markers for RPE at the levels of analytical sensitivity we

could achieve. However, the interrelationships from all measured

metabolites point towards the influence of oxygen availability.

The less trained subjects might have shown similar markers of

oxygen release at their maximum.

There are clear limitations in our study. Our initial

observations were based on a single MPR, whose fitness level

was self-reported rather than measured directly. He gave a

subjective RPE report and his values were measured under

outdoor “field” conditions. Better would have been to test a

homogeneous group of serious athletes in a common protocol to

determine whether or not the results of our MPR could be

repeated. Circumstances and our desire for generality dictated

otherwise. We recruited a very heterogeneous group volunteers

whose fitness levels were also not documented. These persons ran

in a controlled setting at fixed speeds at two levels of oxygen

availability. They were not required to exercise to RPE. We

measured our variables in capillary blood. Our MPR was

studied in the summer and our volunteer cohort was

exercised at room temperatures. Under these conditions, our

samples are close to, but not identical to arterial samples. Finally,

we are aware that lactate kinetics, clearance, uptake, release, and

turnover cannot be completely deduced from whole blood

measurements. Thus, we are not able to analyze lactate as a

“fulcrum of metabolism”. (Brooks, 2020)

The factor most reflected in the metabolome was RPE which

in turn seems to be reflected in oxygen availability in the tissue.

We suggest that exhaustion concerns an insufficiency of the

tricarboxylic acid cycle and oxidative capacity. We did not begin

our analysis with the goal to find reflections of RPE in the

metabolome, but rather to understand the processes involved.

Nevertheless, simple unsupervised data reduction technique

(PCA and hierarchical clustering) reflected a connection;

namely, we can perceive our metabolic status. While we

refrain from postulating general biomarkers for RPE, the key

to bringing metabolomics into clinical medicine is to have each

person act as an own control. Longer-term observation will allow

for preventive medicine and we presented here a relatively simple

tool to achieve this end. Non-etheless, we now have a technology

available to address these questions.

4 Methods

4.1 Study design, sample collection

4.1.1 Observational study
After due procedures and written informed consent, a

preliminary study was performed by a member of our

laboratory. Our MPR was 26-year-old, 86 kg, 1.87 m man who

views himself as competent athlete and scientist. He arrived in

the laboratory at 08:00 after a 12 h overnight fast (but drank

water ad libitum) to provoke exhaustion state, which individuals

often try to ameliorate by “carbohydrate loading”. He then ran

cross-country at a rate estimated <4 min/km. Each lap consisted

of about 2.2 km. The few seconds necessary for sampling were

accompanied by a “self-perception” RPE. (Borg, 1982) The MPR

described strong exhaustion, similar to “hitting the wall”.

(Rapoport, 2010) Thereafter, recovery with euphoria termed

“runners’ high” has been reported. (Kozinc & Sarabon, 2017)

At baseline, after each of 6 laps and after 20 min recovery, we

obtained 10 µL of capillary full blood from our MPR. The

samples were immediately quenched in 1 ml cold MCW (5:2:

1 methanol-|chloroform|water), containing cinnamic acid as

internal standard. One round, where a breakdown of

performance was felt, the lap was cut short by 200 m in order

not to miss this crucial observation-point. Samples were shaken

and stored on dry ice. Samples were extracted as lined out below

on the same day. In the framework of the subsequent study

below, the Charité institutional review board allowed us to

continue these investigations further. As a follow-up study, we

conceived of a metabolomics study in normal volunteers.

4.1.2 Prospective trial
The ethical committee of the Charité approved the study and

written informed consent was obtained. The study was duly

registered: ClinicalTrials.gov Identifier: NCT03121885, https://

clinicaltrials.gov/ct2/show/NCT03121885 (first posted 20/04/

2017). Subjects were recruited by advertisement. Men and

non-pregnant women >18 years were recruited who were

healthy and ingesting no medications. We purposely did not

focus on fitness parameters or abilities. Athletes were not

excluded but were purposely not specifically recruited. Some
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of the subjects were very fit and we cannot exclude the possibility

that a few might have even been better than our MPR. Thirteen

men and twelve women aged 18–74 years participated in the

study. (ACSM et al., 2009) Please refer also to Supplementary

Table S4 for an overview over subjects and their individual

characterisation.

The subjects arrived in our Clinical Research Center after

12 h fasting (but drank water ad libitum) and underwent

history and physical examinations. Body composition

estimates were performed with BodPod (Life Measurement

Inc. Concord, CA, United States), Bioimpedance, and a 3D

Body Scanner (Human Solutions GmbH, Kaiserslautern,

Germany). Venous blood was obtained for baseline,

routine tests (Radiometer ABL800 Flex, Copenhagen,

Denmark) and a resting electrocardiogram was performed.

