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In the last decade, sleep spindles have attracted steadily increasing attention. This interest is 
motivated by the many intriguing relationships between spindles and various diseases (e.g., 
schizophrenia, Parkinson, Alzheimer, autism, mental retardation), recovery processes (e.g., post 
brain stroke), and cognitive faculties (e.g., memory consolidation, intelligence, dream recall, sleep 
preservation). Nonetheless, a methodological wall has impeded the study of sleep spindles. Their 
investigation rests heavily on our ability to reliably and consistently identify spindle patterns 
from background EEG activity, a task involving many obstacles, including: a fuzzy definition of 
spindles, low inter-expert agreement on their scoring, lack of consensus on standard techniques 
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for their automated detection, low reproducibility of observed characteristics and correlates, 
unavailability of large, standardized, high-quality databases, and inconsistencies in the methods 
used to evaluate the performance of automated detectors.

The primary aims of this research topic were to bring together world-class researchers on a project 
designed to facilitate exchanges on methodological difficulties encountered in assessing sleep 
spindles and to promote standardized spindle-related resources. In preparing their contributions, 
authors were encouraged to use existing – or to propose new – publicly available resources for 
assessing sleep spindles. To allow fair and accurate comparison of reported results, the authors 
were also encouraged to validate their tools on a common benchmark. A database containing 
expert spindle scoring (i.e., the Montreal Archive of Sleep Studies) was made publicly available 
for that purpose.

Citation: O’Reilly, C., Warby, S. C., Nielsen, T., eds. (2017). Sleep Spindles: Breaking the Meth-
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41 Automated detection of sleep spindles in the scalp EEG and estimation of their 
intracranial current sources: comments on techniques and on related 
experimental and clinical studies
Periklis Y. Ktonas and Errikos-Chaim Ventouras

45 Sleep spindle and K-complex detection using tunable Q-factor wavelet 
transform and morphological component analysis
Tarek Lajnef, Sahbi Chaibi, Jean-Baptiste Eichenlaub, Perrine M. Ruby,  
Pierre-Emmanuel Aguera, Mounir Samet, Abdennaceur Kachouri and Karim Jerbi

62 Automatic sleep spindle detection: benchmarking with fine temporal resolution 
using open science tools
Christian O'Reilly and Tore Nielsen

81 Combining time-frequency and spatial information for the detection of sleep 
spindles
Christian O'Reilly, Jonathan Godbout, Julie Carrier and Jean-Marc Lina

95 Expert and crowd-sourced validation of an individualized sleep spindle 
detection method employing complex demodulation and individualized 
normalization
Laura B. Ray, Stéphane Sockeel, Melissa Soon, Arnaud Bore, Ayako Myhr,  
Bobby Stojanoski, Rhodri Cusack, Adrian M. Owen, Julien Doyon and Stuart M. Fogel

111 Stage-independent, single lead EEG sleep spindle detection using the 
continuous wavelet transform and local weighted smoothing
Athanasios Tsanas and Gari D. Clifford

126 Corrigendum: A comparison of two sleep spindle detection methods based on 
all night averages: individually adjusted vs. fixed frequencies
Péter P. Ujma, Ferenc Gombos, Lisa Genzel, Boris N. Konrad, Péter Simor,  
Axel Steiger, Martin Dresler and Róbert Bódizs

http://journal.frontiersin.org/researchtopic/2389/sleep-spindles-breaking-the-methodological-wall
http://journal.frontiersin.org/journal/human-neuroscience


5 February 2017 | Sleep Spindles: Breaking the Methodological WallFrontiers in Human Neuroscience

127 A comparison of two sleep spindle detection methods based on all night 
averages: individually adjusted vs. fixed frequencies
Péter Przemyslaw Ujma, Ferenc Gombos, Lisa Genzel, Boris Nikolai Konrad,  
Péter Simor, Axel Steiger, Martin Dresler and Róbert Bódizs

Section 3: Modeling the spindle waveform
138 Using a quadratic parameter sinusoid model to characterize the structure of 

EEG sleep spindles
Abdul J. Palliyali, Mohammad N. Ahmed and Beena Ahmed

Section 4: Correlates of sleep spindles
152 Sleep spindle and slow wave frequency reflect motor skill performance in 

primary school-age children
Rebecca G. Astill, Giovanni Piantoni, Roy J. E. M. Raymann, Jose C. Vis,  
Joris E. Coppens, Matthew P. Walker, Robert Stickgold, Ysbrand D. Van Der Werf 
and Eus J. W. Van Someren

165 Sleep spindling and fluid intelligence across adolescent development: sex 
matters
Róbert Bódizs, Ferenc Gombos, Péter P. Ujma and Ilona Kovács

176 Sleep spindle alterations in patients with Parkinson's disease
Julie A. E. Christensen, Miki Nikolic, Simon C. Warby, Henriette Koch,  
Marielle Zoetmulder, Rune Frandsen, Keivan K. Moghadam, Helge B. D. Sorensen, 
Emmanuel Mignot and Poul J. Jennum

189 Sleep spindles predict stress-related increases in sleep disturbances
Thien Thanh Dang-Vu, Ali Salimi, Soufiane Boucetta, Kerstin Wenzel,  
Jordan O’Byrne, Marie Brandewinder, Christian Berthomier and Jean-Philippe Gouin

198 Sleep spindle deficits in antipsychotic-naïve early course schizophrenia and in 
non-psychotic first-degree relatives
Dara S. Manoach, Charmaine Demanuele, Erin J. Wamsley, Mark Vangel,  
Debra M. Montrose, Jean Miewald, David Kupfer, Daniel Buysse, Robert Stickgold 
and Matcheri S. Keshavan

214 Correlations between adolescent processing speed and specific spindle 
frequencies
Rebecca S. Nader and Carlyle T. Smith

222 Age-related changes in sleep spindles characteristics during daytime recovery 
following a 25-hour sleep deprivation
T. Rosinvil, M. Lafortune, Z. Sekerovic, M. Bouchard, J. Dubé, A. Latulipe-Loiselle,  
N. Martin, J. M. Lina and J. Carrier

http://journal.frontiersin.org/researchtopic/2389/sleep-spindles-breaking-the-methodological-wall
http://journal.frontiersin.org/journal/human-neuroscience


EDITORIAL
published: 18 January 2017

doi: 10.3389/fnhum.2016.00672

Frontiers in Human Neuroscience | www.frontiersin.org January 2017 | Volume 10 | Article 672 |

Edited and reviewed by:

Hauke R. Heekeren,

Freie Universität Berlin, Germany

*Correspondence:

Christian O’Reilly

christian.oreilly@epfl.ch

Received: 29 March 2016

Accepted: 16 December 2016

Published: 18 January 2017

Citation:

O’Reilly C, Warby SC and Nielsen T

(2017) Editorial: Sleep Spindles:

Breaking the Methodological Wall.

Front. Hum. Neurosci. 10:672.

doi: 10.3389/fnhum.2016.00672

Editorial: Sleep Spindles: Breaking
the Methodological Wall

Christian O’Reilly 1, 2*, Simon C. Warby 2, 3 and Tore Nielsen 3, 4

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland, 2Center for Advanced Research in

Sleep Medicine, Centre de Recherche de l’Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada, 3Département de

Psychiatrie, Université de Montréal, Montreal, QC, Canada, 4Dream and Nightmare Laboratory, Center for Advanced

Research in Sleep Medicine, Centre de Recherche de l’Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada

Keywords: sleep spindles, methods, sleep, open access

Editorial on the Research Topic

Sleep Spindles: Breaking the Methodological Wall

Research on sleep spindles and their correlates has progressed steadily over the last decade. The
subject has evolved from a simple topic of investigation to an emerging research field, as indicated
this year by the first international conference on sleep spindles in Budapest, Hungary, as well as
the launching of a scientific journal (i.e., Sleep Spindles and Cortical Up States: A Multidisciplinary
Journal) on this topic. This increasing interest has been fueled by reports of associations of sleep
spindle characteristics with diseases such as schizophrenia (Ferrarelli et al., 2007, 2010; Manoach
et al.), Parkinson’s disease (Christensen et al.), REM sleep behavior disorder (Christensen et al.,
2014; O’Reilly et al., 2015), Alzheimer’s disease (Montplaisir et al., 1995; Rauchs et al., 2008), autism
(Limoges et al., 2005), and mental retardation (Shibagaki et al., 1982), with recovery processes
following brain stroke (Gottselig et al., 2002), with cognitive faculties such asmemory consolidation
and intelligence (Fogel and Smith, 2011), and with sleep preservation (Landis et al., 2004; Dang-
Vu et al., 2010; Schabus et al., 2012). Nonetheless, many methodological difficulties have been
encountered in reliably detecting sleep spindles. Hence, this research topic was launched as a
forum for proposing better practices in the study of sleep spindles and to provide new insights on
spindle correlates. Authors were invited particularly to propose open-access resources that could
help promote improved methods and support standardization in the field.

CONTRIBUTIONS

A total of 17 papers were accepted for publication on the research topic, with 10 being focussed
particularly on methodological issues such as spindle detection and the remaining seven providing
new insights on sleep spindle correlates.

Methodological Advances
Different approaches were investigated for tackling the difficult task of detecting sleep spindles
automatically, including the use of continuous wavelet transform (Adamczyk et al.; Tsanas and
Clifford), complex demodulation (Ray et al.), matching pursuit (Durka et al.), and morphological
component analysis of a sparse representation of EEG segments using the discrete tunable Q-factor
wavelet transform (Lajnef et al.).

Among the developments proposed for sleep spindle detection, some concentrate on
particular issues associated with clinical applications or with better control of factors impacting
spindle variability. For clinical applications, Tsanas and Clifford propose a detector deployable
with single-lead recordings that does not require prior sleep stage scoring, two arguably

6
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important features for daily clinical use. From the perspective
of better controlling factors impacting on the variability of
spindle properties, Ray et al. propose an algorithm accounting
for variability across the night, across derivations, and across
subjects while keeping the number of user-defined parameters
to a minimum. Ujma et al. propose arguments that support
dynamically determining, for each subject, the threshold used
for separating fast from slow spindles according to the spectral
structure of the individual’s EEG. Such individually defined
thresholds are used in the detector proposed by Adamczyk et al.
Some of the proposed detection techniques also aim at a more
general detection framework, which could manage a larger set of
sleep waveforms, e.g., including not only sleep spindles but also
K-complexes (Durka et al.; Lajnef et al.).

In their contribution to the special issue, O’Reilly and
Nielsen suggest modified versions of four standard detection
algorithms to improve temporal resolution in determining
spindling time windows. They also provide an in-depth analysis
of the limitations and pitfalls associated with spindle detection
assessment. Pitfalls and guidelines for spindle detection can also
be found in an opinion paper by Ktonas and Ventouras.

O’Reilly et al. take a different approach and propose a
semi-automated detector relying on machine learning. In this
approach, sigma-band amplitude, and spectral ratio features are
used in a first step followed by hierarchical clustering based on
frequency and spatial position of the spindle along the anterior–
posterior axis of the scalp, so as to capture differences between
classes of slow and fast spindles. This proposal falls to some
extent at the opposite end of a spectrum when compared to
the proposal of Tsanas and Clifford; whereas the former tries to
benefit from high-density grid recordings for research purposes,
the latter focuses on obtaining reliable detections from minimal
information for clinical uses. Related to the context of the former
study are the comments from the Ktonas and Ventouras opinion
paper on the estimation of intracranial current sources of sleep
spindles, a topic that is likely to become increasingly important
with the improvement of source localization algorithms, and the
wider spread of EEG high-density sensor grids.

Targetedmore toward developing an improved representation
of sleep spindles than toward detection per se, Palliyali et al.
propose to parameterize the structure of spindles using a
quadratic parameter sinusoid. In their study, they provide a
detailed analysis of the parameters’ sensitivity and show, among
other findings, that these parameters take distinct values for
spindle vs. non-spindle epochs.

More closely related to the very definition of sleep spindles,
Nader and Smith propose some controversial results that
challenge the traditional view of sleep spindles by investigating
sleep spindles in atypical stages (e.g., REM) and frequency bands
(e.g., 16–18.5 Hz).

It is noteworthy that a significant number of contributed
papers (Durka et al.; O’Reilly and Nielsen; Palliyali et al.; Tsanas
and Clifford) include an evaluation of their detection algorithms
on a common database (the second subset of the Montreal
Archive of Sleep Studies; O’Reilly et al., 2014), thereby providing
much better cross-study comparisons than if they had been
evaluated using different expert scorings (O’Reilly and Nielsen).

Proposal of Open-Access Tools
A valuable outcome of this research topic is the release of many
open-access resources for studying sleep spindles. This is the
case for the matching pursuit detector of Durka et al. which is
provided as part of the Signal Viewer, Analyzer, and Recorder
On GPL (SVAROG) package available at http://braintech.pl/
svarog; of the detectors evaluated in O’Reilly and Nielsen
which are part of the open-source Python package Spyndle
available at https://bitbucket.org/christian_oreilly/spyndle; and
of the single-lead detector of Tsanas and Clifford available as
a Matlab source code at https://people.maths.ox.ac.uk/tsanas/.
Similarly, some other Matlab packages are available directly
from the authors Adamczyk et al., Lajnef et al., and Ray et al.
Finally, the detector from O’Reilly et al. has been implemented
as a Brainstorm (Matlab) process for easy integration with
neuroimaging pipelines implemented in this environment. It is
also available from the authors.

Other Advances in the Study of Sleep

Spindling
Although primarily targeted at discussing methodological issues
related to the investigation of sleep spindles, other types of
validational studies of sleep spindles were included to broaden
the scope of this research topic. This includes two papers on
the relationship between sleep spindles and mental faculties in
adolescents, one examining how spindling frequency is related to
processing speed as well as the relationship between performance
on a motor task and sleep quality (Nader and Smith), the other
assessing links between sleep spindles and fluid IQ, with a
particular attention to sex as a modulating factor (Bódizs et al.).
Similarly, Astill et al. studied links between performance on a
motor task and sleep spindling in children; they found better
performance with faster EEG, in accordance with what was
reported for adolescents (Nader and Smith).

Two contributions examine how diseases are correlated with
properties of sleep spindles, one focusing on Parkinson’s disease
(Christensen et al.), the other on schizophrenia (Manoach et al.).
Others report correlates of sleep spindles including age-related
impact of sleep-deprivation (Rosinvil et al.) and level of insomnia
symptoms in response to a stressful situation (Dang-Vu et al.).
Finally, Adamczyk et al. report on the influence of genetics on
the variability of slow and fast sleep spindles.

These studies demonstrate once more that sleep spindling is
an important physiological process that can be modulated by
many conditions. They also further highlight the relevance of
establishing the role of sleep spindles in the normal functioning
of the brain.

CONCLUSION

With the publication of an e-book compiling all these
contributions on sleep spindle correlates and methodological
advancements for their study, another step has been taken in
advancing the foundations of this emerging research field. It is
the hope of its editors that these papers will support the continued
enhancement of methods used to study sleep spindling, promote
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the establishment of commonly used open-access research tools
and, eventually, foster a better understanding of the mechanisms
involved in sleep spindles and their role in neurophysiological
and pathological processes.
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Mounting evidence for the role of sleep spindles in neuroplasticity has led to an
increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has
been hypothesized that fast and slow spindles might play a different role in memory
processing. Here, we present a new sleep spindle detection algorithm utilizing a
continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle
frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm
validation. Our method was compared with both a human scorer and a commercially
available SIESTA spindle detector. For the validation set, mean agreement between our
detector and human scorer measured during sleep stage 2 using kappa coefficient
was 0.45, whereas mean agreement between our detector and SIESTA algorithm
was 0.62. Our algorithm was also applied to sleep-related memory consolidation data
previously analyzed with a SIESTA detector and confirmed previous findings of significant
correlation between spindle density and declarative memory consolidation. We then
applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining
the genetic component of slow and fast sleep spindle parameters. Our analysis revealed
strong genetic influence on variance of all slow spindle parameters, weaker genetic effect
on fast spindles, and no effects on fast spindle density and number during stage 2 sleep.

Keywords: EEG, sleep spindle, automatic detection, twins, heritability

INTRODUCTION

Sleep spindles are one of the hallmarks in electroencephalographic (EEG) signal during non-rapid
eye movement (NREM) sleep. They are characterized as bursts of rhythmical activity in the
10–16 Hz frequency range, with waxing and waning shapes lasting usually from 0.5–2.5 s. There are
two types of sleep spindles. The so-called fast spindles are mainly present in parietal brain regions,
whereas slow spindles predominate in frontal areas. Low-resolution electromagnetic tomography
(LORETA) demonstrated a distributed slow spindle source in the prefrontal cortex and a fast
spindle source in the precuneus (Anderer et al., 2001). However, both spindle types are generated
via thalamic-cortical loops (Astori et al., 2013). The average slow spindle peak is 11.5 Hz and fast
spindle peak is 13 Hz, with large inter-subject variation (Werth et al., 1997).

There is a mounting evidence for the role of sleep spindles in neuroplasticity. Increased
spindle density and activity was observed after both declarative and procedural learning
(Gais et al., 2002; Morin et al., 2008). Increases in spindle activity were also reported to
positively correlate with memory retention (Clemens et al., 2005; Nishida and Walker, 2007;
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Genzel et al., 2009; Cox et al., 2012). These oscillations provide
excellent conditions for long-term synaptic changes (Buzsáki,
1989; Fogel and Smith, 2011), and the interplay of spindles and
hippocampal ripples plays an important role in neuroplasticity
(Clemens et al., 2007; Genzel et al., 2014). Specifically, spindles
deafferent the cortex from the hippocampus, enabling local
processing of increased firing rates in the cortex in response
to hippocampal firing during ripples (Peyrache et al., 2009;
Wierzynski et al., 2009; Genzel et al., 2014) and may additionally
serve a role in cortical plasticity processes that are independent
of hippocampal-led replay (Andrillon et al., 2011; Genzel et al.,
2014). Sleep spindles have also been proposed to represent a
biomarker of learning trait and intelligence (Fogel and Smith,
2011), however the strength of this association has recently been
doubted (Ujma et al., 2014). Furthermore, impaired sleep spindle
activity was shown in various psychiatric disorders (Astori et al.,
2013). Reduced spindle activity was reported in patients with
schizophrenia (Ferrarelli et al., 2007, 2010; Wamsley et al.,
2012), affective disorders (de Maertelaer et al., 1987; Lopez
et al., 2010) and Alzheimer’s disease (Montplaisir et al., 1995),
and these diseases also showed impaired sleep related memory
consolidation (Dresler et al., 2010, 2011; Genzel et al., 2011,
2015).

In view of the putative potential of sleep spindles as
biomarkers, their heritability is of interest. Previous studies
showed that the NREM sleep power spectrum in the sleep
spindles frequency range has finger-print characteristics (De
Gennaro et al., 2005; Buckelmüller et al., 2006) and is heritable
(Ambrosius et al., 2008; De Gennaro et al., 2008), suggesting that
sleep spindle activity is also heritable. However, this ‘‘spindle-
print’’ on the power spectrum is influenced by a number of mixed
slow and fast spindle characteristics: their frequency, amplitude
and amount. Therefore, we decided to investigate the heritability
of sleep spindle basic characteristics in detail. For this purpose
we developed, validated and applied a new spindle detection
algorithm to our twin data.

A number of spindle detection algorithms are already
published. One of the first was presented by Schimicek
et al. (1994). This method uses a band-pass filter (pass-
band: 11.5–16 Hz) and detects spindles with a fixed amplitude
threshold (peak-to-peak amplitude of 25 µV). Later algorithms
proposed a diversity of solutions to better ‘‘extract’’ sleep
spindles from the signal as well as to handle high inter-
subject variability in sleep spindle frequency and EEG signal
amplitude. One of the approaches to improve the extraction of
spindle shapes from the signal is the application of a wavelet
transform (WT) instead of a band-pass filter (Zygierewicz
et al., 1999; Latka et al., 2005; Wamsley et al., 2012). The
outcome of a WT depends not only on the power in a given
frequency, but also on the shape of graphoelements in the
signal, and therefore may be more specific than band-pass
filtering (Addison, 2002). The other approach that considers
waxing and waning shape of sleep spindles is the application
of two thresholds, from which the higher one is used to
localize activity bursts in sigma frequency and the lower one
to estimate the duration of sleep spindles (Ferrarelli et al.,
2007). Another challenge in sleep spindle detection is the

variation in EEG signal amplitude between subjects, but also
channels. Reasons for this phenomenon can be of a technical
nature (movements during the measurement period influencing
electrode placement, differences in electrode impedance) as well
as physiological. EEG signal decreases with age (Dijk et al.,
1989b), and is higher in females compared to males (Dijk
et al., 1989a). For this reason, spindle detection threshold
in many algorithms is set individually according to various
characteristics of analyzed EEG signal: for example through the
average amplitude in individually localized spindle frequency
range (Bódizs et al., 2009; Ujma et al., 2015) or the amplitude
of pre-localized spindle candidates (Huupponen et al., 2007).
Furthermore, inter-subject variation in slow and fast spindle
frequency reported by Werth et al. (1997) suggests that these
frequency ranges should be adjusted individually in order to
discriminate between fast and slow spindles. Bódizs et al. (2009,
2012) proposed to estimate spindle frequency ranges using pre-
computed average frequency spectra in the 9–16 Hz range.
Slower and faster sigma peaks are usually dominant over the
frontal and parietal derivations, respectively. For this reason,
normalized frequency spectra for frontal and parietal EEG
channels were compared and a peak higher in the frontal EEG
spectrum was considered a slow spindle peak whereas a peak
higher in the parietal EEG spectrumwas considered a fast spindle
peak.

Due to inter-subject variation in slow and fast spindle
frequency, as well as in signal amplitude, spindle detection
is a challenging task. It was shown recently that agreement
between algorithms and humans is surprisingly low (Warby
et al., 2014). Proper separation between slow and fast spindles
seems to be very important, since these two types of spindles
may play different roles in sleep-dependent memory processing
(Mölle et al., 2011). For this reason, our aim was to develop
a spindle detector which acknowledges considerable inter-
subject variability in sleep spindle activity. In our algorithm
we combined previously published methodological solutions
with our proposal of detection thresholds adjustment and
estimation of spindle frequency ranges. We compared spindle
detection of our new algorithm with both a human scorer and a
commercially available SIESTA spindle detector (Anderer et al.,
2005). Considerable detection differences between the algorithms
raises the question on how different methods could influence
the interpretation of previous findings. In order to investigate
this further, we applied our algorithm to sleep-related memory
consolidation data, which were already analyzed with the SIESTA
algorithm and revealed a positive correlation between spindle
activity and declarative memory consolidation (Genzel et al.,
2009). Finally, we analyzed a twin study comparing slow and
fast sleep spindle parameters: total count, density, amplitude,
duration and frequency between healthy monozygotic (MZ) and
dizygotic (DZ) twins.

MATERIALS AND METHODS

Almost all computations were performed using MATLAB 2014a.
Only MANCOVA analysis was performed using SPSS v17. The
source code is available from the corresponding author.
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Validation Sample—Nap Recordings
Our algorithm was validated with data from an earlier study
(Genzel et al., 2014). In brief, 20 participants (10 male, age
20–30 years) had two nap sessions in the sleep laboratory
separated by at least 4 weeks, one with and one without
previous learning experience. For more details regarding study
design and participants please see Genzel et al. (2014). Eighteen
naps from n = 10 subjects were randomly selected and
our algorithm was compared with the SIESTA algorithm
of Anderer et al. (2005) and with a human scorer. Sleep
spindle scoring was performed by a trained research assistant
and double-checked by an experienced sleep expert. The
experimental protocol was approved by the Ethics Committee
of the Ludwigs Maximilian University, Faculty of Medicine,
Munich and written informed consent was obtained from the
participants.

Sleep-Related Memory Consolidation
Sample
The data of the memory consolidation study were described by
Genzel et al. (2009). Recruited subjects were n = 12 healthy
volunteers, six males and six females. Age ranged between
20–30 years. Prerequisites for inclusion and exclusion criteria
as well as study protocol are described in detail elsewhere
(Genzel et al., 2009). Briefly, the subjects spent six nights in our
sleep laboratory, where three nights served as adaptation nights
which were followed by study nights. Each experimental session
consisted of adaptation night, learning before the study night
(declarative memory: finger tapping task, procedural memory:
verbal paired associates task), study recording with various
experimental sleep conditions [REM sleep deprivation, slow
wave sleep (SWS) deprivation and undisturbed night] and a retest
after two nights of recovery sleep. EEG recordings from the
undisturbed study night were used for sleep spindle analysis. The
experimental protocol was approved by the Ethics Committee
of the Ludwigs Maximilian University, Faculty of Medicine,
Munich and written informed consent was obtained from the
participants.

Twin Sample
We analyzed the data of the twin study described by Ambrosius
et al. (2008). We recruited n = 35 pairs of MZ and n = 14
pairs of DZ twins. All twin pairs had been raised together.
The twins underwent physical, psychiatric, and laboratory
examinations to exclude acute and chronic diseases. Prerequisites
for inclusion and determination of zygosity are described in
detail elsewhere (Ambrosius et al., 2008). Due to technical
reasons (high EEG amplitude differences in consecutive nights)
3 MZ pairs were excluded. All presented results have been
obtained from the remaining 32 pairs of MZ twins (mean
(SD): 23.8 (4.8) years; range: 17–43 years, 16 male pairs, 16
female pairs) and 14 pairs of DZ twins (22.1 (2.7) years;
range: 18–26 years, 7 male pairs, 7 female pairs). Fifteen of
thirty-two monozygotic and ten of fourteen dizygotic twin
pairs were living together at the time of the examination. The
experimental protocol was approved by the Ethics Committee

for Human Experiments of the Bayerische Landesärztekammer
(Munich, Germany) and written informed consent was obtained
from the participants. The subjects spent three consecutive
nights in our sleep laboratory, where the first night served
for adaptation and exclusion of sleep disturbances. Almost all
twin partners were recorded at the same time. EEG data of
the second and third recording night were used for spindle
analysis.

EEG Recording
All polysomnographic recordings (Comlab 32 Digital Sleep
Lab, Brainlab V 3.3 Software, Schwarzer GmbH, Munich,
Germany) were performed according to the international 10–20
electrode system (high-pass filter at 0.53 Hz, low-pass filter at
70 Hz, sampling rate of 250 Hz). Electrooculograpic (EOG)
montage was done according to Rechtschaffen and Kales
(1968). We recorded nap validation samples and memory
samples with C3A2 and C4A1 EEG electrodes, whereas twin
samples were recorded using 10 EEG electrodes: Fp1A2, Fp2A1,
F3A2, F4A1, C3A2, C4A1, P3A2, P4A1, O1A2 and O2A1.
Professional scorers scored sleep stages in 30 s epochs according
to the standard guidelines (Rechtschaffen and Kales, 1968).
Recordings of the twin partners were scored by the same
rater.

SIESTA Algorithm
The SIESTA algorithm was described in detail by Anderer
et al. (2005). This solution was created using a large database
of visually detected sleep spindles (SIESTA database). Briefly,
spindle criteria were based on sleep spindle characteristics
from the database: length from 0.3–2 s, minimal peak-
to-peak amplitude at least 12 µV and frequency from
11–16 Hz. Authors introduced these criteria to a spindle
detector described by Schimicek et al. (1994; briefly described
in the introduction). Localized spindle candidates fulfilling
minimal criteria were further evaluated with a classifier trained
on the SIESTA database. Spindle classification was based on
linear discriminant analysis and as an input used spindle
duration and mean amplitudes in four frequency bands: spindle,
theta, alpha and fast beta. The outcome of each spindle
evaluation was a discriminant score, and the SIESTA detector
offers three detection thresholds for discriminant scores. If a
user chooses the lowest threshold, the algorithm accepts all
‘‘possible’’ spindles. This threshold resulted in 90% detection
sensitivity in the SIESTA database. The middle threshold
accepts all ‘‘probable’’ spindles. This threshold maximized
the agreement with human scorers in the SIESTA database
by maximizing the sum of sensitivity and specificity. The
highest threshold accepts only ‘‘certain’’ spindles. This threshold
resulted in detection specificity above 97% in the SIESTA
database.

For both data sets, validation and sleep-related memory
consolidation sample, we report results of SIESTA analysis
performed with middle detection threshold (‘‘probable’’
patterns), which seems to balance detection sensitivity and
specificity.
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Statistical Analysis
Algorithm Validation
Our validation data set consisted of detailed information
about the exact placement of each detected sleep spindle
for both SIESTA analysis and visual scoring. We compared
spindles marked in time using 0.1 s windows to obtain the
number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). The problem related
to statistical analysis of spindle detection agreement is the
fact that the majority of EEG signal usually does not contain
spindles, which inflates strongly TN and mildly FP. Due
to class imbalance, we report results of multiple agreement
measures. First, we calculated sensitivity (TP/[TP + FN]),
specificity (TN/[TN + FP]) and precision (TP/[TP + FP]).
These measures are commonly used, so we report them
for the sake of comparison with other published spindle
detectors. However, due to the aforementioned bias, specificity
outcomes tend to be strongly overestimated, and precision
mildly underestimated. We also calculated the general scoring
agreement using measures which should correct for the bias
towards long fragments of signal, where there are no sleep
spindles: adjusted geometric-mean (Batuwita and Palade, 2012),
Matthews correlation coefficient and Cohen’s kappa coefficient
(equations can be found in Supplementary Material). Adjusted
geometric-mean was developed to measure the agreement in
imbalanced datasets, where the positive data examples are
largely outnumbered by the negative data examples. It adjusts
the impact of sensitivity and specificity according to the
observed size differences between classes. Matthews correlation
coefficient is a geometric mean corrected for chance agreement.
It actually returns the same values as Pearson correlation
of spindles marked in time between two scorers. Kappa
takes the observed agreement and corrects it for a putative
chance agreement. There are several benchmarks characterizing
agreement based on Cohen’s kappa values. According to Landis
and Koch (1977) kappa values from 0–0.2 have been termed
slight, between 0.21 and 0.40 fair, between 0.41 and 0.60
moderate, between 0.61 and 0.80 substantial, and between
0.81–1 as almost perfect agreement. In addition, we used
Pearson’s correlation to obtain subjects-wise spindle density
agreement.

Human scorers marked sleep spindles only in stage 2
sleep, since in SWS it is much more difficult to visually
detect spindles intermingled into delta waves. For this reason
the agreement comparison for stage 2 sleep included visual
scoring and automatic algorithms, whereas for SWS we
compared only our detector and SIESTA algorithm.We analyzed
the agreement of sleep spindles scored in the C3A2 EEG
channel.

Sleep-Related Memory Consolidation
For the sleep-related memory consolidation data, we had
only a general outcome from SIESTA spindle analysis about
each subject, including average spindle density, amplitude and
duration in sleep stage 2 and SWS.We used Pearson’s correlation
to obtain subjects-wise spindle density agreement between
algorithms as well as between spindle density and declarative

memory performance. We analyzed sleep spindle activity in the
C4A1 EEG channel.

Twin Study—Genetic Variance Analysis
We investigated MZ and DZ twins in order to separate the
variance of sleep variables into environmental and genetic
components according to Christian et al. (1974, 1987). Briefly,
there are two independent estimates of genetic variance: the
within-twin pair estimate (GWT), and the combined within- plus
among-twin pair component estimate (GCT). GWT depends
only on mean squares (MS) for within-pair variation, whereas
GCT depends on MS of both within- and among-twin pair
variation. A test of equality of variances (F’ test) for MZ
and DZ twins determines the selection of genetic variance
estimate. We used the GCT test when MZ and DZ variances
were not equal (the null hypothesis of equal variances was
tested using alpha = 0.2, as suggested by the authors). In the
other case the GWT test was used. As a prerequisite for the
analysis, each studied variable had to fulfill the assumptions of
normal distribution (measured by a non-significant goodness-
of-fit by the Kolmogorov-Smirnov test) in both twin samples
and equal means between twin samples (t-test). The significantly
unequal means between MZ and DZ twin samples indicate
that the investigated variable could be associated with the type
of twins being studied. In this case the estimation of genetic
variance would be biased. Therefore, if there was an evidence for
significantly unequal means between MZ and DZ twin samples,
the GVAwas not performed. The influence of covariates (age, sex
and cohabitation) was analyzed by MANCOVA. Prerequisites
were considered to be violated, if the appropriate test showed
a significant result at the 5% level. GVA was performed
on the mean results of two recording nights. We include
a more detailed description of GVA in the Supplementary
Material.

We estimated the genetic influence on the most basic
parameters describing sleep spindle activity during the whole
night: the absolute number of spindles, spindle density (average
number of spindles per 30 s epoch), length, amplitude and mean
frequency. In order to minimize the effects of possible covariates,
we selected a subgroup of MZ twins closely matched for age,
gender and cohabitation to DZ twins. GVA for matched MZ and
DZ samples can be found in the Supplementary Material. We
analyzed sleep spindle activity in left hemisphere. In the results
section we present GVA from F3A2 and P3A2 EEG derivations,
analysis from Fp1A2 and C3A2 channels can be found in the
Supplementary Material.

Twin Study—ICC Analysis
We illustrate differences between within-twin pair resemblance
and night-to-night stability with intraclass correlation
coefficients (ICCs). In order to reveal the strength of observed
ICC results, we applied bootstrapping analysis as well as
providing the interpretation of computed correlations proposed
by Landis and Koch (1977). To obtain levels of statistical
significance for ICC results we applied bootstrapping analysis
similarly to Tarokh et al. (2011). Each sample was recreated by
choosing subject values randomly with repetitions up to the same
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number as in the original set. For each bootstrapped sample
ICC was computed. Only positive ICC values of bootstrapped
samples were accepted. Bootstrapping was continued until
1000 positive ICC values were reached. For each investigated
parameter we present ICC results of original sample together
with the 1/100th top percentile (congruent with significance
level P = 0.01) and median (congruent to positive ICC values
obtained by chance) value of bootstrapped data. Bootstrapping
was performed separately for each investigated sample. The
sample for within-pair similarity estimation consisted of 64
values in MZ twins (32 twin pairs, 2 values for each pair)
and 28 values in DZ twins (32 twin pairs, 2 values for each
pair). The sample for stability estimation between consecutive
nights consisted of 128 values in the MZ set (32 twin pairs,
2 subjects in each pair, 2 values for each subject) and 56
values in the DZ set (14 twin pairs, 2 subjects in each pair,
2 values for each subject). The smaller the sample size, the
easier it is to obtain high ICC by chance. For this reason,
bootstrapped ICC values are higher for samples with smaller
sizes. According to Landis and Koch (1977), ranges of ICC
values were designated as being in slight agreement (from 0–0.2),
fair agreement (from 0.21–0.40), moderate agreement (from
0.41–0.60), substantial agreement (from 0.61–0.80), and almost
perfect agreement (from 0.81–1). ICCs estimating within-pair
resemblance were performed on mean results of two recording
nights.

Automatic Sleep Spindle Detection: Description
of the Algorithm
Figure 1 depicts the block diagram of spindle detection
procedure. First, our method rejects artifacts and strong
alpha activities. The signal chosen for spindle detection
without excluded fragments is used in further analysis.
The detection threshold is then set separately for each
channel. If slow and fast spindle frequency boundaries
are not predefined, an automatic adjustment procedure
sets them individually for each subject using frontal and
parietal EEG channels. When spindle frequency boundaries
and detection threshold are set, the algorithm scores sleep
spindles.

Preprocessing Before Spindle Detection
To decrease the computation load, algorithm re-samples the
signal to 100 Hz. Therefore, the algorithm resolution is 0.01 s.
The first part of the algorithm checks the properties of the signal
and rejects periods of signal with high muscle contamination as
well as segments dominated by alpha activity.

Artifact exclusion
In order to identify fragments with high frequency muscle
artifacts, the EEG signal was band-pass filtered (FIR filter; −3
dB at 19.8 and 45.5 Hz). The standard deviation of the signal was
computed over a 1 s sliding window (step: 0.5 s) and if it exceeded
5.75 µV, a window of 7 s (fragment in which the threshold was
exceeded± 3 s) was excluded from further analysis.

FIGURE 1 | Algorithm detection scheme.

Exclusion of segments with strong alpha activity
Alpha activity is present in the EEG signal mostly during wake
when the eyes are closed, but can also be present in EEG during
shallow sleep, after arousals and during REM sleep. The shape
and frequency of alpha waves (long waxing and waning bursts
of activity in the range of 8–12 Hz) is similar to sleep spindles
and thereforemay lead to false spindle detection. To exclude EEG
fragments with probable strings of alpha waves, alpha activity was
compared with delta activity on long signal fragments. First, the
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signal was high-pass filtered (FIR filter; −3 dB at 1.4 Hz). Then,
we computed the amplitude spectrum [Fast Fourier Transform
(FFT) performed on a 4 s Hanning window; step: 1 s] and
for each second mean amplitude was stored for 2–4 (delta) Hz
and 8–12 (alpha) Hz frequency ranges. Alpha and delta activity
were compared in a 15 s sliding window (step: 1 s). Fifteen
values for both alpha and delta activity were weighted using a
Hanning window and then averaged, resulting in alphaactivity and
deltaactivity. Due to the Hanning window, central values in an
analyzed fragment had the strongest influence on the outcome.
A 15 s fragment was excluded from further analysis if alphaactivity
was higher than 1.1×deltaactivity.

The reasoning behind our preprocessingmethods is described
more in detail in the Supplementary Material.

Threshold Setup
The threshold was computed using exactly the signal chosen for
spindle detection, without fragments excluded due to artifacts
or strong alpha activity. Our aim was to obtain a basic
threshold (BT) value close to signal background activity. We
therefore firstly focused on the 6–18 Hz frequency range, since
frequencies below 6 and above 18 Hz are strongly influenced
by sleep quality (amount and strength of delta waves), and
could be strongly influenced by artifacts (for example muscle
contamination). The signal was band-pass filtered (FIR filter;
−3 dB at 5.5 and 18.2 Hz) and amplitude spectra were
computed (FFT; 2 s sliding window; step: 2 s). Second, amplitude
spectra were logarithm transformed (base 10). Due to this
transformation, all peaks in activity had a lower influence
on the final outcome. Third, the median over all amplitude
spectra was computed in order to obtain the background
activity for each frequency bin, since the median should be
less influenced by temporary events than a mean. BT was
set as a mean background activity in the 6–18 Hz range.
Two thresholds were defined for spindle detection: minimum
spindle activity threshold (SA) and minimum spindle peak
threshold (SP). SA was set as 55 times BT, while SP was set as
80 times BT.

Detection of Spindle Events
In order to detect spindle events, we applied the continuous
wavelet transform (CWT) to the signal. As a mother wavelet, we
used the complex Morlet wavelet which follows the equation:

ψ

(
t − b
a

)
=

1
π1/4 e

i2π f0[(t−b)/a]e− [(t−b)/a]
2

where t is time, a is scale parameter so the mother wavelet can be
dilated according to the frequency of interest and shifted across
the signal using the location parameter b. Central frequency f 0
influences the frequency of a complex sinusoid inside the wavelet
envelope. For our mother wavelet we chose central frequency
f 0 = 2, since it closely resembles a spindle shape. The example
of the mother wavelet is shown on Figure 2. A spindle was
identified, if the outcome of CWT exceeded SA by a period of at
least half a second, and SP at least once. The spindle was marked
over the signal fragment, where CWT exceeded SA.

FIGURE 2 | Complex Morlet wavelet with central frequency f0 = 2 used
in the analysis. Presented wavelet corresponds to 14 Hz frequency.

Adjustment of Individual Spindle Frequency Range
Slow spindle activity is more prominent in frontal EEG channels
and fast spindle activity is more prominent in parietal channels.
In order to localize individual ranges of fast and slow spindle
frequency, our algorithm scanned spindle events activity in
the 9–16 Hz frequency range and compared the frequency
distribution of spindles detected in frontal and parietal EEG
channels. Individual spindle frequency range was computed
using exactly the signal chosen for spindle detection, without
fragments excluded due to artifacts or strong alpha activity. The
example of spindle frequency estimation is illustrated in Figure 3.

Spindle activity scan
We performed a spindle activity scan using frontal EEG channel
F3A2 and parietal channel P3A2. For each channel, CWT
was computed with wavelets corresponding to the 9–16 Hz
frequency range (step: 0.1 Hz). For the CWT outcome in each
frequency bin (CWTbin), fragments fulfilling spindle criteria
were marked (outcome of CWTbin exceeded SA by a period
of at least half a second, and SP at least once). For each
frequency bin, every marked fragment overlapping exactly
with the signal section where CWTbin exceeded threshold SA
was then investigated. Mean CWTbin over this fragment was
computed for each 0.1 Hz frequency bin in the 9–16 Hz range
(71 bins). A localized fragment was accepted as a spindle
belonging to the currently analyzed frequency bin only if
currently analyzed frequency was dominant. That is, only if
mean CWTbin over this fragment in this frequency was higher
than every other mean CWTbin over this fragment for each
other 0.1 Hz frequency bin in the 9–16 Hz range. If other
frequency than currently analyzed was identified as dominant,
this fragment was rejected. For each 0.1 Hz frequency bin
all accepted spindles were summarized and these sums were
combined into a vector of spindle activity over frequency range
separately for frontal channel F3A2 and parietal channel P3A2.
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FIGURE 3 | The adjustment scheme of individual spindle frequency
range. (A) The outcome of spindle activity scan which resulted in two vectors
of spindle activity over frequency range separately for frontal channel F3A2
(vecslow: green color) and parietal channel P3A2 (vecfast: blue color). (B) In
both activity vectors the value in 9 Hz was set to zero, vectors were smoothed
and 50% of mean spindle activity (dashed black line) was added to both of
them. (C) Vector (vecrel) showing a relation of spindle activity between frontal
EEG and parietal EEG, computed according to “Spindle Activity Comparison”
Section. (D) Smoothed vecrel. First, algorithm localized minimum and
maximum (black dots). Localized minimum in vecrel was set as slow spindle
central frequency (green square). Localized maximum in vecrel was a starting
point to estimate fast spindle frequency ranges using vecfast. Local maximum
in vecfast was set as fast spindle central frequency (blue square). Ranges of
fast (dashed blue lines) and slow (dashed green lines) spindle frequency were
estimated according to “Spindle Activity Comparison” Section. First frequency
bin below slow spindle range in which spindle activity was higher in the
parietal channel was set as frequency in which slow spindles are unlikely
(stopdetect: red dashed line).

The example outcome of spindle activity scan is illustrated in
Figure 3A.

Spindle activity comparison
Spindle activities estimated for frontal and parietal EEG signals
were compared to find frequency ranges of slow and fast spindles.
Slow spindle activity is more prominent in frontal EEG channels
and fast spindle activity is more prominent in parietal channels.
For this reason, vector with spindle activity data from frontal
EEG channel is called vecslow and vector with spindle activity
from parietal EEG is called vecfast. Since 9 Hz was the lowest
frequency bin for which spindle activity scan was performed,
frequency of spindles detected using wavelet in 9 Hz frequency
was compared only to higher frequencies. Therefore the 9 Hz
frequency bin in both spindle activity vectors (vecslow and vecfast)
included spindle bursts in 9Hz and possibly below. Sleep spindles
in such a low frequencies are unlikely. For this reason, the value
in both spindle activity vectors responding to 9 Hz was set to
zero. Then a moving average (0.7 Hz window) was applied twice
for each vector to smooth the data. The example of preprocessed
spindle activity vectors is illustrated in Figure 3B.

The next step was to compute a vector (vecrel) showing a
relation of spindle activity between vecslow and vecfast. First, we
calculated a grand mean (meanact) over both activity vectors
of average spindle activity for all frequency bins. Vecrel was
computed according to the following rule:

for i = 1 to the number of frequency bins do
if vecfast(i) > vecslow(i) do
vecrel(i) = [vecfast(i) + 0.5×meanact]/[vecslow(i) +
0.5×meanact]

elseif vecslow(i) > vecfast(i) do
vecrel(i) =−[vecslow(i) + 0.5×meanact]/[vecfast(i) +
0.5×meanact]

else
vecrel(i) = 0

end if
end for

Vecrel is positive when there are more spindles in vecfast and
negative when there are more spindles in vecslow. 50% of meanact
was included to avoid cases when small spindle numbers in
vecslow and vecfast produce very high results in vecrel. The
example of obtained vecrel is illustrated in Figure 3D.

Vecrel was smoothed (moving average, 0.7 Hz window) before
localizing slow and fast spindle frequency range. The minimum
value in vecrel shows the strongest relative spindle activity in
frontal EEG when compared to spindle activity in parietal EEG.
Frequency responding to this minimum value was taken as a
putative central frequency of slow spindle activity (slowcntr). To
find a putative central frequency of fast spindle activity (fastcntr)
algorithm analyzed vecrel in the frequency range between slowcntr
and 16 Hz. Frequency responding to the maximum value in vecrel
within the slowcntr–16 Hz range was taken as a candidate for
fastcntr.

Fast spindle activity is usually clearly visible in vecfast.
Therefore, fastcntr was shifted from the maximum in vecrel
towards the local maximum in vecfast. The range of fast spindle
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frequency was estimated similarly to method presented by Bódizs
et al. (2009): second derivative of vecfast was computed and zero-
crossing points encompassing fastcntr were taken as fast spindle
frequency ranges.

Frequency ranges of slow spindle activity in vecslow are
often difficult to distinguish, so they were estimated using
vecrel. The higher boundary was extended from slowcntr to
the highest frequency below fast spindle frequency range, in
which spindle activity was higher in the frontal channel. The
lower boundary of slow spindle activity was more difficult
to establish, since it is important to avoid classification of
alpha waves as sleep spindles. Therefore the lower boundary
of slow spindle frequency range was extended cautiously from
slowcntr to the first frequency bin in which vecrel value was 40%
higher than minimum in slowcntr. In addition, the algorithm
set a frequency stopdetect in which slow spindles are unlikely
and should not be detected. Stopdetect was set as the highest
frequency below slow spindle frequency range, in which spindle
activity was higher in the parietal channel. If such a frequency
was not present above 9 Hz, stopdetect was set at 9 Hz. The
example outcome of spindle frequency estimation is illustrated
in Figure 3D.

The minimum frequency range was set as at least 0.5 Hz
around estimated central frequencies of fast and slow spindles.
Spindle activity comparison between vecslow and vecfast was
performed only if each vector included at least 30 spindles.
Otherwise estimation of spindle detection ranges would have
low reliability. If the amount of detected spindles was too low,
frequency range was set at 13.1–15 Hz for fast, 11–12.9 Hz
for slow spindles and stopdetect at 9 Hz. The result of spindle

frequency estimation as well as spindle detection with applied
individual frequency ranges for twin pair number 10 is illustrated
in Figure 4.

We applied automatic individual adjustment of spindle
frequency range in the twin sample, since in this data set
recordings include multiple EEG derivations along the antero-
posterior axis. However, experiments in which sleep spindle
analysis is of interest often include recordings with few EEG
channels. Our validation sample and sleep-related memory
consolidation sample included only central EEG derivations
C3A2 and C4A1. Therefore, in our algorithm the user has the
option to set the frequency range for slow and fast spindles.
For all recordings in the validation sample and sleep memory
consolidation sample, we set 11–12.9 Hz as slow and 13.1–16 Hz
as fast spindle frequency range.

Scoring of Sleep Spindles
In order to score sleep spindles, the algorithm analyzed results
of CWT computed with wavelets corresponding to stopdetect
frequency, slow spindle frequency range (CWTslow) and fast
spindle frequency range (CWTfast). We computed CWTslow in
each time point as a maximum CWT value in this time point
over slow spindle frequency range. CWTfast was computed the
same way. In addition to slow and fast spindles, sleep spindles
without distinction between slow and fast ones were scored (all
sleep spindles).

All sleep spindles
All sleep spindles were detected using the maximum of both
CWTslow and CWTfast. (CWTall). Places fulfilling spindle criteria

FIGURE 4 | Distribution of detected sleep spindles in 0.1 Hz frequency bins in monozygotic (MZ) twin pair number 10. Analysis was performed separately
for stage 2 and slow wave sleep (SWS). Each row of plots represents one recording night. Column Activity Scan shows the result of pre-analysis performed to
localize slow and fast spindle frequency ranges. During activity scan spindles were detected in two EEG derivations: parietal channel P3A2 (blue color) and frontal
channel F3A2 (green color). Information from activity scan was used to set frequency range of fast spindles (light blue color), slow spindles (light green color) and
range in which spindles should not be detected anymore (light red color). Localized frequency ranges were used to detect sleep spindles in four EEG derivations,
which are presented in distinct columns: FP1A2, F3A2, C3A2 and P3A2. Blue color depicts sleep spindles detected with wavelets in fast spindle frequency range,
green color depicts sleep spindles detected with wavelets in slow spindle frequency range whereas orange color depicts sleep spindles detected with combined
slow and fast spindle frequency ranges.
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(according to ‘‘Detection of Spindle Events’’ Section) for CWTall
were localized. A marked place was accepted as a sleep spindle, if
over this place the mean CWTall was higher than the mean CWT
of stopdetect.

Fast sleep spindles only
Fast sleep spindles were detected using CWTfast. Places in which
CWTfast was continuously higher than CWTslow and spindle
criteria for CWTfast were fulfilled (according to ‘‘Detection of
Spindle Events’’ Section), were classified as fast sleep spindles.

Slow sleep spindles only
Slow sleep spindles were detected using CWTslow. The algorithm
localized fragments in which CWTslow was continuously higher
than CWTfast and spindle criteria for CWTslow were fulfilled
(according to ‘‘Detection of Spindle Events’’ Section). A marked
fragment was classified as a slow sleep spindle, if over this place
the mean CWTslow was higher than the mean CWT of stopdetect.

Results of spindle detection in four EEG channels along the
antero-posterior axis for twin pair number 10 are illustrated in
Figure 4. We included such figures for all analyzed twin pairs
in the Supplementary Material. An example of sleep spindle
detection on EEG fragment is presented in Figure 5.

Twin data included frontal and parietal EEG channels,
therefore we could apply our automatic individual spindle
frequency adjustment and report results from fast and slow
spindle detection. In contrast, the validation set as well as
memory consolidation data included only central electrodes. For
this reason, in these two datasets we used fixed spindle frequency
ranges and analyzed results of all sleep spindles detected, without
distinction between slow and fast ones.

Computation of Sleep Spindle Amplitude and
Frequency
In order to estimate sleep spindle amplitude and dominant
frequency, the signal was first band-pass filtered (FIR filter;

−3 dB at 8.7 and 18.5 Hz). Then, a Hanning window was
applied to exact a fragment with a marked spindle, and an
amplitude spectrum was computed similarly to Huupponen et al.
(2006): the fragment was zero-padded to 10 s window and FFT
was computed resulting in frequency resolution of 0.1 Hz. The
maximum peak in the amplitude spectrum was taken as spindle
amplitude and frequency.

Average Spindle Detection Time
The time required to perform the spindle detection for the whole
night EEG recording (around 8 h of sleep) in four EEG channels,
with spindle detection ranges individually adjusted using one
frontal and one parietal channel, was around 4 min 15 s. When
spindle detection ranges were fixed, the CWT algorithm required
around 2min to perform spindle detection in four EEG channels.
We performed the analysis using an Intel i5-4310M processor
(2.7 GHz, 3 MB).

RESULTS

Algorithm Validation
Our choice of the mother wavelet as well as detection thresholds
ratio (spindle activity threshold SA and minimum spindle
peak threshold SP) was based on visual observation of sleep
spindles and their CWT transforms. We set the actual values
of detection thresholds on a level which matched detection
sensitivity presented by the SIESTA algorithm. Figure 6 shows
the precision and sensitivity results from a validation dataset of
the CWT detector vs. human and vs. SIESTA algorithm using
a range of detection threshold levels. We always changed both
thresholds percentage-wise, to keep their ratio intact (SP = 1.45
× SA). Results show that a similar amount of detected spindles
between our algorithm and SIESTA detector resulted in the
highest possible combination of sensitivity and precision. Also, in
order to maximize the agreement with a human scorer, we would

FIGURE 5 | The scheme of spindle detection. (A) EEG signal from C3A2 derivation during SWS in twin 10a during night 2 (localization of spindle frequency ranges
and overall results of spindle detection in twin 10a are presented in Figure 4). (B) The result of continuous wavelet transform (CWT) in time and frequency domain.
Red color depicts WT result using wavelet corresponding to 9 Hz frequency. Events with this frequency are not classified as spindles. Green color depicts WT using
wavelets corresponding to 10.4–12 Hz frequency range. Events detected in this frequency range are classified as slow spindles (light green color). Blue color depicts
WT using wavelets corresponding to 12.5–13.5 Hz frequency range. Events detected in this frequency range are classified as fast spindles (light blue color).
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FIGURE 6 | Sensitivity-precision plot showing how these two measures depend on spindle detection thresholds. Sleep spindles were scored in C3A2
EEG channel. (A) ROC-like plot of sensitivity vs. precision, (B) the sum of sensitivity and precision according to detection thresholds variety. We had two detection
thresholds in our algorithm: spindle peak threshold (SP) set as 80 times basic threshold (BT) and spindle activity threshold (SA) set as 55 times BT (calculation of BT
is described in “Threshold Setup” Section). We illustrate how performance changes according to SP, where y axis shows multiplication rate of BT used to obtain SP,
but for each iteration values of both thresholds were changed together to always keep the same ratio between them (SP = 1.45 × SA). Black circles connected with
black line mark sensitivity and precision obtained for thresholds chosen for our algorithm.

need to raise the thresholds by 10%. However, the agreement of
our detector with a human would be still much lower than the
agreement between two machines.

The agreement between our algorithm, human scorer and
SIESTA algorithm on the validation data set is illustrated in
Figure 7 and summarized in Table 1. During stage 2 sleep,
mean spindle density was 4.0 for our algorithm, 3.95 for
SIESTA detector and 2.5 for human scorer. The subject-wise
correlation of spindle density between our detector and SIESTA
was r = 0.86. The correlation of spindle density between
our detector and human scoring was r = 0.73, whereas the
correlation between the SIESTA detector and human scorer
was r = 0.55. Due to the fact that amounts of NREM sleep
stages differed significantly between recordings, we computed
our agreement measures using weighted averages, where weight
for each recording was its number of investigated sleep epochs
divided by the total number of investigated sleep epochs
from all recordings. The agreement between our detector
and SIESTA algorithm measured with kappa ranged from
0.31–0.74, with weighted average kappa of 0.62 (sensitivity:
0.77; specificity: 0.93; precision: 0.61). The kappa between our
detector and human scorer ranged from 0–0.62 with weighted
average of 0.45 (sensitivity: 0.72; specificity: 0.90; precision:
0.40) and kappa between the SIESTA detector and human
scorer ranged from 0.08–0.54 with weighted average of 0.44
(sensitivity: 0.62, specificity: 0.92, precision: 0.43). We observed
very similar results when using Matthews correlation, with
high agreement between automatic detectors when compared
to the agreement between algorithms and human scorer.
Discrepancies between machines and human were smaller when
the agreement was measured using adjusted geometric mean.
The reason for that is the human scorer marked the smallest
amount of spindles in the signal, resulting in the strongest
imbalance between classes. As a result, specificity in this case

had the strongest influence on the outcome of the adjusted
geometric mean (equations can be found in the Supplementary
Material).

According to published benchmarks for kappa coefficient
(Landis and Koch, 1977) the agreement between our algorithm
and SIESTA detector was fair for two naps, moderate for nine
naps and substantial for seven naps. The agreement between our
algorithm and human scorer was fair for five naps, moderate for
11 naps, substantial for one nap and in the one case, there was
no agreement between our algorithm and human scorer. The
agreement between human scorer and SIESTA detector was slight
for three naps fair for four naps andmoderate for 11 naps.

SWS was not present in two nap recordings, so the validation
set consisted of 16 naps from 9 subjects. During SWS, mean
spindle density was 4.03 for our algorithm and 4.56 for SIESTA
detector. The subject-wise correlation of spindle density between
our detector and SIESTA was r = 0.80. According to kappa
coefficient, the agreement between our detector and SIESTA
algorithm ranged from 0.35–0.86, with weighted average kappa
of 0.56 (sensitivity: 0.64; specificity: 0.94; precision: 0.66). The
agreement between our algorithm and SIESTA detector was fair
for three naps, moderate for four naps, substantial for eight naps
and almost perfect for one nap.

Since the agreement between scorers was mostly moderate,
we tried to reveal the reasons for disagreement between
scorers by investigating in detail the group of consensus
spindles, which were marked by all scorers, as well as distinct
groups of spindles marked by only one scorer. To assume
that scorers agreed on a spindle, at least 0.3 s consecutive
marked fragment had to overlap. We chose this length since
0.3 s was the shortest spindle length marked by scorers. We
analyzed spindles detected during stage 2 sleep. Figure 8
shows overlap between scorers in marked spindles. All spindles
were measured as described in ‘‘Computation of Sleep Spindle
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FIGURE 7 | Validation set of 18 nap EEG recordings. Agreement in sleep spindle detection during stage 2 in C3A2 EEG derivation between our algorithm, human
visual scorer and SIESTA automatic spindle detector. On y axis there are presented: (A) total number of detected sleep spindles for each recording, (B) spindle
density for each recording, (C) the kappa coefficient of scorers agreement for each recording. Subject id and number of nap recording are presented on x axis.

Amplitude and Frequency’’ Section . Amplitudes in other
frequency ranges were computed using similar technique,
however without pre-filtering of the signal. Results are presented
in Table 2.

Consensus spindles could be characterized as the ones
with high amplitude (12.51 µV in amplitude spectrum), high
frequency (clearly above 13 Hz) and strong activity when

compared to the background. Spindles marked only by a
single scorer, conversely, had significantly lower amplitudes,
frequencies and spindle to background activity ratio. Our CWT
detector marked the highest number of spindles not scored by
the others (N = 726). It was 20% of all spindles marked by
our algorithm. Spindles detected only by our detector had the
lowest average frequency (11.94 Hz) and the highest activity
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TABLE 1 | Spindle detection agreement between our CWT detector,
SIESTA algorithm and human scorer.

Agreement measure CWT vs. CWT vs. SIESTA vs.
SIESTA Human Human

Stage 2 SWS Stage 2 Stage 2

Sensitivity 0.77 0.64 0.72 0.62
Specificity 0.93 0.94 0.90 0.92
Precision 0.61 0.66 0.40 0.43
Kappa 0.62 0.56 0.45 0.44
Adjusted geometric mean 0.88 0.85 0.85 0.83
Matthews correlation 0.63 0.57 0.48 0.46
Spindle density correlation 0.86 0.80 0.73 0.55

Sleep spindles were scored in the C3A2 EEG channel. CWT, continuous wavelet

transform; SWS, slow wave sleep.

in delta and theta frequency ranges. Only 11% of spindles
marked by the human scorer were not detected by any automatic
algorithm. The average frequency of these spindles was close
to the ones marked only by the CWT detector (12.05 Hz).
Furthermore, spindles marked only by the human scorer had the
lowest amplitude in the amplitude spectrum when compared to
automatic detectors (7.92 µV), and were the longest. It means
that they often in those cases marked longer fragments than the
actual spindle activity. The SIESTA algorithm marked 17% of
spindles which were not detected by others. Spindles marked
only by the SIESTA algorithm had high average frequency (above
13 Hz) as well as a relatively high amplitude and high activity
when compared to the background. These spindles were the
ones that on average resembled consensus spindles the most,
so the question was: why they were not marked by both the
human scorer and the CWT detector? The most important
reason was that these spindles were on average the shortest
(0.74 s). Spindles with this length should be detected, but

FIGURE 8 | Venn diagram showing in numbers of detected spindles,
how spindles detected by each scorer overlapped with spindles
detected by other scorers. Sleep spindles were detected during stage 2 in
C3A2 EEG derivation.

TABLE 2 | Characteristics of sleep spindles detected by all scorers
(consensus) and of spindles detected only by a single scorer in stage 2
sleep.

Consensus Only CWT Only SIESTA Only Human
(N = 1556) (N = 726) (N = 583) (N = 243)
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Spindle 12.51 (3.46) 8.54 (2.30) 9.24 (3.54) 7.92 (4.00)
amplitude (µV)a

Spindle 13.75 (1.15) 11.94 (1.74) 13.10 (1.23) 12.05 (2.70)
frequency (Hz)
Spindle 0.88 (0.33) 0.81 (0.42) 0.74 (0.41) 0.99 (0.47)
length (s)
Delta (µV)b 6.74 (4.16) 10.22 (7.44) 7.26 (4.74) 7.45 (6.38)
Theta (µV)b 4.61 (2.30) 6.56 (4.22) 4.82 (2.95) 5.95 (4.93)
Alpha (µV)b 3.80 (1.94) 5.10 (2.33) 4.34 (3.18) 6.27 (3.98)
Spindle to 2.56 (1.15) 1.22 (0.58) 1.73 (0.72) 1.22 (0.64)
background ratioc

Sleep spindles were scored in the C3A2 EEG channel. aComputed from

amplitude spectrum as described in “Computation of Sleep Spindle Amplitude

and Frequency” Section. bMean amplitude in chosen frequency from amplitude

spectrum (delta: 2–4.5 Hz, theta: 4.6–7.5 Hz, alpha: 7.6–11 Hz). cSpindle amplitude

divided by mean amplitude in 2–11 Hz background frequency computed from

amplitude spectrum.

24.7% of spindles detected only by the SIESTA algorithm were
shorter than half a second. According to our rules, spindles
shorter than 0.5 s were not detected. Furthermore, the shortest
spindles marked by the SIESTA algorithm also had the highest
amplitudes. There was a moderately strong negative correlation,
in spindles detected only by the SIESTA detector, between
spindle length and amplitude (r = −0.53 compared to r =
−0.24 in spindles detected only by CWT detector). Due to the
fact that many spindles marked by SIESTA were short and
therefore could be missed, we analyzed just spindles whose
length was at least 0.7 s and which were detected just by our
algorithm or by the SIESTA detector. Results are presented in
Table 3.

TABLE 3 | Characteristics of sleep spindles detected only by the CWT
detector and the SIESTA detector, whose length was at least 0.7 s in
stage 2 sleep.

Only CWT Only SIESTA
(N = 398) (N = 250)

Mean (SD) Mean (SD)

Spindle amplitude (µV)a 8.21 (2.44) 7.80 (3.41)
Spindle frequency (Hz) 11.90 (1.77) 13.02 (1.41)
Spindle length (s) 1.01 (0.48) 1.10 (0.38)
Delta (µV)b 9.91 (7.20) 6.28 (3.83)
Theta (µV)b 6.13 (3.84) 4.02 (2.12)
Alpha (µV)b 4.74 (2.21) 3.63 (2.45)
Spindle to background ratioc 1.23 (0.60) 1.73 (0.72)

Sleep spindles were scored in the C3A2 EEG channel. aComputed from

amplitude spectrum as described in “Computation of Sleep Spindle Amplitude

and Frequency” Section. bMean amplitude in chosen frequency from amplitude

spectrum (delta: 2–4.5 Hz, theta: 4.6–7.5 Hz, alpha: 7.6–11 Hz). cSpindle amplitude

divided by mean amplitude in 2–11 Hz background frequency computed from

amplitude spectrum.
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Characteristics of ‘‘long’’ sleep spindles detected only by
our CWT detector (average spindle amplitude, frequency and
background activity) were very similar when compared to all
spindles marked only by our algorithm. In ‘‘long’’ sleep spindles
detected only by the SIESTA algorithm we observed a 15%
drop in spindle amplitude, whereas their average frequency
remained high and the ratio of their activity to the background
remained the same, when compared to all spindles marked only
by the SIESTA detector. We conclude that spindles marked
only by our algorithm were slower and/or intermingled into
other frequencies while spindles marked by the SIESTA detector
were either short or had too low an amplitude for other
scorers. Spindles marked only by the human scorer were few,
characterized by slower frequency and a length longer than the
actual spindle activity.

We investigated the performance of our CWT detector using
the validation set, which consisted of recordings with only central
derivations available. For this reason, we used fixed spindle
detection frequency ranges and we did not distinguish between
slow and fast spindles, but we analyzed all sleep spindles only.
Unfortunately, we could not directly evaluate the performance of
the CWT detector with individually adjusted spindle frequency
ranges vs. other scorers. To get the impression how adjusted
frequency ranges would affect the detection, we compared
the agreement of the CWT detector with itself when using
fixed spindle frequency ranges vs. individually adjusted spindle
frequency ranges. We analyzed the second recording night of our
twin data. Our results include pooled detection agreement from
Fp1A2, F3A2, C3A2, and P3A2 channels. Results are presented
in Table 4.

The agreement was higher for stage 2 sleep when compared
to SWS. The reason was that the algorithm with adjustable
frequency ranges detected significantly more spindles during
SWS when compared to fixed frequency ranges. The agreement
was also high when we considered all sleep spindles together.
Mean all spindle density was 4.02 during stage 2 and 4.39 during
SWS for algorithm with adjustable frequency ranges compared
to 3.96 during stage 2 and 3.47 during SWS for algorithm
with fixed frequency ranges. During stage 2 the agreement was

TABLE 4 | Twin set, night 2.

Agreement measure Slow spindles Fast spindles All spindles

Stage 2 SWS Stage 2 SWS Stage 2 SWS

Sensitivity 0.82 0.66 0.64 0.52 0.90 0.74
Specificity 0.97 0.98 0.99 0.99 0.99 0.99
Precision 0.67 0.76 0.80 0.78 0.92 0.95
Kappa 0.69 0.61 0.64 0.53 0.89 0.77
Adjusted geometric mean 0.93 0.87 0.87 0.82 0.96 0.91
Matthews correlation 0.70 0.64 0.67 0.58 0.89 0.80
Spindle density correlation 0.74 0.73 0.72 0.71 0.93 0.74

Spindle detection agreement between our CWT detector with fixed frequency

ranges (slow spindle: 11–12.9 Hz, fast spindle: 13.1–16 Hz) compared to the

same detector with individually adjusted spindle frequency ranges. Agreement was

calculated from pooled channels Fp1A2, F3A2, C3A2, and P3A2. CWT, continuous

wavelet transform; SWS, slow wave sleep.

almost perfect, however during SWS it dropped to substantial.
The agreement dropped significantly when the CWT detector
made a distinction between slow and fast spindles. Mean slow
spindle density was 2.05 during stage 2 and 3.15 during SWS
for the algorithm with adjustable frequency ranges compared
to 2.46 during stage 2 and 2.51 during SWS for the algorithm
with fixed frequency ranges. The agreement during both, stage
2 sleep and SWS was substantial. Mean fast spindle density was
1.64 during stage 2 and 0.88 during SWS for algorithm with
adjustable frequency ranges compared to 1.22 during stage 2
and 0.58 during SWS for algorithm with fixed frequency ranges.
During stage 2 the agreement was substantial and during SWS it
dropped tomoderate.

Sleep-Related Memory Consolidation Data
Mean sleep spindle density during stage 2 sleep was 4.46 for
our algorithm and 4.0 for the SIESTA detector, whereas during
SWS it was 3.43 and 3.56, respectively. Sleep spindle analysis
performed with the SIESTA detector was already described
by Genzel et al. (2009). Results returned by the SIESTA
algorithm revealed significant Pearson’s correlation between
spindle density and declarative memory consolidation (stage 2
sleep: r = 0.627, P = 0.015; SWS: r = 0.516, P = 0.043).
Results returned by our algorithm confirmed previous findings
in terms of a significant relationship between spindle density and
declarativememory consolidation (stage 2 spindles: r = 0.579, P =
0.024; SWS: r = 0.585, P = 0.023). Figure 9 shows the relation
betweenmemory consolidation and spindle density. The subject-
wise correlation of spindle density between our detector and
SIESTA was r = 0.93 for stage 2 sleep and r = 0.80 for SWS.

As for spindle activity (absolute number of spindles per
night × mean spindle amplitude × mean spindle duration),
Table 5 shows correlations between declarative memory
consolidation and spindle parameters included in spindle
activity calculations. During stage 2 sleep, spindle activity
obtained from the SIESTA detector were significantly related
to declarative memory consolidation (r = 0.616, P = 0.017;
Genzel et al., 2009). However, the relationship of declarative
memory consolidation and spindle activity computed using our
algorithm was only marginally significant (r = 0.468, P = 0.062).
In SWS, spindle activity obtained from both algorithms was
in marginal relationship with declarative memory consolidation
(our algorithm: r = 0.420, P = 0.087; SIESTA: r = 0.419, P =
0.087). The subject-wise correlation of spindle activity between
our detector and SIESTA was r = 0.94 for stage 2 sleep and r =
0.93 for SWS.

Genetic Influence on Sleep Spindles
Here we report the results of spindle detection with individually
adjusted spindle frequency ranges. All estimated frequency
ranges for each twin pair can be found in the Supplementary
Material (Tables S1–S3 and Figures S1–S46). GVA of sleep
spindles detected with fixed spindle frequency ranges are also
included in the supplement. We applied individual adjustment of
slow and fast spindle frequency ranges separately for stage 2 sleep
and SWS. The average frequency of slow spindles detected during
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FIGURE 9 | Relation between declarative memory performance and spindle density computed by two algorithms: SIESTA spindle detector and CWT
detector during (A) stage 2 sleep and (B) SWS. Sleep spindles were detected in C4A1 EEG derivation.

stage 2 sleep was 11.43 Hz with inter-subject variability ranging
from 10.04–12.37 Hz. During SWS, the average frequency of slow
spindles was 10.99 with 9.62–12.27 Hz inter-subject range. The
average frequency of fast spindles detected during stage 2 sleep
was 13.59 Hz with inter-subject variability ranging 12.30–14.83
Hz. During SWS, the average frequency of fast spindles was 13.55
with 12.26–14.73 Hz inter-subject range.

The criterion of normal distribution was not fulfilled for
the average slow spindle length during stage 2 sleep in the
F3A2 EEG channel, therefore it was log transformed prior to all
analyses. We observed that age, as a covariate, had a marginally
significant effect on fast spindle density (higher spindle density
in younger subjects), and sex, as a covariate, had a marginally
significant effect on slow spindle number (higher spindle number
in females). Sample means of averaged over-pairs measures
revealed no significant night effects (Supplementary Material,
Tables S4, S6, S8 and S10). However, in the F3A2 derivation,
we observed significantly higher slow spindle amplitude in DZ
twins during stage 2 sleep as well as significantly higher slow
spindle absolute number and density in DZ twins during SWS
(Supplementary Material, Tables S8 and S10). Therefore, for

TABLE 5 | Pearson’s correlation between declarative memory
consolidation and spindle characteristics.

CWT detector SIESTA detector

Stage 2 SWS Stage 2 SWS

Spindle density 0.58 0.59 0.63 0.52
Spindle absolute number 0.45 0.48 0.60 0.49
Spindle amplitude (µV)a 0.31 0.07 0.45 0.28
Spindle length (s) 0.22 0.36 0.50 0.28
Spindle activityb 0.47 0.42 0.62 0.42

Sleep spindles were scored in the C4A1 EEG channel. aComputed from

amplitude spectrum as described in “Computation of Sleep Spindle Amplitude and

Frequency” Section. bSpindle activity: absolute number of spindles per night ×

mean spindle amplitude × mean spindle duration.

these three slow spindle parameters GVA was not applicable.
In both, stage 2 sleep and SWS, we identified a significant
genetic influence on variance of all but one remaining slow
spindle parameter. The exception was the average slow spindle
frequency in the F3A2 channel during SWS, on which the
genetic effect was only marginally significant. Tables 6, 7 depict
GVA of sleep spindle parameters during stage 2 sleep and SWS,
respectively.

Considering fast sleep spindles, GVA revealed significant
genetic control on variance of spindle length, amplitude and
frequency during both stage 2 sleep and SWS.However, we found
no genetic effects on fast spindle number and density during
stage 2 sleep, whereas during SWS in the P3A2 channel genetic
influence on variance was significant on fast spindle number (the
effect was weak: P = 0.049), and only marginally significant on
fast spindle density.

The mean ICC of all slow spindle parameters for night-to-
night stability was similar in both groups: 0.91 in the MZ set
compared to 0.88 in the DZ set. All these values were above the
significance threshold (P = 0.01) set by bootstrapping analysis.
According to the Landis and Koch (1977) benchmark, night-
to-night stability in the MZ set was almost perfect for all but
one slow spindle characteristic (it was substantial for spindle
number in P3A2 channel during SWS). Night-to-night stability
in the DZ set was almost perfect for all but four slow spindle
parameters. It was substantial for spindle number in the F3A2
channel during SWS as well as for spindle amplitude in the P3A2
channel during stage 2 sleep, as well as for spindle amplitude in
both channels during SWS. The mean ICC of all slow spindle
parameters for within-pair resemblance was 0.91 in MZ twins
and 0.35 in DZ twins. In the MZ set, within-pair similarity
was always above the significance level, and according to the
benchmark within-pair similarity was almost perfect for all slow
spindle parameters. In the DZ set however, within-pair similarity
was below the significance level for all parameters besides spindle
frequency during SWS. In addition, within-pair similarity for
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TABLE 6 | Genetic variance analysis, type of estimate applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair
estimate) and intraclass correlation coefficients (ICCs) for spindle parameters in stage 2 sleep.

Variable Type P Analysis ICC MZ ICC DZ ICC MZ cn ICC DZ cn

EEG channel: F3A2
Number of spindles Slow <0.001 GWT 0.91 (0.47, 0.12) 0.43 (0.62, 0.18) 0.92 (0.33, 0.09) 0.88 (0.49, 0.14)

Fast 0.279 GWT 0.75 (0.44, 0.13) 0.49 (0.61, 0.18) 0.85 (0.32, 0.08) 0.92 (0.49, 0.12)
Spindle density Slow 0.001 GCT 0.94 (0.45, 0.13) 0.24 (0.65, 0.19) 0.94 (0.31, 0.09) 0.91 (0.46, 0.13)

Fast 0.164 GWT 0.78 (0.48, 0.11) 0.54 (0.67, 0.18) 0.86 (0.32, 0.08) 0.94 (0.50, 0.13)
Spindle length Slow 0.002 GCT 0.96 (0.45, 0.12) 0.42 (0.65, 0.19) 0.96 (0.32, 0.09) 0.92 (0.48, 0.13)

Fast 0.030 GWT 0.74 (0.46, 0.12) 0.40 (0.61, 0.17) 0.82 (0.33, 0.08) 0.91 (0.46, 0.13)
Spindle amplitude Slow∗

− − 0.88 (0.46, 0.12) 0.19 (0.65, 0.18) 0.91 (0.34, 0.09) 0.88 (0.48, 0.13)
Fast <0.001 GCT 0.88 (0.45, 0.13) 0.10 (0.62, 0.16) 0.88 (0.32, 0.08) 0.74 (0.50, 0.13)

Spindle frequency Slow <0.001 GWT 0.94 (0.43, 0.12) 0.43 (0.62, 0.18) 0.93 (0.32, 0.09) 0.96 (0.48, 0.13)
Fast <0.001 GWT 0.93 (0.42, 0.12) 0.67 (0.64, 0.18) 0.96 (0.33, 0.09) 0.96 (0.48, 0.14)

EEG channel: P3A2
Number of spindles Slow <0.001 GCT 0.96 (0.53, 0.11) 0.22 (0.69, 0.19) 0.93 (0.34, 0.08) 0.88 (0.48, 0.13)

Fast 0.271 GWT 0.80 (0.45, 0.12) 0.70 (0.68, 0.19) 0.83 (0.34, 0.09) 0.86 (0.46, 0.13)
Spindle density Slow <0.001 GCT 0.96 (0.53, 0.11) 0.04 (0.68, 0.18) 0.94 (0.36, 0.08) 0.91 (0.48, 0.13)

Fast 0.196 GWT 0.80 (0.44, 0.12) 0.67 (0.66, 0.19) 0.85 (0.32, 0.09) 0.88 (0.44, 0.12)
Spindle length Slow <0.001 GCT 0.94 (0.52, 0.12) −0.19 (0.66, 0.19) 0.90 (0.37, 0.08) 0.81 (0.47, 0.13)

Fast 0.002 GWT 0.78 (0.45, 0.12) 0.48 (0.62, 0.19) 0.89 (0.33, 0.08) 0.92 (0.47, 0.14)
Spindle amplitude Slow 0.005 GWT 0.84 (0.46, 0.13) 0.50 (0.61, 0.17) 0.88 (0.31, 0.09) 0.79 (0.47, 0.12)

Fast 0.047 GWT 0.82 (0.48, 0.13) 0.57 (0.67, 0.17) 0.88 (0.33, 0.09) 0.64 (0.48, 0.12)
Spindle frequency Slow <0.001 GWT 0.94 (0.44, 0.12) 0.41 (0.64, 0.18) 0.90 (0.34, 0.09) 0.95 (0.46, 0.12)

Fast <0.001 GWT 0.94 (0.47, 0.12) 0.70 (0.61, 0.18) 0.97 (0.32, 0.09) 0.98 (0.47, 0.13)

Results of genetic variance analysis, type of estimate applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair estimate) and intraclass

correlation coefficients (ICCs). ICC MZ: ICCs of monozygotic (MZ) twins, ICC DZ: ICCs of dizygotic (DZ) twins, ICC MZ cn: ICCs of consecutive nights for each subject in

MZ group, ICC DZ cn: ICCs of consecutive nights for each subject in DZ group. ICC results include: original sample ICC (upper percentile of bootstrapped data, median

of bootstrapped data). ∗Analysis of variance not applicable (significant differences between the means in DZ and MZ twin set).

multiple parameters was below the bootstrapped median value,
so it was lower than expected by chance. Within-pair similarity
was almost perfect only once and substantial only twice. ICC
estimations of slow spindle within-twin-pair resemblance as well
as night-to-night stability were similar for sleep stage 2 when
compared to SWS.

Considering fast spindles, the mean ICC for night-to-night
stability was similar in both groups: 0.86 in theMZ set, compared
to 0.85 in theDZ set. All these values were above the bootstrapped
significance threshold (P = 0.01). Night-to-night stability in the
MZ set was almost perfect for all fast spindle characteristics,
whereas in the DZ set it was almost perfect for all but spindle
amplitude parameters. Night-to-night stability of fast spindle
amplitude in the DZ set ranged from moderate to substantial,
therefore our finding of significant genetic influence on fast
spindle amplitude should be treated with caution. The mean
ICC of all fast spindle characteristics for within-pair resemblance
was 0.76 in MZ twins and 0.45 in DZ twins. Within-pair
similarity in the MZ set was below the significance level only
for spindle number and density in F3A2 during SWS. According
to the benchmark, in MZ twins within-pair similarity was seven
times almost perfect, ten times substantial and three times only
moderate. In DZ set within-pair similarity was at most substantial
(six times) and only these values were above significance level.
Again, some values were below the bootstrapped median, so they
were lower than expected by chance.

Within-pair similarity in MZ twins was the lowest for fast
spindle quantification parameters: total number and density,

especially in SWS. These lower ICC results were not influenced
by night-to-night stability, which was always almost perfect.

DISCUSSION

In this study we present an automatic sleep spindle detection
algorithm based on CWT, which carefully localizes fast and
slow spindles frequency for each individual and estimates
the signal amplitude for each investigated EEG channel.
We used a validation data set of 18 naps and compared
our solution against human scoring and a SIESTA spindle
detector. While the SIESTA detector is a popular and
well tested solution, it does not distinguish between slow
and fast spindles. In addition, its detection threshold is
not individually adjusted according to signal amplitude (see
‘‘SIESTA Algorithm’’ Section). During sleep stage 2, the
agreement between human scorer and both detectors was
moderate, whereas the agreement between detectors was
substantial. During SWS, the agreement between detectors
was moderate. Due to observed differences between spindles
scored by each algorithm, we found it interesting to apply our
algorithm to sleep-related memory consolidation data previously
analyzed with the SIESTA detector and described in Genzel
et al. (2009). This experiment did not significantly improve
our knowledge about spindles and memory consolidation,
but we saw how technical differences can influence the
analysis outcome. We confirmed significant positive correlation
between spindle density and declarative memory consolidation,
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TABLE 7 | Genetic variance analysis, type of estimate applied (GCT: combined among- and within-twin pair component estimate, GWT: within-pair
estimate) and intraclass correlation coefficients (ICCs) for spindle parameters in slow wave sleep.

Variable Type P Analysis ICC MZ ICC DZ ICC MZ cn ICC DZ cn

EEG channel: F3A2
Number of spindles Slow∗

− − 0.94 (0.46, 0.12) 0.14 (0.61, 0.18) 0.92 (0.35, 0.09) 0.76 (0.46, 0.13)
Fast 0.204 GWT 0.41 (0.53, 0.12) 0.45 (0.76, 0.14) 0.84 (0.41, 0.08) 0.93 (0.61, 0.11)

Spindle density Slow∗
− − 0.96 (0.47, 0.12) 0.05 (0.62, 0.18) 0.96 (0.32, 0.08) 0.91 (0.46, 0.13)

Fast 0.677 GWT 0.45 (0.55, 0.12) 0.51 (0.74, 0.17) 0.81 (0.35, 0.08) 0.89 (0.57, 0.11)
Spindle length Slow <0.001 GCT 0.98 (0.57, 0.11) 0.45 (0.69, 0.18) 0.92 (0.42, 0.08) 0.89 (0.49, 0.13)

Fast 0.010 GWT 0.78 (0.44, 0.13) 0.42 (0.64, 0.19) 0.66 (0.35, 0.09) 0.85 (0.44, 0.13)
Spindle amplitude Slow <0.001 GCT 0.89 (0.45, 0.13) 0.16 (0.65, 0.20) 0.91 (0.34, 0.09) 0.78 (0.45, 0.13)

Fast <0.001 GCT 0.83 (0.48, 0.12) −0.30 (0.61, 0.19) 0.88 (0.34, 0.08) 0.60 (0.47, 0.13)
Spindle frequency Slow 0.052 GWT 0.91 (0.45, 0.12) 0.81 (0.66, 0.19) 0.93 (0.33, 0.08) 0.97 (0.48, 0.13)

Fast 0.027 GWT 0.86 (0.49, 0.13) 0.73 (0.58, 0.18) 0.85 (0.35, 0.09) 0.90 (0.48, 0.13)

EEG channel: P3A2
Number of spindles Slow 0.005 GCT 0.88 (0.42, 0.12) 0.45 (0.66, 0.19) 0.89 (0.34, 0.08) 0.87 (0.46, 0.13)

Fast 0.049 GWT 0.54 (0.49, 0.11) 0.15 (0.71, 0.19) 0.90 (0.35, 0.09) 0.83 (0.54, 0.12)
Spindle density Slow 0.030 GWT 0.90 (0.53, 0.13) 0.64 (0.70, 0.20) 0.93 (0.36, 0.09) 0.95 (0.50, 0.13)

Fast 0.071 GWT 0.68 (0.45, 0.12) 0.21 (0.59, 0.18) 0.88 (0.34, 0.08) 0.81 (0.50, 0.13)
Spindle length Slow <0.001 GCT 0.88 (0.57, 0.11) 0.46 (0.70, 0.20) 0.88 (0.39, 0.08) 0.90 (0.47, 0.13)

Fast 0.020 GWT 0.74 (0.48, 0.13) 0.47 (0.63, 0.19) 0.80 (0.34, 0.09) 0.94 (0.50, 0.13)
Spindle amplitude Slow 0.004 GWT 0.83 (0.44, 0.12) 0.41 (0.63, 0.19) 0.79 (0.33, 0.09) 0.73 (0.48, 0.12)

Fast 0.004 GCT 0.80 (0.49, 0.12) 0.29 (0.62, 0.19) 0.84 (0.35, 0.09) 0.56 (0.48, 0.13)
Spindle frequency Slow 0.049 GWT 0.82 (0.45, 0.12) 0.69 (0.63, 0.19) 0.88 (0.33, 0.08) 0.93 (0.48, 0.13)

Fast 0.001 GWT 0.94 (0.47, 0.13) 0.77 (0.64, 0.18) 0.93 (0.32, 0.08) 0.96 (0.48, 0.13)

Abbreviations explanation as in Table 6. ∗Analysis of variance not applicable (significant differences between the means in DZ and MZ twin set).

but we did not reproduce a significant positive correlation
between spindle activity and declarative memory consolidation.
Finally, comparison of basic spindle parameters between a
group of 32 healthy MZ and 14 DZ same-gender twins
revealed strong genetic influence on the variability of all
slow spindle parameters, fast spindle morphology, and a
weaker genetic effect on variance of fast spindle quantification
parameters.

In our algorithm, we detect spindles with CWT using
the Morlet wavelet, since wavelets of this type were shown
to catch sleep spindle characteristics very well (Zygierewicz
et al., 1999). Our solution rejects periods of signal with
strong muscle artifacts as well as segments dominated by
alpha activity. Furthermore, our method of adjusting spindle
detection threshold was designed to reflect background signal
amplitude as independent of signal/sleep quality and temporary
events as much as possible. For this reason, signal activity
was filtered below 6 Hz to avoid the influence of delta waves
and k-complexes, and above 18 Hz to exclude possible muscle
artifacts. In addition, logarithm transformation of frequency
spectra, combined with usage of median instead of a mean,
should decrease the influence of temporary activity bursts
and frequency peaks. However, thresholds computed with our
algorithm during stage 2 sleep were on average 9% lower than
thresholds computed for SWS, so our threshold adjustment
method is still sleep quality/stage dependent. We are not aware
how different sleep stages influence adjustable thresholds used in
other algorithms, but our conclusion is that, to avoid unnecessary
variance among sleep recordings, thresholds based on general
signal amplitude should be computed using homogenous sleep
stage.

Our automatic adjustment of sleep spindle frequency
boundaries is based on comparison of parietal and frontal
EEG signals, like that proposed by Bódizs et al. (2009, 2012),
but instead of frequency spectra our method analyses the
frequency of pre-localized spindle events. Since this approach
filters out all unnecessary parts of the signal it may be
more exact, especially when sleep spindle density is low.
Furthermore, our solution is robust against possible amplitude
differences between channels. We observed considerable inter-
subject variation in both slow and fast sleep spindle frequency.
In addition, the average frequency of slow sleep spindles
during SWS was slower than during stage 2 sleep which
suggests that spindle frequency ranges should be set separately
for shallow and deep sleep. The frequency distribution of
pre-localized spindle events as well as estimated spindle
frequency ranges for each twin can be found in Supplementary
Material.

We compared spindle detection of our new algorithm with
a human scorer and the commercially available SIESTA spindle
detector, which was developed using a large database with
manually scored sleep spindles (Anderer et al., 2005). One
limitation in this study is that we did not compare scorings
on an independent test set. We set detection thresholds using
the validation set in order to match the sensitivity of the
SIESTA algorithm. Our comparison results could thus be
inflated due to an overfitting problem. The comparison of our
solution with other algorithms and human scorers using an
independent dataset should be the next step in future work.
According to published benchmarks for the kappa coefficient
(Landis and Koch, 1977), during sleep stage 2 the agreement
between a human scorer and both algorithms was moderate,
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while both algorithms scored significantly more spindles. The
agreement between algorithms was substantial during sleep
stage 2 and dropped to moderate during SWS. In particular,
the agreements with the human scorer seemed low and as
presented in Figure 6, even manipulation of detection thresholds
would not improve the agreement significantly. When we
compared automatic algorithms we observed that spindles
marked only by the SIESTA detector were either short or
had the lowest amplitude, whereas spindles marked only by
the SIESTA detector had a lower frequency, around 12 Hz,
and higher activities in EEG background. Spindles marked
only by the human scorer were the longest and had a very
low amplitude in frequency spectrum. This low amplitude
was problematic, since the human scored clearly the lowest
amount of spindles, which means that the human detection
threshold was the highest. The reason for the low average
amplitude in the frequency spectrum was that marked events
were often longer than activity in the sigma range. Spindles
marked only by a visual scorer were rare, only 11% of total
spindles scored. However, characteristics of these spindles
show that visual scoring is prone to mistakes/inconsistencies.
Since a sleep spindle is a very characteristic element of an
EEG signal, this result seems to be disappointing. However,
low spindle detection agreement is surprisingly a general
phenomenon. Wendt et al. (2015) reported the average intra-
expert agreement and inter-expert agreement measured with
kappa at 0.66 and 0.52, respectively. Warby et al. (2014)
reported that agreement between gold standard (consensus
of human experts) and automatic algorithms measured with
kappa ranged from 0.15–0.41 and pointed that the agreement
between automatic detectors was generally lower than their
agreement with the gold standard. Consistent high discrepancies
between scorers indicate that even a small difference in
detection approach results in a significantly different type of
scored events. Unfortunately, simple differences in sensitivity
between scorers only partially explain the problem. As Warby
et al. (2014) observed: ‘‘automated methods as a group were
not consistent among themselves: they did not find the same
‘‘hidden’’ spindles’’. Automatic detectors use various signal
processing techniques, spindle frequency ranges and decision-
making processes. All these variables add up to significantly
different detection results. Whereas most human scorers seem
to share the decision process, according to Warby et al. (2014),
experts ‘‘frequently rely on spindles being a ‘distinct train of
waves’ that is clearly distinguishable from background’’. The
general human tendency to score spindles with a clearly strong
spindle activity compared to other frequencies is most likely
the main reason why inter-expert agreement is higher than
agreement between automatic methods as well as between
automatic methods and human scorers. There are already
algorithms which mimic this approach, including ones proposed
by Huupponen et al. (2007), and the SIESTA detector used
to validate our algorithm. However, firstly, the average inter-
expert agreement is still only moderate, and second, human
visual scoring is usually performed on ‘‘raw’’ EEG signal, while
all automatic methods use filtering or various transformations
to extract activity in the spindle frequency range. Since we

are not aware of any physiological data supporting the notion
that spindles should dominate the frequency spectrum, our
algorithm detects also spindles which are intermingled in other
frequencies.

Low agreement between spindle detectionmethods combined
with the highly individual character of sleep spindles (Werth
et al., 1997), as well as the whole frequency spectrum
(Buckelmüller et al., 2006), may lead to heterogeneous
discrepancies in estimated spindle activity across subjects.
As the result, the by-subject correlation of spindle activity
estimated by different detection methods can be low. Warby
et al. (2014) reported that the correlation between by-subject
spindle density estimated from the gold standard and from
the best automated detector was only r = 0.62. This fact
leads to the question whether results of experiments are
reproducible. For this reason, we re-analyzed sleep-related
memory consolidation data, previously analyzed with the
SIESTA detector and described in Genzel et al. (2009). The
design of this project could be especially susceptible to these
sort of discrepancies, since the idea was to correlate by-subject
spindle activity estimations with memory retention. By-subject
correlation between our algorithm and SIESTA detector did
not fall below r = 0.80 neither for validation nor for memory
consolidation data, and using our algorithm we reproduced
almost all findings reported in Genzel et al. (2009). However,
the highest discrepancy in by-subject correlation of spindle
activity estimated by both algorithms and memory retention
results was observed for spindle activity in sleep stage 2. It
was surprising, since by-subject correlation of this parameter
estimated by both algorithms was relatively high (r = 0.94). It
shows that even small differences in spindle detection might
lead to significantly different conclusions derived from an
experiment. Significant discrepancies between spindle scorings
increase the value of perfect reproducibility of the method
and findings, provided by every automatic algorithm. For
this reason, we conclude that the application of automatic
algorithms for spindle detection in research projects should be
encouraged.

Analysis of the twin data revealed high ICCs for night-
to-night stability across investigated fast and slow spindle
parameters during both sleep stage 2 and SWS, supporting
previous reports about sleep spindle fingerprint characteristics
(Werth et al., 1997; De Gennaro et al., 2005). Recently
Eggert et al. (2015) reported ICC results for night-to-night
stability of sleep spindles detected during stage 2 sleep with
the SIESTA algorithm. The authors reported results from
the central channel without distinction between slow and
fast spindles. ICCs for night-to-night stability were also high
for all spindle characteristics. The highest stability with ICC
(0.92) was observed for spindle amplitude, and the lowest
stability with ICC (0.84) was observed for spindle density.
In our analysis we distinguished between slow and fast sleep
spindles and we performed the analysis during stage 2 and
during SWS separately. When comparing fast and slow spindles
we observed that, besides frequency, stability of fast spindle
parameters was moderately lower. This lower night-to-night
stability of fast spindles dropped slightly further when we

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 624 | 25

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Adamczyk et al. Automatic Spindle Detection Using CWT

looked into within-pair similarity of MZ twins. Interestingly,
the drop off between night-to-night stability and within-pair
similarity of MZ twins was not observed for slow spindle
parameters, where ICC estimates were on average exactly
the same. In DZ twins, within-pair similarity was clearly
lower than their night-to-night stability for both fast and
slow spindle parameters. As a result, GVA revealed genetic
control on variance of all slow and most of fast spindle
parameters during stage 2 sleep and SWS. However, the
genetic component of fast spindle parameters, besides spindle
frequency, was weaker, especially for fast spindle quantities.
GVA did not show significant genetic determination of fast
spindle number and density during sleep stage 2. Analyses
repeated with a subgroup of MZ twins closely matched
for age, gender and cohabitation to DZ twins confirmed
our findings in the total twin sample (see Supplementary
Material, Tables S20–S23). In addition, for matched MZ
sample GVA could be performed on slow spindle amplitude
in SWS as well as slow spindle quantities in SWS. For
all these remaining parameters we found significant genetic
influence.

The number of DZ twin pairs (n = 14) is a limitation
of our study. It is the reason why there is high variability
of within-pair similarity estimates between spindle parameters
in DZ twins. With our sample size, strong dissimilarity
within just one twin pair strongly affects ICC outcome for
the whole group. Sometimes these values were very high,
above the bootstrapped significance threshold (P = 0.01),
but sometimes these values were below similarity expected
by chance (median of bootstrapped data) or even below
zero, which means that resemblance between DZ twins was
lower than observed in the population. Such low similarities
within DZ twins has little biological sense and most likely
could occur due to the small sample size. If we would
compute narrow sense heritability, error margins would be
high due to the small size of the DZ sample. Therefore,
we do not provide narrow sense heritability estimations.
Furthermore, we did not correct our GVA results for multiple
testing, so there is an increased probability of type 1
error.

The next limitation of our study is the fact that we
compared our algorithm to the SIESTA detector and human
scorer using only fixed spindle detection frequency ranges.
While individually adjusted frequency ranges may improve
the quality of spindle detection, this change in the algorithm
could result in significant detection differences. To illustrate
how such change influences the detection, we provided the
comparison of our algorithm with itself, with and without
adjustable frequency ranges. The agreement was almost perfect
when we considered all sleep spindles together during stage
2 sleep. However, the agreement dropped during SWS, since
the detector with individually adjusted frequency ranges
marked more spindles. This was because individually adjusted
frequency ranges in SWS were often lower than 11 Hz,
which was the lower boundary in the detector with fixed
ranges. The agreement dropped further when we analyzed
slow and fast spindles separately, since individually adjusted

boundaries between fast and slow spindles varied and were
rarely 13 Hz, like in fixed ranges approach. As a result,
spindles classified as fast when using individually adjusted
frequency ranges could be classified as slow when using fixed
ranges. Ujma et al. (2015) compared a spindle detector with
individually adjusted spindle frequency ranges vs. a different
detector with fixed frequency ranges (slow spindles: 11–13
Hz, fast spindles: 13–15 Hz). The reported agreement was
poor, especially for slow spindles. Differences between fixed
and adjusted frequency ranges had a high impact on observed
detection discrepancies. In many subjects individually adjusted
fast spindle activity peak was approaching or fell below the
13 Hz threshold. Slow spindles seemed to be even more
problematic. In approximately 25% of subjects the individually
adjusted peak of slow spindle activity fell below 11 Hz, which
is the commonly used lower boundary for spindle frequency.
In order to compensate for the lack of validation of our
adjustable frequency ranges vs. other methods, we provided
detailed plots with detection results over frequency range for
each twin in the Supplementary Material and in addition,
we estimated genetic influence on sleep spindles also using
fixed spindle detection frequency ranges. Results are included
in Supplementary Material (Tables S12–S19). Due to fixed
thresholds the separation between slow and fast spindles was
less exact and therefore differences between two spindle types
decreased. However, the outcome still supported our main
observations about stronger night-to-night stability and stronger
genetic influence on slow spindles when compared to fast
ones.

Due to reported differences between spindle algorithms,
as well as between human and automatic spindle scoring,
spindle findings should be interpreted carefully. Our findings
on strong genetic influence on spindle frequency, length and
amplitude further promote the view that variability in the
morphology of both slow and fast spindles is genetically
driven. However, comparably weaker genetic effects on fast
spindle quantity (density and total amount) may reflect stronger
environmental influences on this spindle type (i.e., memory
load). This is supported by a previous study on the role of fast
spindles in sleep-dependent memory processing (Mölle et al.,
2011). A detection algorithm which considers the individual
morphology of two types of spindles may be an important
tool to identify environmental influences on this relevant sleep
phenomenon.