Blood pressure was measured oscillometrically and

anthropometric data were obtained. The subjects were

questioned as to exercise habits and rendered an

assessment of their fitness levels.

We determined the performance levels, (Jones et al., 1985), as

adapted to treadmill exercise according to normal standards as

estimated from ergometer testing indoor. We aimed for an

estimated eight metabolic equivalent of task (MET)

performance for 30 min. If this task was insufficient to

exhaust the subjects, the test was repeated with a 30%

increment and in some very fit individuals a 60% increment

was performed. To determine RPE, we relied on a 1-through-

10 modified BORG scale. (Borg, 1982) Subjects were randomized

to order of exercise at sea level (Fi O 2 20.9%) or to normobaric

hypoxia (altitude 3,000 m, Fi O 2 14.5%). They were unaware of

the regimens provided, as our chamber was used for all studies.

Respective to performance-ability, baseline, 10 min, 20 min, and

30 min samples (or when RPE was experienced) as well as 10 min

(recovery 1) and 20 min (recovery 2) after exercise of 20 µL

capillary full blood was taken from the ear-lobe and immediately

quenched in 1 ml cold MCW (5:2:1 methanol|chloroform|water)

containing cinnamic acid as internal standard, shaken, and

stored on dry ice Samples were stored at –80°C until further

extraction.

At blood drawing, subjects were asked to estimate their

performance stress on a scale of 1–10, similar to the one

established by BORG. (Borg, 1982) Samples were collected in

ice cold methanol | chloroform | water (5:2:1) containing

cinnamic acid, immediately quenching metabolic activity.

Capillary blood 10 µL from the earlobe was obtained at

baseline, at 30 min or at exhaustion, and 30 min after

exercise. In these samples, we measured blood gases for

pH, pO2, pCO2, HCO−
3 , Na+, K+, Cl−, Ca2+, and anion gap

(Radiometer). Glucose and lactate were measured separately

with routine chemical analysis. Blood pressure, heart rate,

and pulse oximetry were determined at baseline, 10 min,

20 min, 30 min or at exhaustion, and 20 min and 30 min of

recovery.

4.2 Metabolomics

4.2.1 Sample extraction
Samples were removed from the freezer in batches and kept

at 4°C throughout the extraction process. 500 µL water (in the

prospective trial also containing isotopically labeled internal

standards for normalization) were added to induce phase

separation. Samples were shaken (Eppendorf 1,000 rpm) for

20 min to ensure phase equilibration. After 10 min

centrifugation, polar (upper) and lipid phase (lower) were

obtained. Lipid extracts were dried under nitrogen stream and

stored at –80°C until measurement. Polar phase extracts were

dried in a rotational vacuum concentrator (Martin Christ,

Germany) without heating in <4 h. Samples were stored at

–80°C (observational study, –20°C) until derivatization.

4.2.2 Standardization
For substance identification across batches, we used mixtures

of 100 substances to compare RI and mass spectra. For

69 substances we measured 8-point calibration curves to

check linearity (Pietzke et al., 2014). Sample intensities within

one set of experiments were standardized by cinnamic acid added

to the extraction solvent (MCW). Furthermore, we added 2 stably

labeled isotopomers during extraction (see also Quantification/

Normalization). As such, we standardized by cinnamic acid and

used fully labeled lactate and glucose to assess our quantification

against the established clinical methods. (Supplementary

Figure S21)

4.2.3 Derivatization
For derivatization, extracts were thawed in a rotational

vacuum concentrator (Martin Christ, Germany) without

heating for 20 min 10 µL of 40 mg methoxyamine

hydrochloride/mL pyridine were added, samples were

incubated for 90 min at 30°C. Next 30 µL of MSTFA

containing 200 μg/ml n-alkanes (C10, C12, C15, C17, C19, C22,

C28, C32, C36) as retention index markers were added as

previously described (Pietzke et al., 2014). Derivatization was

carried out simultaneously for every sample in a single

measurement batch.

4.2.4 Randomization
Samples were randomized as follows: To ensure highest level

of comparability among one subject’s samples blocks from one

subject’s performances at a certain exercise intensity at different

Fi O 2 were formed giving blocks of ≤12 samples (2 Fi O 2 levels

andmaximum 6 time-points, depending on ability). These blocks

were kept throughout extraction, derivatization and

measurement. Extraction batches (n = 10) consisted

of ≤4 blocks, measurement batches (n = 10) also

contained ≤4 blocks but consisted of different sets of

randomly selected blocks. Measurement order within one

block was randomized.
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4.2.5 Gas chromatography-mass spectrometry
measurement

Gas chromatography-mass spectrometry was carried out using a

previously publishedmethod using a Pegasus IV GC-ToFMS (Leco,

United States) (Pietzke et al., 2014). Scan rates of 20 Hz and a mass

range of 70–600 Th were used. Ionization energy was set to 70 eV.