ACKNOWLEDGMENTS

We would like to thank Richard Fitzpatrick for reading and
commenting on the article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: http://journal.frontiersin.org/article/10.3389/fnhum.2015.
00624/abstract

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 624 | 26

http://journal.frontiersin.org/article/10.3389/fnhum.2015.00624/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2015.00624/abstract
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Adamczyk et al. Automatic Spindle Detection Using CWT

REFERENCES

Addison, P. (2002). The Illustrated Wavelet Transform Handbook: Introductory
Theory and Applications in Science, Engineering, Medicine and Finance, Bristol,
Philadelphia: Institute of Physics Publishing.

Ambrosius, U., Lietzenmaier, S., Wehrle, R., Wichniak, A., Kalus, S., Winkelmann,
J., et al. (2008). Heritability of sleep electroencephalogram. Biol. Psychiatry 64,
344–348. doi: 10.1016/j.biopsych.2008.03.002

Anderer, P., Gruber, G., Parapatics, S., Woertz, M., Miazhynskaia, T., Klosch, G.,
et al. (2005). An E-health solution for automatic sleep classification according
to Rechtschaffen and Kales: validation study of the Somnolyzer 24× 7 utilizing
the Siesta database. Neuropsychobiology 51, 115–133. doi: 10.1159/000085205

Anderer, P., Klösch, G., Gruber, G., Trenker, E., Pascual-Marqui, R. D., Zeitlhofer,
J., et al. (2001). Low-resolution brain electromagnetic tomography revealed
simultaneously active frontal and parietal sleep spindle sources in the human
cortex. Neuroscience 103, 581–592. doi: 10.1016/s0306-4522(01)00028-8

Andrillon, T., Nir, Y., Staba, R. J., Ferrarelli, F., Cirelli, C., Tononi, G., et al. (2011).
Sleep spindles in humans: insights from intracranial EEG and unit recordings.
J. Neurosci. 31, 17821–17834. doi: 10.1523/jneurosci.2604-11.2011

Astori, S., Wimmer, R. D., and Lüthi, A. (2013). Manipulating sleep
spindles—expanding views on sleep, memory and disease. Trends Neurosci. 36,
738–748. doi: 10.1016/j.tins.2013.10.001

Batuwita, R., and Palade, V. (2012). Adjusted geometric-mean: a novel
performance measure for imbalanced bioinformatics datasets learning. J.
Bioinform. Comput. Biol. 10:1250003. doi: 10.1142/s0219720012500035

Bódizs, R., Gombos, F., and Kovács, I. (2012). Sleep EEG fingerprints reveal
accelerated thalamocortical oscillatory dynamics in Williams syndrome. Res.
Dev. Disabil 33, 153–164. doi: 10.1016/j.ridd.2011.09.004

Bódizs, R., Körmendi, J., Rigó, P., and Lázár, A. S. (2009). The individual
adjustment method of sleep spindle analysis: methodological improvements
and roots in the fingerprint paradigm. J. Neurosci. Methods 178, 205–213.
doi: 10.1016/j.jneumeth.2008.11.006

Buckelmüller, J., Landolt, H. P., Stassen, H. H., and Achermann, P. (2006).
Trait-like individual differences in the human sleep electroencephalogram.
Neuroscience 138, 351–356. doi: 10.1016/j.neuroscience.2005.11.005

Buzsáki, G. (1989). Two-stagemodel of memory trace formation: a role for ‘‘noisy’’
brain states. Neuroscience 31, 551–570. doi: 10.1016/0306-4522(89)90423-5

Christian, J. C., Borhani, N. O., Castelli, W. P., Fabsitz, R., Norton, J. A., Reed,
T., et al. (1987). Plasma cholesterol variation in the National Heart, Lung and
Blood Institute Twin Study. Genet. Epidemiol. 4, 433–446. doi: 10.1002/gepi.
1370040605

Christian, J. C., Kang, K. W., and Norton, J. J. (1974). Choice of an estimate of
genetic variance from twin data. Am. J. Hum. Genet. 26, 154–161.

Clemens, Z., Fabó, D., and Halász, P. (2005). Overnight verbal memory retention
correlates with the number of sleep spindles. Neuroscience 132, 529–535.
doi: 10.1016/j.neuroscience.2005.01.011

Clemens, Z., Mölle, M., Eross, L., Barsi, P., Halász, P., and Born, J. (2007).
Temporal coupling of parahippocampal ripples, sleep spindles and slow
oscillations in humans. Brain 130, 2868–2878. doi: 10.1093/brain/awm146

Cox, R., Hofman, W. F., and Talamini, L. M. (2012). Involvement of spindles in
memory consolidation is slow wave sleep-specific. Learn. Mem 19, 264–267.
doi: 10.1101/lm.026252.112

De Gennaro, L., Ferrara, M., Vecchio, F., Curcio, G., and Bertini, M. (2005). An
electroencephalographic fingerprint of human sleep. Neuroimage 26, 114–122.
doi: 10.1016/j.neuroimage.2005.01.020

De Gennaro, L., Marzano, C., Fratello, F., Moroni, F., Pellicciari, M. C., Ferlazzo,
F., et al. (2008). The electroencephalographic fingerprint of sleep is genetically
determined: a twin study. Ann. Neurol 64, 455–460. doi: 10.1002/ana.21434

de Maertelaer, V., Hoffman, G., Lemaire, M., and Mendlewicz, J. (1987). Sleep
spindle activity changes in patients with affective disorders. Sleep 10, 443–451.

Dijk, D. J., Beersma, D. G., and Bloem, G. M. (1989a). Sex differences in the sleep
EEG of young adults: visual scoring and spectral analysis. Sleep 12, 500–507.

Dijk, D. J., Beersma, D. G., and van den Hoofdakker, R. H. (1989b). All night
spectral analysis of EEG sleep in young adult and middle-aged male subjects.
Neurobiol. Aging. 10, 677–682. doi: 10.1016/0197-4580(89)90004-3

Dresler, M., Kluge, M., Genzel, L., Schüssler, P., and Steiger, A. (2010). Impaired
off-line memory consolidation in depression. Eur. Neuropsychopharmacol. 20,
553–561. doi: 10.1016/j.euroneuro.2010.02.002

Dresler, M., Kluge, M., Pawlowski, M., Schüssler, P., Steiger, A., and Genzel, L.
(2011). A double dissociation of memory impairments in major depression. J.
Psychiatr. Res. 45, 1593–1599. doi: 10.1016/j.jpsychires.2011.07.015

Eggert, T., Sauter, C., Dorn, H., Peter, A., Hansen, M. L., Marasanov, A., et al.
(2015). Individual stability of sleep spindle characteristics in healthy young
males. Somnologie 19, 38–45. doi: 10.1007/s11818-015-0697-x

Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., Murphy, M., Riedner,
B. A., et al. (2007). Reduced sleep spindle activity in schizophrenia patients.
Am. J. Psychiatry 164, 483–492. doi: 10.1176/appi.ajp.164.3.483

Ferrarelli, F., Peterson, M. J., Sarasso, S., Riedner, B. A., Murphy, M. J., Benca,
R. M., et al. (2010). Thalamic dysfunction in schizophrenia suggested by whole-
night deficits in slow and fast spindles. Am. J. Psychiatry 167, 1339–1348.
doi: 10.1176/appi.ajp.2010.09121731

Fogel, S. M., and Smith, C. T. (2011). The function of the sleep spindle: a
physiological index of intelligence and a mechanism for sleep-dependent
memory consolidation. Neurosci. Biobehav. Rev 35, 1154–1165. doi: 10.1016/j.
neubiorev.2010.12.003

Gais, S., Molle, M., Helms, K., and Born, J. (2002). Learning-dependent increases
in sleep spindle density. J. Neurosci 22, 6830–6834.

Genzel, L., Ali, E., Dresler, M., Steiger, A., and Tesfaye,M. (2011). Sleep-dependent
memory consolidation of a new task is inhibited in psychiatric patients. J.
Psychiatr. Res. 45, 555–560. doi: 10.1016/j.jpsychires.2010.08.015

Genzel, L., Bäurle, A., Potyka, A., Wehrle, R., Adamczyk, M., Friess, E., et al.
(2014). Diminished nap effects on memory consolidation are seen under oral
contraceptive use. Neuropsychobiology 70, 253–261. doi: 10.1159/000369022

Genzel, L., Dresler, M., Cornu, M., Jäger, E., Konrad, B., Adamczyk, M.,
et al. (2015). Medial prefrontal-hippocampal connectivity and motor memory
consolidation in depression and schizophrenia. Biol. Psychiatry. 77, 177–186.
doi: 10.1016/j.biopsych.2014.06.004

Genzel, L., Dresler, M., Wehrle, R., Grözinger, M., and Steiger, A. (2009). Slow
wave sleep and REM sleep awakenings do not affect sleep dependent memory
consolidation. Sleep 32, 302–310. doi: 10.1055/s-2007-991839

Genzel, L., Kroes, M. C., Dresler, M., and Battaglia, F. P. (2014). Light sleep versus
slow wave sleep in memory consolidation: a question of global versus local
processes? Trends Neurosci. 37, 10–19. doi: 10.1016/j.tins.2013.10.002

Haseman, J. K., and Elston, R. C. (1970). The estimation of genetic variance from
twin data. Behav. Genet. 1, 11–19. doi: 10.1007/bf01067367

Huupponen, E., De Clercq, W., Gomez-Herrero, G., Saastamoinen, A., Egiazarian,
K., Varri, A., et al. (2006). Determination of dominant simulated spindle
frequency with different methods. J. Neurosci. Methods 156, 275–283. doi: 10.
1016/j.jneumeth.2006.01.013

Huupponen, E., Gomez-Herrero, G., Saastamoinen, A., Varri, A., Hasan, J., and
Himanen, S. L. (2007). Development and comparison of four sleep spindle
detection methods. Artif. Intell. Med. 40, 157–170. doi: 10.1016/j.artmed.2007.
04.003

Landis, J. R., and Koch, G. G. (1977). The measurement of observer
agreement for categorical data. Biometrics 33, 159–174. doi: 10.2307/25
29310

Latka, M., Kozik, A., Jernajczyk, J., West, B. J., and Jernajczyk, W. (2005).
Wavelet mapping of sleep spindles in young patients with epilepsy. J. Physiol.
Pharmacol. 56, 15–20.

Lopez, J., Hoffmann, R., and Armitage, R. (2010). Reduced sleep spindle activity
in early-onset and elevated risk for depression. J. Am. Acad. Child Adolesc.
Psychiatry 49, 934–943. doi: 10.1016/j.jaac.2010.05.014

Mölle, M., Bergmann, T., Marshall, L., and Born, J. (2011). Fast and slow
spindles during the sleep slow oscillation - disparate coalescence and
engagement in memory processing. Sleep 34, 1411–1421. doi: 10.5665/sleep.
1290

Montplaisir, J., Petit, D., Lorrain, D., Gauthier, S., and Nielsen, T. (1995).
Sleep in Alzheimer’s disease: further considerations on the role of brainstem
and forebrain cholinergic populations in sleep-wake mechanisms. Sleep 18,
145–148.

Morin, A., Doyon, J., Dostie, V., Barakat, M., Hadj Tahar, A., Korman, M., et al.
(2008). Motor sequence learning increases sleep spindles and fast frequencies
in post-training sleep. Sleep 31, 1149–1156.

Nishida, M., and Walker, M. P. (2007). Daytime naps, motor memory
consolidation and regionally specific sleep spindles. PLoS One 2:e341. doi: 10.
1371/journal.pone.0000341

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 624 | 27

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Adamczyk et al. Automatic Spindle Detection Using CWT

Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., and Battaglia, F. P.
(2009). Replay of rule-learning related neural patterns in the prefrontal cortex
during sleep. Nat. Neurosci 12, 919–926. doi: 10.1038/nn.2337

Rechtschaffen, A., and Kales, A. (1968). A Manual of Standardized Terminology,
Techniques and Scoring System for Sleep Stages of Human Subjects. Los Angeles,
CA: UCLA Brain Information Service.

Schimicek, P., Zeitlhofer, J., Anderer, P., and Saletu, B. (1994). Automatic
sleep-spindle detection procedure: Aspects of reliability and validity. Clin.
Electroencephalogr. 25, 26–29. doi: 10.1177/155005949402500108

Tarokh, L., Carskadon, M. A., and Achermann, P. (2011). Trait-like characteristics
of the sleep EEG across adolescent development. J. Neurosci 31, 6371–6378.
doi: 10.1523/jneurosci.5533-10.2011

Ujma, P. P., Gombos, F., Genzel, L., Konrad, B. N., Simor, P., Steiger, A., et al.
(2015). A comparison of two sleep spindle detectionmethods based on all night
averages: individually adjusted versus fixed frequencies. Front. Hum. Neurosci.
9:52. doi: 10.3389/fnhum.2015.00052

Ujma, P. P., Konrad, B. N., Genzel, L., Bleifuss, A., Simor, P., Pótári, A., et al.
(2014). Sleep spindles and intelligence: evidence for a sexual dimorphism. J.
Neurosci. 34, 16358–16368. doi: 10.1523/jneurosci.1857-14.2014

Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V.,
et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia:
mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154–161.
doi: 10.1016/j.biopsych.2011.08.008

Warby, S. C., Wendt, S. L., Welinder, P., Munk, E. G. S., Carrillo, O., Sorensen,
H. B. D., et al. (2014). Sleep-spindle detection: crowdsourcing and evaluating
performance of experts, non-experts and automated methods. Nat. Methods
11, 385–392. doi: 10.1038/nmeth.2855

Wendt, S. L., Welinder, P., Sorensen, H. B., Peppard, P. E., Jennum, P.,
Perona, P., et al. (2015). Inter-expert and intra-expert reliability in sleep
spindle scoring.Clin. Neurophysiol. 123, 1548–1556. doi: 10.1016/j.clinph.2014.
10.158

Werth, E., Achermann, P., Dijk, D. J. and Borbély, A. A. (1997). Spindle
frequency activity in the sleep EEG: individual differences and topographic
distribution. Electroencephalogr. Clin. Neurophysiol. 103, 535–542. doi: 10.
1016/s0013-4694(97)00070-9

Wierzynski, C. M., Lubenov, E. V., Gu, M., and Siapas, A. G. (2009). State-
dependent spike timing relationships between hippocampal and prefrontal
circuits during sleep. Neuron 61, 587–596. doi: 10.1016/j.neuron.2009.01.011

Zygierewicz, J., Blinowska, K. J., Durka, P. J., Szelenberger, W., Niemcewicz,
S., and Androsiuk, W. (1999). High resolution study of sleep spindles.
Clin. Neurophysiol. 110, 2136–2147. doi: 10.1016/s1388-2457(99)
00175-3

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Adamczyk, Genzel, Dresler, Steiger and Friess. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution and reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org November 2015 | Volume 9 | Article 624 | 28

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


METHODS
published: 08 May 2015

doi: 10.3389/fnhum.2015.00258

Frontiers in Human Neuroscience | www.frontiersin.org May 2015 | Volume 9 | Article 258 |

Edited by:

Simon C. Warby,

Stanford University, USA

Reviewed by:

Christian Bénar,

Institut National de la Recherche

Médicale, France

Alpar S. Lazar,

Univesrity of Cambridge, UK

*Correspondence:

Piotr J. Durka,

Faculty of Physics, University of

Warsaw, ul. Pasteura 5, 02-093

Warsaw, Poland

durka@fuw.edu.pl

Received: 15 October 2014

Accepted: 21 April 2015

Published: 08 May 2015

Citation:

Durka PJ, Malinowska U, Zieleniewska

M, O’Reilly C, Różański PT and
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We present a complete framework for time-frequency parametrization of EEG transients,

based upon matching pursuit (MP) decomposition, applied to the detection of sleep

spindles. Ranges of spindles duration (>0.5 s) and frequency (11–16 Hz) are taken

directly from their standard definitions. Minimal amplitude is computed from the

distribution of the root mean square (RMS) amplitude of the signal within the frequency

band of sleep spindles. Detection algorithm depends on the choice of just one

free parameter, which is a percentile of this distribution. Performance of detection is

assessed on the first cohort/second subset of the Montreal Archive of Sleep Studies

(MASS-C1/SS2). Cross-validation performed on the 19 available overnight recordings

returned the optimal percentile of the RMS distribution close to 97 in most cases, and the

following overall performance measures: sensitivity 0.63± 0.06, positive predictive value

0.47 ± 0.08, and Matthews coefficient of correlation 0.51 ± 0.04. These concordances

are similar to the results achieved on this database by other automatic methods.

Proposed detailed parametrization of sleep spindles within a universal framework,

encompassing also other EEG transients, opens new possibilities of high resolution

investigation of their relations and detailed characteristics. MP decomposition, selection

of relevant structures, and simple creation of EEG profiles used previously for assessment

of brain activity of patients in disorders of consciousness are implemented in a freely

available software package Svarog (Signal Viewer, Analyzer and Recorder On GPL) with

user-friendly, mouse-driven interface for review and analysis of EEG. Svarog can be

downloaded from http://braintech.pl/svarog.

Keywords: sleep spindles, matching pursuit, EEG transients, time-frequency, sleep, Svarog, open source, free

software

1. Introduction

Sleep spindles are defined in Rechtschaffen and Kales (1968); Ibert et al. (2007) as a train of distinct
waves with frequency 11–16 Hz (most commonly 12–14 Hz) with a duration ≥ 0.5 s Detection of
these structures by human experts, trained in visual analysis of EEG, constitutes a gold standard.
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Unfortunately, the inter-expert agreement in scoring sleep
spindles is limited. This drawback undermines the idea of
repeatability of experiments, which lies at the foundations of hard
sciences: the same study of sleep spindles on the same dataset
may yield different results, because of differences in the visual
selections done by human experts.

Explosion of the applications of computerized signal
processing methods resulted in a multitude of automatic
detection algorithms. The most effective so far are based upon
a common framework, introduced in Schimicek et al. (1994),
reviewed e.g., in Warby et al. (2014):

1. EEG is band-pass filtered in the frequency range related to
sleep spindles.

2. Signal from the previous step is subjected to amplitude
thresholding in the time domain.

3. Epochs exceeding the threshold are filtered in the time domain
to select those corresponding to sleep spindles.

Contrary to the visual detection by human experts, who
concentrate directly and separately on relevant transient
structures visible in EEG, each step of this sequential procedure
implements only one aspect of the definition, and accumulates
the bias from the previous steps. This drawback is the
consequence of separate application of filters in the frequency
and time domains. This turns our attention to the time-frequency
methods of signal processing.

Classically, methods like short-time Fourier transform (STFT)
and wavelet transform (WT) are used to compute the distribution
of signal’s energy in the time-frequency plane (Durka and
Blinowska, 1997). Regions of increased energy correspond
directly to signals transients, but their automatic selection still
requires some kind of thresholding. Bias resulting from a priori
choices of thresholds and further postprocessing becomes even
more difficult to assess than in the spectral methods. Also, results
depend significantly on prior choices of parameters like the
duration of the time window in STFT or choice of the mother
wavelet in WT.

Algorithm adapting the parameters automatically to the local
content of the analyzed signal was introduced in Mallat and
Zhang (1993). Matching pursuit algorithm (MP, Section 2.1)
is an iterative procedure explaining the signal as a sum of
Gabor functions (Figure 1), chosen optimally from a large and
redundant set. Comparing to WT and STFT, analysis window
and partly also the mother wavelet in this approach are chosen
individually for each local transient structure present in the
analyzed signal. Another unique feature of MP is the explicit
parameterization of the structures fitted to the signal in terms of
their time and frequency centers, duration and phase. This allows
to perform detection directly in the space of these parameters in
one step.

This approach has been successfully applied for the detection
and parameterization of EEG transients including sleep spindles
in different paradigms, mostly at the University of Warsaw.
Additionally, MP-based detection of several types of EEG
transients can be efficiently combined into an automatic sleep

stager, based explicitly upon the accepted criteria for stages
(Malinowska et al., 2009). However, in spite of almost 20 years of
publishing results (c.f. Durka and Blinowska, 1995; Żygierewicz
et al., 1999; Malinowska et al., 2013 and many more) and
free software for MP decomposition (our versions of the MP
algorithm have been freely available since 2001, Durka et al.,
2001), this approach to EEG analysis has been seldom applied
outside our group. One of the reasons may have been a relative
technical complexity of the whole procedure. To cope with
this problem, this paper introduces a user-friendly and freely
available multiplatform software for detection of sleep spindles
(and other transients) inMP decompositions of EEG. This plugin
is embedded in Svarog—Signal Viewer, Analyzer and Recorder
On GPL.

Detection of sleep spindles presented in this paper relies on the
correspondence of their shape (waxing and waning oscillations)
to the Gabor functions used in MP decomposition (Figure 1),
so finding corresponding structures among the Gabor functions
fitted by the MP to EEG time series is straightforward and
consists of setting the limits on their frequency centers, durations
and amplitudes. Duration and frequency are taken literally from
the definition of sleep spindles. As for the minimal amplitude,
which is not directly defined, we adapt the common approach,
which relates this parameter to the RMS of the signal filtered in
the sigma band.

2. Materials and Methods

2.1. Matching Pursuit Algorithm (MP)
2.1.1. Matching Pursuit (MP)
MP was proposed by Mallat and Zhang (1993) as a suboptimal,
iterative solution to the intractable problem of an optimal
representation of a signal x in a redundant dictionary D,
containing dense set of functions gγ . In plain English, the gist
of the MP procedure can be summarized as follows:

1. We start by creating a huge, redundant set D (called a
dictionary) of candidate waveforms for representation of
structures possibly occurring in the signal. For the time-
frequency analysis of signals we use dictionaries composed
of sines with Gaussian envelopes, called Gabor functions,
which reasonably represent waxing and waning of spindle
oscillations.

2. From this D dictionary we choose only those functions, which
fit the local signal structures. In such a way, the width of
the analysis window is adjusted to the local properties of the
signal. Local adaptivity of the procedure is somehow similar to
the process of visual analysis, where an expert tends to separate
local structures and assess their characteristics. Owing to this
local adaptivity, MP is the only signal processing method
returning explicit time span of detected structures.

3. The above idea is implemented in an iterative procedure: in
each step we find the “best” function, and then subtract it from
the signal being decomposed in the following steps.

As for the mathematical description, denoting the function fitted
to the signal x in the n-th iteration of MP as gγn , and the
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FIGURE 1 | Examples of Gabor functions, defined as Gaussian envelopes modulated by sinusoidal oscillations.

residual left after n-th iteration as Rnx, we can describe the
procedure as:







R0x = x
Rnx = 〈Rnx, gγn〉gγn + Rn+ 1x
gγn = argmaxgγi∈D |〈Rnx, gγi〉|

(1)

where 〈·, ·〉 denotes the inner product of signals and | · | the
absolute value. As a result we get an approximate expansion:

x ≈
M−1
∑

n=0

〈Rnx, gγn〉gγn (2)

where M equals the number of iterations of Equation (1). For
a time-frequency analysis of real-valued signals, dictionary D is
usually composed from Gabor functions:

gγ (t) = K(γ )e−π( t−u
s )

2

cos
(

ω(t − u)+ φ
)

(3)

where γ is a set of parameters such that γ = (u, ω, s) and K(γ )
is a normalization constant such that ||gγ || = 1.

The procedure is generic. The only major settings
correspond to:

• quality of the decomposition, regulated mainly by the size
of the dictionary D, which controls the parameterization
accuracy of detected structures.

• number of iterations M, which regulates the accuracy of the
overall approximation, the number of low energy structures
included in the decomposition increases withM.

In both cases, higher settings result in higher accuracy.

2.1.2. Size of the dictionary D
Size of the dictionary D determines the number of candidate
waveforms that will be fitted to the signal, and hence the
resolution of the resulting decomposition. The resolution goes
up with the number of functions in the dictionary. To make
this setting independent of the size of the signal, we introduced
one parameter regulating the density of the dictionary, related to
the maximum distance between the dictionary’s waveforms. This
parameter is called in the Svarog interface (Figure 2) “energy

error” ǫ, since it relates to the maximum error that MP can make
in a single iteration, as explained in details in Kuś et al. (2013)1.

This special construction of the dictionary, ensuring a uniform
distribution in the space of inner products, imposes non-uniform
distribution of dictionary’s functions in the space of their time
positions, widths and frequencies (Kuś et al., 2013). For example,
setting of ǫ = 0.04 used for MP decompositions in this paper
gives, for the frequency range of sleep spindles, possible time
widths 0.53, 0.8, 1.21, and 1.82 s. That means that a spindle—or
even a perfect Gabor function—with a width 1.5 s will bematched
by a Gabor function from the dictionary with width either 1.21
or 1.82 s, and the leftover energy will be accounted for in the
remaining iterations or will be left as a residual modeling noise
if not accounted by the firstM functions.

2.1.3. Number of iterations M
Number of iterations M is easier to assess, since the gγn in
Equation (2) are ordered by decreasing energy. That means that
in two different decompositions differing only in the setting of the
number of iterations, say 50 and 100, the first 50 waveforms will
be the same (with small exceptions if stochastic decomposition
was chosen), and iterations 51–100 will contain only structures
of energy smaller than contributed by gγ50 .

Increasing the number of iterations will not improve the
quality of fit of any single waveform, so if we are interested in
structures of relatively high energy, as is usually the case when
looking for structures which are also visible for human expert, it
makes no sense to increase M above the number which can be
determined heuristically for a given problem and class of signals.

Described above MP decomposition is a purely mathematical
procedure. In relation to EEG analysis, bad news are:

1 ǫ relates to the maximum distance between two neighboring functions available

for decomposition. The distance between two Gabor functions g1 and g2 from

the dictionary D, proposed in Kuś et al. (2013), is measured in the space of inner

products 〈g1|g2〉 related to the energy as

d(g1, g2) =
√

1− 〈g1|g2〉 (4)

Dictionary is constructed in such a way that this distance is kept uniform across

the neighboring functions. When fitting the dictionary’s functions to a signal,

the maximum error occurs when a signals structure falls exactly in between two

functions available in the dictionary. In such a dictionary, this error will not exceed

the distance between neighboring functions from the dictionary. In energy units it

will be d(g1, g2)
2—the (maximum) “energy error” ǫ.
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FIGURE 2 | Svarog window for setting the parameters of the MP

decomposition, presenting values used in this study. Decreasing the

parameter “Energy error”—in the text referred as ǫ—increases resolution and

the number of functions in the dictionary and usage of RAM, calculated

automatically in the lower panels. For explanation of other parameters see

Kuś et al. (2013).

1. Computation of the MP decomposition of a signal is relatively
time-consuming even on a modern PC.

2. Settings of the energy error and number of iterations may
require some consideration in case of limited computational
resources, as discussed above in Sections 2.1.2 and 2.1.3.

Good news are:

1. Unlike most of the time-frequency methods of signal
processing, setting of parameters is not a tradeoff between
different aspects of the quality of decomposition, but a tradeoff
between the quality and speed.

2. MP decomposition is generic, and once performed, the same
decomposition of given epoch can be used to investigate the
presence of different structures (c.f. Figures 7, 8). That’s where
the weight is switched from mathematics to neuroscience.

2.1.4. Software implementation
Program computing the actualMP decomposition of given epoch
is implemented in C and compiled separately for each platform.
It is a command-line program, taking input from a config file and
writing output to a binary file containing parameters of the fitted
functions (a “book” ∗.b). To facilitate its application, we created
a wrapper/GUI module for Svarog, which is a multiplatform

EEG review system. After installation and configuration of the
system (Section 4.4), user can performMP decompositions of the
epoch selected by mouse, setting the decomposition parameters
in tabs of the window displayed in Figure 2. Svarog then writes
the selected (referenced and filtered) epoch to disk and calls the
MP binary, which computes its decomposition and saves results
to disk. These results can be then explored as an interactive time-
frequency map as shown in Figure 3, or used for construction of
summary reports on selected structures, as discussed in Section
3.3. For those who want to design their own post-processing, we
provide scripts for reading the results of MP decomposition in
Matlab and Python (Section 4.4).

2.2. Experimental Data
Data comes from the first cohort/second subset of the Montreal
Archive of Sleep Studies (MASS-C1/SS2) (O’Reilly et al., 2014).
It includes whole-night recordings from 19 young and healthy
participants (8 male and 11 female; 23.6 ± 3.7 SD years old)
with expert scoring of sleep stages according to the rules of
Rechtschaffen and Kales (1968). For the gold standard, we
used scoring of spindles from expert #1 available on MASS
website. This scoring was performed for epochs of non-rapid eye
movement stage two sleep, on C3 channel (linked-ear reference),
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FIGURE 3 | Results of MP decomposition displayed as an interactive time-frequency map of signal’s energy density in Svarog. Clicking center of a blob

(marked by white cross) adds the corresponding function to the reconstruction (bottom signal). From Kuś et al. (2013)

and following AASM rules (Ibert et al., 2007). This database was
chosen as it is open for sleep research and therefore facilitate
reproducibility (see Section 4.4).

2.3. Measures of Performance of Detection
We based the assessment of efficiency of the detector on the
markings with the accuracy of the EEG sampling, as proposed
in O’Reilly et al. (in revision). In such an approach, at each
sample (in our case 256 samples per second), there are four
well-defined outcomes of comparison of expert’s and detector’s
scorings: spindle present according to both expert and detector
(true positives; TP), spindle absent according to both expert
and detector (true negatives; TN), spindle present according to
expert, but absent according to detector (false negative; FN),
spindle absent according to expert, but present according to
detector (false positives; FP). Counts of each type of outcome can
be used to formulate various measures of detector performance:

sensitivity =
TP

TP + FN
(5)

Positive predictive value2 (PPV):

2PPV is related to False Discovery Rate as: PPV = 1− FDR.

PPV =
TP

FP + TP
(6)

Matthews coefficient of correlation (MCC):

MCC =
TP∗TN − FP ∗ FN
√
P ∗ P′ ∗ N ∗ N′

(7)

where P = TP + FN, P′ = TP + FP, N = FP + TN,
N′ = FN + TN.
Cohens κ :

κ =
TN + TP
P + N − Pe

1− Pe
(8)

where Pe is the probability of random agreement defined as:

Pe =
P′P + N′N

(P + N)2
(9)

F1-score:
F1 = 2 ∗

PPV ∗sensitivity
PPV+ sensitivity

(10)

2.4. Detection of Sleep Spindles
Division between the purely mathematical MP decomposition of
signals and further neuroscience research is clearly reflectedin the
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structure of the Svarog software package. The first step, briefly
covered in Section 2.1, consists of a generic approximation of the
signal by a linear sum of Gabor functions. The second step, which
is selection of the structures corresponding to sleep spindles,
constitutes the main topic of this article.

MP offers explicit parameterization of signal structures
in terms of their time and frequency positions, widths and
amplitudes. Detection of sleep spindles within the proposed
framework can be perceived as filtering out irrelevant structures
from a database containing all the waveforms fitted by MP to
a given signal epoch. Settings of the filter can be directly based
upon the classical definition(s) mentioned in the Introduction.
We choose frequency range 11–16 Hz and duration exceeding
0.5 s. Duration and time center of each detected spindle are
returned explicitly by the MP algorithm, as parameters u and s
from Equation (3), which gives us the time extent of the spindle
from u − s/2 to u + s/2. Duration is taken here explicitly as the
half-width of the Gaussian envelope of the Gabor function, but
it can be adjusted by a multiplicative factor e.g., to optimize the
concordance with visual detection. In general, using the setting
window presented in Figure 7, one can easily test the procedure
with different settings adjusted e.g., to different definitions, like
frequency 12–14Hz as defined in Rechtschaffen and Kales (1968)
or slow (11–13Hz) and fast (13–16Hz) spindles separately.

Due to the lack of a precise definition of the minimum
amplitude for spindles, one can either adapt a fixed threshold
(e.g., Schimicek et al., 1994; Ventouras et al., 2005), usually
optimized for a given recording (which causes obvious problems
with generalization of the procedure to recordings from other
labs/cohorts), or compute a threshold based upon the properties
of the analyzed signal and in particular adapted to individual
subject (e.g., Huupponen et al., 2000; Ray et al., 2010), which
results in a more general procedure. We compute this threshold
in relation to the RMS distribution. Exemplary distribution for
one of the recordings is shown in Figure 4. To obtain the RMS
distribution we filter the signal in the frequency band of sleep
spindles (using 2nd order band-pass Butterworth filter with
the cutoff frequencies set to 11 and 16Hz). The RMS values
were evaluated in successive, non-overlapping time windows
with duration of 0.2 s. With this combination of bandwidth and
window duration, one window includes more or less one period
of oscillations of the filtered signal. Thus, in each window we can
assume an approximate relation between amplitude and RMS as
for a constant-amplitude sine wave. In such case peak-to-peak
amplitude relates to the RMS as:

A = 2
√
2PRMS (11)

where PRMS is the percentile of the mentioned RMS distribution,
chosen to maximize resulting MCC.

3. Results

3.1. Performance of Sleep Spindles Detection in
Individual Cases
As described in Section 2.4, the minimal amplitude of candidate
waveform is a free parameter in the proposed detector of sleep

FIGURE 4 | Exemplary distribution of RMS for one of the recordings.

The vertical line marks its 97th percentile.

spindles. In order to have a complete picture of the detector
performance on the current dataset, in Figure 5A we present the
sensitivity, PPV and MCC for a range of RMS percentiles.

Figure 5B shows the distribution of the optimal, in the sense
of maximizing MCC, percentiles for each of the recordings. The
median of this distribution is the 97th percentile.

3.2. Cross-validation
A common pitfall in the evaluation of the algorithms detecting
sleep spindles is their explicit optimization for a particular
dataset, often the same as the one used for presenting the
performance of resulting algorithm. It is also a common problem
in evaluation of detection algorithms, and the standard solution
used in machine learning is called cross-validation.

For the evaluation of performance of the proposedmethod, we
implement the following cross-validation procedure, related to
the only parameter not taken directly from the definition of sleep
spindles, which is the minimal amplitude expressed in terms of
the percentile of RMS distribution in the frequency range of sleep
spindles:

1. Randomly divide the available recordings in two disjoint
subsets, further called the training set and the validation set.

2. Compute the optimal percentile for the training set.
3. Evaluate the performance on the validation set.
4. Repeat steps (1–3).

By averaging resulting performance measures over different
random divisions of the available dataset we obtain an estimate
of the average performance of the procedure on “unseen” data.
This estimate tends to be a bit lower than the overall performance
computed and estimated on the whole dataset at once.

We performed 100 iterations of the cross-validation
procedure, each time randomly choosing 14 recordings for the
training set used to compute the optimal RMS percentile. Then
these 14 percentiles PRMS, optimal for each of the recording
separately, were averaged. The resulting average threshold
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FIGURE 5 | (A) Measures of spindles detection quality as a function

of the percentile of RMS in the spindle frequency band computed

separately for each of the 19 overnight recordings and markd by

different colors. (B) Distribution (counts) of RMS percentiles which

maximize MCC shown in (A). Median of the distribution marked

with vertical line.

was applied to find the minimal spindle amplitudes for all the
remaining 5 recordings. Figure 6 shows the distribution of the
resulting performance measures averaged over the validation
sets. The summary statistics of performance are presented in
Table 1.

3.3. EEG Profiles
Proposed approach offers precise detection of time centers and
durations of sleep spindles and other transients. Apart from
these, MP decomposition provides also an explicit and high
resolution parameterization of their frequencies, amplitudes and
phases. This opens a simple access to detailed information on the
pattern of their occurrences across the whole analyzed recording,
including:

• exact time occurrences of each detected structure with
information about amplitude of each detected spindle.

• number of structures per epoch (in sleep analysis this is
traditionally 20 or 30 s).

• percent of the epoch’s time occupied by selected transients.

Although the last parameter has not been used for sleep spindles
so far, all these reports are presented for demonstration in the
three upper panels of Figure 8.

Sleep spindles are not the only EEG transients which can be
effectively detected and parameterized by means of proposed
approach. Another classic example of transient structures
crucial for assessment of the sleep process are slow waves
(Durka et al., 2005a). Figure 7 presents example parameters
allowing for selecting, from the same MP decomposition
of the same signal, structures corresponding to slow waves:
amplitude above 70 µV, frequency 0.2–4Hz, and time width
above 0.5 s.

Figure 8 presents these profiles for sleep spindles and slow
waves, computed in a fully automatic way without prior
removal of artifacts. Examples of time-frequency definitions of
structures in Svarog also include alpha, beta, theta and delta
waves, and K-complexes (Malinowska et al., 2009). As explained
in Section 4.1, all these profiles can be computed from the
same MP decomposition, and reports for different settings of
filters defining these structures, contrary to the underlying MP
decomposition, are computed in seconds.

These profiles can be used for investigating several features
of EEG, previously assessed by different specially constructed
algorithms, or by visual inspection. For example:

• Report in the lower panel of Figure 8, showing the time
fraction of each epoch occupied by slow waves, is crucial
for sleep staging, since stages 3 and 4 are defined directly in
terms of ranges of this parameter (Stage 3: 20–50%, Stage 4:
above 50%). This correspondence was explored inMalinowska
et al. (2009) for automatic construction of hypnograms, based
directly upon the classical criteria from Rechtschaffen and
Kales (1968).

• Profiles for these and other structures were used for assessment
of the brain activity of patients in different states of disorders
of consciousness (Malinowska et al., 2013).

4. Discussion

4.1. Computational Complexity of MP
As mentioned in Section 2.1, in each step of the MP algorithm we
compute inner products of all the functions from the dictionary
with the signal (or the residuum left from previous iterations).
Implemented directly, this would typically result in millions
of inner products, each computed on thousands of samples.
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FIGURE 6 | Gray-filled boxplots: distributions of the average

performance measures of spindles detection, defined in Section 2.3,

obtained from the cross-validation procedure, white-filled boxplots:

performance measures of the four detectors (color coded: red—RMS,

green—RSP, blue—Sigma, black—Teager) tested in O’Reilly et al.

(in revision) on the same data set.

TABLE 1 | Summary of cross-validation performance statistics.

Measure Median First quartile Third quartile Mean Standard deviation

Sensitivity 0.63 0.59 0.68 0.63 0.06

PPV 0.47 0.42 0.52 0.47 0.08

MCC 0.52 0.49 0.53 0.51 0.04

Cohen kappa 0.49 0.46 0.52 0.49 0.05

F1-score 0.54 0.51 0.56 0.53 0.04

Such massive computations impose a significant burden even
for modern computers. Fortunately, it is possible to decrease
it significantly with mathematical and programming tricks. The
former, implemented in the current version of the MP algorithm
used for computations in this article and available together
with Svarog from http://braintech.pl/svarog, are described in
Mallat and Zhang (1993) and Kuś et al. (2013). However, this
user-friendly software is still a research system, not aimed at
commercial applications. Since the speed of computations was
not the major goal here, not all the optimizations were explored
yet. Also, as discussed in Section 2.1.2, we used a relatively dense
dictionary, increasing significantly the computational burden:
with 50 iterations per epoch, decomposition of one overnight
recording took about 48 CPU-hours. Since the MP5 algorithm is
single threaded, we were able to run 11 concurrent instances on
a 12-core computer, thus decomposing in average one overnight
recording every 4h approximately. While this may still look like
a lot of computing time, let us recall that:

1. MP decomposition is performed only once per each analyzed
signal, and as such needs not to be interactive. Using one
such general decomposition, we can investigate any structures
potentially present in the signal (Section 4.3) in a comfortably
interactive mode. Results from one channel of an overnight
recording like the one presented in Figure 8 are computed in
seconds.

2. There is still room for significant speed improvements, in the
optimization of code (e.g., multithreading or using GPUs) as
well as in the adjustments of the decomposition parameters
to a particular problem. As an example of the latter we may
quote an online procedure for detection of epileptic seizures
in commercial EEG software by Persyst (http://persyst.com,
patent US 6735467), based on a previous version of our MP
algorithm (Durka et al., 2001).

4.2. Performance of Detection
Reported performance of sleep spindle detectors depends both on
the properties of the detector and on the quality of experts scores.
Therefore, the quantitative comparison of detectors is possible
only on the same database of EEG recordings and scorings,
otherwise the comparison is rather qualitative. It is especially
so if the parameters of the detector are tuned to maximize the
performance for a given dataset. Another problem in comparison
between the results reported in literature is that various authors
define the correct detection in different ways via the “window
based” type of comparison—mainly in respect to the criteria
defining the overlap between detectors and experts scores. We
used “signal-sample-based” assessment of performance, since we
find it much less ambiguous. In general, the values obtained in
“signal-sample-based” type of comparison are more conservative
than those obtained in “window based” comparison, as was
demonstrated in O’Reilly et al. (in revision). Unfortunately,
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FIGURE 7 | Svarog window for setting the parameters of filters defining the structures chosen from MP decomposition for the profile presented in

Figure 8. This functionality operates on the results of a previously computed MP decomposition (Figure 2).

“window based” comparison is the most common and for a long
time was the only one considered for assessing the performance
of spindles detection presented in literature. To give a general
background we cite below some of the results.

For example, one of the first automated detection method
with fixed amplitude threshold (Schimicek et al., 1994) showed
sensitivity of 89.7% and a specificity of 93.5%. Other sleep
spindles detection method using artificial neural networks
(Ventouras et al., 2005) presented the sensitivity of the network
ranges from 79.2 to 87.5% and specificity from 88.4 to 97%,
with the false detection rate (FDR = FP

FP+TP ) ranging from
2.1 to 21.5%. The methods where variability of sleep spindles
amplitude across subjects have been taken into account for
detection (e.g., Bódizs et al., 2009) reported sensitivity of 92.9
and 58.4% false detection rate. Another work (Huupponen
et al., 2007)3 testing four different detection methods reported
optimal sensitivity of 70% for a false detection rate of
32%. Ray et al. (2010) reported a sensitivity of 98.96% for
a specificity of 88.49%, with a corresponding 37.2% false

3One should be careful on reading of this paper since the authors call false-positive

rate what is usually referred to as false detection rate. False positive rate is generally

considered as FPR = FP
FP+TN and therefore, as for specificity, due to huge counts

of TN relative to other counts, is of little interest for characterizing sleep spindle

detectors.

detection rate in detection of sleep spindles in stage II with
the minimal amplitude adjusted individually and 3 s scoring
windows.

A more direct comparison of the detector presented in this
work can be made with the six automatic detectors, known
from publications, reimplmented and tested in Warby et al.
(2014) (cf. Figure 4). The authors presented “precision-recall”
plot obtained with “window based” comparison of the detectors4.
Our detector would be placed at point (recall = 0.63, precision
= 0.47) in that space, which is close to the middle of the
automated group consensus curve. Also the F1-score is close
to the maximum performance for the auto group consensus.
Such result would indicate that the proposed detector is well
balanced and close to optimal among the automated detectors,
but we have to keep in mind that we compare results for different
datasets.

The most meaningful and direct comparison can be made
with the four detectors tested in O’Reilly et al. (in revision),
since they were tested on exactly the same data set, with
same expert scoring, and using the same “signal-sample-based”
type of comparison. For the ease of comparison, in Figure 6,
we rearanged the original results presented in O’Reilly et al.

4Precision is another name for PPV and recall for sensitivity.
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FIGURE 8 | Exemplary EEG profile of sleep, computed automatically

without prior removal of artifacts, for the structures defined in

Figure 7; subject #4 of MASS-C1/SS2. Each of the red vertical lines is

positioned at the exact time center of a spindle or slow wave, and its height

represents the structure’s amplitude. Green lines are positioned in 20-s

intervals, and their height measures the number of structures detected in the

corresponding epochs. Cyan lines, like the green ones, relate to the

properties of 20-s epochs, and give the percent of each epoch’s time,

occupied by the given structures. This parameter is especially relevant for

slow waves, because (Rechtschaffen and Kales, 1968) defined sleep stages

3 and 4 explicitly by 20–50% and 50–100% ranges of this parameter

(Malinowska et al., 2009).

(in revision). These detectors were: RMS—based onmethodology
proposed in Schimicek et al. (1994), RSP—relative spindle power
detector based on Devuyst et al. (2011), Sigma—based on the
sigma index proposed by Huupponen et al. (2007), and Teager—
based on Teager energy operator, as in Ahmed et al. (2009).
Comparison of all four classifiers tested by O’Reilly et al. as
well as the MP-based classifier presented in this work, shown in
Figure 6, have the same range of performance measures, if one
takes into account the spread of the distribution of the measures,
which in fact is quite broad. In our opinion, this fact points to the

limitations of consistency of expert’s scorings which were used as
the “gold standard,” or to the existence of some characteristics
of the recording which affects the decisions of expert, but
which are not included in the currently used definition of sleep
spindles.

4.3. Universal Parametrization
In the context of a universal parameterization of EEG transients
(Durka, 2005) it is also worth mentioning that proposed
framework has a potential to solve a variety of important
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problems in EEG analysis. Apart from the above examples, it was
already shown to significantly improve the quality of EEG inverse
solutions if used as a preprocessing and automatic detection of
sleep spindles (Durka et al., 2005b), and sensitivity of estimates
used in pharmaco EEG (Durka et al., 2002).

We believe that the availability of the free software and
exemplary description of a framework for detection of sleep
spindles paves the way to novel and creative applications of
this high-resolution parametrization, to a large extent compatible
with the tradition of visual analysis.

4.4. Data Sharing
Complete software package (with source code) used in this study
for computing MP decompositions and generating Figure 8, as
well as scripts for reading the results of MP decomposition in
Matlab and Python (Section 2.1.4), are freely available from
http://braintech.pl/svarog. Source code of the Svarog interface (in
Java) and mp5 program for MP decomposition (in C) is available
from http://git.braintech.pl.

Polysomnograms and human scoring of sleep spindles
used in this study come from MASS database and can be
downloaded from http://ceams-carsm.ca/en/mass. Access to
polysomnographic recordings requires further accreditation
from an authorized Ethics Research Board.
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INTRODUCTION
Sleep spindles are short bursts of sleep
EEG activity in the range of 11–15 Hz,
reflecting central nervous system integrity
and considered to promote sleep conti-
nuity, learning and memory consolidation
processes. This contribution comments on
the automated detection of sleep spin-
dles and their intracranial sources, as well
as on experimental and clinical studies
for the characterization of spindles and
their sources, and the study of their func-
tional significance. Supporting literature is
provided wherever appropriate, although
comprehensive review is out of the scope
of this opinion paper.

AUTOMATED DETECTION OF SLEEP
SPINDLES
DETECTION METHODS
Visual EEG analysis heuristics, such as
counting the number of peaks of the EEG
signal within a time window, or count-
ing the number of successive EEG waves
having a specific amplitude and period
within that window, can be utilized for
spindle detection, provided relatively high
sampling rates beyond the Nyquist cri-
terion are chosen, e.g., 250 Hz (Principe
and Smith, 1986; Ktonas, 1996). However,
appropriate EEG pre-filtering with wide-
band (low-Q) bandpass filters (Shirakawa
et al., 1987) may be necessary. Techniques
which are based on human pattern recog-
nition can present problems because there
is no explicit definition for a sleep spindle.

Spindle morphology may vary between the
so-called “fast” and “slow” spindles, across
subjects, with age and health condition
(Nicolas et al., 2001; Ktonas et al., 2009).
Appropriate initialization procedures in
the detection system, such as adaptively
adjusting amplitude or frequency param-
eters per subject, may help (Ray et al.,
2010). Expert system-based approaches,
incorporating complex domain knowl-
edge, might be able to address these
problems.

Spindle detection can be based on spec-
tral analysis implemented via the Fast
Fourier transform (FFT). Such techniques,
although simple to implement, exhibit
problems of FFT-based spectral analysis:
inability to detect short (“phasic”) EEG
events, unless the time window of the anal-
ysis is short as well (which may result
in problems of frequency resolution), and
difficulty in distinguishing between dif-
fuse “background” activity in the spindle
frequency band and well-defined spindles.
These problems can be addressed by using
time-frequency analysis techniques (e.g.,
wavelets) as well as matching pursuit pro-
cedures (which can be viewed as a gen-
eralization of wavelet analysis), although
questions still remain as to the “best”
mother wavelet or number and kind of
atoms to use.

The above methods rely on the a
priori knowledge of some electrographic
characteristics defining the sleep spin-
dle. The artificial neural network (ANN)

approach for detection may not depend
on any such explicit knowledge (e.g.,
Ventouras et al., 2005). However, the
generalization capability of ANN-based
methods, which cannot be evaluated ana-
lytically (as in an expert system-based
method), is not “guaranteed” and it
depends in a quite non-linear way on
the structure of the ANN architecture
and on the training data. Combinations
of possibly more than one ANN systems
as pre-processors allowing any “spindle-
like” waveform to be further evaluated,
followed by a knowledge-based system
mimicking an expert (or a consensus
of experts) for more elaborate analysis,
appear to be promising approaches.

A successful detection system exhibits
mostly true positive spindle detections
(TPs) and very few false positive spindle
detections (FPs). We define TP perfor-
mance (TPP) as follows: (the number of
TPs)/(the number of spindles detected by
the visual scorers). If possible, the visu-
ally detected spindles should reflect the
consensus of several scorers. Visual scor-
ing is still the “gold standard” to compare
automated detection systems to, despite
the fact that experts often make mistakes,
may be biased using ill-defined proce-
dures, and may not be always consistent.
We define FP performance (FPP) as fol-
lows: (the number of FPs)/(the sum of FPs
and TPs). TPP and FPP figures should be
provided for testing data, which should be
separate from training data. Both training
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and testing data should contain records
of several subjects, of various ages and
pathologies, as sleep spindle morphol-
ogy may vary as a function of age and
pathology. In addition, the data should
contain EEG epochs exhibiting various
kinds of recording artifacts, such as move-
ment and muscle (EMG) activity, since
automated detection systems should be
capable of analyzing routine sleep EEG
records obtained in an artifact-prone clini-
cal environment. Therefore, artifact detec-
tion or rejection capabilities should be
incorporated into detection systems.

Deciding on “optimum” TPP and FPP
figures is not straightforward. Satisfactory
TPP and FPP figures should relate to the
use of the automated system. For example,
if the system is to be used for automated
sleep staging in routine sleep EEG analysis,
it may not be necessary to detect each and
every sleep spindle, but enough of them so
that a 30-s EEG epoch can be accurately
assessed as sleep stage 2 (Rechtschaffen
and Kales, 1968). However, in order not
to misinterpret as sleep stage 2 other sleep
stages where no spindles are expected, a
“relatively good” FPP (say, less than 20%)
may be appropriate. In cases where not
missing spindles is of paramount impor-
tance, as in sleep EEG records of patients
with neurological or psychiatric disorders
where there is a paucity of spindles (e.g.,
dementia, schizophrenia), increasing TPP
and decreasing FPP may be necessary.
This could apply, for example, to clinical
studies on the effect of pharmacotherapy
in schizophrenia, where effects on tha-
lamic centers involved in sleep spindle
generation are investigated (Ferrarelli and
Tononi, 2011). Assuming that high TPP
and low FPP figures might necessitate a
complicated system structure, it should be
of interest to develop systems exhibiting
some kind of modularity, whereby TPP
and FPP could be altered depending on
the use.

EXPERIMENTAL AND CLINICAL STUDIES
A reliable detection system can contribute
to the effective and accurate quantifica-
tion of sleep spindle occurrence patterns,
either through spindle counts or spindle
density figures (i.e., spindle number/time
window of observation). It can also aid
in topographical studies of “slow” and
“fast” spindles, which should be of interest

(Zeitlhofer et al., 1997), as well as con-
tribute in tracking the propagation of
sleep spindles across the scalp, for the
study of sleep spindle dynamics (O’Reilly
and Nielsen, 2014). In some cases, the
spindle sequence pattern (e.g., how inter-
spindle time intervals are distributed in
time) might be of importance (Ktonas
et al., 2000), especially if spindle genera-
tion mechanisms are being studied. There
is evidence that sleep spindles are gener-
ated through the interaction of cortico-
thalamo-cortical neuronal networks, and
that the so-called Slow Wave Oscillation
(SWO), a cortical EEG rhythm of fre-
quency content less than 1 Hz, serves as
a “pacemaker” for the thalamic reticular
nucleus to generate spindles (Steriade and
Amzica, 1998). Studying sequence pat-
terns in inter-spindle time intervals can
provide information about SWO intra-
frequency dynamics which may relate to
cortical processes of interest, such as learn-
ing and memory consolidation (Molle
et al., 2011).

Systems should provide the capabil-
ity of extracting specific electrographic
parameters from the detected spindles,
such as mean amplitude, intra-spindle fre-
quency and spindle length, which may
relate to EEG generating mechanisms
possibly affected by an experimental pro-
cedure (e.g., sleep deprivation, pharma-
cotherapy) or a neurological/psychiatric
disorder. Accordingly, any changes in spin-
dle mean amplitude may relate to changes
in cortical processes, while changes in
intra-spindle frequency and spindle length
may relate to changes in thalamic or
thalamo-cortical processes (Steriade and
Amzica, 1998). Given their electrographic
shape, sleep spindles could be viewed
as amplitude-modulated and frequency-
modulated (AM/FM) signals. Therefore,
methodology for the analysis of ana-
lytic signals (e.g., Hilbert transforms) as
well as time-frequency analysis techniques
provide the opportunity of extracting
parameters related to the instantaneous
envelope and instantaneous frequency
of spindles, allowing the possibility to
study pathological processes that might
affect such parameters, as, for exam-
ple, in schizophrenia, dementia and cog-
nitive dysfunction (Ktonas et al., 2009;
Ferrarelli and Tononi, 2011; Carvalho
et al., 2014).

ESTIMATION OF INTRACRANIAL
CURRENT SOURCES FOR SLEEP
SPINDLES
ESTIMATION METHODS
The non-invasive estimation of intracra-
nial current sources for sleep spindles can
be achieved by solving the inverse bio-
electromagnetic problem, based on scalp
EEG or MEG (magnetoencephalography)
measurements. The sources are usually
modeled as current dipoles. In the equiv-
alent current dipole (ECD) approach,
the number, location, amplitude and ori-
entation of dipoles are to be deter-
mined. A set of dipoles is selected
which best conforms to an optimization
criterion.

In the Distributed Source Model
(DSM) approach no restrictions are
imposed on the number of sources
to be computed. Optimization tech-
niques are adopted for solving this highly
under-determined problem, incorporat-
ing mathematically and/or biophysically
inspired restrictions, but without cer-
tainty that no distribution other than the
selected one could be closer to the real
underlying distribution. Low-Resolution
Electromagnetic Tomography (LORETA)
is a DSM method selecting the solu-
tion which minimizes the Laplacian of
the depth-weighted sources. Based on
the assumption that contiguous neu-
ronal assemblies have correlated activity,
LORETA provides solutions that might be
“over-smoothed.” Since anatomically con-
tiguous areas can be functionally distinct,
concurrent activity in such contiguous
areas must be dealt with attention when
inspecting the results of LORETA. Other
DSM methods, like dynamic SPM (dSPM)
and standardized LORETA (sLORETA),
compute statistical scores indicating loca-
tions where activity would occur with
low error probability, therefore creat-
ing statistical parametric maps which
can provide more focused loci of activ-
ity than LORETA. Taking into account
the rather diffuse distribution of spin-
dle cortical activity, DSM methods seem
more appropriate for spindle source esti-
mation than ECD methods, since ECD
methods limit the number of sources that
can be investigated and, in order to per-
form adequately, the number of sources
must be inferred a priori (Michel et al.,
2004).
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EXPERIMENTAL AND CLINICAL STUDIES
Source estimation techniques can be used
to elucidate plausible neural generation
mechanisms for sleep spindles and, in par-
ticular, the electrogenesis of “slow” and
“fast” spindles. LORETA based on EEG
has provided indications that fast (slow)
spindle source activity is located poste-
riorly (anteriorly) in the cortex (Durka
et al., 2005; Ventouras et al., 2010). Studies
based on MEG data (Manshanden et al.,
2002; Urakami, 2008) have found that four
source areas, located in parieto-central and
fronto-central cortical regions, bilaterally,
adequately explain most of the variation
in spindles, although indications for con-
sidering both slow and fast spindle source
activity as a single event were provided
using MEG data (Gomenyuk et al., 2009).
However, the inversion of simultaneous
EEG and MEG recordings (Dehghani
et al., 2010) has found that there are signif-
icant differences between sources derived
from EEG and those derived from MEG.

Although there is some degree of simi-
larity among the source areas detected by
the various studies, there is a need for pro-
viding a comparative analysis of a compre-
hensive set of inversion methods applied
to an extensive set of data because of
the different principles on which the var-
ious methods operate. Along these lines,
the concurrent recording of EEG and
MEG should be pursued. Similarly, sev-
eral studies have used concurrent EEG and
fMRI recordings, investigating the fMRI-
obtained brain activation during sleep
spindles (Caporro et al., 2012). EEG/MEG
modalities are generally restrained to cor-
tical imaging. However, the generators of
spindles are thought to be thalamic and,
therefore, not accessible to EEG/MEG.
Concurrent EEG and fMRI recordings
can provide information on “spindle-
coincident” activation in sub-cortical for-
mations, such as the thalamus. Therefore,
the limitations of the bioelectromagnetic
inverse problem methodologies can be
surpassed, providing indications for rela-
tions of “slow” and “fast” spindles to tha-
lamic and cortical activity (Schabus et al.,
2007). Consequently, such studies should
be actively pursued and are expected to
significantly elucidate spindle generation
mechanisms.

Application of inversion techniques in
patient populations should be encouraged,

as in investigating the cortex involvement
in the asymmetry of spindles after hemi-
spheric stroke (Urakami, 2009) and the
generation of spindles in temporal lobe
epilepsy (Del Felice et al., 2013). A topic
that has not yet been addressed concerns
the extraction of parameters related to
the phenomenology of intracranial cur-
rent sources. Accordingly, it might be of
interest to compute measures of current
source spread and intensity as a function
of time (along the duration of a spin-
dle). Such approaches could help in dif-
ferentiating healthy controls from patient
populations, and in differentiating among
various patient populations as well.

SUMMARY
This contribution provided comments on
methodological issues related to the auto-
mated identification and characterization
of sleep spindles and their intracranial
sources, and to the understanding of their
functional significance. Specific guide-
lines were presented for the computer-
based detection and analysis of spindles
and their intracranial sources, as well
as for related experimental and clinical
studies.
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Pierre-Emmanuel Aguera 3, Mounir Samet 1, Abdennaceur Kachouri 1, 4 and

Karim Jerbi 3, 5*

1 LETI Lab, Sfax National Engineering School, University of Sfax, Sfax, Tunisia, 2Department of Neurology, Massachusetts
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U1028, UMR 5292, University Lyon I, Lyon, France, 4 Electrical Engineering Department, Higher Institute of Industrial Systems
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A novel framework for joint detection of sleep spindles and K-complex events,

two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG)

signals are split into oscillatory (spindles) and transient (K-complex) components. This

decomposition is conveniently achieved by applying morphological component analysis

(MCA) to a sparse representation of EEG segments obtained by the recently introduced

discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a

convenient and elegant tool to naturally decompose the signal into an oscillatory and

a transient component. The actual detection step relies on thresholding (i) the transient

component to reveal K-complexes and (ii) the time-frequency representation of the

oscillatory component to identify sleep spindles. Optimal thresholds are derived from

ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the

method is assessed on test data sets. We assessed the performance of our method

using full-night sleep EEG data we collected from 14 participants. In comparison to

visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of

83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with

a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained

when using a second expert as benchmark. In addition, when the TQWT and MCA

steps were excluded from the pipeline the detection sensitivities dropped down to 70%

for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and

49.09%, respectively. Finally, we also evaluated the performance of the proposedmethod

on a set of publicly available sleep EEG recordings. Overall, the results we obtained

suggest that the TQWT-MCA method may be a valuable alternative to existing spindle

and K-complex detection methods. Paths for improvements and further validations with

large-scale standard open-access benchmarking data sets are discussed.

Keywords: sleep, spindles, K-complex, automatic detection, electroencephalography (EEG), tunable Q-factor

wavelet transform (TQWT), morphological component analysis (MCA), neural oscillations
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Introduction

We spend about one third of our lives sleeping. Luckily, and
as might be expected of an efficient organism, the time we
spend sleeping is not wasted idling. Sleep plays a functional role
mediating a range of cognitive processes including learning and
memory consolidation (Maquet, 2001; Walker and Stickgold,
2004; Diekelmann and Born, 2010; Fogel et al., 2012; Albouy
et al., 2013; Rasch and Born, 2013; Stickgold and Walker, 2013;
Alger et al., 2014; Vorster and Born, 2015), problem solving
(Cai et al., 2009), sensory processing (Bastuji et al., 2002;
Perrin et al., 2002; Ruby et al., 2013a; Kouider et al., 2014)
and dreaming (Nielsen and Levin, 2007; Hobson, 2009; Nir
and Tononi, 2010; Blagrove et al., 2013; Ruby et al., 2013b;
Eichenlaub et al., 2014a,b). Sleep disorders, as well as the mere
lack of sleep, can have serious effects on our health, both by
deteriorating the proper function of sleep-related brain processes
and indirectly by being a risk factor for conditions such as weight
gain, hypertension and diabetes (Anderson, 2015). The utmost
importance of a good night’s sleep is therefore unquestionable.
However, many questions related to the mechanisms and role
of the numerous electrophysiological signatures of sleep are
still outstanding. The standard approach to monitor sleep is
the use of Polysomnography (PSG) which combines multiple
physiological recordings including electroencephalogram
(EEG), electromyogram (EMG), electrocardiogram (ECG), and
electrooculogram (EOG). In addition to be being a central
diagnosis tool for a range of sleep disorders (such as narcolepsy,
idiopathic hypersomnia and sleep apnea), PSG is a valuable
tool for sleep research performed in healthy individuals. In
particular, the analysis of sleep EEG signals helps us understand
its neurophysiological basis and functional role. Macro and
micro-structures are present in sleep signals at various temporal
scales. Macro structure analysis often refers to sleep staging,
i.e., the segmentation of brain signals into 20 s or 30 s-long
periods that represent different sleep stages, each with distinct
cerebral signatures. On the other hand, micro structure analyses
of brain signals during sleep consists of detecting short-lived
microscopic events often considered to be hallmarks of specific
sleep stages and of sleep-related cognitive processes, as well
as potential signs of sleep anomalies. K-complexes and sleep
spindles are among the most prominent micro-events studied in
sleep studies, not only for their importance in sleep stage scoring
(as they predominantly occur during S2 sleep stage), but also
for their importance in the diagnosis of sleep disorders and the
exploration of the functional role of sleep.

According to the American Academy of Sleep Medicine

(AASM) (Iber et al., 2007), Sleep spindles are defined as: “A train
of distinct waves having a frequency of 11–16Hz with a duration

≥0.5 s, usually maximal in amplitude over central brain regions.”

These waveforms, which are controlled by thalamo-cortical loops
(e.g., Steriade, 2003, 2005; Barthó et al., 2014), are the subject

of an active area of investigation that seeks to understand the
mechanisms and functions of the sleeping brain. Numerous
studies have shown that sleep spindles have an important role
in memory consolidation during sleep (Schabus et al., 2004;
Morin et al., 2008; Diekelmann et al., 2009; Diekelmann and

Born, 2010; Barakat et al., 2011; Fogel et al., 2014; Lafortune
et al., 2014). Moreover, sleep spindle characteristics undergo age-
related changes (e.g., Seeck-Hirschner et al., 2012; Martin et al.,
2013). Other studies suggest that sleep spindles are clinically
important given that alterations in their density (number per
minute) may be a symptom of neurological disorders such as
dementia (e.g., Ktonas et al., 2009, 2014; Latreille et al., 2015),
schizophrenia (e.g., Ferrarelli et al., 2010; Ferrarelli and Tononi,
2011), depression (Riemann et al., 2001), stroke recovery, mental
retardation, and sleep disorders (De Gennaro and Ferrara, 2003).

K-complexes are defined by the AASM as “A well delineated
negative sharp wave immediately followed by a positive
component with a total duration ≥0.5 s, typically maximal at
frontal electrodes” (Iber et al., 2007). The precise role of K-
complexes in sleep is still a matter of debate. Some studies
consider them as an arousal response, since they are often
followed by micro-awakenings (Halász, 2005). Others give K-
complexes a sleep “protection” function (Jahnke et al., 2012).
Single-unit recordings during human sleep suggest that K-
complexes may represent isolated down-states (Cash et al., 2009).

The ability to reliably detect the occurrence of sleep spindles
and K-complexes in EEG recordings is therefore of major
importance in a wide range of sleep investigations, ranging
from basic research to clinical applications. Visual annotation
of sleep spindles and K-complexes is tedious, time consuming,
subjective and prone to human errors. The inter-agreement
between multiple scorers (for spindles and K-complex visual
marking) reported in the literature is relatively low (Zygierewicz
et al., 1999; Devuyst et al., 2010; Warby et al., 2014). Therefore,
as in sleep staging (e.g., O’Reilly et al., 2014; Lajnef et al., 2015),
automatic or semi-automatic identification procedures are of
great utility for the detection of sleep spindles and K-complexes.
Approaches based on band-pass filtering and thresholding have
been proposed for both spindles and K-complex detection
(e.g., Huupponen et al., 2000; Devuyst et al., 2010). Template-
based filtering using matching pursuit methods has also been
used proposed (e.g., Schönwald et al., 2006). Other filtering
approaches based on continuous wavelet transforms (CWTs)
have also been explored (Erdamar et al., 2012). Moreover, signal
classification methods have been used to detect K-complexes or
spindles, for instance, using artificial neural networks (ANN)
(e.g., Günes et al., 2011), Support Vector Machines (SVMs)
(e.g., Acir and Güzelis, 2004) and decision-trees (Duman et al.,
2009). Interestingly, only a handful of studies have investigated
the detection of K-complex and spindles simultaneously using a
common methodological framework (Jobert et al., 1992; Koley
and Dey, 2012; Jaleel et al., 2013; Camilleri et al., 2014; Parekh
et al., 2015).

In this study we propose a framework for joint spindle
and K-complex detection. The proposed method combines a
recently introduced discrete wavelet transform (DWT) known
as the Tunable Q-factor Wavelet Transform (TQWT) (Selesnick,
2011a) with Morphological Component Analysis (MCA). This
combination provides a natural and efficient way to decompose
the EEG signal into transient (K-complex) and oscillatory
(spindle) components. The results we obtain with full-night
sleep EEG recordings from 14 participants demonstrate the
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utility and added-valued of the proposed method. Our method
also performed well when compared with a standard spindle
detection method and when applied to a publicly available
spindle and K-complex data set.

Materials and Methods

K-Complex and Sleep Spindle Detection Method
Overview
The main steps of the K-complex and spindle detection pipeline
are presented in Figure 1. First, EEG segments are filtered so
as to reduce the effect of potential artifacts. The filtered signals
are then decomposed into oscillatory and transient components
by combining a TQWT with MCA. Next, applying FIR filtering
to the transient component unveils K-complex events, while
applying a CWT to the oscillatory component unravels spindle
events. The appropriate detection thresholds that need to be used
in the final step are determined by plotting sensitivity against
false discovery rate (FDR) for a range of potential thresholds
[an approach akin to Receiver Operating Characteristic (ROC)
curves] calculated from a subset of the data (training set). The
ROC-like curves are obtained by repeatedly measuring sensitivity
and FDRwhile varying the threshold parameters and using expert
visual marking of K-complexes and spindles as ground truth. The
steps that make up the proposed pipeline (Figure 1) are described
in detail the next sections.

EEG Sleep Recordings
Data Acquisition
The EEG data used in this study was collected from 14 healthy
subjects aged 29.2± 8 years, all recorded at the DyCog Lab of the
Lyon Neuroscience Research Center (CRNL, Lyon, France) with
a sampling frequency of 1000Hz. The data acquisition was part of
a research program exploring cognition during sleep (Eichenlaub
et al., 2012, 2014b; Ruby et al., 2013a,b). The EEG component
of the polysomnography recordings across the 14 subjects were
visually scored by an expert in successive windows of 30-s using
the R and K guidelines (Rechtschaffen and Kales, 1968). The
sleep staging step here gave us the possibility to choose to run
our detection pipeline (a) exclusively on S2 sleep segments, or
(b) on all sleep stages (as would be the case in the absence of
sleep scoring). In other words, sleep staging is not a required pre-
processing step for the detection method proposed here. Unless
otherwise stated, all the analyses described were based on the
standard EEG C3 channel.

Splitting the Data into Training and Test Sets
To evaluate the performance of the detection procedure, we
divided the data base into a training set (used to derive optimal
thresholds via ROC-like curves) and a test set used to compute
the performance of the method. Thirty S2 segments and 15 non-
S2 segments were randomly selected from the data of each of the
14 individuals (i.e., 630 sleep EEG data segments in total: 420 S2
segments and 210 non-S2 segments). This ensured a balanced
representation of data from across all subjects. Note, that our
emphasis on S2 stems from the fact that it is the sleep stage of
primary interest for the detection of spindles and K-complexes.

FIGURE 1 | Overview of the proposed EEG data analysis pipeline for

K-complex and sleep spindle detection (Abbreviations: TQWT, Tunable

Q-Factor Wavelet Transform; MCA, Morphological component

analysis; CWT, Continuous Wavelet Transform; FIR, Finite Impulse

Response).

As a general rule, we used equally sized training and test sets
(210 segments for testing and 210 segments for training). The
training and associated test sets consisted either of S2 segments
only (scenario 1), or of a mixture of S2 and non-S2 segments
(scenario 2). Note that in this second case, the test and training
sets contained 105 S2 and 105 non-S2 segments. As we spend
approximately half our sleep in stage 2 (Carskadon and Dement,
2011), this proportion was representative of using random
sampling of sleep segments. In addition, for practical purposes,
we also explored the effect of reducing the size of the training set
to evaluate minimal training requirements (scenario 3).

Signal Preprocessing and Visual Annotation of

Microstructures
The presence of various artifacts in sleep EEG adversely
affects both visual and automatic detection of spindles and
K-complexes. The EEG signals were therefore band-pass
filtered with low and high cutoff frequencies at 0.2 and at
40Hz, respectively. This was followed by visual inspection
in search of potential remaining artifacts. In addition, visual
annotation of K-complex and spindles on the EEG traces was
independently performed by two experts and used as two
alternative benchmarks. To facilitate this procedure, we designed
a graphical user interface (GUI), which was used by our experts to
visually explore the EEG data segments and identify K-complex
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and spindles events. The results of the visual detection were
saved to two separate text files containing segment number, start
and end times/sample for each event. For example, the visual
annotation by Expert 1 of the 420 segments of S2 sleep across
all subjects led to the identification of 437 Spindles and 293
K-complexes (see details in Table 1).

EEG Signal Decomposition Using TQWT and
MCA
K-complexes and spindles are microstructures that are
morphologically different. One major difference is that K-
complexes are transient while spindles are oscillatory. To exploit
this distinction, we set out to combine the recently introduced
TQWT discrete wavelet with MCA in order to conveniently
decompose any given EEG segment into two signals; a K-
complex channel and a spindle channel. The decomposition via
TQWT and MCA is described below.

Tunable Q-factor Wavelet Transform (TQWT)
TQWT is a flexible fully DWT that was recently introduced by
Selesnick (2011a,c), for which the Q-factor of the wavelet is easily
tuned and adapted to the signal being investigated. In principle, a
highQ-factor transform is suitable for oscillatory signals, whereas
transient signals are modeled using low Q-factor wavelets. Like
the dyadic DWT, TQWT consists of iteratively applying two-
channel filter bank, where the low-pass output of each filter bank
is the input to the next filter bank. A sub-band is then defined
as the output signal of each high pass filter. Considering J the
number of filter banks, there will be J + 1 sub-bands, i.e., J sub-
bands coming from the high-pass filter output signal of each filter
bank and the low-pass filter output signal of the final filter bank.
At each level, the generation of low-pass sub-band Cj[n] uses a

low-pass filter H
j
0 (w) followed by low-pass (LP) scaling α, and

similarly the generation of high-pass sub-band dj[n] uses a high-

pass H
j
1(w) and high-pass (HP) scaling β. H

j
0 (w) and H

j
1(w) are

defined as follows (Selesnick, 2011a):

H
(j)
0 (w) =







j− 1
∏

m= 0
H0

(

w
αm

)

, |w| ≤ αjπ

0, αjπ< |w|<π

(1)

and

H
(j)
1 (w) =















H1

(

w
αj− 1

) j− 2
∏

m= 0
H0

(

w
αm

)

,

(1−β) αj− 1 ≤ |w| ≤ αj− 1π

0, for others w ǫ[−π, π].

(2)

TABLE 1 | Example of visual annotation results by Expert 1 based on 420

S2 segments.

Spindles K-complexes

Number of segments with 244 199

Number of segments without 176 221

Number of detected events 437 293

All main parameters were computed as described in the original
study by Selesnick (2011a) and the user-manual of the TQWT
toolbox (Selesnick, 2011b). Three key parameters that need to be
set are the following:

(i) Q-factor: In the context of the present TQWT
implementation, the Q-factor is theoretically defined
as Q =(2− β)/β. As it reflects the oscillatory behavior of the
wavelet, the Q-factor can be set to fit the nature of the signal
to which it is applied. In other words the parameter Q can
be used to tune the wavelet function to the signal it seeks
to model. The signals of interest here are sleep spindles
and K-complex events. So to tune the TQWT wavelet
toward spindles, we selected a Q-value that corresponds
to the minimum number of cycles in a spindle burst. As
the latter occur predominantly within 11–16Hz frequency
range with a minimum duration of 0.5 s, we chose Q = 5.5.
In contrast, to tune the wavelet toward the K-complex
component (one cycle) we chose Q = 1, as this provided
a wavelet that closely models the shape of a transient
wave.

(ii) Maximum number of levels (Jmax): The selection of Jmax

depends on the length of the input signal (N) and the chosen
filter scaling parameters (α and β) and is defined by the
following equation: Jmax= log(βN/8) / log(1/α) (Selesnick,
2011a).

(iii) Redundancy parameter (r): The redundancy parameter
r controls the excessive ringing in order to localize the
wavelet in time without affecting its shape. Here, it’s
defined as: r = β/(1−α). The specific value r = 3 has
been previously recommended when processing biomedical
signals (Selesnick, 2011a,b).

Morphological Component Analyze (MCA)
The goal of the MCA is to decompose a given signal x
into two or more components on the basis of their sparse
representation. In our case, MCA is used to decompose a given
EEG signal x into an oscillatory component x1, and a transient
signal x2, such that:x = x1 + x2, where x, x1, x2 ∈
RN . Most importantly, this decomposition is carried out
using the TQWT transform (described above) as the sparse
representation of x (Selesnick, 2011c). According to the MCA
implementation using basis pursuit de-noising with dual Q-
factors described in Selesnick (2011b), the sparse wavelets
coefficients w1 and w2 associated respectively with x1 and
x2 can be estimated via the minimization of the following
function:

argminw1,w2

∥

∥x− 8∗
1 (w1) − 8∗

2 (w2)
∥

∥

2

2
+

∑J1+ 1
j= 1 λ1, j||w1, j||1

+
∑J2+1

j=1 λ2,j||w2 j||1 (3)

Where 81 and 82 are two matrices of TQWT parameters:
(Q1, r1, J1) and (Q2, r2, J2) respectively, w1 and w2 are vectors
which contain the concatenation of the wavelet transform sub-
bands, and λ1,j and λ2,j are the regularization parameters
associated respectively with the two types of wavelets (They
are two vectors of lengths J1 + 1 and J2 + 1, respectively).
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The sparse set of wavelet coefficients w1 and w2 are hence
obtained, via the convergence of the objective function given
by Equation (3). In the current study, the sparsity (few non-
zero coefficients in w1 and w2 vectors) was achieved by setting
the number of iterations for the convergence to 500. Next,
the components x1 and x2 are estimated by: x1 = 8∗

1 w1

and x2 = 8∗
2 w2 (where 8∗

1 and 8∗
2 are the inverse TQWT

matrices). Note that all parameters and variables described
here were computed strictly as described in the original study
by Selesnick (2011a) and user-manual of the TQWT toolbox
(Selesnick, 2011b). Figure 2 shows the results of the TQWT-
MCA decomposition applied to an illustrative 30-s EEG segment
that contains three spindles and one K-complex. Panels B and
C show the decomposition into selected oscillatory and transient
components. The next step is to apply a detection procedure to
identify the individual spindles and K-complex events from both
components. The detection step for each is described in the next
sections.

Spindle Detection
The oscillatory component obtained from the EEG
decomposition procedure described above is used to detect
the occurrence of sleep spindles. Applying a simple threshold
directly to this signal would not be appropriate since spindles do
not have an established range of amplitudes. Instead, we decided
to detect the spindles by filtering the oscillatory component
using a CWT.

Continuous Wavelet Transform (CWT)
To optimize the selection of the wavelet function to use
in the CWT analysis, we computed the cross-correlation
between several wavelet functions (Teolis, 1996) and the spindle
waveforms present in the training data set. Based on visual
inspection of similarity with the spindle waveform, we chose to
test the following wavelet functions: complex frequency B-spline
wavelets (Fbsp), complex Morlet wavelets (Cmor), complex
Shannon wavelets (Shan), and Gaussian wavelets (Gauss).
Figure 3 shows these individual wavelet functions as well as
boxplots for the cross-correlation mean values obtained when
using each one of them. Although the results were very close,
Fbsp showed the highest maximal value (upper line of each
box) and the highest median (red line) cross-correlation with
the spindle waveforms. Therefore, we chose to use complex
frequency B-spline wavelets which are defined as bsp (t) =
√

fb
[

sincm
(

t.
fb
m

)

.ej2πfct
]

, where m is an integer parameter

(m ≥ 1) that can be selected so as to ensure the best time-
frequency resolution, fb is the bandwidth parameter and fc is the
wavelet center frequency. The CWT-based time-frequency maps
computed throughout this study are based on this Fbsp wavelet
function in the pre-defined frequency band of sleep spindles (i.e.,
11–16Hz).

Detection of Local Maxima and Thresholding
To detect the occurrence of sleep spindles from the time-
frequency (T-F) map of the oscillatory component, we first search

FIGURE 2 | Signal decomposition of a 30-s sleep EEG segment (A) into an oscillatory component (B) and a transient component (C) using TQWT-MCA

method, with no residuals (D). See Section EEG Signal Decomposition using TQWT and MCA for method details.
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FIGURE 3 | Cross-correlation between various wavelet functions

and spindles waveforms. Results show mean cross-correlation

between 210 spindle waveforms and five distinct wavelet

functions: Frequency B-spline (Fbsp with m = 25), Complex Morlet

wavelet (Cmor), Shannon wavelet (Shan), and Gaussian wavelet

(Gauss).

for all local maxima by identifying T-F values that exceed those
of all eight surrounding neighbors of any given value in the 2D
time-frequency space (using a sliding window across the T-F two-
dimensional space). Next, we apply a detection threshold to the
obtained maxima in the T-F map. Selecting an optimal threshold
is a critical step. We chose a procedure that determines the
best threshold as the one that maximizes the difference between
sensitivity (Sen) and FDR of spindle detection (Note that other
options are of course possible and can easily be included in our
framework). A practical way to achieve this goal is by using
an ROC-like approach on a training data set. The concept is
straight-forward: we compute the values of sensitivity and FDR
of the detection method repeatedly as we gradually increase the
threshold used in the last step. This procedure yields a curve
that depicts how sensitivity and FDR co-vary as the detection
threshold is changed. The optimal threshold is the one that
maximizes the difference between sensitivity (ideally as high as
possible) and FDR (ideally as low as possible). Note that the
computation of FDR and sensitivity (see Section Performances
Metrics) requires the use of some form of ground truth. Here
we used expert visual marking as the benchmark. As our data
was visually annotated (for K-complexes and spindles) by two
experts, unless otherwise stated, we report all our results using,
as ground truth, the annotation of each separately.

In summary, the optimal threshold derived from the
“sensitivity vs. FDR” analysis is used when running the detection
pipeline on the test data set. In order to evaluate the performance

of the method, we compute once again sensitivity and FDR, but
now only on the results obtained with the test set. The interested
reader can find more details on such training procedures for
instance in the appendix of Chander (2007).

K-complex Detection
Unlike sleep spindles, K-complex waveform is distinguishable
from EEG background activity by “a well delineated negative
sharp wave.” Therefore, our rationale was that applying a negative
amplitude threshold on the transient components (derived from
the TQWT and MCA procedure) could be a promising way to
detect such events. However, in order to reduce the effect of
some high frequency waveforms which generate local minima
with amplitudes close to those of the K-complex (Devuyst et al.,
2010), we first apply a band-pass FIR filter [0.5–5Hz] to the
transient component produced by TQWT and MCA step. Next,
K-complexes are detected from the list of all local minima in
each segment using an optimal threshold value. Note that we
constrained the interval between two successive detected minima
to be at least 2 s long to reduce risks of false detections. An EEG
structure composed of multiple successive local amplitude peaks
(such as delta waves) could in theory lead to the detection of
a succession of transients and thus lead to the identification of
successive K-complexes. This is only acceptable if the successive
events are separated by at least 2 s, as that is approximately the
minimal interval expected between two real K-complexes. The
method used to derive the best threshold value to use here for
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K-complex identification is identical to the method described
for threshold selection in the case of spindle detection: We use
an ROC-like training procedure just as described in Section
Detection of Local Maxima and Thresholding.

Performances Metrics
To compute the ROC-like curves used to derive detection
thresholds (from the training set), and to evaluate the
performance of our method (on the test set) we compute two
basic metrics: the sensitivity (Sen) and FDR defined by Equations
(4) and (5) respectively:

Sen =
TP

TP + FN
(4)

FDR =
FP

FP + TP
(5)

Where TP (true positive detections) are the events marked by the
expert and correctly detected by our method, FN (false negative
detections) are the events marked by the expert but not detected
by the method and FP (false positive detections) represents the
number of events detected by the method but which were not
marked by the expert. Note that in detection contexts with
strongly unbalanced occurrences of positive and negative cases,
the ROC curve can provide an inadequate representation of the
performance of a classifier (O’Reilly and Nielsen, 2013). This is
the case here for the sleep EEG events we set out to detect because
the continuous EEG segments consist predominantly of true
negatives. This is why, instead of using standard ROC analysis,
i.e., plotting sensitivity vs. false positive rate (or 1-specificity), we
chose to depict sensitivity vs. FDR.

Expert Identification and Inter-annotator
Agreement Metrics
Two annotators visually identified all K-complexes and spindle
events in our database. Unless otherwise stated all automatic
detection results are evaluated against the annotation of Expert
1 and 2, independently. When evaluating the minimal number
of training segments needed for our method (Section Impact
of the Amount of Available Training Data on the Performance)
and when exploring the results on a subject by subject basis
(Section Performance of the Method in Individual Subjects)
we restricted the analysis to the segments where Expert 1 and
Expert 2 fully agreed (consensus). Inter-annotator agreement
was assessed using two metrics: (i) percent agreement (portion
of events on which raters compared to total number of events)
and (ii) Cohen’s kappa coefficient κ, a statistical measure of
inter-annotator agreement that takes into account the agreement
occurring by chance (Cohen, 1960).

Results

The results of the proposed methodology are presented in the
next sections as follows: First, we provide the results of the
training step (ROC-based identification of optimal thresholds),
followed by the performance of the method on test sleep data (S2
and non-S2). Next, we report also on the improvements achieved

by using the optional adjustment step where the expert reviews
(accepts/rejects) the false positive outputs of the method. We
then explore the practical utility of the method by monitoring its
performance as a function of training set size. Unless otherwise
stated, we report all our results using, as ground truth, the
annotation of each one of the two experts separately. This
provides further insights into the robustness of the method.

Detection of Optimal Threshold Values (Training
Phase)
In the training phase, we used a subset of the data (training set)
to derive “sensitivity vs. FDR” curves by evaluating sensitivity
and false detection rates as we vary the detection threshold.
Sensitivity and FDR were computed using 210 30-s EEG S2 data
segments for threshold values that varied in steps of 10µV2 for
spindles and 2µV for K-complexes (the unit reflects the fact that
the thresholds are applied to time-frequency maps and voltages,
respectively). The optimal threshold value, defined as the one
that maximizes the difference between sensitivity and FDR,
was determined from these curves and then used subsequently
in the validation phase (i.e., using the test set). For spindle
detection, this compromise in the training data was achieved
by a threshold set to 290µV2, yielding a sensitivity of 87.09%
and an FDR of 45.68%. In the case of K-complex detection,
a threshold value of −70µV provided the best compromise,
with a sensitivity of 78.72% and an FDR of 23.44%. The above
results were obtained when using Expert 1 as benchmark. The
results were very similar when relying on the annotation by
Expert 2 as benchmark: For spindle detection, this compromise
in the training data was achieved by a threshold set to 300µV2,
yielding a sensitivity of 83.45% and an FDR of 27.68%. In
the case of K-complex detection, a threshold value of −70µV
provided the best compromise, with a sensitivity of 85.76% and
an FDR of 32.22%. Figure 4 shows an example that illustrates
the results of the training step and how the optimal threshold
levels are determined. The identified thresholds are then used
when applying the detection pipeline to the test segments (see
next section). Throughout the paper, the training strategy was
applied using visual scoring either by Expert 1, Expert 2 or by
only using the data segments for which both experts fully agreed
(consensus). Unless otherwise stated, we report the results of each
analysis by providing the results obtained against Expert 1 and
Expert 2 independently.

Spindle and K-complex Detection Performance
(Test Set)
To evaluate the performance of the pipeline and, in particular,
assess the success of the threshold identification procedure,
the spindle and K-complex specific thresholds identified in the
training phase were then used to run the detection algorithm on
previously unseen test segments. Figure 5 illustrates the detection
procedure on the same sample sleep segment shown presented
in Figure 2. The global results obtained for all 210 test EEG S2-
sleep segments are shown in Table 2. The full analysis (training
and testing) was repeated twice, each time using a different scorer
as ground truth to explore the robustness of the procedure.
The results indicate that the method proposed here yields a
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FIGURE 4 | Sensitivity-FDR plots used for the determination of

optimal spindle and K-complex detection thresholds (on training

data). (A,C) show ROC-like-curves of sensitivity vs. FDR for spindles and

K-complex respectively. (B,D) depict the difference between sensitivity and

FDR as the threshold is varied. The optimal thresholds were defined as

those corresponding to maximum difference (vertical red line). The

corresponding cut-off point is also depicted on (A,C) with black circles.

Note that the sensitivity and FDR in the illustrative examples presented here

are computed against consensus scoring (i.e., agreement between both

scorers).

reasonably high sensitivity both for spindles (scorer 1: 83.18%,
scorer 2: 81.57%) and K-complex (scorer 1: 81.57%, scorer 2:
85.25%). The FDR values for spindles reached 39% (scorer 1)
and 19.66% (scorer 2), while the FDR for K-complex detection
was 29.54% and 32.82% for scorers 1 and 2, respectively. Note
that the inter-rater overall agreement was 77.85% (Cohen’s
kappa 0.64) and 63.33% (Cohen’s kappa 0.51) for spindle and
K-complex identification respectively. Table 2 also shows the
method performance when applied exclusively to data segments
for which both scorers agreed (100% inter-rater agreement, i.e.,
consensus scoring). In the case of spindle identification, this led
to a sensitivity of 86.40% and an FDR of 29.22%.

Performance Comparison with and without
TQWT and MCA
How critical is the inclusion of the TQWT-MCA decomposition
framework proposed here for the performance of the detection?
To address this question we set out to evaluate the added-value
of TQWT and MCA decomposition in the detection process. To
this end, the entire pipeline was performed again on the same
data set as above but this time with one notable difference: the
TQWT andMCA steps were excluded from the method. In other
words, instead of using oscillatory and transient components

(i.e., the output of TQWT-MCA), the detection process started
directly from raw EEG signals for K-complex identification, and
directly from its CWT transform for spindle detection. Figure 6
compares the results obtained with and without the TQWT-
MCA step. When using Expert 1 as ground truth, excluding the
proposed decomposition led to a drop in sensitivity for spindle
detection (from 83.18 down to 70%) and for K-complex detection
(from 81.57 down to 76.97%). Deterioration was also observed
in terms of increased false detections. The FDR values increased
from 39 to 43.62% in spindles detection and rose from 29.54
to 49.09% for K-complex detection. The corresponding results
obtained with Expert 2 as ground truth are comparable and are
given in panels C and D of Figure 6. These findings quantify
the specific added-value of the TQWT-MCA decomposition as
a pre-processing step, as compared to direct detection on the
raw EEG signal. In the discussion section, we further confirm
these observations by comparing our method to another peak
detection method previously published in the literature.

Scoring Adjustment Based on Expert Review of
False Positives
We evaluated the potential performance enhancement that
would be achieved by an additional (optional) step in which
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FIGURE 5 | Illustration of sleep spindle and K-complex detection in the

same EEG segment shown in Figure 2. (A) Spindle detection procedure:

from the raw EEG signal (upper panel) to the time-frequency representation of

the oscillatory component resulting from the TQWT-MCA decomposition

(middle panel), to spindle identification (lower panel). (B) The associated

K-complex detection in the same segment by thresholding the transient

component resulting from the TQWT-MCA decomposition (see Figure 2).

the false positive detections of our algorithm were presented
to the expert scorer for review. This allowed the scorer to
decide to accept or reject events detected by the algorithm
but that he had initially not marked. A dedicated GUI was
developed for this score adjustment (SA) procedure. After this
process was carried out a new file with the adjusted score
was created and the whole detection pipeline was repeated
(i.e., including the training and validation processes). The
performance enhancement obtained with the SA procedure is
shown in Figure 6. As expected, sensitivity increased and FDR
decreased, for K-complexes and spindles. The most prominent
improvements were a drop in spindle FDR from 39 to 21.33%
and an increase in K-complex sensitivity from 81.57 to 87.27%,
when using the annotations of Expert 1 (Figures 6A,B). Similar
results were obtained when comparing against annotations by
Expert 2 (Figures 6C,D). Note that this semi-automatic step

TABLE 2 | Method performance (Sensitivity and FDR) obtained by applying

the pipeline to the validation data set (test segments) for spindles and

K-complexes detection.

Sensitivity (%) FDR (%)

SCORER 1

Spindle 83.18 39.00

K-complex 81.57 29.54

SCORER 2

Spindle 83.10 19.66

K-complex 85.25 32.82

SCORER 1 and 2 (AGREEMENT)

Spindle 86.40 29.22

K-complex 80.86 21.39

Results are shown for scorer 1, scorer 2 and also for the case where only data with full
agreement between the two scorers were used.

is not considered part of the proposed methodology, as it
requires visual marking of the whole data set. Nevertheless,
this analysis quantifies the impact of the subjective scoring,
and provides an estimate of the performance that the method
could provide if the scorer provides a more consistent visual
marking.

Stability of the Proposed Method with Regards to
Sleep Stages
The results presented above were obtained with EEG segments
that were recorded during S2, the sleep stage where K-complex
and spindles are most frequent. However, as indicated above,
our method does not require sleep staging as a preliminary
pre-processing step. The method is in theory equally valid for
EEG segments from all sleep stages. We therefore also examined
the performance of the detection algorithm by using 420 EEG
segments including data from all sleep stages. Half of the
segments were S2 (i.e., 210 segments) and the other half were
non-S2 sleep (i.e., 210 segments). The 210 non-S2 segments
were composed of: 126 REM segments, 42 SWS segments and
42 S1 segments. Note that these proportions were chosen to be
close to the natural distribution (frequency of occurrence) of
the various sleep stages across a typical night’s sleep (Carskadon
and Dement, 2011). The motivation behind this selection was
to create training and test sets with compositions as close as
possible to what one would get from a random sampling of
sleep EEG epochs, i.e., without access to sleep stage information.
Using equal number of events across sleep stages (or running our
analysis separately for each sleep stage) was not feasible with the
data at hand given that some of the sleep stages, in particular
S1 and REM, contain a very low number of spindles and
K-complexes.

Globally speaking, the results of this analysis (see Table 3)
show a slight increase in sensitivity but comes at the expense
of an increase in FDR. This is most likely due to the fact that
the thresholds are better tuned to the more numerous S2 events.
Note that also in this analysis we see a reasonable agreement
between the results obtained when using each of the two scorers
as ground-truth.
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FIGURE 6 | Detection performances with and without the

TQWT-MCA decomposition step and additional performance

enhancement via scorer adjustment (SA). (A) Sensitivity and FDR

metrics for spindle detection (with scoring by Expert 1 used as ground

truth), (B) Sensitivity and FDR metrics for K-complex detection (with

scoring by Expert 1 used as ground truth). (C,D) Same as (A,B)

respectively, but now using the scoring by Expert 2 as ground truth. The

detection of spindles and K-complexes is enhanced by the use of

TQWT-MCA and further improvements are obtained using the scorer

adjustment approach.

TABLE 3 | Method performance (Sensitivity and FDR) obtained by applying

the pipeline to a validation data set (test segments) for spindle and

K-complex detection that includes data from all sleep stages (S2 and

non-S2 segments).

Sensitivity (%) FDR (%)

EXPERT 1

Spindle 86.82 45.36

K-complex 80.23 37.27

EXPERT 2

Spindle 85.05 32.19

K-complex 82.5 38.00

Results are shown for both scorers. The performances obtained if we restrict the detection
to S2 segments are presented in Table 2.

Impact of the Amount of Available Training Data
on the Performance
The method proposed here is by definition a semi-automatic
procedure since it has a built-in training step that uses visual
marking of a subset of data to determine an optimal threshold
that is to be used on the rest of the data. An important question is
therefore: what is the minimal amount of visual scoring required
by our method in order to achieve acceptable detection results?
Obviously the method would be of little use, if half (or more)

of the K-complexes and spindles in the data need to be marked
by an expert to ensure that it works. To address this question
we launched the entire pipeline (training and testing) repeatedly,
each time using an increasing number of training segments
(starting from five segments up to 200 segments, the procedure
was repeated five times at each size with random selection of
segments). The aim was to see how quickly the sensitivity and
FDR metrics stabilize. Here, we restricted the analysis to all
segments where the annotations of both experts were in complete
agreement (consensus). This was done to ensure robustness of
the annotation and because of the lengthy computational cost
associated with recalculating the whole analysis for annotations
from each expert. The aim here was not to assess the effect of
inter-expert variability, but rather to assess the dependency of
our technique on the number of training samples. The results
in Figure 7 show that, luckily, the performance metrics reach
a plateau already with a small number of training segments
(below 20 segments for spindles and below 50 segments for K-
complexes). This result indicates that the proposed method can
be used with minimal visual marking.

Performance of the Method in Individual Subjects
The results presented so far were obtained by combining EEG
sleep segments extracted from multiple subjects (n = 14).
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FIGURE 7 | Detection performance as a function of training set size. (A)

Effect of training set size on sensitivity and FDR of spindle detection. (B) Effect

of training set size on sensitivity and FDR of K-complex detection.

But how robust is the proposed method for the detection of
K-complexes and spindles in each individual subject? And, in
particular, how good are the performances in single subjects
when only a handful of events have been visually marked and
thus available for training? To address this question we launched
the entire detection pipeline in each subject individually using
only 15 segments for training (On average these 15 30-s segments
contained 18 ± 4.3 spindles and 11.9 ± 2.3 K-complex events).
In addition, as in the previous analysis (Section Impact of the
Amount of Available Training Data on the Performance) we
restricted the analysis to all segments where the annotations
of both experts were in agreement (consensus). The results
listed in Table 4 indicate a reasonably good performance in each
individual. The means of the individual performances (achieved
from only 18 spindles and 11.9 K-complexes on average) are in
fact comparable to those achieved (see Table 2) when combining
the data from all subjects and using half the data for training (210
segments, consisting of 141 K-complex and 217 spindle events).
As a matter of fact, the mean sensitivity for spindle detection (i.e.,
84.39%) which was obtained with very low number of training

TABLE 4 | Performance of the TQWT-MCA spindle and K-complex

detection method in each subject with minimal training.

Spindle K-complex

Sens % FDR % Th (µV2) Sens (%) FDR (%) Th (µV)

S1 61.54 20.00 300 78.57 21.42 −68

S2 85.00 50.00 210 88.89 27.27 −72

S3 100.00 27.27 240 81.81 10.00 −80

S4 62.50 16.67 300 75.00 10.00 −82

S5 73.91 19.05 270 57.14 11.11 −94

S6 81.43 23.25 280 83.33 23.08 −74

S7 96.30 35.00 240 60.00 14.28 −78

S8 90.62 9.37 270 80.76 20.00 −94

S9 90.00 47.06 230 88.89 11.11 −66

S10 95.65 21.43 260 93.33 12.50 −62

S11 100.00 50.00 210 100.00 26.67 −70

S12 100.00 23.68 270 33.33 88.88 −78

S13 76.19 11.11 300 83.33 45.22 −98

S14 68.42 31.58 340 80.00 42.86 −54

Mean 84.39 27.53 265.7 77.45 26.04 −76.4

Sensitivity Sen (%), FDR (%), and the optimal threshold (Th) are reported for each individual
but also as mean values across the whole population (bottom row). Only 15 annotated
30-s EEG segments were used for training in each subject (corresponding on average to
18 ± 4.3 spindles and 11.9 ± 2.3 K-complex training events).

samples is slightly higher than the value achieved with half of
the whole data set when combining data across individuals.
The results in Table 4 confirm that individually determined
thresholds provide good results and, because they were achieved
with only 15 training segments, it also suggests that the proposed
method does not require a lot of visual marking. Note however,
that for practical reasons and for the sake of generalizability we
recommend the use of a global detection threshold, just as we did
in all previous sections.