Gas chromatographic separation of compounds was performed on

an Agilent 6890N (Agilent, Santa Clara, CA, United States)

equipped with a VF-5ms column of 30 m length (Varian, Palo

Alto, CA, United States). The initial temperature was held at 67.5°C

for 2°min, followed by a temperature gradient of 5°C min−1 until

120°C, then 7°Cmin−1 until 200°C, followed by 12°C min−1 until

320°C with a hold time of 6 min. The transfer line was kept at 250°C

throughout. A cold injection system was used with a matching

baffled deactivated liner (CIS4, Gerstel, Mülheim an der Ruhr,

Germany), operating in split mode (split 1:5, injection volume

1 μL), with the following temperature gradient applied: hold of

the initial temperature of 80°C for 0.25°min, followed by a

temperature increase of 12°C s−1 to 120°C, followed by a

temperature increase of 7°C s−1 to 300°C with a hold time of 2 min.

4.2.6 Peak picking, annotation
Data was smoothed and baseline corrected using

ChromaTOF (vendor software). Peaks were picked using

ChromaTOF with a signal to noise threshold of 20. Given the

rather small sample size, formal tests for Gaussian distribution

and linearity would be underpowered and not informative.

Accordingly, we decided to use Spearman rank correlations to

produce the correlation matrix underlying the PCA.

Annotation was performed using an in-house version of a

published software (Kuich et al., 2014), as well as using manual

inspection with proprietary software (ChromaTOF, LECO). This

approach allowed us to inspect the mass spectra of each peak

from all measurements individually. We matched peaks stepwise

against i) standard mixes included at the beginning of every batch

(library size = 137) (Opialla et al., 2020), as well as ii) an in-house

library (library size = 12) of compounds individually measured

on our machines, and iii) a subset of the Golm-metabolome

database (Kopka et al., 2005). For the observational study, we also

annotated and reported unidentified but consistently occurring

peaks. Lipid compounds were matched against an in-house

library (library size = 36).

4.2.7 Quantification, normalization
Metabolites were quantified using the top 5 mass traces

according to intensity, excluding masses if adjacent peaks had

same nominal mass and mass traces originating from

derivatization agents (e.g. 73 Th, 147 Th). Also, characteristic

masses were included purposefully (e.g. 299 Th for phosphates).

The scans along the peaks were summed up to give AUC without

interpolation. Glucose and lactate were also measured with clinically

approved methods, so we used the included u-13C-labeled

substances added during extraction, to compare clinical

measurements, our top-5 approach and the current gold

standard: heavy labeled internal standards. For glucose we used

the ion pairs 319/323 Th and 217/220 Th, for lactate 117/119 Th and

190/193 Th. Samples were normalized using cinnamic acid included

in the extraction solvent at sample collection.

4.2.8 Missing values
Aswith anyMS-dataset, severalmetabolites havemissing values.

Except for clear oxygenation markers accordingly with Fi O 2 and

effort level (ribose-5-phosphate and ribulose-5-phosphate,

Supplementary Figures S22A, 23) and iso-aminobutyrate in

females (Supplementary Figure S22B), no compound was

significantly missing more in one condition. After careful manual

curation we found, that with generally lower intensity also more

missing values occur (NMAR). We therefore treated the missing

values as not missing at random values (NMAR). Values were

imputed using QRILC (Lazaar, 2015) on a per metabolite basis on

the normalized values, we allowed generally up to 20% missing

values. If fraction of missing values was higher, metabolites were

excluded from multivariate statistics in the prospective trial.

4.2.9 Statistical analyses, time-profiles
Statistical analysis was carried out using R and tidyverse

(https://www.tidyverse.org/packages); visualizations except

where noted, were created using ggplot2 and inkscape (https://

inkscape.org/release/inkscape-0.92.4).

Since some of the subjects in the prospective trial were not able

to complete the exercise bout (resulting in very low RPE values) we

re-encoded data collected at last exercise time-point as 30 min

exercise value. As not every individual was able to complete the

exercise, we sometimes obtained less than three samples from

exercise. For plotting time-profiles we shifted the samples in time

in a way that all values obtained from final exercise time-point have

the same time coordinate, as this reflects the most similar state

possible, when dealing with such a heterogeneous group of

performance levels as in our study. Normally distributed clinical

data were statistically analyzed by repeated-measures analysis of

variance with appropriate adjustments. For PCA we removed

outliers according to HOTELLING’s-T criteria. For line-plots all

samples were included. From a statistics point of view, principal

components are unobservable higher-order traits covering a wider

range of observable measures. Naming those components is

inevitably arbitrary, and we deduced the main shared feature

from the underlying highly correlated traits.

The authors confirm that all methods were carried out in

accordance with relevant guidelines and regulations.
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