Comparison with a Standard Detection Method
To gain insights into how our method compares to existing
methods, we implemented a standard spindle detection method
(Gais et al., 2002; Mölle et al., 2002) which has already been
implemented or used as a standard method for comparison, in
numerous publications (e.g., Gais et al., 2002; Mölle et al., 2002;
Bergmann et al., 2012; Feld et al., 2013; Parekh et al., 2014,
2015; Warby et al., 2014). In brief, the procedure consists of the
following steps: (1) filtering the EEG with a 12–15Hz bandpass
filter, (2) calculating the root mean square (RMS) of each 100ms
interval of the filtered signal, (3) counting the number of times
the RMS power crossed a constant detection thresholdT value for
0.5–3 s. In the original study, Mölle et al. (2002) set the threshold
T to 10µV. To choose the best value for this parameter with
regards to our data, we computed the performances we achieved
using all T values between 5 and 12µV (in 1Hz steps) on the
training test. The threshold that provided the best compromise
between sensitivity and FDR was the one used when applying our
method to the test data. Table 5 compares the results obtained
with this standard method (Mölle et al., 2002) to those obtained

Frontiers in Human Neuroscience | www.frontiersin.org July 2015 | Volume 9 | Article 414 | 55

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Lajnef et al. Detection of spindles and k-complexes using TQWT and MCA

TABLE 5 | Comparison between the results (Sensitivity and FDR) achieved with our method to those obtained by applying a standard spindle detection

technique (Mölle et al., 2002), and to those achieved by a hybrid approach where we use the proposed TQWT + MCA analysis as a pre-processing step

before running the standard RMS-based detection procedure.

Filtering + RMS (Mölle et al., 2002) Current study

Standard With TQWT Expert 1 Expert2

Expert 1 Expert 2 Expert 1 Expert 2

Sensitivity 70.30 70.56 74.06 75.88 83.18 83.10

FDR 49.45 46.21 42.22 37.24 39 19.66

The performances of these three approaches are reported against Expert 1 and Expert 2 independently. The best results were achieved with the method proposed in this study.

with our method, but also to a hybrid approach where we use
our TQWT + MCA analysis as a pre-processing before running
the standard RMS-procedure proposed inMölle et al. (2002). The
results in Table 5 suggest that our method outperforms the RMS-
based method on the same data set. In addition, we found that
the performance of the RMS-based method (Mölle et al., 2002)
can be substantially improved if we first apply our TQWT-MCA
processing to the data. Note that the thresholds T that yielded the
best results with our data were 6 and 8µV for the detection with
and without TQWT-MCA, respectively.

Performance Evaluation on a Publicly Available
Database
To investigate the performance of our method on sleep EEG
data other than our own recordings, we detected spindles
and K-complexes by applying our method to the DREAMS
data set, a publicly available database of annotated sleep
EEG. EEG recordings from two specific databases were used:
The Sleep Spindle database and the K-complexes database,
which have both been made available by University of MONS
- TCTS Laboratory and Université Libre de Bruxelles—
CHU de Charleroi Sleep Laboratory. The spindles data can
be accessed online at: http://www.tcts.fpms.ac.be/~devuyst/
Databases/DatabaseSpindles/ while the K-complex data can
be found at: http://www.tcts.fpms.ac.be/~devuyst/Databases/
DatabaseKcomplexes/. The spindles and K-complexes databases
consist respectively of 8 and 10 excerpts of 30min of annotated
central EEG channel extracted fromwhole-night PSG recordings.
Here, we used recordings from the subjects that were recorded
with identical sampling rate (200Hz) and for which the visual
annotation was complete. This meant that for spindle detection
we used 6 participants out of 8 and for the K-complex detection
we used the data from all 10 participants. We used the annotation
by Expert 1 as benchmark since the annotations of Expert 2 are
not available for all subjects. The straight-forward application
of our method to these data, without any specific parameter
adaptations, yielded a sensitivity of 71.77% and FDR of 30.54%
for spindle detection, and a sensitivity of 83.31% and FDR of
36.31% for K-complex detection.

Discussion

The current study proposes a new method for joint detection
of sleep spindles and K-complex events, two hallmarks of

NREM sleep stage 2, by conveniently splitting the EEG
signal into oscillatory (spindles) and transient (K-complex)
components. The decomposition is achieved by applying MCA
on a sparse representation of EEG segments obtained by
the recently introduced discrete TQWT (Selesnick, 2011a,b,c)
with parameters specifically tuned to spindle and K-complex
characteristics. The actual detection step relies on thresholding
(a) the transient component in the search for K-complexes
and (b) the time-frequency representation of the oscillatory
component in search for sleep spindles. Optimal thresholds are
extracted fromROC-like curves (sensitivity vs. FDR) in a training
set, and the performance of the method is assessed on the test set.

Overall the method presented here provides a reasonable
compromise between sensitivity and FDR with performances
that were robust on several levels: First, the performances
did not change much when the benchmarking ground-truth
was switched from one scorer to another [Section Spindle
and K-complex Detection Performance (Test Set)]. Second, the
performance hardly changed whether only stage2 sleep EEG
segments were used or if data from all sleep stages were examined
(Section Stability of the Proposed Method with Regards to
Sleep Stages). Third, and most importantly, our results show
that the method does not require a large training set to derive
optimal cut-off thresholds. By varying the number of segments
used for training, we found that the performance in terms
of sensitivity and FDR reaches a plateau within less than 20
training segments (Section Impact of the Amount of Available
Training Data on the Performance, Figure 7). Finally, the latter
observation was further confirmed by running the detection
pipeline on individual subjects where the training (search for
optimal threshold) was restricted to 15 segments (i.e., using on
average 18 spindles and 12 K-complexes). This analysis revealed
good sensitivity and relatively low FDR in each subject and also
in terms of means over all individuals (Section Performance of
the Method in Individual Subjects, Table 4).

The TQWT-MCA approach has been recently used to
dissociate transient events with or without high frequency
oscillations (HFOs) in intracranial EEG (Chaibi et al., 2014). The
current study, is to our knowledge, the first to demonstrate the
utility of the TQWT-MCA framework for the detection of sleep
spindles and K-complexes.

Furthermore, the results we obtained by excluding the
TQWT-MCA decomposition from the proposed framework,
confirmed and quantified its contribution to the high
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performances obtained (Section Performance Comparison
with and without TQWT and MCA). Compared to the results
obtained without the TQWT-MCA step, our method achieved
an additional 13 point increase in percent sensitivity for spindles
and a five point increase for K-complexes (Figure 6). Since the
proposed decomposition is based on sparse representation of
spindles and K-complexes, it reduces the effect of noise and
artifacts in EEG signals, which may explain, at least in part, the
improved performance of the subsequent CWT and FIR filtering.

In addition, we have shown that a simple visual marking
adjustment step can lead to significant improvements, in
particular by reducing FDR. In the scorer adjustment procedure
the expert is presented with the false positive detections and is
given the possibility to accept or reject detections that he had
initially not indicated but that the algorithm identified as being
positives. This SA procedure is not part of the recommended
algorithm, rather a way to identify and quantify cases where
the objective machine might actually outperform the subjective
human scorer.

Parekh et al. (2014) propose a strategy to improve spindle
detection by pre-processing the raw EEG signal using non-
linear dual Basis Pursuit Denoising (BPD) which is also a way
to separate the non-oscillatory transient components of the
signal from the sustained rhythmic oscillations. The subsequent
filtering of the oscillatory component enhances the spindles with
regards to baseline, and thereby improves their detectability
with standard spindle detectors. Using this technique with a
readily available EEG spindle database provided a mean increase
of 13.3% in the by-sample F1 score and 13.9% in the by-
sample Matthews Correlation Coefficient score. A recent study
by the same group also provides compelling evidence for the
added value of using sparse optimization to detect spindles
and K-complexes (Parekh et al., 2015). A direct comparison
between these approaches and the methodology proposed here
is not straightforward given the use of by-sample metrics in
the Parekh et al. (2014, 2015) studies. Most importantly, the
current method and those proposed by Parekh et al. (2014, 2015)
provide converging evidence of improved spindle detection via
time-frequency sparsity, and they collectively suggest that this
framework is a promising path for enhanced performance of
event detection in sleep EEG.

Overall, the results reported here (either by combining data
across participants or by performing the detection algorithm
separately for each individual) are comparable with the results
of existing methods. However, we performed further analyses in
order to gain additional insights into (a) how the performance
of the pipeline proposed here compares to existing methodology
(Section Comparison with a Standard Detection Method) and
(b) how well it performs on other available data sets (Section
Performance Evaluation on a Publicly Available Database). The
results suggest that our method provides better detection than
the RMS-based method and that the performance of the latter
can be improved if we first apply the TQWT-MCA processing
to the data before computing the RMS (Table 5). Furthermore,
application of our method to the Devuyst et al. (2010, 2011)
online database, yielded a sensitivity of 71.77% and FDR of
30.54% for spindle detection, and a sensitivity of 83.31% and

FDR of 36.31% for K-complex detection. The original papers
associated with these databases do not directly report sensitivity
and FDR, but these metrics can be inferred from the confusion
matrices they provided for each expert. Using Expert 1 as ground
truth (as we did here), they detected spindles with sensitivity of
68.40% and FDR of 62.04% (computed from confusion matrix
in Devuyst et al., 2011). As for K-complexes, they were detected
with sensitivity of 61% and FDR of 26.70% (computed from
confusion matrix in Devuyst et al., 2010). Note, however, that the
comparison between their findings and ours is limited by the fact
that the recordings provided online does not allow us to explore
the exact data sets used in Devuyst et al. (2010, 2011).

More generally, the comparison between existing methods
for spindle and/or K-complex identification is not an easy
endeavor. First of all, the different methods proposed are
generally evaluated on different EEG data sets and with different
scorers, often with substantial inter-rater variability (Wendt
et al., 2015). Moreover, performance metrics also tend to differ
across studies. Recent efforts seek to overcome such limitations
by providing free access to high quality annotated sleep EEG
data sets (O’Reilly et al., 2014). Such benchmark data carry
the potential to significantly advance the field of automatic
spindle and K-complex detection, as well as sleep staging. This
was performed in a recent report by O’Reilly and Nielsen
(2015) where the authors compared four automatic spindle
detection algorithms: Teager detector (Ahmed et al., 2009), Sigma
index (Huupponen et al., 2007), RSP (Devuyst et al., 2011),
RMS (Mölle et al., 2002). To this end, four data bases were
used, two of which are open access: the DREAMS database
(Devuyst et al., 2010, 2011) and the Montreal Archive of Sleep
Studies (MASS) (O’Reilly et al., 2014). The results obtained and
conclusions drawn from this important comparison highlight
limitations and shortcomings of classical detection performance
evaluations frameworks. In particular, the reported findings
question the reliability of using expert scoring as gold standard.
In addition, they highlight the necessity of using an exhaustive
set of performance metrics: The authors recommend the use
of sensitivity, precision and a more comprehensive statistic
such as Matthew’s correlation coefficient, F1-score, or Cohen’s
κ for adequate sleep spindle assessment. Comparison of our
results with those presented in this comparative study is not
straightforward because we use window-based performance
metrics whereas the study by O’Reilly and Nielsen (2015) use
a signal-sample metric, equivalent to the “by-sample” metric
(Warby et al., 2014). This discrepancy is in itself problematic.
Future studies should seek to evaluate detection performance
using a unified set of evaluation metrics computed on large
open-access benchmarking data bases. Such an assessment of the
method proposed here would certainly help evaluate its strengths
and limitations.

The current study is one of a few reports that have proposed
a common methodological framework for the joint detection
of K-complex and spindles (Jobert et al., 1992; Koley and Dey,
2012; Jaleel et al., 2013; Camilleri et al., 2014; Parekh et al.,
2015).While Jobert et al. (1992) used matched filtering to detect
sleep spindles and K-complex waveforms, Camilleri et al. (2014)
used switching multiple models. The authors of the latter study
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evaluated their method by computing sensitivity and specificity
based on two expert manual scores and reported a sensitivity
of 83.49 and 52.02% and a specificity of 78.89 and 90.55%
for respectively spindles and K-complex detection. In addition,
Koley and Dey (2012) used CWTs to detect a set of sleep
EEG characteristic waveform, including spindles and K-complex.
They reported a good accuracy of 92.6 and 93.9% but didn’t
mention any performance metrics that take false positive or false
negative detection into account. Jaleel et al. (2013) proposed
a pilot detection method based on a mimicking algorithm
which imitates human visual scoring. However, no systematic
evaluation of performance metrics was provided. The method
proposed by Parekh et al. (2015) provides an elegant approach
based on the decomposition of the EEG signals into three signal
components (low-frequency, transient and non-oscillatory) and
their results highlight the utility of sparse optimization in the
improved detection of spindles and K-complexes.

Because of the naturally low number of K-complexes or
spindles across some of the stages (S1 and REM in particular)
it was impossible for us here to conduct our detection pipeline
on each sleep stage individually. Instead, we evaluated the
performance of our method by using either only S2 segments, or
by pooling segments from all stages (S2 and non-S2 segments).
Future studies with larger annotated sleep EEG databases will be
needed to assess and compare the robustness of our method in
each single sleep stage.

One way to increase the performance of our method could
be to fine-tune parameters of the TQWT and of the MCA
procedures on a subject by subject basis, so as to account for inter-
individual differences in spindle and K-complex properties. To
what extent the performance can be improved by modifying the
tuning Q-factor (globally or for each individual) is not clear and
could be the focus of further investigation. Future explorations
may also benefit from exploring the use of alternative wavelets,
such as the Morse wavelet (Lilly and Olhede, 2012) which has
successfully been used in recent studies (Zerouali et al., 2013,
2014; O’Reilly et al., 2015).

Moreover, it is possible that the false positive detections in
our pipeline include vertex waves mistakenly identified as K-
complexes since the two events bare strong resemblances. Careful
selection of the FIR filter parameters may help reduce this risk
since vertex waves are shorter-lived events (<0.5 s).

A further path for performance improvement is to seek to
identify spindles and K-complexes in multi-electrode data. The
co-occurrence (and even delays) of the presence of these micro-
structure across parietal, temporal and frontal brain areas would
be very informative, and could even be used to increase detection
performance. In addition, exploring the results obtained with the
proposed method across all scalp-EEG channels could be helpful
in assessing the distribution and propagation of K-complexes
and spindles (O’Reilly and Nielsen, 2014a,b) and unraveling their
underlying network dynamics (Zerouali et al., 2014). Note also

that the Q-factor of the TQWT can easily be tuned to incorporate
differences in frequencies between, for instance, faster central
spindles and slightly slower frontal spindles (e.g., Andrillon et al.,
2011).

Another venue for future research would also be to attempt
to incorporate into our framework recent findings of cross-
frequency relationships among various electrophysiological
signatures of sleep. In particular, high-frequency activity in the
gamma-range, which has been shown to be involved in a variety
of cognitive processes (e.g., Jerbi et al., 2009a,b; Jung et al., 2010;
Dalal et al., 2011; Lachaux et al., 2012; Perrone-Bertolotti et al.,
2012; Vidal et al., 2014), has also been shown to co-fluctuate
with slower brain rhythms (Jensen and Colgin, 2007; Canolty
and Knight, 2010; Soto and Jerbi, 2012). During sleep, gamma
oscillations have been linked to spindles (e.g., Ayoub et al.,
2012) and to slow wave sleep in intracranial EEG recordings
(Dalal et al., 2010; Le Van Quyen et al., 2010; Valderrama et al.,
2012) and in non-invasive EEG recordings (Piantoni et al.,
2013). Whether including these cross-frequency relationships
will enhance current detection tools remains to be seen.

Conclusion

The current study demonstrates the feasibility of identifying
spindles and K-complex events in sleep EEG using a single
methodological framework by literally tuning into the oscillatory
characteristics of the target events via the TQWT. Because of
the now well acknowledged challenges that face performance
evaluation of automatic and semi-automatic procedures
(O’Reilly et al., 2014), the next step would be to validate
our method on a larger open-access benchmarking sleep
database. This would allow us to perform fair and informative
comparisons with other existing methods, and possibly to
fine-tune the parameter selection for our method. From a
broader perspective, the flexibility with which the TQWT and
MCA decomposition (Selesnick and Bayram, 2009; Selesnick,
2011a,b,c) can be tuned to specific oscillatory or transient
phenomena in the signal suggests that it could be a promising
tool for the detection of other structures in sleep EEG signals
beyond those included in this study, such as vertex wave, slow
waves and apnea.
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Sleep spindle properties index cognitive faculties such as memory consolidation and

diseases such as major depression. For this reason, scoring sleep spindle properties

in polysomnographic recordings has become an important activity in both research

and clinical settings. The tediousness of this manual task has motivated efforts for its

automation. Although some progress has been made, increasing the temporal accuracy

of spindle scoring and improving the performance assessment methodology are two

aspects needing more attention. In this paper, four open-access automated spindle

detectors with fine temporal resolution are proposed and tested against expert scoring

of two proprietary and two open-access databases. Results highlight several findings: (1)

that expert scoring and polysomnographic databases are important confounders when

comparing the performance of spindle detectors tested using different databases or

scorings; (2) because spindles are sparse events, specificity estimates are potentially

misleading for assessing automated detector performance; (3) reporting the performance

of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen

in the literature, is insufficient; including sensitivity, precision and a more comprehensive

statistic such as Matthew’s correlation coefficient, F1-score, or Cohen’s κ is necessary

for adequate evaluation; (4) reporting statistics for some reasonable range of decision

thresholds provides a much more complete and useful benchmarking; (5) performance

differences between tested automated detectors were found to be similar to those

between available expert scorings; (6) much more development is needed to effectively

compare the performance of spindle detectors developed by different research teams.

Finally, this work clarifies a long-standing but only seldomly posed question regarding

whether expert scoring truly is a reliable gold standard for sleep spindle assessment.

Keywords: sleep spindles, automatic detection, temporal resolution, reliability, sensitivity, gold standard,

assessment

Introduction

Sleep spindles are bursts of energy in the 11–16Hz band with a characteristic waning and waxing
oscillation pattern of about 0.5 to 2.0-s duration that arises periodically in electrical signals captured
from, for example, implanted electrodes, electroencephalography, or magnetoencephalography.
This transient waveform is a hallmark of stage 2 (N2) sleep and a biomarker of some diseases

62

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00353
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:christian.oreilly@mail.mcgill.ca
http://dx.doi.org/10.3389/fnhum.2015.00353
http://journal.frontiersin.org/article/10.3389/fnhum.2015.00353/abstract
http://loop.frontiersin.org/people/120120/overview
http://loop.frontiersin.org/people/9448/overview


O’Reilly and Nielsen Benchmarking of automatic sleep spindle detectors

(De Gennaro and Ferrara, 2003; Ferrarelli et al., 2010; Wamsley
et al., 2012), cognitive faculties (Tamaki et al., 2008; Fogel and
Smith, 2011; van der Helm et al., 2011), and even normal aging
(Crowley et al., 2002). Thus, an effort to better characterize
the properties of sleep spindles is becoming a priority topic for
neuroscience and sleep medicine. A necessary step toward this
goal is to establish a commonly accepted method for evaluating
the performance of automated sleep spindle scoring systems.
Some notable efforts have been made in this direction by Devuyst
et al. (2011) who proposed amethodology and a publicly available
database. However, as will be discussed later, this database is not
sufficient in itself to robustly assess the performance of automated
detectors and their assessment method does not respond to
certain needs of the community studying sleep spindles. One
limitation concerns the use of fine temporal resolution scoring
for accurately describing the microstructural features of detected
spindles.

The present paper contributes to the enterprise of improving
automated tools for the scoring of polysomnographic (PSG)
microevents like sleep spindles by describing four different,
fine temporal resolution detectors. It also provides a thorough
assessment of their performance and draws key conclusions
about spindle detector performance assessment in general.
In next section (Spindle Scoring Evaluation), we present
methodological considerations on how to evaluate the
performance of spindle scorers, whether human experts or
automated detectors. The Methods section describes the
algorithms for the four spindle detectors with modifications to
increase their temporal resolution. The developed algorithms
are made available in the public domain to help improve
reproducibility of research, a challenging goal given the wide-
spread use of in-house proprietary algorithms. This section
also describes four polysomnographic databases used for our
investigation. The Results section assesses the performance of
the modified detectors using expert scoring as a gold standard.
Results are discussed in the Discussion section and suggestions
for future development and assessment of automated spindle
detectors are proposed in the Conclusion section.

Spindle Scoring Evaluation

Two Different Applications, Two Different Sets of
Requirements
There are two very different contexts within which to score
spindles and two distinct sets of requirements for assessing
their performance. The first context is to identify spindles as a
preprocessing step for subsequent scoring of sleep stages. Indeed,
according to both AASM (Iber et al., 2007) and Rechtschaffen and
Kales (1968) guidelines, the presence of spindles is a key marker
of sleep stage N2. In this context, knowing only if a spindle is
present in some time window (e.g., the 30-s page used to score
a stage) is sufficient. The second context for scoring spindles
is to study their properties in relation to other phenomena
such as disease symptoms or cognitive faculties. In this context,
sleep stages are generally scored manually before automatic
spindle detection is attempted; such stage scoring thus constitutes

useful a priori information for spindle detection. Here, more
precise evaluation of spindle characteristics [frequency, root
mean square (RMS), amplitude, etc.] are typically of central
interest.

Also in this context, timing attributes of sleep spindles,
such as their onset, offset, and duration, are of considerable
interest and might even be critical in precisely computing more
complex characteristics such as variation of the intra-spindle
instantaneous frequency or spatial propagation patterns (e.g.,
O’Reilly and Nielsen, 2014a,b). However, these characteristics
are often overlooked when spindle scoring is undertaken for
sleep-staging purposes. For example, in the DREAMS database
(Devuyst et al., 2011), one of the experts scored all sleep
spindles except two as having exactly a 1-s duration. Although
acceptable for sleep stage scoring, such detection is suboptimal
for a finer characterization of spindle attributes. It also highlights
a weakness of human scorers in comparison to automated
systems: expertsmay interpret or apply scoring criteria differently
depending on the application to which they think the spindles
will be put.

Fine Temporal Assessment of Spindle Scoring
Although the assessment method proposed in Devuyst et al.
(2011) might be adequate when spindles are detected for sleep
stage scoring, they do not assess sleep spindles with a fine
temporal resolution. From this paper, we can only infer that a
1-s scoring window was used for choosing between true positive
(TP), false positive (FP), true negative (TN), and false negative
(FN) cases as this was not explicitly stated in the methods. A
high temporal resolution alternative to this approach would be
to consider spindle scoring at a signal-sampling scale (i.e., for a
fs = 256 Hz sampling rate, 256 TP, FP, TN, or FN outcomes are
counted per second of recorded signal). As shown in Figure 1,
this signal-sample-based approach (equivalent to the “by-sample”
evaluation in Warby et al., 2014) allows for finer assessment
and solves some ambiguities that occur when using a window-
based approach (as in Devuyst et al., 2011). For example, it is not
clear whether condition (e) in Figure 1 should be counted as TP,
FP, or FN because the spindles detected by the two scorers are
not synchronized. The degree of allowed asynchrony is directly
related to the width of the decision window.

Confusion Matrix and Related Statistics
Figure 2 gives the standard confusion matrix used for assessing
diagnostic tools. From this matrix, Equations (1)–(3) give the
definitions of accuracy, sensitivity (a.k.a. TP rate, recall, hit rate),
and specificity (a.k.a. TN rate). These statistics are often used
for diagnostic applications in general and for spindle detector
assessment in particular.

accuracy =
TN + TP

P + N
(1)

sensitivity =
TP

TP + FN
(2)

specificity =
TN

FP + TN
(3)
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FIGURE 1 | The left panel shows six common situations [labeled as

(a–f)] occurring when comparing the detection of a gold standard

scorer (Gold) with another scorer (Test). The x-axis on these plots

represents time. On the y-axis, a high (low) value indicates the presence

(absence) of a spindle. For example, case (a) shows perfect agreement

between the gold standard and the tested scorer. Resulting assessments

(TN, TP, FP, and FN, in percent) for the proposed signal-sample-based

approach and for the window-based method used in Devuyst et al.

(2011) are given in rightward panel. Note: The length of the scored signal

is taken as being 1 s, such that there is only one decision taken for the

window-based method, whereas there are fs decisions for the

signal-sample-based method.

FIGURE 2 | Confusion matrix used to assess the performance of

diagnostic systems. Two scorings are necessary for this kind of assessment,

one considered as giving the true outcome (gold standard) and one for which

performance is established as a deviation from the true outcome (Test).

positive predictive value =
TP

FP + TP
(4)

negative predictive value =
TN

FN + TN
(5)

Equations (4) and (5) define two other, less frequently used,
statistics: the Positive Predictive Value (PPV, a.k.a. precision)
and the Negative Predictive Value (NPV). Furthermore, it is
noteworthy that the False Discovery Rate (FDR) is linked to the
PPV such that FDR = 1 − PPV . This is also true for specificity
and the False Positive Rate (FPR, a.k.a. fall-out) which are related
by FPR = 1− specificity.

It should also be noted that accuracy is ameasure of agreement
between two scorings, and as such, it is independent of which
scoring is used as gold standard and which is used as Test.
Moreover, sensitivity and PPV are two sides of a coin; sensitivity
becomes PPVwhen the gold standard scorer is interchanged with
the Test scorer. This is also true for the relation between NPV
and specificity. Thus, by listing the values of these five variables

TABLE 1 | Statistics for the comparison of spindle scorers from (Devuyst

et al., 2011).

Gold Test Accuracy Sensitivity PPV Specificity NPV

V1 Au 95.18 66.13 30.17 96.65 99.02

V1 V2 95.47 56.40 33.81 96.73 98.40

V2 Au 95.90 63.01 58.34 98.03 98.13

Only time samples from stage 2 sleep are used to calculate these statistics.

(accuracy, sensitivity, specificity, PPV, NPV) the results of testing
a scorer X against a scorer Y are completely known from the
outcomes of inverse comparisons.

Devuyst et al. (2011) developed an automatic spindle detector
(Au) and compared its performance with the scoring of two
human experts (V1 and V2). The average performances of
all three, assessed using our signal-sample-based method, are
compared in Table 1. The reported statistics are all more
conservative than when using the window-based method. For
example, the sensitivity of the automated system (Au) is about
65% with a PPV between 30 and 60%, depending on the expert,
as compared to a sensitivity of 70% and a PPV of 74% reported in
Devuyst et al. (2011).

Note that the sleep spindle detection problem shows a large
number of negative cases (N) with respect to the number of
positive cases (P), e.g., according to the scoring of V1, the
ratio between these two variables varies between 30 and 400,
depending on the subject. As discussed further in O’Reilly and
Nielsen (2013), in these unbalanced situations where N ≫ P,
specificity, NPV, and to a lesser extent, accuracy will always tend
to be close to 1. Apparently very good specificity and sensitivity
statistics alone may in fact be misleading as they can conceal a
very low PPV. Thus, reported outcomes should concentrate on
sensitivity and PPV (or equivalently, on the false detection rate)
rather than on the typically reported sensitivity-specificity pairs.
Furthermore, accuracy should be considered only as a statistic
allowing comparison with other detectors and not as a statistic
that is sufficient for claiming good performance in its own
right.
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Also as noted in O’Reilly and Nielsen (2013), these basic
statistics are best supplemented with more robust statistics such
as Cohen’s κ (Cohen, 1960), Matthew’s coefficient of correlation
(MCC) (Matthews, 1975), or the F-measure—especially in the
case of unbalanced datasets. Since none of these measures has yet
been established as the standard for spindle scoring, we report
results for all three of them.

Cohen’s κ coefficient is defined by:

κ =
accuracy− Pe

1− Pe
(6)

where Pe is the probability of random agreement (given the bias
of both scorers) defined such that:

Pe =
P′P + N′N

(P + N)2
(7)

MCC is defined by:

MCC =
TP ∗ TN− FP ∗ FN
√
P′ ∗ P ∗N′ ∗N

(8)

The F-measure is defined by:

FβC = (1+ β2
C)

PPV ∗ sensitivity
PPV ∗ β2

C + sensitivity
(9)

which is a weighted harmonic mean of PPV and sensitivity
with the factor βC allows one to put more emphasis on either
sensitivity or PPV (Chinchor, 1992). A special case of this
measure is the F1-score which weights sensitivity and precision
equally. In this case, Equation (9) reduces simply to:

F1 =
2TP

2TP + FP + FN
(10)

Decision Thresholds
Generally, at least at some internal level, automated classifiers
produce a decision outcome X on a continuous scale, e.g., an
estimated probability that a given sample is a positive. In such
cases, deciding whether a tested sample should be considered as a
positive or a negative applies a decision threshold λd such that the
sample is considered as positive if X ≥ λd and as negative if X <

λd. This implies that the statistics (1)–(5) are highly dependent on
the value used for λd, making the comparison between classifiers
difficult if based only on threshold-dependent statistics evaluated
with some specific decision threshold. To obtain amore complete
assessment, it is therefore preferable to evaluate the behavior of
these statistics as a function of the decision threshold.

Threshold-Independent Analysis
In the context of signal detection, evaluating the performance
at a specific decision threshold can be problematic. Indeed, if a
first classifier obtains both sensitivity and specificity scores of 0.8
whereas a second classifier obtains scores of 0.75 and 0.85 for the
two statistics, it is not clear which classifier should be selected as
the best. In such a situation, the choice ultimately depends on the

costs associated with FPs and FNs, costs that are often unknown
or subject to change over time or situations.Moreover, from these
statistics alone it is impossible to know if there is a threshold λd
such that one classifier will rank higher than the other on both
measures simultaneously.

Receiver Operating Characteristic (ROC) Curve
ROC curves (see Fawcett, 2006 and Wojtek and David, 2009,
for comprehensive overviews) have been proposed precisely
to answer this question. They allow assessing classifiers under
various operating conditions, i.e., using different values of λd.

The ROC curve is a parametric curve in the sensitivity-
specificity space parameterized using the decision threshold. That
is, every specific λd threshold is associated with a (sensitivity,
specificity) point on the ROC curve, a random classifier forming
a straight diagonal line from coordinates (0, 0) to (1, 1). ROC
curves are increasingly used in detection problems including the
assessment of spindle detectors.

Dealing with Asymmetry: the PR Curve
Using a measure complementary to the ROC curve such as
the Precision-Recall (PR) curve1 might also prove useful given
the significant asymmetry between the number of negative and
positive cases encountered in the spindle detection problem
(Davis and Goadrich, 2006; O’Reilly and Nielsen, 2013). In this
unbalanced situation, the specificity tends toward very high
values for any threshold selected in practical applications because
choosing thresholds associated with lower specificity would
imply unacceptably low PPV. This results in only a small useful
portion of the ROC curve which, therefore, benefits from being
complemented with information about the behavior of the PPV
statistic. This can be achieved by providing PR curves, which are
parametric curves that link the TP rate to PPV, using the decision
threshold as parameter. Compared to the ROC curve, the PR
curve therefore eschews reliance on specificity and depends upon
PPV, a more meaningful statistic for asymmetrical problems.

Correlations among Spindle Features
Detectors should also be compared for their ability to
extract spindles bearing similar properties. This is probably
the most important feature for detectors that are used
either for characterizing sleep spindles or for investigating
relationships between sleep spindle features (e.g., oscillation
frequency, amplitude) and subject characteristics (e.g., age,
gender, neuropsychological test scores). To evaluate this aspect
of a detector, the average values of spindle features are computed
within the spindle sets extracted with respect to both the
gold standard and the tested classifier. This is performed
separately for every recording condition (recording nights,
recording channels). Then correlations between these values
are computed across recording conditions using the Spearman’s
rank correlation coefficient. Such computation is performed for
a range of threshold values to evaluate the behavior and the
reliability of the detector against threshold variation but also to
better assess the optimal operating threshold.

1Also referred to as Positive Tradeoff (PT) curve in (O’Reilly and Nielsen, 2013).
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High correlations should be obtained if spindles extracted
by the gold standard (e.g., an expert) and a tested classifier are
to be considered as assessing the same phenomenon. Indeed, if
automated classifiers were to detect many more spindles than an
expert (i.e., produce many FPs) but correlations between experts
and automated detectors for spindle characteristics were high,
we could draw two conclusions. First, that both scorings could
be used to obtain similar outcomes and, second, that a higher
number of spindles detected by the automated systems would
probably not be an indication of FPs from the detector but rather
of FNs from the expert.

In this paper, five spindle characteristics are investigated:
duration, root-mean-square (RMS) amplitude, frequency slope,
mean frequency, and density. Duration is defined as the length of
the time window during which a detection function is above the
decision threshold, as will be discussed more thoroughly when
presenting the detectors. The window spanning the duration of
the whole sleep spindle is used for RMS computation.

Technical details related to the computation of the frequency
slope are described elsewhere (O’Reilly and Nielsen, 2014b).
In short, it is calculated as the slope of the linear relationship
between the time and the instantaneous average frequency of a
spindle oscillation. It assesses the tendency of a spindle oscillating
frequency not to be stable in time but to vary more or less
linearly. Density is the number of detected spindles per minute.
Mean frequency is computed as the average frequency of the fast
Fourier transform (FFT) as described in Equation (11).

fmean
def=

∫ 16
10 f · FFT(f )df
∫ 16
10 FFT(f )df

(11)

Methods

Databases
Four different PSG databases were used for our investigation.
This diversity allowed us to assess the impact of heterogeneous
databases on automated scoring and to evaluate the resilience of
these detectors when used in different setups. To provide results
that are easy to compare with those of other research teams, two
of the databases used are open access: the DREAMS database
(DDB) (Devuyst, 2013) and theMontreal Archive of Sleep Studies
(MASS) (O’Reilly et al., 2014).

DDB contains eight 30min-long EEG signals recorded
on channel CZ-A1, except for two using channel C3-A1.
Six recordings were sampled at 200Hz, one at 100Hz and
one at 50Hz. Subjects were 4 men and 4 women of
about 45 years of age [standard deviation (SD): 8 years]
with several different pathologies (dysomnia, restless legs
syndrome, insomnia, apnoea/hypopnoea syndrome). Spindles
were manually annotated by two experts (V1 and V2; V2 only
annotated 6 nights). The authors of this database did not specify
which scoring rules experts used for scoring spindles.

As of now, the MASS contains one cohort (C1) of 200
complete-night recordings sampled at 256Hz and split into five
subsets. The second subset (C1/SS2) contains 19 nights from
young healthy subjects. For this subset, sleep spindles are scored

by two experts (V4 and V5) on N2 epochs and on channel
C3 with linked-ear reference. A complete description can be
found in O’Reilly et al. (2014). It should be noted that relatively
low inter-rater agreement is expected between these two scorers
since V4 used traditional AASM scoring rules whereas V5 used
an approach similar to (Ray et al., 2010). In this case, both
broad-band EEG signals (0.35-35Hz band) and sigma filtered
signals (11-17Hz band) were used in scoring to facilitate the
identification of short duration, small amplitude or obscured
(e.g., by delta waves or K-complexes) spindles. Also, no minimal
spindle duration was used by V5 and four nights (out of the 19)
were not scored due to recordings that were judged to reflect poor
quality sleep (e.g., alpha intrusions during N2) or intermittent
signal quality/artifact (Fogel, personal communication).

The third database (NDB) is taken from an experiment
described in detail in Nielsen et al. (2010). Only the subset of
subjects not suffering from nightmares and only the two last
recording nights (of a total of three consecutive nights) were
used. The NDB subject sample contains 14 men [24.7± 5.9 (SD)
years old] and 14 women [24.6 ± 6.2 (SD) years old]. Subjects
were fitted with 4 referential EEG channels from the international
10–20 electrode placement system (C3, C4, O1, O2); 4 EOG
channels; 4 EMG channels; 1 cardiac channel for bipolar ECG;
and 1 respiration channel for nasal thermistry. Tracings were
scored by trained polysomnographers applying standard criteria
and using Harmonie v6.0b software. Sleep spindles were visually
scored on either C3 or C4 by an expert (V3) using R&K scoring
rules.

The fourth database (SDB) contains 19 complete nights
from 10 young and healthy subjects (9 were recorded for two
consecutive nights). Subjects were fitted with a complete 10–
20 EEG electrode grid; 2 EOG channels; 3 EMG channels;
1 cardiac channel for bipolar ECG. Signals were recorded
at 256Hz using a Grass Model 15 amplifier. A linked-ear
reference was used for EEG recording. Tracings were scored by
trained polysomnographers applying standard criteria and using
Harmonie v6.0b software. Sleep spindles were visually scored on
Fz, Cz, and Pz by one of the experts (V4) who also scored the
MASS spindles. In this case, spindles were scored when a burst of
activity in the 12–16Hz band was observed for 0.5–2.0 s duration.

In the following, only EEG signals from stage N2 sleep
were considered. Table 2 lists the characteristics of these four
databases.

Automatic Spindle Detection with Fine
Resolution
Many automatic detectors have been developed to address the
tedious task of identifying sleep spindles manually (Schimicek
et al., 1994; Acır and Güzeliş, 2004; Ventouras et al., 2005;
Schonwald et al., 2006; Huupponen et al., 2007; Ahmed et al.,
2009; Duman et al., 2009; Devuyst et al., 2011; Babadi et al., 2012).
However, no implementation of these detectors has been released
to the public domain—see however, other papers of this special
issue which propose such open-source detectors (Durka et al.,
2015; O’Reilly et al., 2015; Tsanas and Clifford, 2015)—, making
it very difficult to reproduce reported results based only on the
description of algorithms (Ince et al., 2012).
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TABLE 2 | Specifications of the databases used in our assessment.

DDB NDB MASS (SS2) SDB

Access Open Closed Open Closed

Sampling rate 200Hz in 6 cases; 100Hz in 1

case; 50Hz in 1 case

256Hz 256Hz 256Hz

Number of subjects 4 men and 4 women 14 men and 14 women 8 men and 11 women 4 men and 6 women

Number of recordings

per subject

1 2 1 2 for 9 subjects; 1 for 1 subject

Age 45.9 ± 8.0 24.7 ± 6.1 23.6 ± 3.7 22.4 ± 2.5

Health Several different pathologies; see

text

Healthy Healthy Healthy

Epoch duration 30 s 20 s 20 s 20 s

Stage scoring rules R&K R&K R&K R&K

Number of epochs per

recording

360 ± 0 1483 ± 158.7 1447 ± 126.5 1480 ± 113.4

Number of N2 epochs

per recording

215 ± 34.5 582 ± 109.4 689 ± 112.3 833 ± 86.2

Number of scorers 2 (V2 scored only 6 recordings) 1 2 (V5 scored only 15

recordings)

1

Spindle scoring rules Unknown R&K ASSM for V4; see text for V5 0.5–2.0 s duration; 12–16Hz

band

Time-resolved scoring Yes for V1; no for V2 Yes Yes Yes

Scored derivation CZ-A1 in 6 cases; C3-A1 in 2

cases

C3 or C4 with computed

ear-linked reference

C3 with resistor ear-linked

reference

Fz, Cz, and Pz with resistor

ear-linked reference

When using the notation X ± Y, X is the mean and Y is the standard deviation.

Moreover, the algorithms of these detectors generally have a

coarse temporal resolution of ±Wl
2 where Wl is the length of

an analysis window typically varying between 200 and 1000ms.
For a better characterization of spindles using fine temporal
resolution, we target ± 1

2fs
. For comparative purposes, we here

implement four fine resolution versions of originally coarse
resolution detectors described in the literature; these detectors
are based on RMS amplitude, sigma index, relative power, and
the Teager energy operator. The implemented detectors are part
of the Spyndle Python package, a publicly available spindle
detection and analysis software toolbox (O’Reilly, 2013c).

All of the implemented detectors share the same basic
structure. They first compute a detection function fd, i.e., a
function whose amplitude varies with the probability of spindle
presence. Spindles are detected when fd exceeds some effective
decision threshold λd for a continuous duration between lmin and
lmax. We qualify this threshold as effective to distinguish it from
the common threshold λc (fixed value) fromwhich λd is computed
(i.e., it can be adaptive or not, depending on the detector). For
the investigation reported in this paper lmin was set to 0.5 s—a
suggested minimal sleep spindle duration (Iber et al., 2007)—and
lmax to 2.0 s to avoid spurious detection of unrealistically long
spindles. This upper bound is large enough to capture relevant
events considering that spindle duration is generally shorter than
2.0 s; e.g., Silber et al. (2007) reported a 0.5–1.2 s range in young
adults. The decision threshold can be either static or vary as
a function of the EEG signal assessed for the whole night, the
current NREM-REM cycle, or the current stage of the current
NREM-REM cycle. For this paper, we used sleep cycles defined

as in Aeschbach and Borbely (1993) but other definitions are
available as well (e.g., Feinberg and Floyd, 1979; Schulz et al.,
1980). We also provide for the possibility of allowing portions
of fd to go below λd within the time window spanned by a spindle
(i.e., it is a supplementary exception that takes precedence over
the lmin criterion) as long as these portions are less than tgap
seconds long2. Figure 3 shows the pseudo-code of this general
architecture.

To illustrate this detection process, Figure 4 shows a raw
signal from the second subject of DDB and its 11–16Hz band-
passed filtered version as well as the detection function and
effective detection thresholds for our four detectors. Detected
spindles are indicated by shaded regions.

In the following section, we describe how to obtain the
detection function fd as well as the effective thresholds λd for each
of our four detectors (see also the Supplementary Materials for
related pseudo-codes).

RMS Amplitude Detector
This algorithm is based on a methodology adopted by many
researchers in the domain (e.g., Molle et al., 2002; Clemens
et al., 2005; Schabus et al., 2007) and initially proposed by

2The tgap parameter is included as a property of the Python classes implementing

the spindle detectors. Thus, its value can be easily changed if needed. tgap values

used for the present investigation are reported below for reproducibility purposes,

but the impact of this parameter has not been thoroughly tested yet (i.e., it has

been used in an informal, trial-and-error, manual optimization) since testing it

systematically would add a factor that would render our analyses prohibitively

complex and computationally intensive. It is therefore likely that the tgap values

used in this study are suboptimal.
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FIGURE 3 | Pseudo-code for the general architecture of the proposed detectors. At the end of this algorithm, detected spindles are contained in the

detectedSpindles list.

Schimicek et al. (1994). Raw EEG signals from each channel are

band-pass filtered, rejecting activity outside the spindle band.

In our case, we used a 1000th order forward-backward finite

impulse response filter with a Hanning window with cut-off
frequencies at 11 and 16Hz. The detection function fd_RMS is

defined as the RMS amplitude of the filtered signal computed
within a window of length Wl repeating itself through the

entire recording. The value for the effective threshold (λd_RMS)

is computed as the λc_RMS percentile–the 95th percentile is

generally used in the literature–of the distribution of the fd_RMS

function. Since the signal amplitude may vary between and
within recording nights, this effective threshold is computed
separately for every sleep stage of every NREM-REM cycle of a
recording.

To increase the time resolution of this method from ±Wl
2

to ± 1
2fs
, the window used to compute the RMS can slide

by one sample (maximally overlapped) instead of Wl samples
(contiguous) at a time. Using a matrix-based programming
language (e.g., Matlab, Python with NumPy), this can be
performed efficiently even in night-long signals.
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FIGURE 4 | Example of detection using a 10-s sample from the

second subject of DDB. The original signal and its 11–16Hz band-passed

version are plotted in the two bottom graphs, with gray boxes showing

expert scoring (top rectangles for V1, bottom for V2). The four plots in the

upper portion of the figure show corresponding detection functions (solid

lines), effective thresholds (dashed lines), and detected spindles (gray boxes).

For this paper, a 200-ms averaging window and a tgap = 0 were
used.

Sigma Index Detector
This detector is based on the sigma index (Huupponen et al.,
2007). To obtain good time accuracy with an acceptable
computational load, we use a time-frequency representation
known as the S-transform (ST) (Stockwell et al., 1996) instead
of using Fast Fourier Transform (FFT) on contiguous or
overlapping windows. The ST is equivalent to a short-time
Fourier transform (i.e., a Fourier transform computed over small
time periods using a sliding window) with a Gaussian window
function whose width varies inversely with the signal frequency.
Formally, this transform is expressed as:

ST
(

t, f
) def=

∫ +∞

−∞
h(τ)

∣

∣f
∣

∣

√
2π

e−
(t−τ)2 f 2

2 e−i2πf τdτ (12)

with t and f being transform time and frequency and h(t) being
the signal to be transformed. For simplicity, we used the discrete
version of this transform but a fast version (i.e., similar to what
the FFT is to the discrete FT) could also be used if efficiency is an
important consideration (Brown et al., 2010).

To minimize processing time, the ST is computed only on
the 4–40Hz band. Since this operation cannot be performed
on the whole night at once because of random-access memory
limitations and heavy computational overhead3, the ST is applied
on windows of 4.2 s. Windows are overlapped over 0.2 s and only
the 0.1–4.1 range is used to remove artifacts at the temporal
borders of the computed transform. Once the ST(t, f ) array is

3This is true for the discrete ST. However, since the fast ST can be computed in-

place (i.e., without additional attribution of memory), it should be computable on

the whole night at once.

obtained from the EEG signal, we determine the valuemax (t) =
maxfspin

(

ST(t, fspin)
)

where fspin = [11, 16] Hz is the frequency
range for spindle detection. In other words, max (t) is the
maximal energy along the frequency axis at a given time t, in
the sigma band. We then determine the detection function as the
sigma index.

fd_SIGMA (t) =







0 if max
fα

(

ST
(

t, fα
))

>max (t)

2∗max(t)
ml(t)+mh(t)

else
(13)

withml (t) = mean(ST(t, fl)),mh (t) = mean(ST(t, fh)), fl is the
4–10Hz band, fh is the 20–40Hz band, and fα is 7.5–10Hz band.
That is, for each time t, the sigma index is the maximal energy in
the spindle band normalized by the average between the energy
values in the fl and fh bands to control for wide band artifacts
such as those caused by muscular activity. Moreover, this index is
completed by an alpha rejection step which states that the value of
the sigma index is canceled out if the maximal energy in the alpha
band fα is larger than the maximal energy in the sigma band.

Although computed using different signal processing
algorithms, the sigma index used here follows the definition
proposed in Huupponen et al. (2007). These authors
suggest applying a threshold fd_SIGMA(t) > λd_SIGMA with
λd_SIGMA = λc_SIGMA = 4.5. Note that there is no difference
between the effective and the common threshold in this case, the
effective threshold being taken as a fixed value. We further used
tgap = 0.1.

Relative Spindle Power Detector
Following the ideas proposed in Devuyst et al. (2011), we
implemented a detection function based on the relative spindle
power (RSP).
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TABLE 3 | Definition for effective thresholds λd ; tested variation ranges, optimal values according to our investigations, and previously suggested values

in the literature for common thresholds λc.

Detector Threshold definition for λd Tested range for λc Optimal value for λc Suggested in literature for λc

RSP λc_RSP [0.1, 0.5] 0.3 0.22

RMS percentile(λc, fdRMS
) [0.7, 0.995] 0.92 0.95

Sigma λc_SIGMA [1.0, 8.0] 4.0 4.5

Teager λc_TEAGER ∗ fd_TEAGER [0.5, 8.0] 3.0 0.6

All effective decision thresholds are applied directly to the corresponding detection functions fd . The percentile(p, s) function computes the percentile p of the distribution of a signal s.
fd_TEAGER stands for the average value of fd_TEAGER.

fd_RSP (t) =
∫ 16
11 ST(t, f )df

∫ 40
0.5 ST(t, f )df

. (14)

That is, it represents the instantaneous ratio of the power of
the EEG signal in the 11–16Hz band divided by its power in
the 0.5–40Hz band. Power computation is performed using the
S-transform as described in the previous section.

The implementation details for this detector are exactly the
same as for the detector based on the sigma index, except that
fd_SIGMA (t) is changed to fd_RSP (t) and an adequate threshold is
applied (λd_RSP = λc_RSP = 0.22 was proposed in Devuyst et al.,
2011). We further used tgap = 0.

Teager Detector
Based on Ahmed et al. (2009) and Duman et al. (2009), we used
the Teager energy operator as another detection function. This
operator is defined as:

fd_TEAGER = h2 (n)−h (n−1) h (n+1) (15)

where h(n) is the digital signal (e.g., the EEG time series in our
case) which is transformed into the detection function fd_TEAGER
by the right-hand side of the equation and n is the (discrete) time
variable. Duman et al. (2009) propose a decision threshold at
λc_TEAGER = 60% of the average amplitude (i.e., λd_TEAGER =
λc_TEAGER

∗ fd_TEAGER where fd_TEAGER is the mean value of
fd_TEAGER). We further used tgap = 0.

Scripting
For transparency and better reproducibility of these results,
Python scripts used to generate the results presented are provided
in the examples repertory of the Spyndle package version 0.4.0
available at https://bitbucket.org/christian_oreilly/spyndle.

Artifacts
No artifact rejection was performed prior to spindle detection.
Some detection functions were designed to reject artifacts, e.g.,
the sigma-index which is designed to reject alpha band activity
and muscular artifact. We wanted to test these detectors in
the worst conditions to determine their resilience even in the
presence of artifacts.

Results

Five analyses performed in this study are described in detail in
the next sections. The first compares the detectors against each

expert scorer using threshold-dependent statistics computed
for a range of decision threshold values (see Table 3 for
actual ranges). The second analysis is similar but compares
correlations between pairs of detectors/experts for average values
of spindle characteristics. The third analysis presents ROC
and PR curves for the different detectors using expert scoring
as a gold standard. The fourth analysis assesses threshold-
dependent statistics for detectors operating with common
thresholds judged to be optimal according to our investigations
(see Table 3 for corresponding values). These thresholds are
subjective choices made by visual inspection following a
thorough assessment and motivated by the fact that they
balance performance estimates (i.e., attempt to maximize the
MCC, F1 and the Cohen κ; see Figure 5) across the expert
scorings4.

A final section presents comparative processing times for the
four proposed detectors.

Comparative Performances for
Threshold-Dependent Statistics
Figure 5 shows results obtained for threshold-dependent
statistics using large ranges of decision thresholds for testing
against each expert scoring. Whereas simpler statistics generally
monotonically increase (specificity and PPV) or decrease
(sensitivity) with respect to the decision threshold, more
complete statistics (e.g., Cohen K, F1, and MCC) are low for
extreme thresholds and maximal for intermediate values, better
capturing the tradeoff between low FPs and FNs.

Reliability of Spindle Characteristics
Results from previous sections show the extent of the
agreement between automated detectors and experts. However,
for investigating relationships between sleep spindle properties
and subject characteristics it is important to know to what extent
the latter relationships are affected by these partial agreements.
In other words, we want to verify if these correlations can be
reliably assessed regardless of the specific expert or detector
used to score spindles. To assess this, the median values of
some sleep spindle characteristics (RMS amplitude, density,
duration, oscillation mean frequency, instantaneous slope of

4We consider these thresholds to be a good tradeoff for most uses. However,

depending on the application, one might want to give more weight to sensitivity

or to precision. For a specific application, one can choose the operating point that

will result in expected performances using Figures 5–7.
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FIGURE 5 | Performance of four detectors (columns) compared against five experts (V1–V5) scoring four databases (DDB, NDB, MASS, SDB) (see

legend on graphs) for six threshold-dependent statistics (rows). Vertical dashed red lines show optimal thresholds, as reported in Table 3.

intra-spindle frequency) are computed for each scored channel
of each recorded night. These sets of median values are then
compared between pairs of detectors/experts using Spearman
correlations. Such computation is performed again for a large
range of detection thresholds as shown in Figure 6. In this
figure, correlations for V2’s estimates of duration are not reported
because this expert did not score spindle duration (i.e., every

spindle was noted as having a 1-s duration, except for two
spindles of 0.49 and 0.5 s).

Figure 6 shows how spindle characteristics correlate between
experts and automatic detectors but do not allow evaluation
of whether there is any offset between the different scorings.
Presence of such offsets can be assessed in Figure 7 which shows
actual spindle characteristic values.
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FIGURE 6 | Curves display variation of the Spearman coefficient of

correlation between the median value of spindle features (see

legend on graphs) computed from an expert scorer (rows) and an

automated detector (columns). Decision thresholds are varied in graph

abscises. Vertical dashed red lines show optimal thresholds, as reported

in Table 3.

ROC and PR Curves
Figures 8 and 9 show the ROC and PR curves, respectively, for
each of the four classifiers. Given the asymmetry of the spindle
detection problem, the portion of the ROC curve with specificity
less than 0.8 is of no interest since this portion corresponds to
useless operating conditions with PPV below 0.2 (this can be
observed by comparing specificity and PPV graphs in Figure 5).

Thus, ROC graphs have been truncated to focus on the most
informative parts.

As can be seen, PR and ROC curves do not increase
monotonically, as is generally expected for such curves. This is
a consequence of setting an upper limit on spindle duration.
Indeed, with such a limit, using lower thresholds causes
an increase in sensitivity up to a certain limit, after which
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FIGURE 7 | Variation of spindle characteristics as a function of decision threshold for each of the four automatic detectors. Straight horizontal lines show

values for expert scoring. Vertical dashed red lines show optimal thresholds as reported in Table 3.

excessively long spindles occur and are rejected, lowering the
specificity.

Threshold-Dependent Statistics at Optimal
Decision Threshold
Figure 10 shows performances that can be expected when
comparing each expert scoring to the different detectors using
optimal decision thresholds as specified in Table 3. Accordingly,
these plots would change for a different choice of threshold. Each
box represents the distribution of the median value of a given
statistic (e.g., specificity) across recording conditions (recording
nights, EEG derivations) for a specific expert’s scoring [e.g., DDB
(V1)] and a specific detector (e.g., RMS).

Processing Time
Computations were performed on Intel Core i7-3970X
processors @ 3500GHZ, using 32GB of RAM memory
(DDR3 @ 800Hz), running a 64-bit Windows 7 operating

system. Since this system has 12 cores and spindle detectors run
in single threads, the detection of spindles for all nights, with all
4 detectors, at all threshold values—i.e., detection of spindles for
4488 whole-nights and 408 30-min long signals—was automated
and run in 11 parallel detection processes using BlockWork
(O’Reilly, 2013b) and EEG Analyzer (O’Reilly, 2013a).

Aside from detection performances, processing time required
by the detectors is sometimes an important practical constraint.
For example, our assessment would have taken about half a CPU-
years if spindle detection for a whole-night of EEG signal took 1 h
to complete. Fortunately, the proposed detectors are substantially
faster. Figure 11 compares the average processing time for each
detector, with durations assessed on the MASS nights. Most of
the computation time required for spindle detection is associated
with three distinct tasks: loading the signals in memory (blue),
detecting the spindle (green), and saving the annotations on hard
drive (red). As would be expected, only the event detection is
significantly affected by the choice of detector. There is about one
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FIGURE 8 | ROC curves for comparisons between the four classifiers (tests) and scoring by experts (gold standard).

FIGURE 9 | PR curves for comparisons between the four classifiers (tests) and scoring by experts (gold standard).

order of magnitude between the processing time requirements
for event detection of the fastest (Teager; 32 s) and slowest (RSP;
402 s) detectors.

Discussion

Comparative Performance Assessment for
Spindle Detectors
As discussed in the Spindle Scoring Evaluation section, the most
interesting characteristics for threshold-dependent evaluation of
sleep spindle detectors are sensitivity and PPV (precision) as
well as more complete statistics such as Cohen’s κ, F1-score,

and MCC. Specificity is of low interest since the relative scarcity
of spindles in sleep EEG forces it to take high values for any
reasonable PPV. This is exemplified in Figures 5 and 10. In fact,
specificity values can be considered misleading in that they give
the false impression that a detector has good performance even if
it is not necessarily the case. In light of this, it appears prudent
to report PPV or FDR instead of specificity as a measure of a
detector’s ability to reject FPs.

It is, however, obvious from Figure 9 that the impact of
the choice of an expert/database combination has even more
influence on PPV than the choice of a detector. This highlights
the fact that PPV is directly related to how conservative the
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FIGURE 10 | Box plots summarizing the distribution of

threshold-dependent statistics for expert/detector comparisons

using decision thresholds judged optimal as reported in

Table 3. Results for each detector are color coded (see the

legend). Note that the first two boxes (in purple and brown) at

the left of each vertical dashed line show the distributions of

statistics comparing experts V1 and V2 (DDB) and V4 and V5

(MASS).

expert is when detecting spindles (i.e., the extent to which an
expert systematically scores fewer spindles per night than do
other experts; see also spread of the optima for MCC, Cohen’s κ,
and F1-score in Figure 5 which depicts the same phenomenon).
It suggests that PPV is more indicative of the relative importance
of FNs from the expert part than FPs from the detector part. In
this context, it appears ill-advised to compare spindle detectors

for which assessments were performed on different databases or
different expert scorings. Indeed, the expert scoring and database
are two important confounding factors that can completely mask
true differences in detector performance. The importance of
these confounders on PPV is particularly obvious, but is clearly
also true of the other performance statistics (sensitivity, MCC,
F1-score, Cohen κ) as can be seen in Figure 10. Fortunately,
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FIGURE 11 | Comparison of processing times for the four automated

spindle detectors.

open-access databases that can be used for comparative purposes
are starting to become available. We hope that the present
results will incite researchers to propose additional open-access
databases or to contribute to existing ones.

Choosing the best decision threshold is rather difficult
and almost impossible to do objectively using sensitivity and
PPV curves (Figure 5), ROC curves (Figure 8), or PR curves
(Figure 9). Such a choice requires estimation of the costs
associated with both FP and FN errors. Since these costs
are difficult to evaluate and can vary depending on context,
MCC, F1-score, and Cohen’s κ provide attractive alternatives.
These three statistics give very similar assessments with clearly
identifiable maxima close to FN/FP tradeoffs that are generally
adopted in the literature. Since correlation coefficients are well
understood by the general scientific community whereas use of
Cohen’s κ is restricted more to the field of psychology, MCC
might be a good choice of statistics to report. Furthermore, MCC
lends itself readily to parametrical statistical analysis since it is
related to the χ2 distribution (Baldi et al., 2000). The F-measure,
on the other hand, has the advantage of explicitly specifying
weights on the relative importance of sensitivity versus PPV,
whereas the tradeoff is implicit in MCC and Cohen’s κ. Similarly,
the F1-score implicitly considers these two statistics as being of
equal importance, something that might not be true in general.
Regardless, no consensus has yet emerged concerning which of
these three statistics is best to report, but reporting all three
might be preferable when assessing a detector on an open-access
database so as to maximize the possibility of comparing detector
performances across studies. In any case, at least one such statistic
should be reported to provide a more comprehensive view of the
detector’s performance.

Another important conclusion is that there is an inherent
difficulty deciding which automated detector performs best
relative to expert scoring using statistics computed at only
one specific threshold. Shifts in the decision threshold can

produce very different results. Thus, reporting the value of
threshold-dependent statistics over some reasonable range of
decision thresholds is desirable.

It should also be noted that, because databases and experts
constitute two important sources of variability, one should
exercise caution in comparing results from studies presenting
algorithms that use general classification rules based on heuristics
(e.g., the detectors proposed here) with those from studies
using detectors that are trained on a database of pre-scored
spindles (e.g., Acır and Güzeliş, 2004) unless the training
and the testing subsets in the latter are taken from different
databases and scored by different experts. Indeed, the maximally
attainable performances for heuristic and trained systems are
quite different. In the former case, the best performances that can
be expected when comparing a detector with different experts
are limited by the relatively low average agreement between
experts (inter-expert reliability). In the latter case, if scoring
from the same expert is used both for training and testing, the
maximal performance that the automated detector can attain is
only limited by intra-expert reliability.

Impact of Scorers on Averaged Spindle
Characteristics
As can be seen in Figure 6, the inter-scorer reliability of spindle
characteristics can be loosely ranked, from most to least reliable,
as follows: frequency, amplitude, frequency slope, duration, and
density. This ordering does not seem to be affected much by
the choice of detector. It seems, however, that all curves can
be displaced up or down by differences in the quality of the
database and the expert scoring. Also, it is perhaps concerning
to see that spindle density—the most frequently used spindle
characteristic in sleep research—is in fact the least reliably
evaluated characteristic. This is not surprising though since
density is the only characteristic considered here that is not
computed by averaging its value across spindles (i.e., the density
is defined directly at the subject level as a count whereas the other
characteristics are defined at the level of individual spindles and
their value at the level of the subject is obtained by averaging
across a large number of spindles). Including, for example, 10%
more or fewer events in the averaging process may not cause a
large difference for stable characteristics. However, this would
cause a rather large error (±10%) for density.

Figure 7 also shows that at optimal thresholds there is
generally good agreement between the characteristics of spindles
labeled by experts and by detectors, with no large offsets between
these two kinds of scorings. In this figure, we see that the
frequency slope cannot be reliably evaluated on the DDB. This
is likely due to the short duration of the recordings (30min
instead of whole nights) which does not allow for the detection
of enough spindles to stabilize computation of the median value.
This is most visible for the frequency slope because this measure
is harder to estimate reliably on individual spindles than are other
properties such as average frequency. Except for this specific case
and the results for frequency, detectors tend to agree closely
across databases, contrary to the experts. This is consistent with
the hypothesis that different experts work with different detection
thresholds.
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Choice of an Open-Access Database
Results obtained with DDB have a restricted utility because of
severe limitations on the features of this database. For example,
the DDB is relatively small, containing only 4 h of recording (8
sequences of 30min) on one channel. This results in unreliable
assessment as can be seen in Figure 6. In contrast, the portion of
MASS that was scored for spindles is much larger; about 150 h of
recording (19 nights of about 8 h). Another limitation of DDB is
in its recording parameters. For example, the EEG of one subject
is sampled at 50Hz, which theoretically allows assessment of
frequencies up to 25Hz without aliasing; however, in practice
imperfect filtering produces aliasing even at lower frequencies.
Figure 10 also shows generally similar agreement between expert
scoring on MASS and on DDB, even if low agreement was
expected for MASS given the fact that it was scored by two
different teams using two different approaches. Thus, using only
the DDB does not appear to be sufficient to provide a robust
assessment of spindle detectors and a more complete database
such as MASS is preferable for such a purpose.

On the other hand, DDB has the advantage of presenting
signals for clinical cases. These can serve as examples or for
case studies. Also, DDB has a high value in open-science
for fast validation, teaching, and tutorials since it is directly
downloadable on the Internet, something not possible for ethical
reasons with MASS.

ROC and PR Curves
Results from ROC and PR curves are not conclusive. Detector
rankings according to these curves vary from expert to expert.
They may, therefore, not constitute the most appropriate tools
for assessing spindle detectors. In a related vein, because
of the asymmetry of the spindle detection problem, most
of the ROC curve is associated with uninteresting operating
conditions. Computing the area under this curve hence produces
an aggregated measure that is obtained from mostly useless
conditions. Therefore, the area under the ROC curve (AUC) does
not appear appropriate for assessing the performance of spindle
detectors.

Choosing the Best Detector
Even with the thorough assessment proposed here, we cannot
with good confidence determine the best classifier. Our ability to
do so is limited by the lack of a highly reliable gold standard.

Moreover, the required characteristics of a detector may
change depending on the desired application. Here is a
short list of some of the most important qualities/features
that vary with different applications: (1) requirement or not
of sleep stage scoring; (2) rejection or not of artifacts; (3)
temporal precision of spindle detection; (4) simplicity of the
algorithm; (5) efficiency of the code (e.g., code execution
time); (6) overall classification performance; (7) reliability of
detected spindle characteristics; (8) capacity for extracting
spindles that are correlated with other dependent variables (e.g.,
neurophysiological and neuropsychological variables).

In general, RMS and Teager detectors are good picks for
applications requiring simple deployment and rapid processing.
The Sigma detector, however, seems more reliable for estimating

spindle characteristics when compared against expert scoring.
Further, we found that 0.3, 0.92, 4.0, and 3.0 are appropriate
values for decision thresholds used with the RSP, RMS, Sigma,
and Teager detectors, respectively. These thresholds are close
to previously proposed values for Sigma (4.5 vs. 4.0) and RMS
(0.95 vs. 0.92). The threshold for the RSP detector is also
not too discrepant from previously proposed values (0.22 vs.
0.30). However, for the Teager detector, the previously proposed
threshold is five times lower than the one found here (0.6 vs.
3.0). The reason for such a discrepancy between our results and
those of Duman et al. (2009) is presently unknown. This detector
seems, however, particularly sensible to characteristics of the
database. Thus, finding a better approach to adapt the effective
decision threshold to the characteristics of individual subjects
might help to stabilize the performance of this detector.

Note also that, except for DDB, our assessment was made
on young healthy subjects. This is important because sleep
spindle properties (e.g., density, frequency, morphology, spatial
distribution) vary with age and brain and sleep disorders, such
as sleep apnea. These associations have practical implications for
using these detectors on clinical datasets. For example, recordings
taken from the elderly might need lower decision thresholds
to accommodate less pronounced spindles in this population.
Precision of the detector would evidently suffer from such an
accommodation. Thus, a thorough assessment of the behavior of
these detectors is advisable before using them with populations
known to have smaller amplitude spindles, more artifacts, or
smaller signal-to-noise ratios (SNR).

The Problem of the Gold Standard
As previously mentioned, our results suggest that a significant
proportion of the FPs traditionally attributed to automatic
detectors might rather be due to FNs from experts. This raises
the question of the adequacy of expert scoring as a gold
standard for evaluating spindle detectors. The general reliability
of expert scoring can indeed be questioned considering that, in
our findings, expert scoring has more influence on automatic
detection than does the choice of automated detector. This is
further supported by the fact that experts V1–V2 and V4–V5
agree more closely with one another than they do with most
of the automated detectors (see Figure 10). These results are in
line with reports of a relatively low reliability for expert scoring.
For example, F1-scores of 72 ± 7% (Cohen κ: 0.52 ± 0.07) for
intra-rater agreement and 61 ± 6% (Cohen κ: 0.52 ± 0.07) for
inter-rater agreement have been reported by Wendt et al. (2014).

Our results suggest that there is ample room for improvement
of automatic spindle detectors. However, the extent of this
improvement is unclear because of low reliability of the gold
standard currently available for spindle identification. Without
a robust gold standard, results will continue to be limited by
average inter-rater agreement. Consensus from a large number
of crowd-sourced scoring judges is a possible alternative to
expert scoring as a gold standard (Warby et al., 2014), but it
remains unproven that common agreement of a large number
of low-qualification scorers will provide better detection of
atypical, unusual or non-obvious spindles than will experts. Low-
qualification scorers will in all likelihood show high reliabilities
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only on large amplitude spindles with large signal-to-noise ratios.
Similarly, it is unclear if consensus scoring of a few experts would,
in the long run, be retained as a practical solution. This would
require substantial resources and runs counter to the tremendous
efforts invested in automation of sleep spindle scoring designed
to reduce the burden of manual processing to begin with. It
might prove to be a sound approach for scoring only subsets
of recordings that can be used for training classifiers to detect
the entire database (e.g., O’Reilly et al., 2015). Alternatively,
manual validation of automatically scored recordings could
prove to be quicker for experts than would be manual
scoring of the tracings, and thus would provide a reasonable
compromise.

Although automated spindle detectors have been in use for
several decades, their development and assessment still require
substantial work. As they mature, expert scoring will need to
be abandoned in favor of criteria based on construct validation
results that reflect the growing capacities of computerized
automation and statistical assessment. This task could be
facilitated by incorporating correlations between detected spindle
characteristics and psychological, physiological and demographic
dependent variables. We would expect that spindle features
obtained from random detectors would correlate only poorly
with such variables, whereas spindle features obtained from
detectors tapping genuine neurophysiological phenomena would
correlate robustly.

Limitations
Consensus scoring was not pursued for this study but it
clearly warrants consideration in future work. For this analysis,
double scoring was only available for two databases. The first
(DDB) produced rather unreliable results while the second
(MASS) produced low inter-expert agreement. Higher inter-rater
agreement in MASS could have been pursued by allowing both
experts to consult and align their scorings. We would argue,
however, that this is not representative of scoring used in the field.
We chose instead to ask experts from two different centers to
score these recordings as they would in their research. These low
agreements are more representative of the variability in expert
scoring that we observe between studies published by different
centers than is an artificially increased agreement of experts
aligning their scoring through consultation.

It is also noteworthy that no artifact rejection was performed
prior to spindle detection. Thus, our results show the relative
resilience of these detectors to the presence of artifacts.
However, in clinical settings where many artifacts are expected,
signals should be adequately preprocessed (i.e., cleaned of
artifacts) to ensure robust detection. This is especially true for
consistent artifacts that might affect the computation of detection
thresholds, e.g., the presence of many high-amplitude arousals
or flat segments. Fortunately, the use of percentile statistics
in the definition of thresholds should render these thresholds
relatively robust compared to thresholds based on, e.g., averages
and standard deviations, as long as artifacts introduce only a
non-significant amount of activity to the top percentiles of the
amplitude distribution.

Conclusion

As we demonstrate in the present paper, assessing the
performance of automated spindle detectors is a complex
enterprise. The superiority of a new detector can no longer
be supported merely by reporting that threshold-dependent
variables such as sensitivity and precision are superior to those
of previously published detectors. These basic statistics should
be supplemented—at a minimum—by more complete statistics
such as MCC. However, because there exist no commonly agreed
upon testing conditions (i.e., standard databases, relative positive
and negative error costs, etc.) and since these conditions may
change with different usage contexts, better estimates of external
validity (and, thus, a more general validation) can be obtained by
reporting the values of these statistics across a range of decision
thresholds. Themost useful results are obtained by also providing
access to the detector source code such that other research teams
may test the detector’s performance under different conditions. If
authors are not willing to share source code, sharing of at least an
executable copy with documentation should be considered.

Aside from the dynamics of spindle detectors themselves,
other important topics in detector assessment concern the
methodological environment of the evaluation. One key topic
is the availability of a validated gold standard against which
automatic scoring may be evaluated. Expert scoring has been
used de facto as a trustworthy gold standard, but this assumption
is challenged by our results. Although for the present experts
will most certainly keep their gold standard status in spindle
detection, the definition of a more reliable and commonly agreed
upon standard is urgently needed if progress in the domain is to
continue.

A second matter needing attention is the availability of EEG
databases. As shown in our results, outcomes from different
databases can be quite different depending on the database
representativeness (i.e., characteristics of the subject sample),
size (i.e., are there enough records to obtain stable averages?),
and reliability (appropriate sampling frequency, recording
equipment, etc.). The availability of shared databases is critical
for the development of new algorithms and the benchmarking
of various systems on the same set of biological recordings.
Pooling of multiple scorings from experts of different research
teams could also help in capturing inter-expert variability when
developing classifiers that require training.

Unfortunately, the implementation (both executables and
source code) of existing sleep spindle detectors described in the
literature are not widely available, making their reproducibility,
standardization, and benchmarking difficult to attain. In an effort
to stimulate progress in this regard, we provide open source
spindle detectors for use by the other researchers working in
this area (see the Spyndle package, O’Reilly, 2013c) along with
a comprehensive assessment of their performance.
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EEG sleep spindles are short (0.5–2.0 s) bursts of activity in the 11–16 Hz band occurring
during non-rapid eye movement (NREM) sleep. This sporadic activity is thought to play
a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many
automatic detectors have been proposed to assist or replace experts for sleep spindle
scoring. However, these algorithms usually detect too many events making it difficult to
achieve a good tradeoff between sensitivity (Se) and false detection rate (FDr). In this
work, we propose a semi-automatic detector comprising a sensitivity phase based on
well-established criteria followed by a specificity phase using spatial and spectral criteria.
In the sensitivity phase, selected events are those which amplitude in the 10–16 Hz
band and spectral ratio characteristics both reject a null hypothesis (p < 0.1) stating that
the considered event is not a spindle. This null hypothesis is constructed from events
occurring during rapid eye movement (REM) sleep epochs. In the specificity phase, a
hierarchical clustering of the selected candidates is done based on events’ frequency and
spatial position along the anterior-posterior axis. Only events from the classes grouping
most (at least 80%) spindles scored by an expert are kept. We obtain Se = 93.2% and
FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase.
For these two phases, Matthew’s correlation coefficients are respectively 0.228 and 0.324.
Results suggest that spindles are defined by specific spatio-spectral properties and that
automatic detection methods can be improved by considering these features.

Keywords: sleep spindles, detection, electroencephalography, time-frequency, hierarchical clustering, machine

learning, pattern recognition, sleep

INTRODUCTION
EEG sleep spindles are short bursts of oscillatory activity in the
11–16 Hz frequency band during NREM sleep, especially in stage
2 sleep. This sporadic activity is a topic drawing increasingly more
attention as it is thought to have an important role in the protec-
tion of sleep integrity and in the consolidation of new learning
(Steriade, 2006; Dang-Vu et al., 2010; Fogel et al., 2012). Usually,
the study of sleep spindles is time consuming due to the man-
ual processing it requires. Aside from preprocessing steps such as
sleep staging and artifact rejection, a polysomnographic expert
has to manually identify hundreds of spindle occurrences hidden
in whole-night EEG recordings, a tedious and error-prone task.
Over the years, many automatic detectors have been proposed to
assist or replace the experts in this task. These can be roughly
split in two classes. The first one transforms the recorded sig-
nal in a new function—the detection function—whose amplitude
is related to the probability of spindle activity. A simple thresh-
old (or a set of thresholds) is applied to this function to decide
on the presence or absence of spindle activity. This operation is
typically followed by some additional criteria such as rejection of

small duration events, generally <500 ms to follow standard defi-
nitions of sleep spindle (Rechtschaffen and Kales, 1968; Iber et al.,
2007). Many systems following this general approach have been
proposed (e.g., Schimicek et al., 1994; Huupponen et al., 2007;
Devuyst et al., 2011; Babadi et al., 2012). In the second class of
detectors, EEG signals are segmented in a sequence of events (i.e.,
epochs that are potentially associated with spindle occurrences).
For each event, a set of features is extracted to better synthesize its
key characteristics. Then, two approaches can be used to classify
these events as spindles or non-spindles: supervised (guided by
pre-annotated spindles) or unsupervised (clustering techniques
finding regular subsets of events and selecting subsets that are
most likely to be associated with spindle activity). Here again,
many systems have been proposed in the literature (e.g., Acır and
Güzeliş, 2004; Olbrich and Achermann, 2005; Ventouras et al.,
2005; Sinha, 2008; Ahmed et al., 2009).

However, the detection of an important proportion of false
positives is a persistent problem observed with these automated
detectors when compared to expert scoring. This issue has often
been hidden by reports of apparently highly specific systems
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which large numbers of false positives were masked by the impor-
tant asymmetry between spindle vs. non-spindle events (O’Reilly
and Nielsen, 2013; O’Reilly and Nielsen, in revision). Looking at
the false detection rate (instead of specificity) reveals this impor-
tant weakness. In this context, achieving a satisfactory tradeoff
between sensitivity (Se) and false detection rate (FDr) proved to
be challenging.

In this work, we propose a two-step detector which aims
to decrease the FDr by combining a sensitivity phase based on
well-established criteria to a specificity phase using spatial and
time-frequency criteria. This approach mixes both types of classi-
fication approaches previously described. In the sensitivity phase,
putative events are first detected from the wavelet representation
of the EEG recordings and then selected as those with large sigma
index—a measure proposed by Huupponen et al. (2007) as a ratio
of specific spectral bands—and high amplitude in the spindle
frequency band. The threshold used in this selection process is
based on the rejection of a null hypothesis (p < 0.1) stating that
the considered event is not a spindle. The non-parametric model
of the null hypothesis is constructed from events occurring in
spindle-free epochs, e.g., in REM stage. In the specificity phase,
hierarchical clustering of detected events is performed using the
spectral and the topographical (anterior vs. posterior localiza-
tion) properties of spindles. This spatio-spectral classification is
motivated by evidences of a dichotomy in sleep spindles: one class
occurs in frontal regions and has lower frequencies; another class
is characterized by higher frequencies and a more centro-parietal
topography (Werth et al., 1997; Zeitlhofer et al., 1997; Anderer
et al., 2001; De Gennaro and Ferrara, 2003; Martin et al., 2013).
Then, classes grouping a large proportion of events scored as spin-
dles by an expert are selected. In this phase, the detector tries to
reject as many false positives as possible—hence effectively bias-
ing the detection threshold toward specificity—without rejecting
too many true positives. Interestingly, parameters for such clus-
tering can be learned from a small sample of expert detections
and then be generalized automatically to the whole night.

MATERIALS AND METHODS
PREPROCESSING
Signal mixture
A first preprocessing step consists in locally averaging the EEG
signals to obtain one highly informative signal out of the Nc EEG
channels available. This is made possible by the fact that the spin-
dle activity is generally relatively synchronous across the scalp,
with maximal apparition delays between sensors generally below
25 ms (O’Reilly and Nielsen, 2014b). We consider the following
virtual channel:

s(m) = mTS (1)

where m is a vector of Nc components specifying weights associ-
ated with every channel of this mixture. This vector is normalized
with a L1 norm (i.e., elements sum to unity) and defines what
we call a montage. The S matrix has a dimension Nc × Nt and
is obtained by simply stacking together the signals from the Nc

channels, each one containing Nt time samples.

Time-frequency representation
Spindle activity was assessed in the time-frequency plane using
the Continuous Wavelet Transform (CWT). This transform is
defined as follows:

W(a, b) = 1

2π

∫ +∞

−∞
�∗

β,γ (aω) S (ω) eiωbdω (2)

with a and b being parameters associated respectively with scale
(i.e., inverse of frequency) and time. S (ω) = ∫ +∞

−∞ s(t)e−iωtdt is

the Fourier transform of the signal s(m)(t), ∗ indicates the complex
conjugate, and �β,γ (ω) is a wavelet in the frequency domain. For
this study, we used the Morse wavelet (Lilly and Olhede, 2009,
2010):

�β,γ (ω) = H (ω) cβ,γ ωβe−ωγ

(3)

with cβ,γ being an irrelevant normalization factor and H (ω)

being the Heaviside function (null everywhere but for ω ≥ 0
where it is equal to 1). We set γ = 20 and β = 10. These values
were found to provide the best tradeoff between time and fre-
quency resolution for sleep spindle representation. See Figure 1
for an example of time-frequency representation of a sleep spindle
using this transform.

Wavelet ridge and temporal markers in the time-frequency plane
Computing (2) produces a matrix W (m) of CWT coefficients w(m)

i, j
at time tj and frequency fi = f0/ai, f0 being the main frequency
of the wavelet �β,γ (ω). For each time sample, we considered the
local maximal amplitude along frequencies of the spindle spec-
tral band. We then computed the time course of those wavelet
maxima, i.e.,:

d
(

tj
) = max

1 ≤ i ≤ Nf

∣

∣

∣
w(m)

i,j

∣

∣

∣
(4)

Named ridge (Delprat et al., 1992), this piecewise continuous
path across the time-frequency map W (m) quantifies the power
of instantaneous frequency in the signal. To be sensitive to the
spindle frequency band, it was computed using frequencies sam-
pled from 10 to 16 Hz with 0.1 Hz resolution, resulting in Nf = 61
frequencies per time sample.

To allow for a parsimonious assessment of spindle features, the
ridge was first marked according to the local maxima of the d

(

tj
)

function:

tmax = {

tj ∈ t : ḋ
(

tj
)

ḋ
(

tj + 1
)

< 0 and ḋ
(

tj
)

> 0
}

(5)

with ḋ being the time derivative of d. These maxima are consid-
ered as time markers for the putative events (i.e., one event is
counted for each item in the tmax set) in the time-frequency plane.

Feature computation for the sensitivity phase
Two features are computed for signal detection in the sensitiv-
ity phase. The first one is the ridge amplitude at the maxima:
x̃

amp
n = d

(

tmax
n

)

, with n = 1, 2, . . . , N and N being the num-
ber of elements in the tmax set. The second feature is a spectral
sigma ratio similar to what was proposed by Huupponen et al.
(2007) but computed using the modulus of the activity in the
time-frequency space (

∣

∣W (m)
∣

∣) in the 4–40 Hz range:
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FIGURE 1 | Example of sleep spindle (A) in time domain and (B) in the time-frequency plane.

x̃
sigma
n = 2aσ

aα + aβ

=
2max

{

|W |[10.5 − 16 Hz; tmax
n ]

}

mean
{

|W |[4 − 10 Hz; tmax
n ]

}

+ mean
{

|W |[20 − 40 Hz; tmax
n ]

} (6)

This index increases with narrow band activity having a peak
in the 10.5 − 16 Hz band. Compared to the root-mean-square
amplitude of the activity in the sigma band—a measure often
used for spindle detection (e.g., Schimicek et al., 1994; Molle
et al., 2002; Clemens et al., 2005; Schabus et al., 2007; Warby
et al., 2014)—it has the advantage of penalizing muscular artifacts
(20 − 40 Hz) and signs of arousal (4 − 10 Hz). It might, however,
be adversely impacted by the increase of theta and beta activity
associated with sleep spindles (Vyazovskiy et al., 2004). This mea-
sure was chosen since it represents a state-of-the-art approach
for spindle detection and it has shown to perform reasonably
well in previous studies (Huupponen et al., 2007, 2008; Sheng-
Fu et al., 2012; O’Reilly and Nielsen, in revision). An example of
corresponding values is shown in Figure 2.

Feature computation for the specificity phase
Two other features defined between 0 and 1 are computed in
the specificity phase. The first feature assesses the main frequency
mode of a putative spindle n:

x̃
freq
n = f max

n − f1
fNf − f1

∣

∣

∣

∣

∣

f1=10, fNf =16

(7)

where f max
n = fi with i = argmax

1≤i≤Nf

∣

∣

∣
w(m)

i,j

∣

∣

∣
and j is such that

tj = tmax
n . Figure 3 summarizes important concepts introduced so

far.
The second feature captures the location of spindle activity

along the anteroposterior axis of the scalp. To compute this value,
we consider the first principal component (PC) of a 500 ms win-
dow centered around tmax

n . This spatial eigenvector represents a
normalized topography over the channels, and its components
correspond to the relative weight for each channel. Being the

FIGURE 2 | Illustation of the variables entering in the computation of

x̃
sigma
n as defined in (6). The time-frequency plane (

∣

∣W
∣

∣), in gray levels, is
represented by the modulus of wavelet coefficients computed for
frequencies between 4 and 40 Hz with 0.1 Hz resolution. The red dashed
line shows the ridge computed in the 10–16 Hz band whereas the solid red
line shows the d (tj ) function defined in (4). A maximum has been detected
at time tmax

n and the variation of the coefficients (i.e., the instantaneous
spectrum) at the time tmax

n is shown by the solid blue line. From this
spectrum, we extract the average amplitude in two intervals (shown by
dashed boxes comprising respectively the low and the high frequencies) to
obtain aα = mean

{

∣

∣W
∣

∣

[4 − 10 Hz; tmax
n ]

}

and

aβ = mean
{

∣

∣W
∣

∣

[20 − 40 Hz; tmax
n ]

}

. We further take the maximal amplitude in

the spindle band to obtain aσ = max
{

∣

∣W
∣

∣

[10.5 − 16 Hz; tmax
n ]

}

.

first PC, this topography picks the larger variability of the mul-
tivariate signal over the analyzed window. Then, the position of
the channel with maximal weight can be considered representa-
tive of the scalp localization of the event centered around tmax

n .
Channel positions are specified as (xn, yn) coordinates in the
10-5 system (Oostenveld and Praamstra, 2001) mapped to a flat
top view of the scalp as specified in the EEG1005.lay montage
file of the FieldTrip software (Oostenveld et al., 2011). Only the
yn value is used for spindle detection given the observation of
different types of spindles in relation with their anteroposterior
position (Dehghani et al., 2011; Martin et al., 2013; O’Reilly and
Nielsen, 2014b). The feature for localization along the medial axis
is defined as:
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FIGURE 3 | This figure summarizes various aspects of the proposed

methodology. The montage defined by the m vector is illustrated by the
leftward band displaying binary weights including frontal, parietal, and
central channels and excluding the other channels from the mixture.
Below the band, a scalp map shows the topological coverage of this
montage (red dots for included electrodes, pink for excluded). At the
right of the montage band, all available channels are stack in a matrix S.
The mixture signal s(m) is obtained by matrix multiplication of m and S

as described in (1). Applying the CWT to s(m) and taking the modulus,
we obtain a time-frequency map

∣

∣

∣
W (m)

∣

∣

∣
as shown. Using (4) on

∣

∣

∣
W (m)

∣

∣

∣
,

we compute the d
(

tj
)

detection function used to determine the times
tstart , tmax , and tend . x̃amp

n is obtained as d
(

tmax
n

)

and fmax
n as fi with

i = argmax
1 ≤ i ≤ Nf

tj = tmax
n

∣

∣

∣
w (m)

i,j

∣

∣

∣
.

x̃med
n = yn + 0.5 (8)

such that it is normalized to the [0, 1] range.

Threshold computation
Two extra quantities are used to set thresholds needed by the algo-
rithm. Both are derived from information related to the timing
and space location of the spindles given a priori by a gold stan-
dard, typically an expert. The first one is a sleep stage related
feature, x̃

stage
n , which value is an integer between 0 and 5 (0: awake;

1: NREM1; 2:NREM2, 3:NREM3; 4:NREM4; 5:REM). This value
is defined on the current sleep stage at the moment of tmax

n . The
second feature indicates whether an event occurred during a time
window associated with a spindle also visually identified by an
expert on channels Fz, Cz, or Pz. That is, x̃

expert
n = 1 if tmax

n is co-
occurring with a spindle labeled on any of these three channels.
Otherwise, a zero value is attributed.

It is worth highlighting that the proposed detection technique
rests on “point” features (i.e., features evaluated at a given point

in time) and not on features computed on time windows. Thus,
the detector set instantaneous markers for sleep spindles without
explicit duration.

SENSITIVITY PHASE
The goal of this phase is to detect as many true spindles as
possible, missing only a small proportion, at the cost of a rel-
atively high amount of false positives. In this sensitivity phase,

we test the null-hypothesis stating that x̃sensitive
n =

[

x̃
amp
n x̃

sigma
n

]

is not associated with a spindle. For this assessment, a sam-
ple of the null-hypothesis, i.e., non-spindle events, is built from
x̃sensitive

n of all events with x̃
stage
n = 5. Although, it has been pro-

posed that isolated spindles can occur in REM (Rechtschaffen
and Kales, 1968), this is controversial. In the same line of
thought, sleep spindles could also be present in transition pages
marked as REM but containing some proportion of NREM
sleep. Nevertheless, presence of spindles in pages marked as REM
should be rare and should therefore have little impact on our
statistics.
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Decision thresholds are computed separately for both features.
This implicitly postulate statistical independence, a reasonable
hypothesis given the relatively low correlation reported (about
0.25 according to Huupponen et al., 2007) between these two
features. Two thresholds—τ amp and τ sigma—are obtained as the
value of x̃amp and x̃sigma at the (1 − α) percentile of the distribu-
tion of the non-spindle events. That is, we compute thresholds
that should fail to reject at most a proportion α of false positives.
As discussed in O’Reilly and Nielsen (2014a), such an approach
sets the expected false detection rate (FDr; complete definition in
Table 1, Section Performance Assessment) to:

FDr = ακ

P%
(9)

with κ being the proportion of false positives in the tested sam-
ple and P% the proportion of the tested sample not rejected by
this threshold. Although we cannot compute the value for the FDr
because we lack an estimate for κ , we can obtain an upper bound
˜FDr using:

˜FDr = α

P%
(10)

With these thresholds, we can now define a subset X of selected
candidates as:

X = {Xm} =
{

x̃n ∈ X̃ : x̃amp ≥ τ amp and x̃sigma ≥ τ sigma
}

(11)

SPECIFICITY PHASE
Previous selection of events is used as input to the specificity
phase which tries to keep only selected candidates corresponding

Table 1 | Definition of performance metrics used in this paper.

Meaure Formula

Sensitivity (Se) Se = NTP

NFN + NTP

Specificity (Sp) Sp = NTN

NFP + NTN

False positive rate (FPr) FPr = NFP

NFP + NTN
= 1 − Sp

False Discovery Rate (FDr) FDr = NFP

NFP + NTP

False positive proportion
(FPp)

FPp = NFP

NFN + NTP

Matthew’s correlation
coefficient (MCC)

MCC = NTP *NTN − NFP *NFN
√

√

√

√

(NTP + NFP )(NTP + NFN )

(NTN + NFP )(NTN + NFN )

F1 score F1 = 2NTP

2NTP + NFP + NFN

Cohen κ κ = X − (NTN + NTP )Ne

X − Ne
2 with

X = (

NTP + NFP
) (

NTP + NFN
)

+ (

NFP + NTN
) (

NFN + NTN
)

with spindles, as identified by an expert. A partition of selected
candidates in homogenous classes of events is performed using
the ascending hierarchical classification (AHC) algorithm (Timm,
2002). This technique starts with every item of X being considered
as a singleton class and iteratively regroups together the two most
similar classes until only one class regrouping all items is left. The
outcome of such a process can be represented as tree graph called
a dendrogram (see Figure 4 for an example). The AHC algorithm
is defined by a metric and a linkage criterion. The former defines
how we assess the distance between two items whereas the lat-
ter do the same for two classes of items. In our case, we used the
Euclidean distance as metric:

d (xn, xm) =
√

∑

i

(

x(i)
n − x(i)

m

)2
(12)

where the i index iterates over elements of xn and xm vectors. For
linkage criterion, we used the average distance d (xn, xm) between
items of two classes A, B ∈ X defined as:

L (A, B) = 1

|A| |B|
∑

xa ∈ A

∑

xb ∈ B

d (xa, xb) (13)

with |A| and |B| standing for the cardinality of classes A and B,
respectively. Figure 4 illustrates the use of the AHC algorithm.

The final clustering is obtained by cutting the dendrogram
at the maximal value of inter-class dissimilarity subject to the
inequality:

|B|
|A| ≥ r (14)

with A and B being respectively the largest and second largest
classes. This criterion tends to favor homogeneity of class sizes.
A value r = 0.6 was chosen in this study because it was found to
be a good tradeoff between accepting only equally sized classes
(i.e., r = 1.0) and allowing much disparate classes such as one big
cluster associated with a very small outlier class (i.e., r → 0.0).
Classes obtained that way are then sorted in descending order
according to their number of expert events (i.e., events scored
as spindles by the expert). For the specific detection, only events
belonging to the first Nclass classes are labeled as spindles, with
Nclass being the smallest number of classes grouping at least 80%
of the expert events.

PERFORMANCE ASSESSMENT
For assessing performances, we used a terminology borrowed
from confusion matrices. Four classification outcomes can be
encountered in the dual-class problem considered here: true pos-
itives (TP), false positives (FP), true negatives (TN), and false
negatives (FN). If we consider a variable xselected

n which takes 1
when the nth event is designated as a spindle by the algorithm
and otherwise takes 0, these four cases are obtained as follow:

TP ⇔ x̃selected
n = 1 ∧ x̃

expert
n = 1 (15)

TN ⇔ x̃selected
n = 0 ∧ x̃

expert
n = 0 (16)
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FIGURE 4 | Illustration of the AHC algorithm. An example of 20 events
characterized by the medial position and the frequency (both normalized to
the unit range) is shown in the leftward pane. The middle pane shows the
color coded distance matrix corresponding to these 20 events. Finally, the

right most pane shows the resulting dendrogram. The dendrogram is
sequentially split into more classes in a top-down fashion, stopping the
decomposition as soon as we reach two classes since (in this specific

example) both contains 10 samples such that |B|
|A| = 10

10 ≥ 0.6 = r .

FP ⇔ x̃selected
n = 1 ∧ x̃

expert
n = 0 (17)

FN ⇔ x̃selected
n = 0 ∧ x̃

expert
n = 1 (18)

Counts of each outcome are labeled respectively NTP, NTN , NFP,
and NFN and are the constitutive elements of the metrics used to
score our algorithm (see Table 1). Here, we are measuring agree-
ment using a “by-event” approach (Warby et al., 2014) where
an agreement is marked if and only if a specific point (i.e., the
local maximum of the ridge) is within one of the spindle win-
dows scored by the expert. The total number of events Ne (i.e.,
Ne = NTP + NFP + NFN + NTN ) is defined by the segmentation
described in section Wavelet ridge and temporal markers in the
time-frequency plane.

IMPLEMENTATION
The detector has been implemented as a “process” in Brainstorm
(Tadel et al., 2011). The source code is available from the corre-
sponding author.

SAMPLE
We tested our algorithm on polysomnograms recorded in a
hospital-based sleep laboratory from 9 (7 women, 2 men) young
(mean ± standard deviation: 22.6 ± 2.4 years old) and healthy
subjects. Recording was performed at 256 Hz using a Vita-port-
3 System (low-passed at 70 Hz with 1-s time constant) and the
data were recorded using the Columbus software from TEMEC
Instruments (Kerkrade, Netherlands). We used a standard 10–20
EEG sensor grid (C3, C4, Cz, F3, F4, Fz, F7, F8, O1, O2, Oz, P3,
P4, Pz, T3, T4, T5, T6, Fp1, Fp2) with a 10 k� ear-linked refer-
ence as well as bipolar chin EMG, ECG, and EOG. Sleep stages
were scored by a certified polysomnographer with 15 years of
experience according to modified rules of Rechtschaffen and Kales
(1968) adapted for 20-s epochs. Muscle artifacts were automati-
cally detected (Brunner et al., 1996) and visually confirmed. Sleep

spindles were scored by the same expert on Fz, Cz, and Pz chan-
nels in NREM sleep epochs. Spindle scoring was performed on
raw signals according to the rules of the AASM (Iber et al., 2007).
Sleep stage distribution per subject (Table S1) as well as num-
ber of spindles scored per derivation per subject (Table S2) are
provided as Supplementary Documents.

Every recording was sanctioned by the ethics review board of
the Hôpital du Sacré-Coeur de Montréal and participants gave
informed consent.

RESULTS
SENSITIVE DETECTION
Montage selection
We tested six different montages to study their effect on the sen-
sitive detection: m1 corresponds to frontal channels Fp1, Fp2, F7,
and F8; m2 to occipital channels O1, O2, and Oz; m3 to channels
F3, F4, C3, C4, P3, P4, Fz, Cz, and Pz; m4, m5, and m6 to only Fz,
Cz, and Pz, respectively. To avoid biasing toward some of these
selected channels, we used equal weights for every channel of the
montages (i.e., weights equal to 1/Ni where Ni equals the number
of channels included in the montage).

Performance of the sensitive detection depends on the capacity
of the chosen montage to discriminate between the sleep spindles
(in red in Figure 5) and the non-spindle events (in black). For
example, the small overlap between these two sets of curves in m3

indicates a good discriminative power. We note that some sim-
pler montages (e.g., montages m5 and m6 using only Cz and Pz,
respectively) also show similarly good performances. Lower dis-
crimination is obtained using only Fz (m4) or using in general
only frontal and prefrontal (m1) or occipital (m2) scalp channels.
Results presented subsequently are obtained using m3.

Performance evaluation
Results from a receiver operating characteristic (ROC) curve
analysis are presented in Figure 6.
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FIGURE 5 | Density plots with normalized maximal amplitude for the

distribution of sensitive detection features (amplitude and sigma

index) for six different montages. The head drawings show the
topographical coverage of each montage. Feature distributions are plotted

as three separate lines per subject: red for detected spindles
corresponding with expert scoring, black for events scored as spindles by
the algorithm in REM epochs only, and light blue for detected events
during REM and NREM sleep.

Averages and standard deviations (SD) of the performance
statistics are reported in Table 2 for the conditions Se = Sp and
α = 0.1, with the second condition focusing slightly more on sen-
sitivity. One should note that this table do not report specificity
since this statistic has little value in evaluating spindle detec-
tors because it systematically takes high values given the small
proportion of positive to negative cases (i.e., spindle vs. non-
spindle) (O’Reilly and Nielsen, 2013). For the same reason, the
reader should be cautious in interpreting the ROC curves in
Figure 6 since only the portion with large specificity is mean-
ingful. Lower specificity are associated with prohibitively high
FDr, something not visible in ROC curve (O’Reilly and Nielsen,
2013).

SPECIFIC DETECTION
Figure 7A shows the proportion of spindles scored by the expert
(green) and the proportion of total events (black) contained
in the four classes produced by the clustering algorithm. These
classes are sorted in decreasing number of expert events. Lines of
lighter color are used for individual subjects while darker lines are
used for the median across subjects. As specified in the Materials
and Methods section, events selected by the specificity phase are
those belonging to the first classes regrouping at least 80% of the
expert events. As can be seen, only one class is required to reach

this criterion. Except for S4, using only one class, we can keep
more than 80% of the expert events while keeping about only
50% of the total number of events initially selected in the pre-
vious sensitivity phase. In Figure 7B, classification performances
obtained with this criterion (white bars) are compared to the per-
formance obtained before the application of this criterion (black
bars).

It should be noted that results of Figure 7 are obtained using all
available expert scoring. This is in average 390 spindles per sub-
ject. We also tested whether the proposed algorithm could be used
with a reduced number of sleep spindles sampled by the expert.
Hence, bootstrapping over 500 repetitions has been performed
using randomly selected subsets of 1, 2, 4, 8, 16, 32, 64, and
128 scored events. Figure 8 shows the differential (partial minus
exhaustive scoring) in sensitivity and specificity. Subject S4 was
excluded from this analysis because the unusual clustering in four
equal size classes for this subject produced unstable results when
using small subsets of expert scorings. As can be seen, the per-
formances are not significantly degraded by partial scoring using
about 16 or 32 spindles visually scored by an expert.

CHARACTERISTICS OF DETECTED SPINDLES
This section compares automatically detected spindles with those
identified by the expert.
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FIGURE 6 | Performance for the sensitive detection. The lower left panel
shows the sensitivity (green) and the specificity (red) as function of the
p-value used for feature thresholding. The three other panels show ROC-like
curves using FPr, FDr, and FPp. Dark colors show average statistics whereas

light colors correspond to performances for every subject. Stars indicate the
positions where the statistics have been computed. Segments between
stars are obtained by linear interpolation. Filled circles show points where
Se = Sp. The x-axes are plotted using a logarithmic scale.

Table 2 | Average ± SD value for performance statistics when Se = Sp

and when α = 0.1 for the sensitive and the specific phase.

Mesure Sensitive phase Specific phase

Se = Sp α = 0.1 α = 0.1

Se 92.1 ± 3.0% 93.2 ± 4.8% 85.4 ± 7.4%
FPr 7.9 ± 2.7% 11.0 ± 2.1% 4.5 ± 1.7%
FDr 89.1 ± 8.3% 93.0 ± 4.2% 86.2 ± 6.1%
FPp 1779.6 ± 1936.6% 2177.1 ± 2110.3% 730.3 ± 598.9%
MCC 0.28 ± 0.13 0.23 ± 0.08 0.32 ± 0.08
F1 0.19 ± 0.13 0.13 ± 0.07 0.23 ± 0.09
κ 0.17 ± 0.13 0.11 ± 0.06 0.22 ± 0.09

Frequency and medial position
Figure 9 shows the joint distribution of x̃

freq
n and x̃med

n . The later
value varies between 0.15 (occipital) and 0.9 (pre-frontal). In gen-
eral, distributions of features after the sensitivity phase suggest
two classes of events, although the frontier separating these classes
is blurry and varies from subject to subject. From the literature,

we would expect a fast (higher frequency) centro-parietal (0.35 <

x̃med
n < 0.5) class and a slow (lower frequency) frontal (x̃med

n >

0.5) class. This behavior is observed for subjects S1, S3, S4, and S9,
and to a lesser extent for S5 and S6. In S2 and S8, we do observe
fast and slow classes, but both in centro-parietal region. In S7,
the slow class is located in occipital region (x̃med

n = 0.2) suggest-
ing alpha rhythm contamination. Actually, most spindles scored
by the expert tend to be in the fast centro-parietal class. Spindles
automatically scored after the specificity phase follow this trend
(comparison of results in second and third column of Figure 9).

Average spindle
Figure 10 shows the grand average for spindles scored by the
expert, spindles selected by the sensitive detection, and events
accepted during sensitivity phase but rejected by the specificity
phase. In Figure 10A, the joint distribution for the frequency and
the medial position is shown. In Figure 10B, the average signal for
each channel is shown using a 5-s window centered around tmax

n .
Averages are first computed within subjects and then between
subjects. At each level, signals are time-aligned by maximizing the
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FIGURE 7 | Results from the AHC algorithm. In (A), the distribution of
expert (green) and total (black) events in the four first classes. Light color
lines correspond to individual subjects whereas dark lines correspond to the

median values across subjects. The graph in (B) compares the performance
of the algorithm after the sensitivity phase (black) and after the specificity
phase (white).

FIGURE 8 | Differential of sensitivity and specificity for partial scoring compared to exhaustive scoring, as a function of the number of spindles

scored by an expert. Bars show the average difference and whiskers the standard deviation.

cross-correlation of the central 500 ms of activity in the 10–16 Hz
band. Figure 10C shows the first principal component (i.e., the
component with the highest variability) computed on the central
500 ms window of the between-subjects averaged signal (band-
passed in the 10–16 Hz band with a 5th order Butterworth filter).
Finally, Figure 10D shows the time-frequency plot computed
using the CWT (Morse wavelets with γ = 20 and β = 20) of the
between-subjects average signal using the montage specified by
the topographic vector of the first principal component (i.e., as
shown in panel C).

Topographies in panel C and joint distributions in panel A
both tend to support the existence of two classes of events with
fast (13–14 Hz) centro-parietal activity and a slow (10–12 Hz)
more diffuse activity generally located in more frontal areas. The
expert visually scored mainly the first class and so did our specific
selection. Spindles are shown to be in phase with a ∼1 Hz com-
ponent, reproducing the observations about slow wave/spindle

phase-amplitude coupling previously reported (Molle et al., 2002;
Kokkinos and Kostopoulos, 2011).

Spindles across sleep cycles
Figure 11 shows how the proportion of spindles in each of the
fours first sleep cycles evolves for 1) events selected by the expert,
2) events selected by the specific detection, 3) events rejected
by the specific detection. Sleep cycles were defined according to
Aeschbach and Borbely (1993): one cycle is a sequence of a NREM
period followed by a REM period. The NREM period starts at the
first epoch of NREM sleep and terminates at the first REM epoch.
The REM period terminates only if the next 15 min are free of
REM epochs. At least four cycles were present in every subject.
As can be seen, in both expert scoring and detector expert class,
spindles show a similar trend with an increasing density from the
beginning to the end of the night. The non-expert class shows an
inverse tendency.
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FIGURE 9 | Joint distribution of frequency and medial position (0.15

is occipital and 0.9 is prefrontal) features for each subject (S1–S9

rows) and for sensitive detection (first column), expert scoring

(second column), and specific detection (third column). Cold colors
(toward blue) represent small amplitude, hot colors (toward red) large
amplitudes.

DISCUSSION
The goal of this study was to tackle the problem of high false
detection rates in sleep spindle scoring. The strategy adopted
was to split the problem in two steps, a sensitive detection
(unsupervised) and a specific detection (supervised). In the
following sections, we discuss various aspects of our method
and results.

DETECTION MONTAGE
The approach described in section Montage selection provides
the possibility of compressing a multivariate signal (coming from
different channels) into a univariate signal using a specific mon-
tage. In this study, based on standard definition of spindles
(Rechtschaffen and Kales, 1968; Iber et al., 2007) and on the
current knowledge on spindle topography, we favored a mon-
tage weighting equally frontal (F3, Fz et Fz), central (C3, Cz, C4)
and parietal (P3, Pz, P4) channels and excluding the others. This

montage failed to show a clear superiority compared to mon-
tages using single channels (e.g., Cz or Pz). One should note,
however, that our gold standard (i.e., expert scoring) assessed
spindles only on Fz, Cz, and Pz, a fact that could have con-
tributed in favoring montage using only these channels. Also,
further work is needed to confirm whether an improved detec-
tion can be achieved by tailoring more accurately the montage.
Nonetheless, the approach has interesting applications for future
developments as it provides a great flexibility to apply arbi-
trary montage to EEG signals, as shown for computation of
Figure 10D.

ADAPTIVE SEGMENTATION AND TIME-FREQUENCY REPRESENTATION
In our method, we proposed an adaptive segmentation that split
the whole night in a sequence of contiguous events. This seg-
mentation was performed using the ridge of the continuous
wavelet transform of the time series for the chosen montage.
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FIGURE 10 | Grand average across subjects. From left to right: spindle
scored by the expert, events from the selected class, and events from the
rejected classes. (A) Joint distribution of the frequency and the medial

position. (B) Average spindle. (C) Topography of the first principal component
obtained through PCA. (D) Time-frequency plane for the average spindle,
using the montage specified by the topography shown in (C).

For simplicity, and because it provides a good tradeoff between
temporal and spectral resolution, the Morse wavelet was used.
Its parameters (γ = 20 and β = 10) were chosen using visual
inspection. One should note, however, that β is the most sen-
sitive parameter. Large values tend to over-smooth and reduce
the temporal resolution whereas too small values tend to under-
smooth resulting in appearance of amplitude modulation of the
time-frequency plane at higher frequencies (closer to the spin-
dle band). Higher values for β might be adequate in more noisy
environments—such as for EEG signals collected during func-
tional magnetic resonance imaging (fMRI)—to shift the tradeoff
between temporal resolution and noise rejection.

CHARACTERISTICS OF SELECTED SPINDLES
Most spindles scored by the expert were rapid (>13 Hz) and in the
centro-parietal region of the scalp. The usual slow/fast dichotomy
was not observed (see Figure 9). This result could be attributed
to a specific detection bias of this expert and needs to be cor-
roborated by looking at scorings from other expert. Notably,
however, this slow-fast dichotomy has mostly been reported in
studies using automated spindle detections. Since experts score
spindles with enough amplitude to be visually discriminated from
background activity, part of the false positives could also be
false negatives from experts. Also, in post-hoc investigations, we
noted that spindles detected in Fz are simultaneously detected in
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FIGURE 11 | Spindle distribution across sleep cycles. Bars indicate the mean value across subjects, whiskers indicate standard deviations. Values are
normalized for subjects and classes (i.e., each of these three sets of bars sums to the unity).

the fast centro-parietal class, which tends to indicate that spin-
dles detected in Fz are observations of the same phenomenon
producing faster and stronger spindles in Cz and Pz.

The coupling observed here and elsewhere (Molle et al., 2002,
2011) between the phase of a slow ∼1 Hz oscillation and the
amplitude in the spindle band (see Figure 10B) warrants fur-
ther investigation on spindle relationship with other frequency
bands. Aside from slow waves, spindles have also been reported
to be coupled with gamma (30–100 Hz) oscillations (Ayoub et al.,
2012). This kind of features might be useful in increasing speci-
ficity of future detectors.

Spindle distribution across the first four sleep cycles behaved
similarly for the class of spindles selected by the specific detec-
tion and the expert detection (fast spindles occurring in more
posterior locations) and is shown to increase progressively across
the night. This profile agrees with the evolution of the sigma
band (12–14.75 Hz) reported by De Gennaro and Ferrara (2003).
Events not selected at the specificity phase are generally slower
with more anterior localization and have an inverse tendency:
their density decreases across night. De Gennaro and Ferrara
(2003) have reported that the power in the delta band (0.5–
4.75 Hz) shows a similar trend, motivating the investigation of
whether events in these classes are coupled with the activity
in this lower frequency band. Also, since spindles have been
detected on all NREM states, a more thorough analysis would
be necessary to disambiguate the role of sleep stages in this
trend.

DEPENDENCE ON EXPERT SCORING
The proposed system is semi-automatic, requiring an expert
for stage scoring and partial spindle annotation. Stage scoring
is a standard operation generally performed before manual or
automatic spindle detection. However, if one does not want
to score whole nights, only some spindle-free epochs (such as
REM epochs) can be scored manually and fed to the algorithm.
Alternatively, automatic sleep scoring algorithms can be used
(Anderer et al., 2005). Although these algorithms do not perform
as well as experts, they should be reasonably accurate to discrim-
inate some classes of spindle-free epochs (wake, REM) vs. epochs
possibly containing spindles (NREM stages).

As for partial spindle scoring, our results suggest that only 20
spindles per subject are sufficient to benefit from the supervised
classification. Thus, the expert scoring burden is relatively small
with this detector. Of course, as for any supervised system, the
scoring will be as biased as the expert. Thus, using expert consen-
sus (Warby et al., 2014) on small number of spindles instead of
single-expert scoring is worth more investigation. Another future
avenue is to automate the clustering using some a priori knowl-
edge instead of expert scoring. To implement this, we could for
example take advantage of the fact that events detected by the
sensitivity phase naturally tend to show two classes plus some out-
liers. Using the k-mean clustering algorithm with k = 2 to extract
the centroid of the two classes and reject outliers that are not close
enough to these centers is likely to give interesting results.

GOLD STANDARD IN SPINDLE SCORING
It should be noted that the performance assessment reported
in this study is limited by the relatively low reproducibility of
our gold standard: expert scoring. With relatively low inter-rater
agreement between expert scorers (around 86% in Campbell
et al., 1980); 61 ± 6% and Cohen κ of 0.52 ± 0.07 (Wendt et al.,
2014); around 0.2 and 0.4 Cohen κ in DREAMS and MASS open-
access databases, respectively (O’Reilly and Nielsen, in revision),
development of automated detectors will stay rather limited until
the subjective assessment of spindle by experts is transcended and
supplanted by a more robust, objective, and commonly agreed
upon gold standard (O’Reilly and Nielsen, in revision).

CLUSTERING
The clustering algorithm has shown to be able to dichotomize
sleep spindles in the fast/slow classes reported in the literature for
all but one subject. Topography of spindles is not always stable
across time and the clustering might be sensible to this inho-
mogeneity. The properties of the clustering process will require
more investigation on larger samples to better understand when
it fails, what it indicates, and how it can be corrected. Also,
although both fast and slow classes are generally correctly identi-
fied, the slow class was rejected by our automated system because
our expert ignored tentative spindles from this class. Whether
this behavior is typical in expert scoring is still to be evaluated.
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Similarly, whether some variables (e.g., the expert) impact on the
minimal number of scored spindles needed to obtain a reliable
clustering is still an open question. In our investigation, only a
small number of spindle per subject (about 20) were shown to
be sufficient.

Furthermore, given the somewhat low inter-rater agreement
between experts reported in literature (Wendt et al., 2014), using
an expert consensus measure could present great advantages
(Warby et al., 2014). One should note, however, that such a
strategy would probably bias scoring toward classes with high
amplitude and high signal-to-noise ratio.

CONCLUSION
The principal contribution of this paper is to propose a two-
step methodology to address first the sensitivity and second the
specificity of spindle detection. For this last step, we proposed an
unsupervised clustering using spectral and positional (along the
medial axis) features to take into account the fast-posterior/slow-
anterior spindle dichotomy followed by a supervised class selec-
tion. Some other original contributions proposed in this paper
are: (1) the compression of channel arrays into a univariate sig-
nal using a fixed montage, (2) using the ridge of a time-frequency
map to segment the signal and transform it into a detection func-
tion, and (3) using p-values for setting selection thresholds, based
on a null-hypothesis elaborated from the spindle-free periods
during sleep (e.g., REM).

Acceptable classification results have been obtained with Se =
85.4%, FDr = 86.2%, and MCC = 0.32. Although these results
are similar to those available in literature, a more thorough com-
parison is not reported here since such an analysis would be
unreliable due to the large confounding impact of using differ-
ent expert scorings. For example, MCC has been shown to vary
between 0.25 and 0.55 for a same detector depending on the
database and the expert scoring (O’Reilly and Nielsen, in revi-
sion). Also, the assessment methodology would not be completely
comparable because of the use of a particular segmentation
paradigm impacting on the counts of positive/negative events. A
more thorough assessment performed with comparison against
other standard detection algorithms on an open-access database
(e.g., O’Reilly et al., 2014) is warranted. Such an assessment is
however outside of the scope of the present paper and is a topic
for future investigations.

Nevertheless, it appears that there is room for improvement
since the obtained agreement is below what is expected from
experts. The proposed system might be enhanced by adding spe-
cific features that are known from literature to be associated
with sleep spindles such as circadian and homeostatic influences
(Knoblauch et al., 2003), phase coupling with slow oscillations
(Molle et al., 2002), age (Martin et al., 2013), and so on. A
thorough analysis of whether adding such features can indeed
improve spindle detection would however be necessary since cor-
relations between spindles and these other variables are emerging
when averaging over a large number of events. Thus, they might
prove not to be specific enough to improve detection of single
events and can even have a detrimental impact on automatic
detection, as formalized by the No Free Lunch theorem (Wolpert
and Macready, 1997).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnhum.
2015.00070/abstract
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Expert and crowd-sourced validation
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Bobby Stojanoski 1, Rhodri Cusack 1, 3, Adrian M. Owen 1, 3, Julien Doyon 2, 4 and

Stuart M. Fogel 1, 2, 3, 4*
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de l’Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada, 3Department of Psychology, Western University,

London, ON, Canada, 4Department of Psychology, University of Montreal, Montreal, QC, Canada

A spindle detection method was developed that: (1) extracts the signal of interest (i.e.,

spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity

using complex demodulation, (2) accounts for variations of spindle characteristics across

the night, scalp derivations and between individuals, and (3) employs a minimum number

of sometimes arbitrary, user-defined parameters. Complex demodulation was used to

extract instantaneous power in the spindle band. To account for intra- and inter-individual

differences, the signal was z-score transformed using a 60 s sliding window, per channel,

over the course of the recording. Spindle events were detected with a z-score threshold

corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such

as amplitude, duration and oscillatory frequency, were derived for each individual spindle

following detection, which permits spindles to be subsequently and flexibly categorized

as slow or fast spindles from a single detection pass. Spindles were automatically

detected in 15 young healthy subjects. Two experts manually identified spindles from

C3 during Stage 2 sleep, from each recording; one employing conventional guidelines,

and the other, identifying spindles with the aid of a sigma (11–16Hz) filtered channel.

These spindles were then compared between raters and to the automated detection to

identify the presence of true positives, true negatives, false positives and false negatives.

This method of automated spindle detection resolves or avoids many of the limitations

that complicate automated spindle detection, and performs well compared to a group

of non-experts, and importantly, has good external validity with respect to the extant

literature in terms of the characteristics of automatically detected spindles.

Keywords: sleep, spindle, EEG, detection, automated, crowdsourcing

95

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2015.00507
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2015.00507&domain=pdf&date_stamp=2015-09-24
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sfogel@uwo.ca
http://www.bmisleeplab.uwo.ca
http://dx.doi.org/10.3389/fnhum.2015.00507
http://journal.frontiersin.org/article/10.3389/fnhum.2015.00507/abstract
http://loop.frontiersin.org/people/241800/overview
http://loop.frontiersin.org/people/248631/overview
http://loop.frontiersin.org/people/275954/overview
http://loop.frontiersin.org/people/274243/overview
http://loop.frontiersin.org/people/33800/overview
http://loop.frontiersin.org/people/10951/overview
http://loop.frontiersin.org/people/6024/overview
http://loop.frontiersin.org/people/521/overview
http://loop.frontiersin.org/people/49462/overview


Ray et al. Automated sleep spindle detection

Introduction

Sleep spindles are brief (typically <1 s, up to 3 s) discrete
phasic bursts of sigma (∼11–16Hz) activity, with a waxing
and waning amplitude envelope, which characterize non-rapid
eye movement (NREM) sleep. Sleep spindles have garnered
much interest in terms of their physiological mechanisms and
cerebral correlates (Steriade, 2006; Schabus et al., 2007; Bonjean
et al., 2011), putative function for sleep maintenance (Nicolas
et al., 2001; Dang-Vu et al., 2010; Schabus et al., 2012), most
recently in terms of their function for memory consolidation
during sleep (Gais et al., 2002; Schabus et al., 2004; Fogel
and Smith, 2006, 2011; Nishida and Walker, 2007; Bergmann
et al., 2011), relationship to cognitive abilities (Smith et al.,
2004; Bódizs et al., 2005, 2008; Fogel and Smith, 2006, 2011;
Schabus et al., 2006; Fogel et al., 2007; Peters et al., 2007; Geiger
et al., 2011; Ujma et al., 2014) and clinical relevance (Gibbs
and Gibbs, 1962; Bixler and Rhodes, 1968; Shibagaki et al.,
1982; Limoges et al., 2005; Steriade, 2005; Ferrarelli et al., 2007).
Until recently, the study of the sleep spindle has been hindered
by the labor-intensive task of visually identifying thousands of
individual spindle events over the course of several hours of
sleep and the resulting difficulty in obtaining expertly scored,
publically available data sets for benchmarking. The investigation
of sleep spindles has invigorated the proliferation of a variety
of automated spindle detection methods (Broughton et al.,
1978; Campbell et al., 1980; Zeitlhofer et al., 1997; Crowley
et al., 2002; Mölle et al., 2002; Bódizs et al., 2009; Ray et al.,
2010; Martin et al., 2012; Wamsley et al., 2012). However,
the task of accurately detecting spindles has proven to be a
significant methodological challenge. These challenges include,
but are not limited to, the onerous task of analyzing lengthy,
high temporal resolution recordings, and the high variability
in signal-to-noise ratio over the course of the night, between
derivations and individuals. Resolving these issues is complicated
by the wide variety of methods being employed and incomplete
or inconsistent validation procedures for these methods. This
is further compounded by the absence of a “base truth” or
appropriate and publically available “gold standard” to compare
detection methods. Finally, validating automated detection
methods by comparing their performance to human scorers
may be insufficient as this assumes that: (1) human scorers are
superior at detecting spindle events, and (2) automated detectors
only perform correctly when functioning according to the narrow
definition for visual identification of spindles. The absence
of established method(s) could lead to erroneous scientific
results or produce findings that are difficult to interpret and
replicate.

Most commonly employed methods of spindle detection can
be broadly classified into several categories based on the way that
the signal of interest is extracted. These categories include: (1)
methods that employ counting the number of peaks in a defined
period of time, (2) band-pass filtering and root mean squared
(RMS) transformations, (3) Fourier-based, and (4) wavelet-
based techniques. In the following paragraphs, we compare and
contrast some of the most commonly employed methods used
to extract spindle-related activity for the purposes of automated

detection, highlighting some of the strengths and challenges of
each.

Techniques that employ counting the number of peaks or
zero crossings in a given time period (Principe and Smith, 1982;
Schimicek et al., 1994; Zeitlhofer et al., 1997; Ray et al., 2010) may
be advantageous to characterize spindle events once detected,
however as a means of extracting spindle-related activity for the
purposes of detection, these methods are susceptible to artifacts
and can be contaminated by other naturally occurring EEG
activity in other frequency bands of non-interest. As a result,
the effectiveness of these techniques depend on how the EEG
is preprocessed, thus making signal extraction relative to noise
a challenge, nonetheless they are suitable for the extraction of
the signal of interest. Similarly, band-pass filtering the signal
to the sigma band and further RMS transformation (Clemens
et al., 2007) does extract the signal of interest, and transforms
the signal into all positive values, however, the oscillatory nature
of the signal remains intact. This aids in characterizing spindle
events, however, detection of the onset, peak and offset directly
from an RMS transformed signal is no more straightforward
than identifying events in the raw EEG signal, and thus the
vastness of irregularities in the shape of the spindle, or changes
in the frequency content and amplitude of each spindle over
time, complicate detection and accurate identification of each
spindle event. Moreover, deviation from the ideal frequency
response of a band-pass filter (i.e., size of the transition band
and related ripple effects) is a function of the window type
and filter order. This is a potential challenge for slow spindles,
whereby the adjacent frequencies, such as alpha activity (due to
cortical arousals), may lead to false positives. In addition, given
that when the sigma band is further divided into smaller and
adjacent ∼1.5–2Hz bands for slow (e.g., 11–13.5Hz) and fast
(e.g., 13.5–16Hz) spindles, overlap between slow and fast spindle
activity could lead to difficulty discriminating between spindle
types. These issues could be overcome by employing filters with a
sufficiently high filter order, and also, if spindles are first detected
using the whole spindle bandwidth (e.g., 11–16Hz) and each
spindle is subsequently classified as slow or fast based on its
peak (or mean) frequency following detection, spindles can be
categorized orthogonally. These issues apply equally to other
methods employing filters (including the current method).

Techniques that employ filtering and Fast Fourier Transform
(FFT) techniques (Uchida et al., 1994; Huupponen et al., 2006)
can be advantageous, however, the frequency resolution of FFT
is determined by the sampling rate, window size and overlap.
In addition, while FFT is well suited to handle signals that
are linear and stationary, EEG is a dynamic, complex and
noisy signal that originates from a combination of cortical and
subcortical generators, whose relative contribution to scalp-
recorded oscillations, in various mixed frequencies, changes
dynamically over time. Thus, like many other biological signals,
the EEG is a non-stationary and non-linear signal. Frequency
extraction using Fourier-based methods can yield dramatically
different results (Klonowski, 2007) as the signal evolves over time
(i.e., time-domain information is lost). In relation to this caveat,
Fourier-based methods are not necessarily optimal for extracting
very brief phasic events, or to discriminate the activity of a phasic
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event from the ongoing EEG. Thus, the ability of FFT to extract
spindle-related activity is limited by selecting an appropriate
window type, size and resulting frequency resolution, and may
involve trial-and-error to select a multitude of appropriate model
parameters, thus, care must be taken when utilizing FFT and
similar techniques to extract spindle-related activity from the
ongoing EEG.

By contrast, wavelet-based decomposition and other bandpass
filtering techniques (Huupponen et al., 2006; Wamsley et al.,
2012) have the advantage of representing the signal in both time
and frequency domains, and thus can be advantageous with
respect to FFT, particularly for detecting brief events. However,
wavelet-based approaches are computationally intensive and
require a-priori assumptions about the signal of interest (e.g.,
spindles) in order to select the ideal “mother wavelet” (e.g.,
Meyer, Mortlet, or Mexican hat). Determining the wavelet type
may involve many trail-and-error decisions in order to be
optimized. As compared to other approaches, Wavelet-based
techniques have been found to perform well as compared to FFT
and RMS-based methods (Warby et al., 2014), however, they
have been found to be susceptible to filter distortions (Ktonas
et al., 2009), which could be problematic for brief events such as
spindles.

The proposed method employed complex demodulation (CD;
Walter, 1968) to extract the instantaneous power in a precise
frequency band, and is desirable in that it does not make
assumptions about the linearity or stationarity of the signal, and
thus is well suited to detect events, such as sleep spindles in
the EEG. CD has been shown to be an effective and flexible
method to analyze real signals such as EEG, with less distortion
(due to lowpass filtering) than Hilbert transformations, Wavelet
decomposition, and matching pursuit (Ktonas et al., 2009). CD
performs well compared to band-pass filtering, phase-locked
loop demodulation, peak amplitude and zero-crossing detection
(Ktonas and Papp, 1980). CD transforms the signal of interest
in such a way that detection is straightforward (n.b., yields a
time series in the same temporal resolution as the original, with
only positive data point values by demodulating the signal, in
µV2) and does not require any other a-priori decisions for signal
extraction, other than the determination of the frequency band
of interest, which for spindles is typically defined around 11–
16Hz (although it is important to note that there is considerable
variability in the definition of the spindle band in the extant
literature).

Over-and-above the challenges involved in signal extraction,
considerable differences exist in terms of sleep spindles between
individuals and over the course of the entire night, as well as
within each NREM period (Silverstein and Levy, 1976; Werth
et al., 1997; De Gennaro et al., 2000, 2005; Himanen et al., 2002;
Ray et al., 2010). A commonly used approach to individualize
detection amplitude thresholds is to use a detection threshold
that is, for example, at the 95th percentile of the entire recording
(Gais et al., 2002; Barakat et al., 2011; Nir et al., 2011; Cox
et al., 2014). While this aids in overcoming the inter-individual
differences in sleep spindles, it does not account for either
the significant changes in spindle-related activity relative to the
overall “background” sigma activity that evolves over the course

of individual NREM periods, or over the course of a whole night.
In addition, spindles vary from one electrode site to another, and
thus one amplitude threshold per subject may not be ideal for all
derivations. Here, instead of adapting the detection threshold to
the signal, or using multiple individualized thresholds, we have
employed a sliding window that spans several epochs of NREM
sleep (60 s; a period long enough to contain at least one spindle),
and transforms each data point of the CD EEG into z-scores,
based on the mean and standard deviation calculated from the
centered 60-s window. The use of a sliding window allows for
a single, fixed amplitude threshold, accounting for the changes
in sigma activity that occur within each NREM cycle (Himanen
et al., 2002), over the course of the entire night and across scalp
derivations.

Finally, one of the major challenges of automated spindle
detection, is the large number of aforementioned user-defined
parameters, including but not limited to: (1) filter type, (2)
window function (and related parameters, type, length, overlap,
etc.), and (3) wavelet choice. Other user-defined parameters are
often necessary to define attributes of the spindle including,
but not limited to: (1) amplitude threshold, (2) frequency band,
(3) minimum duration, (4) maximum duration, and (5) inter-
spindle interval. Depending on the particular method, there can
be a veritable infinite number of combinations of parameters
to decide upon, prior to detection. While the current method
is by no means parameter-free, an effort has been made to
minimize the number of parameters and arbitrary decisions that
are essential for maximum effectiveness and flexibility.

We automatically detected spindles on recordings
obtained from the Montreal Archive of Sleep Studies (MASS;
www.ceams-carsm.ca/en/MASS), an openly available database
of overnight sleep recordings. Here, we compared automatically
detected spindles to expert manual scoring using either
conventional AASM guidelines, or with the visual aid of a sigma
(11–16Hz) band-pass filtered channel. We also compared expert
manual scoring to the scoring of a group of non-experts using
the aid of the sigma-filtered channel. And finally, we compared
the automated detection to the non-experts to assess the utility
of crowd-sourcing techniques to serve as an efficient means to
develop a gold standard basis for comparison.

Here, we present a method for sleep spindle detection,
inspired by algorithms first introduced in an analog system
by Campbell et al. (Campbell et al., 1980; Hao et al., 1992;
Ktonas et al., 2009). The method in the current study: (1)
extracts the signal of interest (i.e., spindle-related phasic changes
in sigma) relative to ongoing “background” sigma activity
using CD; (2) accounts for intra-individual characteristics of
sleep spindles (e.g., changes over the course of the night,
and differences at various scalp locations) and the inter-
individual differences in spindle characteristics; (3) utilizes as
few, potentially arbitrary, user-defined parameters as possible
(e.g., to avoid a multitude of signal extraction/model parameters,
amplitude thresholds, minimum/maximum cut-offs, etc.), (4)
compares the performance of three different visual detection
approaches to one another and each visual detection method to
the automated detection, and finally, (5) validates this method
by comparing to established characteristics of spindles: (i) during

Frontiers in Human Neuroscience | www.frontiersin.org September 2015 | Volume 9 | Article 507 | 97

http://www.ceams-carsm.ca/en/MASS
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ray et al. Automated sleep spindle detection

Stage 2 sleep (NREM2) and slow wave sleep (SWS), (ii) at frontal
and parietal derivations, (iii) for fast and slow spindle types,
and (iv) across consecutive NREM sleep cycles. The current
method provides an alternative approach intended to address (or
circumvent) the major above-mentioned challenges for accurate,
automated spindle detection using a relatively straightforward
approach.

Methods

Participants and EEG Data Set
PSG recordings (including sleep stage scoring annotations)
were obtained from the publically available (upon
request) Montreal Archive of Sleep Studies (MASS;
www.ceams-carsm.ca/en/MASS) from the SS2 database (O’Reilly
et al., 2014) and included recordings from 19 subjects (11 female)
with a mean age of 23.6 years. Overnight PSG data were acquired
on a Grass Model 12 amplifier using Harmonie acquisition
software (V5.4, Natus Medical Inc., San Carlos, USA) from 21
EEG channels (Fp1, Fpz, Fp2, F7, F3, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1, O2, A1, A2). EEG was recorded at 256
samples/s using -6 dB filters, 0.4 s time constant, low cutoff filter
at 0.3Hz, and computed linked reference from A1 to A2. Sleep
stages were scored according to Rechtschaffen and Kales (1968)
in 20 s epochs (Table 1). PSG records and sleep stage annotations
were converted from EDF+ to EEGlab format using in-house
file conversion software written for Matlab (R2014a, Mathworks,
Matick, MA, USA).

All subjects had a Beck Depression Score <13 and did not
report any history of mental disorders. Subjects did not take
antidepressant medications and were not currently (or within the
last 10 years) diagnosed with major mental illness or personality
disorder. Upon visual inspection of the data, four subjects were
excluded from analyses, two for excessive alpha intrusion (01-02-
0004, 01-02-0016), one for frequent EEG arousals indicative of
a sleep disorder (01-02-0008) and one due to intermittent poor
quality EEG for one of the channels of interest (01-02-0015).
Ethical approval to use the MASS SS2 PSG and sleep scoring
annotations was obtained by the local Ethics Review Board at
Western University, London, Ontario, Canada.

Expert Manual Spindle Scoring
Two experts from different sites (Expert 1: London, Ontario;
Expert 2: Montreal, Quebec) manually scored spindles from C3
in NREM2 displayed in 20-s epochs, for the entire recording in all

TABLE 1 | Sleep architecture results (M ± SD).

Sleep stage Duration (minutes) Duration (% TST)

Wake 60.93± 44.21

NREM1 39.27± 21.19 6.3± 3.40

NREM2 360.03± 46.37 55.7± 6.17

SWS 114.27± 41.17 17.4± 5.43

REM 133.03± 23.02 20.6± 3.74

Total 646.60± 55.98

15 subjects included in the study. These annotations are available
from the MASS database. The visual identification method
employed by each expert differed with the exception that: Expert
1 visually identified and manually marked the beginning and end
of each spindle from a duplicate C3 channel, filtered to the sigma
band (11–16Hz), and did not use any explicit minimum duration
criteria. This visualization technique is used to help identify
spindles that would otherwise be obscured by slow wave activity
(e.g., by k-complexes, delta waves), and to identify spindles that
have a short duration and small amplitude. This method allows
the Expert scorer to visualize activity in a way that is closer
to how many spindle detection algorithms “see” the EEG, with
the intention that this may improve the accuracy of manual
detection and make for a more valid comparison to automated
detection methods. Otherwise, spindle scoring conformed to
AASM guidelines (Iber, 2007). On the other hand, Expert 2
adhered to AASM guidelines, did not score using the duplicate,
filtered channel, and scored spindles greater than 0.5 s in
duration. The spindle duration, amplitude and frequency of each
spindle event were calculated in the same way as the automated
detection (see Section Automated Spindle Detection, below).

Non-expert Manual Spindle Scoring
Sleep spindles were also manually identified by a group of
non-expert scorers using Amazon’s web-based crowd sourcing
platform (Amazon Mechanical Turk: https://www.mturk.com/
mturk/) in order to collect spindle scoring from a large sample
of non-experts (see Supplementary Figures 1–5). Two recordings
were not included (01-02-0018 and 01-02-0019) in the non-
expert scoring data set described above (see Section Participants
and EEG Data Set), as a result of changes to Amazon’s terms
and conditions mid-way through data collection. This policy
change restricted use of the Mechanical Turk payment service
to residents of the United States, preventing data collection to
be completed. The remaining data from the 13 EEG recordings
(199,860 s of data from NREM2) sleep were divided into
segments of about 2000 s. This was done in order to provide
small, manageable amounts of data to be manually scored by the
non-experts, for which they were compensated for their time.
There was no limit on how many segments each individual non-
expert could score from the dataset, but the same non-expert was
permitted to score the same segment only once. A total of 406
unique non-experts contributed to the manual spindle scoring by
marking at least one 2000 s segment. On average, 18.4 (SD = 1.2,
range 15–20) non-experts scored each ∼2000 s segment of data.
Similar to the method used by Expert 1, the interface itself
(Supplementary Figure 1) displayed EEG in 20 s epochs for the
sigma (11–16Hz) filtered C3 channel. This was done in order
to simplify the task of identifying spindles for non-experts, to
reduce ambiguity and to simplify and minimize the amount
of training required (Supplementary Figure 2). One advantage
of using the sigma-filtered channel was that non-experts were
not required to learn anything about EEG and very little about
sleep spindles per se (Supplementary Figure 3). Rather, they
were trained by exemplars on a de-noised signal, making event
identification more straightforward than spindles embedded in
ongoing EEG in NREM2. Non-experts were required to become
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familiarized with a simple set of 3 tools in order to use the web-
based interface (Supplementary Figure 4). These tools allowed
them to navigate from one epoch to another (Supplementary
Figure 5, #1), highlight spindles (Supplementary Figure 5, #2)
and to indicate when there were no spindles present on the epoch
(Supplementary Figure 5, #3).

Automated Spindle Detection
EEG processing was carried out using EEGlab (V13) and Matlab
(R2014a) (Figure 1) on the same data set (see Section Participants
and EEGData Set) using the same EEG channel (C3) as the expert
and non-expert scorers. Thus, the validation between automated
detection and visual raters is limited to NREM2 sleep from a
single central (C3) derivation. Spindles were also detected from
additional channels at frontal (F3) and parietal (P3) sites in both
NREM2 and SWS across the first four NREM cycles to further
explore the characteristics of the automatically detected spindles,
in order to provide additional validation of known topographic
distribution (Werth et al., 1997; Zeitlhofer et al., 1997), temporal
patterns (Werth et al., 1997; De Gennaro et al., 2000) and the
characteristics (Bódizs et al., 2009) of spindles. Prior to detection,
the EEG was low-pass filtered at 35Hz. Movement artifact was
detected from the EMG channel (highpass filtered at 10Hz) when
the second order derivative of the signal exceeded 20µV/ms.
The EEG was marked as “bad data” ±3 s about the detected
movement.

CD was employed on the normally filtered (0.3–35Hz) EEG,
to extract the instantaneous power (in µV2) about the frequency
of interest (13.5Hz), while eliminating all other frequencies

outside the spectrum of interest (11–16Hz). CD is carried out
in two principle steps on the original data (X(t)), that is taken to
be the signal of interest, plus everything else (Z(t)). Amplitude
(A) and phase (P) vary with respect to the carrier frequency (ω),
defined mathematically as:

X (t) = A (t) cos
(

ωt + P(t)
)

+ Z (t)

In the first step of the CD, the frequency spectrum of interest,
about a carrier frequency (in this case, 13.5Hz), is shifted left
by the demodulating frequency, toward the origin (i.e., zero
frequency) by multiplying X(t) by exp {−iωt} according to the
method originally described by Walter (1968):

Y (t) = X(t) exp {−iωt}

This can also be written as its analytical analog, as follows, which
reveals 3 terms (a, b, c):

Y (t) =
A (t)

2
exp {iP (t)} (a)

+
A (t)

2
exp

{

−1
(

2ωt + P(t)
)}

(b)

+ Z (t) exp {−iωt} (c)

The result Y(t) contains the shifted component at 0Hz (term a),
and a second component that varies at twice the shifted carrier
frequency 2 ω (term b), plus all other frequency components
(term c). In the second step, the signal is low pass filtered (infinite
impulse response, 4th order butterworth filter, using “filtfilt” from

FIGURE 1 | Automated spindle detection method processing steps. (A) Step 1, the EEG was filtered using a high pass 0.3Hz filter, low pass 35Hz filter, and

bad data and artifact was identified. (B) Step 2, the EEG was transformed using complex demodulation (CD), producing a new time series of instantaneous

magnitude (µV2 ) in the frequency band of interest (e.g., 11–16Hz). (C) Step 3, the CD time series was normalized to Z-scores calculated from a 60-s sliding window

about each data point. Spindle onsets were detected when Z > 2.33 (i.e., 99th percentile). To more accurately measure the entire length of the spindle, the onset was

adjusted to be the first point at which Z = 0.5 prior to the amplitude threshold Z, and the offset as the first point at which Z = 0.5 after the amplitude threshold Z.

Figure reproduced from Fogel et al. (2014b).
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Matlab, to avoid phase shifts) so that the first term is preserved,
and the frequency content of the complex signal outside the
frequency band of interest may be considered negligible (Ktonas
et al., 2009). Filtering removes the unwanted 2nd (b) and 3rd (c)
terms and smoothes the resulting signal (with a length of 2T − 1,
where T = 2π/ω is the demodulation period), to retain the
demodulated and smoothed amplitude time series, where prime
indicates smoothed:

Y ′ (t) = 1/2A
′ (t) exp

{

iP′ (t)
}

Following the CD transformation, the present method
transforms the data from each channel, by normalizing the
signal using a z-score transformation derived from a centered
60-s sliding window. This is similar to other methods that
employ an individualized amplitude threshold (Gais et al., 2002;
Barakat et al., 2011; Nir et al., 2011; Cox et al., 2014), calculated
from a percentile score of the whole recording (e.g., 95%), except
that instead of adapting the detection threshold on a per-subject
basis, here, the signal is transformed so that a single threshold
can be applied to all subjects, at all scalp derivations, across the
entire recording that accounts for the variation of spindle-related
activity to ongoing sigma over time.

To detect spindle events, an amplitude threshold
corresponding to the 99th percentile (Z = 2.33) was used.
Events occurring during “bad data” and outside NREM sleep
were subsequently removed. Finally, the onset and offset of the
spindle event is determined to be when the amplitude approaches
zero, in this case, Z = 0.5 and the duration (offset-onset, in
seconds) encompassing the whole spindle event can then be
calculated. Spindle event markers (onset and offset) were then
moved to the EEG prior to demodulation, filtered from 11 to
16Hz so that the mean frequency (peak-to-peak mean distance,
in Hz) and peak amplitude (max peak-to-peak value, in µV)
could be calculated in the same units as the original EEG signal.
For the purposes of further characterizing the automatically
detected spindles at frontal (F3) and parietal (P3) sites in NREM2
and SWS (see Section Characteristics of Automatically Detected
Spindles), each individual spindle event was categorized and
binned into either slow (11–13.5Hz) or fast (13.5–16Hz)
spindles based on the mean frequency of each spindle event.
Further, to investigate the changes in spindle characteristics
over the course of the night, spindles were binned into the first
four NREM cycles. NREM cycles were defined as periods of
consolidated NREM sleep comprising at least 15 consecutive
minutes (forty-five 20 s epochs) of NREM sleep separated by
consolidated REM sleep comprising at least 2 consecutive
minutes (six 20 s epochs) of REM sleep.

Inter-rater Reliability
The inter-rater agreement between methods (either between
visual scoring methods, or automated detection vs. Experts, or
compared to non-experts) was tested using a method adapted
from Ray et al. (2010). Three second epochs were used to identify
the presence or absence of spindles to count true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). This was done so that TN could be easily quantified

in some meaningful way. Consensus between non-experts was
simply calculated as the proportion of non-expert scorers that
identified a spindle at the same point in time. For non-expert
comparisons, this was carried out at 10 different levels of
consensus among raters, ranging from 0.1 to 0.9 (Supplementary
Figure 6). Statistics were calculated for the level of consensus
where the mean F1 score (the harmonic mean of recall and
precision, a composite score that represents a single measure of
inter-rater agreement) was maximal.

More precisely, in the case where there was an overlap
between spindles scored by one scorer and the other (expert,
automatic or non-expert), the 3-s epoch was counted as TP,
otherwise it was counted as FN. In the case where the other
scorer scored a spindle, and there was no overlap with an event,
the 3-s epoch where the “spindle” occurred was counted as FP.
In the case where there was no spindle scored from either scorer,
this 3-s epoch was counted as TN. Each comparison could only
be made once.

Spindles are sparsely distributed throughout the total duration
of NREM2. This leads to a disproportionate number of TN
results, which can inflate sensitivity. The 3 s windows were
used to judge inter-rater agreement in order to minimize this,
however, it does not completely eliminate the issue. Thus, the
recall (TP/(TP + FN)) and precision (TP/(TP + FP)) were
used in addition to the conventional measures of agreement
that can be biased by a high proportion of TN (e.g., specificity,
negative predictive value (NPV) and false positive rate). Despite
the employment of a relatively large 3 s window to judge the inter-
rater agreement, there were still a disproportionate number of
TN judgments (Table 2). Thus, the F1 scores and the phi (8)
coefficient (another balanced single measure that is appropriate
when classes are of different sizes, where 1 represents perfect
agreement and -1 represents complete disagreement between
judges) were also reported. The statistical significance of 8 can
also be determined. Importantly, the F1 score and phi coefficient
are advantageous in that they are unbiased by the direction of the
comparison between judges.

Results

Inter-rater Agreement for Visual Identification of
Spindles
Expert 1 vs. Expert 2
Overall, Expert 1 had a high mean proportion of correctly
identified events relative to the total number of events identified
by Expert 2 (i.e., precision = 0.85, ±0.21), but Expert 2 had a
low mean proportion of spindles that were correctly identified
relative to the total number of events scored by Expert 1 (i.e.,
recall= 0.40,±0.14). There was a very high proportion of periods
without spindles that were correctly identified by Expert 2 as
compared to Expert 1 (i.e., specificity = 0.97, ±0.04) and a high
proportion of 3 s periods of EEG without spindles identified by
Expert 2 (NPV = 0.80, ±0.07), with a false positive rate of only
0.03, ±0.04. When recall and precision are both maximal (i.e.,
equal to 1), this represents perfect performance, and when recall
and precision are plotted against one another (Figure 2A), data
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TABLE 2 | Group mean percent and marginal totals (±SD) of true positive,

false positive, true negative and false positive epochs comparing expert

vs. expert, expert vs. non-expert and expert vs. automatically detected

spindles.

Positive Negative Total

EXPERT 1 vs. EXPERT 2 DETECTIONS

True 11.48% 69.22% 3882± 451.83

False 1.97% 17.34% 928± 194.45

Total 647 ± 232.70 4164 ± 413.58 4811± 323.14

EXPERT 1 vs. NON-EXPERT DETECTIONS

True 25.36% 62.58% 3552.93± 325.84

False 8.27% 3.79% 487.23± 178.64

Total 1358.54 ± 284.08 2681.62 ± 220.40 4040.16± 252.24

EXPERT 2 vs. NON-EXPERT DETECTIONS

True 9.76% 78.89% 3568.15± 232.16

False 7.67% 3.68% 456.77± 149.07

Total 701.31 ± 172.87 3323.61 ± 208.37 4024.92± 190.62

EXPERT 1 vs. AUTOMATED DETECTIONS

True 19.94% 63.66% 4024.73± 380.99

False 7.48% 8.91% 789.14± 230.50

Total 1320.27 ± 231.83 3493.60 ± 379.66 4813.87± 305.74

EXPERT 2 vs. AUTOMATED DETECTIONS

True 10.10% 68.77% 3795.13± 376.78

False 17.83% 3.30% 1016.74± 176.37

Total 1343.67 ± 242.89 3468.20 ± 310.25 4811.87± 276.57

NON-EXPERT vs. AUTOMATED DETECTIONS

True 53.69% 13.58% 1142.68± 326.11

False 26.08% 6.65% 555.92± 196.02

Total 1354.92 ± 211.88 343.68 ± 310.25 1698.60± 261.07

points crowd the upper-right hand corner. However, as shown in
Figure 2A, data points were dispersed along the left hand side
of the plot, which resulted in low F1 scores (Figure 2B; mean
F1 = 0.54, ±0.17), and a low and non-statistically significant phi
coefficient (8 = 0.49,±0.18, p > 0.05).

Expert 1 vs. Non-expert Consensus
Overall, and consistent with a previous report (Warby et al.,
2014), Expert 1 and the consensus of non-experts performed with
very high agreement (Figures 2A,B). The non-expert detection
of spindles had both a high proportion of spindles that were
correctly identified relative to the total number of expert events
(i.e., recall = 0.87, ±0.08) and a high proportion of correctly
identified events relative to the total number of spindles detected
by the group of non-experts (i.e., precision = 0.75, ±0.13).
There was also a very high proportion of actual periods without
spindles that were correctly identified by non-experts (i.e.,
specificity = 0.88, ±0.07) and a high proportion of correctly
identified 3 s periods of EEG without spindles identified by non-
experts (NPV = 0.94, ±0.05), with a false positive rate of only
0.12, ±0.07. Finally, the F1 scores were high (F1 = 0.81 ±0.07,
Figure 2B) with points crowding the upper-right hand corner
of the recall-precision plot (Figure 2A), and the phi coefficients
[mean 8 = 0.72, ±0.07, χ2

(1)
= 6.82, p < 0.001] were high, and

statistically significant, suggesting excellent overall agreement
between Expert 1 and the consensus of non-experts.

Expert 2 vs. Non-expert Consensus
In contrast to the comparison to Expert 1, the non-experts
correctly identified fewer spindles relative to the total number of
Expert 2 events (i.e., recall= 0.73,±0.20) and a lower proportion
of correctly identified events relative to the total number of
spindles detected by the group of non-experts (i.e., precision =
0.56, ±0.18) with agreement also being more variable across
recordings (Figure 2A). There was a very high proportion of
actual periods without spindles that were correctly identified
by non-experts (i.e., specificity = 0.91, ±0.05) and a high
proportion of correctly identified 3 s periods of EEG without
spindles identified by non-experts (NPV = 0.96, ±0.05), with a
false positive rate of only 0.09±0.05. However, when considering
measures unbiased by TN events, the F1 scores were on average
lower (mean F1 = 0.63 ±0.16) although the phi coefficient did
reach statistical significance [mean8 = 0.57,±0.19,χ2

(1)
= 4.27,

p = 0.039].

Characteristics of Visually Identified Spindles
The most apparent differences in the characteristics of spindles
identified by the various visual scoring approaches were for
spindle duration and amplitude. In general, Expert 1 and non-
experts identified spindles with very similar distributions of
durations (Cohen’s d = 0.14) ranging from about 0.2–3 s
in length (Figure 3A), whereas Expert 2 identified spindles in
a more restricted range between about 0.5 and 2 s in length
(Figure 3A), whose distribution overlapped less with Expert 1
(Cohen’s d = 0.85) and the consensus of the non-experts
(Cohen’s d = 0.63). A similar pattern was observed for amplitude
whereby Expert 1 tended to score more spindles with smaller
amplitudes (Figure 4A) than Expert 2 (Cohen’s d = 0.63), with
the distribution of non-expert spindle amplitudes overlapping to
a greater extent with Expert 1 (Cohen’s d = 0.2) than Expert 2
(Cohen’s d = 0.37), respectively (Figure 4A). By contrast, there
was considerable overlap between visual scoring approaches for
mean frequency (Figure 5A) between Experts 1 and 2 (Cohen’s
d = 0.08), Expert 1 and non-experts (Cohen’s d = 0.16)
and between Expert 2 and non-experts (Cohen’s d = 0.23). In
terms ofmean frequency, however, from inspection of Figure 5A,
it appears that non-experts tended to identify more spindles
with a slower frequency than either Expert 1 or 2, perhaps due
to mistakenly identifying brief arousals (i.e., alpha activity) as
spindles.

Expert 1 vs. Expert 2
Spindles scored by Expert 1 and Expert 2 (Table 3) differed
significantly in terms of spindle duration [t(14) = 13.42, p <

0.001], amplitude [t(14) = 2.76, p = 0.015], total number [t(14) =
5.26, p < 0.001], but not mean frequency (p > 0.7). Despite these
differences, the characteristics of the spindles identified by the
two experts were linearly related to one another; suggesting that
the experts systematically (and consistently) identified spindles
differently across recordings on average, for duration [Figure 3B,
r(13) = 0.69, p = 0.004], amplitude [Figure 4B, r(13) = 0.96,
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FIGURE 2 | (A) High precision and recall across recordings when comparing Expert 1 to non-expert spindle scoring (black), low recall and variable precision across

recordings when comparing Expert 1 to Expert 2 (open), and intermediate precision and recall between Expert 2 and non-experts (gray). (B) Inter-rater agreement was

consistently high across subjects for Expert 1 vs. non-expert detections, ranging from 0.60 to 0.90 (Mean F1 = 0.81, ±0.07), low and variable agreement between

Expert 1 and Expert 2 ranging from 0.10 to 0.80 (Mean F1 = 0.54, ±0.17), and intermediate and variable agreement between Expert 2 and non-experts ranging from

0.10 to 0.80 (mean F1 = 0.63, ±0.16). F1 score = harmonic mean of recall and precision.

FIGURE 3 | (A) There was a great deal of overlap between Expert 1 and non-experts in terms of spindle duration (Cohen’s d = 0.14), but less overlap with Expert 2

(Cohen’s d = 0.85) or between Expert 2 and non-experts (Cohen’s d = 0.63). Spindle duration of automatically detected spindles were generally shorter in duration

than Expert 1 (Cohen’s d = 1.12), Expert 2 (Cohen’s d = 0.57), or non-experts (Cohen’s d = 0.91). Spindle duration among visual identification methods (B–D) and

between automatic and visual detection (E–G) were all highly inter-correlated (all p < 0.05).
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FIGURE 4 | (A) There was the greatest deal of overlap between non-experts and the automatically detected spindles in terms of spindle amplitude (Cohen’s

d = 0.24), but less overlap between the non-experts and Expert 1 (Cohen’s d = 0.85) or Expert 2 (Cohen’s d = 0.63). Spindle amplitudes of automatically detected

spindles were generally smaller than Expert 2 (Cohen’s d = 0.68) and overlapped the most with Expert 1 (Cohen’s d = 0.05). Spindle amplitude among visual

identification methods (B–D) and between automatic and visual detection (E–G) were all highly inter-correlated (all p < 0.05).

FIGURE 5 | (A) There was nearly complete overlap between the four scoring methods employed (all Cohen’s d < 0.25). Spindle frequency among visual identification

methods (B–D) and between automatic and visual detection (E–G) were all very highly inter-correlated (all p < 0.05).
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TABLE 3 | Group mean (± standard deviation) spindle characteristics for

automatically and manually detected spindles by experts and a group of

non-experts.

Detection Duration Frequency Amplitude Number

Method (s) (Hz) (µV)

Expert 1 1.20± 0.16 13.47±0.30 34.34± 6.84 1422±410.62

Expert 2 0.82± 0.06*,# 13.51±0.30 40.60± 6.44* 772.73±386.35*,#

Non-experts 1.10± 0.11 13.35±0.28 36.12± 5.17 1140±339.53

Automatic 0.69± 0.09*,+,# 13.37±0.24 34.06± 7.52+ 1438±240.14+,#

*Indicates significant difference from Expert 1, + indicates significant difference from Expert
2, and # indicates significant difference fromNon-experts, p< 0.05, two-tailed t-test. Mean
values for number reported for non-experts.

p < 0.001] mean frequency [Figure 5B, r(13) = 0.86, p < 0.001]
and number [r(13) = 0.81, p < 0.001]. Taken together, this
suggests that Experts 1 and 2 identified spindles with different
characteristics, and did so systematically across recordings.

Expert 1 vs. Non-expert Consensus
By contrast, there were no significant differences (Table 3) in the
characteristics of the spindles identified by Expert 1 as compared
to the consensus of the non-experts in terms of spindle duration
(p > 0.05), mean frequency (p > 0.2), amplitude (p > 0.4)
or total number identified (p > 0.06). Given these similarities,
it is not surprising that there was also a very high correlation
for duration [Figure 3C, r(13) = 0.82, p < 0.001], amplitude
[Figure 4C, r(13) = 0.93, p < 0.001] mean frequency [Figure 5C,
r(13) = 0.96, p < 0.001] and number [r(13) = 0.71, p =
0.003] across subjects. Thus, suggesting that Expert 1 and non-
experts identified spindles with similar characteristics and did so
consistently across recordings.

Expert 2 vs. Non-expert Consensus
By contrast, the characteristics of the spindles identified by Expert
2 differed significantly from non-experts (Table 3) in terms of
spindle duration [t(14) = 11.47, p < 0.001] and total number
[t(14) = 2.83, p = 0.013], but not frequency (p > 0.1)
and amplitude (p > 0.05). Despite the differences in spindle
characteristics between Expert 2 and non-experts, there was
a significant linear relationship for the spindle characteristics
between Expert 2 and non-experts for duration [Figure 3D,
r(13) = 0.80, p < 0.001], amplitude [Figure 4D, r(13) = 0.89,
p < 0.001], mean frequency [Figure 5D, r(13) = 0.81, p < 0.001]
and total number [r(13) = 0.83, p < 0.001]. Thus, similar to the
comparison between Expert 1 and Expert 2, in general, Expert 2
identified spindles with different characteristics than non-experts
and did so in a consistent manner across recordings.

Automated Detection vs. Visual Scoring
Automated Detection vs. Expert 1
The automated detection method had both a high proportion of
spindles that were correctly identified relative to the total number
of events identified by Expert 1 (i.e., recall = 0.69, ±0.11) and a
high and balanced proportion (with respect to recall) of correctly
identified events relative to the total number of automatically
detected events (i.e., precision = 0.73, ±0.15) (Figure 6A).

As expected, there was a high proportion of actual periods
without spindles that were correctly identified (i.e., specificity =
0.89, ±0.05) and a high proportion of correctly identified 3 s
periods of EEG without spindles (NPV = 0.88, ±0.08), with
a false positive rate of only 0.11, ±0.05. Overall, we observed
high agreement between the automated and manual detection by
Expert 1 [F1 = 0.71, ±0.06 and 8 = 0.60, ±0.06, χ2

(1)
= 5.31,

p = 0.021; Figure 6B].

Automated Detection vs. Expert 2
By contrast, while the automated detection identified a high
number of spindles relative to the total number of events
identified by Expert 2 (recall = 0.75, ±0.23) there was a low
number of correctly identified events relative to the number
of automatically detected events (precision = 0.36, ±0.17)
(Figure 6A). Specificity (0.79, ±0.04) and negative predictive
value (0.95, ±0.04) were also high, with a low false positive
rate (0.21, ±0.04), however these metrics are likely inflated by
the high number of TN. When taken into consideration, the F1
scores (F1 = 0.49, ±0.04) and phi coefficient (8 = 0.42, ±0.20,
p > 0.05) were low and non-statistically significant. Thus,
suggesting that the automated detectionmethod also detected the
majority of spindles identified by Expert 2, but made additional
detections that Expert 2 did not.

Automated Detection vs. Non-expert Consensus
Similar to Expert 1, the automated detection method performed
comparatively as well or better as compared to the consensus
of non-experts (Figure 6A), as indicated by high recall =
0.80, ±0.11, precision = 0.67, ±0.10, specificity = 0.85, ±0.08,
negative predictive value = 0.92, ±0.03 and a low false positive
rate = 0.15, ±0.08. The F1 scores (Figure 6B) were also
consistently high F1 = 0.73, ±0.04, as was the phi coefficient
[8 = 0.62, ±0.07, χ2

(1)
= 5.00, p = 0.025]. In summary,

the automated detection method performed well as compared
to Expert 1 and the consensus of non-experts, but with less
agreement and consistency as compared to Expert 2.

Characteristics of Automatically Detected
Spindles
Characteristics of Automatically Detected Spindles

vs. Visually Detected Spindles
The automated detection method identified spindles that were
smaller both in terms of duration (Table 3 and Figure 3A) as
compared to Expert 1 [t(14) = 19.45, p < 0.001], Expert 2 [t(14) =
5.41, p < 0.001] and non-experts [t(14) = 17.25, p < 0.001],
supporting the notion that even with the use of a highly filtered
channel to simplify and aid in the visual identification of sleep
spindles, automated methods are able to identify and measure
smaller spindles. Expert 2 identified spindles that were also larger
in terms of amplitude [t(14) = 2.73, p = 0.016], whereas Expert
1 (p > 0.9) and non-experts (p > 0.4) identified spindles
of the same amplitude as the automated detection (Table 3).
Spindle frequency did not differ from visual scoring (all p > 0.1).
Spindle duration (Figures 3E–G), amplitude (Figures 4E–G) and
frequency (Figures 5E–G) for automatically detected spindles
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FIGURE 6 | (A) High precision and recall across recordings when comparing automated to Expert 1 spindle scoring (black) and to non-experts (open), but low

precision and high, but variable recall when comparing Expert 2 to automatic spindle detection (gray). (B) Inter-rater agreement was consistently high across

recordings scored by Expert 1 vs. automatic detections, ranging from 0.60 to 0.80 (Mean F1 = 0.71, ±0.06) and in non-experts vs. automatic detection, ranging from

0.60 to 0.80 (F1 = 0.73, ±0.04), but was low and variable between Expert 2 and the automatic detection, ranging from 0.10 to 0.70 (Mean F1 = 0.49, ±0.04). F1

score = harmonic mean of recall and precision.

were significantly correlated with the spindles identified by visual
scoring (all p < 0.05).

Distribution of Spindle Frequencies during NREM2

and SWS at Frontal and Parietal Regions
Consistent with previous reports (Zeitlhofer et al., 1997) Figure 7
reveals that a greater number of faster frequency spindles
predominated parietal regions whereas a greater number of
slower frequency spindles predominated frontal regions in both
NREM2 (Figure 7A, Cohen’s d = 0.43) and SWS (Figure 7B,
Cohen’s d = 0.78). This dissociation was supported by significant
spindle type (fast, slow) × site (frontal, parietal) ANOVAs on
automatically detected spindle density in NREM2 and SWS,
which revealed that fast spindles predominated parietal regions
as compared to slow spindles at frontal regions in both NREM2
[F(1,14) = 149.62, p < 0.001], and SWS [F(1, 14) = 194.19,
Table 4].

Spindle Density
Spindle characteristics over the course of NREM cycles and across
frontal and parietal regions followed well-established patterns
(Figure 8). A cycle (NREM cycle 1–4) × spindle type (fast,
slow) × site (frontal, parietal) ANOVA for spindle density
revealed a significant three-way interaction [F(3, 42) = 3.98,
p = 0.014]. This was driven by a higher density of slow spindles
(3.38, ±0.62) than fast spindles (1.16, ±0.54) at F3 as compared
to a higher density of fast spindles (3.31, ±0.91) than slow
spindles (1.52, ±0.69) at P3 [F(1, 14) = 149.62, p < 0.001].
Spindle density also differed across NREM cycles in a U-shaped

pattern (Himanen et al., 2002), but more so for fast spindles than
slow spindles, as indicated by a significant type by NREM cycle
interaction [F(3, 42) = 4.74, p = 0.006].

Spindle Duration
A similar pattern of results was observed for spindle duration,
however the cycle by spindle type by site three-way interaction
was not significant (p > 0.4). Slow sleep spindles (0.63, ±0.01)
were longer in duration than fast spindles (0.47,±0.06) at F3, but
not at P3 (slow = 0.61, ±0.19, fast = 0.66, ±0.07), as supported
by a significant spindle type by site interaction [F(1, 14) = 38.91,
p < 0.001]. Spindle duration also varied over the course of the
night as a function of: (1) spindle type, whereby slow spindles
flowed an inverted U-shaped pattern more so than fast spindles
[F(3, 42) = 5.31, p = 0.003], and (2) site, whereby spindles at
P3 regions followed an inverted U-shaped more so than at F3
[F(3, 42) = 6.27, p = 0.001].

Spindle Amplitude
In terms of spindle amplitude, there was a significant cycle
by spindle type by site three-way interaction [F(3, 42) = 3.01,
p = 0.041], whereby fast spindles increased over the course of
NREM cycles at frontal regions and decreased over the course
of NREM cycles at parietal regions. However, there were no
other significant interactions or main effects, thereby suggesting
that spindle amplitude was relatively stable over the course of
the night at frontal and parietal regions for both slow and fast
spindles.
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FIGURE 7 | Histogram of mean spindle frequencies at frontal and

parietal sites during NREM2 (A) and SWS (B). Fast spindles predominated

parietal regions, whereas slow spindles predominated frontal regions.

TABLE 4 | Group mean (± standard deviation) of fast and slow spindle

density during NREM2 and SWS at frontal and parietal regions.

NREM2 SWS

F3 P3 F3 P3

Fast 1.16 ± 0.14 3.31 ± 0.24 0.78 ± 0.12 3.66 ± 0.30

Slow 3.38 ± 0.16 1.52 ± 0.18 4.47 ± 0.22 1.49 ± 0.22

Spindle Frequency
By contrast, spindle frequency was very stable over the course
of the night as a function of site (p > 0.9) and spindle
type (p > 0.4), and there was no cycle by spindle type by
site three-way interaction. However, fast spindles were faster
at F3 (14.12, ±0.11) than fast spindles at P3 (13.76, ±0.15)
whereas slow spindles did not differ at F3 (12.80, ±0.14) and P3
(12.75, ±0.10) as supported by a significant site by spindle type
interaction [F(1, 14) = 11.85, p = 0.004].

Discussion

In summary, the strengths of this automated detection method
are: (1) CD was used to extract the signal of interest; a

FIGURE 8 | Spindle characteristics over the course of the first four

NREM periods, at frontal and parietal regions for fast and slow spindle

types, including density (A), duration (B), amplitude (C) and

frequency (D).
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method that is appropriate for brief events in a well-defined
frequency range for non-linear, non-stationary signals such as
EEG, and transforms the signal to a waveform that makes
event detection straightforward; (2) a sliding window was used
to calculate theM and SD for the z-score normalization to
account for intra-individual changes in the ratio of spindle-
related sigma to the changes in ongoing sigma over time, and
standardizes the amplitude of the signal across scalp locations
and individuals; and (3) this method permits the effective use of
a single, intuitive, user-defined amplitude parameter, with very
few other parameters to extract the signal of interest, that are
relatively intuitive (although sometimes non-trivial) to decide
upon (e.g., spindle frequency bandwidth and normalization
window duration). The validation was conducted on a freely
available database of EEG, independently scored by two experts
that employed two different methods to visually identify spindles,
using spindle annotations that are available to other researchers
for comparison. Thus, future direct comparisons to other
detection methods are possible. Improving the reliability and
validity of automated spindle detection will enable researchers to
investigate the neural and functional correlates of spindles with
greater confidence and reproducibility.

The results of the comparison between experts, highlights the
difficulty in comparing automated detection methods to human
visual scoring. Here, one expert (Expert 2) used conventional
guidelines (e.g., AASM), while the other expert (Expert 1) utilized
the aid of a sigma filtered channel to help identify spindles that
are either difficult to discriminate from the ongoing EEG (i.e.,
spindles obscured by slow activity, or are small, or have unusual
morphology in the normally filtered signal, e.g., 0.3–35Hz).
There were considerable differences between Expert 1 and Expert
2 in terms of low inter-rater agreement and in the characteristics
of the spindles that were identified. Expert 1 also had a much
higher level of agreement and identified spindles with similar
characteristics as compared to the consensus of non-experts (who
also used a sigma filtered channel to identify spindles) and the
automated detection, than did Expert 2. By having human scorers
view the EEG in a way that is closer to how the algorithm “sees”
the EEG, this may have putatively improved agreement between
automated and visual scoring and also may have minimized
the differences in the characteristics of the spindles that were
identified between automated and visual scoring. These results
suggest that the use of the additional filtered channel allowed
Expert 1 and non-experts to identify spindles that were difficult
to visually identify, whereas Expert 2 identified far fewer spindles
in general, that differed in their characteristics. This highlights
the caveats of validating spindle detectionmethods against expert
scoring as they can vary considerably from one individual to
another (Warby et al., 2014), and also depending on adherence
to established guidelines. To compare the automated detection to
a potentially less idiosyncratic detection, here, we also compared
the automated detection to a group of non-experts, to assess
the utility of crowd-sourcing techniques. Overall, non-experts
performed with a very high level of agreement as compared to
the automated detection method. Thus, suggesting that manual
scoring using web-based crowd sourcing tools could serve to
generate a valid gold standard, and could even replace automated

detection of spindles, if the goal is to perform as close to
the ideal performance of an expert scorer as possible. That
said, automated detection methods do have their advantages
over humans in terms of cost effectiveness and speed. They
are also superior at precisely calculating the beginning and
ending of individual spindles, can be tuned to perform better,
can be used to identify spindles on multiple channels, and can
perform well in the face of large amplitude, slow oscillations
that visually obscure spindles. This is particularly advantageous
in slow wave sleep where manual spindle detection is more
challenging.

Importantly, in addition to comparing this method to experts
and non-expert visual scoring methods, we investigated the
characteristics of the spindles that were automatically detected
to determine whether these spindles conform to known patterns
from the extant literature. In summary, a greater density of
fast spindles were observed at parietal than frontal regions,
whereas a greater density of slow spindles were observed at
frontal regions than parietal regions (Bódizs et al., 2009), and
the change in spindle density followed the previously reported
U-shaped pattern (for spindle power) over the course of the
night (Himanen et al., 2002). Moreover, slow spindles were
longer in duration than fast spindles at frontal regions and
longer than both slow and fast spindles at parietal regions
(Bódizs et al., 2009), whereas amplitude and frequency were
relatively stable over the course of the night. Thus, many of
the characteristics of the automatically detected spindles were
consistent with known characteristics. Ultimately, given that
scalp-recorded spindles are generated by the oscillatory firing
of thalamocortical neurons (Steriade, 2006), future validation
work comparing scalp-detected spindles to intracranial (e.g., unit
activity) (Frauscher et al., 2015) may permit automated detection
of spindles recorded from the scalp to be validated and identified
more precisely.

The current method does not use any explicit minimum
duration criteria for spindle detection and, due to the inherently
straightforward approach used to extract the signal of interest
(i.e., CD) minimizes - but does not eliminate—the number of
parameters that require trial-and-error adjustment to optimize
detection. Many existing definitions are based on minimum
duration criteria (e.g., 0.5 s) derived from spindles large enough
to be observed in the raw, mixed-frequency EEG (∼ 0.5–
35Hz) by the naked eye alone. By excluding spindles <0.5 s
in duration, this could possibly exaggerate inter-individual and
group differences or lead to a systematic bias in the detection
of large spindles. Of note, as can be seen in Figure 8B, the
vast majority of fast frontal spindles that were automatically
detected were < 0.5 s in duration. Automated techniques that
require aminimum spindle duration to be decided a-priori, could
benefit from loosening this criteria to determine the functional
significance of short-duration spindles. This could be particularly
problematic for elderly and psychiatric populations that have
smaller spindles. Despite having no minimum duration criteria,
the current method did not detect virtually any spindles shorter
than 0.2 s. This likely contributed to the difference in spindle
duration between expert and automated spindle detections,
however, it is also likely that the ability to manually and
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precisely score spindle duration is dependent on several factors,
most notably the manual dexterity of the scorer, visual display
settings, temporal resolution, and precision of the marking tool.
In addition, the automated detection is able to detect and
precisely measure (i.e., to the data point) very short duration
events. This interpretation is supported by the fact that spindle
duration was significantly and linearly related between visual
and automated methods, thus suggesting that while visual and
automated methods differ overall, there is a linear relationship
between them, and thus, the difference may be due to the human
scorer marking events systematically longer than the automated
detection method (n.b., compare range of values for x-axis vs.
y-axis in Figure 3E).

Both sigma power and spindles vary over the course of a night
of sleep, and within individual NREM periods (De Gennaro and
Ferrara, 2003; De Gennaro et al., 2005). In addition, spindles
are relatively stable from night-to-night within an individual,
but there are considerable inter-individual differences. Thus, it is
crucial for automated spindle detection methods to account for
these dynamic changes for accurate detection. Previous methods
have accounted for inter-individual differences by adjusting the
detection threshold that can be set to, e.g., the 95th or 99th
percentile of the entire recording (Gais et al., 2002; Barakat et al.,
2011; Nir et al., 2011; Cox et al., 2014). However, in order to
account for variations, not only per individual and per derivation,
here we employed the use of a sliding window to normalize
the signal to the 99th percentile to adaptively detect spindles as
the size of spindles change over the course of the night relative
to the “background” non-spindle-related sigma activity. While
intuitively, this may improve spindle detection, it is possible that
for extremely intense periods of spindle activity (e.g., when the
mean sigma activity is extremely elevated), that some smaller
spindles may go undetected, and by contrast, in periods with very
little spindle activity (e.g., when mean sigma activity is extremely
low), that some very small spindles may be detected, or even lead
to false detections. We feel however that this is unlikely as the
window size employed is sufficiently long (60 s, equivalent to in
this case, 3 epochs of consecutive NREM sleep), and thus would
be unlikely to have very sustained periods of either high or low
spindle activity great enough to systematically introduce a high
number of false positives or false negatives. That said, additional
work may be required to either optimize the size of the sliding
window, or refine the method to automatically adapt the size of
the sliding window.

Based on previously reported oscillatory frequency,
topographic (Zeitlhofer et al., 1997) and functional activation
differences between slow and fast spindles (Schabus et al.,
2007), sleep spindles can be categorized as either slow or
fast. Many current detection methods detect slow and fast
spindles in two separate detection passes (Ray et al., 2010). For
example, the frequency limits are set to detect slow spindles
(e.g., 11–13.5Hz), and then in a separate run on the same data,
frequency limits are set to detect fast spindles (e.g., 13.5–16Hz).
This approach will invariably result in (perhaps the majority

of) the same spindle events to be detected twice, due to the
overlap of the frequency extraction of the two adjacent bands.
The current method detects spindles in the full band (e.g.,
11–16Hz) in one pass and categorizes spindles post-hoc as
either slow or fast, based on each individual spindle events’
mean oscillatory frequency. This approach is advantageous such
that the categorization of slow and fast spindles is orthogonal
(i.e., so that the same spindle is not identified as both slow
and fast).

The present investigation used a sample of young healthy
subjects to validate the automated detection of spindles. In
order to assess how this method preforms in populations where
spindles are generally less frequent and smaller, such as elderly
subjects (Martin et al., 2012), in clinical populations (Limoges
et al., 2005; Steriade, 2005; Ferrarelli et al., 2007) or in noisy
recordings, such as simultaneous EEG-fMRI, formal validation
would also be required. However, preliminary validation results
show automated detection using the present method, had
a high inter-rater reliability with an established method in
young and older subjects (r = 0.98) (Fogel et al., 2014b)
and in EEG recorded simultaneously with fMRI (Fogel et al.,
2014a).

The main advantage of this method is the employment of CD
in conjunction with the normalization of the signal over time
to account for inter- and intra-individual differences in spindles.
An effort was made to minimize the number of parameters that
require trial-and-error or arbitrary decisions, and the detection
method has been validated against two experts employing
different approaches (from a freely available repository) and a
group of non-experts. In conclusion, the present method resolves
or avoids many of the limitations of automated spindle detection,
and performs well compared to a group of non-experts, and
importantly, has good external validity with respect to the extant
literature in terms of the characteristics of automatically detected
spindles.

Acknowledgments

Many thanks to Sonia Frenette for her contribution to the MASS
database, and to Dr. Christian O’Reilly who was instrumental to
the development of this valuable repository and research tool.
The authors would also like to acknowledge Dr. Julie Carrier for
her input and guidance. This research was supported by a Canada
Excellence Research Chair (CERC) grant (CERC-215063) to
author AO, a Natural Sciences and Engineering Research Council
of Canada (NSERC) Discovery grant (NSERC 418293DG-2012)
to author RC and a NSERC postdoctoral fellowship (PDF-
377124-2009) to author SF.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnhum.
2015.00507

Frontiers in Human Neuroscience | www.frontiersin.org September 2015 | Volume 9 | Article 507 | 108

http://journal.frontiersin.org/article/10.3389/fnhum.2015.00507
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ray et al. Automated sleep spindle detection

References

Barakat, M., Doyon, J., Debas, K., Vandewalle, G., Morin, A., Poirier, G., et al.

(2011). Fast and slow spindle involvement in the consolidation of a new

motor sequence. Behav. Brain Res. 217, 117–121. doi: 10.1016/j.bbr.2010.

10.019

Bergmann, T. O., Mölle, M., Diedrichs, J., Born, J., and Siebner, H. R.

(2011). Sleep spindle-related reactivation of category-specific cortical regions

after learning face-scene associations. Neuroimage 59, 2733–2742. doi:

10.1016/j.neuroimage.2011.10.036

Bixler, E. O., and Rhodes, J. M. (1968). Spindle activity during sleep in cultural-

familial mild retardates. Psychophysiology 5, 212.

Bódizs, R., Kis, T., Lázár, A. S., Havrán, L., Rigó, P., Clemens, Z., et al. (2005).

Prediction of general mental ability based on neural oscillation measures of

sleep. J. Sleep Res. 14, 285–292. doi: 10.1111/j.1365-2869.2005.00472.x

Bódizs, R., Körmendi, J., Rigó, P., and Lázár, A. S. (2009). The individual

adjustment method of sleep spindle analysis: methodological improvements

and roots in the fingerprint paradigm. J. Neurosci. Methods 178, 205–213. doi:

10.1016/j.jneumeth.2008.11.006

Bódizs, R., Lázár, A. S., and Rigó, P. (2008). Correlation of visuospatial memory

ability with right parietal EEG spindling during sleep. Acta Physiol. Hung. 95,

297–306. doi: 10.1556/APhysiol.95.2008.3.5

Bonjean, M., Baker, T., Lemieux, M., Timofeev, I., Sejnowski, T., and Bazhenov,

M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo.

J. Neurosci. 31, 9124–9134. doi: 10.1523/JNEUROSCI.0077-11.2011

Broughton, R., Healey, T., Maru, J., Green, D., and Pagurek, B. (1978). A

phase locked loop device for automatic detection of sleep spindles and stage

2. Electroencephalogr. Clin. Neurophysiol. 44, 677–680. doi: 10.1016/0013-

4694(78)90134-7

Campbell, K., Kumar, A., and Hofman, W. (1980). Human and automatic

validation of a phase-locked loop spindle detection system. Electroencephalogr.

Clin. Neurophysiol. 48, 602–605. doi: 10.1016/0013-4694(80)90296-5

Clemens, Z.,Mölle,M., Eross, L., Barsi, P., Halász, P., and Born, J. (2007). Temporal

coupling of parahippocampal ripples, sleep spindles and slow oscillations in

humans. Brain 130(Pt 11), 2868–2878. doi: 10.1093/brain/awm146

Cox, R., Hofman,W. F., de Boer,M., and Talamini, L.M. (2014). Local sleep spindle

modulations in relation to specific memory cues. Neuroimage 99, 103–110. doi:

10.1016/j.neuroimage.2014.05.028

Crowley, K., Trinder, J., Kim, Y., Carrington, M., and Colrain, I. M. (2002).

The effects of normal aging on sleep spindle and k-complex production. Clin.

Neurophysiol. 113, 1615–1622. doi: 10.1016/S1388-2457(02)00237-7

Dang-Vu, T. T., McKinney, S. M., Buxton, O.M., Solet, J. M., and Ellenbogen, J. M.

(2010). Spontaneous brain rhythms predict sleep stability in the face of noise.

Curr. Biol. 20, R626–R627. doi: 10.1016/j.cub.2010.06.032

De Gennaro, L., and Ferrara, M. (2003). Sleep spindles: an overview. Sleep Med.

Rev. 7, 423–440. doi: 10.1053/smrv.2002.0252

De Gennaro, L., Ferrara, M., and Bertini, M. (2000). Topographical distribution of

spindles: variations between and within nrem sleep cycles. Sleep Res. Online 3,

155–160. doi: 10.1046/j.1365-2869.2000.00193.x

De Gennaro, L., Ferrara, M., Vecchio, F., Curcio, G., and Bertini, M. (2005). An

electroencephalographic fingerprint of human sleep. Neuroimage 26, 114–122.

doi: 10.1016/j.neuroimage.2005.01.020

Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., Murphy, M., Riedner, B.

A., et al. (2007). Reduced sleep spindle activity in schizophrenia patients. Am.

J. Psychiatry 164, 483–492. doi: 10.1176/appi.ajp.164.3.483

Fogel, S., Albouy, G., King, B., Vien, C., Karni, A., Benali, H., et al. (2014b). Motor

memory consolidation depends upon reactivation driven by the action of sleep

spindles. J. Sleep Res. 23, 47.

Fogel, S. M., Albouy, G., Vien, C., Popovicci, R., King, B. R., Hoge, R., et al. (2014a).

FMRI and sleep correlates of the age-related impairment in motor memory

consolidation. Hum. Brain Mapp. 35, 3625–3645. doi: 10.1002/hbm.22426

Fogel, S. M., Nader, R., Cote, K. A., and Smith, C. T. (2007). Sleep spindles and

learning potential. Behav. Neurosci. 121, 1–10. doi: 10.1037/0735-7044.121.1.1

Fogel, S. M., and Smith, C. T. (2006). Learning-dependent changes in sleep

spindles and stage 2 sleep. J. Sleep Res. 15, 250–255. doi: 10.1111/j.1365-

2869.2006.00522.x

Fogel, S. M., and Smith, C. T. (2011). The function of the sleep spindle: a

physiological index of intelligence and a mechanism for sleep-dependent

memory consolidation. Neurosci. Biobehav. Rev. 35, 1154–1165. doi:

10.1016/j.neubiorev.2010.12.003

Frauscher, B., von Ellenrieder, N., Dubeau, F., and Gotman, J. (2015). Scalp

spindles are associated with widespread intracranial activity with unexpectedly

low synchrony. Neuroimage 105, 1–12. doi: 10.1016/j.neuroimage.2014.10.048

Gais, S., Mölle, M., Helms, K., and Born, J. (2002). Learning-dependent increases

in sleep spindle density. J. Neurosci. 22, 6830–6834.

Geiger, A., Huber, R., Kurth, S., Ringli, M., Jenni, O. G., and Achermann, P. (2011).

The sleep EEG as a marker of intellectual ability in school age children. Sleep

34, 181–189.

Gibbs, E. L., and Gibbs, F. A. (1962). Extreme spindles: correlation of

electroencephalographic sleep pattern with mental retardation. Science 138,

1106–1107. doi: 10.1126/science.138.3545.1106

Hao, Y. -L., Ueda, Y., and Ishii, N. (1992). Improved procedure of complex

demodulation and an application to frequency analysis of sleep spindles in EEG.

Med. Biol. Eng. Comput. 30, 406–412. doi: 10.1007/BF02446168

Himanen, S. L., Virkkala, J., Huhtala, H., and Hasan, J. (2002). Spindle frequencies

in sleep EEG show u-shape within first four NREM sleep episodes. J. Sleep Res.

11, 35–42. doi: 10.1046/j.1365-2869.2002.00273.x

Huupponen, E., De Clercq, W., Gómez-Herrero, G., Saastamoinen, A., Egiazarian,

K., Värri, A., et al. (2006). Determination of dominant simulated spindle

frequency with different methods. J. Neurosci. Methods 156, 275–283. doi:

10.1016/j.jneumeth.2006.01.013

Iber, C. (2007). The AASM Manual for the Scoring of Sleep and Associated Events:

Rules, Terminology and Technical Specifications. Westchester, IL: American

Academy of Sleep Medicine.

Klonowski, W. (2007). From conformons to human brains: an informal overview

of nonlinear dynamics and its applications in biomedicine. Nonlinear Biomed.

Phys. 1:5. doi: 10.1186/1753-4631-1-5

Ktonas, P. Y., Golemati, S., Xanthopoulos, P., Sakkalis, V., Ortigueira,

M. D., Tsekou, H., et al. (2009). Time-frequency analysis methods

to quantify the time-varying microstructure of sleep EEG spindles:

possibility for dementia biomarkers? J. Neurosci. Methods 185, 133–142.

doi: 10.1016/j.jneumeth.2009.09.001

Ktonas, P. Y., and Papp, N. (1980). Instantaneous envelope and phase extraction

from real signals: theory, implementation, and an application to EEG analysis.

Signal Processing 2, 373–385. doi: 10.1016/0165-1684(80)90079-1

Limoges, E., Mottron, L., Bolduc, C., Berthiaume, C., and Godbout, R. (2005).

Atypical sleep architecture and the autism phenotype. Brain 128, 1049–1061.

doi: 10.1093/brain/awh425

Martin, N., Lafortune, M., Godbout, J., Barakat, M., Robillard, R., Poirier, G., et al.

(2012). Topography of age-related changes in sleep spindles. Neurobiol. Aging

34, 468–476. doi: 10.1016/j.neurobiolaging.2012.05.020

Mölle, M., Marshall, L., Gais, S., and Born, J. (2002). Grouping of spindle activity

during slow oscillations in human non-rapid eye movement sleep. J. Neurosci.

22, 10941–10947.

Nicolas, A., Petit, D., Rompré, S., and Montplaisir, J. (2001). Sleep spindle

characteristics in healthy subjects of different age groups. Clin. Neurophysiol.

112, 521–527. doi: 10.1016/S1388-2457(00)00556-3

Nir, Y., Staba, R. J., Andrillon, T., Vyazovskiy, V. V., Cirelli, C., Fried, I., et al.

(2011). Regional slow waves and spindles in human sleep. Neuron 70, 153–169.

doi: 10.1016/j.neuron.2011.02.043

Nishida, M., and Walker, M. P. (2007). Daytime naps, motor memory

consolidation and regionally specific sleep spindles. PLoS ONE 2:e341. doi:

10.1371/journal.pone.0000341

O’Reilly, C., Gosselin, N., Carrier, J., and Nielsen, T. (2014). Montreal archive

of sleep studies: an open-access resource for instrument benchmarking and

exploratory research. J. Sleep Res. 23, 628–635. doi: 10.1111/jsr.12169

Peters, K. R., Smith, V., and Smith, C. T. (2007). Changes in sleep architecture

following motor learning depend on initial skill level. J. Cogn. Neurosci. 19,

817–829. doi: 10.1162/jocn.2007.19.5.817

Principe, J. C., and Smith, J. R. (1982). Sleep spindle characteristics as a function of

age. Sleep 5, 73.

Ray, L. B., Fogel, S. M., Smith, C. T., and Peters, K. R. (2010). Validating an

automated sleep spindle detection algorithm using an individualized approach.

J. Sleep Res. 19, 374–378. doi: 10.1111/j.1365-2869.2009.00802.x

Rechtschaffen, A., and Kales, A. (1968). A Manual of Standardized Terminology,

Techniques and Scoring System for Sleep Stages of Human Subjects. Los

Frontiers in Human Neuroscience | www.frontiersin.org September 2015 | Volume 9 | Article 507 | 109

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ray et al. Automated sleep spindle detection

Angeles, CA: Brain Information Service/ Brain Research Institute, University

of California.

Schabus, M., Dang-Vu, T. T., Albouy, G., Balteau, E., Boly, M., Carrier, J., et al.

(2007). Hemodynamic cerebral correlates of sleep spindles during human non-

rapid eye movement sleep. Proc. Natl. Acad. Sci. U.S.A. 104, 13164–13169. doi:

10.1073/pnas.0703084104

Schabus, M., Dang-Vu, T. T., Heib, D. P. J., Boly, M., Desseilles, M., Vandewalle,

G., et al. (2012). The fate of incoming stimuli during NREM sleep is determined

by spindles and the phase of the slow oscillation. Front. Neurol. 3:40. doi:

10.3389/fneur.2012.00040

Schabus, M., Gruber, G., Parapatics, S., Sauter, C., Klösch, G., Anderer, P.,

et al. (2004). Sleep spindles and their significance for declarative memory

consolidation. Sleep 27, 1479–1485.

Schabus, M., Hödlmoser, K., Gruber, G., Sauter, C., Anderer, P., Klösch, G., et al.

(2006). Sleep spindle-related activity in the human EEG and its relation to

general cognitive and learning abilities. Eur. J. Neurosci. 23, 1738–1746. doi:

10.1111/j.1460-9568.2006.04694.x

Schimicek, P., Zeitlhofer, J., Anderer, P., and Saletu, B. (1994). Automatic

sleep-spindle detection procedure: aspects of reliability and validity.

Clin. Electroencephalogr. 25, 26–29. doi: 10.1177/1550059494025

00108

Shibagaki, M., Kiyono, S., and Watanabe, K. (1982). Spindle evolution in normal

and mentally retarded children: a review. Sleep 5, 47–57.

Silverstein, L. D., and Levy, C. M. (1976). The stability of the sigma sleep

spindle. Electroencephalogr. Clin. Neurophysiol. 40, 666–670. doi: 10.1016/0013-

4694(76)90142-5

Smith, C. T., Nixon, M. R., and Nader, R. S. (2004). Posttraining increases in

REM sleep intensity implicate REM sleep in memory processing and provide

a biological marker of learning potential. Learn. Mem. 11, 714–719. doi:

10.1101/lm.74904

Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons.

Trends Neurosci. 28, 317–324. doi: 10.1016/j.tins.2005.03.007

Steriade, M. (2006). Grouping of brain rhythms in corticothalamic

systems. Neuroscience 137, 1087–1106. doi: 10.1016/j.neuroscience.2005.

10.029

Uchida, S., Atsumi, Y., and Kojima, T. (1994). Dynamic relationships between sleep

spindles and delta waves during a NREM period. Brain Res. Bull. 33, 351–355.

doi: 10.1016/0361-9230(94)90205-4

Ujma, P. P., Konrad, B. N., Genzel, L., Bleifuss, A., Simor, P., Pótári, A., et al. (2014).

Sleep spindles and intelligence: evidence for a sexual dimorphism. J. Neurosci.

34, 16358–16368. doi: 10.1523/JNEUROSCI.1857-14.2014

Walter, D. O. (1968). The method of complex demodulation. Electroencephalogr.

Clin. Neurophysiol. Suppl. 27, 53–57.

Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V.,

et al. (2012). Reduced sleep spindles and spindle coherence in schizophrenia:

mechanisms of impaired memory consolidation? Biol. Psychiatry 71, 154–161.

doi: 10.1016/j.biopsych.2011.08.008

Warby, S. C., Wendt, S. L., Welinder, P., Munk, E. G. S., Carrillo, O., Sorensen,

H. B. D., et al. (2014). Sleep-spindle detection: crowdsourcing and evaluating

performance of experts, non-experts and automated methods.Nat. Methods 11,

385–392. doi: 10.1038/nmeth.2855

Werth, E., Achermann, P., Dijk, D. J., and Borbély, A. A. (1997). Spindle frequency

activity in the sleep EEG: individual differences and topographic distribution.

Electroencephalogr. Clin. Neurophysiol. 103, 535–542. doi: 10.1016/S0013-

4694(97)00070-9

Zeitlhofer, J., Gruber, G., Anderer, P., Asenbaum, S., Schimicek, P., and Saletu, B.

(1997). Topographic distribution of sleep spindles in young healthy subjects.

J. Sleep Res. 6, 149–155. doi: 10.1046/j.1365-2869.1997.00046.x

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Ray, Sockeel, Soon, Bore, Myhr, Stojanoski, Cusack, Owen, Doyon

and Fogel. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org September 2015 | Volume 9 | Article 507 | 110

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH
published: 08 April 2015

doi: 10.3389/fnhum.2015.00181

Frontiers in Human Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 181 |

Edited by:

Christian O’Reilly,

McGill University, Canada

Reviewed by:

E. J. W. VanSomeren,

Netherlands Institute for

Neuroscience, Netherlands

Marek Adamczyk,

Max Planck Institute of Psychiatry,

Germany

*Correspondence:

Athanasios Tsanas,

Mathematical Institute, University of

Oxford, Andrew Wiles Building,

Woodstock Road, Oxford OX2 6GG,

UK

tsanas@maths.ox.ac.uk;

tsanasthanasis@gmail.com

Received: 15 November 2014

Accepted: 17 March 2015

Published: 08 April 2015

Citation:

Tsanas A and Clifford GD (2015)

Stage-independent, single lead EEG

sleep spindle detection using the

continuous wavelet transform and

local weighted smoothing.

Front. Hum. Neurosci. 9:181.

doi: 10.3389/fnhum.2015.00181

Stage-independent, single lead EEG
sleep spindle detection using the
continuous wavelet transform and
local weighted smoothing

Athanasios Tsanas 1, 2, 3* and Gari D. Clifford 3, 4, 5

1Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK, 2Wolfson Centre

for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK, 3Nuffield Department of Medicine, Sleep

and Circadian Neuroscience Institute, University of Oxford, UK, 4Department of Biomedical Informatics, Emory University,

Atlanta, GA, USA, 5Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Sleep spindles are critical in characterizing sleep and have been associated with

cognitive function and pathophysiological assessment. Typically, their detection relies

on the subjective and time-consuming visual examination of electroencephalogram

(EEG) signal(s) by experts, and has led to large inter-rater variability as a result

of poor definition of sleep spindle characteristics. Hitherto, many algorithmic

spindle detectors inherently make signal stationarity assumptions (e.g., Fourier

transform-based approaches) which are inappropriate for EEG signals, and frequently

rely on additional information which may not be readily available in many practical

settings (e.g., more than one EEG channels, or prior hypnogram assessment). This

study proposes a novel signal processing methodology relying solely on a single EEG

channel, and provides objective, accurate means toward probabilistically assessing

the presence of sleep spindles in EEG signals. We use the intuitively appealing

continuous wavelet transform (CWT) with a Morlet basis function, identifying regions

of interest where the power of the CWT coefficients corresponding to the frequencies

of spindles (11–16Hz) is large. The potential for assessing the signal segment as

a spindle is refined using local weighted smoothing techniques. We evaluate our

findings on two databases: the MASS database comprising 19 healthy controls

and the DREAMS sleep spindle database comprising eight participants diagnosed

with various sleep pathologies. We demonstrate that we can replicate the experts’

sleep spindles assessment accurately in both databases (MASS database: sensitivity:

84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%,

specificity: 92%, false discovery rate: 67%), outperforming six competing automatic

sleep spindle detection algorithms in terms of correctly replicating the experts’

assessment of detected spindles.

Keywords: decision support tool, hypnogram, signal processing algorithms, sleep spindle, sleep structure

assessment
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Tsanas and Clifford Stage independent sleep spindle detection

Introduction

Sleep spindles are characteristic oscillatory patterns of brain
activity which can be visually detected in human electroen-
cephalography (EEG) signals. These transient patterns are
typically portrayed as nearly sinusoidal waxing and waning
waveforms with a characteristic frequency profile of 11–16Hz
[formerly this range was narrowed between 12 and 14Hz in the
Rechtschaffen and Kales criteria (Rechtschaffen and Kales, 1968),
and different research labs might use slightly different frequency
ranges] (Iber et al., 2007; Kryger et al., 2010). Interestingly,
although seep spindles exhibit substantially varying character-
istics (amplitude, duration, density) in the population, they are
fairly stable for individuals (Werth et al., 1997). Spindles are gen-
erated in the thalamus, and contemporary evidence suggests they
can be classified into slow spindles (11–13Hz) and fast spindles
(13–16Hz), which are believed to regulate different activation
patterns (DeGennaro and Ferrara, 2003).

The presence of sleep spindles is one of the hallmarks for
determining stage 2 (S2) in the hypnogram, which provides an
overall representation of sleep structure successively assigning
short signal segments (known as epochs, usually of 30 s dura-
tion) to one of five sleep stages (Iber et al., 2007). They have
been associated with various higher cognitive processes in par-
ticular memory (Tamminen et al., 2010), but also learning per-
formance (Schmidt et al., 2006) and skill performance (Astill
et al., 2015). Moreover, there is a growing body of research
literature highlighting their potential as biomarkers: a num-
ber of studies have reported clinically significant differences
in spindle characteristics for a range of neurological disorders
(Ferrarelli et al., 2007; Wamsley et al., 2012; Christensen et al.,
2014).

The gold standard for the determination of sleep spindles
has traditionally been achieved through visual inspection of the
EEG by sleep physiology experts. Despite the best attempts of
experts to standardize protocols, expert-based assessments rely
on expensive human resources, depend on the rater’s experi-
ence and level of expertise, are laborious and prone to errors
due to fatigue, and by nature cannot scale to handle very large
datasets. As with all cases where the gold standard is set by sub-
jective assessments of trained experts, there can always be an
argument that an automated algorithmic process could provide
an alternative, often sufficiently accurate, robust, scalable, replica-
ble, cost-effective, and objective mode to achieve the aim; indica-
tive studies highlighting these concepts include Grove andMeehl
(1996), Seshadrinathan et al. (2010), and Tsanas (2012) amongst
many others. At the very least, the development of algorithmic
tools can facilitate and expedite the work of trained experts par-
ticularly due to the sheer amount of the growing availability of
massive datasets.

There are several approaches that have been proposed to tackle
the problem of automatic sleep spindle detection. The majority
of the proposed algorithms rely on a time-frequency analysis.
In all cases, a major hurdle is the determination of appropriate
thresholds, which may need to be optimized for each individ-
ual. Unfortunately, it is difficult to define universally applicable
thresholds due to the large variability in spindle characteristics

amongst individuals (Werth et al., 1997). Frequently, the setting
of these thresholds for many algorithms require prior hypno-
gram assessment, and subsequent focusing only on stage 2 sleep
(Mölle et al., 2002;Wamsley et al., 2012) or Non Rapid EyeMove-
ment (NREM) sleep (Ferrarelli et al., 2007; Martin et al., 2013).
However, we argue that all these approaches are quite restrictive,
particularly because in practice we want to completely automate
the EEG signal processing task without requiring prior hypno-
gram assessment by experts. Detecting spindles might be the end
goal in one application, but could also be used to guide auto-
mated sleep staging assessment. Another generic approach for
many algorithms is attempting to determine the presence of spin-
dles by successively searching over pre-defined short windowed
EEG segments [typically 1 s, e.g., see Huupponen et al. (2007),
although some approaches rely on the detection of spindles in
the more traditional 30-s epochs used in hypnogram assessment].
A major limitation with this approach is that one needs to spec-
ify a small signal segment to assess whether a spindle occurred
within that segment and loosely approximate the spindle onset
and offset.

Recently Wendt et al. (2012) introduced a fusion approach
to detect spindles applying their sleep detection algorithm on
two EEG channels (central and occipital). However, spindles are
known to occur locally (Kryger et al., 2010) and hence there is no
guarantee that both the central and occipital deflections will iden-
tify the spindle; furthermore, this complicates the practical task
of spindle assessment by imposing the requirement that addi-
tional recordings are available (ideally a single channel would be
sufficient for detecting spindles locally). It should be noted that
localized sleep can occur, and therefore a single channel cannot
reveal the overall sleep structure for the entire brain. In practice
wewant to focus on specific brain areas, detecting spindles locally,
e.g., at the central regions where the spindle density is maximal
(Kryger et al., 2010); some interesting recent work has focused on
spindle propagation (O’Reilly and Nielsen, 2014b).

One of the simplest algorithmic approaches for detecting spin-
dles is to band-pass the EEG signal and assess the presence of
spindles by setting an appropriate (relative) threshold on the
amplitude of the band-passed version of the signal (Schimicek
et al., 1994), which is both sensible and remains topical to this
day at least as a benchmark. Similarly, the ubiquitous Fourier
Transform (FT) has been investigated in this application (Huup-
ponen et al., 2007). However, there are inherent limitations of the
FT in that it implicitly assumes a periodic signal, and also that it
requires a sufficiently adequate number of samples for the spec-
trum estimation; in practice this sets a minimum requirement
of about 1 s signal segment (Pardey et al., 1996). In turn, this
means that with FT it is fundamentally impossible to correctly
determine the spindle onset and offsets accurately as highlighted
previously. Wavelet analysis is particularly suitable for analyz-
ing non-stationary signals (such as the EEG), thus overcoming
certain shortcomings of the traditional spectral analysis with the
FT, and hence has justifiably attracted interest recently in the
spindle detection domain (Sitnikova et al., 2009; Wamsley et al.,
2012).

This study extends the methodology of recent approaches
using the Continuous Wavelet Transform (CWT) with Morlet
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basis functions (Sitnikova et al., 2009; Wamsley et al., 2012).
The Morlet wavelet has been widely used in many practical
applications because it has the desirable property that it mini-
mizes the product of the wavelet’s time and frequency spreads;
hence it optimizes the time-frequency resolution (Addison,
2002). The main novelty of this work lies in the processing of
the relative normalized power of the CWT coefficients to deter-
mine spindle candidates.Whereas previous studies computed the
moving average of the power of the CWT coefficients to detect
spindles directly, we first rank the CWT coefficients in terms of
their normalized power at each time instant. Then, we compute
the instantaneous ratio of the CWT coefficients falling within the
scale spindle range (corresponding to the standard 11–16Hz fre-
quency range) over the top 10 ranked CWT coefficients. This
ratio denotes the “instantaneous strength” of detecting a spindle,
which is subsequently processed with weighted moving average
methods to detect spindles. The proposed algorithm overcomes
several shortcomings of competing algorithms: (a) it does not
require processing successive small (e.g., 1 s) signal segments
which blur the determination of true onset and offset of spin-
dles (instead the algorithm works directly the entire signal), (b)
it does not require prior hypnogram assessment, (c) it uses a sin-
gle EEG lead. Moreover, using the proposed algorithm we can
determine the frequency variation contour as a function of time
within each spindle: these features may have clinical relevance,
a fact which is often overlooked by contemporary competing
approaches (for example, FT-based approaches cannot readily
provide this information).

Materials and Methods

This section summarizes the dataset used in this study, summa-
rizes some of the previously published algorithms against which
the new sleep spindle detection algorithm developed in this study
is benchmarked, and outlines the evaluation criteria for assessing
the performance of the algorithms.

Data
We used two publicly available databases in this
study.

The first database was collected during the DREAMS project
(Devuyst et al., 2011), which aimed to provide a platform to
assist assessment of automatic detection algorithms. The sleep
spindles database contains recordings from eight participants
with diverse sleep pathologies (dysomnia, restless legs syndrome,
insomnia, apnoea/hypopnoea syndrome). Two EOG channels
(P8-A1, P18-A1), three EEG channels (CZ-A1 or C3-A1, FP1-
A1, andO1-A1) and one submental EMG channel were recorded,
using a sampling frequency of 200Hz (six signals), 100Hz (one
signal), or 50Hz (one signal). A segment of 30min of a central
EEG channel (C3-A1 or Cz-A1) was extracted from each whole-
night recording, and two experts have independently anno-
tated the presence of sleep spindles. The second expert has only
annotated six out of the eight recordings, and has not pro-
vided the exact duration of the assessed spindles (hence, it was
all assigned to be 1 s in duration). Although the hypnograms
(according to standard Rechtschaffen and Kales criteria) were

available, these were not used in the assessment of the spindles
by the experts. The dataset along with additional information
is publicly available from: http://www.tcts.fpms.ac.be/∼devuyst/
Databases/DatabaseSpindles/.

The second database was collected as part of a large project
looking into sleep, the Montreal Archive of Sleep Studies (MASS)
(O’Reilly et al., 2014a). It contains overnight PSG recordings
from 19 healthy controls: specifically, electroencephalography
(EEG) montage of 19 channels, 4 electro-oculography (EOG),
electromyography (EMG), electrocardiography (ECG), and res-
piratory signals. The EEG signals were sampled at 256Hz. The
database was annotated independently by two experts for sleep
spindles. The second expert has only annotated 15 out of the 19
signals for sleep spindles. Hypnograms (according to standard
Rechtschaffen and Kales criteria) were also made available. For
further details see O’Reilly et al. (2014a). The dataset became
available to the authors of this study after the development of
the algorithms and the original submission of the manuscript;
we deliberately decided not to further fine-tune the original algo-
rithms developed using the DREAMS data to guide the sleep
spindle estimation process, in order not to bias the presented
findings in any way. The dataset can be accessed from: http://
www.ceams-carsm.ca/en/MASS.

In all cases, the EEG signals were resampled at 100Hz.

Methods
Before delving into the details of the sleep spindle detection algo-
rithms, it is useful to revisit the definition of spindles, and visu-
alize some examples annotated by experts in order to motivate
the subsequent algorithmic development. According to the latest
recommendation of the AASM Manual for the scoring of sleep,
a spindle is defined as “a train of distinct waves with frequency
11–16Hz (most commonly 12–14Hz) with a duration ≥0.5 s,
usually maximal in amplitude in the central derivations.” (Iber
et al., 2007). The spindle frequency range is nowadays generally
accepted to be 11–16Hz, but the range over which researchers
focus may vary slightly depending on the research lab, e.g.,
10.5–16Hz (Huupponen et al., 2007), or 12–15Hz (Ferrarelli
et al., 2007); the standard reference book “Principles of Sleep
Medicine” quotes the range 10–15Hz (Kryger et al., 2010). We
note there is no formal recommendation for the use of amplitude
thresholds to detect a spindle, although many researchers have
explicitly used amplitude criteria in their algorithmic implemen-
tations (Devuyst et al., 2011; Wamsley et al., 2012). Also, many
researchers have relaxed the requirement of the minimum spin-
dle duration, e.g., 0.4 s (Wamsley et al., 2012) or even as low
0.3 s instead (Warby et al., 2014). In practice, most spindles are
typically around 0.5–1.5 s (very occasionally might be over 2 s),
and typically most researchers impose a maximum length con-
straint (typically 3 s, e.g., Warby et al., 2014) in their algorithmic
approaches.

Sleep textbooks often depict sleep spindles as waxing and wan-
ing, nearly sinusoidal waveforms; however, in practice spindle
waveforms are markedly noisy, exhibiting diverse characteris-
tics. Figure 1 illustrates some spindles detected by experts for
the same signal in the DREAMS sleep spindle database (Devuyst
et al., 2011). It is striking that all these transient waveforms

Frontiers in Human Neuroscience | www.frontiersin.org April 2015 | Volume 9 | Article 181 | 113

http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseSpindles/
http://www.ceams-carsm.ca/en/MASS
http://www.ceams-carsm.ca/en/MASS
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Tsanas and Clifford Stage independent sleep spindle detection

FIGURE 1 | Exemplary sleep spindles annotated by one of the experts

for one of the EEG signals in the DREAMS sleep spindles database

(the sampling frequency of the signal is 100Hz). We can visually

appreciate the wide variability of sleep spindle characteristics within the same

EEG signal. Both the original signal segment and the band-passed

(11–16Hz) version of the signal segment are presented to assist visualization.

The solid red line indicates the start of the spindle and the dashed line

indicates the end; the green lines indicate the envelope of the signal. In

practice, some experts use both the signal and the band-passed version of

the signal to assess the presence of spindles.

(stemming from the same EEG recording and being only a few
seconds or minutes apart) display such widely varying features
(for example compare the peak-to-peak amplitudes). Neverthe-
less, all these illustrative examples are considered true spin-
dles according to at least one of the two experts and set the
ground truth against which all automated sleep spindle detec-
tion algorithms are benchmarked. For each signal we also present
its band-passed version at the spindle frequency range. Fol-
lowing visual inspection of these plots, we can postulate that
amplitude may be a misleading criterion to assess automati-
cally the presence of spindles; on the other hand, the pres-
ence of the spindle appears to be more consistent when also
observing the band-pass version of the signals. This exploratory
step may assist in the motivation and understanding of the
sleep detection algorithms which are presented in the following
sections.

Contemporary Sleep Spindle Detection Algorithms
For simplicity and to conform to the terminology of Warby et al.
(2014) we will denote with ax each of the sleep spindle detection
algorithms used in this study, where the subscript indicates the
corresponding algorithm. In this section we summarize the six
spindle detection algorithms used inWarby et al. (2014) (denoted
here with a1–a6), and in the following section we will intro-
duce the new algorithmic approaches. These algorithms (occa-
sionally with slight modifications) have been widely used in a
number of studies, and therefore can be considered indicative
of the most popular contemporary approaches to automatically
detect sleep spindles. We used the Matlab implementations pro-
vided by Warby et al. (2014) for a1–a6 and the description of the
algorithms below follows their algorithmic modifications; hence
the described algorithms differ slightly in comparison to the
original algorithms. Our own algorithms were also implemented
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in Matlab, and are made freely available on Physionet (www.
physionet.org) and the first author’s website.

Algorithm a1, Bódizs’ average amplitude spectrum
The first algorithm, a1, is due to Bódizs et al. (2009), and attempts
to tackle the problem of intra-subject variability in terms of
EEG characteristics by incorporating subject-specific informa-
tion (hence building upon the findings of Werth et al. (1997)
that the variability of the spindle characteristics is low for each
individual). The algorithm detects spindles in customized fre-
quency ranges (identifying slow and fast spindles) using the aver-
age amplitude spectrum of NREM sleep using epochs of 4 s. The
decision to evaluate the presence of a spindle is based on the
amplitude threshold in each of the two band-pass regions for slow
spindles or fast spindles. The implementation by Warby et al.
(2014) used here requires both a central and an occipital EEG
channel.

Algorithm a2, Ferrarelli’s band pass and signal envelope
algorithm
The second algorithm, a2, was proposed by Ferrarelli et al. (2007)
and with slight modifications has been used in some recent stud-
ies, e.g., Astill et al. (2015). The algorithm applies a band-pass
filter (11–15Hz) to the NREM data (epochs), and the enve-
lope of the resulting signal is subsequently used. An amplitude
threshold (threshold1) is then set relative to the mean signal
amplitude (because different channels exhibit different amplitude
profiles). A spindle is marked by first detecting a local maximum
in the envelope of the filtered signal above threshold1, and its
duration is determined by identifying the preceding and follow-
ing instances when this amplitude falls below a lower threshold
(threshold2), i.e., detecting the nearest troughs below threshold2
(local minima). The slightly different versions of this type of algo-
rithm set threshold1 and threshold2 slightly differently than the
original algorithm, but the essential main idea remains the same.

Algorithm a3, Mölle’s band pass RMS overlapping

moving window
The third algorithm, a3, was described by Mölle et al. (2002).
This algorithm is also band-pass filtering the NREM data at
the spindle frequency range (12–15Hz), and subsequently com-
putes the Root Mean Squared (RMS) value of the filtered data
over a short-frame overlapping (50%) moving window of 100ms.
Then, spindles are determined only on the data from sleep stage
2 depending on whether the RMS value exceeds an amplitude
threshold (set at 1.5 times the standard deviation of the band-pass
filtered signal) and the duration is within the acceptable spindle
limits (0.3–3 s).

Algorithm a4, Martin’s band pass RMS percentile moving

window
The fourth algorithm, a4, by Martin et al. (2013) is conceptually
very similar to a3. It differs from a3 in terms of the spindle fre-
quency range used (11–15Hz) for the band-pass filter, the use
of a non-overlapping time window (25ms) to compute the RMS
values, and the threshold for detecting the spindle which is set to
be the 95th percentile of the RMS signal.

Algorithm a5, Wamsley’s CWTmoving average
The fifth algorithm, a5, was developed by Wamsley et al. (2012).
Contrary to the algorithms described so far, this algorithm is
based on the CWT, which has some desirable properties for ana-
lyzing EEG signals as discussed previously. The algorithm relies
on prior hypnogram assessment and attempts to detect spindles
during stage 2. The signal is transformed into the wavelet domain
using the complex Morlet wavelet basis function. The Morlet
scales corresponding approximately to the pseudo-frequencies of
interest (10–16Hz) were used, and the moving average of the
coefficients using a 100ms sliding window was computed; when
it exceeded a threshold for a minimum of 0.3 s a spindle was reg-
istered. The threshold was set using only the amplitude of epochs
assessed as stage 2 by experts.

Algorithm a6, Wendt’s two-channel band pass and signal

envelope combination
The sixth algorithm, a6, was developed by Wendt et al. (2012).
This algorithm is conceptually similar to a2, the main difference
is that the boundaries for the spindle detection are determined
using local extrema of the signal envelope and its rate of change,
whereas a2 relied on local minima. A further difference is that
both a central and an occipital EEG channels are used in the band
11–16Hz, and the spindle detection is a result of the combination
of the two different sets of envelopes.

Recently, Warby et al. (2014) applied the six algorithms
described so far in a large private database with sleep spindles
from 110 healthy controls, and reported that the best algorithm
in terms of accurately detecting spindles and minimizing false
detections was a5, closely followed by a4. We note that all six algo-
rithms described so far (a1–a6) rely on prior hypnogram assess-
ment, which was provided given that the sleep stages assessed
by experts was available for this database. We note that this fact
effectively places competing algorithms which do not have access
to hypnogram information at a disadvantage when it comes to
direct algorithmic performance comparisons. The following new
algorithms (a7–a8) do not rely on prior sleep staging informa-
tion, but we aim to demonstrate that the new algorithms are
nevertheless very competitive.

Novel Sleep Spindle Detection Algorithms
We have already highlighted the intuitively appealing features of
the CWT for analyzing EEG signals due to its time-frequency
localization properties, and the fact that it does notmake assump-
tions regarding signal periodicity. Exploring the data by visual
inspection of the true spindles (see Figure 1) seems to indicate
that amplitude-based characteristics may be misleading (this is
also implicit in the AASM criteria where no amplitude recom-
mendation is made when assessing spindles); hence the primary
focus of the developed algorithms is on the frequency content
of the signal. Strictly speaking, we work directly with the CWT
scales which correspond to the (pseudo)frequencies of interest
(11–16Hz). We defined 131 Morlet scales with a resolution of
0.1 in the range 2–15 (corresponding pseudo-frequencies: 5.4–
40.6Hz), which led to 24 scales lying within the spindle scale
range. There is a non-linear mapping of the scales to their corre-
sponding pseudo-frequencies, which is a function of the wavelet
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basis function and the sampling frequency of the signal. For the
Morlet wavelet with a signal sampling frequency of 100Hz, the
scales of interest (spindle scale range) are 5.1–7.4.We used a lower
threshold of pseudo-frequency at 5.4Hz above which we try to
assess the probability of having a spindle so as to avoid challeng-
ing settings of spindles occurring on the background of large-
amplitude slow oscillations (the delta frequency range, 1–4Hz).
Conceptually the starting basis of the proposed algorithms is sim-
ilar to the study by Wamsley et al. (2012) (algorithm a5), who
subsequently thresholded the CWT coefficients at the spindle
frequency range using a moving average of 100ms sliding win-
dow. What distinguishes the algorithms proposed in this study
compared to previous algorithms using the CWT is the differ-
ent processing of the extracted Morlet CWT coefficients and the
fact that we do not rely on expert-based hypnogram (in particular
determining sleep stage 2) assessment.

Figure 2 presents a high-level flowchart of the two new algo-
rithms introduced in this study. All sleep spindle detection
algorithms developed in the research literature have some free
parameters (typically these are some thresholds, e.g., on ampli-
tude values). Similarly, the proposed algorithms in this study rely
on a number of free parameters which need to be optimized: the
chosen values were determined by testing on random subsam-
ples of the training data so that regions of relative stability were
found; exhaustive searches over the parameter space were not
possible due to the size of the data set. We deliberately decided
not to pursue rigorous optimization of these parameter values,
in order to avoid overfitting the characteristics in the DREAMS
database (effectively this would be training and testing on the
same data). It is likely that the parameter values chosen could
benefit from further refinement to optimize the outputs of the
proposed algorithms, but a larger database would be needed.

Algorithm a7, CWT instantaneous probabilistic estimate

with moving averaging
The algorithm a7, uses the following steps after the computation
of the CWT coefficients:

(a) Computes the normalized percentage power of the CWT
coefficients (henceforth referred to as normalized coeffi-
cients).

(b) Sorts the normalized coefficients in descending order at each
time instant and works on the top 10Morlet CWT scales cor-
responding to the top normalized coefficients (thus resulting
in a matrix of size number of signal samples× 10).

(c) Computes instantaneous probabilistic estimate of spindle
occurrence at the spindle scale range using the following
algorithmic expression:

P(si) =
1

L
·

T
∑

i= 1

(1./ 〈Mi〉)

where P(si) denotes the probability of having a spindle at a given
sample i, T is the cardinality of the top 10 scales correspond-
ing to the sorted top 10 CWT normalized coefficients at instant
i coinciding with the spindle scale range (i.e., for each sample i,
we find how many of the top 10 sorted scales corresponding to

the normalized coefficients match the scales in the spindle scale
range), 〈Mi〉 contains the positions of the detected scales inter-
secting with the spindle scale range in the 10-element vector and
the operator “./” denotes element-wise division. The value P(si)
effectively expresses the confidence that the sample i is part of
a spindle (the higher the value, the more likely this sample may
be part a spindle). The underlying concept is that if a sufficiently
large number of successive samples (corresponding to somemin-
imum time duration to be defined) have large probabilities denot-
ing spindles, then that sequence will be denoted as a spindle.
Effectively, we determine how many of the top 10 sorted scales
matched the spindle scale range, and weigh these scales based on
where they feature in the list with the instantaneous top 10 scales.
If none of the sorted top 10 scales overlapped with the spindle
scale range then P(si) is zero. L denotes a normalization constant

factor which was computed as L =
∑T

i= 1 (1./〈1 . . . 10〉).

(d) Now, we need to smooth the instantaneous P(si) estimates
based on their K neighbors

{

P(si−K/2) . . . P(si+K/2)
}

to determine whether some EEG segments (regions) of
arbitrary length within some duration boundaries (here
0.5–1.5 s) correspond to a spindle. Essentially, we have scales
corresponding to the spindle scale frequency and we want
to smooth neighboring regions to decide whether these are
above the minimum duration threshold (in practice we very
rarely have all consecutive samples in a spindle exhibit-
ing large proportion of the scales belonging to the spindle
scale range). Conceptually, this is similar to the concept that
Wamsley et al. (2012) used, smoothing the data using a mov-
ing average of 0.1 s. Similarly, we used a moving average filter
of 0.1 s to obtain the Psmooth(si).

(e) It is possible that certain P (si) < Psmooth(si) and we want
to encourage relative large values to maximize the probabil-
ity of detecting true spindles; hence we applied a final check:
Pfinal (si) = max∀i (Psmooth (si) ,P (si)).

(f) The candidate spindle instances (as a first pass) were detected
at those samples when Pfinal (si) > 0.3 (for as many succes-
sive samples as the threshold remains valid). We remark this
threshold (and all free parameters in this spindle detection
algorithm such as number of top scales to investigate and
K) were not rigorously optimized to avoid over-fitting the
database used in this study. Instead we have attempted to
determine “good” parameter values, which may be refined
if presented with additional databases which will assist in
properly optimizing the values of the free parameters.

(g) Finally, we need to group together regions which contain
series of samples with high probabilities of denoting spin-
dles. This was achieved using flags to denote if successive
regions containing candidate spindles would group in terms
of their proximity, average probabilistic estimate of having
a spindle in a region defined between samples (i1, . . . , i2)
{

P(si1 ) . . . P(si2 )
}

, and the duration of the candidate
spindle. Specifically, we grouped successive candidate spin-
dles in the following cases:

(i) The duration between successive spindles was less than
0.3 s, and both successive spindles exhibited average
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Input: Single-lead EEG (typically central EEG), sampling frequency

Output: Two-dimensional matrix with onset and offset of spindles (in terms of 

samples of the original EEG signal presented to the spindle detec"on algorithm)

EEG data

Apply con"nuous wavelet transform (CWT) with Morlet basis 

func"on, obtaining the normalized CWT coefficients

Sort the normalized CWT coefficients in descending order for

each "me instant; work only with the top 10 Morlet CWT 

scales corresponding to the top normalized coefficients

Compute instantaneous probabilis"c es"mates of spindle 

occurrence for each ith sample in the original EEG signal, P(s )

Process the instantaneous P(si) es"mates using local 

weigh"ng smoothing methods based on their K neighbors. 

Aim: determine if there are segments in the "me series which 

could be spindles, i.e. successive P(si) all above a probability 

threshold for a minimum period of "me (set to 0.3 seconds). 

The difference between the algorithms a7 and a8 is on how the 

local smoothing is performed

FIGURE 2 | Flowchart of the proposed algorithms in this study.

probabilistic strength above a threshold, i.e., both spin-

dles appeared to be very likely true spindles:
(

1
i2 − i1

·
∑i2

i= i1
P (si)

)

> 0.7, and the duration of both

successive spindles was at least 0.1 s (case: “strong”
spindles).

(ii) The duration between successive spindles was less than
0.3 s and both successive spindles exhibited average
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probabilistic strength:
(

1
i2 − i1

·
∑i2

i= i1
P (si)

)

> 0.6 and

both were at least 0.3 s long (case: “long spindles”).

Algorithm a8, CWT instantaneous probabilistic estimate
with distance and amplitude weighted averaging
The algorithm a8, is very similar to a7. The difference lies in how
we process the instantaneous probability spindle estimates P(si)
to affect neighboring P(sj) values. That is, the first steps (a)–(c)
are identical, and step (d) processes the computed P(si) using the
exponential weighted moving average concept (instead of mov-
ing average). The underlying idea is that we want to update P(si)
values depending on their neighboring P(sj) values as a weighted
function of their distances and a weighted function of their mag-
nitude (which is weighted exponentially to promote EEG regions
where instantaneous P(si) estimates are large). Specifically, step
(d) now becomes:

(d) We used smoothing over 0.2 s, linearly scaling the effect of
samples P(sj) on P(si) as a function of their distance from

P(si), i.e., {wt}10t=−10, t 6=0 =
1
|t| ·P(si+ t). In order to augment

the effect of large P(si) values (which denote great confidence
that the sample i is part of a spindle) we exponentiated these
values. Overall, conceptually it is similar to using an expo-
nential weighted moving average approach. Algorithmically
this is expressed as:

Psmooth (si) =









P (si) +
1

∑10
t=−10, t 6= 0 wt

·
10

∑

t=−10, t 6= 0

(

exp (P (si+ t)) − 1
)

. ∗ wt









where the notation ⌈·⌉ denotes that the value is upper
bounded to be 1, and the notation “.∗” denotes element wise
multiplication. The subsequent steps (e)–(g) are identical to
a7 to detect a spindle. We remark that a8 is by design heavily
weighting regions where there is a possibility of observing
a spindle, but these regions will likely contain many cases
which are not likely to be spindles.

Evaluation of Sleep Spindle Detection Algorithms
Both the DREAMS sleep spindles database and the MASS
database have been annotated by two experts. Given the large
inter-rater variability (e.g., for the DREAMS database the first
rater has marked 289 spindles whereas the second rater has
marked 409 spindles), there are two approaches to determine
the ground truth. One approach is to only consider cases where
both experts agree, an approach used previously for the DREAMS
database by other researchers (Devuyst et al., 2011; Nonclercq
et al., 2013). However, this biases the results, because one might
argue that cases where both experts agree may denote “eas-
ily detectable” spindles; hence in this study we used all assess-
ments by both experts, removing one of the double entries (in
those cases where both experts agreed, in the DREAMS database
we removed the assessment by the second expert because only

the first expert had also provided the duration of the assessed
spindle).

Each of the sleep spindle algorithms used in this study results
in estimates summarized in the formatN×2, whereN denotes the
number of detected spindles for each EEG signal: the first column
contains the estimated onset, and the second column the spin-
dle duration. This facilitates direct comparison with the ground
truth which is in the same format. In order to assess the perfor-
mance and fairly compare all algorithms, we used the following
commonly used metrics:

(a) True Positive Rate (TPR) (%), also known as sensitivity:
TPR= TP/(TP+ FN) (is the proportion of spindles assessed
by experts correctly identified by an algorithm, ideally we
want this to be 100%).

(b) True Negative Rate (TNR) (%), also known as specificity:
TNR = TN/(TN + FP) (is the proportion of non-spindles
assessed by experts correctly identified by an algorithm,
ideally we want this to be 100%).

Specificity is also the complement of the False Positive Rate
(FPR), defined as FPR = FP/(FP + TN): specificity = 100—
FPR.

(c) False Discovery Rate (FDR): FDR = FP/(TP+ FP).

(d) Cohen’s kappa coefficient, where: k =
TP+TN

N −Pr(e)

1−Pr(e)
, with

Pr (e) = TP+ FN
N · TP+ FP

N +
(

1− TP+ FN
N

)

·
(

1− TP+ FP
N

)

,

and N = TP + FP + TN + FN

Cohen’s kappa coefficient was originally developed to assess
inter-rater agreement, and some researchers suggest it takes into
account agreement between raters which could be attributed to
chance. Effectively, this implies that when raters are uncertain
they guess about their decision, which some researchers have
suggested is unlikely in many practical settings. Some of the
problems and limitations of Cohen’s kappa have been discussed
by Gwet (2008); we cautiously include it in this study because
some research papers published in the sleep spindle detection
literature have used it. We also used and put greater empha-
sis on the weighted kappa in this study because spindles are
rare events in the EEG signal and we wanted to weigh accord-
ingly for spindles correctly detected and spindles missed by the
spindle detection algorithms (that is, we set the weight for TP
and FN to be 10 times compared to the weight assigned to FP
and TN).

(e) Absolute difference in the onset timings between the ground
truth and the estimated onset.

where True Positive (TP) denotes agreement between the algo-
rithm and the ground truth about the detection of a spin-
dle, False Negative (FN) denotes a true spindle as assessed
by the experts which was missed by the algorithm, False
Positive (FP) when the algorithm detected a spindle that
was not assessed as a spindle by the experts, and True
Negative (TN) was defined as in Devuyst et al. (2011):
TN = signal duration in seconds− FP− TP− FN. We assess a
true positive when the absolute difference between the onset
of the ground truth and the estimated spindle onset by the
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algorithm is less than 0.5 s. Other studies have used different, less
stringent definitions to assess whether an algorithm has matched
the expert’s assessment in correctly detecting a spindle. Some
studies assess whether a spindle was detected within a sliding pre-
specified time-interval (epoch), e.g., Duman et al. (2009), how-
ever this does not assess directly the accuracy in determining the
spindle onset. Other studies, e.g., Nonclercq et al. (2013), con-
sider than an algorithm has correctly detected a spindle if there
was any overlap between the duration of the estimated spindle
and the true spindle duration. However, this may positively bias
sleep detection algorithms which provide spindle estimates with
large durations.

Results

Evaluation of the Spindle Detection Algorithms
on the DREAMS Sleep Spindles Database
Tables 1–3 summarize the performance of the sleep spindle
detection algorithms used in this study for each of the eight
signals. Ideally, a good algorithm exhibits large sensitivity and
specificity, and low false discovery rate.

We observe relatively large deviations in the performance of
the sleep spindle detection algorithms across the eight signals.
Overall, the new algorithm a7 exhibits large sensitivity and speci-
ficity. The more complicated new algorithm a8 can accurately

TABLE 1 | Sensitivity (%) of the spindle detection algorithms across the eight EEG signals (higher values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 70.6 56.6 53.3 40.6 45.6 78.6 27.8 75 56.0±17.8

a2 14 3.90 11.1 9.40 20.4 29.1 16.7 10.4 14.4±7.7

a3 86.7 68.8 84.4 42.2 95.1 91.5 77.8 75 77.7±16.8

a4 46.7 63.6 77.3 32.8 63.1 68.4 61.1 50 57.9±14.0

a5 12.5 49.4 84.4 31.3 15.5 64.1 55.6 47.9 45.1±24.4

a6 79.3 85.7 77.8 45.3 81.6 81.2 72.2 83.3 75.8±12.9

a7 84.4 80.5 73.3 65.6 70.9 66.7 88.9 77.1 75.9±8.3

a8 89 80.5 82.2 68.8 96.1 88 77.8 83.3 83.2 ± 8.2

The best performing algorithm for each case appears in bold.

TABLE 2 | Specificity (%) of the spindle detection algorithms across the eight EEG signals (higher values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 85 79.8 83.9 82.9 82.6 85.2 80.7 79.1 82.4±2.3

a2 99.6 100 99.6 98.8 99.2 99.4 98.9 99.1 99.3 ± 0.4

a3 91.1 97.6 75.1 92.7 88.5 77.8 89.1 39 81.4±18.7

a4 98.5 98.3 97 96.5 98.2 98.6 95.6 94.3 97.1±1.6

a5 99.8 99.2 96.1 96.3 99.6 98.8 97.1 96.1 97.9±1.6

a6 86.6 67 87 87.1 91.1 92.5 82 79.5 84.1±8.1

a7 94.6 93.4 94.5 87.3 95.5 97.3 94.1 78.1 91.8±6.3

a8 78.6 76.3 77.8 68.1 80.9 86.6 75.5 55.7 74.9±9.4

The best performing algorithm for each case appears in bold.

TABLE 3 | False discovery rate (%) of the spindle detection algorithms across the eight EEG signals (lower values indicate better performance).

Signal1 Signal2 Signal3 Signal4 Signal5 Signal6 Signal7 Signal8 Mean ± std

a1 72.3 89 92.2 91.9 86.3 73 98.6 91.1 86.8± 9.4

a2 26.9 0 58.3 77.8 38.2 22.7 87 75 48.2 ± 31.0

a3 56 44.2 92 82.4 66.7 77.7 93.3 96.7 76.1± 19.0

a4 28.4 38 60.5 74.4 32.3 23.1 87.6 80.6 53.1± 25.7

a5 19 25.5 64.2 76.5 27.3 21.9 83.9 74.7 49.1± 28.1

a6 67.6 89.6 86.7 88.5 64.3 57.2 96.1 90 80.0± 14.6

a7 44.1 64.6 74.4 84 51.3 37.1 86.9 91.2 66.7± 20.7

a8 74.6 86.8 91.3 92.6 76.6 68.6 96.9 95.1 85.3± 10.6

The best performing algorithm for each case appears in bold.
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detect more spindles than the competing approaches includ-
ing a7 (large sensitivity), at the cost of decreased specificity and
increased false discovery rate. We have also evaluated the abso-
lute difference in the onset timings between the ground truth
and the estimated onset: this was fairly consistent amongst the
algorithms with amean absolute difference in onset timings rang-
ing between 0.15 and 0.2 s and the standard deviation ranging
between 0.11 and 0.15 s. Overall, all algorithms performed simi-
larly with respect to correctly detecting onset spindle timing. We
have emphasized that Cohen’s kappa suffers from certain lim-
itations (Gwet, 2008) and we use it here cautiously simply to
facilitate comparisons with other studies in the research litera-
ture. Specifically the (unweighted) Cohen kappa was (mean ±
standard deviation): a1 = 0.15 ± 0.12, a2 = 0.19 ± 0.11, a3 =
0.29±0.22, a4 = 0.46±0.20, a5 = 0.37±0.19, a6 = 0.25±0.18,
a7 = 0.40± 0.20, a8 = 0.18± 0.14.

Evaluation of the Spindle Detection Algorithms
on the MASS Database
We have also evaluated the performance of all eight algorithms
in terms of correctly detecting the sleep spindles in the MASS
database. The results are summarized in Table 4. Interestingly,
the findings in terms of sensitivity, specificity, and FDR are sim-
ilar across the two databases used in this study. The algorithm
a7 outperforms the competing approaches in terms of sensi-
tivity whilst being very competitive in terms of specificity. As
indicated previously, we prefer the weighted Cohen kappa (see
Table 4) penalizing more severely missed true spindles compared
to false positives. Nevertheless, to facilitate direct comparisons
with the research literature the unweighted Cohen kappa for the
algorithms is also reported (mean ± standard deviation): a1 =
0.20±0.11, a2 = 0.22±0.04, a3 = 0.28±0.24, a4 = 0.51±0.13,
a5 = 0.38 ± 0.18, a6 = 0.37 ± 0.18, a7 = 0.24 ± 0.12,
a8 = 0.16± 0.09.

Algorithmic Comparisons with Results Reported
in the Research Literature
Many researchers have indicated that it is not easy to directly
compare the performance of different algorithms across stud-
ies because of the different criteria used to detect spindles and
assess the performance of the automated algorithms (Devuyst
et al., 2011; Nonclercq et al., 2013). Table 4 attempts to sum-
marize many of these published findings in the research litera-
ture as an indicative reference, but we emphasize these results
should be cautiously interpreted when comparing algorithms
unless they have been tested on the same database using iden-
tical criteria to assess performance. Table 5 summarizes the four
performance metrics in this study (sensitivity, specificity, FDR,
weighted Cohen’s kappa) in terms of percentile scores, thus
providing a good overview of the overall performance of each
algorithm (including their behavior at extremes).

Discussion

This study revisited the problem of accurate and automatic detec-
tion of sleep spindles using a single EEG channel. We reviewed
some indicative and widely used signal processing approaches

toward this aim, and highlighted some of the underlying prob-
lems. Two new signal processing approaches which are based on
the CWT with Morlet basis were proposed and demonstrated
to be very competitive against some commonly used algorithms
found in the research literature. Interestingly, there was no uni-
versally best algorithm for all signals, although a3, a6, and a7
appear to display relatively large sensitivity and specificity scores.
We found that the new algorithm a7 led to a range of 65.6–88.9%
sensitivity scores and a range of 78.1–97.3% specificity scores for
the DREAMS database, which compare favorably against com-
peting approaches. The new algorithm a8 exhibits higher sensi-
tivity and lower specificity in the DREAMS database, on average,
hence it might be more suitable primarily in cases where a human
expert will post-process the estimates to determine whether the
detected spindles correspond to true spindles. We re-iterate that
the DREAMS sleep spindles database used in this study suf-
fers from large inter-rater variability: the first rater has marked
289 spindles whereas the second rater has marked 409 spin-
dles. Hence, the inter-rater agreement is lower than the agree-
ment between raters reported in other studies (Huupponen et al.,
2007), which may suggest automatic detection of spindles in this
dataset may be challenging.

The original manuscript submission did not include theMASS
database and hence the development of the spindle detection
algorithm relied only on the DREAMS data. We have deliberately
refrained from any additional fine-tuning of a7 and a8 to optimize
performance in the MASS data, which might have potentially
improved our reported results on the MASS database. It is reas-
suring that the proposed algorithms work very well on the MASS
data, in particular a7. It is also encouraging to see that the results
of sensitivity, specificity, FDR and weighted Cohen’s kappa are
similar across the two databases (see Table 4) for all algorithms:
this inspires confidence regarding the objective merits of each
algorithm, and may be a good indicator of the performance of
the sleep spindle detection algorithms in new, unseen datasets.
It is possible that other studies relying on a single database to
develop and test their spindle detection algorithms might have
over-trained on that particular dataset, so we find the reported
findings on the MASS database (truly out-of-sample) to be par-
ticularly compelling. Table 5 provides an overall summary of
performance of the sleep spindle algorithms on both databases,
including extremes (i.e., the algorithms at their worst and at their
best) by reporting percentile values. We note that a7 in particu-
lar is very competitive across the entire range of the distribution
of performances, particularly for the MASS database (and inter-
estingly, exhibiting good performance even for the 5th and 25th
percentiles, i.e., it is fairly stable across individuals compared to
many of the competing algorithms).

For reference purposes we have summarized the findings of
multiple sleep spindle studies in the research literature in Table 4.
However, direct comparison of findings across studies in this
application is not straightforward for a number of reasons: (a)
many studies rely solely on data stemming from healthy con-
trols which are arguably easier to analyze than data from patho-
logical cohorts (or process EEG artifact-free data, whereas the
DREAMS sleep spindle database used here contains data from
various sleep disorders), (b) the criteria for identifying sleep
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TABLE 4 | Summary of automated spindle detection results in the research literature and in this study.

Study Spindle assessment Participants and data

collected

Database Algorithm

requires

hypnogram

Spindle detector TP

evaluation
Sensitivity Specificity FDR Weighted

(%) (%) (%) Cohen kappa

Schonwald et al.,

2006

81.2 81.2 N/R N/R 9 healthy adults, extracted

24 segments from each

subject using 20 s epochs,

removed epochs with

artifacts

Private

(N = 9)

Yes Second-by-second analysis

Huupponen et al.,

2007

70.0 98.6 32 N/R 12 healthy adults, entire

night recordings

Private

(N = 12)

Yes The absolute difference

between the detected

spindle onset and the

spindle onset determined by

the experts was less than

0.5 s.

Causa et al., 2010 88.2 89.7 11.9 N/R 56 healthy children

overnight recordings, 27

recordings used for training,

10 recordings for validation,

and 19 for testing

performance

Private

(N = 56)

No At least 75% spindle

duration overlap between

detected and expert

assessed spindle

Warby et al. (2014)

applying a1

74 81 89 N/R 110 healthy adults, (4min of

artifact-free stage 2 sleep

from 100 subjects and

∼38min of stage 2 sleep

from 10 subjects)

Private

(N = 110)

Yes At least 20% spindle

duration overlap between

detected and expert

assessed spindle

Warby et al. (2014)

applying a2

17 99 48 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a3

71 81 89 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a4

43 98 58 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a5

33 99 44 N/R See above entry Private

(N = 110)

Yes See above entry

Warby et al. (2014)

applying a6

57 96 70 N/R See above entry Private

(N = 110)

Yes See above entry

Devuyst et al.,

2011

70.2 98.6 N/R N/R 8 diagnosed with various

sleep disorders (30min

segments), two raters for all

signals; one rater only for

two signals. Use only six

signals and only cases

where raters agree

DREAMS sleep

spindle database

(publicly available)

(N = 6)

No N/R

Nonclercq et al.,

2013

75.1 96.7 N/R N/R See above entry DREAMS

(N = 6)

No There is overlap between

the duration of the detected

spindle and the spindle

duration assessed by

experts

Present study a1 56.0 82.4 86.8 0.37 8 from various sleep

disorders (30min

segments), two raters for all

signals; one rater only for

two signals. Use all eight

signals including “difficult”

cases where raters do not

agree

DREAMS

(N = 8)

Yes The absolute difference

between the detected

spindle onset and the

spindle onset determined by

the experts was less than

0.5 s

Present study a2 14.4 99.3 48.2 0.17 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a3 77.7 81.4 76.1 0.55 See above entry DREAMS

(N = 8)

Yes See above entry

(Continued)
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TABLE 4 | Continued

Study Spindle assessment Participants and data

collected

Database Algorithm

requires

hypnogram

Spindle detector TP

evaluation
Sensitivity Specificity FDR Weighted

(%) (%) (%) Cohen kappa

Present study a4 57.9 97.1 53.1 0.59 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a5 45.1 97.9 49.1 0.47 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a6 75.8 84.1 80.0 0.55 See above entry DREAMS

(N = 8)

Yes See above entry

Present study a7 75.9 91.8 66.7 0.66 See above entry DREAMS

(N = 8)

No See above entry

Present study a8 83.2 74.9 85.3 0.50 See above entry DREAMS

(N = 8)

No See above entry

Present study a1 65.5 85.1 82.7 0.46 19 overnight PSG from

healthy controls; two raters

for 15 signals, one rater for

four signals

MASS database

S2 (publicly

available)

(N = 19)

Yes See above entry

Present study a2 16.5 99.2 49.5 0.20 See above entry MASS

(N = 19)

Yes See above entry

Present study a3 73.5 78.2 75.3 0.46 See above entry MASS

(N = 19)

Yes See above entry

Present study a4 66.2 97.5 48.1 0.64 See above entry MASS

(N = 19)

Yes See above entry

Present study a5 41.3 98.8 45.3 0.43 See above entry MASS

(N = 19)

Yes See above entry

Present study a6 73.0 90.5 69.1 0.60 See above entry MASS

(N = 19)

Yes See above entry

Present study a7 83.8 90.2 82.6 0.64 See above entry MASS

(N = 19)

No See above entry

Present study a8 77.2 76.9 86.5 0.46 See above entry MASS

(N = 19)

No See above entry

Sensitivity (%) = TP/(TP + FN), Specificity (%) = TN/(TN + FP), False Discovery Rate (FDR) (%) = FP/(TP + FP). TP stands for true positive, TN for true negative, FP for false positive,

and FN for false negative. The last column briefly explains the method used to assess how the automatic sleep spindle detector was deemed to succeed in detecting the spindle as

registered by the experts. See Section Evaluation of Sleep Spindle Detection Algorithms for more details.

spindles are inconsistent, (c) different research teams use slightly
different definitions of spindles, (d) in some cases researchers
have only reported the detection accuracy but have not pro-
vided details about the number of erroneous detections, therefore
making comparison against some conservative approaches (algo-
rithms which aim to minimize the number of falsely reported
spindles) unfair. For all these reasons, probably the most efficient
and appropriate scientific approach is to apply multiple sleep
spindle detection algorithms across multiple datasets and directly
compare their performance. Causa et al. (2010) have reported
better sensitivity (88.2%) and specificity scores (89.7%) compared
to results in other studies (including the current study). However,
that study focused only on healthy children, and those findings
might not be generalizable to studies focusing on other cohorts
(healthy adults, and adults diagnosed with a sleep-related dis-
order). Two prior studies have focused on the DREAMS sleep
spindle database which facilitate comparison of findings: Devuyst
et al. (2011) reported sensitivity score 70.2% and specificity
score 98.6%. Likewise, Nonclercq et al. (2013) reported sensitiv-
ity scores ranging between 65.8 and 82.8% and specificity scores
ranging between 96.7 and 98.7% for the first six signals in the

database. However, we note that in both studies the authors used
as ground truth only those cases where the experts agreed on
the first six signals, which potentially biases the results (spin-
dles detected by either one of the raters are probably borderline
and more difficult to assess, but on the other hand are proba-
bly also more interesting). Similarly, the MASS database is a new
publicly available database and we anticipate future studies will
benchmark algorithms against this database.

Ideally, a sleep spindle detection algorithm should correctly
detect all true spindles without indicating the presence of addi-
tional (erroneous) spindles (an artifact or other class of event
erroneously considered to be spindle). In practice, there is a
tradeoff compromising betweenmaximizing the detection of true
spindles (true positive rate) and minimizing the false assessment
of EEG segments as spindles. Essentially this is the case with the
closely related algorithms a7 and a8 proposed in this study. The
algorithm a8 can typically correctly detect more spindles than a7
at the cost of increasing the number of falsely detected spindles
(increased false discovery rate). We note that a6 and a3 are sim-
ilarly more prone compared to competing algorithms to decide
that spindles have occurred in the EEG signal: this causes their
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TABLE 5 | Summary of statistics (percentiles) of the performance metrics of the spindle detection algorithms for the DREAMS and MASS databases.

Sensitivity (%) Specificity (%) FDR (%) Weighted Cohen kappa

5 25 50 75 95 5 25 50 75 95 5 25 50 75 95 5 25 50 75 95

a1 27.8 43.1 54.9 72.8 78.6 79.1 80.3 82.8 84.5 85.2 72.3 79.6 90 92.1 98.6 0.06 0.27 0.36 0.51 0.64

54.1 60.8 65.3 69.3 80.84 82.1 83.7 85.3 86.4 88.4 66.3 76.3 80.6 90.9 97.7 0.22 0.43 0.49 0.54 0.63

a2 3.9 9.9 12.6 18.6 29.1 98.8 99.0 99.3 99.6 100 0 24.8 48.3 76.4 87.0 0.05 0.13 0.15 0.23 0.32

10.9 13.0 14.6 17.5 30.1 98.9 98.9 99.2 99.4 99.6 33.8 41.8 43.9 64.2 67.0 0.12 0.15 0.18 0.20 0.39

a3 42.2 71.9 81.1 89.1 95.1 39 76.5 88.8 91.9 97.6 44.2 61.3 80 92.7 96.7 0.08 0.43 0.58 0.75 0.81

34.5 58.1 81.7 88.8 91.6 39.4 64.2 83.9 93.4 97.0 35.8 58.7 76.8 96 98.7 0 0.10 0.62 0.75 0.82

a4 32.8 48.4 62.1 66.0 77.3 94.3 96.1 97.6 98.4 98.6 23.1 30.4 49.2 77.5 87.6 0.36 0.49 0.61 0.69 0.77

41.2 56.2 64.8 77.6 96.2 95.7 97.2 97.6 98.2 98.7 23.5 33.2 43.7 64.4 88.5 0.40 0.58 0.68 0.73 0.82

a5 12.5 23.4 48.7 59.9 84.4 96.1 96.2 97.9 99.4 99.8 19.0 23.7 45.7 75.6 83.9 0.13 0.26 0.54 0.61 0.81

3.5 24.7 39.6 48.8 91.4 97.1 98.5 98.9 99.5 99.7 20.6 29.8 39.7 58.8 82.0 0.040 0.35 0.43 0.54 0.78

a6 45.3 75.0 80.3 82.5 85.7 67.0 80.8 86.8 89.1 92.5 57.2 65.9 87.6 89.8 96.1 0.32 0.40 0.55 0.70 0.75

52.4 69.8 72.7 76.0 92.79 76.7 85.9 92.8 95.2 97.4 45.7 55.6 66.1 80.7 97.0 0.23 0.60 0.65 0.69 0.74

a7 65.6 68.8 75.2 82.5 88.9 78.1 90.4 94.3 95.1 97.3 37.1 47.7 69.5 85.5 91.2 0.46 0.60 0.69 0.72 0.80

64.7 80.1 86.3 89.6 92.9 83.6 88.1 90.1 94.1 95.9 51.3 81.1 85.7 90.6 92.3 0.49 0.60 0.64 0.70 0.74

a8 68.8 79.2 82.8 88.5 96.1 55.7 71.8 77.1 79.8 86.6 68.6 75.6 89.1 93.9 96.9 0.26 0.29 0.50 0.70 0.74

65.1 72.7 79.3 82.2 87 67.6 72.6 76.2 81.1 86.5 71.0 83.0 86.8 92.2 97.6 0.24 0.36 0.49 0.58 0.63

The first row for each algorithm a1–a8 corresponds to the (5,25,50,75,95) percentiles in the DREAMS database, and the second row to the percentiles in the MASS database.

true positive rate to be generally higher at the cost of additional
false positives. O’Reilly and Nielsen (2014b) envisage that “most
probably, manual [sleep spindle] scoring will progress toward semi-
automation benefitting from further advances in signal process-
ing” an assertion we find plausible. In that sense, if sleep spindle
assessment is performed semi-automatically (prior assessment by
an algorithm and subsequent checking by an expert) it is ben-
eficial to correctly detect as many spindles as possible, even at
the cost of erroneously recording spindles (i.e., increasing sen-
sitivity at the cost of an increased false positive rate). There is
probably no universal solution to this problem, and the sensitiv-
ity trade-off might need to be a free parameter of sleep spindle
algorithms which could be appropriately adjusted by the operator
of the algorithm.

We remark that some of the sleep spindle detection algorithms
used in this study require more than a single-EEG channel to
detect spindles. For example, a1 and a6 require the use of an
additional EEG channel, and a1–a5 need to be presented with
the hypnogram assessment (moreover the algorithm a5 explic-
itly requires stage 2 assessments). We emphasize again that the
proposed algorithms in this study (a7 and a8) have minimal
requirements in terms of the input data in order to detect spin-
dles: a single EEG channel is sufficient. Therefore, we argue
that these new algorithms may be more readily deployable on
databases which have not been scored by experts prior to sleep
spindle estimation (no sleep staging requirement). Neverthe-
less, future studies could further explore whether the use of

additional EEG channels and/or hypnogram might increase the
sleep spindle detection accuracy.

A critical aspect for comparing algorithms in this applica-
tion is the definition of TP, TN, FP, FN. In some studies it is
not explicitly clear how authors deemed that the automated sleep
spindle detector has matched the assessment of an expert in cor-
rectly identifying a sleep spindle. There is no clear consensus in
the research literature currently; the last column in Table 4 sum-
marizes some of the different approaches that have been used.
We agree with Causa et al. (2010) who criticize other studies
that the criteria used for algorithmic assessment are not made
explicit, and would encourage other researchers to meticulously
report the methodology followed to mark their assessments; ide-
ally this methodology should be standardized to facilitate direct
comparisons of algorithmic concepts.

Inspection of the results revealed that different sleep spindle
detection algorithms have the potential to detect different spin-
dles under different conditions. This would suggest that explor-
ing some data fusion approaches might have good potential in
this application. Data fusion in conceptually related applications
(combining the outputs of multiple signal processing algorithms
which estimate some property of the signal) has shown great
promise (Mitchell, 2012; Tsanas et al., 2014; Zhu et al., 2014). In
fact, simple combination approaches of the first six sleep spin-
dle detection algorithms used in this study have been previous
explored by Warby et al. (2014) but the authors did not report
any significant improvement over the single best algorithm;
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future studies could further explore some principled data fusion
frameworks in this application.
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A Corrigendum on

A comparison of two sleep spindle detection methods based on all night averages: individually

adjusted vs. fixed frequencies

by Ujma, P. P., Gombos, F., Genzel, L., Konrad, B. N., Simor, P., Steiger, A., et al. (2015). Front. Hum.
Neurosci. 9:52. doi: 10.3389/fnhum.2015.00052

The description of the Individual Adjustment Method (IAM) algorithm for sleep spindle analyses
(Ujma et al., 2015) contained an error, which we hereby rectify. On page 5, line 7–8, instead of
f(x) = e∧(−(x− xm)/(w/2)), the equation should read as follows:

f(x) = e∧ − (((x− xm)/(w/2))∧2)
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Sleep spindles are frequently studied for their relationship with state and trait cognitive
variables, and they are thought to play an important role in sleep-related memory
consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep
spindles is only feasible using automatic algorithms, of which a large number is available.
We compared subject averages of the spindle parameters computed by a fixed frequency
(FixF) (11–13 Hz for slow spindles, 13–15 Hz for fast spindles) automatic detection algorithm
and the individual adjustment method (IAM), which uses individual frequency bands for
sleep spindle detection. Fast spindle duration and amplitude are strongly correlated in
the two algorithms, but there is little overlap in fast spindle density and slow spindle
parameters in general. The agreement between fixed and manually determined sleep
spindle frequencies is limited, especially in case of slow spindles. This is the most likely
reason for the poor agreement between the two detection methods in case of slow
spindle parameters. Our results suggest that while various algorithms may reliably detect
fast spindles, a more sophisticated algorithm primed to individual spindle frequencies is
necessary for the detection of slow spindles as well as individual variations in the number
of spindles in general.

Keywords: EEG, sleep spindles, sigma waves, automatic detections, fixed frequency method, IAM, comparison

INTRODUCTION
Sleep spindles are oscillations emerging from interacting thala-
mocortical, corticothalamic, and reticular networks in NREM
sleep (Steriade and Deschenes, 1984; Amzica and Steriade, 2000;
Steriade, 2000; Fogel and Smith, 2011), which are thought to play
an important role in sleep-related brain plasticity (Genzel et al.,
2014). Due to their trait-like nature and relationship to plastic-
ity, sleep spindles are frequently studied as candidate indexes of
individual variations in cognitive performance. Sleep spindles are
remarkably individual features: sleep spindle parameters are char-
acterized by high intra-individual stability and inter-individual
variability (De Gennaro et al., 2005), a strong genetic background
(De Gennaro et al., 2008), and a correlation with anatomical
properties of the brain (Piantoni et al., 2013; Saletin et al., 2013).

Due to their high prevalence and specific signal properties
automatic detection methods have proven to be viable and prefer-
able alternatives to visual detection. Some of the earliest studies
(Broughton et al., 1978; Campbell et al., 1980) used phase-
locked loop devices for automatic sleep spindle detection and
already reported an adequate agreement with visual detection.

An early combined software-hardware system (Ferri et al., 1989)
also reliably replicated visual spindle detection results. Software
solutions for automatic spindle detection were introduced some-
what later (Schimicek et al., 1994) and reported relatively high
(approx. 70%) specificity for 90% sensitivity, while an improved
method (Devuyst et al., 2006) could increase this to almost 76%
in a clinical sample. More recently, sophisticated automatic sleep
spindle detection methods using artificial neural networks (Acır
and Güzeliş, 2004; Ventouras et al., 2005) and decision trees
(Duman et al., 2009) reached even higher performance, with
correct classification frequently exceeding 90%.

Automatic sleep spindle recognition was further refined by
adapting algorithms that take into account the inter-individual
differences in sleep spindle activity, which vastly exceed intra-
individual variation (De Gennaro et al., 2005) and emerge—
among others—as a function of age and sex (Driver et al., 1996;
Carrier et al., 2001; Huupponen et al., 2002; Genzel et al., 2012).
Sleep spindle detection methods have been developed to operate
with individually adjusted amplitude limits (Huupponen et al.,
2000, 2007; Ray et al., 2010). A novel algorithm (Bódizs et al.,
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2009; Ujma et al., 2014) based on the electrophysiological fin-
gerprint theory of human sleep (De Gennaro et al., 2005, 2008)
is the Individual Adjustment Method (IAM), which takes into
account inter-individual variations not only in the amplitude, but
also in the frequency of sleep spindles. In the IAM, sleep spin-
dles are therefore not only detected based on individual amplitude
thresholds, but also within the exact frequency bands where they
are present in a given individual. A similarly adaptive detection
method (based on a probabilistic model) is reported in Nonclercq
et al. (2013).

A comparison of four different spindle detection methods
(Huupponen et al., 2007) reported acceptable, but not over-
whelming concordance. A recent study (Warby et al., 2014)
investigated the agreement in spindle detection between expert
human raters, non-experts recruited in an internet crowdsourc-
ing effort, and automatic detection algorithms. Concordance was
strongest among human experts, followed by non-experts oper-
ation in a crowdsourcing scheme, and weakest among automatic
algorithms.

While the progress in automatic sleep spindle detection meth-
ods is impressive, there are numerous concerns which must be
addressed in this field. A practical criticism may arise from the
fact that automatic sleep spindle detections are frequently vali-
dated against visual detections: however, agreement in the visual
scoring of spindles is not perfect (Campbell et al., 1980; Warby
et al., 2014), the visual detection of spindles is often considered
as a consensus from several raters which may bias results (Ray
et al., 2010), and—despite stronger agreement among human
raters than algorithms (Warby et al., 2014)—the use of human
expert opinion as an absolute gold standard is philosophically
questionable in itself (Bódizs et al., 2009).

Further criticism must be given to the fact of the use of
standard signal detection terminology (such as sensitivity and
specificity) in case of sleep spindle detection algorithms. Sleep
spindles are frequent phenomena, but even so the vast major-
ity of a sleep EEG recording does not consist of sleep spindles.
Therefore, correct negative classifications are by far the most
common result produced by any sleep spindle detector, which
might drastically inflate specificity. The ratio of correct hits and
false detections—including misses and false positives—would be
a much more conservative, but also more informative measure of
detection performance.

Sleep spindles are not only biological signals, but important
markers of individual traits (De Gennaro et al., 2005, 2008) as
well as powerful correlates of human cognition (among others:
Bódizs et al., 2005; Schabus et al., 2006; Fogel et al., 2007; Ujma
et al., 2014). Therefore, an alternative option in order to assess
detection algorithms would be to investigate how much they can
reproduce trait-like individual averages (instead of comparing
individual spindle detections).

To our knowledge, it has never been investigated how strongly
spindle measures of different detection methods are correlated if
not individual spindle detections, but subject averages are consid-
ered. This can evidently not predicted from the signal detection
characteristics of the comparison of individual spindle detec-
tions of various methods—albeit the literature usually reports
moderate agreement between the individual spindle detections

of different algorithms, it is unknown whether the different
spindle samples obtained by different methods approximate the
same individual averages. Therefore, the aim of our study was to
reveal the correlation between individual sleep spindle parameters
calculated with two different detection methods.

MATERIALS AND METHODS
SUBJECTS
We examined polysomnographic data of 161 healthy volunteers
(88 males, 73 females, age between 17 years and 69 years, mean
age 29.4 years, StD 10.7 years) recorded on the second night
spent in a sleep laboratory. All procedures were approved by the
responsible institution’s ethical board and subjects gave informed
consent. A semi-structured interview excluded any history of
neurologic or psychiatric disease, but six subjects suffered from
frequent nightmares. Subjects were free of drugs and prescrip-
tion medication (except for contraceptives, all data self-reported).
Alcohol and excessive caffeine consumption (over two cups of
coffee before noon) was not allowed. Eight subjects were smok-
ers, while the rest were non-smokers (self-reported). This dataset
used for analysis was the same as in Ujma et al. (2014), except for
the inclusion of one female subject who was excluded from the
previous study due to her unavailable IQ score.

SLEEP RECORDINGS
All subjects spent two nights in a sleep laboratory and
polysomnographic data from the 2nd night was used for analysis.
Since the study was performed in cooperation between multi-
ple sleep laboratories, recordings were performed in four slightly
different designs.

For 31 subjects, recordings were performed with 18 EEG elec-
trodes using a Flat Style SLEEP La Mont Headbox device with
a HBX32-SLP preamplifier (La Mont Medical Inc. USA), with a
sampling rate of 249 Hz, hardware prefiltering 0.5–70 Hz and a
precision of 12 bit.

For 16 subjects signals were collected, prefiltered (0.33–
1500 Hz, 40 dB/decade anti-aliasing hardware input filter), ampli-
fied and digitized with 4096 Hz/channel sampling rate (syn-
chronous) and 12 bit resolution by using the 32 channel
EEG/polysystem (Brain-Quick BQ 132S, Micromed, Italy). A fur-
ther 40 dB/decade anti-aliasing digital filter was applied by digital
signal processing which low-pass filtered the data at 450 Hz.
Finally, the digitized and filtered EEG was undersampled at
1024 Hz.

For 114 subjects, recordings were performed with a Comlab 32
Digital Sleep Lab device (Schwarzer, Germany) with a sampling
rate of 250 Hz, hardware prefiltering 0.53–70 Hz and a precision
of 8 bit. In 94 of these subjects, 22 EEG electrode sites were used,
while in the others 20 subjects 10 EEG electrodes were used.
Common recording sites in all subjects which were used in the
analysis were Fp1, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, P3, P4, T3,
T4, T5, T6, O1, and O2, all referred to the mathematically linked
mastoids. For the 20 subjects with only 10 electrodes, data from
Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1 and O2 was available and for
the other electrodes these subjects were treated as missing data.

In order to correct for potentially different baseline ampli-
tudes depending on the recording device (Vasko et al., 1997),

Frontiers in Human Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 52 | 128

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Ujma et al. Comparison of spindle detection methods

the analog-digital conversion and filtering characteristics of all
recording devices were measured and sleep spindle amplitudes
were corrected for the measured differences as follows (Ujma
et al., 2014). We determined the amplitude reduction rate of
each recording system by calculating the proportion between dig-
ital (measured) and analog (generated) amplitudes of sinusoid
signals at typical sleep spindle frequencies (10, 11, 12, 13, 14,
and 15 Hz) for both inducing (40 and 355 μV amplitude) sig-
nals. Machine-specific amplitude reduction rates were given as
the mean amplitude rate between digital and analog values at
the two amplitudes and six measured frequencies. Sleep spindle
amplitudes were corrected by dividing their calculated values by
the amplitude reduction rate of the recording system. Given the
individual- and derivation-specific adjustment inherent to both
the Fixed frequency method (FixF) and the IAM, sleep spindle
densities and durations are amplitude-insensitive measures. Thus,
there is no need for the compensation of the different recording
systems in these values.

Sleep recordings of the second nights were scored according to
standard criteria (Iber et al., 2007) on a 20 s basis and artifacts
were removed by visual inspection on a 4 s basis. Sleep spin-
dle analysis was performed on artifact-free segments of NREM
sleep.

ANALYSES
Fixed frequency method of sleep spindle analysis
For the FixF method we determined the 11–13 Hz range as a slow
spindle frequency band and the 13–15 Hz window as a fast spindle
frequency band. These frequencies were selected to ensure con-
sistency with previous studies (Schabus et al., 2006, 2007, 2008;
Chatburn et al., 2013), which used a similar approach for the
separation of slow and fast spindles.

Sleep spindles were automatically detected within artifact-free
NREM sleep periods on every EEG derivation. For slow spindle
detection, data were bandpass-filtered between 11 Hz and 13 Hz.
The root mean squares of the filtered signals were determined for
0.25 s length time windows. Next a threshold was calculated at
the 95th percentile of the root mean square values for every EEG
derivation. A spindle was identified when at least two consecu-
tive root mean square time points exceeded the threshold, and
the duration criterion (≥0.5 s) was met. Four spindle characteris-
tics were calculated; these were density (number of spindles/min);
amplitude (peak-to-peak difference in voltage, expressed in μV);
duration (s), and frequency (number of cycles/s, in Hz). The
same procedure was followed for detecting fast spindles, using a
band pass filter of 13–15 Hz (Schabus et al., 2007; Gruber et al.,
2013).

Sleep spindle analysis according to the IAM
The second sleep spindle detection algorithm was the IAM
(Bódizs et al., 2009). This sleep spindle detection method takes
into account both inter-individual variations and intra-individual
consistency in sleep spindle frequency (De Gennaro et al., 2005,
2008), analyzing sleep spindles at the individual peak frequency
for all subjects.

The IAM procedure (Bódizs et al., 2009) consisted of several
steps as described below (illustrated on Figure 1).

i. Average amplitude spectra. Non-overlapping 4 s artifact-free
NREM sleep EEG segments are Hanning-tapered (50%), then
zero-padded to 16 s. Average amplitude spectra of all-night
NREM sleep EEG derivations is computed between 9 Hz
and 16 Hz by using an FFT routine (frequency resolution:
0.0625 Hz).

ii. Individually adjusted frequency limits of slow and fast sleep
spindles. Determination of the individual slow and fast sleep
spindle frequencies is based on second order derivatives of the
9–16 Hz amplitude spectra. In order to avoid small fluctua-
tions in convex and concave segments average amplitude spec-
tra of 0.0625 Hz resolution (i) is downsampled (decimated)
by a factor of 4 (resulting in a resolution of 0.25 Hz) before
calculating the derivation-specific second-order derivatives in
this frequency range. Derivation-specific second order deriva-
tives of the amplitude spectra are then averaged over all EEG
derivations resulting in a whole-scalp second order deriva-
tive for each subject. Individual-specific frequency limits of
sleep spindles are defined as pairs of zero crossing points
encompassing a negative peak in the whole-scalp second order
derivatives. These zero-crossing points are rounded to the
closest bins within the high-resolution (0.0625 Hz) amplitude
spectra obtained in step i. Two pairs of individual-specific fre-
quency limits and corresponding ranges are defined (one for
slow and one for fast spindles). In cases of uncertainty (lack of
zero crossing points indicating slow spindles or partial overlap
between slow and fast sleep spindles in some cases), frequen-
cies with predominance of power in averaged frontal (Fp1,
Fp2, F3, F4, Fz, F7, F8) over averaged centro-parietal (C3, C4,
Cz, P3, P4) amplitude spectra were considered as slow spin-
dle frequencies (N = 18). There was no case of uncertainty
related to the individual-specific frequency boundaries of fast
sleep spindles.

iii. Individual-specific spindle middle frequencies. Slow spindle
middle frequency of a given subject was quantified as the
arithmetic mean of the individual-specific lower and upper
limits for slow spindling as obtained above (ii). In case of
fast sleep spindling the arithmetic mean of the lower and the
upper frequency limits of fast sleep spindles were considered.

iv. Individual- and derivation-specific amplitude criteria for
sleep spindles. Spindles are defined as those EEG segments
contributing to the peak region of the average amplitude spec-
trum. Hence we intended to obtain an amplitude criterion
corresponding to the line determined by the y-values (μV)
pertaining to the individually adjusted pairs of frequency
limits (ii) in the average amplitude spectra (i).

a. The number of high resolution (0.0625 Hz) frequency bins
(i) falling in the individual-specific slow- and fast sleep
spindle frequency ranges (ii) is determined.

b. The amplitude spectral values (i) at the individually
adjusted frequency limits for slow and fast sleep spindles
(ii) are determined. This is performed in a derivation-
specific manner.

c. Number of bins for slow and fast sleep spindling (iv/a)
are multiplied by the arithmetic mean of the pairs of
derivation-specific amplitude spectral values for slow and
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FIGURE 1 | The Individual Adjustment Method (IAM) of sleep spindle

analysis. (A) Four-second EEG epoch Hanning-tapered and zero padded to 16 s.
(B) Fast Fourier Transformation (FFT) is used to calculate 9–16 Hz average
amplitude spectra of all night NREM sleep EEG from Hanning-tapered and
zero-padded segments (derivations: Fp1, Fp2, F3, F4, Fz, F7, F8, T3, T4, T5, T6,
C3, C4, Cz, P3, P4, O1, O2 referred to the mathematically-linked mastoids). (C)

Amplitude spectra are decimated (down-sampled) by a factor of 4. (D) Second
order derivatives of the decimated amplitude spectra. (E) Calculating the

whole-scalp second order derivatives by averaging all series. The resulting
average series is overplotted with the averaged frontal (Fp1, Fp2, F3, F4, Fz, F7,
F8) and centro-parietal (C3, C4, Cz, P3, P4) amplitude spectra (the left-side Y axis
is for average second-order derivatives, while the second Y axis on the right is
for average amplitude spectra). Appropriate zero-crossing points encompassing
individual-specific slow and fast sleep spindle bands are selected on the 9–16 Hz
frequency scale. (F) Derivation-specific amplitude criteria are calculated. (G)

Thresholding of the envelopes of the slow and fast-spindle filtered signal.
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fast sleep spindle frequency limits (iv/b), respectively.
Outcomes are individual- and derivation specific ampli-
tude criteria for slow and fast sleep spindle detections.

v. Envelopes of sleep spindling. EEG data is band-pass filtered
for the slow and fast spindle frequency ranges by using an
FFT-based Gaussian filter with 16 s windows: f (x) = eˆ(−(x−
xm)/(w/2)), where x varies between zero and the Nyquist fre-
quency according to the spectral resolution, xm is the middle
frequency of the spindle range (iii), and w is the width of the
spindle range (ii) (ii and iii). Filtered signal is rectified and
smoothed by a moving average weighted with a Hanning win-
dow of 0.1 s length and multiplied with π/2 (the latter is the
inverse of the mean of a rectified sine wave).

vi. Detection and characterization of sleep spindles. If envelopes
of this band-pass filtered and rectified data (v) exceed the indi-
vidual and derivation-specific threshold as defined above (iv)
for at least 0.5 s, a sleep spindle is detected. Sleep spindles
detected this way are analyzed and average sleep spindle den-
sity (number of spindles per minute), sleep spindle duration
(s), as well as median and maximum amplitude (expressed as
all-night means of intra-spindle envelopes in μV at the mid-
dle of the detected spindles and at the maxima of the spindles,
respectively) is calculated for the subject.

STATISTICS
FixF and IAM spindle parameters were compared using paired-
sample t-tests (α = 0.05). The Benjamini-Hochberg method of
false detection rate correction was performed in order to correct
for multiple comparisons.

We computed Pearson’s point-moment correlation coefficients
between comparable sleep spindle measures (that is, sleep spin-
dle parameters computed from the same electrode) produced by
IAM, and the FixF method.

RESULTS
IAM FREQUENCY BANDS
For the IAM method, individual slow spindle lower frequency
limits ranged from 8.98 Hz to 12.95 Hz (mean: 10.96 Hz), while
higher frequency limits ranged from 10.14 Hz to 13.7 Hz (mean:
11.9 Hz). Slow spindle middle frequencies ranged from 9.59 to
13.28 Hz (mean: 11.43 Hz). Fast spindle lower frequency lim-
its ranged from 11.82 Hz to 14.77 Hz (mean: 13.06 Hz), while
higher frequency limits ranged from 13.04 Hz to 16.03 Hz (mean:
14.36 Hz). Fast spindle middle frequencies ranged from 12.49 Hz
to 15.38 Hz (mean: 13.71 Hz).

Individual slow spindle frequency bands were on average
0.94 Hz wide (range: 0.34–2.2 Hz). Individual fast spindle fre-
quency bands were on average 1.3 Hz wide (range: 0.84–1.89 Hz).

Figure 2 shows the distribution of individual sleep spindle
frequencies.

FixF vs. IAM SPINDLE PARAMETERS
IAM provides an approximately twice higher sleep spindle density
than the FixF method in case of both slow and fast spindles as well
as 1.5–2 times longer sleep spindle durations. Standard deviations
of the individual averages of the FixF parameters are much smaller

FIGURE 2 | Distribution of individual sleep spindle frequency bands

across the 9–16 Hz frequency domain based on visual inspection of the

sleep EEG spectrum and the zero crossings of the second-order

derivatives thereof. Blue markers indicate slow spindle middle
frequencies, while red markers show fast spindle middle frequencies.
Negative and positive error bars illustrate lower and higher individual
frequency limits, respectively. Thick lines highlight the 11 Hz, 13 Hz, and
15 Hz thresholds used in the FixF method. Subjects have been ordered by
slow spindle middle frequency to ensure better visibility.

than in case of IAM parameters, even proportionally to the lower
mean values.

Sleep spindle parameters are shown in Table 1. It must be
noted that while FixF and IAM amplitude measures are displayed
and compared, they are not expected to be on the same scale due
to the narrower frequency band of IAM and the fact that in the
FixF method amplitude was expressed as the mean maximum
peak-to-peak voltage difference within a spindle, while in IAM
amplitude was defined as the mean maximum of intra-spindle
envelopes of the individually band-passed EEG.

The difference between comparable FixF and IAM spin-
dle parameters is significant in all cases at p < 0.0001, and
all comparisons remain significant after correction for multiple
comparisons.

CORRELATIONS BETWEEN FixF AND IAM SPINDLE PARAMETERS
Despite the differences in the results, individual spindle param-
eters obtained with the FixF and IAM methods are strongly
correlated in case of the amplitude and duration of fast spindles.
These correlations are always over 0.5 for amplitude and over 0.4
for duration and they are highest (>0.8 for amplitude, >0.7 for
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Table 1 | Sleep spindle parameters calculated by IAM and the fixed frequency method (FixF).

Mean StD Mean StD

FixF IAM FixF IAM t-value FixF IAM FixF IAM t-value

C3 Fz

Slow spindles Density 3.469 6.830 0.163 1.428 −29.663 Slow spindles Density 3.586 6.876 0.143 1.245 −31.273

Duration 0.673 1.413 0.045 0.467 −19.995 Duration 0.668 1.435 0.032 0.462 −19.755

Amplitude 42.053 3.548 12.045 1.848 40.093 Amplitude 57.322 4.902 15.897 2.507 38.814

Fast spindles Density 3.657 7.176 0.202 0.921 −47.383 Fast spindles Density 3.614 6.571 0.201 1.007 −34.319

Duration 0.699 1.074 0.049 0.141 −31.956 Duration 0.693 1.435 0.047 0.462 −19.067

Amplitude 43.171 5.471 13.632 1.533 34.871 Amplitude 46.909 5.588 16.803 1.732 29.150

C4 O1

Slow spindles Density 3.487 6.878 0.143 1.430 −29.947 Slow spindles Density 3.215 6.737 0.126 1.947 −22.905

Duration 0.666 1.411 0.042 0.462 −20.348 Duration 0.662 1.365 0.069 0.476 −18.540

Amplitude 41.946 3.638 11.001 1.831 43.583 Amplitude 28.171 2.460 10.093 1.406 32.013

Fast spindles Density 3.662 6.878 0.190 1.430 −28.299 Fast spindles Density 3.554 7.062 0.217 1.104 −39.561

Duration 0.697 1.411 0.045 0.462 −19.516 Duration 0.703 1.073 0.052 0.146 −30.259

Amplitude 44.092 5.542 13.640 1.536 35.637 Amplitude 30.627 4.062 11.602 1.395 28.844

Cz O2

Slow spindles Density 3.401 6.692 0.156 1.526 −25.571 Slow spindles Density 3.219 6.728 0.114 1.944 −22.866

Duration 0.674 1.381 0.053 0.465 −17.976 Duration 0.656 1.366 0.064 0.479 −18.640

Amplitude 49.867 4.211 13.568 2.094 39.630 Amplitude 28.348 2.479 10.497 1.377 31.006

Fast spindles Density 3.688 6.692 0.182 1.526 −23.302 Fast spindles Density 3.544 7.051 0.218 1.109 −39.346

Duration 0.700 1.381 0.045 0.465 −17.349 Duration 0.699 1.066 0.051 0.142 −30.824

Amplitude 58.700 7.324 18.546 2.076 32.806 Amplitude 29.904 3.975 10.755 1.319 30.364

F3 P3

Slow spindles Density 3.653 6.920 0.158 1.193 −34.449 Slow spindles Density 3.275 6.743 0.154 1.741 −25.187

Duration 0.673 1.459 0.032 0.459 −21.674 Duration 0.694 1.376 0.069 0.471 −18.183

Amplitude 52.046 4.518 14.978 2.341 39.780 Amplitude 37.668 3.050 10.762 1.687 40.321
Fast spindles Density 3.588 6.323 0.205 0.982 −34.597 Fast spindles Density 3.619 7.506 0.206 0.932 −51.670

Duration 0.691 1.014 0.044 0.117 −32.780 Duration 0.718 1.110 0.051 0.149 −31.496
Amplitude 39.676 4.846 13.952 1.525 31.488 Amplitude 44.219 5.773 14.429 1.670 33.585

F4 P4

Slow spindles Density 3.661 6.966 0.149 1.182 −35.205 Slow spindles Density 3.286 6.761 0.147 1.754 −25.046
Duration 0.669 1.456 0.029 0.456 −21.834 Duration 0.683 1.371 0.068 0.473 −18.297
Amplitude 53.057 4.585 15.579 2.316 39.050 Amplitude 36.159 2.992 10.716 1.616 38.834

Fast spindles Density 3.607 6.357 0.204 0.996 −34.328 Fast spindles Density 3.613 7.468 0.195 0.961 −49.894
Duration 0.687 1.456 0.043 0.456 −21.289 Duration 0.716 1.104 0.048 0.150 −31.314
Amplitude 40.907 4.945 16.694 1.541 27.218 Amplitude 42.701 5.532 14.211 1.646 32.967

Slow spindles Density 3.661 6.953 0.164 1.318 −29.526 Slow spindles Density 3.529 6.927 0.144 1.521 −26.503
Duration 0.669 1.420 0.031 0.455 −19.595 Duration 0.645 1.388 0.031 0.470 −18.779
Amplitude 35.259 3.253 9.820 1.617 38.323 Amplitude 26.048 2.312 8.012 1.201 34.914

Fast spindles Density 3.481 5.561 0.186 1.101 −22.198 Fast spindles Density 3.529 6.210 0.156 1.142 −27.718
Duration 0.660 0.964 0.035 0.102 −33.518 Duration 0.654 0.993 0.039 0.113 −33.920
Amplitude 23.331 2.998 7.859 0.875 30.642 Amplitude 19.469 2.529 6.010 0.702 33.362

F8 T4

Slow spindles Density 3.670 6.979 0.160 1.334 −29.352 Slow spindles Density 3.525 6.929 0.145 1.546 −26.119
Duration 0.665 1.418 0.028 0.456 −19.639 Duration 0.639 1.379 0.028 0.466 −18.911
Amplitude 35.654 3.303 9.349 1.626 40.625 Amplitude 25.325 2.348 6.821 1.198 39.535

(Continued)
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Table 1 | Continued

Mean StD Mean StD

FixF IAM FixF IAM t-value FixF IAM FixF IAM t-value

F7 T3

Fast spindles Density 3.479 5.534 0.207 1.099 −21.900 Fast spindles Density 3.498 6.031 0.184 1.228 −24.304

Duration 0.655 0.960 0.035 0.101 −34.075 Duration 0.647 0.985 0.037 0.117 −32.600

Amplitude 23.663 3.039 7.774 0.885 31.412 Amplitude 19.517 2.601 6.174 0.785 32.388

Fp1 T5

Slow spindles Density 3.632 7.043 0.154 1.228 −34.960 Slow spindles Density 3.333 6.753 0.139 1.808 −22.473

Duration 0.674 1.448 0.029 0.455 −21.537 Duration 0.646 1.354 0.048 0.480 −17.495

Amplitude 44.540 3.755 18.255 1.943 28.190 Amplitude 25.427 2.276 7.801 1.293 34.888

Fast spindles Density 3.462 5.500 0.199 1.061 −23.961 Fast spindles Density 3.544 6.849 0.188 1.058 −36.667

Duration 0.669 0.969 0.036 0.099 −36.057 Duration 0.690 1.045 0.049 0.139 −28.762

Amplitude 28.654 3.325 16.333 1.010 19.640 Amplitude 25.257 3.279 8.719 1.074 29.812

Fp2 T6

Slow spindles Density 3.644 7.064 0.152 1.238 −34.793 Slow spindles Density 3.347 6.785 0.125 1.852 −22.075

Duration 0.672 1.445 0.028 0.454 −21.579 Duration 0.638 1.348 0.042 0.475 −17.763

Amplitude 44.180 3.783 17.303 1.927 29.443 Amplitude 24.813 2.241 8.184 1.213 32.509

Fast spindles Density 3.477 5.569 0.204 1.070 −24.360 Fast spindles Density 3.541 6.750 0.185 1.074 −35.098

Duration 0.665 0.965 0.035 0.098 −36.612 Duration 0.680 1.033 0.048 0.132 −29.933

Amplitude 28.325 3.345 13.607 1.031 23.228 Amplitude 23.782 3.108 7.491 0.876 32.665

Density, duration and amplitude means, standard deviations (StD) and comparison t-values are shown.

duration) in derivations where fast spindles are most prominent
(central and parietal electrodes) as well as in occipital derivations.
There is, surprisingly, a negative correlation between fast spindle
density calculated by the IAM and the FixF method.

There is only a week concordance between FixF and IAM slow
spindle parameters. There is no significant FixF-IAM correlation
in case of slow spindle density and duration, and only a mod-
est correlation in case of slow spindle amplitude (r < 0.5 except
for F3).

Table 2 presents the Pearson correlation coefficients depict-
ing the linear relationship between corresponding IAM and FixF
spindle parameters on all electrodes.

Given that 1) our sample consisted of several datasets
recorded on various EEG devices and 2) the FixF ranges we
analyzed—while based on previous literature—did not corre-
spond well to the frequency ranges computed by IAM, we re-
analyzed our sample divided in subsamples as well as with differ-
ent FixF ranges set with slow spindles between 10 Hz and 12.5 Hz
and fast spindles between 12.5 Hz and 15 Hz. In both re-analyses,
we attempted to replicate our most prominent results, and inves-
tigated fast spindle parameters on P4 and slow spindle parameters
on F3. F3 was selected over Fz because of the higher availability of
this electrode in the sample.

Results are similar across subsamples: that is, fast spin-
dle density is negatively correlated; slow spindle density and
duration are not correlated, slow spindle amplitude is mod-
erately and positively correlated while fast spindle duration

and amplitude are strongly and positively correlated. FixF-IAM
correlations for slow spindles on F3 are as follows for density
(rBudapest1 = 0.427, p = 0.016; rBudapest2 = −0.032, p = 0.908;
rMunich = 0.129, p = 0.086), duration (rBudapest1 = 0.086,
p = 0.647; rBudapest2 = −0.143, p = 0.597; rMunich = −0.072,
p = 0.448) and amplitude (rBudapest1 = 0.353, p = 0.052;
rBudapest2 = 0.498, p = 0.049; rMunich = 0.519, p < 0.001). FixF-
IAM correlations for fast spindles on P4 are as follows for density
(rBudapest1 = −0.28, p = 0.127; rBudapest2 = −0.282, p = 0.291;
rMunich = −0.359, p < 0.001), duration (rBudapest1 = 0.844,
p < 0.001; rBudapest2 = 0.661, p = 0.005; rMunich = 0.805,
p < 0.001) and amplitude (rBudapest1 = 0.75, p < 0.001;
rBudapest2 = 0.798, p < 0.001; rMunich = 0.861, p < 0.001).

Application of the new frequency bands also did not change
the pattern of consistency of our methods significantly. With
the 10–12.5 Hz FixF windows, FixF-IAM correlations for slow
spindles on F3 are the following: rdensity = 0.083, p = 0.292;
rduration = −0.069, p = 0.39; ramplitude = 0.419, p < 0.001. With
the 12.5–15 Hz FixF windows, FixF-IAM correlations for fast
spindles on P4 are the following: rdensity = −0.149, p = 0.06;
rduration = 0.802, p < 0.001; ramplitude = 0.66, p < 0.001.

DISCUSSION
While previous studies compared sleep spindle detections
between various manual and automatic methods (Huupponen
et al., 2007; Warby et al., 2014), to our knowledge no previous
study compared individual averages of sleep spindle parameters
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Table 2 | Correlation coefficients and p-values between compatible sleep spindle parameters calculated by IAM and the fixed frequency

method.

C3 Slow Fast Fz Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r −0.072 0.095 0.379* −0.292* 0.802* 0.788* r 0.248* −0.087 0.402* −0.341* 0.737* 0.782*

p 0.364 0.230 0.000 0.000 0.000 0.000 p 0.003 0.306 0.000 0.000 0.000 0.000

C4 Slow Fast O1 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r −0.090 0.049 0.297* −0.341* 0.785* 0.814* r −0.155 0.052 0.415* −0.257* 0.793* 0.827*

p 0.255 0.541 0.000 0.000 0.000 0.000 p 0.049 0.515 0.000 0.001 0.000 0.000

Cz Slow Fast O2 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r −0.067 0.056 0.320* −0.367* 0.792* 0.842* r −0.019 0.041 0.317* −0.282* 0.775* 0.804*

p 0.430 0.511 0.000 0.000 0.000 0.000 p 0.816 0.610 0.000 0.000 0.000 0.000

F3 Slow Fast P3 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r 0.159 −0.050 0.623* −0.296* 0.665* 0.720* r −0.146 0.105 0.304* −0.347* 0.811* 0.849*

p 0.044 0.529 0.000 0.000 0.000 0.000 p 0.064 0.183 0.000 0.000 0.000 0.000

F4 Slow Fast P4 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r 0.162 −0.078 0.365* −0.235* 0.654* 0.754* r −0.144 0.116 0.260* −0.392* 0.826* 0.855*

p 0.041 0.328 0.000 0.003 0.000 0.000 p 0.069 0.143 0.001 0.000 0.000 0.000

F7 Slow Fast T3 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r 0.095 −0.086 0.429* −0.121 0.459* 0.637* r 0.048 −0.078 0.321* −0.235* 0.644* 0.724*

p 0.259 0.310 0.000 0.151 0.000 0.000 p 0.567 0.359 0.000 0.005 0.000 0.000

F8 Slow Fast T4 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
0.071 −0.074 0.421* −0.040 0.419* 0.670* r −0.051 −0.059 0.331* −0.037 0.547* 0.565*

0.404 0.383 0.000 0.637 0.000 0.000 p 0.548 0.485 0.000 0.658 0.000 0.000

Fp1 Slow Fast T5 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r 0.010 0.104 0.277* 0.052 0.349* 0.502* r −0.114 0.082 0.440* −0.352* 0.767* 0.798*

p 0.901 0.191 0.000 0.512 0.000 0.000 p 0.177 0.329 0.000 0.000 0.000 0.000

Fp2 Slow Fast T6 Slow Fast

Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude Density Duration Amplitude
r 0.237* −0.158* 0.297* −0.025 0.399* 0.526* r 0.097 0.052 0.238* −0.351* 0.703* 0.695*

p 0.002 0.046 0.000 0.753 0.000 0.000 p 0.251 0.542 0.004 0.000 0.000 0.000

Significant correlations (after multiple comparison correction) are marked with an asterisk.

calculated by various methods. Moreover, comparisons of indi-
vidual detections were usually performed on many spindles
from a small number of subjects. We investigated the con-
vergent validity of two well-known algorithms by correlating
all-night averages of individual sleep spindle parameters in a
large database of subjects. In this approach, the agreement

between individual detections is admittedly less important than
agreement between individual averages. Overall, our results
highlight both similarities and differences in the two sleep spin-
dle detection methods we compared, and they do not pro-
vide overwhelming evidence for the convergence of the two
methods.
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IAM is tuned to individual spindle frequencies as well as
individual and derivation-specific amplitude limits, making it
inherently more sensitive as evidenced by higher spindle den-
sity and longer duration. FixF, on the other hands, focuses on
the upper 5% of the amplitude distribution of filtered EEG sig-
nals. While FixF appears to detect “the tips of the icebergs”
with this approach, the fast spindles detected by FixF are able
to realistically approximate the same fast spindle durations and
amplitudes as the IAM. Concordance is much weaker, however, in
case of slow spindle amplitude, completely absent in case of slow
spindle density and duration, while a very surprising negative
correlation between fast spindle densities were found. To explain
these findings, some empirical tendencies must be considered.

First, while the 13–15 Hz FixF window for fast spindles was
similar to the empirically determined individual frequencies of
IAM fast spindles, this was not the case for the 11–13 Hz slow
spindle window. Fast spindle middle frequencies were below
13 Hz in only 11.24% of all cases and over 15 Hz in 1.87% of
cases, while slow spindle middle frequencies were below 11 Hz in
27.5% of all cases and over 13 Hz in 1.25% of all cases. This poor
demarcation of slow spindles in the FixF method might explain
why FixF slow spindle parameters correlate more strongly with
IAM fast spindle parameters than IAM slow spindle parameters
(FixF slow vs. IAM fast correlations on Cz: rdensity = −0.092 p =
0.275; rduration = 0.547 p < 0.001; ramplitude = 0.603 p < 0.001,
with similar tendencies on all electrodes, see Table 2 for correla-
tions with IAM slow spindle parameters). This finding, together
with poor agreement on density measures suggests that some FixF
slow spindles may actually be classified as fast spindles by the
IAM procedure and vice versa, explaining the confusion in both
density measures and slow spindle parameters in general. This
phenomenon is exemplified by some dissimilar findings in the
field. That is, both slow and fast sleep spindle measures corre-
late with cognitive abilities in cases when the FixF method is used
(Schabus et al., 2006, 2008), while in case of IAM fast spindles
are much more stable correlates of cognitive performance (Bódizs
et al., 2005, 2008; Ujma et al., 2014). It must be noted that sleep
spindles are not stationary sinusoidal processes: they are known to
shift frequencies (chirp). Negative spindle chirps (decreasing fre-
quencies) have been reported in humans (Andrillon et al., 2011;
Schonwald et al., 2011), while increasing spindle frequencies were
reported in rats (Sitnikova et al., 2014). These frequency shifts
are not large enough to eclipse the difference between slow and
fast spindles (Andrillon et al., 2011) but spectral chirps arising in
spindles close to the 13 Hz boundary might be large enough to
make them “jump” it and be detected in the opposite category.

Second, the average width of the individual fast spindle fre-
quency band was 1.3 Hz, while in case of slow spindles it was
only 0.94 Hz. That is, our results show that individual fast spin-
dle frequency bands rarely fell outside the 13–15 Hz range and
they were generally closer to the 2 Hz window of the FixF method
than slow spindle frequency bands. The fact the re-analysis with
FixF bands resembling the empirically determined individual fre-
quency bands of IAM (10–12.5/12.5–15 Hz, compare with IAM
frequency bands on Figure 2) did not significantly improve con-
cordance between the two methods suggests that the differences
in individual spindle bandwidth may be even more important for

the lack of concordance between the two methods than the mere
whereabouts of the frequency limits. This is in line with previous
results from an adaptive, probabilistic model (Nonclercq et al.,
2013) which reported a similar robustness to the input frequency
range.

Based on the above findings we hypothesize that the lack of
consistency between FixF and IAM slow spindle parameters is
caused by the above factors: IAM slow spindles are determined at
a lower and narrower frequency, with a larger distance from fast
spindle frequencies in the same subject. The same phenomenon
might be speculated to explain the negative correlation between
IAM and FixF fast spindle density: in subjects with higher num-
bers of fast spindles (by IAM definitions) around the 13 Hz cutoff
point cross-contamination with slow spindles may have been
elevated in the FixF method.

There is little consistency in the sleep spindle detection meth-
ods used in previous research literature concerning the relation-
ship between spindles and human cognition. Not all studies about
the relationship between sleep spindle parameters and individ-
ual differences in psychometric variables separated slow and fast
spindles: many analyzed sleep spindles in general or spectral
power from a broader frequency band (Clemens et al., 2005; Fogel
and Smith, 2006; Fogel et al., 2007; Tucker and Fishbein, 2009;
Lustenberger et al., 2012; Gruber et al., 2013). Most studies which
specifically analyzed slow and fast spindles and their correlation
with psychometric variables used a post-hoc classification of spin-
dles based on their central frequency, usually with 13 Hz as the
split point (Schabus et al., 2006, 2008; Chatburn et al., 2013).
Other studies used a slightly different ad-hoc division of sigma
power into slow (11.5–12.5 Hz) and fast (13.5–14.5 Hz) sigma
bands (Bang et al., 2014). Only a handful of studies relied on
individually determined spindle frequencies, either by using the
IAM method (Bódizs et al., 2005, 2008; Ujma et al., 2014) by com-
puting individual relative sigma power defined as power ± 2 Hz
around a single maximal spectral peak relative to the background
EEG (Gottselig et al., 2002; Geiger et al., 2011) or by using an
adaptive, probabilistic method (Nonclercq et al., 2013).

In sum, our results show that in case of fast spindles, duration
and amplitude can be estimated reliably with both fixed and indi-
vidual frequency methods. Much less consistency can be reached
in case of slow spindles, and fixed cutoff frequencies may also lead
to a poor separation of slow and fast spindles. Our results sug-
gest that the cutoff frequencies and bandwidths for slow and fast
spindles must be selected carefully and individually determined
frequency bands should be considered.

It is notable that the concordance between the two methods
is generally highest on typical spindle locations (frontal elec-
trodes for slow spindles and centro-parietal electrodes for fast
spindles). Concordance is usually lowest on temporal leads, but
remains relatively high in occipital leads, in line with the rela-
tively high spindle amplitude on these electrodes reported in the
same dataset (Ujma et al., 2014). Lead-specific findings suggest
that the lack of concordance between different spindle detection
algorithms is especially problematic when non-prominent (e.g.,
temporal) leads are investigated.

There are limitations of our study that must be mentioned.
First, the technical standards of the American Academy of Sleep
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FIGURE 3 | Visual and automatic sleep spindle detections in a 20 s

N2 sleep segment recorded from a healthy adult male. Unfiltered
EEG with the visual detections of an expert rater are shown in the

top data line. Appropriately filtered EEG with automatic (IAM and
FixF) slow/fast spindle detections are shown in the bottom 4 data
lines.

Medicine (2007) are not met in several subsamples of our study.
That is, the analog-to-digital conversion rate is low (8 bits) in
the largest subsample (N = 114), while the sampling rates are
close to the minimally required values (249 and 250 Hz) in
two subsamples. Second, while the study compared methodically
well-established methods with previous practical applications in
science, it must be acknowledged that IAM and the FixF algo-
rithm operate with different philosophical underpinnings, they
are designed to detect different features: the FixF method consid-
ers the background-relative amplitude of the filtered signal as the
key feature of a spindle event, while IAM looks for an amplitude
threshold based on the inflection points of the individual EEG
spectrum (IAM and FixF detections, together with visual detec-
tions are illustrated on Figure 3). Therefore, a perfect agreement
between their results cannot be expected, and in the absence of a
“gold standard” the inherent superiority of any method cannot be
ascertained.
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Using a quadratic parameter
sinusoid model to characterize the
structure of EEG sleep spindles
Abdul J. Palliyali, Mohammad N. Ahmed and Beena Ahmed*

Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha, Qatar

Sleep spindles are essentially non-stationary signals that display time and

frequency-varying characteristics within their envelope, which makes it difficult to

accurately identify its instantaneous frequency and amplitude. To allow a better

parameterization of the structure of spindle, we propose modeling spindles using a

Quadratic Parameter Sinusoid (QPS). The QPS is well suited to model spindle activity

as it utilizes a quadratic representation to capture the inherent duration and frequency

variations within spindles. The effectiveness of our proposed model and estimation

technique was quantitatively evaluated in parameter determination experiments using

simulated spindle-like signals and real spindles in the presence of background EEG. We

used the QPS parameters to predict the energy and frequency of spindles with a mean

accuracy of 92.34 and 97.73% respectively. We also show that the QPS parameters

provide a quantification of the amplitude and frequency variations occurring within sleep

spindles that can be observed visually and related to their characteristic “waxing and

waning” shape. We analyze the variations in the parameters values to present how they

can be used to understand the inter- and intra-participant variations in spindle structure.

Finally, we present a comparison of the QPS parameters of spindles and non-spindles,

which shows a substantial difference in parameter values between the two classes.

Keywords: sleep spindles, sleep spindles model, sleep spindle structure, sleep stages, sleep spindle morphology

Introduction

Spindles are rhythmic transients present in the electroencephalogram (EEG) characteristic of stage
two sleep. Though varying definitions of spindles exist in literature, the American Academy of
Sleep Medicine (AASM) has standardized them by describing spindles as “oscillatory bursts on
EEG, of 11–16Hz sinusoidal waves, with a duration of 0.5–2 s and waxing and waning envelope”
(Rechtschaffen and Kales, 1968; Iber et al., 2007).

Sleep spindles are used to aid sleep staging (Rechtschaffen and Kales, 1968; Iber et al., 2007).
Recent research has shown that they play a role in memory formation and sleep “stability” (Wei
et al., 1999; Fogela and Smith, 2011). They have also been found to have an association with various
pathological phenomenon such as depression, epilepsy, Parkinson, Alzheimer, and schizophrenia,
further raising their significance (Bódizs et al., 2009; Wamsley et al., 2012; Tezer et al., 2014). For
example in Fogela and Smith (2011) the authors propose that spindles can be used as possible phys-
iological markers of intellectual ability; spindle properties were found to be highly correlated with
tests of intelligence such as IQ tests. The authors also discuss the role of spindles in the consolida-
tion of declarative memory by aiding the interaction between the hippocampus and the thalamus.
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Similarly, in Bódizs et al. (2005), the authors showed that the
grouping and density of fast spindles correlated positively with
mental ability measured from standard Raven Progressive Matri-
ces test. Authors in Tezer et al. (2014) reported a significant
decrease in the power and density of spindles before epileptic
seizures especially in extra temporal lobe epilepsies. Participants
with schizophrenia were also found to have drastically reduced
density, number and coherence of sleep spindles (Wamsley et al.,
2012).

These analyses require accurate labeling of sleep spindles in
EEG recordings, which is time-consuming and error-prone when
done manually. Automated spindle detection is thus gathering
increasing attention from the research community. As spindles
are of sinusoidal nature, characterized by progressively increas-
ing, then gradually decreasing amplitude, most spindle detectors
utilize features best suited for sinusoidal functions such as Filter
banks, Fast Fourier Transforms, Wavelets, and Matching pursuit
(Schönwald et al., 2006; Huupponen et al., 2007; Bódizs et al.,
2009). The accuracy of these features however decreases when the
frequency content of the background EEG overlaps the spindle
range causing an increase in the number of false positives. Auto-
matic sleep spindle detection is also hindered due to fluctuations
in the frequency patterns and large inter-individual variability
(Campbell et al., 1980; Kunz et al., 2000). However, a more signif-
icant issue in the development of accurate sleep spindle detectors
is the proper training or tuning of these detectors. The broad
AASM definition for sleep spindles leaves the manual marking of
spindles in EEG data open to some interpretation, leading to low
inter-expert agreement for spindle scoring (Kunz et al., 2000). A
study by Wendt et al. found an average intra-expert agreement
of 72 ± 7% (κ : 0.66 ± 0.07) and an average inter-expert agree-
ment of 61 ± 6% (κ : 0.52 ± 0.07) (Wendt et al., 2015). Thus,
the accuracy of sleep spindle detectors when trained and tested
using data scored from a single scorer can fall significantly when
tested against data scored by other experts. This also makes it
difficult to develop validated assessment criteria for automatic
sleep spindle detectors to compare the performance of proposed
detectors.

A number of mathematical models have been proposed to bet-
ter characterize the structure of sleep spindles, thus enabling a
better understanding of their structure and facilitating further
analysis (Olbrich and Achermann, 2005, 2008; Xanthopoulos
et al., 2006; Ktonas et al., 2007; Perumalsamy et al., 2009; Non-
clercq et al., 2013). InOlbrich andAchermann (2005), the authors
fitted autoregressive (AR) models onto EEG data and used it to
analyze oscillatory patterns including spindles. The authors fur-
ther expanded their work in Olbrich and Achermann (2008) to
study the temporal organization of spindles. Though, spindles
were detected by studying damping constants of the AR model,
no physical characteristics of the spindle were modeled. A similar
approach was later proposed in Perumalsamy et al. (2009) where
oscillations in EEG including spindles were detected using AR
models through surrogate data testing. In Nonclercq et al. (2013),
the authors modeled the amplitude and frequency of spindles
using bivariate normal distributions. The work, motivated by the
widely varying values of spindle properties, used tolerance inter-
vals of normal models to detect spindles. However, it was limited

to the detection of spindles and did not model intra-spindle
variations of these properties.

Spindle models as above have been adequate for applications
such as the detection of spindles. However, they fail to incor-
porate details such as the intra-spindle variation of frequencies
or “skewness” of the envelope. These details more than often
vary with abnormalities or other factors, requiring a model that
parameterizes these variations. As spindles have strong amplitude
and frequency modulations, non-stationary sinusoidal analysis
where the amplitude and frequency are allowed to evolve within
the analysis frame are required. In this context, Ktonas et al.
(2007) modeled spindles as amplitude and frequency modulated
sinusoids. The model consisted of six parameters that captured
the time varying microstructure of spindles. The authors also
compared various time-frequency analysis methods for param-
eter estimation in Xanthopoulos et al. (2006) and concluded that
complex demodulation provided the best results. They report
promising preliminary results with simulated spindles and some
selected spindles from three healthy controls and three demen-
tia participants (Ktonas et al., 2009), but do not present detailed
validation studies with the model parameters. Furthermore, the
sinusoidal form approximation imposed by the model means
non-sinusoidal variations in the spindle envelope and instan-
taneous frequency, as shown in Figure 1, cannot be tracked
completely as also discussed by the authors in Ktonas et al. (2009).

In this paper, we extend the work done on spindle modeling
using amplitude and frequencymodulation with a newQuadratic
Parameter Sinusoid (QPS) model to improve the representation
of the intra-spindle amplitude and frequency variations without
increasing complexity. The model utilizes a quadratic represen-
tation to modulate the specific amplitude and frequency vari-
ations within spindles. The QPS model was originally used to
model non-stationary speech and music (Marques and Almeida,
1989). Non-stationary speech frames were approximated as a
sum of time varying frequency and amplitude sinusoids and spec-
trally analyzed using Short Time Fourier Transforms. The QPS
model is well suited to model spindle activity due to its ability
to accurately model instantaneous frequency, phase and ampli-
tude in non-stationary signals without the need to assume local
stationarity.

The rest of the paper is structured as follows. In the Mate-
rials and Methods section we define the QPS model, explain
the methodology utilized to estimate the model parameters and
experiments conducted to validate the QPS model. We then
summarize the results obtained from parameter estimation on
simulated spindles with additive white noise and delta EEG as
well as real spindles, followed by a discussion of the results and
conclusions.

Materials and Methods

Quadratic Parameter Sinusoid
Sleep spindles have a waxing and waning sinusoidal form which
enables them to be represented as a modulated sinusoidal whose
instantaneous frequency and amplitude continuously varies with
time. A sleep spindle s (t) can thus be represented as
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FIGURE 1 | (A) Band passed EEG spindle and its envelope (B) Non-sinusoidal variation of the spindle frequency with time.

s (t) = eA(t)cos P(t) (1)

where A(t) represents the instantaneous logarithmic amplitude
and P (t) the instantaneous phase. The instantaneous frequency
F(t) can be obtained from the time derivative of P(t)/2π. Due
to the non-stationary nature of EEG, both A(t) and F(t) will be
time-varying, making their determination non-trivial. For each
spindle, as shown in Ito and Yano (1989), both A(t) and P(t) can
be approximated using Taylor’s polynomials around a center time
tc. P (t) is given by

P(t) =
∞
∑

n= 0

pn(t − tc)
n/n ! (2)

where,

pn =
d(n)P(tc)

dt(n)
(3)

For frequency to be time-varying, there must be at least one
non-zero pn for n ≥ 2 in P(t). Hence, the minimum possible
approximation of P(t) would be as a quadratic function if the
higher order terms are assumed to be negligible. A(t) can simi-
larly be represented as a quadratic function. This allows the sleep
spindle to be defined as a Quadratic-Parameter Sinusoid (QPS)
that is given by

s (t) = e(a+ bt+ ct2)cos
(

d + et + ft2
)

(4)

where a, b, c, d, e and f are the parameters of the quadratic func-
tions A (t) and P(t) from (1) respectively. As (4) gives only the
real part of the QPS, the general form of s (t) is given by

s (t) = e(a+ bt+ ct2)ei(d+ft+gt2) (5)

Figure 2A compares a spindle obtained from an EEG record-
ing to a QPS model generated spindle in Figure 2C. The model

was applied to the band passed version of the spindle as shown
in Figure 2B. The figure shows considerable similarities between
the waxing and waning envelope of the spindle and model.

The 6 parameters (a–f) of the QPS function determine charac-
teristics such as frequency, change in frequency, amplitude, vari-
ation in amplitude and the envelope shape of the signal s(t). The
parameters a, b, and c largely determine the amplitude and the
shape of the envelope of the QPS and hence, that of the spindle.
a is the approximate instantaneous log-amplitude at time, t = 0,
at which the QPS is centered; b the rate of change of amplitude;
c the Gaussian parameter which determines the shape and dura-
tion of the curve (Abe and Smith, 2005). In symmetrical spindles,
b would be zero, with increasing/decreasing values shifting the
time at which the spindle reaches maximum amplitude. Negative
values of c cause the signal to decay, giving the spindle its ris-
ing and waning shape. Figures 3A–C illustrates the variations in
amplitude of s(t) caused by increasing values of b and decreasing
values of c.

The remaining three parameters d, e, and f influence the
frequency characteristics and phase of the signal. d represents
the initial phase at t = 0. The initial frequency of the sig-
nal is given by e, whereas f represents the frequency rate
change (Ito and Yano, 2007). In the absence of drastic varia-
tions, parameter e determines the dominant spindle frequency
and f causes a linear variation in this frequency within the spindle
duration. Figures 3D–F show the variation that occurs in spindle
frequency with increasing e and f .

The highly nonlinear structure of the QPS signal makes
parameter estimation of the QPS for a real spindle non-trivial.
The problem is further compounded due to the presence of back-
ground noise in the EEG.We used non-linear least square (NLLS)
estimation using the “Levenberg-Marquardt” technique to obtain
the parameters for the QPS model due to its relative simplicity
and dependability.

NLLS estimation algorithms are iterative numerical meth-
ods that attempt to converge toward optimal parameter val-
ues by successively minimizing a sum of squares cost function.
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FIGURE 2 | (A) Raw spindle from MASS-C1/SS2 EEG recording (B) Band-passed version of the EEG spindle (C) QPS spindle generated using the parameters of the

band–passed version of the spindle.

FIGURE 3 | Change in simulated QPS spindle with (A) b = 0, c = −20 (B) b = 5, c = −30 (C) b = 10, c = −40 (D) e = 50, f = 0 (E) e = 70, f = 20 (F) e = 90,

f = 40.

The “Levenberg-Marquardt” technique utilized in this work is a
standard NLLS implementation that adaptively varies the param-
eter update between Gradient descent and Gauss-Newton meth-
ods using a damping factor. If an iteration results in a large
reduction of the cost, the damping factor is decreased bringing

the algorithm closer to the Gauss-Newton approach. On the
other hand, if an iteration produces negligible cost reduction, the
damping factor is increased to mimic a more Gradient-descent
strategy. Like all NLLS algorithms, the algorithm can converge to
local minima and is heavily dependent on the initial conditions.
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In our work, convergence was ensured by initializing the param-
eters to spindle-like values and applying constraints consistent
with the AASM spindle definition.

Experimental Validation Methodology
Our proposed QPS spindle model was validated using two
datasets. The first dataset consisted of a group of simulated spin-
dles with known parameter values. The second dataset consisted
of real spindles from the MASS (Montreal Archive of Sleep
Studies) database (O’Reilly et al., 2014). This database includes
about 1700 h of PSG recording sampled at 256Hz (O’Reilly et al.,
2014). EEG recordings, annotated by two expert scorers, V4 and
V5, were retrieved from the 19 participants of MASS-C1/SS2
database. The participants in this subset comprised of 11 women
and 8 men with a mean age of 24.3 and 23.2 years respectively
and an age range of 18–33 years (O’Reilly et al., 2014). The two
expert scorers, V4 and V5 had an average Cohen’s Kappa of
0.389 across all participants (O’Reilly and Nielsen, in revision).
“It should be noted that relatively low inter-rater agreement is
expected between these two scorers since V4 used traditional
AASM scoring rules whereas V5 used an approach similar to Ray
et al. (2010), O’Reilly and Nielsen (in revision).” Recordings from
4 participants (01-02-0004, 01-02-0008, 01-02-0015, and 01-02-
0016) were not scored by V5 as they “were judged reflecting poor
quality sleep (e.g., alpha intrusion during N2) or intermittent sig-
nal quality/artifact” (O’Reilly and Nielsen, in revision). Hence
these recordings were discarded; spindles in the second dataset
were thus isolated from the EEG recordings of 15 participants
using the annotations of two expert scorers, V4 and V5, with 500
to 1000 spindles per participant. Prior approval for the study was
obtained from the TAMU Institutional Review Board.

The accuracy of parameter estimation by the NLLS estima-
tion algorithm was first validated on a simulated spindle dataset,
as artificial spindles provided known reference values allowing
errors to be quantified. Next, the robustness of the NLLS to vary-
ing levels of additive noise was quantified using “Goodness of Fit”
measures. White Gaussian noise with wide-ranging SNR values
and EEG segments consisting of strong delta components (repre-
sentative of background EEG) were added to a number of simu-
lated spindles. The QPS parameters of the resultant noisy signal
were obtained using NLLS and compared with the parameter
values of the original QPS prior to addition of noise.

The performance of the model with real EEG data in MASS-
C1/SS2 was then evaluated by determining the error in esti-
mated spindle frequency and energy for spindles marked by
both the expert scorers individually and the common spindles
marked by both scorers. Trends in the distribution of param-
eter values across all participants were also analyzed to obtain
a better understanding of how spindle structure varied across
the participants and how spindles marked by two scorers affect
the distribution of these parameter values. The impact of each
QPS parameter on the overall spindle shape was also studied by
tracking variations in parameter values over the spindle value
range. Finally, the ability of QPS parameter values to differenti-
ate between spindles and non-spindle EEG activity was analyzed
by comparing parameter values for sample non-spindle and spin-
dle EEG regions in MASS-C1/SS2 database. The results from

each of the above validation experiments are detailed in the next
section.

Results

Validation of QPS Model on Simulated Spindles
Accuracy of Parameter Estimation
The parameters of a simulated spindle with added white Gaus-
sian noise at an SNR of 10 dB were estimated using the NLLS
algorithm. Both the true and estimated parameter values are
given inTable 1, with the estimated parametersmatching the true
values within a narrow confidence interval. Figure 4 illustrates
the estimated signal (shown in red) superimposed on the noisy
signal (shown in blue).

NLLS Performance in the Presence of White

Gaussian Noise
We computed the following goodness of fit (GOF) measures on
five simulated spindles with spindle like parameter values and
varying SNR values:

1. Sum of Squared Errors (SSE)

SSE =
n

∑

i= 1

(si − ŝi)
2 (6)

TABLE 1 | True and estimated parameters for a simulated spindle.

Parameter True value Estimated value Confidence bounds

a 0 0.003995 (−0.01843, 0.02642)

b 0 0.01055 (−0.1505, 0.1716)

c −20 −19.35 (−20.35, −18.35)

d 0 −0.01817 (−0.0406, 0.004255)

e 75 75.03 (74.87, 75.19)

f 0 0.6464 (−0.3566, 1.649)

FIGURE 4 | Simulated QPS spindle with white Gaussian noise and the

predicted QPS spindle using estimated parameters.
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where, si is the i
th sample of the original signal, ŝi the i

th sam-
ple of the estimated signal and n is the number of samples, in
our case n is 256. An ideal fit will result in an SSE= 0.

2. Rsquare

Rsquare = 1−
SSE

SST
(7)

where, SST =
∑n

i=1 (si − s)2 is the total sum of squares about
the mean s. Rsquare measures the proportion of variance
accounted for by the model and should ideally be 1.

3. Degree of Freedom adjusted Rsquare (Adjusted Rsquare)

AdjRsquare = 1−
SSE(n− 1)

SST(v)
(8)

where, v = n − m; v is the residual degree of freedom and m
the number of coefficients, In our case,m is 6 and v equals 250.

4. Root Mean Squared Error (RMSE)

RMSE =
√
MSE =

√

SSE/v (9)

Figures 5A–D plot the four GOF measures for a range of SNRs
in the five simulated spindles. As seen, all four GOF measures
approach their ideal values with increasing SNR. To determine
the impact of the initial parameter values used in the NLLS algo-
rithm on the final converged values, we also executed the NLLS
algorithm using a range of different initial conditions for the

FIGURE 5 | GOF measures calculated over a range of SNR values for

five simulated spindles (A) Sum of Squared Error (B) R-Squared Error

(C) Adjusted R-Squared Error (D) Root Mean Squared Error.

same spindle. Figures 6A–D show that the parameter estimates
still converge at all SNRs despite variation in initial conditions
indicating the robustness of NLLS algorithm. As expected, both
Figures 5, 6 show that parameters estimated with the NLLS
converged to their true values with higher SNR.

NLLS Performance in the Presence of Delta Noise
We also evaluated the performance of NLLS in estimating QPS
model parameters in the presence of strong delta components,
since real EEG spindles have these components. The QPS model
shown in blue in Figure 7A was simulated using the true param-
eter values from Table 2. A random EEG segment with delta
components was then retrieved from the raw EEG recording of
MASS-C1/SS2 participant 1, amplified by a factor of 2 and then
added to the simulated QPSmodel from Figure 7A. The resulting
signal is shown in red in Figure 7A. The NLLS algorithm was
then used to estimate the parameters of the resulting signal with
strong delta components. The QPS model generated using these
estimated parameters is shown in red in Figure 7B superimposed
on the original simulated noise-free spindle in blue. As seen from
Figure 7B, there is no marked difference between the simulated
QPS model and predicted QPS model in the presence of delta
noise.

The accuracy of the QPS model parameters in the presence
of delta noise was evaluated by adding 190 raw EEG segments

FIGURE 6 | GOF measures calculated over a range of SNR values for a

single spindle but with different initial values for NLLS (A) Sum of

Squared Error (B) R-Squared Error (C) Adjusted R-Squared Error (D)

Root Mean Squared Error.
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FIGURE 7 | (A) Simulated QPS spindle along with the spindle with added delta components (B) Simulated QPS spindle along with the predicted QPS spindle from

the noisy spindle with added delta components.

TABLE 2 | True and estimated parameter values in the presence of delta

noise.

Parameter True Mean estimated Minimum Maximum

value value value value

a 5 4.990 4.722 5.290

b 4 4.122 1.369 8.025

c −30 −29.998 −47.685 −14.420

d 1 0.903 −5.363 7.342

e 70 70.098 67.138 77.264

f 5 4.220 −28.004 20.876

with delta components to the simulated model from Figure 7A.
The parameter values of the QPS model for these noisy signals
were then estimated using NLLS and compared to its actual value.
Table 2 shows the mean, minimum and maximum estimated
parameter values and the range of estimated values as computed
by NLLS in the presence of delta noise. The percentage differ-
ence between the true parameter value and the mean estimated
parameter value is less than 3% for all parameters except for
parameters d and f , where the percentage difference is 9.7 and
15.6% respectively.

The boxplot in Figure 8 shows the distribution of estimated
parameter values in the presence of delta noise. The true param-
eter value is indicated using a blue square. The distribution of
parameter values is shown using a red box, with the whiskers
encompassing ±2.7σ of the data set. As seen from Figure 8 and
Table 2, the greatest variation is seen in the values of parameters
c and f , indicating a lower accuracy in estimating these models
parameters in the presence of delta noise.

Validation of QPS Model on Real Spindles
Accuracy of Energy and Frequency Estimation
The QPS model was tested on real spindles by estimating
model parameters for spindles in the EEG data of 15 partici-
pants obtained from the MASS-C1/SS2 database. Since actual

FIGURE 8 | Boxplot depicting spindle parameter values in the presence

of random delta components.

spindle parameter values were not known, the QPS model was
validated by computing the energy and frequency of the QPS
generated spindle and comparing it to the spindle energy and
frequency. Energy was calculated by computing the area within
the envelope. As the envelope of the QPS generated spindle
is given by parameters a, b, and c, comparing the energy of
the generated spindle allowed us to validate the accuracy of
these model parameters. The frequency of the QPS generated
spindle was obtained from the parameter estimate (e/2π) and
the spindle frequency obtained from the most dominant peak of
the frequency spectrum.

The boxplot in Figure 9 shows the distribution of energy and
frequency error using scorers V4, V5, and both V4 and V5; here
the whiskers correspond to ±2.7σ. Assuming normal distribu-
tion, the frequency error of ∼99.3% of the data set is ≤4.6% for
scorer V4 and ≤6.9% for V5. The energy error is ≤15.9% for V4
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FIGURE 9 | Box plot depicting percentage error in model energy and

frequency using data from MASS-C1/SS2 participants.

and ≤31.4% for V5. The low variation in frequency error among
the scorers as seen in the figure is due to the tighter constraints on
frequency values in spindle-marking rule; whereas, the ambigu-
ous definition of spindle amplitude leads to a higher variation
in energy error in the two scorers. The subject-specific scoring
criteria used by V5 which was based upon each subject’s mean
peak spindle amplitude meant that their marked spindles fell in a
different and narrower amplitude range to the range of spindles
marked by V4; this resulted in a low average inter-scorer agree-
ment betweenV4 andV5 and higher error rate for the QPSmodel
for V5 marked spindles. The relatively low percentage frequency
error of the QPS model suggests that it accurately captures the
frequency content of spindle. On the contrary, there is a rela-
tively higher energy error as our model attenuates faster than
what occurs in actual spindles as seen in Figure 2.

Table 3 shows the mean percentage error in energy and fre-
quency of spindles as scored by scorers V4 and V5 and the mean
percentage error in energy and frequency of spindles marked in
common by both these scorers. As seen, the overall average mean
error in energy and frequency for all participants is the lowest for
spindles marked by both the scorers (last row of Table 3). Fur-
thermore, the same observation holds true for the mean error
in energy and frequency for most of the individual participants.
Reliable spindle scoring is typically achieved by using only spin-
dles marked by multiple scorers. The lower error rate for com-
monly marked spindles indicate that the QPS model provides an
accurate representation of “reliably” marked spindles.

Detailed Validation on MASS-C1/SS2 Database
Figures 10A–F show the distribution of parameter values for all
participants using scorers V4, V5, and both V4 and V5. Here, the
whiskers correspond±2.7σ of the data set. As seen, parameters d
and e have an identical distribution for both scorers, V4 and V5.
This indicates that there is greater agreement among the scorers
in the frequency and phase content of the signal. Furthermore,

TABLE 3 | Mean percentage error in energy and frequency of spindles.

MASS-C1/SS2

Participant #

Mean energy error Mean frequency error

V4 V5 V4 and V5 V4 V5 V4 and V5

1 4.204 10.474 4.045 1.379 2.764 1.389

2 5.383 10.606 5.079 1.631 2.198 1.610

3 4.059 4.059 4.114 1.602 1.602 1.730

5 5.150 11.524 5.032 1.866 3.090 1.916

6 4.849 11.866 4.685 1.880 4.668 2.085

7 8.567 15.262 7.907 3.023 3.292 2.197

9 5.510 14.340 5.492 2.249 3.618 1.543

10 6.127 15.683 6.242 2.080 5.092 2.022

11 4.509 11.640 4.798 1.569 2.258 1.522

12 8.209 13.598 7.689 2.138 4.087 2.069

13 5.030 12.380 4.850 2.000 1.902 1.299

14 5.380 13.420 5.469 1.639 2.367 1.561

17 3.568 12.662 3.579 1.640 2.886 2.022

18 8.520 11.478 7.020 2.813 3.356 2.549

19 5.144 10.021 5.362 1.677 2.423 1.795

Average 5.614 11.934 5.424 1.946 3.040 1.821

for all parameters, the spindles marked in common by both V4
and V5 show a distribution pattern similar to that of V4. The
lower agreement among the scorers regarding spindle amplitude
is due to the different scoring criteria used by the scorers. V4 used
standard AASM scoring rules while V5 used a subject-specific
amplitude threshold to score spindles (Ray et al., 2010).

The error bar in Figures 11A–F, with whiskers represent-
ing ±2σ show the distribution of parameter values across all the
15 participants using spindles that have been marked in common
by scorers V4 and V5. As seen, the mean values of parameters a
and b fall within the narrow range of (2.5, 3) and (0, 1). Addi-
tionally, the mean values for parameter e fall within the spindle
characteristic frequency range of 11–16Hz for all participants.
The low variance of parameters a and b for scorers, as given in
Table 4, is in line with spindle amplitude and shape scoring crite-
ria. The table also indicates that parameters c, d, e, and f have the
most variation. The variance in e is representative of the 11–16Hz
spindle frequency range. Parameters a, b, and e give spindles the
characteristic waxing and waning shape as defined in the AASM
guidelines whereas c, d, and f are more likely to account for the
intra- and inter-participant variability in the spindle structure.
d is more likely to account for the intra-participant variability
whereas c and f could impact the inter-participant variability in
the spindle structure.

Effect of QPS Model Parameters on Spindle
Shape
To evaluate the effect of variation of each QPS parameter on
the shape of a marked spindle from the MASS-C1/SS2 database,
we linearly increased the value of each of the six parameters of
the fitted QPS spindle while keeping the value of the other five
parameters constant.We thus regenerated newQPS spindles with
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FIGURE 10 | Box plot depicting the comparison of spindle parameter values using different scorers for parameters (A) a (B) b (C) c (D) d (E) e and (F) f

using data from MASS-C1/SS2 participants.

FIGURE 11 | Error bar depicting the distribution of values for parameters (A) a (B) b (C) c (D) d (E) e and (F) f for each MASS-C1/SS2 participant. Here,

the whiskers represent 2σ.
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TABLE 4 | Variance of parameter values for all participants.

Parameters V4 V5 V4 and V5

a 0.195 0.575 0.168

b 1.115 3.946 1.087

c 14.252 44.246 15.265

d 21.727 20.761 22.027

e 16.790 20.640 14.928

f 25.677 57.356 24.456

five constant parameters and a linearly increasing sixth parame-
ter. Instead of choosing an arbitrary constant parameter value,
the mean value of the other five parameters of spindles from par-
ticipant 1 of MASS-C1/SS2 (01-02-0001) scored by scorer V4 was
used.

Parameter a
Figure 12A presents the generated QPS spindle for different val-
ues of parameter a. The plots demonstrate that increasing the
value of a increases the peak to peak of the generated spindle
but does not impact the sinusoidal content of the signal. As a
increases from a = 1.89 to 2.76, the peak to peak value increases
from 13.1 to 31.4, thus signifying that the amplitude of generated
QPS spindle has a strong positive correlation to the value of a.

Parameter b
Figure 12B shows generated QPS spindles with varying values
of parameter b. It can be observed that parameter b values
of −1.27,−0.63, and 0.686 changes the peak to peak value of
the generated spindles to 28.6, 27.1 and 27.2 respectively, but
the relative change in peak to peak value is not as pronounced as
the variation caused by change in a. Figure 12B further illustrates
that b produces asymmetry in the spindle, with the spindle
shifting along the time axis.

Parameter c
Figure 12C presents the generated QPS spindles for different
values of parameter c. The plots indicate that parameter c con-
trols the rate of decay while producing minute variations in the
peak to peak value of generated QPS spindles. The decay rate
decreases with increasing value of c. For instance, Figure 12C
shows that the fastest decay rate occurs with the lowest value of
c (c = −14.2), but as c approaches 0 (c = −2.77), the generated
spindle loses its characteristic “spindle-like” shape. Only a small
number of spindles in the MASS-C1/SS2 database had values of c
approaching 0 (0.5% of all spindles), indicating a low proportion
of cases showing a large fitting error.

Parameter d
Generated QPS spindles with varying values of parameter d are
shown in Figure 12D. A dashed black line has been added in the
individual plots of Figure 12D to indicate the value of t at which
the spindle attains the maximum peak amplitude value. These
plots demonstrate that the variation in parameter d induces a
phase shift in the generated spindle. Since parameters a, b, c,
e, and f are fixed, all three spindles shown here have the same

amplitude and frequency with only the position of the maximal
value shifting due to d (phase shift).

Parameter e
The value of parameter e and the corresponding QPS model gen-
erated spindle can be seen in Figure 12E. The figures indicate that
increasing the value of parameter e increases the frequency of the
generated spindle without affecting its amplitude, thus corrobo-
rating that parameter e corresponds to the angular frequency of
the spindle [see the Accuracy of Energy and Frequency Estima-
tion section]. Discarding outliers, we found all values of e to fall
within the characteristic spindle frequency range of 11–16Hz.

Parameter f
Figure 12F shows the value of parameter f and the corresponding
QPS spindle. The initial frequency was fixed at a constant value
of 13.2Hz. As seen here, parameter f values of−11.2,−3.62, and
4.4 changes the model frequency to 13.5, 14, and 14Hz respec-
tively. The figures indicate that increasing the value of parameter
f inducesminor variations in the frequency of generated spindles,
thus signifying that the intra-spindle variation in the frequency of
the QPS spindle is correlated to the change in f .

Variation of Parameter Values in an Overnight
Recording
Figure 13 provides the variation in the QPS parameter values for
the spindles marked by scorer V4 in the overnight recording of
MASS-C1/SS2 participant 3 (01-02-0003). As expected from the
results in Table 4, the least variation over the night’s spindles can
be seen in parameters a and b, whereas the most variation is in
c, d, e, and f . Interestingly all parameters show a cyclic rise and
fall over the course of the night. Figure 13B shows a decrease in
the variation of parameter b and increase in its minima during the
middle of the recording. Figure 13D also shows a decrease in the
variation of parameter d, however this occurs later in the record-
ing and is accompanied by a visible dip in the maxima values
instead. Parameters a and b on the other hand show an increase
in the peak-to- peak values during the middle of the recording.
Figure 13 gives an example of how the QPS parameter values of
spindles in an overnight recording can be tracked to better under-
stand the natural physiological variations that can occur during
the night.

Comparison of QPS Spindle and Non-spindle
Parameters
In our final experiment, the NLLS algorithm was applied to ran-
dom non-spindle EEG regions. These were obtained by randomly
selecting 500 segments of unmarked EEG data that were 1 second
in duration using the two scorers, V4 and V5. The data included
all the 15 MASS-C1/SS2 participants and were classified into two
groups. The first group contained non-spindles from only sleep
stage two (Group 1), whereas the second group contained non-
spindles from all sleep stages (Group 2). Special focus was paid
to stage two data (Group 1) as spindles are typically observed in
EEG during sleep stage two. The resulting set of parameter values
given by NLLS were then compared to those obtained from QPS
spindles.
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FIGURE 12 | Variation of QPS spindles with varying values of (A) a (B) b (c) c (D) d (E) e and (F) f. Here, the parameter values are changed incrementally and

the resulting effect on the QPS model is observed.

Table 5 shows the results from a two-sided non-parametric
t-test comparing parameter values from QPS spindles and
non-spindles using the mean spindle parameter values as
obtained in the Detailed Validation on MASS-C1/SS2 Database
section. Here, h = 0 indicates that the null hypothesis (parameter
values from spindles and non-spindles come from distributions
with equal means) cannot be rejected at a significance level of
1%. The p-value for each parameter is also shown in Table 5. As
seen, parameters a and cwere significant at the 0.01 level for both
scorers and the two groups. With Group 2 non-spindles, b, e, and
f were also significantly different from spindles for scorer V5 but
not for V4.

Table 6 shows the results from a two-sided non-parametric
t-test using different sets of initial conditions for spindles and
non-spindles. Given the wide range of possible non-spindle
waveforms, the NLLS was initiated with all parameters = 0
for non-spindles, whereas the NLLS was initialized with the
mean spindle parameter values for spindles. As seen in Table 6,
all parameters show significant difference for both the scorers
and the two groups; with the only exception being Group 1
non-spindles for parameter c of scorer V4.

The dependency of the NLLS on the initial conditions lim-
its the parameters of QPS function from accurately differentiat-
ing between spindles and non-spindles, as seen from the results
in Tables 5, 6. We expected a significant difference in parame-
ter e values for spindles and non-spindles. However when the
initial value of parameter e for both non-spindles and spin-
dles was set at 90, the value corresponding to the spindle fre-
quency, parameter e values for non-spindles converged to a
local minimum close to that value; significant differences in
parameter e values could thus not be observed in the results
from scorer V4. The difference in parameters a and c for all
the groups using both scorers indicates significant difference
in the amplitude variations of QPS spindles and non-spindles.
Using different initial conditions for non-spindles resulted in
significantly differences for all parameter values from those
of spindles.

Discussion and Conclusions

In this paper we proposed a new method to model the instanta-
neous frequency and amplitude variations occurring within sleep
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FIGURE 13 | Variation in values of parameters (A) a, (B) b, (C) c, (D) d,

(E) e, and (F) f of MASS-C1/SS2 participant 3 during an overnight

recording.

TABLE 5 | Results of two sided t-test comparing parameters obtained

from QPS spindles and non-spindles using same initial conditions.

Parameters V4 (Group 2) V5 (Group 2) V4 (Group 1) V5 (Group 1)

h p h p h p h p

a 1 0 1 0 1 0 1 0

b 0 0.112 0 0.052 0 0.263 1 0

c 1 0 1 0 1 0 1 0

d 0 0.051 0 0.429 0 0.559 0 0.379

e 0 0.809 1 0.003 0 0.550 1 0

f 0 0.063 1 0 0 0.011 1 0

spindles. Our proposed QPS model is able to account for the
non-stationarity observed in sleep spindles within the analysis
window by accurately approximating the frequency and logarith-
mic amplitude of the signal using quadratic functions of time.
Our results illustrate that QPS successfully models the various
intra-spindle characteristics within its six parameters. Parameter
estimation using standard NLLS methods resulted in good con-
vergence and was robust in the presence noise, both of which are
vital given the presence of background EEG. The relative error
in frequency estimates was less than 5% when compared to the
dominant peak in the spindle frequency spectrum for a majority
of the participants.

The reversibility between the determined parameters and sig-
nal waveform is also an important characteristic of the QPSmod-
eling. As seen in Figures 4, 7, it is possible to regenerate a cleaner
version using the QPS parameters. Unlike other techniques, the
QPSmodel also provides the instantaneous phase, which is indis-
pensable in signal reconstruction. The results in the Validation of
QPS Model on Simulated Spindles section show that it possible
to use the QPS to regenerate cleaner versions of spindles in EEG
with large artifacts and background noise. The noise component

TABLE 6 | Two sample t-test result comparing parameters obtained from

QPS spindles and non-spindles using different initial conditions.

Parameters V4 (Group 2) V5 (Group 2) V4 (Group 1) V5 (Group 1)

h p h p h p h p

a 1 0 1 0 1 0 1 0

b 1 0 1 0 1 0 1 0

c 1 0.003 1 0 0 0.331 1 0

d 1 0 1 0 1 0 1 0

e 1 0 1 0 1 0 1 0

f 1 0 1 0 1 0 1 0

identified in the spindles could then be used to de-noise adjacent
areas of the sleep EEG.

Characterizing sleep spindles using the QPS parameters could
help restrict the inconsistency in scoring due to the differing sub-
jective interpretation of scorers, which will in turn assist in the
proper training and tuning of accurate sleep spindle detectors.
As seen in Table 4, parameters c, d, and f had the most variation.
The broadAASMdefinition for sleep spindles currently leaves the
manual marking of spindles in EEG data open to some interpre-
tation, leading to low inter-expert agreement for spindle scoring.
Thus, the accuracy of sleep spindle detectors when trained and
tested using data scored from a single scorer can fall significantly
when tested using data scored by other experts. Spindle scoring
reliability is typically reduced by having multiple scorers detect
spindles manually and accepting only commonly marked spin-
dles. The frequency (1.8%) and energy (5.4%) error estimates
for the QPS model were lowest for the spindles marked by both
scorers (Table 3), indicating that it provides a more accurate
representation of the “reliably” marked spindles. Providing guid-
ance on an acceptable range for all QPS parameters in the spindle
scoring criteria using spindles marked by multiple scorers can
help reduce scoring inconsistencies.

Accurately characterizing the structure of sleep spindles
could enable researchers develop a better understanding of the
relationship between sleep spindles and various physiological
phenomena such as sleep “stability,” memory formation and
other pathological problems, e.g., depression, epilepsy, Parkin-
son, Alzheimer and schizophrenia (Wei et al., 1999; Bódizs et al.,
2005; Fogela and Smith, 2011; Wamsley et al., 2012; Tezer et al.,
2014). The relationship of spindle amplitude and frequency, from
parameter a and e with these phenomena have been researched.
However, their impact on the rate of decay of the spindle enve-
lope (c), the phase shift (d) and frequency variation (f ) have not
been studied to date. The QPS parameters offer quantitative rep-
resentations of spindle structure that can be interpreted visually,
as presented in the Effect of QPS Model Parameters on Spindle
Shape section. Variations in these parameters can be analyzed to
determine if they are disorder, scorer or participant specific.

Additional potential uses of the QPS model include the gen-
eration of a wide range of simulated spindles to help accurately
train automatic detectors as well as manual scorers. The simu-
lated QPS spindles can also be utilized to provide a reference to
define more precise scoring rules, normalize real spindles from
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multiple participants and also compare real spindles against to
track naturally or pathologically occurring variations.

The similarity in distribution patterns and limited range of the
QPS parameter values (Figure 11) indicate that there is potential
in their use in an automatic spindle scoring algorithm. The results
in the Comparison of QPS Spindle and Non-Spindle Parameters
section however show that NLLS estimation are highly depen-
dent on the initial conditions used. The parameter values showed
significant difference between the two groups when different ini-
tial conditions were used for spindles and non-spindles. However
when the same initial conditions were used for both groups, sur-
prisingly only the amplitude based parameters a and c were sig-
nificant and not the frequency based e. These results indicated
that the QPS model can only be used for spindle detection if
preceded by a priori parameter estimation to obtain the initial
conditions to be used in the NLLS for each epoch or an alternative
QPS parameter estimation technique, e.g., an analytical method,
that does not depend on initial conditions is utilized instead of
the NLLS algorithm.

In this study, parameter estimation was performed using
the NLLS algorithm. Results obtained with NLLS need to be
compared with other parameter estimation techniques. Further-
more, as discussed above NLLS results can depend on the cho-
sen initial conditions. Like other recursive methods, the NLLS

algorithm can be computationally expensive. Future work will
include identifyingmore robust algorithms for parameter estima-
tion including analytical methods, thus overcoming the burden
of initial conditions and ensuring global convergence. Simpli-
fied as well as expanded versions of the QPS model with more
parameters also need to be explored as they may enhance the
characterization of spindle structure.

We also intend to use the QPS parameters to develop
an accurate sleep spindle detection algorithm, taking into
account the limitations stated above and test it on spin-
dles from the MASS-C1/SS2 database. The accuracy of the
automated detector will be compared to existing spindle detec-
tor available through the Spyndle toolbox. Finally, as men-
tioned earlier, the QPS model opens up the potential to
examine in detail the impact of sleep abnormalities and
disorders as well as other physiological processes on sleep
spindles.
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Background and Aim: The role of sleep in the enhancement of motor skills has
been studied extensively in adults. We aimed to determine involvement of sleep and
characteristics of spindles and slow waves in a motor skill in children.

Hypothesis: We hypothesized sleep-dependence of skill enhancement and an association
of interindividual differences in skill and sleep characteristics.

Methods: 30 children (19 females, 10.7 ± 0.8 years of age; mean ± SD) performed
finger sequence tapping tasks in a repeated-measures design spanning 4 days including
1 polysomnography (PSG) night. Initial and delayed performance were assessed over
12 h of wake; 12 h with sleep; and 24 h with wake and sleep. For the 12 h with sleep,
children were assigned to one of three conditions: modulation of slow waves and spindles
was attempted using acoustic perturbation, and compared to yoked and no-sound control
conditions.

Analyses: Mixed effect regression models evaluated the association of sleep, its
macrostructure and spindles and slow wave parameters with initial and delayed speed
and accuracy.

Results and Conclusions: Children enhance their accuracy only over an interval with
sleep. Unlike previously reported in adults, children enhance their speed independent
of sleep, a capacity that may to be lost in adulthood. Individual differences in the
dominant frequency of spindles and slow waves were predictive for performance: children
performed better if they had less slow spindles, more fast spindles and faster slow
waves. On the other hand, overnight enhancement of accuracy was most pronounced
in children with more slow spindles and slower slow waves, i.e., the ones with an initial
lower performance. Associations of spindle and slow wave characteristics with initial
performance may confound interpretation of their involvement in overnight enhancement.
Slower frequencies of characteristic sleep events may mark slower learning and immaturity
of networks involved in motor skills.

Keywords: children, learning, motor skill, memory, sleep, spindles, slow waves, frequency

INTRODUCTION
The importance of sleep for learning and memory processes
has been established firmly. A large number of studies in adults
have shown that sleep contributes to efficient consolidation of

both declarative memory—the memory for facts and events—
and procedural memory—the memory for skills and procedures
(Maquet, 2001; Walker and Stickgold, 2004; Stickgold and
Walker, 2005; Diekelmann et al., 2009; Rasch and Born, 2013;
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Landmann et al., 2014). Sleep does more than merely prevent
forgetting by providing a time-period without interference: for
certain motor skills, sleep can even enhance performance with-
out further training. In adults, a contribution of sleep may
have been demonstrated most robustly for the consolidation
and enhancement of newly learned visuomotor skills, especially
of a finger-sequence tapping task (Walker et al., 2002; Morin
et al., 2008; Van Der Werf et al., 2009b; Barakat et al., 2011,
2013; Albouy et al., 2013a). This task requires participants to
tap a particular sequence with their fingers as fast and accu-
rately as possible. It has been consistently shown that per-
formance on this task saturates to a certain individual level,
without further improvement unless participants try again after
a period of sleep. Only if participants sleep within a certain
time window after their first saturating training session, does
their subsequent performance improve by about 10–20% with-
out further training (Walker et al., 2002; Van Der Werf et al.,
2009b).

What are the neuronal processes underlying this performance
enhancement by sleep? Numerous studies, mostly in adults, have
investigated the specific aspects of sleep-electroencephalography
(EEG) that could provide clues to neuronal processes involved.
These investigations have addressed qualitative aspects of the
sleep-EEG macrostructure, including sleep stages, as well as quan-
titative aspects of the sleep-EEG, notably its power spectrum
and the microstructural discrete events of sleep spindles and
slow waves. Investigations of qualitative aspects of the sleep-
EEG aspects of sleep revealed that overnight skill enhancement
is associated with the amount of stage 2 sleep, especially in the
later part of the night (Walker et al., 2002). This finding imme-
diately points to the involvement of a specific microstructural
aspect of the sleep-EEG, because stage 2 sleep is characterized
by the appearance of sleep spindles (Rechtschaffen and Kales,
1968). These transient bursts of about 12–15 Hz activity reflect
thalamo-cortical oscillations (Steriade, 2006). Indeed, sleep spin-
dles have repeatedly been linked to procedural memory consol-
idation and enhancement (for a review see Fogel and Smith,
2011).

Along a continuum of dominant frequencies, spindles have
been divided into slower and faster spindles (Feld and Born,
2012). Slow spindles dominate over frontal EEG derivations
and are thought to involve the superior frontal gyrus, while fast
spindles show up stronger in central and parietal EEG derivations
and are thought to involve the precuneus, hippocampus, medial
frontal cortex, and sensorimotor areas (Schabus et al., 2007;
Dehghani et al., 2011). Relevant to the present study, the
topographic representation of sleep spindles change with age
(Tanguay et al., 1975; Shinomiya et al., 1999). Frontal spindles are
more prominent in younger children while older children show
more centroparietal spindles (Shinomiya et al., 1999).

Slow spindles are more pronounced during slow wave
sleep. The slow waves of sleep represent alternating periods of
hyperpolarization (down-states) and depolarization (up-states)
of neurons in the cerebral cortex. Spindles are especially likely
to occur at the transition to the down-state of a slow oscillation.
Fast spindles occurring during slow wave sleep are more likely
to occur at the transition from the down-state to the up-state

(Mölle and Born, 2011). Fast spindles are most prominent during
stage 2 sleep (Feld and Born, 2012). In their original study,
Walker et al. (2002) showed that overnight skill enhancement
is associated with the amount of stage 2 sleep, especially in the
later part of the night where slow wave activity (SWA) hardly
occurs. In accordance with this initial observation, fast spindles
have commonly been associated with overnight enhancement
of a visuomotor skill (Nishida and Walker, 2007; Tamaki et al.,
2008; Barakat et al., 2011), with the overnight restoration of
episodic learning ability (Mander et al., 2011) and with the
overnight integration of new information in existing knowledge
(Tamminen et al., 2010, 2013). Nevertheless, at least one study
suggests that slow spindles rather than fast spindles are important
in overnight cognitive processing (Holz et al., 2012).

In addition to spindles, slow waves have also been associated
with sleep-dependent performance enhancement, possibly corre-
lated with the role of spindles (Holz et al., 2012). The overnight
enhancement of an implicit visuomotor skill is associated with
the increase in slow wave power the pre-sleep training elicits in
subsequent sleep (Huber et al., 2004; Määttä et al., 2010). Relevant
to the present study, Kurth et al. (2012) showed in children that
the maturation of simple motor skills, complex motor skills,
visuomotor skills, language skills and cognitive control skills is
predicted by the topographical distribution of SWA.

In contrast to adults, far less is known however about the
role of sleep and associated oscillations in memory consolidation
across childhood. Some studies have reported a sleep-dependent
consolidation of declarative memory (Fischer et al., 2007;
Backhaus et al., 2008; Wilhelm et al., 2008), but no overnight
enhancement of skills (Fischer et al., 2007; Wilhelm et al.,
2008). However, closer inspection of the data obtained in the
finger-tapping task and mirror tracing skill tasks has indicated
that children’s performance is significantly improved, both across
offline periods of sleep and wakefulness (Wilhelm et al., 2008;
Prehn-Kristensen et al., 2009). Moreover, 9- and 12-year old
children showed less susceptibility to daytime interference of a
newly acquired motor memory than 17 year olds (Dorfberger
et al., 2007). This supports the interpretation that children have
the capacity for memory consolidation over periods of both sleep
and wakefulness, the latter being diminished or even lost with the
development into adulthood.

With respect to the involvement of sleep specific sleep oscil-
lations in performance enhancement in children, Kurdziel et al.
(2013) found that a daytime nap in 4 year old children enhanced
recall on a hippocampal-dependent visuospatial task resembling
the card-deck “Memory” game. Moreover, sleep spindle den-
sity during the intervening nap was positively correlated with
the memory performance benefit (r = 0.65). However, these
memory associations may have been secondary to a negative
correlation of spindle density with initial baseline memory
performance (r = −0.67), thereby offering more improvement
opportunity in children with lower baseline ability. Of note, a
negative correlation of spindle density with baseline performance
was also reported in 4–8 year old children (Chatburn et al.,
2013).

Building on these prior findings, the first aim of the present
study was to address the hypothesis that motor skill enhancement
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is dependent on sleep in school-aged children, as it has been
reported to be in adults. The second aim was to determine
whether both baseline motor skill performance and offline
enhancements were significantly predicted by specific aspects of
the sleep-EEG. In particular, we focused on the role of fast and
slow sleep spindles and slow waves of sleep. Thirdly, to attain
support for the hypotheses beyond observational correlations
between sleep and memory in children, we implemented an
experimental manipulation aimed at changing spindles and slow
waves, thus exploring causality. Pharmacological manipulation
of spindle density affects sleep-dependent performance
enhancement of sequence finger tapping (Rasch et al., 2009)
but may not easily be approved of by medical ethics committees
for application in children, and may induce other systematic
effects. We therefore aimed to manipulate spindles and slow
waves only during slow wave sleep, using a validated selective
acoustic interference of sleep at the first occurrence of slow
waves (Van Der Werf et al., 2009a). This method selectively and
effectively suppresses slow waves (Van Der Werf et al., 2009a) and
therefore their co-occurrence with spindles, allowing for a better
discrimination of the role of sleep spindles vs. slow waves, and
sleep spindles that occur in stage 2 vs. those that occur in slow
wave sleep. Moreover, since fast spindles are more prominent
during stage 2 sleep and slow spindles occur more pronounced
during slow wave sleep, selective suppression of slow waves
further offers the ability to more clearly disambiguate the role of
fast vs. slow spindles in memory processing.

METHODS
PARTICIPANTS
Participants were recruited through a national competition
designed to promote an interest in science amongst primary
schools in the Netherlands. The two final school classes of the
winning school were invited to take part in the current study.
For ethical reasons, all children for which informed consent was
obtained participated in the experiment, including children with
diagnosed psychiatric or neurological illnesses. By allowing them
to participate, their condition remained concealed to their peers.
Their data were however excluded from analysis. The data of two
participants were excluded because of a diagnosis with Perva-
sive Developmental Disorder—Not Otherwise Specified (PDD-
NOS). Useful data were obtained from 30 participants, 19 females
(10.7 ± 0.8 years; mean ± SD). No apparent sleep disorders
were present as indicated by Dutch translations of the abbrevi-
ated Child’s Sleep Habits Questionnaire (CSHQ, cutoff score 41;
Owens et al., 2000b) and Sleep Disturbance Scale for Children
(SDSC, cutoff score 39; Bruni et al., 1996) filled out by the parents
and the Sleep Self Report (Owens et al., 2000a) filled out by the
children. The local medical ethics committee approved of the
procedures and written informed consent was obtained from the
parents.

PROCEDURAL TASK
The current study used a paradigm frequently employed to
examine sleep-dependent procedural performance enhancement
in adults: the finger-tapping task (Karni et al., 1995; Walker
et al., 2002). The task consists of two sessions: an initial learning

acquisition session, followed by an offline time period of either
wake or sleep, after which there was a delayed recall test session
to investigate the development of offline performance changes,
relative to the end of the initial acquisition session. In the current
version, each learning session consisted of 12 trials of 23-s dura-
tion, separated by 20-s breaks. The delayed recall session consisted
of six additional trials, again separated by 20-s breaks. During
a trial, participants were asked to continuously tap a five-digit
sequence on a computer keyboard (e.g., 4-1-3-2-4) as fast and as
accurately as possible with their non-dominant hand. Four paral-
lel versions of the task were used and these were counterbalanced
across participants and across the four experimental conditions:
41324, 32413, 14231 and 23142.

Key-presses were recorded using E-prime (Psychology Soft-
ware Tools Inc., Pittsburgh, USA) and processed to derive two
main variables of interest for each trial: (1) speed, i.e., the number
of correct sequences per 23-s trial; and (2) accuracy, i.e., the
percentage of key taps that resulted in correct sequences, relative
to all key taps.

EXPERIMENTAL DESIGN
Using a repeated-measures design, participants performed finger-
tapping learning and recall sessions three times, preceded by an
additional initial acquisition learning (L) and recall (R) practice
sessions to get familiar with the task. Assessments spanned four
consecutive weekdays with morning sessions at 10:00 AM and the
evening session at 10:00 PM. As indicated in Figure 1, after the
initial learning and recall practice sessions, performance changes
were assessed in a fixed order over the following intervals: (1) 12 h
containing wake (the Wake interval); (2) 12 h including sleep (the
Sleep interval); and (3) 24 h including both wake and sleep (the
Wake & Sleep interval). In the 12-h Sleep interval, participants
stayed in individual bedrooms in a purposefully built sleep-lab
in the Science Museum “Nemo” (Amsterdam, Netherlands) for
polysomnography (PSG) recordings. Every three children were
supervised by at least one sleep technician. The nights in-between
the learning and recall training sessions and the Wake & Sleep
interval were spent at home, during which the children slept in
their own bed as per usual.

POLYSOMNOGRAPHY (PSG)
During the 12-h Sleep interval, participants were fit with eight Au
electrodes: two for electroencephalography (EEG) on frontopolar
(FPz) and central (Cz) positions according to the 10–20 system,
two for electrooculography (EOG) placed diagonally across the
eyes, two for electromyography (EMG) attached submentally, a
ground electrode positioned on the forehead and a reference
electrode (A1) fit on the left mastoid. Polysomnography was
performed using the Embla A10 system (Flaga hf, Reykjavik,
Iceland). Data were recorded online, and transferred onto a
personal computer. The Embla A10 system initially samples the
data at 2000 Hz and subsequently down-samples it digitally to
200 Hz. Filtering was limited to the Embla’s integrated highpass
DC filter at 1 Hz (−3 dB at 0.3 Hz) and 50 Hz notch filter (1 Hz
bandwidth).

During the night that the children spent in the sleep-lab, they
were randomly assigned to one of three acoustic manipulation
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FIGURE 1 | The study spanned four consecutive days. Children
performed the motor skill task at school on day 1 and 4, and in the Science
Museum on day 2 and 3. The first and last nights were regular
non-monitored nights during which the children slept at home. Children
underwent PSG and slept in the Science Museum during the second night.
After practicing initial learning and delayed performance (black) the task was
performed across three intervals: 12 h of wake (red), 12 h containing sleep
(blue) and 24 h including wake and sleep (purple). Learning (L) consisted of
12 trials of 23 s duration; delayed (D) of six more trials.

conditions. All children wore in-ear headphones. The first
condition has been described previously (Van Der Werf et al.,
2009a) and aimed at suppressing slow wave sleep. In brief,
we developed a custom analysis plug-in for the Somnologica
2 software (Flaga, Reykjavik, Iceland) that performed online
calculation of the relative contribution of the SWA band
(0.4–4 Hz) to the frequency spectrum as a measure of the depth
of sleep. When the contribution of SWA exceeded a threshold
level, the headphone emitted a beeping noise that continued
to increase in amplitude in six discrete steps until it reached a
maximum. The sound continued until the level of SWA dropped
below the threshold. To avoid erroneous inclusion of slow EOG
signals in the 0.4–4 Hz EEG band, the sound was not emitted
when the signals from the two EOG leads were negatively
correlated, reflecting conjugated eye movements; a positive
correlation reflects leakage of SWA into the EOG leads. Using this
system, we have successfully achieved slow wave sleep suppression
in elderly volunteers (Van Der Werf et al., 2009a).

The second acoustic manipulation condition concerned a
yoked control group, who received the same auditory stimuli, but
unrelated to their own slow wave sleep. They received a copy of
the auditory stimuli that were given in a closed-loop way to their
sleeping neighbor. Finally, the third, placebo, condition consisted
of merely wearing the in-ear headphones without providing any
acoustic stimulation.

Children were blinded to the condition they were assigned to
and were told that tones would be played in the night, but that
they might not become aware of them.

EEG ANALYSIS
Macrosleep
Electroencephalography was scored visually, blinded to the con-
dition, in 30-s epochs using Somnologica software (Flaga hf,
Reykjavik, Iceland) according to standard sleep scoring criteria
(Rechtschaffen and Kales, 1968) with the adaptation of viewing
EEG at 100 µV/cm instead of the recommended 50 µV/cm, to
account for the very large amplitude of sleep EEG oscillations in
children (Piantoni et al., 2013a). Macrosleep variables quantified
were Time In Bed (TIB), Total Sleep Time (TST), Sleep Onset
Latency, Latency to the First REM epoch, Wake after Sleep Onset,
Sleep Efficiency and the Percentages of Stage 1, 2, SWS and REM
sleep relative to TST.

Preprocessing for quantitative EEG analysis
The visual scoring included a rating of presence of artifacts.
Epochs of 30 s that contained even the slightest artifact, including
an arousal, were omitted from quantitative EEG analyses.

Spindles
Automated spindle detection was performed using a previ-
ously reported algorithm (Ferrarelli et al., 2007) implemented
in Matlab (The MathWorks Inc, Natrick, USA). Artifact-free
EEG in stages S2, S3, and S4 across the entire night was
bandpass-filtered between 9 and 15 Hz using an infinite impulse
response filter (Figures 4A,B). We then computed the time-
course of the amplitude by taking the envelope of the filtered
signal (Figure 4B). For each channel and participant, the mean
of the envelope over the artifact-free stages S2, S3, and S4
was used to calculate the upper threshold: all amplitude fluc-
tuations of the filtered signal surpassing 4.5-fold the average
amplitude value calculated above were considered putative spin-
dles (Figure 4C). The beginning and end of each spindle was
defined by a lower threshold, set at 25% of the upper threshold
value (Figure 4C). A minimal duration of 450 ms was used
to avoid the detection of brief events. Visual inspection of the
performance of the automated algorithm indicated the need
of slight adaptations in the parameter settings as compared to
the settings used in Ferrarelli et al. (2007), in particular we
used a lower threshold for spindle detection and we applied
an additional smoothing window. Spindle outcome variables
were: duration, maximal amplitude, duration × maximal ampli-
tude, and density (the number of spindles per valid epoch of
sleep) of slow (frequency <12 Hz) and fast (frequency ≥12 Hz)
spindles.

Slow waves
Automated slow wave detection was performed using an algo-
rithm based on previously published methods (Massimini et al.,
2004; Riedner et al., 2007) implemented in Matlab (The Math-
Works Inc, Natick, USA). Artifact-free EEG classified as S2,
S3 and S4 was high-pass filtered at 0.16 Hz (transition band
width = 0.02 Hz) and low-pass filtered at 4 Hz (transition band
width = 0.6 Hz), using a least-square zero phase-shift 200th
order FIR filter. In the filtered signal, slow waves were defined
by the appearance of a particular order of occurrences: a down-
going zero crossing, a negative peak, an upgoing zero crossing,
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a positive peak, and a final downgoing zero crossing. A slow
wave was counted if the duration between the downgoing and
upgoing zero crossing (the negative half wave) was between 0.3
and 1 s. No amplitude criteria were set. Slow wave outcome
variables were the durations and peak amplitudes of the negative
and positive half-wave and total wave (using downward and
upward zero-crossings, see e.g., Heib et al., 2013); the steep-
ness of the rising slope of the negative half-wave (see Piantoni
et al., 2013b); and the density (the number of slow waves per
epoch of NREM stage 2 and SWS sleep; see Piantoni et al.,
2013b).

STATISTICAL ANALYSIS
The four paragraphs below describe the analysis plan, respectively
addressing: the effect of sleep on performance; the association of
sleep variables with performance baseline and overnight enhance-
ment; the effect of acoustic perturbation on sleep outcome vari-
ables; and the effect of acoustic perturbation on performance
outcome variables.

Effect of sleep on performance
In order to maximally exploit the variance information of
speed and accuracy data of individual trials, they were not
averaged, but rather analyzed using mixed models (MLwiN,
Centre for Multilevel Modeling, Institute of Education, London,
UK). Mixed models take an interdependence of data points
into account; allowing trials to be nested within sessions,
which are subsequently nested within participants. Maximal
use of information was attained by including trials at the
level of performance saturation (see Figure 2: the last six tri-
als of the learning sessions and all six trials of the recall
sessions).

In order to evaluate the effect of sleep on initial (baseline)
performance and performance enhancement, the dependent vari-
ables “speed” and “accuracy” assessed over all sessions were
analyzed using the regression equation:

Yijkl = ß0ijkl + ß1
∗ Recalljkl + ß2

∗ Sleptjkl + ß3
∗ Recall ∗ Sleptjkl

where: Y is the dependent variable (either “speed” or “accuracy”),
measured on trial i of the initial learning vs. delayed part j of
session k of child l; ß0 is the model intercept; “Recall” is a binary
(dummy) variable that indicates whether the trial was a recall
(1) or initial learning (0) trial; “Slept” is a binary (dummy)
variable that indicates whether the present session was (1) or was
not (0) preceded by a previous session followed by a period of
sleep; “Recall∗Slept” is a binary (dummy) variable that indicates
the interaction between “Recall” and “Slept”. This interaction
represents the sleep-dependent effect on recall. The variable is 1
for recall trials in sessions that are separated from the previous
session by a period including sleep and 0 for all learning trials and
recall trials in sessions that are separated from the previous session
by a period of wakefulness only.

ASSOCIATION OF SLEEP VARIABLES WITH PERFORMANCE BASELINE
AND OVERNIGHT ENHANCEMENT
In order to evaluate the effect of sleep variables assessed dur-
ing the third night on baseline performance and performance

FIGURE 2 | Learning curves for speed and accuracy across the three
intervals (Morning > Evening, Evening > Morning and Morning >
Morning). Irrespective of sleep, all intervals show an increase in speed
following a period without training. On the other hand, only the intervals
containing sleep induce an increase in accuracy.

enhancement across that night, the dependent variables “speed”
and “accuracy” were analyzed using the regression equation:

Yijkl = ß0ijk + ß1
∗ Recalljk + ß2

∗ Sleepvariablejk

+ ß3
∗ Recall ∗Sleepvariablejk

where: Y is the dependent variable (either “speed” or “accuracy”),
measured on trial i of the initial learning vs. delayed part j of
child k; ß0 is the model intercept; “Delayed” is a binary (dummy)
variable that indicates whether the trial was a delayed (1) or
initial learning (0) trial; “Sleepvariable” is the sleep variable
of interest in the current analysis and indicates the nonspe-
cific (i.e., sleep-unspecific) association of the sleep variable with
performance; “Delayed∗Sleepvariable” represents the interaction
between “Delayed” and “Sleepvariable”. This interaction repre-
sents the sleep variable-dependent change in performance from
the initial learning session to the delayed session.
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Effect of acoustic perturbation on sleep outcome variables
Kruskal-Wallis tests (SPSS 12.0.1 for Windows, Chicago, USA)
were applied to evaluate differences in macrosleep and quantita-
tive EEG variables between acoustic perturbation conditions. The
more robust Kruskal-Wallis tests were preferred over ANOVAs
because variance estimates, although not precise due to the small
and unequal sample sizes of the three groups, seemed to differ for
some variables.

Effect of acoustic perturbation on performance outcome variables
In order to evaluate the effect of sleep perturbation, during the
third night, on baseline performance and performance enhance-
ment across that night, the dependent variables “speed” and
“accuracy” were analyzed using the regression equation:

Yijkl = ß0ijk + ß1
∗ Delayedjk + ß2

∗ Slow Wave Triggered

Soundjk + ß3
∗ YokedSoundjk + ß4

∗Delayed∗Slow

Wave Triggered Soundjk + ß5
∗ Delayed∗YokedSoundjk

where: Y is the dependent variable (either “speed” or “accuracy”),
measured on trial i of the initial learning vs. delayed part j
of child k; ß0 is the model intercept; “Delayed” is a binary
(dummy) variable that indicates whether the trial was a
delayed (1) or initial learning (0) trial; “SlowWaveTriggered-
Sound” and “YokedSound” are two dummy binary (dummy)
variables that code whether (1) or not (0) the child was
assigned to the stimulation condition; both are zero for
the control condition; “Delayed∗SlowWaveTriggeredSound” and
“Delayed∗YokedSound” represent the interactions of “Delayed”
with the conditions. These interactions represent the condition-
dependent change in performance from the initial learning ses-
sion to the delayed session.

For all mixed effect models, the significance of the regression
coefficient estimates of interest was evaluated using the Wald test,
that calculates a z-value as the ratio of the coefficient estimate
over its standard error (Twisk, 2003). Effects with P < 0.05 were
regarded significant.

RESULTS
In three children, one of the learning sessions was missed,
twice because of equipment malfunctioning, once because
the subject did not feel well temporarily. The corresponding
delayed trials were omitted accordingly. In two participants one
consistently noisy sleep-EEG channel (Cz) was omitted from
analyses. Completely artifact-free data used for quantitative EEG
analysis accounted for 65.1% (±1.3%; SEM) of the total PSG data
acquired. The percentage of epochs containing even the slightest
artifact slowly increased during the sleep period from 23% in the
first hour of the night to 43% in the last hour of the night.

EFFECT OF ACOUSTIC PERTURBATION ON SLEEP AND PERFORMANCE
OUTCOME VARIABLES
Counter to the impact in adults (Van Der Werf et al., 2009a),
Kruskal-Wallis tests on acoustic perturbation confirmed no sig-
nificant differences in either macrosleep outcome variables or
NREM oscillations of the sleep recordings of children included in
the closed loop slow wave suppression group (n = 9), the yoked

control group (n = 10) and the no-noise group (n = 11): TIB
(P = 0.759), TST (P = 0.847), Sleep Onset Latency (P = 0.758),
Latency to the First REM epoch (P = 0.458), Sleep Efficiency
(P = 0.742) and the percentages of Wakefulness (P = 0.192) Stage
1 (P = 0.599), 2 (P = 0.659), SWS (P = 0.493) and REM sleep
(0.373), spindle variables (FPz: 0.194 < all P < 0.706, Cz: 0.257
< all P < 0.913) or slow wave outcome variables (FPz: 0.135 <

all P < 0.966, Cz: 0.662 < all P < 0.981). The analyses confirm
that children slept through the acoustic perturbation without any
measurable effect on their macrosleep or quantitative sleep vari-
ables. Mixed effect models confirmed that the overnight change
in motor skill speed and accuracy were not affected by either the
Slow Wave-Triggered or Yoked Sound (0.505 < all P < 0.975).
Due to the lack of effect of acoustic stimulation, further results
aggregate the data of all children, irrespective of condition.

EFFECT OF SLEEP ON PERFORMANCE
Figure 2 shows the trial-by-trial average speed and accuracy
for the Wake, Sleep and Wake & Sleep conditions. Mixed effect
models evaluated how speed and accuracy were affected at delay
(“Delayed” effect), by sleep between the present and previous
session (“Slept” effect), and by a sleep-dependent effect specific
to delay (“Slept”∗“Delayed” interaction), i.e., showing only in the
previously trained sequences but not in the subsequent newly
trained sequences. According to the output generated by mixed
effect model estimation, all estimated effects are shown as aver-
age± standard error of the mean.

The analysis showed a very significant “Delayed” effect on
speed, which increased on average from the six final training
trials to the six delayed trials by 2.617 ± 0.421 correct sequences
(48% of the initial performance that was 5.459, Z = 6.216,
P = 5E−10). Overall speed, i.e., aggregated over both delayed trials
and initial learning trials, did not depend on whether children
had slept in between the present and prior session (“Slept” effect:
0.339 ± 0.338 correct sequences, Z = 0.947, P = 0.34). There
was no “Delayed∗Slept” effect on speed, indicating that the per-
formance increase occurred independently of whether children
had slept in between the initial learning and delayed session;
neither was there a sleep-dependent delay-specific effect on speed
(−0.096 ± 0.570, Z = −0.168, P = 0.87). Thus, children showed
strong speed improvements both after a period of sleep and after
a period of wakefulness, selectively for the previously learned
sequences, without affecting performance on the subsequent
newly trained sequences.

In contrast, there was a highly significant sleep-dependent
effect on accuracy, which increased by 12.4 ± 4.6% (26% of the
initial accuracy that was 47.6%, Z = 2.696, P = 0.007) specifically
for the delayed trials, without any sleep-unspecific delayed effect
(−1.6 ± 3.5%, Z = −0.457, P = 0.65) or non-delay-specific
effect of sleep (−3.0 ± 4.6%, Z = −0.652, P = 0.51). Thus,
children showed a strong reduction in error rates only after a
period of sleep and only for the previously learned sequences,
without affecting performance on the subsequent newly trained
sequences, meaning that sleep did not affect performance on
subsequent newly trained sequences.

Figure 3 shows an integrated view of the changes in speed and
accuracy from initial learning to retesting of the same sequence for
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each of the three intervals (Sleep, Wake, Wake & Sleep) as vectors.
It illustrates how speed increases independent of whether or not
the interval contained sleep (rightward change), while accuracy
increases only if the interval contained sleep (upward change).

ASSOCIATION OF MACROSLEEP VARIABLES WITH PERFORMANCE
BASELINE AND OVERNIGHT ENHANCEMENT
The overnight increase in accuracy was more pronounced in
children with a higher percentage of SWS (0.85 ± 0.43% per %
more SWS, Z = 1.977, P < 0.05). Given that the range of SWS
percentages found in the group of children was 23% to 46%, this
finding suggests that the increase in accuracy may differ up to 20%
(0.85∗23%: for every % more SWS a child shows, it has a 0.85%
higher accuracy, and there is a difference of 23% between the child
with the lowest and highest percentage slow wave sleep).

SPINDLE CHARACTERISTICS AND THEIR ASSOCIATION WITH
PERFORMANCE BASELINE AND OVERNIGHT ENHANCEMENT
Given the frequency distribution of spindles at FPz and Cz
(Figure 5), the cut-off to discriminate fast and slow spin-
dles was set at 12 Hz. Spindles were more prevalent and
of a faster frequency at Cz. Table 1 summarizes the spindle
characteristics. Mixed effect models evaluated the association
of spindle characteristics with both the overall level and the
overnight change in performance. Significant effects were found
only for the density of slow and fast spindles.

With respect to overall performance, i.e., not specific for
overnight enhancement and including all trials, children with a
higher density of slow spindles at either Cz or FPz have lower over-
all speed (−5.45± 1.63 correct sequences/spindle per sleep epoch,
Z =−3.342, P < 0.001) and accuracy (−27.5± 12.4%/spindle per
epoch, Z = −2.218, P < 0.03). In contrast, children with a higher
density of fast spindles have a higher overall speed (4.46 ± 1.52

FIGURE 3 | Performance changes across the three intervals shown as
vectors of speed and accuracy. Error bars indicate standard errors of the
mean derived in mixed effect analyses. Note that speed increases across all
intervals, whereas accuracy improves only across the intervals that include
sleep.

correct sequences/spindle per sleep epoch, Z = 2.919, P < 0.004)
and, if anything, a non-significant higher accuracy (15 ± 11.5%
per spindle per epoch more, Z = 1.304, P = 0.19).

With respect to the overnight enhancement of perfor-
mance, children with a higher density of slow spindles show
a stronger overnight increase in accuracy (16.1 ± 6.8% more
increase/spindle per epoch, Z = 2.368, P = 0.02), but not speed
(P = 0.45). In contrast, individual differences in fast spindle
density did not show an association with overnight change in
either speed (P = 0.61) or accuracy (p = 0.39).

Because slow spindles occurred more frequently at FPz and fast
spindles more at Cz, we performed ancillary analyses to investi-
gate whether the findings reflected differential effects of FPz vs. Cz
spindles instead of slow vs. fast spindles. Neither the overall den-
sity of FPz spindles, nor the overall density of Cz spindles, were
associated with either overall speed or accuracy or their overnight
enhancement (0.16 < P < 0.76). To further explore the relevance
of spindle frequency, we ran ancillary analyses on the predictive
value of the mean frequencies at FPz and at Cz for motor skill
speed and accuracy. Children show a higher overall speed if they
have a higher mean frequency of their spindles measures either at
FPz (3.99 ± 1.95 correct sequences/Hz, Z = 2.046, P = 0.04) or
at Cz (3.62 ± 1.60 correct sequences/Hz, Z = 2.268, P = 0.02).
The mean spindle frequencies were not associated with overall
accuracy (P = 0.48 and P = 0.10 for FPz and Cz respectively),
nor with overnight enhancement of speed or accuracy (0.38 <

P < 0.91).
In summary, overall performance is best in children with a

high density of fast spindles and a low density of slow spindles.
Children with a high density of slow spindles profit most from
sleep to attain a higher accuracy.

SLOW WAVE CHARACTERISTICS AND THEIR ASSOCIATION WITH
PERFORMANCE BASELINE AND OVERNIGHT ENHANCEMENT
Table 1 summarizes the characteristics of slow waves detected in
S2, S3 and S4. Because of the frequency-specific associations of
spindles with overall performance and sleep-dependent enhance-
ment, it was of particular interest to investigate whether a similar
frequency-specific effect of slow waves was present, i.e., whether
their duration (inverse of frequency) mattered for performance.
Indeed, significant effects were found only for slow wave duration.

With respect to overall performance (i.e., including all tri-
als, not specific for overnight enhancement), children with a
longer average duration of their slow waves had a lower overall
speed, no matter whether the slow wave duration was derived
from FPz (−0.102 ± 0.041 less correct sequences/ms longer
duration, Z = −2.457, P = 0.014) or Cz (−0.084 ± 0.043 less
correct sequences/ms longer duration, Z = −1.960, P < 0.050).
Likewise, children with a longer average duration of their slow
waves had a lower overall accuracy, significantly so for slow
wave duration derived at FPz (−0.77 ± 0.30 lower % accu-
racy per milliseconds longer duration, Z = −2.567, P = 0.010)
and almost significant for slow wave duration derived at Cz
(−0.57 ± 0.30 lower % accuracy per milliseconds longer dura-
tion, Z = −1.900, P = 0.057). Given that the range of indi-
vidual differences in the average duration of slow waves (FPz:
763–828; Cz: 752–822) covers up to 70 ms, the findings suggest
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FIGURE 4 | The spindle detection procedure described in detail. (A) The
original recording for one participant in stage S2. (B) The signal was
bandpass-filtered between 9 and 15 Hz (black line) and the time-course of
its amplitude was computed by rectifying the signal, applying a low-pass
filter at 4 Hz (Nir et al., 2007), and multiplying by

√
2 (blue line). (C) An

upper threshold equal to the 4.5 times the mean of the amplitude in

stages S2, S3, and S4 was used for the detection of the spindles (dotted
red line). A lower threshold was used to define the beginning and end of
each spindle (dotted dashed line). Detected spindles are shown as red
traces superimposed on the time-course of the amplitude. Note that the
x-axis is the same for all the panels, while the y -axis in the bottom panel
is twice as large as that of panels (A) and (B).

FIGURE 5 | The frequency distribution of all detected spindles. A total
of 37,177 spindles were detected on FPz (30 children), and a total of 39,951
spindles were detected on Cz (28 children).

slow wave duration-associated individual differences in speed
of up to about six correct sequences and in accuracy of up to
about 50%.

With respect to the overnight enhancement of performance,
children with a longer average duration of their slow waves
showed a stronger overnight increase in accuracy, significantly so

for slow wave duration at Cz (0.36 ± 0.16% stronger increase in
accuracy per milliseconds longer duration, Z = 2.25, P = 0.024)
and almost significant for slow wave duration derived at FPz
(0.32 ± 0.17% stronger increase in accuracy per milliseconds
longer duration, Z = 1.882, P = 0.060). Slow wave duration was
not associated with overnight changes in speed (FPz: P = 0.66;
Cz: P = 0.42). Given the range of individual differences in the
average duration of slow waves mentioned above, the findings
suggest slow wave duration-associated individual differences in
the overnight increase in accuracy of up to about 25%.

In summary, overall performance is best in children with a
faster slow waves. Children with slower slow waves profit most
from sleep to attain a higher accuracy.

ASSOCIATION BETWEEN INDIVIDUAL DIFFERENCES IN FAST AND
SLOW SPINDLE DENSITY WITH AVERAGE SLOW WAVE DURATION
Given the findings overall performance is best in children with
faster slow waves, a high density of fast spindles and a low
density of slow spindles, post hoc correlations were calculated
over the individual’s pairs of these slow wave and parameters.
The average duration of slow waves measured at FPz was neg-
atively correlated with the density of fast spindles (r = −0.40,
p = 0.03) and almost significantly positively correlated with
the density of slow spindles (r = 0.37, p = 0.05). The average
duration of slow waves measured at Cz showed no significant
correlation with the density of either fast spindles (r = −0.05,
p = 0.80) or slow spindles (r = 0.10, p = 0.61). In sum-
mary, there is a significant association between the dominant
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Table 1 | Sleep variables averaged over all children.

Mean ± SEM Mean ± SEM

Macrostructure characteristics
Time in Bed (TIB) (min) 464.7 ± 1.76
Total Sleep Time (TST) (min) 432.0 ± 4.62
Sleep Onset Latency (min) 19.3 ± 2.34
First REM Latency (min) 94.3 ± 6.92
Wake After Sleep Onset (min) 9.4 ± 2.10
Sleep Efficiency % 92.9 ± 0.88
% Stage 1 (of TST) 3.4 ± 0.63
% Stage 2 (of TST) 39.0 ± 1.32
% Slow Wave Sleep (of TST) 34.0 ± 1.06
% REM (of TST) 23.7 ± 0.82

Sleep spindle characteristics FPz Cz

Duration (ms) 1100.96 ± 24.70 1206.72 ± 17.99
Amplitude (µV) 17.84 ± 0.66 27.74 ± 0.80
Duration∗Amplitude (µVs) 20.37 ± 1.00 34.52 ± 1.29
Frequency (Hz) 11.55 ± 0.06 12.49 ± 0.08
Density (# / 30 s epoch) 2.24 ± 0.07 2.48 ± 0.06

Slow wave characteristics

Duration negative
half wave (ms) 457.44 ± 1.32 451.52 ± 1.35

Duration positive
half wave (ms) 333.36 ± 1.66 327.56 ± 1.69

Total duration (ms) 790.80 ± 2.76 780.14 ± 2.98
Amplitude negative

half wave (µV) −55.63 ± 1.92 −76.87 ± 2.42
Amplitude positive

half wave (µV) 58.62 ± 2.36 76.00 ± 2.59
Peak-to-peak amplitude (µV) 126.96 ± 4.53 162.33 ± 5.48
Up-slope negative

half wave (µV/ms) 0.31 ± 0.01 0.43 ± 0.01
Density (# / 30 s epoch) 23.72 ± 0.19 22.59 ± 0.19

frontal frequency of two characteristic sleep microstructural
events with relevance for motor skill performance: the average
duration of a slow waves measured and the density of fast
spindles.

DISCUSSION
The present study set out to investigate the following questions.
We hypothesized that motor skill enhancement is dependent on
sleep in school-aged children. We moreover hypothesized that
initial motor skill performance, and its enhancement after an
interval without training, depend on the parameters that quantify
the sleep-EEG macrostructure and microstructural properties of
spindles and slow waves. Finally, to complement associational
findings, we aimed to evaluate whether the hypotheses would be
supported by an intervention aimed at manipulation of spindles
and slow waves.

Similar to findings in adults (Walker et al., 2002; Van Der Werf
et al., 2009b), the current report demonstrated children express
offline enhancements in motor skill accuracy only if this interval
includes a period of sleep. However, unlike previously reported
in adults, children enhance their speed no matter whether the
interval includes a period of sleep. In contrast to previous reports
with similar results (Fischer et al., 2007; Wilhelm et al., 2008;
Prehn-Kristensen et al., 2009), we do not interpret these results

to indicate that children fail to show a speed enhancement over
a period of sleep. Children do in fact show an enhancement of
speed over a period of sleep, but as well over a period without
sleep. Our interpretation is rather that children, like adults, do
have the ability to enhance motor speed over a period of sleep, but
the offline improvement can also be achieved across the different
brain state of wakefulness (and thus perhaps by a different brain-
state mechanisms). A speculative suggestion from our findings,
that could be addressed in long-term follow-up studies on the
development from childhood to adulthood, is that the capacity to
improve performance without the necessity of sleep may be lost in
adulthood. This suggestion is in line with recent findings indicat-
ing that procedural memory stabilizes during waking much faster
in children than in adults (Ashtamker and Karni, 2013; Adi-Japha
et al., 2014). Although children enhance their motor speed over
periods of sleep and wake alike, sleep is required for an increase in
accuracy (Figure 3).

An important new finding of the present study concerns
the question of whether initial motor skill performance, or
its enhancement after an interval without training, depend on
specific aspects of the sleep-EEG microstructure. The results
consistently indicate that individual differences in the dominant
frequency of thalamo-cortical oscillations marks differences in
both initial performance and sleep-dependent skill enhancement.
Children with lower dominant frequencies of spindles and slow
waves performed worse, as consistently indicated by the findings
that children performed better if they had less slow spindles,
more fast spindles and faster slow waves. The negative association
between overall performance and the density of slow spindles
is in line with a recent study by Kurdziel et al. (2013) who
found, in 4-year children, that spindle density during a nap
correlated negatively (r = −0.67) with baseline performance on
a hippocampal-dependent visuospatial task resembling the card-
deck “Memory” game. The hippocampus has also been implicated
in sleep-dependent consolidation of motor sequence learning
(Albouy et al., 2013b,c,d).

On average, characteristic oscillations in the EEG are slower
in children than in adults and indeed also the peak frequency
of sleep spindles increases as children mature (De Gennaro
and Ferrara, 2003; Jenni and Carskadon, 2004; Tarokh and
Carskadon, 2010). Our findings therefore suggest that dominant
physiological frequencies of the characteristic sleep events may
reflect trait-like markers of maturity within neuronal networks
involved in cognition, including that associated with offline
motor skill enhancement. It appears timely to consider large-scale
multivariate follow-up studies to disentangle individual traits
from developmental aspects, as well as common vs. differential
involvement of spindle characteristics in motor skills, explicit
memory and intellectual abilities (Geiger et al., 2011, 2012;
Chatburn et al., 2013; Gruber et al., 2013; Hoedlmoser et al.,
2014).

With respect to the overnight increase in performance, there
appears to be a discrepancy at first sight between findings based
on the density of slow and fast spindles vs. the findings based on
the mean frequency of spindles. A stronger overnight increase in
accuracy was associated with a higher density of slow spindles but
not with a lower mean frequency of spindles. We interpret this
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finding as support for distinct types of spindles, as suggested by
a bimodal distribution (Figure 5). The mean frequency depends
on the number of both slow and fast spindles, and can be low
irrespective of overall density. Overnight accuracy enhancement
appears specifically associated with the abundance of slow spin-
dles. The finding that the density of slow spindles, rather than fast
spindles as in adults, is associated with the overnight increase in
accuracy is interesting, since in children and adolescents, there
is a slower frequency peak in the spindle-related sigma power
(Jenni et al., 2005; Kurth et al., 2010). Thus, it may be that this
leftward shift in the dominant spindle frequency curve, relative to
adults, is involved in this differential association, and could still
reflect similar overlapping consolidation mechanisms. Indeed,
sleep spindle frequency in human adults has been associated with
structural gray matter properties of the hippocampus. Moreover,
surface EEG recorded spindles in human adults are associated
with coinciding hippocampal activation. Should similar spindle-
hippocampal associations be identified in child, this may pro-
vide one potential neural pathway through which spindle-related
motor skill improvements are transacted in child, especially since
the hippocampus is importantly involved in explicit motor skill
learning (Walker et al., 2005; Steele and Penhune, 2010; Saletin
et al., 2013).

Heib et al. (2013) showed a positive correlation between indi-
vidual differences in the duration of the positive half-wave of the
slow oscillation and their overnight changes in memory for word
pairs. They speculated that a prolonged depolarizing up-state
extends the time window for neuronal replay and thus enhances
overnight memory improvement. No increase in the duration of
slow oscillations in response to learning was found in this study,
nor in a previous similar study (Mölle et al., 2009). These studies
did not investigate whether individuals with longer positive half-
waves might have had lower initial, pre-sleep, performance, and
thus more room for overnight improvement similar to the current
findings in children. Our present findings suggest that it may be
important to investigate whether associations of sleep parameters
with overnight improvements are secondary to associations of the
same sleep parameters with initial performance. In the present
study, the use of mixed effect multiple regression models allowed
for a separation of these different associations.

Interestingly, the enhancement of accuracy over a period of
sleep and of speed over a period of either sleep or wakefulness,
is of a greater magnitude than has previously been reported
in adults. The overnight improvement of speed, irrespective of
sleep, was about 45%, which is more than twice the sleep-
dependent speed improvement reported in the original study
in adults (Walker et al., 2002). The overnight improvement
in accuracy was 49%. Whereas no sleep-dependent change in
accuracy reported in the original study in adults (Walker et al.,
2002), later studies found accuracy improvements of up to 48%
(Kuriyama et al., 2004). A parsimonious explanation of the find-
ings is that participants that show an initial low performance, as
is the case in the present study in children, have more headroom
for improvement. This interpretation is supported by the fact that
the strongest sleep-dependent increase in accuracy occurred in
those that initially performed worst, i.e., those with lower dom-
inant frequencies of spindles and slow waves. A recent study in

4-year old children also observed an inverse association between
initial performance and sleep-dependent improvement (Kurdziel
et al., 2013). As was the case for slow spindles (typical of young
children) in our present study, they observed that sleep spindle
density was negatively correlated with baseline performance and
positively correlated with the change in memory performance
across the nap period. In that study, children with a higher
sleep spindle density initially performed worse and benefitted
more from sleep for subsequent performance. Importantly, if
associations of spindle and slow wave characteristics with initial
performance are not accounted for, they may confound interpre-
tation of their involvement in overnight enhancement.

The current study result need to be appreciated within the
context of several inherent limitations. First, the sleep of children
was so resistant to acoustic manipulation that we did not succeed
in our aim to take the level of evidence for a role of spindles and
slow waves in overnight a step further, from observational data to
experimental intervention. The present findings confirm previous
findings (Busby et al., 1994) suggesting that children have a
much more powerful thalamic gate to shut off environmental
monitoring during sleep.

A second limitation is that during the night of polysomno-
graphic recording the children performed the task later in the
evening than their habitual bedtime and slept relatively short.
With respect to the late assessment, Figure 3 shows no sys-
tematically worse performance. The speed during both learn-
ing and recall in the evening did not differ from the speed
during learning and recall in the morning, and the accuracy
during learning in the evening did not differ from the accuracy
during learning in the morning. These considerations support
the interpretation that the lack of accuracy improvement in the
morning-to-evening condition is specifically due to a lack of
sleep. With respect to sleep duration, a recent systematic review
on normal sleep patterns in children concluded that 11-year
olds on average sleep 9 a night (Galland et al., 2012). Sleep
duration was somewhat restricted in the present protocol due to
the task assessment protocol with strict 12 h and 24 h intervals,
so that the evening task assessment started at 10:00 PM. This
resulted in a late bedtime as compared to their habitual bedtime
(8:46 PM ± 00:21 min). Sleep duration may moreover have
been somewhat restricted due to the excitement of the children
about participating in a study that included sleeping a night in
a Science Museum. The distribution of sleep stage durations in
the present study was however very similar to those reported
in previous studies on sleep in children (Fischer et al., 2007;
Backhaus et al., 2008; Wilhelm et al., 2008). Ideally, a replication
study would assess whether the reported associations hold if
children are recorded at home according to their habitual sleep
schedule.

A third limitation is that sleep was recorded in a non-shielded
environment, which may have induced a larger number of epochs
containing artifacts than would be expected in the environment of
a well-controlled sleep-laboratory. A further limitation is that no
extensive clinical evaluation on sleep disturbances was performed.

Finally, it should be noted that performing a motor skill
task prior to bedtime may in itself alter the distribution of
sleep spindles. Studies in humans and animals have consistently
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shown spindle activity to increase following training on several
tasks, including the motor sequence tapping task used in the
present study (Nishida and Walker, 2007; Barakat et al., 2011).
Barakat et al. (2011) studied how sleep was affected by pre-sleep
training on the same finger-tapping task that was used in the
present study. They found that, compared to training on a
control task, the motor sequence tapping task increased the
density of fast spindles, while the density of slow spindles did
not change. Subjects with the strongest training-elicited increase
in fast spindle density showed the strongest sleep-dependent
speed enhancement. Slow spindle density was not related to the
sleep-dependent enhancement. Accuracy was not investigated.
The association may be specific to the type of motor skill, because
data presented by Tamaki et al. (2008; Table 1) suggest a decrease
rather than increase in the number of fast spindles after training
a mirror tracing skill. Moreover, although we cannot exclude the
possibility that the motor skill task performance prior to bedtime
increased spindle activity, it should be noticed that the functional
relevance of such increase may be limited to the cortical area that
are most prominently activated by the task, an area below the C4
electrode (Nishida and Walker, 2007).

In summary, the present findings indicate that even with-
out sleep, children have the ability to increase the speed of
their motor skills without training, a capacity that seems to
be lost in adulthood. Moreover, whereas the majority of pre-
vious studies focused on sleep-dependent consolidation and
enhancement, the present findings underscore the importance
of investigating the associations of slower vs. faster oscillating
spindles and slow waves with initial performance (Bódizs et al.,
2005; Schabus et al., 2008), and the necessity to investigate
how overnight improvements may be limited by high initial
performance and enhanced by low initial performance. Overall,
the present findings suggest that slower frequency oscillations
of the characteristic sleep events may mark a less mature neu-
ronal networks involved in motor skills and slower learning
curves. This finding can be seen as a warning for a likely con-
found: if associations of spindle and slow wave characteristics
with initial performance are not accounted for, they may con-
found interpretation of their selective involvement in overnight
enhancement.
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Evidence supports the intricate relationship between sleep electroencephalogram (EEG)
spindling and cognitive abilities in children and adults. Although sleep EEG changes
during adolescence index fundamental brain reorganization, a detailed analysis of sleep
spindling and the spindle-intelligence relationship was not yet provided for adolescents.
Therefore, adolescent development of sleep spindle oscillations were studied in a home
polysomnographic study focusing on the effects of chronological age and developmentally
acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor.
Subjects were 24 healthy adolescents (12 males) with an age range of 15–22 years (mean:
18 years) and fluid IQ of 91–126 (mean: 104.12, Raven Progressive Matrices Test). Slow
spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the
individual adjustment method (IAM). A significant age-dependent increase in average FS
density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density
(r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely
driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67
(p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that
these correlations peak in the fronto-central regions. The control of the age-dependence
of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with
respect to FS density. The only positive spindle-index of fluid IQ in males turned out to
be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence
may index reshaped structural connectivity related to white matter maturation in the late
developing human brain. The continued development over this age range of cognitive
functions is indexed by specific measures of sleep spindling unraveling gender differences
in adolescent brain maturation and perhaps cognitive strategy.

Keywords: sleep spindling, EEG, adolescence, gender, IQ, Raven Progressive Matrices Test, sigma waves

INTRODUCTION
Adolescence is a critical period in the maturation of the neural
architecture and in the related development of cognitive func-
tions. This period is characterized by the late maturation of asso-
ciation areas involved in top-down control of thoughts and action
(Casey et al., 2005). New findings in developmental psychology
and neuroscience reveal that a fundamental reorganization of
the brain takes place in adolescence (Konrad et al., 2013). The
major reorganization of cortical networks during adolescence
is indexed by the changing patterns of synchronous, oscilla-
tory activity (Uhlhaas et al., 2009). Moreover, evidence suggests
profound changes in the organization and function of corti-
cal networks during transition from adolescence to adulthood
(Uhlhaas and Singer, 2011). These changes may have substantial
implications for the understanding of cognitive functions and

Abbreviations: BMI, Body mass index; FS, Fast spindle; IAM, Individual
Adjustment Method (of sleep spindle analysis); RPMT, Raven Progressive
Matrices Test; S2, Stage 2 sleep; SS, Slow spindle; SWS, slow wave sleep.

cognitive development (Uhlhaas et al., 2009; Uhlhaas and Singer,
2011).

Intellectual ability is closely related to cortical development in
children and adolescents. The level of intelligence is associated
with the trajectory of cortical development, primarily in frontal
regions implicated in the maturation of intelligent activity: vigor-
ous cortical thinning by early adolescence is a positive index of IQ
(Shaw et al., 2006; Gogtay and Thompson, 2010). Furthermore,
results emphasize the possibility that an individual’s intellectual
capacity relative to their peers can decrease or increase in the
teenage years. Decreases and increases were found to depend
on structural and functional changes of specific brain regions
(Ramsden et al., 2011).

Striking sex differences in the functional architecture
(Ingalhalikar et al., 2014) and developmental trajectory
(Simmonds et al., 2014) of the brain of children, adolescents
and young adults were established recently. The above cited
studies suggest that males and females are characterized by
modularity and cross-modularity of the neural architecture as
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well as linear and non-linear white matter growth, respectively.
In addition, gender roles were also shown to have a modulatory
effect on regional brain volumes of children and adolescents
(Belfi et al., 2014). Striking sex differences in the neural
correlates of intelligence were reported in terms of waking
electroencephalogram (EEG; Neubauer et al., 2002; Jausovec and
Jausovec, 2005) and brain anatomy (Gur et al., 1999; Haier et al.,
2005): neural connectivity measures and white matter structures
are reliable neurobiological correlates of intelligence in women
but not in men. Consequently, sex and gender are of primary
interest when investigating the brain-derived factors related with
adolescent neurocognitive development. Neural connectivity
and white matter-related indices expressing cross-modular brain
organization are candidate neurobiological markers of cognitive
efficiency in females, but not in males.

Sleep EEG is considered to be the clearest window through
which to view adolescent brain development (Colrain and Baker,
2011a). The sleep EEG changes during adolescence were consid-
ered as indexes of fundamental brain reorganization (Feinberg
and Campbell, 2010). As Colrain and Baker (2011a) acknowl-
edged, EEG power reflects the sum of inhibitory and excitatory
postsynaptic potentials in thousands of neural columns sampled
by an individual electrode, and the curve describing changes
in delta EEG over the lifespan is remarkably similar to those
based on postmortem anatomic synaptic density measures and
cerebral metabolic rate (Feinberg and Campbell, 2010). Most
of the known sleep architectural or quantitative EEG mea-
sures strongly and reliably depend on the chronological age of
the adolescent subjects. Reports on developmental changes in
human sleep most frequently emphasize age-related increases in
Stage 2 (S2) sleep percentage, and decreases in slow wave sleep
(SWS) percentage. The above changes are reflected in age-related
decreases in quantitative EEG measures of sleep EEG delta and
theta waves during both NREM and REM sleep (Ringli and
Huber, 2011; Colrain and Baker, 2011b; Feinberg and Campbell,
2013).

Sleep spindles are groups of rhythmic neuronal oscillations
in the frequency range of sigma waves (11–16 Hz), constitut-
ing the hallmarks and major defining features of NREM sleep
(De Gennaro and Ferrara, 2003; Lüthi, 2014). Hypotheses on
the preferential involvement of sleep spindles in sleep-related
neural plasticity (Timofeev et al., 2002), offline information pro-
cessing (Fogel and Smith, 2011), and sleep protection (Dang-
Vu et al., 2010) have been put forward. Individual profiles in
sleep EEG spindling reflect the microstructural properties of
white matter tracts as measured by diffusion weighted magnetic
resonance imaging, with high levels of spindling being related
to high axial diffusivity in white matter structures (Piantoni
et al., 2013). Moreover, sleep spindles were shown to constitute
a physiological index of overall mental efficiency or intelligence
(Fogel and Smith, 2011). Several studies emphasized the dif-
ferences between the frontally and centro-parietally dominant
slow (∼11–13 Hz) and fast (∼13–16 Hz) spindles (SSs and
FSs), respectively (De Gennaro and Ferrara, 2003). Apart from
frequency and topography other differences in specific features
characterizing spindle types are seen in the hemodynamic activ-
ities indexing neural activation patterns associated with SSs and

FSs (Schabus et al., 2007). Moreover, increasing evidence sup-
ports the thesis on the specificity of the cognitive correlates of
SSs and FSs: SSs were shown to correlate with visual percep-
tual learning (Bang et al., 2014), while FSs with more com-
plex abilities and processes, like fluid intelligence (Bódizs et al.,
2005), visuospatial memory (Bódizs et al., 2008), learning ability
(Lustenberger et al., 2012) and word-location associations (Cox
et al., 2014).

In spite of the hints on the potential significance of sleep
EEG spindle measures in unraveling the details of the neurode-
velopmental processes of adolescence (Tarokh et al., 2011), there
are only a few controversial reports focusing specifically on this
issue. Although it was claimed that sleep spindle activity changes
with maturation until the age of 16 years in terms of length and
density (Scholle et al., 2007) there is only scarce data on late
adolescence or on the transition from adolescence to adulthood.
In contrast to Scholle et al. (2007), Shinomiya et al. (1999)
reported a decrease in the power of slow sleep spindling until
the age of 13 years, but little change in the power of fast cen-
troparietal spindles between 4 and 24 years. These controversies
might result from an inappropriate methodological approach of
the individual-specific and developmentally changing frequencies
of SSs and FSs. Given the finding on the relationship between
individual level of sleep spindling and white matter integrity
(Piantoni et al., 2013) as well as the continuing white matter
development during late adolescence (Peters et al., 2012) the
issue of adolescent development in sleep spindling is of utmost
importance. The potential significance of a detailed analysis of
sleep spindling during adolescence is further supported by the
correlations of specific sleep spindle measures with late devel-
oping, higher order intellectual performances of preadolescent
(Geiger et al., 2011, 2012; Chatburn et al., 2013; Gruber et al.,
2013) and adult human volunteers (Bódizs et al., 2005, 2008;
Schabus et al., 2006, 2008; Lustenberger et al., 2012). Accord-
ing to our knowledge, no data on the sleep spindle-intellectual
ability relationship in adolescents was published in the litera-
ture. Thus, the potential relevance of the above mentioned sleep
spindle-related EEG indexes in revealing the individual patterns
of cognitive development remained largely neglected in previous
reports.

In summary adolescence is a critical period of brain matu-
ration and cognitive development, presumably characterized by
increasing sexual dimorphism and gender-divergence. In spite
of the fact that sleep EEG was acknowledged as a prominent
route in discerning the neurodevelopmental processes of adoles-
cence and individual-specific measures of sleep spindling were
shown to reflect complex cognitive processes and faculties in
both children and adults, no prior study explicitly addressed the
neurocognitive developmental aspects of sleep spindle oscillation
in adolescents. The corroboration of the above cited evidence for a
positive association of fast sleep spindling with complex, human-
specific cognitive performances and faculties in both children and
adults, with the unequivocal growth of white matter structures
in the adolescent brain, and with the relationship between white
matter integrity and sleep spindling lead us to hypothesize that
fast sleep spindling correlates positively with chronological age
(H1). By completing the above considerations with the claim
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suggesting that white matter is the major determining neural
substrate of thinking in women, but not in men we further
hypothesize that fast sleep spindling predicts overall mental effi-
ciency as measured by intelligence tests primarily in females
(H2).

Hypotheses were tested in a home polysomnographic study
focusing on the effects of chronological age and developmentally
acquired overall mental efficiency (fluid IQ) with sex as a potential
modulating factor.

MATERIALS AND METHODS
SUBJECTS
Subjects (N = 24, 12 males) were adolescents of Hungarian
nationality recruited by a convenience sampling procedure. Age
range was 15–22 years, while mean age was 18 years (SD:
2.3 years). The whole examined age range was subdivided into
four subgroups (groups of 15–16, 17–18, 19–20 and 21–22 years
old subjects). Six participants were included in each subgroup:
3 females and 3 males. Thus, subjects were evenly distributed
over the age range. Mean height of the subjects was 173.04 cm
(range: 160–198, SD: 10.57). Subjects’ weight averaged 63.83 kg
(range: 47–92, SD: 11.92), while their body mass index (BMI)
was between the normal limits (mean: 21.19, range: 17.68–27.01,
SD: 2.6).

Subjects were interviewed on their health status by the authors
of the study. Exclusion criteria for the participants were self-
reported sleep problems or diagnoses of psychiatric, neurological
or other medical disorders. Subjects were requested to not to
drink alcohol containing beverages, to not to take drugs other
than caffeine before noon and to not to take naps during the
study.

The research protocol was approved by the Ethical Commit-
tee of the Pázmány Péter Catholic University Budapest. Adult
participants or the parents of the underage participants signed
informed consent for the participation in the study according to
the Declaration of Helsinki.

PROCEDURES
Fluid intelligence was tested by using the Raven Progressive
Matrices Test (RPMT), which is based on items assessing the
abilities in the field of non-verbal reasoning (Raven et al., 1976).
Scores of the RPMT were shown to be among the most reliable
measures of the general factor of mental abilities (Gray and
Thompson, 2004). Raw RPMT scores were transformed to IQ
by using the Hungarian standards (Raven et al., 2004). As a
consequence the term IQ reflects fluid instead of crystallized
intelligence throughout our paper. Subjects’ sleep was recorded at
their homes by using ambulatory home polysomnography. Sleep
recordings on two consecutive weekend nights were performed
according to the subjects’ sleeping habits. We used a portable SD
LTM 32BS Headbox together with a BRAIN QUICK System PLUS
software (Micromed, Italy) for polysomnographic data recording.
We recorded EEG according to the 10–20 system (Jasper, 1958) at
21 recording sites (Fp1, Fp2, Fpz, F3, F4, F7, F8, Fz, C3, C4, Cz,
P3, P4, Pz, T3, T4, T5, T6, O1, O2, Oz) referred to the mathe-
matically linked mastoids. Bipolar EOG, ECG and submental as
well as tibialis EMG were also recorded. Electroencephalogram

and polygraphic data were high-pass filtered at 0.15 Hz and low-
pass filtered at 250 Hz (both 40 dB/decade). Data were collected
with an analog to digital conversion rate of 4096 Hz/channel
(synchronous, 22 bit). A further 40 dB/decade anti-aliasing digital
filter was applied by digital signal processing (firmware) which
low pass filtered the data at 463.3 Hz before the decimation by
a factor of 4, resulting in a sampling rate of 1024 Hz.

Sleep recordings of the second nights were visually scored
according to standard criteria (Rechtschaffen and Kales, 1968)
in 20 s epochs. The following definitions were used for sleep
architecture evaluation: time in bed (as the time from lights out to
final awakening), total sleep time (defined as the amount of sleep
from sleep onset to final awakening), wake time after sleep onset
(WASO, excluding wakefulness after the final awakening), sleep
efficiency (calculated as the percent of sleep time without WASO
divided by the time in bed), sleep latency (defined as the period
between lights off and the first appearance of S2 sleep), non-rapid
eye movement (NREM), Stage 1 (S1), S2, SWS (defined as the
amount of time spent in Stages 3 and 4), rapid eye movement
sleep (REM), REM latency (defined as the period between sleep
onset and the first epoch scored as REM), number of sleep cycles
(number of REM periods separated from each other by more
than 15 min), average REM period duration (duration of REM
sleep divided by the number of REM periods) and average sleep
cycle duration in minutes (sleep time from the sleep onset to
the end of the last REM period divided by the number of sleep
cycles).

The 4 s epochs containing artifactual sleep EEG (movement,
sweating or technical artifacts) were manually removed before
further automatic sleep EEG analyses. One male subject was
excluded from the below listed quantitative EEG analyses (but
not from the above mentioned sleep architectural one) because
of technical artifacts interfering with deliberate and reliable signal
processing approaches.

The Individual Adjustment Method (IAM) of sleep spindle
analysis (Bódizs et al., 2009) was used to unravel the potential
peculiarities of NREM sleep (stages 2–4) EEG spindling. In short
the principle of sleep spindle detection is the idea that individual
spindles are those groups of waves which last at least 0.5 s
and contribute to one or two of the major peaks in the 9–16
Hz average amplitude spectra of NREM sleep EEG. Individual-
specific spectral peaks were formalized by calculating the zero
crossing points of their second order derivatives. The lower fre-
quency peak corresponds to SSs while the higher frequency peak
to FSs. As a result, features like mean density (spindles/min),
duration (s) and amplitude (µV) of SSs and FSs can be deter-
mined in an individual- and derivation-specific manner. The
dominant individual-specific frequency (Hz) of SSs and FSs is
inherently derivation-independent in the IAM procedure. Based
on the derivation-specific data on density, duration and ampli-
tude we created averages for five regions: all derivations (region-
independent), frontal derivations (Fp1, Fp2, Fpz, F3, F4, F7, F8,
Fz), centro-parietal derivations (C3, C4, Cz, P3, P4, Pz), temporal
derivations (T3, T4, T5, T6) and occipital derivations (O1, O2,
Oz). Region-specific averages were used for descriptive purposes
while the region-independent average values were starting points
of inferential statistics.
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Additional analyses were based on Fast Fourier Transform-
based measurement of binwise spectral power in the 8–16 Hz
range of all-night average NREM sleep (stages 2–4) EEG covering
alpha and sigma waves. In line with the relevant guidelines,
spectral power was log-transformed before the statistical analyses
(Pivik et al., 1993; Jobert et al., 2013). This transformation is
required in order to normalize the distribution of power val-
ues. Besides log-transformation, z-scores of the 8–16 Hz spectra
were also analyzed. This latter transformation is justified by the
findings supporting the striking trait-like reliability (De Gennaro
et al., 2005) and the marked sensitivity (Bódizs et al., 2012)
of this sleep EEG scores expressing discrete frequency points
of the individual shapes of the sleep EEG spectra. Both log-
transformed power (10th base) and z-transformed normalization
(x-m/SD) were used in separate statistical models. Our aim was
to compare the results based on the more sophisticated IAM of
sleep spindle analysis with the relatively simple spectral analysis.
While IAM is sensitive to sleep spindle features at the individual
frequencies, spectral power mapping is able to provide evidence
for the importance of sleep spindle activity occurring at specific
frequencies.

STATISTICS
Descriptive statistics on IQ, as well as on sleep architecture and
regional sleep spindling are provided. As for inferential statistics,
we followed a top-down approach by using consecutive tests
progressing from global to gender-specific and local effects. The
average (region-independent) sleep spindle variables (frequen-
cies, densities, durations and amplitudes of individual specific
SSs and FSs) were correlated with the output variables (age and
IQ) by using the Pearson product-moment procedure. In case
of the emergence of a significant region-independent correla-
tion the next step was to analyze sexual dimorphism of the
relationship (by comparing correlations for females and males
using the Fisher r-to-z transformation), as well as to depict the
potential region-specificities of the significant global effects by
subjecting the derivation-specific sleep spindle vs. output vari-
able correlations to the procedure of descriptive data analysis
(Abt, 1987) adapted to quantified neurophysiology with mapping
(Abt, 1990; Duffy et al., 1990). This procedure tests the global
null hypothesis (“all individual null hypotheses in the respective
region are true”) at level α = 0.05, against the alternative that
at least one of the null hypotheses is wrong. According to Abt
(1987) and Duffy et al. (1990) local, uncorrected significances
at the level of α = 0.05 (descriptive significances) define the
Rüger’s areas (Rüger, 1978). If N is the number of electrodes
in the Rüger’s area, the investigator is required to choose a
minimal number of unspecified null hypotheses (M), less than
N, to be nominally rejected at a new, more conservative α level.
Typically the value M/N is 1/2 or 1/3. The corresponding new
α levels for these values are α/2 = 0.025 and α/3 = 0.017,
respectively. We will use an M/N value of 1/2 and a corresponding
new α of 0.025 in our analyses. If any M values (half of the
correlation coefficients if M/N = 1/2) within the Rüger’s area
individually reach the new α level of significance the overall null
hypothesis is rejected for the Rüger’s area at the 0.05 level. This
means that for at least one EEG derivation in the Rüger’s area

the relationship is significant, allowing the investigator to make
global confirmatory statement with controlled uncertainty. In
order to obtain a better localization of regions with significant
correlations between sleep spindling and IQ the correlations were
represented by significance probability maps (Hassainia et al.,
1994). Finally, we tested the age-independence of the relation-
ship between sleep spindling and IQ by recalculating the signif-
icant spindle-IQ correlations with the effects of age partialled
out.

Binwise NREM sleep EEG spectral data between 8 and 16 Hz
was correlated with age and with IQ in females and males by using
the same methodology as described above.

RESULTS
FLUID INTELLIGENCE
Raven Progressive Matrices Test-derived IQ-scores of the sample
resulted in a group average of 104.12 (range: 91–126, SD: 10.82).
Neither age (r = 0.30; p = 0.15), nor weight (r = 0.13; p = 0.51),
height (r = 0.14; p = 0.50) nor BMI (r = 0.06; p = 0.77) correlated
significantly with IQ. Males and females did not differ in their
general mental abilities (t = 0.31; p = 0.75).

SLEEP ARCHITECTURE AND SLEEP SPINDLING
Details on sleep architecture of our sample are depicted in Table 1.
In short subjects had a normal sleep structure with 4–8 sleep
cycles, an average total sleep time of 8.23 h, a sleep efficiency of
94.84%, over 59% of S2, 12% of SWS and 25% of REM sleep
(Table 1).

Slow spindle densities, durations and amplitudes prevail in the
frontal regions. In contrast densities, durations and amplitudes of
FSs peak in the centroparietal area (Table 2).

Table 1 | Descriptive statistics of sleep architectural variables*.

Mean Min Max SD

Time in bed (min) 521.65 399.00 639.33 59.29
Total sleep time (min) 494.33 368.33 617.00 54.60
Sleep efficiency (%) 94.84 85.25 99.09 3.36
Wake time (min) 27.31 4.33 85.00 19.03
Relative wake time (%) 5.15 0.90 14.74 3.36
WASO (min) 19.50 1.00 81.66 19.02
Sleep latency (min) 10.72 2.00 38.00 10.09
NREM time (min) 365.86 302.00 447.00 38.33
Relative NREM time (%) 74.16 66.28 81.99 4.00
S1 time (min) 10.68 3.00 33.66 6.36
Relative S1 time (%) 2.16 0.62 6.28 1.23
S2 time (min) 294.34 208.33 386.00 49.70
Relative S2 time (%) 59.59 43.61 75.83 7.93
SWS time (min) 60.83 3.00 162.33 37.15
Relative SWS time (%) 12.40 0.56 33.98 7.70
REM time (min) 128.47 66.33 170.00 27.35
Relative REM time (%) 25.83 18.00 33.71 4.00
REM latency (min) 79.02 44.66 150.00 28.08
Number of sleep cycles 5.08 4.00 8.00 0.97
Average REM period time (min) 25.63 15.66 34.75 5.23
Average sleep cycle time (min) 99.35 74.83 133.91 15.32

*S1—Stage 1 sleep; S2—Stage 2 sleep; SWS—slow wave sleep; WASO—wake

after sleep onset.
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Table 2 | Descriptive statistics on sleep spindling*.

Mean Min Max SD

SS frequency (Hz) 11.28 9.88 13.10 0.83
Average SS density (spindles×min−1) 6.83 4.45 9.29 1.46
Frontal SS density (spindles×min−1) 7.14 5.17 9.18 1.14
Centroparietal SS density 6.68 4.06 9.35 1.56

(spindles×min−1)
Temporal SS density (spindles×min−1) 6.73 4.00 9.60 1.70
Occipital SS density (spindles×min−1) 6.46 2.85 9.58 2.03
Average SS duration (s) 1.41 0.86 2.58 0.54
Frontal SS duration (s) 1.48 0.89 2.63 0.53
Centroparietal SS duration (s) 1.39 0.85 2.56 0.54
Temporal SS duration (s) 1.38 0.83 2.53 0.54
Occipital SS duration (s) 1.33 0.76 2.55 0.55
Average SS amplitude (µV) 3.48 1.30 6.91 1.65
Frontal SS amplitude (µV) 4.42 1.50 9.86 2.25
Centroparietal SS amplitude (µV) 3.64 1.39 7.21 1.72
Temporal SS amplitude (µV) 2.26 0.84 4.24 1.02
Occipital SS amplitude (µV) 2.34 0.80 4.89 1.10
FS frequency (Hz) 13.29 12.55 14.24 0.47
Average FS density (spindles×min−1) 7.27 5.50 8.29 0.75
Frontal FS density (spindles×min−1) 6.59 5.07 7.73 0.75
Centroparietal FS density 8.11 6.58 9.74 0.75

(spindles×min−1)
Temporal FS density (spindles×min−1) 7.20 5.23 8.57 0.92
Occipital FS density (spindles×min−1) 7.45 4.86 9.01 0.93
Average FS duration (s) 1.10 0.89 1.29 0.09
Frontal FS duration (s) 1.02 0.86 1.16 0.07
Centroparietal FS duration (s) 1.21 0.97 1.45 0.10
Temporal FS duration (s) 1.07 0.88 1.29 0.09
Occipital FS duration (s) 1.15 0.86 1.40 0.11
Average FS amplitude (µV) 5.10 3.45 7.08 1.04
Frontal FS amplitude (µV) 4.88 2.95 7.02 1.08
Centroparietal FS amplitude (µV) 7.16 4.64 10.38 1.60
Temporal FS amplitude (µV) 3.26 2.42 4.37 0.50
Occipital FS amplitude (µV) 4.01 2.08 5.74 1.10

*SS—slow spindle, FS—fast spindle.

SLEEP SPINDLING AND AGE
Average FS density correlated positively with chronological age
(r = 0.57; p = 0.005; Figure 1). No other sleep spindle measures
were significantly related with the age of our subjects. There was
no significant difference between the age vs. FS density correla-
tions of females and males [r = 0.62 and r = 0.52, respectively;
p = 0.76 (two-sided)].

The region-specific analysis revealed a significant age-related
increase in FS density measured at 16 of 21 derivations (F3, F4,
Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1, O2, Oz) defining
a significant Rüger’s area (16/16 p values < 0.025) consisting
of frontal, centroparietal, temporal and occipital regions, but
not of frontopolar-orbitofrontal (Fp1, Fp2, Fpz, F7, F8) ones
(Figure 2).

SLEEP SPINDLING AND IQ
Intelligence quotient was shown to be significantly and posi-
tively related to average FS density (r = 0.43; p = 0.04) and
amplitude (r = 0.41; p = 0.049). While females were charac-
terized by significant FS density vs. IQ, as well as FS ampli-
tude vs. IQ correlations [r = 0.80 (p = 0.002) and r = 0.67

FIGURE 1 | Scatterplot revealing the age-dependent increase in sleep
EEG fast spindle (FS) density of adolescents.

FIGURE 2 | Significance probability map for the region-specific
correlations depicting the age-related increase in sleep EEG FS
densities. P-values are plotted on inverted logarithmic scale.

(p = 0.012)], respectively, males were not [r = 0.00 (p = 0.99)
for both measures]. Differences between the correlation coef-
ficients depicting the linear relationship between FS density
vs. IQ of females and males was significant (p = 0.017, one-
sided). However, the female-male difference in FS amplitude vs.
IQ correlation proved to be a tendency only (p = 0.055, one-
sided). One-sided statistics were used because of our explicit
hypothesis on female predominance in the spindle vs. IQ
correlations.

The region-specific analysis of the FS density vs. IQ correla-
tion of females revealed significant correlations in 21 out of 21
derivations, 19 of which were significant at the level of 0.025
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FIGURE 3 | Gender-specific sleep EEG FS density vs. IQ relationship in
adolescents. (A) Scatterplot representing the frontal midline FS density
vs. IQ relationship. (B) Significance probability map of the FS density vs. IQ

correlations in females. (C) Significance probability map of the FS density
vs. IQ correlations in males. P-values are plotted on inverted logarithmic
scale.

FIGURE 4 | Gender-specific sleep EEG FS amplitude vs. IQ relationship
in adolescents. (A) Scatterplot representing the frontal midline FS
amplitude vs. IQ relationship. (B) Significance probability map of the FS

amplitude vs. IQ correlations in females. (C) Significance probability map of
the FS amplitude vs. IQ correlations in males. P-values are plotted on
inverted logarithmic scale.

(Figure 3). Thus, findings fulfill the criteria for rejecting the
global null hypothesis. Maximal significances were revealed over
the frontal midline region (r = 0.90; p = 0.0001 at derivation
Fz).

Likewise, the region-specific analysis of the FS amplitude
vs. IQ correlation of females revealed significant correlations
in 12 out of 21 derivations (Fp1, Fpz, F3, F7, Fz, C3, Cz, P3,
P4, Pz, T3, T6), 8 of which were significant at the level of
0.025 (Figure 4). Again, based on these findings the global null
hypothesis can be rejected. Maximal significances were revealed
over the left central region (r = 0.82; p = 0.001 at derivation
C3).

AGE-CORRECTED RELATIONSHIPS BETWEEN SLEEP SPINDLING AND IQ
In order to test whether individual levels of fast sleep spindling
age-independently predict general mental ability in adolescent

females, partial correlations were calculated and entered in the
procedure of descriptive data analysis and significance probability
mapping (Figure 5). We found 13 significant correlations (out
of 21) between FS density and IQ with the effects of age par-
tialled out. The Rüger’s area consisted of a wide region including
frontopolar-prefrontal, central, parietal and posterior temporal
locations (Fp1, Fpz, F3, F4, Fz, C3, C4, Cz, T5, T6, P3, P4, Pz)
with p values less than 0.025 at 11 derivations. Thus, the area
includes significant FS density vs. IQ partial correlation (with
the effects of age held constant) in adolescent females. Maximal
correlation emerged at the frontal midline derivation Fz (r = 0.90;
p = 0.0002).

The same analyses were run with FS amplitudes. Eight out
of 21 partial correlations were significant in adolescent females,
depicting a scattered parasagittal area (F7, Fz, C3, Cz, T6, P3,
P4, Pz) with four p values being less than 0.025. Thus, the null
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FIGURE 5 | Age-independence of the sleep EEG FS density vs. IQ
relationship in females. (A) Scatterplot representing the partial
correlations between FS density and IQ (both were residualized for age).
(B) Significance probability map of the FS density vs. IQ partial

correlations (effects of age partialled out) in females. (C) Significance
probability map of the FS density vs. IQ partial correlations (effects of
age partialled out) in males. P-values are plotted on inverted logarithmic
scale.

FIGURE 6 | Scatterplot representing the correlation between sleep EEG
FS frequency and IQ in males.

hypothesis cannot be unambiguously rejected for this Rüger’s
area.

ARE THERE ANY SLEEP SPINDLE CORRELATES OF IQ IN MALES?
In previous analyses we progressed from global to sex-specific
and local effects. This approach could hinder the recognition of
some weaker, male-specific correlations between sleep spindles
and IQ. In order to reveal any male-specific sleep spindle cor-
relates of IQ in adolescents the correlations between all sleep
spindle variables and IQ were checked for the male subgroup
only. Analysis revealed a significant correlation of FS frequency
with IQ in males (r = 0.60; p = 0.04; Figure 6). Partialling
out the effects of age even slightly increased the strength of
this relationship (r = 0.65; p = 0.04). No other correlation
between sleep spindle measures and IQ in males proved to be
significant.

EEG SIGMA POWER
In females, neither log-transformed EEG powers nor z-scores
revealed significant associations with IQ after the Rüger area
correction, with or without control for the effects of age.

In males, however, a positive association between log-
transformed EEG power on F3, C3 and C4 between 13.75 and
15 Hz (rmax = 0.70; p = 0.014 on F3 at 14 Hz) is significant
after Rüger correction, while there is a tendency (with significant
correlations not surviving Rüger correction) for a negative corre-
lation between IQ and log-transformed power between 12.75 and
13 Hz on T5 and Pz (Figure 7A). Using EEG power z-scores, a
significant negative correlation between IQ and power is present
between 12 and 13.25 Hz on C3, C4, P3, P4, Pz, T3, T4, T5,
T6, O1 and O2 (rmax = −0.78; p = 0.001 on T5 at 12.75 Hz;
Figure 7B). Similar results were obtained if age-controlled cor-
relations were used. In this case, no Rüger-significant effects are
evident in females, while there is a significant negative correlation
between IQ and power z-scores between 12 and 13.5 Hz (on
C3, P3, P4, Pz, T3, T4, T5, T6, O1, O2, and Oz) in males.
The positive correlation between IQ and log power is present
between 13.75 and 15 Hz (on F3, C3, and C4) in males, but
does not reach significance after correcting with the Rüger area
method.

DISCUSSION
We performed a home polysomnographic study in order to
unravel the developmental peculiarities of sleep spindling during
adolescence as well as to test the predicted sexual dimorphism
in the sleep spindle-IQ relationship during the period of the
late maturation of the frontal lobes. Advantages of our study are
the familiar, thus relatively non-disturbing sleeping environments
and settings. Moreover, sleep was timed according to the preferred
sleeping times of our subjects during two consecutive weekend
nights. These circumstances are reflected in relatively long total
sleep times (Table 1), at least when compared to laboratory based
average values (Ohayon et al., 2004). Since longer sleep times lead
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FIGURE 7 | Correlations between NREM sleep EEG spectral power of
8–16 Hz frequency and IQ in males. Graphs are indicating
region-specific correlations as revealed at different scalp locations.
Horizontal lines denote critical values for p < 0.05. (A) Binwise spectral
data were log-transformed (10th base) before implementing correlation
analyses. Positive correlations of NREM sleep EEG 13.75–15 Hz spectral
power at derivations F3, C3 and C4 with IQ (red arrows) are significant

after controlling for multiple testing according to the procedure of
descriptive data analysis. (B) Binwise spectral data were z-transformed
before implementing correlation analyses. Negative correlations of NREM
sleep EEG 12–13.25 Hz spectral power at derivations C3, C4, P3, P4, Pz,
T3, T4, T5, T6, O1, O2 and Oz with IQ (red arrows) are significant after
controlling for multiple testing according to the procedure of descriptive
data analysis.

to increases in S2 and REM sleep, the relative times spent in these
two sleep stages were higher than usual while relative SWS times
were lower. Given the fact that sleep spindles are most expressed in
S2 sleep (De Gennaro and Ferrara, 2003) the above circumstances
are not likely to mask the neurocognitive developmental aspects
of sleep spindles.

Recent reports revealed the relationship between individual
levels of sleep spindling and white matter integrity (Piantoni
et al., 2013). Moreover, white matter continues to develop during
late adolescence (Peters et al., 2012) resulting in continuously
increasing integration and decreasing segregation of structural
connectivity with age (Hagmann et al., 2010). We have shown
that the prevalence (density) of centroparietally dominant FS
of adolescents increases with age in both sexes, suggesting that
“network refinement mediated by white matter maturation”
(Hagmann et al., 2010) might be indexed by specific measures
of sleep spindling (i.e., FS density). Thus, our current finding on

the age-dependent increase in FS density in adolescents coheres
with the above mentioned neuroimaging data (Hagmann et al.,
2010; Peters et al., 2012; Piantoni et al., 2013) and strength-
ens/expands the reliability of the hypothesis suggesting that fun-
damental reorganization of cortical networks during adolescence
is indexed by the changing patterns of synchronous, oscillatory
activity (Uhlhaas et al., 2009; Konrad et al., 2013). Therefore,
it is reasonable to assume that beside sleep EEG delta and
theta activity indexing adolescent brain maturation (Feinberg and
Campbell, 2013), sleep spindling is another neurophysiological
marker with potential neurodevelopmental relevance. Given the
widely accepted hypothesis on the thalamo-cortical origin of
sleep EEG spindle oscillations (De Gennaro and Ferrara, 2003;
Lüthi, 2014) the fundamental reorganization of the adolescent
brain probably involves the developmental enhancement of the
functionality of cortico-thalamic networks. As for the additional
neurodevelopmental aspects of sleep spindling, it is worth noting,
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that the age-dependent increase of FS density during adolescence
is the mirror image of the age vs. FS relationship of adult sub-
jects, as the latter is characterized by a decline in spindling with
increasing ages (Bódizs et al., 2009). Thus, the increasing FS den-
sity during adolescence suggests an inverted U-like relationship
between age and fast sleep spindling during the human lifespan
with maximal spindling emerging during the periods of maximal
cognitive efficacy.

There are several previous studies investigating the relation-
ship between cognitive abilities and sleep EEG spindling. Most
of these studies are based on data from adult volunteers (Bódizs
et al., 2005, 2008; Schabus et al., 2006, 2008; Lustenberger et al.,
2012), some of them on investigations on preadolescent children
(Geiger et al., 2011, 2012; Chatburn et al., 2013; Gruber et al.,
2013), while none of them specifically addressed the period of
late maturation of frontal lobes and related higher order cognitive
functions. Here we aim to fill this gap by analyzing the period
of adolescence and the transition from adolescence to adulthood
from the perspective of sleep EEG spindle oscillation. Our present
results on sleep spindle-IQ correlation and its predominantly
frontal topography echoes previous findings (Bódizs et al., 2005;
Fogel and Smith, 2011), further strengthens the primary role
of frontal regions in intelligence (Gray and Thompson, 2004;
Shaw et al., 2006), but also completes the picture with the issue
of sex-specificity: FS density and amplitude was strongly and
positively related with IQ in females only. Sleep spindles were
shown to reflect the structural properties of white matter tracts
(Piantoni et al., 2013). Thus, the female-specificity of the FS-
IQ relationship reported here is reminiscent of earlier reports
suggesting that anatomical measures of white matter structures
are markers of cognitive ability in women, but not men (Gur et al.,
1999; Haier et al., 2005). As white matter structures in fact serve
efficient large-scale neural connectivity, the evidence indicating
that EEG connectivity measures of the wakeful resting state are
predictive of intelligence exclusively in women (Neubauer et al.,
2002; Jausovec and Jausovec, 2005) might pertain in the same
pattern of sexual dimorphism. In contrast with females, males
were not characterized by a tight relationship of FS density or
amplitude with IQ. Males, however, in contrast to females, were
characterized by a positive FS frequency vs. IQ correlation. This
was supported by spectral power data, which suggested a pattern
of negative correlation between IQ and sigma power around 13
Hz as well as a positive correlation with higher sleep spindle
frequencies around 14 Hz. Together, these results suggest that in
adolescent males the tuning of sleep spindles to a higher, adult-
like FS frequency is a more stable correlate of IQ than either
amplitude or duration at the given individual frequency. While
sleep spindle frequency has been shown to be a correlate of
cognitive ability (Geiger et al., 2011; Bódizs et al., 2012), our
results do not rule out the possibility that this correlation between
IQ and spindle frequency is due to the effect of a maturation
process which has already taken place in females of the same
age.

Female sleep spindling frequency was shown to be influenced
by the phase of the menstrual cycle (Ishizuka et al., 1994). As
we did not control our subjects for the menstrual cycle phase
effects this could hinder the depiction of the FS frequency-IQ

relationship in females. Although, Tarokh et al. (2011) hypoth-
esized that the increase of sleep spindle frequency during ado-
lescence reflects the myelination of neural circuitry, there is no
supporting evidence for this statement. However, we consider
the above detailed sexually dimorphic correlations as further
evidences for the fractionation of the general factor of intelli-
gence into components (Conway and Kovács, 2013). Females,
in contrast to males, rely on large-scale integration of neural
circuitry during solving the complex non-verbal reasoning tasks
of the RPMT. We hypothesize that this difference might emerge
from different cognitive strategies of females and males. Indeed,
there is evidence for certain sexual dimorphisms in cognitive
strategies (Waller and Lin, 2012). Moreover, the report on the
relationship between white matter structure and sleep spindling
(Piantoni et al., 2013) together with our present finding on the
relationship of individual level in FSs with IQ in females, but not
in males serve as indirect evidences for the claim that women and
men think with their white and gray matter, respectively (Zaidi,
2010).

Apart from the above mentioned difference between females
and males other factors could contribute to the findings on the
sexual dimorphism of the sleep spindle-IQ relationship of the
present report. Among these factors the differences in the timing
and the course of maturational processes (De Bellis et al., 2001)
has to be mentioned.

There are several limitations of our study among which the
relatively low number of subjects and the lack of longitudi-
nal data must be mentioned. A higher number of subjects as
well as a follow-up of our volunteers could provide a further
refinement of our findings on the developmental aspects of
sleep spindling and its relationship with general mental abili-
ties in adolescents. Moreover, we did not monitor respiratory
parameters and leg movements during sleep. Although sleep
apnea and periodic leg movements during sleep are rare phe-
nomena during adolescence we cannot completely rule out the
possibility of the presence of these syndromes in some of our
subjects.

To sum up our main empirical findings and conclusions
we emphasize the following statements: (1) FS density is
increasing during adolescent development; (2) FS density is an
age-independent positive correlate of fluid intelligence in female
adolescents. This latter effect is maximal over the frontal area; (3)
FS frequency is a positive, age-independent index of fluid intelli-
gence in male adolescents; (4) efficient network reorganization in
the adolescent brain is indexed by specific, individually adjusted
sleep spindle measures.
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The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients

with Parkinson’s disease (PD). Five sleep experts manually identified SS at a central

scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each

SS was given a confidence score, and by using a group consensus rule, 901 SS were

identified and characterized by their (1) duration, (2) oscillation frequency, (3) maximum

peak-to-peak amplitude, (4) percent-to-peak amplitude, and (5) density. Between-group

comparisons were made for all SS characteristics computed, and significant changes for

PD patients vs. control subjects were found for duration, oscillation frequency, maximum

peak-to-peak amplitude and density. Specifically, SS density was lower, duration was

longer, oscillation frequency slower and maximum peak-to-peak amplitude higher in

patients vs. controls. We also computed inter-expert reliability in SS scoring and found a

significantly lower reliability in scoring definite SS in patients when compared to controls.

How neurodegeneration in PD could influence SS characteristics is discussed. We also

note that the SS morphological changes observed here may affect automatic detection

of SS in patients with PD or other neurodegenerative disorders (NDDs).

Keywords: Parkinson’s disease, sleep spindle morphology, EEG, neurodegeneration, biomarker

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder (NDD) characterized primarily by motor
symptoms, including bradykinesia, rigidity, postural instability, and tremor. Although the disease
process in PD is not restricted to a specific brain area, these symptoms are mostly caused by the
loss of dopaminergic neurons in the substantia nigra pars compacta resulting in a reduction or
depletion of dopamine (Galvin et al., 2001). Lewy body aggregations of alpha-synuclein in the
brain are a central feature of PD pathology (Galvin et al., 2001). These inclusions typically start
in caudal areas of the brain and progress anteriorly (Braak et al., 2003), and may take place years
prior to involvement of the substantia nigra and associated development of motor symptoms.

Abbreviations: AASM, American Academy of Sleep Medicine; EEG, electroencephalography; iRBD, idiopathic REM sleep

behavior disorder; MSA, Multiple System Atrophy; NDD, Neurodegenerative disorders; PD, Parkinson’s disease; PSG,

polysomnographic; REM, Rapid eye movements; SS, Sleep spindles.
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Specifically, Braak et al.’s PD staging is based on Lewy-body
distribution, which rise from the dorsal motor nucleus of the
vague nerve in the medulla and in the olfactory bulb (stage
1) emerging through the subceruleus-ceruleus complex and
the magnocellularis reticular nucleus (stage 2), the substantia
nigra, the pedenculopontine nucleus and the amygdala (stage
3), the temporal mesocortex (stage 4), and finally reaching the
neocortex (stage 5 and 6). Stage 1 and 2 were considered as pre-
Parkinsonian states, stage 3 and 4 as Parkinsonian states and 5
and 6 as late-Parkinsonian states (Braak et al., 2003).

In addition to the motor manifestations that define PD, non-
motor symptoms such as sleep problems, depression, dementia
and attention deficit (Chaudhuri et al., 2011, 2006), autonomic
symptoms as abnormal heart rate variability (Sorensen et al.,
2012, 2013) and gastrointestinal symptoms such as nausea and
constipation (Garcia-Ruiz et al., 2014) are all well known in
patients with PD. Stating the presence of at least two of the
four motor symptoms resting tremor, bradykinesia, rigidity, and
postural imbalance typically makes the clinical diagnosis of PD,
although it has been indicated that the pathological changes in
the striatal dopaminergic system develop several years before the
clinical appearance of PD. Further development of the pathology
may result in Lewy Body Dementia.

Twenty years ago, it was discovered that idiopathic rapid
eye movement (REM) sleep behavior disorder (iRBD) is closely
related to Parkinsonism (Schenck et al., 1996, 2013a; Salawu et al.,
2010). Indeed, the presence of iRBD, even without the presence
of motor or cognitive complaints, confers a significant risk of
conversion into synnucleinopathies including PD (Iranzo, 2011;
Schenck et al., 2013b). The diagnosis of RBD requires complaints
or an anamnesis describing dream enactment behaviors as well
as a manifestation of REM sleep without atonia (RSWA) as
measured by polysomnography (PSG) (Stevens and Comella,
2013; American Academy of Sleep Medicine, 2014). The
idiopathic form of RBD (iRBD) is diagnosed when no concurrent
neurological disease is found, and International classification of
Sleep Disorders criteria for RBD are met (Stevens and Comella,
2013; American Academy of Sleep Medicine, 2014). Specifically,
measures of RSWA (Postuma et al., 2010; Kempfner et al.,
2013), slow wave characteristics (Latreille et al., 2011), sleep
stability and differences in electroencephalographic (EEG) or
electrooculographic micro- and macro-sleep patterns have been
investigated in patients with iRBD and/or PD (Christensen et al.,
2012, 2013, 2014b).

Reduced sleep spindle (SS) density and activity have been
identified in patients with PD and iRBD (Puca et al., 1973;
Myslobodsky et al., 1982; Emser et al., 1988; Comella et al., 1993;
Christensen et al., 2014a; Latreille et al., 2015). SS are generated
by a complex interaction involving thalamic, limbic, and cortical
areas. A di-synaptic circuit between thalamic reticular neurons
and thalamocortical relay cells, both located in the thalamus,
can spontaneously generate spindle-like oscillations, which are
conveyed to the cortex by the axons of the thalamocortical relay
cells. These cells receive feedback from cortical pyramidal cells
as well as input from pre-thalamic fibers originating from the
brainstem and posterior hypothalamus (Steriade et al., 1993;
Steriade and Timofeev, 2003). As such the thalamus holds a

primary role in generating and controlling SS. SS have been
reported to have a gating role with regard to the flow of thalamic
sensory input, and thus may have a sleep-preserving role (De
Gennaro and Ferrara, 2003). Also, several studies have reported
SS to have an important role in memory consolidation, synaptic
plasticity and cognition (Steriade and Timofeev, 2003; Schabus
et al., 2006; Fogel and Smith, 2011; Fogel et al., 2012; Latreille
et al., 2015). The formation of SS begins in the infant brain (De
Gennaro and Ferrara, 2003), but SS characteristics such as density
and amplitude change with age (Nicolas et al., 2001; De Gennaro
and Ferrara, 2003), suggesting that SS play an important role in
normal cognitive functioning.

Although a reduction in SS density is not specific to PD, SS
and other EEG features may be potential useful as biomarkers
of disease progression or therapeutic efficacy in PD and other
NDDs (Nguyen et al., 2010; Leiser et al., 2011; Micanovic and Pal,
2014). However, the identification of SS is a difficult task; studies
assessing inter-scorer variance in normal sleep have shown
significant variance in SS identification, both between human
experts and between automated SS detectors (Warby et al., 2014;
Wendt et al., 2014). SS identification and characterization in
pathological sleep is not well studied, but previous evidence
suggests that SS may have different characteristics in PD
patients (Latreille et al., 2015), and therefore may interfere with
traditional sleep staging in patients (Comella et al., 1993; Jensen
et al., 2010; Christensen et al., 2014b; Koch et al., 2014).

In this study, we aimed to identify changes in SS density and
specific morphological characteristics of SS in patients with PD.
Since five sleep experts identified SS independently, we were also
able to assess inter-expert variation of SS identification in EEG
of patients and controls. By identifying specific changes in SS
characteristics, we aimed to better understand the mechanism
and to what extent the neurodegenerative progress influences SS
characteristics, also identifying specific spindle features that may
be useful as prognostic biomarkers of disease. A secondary aim
was to help guide the specialized development of automatic SS
detectors to be used on EEG from patients with NDDs.

Materials and Methods

Subjects and Recordings
Polysomnographic (PSG) EEG data from 15 patients with
PD and 15 sex- and age-matched control subjects with no
history of movement disorder, dream-enacting behavior or other
previously diagnosed sleep disorders were included in this
study. The subjects were all recruited from the Danish Center
for Sleep Medicine (DCSM) in the Department of Clinical
Neurophysiology, Glostrup University Hospital in Denmark.
All patients were evaluated by a movement specialist with
a comprehensive medical and medication history and a PSG
analyzed according to the American Academy of Sleep Medicine
(AASM) standard (Iber et al., 2007). The diagnostic certainty
for PD at Danish neurological departments has been reported
to be 82% (Wermuth et al., 2012). None of the PD patients had
dementia at inclusion, but one of the patients with PD later
developed Multiple System Atrophy (MSA), indicated as the
Parkinsonian type (MSA-P) as the patient had predominating

Frontiers in Human Neuroscience | www.frontiersin.org May 2015 | Volume 9 | Article 233 | 177

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Christensen et al. Spindle alterations in PD patients

PD-like symptoms. Subjects were excluded from the study if they
were taking medications known to effect sleep (antidepressants,
antipsychotics, hypnotics). However, dopaminergic treatments
were permitted despite their potential effect on vigilance and SS
characteristics (Puca et al., 1973; Micallef et al., 2009). In addition
to ethical concerns regarding discontinuing dopaminergic
treatment in these subjects, we wanted to avoid deleterious
discontinuation effects on the PSG, as well as unpleasant and
negative motor effects that could interfere with the study. The
quality of each PSG recording was individually examined, and
recordings with disconnections or significant amounts of signal
artifact were not included. Demographic data and PSG variables
for the two groups are seen in Table 1.

Manual Labeling of Sleep Spindles
For each subject, eight blocks of five consecutive epochs of non-
REM sleep stage 2 (N2) of 30-s duration were selected randomly
from the PSG recording in between lights off and lights on. The
blocks were randomly chosen and ranked by use of Matlab’s
randsample-function. One-by-one and in the prioritized order,
the blocks were visually checked for major movements or other
contaminating artifacts. The first eight artifact-free blocks were
chosen as the ones to be scored for SS. A total of five independent
sleep experts identified SS in these blocks, where only the C3-
A2 EEG derivation was visible. The signals were filtered with a
notch filter at 50Hz and a band-pass filter with cutoff frequencies
at 0.3Hz and 35Hz, as indicated by AASM standards (Iber
et al., 2007). All analyzed signals had a sampling frequency of
256Hz. The experts assigned a confidence score to each identified
spindle, to indicate the amount of confidence in the identification
(as described previously in Warby et al., 2014). In this way, each
SS was given a confidence weighting of 1 for “definitely SS,” 0.75
for “probably a SS” and 0.5 for “maybe a SS.”

The scoring procedure was performed in a Matlab-based
software program “EEG viewer” developed byMN at DCSM. The
program mimics a standard sleep scoring program in a clinical

TABLE 1 | Demographic and PSG data for the two groups studied.

Characteristics PD patients Controls P

Total counts (Male/Female) 15 (7/8) 15 (7/8) –

Age (Years) 62.7 ± 5.8 62.9 ± 5.9 0.90

BMI (kg/m2) 25.3 ± 3.5 22.1 ± 2.5 0.02

Disease duration (years) 6.7 ± 4.5 NA –

Hoehn and Yahr stage 2.0 ± 1.2 NA –

UPDRS part III “on” 20.9 ± 7.0 NA –

ACE 90.2 ± 4.8 NA –

Levodopa equivalent dosage (mg) 621.1 ± 301.5 NA –

Levodopa use [n ( %)] 10 (67) NA –

Dopamine agonist use [n (%)] 14 (93) NA –

Sleep efficiency (%) 79.7 ± 14.1 87.1 ± 8.4 0.09

Time in bed (min) 448.1 ± 82.0 499.6 ± 63.7 0.07

LM index (number/hour) 31.8 ± 34.8 30.4 ± 35.3 0.91

BMI, Body Mass Index; UPDRS, Unified Parkinson’s disease rating scale; ACE,

Addenbrooke’s cognitive examination; LM, Leg movements.

setting, and includes the standard features so the experts have the
same opportunities to view and navigate the PSG data as they are
used to when analyzing sleep in the clinic. The program ensures
that if an epoch to be scored does not have any marked SS, the
expert is required to click a box saying “no spindles in current
epoch.” This ensures that the total of 40 epochs of N2 sleep per
subject was analyzed by each expert. The experts were blinded for
which group the subjects belong to.

The final SS identifications used for morphology measures
were defined using the group consensus rule described in Warby
et al. (2014). Spindle identifications from five different experts
with weighted confidence scores for each SS were averaged at
each sample point and aggregated into a single consensus. Sample
points that had an average score of higher than the group
consensus threshold Tgc = 0.25 were included in the final group
consensus, and the morphology measures were computed on
these group consensus SS. It was decided to use Tgc = 0.25 as
this was found to be the best in Warby et al. (2014).

Spindle Characteristics and between Group
Comparisons
The morphology of the identified SS was characterized by
their (1) duration, (2) oscillation frequency, (3) maximum
peak-to-peak amplitude, (4) percent-to-peak amplitude, and
(5) SS density per minute; all of which are well-evaluated
elsewhere (Warby et al., 2014). The morphology measures were
all computed using Matlab 2013b. Before any of the measures
were computed, the central EEG signal was filtered forward
and reverse with (1) a notching filter with the notch at 50Hz
and a bandwidth of 50/35Hz (at −3 dB) and (2) a 4th order
Butterworth band-pass filter with cut off frequencies (−3 dB) at
0.3Hz and 35Hz.

For each SS the duration was computed in seconds as

dur =
# samples

fs
,

where fs = 256Hz is the sampling frequency and # samples
defines the number of samples. The samples were consecutive
and obeyed the consensus rule. The oscillation frequency was
defined in Hz and was for each SS estimated as

fosc =
K

2 · dur
,

where K defines the total number of extrema points detected
using Matlab’s findpeaks-function applied on a 5-point moving
average smoothed version of the SS signal and with a minimum
peak-to-peak distance of 11 samples. The maximum points
were found by applying the findpeaks-function directly, and the
minima points were found by applying the function on the
flipped signal, and the total number of extrema points was set
as the sum of the two. These settings were chosen, as they were
considered best for estimating the fosc when visually investigating
numerous randomly selected examples of SS. The maximum
peak-to-peak amplitude was for each SS estimated as

Ap2p = max
(∣

∣Ae

(

k + 1
)

− Ae(k)
∣

∣

)

, k = 1, 2, . . . ,K − 1,
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where Ae is a vector holding the amplitude values for each of
the K detected extrema points. To investigate the influence on
SS from K-complexes or delta waves, the maximum peak-to-
peak amplitude was estimated twice for each SS; once without
any further frequency filtering of the data, and once where the
data was forward and reverse filtered with a 10th order high-
pass filter with cut off frequency (−3 dB) at 4Hz to remove low
frequency, high amplitude waves that may interfere with the
peak-to-peak calculation. The percent-to-peak amplitude gives a
simple measure between 0 and 1 of the symmetry of the spindle
and it was computed for each SS as

Sym =
# samples before point of Ap2p

# samples
,

where the point of Ap2p is defined as the point between the
maxima and minima delineating Ap2p. Finally, the density was
computed for each subject as the number of SS per minute of
investigated data, described as

Density =
2 · # SS

# epochs reviewed
.

The morphology measures were computed for the SS
identifications for each expert, as well as for the spindles
included in the group consensus. For the SS included in the
group consensus, a minimum duration threshold durth = 0.2 s
was used, and resulted in the exclusion of only three spindles.
This threshold is less that the minimum duration stated by the
AASM scoring (0.5 s). However, others have shown that apparent
spindles <0.5 s are clearly recognizable by sleep experts, and
have similar characteristics to spindles >0.5 s (Warby et al.,
2014). We used a minimum duration threshold of 0.2 s because
we wanted to determine whether PD patients and controls have
specific differences in these shorter spindles. When computing
the measures for the SS identifications for each expert, all the SS
were included, regardless of their confidence score and duration.
Two-sided Wilcoxon rank sum tests with a significance level of
α = 0.05 were used for each of the measures to test for significant
differences between the two groups.

Inter-Expert Reliability When Scoring SS
Inter-expert reliability measures were computed for each of the
10 available expert-pairs. True positives (TP) define the number
of samples where both experts have marked SS, true negatives
(TN) define the number of samples where both experts have not
marked SS, false positives (FP) define the number of samples
where the reference-expert has not marked SS, and the other
expert has and false negatives (FN) define the number of samples
where the reference-expert has marked SS, but the other expert
has not. For each comparison, the reliability measures were
indicated as the F1-score and the Cohen’s Kappa coefficient (κ).
The F1-score is the harmonic mean of precision (P) and recall (R)
and reaches its best value at 1 (perfect agreement) and the worst

at 0 (no agreement). It is computed as

F1-score =
2 · R · P
R+ P

,where

R =
TP

TP + FN
and P =

TP

TP + FP
.

The κ is often used to measure inter-annotator reliability as
it takes the agreement occurring by chance into account. It
reached its best value at 1 (perfect agreement) and worst at -1
(no agreement). It reaches 0 when accuracy is equal to what is
expected by chance. It is computed as

κ =
TP+TN

N − Pr

1− Pr
,where

Pr =
TP + FN

N
·
TP + FP

N
+

(

1−
TP + FN

N

)

·
(

1−
TP + FP

N

)

,

where N = TP + TN + FP + FN defines the total number of
samples reviewed. The relative strength of agreement associated
with κ can been described by the labels “poor” (κ <0.00), “slight”
(0.00 ≤ κ ≤ 0.20), “fair” (0.21 ≤ κ ≤ 0.40), “moderate”
(0.41 ≤ κ ≤ 0.60), “substantial” (0.61 ≤ κ ≤ 0.80) and “almost
perfect” (0.81 ≤ κ ≤ 1.00) (Landis and Koch, 1977). The F1-
score and κ are symmetric regarding false detections and will
therefore both yield the same regardless of which expert were
used as the reference.

Results

For the SS included in the group consensus, it was found
that patients with PD show SS that are significantly different
from controls in terms of duration, oscillation frequency and
max peak-to-peak amplitude. Additionally, patients with PD
have significantly different SS density compared to controls.
Specifically, it was found that patients with PD have decreased
SS density (−38.17%/−0.71 SS/min), and that their SS are longer
(+11.69%/+0.09 s), have a lower frequency (−2.27%/−0.29Hz)
and higher max peak-to-peak amplitude (+19.61%/9.45µV)
compared to controls (Table 2). No significant differences were
identified for the symmetry measure. The maximum peak-to-
peak amplitude estimated after removal of frequencies below
4Hz was still significantly different between groups. Of note,
patients with PD still showed a higher max peak-to-peak
amplitude (+20.95%/9.49µV) compared to controls. The five
SS morphology measures are illustrated in Figure 1. From left
to right, the eight first ID numbers in both groups are females
ranging from the youngest to the oldest. The last seven IDs in
both groups are males, also ranging from the youngest to the
oldest. One of the patients later developed MSA and is illustrated
with black.

The patients had significantly fewer spindles than the controls
(p-value < 0.05). Ten patients and only four controls had less
than 10 SS in the 40 epochs of N2 sleep that were assessed; four
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patients and 0 controls had no SS. Only 3 patients compared to
10 controls had more than 20 SS in the group consensus.

As a supplementary check, the significance tests were
performed on SS identifications from each of the five experts
individually. The maximum peak-to-peak amplitude was, for
all five experts, both before and after removal of frequencies
below 4Hz, significantly different in patients with PD compared
to controls. The duration and oscillation frequency were also
significantly different between the two groups for 4/5 of the
experts, and density significantly different between the two
groups for 3/5 of the experts. The mean and standard deviations
of the SS morphology measures and the results from the
significance tests are summarized in Table 2.

Figure 2 illustrates the relation between the SS measures and
disease duration for the patients, and Figure 3 illustrates the
relation between the SS measures and Addenbrooke’s Cognitive
Examination (ACE) score for the patients. Note that the x-
axes are not continuous, but denote disease duration in years
(Figure 2) and ACE score (Figure 3) for 15/15 and 13/15
of the patients, respectively. The three subjects with highest
SS density are all females, and the one with the highest
SS density is a patient with PD later diagnosed with MSA-
P (indicated as PD+MSA in the figures). She is illustrated
with black in Figures 1, 2, 3. No clear visual tendency
between SS characteristics and disease duration or ACE score
was seen for any of the measures. Supplementary Figure 1

illustrates the relation between SS measures and Hoehn and
Yahr (H and Y) stage and Supplementary Figure 2 illustrates
the relation between SS measures and the Unified Parkinson’s
Disease Rating Scale (UPDRS) Part III. No clear visual trends
were seen.

Considering that the outlier PD patient with a very high
spindle density (highest of all subjects in the study) later
developed MSA, we reanalyzed the SS included in the group
consensus when results from this outlier patient were left out,
and found the same measures to be as significant different
between the groups. Specifically, patients now have an even
bigger decrease in SS density (−61.29%/−1.14 SS/min), a
longer SS duration (+11.69%/+0.09 s), a slower frequency
(−4.14%/−0.53Hz) and a higher max peak-to-peak amplitude,
both before (+16.93%/8.16µV) and after (+17.95%/8.13µV)
removal of low frequencies when compared to controls. The
results for this analysis are summarized in Table 3.

Figure 4 shows scatterplots for the individual SS, where
the maximum peak-to-peak amplitude (before removal of low
frequencies) defines the y-axis and the oscillation frequency and
duration defines the x-axis, respectfully. Linear trend lines are
added on top of the scatterplots in order to see differences
between groups. We found a trend of a positive correlation
between the duration and maximum peak-to-peak amplitude.
Interestingly, SS from patients showed this tendency to a lesser
degree (slope of +11.74µV/s) compared to SS from controls
(slope of +18.09µV/s). Also, we found a negative correlation
of oscillation frequency and maximum peak-to-peak amplitude,
and found this tendency to be less apparent for SS from
patients (slope of −1.02µV/Hz) compared to SS from controls
(slope of−4.10µV/Hz).
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FIGURE 1 | Distributions of the morphology measures for the

spindles included in the group consensus. From left to right, the

first eight IDs in both groups are females ranging from the youngest

to the oldest, and the following seven IDs are males also ranging

from the youngest to the oldest. One patient with Parkinson’s disease

(PD) later developed Multiple System Atrophy (MSA) and is indicated

with black. The cyan horizontal lines indicate the group median for

each of the measures.

Table 4 summarizes the fraction of SS included in the group
consensus that do not strictly pass AASM criteria for a spindle
(11–16Hz, 0.5–3.0 s). Overall, 25.3% of the SS identified by
experts and included in the group consensus did not meet AASM
criteria. Most of these “abnormal” SS would have been excluded
because their duration is too short (16.9%) or have an oscillation
frequency that is too slow (9.7%).

In order to determine if there was a difference between
PD and controls in the frequency of “abnormal” spindles not
meeting AASM criteria, we compared the groups. All 15/15
control subjects had SS, whereas only 11/15 patients with PD had
some SS. It was found that control subjects show significantly
more “abnormal” spindles not meeting AASM criteria, i.e., more
spindles with a too short duration compared to patients with PD
(Table 4). No significant difference was however found between
groups when the outlier patient with PD + MSA was left out of
the analysis.

When computing the SS characteristic based on AASM
criteria, the same SS characteristics were found to be significantly
different between PD patients and controls (Table 5). Analysis
of these SS showed that patients with PD have a decreased
density (−32.84%/−0.44 SS/min), and their SS are longer

(+9.41%/+0.08 s), have a lower frequency (−2.69%/−0.35Hz)
and higher max peak-to-peak amplitude before removal of low
frequencies (+21.34%/+10.37µV) and after (+22.51%/+10.30)
compared to controls. These differences are similar to those
found based on all SS in the group consensus.

Table 6 summarizes inter-expert reliabilities of SS scoring,
where the SS are grouped according to their confidence
score. The mean inter-expert reliability of scoring “definite SS”
computed by κ was found to be significant lower for patients
compared to controls. Although not significant, a trend for
a lower κ was found for “probable/definite SS” in patients
compared to controls (P = 0.054). In all cases, the inter-expert
reliability is lower for scoring SS in patients compared to controls.

Discussion

Based on a group consensus of manually scored SS from five
independent sleep experts, this study investigates morphological
changes of SS in a central EEG lead of patients with PD compared
to age- and sex-matched control subjects. The main findings of
this study are that patients with PD have a decreased SS density,
and that their SS have a longer duration, a slower oscillation
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FIGURE 2 | Distribution of the morphology measures for the spindles from patients with Parkinson’s disease (PD), where the patients are sorted

according to their disease duration. PD+MSA indicates a patient with PD, that later developed Multiple System Atrophy (MSA).

frequency and higher maximum peak-to-peak amplitude. These
results suggest that not only SS density but also specific
morphological changes in SS have potential clinical utility when
diagnosing PD. Further, the data suggests that the disease process
affect directly or indirectly the brain regions responsible for
the generation of SS. Future studies including more subtypes
of PD and NDDs in general are however needed to investigate
whether the specific morphological changes in SS can be used to
differentiate different PD subtypes as well as different NDDs.

The results illustrate the fact that there are fewer SS in
patients with PD, and that the few that are remaining are more
pronounced when compared to those seen in controls. There
could be several explanations for this. First, patients with PD
have a more “blurred” EEG in general with either a lack of or
an abnormal mixture of micro- and macro-sleep structures (Petit
et al., 2004; Christensen et al., 2014b). This pattern may make
it more difficult to identify distinct SS, as they would be buried
within other undefined EEG microstructural changes. In this
case, only the obvious SS would rise over background and be
marked. Second, it could be that the neurodegenerative process
has affected the thalamic neurons responsible for generating
and controlling SS in such a way, that SS are only generated
when very strong signals from pre-thalamic fibers reaches the
thalamus resulting in more pronounced SS. Third, we cannot

rule out that these SS changes could be the result of treatment
with dopaminergic agents affecting the morphology of SS,
although a previous report suggests that these drugs should
increase spindle density (Puca et al., 1973), which is not what
we observed.

It was found that patients with PD have a lower SS density
compared to age and sex-matched controls. This finding is
consistent with our and other groups’ prior findings (Emser
et al., 1988; Christensen et al., 2014a; Latreille et al., 2015), but
contradicts those of other studies (Happe et al., 2004). According
to Braak et al. (2003), the neurodegenarative progress in PD
shows a progressive ascending course starting from the brain
stem and spreading to additional brain structures. At some point,
the neurodegeneration may affect or destroy the SS generator
of the thalamus, resulting in fewer or no spindles. Interestingly,
(Roth et al., 2000) found that medial thalamotomy abolishes
spindle activity in N2 sleep systematically, but that pallido-
thalamic tractotomy attenuate spindle activity only to a varying
degree, with spindles reemerging after 3 months. It is therefore
likely that neurodegenerative involvement of prethalamic fibers
from the brain stemmay affect spindle activity to a certain degree.
In Figure 1, it is apparent that for four of the patients, no SS are
included in the group consensus, and that for six other patients,
less than 10 spindles were identified.
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Surprisingly, a PD patient showing an abnormally high SS
density was later diagnosed with MSA-P. Although only a single
case, it is an interesting finding which support the hypothesis that
spindles can be used as a marker of diagnostic subgroups of PD.
Latreille et al. (2015) reported a decline in SS activity paralleling
cognitive decline in patients with PD, suggesting that SS activity
could be used as an early marker of Dementia. The number
of patients included in present study is, however, too small to
perform further subgroup analysis. Additionally, in both groups,
younger subjects and females trend in showing slightly higher
spindle densities when compared to older and male subjects. The
three oldest male control subjects have negligible SS densities.
These observations suggest that reduced SS density is not specific
for PD, in agreement with the fact that many conditions such
as cognitive function, memory consolidation, pharmacological
interventions and pre-PSG conditions have been reported to
influence SS density (De Gennaro and Ferrara, 2003; Caporro
et al., 2012). Further analysis including more PD and iRBD
patients, together with a more in-depth investigation of cognitive
decline and disease severity would be needed to evaluate the
relation of abnormalities in SS development in the disease
process, and the use of SS as a prognostic marker. Additionally,
SS density has also been reported decreased for other conditions
such as Dementia, Alzheimer’s disease (AD) and mild cognitive
impairment (Rauchs et al., 2008; Westerberg et al., 2012; Latreille

et al., 2015), and is also a sign of normal aging (Wauquier, 1993;
De Gennaro and Ferrara, 2003; Ktonas et al., 2009).

To our knowledge, no studies have investigated the impact of
L-DOPA on SS morphology. Previous studies have reported that

TABLE 3 | Mean (µ) and standard deviation (σ) for characteristics of

spindles in patients with Parkinson’s disease (PD) compared to

controls (C).

Spindle characteristic Group consensus (759SS) P

PD(-MSA) C

Duration [sec, µ ± σ] 0.86 ± 0.35 0.77 ± 0.36 <0.001

Frequency [Hz, µ ± σ] 12.27 ± 1.07 12.80 ± 1.23 <0.001

Max peak-to-peak amplitude

[µV, µ ± σ]

56.35 ± 18.97 48.19 ± 15.55 <0.001

Max peak-to-peak amplitude

After removal of frequencies <

4Hz [µV, µ ± σ]

53.42 ± 17.84 45.29 ± 14.41 <0.001

Percent-to-peak amplitude

[µ ± σ]

0.47 ± 0.23 0.46 ± 0.23 NS

Density [per min, µ ± σ] 0.72 ± 1.28 1.86 ± 1.57 <0.007

In this case, the patient that later was diagnosed with Multiple System Atrophy (MSA)

was excluded from the PD group [PD (-MSA)]. P-values for the Wilcoxon rank sum tests

between the two groups are shown. Only spindles in the group consensus are included

in the comparison.

FIGURE 3 | Distribution of the morphology measures for the

spindles from 13/15 patients with Parkinson’s disease (PD),

where the patients are sorted according to their

Addenbrookse’s cognitive examination (ACE) scores. PD +
MSA indicates a patient with PD, that later developed Multiple

System Atrophy (MSA).
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SS density is increased in patients with PD taking dopaminergic
treatment compared to non-treated patients, but the study
lacks a comparison to controls, and evaluation of spindle
morphology (Puca et al., 1973). As dopaminergic treatments
were not discontinued in this study, we cannot rule out that the
changes in SS morphology observed are due to the dopaminergic
interactions from the treatments, although we do not believe so,
as we did not see increases in SS density in these subjects. Future
studies will have to investigate this further including a potential

association between amount and duration of L-DOPA and/or
dopamine agonist treatment and SS morphological changes.

Surprisingly, SS in patients with PD had a longer duration and
a higher maximum peak-to-peak amplitude. To our knowledge,
no other studies have reported differences in SS duration in
patients with PD when compared to controls. The maximum
peak-to-peak amplitude significantly differ for SS identifications
in the group consensus as well as for each of the individual
expert’s identifications. This finding was also significant after we

FIGURE 4 | Two scatterplots for individual SS characteristics. The plot illustrates the maximum peak-to-peak amplitude (without removal of frequencies below

4Hz) as a function of (1) duration (top plot) and (2) oscillation frequency (lower plot), respectively. Trend lines are added for each group.

TABLE 4 | Percent of sleep spindles (SS) identified in the group consensus that do not strictly meet AASM criteria Iber et al. (2007).

AASM criteria Total PD SS PD-MSA Control P-value P-value

SS SS SS PD vs. controls PD-MSA vs. controls

Duration too short (<0.5 s) 0.169 0.128 0.134 0.194 0.010 NS

Duration too long (>3 s) 0.001 0 0 0.002 NS NS

Oscillation frequency too slow (<11Hz) 0.097 0.090 0.099 0.101 NS NS

Oscillation frequency too high (>16Hz) 0.002 0.003 0.005 0.002 NS NS

At least one criteria not met 0.253 0.212 0.228 0.278 0.027 NS

There were a total of 344SS from 11 patients with Parkinson’s disease (PD) and 557SS from 15 control subjects. There were 202 SS from 10 patients when one patient with PD, who

later was diagnosed with Multiple System Atrophy (MSA) [PD(-MSA)] was left out. X2-tests were used to test for significance between spindles from PD patients (including and excluding

the one with MSA) and control subjects.
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filtered the data to eliminate the impact of low frequency, high
amplitude waves. This was surprising, and contradicts the idea
that polygraphic features such as SS and K-complexes are less well
formed in various NDDs (Petit et al., 2004; Ktonas et al., 2009).
By computing maximum peak-to-peak amplitude both without
any further filtration and after elimination of low frequencies, our
data show that patients with PD show SS with higher amplitudes,
regardless of the EEG patterns surrounding them. Margis et al.
(2015) reports increased sigma power in N2 sleep of patients
with PD vs. controls. Increased sigma power is consistent with
our findings of increased duration and amplitude of spindles,
which would overpower the decrease in spindle density we and
others have reported in PD. Interestingly, SS morphology was
unchanged in schizophrenia patients compared to controls, even
though they had a significant decrease in SS density (Wamsley
et al., 2012).

Enhanced maximum peak-to-peak amplitude is also not
consistent with the findings of Latreille et al. (2015), who reports
no significant differences of SS amplitude between PD patients

TABLE 5 | Mean (µ) and standard deviation (σ) for the spindle

characteristics found for the spindles in the group consensus meeting the

AASM criteria.

Spindle characteristic Group consensus (673SS) P

PD C

Duration [sec, µ ± σ] 0.93 ± 0.33 0.85 ± 0.31 1.95 .10−4

Frequency [Hz, µ ± σ] 12.65 ± 1.01 13.00 ± 0.96 9.04 .10−6

Max peak-to-peak amplitude

[µV, µ ± σ]

58.97 ± 16.64 48.60 ± 14.92 3.90 .10−16

Max peak-to-peak amplitude

After removal of frequencies <

4Hz [µV, µ ± σ]

56.06 ± 15.75 45.76 ± 13.89 5.27 .10−18

Percent-to-peak amplitude

[µ ± σ]

0.47 ± 0.23 0.45 ± 0.23 NS

Density [per min, µ ± σ] 0.90 ± 1.71 1.34 ± 1.25 4.50 .10−2

Wilcoxon rank sum tests were used to test for significance between patients with PD and

control subjects (C).

and controls, and significantly reduced SS amplitude in patients
with PD, who later developed Dementia when compared with
controls. The SS in Latreille et al. (2015) were found automatically
and mandated a duration criteria of least 0.5 s to be included.
Also, the spindle detection method includes a filtration of the
signal (11–15Hz) and a threshold determined based on root-
mean-square (RMS) values of the background NREM activity
(Martin et al., 2013). Lastly, the SS in Latreille et al. (2015) were
detected in all NREM stages, and the individual SS characteristics
(amplitude and frequency) were computed as the mean of
both hemispheres, as they found no significant hemispheric
interaction. The definition of SS is thus not the same in the two
studies, and the different results could be due to the fact that
automatic detectors detect SS that humans cannot see. Another
explanation could be that the detector in Latreille et al. (2015)
lack to identify the smaller SS in controls, thereby enlarging
the mean spindle amplitude in controls. If the threshold used is
based on values across all NREM sleep stages, different amount
of NREM stages between controls and patients influences the
threshold, maybe resulting in harder thresholds to cross for
control spindles. Lastly, taking into account the fact that PD
patients show more mixed sleep patterns making sleep stages
more difficult to distinguish (Danker-Hopfe et al., 2004; Jensen
et al., 2010), it could also be that more N3 sleep is present in the
annotated data of patients compared to controls, although we did
select data fromN2 sleep according to each hypnogram.Whether
the contradicting findings are due to methodological reasons
only, have to be investigated in future studies, e.g., by applying
different automatic spindle detectors on the same dataset and
on data from different derivations, and see if the morphological
alterations are consistent across detectors, manually scorings and
derivations.

EEG slowing has been frequently reported in PD (Petit
et al., 2004; Rodrigues Brazète et al., 2013), including slowing
in occipital, temporo-occipital and frontal regions (Sirakov and
Mezan, 1963; Soikkeli et al., 1991; Primavera and Novello, 1992).
It is therefore not surprising that we found slower SS oscillation
frequencies in PD patients. Whether or not this is specific for PD
or generalizable to other NDDs will need further investigations.

TABLE 6 | Mean (µ) and standard deviation (σ) for the inter-expert reliability measure F1-scores and Cohen’s Kappa (κ) for scoring sleep spindles (SS).

SS group definition F1-score κ P

PD C PD C

Low confidence “maybe” 0.12 ± 0.11 0.17 ± 0.12 0.14 ± 0.11

“slight”

0.16 ± 0.12

“slight”

NS

Medium confidence “probably” 0.13 ± 0.10 0.19 ± 0.11 0.15 ± 0.10

“slight”

0.18 ± 0.11

“slight”

NS

High confidence “definitely” 0.24 ± 0.13 0.32 ± 0.13 0.21 ± 0.13

“fair”

0.32 ± 0.13

“fair”

4.76 .10−2κ

Medium or high confidence “probably/definitely” 0.34 ± 0.15 0.39 ± 0.17 0.28 ± 0.15

“fair”

0.39 ± 0.17

“fair”

NS

All SS 0.41 ± 0.16 0.45 ± 0.15 0.32 ± 0.17

“fair”

0.43 ± 0.15

“moderate”

NS

The mean and standard deviations are taken across the ten expert-pairs available. Wilcoxon rank sum tests were used to test for significantly lower inter-expert reliability for scoring SS

in patients with Parkinson’s disease (PD) compared to control subjects (C). κ indicates significance for κ and F indicates significance for F1-score.
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In AD, Rauchs et al. (2008) found no change in spindle density
but found that fast spindles (defined as having frequencies of
13–15Hz) were significantly reduced when compared to age-
matched controls. Consistently, Westerberg et al. (2012) found
that patients with amnestic mild cognitive impairment had fewer
N2 spindles compared to age-matched controls, and that the
reduction was seen in fast spindles (13–15Hz) and not in slow
spindles (11–13Hz). Latreille et al. (2015) found significant lower
SS frequency in patients with PD who later developed Dementia
compared to controls, but not in Dementia-free patients with PD
compared to controls. This last study might however suffer from
a selection bias as they automatically defined SS within a certain
frequency range, as stated by the AASM. Nonetheless, as in this
study, we found that PD patients had a slower SS frequency, both
when looking at SS included in the group consensus, but also
when looking at SS strictly meeting AASM criteria.

Figures 2, 3 and Supplementary Figures 1, 2 report on SS
measures for the PD group consensus, but with subjects sorted
according to their disease duration (Figure 2), their ACE score
(Figure 3), their H and Y stage (Supplementary Figure 1) and
UPDRS part III score (Supplementary Figure 2). Although no
clear tendency was seen for any of the SS measures for disease
duration, ACE score, H and Y stage or UPDRS part III score,
longitudinal studies are likely needed to determine whether SS
morphology measures can provide prognostic value. Indeed,
the patients included here may have had a PD diagnosis
for various amounts of time, and inter-subject variation of
disease progression and severity makes such a relationship very
complicated to analyze. ACE is a brief assessment of cognitive
functions and is in this study used as a screening tool to
determine Dementia, which none of the patients had at inclusion.
A more in-depth examination of cognitive functions as well as
a follow-up study of the patients is needed to determine the
subject-specific progression and severity rate. These rates can
be compared to the SS morphology measures to investigate the
prognostic value.

A biomarker does not have to be specific to a disease to have
clinical utility, and combining the different SS measures may
reveal that different diseases show different trends or different
combinations of changes in SS morphology measures. If a trend
is found, it is important to also look at SS that might fall out of
the stated AASM criteria, as not doing that may misrepresent
the data. Table 4 shows that a rather high proportion of SS in
both groups do not meet AASM criteria. Additionally, when
looking at inter-expert reliability, it was found that experts are
less likely to agree on definite SS in patients when compared to
controls. Considering that automatic SS detectors are likely to
be used in patients with NDDs, it is highly encouraged to build
detectors capable of detecting atypical SS as well. Such atypical
SS could be spindles with abnormal duration or frequency or
spindles surrounded by EEG that is not typically seen in N2
sleep. Because of this, detectors should not be constrained or
designed to perform well only in the context of a single expert
or for normal EEG. Ideally, automatic detectors should give
a confidence score for each detected SS and group subtypes
of SS using specific parameters describing their morphology.
Specifically, description of “probable SS” in different patient

groups may give a better idea of the specific morphological
changes that can be observed for each disease. Also, such studies
should investigate how disease duration and/or severity impact
morphology. Such in-depth studies would be beneficial to better
understand the pathological differences between the NDDs and
also see if any of the morphology measures hold potential for
separating diseases or subtypes of them.

In conclusion, we investigated SS in an objective way and
found that the oscillation frequency and duration of SS manually
scored in clinical settings are not necessarily bound to the limits
given by AASM. The shorter or slower SS must have had an
ability to stand out from the background EEG, and we believe
that these per-definition-not-SS should be included in studies
analyzing SS morphology changes, particularly when searching
for disease biomarkers.

Based on a group consensus of five individual experts’
identification of SS in N2 sleep, we compared 15 patients
with PD with 15 age-matched control subjects and found that
patients show a lower SS density and that their SS have a
longer duration, a higher maximum peak-to-peak amplitude and
a slower oscillation frequency. All the included patients were
taking dopaminergic treatment, and we can therefore not rule out
that the significant differences found could be due to treatment
effects. We conclude that SS are significantly altered in patients
with PD, but that due to high inter-subject variability in disease
progression and severity, future longitudinal studies are needed
to investigate the clinical utility of the SS morphology changes as
well as their value as prognostic biomarkers.
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Background and Aim: Predisposing factors place certain individuals at higher risk for
insomnia, especially in the presence of precipitating conditions such as stressful life events.
Sleep spindles have been shown to play an important role in the preservation of sleep con-
tinuity. Lower spindle density might thus constitute an objective predisposing factor for
sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship
between baseline sleep spindle density and the prospective change in insomnia symptoms
in response to a standardized academic stressor.

Methods: Twelve healthy students had a polysomnography recording during a period of
lower stress at the beginning of the academic semester, along with an assessment of
insomnia complaints using the insomnia severity index (ISI). They completed a second ISI
assessment at the end of the semester, a period coinciding with the week prior to final
examinations and thus higher stress. Spindle density, amplitude, duration, and frequency,
as well as sigma power were computed from C4–O2 electroencephalography derivation
during stages N2–N3 of non-rapid-eye-movement (NREM) sleep, across the whole night
and for each NREM sleep period. To test for the relationship between spindle density and
changes in insomnia symptoms in response to academic stress, spindle measurements at
baseline were correlated with changes in ISI across the academic semester.

Results: Spindle density (as well as spindle amplitude and sigma power), particularly during
the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05).

Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively
predicted larger increases in insomnia symptoms in response to stress.This result indicates
that individual differences in sleep spindle activity contribute to the differential vulnerability
to sleep disturbances in the face of precipitating factors.

Keywords: spindles, sleep, insomnia, stress, EEG

INTRODUCTION
The natural history of insomnia is hypothesized to involve
three categories of factors: predisposing factors placing certain
individuals at higher risk for insomnia complaints, precipitat-
ing factors triggering the onset of insomnia, and perpetuating
factors maintaining the insomnia over time (Spielman, 1986).
The characterization of predisposing and precipitating factors
is of prime importance not only to understand the pathophys-
iology of insomnia but also to implement optimal preventive
sleep interventions. In terms of predisposing factors, longitu-
dinal studies have shown that the rate of new onset insomnia
is higher among individuals with depressive or anxiety symp-
toms, a family history of insomnia, high arousability predisposi-
tion, poor general health condition, and pain syndrome (LeBlanc

et al., 2009; Harvey et al., 2014). On the other hand, precipi-
tating factors have been shown to vary with age; in particular,
for younger individuals (<30 years old), stress-related factors at
work/school constitute the most frequent precipitating events trig-
gering insomnia onset (Bastien et al., 2004). Given one’s profile
of predisposing factors, individuals are not equally vulnerable
to the development of sleep disturbances in the face of com-
mon precipitating factors such as stressful events (Drake et al.,
2004).

Beyond medical and psychological history, there has been no
investigation of the inter-individual variations in sleep architec-
ture – and sleep oscillations – as predisposing factors for the
insomnia symptoms. Among the different components of sleep
architecture, sleep spindles have been the subjects of intense
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research over the past decade (De Gennaro and Ferrara,2003; Fogel
and Smith, 2011). Spindles are defined as waxing-and-waning
electroencephalography (EEG) waves oscillating at a frequency of
11–16 Hz and predominant over central EEG derivations; spin-
dles characterize stage N2 of non-rapid-eye-movement (NREM)
sleep but can also be found during stage N3 (De Gennaro et al.,
2000; Iber et al., 2007). Animal and human studies converge to
demonstrate that sleep spindles are generated through the inter-
play between specific populations of thalamic (particularly thala-
mic reticular) and cortical neurons (Steriade and McCarley, 2005;
Schabus et al., 2007). While the density of sleep spindles varies
considerably between individuals, it has been shown that spin-
dle density remains remarkably stable within a same individual
across different nights, thus constituting an individual trait (Gail-
lard and Blois, 1981; De Gennaro et al., 2005). Spindles have been
shown correlated with measures of intellectual ability as well as
with the overnight retention of various types of memory traces,
suggesting an important role for spindles in brain plasticity and
sleep-related memory consolidation (Gais et al., 2002; Schabus
et al., 2004, 2006; Morin et al., 2008; Fogel and Smith, 2011).
EEG and functional neuroimaging studies have also demonstrated
that the cortical transmission of external – particularly acoustic –
stimulation during sleep is drastically diminished during sleep
spindles (Cote et al., 2000; Dang-Vu et al., 2011). These findings
indicate that spindles isolate the cortex from the environment
during sleep, contributing to the preservation of sleep stability.
It was then inferred that spindle density, as a trait, might con-
stitute a biomarker of sleep stability in the face of noise. This
was confirmed by a study showing that individuals with lower
spindle density were more vulnerable to sleep disruption from
sounds presented throughout the night (Dang-Vu et al., 2010).
Because spindles constitute an index of sleep stability, individuals
with reduced spindle density might be more vulnerable to develop
insomnia complaints, particularly when confronted to triggering
factors such as stress. To the best of our knowledge, no study
has investigated the role of sleep spindle as predisposing factor to
insomnia onset.

The aim of this study was to prospectively assess whether
spindle density would predict the worsening of sleep distur-
bances in response to a standardized stressor. We chose to fol-
low a population of undergraduate university students during
a period of increasing academic stress. In this context, assess-
ing students at the beginning of the semester, corresponding to
a lower stress period, and reevaluating them during a follow-
up in the week preceding the final examinations, a period of
higher stress, provides a unique opportunity to examine indi-
vidual differences in the evolution of insomnia symptoms in
response to a standardized stressor. The validity of this model
is supported by data showing an increase of sleep disturbances
in response to increased academic stress (Jernelov et al., 2009;
Lund et al., 2010). Here, we hypothesized that a lower spindle
density at baseline during the low stress period would prospec-
tively predict larger increases in sleep complaints from the low
to the high stress periods, therefore defining a neurophysiologi-
cal vulnerability factor predisposing to the increase of insomnia
symptoms.

MATERIALS AND METHODS
PARTICIPANTS
This study is part of a larger project investigating the psychophys-
iological predictors of stress-induced sleep disturbances. Partic-
ipants were young healthy students enrolled in full-time under-
graduate programs in Psychology or Exercise Science at Con-
cordia University. They were recruited at the beginning of the
winter semester through local advertisements posted on the cam-
pus. Potential participants were screened using a semi-structured
interview for the absence of exclusion criteria, i.e., current insom-
nia syndrome (APA, 2013), acute or chronic medical condition
including psychiatric and sleep disorders, current use of prescribed
medication (other than oral contraceptives), current use of over-
the-counter sleep medication, cigarette smoking, age >30 years
old, working on night shifts. Those deemed eligible then had a
baseline assessment during the lower stress period, i.e., within the
first 4 weeks of the 15-week academic winter semester of 2014
(January). This baseline evaluation included a self-reported assess-
ment of sleep disturbances using the insomnia severity index (ISI),
which is a 7-item questionnaire assessing the nature, severity, and
impact of insomnia symptoms over the past month (Bastien et al.,
2001), and the Pittsburgh sleep quality index (PSQI), which is
a 19-item questionnaire assessing subjective sleep quality in the
past month (Buysse et al., 1989). The baseline evaluation also
involved an overnight in-lab sleep recording with polysomnog-
raphy (PSG), in order to confirm the absence of sleep disorders
(e.g., sleep apnea) as well as to detect sleep spindles and quantify
their parameters (e.g., density). Besides sleep, a self-reported eval-
uation of psychological distress was obtained using the depression
anxiety stress scales (DASS), which includes depression (DASS-
D), anxiety (DASS-A), and stress (DASS-S) subscales (Lovibond
and Lovibond, 1995). Furthermore, participants also completed
at baseline the Ford insomnia response to stress test (FIRST), a
questionnaire developed to assess trait sleep reactivity to stress
(Drake et al., 2004). All eligible participants then had a second
ISI, PSQI, and DASS assessment during the higher stress period,
i.e., in the week prior to the final examination period. Participants
signed an informed consent form before entering the study, which
was approved by Concordia University Human Research Ethics
Committee.

PSG RECORDING AND SLEEP SPINDLE ANALYSIS
Overnight PSG recordings were conducted at the PERFORM
Center Sleep Laboratory, using 34-channel systems (Embla Tita-
nium, Natus Medical, San Carlos, CA, USA) with EEG referenced
to linked-mastoids (bandpass filter 0.3–100 Hz, sampling rate
256 Hz), electrooculography (EOG), electromyography (EMG;
submental), nasal–oral thermocouple airflow, and transcutaneous
finger pulse oximeter. Participants arrived to the sleep laboratory at
least 1 h before their habitual bedtime, in order to allow sufficient
time for the PSG setup. They were asked to refrain from alcohol
and caffeine consumption and avoid strenuous physical exercise
for at least 8 h prior to the PSG recording. Participants went to
bed at their habitual bedtime (or at midnight at latest) and slept
until they spontaneously woke up the next morning (or at 9 a.m.
at latest). PSG was recorded and sleep stages were scored according
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to standard criteria (Iber et al., 2007). Sleep apnea syndrome was
defined by an apnea–hypopnea index >5/h (exclusion criterion).
Sleep spindles were automatically detected during stages N2 and
N3 of NREM sleep on EEG C4–O2 derivation. This derivation
was chosen given the well-described central predominance of sleep
spindles (De Gennaro et al., 2000). The spindle detection method
(Aseega software, Physip, Paris, France) used data-driven crite-
ria in order to cope with both inter-subject and inter-recording
condition variabilities (Berthomier et al., 2007). It was based on
an iterative approach. The first iteration aimed at determining
recording-specific thresholds, based on EEG power ratios in delta,
alpha, and sigma bands. The second iteration provided precise
temporal localization of the events. The final iteration enabled
the validation of detected events based on frequency and duration
criteria (>0.5 s). Iteration 1 and 3 dealt with raw EEG data, while
iteration 2 was applied on the EEG filtered in the spindle (sigma)
frequency range using frequency bands adapted to each individ-
ual based on his/her global spectral profile (median values for low
and high bands were 11.9 and 15.9 Hz, respectively). The density
of spindles was computed as the average number of detected spin-
dles per 30 s EEG epoch for each subject. In addition to spindle
density, other spindle parameters were also computed for each
participant in order to comprehensively evaluate spindle activ-
ity: average maximum spindle amplitude (in microvolts), average
spindle duration (in seconds), and average spindle frequency (in
hertz). After cleaning of the main EEG artifacts, the EEG power
in the adapted sigma frequency range (in squared microvolts, per
30 s epoch) was also computed using Hanning window. Spindle
parameters and sigma power were first calculated considering the
N2–N3 NREM sleep of the entire night. In addition, in order to
take into account the variation of spindle activity across successive
NREM sleep periods (De Gennaro et al., 2000), spindle parame-
ters, and sigma power were also calculated for each NREM sleep
period. These periods were defined according to standard criteria:
a NREM sleep period was defined by a period of at least 15 min
of NREM sleep followed by at least 5 min of REM sleep, and the
first four NREM sleep periods were considered given that there are
usually four NREM sleep periods during overnight sleep in adults
(Feinberg and Floyd, 1979). For completeness, spindle parameters
and sigma power were also calculated during stage N2 only, for the
entire night as well as for each NREM sleep period, and the data
from these additional analyses are presented in the supplementary
material given that they showed results quite similar to those from
N2–N3 combined.

STATISTICAL ANALYSIS
Changes in self-reported sleep quality and stress over time were
first evaluated using dependent t -tests. The evolution of spin-
dle parameters across NREM sleep periods was then examined
using one-way repeated measures analysis of variance (ANOVA)
with Bonferroni post hoc tests. In order to test our main hypoth-
esis, correlations between spindle density (during N2–N3 for
the whole night and for each NREM sleep period) and changes
in self-reported sleep quality (score during high stress period
minus score during low stress period) were calculated using Pear-
son product-moment correlation. Secondary analyses likewise
tested the Pearson correlations between other spindle parameters

(spindle amplitude, duration, frequency) or sigma power and sleep
quality changes. FIRST scores were also correlated with sleep qual-
ity changes to evaluate the predictive potential of this self-reported
measure of sleep reactivity to stress in the context of academic
stress. All analyses were considered significant at a p value <0.05,
and were conducted with SPSS Statistics 22.0 (IBM, New York,
NY, USA).

RESULTS
Out of 22 potential participants, 12 were confirmed eligible and
presented at least 4 NREM sleep periods during their PSG record-
ing. The majority of them were female students (10/12). Seven
of the participants were psychology majors; the remainders were
exercise science majors. Characteristics of the participants, includ-
ing age, PSG parameters, PSQI, and ISI values are presented in
Table 1. There was a significant increase in total ISI score from the
low to the high stress periods (t = 2.23, p= 0.047), as illustrated in
Figure 1, but no significant change in any of the seven individual
items of the ISI. There was no significant change in PSQI (t = 0.44,
p= 0.67). The total DASS score significantly increased (t = 2.9;

Table 1 | Characteristics of participants (N = 12, 10 females).

Parameters M (SD) Range

Age 21.08 (2.43) 17–25

PSG total sleep time (min) 417.64 (62.81) 326–527.5

PSG sleep efficiency (%) 85.86 (8.81) 66.3–96.8

PSG stage N1 (% of TST) 13.01 (8.15) 3.8–30.9

PSG stage N2 (% of TST) 51.58 (6.30) 42.5–61.4

PSG stage N3 (% of TST) 18.36 (5.10) 11.8–27.5

PSG stage REM (% of TST) 17.33 (2.39) 14.1–21.3

NREM period 1 (min) 91.13 (48.10) 44–176

NREM period 2 (min) 83.83 (40.50) 30.5–175.5

NREM period 3 (min) 87.17 (37.83) 43.5–169.5

NREM period 4 (min) 61.04 (28.08) 22–123.5

Apnea-hypopnea index (nb/h) 0.31 (0.39) 0–1

Arousal index (nb/h) 8.11 (3.05) 3.3–12.5

ISI low stress 5.75 (5.82) 0–15

ISI high stress 7.75 (6.05) 0–20

PSQI low stress 5.17 (3.16) 1–10

PSQI high stress 5.42 (3.85) 0–14

DASS-D low stress 3.08 (4.56) 0–17

DASS-D high stress 4.83 (4.76) 0–17

DASS-A low stress 3 (4.24) 0–13

DASS-A high stress 4.17 (4.43) 0–15

DASS-S low stress 5.17 (4.17) 0–16

DASS-S high stress 7.92 (5.3) 0–17

DASS-total low stress 11.25 (12.39) 0–46

DASS-total high stress 16.92 (13.73) 0–49

FIRST 21.83 (7.60) 11–32

DASS, depression anxiety stress scales (D, depression subscale; A, anxiety

subscale; S, stress subscale); FIRST, Ford insomnia response to stress test;

ISI, insomnia severity index; NREM period 1–4, first to fourth NREM sleep

period; PSG, polysomnography; PSQI, Pittsburgh sleep quality index; TST, total

sleep time.
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p= 0.014), including increases in depression [DASS-D: t = 2.55;
p= 0.027)] and perceived stress (DASS-S: t = 3.48; p= 0.005)
subscales, but not anxiety (DASS-A: t = 1.7; p= 0.12). There was
a significant change in spindle density across NREM sleep periods
(F= 4.58, p= 0.033); post hoc tests showed that spindle density
during the first NREM sleep period was significantly lower than
during each of the three following NREM sleep periods (p= 0.031,
0.025, and 0.026, respectively) (Figure 2A). Spindle duration also

FIGURE 1 | Self-reported sleep quality, as assessed by the insomnia
severity index (ISI) during low and high stress periods. This graph
depicts the evolution of ISI total score for each individual (n= 12) from the
beginning (low stress period) to the end of the semester (high stress
period). Each individual is represented by a different colored line. There was
a significant increase in ISI from the low to the high stress period (p < 0.05).

demonstrated a significant change across NREM sleep periods
(F= 11.62, p= 0.002), with post hoc tests revealing a significantly
lower spindle duration during NREM sleep period 1 compared to
each of the next periods (p= 0.002) (Figure 2C). There was no sig-
nificant change in spindle amplitude (F= 0.432, p= 0.735), spin-
dle frequency (F= 1.664, p= 0.243), and sigma power (F= 0.869,
p= 0.492) across NREM sleep periods (Figure 2).

Given that PSQI did not show significant increase in response
to academic stress, bivariate correlations were performed between
spindle parameters or sigma power and ISI change only (Table 2).
When examining spindle density, there was a significant negative
correlation between spindle density during the first NREM sleep
period and ISI change (Figure 3A), i.e., lower spindle density at the
beginning of the night was associated with higher increases in sleep
complaints in response to academic stress. The correlation was not
significant for spindle density during the whole night or during
any other NREM sleep period. When looking at the other spin-
dle parameters, duration, and frequency did not correlate with ISI
change. Spindle amplitude, however, negatively correlated with ISI
change, when considering either the first (Figure 3B) or the third
NREM sleep period. Finally, there was a significant negative cor-
relation between sigma EEG power, for the whole night as well as
for each NREM sleep period, and ISI change. This correlation with
sigma power was the most significant during the first NREM sleep
period (Figure 3C). FIRST score at baseline was not correlated
with ISI change (r =−0.10; p= 0.75).

DISCUSSION
Taken together these results indicate that spindle activity consti-
tutes a predisposing factor for the future aggravation of insomnia
complaints in response to stress. They confirm our hypothesis that
lower spindle density is associated with a higher vulnerability to

FIGURE 2 | Evolution of spindle parameters and sigma power across
the four NREM sleep periods: (A) spindle density; (B) spindle
maximum amplitude; (C) spindle duration; (D) spindle frequency;
(E) EEG spectral power in the sigma frequency band. All values were
extracted from C4–O2 EEG derivation. The dots represent the mean value,

and the bars show the standard error of the mean. There was a significant
increase of spindle density and duration across NREM sleep periods
(one-way repeated measures ANOVA, p < 0.05), but there was no
significant change of spindle amplitude, frequency, and sigma power
across periods.
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Table 2 | Correlations between baseline spindle parameters or sigma

power and change in insomnia severity index from low to high stress

period.

Parameters ∆ISI

Pearson’s r p value

Spindle density during total NREM sleep −0.322 0.308

Spindle density in NREM period 1 −0.578 0.049*

Spindle density in NREM period 2 −0.156 0.628

Spindle density in NREM period 3 −0.378 0.226

Spindle density in NREM period 4 −0.192 0.549

Spindle amplitude during total NREM sleep −0.502 0.097

Spindle amplitude in NREM period 1 −0.588 0.044*

Spindle amplitude in NREM period 2 −0.486 0.109

Spindle amplitude in NREM period 3 −0.591 0.043*

Spindle amplitude in NREM period 4 −0.545 0.067

Spindle duration during total NREM sleep 0.104 0.748

Spindle duration in NREM period 1 0.010 0.975

Spindle duration in NREM period 2 0.136 0.672

Spindle duration in NREM period 3 −0.074 0.819

Spindle duration in NREM period 4 0.164 0.610

Spindle frequency during total NREM sleep −0.167 0.603

Spindle frequency in NREM period 1 −0.257 0.420

Spindle frequency in NREM period 2 −0.091 0.779

Spindle frequency in NREM period 3 −0.182 0.572

Spindle frequency in NREM period 4 −0.210 0.512

Sigma spectral power during total NREM sleep −0.685 0.014*

Sigma spectral power in NREM period 1 −0.761 0.004**

Sigma spectral power in NREM period 2 −0.597 0.041*

Sigma spectral power in NREM period 3 −0.710 0.010**

Sigma spectral power in NREM period 4 −0.631 0.028*

∆ISI, insomnia severity index change from low to high stress period; NREM

period 1–4, first to fourth NREM sleep period.

*Significance at p < 0.05.

**Significance at p < 0.01.

sleep disturbances triggered by stress. In this study, the severity of
insomnia symptoms assessed by ISI increased from the beginning
to the end of the semester – a period coinciding with intense
preparations for final examinations – thus validating our chosen
model of stress-induced sleep disturbances. The validity of this
academic stress model is further supported by the increase of self-
reported perceived stress across the academic semester, as shown
by the significant DASS-S increase with time. In addition, these
results extended our initial hypothesis in two directions. First, we
found that this predictive relationship between spindle density
and ISI was restricted to the spindles during the first NREM sleep
period, i.e., at the beginning of the night. Second, besides spin-
dle density, we also observed significant correlations between ISI
change and other spindle parameters, such as spindle amplitude
and EEG power in the sigma frequency range, suggesting that spin-
dle activity in general (and not only the mere presence of spindles)
prospectively affects the evolution of insomnia symptoms.

The possible mechanisms underlying the relationship between
spindle and stress-triggered insomnia complaints can be discussed
in the light of previous studies investigating the functional prop-
erties of human sleep spindles. On the one hand, the filtering
of external information at the thalamic level during sleep spin-
dles might provide a potential mechanism for this predictive
relationship. Tones presented during most of NREM sleep were
found to activate the thalamus and the primary auditory cortex in
an EEG/functional magnetic resonance imaging study; however,
tones presented in coincidence with sleep spindles did not consis-
tently activate thalamocortical auditory circuits (Dang-Vu et al.,
2011). This result suggests that spindles provide a gating process
to preserve the sleeping brain from disruption by sounds (and
presumably also by other types of environmental stimulation).
Based on this finding, a further study investigated the relationship
between spindle density and the probability of maintaining sleep
continuity under presentation of sounds with increasing intensi-
ties (Dang-Vu et al., 2010). At any sound intensity level, individuals
with higher spindle density were more likely to preserve the conti-
nuity of sleep than subjects with lower spindle density. The ability
of individuals with higher spindle density to more efficiently sleep
throughout noise might provide them with a better capacity to

FIGURE 3 | Scatter plots showing the correlations between spindle parameters (A, density; B, amplitude) or sigma power (C) during NREM sleep
period 1 (from C4–O2 EEG derivation) and the change in insomnia severity index (ISI) from the low stress to the high stress period.
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resist sleep disturbances in response to stress. Exposure to acute
stress is indeed known to enhance sensitivity to noise (Hasson
et al., 2013), and is thus likely to increase vulnerability to sounds
during sleep. Through the gating mechanisms associated with
spindles, individuals with higher spindle density might be in a
better position to counter the deleterious consequences of stress
on noise sensitivity during sleep, leading to a lower propensity to
insomnia complaints in response to stress. Future studies investi-
gating sleep spindles in relation to acoustic stimulation in periods
of high stress are needed to support this interpretation.

Spindles have also been shown associated with a variety of cog-
nitive measures. Higher number of spindles and higher EEG sigma
power have been shown positively correlated with better percep-
tual and analytical skills measured by the performance intellectual
quotient (Fogel et al., 2007), as well as with higher score at the
Raven progressive matrices test reflecting general cognitive abil-
ities (Bodizs et al., 2005; Schabus et al., 2006). These findings
suggest that spindles constitute a neurophysiological biomarker of
intellectual capacities. Beyond these correlations with broad scores
of cognitive abilities, previous studies also found that sleep spin-
dle activity increased following procedural memory tasks such as
motor sequence learning (Barakat et al., 2011) and mirror tracing
task (Tamaki et al., 2008), as well as following declarative learn-
ing tasks (word pairs) (Gais et al., 2002; Schabus et al., 2004),
and these increases correlated with overnight improvements of
performance. Therefore, an alternative explanation for the rela-
tionship found in the present study is that individuals with higher
spindle density or activity, given their higher cognitive abilities,
might be more capable of efficiently learning their course materials
and thus managing academic stress, which might ultimately make
them less susceptible to sleep disturbances in such context. Both
mechanisms – sleep-protective and cognitive – are not mutually
exclusive and might act synergistically to confer individuals with
higher spindle activity the ability to maintain sleep stability in the
face of stress.

In this study, spindle density and other spindle parameters
during stages N2–N3 were computed separately for each NREM
sleep period, in addition to their quantification throughout the
whole night. Indeed, spindle parameters do not remain constant
throughout the night (De Gennaro et al., 2000). We observed a
significant increase of spindle density and spindle duration over
the course of the night (particularly between NREM sleep period
1 and each of the following NREM sleep periods). These observa-
tions are in line with previous studies showing increases of spindle
density and duration across successive NREM sleep periods (De
Gennaro et al., 2000; Martin et al., 2013). Interestingly, the modu-
lation of spindle parameters throughout the night had an impact
on the predictive relationships with sleep complaints, since spin-
dle density only in the first NREM sleep period was significantly
correlated with ISI change. This result suggests that sleep spindles
during the early phase of the night have a predominant influence
on the perception of changes in insomnia complaints. The rea-
sons for such effects of spindles during early night remain unclear.
Interestingly, a differential effect of spindle activity as a function
of NREM sleep period was also observed in a study comparing
spindle density between teenagers with major depressive disorder,
teenagers at risk for depression and healthy controls (Lopez et al.,

2010). In contrast to our results, depressed and at-risk teenagers
had lower spindle density than controls during the third and fourth
NREM sleep period, but not at the beginning of the night. These
various results suggest a differential clinical significance for spindle
activity depending on the corresponding NREM sleep period.

Our findings also demonstrated that, besides spindle density,
other parameters reflecting spindle activity (spindle amplitude,
sigma power) correlated with change of sleep quality in response
to stress. The correlations with spindle amplitude and EEG sigma
power suggest that spindle activity (i.e., intensity) – reflecting
the degree of thalamocortical synchronization – also modulates
the perception of stress-induced sleep disturbances. Other stud-
ies investigating the functional properties of sleep spindles also
resorted to measures of spindle intensity: EEG sigma power cor-
related with scores of intellectual abilities (Fogel et al., 2007), and
spindle amplitude modulated the reactivation during sleep spin-
dles of brain regions involved in the encoding of a declarative
learning task (Bergmann et al., 2012). In our study, correlation
between sigma power and stress-induced sleep complaints was
significant for all NREM sleep periods, while it was limited to the
first NREM sleep period for spindle density (as well as the third for
spindle amplitude). Such discrepancies between the effects of spin-
dle density compared to those of sigma power were also observed
in previous studies (Gais et al., 2002), which further underlines
that EEG spectral power in the sigma frequency range cannot
be fully equated to the detection of sleep spindles as discrete
events. Indeed, sigma power also captures activities that do not
meet the standard criteria for full-blown sleep spindles, and thus
constitutes a more sensitive (but less specific) method for spin-
dle quantification. Taken together these effects of spindle density,
amplitude, and sigma power suggest that, although the contri-
bution of spindles during early night seems more predominant,
spindle activity throughout the whole night affects the perception
of stress-induced changes in sleep quality.

If lower spindle density (and activity) constitutes a predisposing
factor for the surge of insomnia complaints, it could be expected
that chronic insomniacs would tend to demonstrate lower spindle
measures compared to good sleepers. A previous study analyzed
the differences in spindle density between chronic primary insom-
niacs and good sleepers, by performing a visual detection of sleep
spindles on C3 derivation (Bastien et al., 2009). Surprisingly, no
significant difference in spindle density was found between groups.
Further studies are needed to replicate this result, and to extend
it to other (more sensitive) modalities of spindle detection as well
as to other measures of spindle activity such as spindle amplitude
and sigma power. If confirmed, the absence of change in spindle
activity in chronic insomniacs as a group might reflect the large
heterogeneity in the clinical presentation and sleep characteris-
tics even within primary insomniacs. For instance, the presence
of objective sleep disturbances, as defined by PSG decreases in
total sleep time and sleep efficiency, is not observed consistently
across chronic insomniacs (Vgontzas et al., 1994). However, the
presence of objective short sleep duration defines a subgroup of
insomniacs with a distinct clinical profile exemplified by a higher
risk for hypertension, diabetes, cognitive impairment, and mor-
tality (Vgontzas et al., 2013). Likewise, it is possible that there is
a subgroup of insomniacs characterized by a higher vulnerability
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to environmental disturbances due to a lesser amount of sleep-
protective factors such as sleep spindles. In contrast, another
subgroup might instead be characterized by less objective sleep
disruption and a larger contribution of cognitive-emotional fac-
tors such as dysfunctional beliefs about sleep and higher levels of
anxiety and worry. Considering the chronic insomnia population
as a single group might dilute the alterations of sleep microarchi-
tecture that possibly affect a subpopulation of insomniacs only.
Future studies should further explore the quantification of sleep-
protective mechanisms in chronic insomniacs and subgroups of
insomniacs.

While the current study was primarily focused on the neuro-
physiological predictors of sleep disturbances through the assess-
ment of spindle activity, it should be reminded that psychological
and medical factors also play an important role in the incidence of
insomnia complaints. For instance, mental health problems, mal-
adaptive personality traits, a positive family history of insomnia,
and an objectively shorter sleep duration on PSG were associated
with a higher risk of evolution of poor sleep toward chronic insom-
nia (Fernandez-Mendoza et al., 2012). As for insomnia complaints
in response to stress, specific questionnaires of vulnerability to
stress-induced insomnia have been developed, such as the FIRST
(Drake et al., 2004). Surprisingly, the FIRST score did not predict
changes in ISI from low to high stress periods in our analysis. This
might be explained by the high correlation between the FIRST
score and ISI at baseline in this sample (rFIRST-ISI= 0.86), leaving
little room to predict change over time. Nevertheless, it has been
previously shown that individuals with higher score on the FIRST
(Drake et al., 2004) are more vulnerable to the first night effect
(i.e., worse sleep quality during the first night of sleep recording
in lab) and to the sleep-disrupting effects of caffeine (Drake et al.,
2004, 2006), and demonstrate higher risk of developing persistent
insomnia over time (Drake et al., 2014; Jarrin et al., 2014). Inter-
estingly, the differential vulnerability to stress-induced insomnia
may emerge from differences in hyperarousal predisposition, given
the association between FIRST scores and indices of cognitive-
emotional hyperarousal (Fernandez-Mendoza et al., 2010), which
has recently been demonstrated to be (at least partially) heri-
table (Fernandez-Mendoza et al., 2014). Because sleep spindles
modulate sleep stability in response to environmental stimulation
(Dang-Vu et al., 2010, 2011), lower spindle activity – which has
been found in the present study to predispose to higher increase
of sleep disturbances – might be considered as a trait predispos-
ing to a state of neurobiological hyperarousal in which individuals
are more vulnerable to externally driven sleep disruption. There-
fore, these various findings on the vulnerability to stress-induced
insomnia can be integrated within the framework of the hyper-
arousal model for insomnia viewed from a psychophysiological
perspective (Riemann et al., 2010).

There are several limitations to the current study. First, larger
samples are needed to confirm these findings. Due to the lim-
ited number of participants, correction for multiple comparisons
was not applied in the present data set, and thus our findings
need replication. Second, only undergraduate university students
were included in the present study due to the need of a naturally
occurring stressor encompassing well-defined periods of lower
and higher stress, as provided by the model of academic stress.

Future studies should extend these findings to other populations
and other types of stressors, including chronic stressors that may
impact the persistence of insomnia complaints over time. Third,
assessment of sleep quality and insomnia complaints was eval-
uated through self-reported questionnaires only: ISI and PSQI.
The absence of significant PSQI change across the semester in our
study might indicate that the impact of academic stress on sleep
predominantly affects insomnia complaints rather than general
sleep quality. Furthermore, the nature of the stressor (academic
stress) precluded the repetition of objective sleep measurements
with PSG, given the difficulty of having participants coming at
the sleep laboratory during busy periods of final examinations.
The use of more practical objective measures of sleep such as
actigraphy measurements might constitute an interesting comple-
ment in future studies, in order to obtain not only objective but
also prolonged assessments of sleep over several days or weeks.
Finally, we restricted our analyses to spindle activity over central
derivations (C4), given the centroparietal predominance of sleep
spindle activity (De Gennaro et al., 2000). In order to avoid addi-
tional comparisons in our limited sample, distinction between fast
and slow spindles was not performed in this present analysis. Our
results, however, suggest that the frequency of spindles did not
affect the change in insomnia symptoms, given the absence of
correlation between spindle frequency and ISI change (Table 2).
Future studies on larger samples could further evaluate the role
of spindle frequency on sleep quality changes by analyzing the
role of slow and fast spindles separately. The study of other EEG
oscillations during sleep might also be of interest given previ-
ous results indicating the contribution of brain oscillations in
other frequency bands, such as alpha rhythms (McKinney et al.,
2011) and slow wave activity (Dang-Vu et al., 2011; Schabus et al.,
2012), to the preservation of sleep continuity in the face of external
stimulation.

CONCLUSION
Our study provides the first evidence for the contribution of sleep
neurophysiological activity to the prospective increase of sleep
disturbances in response to a standardized stressor in a sample
of young healthy volunteers. In line with previous findings indi-
cating that sleep spindle constitutes a biomarker of sleep stability,
our results suggest that spindle activity also represents a predis-
posing factor modulating the vulnerability to sleep disruption in
conditions of stress. These results have implications for the under-
standing of the neural mechanisms underlying the evolution of
sleep disturbances and particularly insomnia. They might also
have clinical implications, by providing a biomarker for the iden-
tification of individuals at risk for future sleep disruption. Finally,
our findings emphasize the potential importance of future thera-
peutic interventions aimed at enhancing sleep spindle activity in
order to preserve sleep quality.
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Introduction: Chronic medicated patients with schizophrenia have marked reductions in
sleep spindle activity and a correlated deficit in sleep-dependent memory consolidation.
Using archival data, we investigated whether antipsychotic-naïve early course patients with
schizophrenia and young non-psychotic first-degree relatives of patients with schizophrenia
also show reduced sleep spindle activity and whether spindle activity correlates with
cognitive function and symptoms.

Method: Sleep spindles during Stage 2 sleep were compared in antipsychotic-naïve
adults newly diagnosed with psychosis, young non-psychotic first-degree relatives of
schizophrenia patients and two samples of healthy controls matched to the patients and
relatives. The relations of spindle parameters with cognitive measures and symptom
ratings were examined.

Results: Early course schizophrenia patients showed significantly reduced spindle activity
relative to healthy controls and to early course patients with other psychotic disorders.
Relatives of schizophrenia patients also showed reduced spindle activity compared with
controls. Reduced spindle activity correlated with measures of executive function in early
course patients, positive symptoms in schizophrenia and IQ estimates across groups.

Conclusions: Like chronic medicated schizophrenia patients, antipsychotic-naïve early
course schizophrenia patients and young non-psychotic relatives of individuals with
schizophrenia have reduced sleep spindle activity. These findings indicate that the spindle
deficit is not an antipsychotic side-effect or a general feature of psychosis. Instead, the
spindle deficit may predate the onset of schizophrenia, persist throughout its course and
be an endophenotype that contributes to cognitive dysfunction.

Keywords: sleep, sleep spindles, schizophrenia, cognition, IQ, polysomnography, endophenotype, relatives

INTRODUCTION
Sleep disturbances in schizophrenia have been described since
Kraepelin (1919) and are common throughout its course
(Lieberman et al., 2005), including in the prodrome (Miller et al.,
2003). The presence of sleep disturbances in antipsychotic-naïve
and unmedicated patients indicate that they are not merely a
side-effect of medications (for meta-analysis see Chouinard et al.,
2004). While often viewed as secondary to schizophrenia, as the
accompanying psychological distress may itself diminish sleep
quality (Benca, 1996), sleep deprivation can precipitate psychosis
in vulnerable individuals (Tyler, 1955; Wright, 1993; but see,
Kahn-Greene et al., 2007), and there is growing evidence that
sleep disturbances can trigger or aggravate a range of psychiatric
conditions (Wehr et al., 1987; Ford and Kamerow, 1989; Breslau
et al., 1996; Turek, 2005; Huang et al., 2007; Germain et al., 2008;
Sateia, 2009). In schizophrenia, sleep disturbances are seen in

high-risk samples (Keshavan et al., 2004; Lunsford-Avery et al.,
2013), are anecdotally associated with the initial onset of psy-
chosis and predict psychotic decompensation in remitted patients
(Dencker et al., 1986; Benson, 2006). If specific sleep abnormali-
ties that contribute to the initial onset, relapse and manifestations
of schizophrenia can be identified, they may serve as targets for
intervention to prevent the emergence of schizophrenia, remedi-
ate its course and ameliorate core features.

Recent studies have reported that chronic, medicated patients
with schizophrenia show a deficit in sleep spindles (Ferrarelli
et al., 2007, 2010; Manoach et al., 2010; Seeck-Hirschner et al.,
2011; Wamsley et al., 2012), which are a defining feature of
non-rapid eye movement (NREM) Stage 2 sleep that are seen
on the electroencephalogram (EEG) as brief (∼1 s) bursts of
synchronous activity in the 12–15 Hz range. This sleep spindle
deficit occurred in the context of normal sleep architecture and
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Stage 2 spectral power, except in the sigma frequency band, which
corresponds to the frequency range of sleep spindles. Here, we
analyzed archival sleep data to determine whether young individ-
uals at high genetic risk for schizophrenia (Keshavan et al., 2004)
and antipsychotic-naïve early course patients with schizophrenia
(Keshavan et al., 2011) have reduced sleep spindles and whether
sleep spindle activity is related to cognitive function.

Animal studies point to sleep spindles as a key mechanism
of synaptic plasticity, which may mediate memory consolidation
during sleep (Rosanova and Ulrich, 2005; Werk et al., 2005). In
humans, sleep spindles correlate with measures of intelligence
and with sleep-dependent consolidation of both procedural and
declarative memory (for review see, Fogel and Smith, 2011). In
antipsychotic-naïve patients with schizophrenia, spindle activity
is inversely related to reaction time on tests of attention (Forest
et al., 2007). In chronic medicated patients with schizophre-
nia, reduced spindle activity predicts poorer recognition memory
for words that were learned prior to sleep (Goder et al., 2008),
impaired sleep-dependent motor procedural memory consolida-
tion (Wamsley et al., 2012) and increased severity of positive
symptoms (Ferrarelli et al., 2010; Wamsley et al., 2012). In a
randomized placebo-controlled trial, chronic, medicated patients
with schizophrenia were treated with eszopiclone (Lunesta®, a
non-benzodiazepine hypnotic agent that acts on γ-aminobutyric
acid (GABA) neurons in the thalamic reticular nucleus (TRN)
where spindles are generated) showed a significant increase in
spindle number, density and Stage 2 sigma power (Wamsley
et al., 2013). These findings suggest that the spindle deficit in
schizophrenia is a specific and treatable sleep abnormality that is
related to cognitive dysfunction and symptoms.

Prior reports of decreased sleep spindles in chronic medi-
cated patients with schizophrenia leave a number of important
questions unresolved. For example, it is not known whether the
spindle deficit is related to the pathophysiology of schizophre-
nia or to treatment with antipsychotic drugs. One study found
that only antipsychotic-treated patients with schizophrenia, but
not those with other psychotic disorders, showed deficient spindle
activity (Ferrarelli et al., 2010) suggesting that the spindle deficit
is neither an antipsychotic side-effect nor a general feature of psy-
chosis. In contrast, several studies of unmedicated schizophrenia
patients did not find evidence of a spindle deficit: Two stud-
ies reported normal spindle density during Stage 2 sleep in 11
(Poulin et al., 2003) and eight (Forest et al., 2007) antipsychotic-
naïve patients; another reported normal spindle density in six
unmedicated patients (Van Cauter et al., 1991); and one reported
increased spindle density in five unmedicated patients (Hiatt
et al., 1985). The latter two studies analyzed only selected NREM
sleep segments and neither study distinguished between Stage 2
and slow wave sleep, making them difficult to compare with stud-
ies measuring spindle activity during all of Stage 2 sleep. Another
unresolved question is whether spindle deficits are present in
first-degree relatives. To address these questions we examined
sleep spindles in young first-degree relatives of patients with
schizophrenia and in antipsychotic-naïve patients recently diag-
nosed with psychosis. Sigma power (12–15 Hz), which is the
frequency band of spindles, shows high heritability in twin
studies, high inter-individual variability and within-individual

stability over time suggesting that it is a genetically-mediated trait
(Ambrosius et al., 2008; De Gennaro et al., 2008). The presence of
spindle deficits in first degree relatives, early course and chronic
schizophrenia patients would suggest that it is an endopheno-
type of schizophrenia. Endophenotypes are heritable traits that
indicate genetic vulnerability to illness (Gottesman and Gould,
2003). They are associated with illness but are also present in some
syndromally-unaffected relatives.

We also investigated the association of sleep spindles with cog-
nitive performance, functional assessments and symptom ratings.
Since sleep spindles positively correlate with performance on a
range of cognitive measures in both healthy individuals (Fogel
and Smith, 2011) and patients with schizophrenia (Forest et al.,
2007; Goder et al., 2008; Seeck-Hirschner et al., 2011; Wamsley
et al., 2012), we expected to observe similar relations in our
experimental and control samples. Based on prior findings, we
also expected reduced spindle activity to correlate with positive
symptoms in schizophrenia (Ferrarelli et al., 2010; Wamsley et al.,
2012).

METHODS
PARTICIPANTS
Demographic and descriptive data are given in Table 1. For all
samples, potential participants were excluded if they met DSM-
IV criteria (American Psychiatric Association, 2000) for current
substance abuse or dependence.

Early course participants and controls
Twenty-six inpatients and outpatients were recruited from the
Western Psychiatric Institute and Clinic based on having a
newly diagnosed psychotic disorder confirmed in consensus
meetings led by senior clinicians (MSK, DM) using all clin-
ical data including Structured Clinical Interviews for DSM-
IV (SCID, First et al., 1997). Patients were diagnosed with
schizophrenia (n = 15); major depression (n = 4); delusional
disorder (n = 2); schizoaffective disorder (n = 2); bipolar disor-
der (n = 2); mood disorder, NOS (n = 1). Patients were char-
acterized with the Scales for the Assessment of Positive and
Negative Symptoms (SAPS and SANS, Andreasen, 1983, 1990)
and the Global Assessment of Functioning Scale (GAF, American
Psychiatric Association, 2000) within a week of the sleep stud-
ies. The following neuropsychological assessments were adminis-
tered: Ammon’s Quick Test, a pointing picture vocabulary test, to
estimate verbal IQ (Otto and McMenemy, 1965); the Wisconsin
Card Sort Test (WCST, Berg, 1948); Trail Making Tests Parts A
and B (Reitan, 1958); the Block Design subtest of the Wechsler
Adult Intelligence Scale-Revised (WAIS-R, Wechsler, 1981); the
Wide Range Achievement Test-Revised, Reading portion (WRAT-
R, Jastak and Wilkinson, 1984) and immediate recall of the
California Verbal Learning Test (Delis et al., 1988). Supplemental
Table 1 presents neuropsychological data.

The 15 early course patients diagnosed with schizophrenia
were similar in age, sex, and estimated IQ to the 11 patients with
other psychotic disorders, but had completed one less year of
education, a difference that was statistically significant (Table 1).
The early course groups did not differ significantly in ratings
of positive or negative symptom severity or global functioning
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Table 1 | Demographic characteristics and description of study samples.

Patients n = 26 Controls n = 25 p Relatives n = 19 Controls n = 12 p

SZ n = 15 Other n = 11

Age 27 ± 7 27 ± 7 0.96 14 ± 4 15 ± 5 0.61

28 ± 8 27 ± 7 0.74

Sex
(#/% M)a

17/65 16/64 0.92 9/47 7/58 0.82

11/73 6/55 0.56

Education (years) 14 ± 2 16 ± 2 <0.001* 8 ± 4 9 ± 4 0.63

13 ± 2 14 ± 2 0.04*

Est. IQ 99 ± 13 96 ± 12 110 ± 16 0.01*

97 ± 10 101 ± 17 0.43

Parental SES 29 ± 11 52 ± 10 <0.001*

Means ± SD, SZ, schizophrenia; M, male; SES, socio-economic status. p-values are based on t-tests.

*Significant at p ≤ 0.05.
ap-values are based on chi-square tests.

(GAF) (Supplemental Table 2). While they did not differ signif-
icantly on neuropsychological measures (Supplemental Table 1),
with the exception of WRAT-R reading, which is often used to
estimate pre-morbid verbal IQ, schizophrenia patients generally
performed at a lower level. Two patients with schizophrenia and
three patients with other psychotic disorders reported current
cigarette use.

Sleep and cognitive data on these patients were presented in
a prior publication (Keshavan et al., 2011) The present report
includes a healthy control group for comparison, considers
patients with schizophrenia separately from those with other psy-
choses and measures sleep spindles rather than sigma frequency
power.

Twenty-five healthy individuals, screened to exclude a personal
history of mental illness and present substance abuse (SCID-Non-
patient edition; First et al., 2002), were recruited from the local
community by advertisement, word of mouth and presentations
to community groups. The healthy controls were matched to the
patients for age and sex but had completed significantly more
years of education. They were not administered neuropsycholog-
ical assessments and no information on parental socioeconomic
status or cigarette use was available.

First-degree relatives and their controls
A total of 19 children (n = 17) and siblings (n = 2) of patients
with SCID confirmed diagnoses of schizophrenia were recruited
by first asking the patient’s permission to approach their rel-
ative. Relatives were included if they never had a psychotic
disorder and were not taking antipsychotic drugs. Thirteen of
the high-risk sample were diagnosed with a lifetime history
of other disorders: Attention Deficit Disorder (n = 5); major
depression (n = 2); separation anxiety disorder (n = 2); oppo-
sitional defiant disorder (n = 2); and conduct disorder (n = 2).
One relative was taking amphetamine and dextroamphetamine
(Adderall) and another was taking sertraline at the time of the
sleep study.

Twelve age, sex and education matched healthy individuals
without a personal history of mental illness or any first-degree
family members with an Axis I disorder (confirmed by SCID
interviews), were recruited from the community (as above) as
control participants (Table 1). Control participants had a signif-
icantly higher IQ estimates and parental socioeconomic status
(SES, Hollingshead, 1965) than the high-risk relatives. Two of the
relatives and none of the control participants reported current
cigarette use.

Relatives and controls were administered a SCID, SCID-Non
patient version or, for children under 15, the children’s epi-
demiological version of the Schedule for Affective Disorders and
Schizophrenia (K-SADS-E, Orvaschel and Puig-Antich, 1987).
Potential participants with substance abuse within 4 weeks of the
initial assessment or alcohol dependence within the previous 2
years were excluded.

Relatives and controls were characterized with the Chapman
Psychosis Proneness Scales of Magical Ideation (Eckblad and
Chapman, 1983), Perceptual Aberration (Chapman et al., 1978),
and Social Anhedonia (Mishlove and Chapman, 1985), the
GAF, and the Premorbid Adjustment Scale (PAS, Cannon-Spoor
et al., 1982). Relatives had significantly higher ratings of Magical
Ideation and Perceptual Aberration and significantly lower GAF
and PAS ratings (Supplemental Table 2). The following neu-
ropsychological measures were administered to relatives and con-
trols: the Ammon’s Quick Test, the WCST, and the Continuous
Performance Test—Identical Pairs version (CPT-IP, Cornblatt
et al., 1988) (Supplemental Table 1).

Consent
Experimental protocols were approved by the University of
Pittsburgh School of Medicine Institutional Review Board. All
participants provided written informed consent (or assent if
under 18) following a full description of the study. The par-
ent or guardian also provided informed consent for participants
younger than 18.
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PROCEDURES
Polysomnography (PSG)
Sleep studies were conducted at the Western Psychiatric Institute
and Clinic sleep lab over two consecutive nights. For several days
prior to the sleep study, participants were asked to refrain from
napping during the day. Sleep times were based on habitual “good
night” and “good morning” times, determined using a participant
diary of recent sleep patterns. PSG electrodes were placed approx-
imately 1 h before bedtime. Sleep data were acquired at 128 Hz
using Grass Telefactor M15 bipolar Neurodata amplifiers and
locally-developed collection software. The recording montage
consisted of bilateral central (C3 and C4) electroencephalogram
(EEG) leads referenced to the linked mastoids (A1+A2); right
and left electrooculogram (EOG) referenced to A1+A2; and bipo-
lar submental chin electromyogram (EMG). We analyzed data
from the second night. Each 30 s epoch of PSG data was visu-
ally classified into stages (Wake, NREM 1, 2, slow wave sleep, and
REM) according to standard criteria (Rechtschaffen and Kales,
1968) by a rater blind to diagnostic group. The classified sleep
data were segmented into 30 s segments for subsequent data
analyses.

Sleep spindle analysis
As in our prior studies, we analyzed spindles during Stage 2
sleep (Manoach et al., 2010; Wamsley et al., 2012, 2013). PSG
data were preprocessed and analyzed using BrainVision Analyzer
(version 2.0.2, BrainProducts, Munich Germany) and MATLAB
(version R2009b, The MathWorks, Natick MA) software. Prior
to analysis, data were filtered at 0.3–35 Hz and artifacts were
rejected by manual inspection. Discrete sleep spindle events were
automatically detected at the C4 lead, which was the only lead
available for all participants, using a wavelet-based algorithm
that was previously validated against both hand-counted spin-
dles and 12–15 Hz sigma power in both healthy individuals and
patients with schizophrenia (Wamsley et al., 2012) and out-
performed other available automated spindle detectors by most
closely approximating expert consensus spindle counts (Warby
et al., 2014).

For each spindle, measures of amplitude, sigma power, dura-
tion, and peak frequency were based on analysis of 2 s EEG epochs
centered on the point of spindle detection. Within the sigma
range (12–15 Hz), amplitude was the maximal voltage follow-
ing 12–15 Hz band pass filtering, peak frequency was defined as
the spectral peak of the spindle following Fast Fourier trans-
form (FFT) decomposition, and sigma power was defined as
the mean FFT-derived power spectral density in the 12–15 Hz
range (μV2/Hz). To examine the time-frequency characteristics
of individual spindles, wavelet analysis was conducted. A complex
Morlet wavelet was applied separately to each spindle epoch. The
duration of each spindle was calculated as the half-height width of
wavelet energy within the spindle frequency range.

We chose spindle density (events/min) and individual spin-
dle amplitude as our primary dependent variables for regressions
with cognitive and symptom measures. Spindle density was cho-
sen because it is more resistant to group differences in total
sleep time (TST) than spindle number, was deficient in our
prior studies of chronic medicated patients and correlated with

sleep-dependent memory consolidation (Manoach et al., 2010;
Wamsley et al., 2012). Spindle amplitude was chosen because it
negatively correlated with positive symptoms in our prior study
(Wamsley et al., 2012) and contributes to the measurement of
“integrated spindle activity,” which negatively correlated with
positive symptoms in a study from another group (Ferrarelli et al.,
2010).

Spectral characterization of stage 2 sleep
The power spectral density (μV2/Hz) was calculated by FFT,
using a Hanning window with 50% overlap applied to successive
3 s epochs of Stage 2 sleep. Spectral power in the slow oscilla-
tion (0.5–1 Hz), delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
sigma band (12–15 Hz), and beta (15–30 Hz) frequency bands
was measured.

Spindle density and amplitude in relation to cognition, function, and
symptom ratings
Cognitive, function or symptom measurements were regressed on
the primary spindle parameters (density and amplitude) using
robust regression models, which limit the influence of outliers on
the results (Andersen, 2008), as implemented in MATLAB. Group
(x2) and its interaction with spindle parameter (x1) were included
in the model: y = β0+β1x1+β2x2+β3x1x2. In the early course
sample, group refers to schizophrenia patients vs. those with other
psychotic disorders (for early course controls cognitive data were
not available). In the high-risk sample, group refers to relatives
vs. controls. If the group factor (difference in intercepts) and
the group by spindle parameter interaction (difference in slopes)
are not significant, we report the relations for the pooled group
data without factors for group and its interaction with the sleep
parameter (y = β0p + β1px). Otherwise we also report standard
linear regression results for each group separately.

RESULTS
EARLY COURSE PARTICIPANTS (TABLE 2)
Sleep quality
Early course patients showed worse sleep quality than controls
with significantly less TST, more wake time after sleep onset
(WASO), and lower sleep efficiency (TST/total time in bed).
Although both groups of early course patients showed disrupted
sleep compared with controls, in schizophrenia patients the dis-
ruption tended to be worse as indexed by trends toward more
WASO and lower sleep efficiency.

Sleep architecture
Relative to controls, early course patients showed a greater per-
centage of Stage 2 sleep and a reduced percentage of slow wave
sleep. This was true of both schizophrenia patients and those with
other psychotic disorders.

Spectral characteristics of stage 2 sleep
Relative to controls, early course patients showed reduced slow
oscillation, delta, and theta power. Of these, only the reduction
in theta power significantly differentiated schizophrenia patients
from those with other psychotic disorders.

In the sigma frequency band, which corresponds to the fre-
quency range of sleep spindles, schizophrenia patients showed
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Table 2 | Sleep data for early course patients and their controls reported as means ± SD.

Patients n = 26 Controls Patients vs. Sz vs. controls Sz vs. others Others vs.

n = 25 controls controls

SZ n = 15 Other n = 11 t p t p t p t p

SLEEP QUALITY

TST (min) 403 ± 76 443 ± 30 −2.51 0.02* −1.86 0.07 0.62 0.54 −3.08 0.004*
411 ± 80 392 ± 73

WASO (min) 37 ± 39 15 ± 16 2.61 0.01* 3.79 < 0.001* 1.93 0.07 0.69 0.49
49 ± 40 21 ± 33

Sleep efficiency % 85 ± 11 94 ± 4 −3.77 <0.001* −4.68 <0.001* −1.69 0.10 −2.23 0.03*
81 ± 12 89 ± 9

SLEEP ARCHITECTURE

Stage 1 % 4 ± 2 4 ± 3 0.04 0.97 0.45 0.65 1.14 0.27 −0.48 0.63
5 ± 2 4 ± 2

Stage 2 % 62 ± 8 52 ± 9 4.41 <0.001* 4.52 <0.001* 1.19 0.25 2.56 0.02*
64 ± 7 60 ± 9

SWS % 7 ± 6 17 ± 7 −5.19 <0.001* −5.15 <0.001* −1.23 0.23 −3.03 0.005*
6 ± 5 9 ± 7

REM % 26 ± 5 27 ± 6 −0.54 0.59 −0.87 0.39 −0.88 0.39 0.14 0.89
26 ± 6 28 ± 4

SPECTRAL POWER DURING STAGE 2 SLEEP (µV2/HZ)

Slow (0.5–1 Hz) 6.2 ± 2.5 8.4 ± 4.6 −2.12 0.04* −1.79 0.08 −0.20 0.84 −1.37 0.18
6.2 ± 2.2 6.3 ± 3.0

Delta (1–4 Hz) 1.23 ± 0.37 1.55 ± 0.59 −2.29 0.03* −2.38 0.02* −1.33 0.20 −1.03 0.31
1.15 ± 0.33 1.35 ± 0.41

Theta (4–8 Hz) 0.16 ± 0.06 0.23 ± 0.10 −2.92 0.005* −3.01 0.005* −2.16 0.04* −1.26 0.22
0.14 ± 0.05 0.19 ± 0.05

Alpha (8–12 Hz) 0.09 ± 0.05 0.12 ± 0.08 −1.43 0.16 −1.54 0.13 −1.11 0.28 −0.54 0.60
0.08 ± 0.06 0.10 ± 0.04

Sigma (12–15 Hz) 0.16 ± 0.1 0.22 ± 0.12 −1.82 0.08 −2.72 0.01* −2.68 0.01* −0.03 0.98
0.12 ± 0.08 0.22 ± 0.09

Beta (15–30 Hz) 0.007 ± 0.003 0.007 ± 0.004 −0.42 0.67 −0.40 0.69 −0.16 0.87 −0.25 0.81
0.007 ± 0.004 0.007 ± 0.002

SPINDLE MEASURES

Spindle number 346 ± 124 374 ± 92 −0.92 0.36 −1.68 0.10 −1.56 0.13 0.44 0.66
314 ± 133 389 ± 101

Spindle density/min 1.41 ± 0.47 1.64 ± 0.32 −2.01 0.05* −3.32 0.002* −2.78 0.01* 0.32 0.75
1.22 ± 0.48 1.67 ± 0.30

CHARACTERISTICS OF INDIVIDUAL SPINDLES

Amplitude (μV) 16.1 ± 4.1 18.0 ± 4.6 −1.62 0.11 −2.17 0.04* −1.89 0.07 −0.19 0.85
14.8 ± 4.4 17.7 ± 3.1

Frequency (Hz) 13.1 ± 0.9 13.1 ± 0.9 −0.17 0.87 −0.44 0.66 −0.62 0.54 0.26 0.80
13.0 ± 0.9 13.2 ± 0.8

Duration (s) 0.813 ± 0.044 0.826 ± 0.044 −0.87 0.39 −1.74 0.09 −2.16 0.04* 0.65 0.52
0.800 ± 0.047 0.835 ± 0.031

Sigma power (μV2/Hz) 0.607 ± 0.917 0.519 ± 0.363 0.45 0.66 0.46 0.65 0.19 0.85 0.37 0.71
0.637 ± 1.20 0.566 ± 0.315

TST, total sleep time; WASO, wake after sleep onset; SWS, slow wave sleep; REM, rapid eye movement sleep. Asterisks denote significance at p ≤ 0.05.
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significantly reduced sigma power compared with both other
psychotic patients and controls. Psychotic patients with other dis-
orders did not differ from controls in sigma power. So while both
patient groups showed reduced spectral power in multiple fre-
quency bands during Stage 2 sleep, only schizophrenia patients

showed a sigma deficit. When calculated relative to the EEG power
baseline for each group, computed as the best fit to the 9–10
and 15–16 Hz data, the sigma power (12–15 Hz) in schizophre-
nia patients was only 27% of that seen in patients with other
psychoses (Figure 1A).

FIGURE 1 | Spectral power plots (A) in schizophrenia patients (SZ) and

patients with other psychotic disorders (Others) and (B) in relatives and

healthy controls. The left plots show the logarithm of spectral power across
the broader 0–30 Hz range. The right plots show 9–16 Hz spectral power with

the sigma band (12–15 Hz) EEG power baseline for each group, which was
computed as the best fit to the to the 9–10 and 15–16 Hz EEG power
baseline. The p-values reflect group differences in sigma power. Asterisks
denote significance at p = 0.05.
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Sleep spindle parameters
Relative to controls, early course patients showed significantly
reduced spindle density (Figure 2A). This reduction was entirely
due to the subset of patients diagnosed with schizophrenia who
had significantly lower spindle density than both controls and
patients with other psychotic disorders whose spindle density
was nearly identical to that of controls. Schizophrenia patients
also showed reduced spindle amplitude (Figure 2B) and dura-
tion compared with controls (trend for duration) and patients
with other psychotic disorders (trend for amplitude). Patients
with other psychotic disorders did not differ from controls on any
spindle parameter.

Spindle density and amplitude in relation to cognition and symptom
ratings (Table 3, Figure 3)
In the pooled group of early course patients, lower spindle density
was associated with worse cognitive performance on all cogni-
tive measures except immediate recall of the CVLT word list.
Lower spindle density significantly predicted slower completion

FIGURE 2 | Spindle parameters in controls and early course patients.

Early course patients are divided based on a diagnosis of schizophrenia (SZ)
vs. other psychotic disorders (Others). (A) Spindle density; (B) Spindle
amplitude. Asterisks denote significance at p = 0.05.

of Trails A and B, increased perseverative errors on the WCST,
lower WRAT-R reading scores and lower estimated verbal IQ.
Lower spindle density also predicted lower scaled scores on
the Block Design subtest of the WAIS-R, but at a trend level.
With the exception of estimated verbal IQ, these relations did
not differ significantly as a function of group (schizophrenia,
other psychotic disorders). Although the relation with IQ was
in the same direction in both groups [significant in the non-
schizophrenia psychotic patients: t(9) = 2.29, p = 0.05; at a trend
level in schizophrenia: t(13) = 1.95, p = 0.07], the regression lines
differed significantly (Table 3, Figure 4).

Spindle amplitude also correlated with cognitive performance.
Like spindle density, lower spindle amplitude was associated with
slower performance on Trails B, increased WCST perseverative
errors and a lower score on Block Design and these relations did
not differ by group. Reduced spindle amplitude also correlated
with lower estimated verbal IQ and WRAT-R reading scores in
the pooled data, but there was an effect of group reflecting that
only the non-schizophrenia psychotic patients showed significant
relations of amplitude with estimated IQ [others: t(9) = 2.76, p =
0.02; schizophrenia: t(13) = 0.97, p = 0.35] and WRAT-R read-
ing [others: t(9) = 4.44, p = 0.002; schizophrenia: t(13) = 0.61,
p = 0.56].

No significant relations between spindle density or amplitude
with symptom rating scores or GAF were observed. Because we
and another group previously found relations between reduced
spindle amplitude (or “integrated spindle activity,” which is influ-
enced by amplitude) and increased severity of positive symptoms
in chronic, medicated schizophrenia patients (Ferrarelli et al.,
2010; Wamsley et al., 2012), we examined the schizophrenia
group alone and found a significant relation in the opposite direc-
tion: increased amplitude of individual spindles correlated with
increased severity of positive symptoms [t(13) = 2.21, p = 0.05]
(Figure 5).

Control analyses
In addition to showing lower spindle density and amplitude than
both healthy controls and psychotic patients with other diagnoses
(trend for amplitude), the sleep of schizophrenia patients was also
more disrupted. Sleep efficiency (a general measure of sleep qual-
ity), however, did not significantly correlate with spindle density
or amplitude in schizophrenia, healthy controls or other psychotic
patients, suggesting that sleep disruption is unlikely to account
for the spindle deficits. Spindle density and amplitude correlated
with multiple measures of cognition in the pooled group of early
course patients. Sleep efficiency also correlated with several cogni-
tive measures (Table 3), but notably not with estimated premor-
bid verbal IQ from the Ammons Quick Test or WRAT-R single
word reading, which is also an estimate of premorbid verbal IQ.

FIRST-DEGREE RELATIVES OF SCHIZOPHRENIA PATIENTS
Sleep quality, architecture, and spectral characteristics (Table 4
presents sleep data)
Compared with controls, relatives showed significantly worse
sleep quality as indicated by increased WASO and reduced sleep
efficiency. Sleep architecture was also disrupted in relatives who
showed a greater percentage of time in lighter sleep (Stages 1
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Table 3 | Regressions of cognitive and symptom measures on sleep parameters (spindle density, spindle amplitude, or sleep efficiency) in early

course patients.

Group Sleep parameter× Sleep parameter

group (pooled data)

t p t p t p

Trails A (s) Spindle density −0.98 0.34 0.78 0.44 −2.02 0.05*
Spindle amplitude −1.34 0.19 1.28 0.21 −0.80 0.43
Sleep efficiency −0.54 0.59 0.62 0.54 0.03 0.98

Trails B (s) Spindle density 0.54 0.60 −0.18 0.86 −5.36 <0.0001*
Spindle amplitude 0.21 0.84 0.11 0.91 −5.22 <0.0001*
Sleep efficiency 0.45 0.66 −0.19 0.84 −2.13 0.04*

WCST perseverative errors Spindle density −0.76 0.46 0.71 0.49 −2.49 0.02*
Spindle amplitude −1.95 0.06 2.02 0.06 −2.06 0.05*
Sleep efficiency 1.28 0.22 −1.22 0.24 −4.70 0.0001*

IQ estimate Spindle density 2.05 0.05* −2.14 0.04* 2.96 0.007*
Spindle amplitude 2.34 0.03* −2.35 0.03* 2.29 0.03*
Sleep efficiency 1.57 0.13 −1.58 0.13 1.39 0.18

WRAT-R Spindle density 1.42 0.17 −1.31 0.21 3.19 0.004*
reading Spindle amplitude 2.85 0.01* −2.77 0.01* 2.09 0.05*

Sleep efficiency 1.54 0.14 −1.52 0.14 1.51 0.14

Block design Spindle density −0.12 0.90 0.13 0.90 1.90 0.07
Spindle amplitude 1.73 0.10 −1.71 0.10 3.12 0.005*
Sleep efficiency 0.64 0.53 −0.69 0.51 2.37 0.03*

CVLT Spindle density −0.06 0.95 −0.20 0.84 0.27 0.79
Spindle amplitude 0.07 0.94 −0.24 0.81 0.85 0.40
Sleep efficiency −0.46 0.65 0.40 0.69 1.84 0.08

SANS Spindle density 0.89 0.38 −0.57 0.58 0.66 0.52
Spindle amplitude −1.27 0.22 1.49 0.15 −0.78 0.44

SAPS Spindle density 0.99 0.33 −0.79 0.44 0.44 0.66
Spindle amplitude −0.81 0.42 1.10 0.28 1.18 0.25

GAF Spindle density −0.68 0.50 0.38 0.71 0.25 0.80
Spindle amplitude 0.32 0.75 −0.60 0.56 0.40 0.69

Group: schizophrenia vs. other psychotic disorders. The Group (x2) and Sleep parameter (x1) x Group columns are based on the following model: y = β0 + β1x1 +
β2x2 + β3x1x2. The sleep parameter column is based on the regression using pooled group data without factors for group and its interaction with the sleep parameter

(y = β0p + β1px). WCST, Wisconsin Card Sort Test; WRAT-R, Wide Range Achievement Test-Revised; Block Design scaled score; CVLT, California Verbal Learning

Test standard score for total immediate word recall; SANS, Scale for the Assessment of Positive Symptoms global total; SAPS, Scales for the Assessment of Positive

Symptoms global total; GAF, Global Assessment of Functioning.
*Significant at p ≤ 0.05.

and 2) and trends toward lower percentages of slow wave and
REM sleep. During Stage 2 sleep, relatives showed significant
power reductions in all frequency bands except delta. To con-
trol for this shift in global power, we calculated sigma power
relative to the EEG power baseline for each group, computed as
the best fit to the 9–10 and 15–16 Hz data (Figure 1B). Sigma
power (12–15 Hz) in relatives was only 25% of that seen in healthy
controls.

Sleep spindle parameters
Relatives showed significantly reduced amplitude and sigma
power of individual spindles, as well as a trend toward reduced

spindle density. Relatives with and without psychiatric diagnoses
did not differ in spindle density [t(1, 17) = 1.16, p = 0.26] or
amplitude [t(1, 17) = 1.16, p = 0.26].

Spindle density and amplitude in relation to cognitive function and
symptom ratings
Spindle density correlated with WCST perseverative errors in
controls [t(10) = 3.07, p = 0.01] but not relatives [t(18) = 0.08,
p = 0.94] and not in the pooled data of controls and rela-
tives (Table 5). For the combined groups, spindle amplitude
significantly correlated with GAF (tdf = 2.72, p = 0.01), but nei-
ther group alone showed this relation and the plot suggested it was
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FIGURE 3 | Regressions of cognitive measures on spindle density and

amplitude for early course schizophrenia patients (SZ) and those with

other psychotic disorders (Others). (A) Shows cognitive measures—Trails

B, WCST perseverative errors, and Block Design scaled score—regressed on
spindle density. (B) Shows the same cognitive measures regressed on
spindle amplitude.
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FIGURE 4 | Regressions of WRAT-R Reading standard scores and

estimated verbal IQ from the Ammons Quick Test on spindle density

and amplitude. (A,B) Early course patients with schizophrenia (SZ) and
other psychotic disorders (Others) with regression lines for each group

and the pooled group data. (C) Regression of estimated verbal IQ on
spindle density and amplitude for the pooled group data from early
course schizophrenia, other early course psychotic patients, relatives, and
relatives’ controls.
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FIGURE 5 | Regressions of Scale for the Assessment of Positive

Symptoms (SAPS) global total severity scores on spindle amplitude in

early course schizophrenia patients.

due to group differences in both parameters. Spindle amplitude
significantly correlated with IQ Table 5, (Figure 3) and showed a
trend level relation with premorbid adjustment. These relations
did not differ by group. None of the psychosis proneness ratings
correlated with spindle density or amplitude in either the pooled
group data or in either group alone.

Control analyses
Like the early course patients with schizophrenia, relatives showed
reduced spindle density (trend) and amplitude relative to healthy
controls, but their sleep quality was also more disrupted. Sleep
efficiency, however, did not significantly correlate with spindle
density or amplitude in relatives or their healthy controls, sug-
gesting that the sleep disruption is unlikely to account for the
spindle deficits. Nor did sleep efficiency correlate significantly
with cognitive measures in relatives, controls, or the pooled group
data.

DISCUSSION
The present study provides the first demonstration that both
young first-degree relatives of patients with schizophrenia and
antipsychotic-naïve patients early in the course of schizophre-
nia show reduced sleep spindle activity. In contrast, early course
psychotic patients with other diagnoses showed normal spindle
activity. These findings indicate that the spindle deficit, which
was previously reported in chronic, medicated patients with
schizophrenia (Ferrarelli et al., 2007, 2010; Manoach et al., 2010;
Seeck-Hirschner et al., 2011; Wamsley et al., 2012), is not due
to antipsychotic medications, is not a product of chronic illness
and is not a general feature of psychosis. Moreover, consistent
with growing evidence that links sleep spindles to a range of
cognitive functions including intellectual ability in healthy indi-
viduals (Fogel and Smith, 2011), the present study found that
sleep spindle activity correlated with multiple cognitive measures
including estimates of verbal IQ in young healthy controls, early

Table 4 | Sleep data in relatives and controls.

Relatives Controls t p

n = 19 n = 12

SLEEP QUALITY

TST (min) 477 ± 61 511 ± 63 −1.36 0.19

WASO (min) 14 ± 14 5 ± 3 2.29 0.03*

Sleep efficiency % 93 ± 3 96 ± 2 −2.21 0.04*

SLEEP ARCHITECTURE

Stage 1 % 4 ± 2 2 ± 1 2.01 0.05*

Stage 2 % 52 ± 7 45 ± 11 2.02 0.05*

SWS % 21 ± 8 27 ± 10 −1.78 0.09

REM % 23 ± 4 26 ± 4 −1.70 0.10

SPECTRAL POWER DURING STAGE 2 SLEEP (µV2/HZ)

Slow (0.5–1 Hz) 10.6 ± 3.8 15.2 ± 6.3 −2.55 0.02*

Delta (1–4 Hz) 2.39 ± 0.97 3.04 ± 1.37 −1.54 0.13

Theta (4–8 Hz) 0.33 ± 0.17 0.49 ± 0.21 −2.38 0.02*

Alpha (8–12 Hz) 0.10 ± 0.05 0.17 ± 0.06 −3.29 0.003*

Sigma (12–15 Hz) 0.19 ± 0.10 0.44 ± 0.27 −3.60 0.001*

Beta (15–30 Hz) 0.008 ± 0.004 0.012 ± 0.004 −2.34 0.03*

SPINDLE MEASURES

Spindle number 377 ± 89 399 ± 148 −0.52 0.61

Spindle density/min 1.52 ± 0.29 1.72 ± 0.33 −1.76 0.09

CHARACTERISTICS OF INDIVIDUAL SPINDLES

Amplitude (μV) 18.2 ± 4.7 24.4 ± 6.8 −3.01 0.005*

Frequency (Hz) 12.9 ± 0.6 13.1 ± 0.8 −0.64 0.52

Duration (s) 0.844 ± 0.057 0.857 ± 0.049 −0.61 0.54

Sigma power(μV2/Hz) 0.555 ± 0.379 1.283 ± 0.847 −3.28 0.003*

Means ± SD; TST, total sleep time; WASO, wake after sleep onset; SWS, slow

wave sleep; REM, rapid eye movement sleep.
*Significant at p ≤ 0.05.

course psychotic patients, and young relatives of schizophrenia
patients. Thus, spindle activity was related to cognitive function
regardless of diagnosis. Together with prior work documenting
a spindle deficit in chronic, medicated patients with schizophre-
nia that correlates with sleep-dependent memory consolidation
(Wamsley et al., 2012), the present findings are consistent with
the hypothesis that the spindle deficit is an endophenotype of
schizophrenia that predates the onset of schizophrenia, is present
throughout its course and affects cognitive function. Although
suggestive, our findings are correlative and it is not possible
to draw strong conclusions about causal relationships between
spindles and cognitive function.

Recent work suggests sleep spindle activity as a potential tar-
get for the remediation of cognitive deficits in schizophrenia.
Eszopiclone—a non-benzodiazapine sedative hypnotic that acts
on the TRN, which generates sleep spindles (Jia et al., 2009)—
significantly increased spindle activity compared with placebo
in a small sample of chronic medicated schizophrenia patients
(Wamsley et al., 2013). While its effect on sleep-dependent
memory consolidation was not significant, only the eszopiclone
group showed significant overnight improvement on the motor
sequence task (Walker et al., 2002). Moreover, in the combined
eszopiclone and placebo groups, spindle density predicted this
overnight consolidation. These findings raise the possibility that
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Table 5 | Regressions of cognitive and symptom measures on spindle parameters in relatives and their controls.

Group Spindle × group Spindle

t p t p t p

CPT Density 0.68 0.50 −0.97 0.34 −1.13 0.27
Verbal Amplitude −0.28 0.78 −0.05 0.96 −0.20 0.84
CPT Density 0.73 0.47 −1.02 0.32 0.50 0.62
Visual Amplitude −0.94 0.36 0.34 0.74 −0.13 0.90
WCST Density −1.78 0.09 2.01 0.06 −1.29 0.21
Pers err Amplitude 0.61 0.55 −0.32 0.75 −1.34 0.19
IQ estimate Density −0.50 0.62 0.07 0.94 0.63 0.54

Amplitude 0.44 0.66 −0.79 0.44 3.80 0.0007*

GAF Density −2.28 0.03* 0.58 0.57 1.26 0.22
Amplitude −1.63 0.12 −0.40 0.69 2.72 0.01*

PAS Density 1.59 0.12 −1.09 0.28 −0.67 0.51
Amplitude 0.99 0.33 −0.39 0.70 −1.80 0.08

Magical Density 0.13 0.90 0.24 0.81 −0.23 0.82
Ideation Amplitude 0.47 0.64 0.01 0.99 −0.78 0.44
Perceptual Density 0.95 0.35 −0.64 0.53 −0.51 0.62
Aberration Amplitude 1.40 0.17 −1.12 0.27 −1.69 0.10
Social Density −0.17 0.87 0.19 0.85 −2.01 0.07
Anhedonia Amplitude 0.15 0.89 −0.01 0.99 −1.62 0.13

Spindle refers to spindle parameter, density, or amplitude. Continuous Performance Test (CPT)—Identical Pairs version; WCST, Wisconsin Card Sort Test persever-

ative errors; GAF, Global Assessment of Functioning; PAS, Premorbid Adjustment Scale; Chapman Scales of Magical Ideation, Perceptual Aberration, and Social

Anhedonia. *Significant at p ≤ 0.05.

spindle deficits can be effectively treated and that treatment
may remediate cognitive deficits. This body of work, identi-
fying abnormal sleep spindles as a potentially treatable candi-
date endophenotype of schizophrenia that is related to cognitive
deficits, opens new avenues for research aimed at understanding,
treating, and preventing schizophrenia.

The sleep spindle deficit in schizophrenia implicates dysfunc-
tion of thalamocortical circuitry. Sleep spindles are generated
in the TRN (Guillery and Harting, 2003) and reduced spindle
activity may reflect TRN and/or cortical dysfunction. There is
evidence of TRN abnormalities in schizophrenia (Smith et al.,
2001) and of reduced thalamic volume in antipsychotic-naïve
first-episode schizophrenia (Gilbert et al., 2001). The TRN is
comprised entirely of GABAergic neurons (Houser et al., 1980)
that primarily inhibit glutamatergic thalamic neurons that project
to the cortex. Cortical neurons, in turn, send glutamatergic
inputs back to N-methyl-D-aspartate acid (NMDA) receptors
on TRN neurons. Thus, spindles are mediated by a thalam-
ocortical feedback loop that is regulated by both GABAergic
and NMDA-receptor mediated glutamatergic neurotransmission
(Jacobsen et al., 2001), which are implicated in current models
of schizophrenia. In schizophrenia there is evidence of GABA
deficits (Thompson et al., 2009) and abnormal expression of
NMDA receptors and glutamate transporters in the thalamus
(Ibrahim et al., 2000; Smith et al., 2001).

The correlations of spindle activity with IQ in the present sam-
ples are similar to what has been reported for healthy individuals
in prior work (Fogel and Smith, 2011). Sleep spindles have been
linked to a range of cognitive abilities in healthy individuals, par-
ticularly to the sleep-dependent consolidation of both procedural

(Walker et al., 2002; Fogel and Smith, 2006; Nishida and Walker,
2007; Peters et al., 2008; Rasch et al., 2008; Tamaki et al., 2008)
and declarative (Clemens et al., 2005, 2006; Schabus et al., 2008)
memory. Converging evidence suggests that neocortical slow
oscillations temporally group thalamocortical sleep spindles with
hippocampal ripples thus enabling the redistribution of recently
encoded memories from temporary hippocampal to long-term
neocortical storage sites (Molle and Born, 2011). The coherent
expression of spindles across wide areas of cortex could support
the synchronous “reactivation” of recent memory traces across
cortical regions (Buzsaki, 1998; O’Neill et al., 2010). In addition to
reduced spindle activity, we previously found less coherent spin-
dle activity across the cortex in chronic medicated schizophrenia
(Wamsley et al., 2012). This may reflect dysfunction in tha-
lamocortical circuits that could interfere with sleep-dependent
memory processing preventing the simultaneous reactivation of
memory components stored across visual, spatial, emotional, and
goal-representation networks, resulting in the fragmentation of
memories and cognition.

Consistent with this, in addition to its relations with estimates
of premorbid verbal IQ (the Ammons Quick Test and WRAT-R
Reading), sleep spindles correlated with multiple measures of cog-
nitive performance. Sleep efficiency, a general measure of sleep
quality, also correlated with cognitive measures in early course
patients, but not in relatives, and it was not significantly cor-
related with IQ estimates or with spindle density or amplitude.
This may reflect that while generalized sleep disruption affects the
performance of many effortful and attentionally-demanding tasks
(Van Dongen et al., 2003), the performance of tasks that primarily
tap crystallized knowledge specifically relates to spindles.

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 762 | 209

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Manoach et al. Sleep spindle deficits in schizophrenia

Unlike chronic, medicated patients with schizophrenia in
whom the sleep spindle reduction was found to be specific [i.e.,
with the exception of increased sleep onset latency in two stud-
ies (Ferrarelli et al., 2007, 2010), it occurred in the context of
normal sleep quality, architecture, and other spectral character-
istics of sleep (Manoach et al., 2010; Wamsley et al., 2012)] in
both the early course schizophrenia patients and the relatives of
schizophrenia patients, sleep was more generally disrupted. Early
course patients with other psychotic disorders also showed dis-
rupted sleep relative to controls, but the schizophrenia patients
showed greater disruption as indicated by trends toward poorer
sleep quality and significantly lower theta power during Stage 2
sleep. But the most compelling difference between schizophrenia
patients and those with other psychotic disorders was the signif-
icantly reduced spindle activity including spindle density, sigma
power and individual spindle duration and amplitude (trend).
While schizophrenia patients significantly differed from healthy
controls on multiple measures of spindle activity, those with other
psychoses did not differ on any. In addition, as sleep efficiency was
not significantly correlated with spindle density or amplitude in
any group, a general sleep disruption is unlikely to fully account
for the spindle deficits observed in schizophrenia patients or in
young non-psychotic first-degree relatives. These findings sug-
gest that sleep is disrupted in early course psychotic patients, but
only those with schizophrenia show a spindle deficit. Not only was
spindle density reduced, but schizophrenia patients also showed
abnormal morphology of individual spindles (reduced amplitude
and a trend to shorter duration) consistent with some (Ferrarelli
et al., 2007, 2010) but not all (Wamsley et al., 2012) studies of
chronic medicated patients.

A surprising observation was that positive symptoms were
positively correlated with spindle amplitude in early course
antipsychotic-naïve schizophrenia patients. This contrasts with
the negative correlations previously observed in chronic med-
icated schizophrenia patients (Ferrarelli et al., 2010; Wamsley
et al., 2012). This may reflect that the pathophysiological under-
pinnings of positive symptoms differ in these two populations.
In chronic medicated patients, residual positive symptoms have
not fully responded to standard dopamine blocking medications
and may therefore arise from non-dopaminergic mechanisms
such as GABA or NMDA hypofunction (Demjaha et al., 2014),
which may also contribute to spindle deficits. In contrast, posi-
tive symptoms in early untreated schizophrenia typically respond
well to antipsychotics and may reflect dopamine hyperactivity
(Keshavan, 1999). These correlations suggest that, in addition to
their putative role in cognition, sleep spindles may be related to
the expression of schizophrenia symptoms, though the mecha-
nisms of these relations are unknown. Spindle parameters did not
correlate with measures of psychosis proneness in the combined
group of relatives and their controls, or in the relatives alone.

There are several important limitations of the present study.
First, we note that two prior studies of antipsychotic-naïve
patients with schizophrenia did not show reduced spindle den-
sity during Stage 2 sleep. As in the present study, the sample
sizes were relatively small n = 11 (Poulin et al., 2003) and n = 8
(Forest et al., 2007). Unlike the present study, the spindles were
hand counted. This is unlikely to be the source of the discrepancy

since the wavelet-based spindle counting algorithm used for the
present study was previously validated against both hand-counted
spindles and 12–15 Hz sigma power in both healthy individuals
and patients with schizophrenia (Wamsley et al., 2012) and out-
performed other available automated spindle detectors by most
closely approximating expert consensus spindle counts (Warby
et al., 2014). Given this discrepancy it will be important to repli-
cate our findings in larger samples. The small sample sizes of the
present study also left us underpowered for some analyses includ-
ing those involving more complex models that could adjust for
the effects of sleep efficiency or IQ on group differences in spin-
dles. As this was an archival study, we were limited to available
data and lacked information such as whether the time of day of
cognitive and other functional measures was standardized across
participants and groups. Because we were missing cognitive and
some demographic measures for early course controls we also do
not know whether they were well-matched to the early course
patients on important demographic features such as parental
socioeconomic status. This is a potential confound since the heri-
tability of IQ varies as a function of parental socioeconomic status
(e.g., Turkheimer et al., 2003) and IQ correlates with sleep spin-
dles (e.g., Fogel and Smith, 2011). We do know, however, that
the early course schizophrenia patients did not differ from other
psychotic patients in age, sex, estimated IQ, positive, or negative
symptom severity, or on a global functional assessment, yet only
the schizophrenia patients showed a spindle deficit.

The group of young relatives had lower parental socioeco-
nomic status than their controls. This may reflect socioeconomic
slippage of the parents as a consequence of schizophrenia. The
relatives also had lower estimated IQs, worse global function and
more magical ideation and perceptual aberration, which may all
be reflections of genetic vulnerability to schizophrenia and/or the
psychosocial effects of having a first-degree family member with
schizophrenia. Given these group differences, we cannot exclude
the possibility that rather than reflecting genetic vulnerability to
schizophrenia, the spindle deficit in relatives reflects differences in
other factors such as IQ.

The present findings raise a number of important questions.
Is reduced sleep spindle activity a genetic risk factor that predicts
psychosis in high-risk individuals and in the prodromal phase?
And, if so, would treating the spindle deficit improve cognition
and/or reduce the probability of conversion to frank psychosis?
And does the sleep spindle deficit help to illuminate the patho-
physiology of pre-morbid stages of schizophrenia? Our findings
implicate abnormal function in thalamocortical circuitry even
before the onset of illness, which is consistent with a recent report
of reduced volume of the thalamus bilaterally that correlated with
sleep disturbance in adolescents at ultra high risk for psychosis
(Lunsford-Avery et al., 2013). In chronic patients, would treating
the spindle deficit improve cognition and symptoms and thereby
reduce the risk of relapse?

These questions highlight important directions for future
research. Sleep studies are non-invasive and the potential to
remediate abnormal sleep for the prevention and treatment of
schizophrenia should be examined. The detection of reduced
spindle activity as a risk marker for conversion to schizophre-
nia in high-risk individuals and during the prodromal period
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would allow treatment of this deficit. In schizophrenia patients,
treatment of the spindle deficit could potentially reduce the clin-
ical, neurocognitive, and functional consequences of illness. In
summary, we propose sleep spindles as a potential novel endophe-
notype and target for research and treatment development.
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Sleep spindles are waxing and waning thalamocortical oscillations with accepted
frequencies of between 11 and 16 Hz and a minimum duration of 0.5 s. Our research
has suggested that there is spindle activity in all of the sleep stages, and thus for
the present analysis we examined the link between spindle activity (Stage 2, rapid eye
movement (REM) and slow wave sleep (SWS)) and waking cognitive abilities in 32 healthy
adolescents. After software was used to filter frequencies outside the desired range, slow
spindles (11.00–13.50 Hz), fast spindles (13.51–16.00 Hz) and spindle-like activity (16.01–
18.50 Hz) were observed in Stage 2, SWS and REM sleep. Our analysis suggests that
these specific EEG frequencies were significantly related to processing speed, which
is one of the subscales of the intelligence score, in adolescents. The relationship was
prominent in SWS and REM sleep. Further, the spindle-like activity (16.01–18.50 Hz) that
occurred during SWS was strongly related to processing speed. Results suggest that the
ability of adolescents to respond to tasks in an accurate, efficient and timely manner is
related to their sleep quality. These findings support earlier research reporting relationships
between learning, learning potential and sleep spindle activity in adults and adolescents.

Keywords: intelligence, processing speed, stage 2, REM, SWS, spindles, sleep

Sleep spindles are an often used hallmark of Stage 2 sleep;
these waxing and waning oscillations are commonly observed
with frequencies of between 11 and 16 Hz and have durations
of between 0.5 and 3 s (Zeitlhofer et al., 1997; DeGennaro
and Ferrara, 2003; Schabus et al., 2007; Peters et al., 2008).
This frequency range has been further divided by researchers
into slow spindles (often between 11 and 13.5 Hz) and fast
spindles (often between 13.6 and 16 Hz; Fogel and Smith, 2011).
While these are commonly used ranges, there seems to be no
clearly defined frequency range for each type (Fogel and Smith,
2011).

It is, however, generally accepted that sleep spindles occur
primarily in Stage 2 sleep. They are considered to be markedly
reduced in Stage 3 and virtually absent in Stage 4 when EEG
records are visually scored (Rechtschaffen and Kales, 1968;
Steriade and McCarley, 2005). Steriade and McCarley (2005) have
suggested that spindle activity declines as individuals enter deep
slow wave sleep (SWS) and only begins to resume when the
individual is entering the lighter stages of sleep and preparing for
rapid eye movement (REM). Further, the presence of more than
a single spindle, without intervening REMs, during an epoch of
REM sleep has been considered to be a Stage 2 arousal (Carskadon
and Rechtschaffen, 2000).

Spindles have typically been counted visually as opposed to
using an automated methodology (DeGennaro and Ferrara, 2003;
Ray et al., 2009) and are generally only counted in Stage 2 sleep.
Automated spindle counters have become more reliable over the
years. One of the advantages of these systems is the ability to filter

frequencies that are not of interest, and to allow researchers to
visually observe frequencies that are of interest. Ray et al. (2009)
validated an automated spindle detection system that modified
the settings for each individual subject. By assessing each subject’s
average spindle amplitude and setting the minimum amplitude
for that subject at 1.96 standard deviations below that mean, the
spindle counter was personalized for everyone, allowing for more
accurate assessment. Ray et al. (2009) found an overall sensitivity
of 98.96% and a specificity of 88.49% using this personalized
method.

This automatic spindle counting technique also allows for
easy detection of different spindle types (i.e., slow and fast
spindles), as well as allowing for the analysis of spindles during
different sleep stages. Visual counts of sleep spindles in SWS
often lead to the conclusion that there are very few (if any) sleep
spindles in SWS. The possibility exists that the sleep spindles are
more prominent in SWS than visual inspection would suggest,
due to the large amplitude slow waves that make up SWS.
Further, examining REM sleep for spindle activity is normally not
considered and only two papers actually report a spindle density
during REM sleep (Gaillard and Blois, 1981; Zeitlhofer et al.,
1997).

Spindle activity in SWS has been observed by other researchers
(e.g., Gaillard and Blois, 1981; Zeitlhofer et al., 1997; Steriade
and McCarley, 2005; Peter-Derex et al., 2012), but traditionally,
spindle activity is assessed primarily in Stage 2 sleep. Using
automatic spindle detectors, which can filter out undesired
frequencies, researchers can more easily observe the spindle
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activity that occurs in SWS sleep. Gaillard and Blois (1981)
for example, found that sleep spindle activity showed no
changes from Stage 2 to Stages 3 and 4. In contrast, Zeitlhofer
et al. (1997) found that spindle activity showed a significant
decrease from Stage 2 to SWS. Both groups of researchers
found that there was spindle activity present in REM sleep,
although in both cases it was significantly lower than in
Stage 2 and SWS (Gaillard and Blois, 1981; Zeitlhofer et al.,
1997).

Sleep spindles do show changes across the lifespan, but the
majority of studies have focused on young adults. Nicolas et al.
(2001) studied spindle characteristics in individuals from 10 years
of age to 69 years of age. Nicolas et al. (2001) found that the
number, density, and duration of sleep spindles (in Stage 2)
declined with age from early adolescence on. The declines that
they observed occurred primarily in the first four decades of
life, and Nicolas et al. suggested that these changes are due to a
long maturation, rather than aging per se. Jenni and Carskadon
(2004) examined sigma activity in adolescence, and observed a
decrease in the power of the sigma frequency range as adolescents
mature from pre- to post-puberty. They also observed a shift
in the predominant peak of sigma activity, which they suggest
is due to maturation of the thalamocortical system (Jenni and
Carskadon, 2004). Tarokh and Carskadon (2010) also found that
the peak frequency in the sigma band increased from childhood to
early adolescence and that there was a decline in the absolute EEG
spectral power across both NREM and REM sleep. Tarokh and
Carskadon (2010) suggest that this decline is due to the synaptic
pruning which is occurring during adolescence (and beyond).
The adolescent period seems to be a time when the brain is
engaged in a substantial amount of maturation and the spindle
activity that occurs during this period, may not be equivalent to
the adult activity.

The current study was designed to investigate two aspects of
spindle activity. The first goal was to observe any spindle activity
occurring in Stage 2 sleep, as well as SWS and REM in order to
determine whether the spindle system really is inhibited during
these alternate stages or whether this activity is simply obscured
by the other frequencies. The second goal was an attempt
to identify whether spindle activity is a marker for cognitive
ability or intelligence in children. Some research in adults has
supported the idea that certain sleep characteristics such as
spindle frequency activity (SFA) and even stage 2 sleep itself,
are related to intelligence (e.g., Bódizs et al., 2005; Geiger et al.,
2011). Other research has suggested that baseline sleep spindles
are related to an individual’s capacity for memory processing
and perhaps an inherent learning aptitude or intelligence (e.g.,
Nader and Smith, 2001, 2003; Schabus et al., 2006; Fogel et al.,
2007; Fogel and Smith, 2011). Indeed a number of studies
examining sleep spindle development support this idea. Nicolas
et al. (2001) for example, observed that spindle activity decreases
from adolescence up to the late 60 s and Petit et al. (2004)
report that sleep spindles decline with age in terms of their
formation, their frequency and their number. It is possible that
these declines are related to an age-related decline in cognitive
processing. Petit et al. also report that spindle activity declines
in patients with dementia, again linking spindle activity with

cognition. Another observation that led to the examination
of spindles being a possible marker for intelligence/ability
is that spindles display significant inter-individual variability
but are very consistent within the individual (e.g., Gaillard
and Blois, 1981; DeGennaro et al., 2005; Fogel and Smith,
2006).

Research conducted by Nader and Smith (2003) and Fogel
et al. (2007) demonstrated that spindle activity was positively
correlated with Performance IQ, but not with Verbal IQ (see
also, Fogel and Smith, 2011). We predicted that our adolescents
would show a similar pattern of results, with spindle activity
positively correlated with the more procedural scales of the
Wechsler Intelligence Scale for Children (WISC), but with no
relationship between the verbal scales of the WISC and spindle
activity.

METHOD
PARTICIPANTS
The participants were 32 adolescents (17 female) between the
ages of 12 and 19 years (M = 15.36 years) recruited from the
Peterborough community. Participants were all considered to be
healthy and medication free, as assessed by their parents, with
no indication of sleep disorders. All subjects were assessed for
pubertal development in order to control for hormonal effects on
spindle activity.

MEASURES
EEG recordings
In-home recordings were made using Suzanne™(Tyco-Healthcare
Group LP, Mansfield, MA, USA) portable polysomnographic
systems. The sampling rate was 120 Hz and data were stored
on PC flash memory cards, and then downloaded off-line
onto a PC computer for further analysis. We recorded EEG,
electrooculogram (EOG) (horizontal eye movements only), and
EMG using silver-plated electrodes. The EEG (C3, C4, FZ, and
PZ) and the EOG (right and left eyes) were monopolar recordings
and referenced to contralateral electrodes at A1 and A2. The EMG
channel was bipolar. For the EEG and EOG channels, the low- and
high-pass software filters were set at 0.03 and 30 Hz. For the EMG
channel, only frequencies above 10 Hz were recorded.

Sleep stages were generally scored according to standard
criteria (Rechtschaffen and Kales, 1968). However, we sometimes
deviated slightly from traditional protocol when scoring the REM
sleep stage. The appearance of spindles during REM sleep in
the raw EEG was rare, and they only became more visible in
the filtered channel. However, according to standard criteria,
the observation of a spindle would normally signal an ending
to the REM period and the beginning of a period of Stage
2 with the appearance of other Stage 2 indicators. It would
also be expected that there would be some increased activity
in the EMG channel. If there was absolutely no change in
the EMG, no other sign of a Stage 2 intrusion (such as a K-
complex) and further REM bursts, the epoch was counted as
REM sleep despite the appearance of a spindle. Sleep spindles
were counted using the automated spindle counter PRANA®
(PhiTools, Strasbourg, France). For each spindle type, an expert
technologist identified and recorded the peak amplitudes of 15
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spindles in each of the first and second halves of the night for
Stage 2 (30 spindles in total for each spindle type). Values were
then used to calculate the mean and standard deviation of peak
amplitude for each subject. The minimal amplitude criterion for
the automated spindle counter was determined by subtracting
1.96 SD units from each mean. This procedure was repeated
for each subject. Included in the study were spindle-like waves
in the 16–18.50 Hz range. We will use the term “spindle-like”
rather than spindle throughout. While these waves share many
characteristics of the spindle, their frequencies are in the 16.01–
18.50 Hz range. This EEG activity appears to varying degrees in all
individuals (Nader et al., 2012a,b,c). The same minimum spindle
amplitudes were used in each of the sleep stages (Stage 2, SWS,
and REM).

Intelligence was assessed using the Wechsler Intelligence Scale
for Children- Fourth Edition (WISC-IV) Canadian Edition. Tests
were administered individually by a registered psychometrist. Five
participants were assessed by the same psychometrist using the
Wechsler Adult Intelligence Scale—Third Edition (WAIS-III) as
they were above the age for the WISC-IV.

A number of correlations were performed on sleep spindle
activity as it relates to age and IQ in the different sleep stages. Since
the measures examined were of the ratio order (spindle density,
age) and interval order (IQ scores), we utilized the Pearson
correlation. Despite the possible non-normality of some of the
data, the non-parametric Spearman’s correlation was rejected
because reduction of the data to an ordinal level would result
in considerable loss of information and power. The Pearson is
known to be quite robust, even with non-normal distributions
and with our relatively small sample size, was considered the most
appropriate.

All subjects were assessed for pubertal development, using the
Tanner Scale, in order to control for hormonal effects on spindle
activity.

This study was approved by the Trent University Research
Ethics Board.

RESULTS
Sleep spindles were detected in all sleep stages (see Table 1 for
densities), not just in Stage 2. Spindle counts varied among
the different stages of sleep, with Stage 2 having the highest
density and REM having the lowest density. Despite substantial
variability (particularly in REM where one individual may have
exhibited no spindles at a specific electrode site while another
may have exhibited over 100 spindles), a significant number
of our adolescents showed spindle activity during REM. In
fact, the number of individuals showing more than 30 spindles
during REM sleep was substantial, with eight individuals (25%)
displaying more than 30 slow spindles and six individuals (19%)
showing more than 30 fast spindles during REM sleep. From the
visual EEG, it was clear that these young healthy subjects were not
exhibiting Stage 2 intrusions into REM sleep during the night (see
Figure 1).

Interestingly, the 16.01–18.50 Hz spindle—like activity was
also observed in all subjects in every phase of the sleep night.
While the number of these incidents was less than that for
conventional spindle activity, the relative frequency of occurrence

in each sleep stage and density of this event showed several
similarities (Table 1). For example, the 16.01–18.50 Hz activity
showed a similar pattern to the slow spindle (11.00–13.50 Hz)
activity, with the greatest number appearing in the frontal region
and fewer in the parietal region. This is in contrast to the fast
spindle (13.51–16.00 Hz) activity, which was most prominent in
the parietal region.

We do not think these waves are artifacts for several
reasons. During scoring, all epochs with movement artifacts
were discarded. They do not appear in any time locked form
that we can see in relation to the other spindle types. Thus
we do not think they are some kind of “echo” of the other
spindles. Our system is capable of separating these frequency
bands such that we do not think they are scoring errors related
to spillover activity from spindles in the 13.50–16.00 Hz range.
These 16.01–18.50 Hz waves appear to occur on their own time,
unrelated to the other two spindle types and can even be seen
to occur simultaneously on occasion, suggesting that they are
governed by an independent generator. They are more prevalent
at the Fz derivation, although they are present at C3, C4 and
Pz as well, suggesting their origin is more frontal. They also
appear to be smaller in size than spindles measured between
11.00 and 16.00 Hz. There were differences in the amplitudes
of the three spindle types in Stage 2. At Fz, for example, the
16.01–18.50 Hz waveforms have significantly smaller average
amplitudes (34.27 ± 8.21 uV) than slow (43.95 ± 8.73 uV)
or fast (44.84 ± 7.39 uV) spindles which do not differ
[F(2,6)= 45.04, p < 0.000001]. They also have quite different
densities (spindles/minute) as can be seen from the Table 1.
The three frequency ranges were found to have significantly
different densities (spindles/minute), with slow spindles being
most prevalent (7.14 ± 1.87), then fast spindles (1.45 ± 1.05) and
finally the 16.01–18.50 Hz range (0.16 ± 0.18), [F(2,60) = 300.20,
p < 0.000001].

The three frequency ranges were also compared for mean
duration in Stage 2 sleep. An ANOVA showed that there was
a significant main effect of frequency range, F(2,62) = 345.415,
p < 0.000001. Slow spindles (M = 1.74 s) had significantly longer
durations than fast spindles (M = 1.381 s) and the 16.01–18.50 Hz
range (M = 0.892 s). Fast spindles also had a significantly longer
duration than the 16.01–18.50 Hz waveform. All of these factors
lead us to believe that the 16.01–18.50 Hz activity is a separate
waveform worthy of further investigation.

SLEEP SPINDLE ACTIVITY AND AGE
Sleep spindle density was correlated with age in order to
determine whether the appearance of spindles in the various
stages varied with age. The density of slow spindles in Stage
2 sleep was negatively correlated with age in the frontal region
(FZ; r(30) = −0.37, p < 0.05). The density of fast spindles at
C4 in Stage 2 was positively correlated with age (r(30) = 0.35,
p < 0.05). This suggests that there may be a tendency for
the density of slow spindles in Stage 2 to decline with age
and a tendency for the density of fast spindles to increase
with age across adolescence. There were no other significant
correlations with age, suggesting that the spindle densities in
SWS and REM are not strongly related to the age range in
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FIGURE 1 | Panel shows an epoch of SWS, Stage 2 and REM sleep. Channels are C3 raw, C3 filtered (11.00–16.0 Hz), left and right EOG. For the REM panel,
EMG is also included. Both slow and fast spindles are displayed. Horizontal bars underline wave bursts counted as spindles.

this adolescent group. It also suggests that age may not be a
factor in the appearance of the activity in the 16.01–18.50 Hz
range.

We also examined the relationships between age and spindle
duration in Stage 2 sleep. Correlations showed that the duration
of the slow spindles showed a significant decline with age in
three of our four derivations [C3: r(30) = −0.38, p < 0.05;
C4: r(30) = −0.48, p < 0.01; FZ: r(30) = −0.50, p < 0.005].
Spindle amplitude showed a similar pattern of results, slow
spindle amplitude declined at C4 (r(30) = −0.48, p < 0.01),
Fast spindle amplitude declined significantly at all four of our
electrode locations [C3: r(30) = −0.41, p < 0.05; C4: r(30) = −0.56,
p < 0.001; FZ: r(30) = −0.36, p < 0.05; PZ: r(30) = −0.49, p < 0.01]
in Stage 2 sleep. The 16.01–18.50 Hz waveform showed a similar
trend toward an age related decline in Stage 2 sleep, but was
only significant at C4 (r(30) = −0.39, p < 0.05). Taken together,

these results suggest that there is an age related decline in spindle
amplitude for all frequencies during the adolescent period.

Similar to age, there were no significant correlations between
pubertal development (Tanner Stages) and spindle density
(11.00–13.50 Hz and 13.51–16.00 Hz) in Stage 2, SWS and REM.
However, when the activity in the 16.01–18.50 Hz range was
correlated with the Tanner stages, there were some significant
relationships observed. The spindle density in this frequency
range was found to be significantly, positively related to pubertal
development in Stage 2 in C3 (r(27) = 0.39, p < 0.05), C4
(r(28) = 0.42, p < 0.05) and PZ (r(27) = 0.42, p < 0.05) and to
show a trend toward a positive relationship in FZ (r(28) = 0.34,
p < 0.10).

A similar pattern was observed in SWS, where the density
of activity in the 16–18.5 Hz range was significantly, positively
related to Tanner Stage. This positive relationship was observed
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Table 1 | Mean density (spindles/minute) and mean number (±SD) of sleep spindles or spindle-like activity in Stage 2, SWS and REM.

Number

11.00–13.5 Hz 13.51–16 Hz 16.01–18.5 Hz

Stage 2 SWS REM Stage 2 SWS REM Stage 2 SWS REM

C3 1656.36 793.68 21.69 348.97 104.34 12.55 36.16 17.06 10.74
(519.84) (604.42) (34.38) (291.76) (104.95) (17.12) (41.12) (33.46) (20.56)

C4 1557.19 688.28 19.25 442.41 139.09 16.25 40.41 20.59 12.19
(545.73) (535.08) (29.03) (368.60) (107.94) (32.36) (46.47) (35.58) (23.63)

FZ 1776.09 1019.88 19.63 365.66 126.63 19.06 42.31 12.28 18.13
(448.50) (624.16) (18.85) (280.72) (88.21) (32.44) (54.49) (19.10) (33.38)

PZ 1568.94 646.97 15.71 437.94 142.61 5.16 19.26 11.68 4.03
(468.79) (540.44) (23.72) (362.27) (155.82) (5.96) (24.17) (20.13) (6.90)

Density

11–13.5 Hz 13.51–16 Hz 16.01–18.5 Hz

Stage 2 SWS REM Stage 2 SWS REM Stage 2 SWS REM

C3 6.65 5.86 0.18 1.38 0.77 0.11 0.14 0.11 0.10
(2.22) (3.77) (0.28) (1.09) (0.63) (0.14) (0.16) (0.18) (0.19)

C4 6.21 5.05 0.15 1.74 1.08 0.13 0.15 0.14 0.11
(2.10) (2.94) (0.21) (1.35) (0.78) (0.21) (0.18) (0.20) (0.21)

FZ 7.14 7.54 0.17 1.45 0.97 0.18 0.16 0.08 0.18
(1.87) (3.77) (0.16) (1.05) (0.55) (0.33) (0.18) (0.11) (0.34)

PZ 6.24 4.74 0.12 1.73 1.05 0.05 0.07 0.08 0.04
(1.82) (3.19) (0.15) (1.38) (0.98) (0.06) (0.09) (0.11) (0.07)

in C4 (r(28) = 0.39, p < 0.05) and PZ (r(27) = 0.40, p < 0.05)
and a trend toward this positive relationship was observed in
C3 (r(27) = 0.33, p < 0.10). The activity in REM sleep did
not vary with pubertal development as measured by the Tanner
Stages.

SPINDLE ACTIVITY AND IQ
Spindle activity in Stage 2, SWS and REM was correlated with
the Full Scale IQ from the WISC-IV. We did not expect to
see any significant correlations between spindle density and any
of the Verbal subscales (e.g., verbal comprehension), although
we did expect that there would be significant correlations with
Picture Completion (perceptual organization) and Processing
Speed (see Fogel and Smith, 2011). Consequently, we confined
our correlations to Full Scale IQ and these two procedural traits.
There was only one significant correlation between the EEG
activity and Full Scale IQ (in SWS, density of 13.5–16.00 Hz
activity was negatively related to Full Scale IQ; r(32) = −0.351,
p < 0.05).

However, a pattern of significant correlations emerged when
the procedural IQ subscales were examined. Since Age was
observed to be positively related to both Processing Speed and
percentage of SWS, partial correlations, controlling for age,
were conducted between these subscales and the various EEG
frequencies. Processing speed appeared to be highly related to
Spindle Density, particularly during REM and SWS. Table 2
presents the pattern of significant correlations between Processing
Speed and EEG activity. An estimated total of 108 Pearson
correlations were run [Derivation (4), Spindle Type (3), Sleep
Stage (3)]. While this could be considered to be a large number
of correlations requiring some kind of correction for Type

Table 2 | Partial correlations (controlling for Age) between spindle
densities (spindles/minute) and processing speed, organized by
frequency and sleep stage.

Stage 2 SWS REM

C3 11.00–13.5 Hz 0.47∗ 0.09 0.42∗

C3 13.5–16 Hz −0.04 −0.01 0.43∗

FZ 13.5–16 Hz 0.03 0.01 0.53∗

C3 16–18.5 Hz 0.33 0.45∗ 0.19
C4 16–18.5 Hz 0.26 0.32∗ 0.17
FZ 16–18.5 Hz 0.27 0.37∗ 0.31
PZ 16–18.5 Hz 0.22 0.46∗ 0.08

*p < 0.05.

I Error, we did not do so for several reasons. Our sample
size was quite small and thus applying such corrections as
Bonferroni would have been too conservative. Further, the spindle
types, EEG derivations and sleep states are undoubtedly not
completely independent of each other and this reduces the need
for correction. Also, the consistent patterns in the results suggest
that these findings are not random and do warrant further
examination. While our predictions were partially confirmed,
this is an exploratory study and the data provide new research
directions.

As the bulk of the significant correlations seemed to be
between EEG activity in REM and SWS, with only a single
significant correlation in Stage 2, a regression analysis was
conducted using SWS and REM activity. A regression analysis
was performed on Processing speed, with age being entered first
to control for its effects (R = 0.484, p < 0.01). Proportion
of SWS and proportion of REM sleep were entered into the
equation next (R = 0.654, p < 0.01). Finally the variables C3
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(11.00–13.50 Hz) REM, C3 (13.5–16.00 Hz) REM, FZ (13.5–
16.00 Hz) REM, C3 (16–18.50 Hz) SWS, FZ (16–18.50 Hz) SWS,
PZ (16–18.50 Hz) SWS were entered into the equation (R = 0.803,
p < 0.01). The regression analysis suggests that the measures
of age and sleep EEG account for 64.6% (adj. R2 = 0.486) of
the variance in processing speed. While it is not surprising that
age contributes a large proportion of the variance, the results
underline the importance of the activity in REM and SWS rather
than Stage 2.

DISCUSSION
Spindles are not limited to Stage 2 sleep and appear in all the sleep
stages of healthy adolescents. It is possible that the appearance
of spindles in SWS and REM could be due to a developmental
process of adolescence, but correlations of spindle density with
age and puberty showed few consistent significant relationships,
with the exception of a positive relationship between density of
the faster wavelengths in SWS and Tanner stage. This suggests
that the appearance of spindles in REM and SWS may not be
a consequence of development, and instead may be a consistent
robust phenomenon. It is possible that the faster wavelengths
increase in density with pubertal development. As the brain
undergoes its substantial maturation during adolescence, it may
become more physically able to produce these faster wavelengths
during SWS.

Our results do suggest that, despite the lack of consistent
changes in density, other measures of spindle activity may be
changing across the adolescent age range. Slow spindle duration
declines over adolescence in Stage 2, while there is no change in
the duration of the fast and 16.01–18.5 Hz waveforms. Amplitude
declined in all three frequency bands across adolescence in Stage 2.
These results seem to be in agreement with those of Nicolas et al.
(2001), Jenni and Carskadon (2004) and Tarokh and Carskadon
(2010).

The density of spindles during SWS is significantly less than
the spindle density observed during Stage 2, but it is still quite
substantial (see Figure 1). Our results of a decreased density in
SWS is consistent with the findings of both Zeitlhofer et al. (1997)
and Andrillon et al. (2011) who observed a significant decrease
in spindle density from Stage 2 to Stage 3 to Stage 4. Despite
a difference in the electrodes used to measure EEG (Andrillon
et al. used depth electrodes), the results from the present study
are in agreement with the findings of Andrillon et al. (2011) who
observed more slow spindles in the frontal region than in the
parietal region and more fast spindles in the parietal region than
in the frontal region.

The density of sleep spindles in REM is low, but certainly
not completely absent. Our data corresponds very closely to data
reported by Gaillard and Blois (1981) who examined spindle
activity in adults. Using a filter system, which isolated frequencies
between 11.6 and 17.2 Hz, Gaillard and Blois found spindle
densities in REM sleep that were very similar to the results
presented here. These researchers found a spindle density of
0.87 spindles per minute (±1.74), supporting the idea that
while there is great variability in the number of spindles that
occur during REM, they are certainly not absent during this
stage of sleep. Our results are also similar to those found by

Zeitlhofer et al. (1997), although our spindle densities in REM
(M = 0.18 at C3) were lower than their findings (M = 1.3
spindles/minute).

The appearance of spindles in REM suggests that the
mechanism that produces sleep spindles is not completely
inhibited or absent during REM. It is possible that the separate
phasic systems that produce eye movements and spindle activity
cannot occur simultaneously, but apparently they can occur in
close succession. While it has previously been accepted that
the appearance of sleep spindles in REM is actually a Stage 2
intrusion (Carskadon and Rechtschaffen, 2000), it seems unlikely
that one-quarter of our healthy, young subjects would have more
than 30 Stage 2 intrusions during the REM period. In fact,
our visual scoring procedure revealed no spindles and certainly
no Stage 2 intrusions (Carskadon and Rechtschaffen, 2000). It
was only when we filtered out the other frequencies that we
were able to count the spindles occurring in REM sleep. The
spindles in REM sleep met the same criteria for amplitude
and duration, as did the spindles in Stage 2 in order to be
counted.

The data suggest that, with the advent of more sophisticated
measuring techniques, spindles that occur during SWS and REM
are phenomena that have been mostly overlooked, because they
were not easily observable. In future, it would be valuable to
include all of the sleep stages as well as to examine possible sleep
spindle activity in frequency ranges from 11–19 Hz.

While spindle density, in any frequency range, was not very
strongly related to age (at least within our adolescent age group),
it does appear that pubertal development plays a role in the
appearance of some of these spindles. An increase in density
of the activity in the 16.01–18.50 Hz range was observed in
conjunction with an increase in pubertal development in both
Stage 2 and SWS. It is possible that this activity is related to
maturity and brain development and may be involved in the
establishment of higher order cognitive abilities. A tentative
hypothesis is that the link between IQ measures and sleep states
develops over the adolescent period, as the brain matures to its
adult state.

The sleep measures were correlated with Full Scale IQ, and
its subscales to try and assess whether there are any biological
markers for intelligence in adolescents. Research in adults has
suggested that sleep spindle activity may be linked with an
aptitude for learning (Nader and Smith, 2001; Schabus et al., 2006;
Fogel et al., 2007; Fogel and Smith, 2011). Given the substantial
development in the brain that occurs over the adolescent period,
we were interested in whether there was any support for this
relationship in adolescents. Dang-Vu et al. (2010) observed that
the faster spindle activity was associated with more extensive
cortical activation; the results from our adolescents suggest that it
is the faster (or higher frequency) brain activity that is associated
with some forms of intelligence.

Using the WISC-IV (or WAIS-III), Full scale IQ and the
procedural subscales were correlated with brain wave activity
in three frequency ranges. The first two ranges, 11.00–13.50
Hz, and 13.5–16.00 Hz, are traditional spindle frequencies; the
third frequency range (16–18.50 Hz) is above the normal spindle
range, but we observed consistent activity in these frequencies
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in the current sample and in an earlier study (Nader and
Smith, 2001) and felt it was important to include this activity
in our examination. While Full Scale IQ was not related to
any of the measured brain activity, some of the subscales were.
Processing Speed in particular, seemed to be strongly related to
the brain wave activity during sleep. Processing speed is a skill
that is linked to executive functioning (Jacobson et al., 2011)
and requires individuals to be able to complete a task accurately
and as quickly as possible. Processing Speed was observed to
be positively associated with age in this adolescent group; this
positive association may be due to the development of executive
functioning that occurs in adolescence. Executive functioning
involves the ability to plan, coordinate, and execute behavior
(Blakemore and Choudhury, 2006), processing speed requires
the individual to not only perform at a rapid pace, but to be
able to respond both efficiently and accurately (Jacobson et al.,
2011). This ability requires the individual to plan and prepare for
stimulus orientation and appropriate responses (Jacobson et al.,
2011).

Performance on the Processing Speed task was observed to be
positively related to age, the proportion of both SWS and REM
sleep, and the EEG activity that occurs during these stages. Due
to these observed relationships, a regression analysis was run to
determine how much variance in Processing Speed scores could
be accounted for by these sleep variables. Using this exploratory
analysis, we were able to account for 64.5% of the variance in
Processing Speed by knowing age, proportion of REM and SWS,
the density of activity in the 16.00–18.50 Hz range during SWS
and the density of activity in the 11.00–13.50 Hz, and 13.51–
16.00 Hz ranges during REM. This suggests that the ability of
adolescents to respond in an efficient and accurate manner to
the task at hand is related to sleep quality. In fact, it may be
that the spindle activity during REM and SWS is indicative
of their Processing Speed abilities. Since we were not able to
predict Full Scale IQ, these results suggest that only specific
components of intelligence are related to sleep state activity. This
supports research conducted with adolescents and adults, which
has suggested that some measures of IQ are related to sleep
and also that sleep spindles are related to how well we learn
(e.g., Nader and Smith, 2003; Schabus et al., 2006; Fogel et al.,
2007).

There are some things that should be considered in future
studies. As this was an exploratory study with a limited number
of participants, further research needs to be done to confirm the
findings presented here. The small number of participants did
limit power, and we did not apply any correction procedures for
Type I error. However, we did limit the number of correlations
performed and only examined the relationships between spindle
activity and the Performance IQ/Procedural tasks, along with Full
Scale IQ. Further research would be able to use a larger sample and
correct for Type I error. Also, the scoring system (Ray et al., 2009)
was developed using the EEG from young adults and validating it
for younger participants would be valuable. It is possible that the
number of false positives might have been different in our younger
participants. We can only say that there was no consistent increase
in the spindle count as we looked at younger subjects. Depending
on spindle type, some were positively correlated with age while

some were negatively correlated with age or not correlated at all.
This suggests that there was no general increase in false positives.
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Objectives: The mechanisms underlying sleep spindles (∼11–15 Hz; >0.5 s) help
to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a
challenging time (e.g., daytime), even after sleep loss. This study compared spindle
characteristics during daytime recovery and nocturnal sleep in young and middle-aged
adults. In addition, we explored whether spindles characteristics in baseline nocturnal
sleep were associated with the ability to maintain sleep during daytime recovery periods
in both age groups.

Methods: Twenty-nine young (15 women and 14 men; 27.3 y ± 5.0) and 31 middle-
aged (19 women and 13 men; 51.6 y ± 5.1) healthy subjects participated in a baseline
nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation.
Spindles were detected on artifact-free Non-rapid eye movement (NREM) sleep epochs.
Spindle density (nb/min), amplitude (µV), frequency (Hz), and duration (s) were analyzed
on parasagittal (linked-ears) derivations.

Results: In young subjects, spindle frequency increased during daytime recovery sleep
as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects
showed spindle frequency enhancement only in the prefrontal derivation. No other
significant interaction between age group and sleep condition was observed. Spindle
density for all derivations and centro-occipital spindle amplitude decreased whereas
prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both
age groups. Finally, no significant correlation was found between spindle characteristics
during baseline nocturnal sleep and the marked reduction in sleep efficiency during
daytime recovery sleep in both young and middle-aged subjects.

Conclusion: These results suggest that the interaction between homeostatic
and circadian pressure modulates spindle frequency differently in aging. Spindle
characteristics do not seem to be linked with the ability to maintain daytime recovery
sleep.

Keywords: aging, sleep spindles, circadian process, sleep loss, homeostatic sleep pressure
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Non-rapid-eye movement (NREM) sleep is a global brain
process commonly defined by an absence of interaction with the
environment, altered awareness, reduced external information
processing and enhanced cortical synchronization. High levels
of cortical synchronization during slow-wave sleep (SWS or
N3 NREM sleep) is characterized by high-amplitude (>75
mV) electroencephalographic (EEG) slow waves (<4 Hz; SW).
SW have two phases at the cellular level: a hyperpolarization
phase (surface EEG SW negative phase), during which cortical
neurons are mostly silent, and a depolarization phase (surface
EEG SW positive phase), during which most cortical neurons
fire intensively (Steriade, 2006). Sleep spindles (waxing and
waning EEG waves of 12–15 Hz; >0.5 s) occur mostly during
N2 NREM sleep but still persist in N3 NREM sleep to be
eventually replaced by SWs. Hence, several observations support
a reciprocal relationship between sleep spindles and SW in
NREM sleep (Dijk et al., 1993; Steriade et al., 1993; for a review:
De Gennaro and Ferrara, 2003).

Aging is associated with less time asleep, more frequent
awakenings of longer duration and shallower sleep (Buysse et al.,
1992; Hoch et al., 1994; Landolt et al., 1996; Carrier et al.,
1997, 2001; Landolt and Borbély, 2001). These changes are part
of the normal aging process and occur gradually during the
middle years of life (Carrier et al., 2001). Moreover, NREM
sleep changes drastically in the middle years of life through a
substantial reduction in SWS and an increase in lighter NREM
sleep stages (Hoch et al., 1994; Landolt et al., 1996; Carrier et al.,
1997). Studies have shown considerable changes in NREM sleep
from age 20 to 60 years, including significant decreases in slow-
wave activity (SWA; i.e., spectral power between 0.5–4.5 Hz) and
low sigma activity (spectral power between 13–14 Hz), during
NREM (Carrier et al., 2001; Landolt and Borbély, 2001). Our
group has also shown that middle-aged subjects exhibit lower
density and amplitude of SW and spindles when compared
to younger participants, especially in prefrontal/frontal brain
areas (Carrier et al., 2011; Lafortune et al., 2012; Martin et al.,
2013).

The sleep-wake cycle is regulated by the interaction between
the homeostatic and the circadian processes (Dijk and Czeisler,
1994). The homeostatic process represents the sleep pressure
accumulated by the time spent awake and dissipated during
a sleep episode (Achermann et al., 1993). In humans, the
intensity and dynamics of slow wave activity (SWA; spectral
power between 0.5–4 Hz in NREM) model the time course
of the homeostatic process (i.e., more time awake produces
more SWA, whereas more time asleep is associated with less
SWA; Achermann et al., 1993). A few studies showed lower
rebound of SWA as well as SW density and amplitude after
sleep deprivation in middle-aged and older subjects when
compared to younger participants, particularly in anterior brain
areas (Gaudreau et al., 2001a; Münch et al., 2004; Carrier
et al., 2009; Lafortune et al., 2012). The latter results suggest
that there is a reduction in homeostatic sleep pressure as age
increases starting in the middle years of life. On the other
hand, a biological ‘‘clock’’ located in the suprachiasmatic nucleus
controls the circadian process of sleep regulation. Circadian
wake propensity increases during the day and maximizes in

the evening (Czeisler et al., 1980; Zulley et al., 1981; Lavie,
1985). Studies have shown that sleep in middle-aged and older
subjects is particularly vulnerable to circadian phases of high
wake propensity, which means that it is more difficult with
aging to maintain sleep at the ‘‘wrong’’ circadian phase (e.g.,
in the daytime), even after sleep deprivation (Cajochen et al.,
1999; Gaudreau et al., 2001b). The mechanisms underlying this
stronger enhancement of wakefulness during daytime recovery
sleep inmiddle-aged and older participants compared to younger
subjects remain unknown. Recently, we tested whether age-
related modifications in SW could be linked to enhanced
wakefulness during daytime recovery sleep, but none of the SW
characteristics at baseline were associated with daytime recovery
sleep efficiency in young and middle-aged subjects (Lafortune
et al., 2012).

One of the functional roles attributed to sleep spindles is to
prevent afferent signals from being transmitted to the cortex,
thus allowing cortical unresponsiveness to stimulation during
sleep (Steriade et al., 1993; Steriade, 1994, 2006; Bazhenov
et al., 1999; Born et al., 2002; Czisch et al., 2002; Dang-
Vu et al., 2011). Hence, age-related changes in spindles may
be linked to the ability to maintain sleep at an abormal
circadian phase. Interestingly, spindle characteristics are also
regulated by the interaction between the homeostatic and
the circadian processes. Compared to conditions of lower
homeostatic sleep pressure prior to nocturnal sleep, studies
have shown a reduction in spindle density and in spindle
mean frequency under higher sleep homeostatic pressure in
young subjects (Curcio et al., 2003; Knoblauch et al., 2003a).
However, to our knowlegde, no study has evaluated age-
related effects of sleep deprivation on spindles. Studies have
also reported lower spindle density and higher spindle mean
frequency when sleep occurred at a circadian time corresponding
to daytime in comparison to night-time (Wei et al., 1999;
Knoblauch et al., 2003b, 2005). Importantly, this circadian
modulation of spindles is reduced in older subjects when
compared to younger subjects (Wei et al., 1999; Knoblauch et al.,
2005).

The main aim of this study is to compare sleep spindles
characteristics between baseline nocturnal sleep and daytime
recovery sleep after 25 h of total sleep deprivation in both young
and middle-aged subjects. We also evaluated whether sleep
spindles are associated with the ability to maintain sleep during
daytime recovery sleep.We predict that middle-aged subjects will
have a lower reduction of spindles during daytime recovery sleep
compared to younger subjects and that higher spindle density
during baseline sleep will be associated with a smaller decrease
in sleep efficiency during daytime recovery sleep in young and
older subjects.

Methods

Subjects and Procedure
Twenty-nine young (15 women and 14 men; 20–38 years old,
mean = 27.3 years, SD = 5.0) and 31 middle-aged (19 women and
13 men, 40–60 years old, mean = 51.6 years, SD = 5.1) healthy
subjects were recruited for this study. Data from participants
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were drawn from two studies conducted between 1999 and 2006
in our laboratory, all following similar recording procedures
and free from active pharmacological manipulation (Gaudreau
et al., 2001b; Carrier et al., 2009). All subjects signed an
informed consent form and received monetary compensation
for their participation. All research studies were approved
by the ethical committee of the Hôpital du Sacré-Coeur de
Montréal.

A semi-structured interview using a homemade questionnaire
was performed to exclude potential subjects who smoked, used
sleep-affecting medication and reported sleep complaints or
unusual sleep duration (i.e., <7 h and >9 h). Participants
who engaged in night work or transmeridian travel 3 months
prior to the study were also excluded. No subjects reported
neurological or psychiatric illness history using our homemade
questionnaire, nor showed indication of depression (Beck
Depression Inventory, short version >3 or long version >9;
Beck and Steer, 1987). Moreover, to rule out any significant
medical condition, certified physicians evaluated blood sample
analysis (complete blood count, serum chemistry, including
hepatic and renal functions; prolactin level; testosterone level
in men; and estrogen, follicle stimulating hormone (FSH)
and luteinizing hormone levels in women) and urinalysis
results. Perimenopausal women and women using hormonal
contraception or receiving hormonal replacement therapy were
excluded. Premenopausal women reported regular menstrual
cycles (25–32 days) in the year preceding the experiment, had no
vasomotor complaints (i.e., night sweats, hot flashes) and showed
low FSH levels (<20 iU/L). All postmenopausal women reported
an absence of menses in the past year and showed high FSH levels
(>20 iU/L).

Prior to data acquisition, all subjects underwent a
polysomnographic (PSG) adaptation and screening night;
including nasal/oral thermistor and an electromyogram (EMG)
leg electrode recordings to screen for sleep disturbances. The
presence of sleep disorders such as sleep apneas, hypopneas and
periodic leg movements (index per hour >10) resulted in the
participant’s exclusion.

All subjects came to the laboratory for a baseline nocturnal
sleep episode (BSL). The following night, subjects were sleep
deprived. A morning recovery sleep episode (REC) was initiated
one hour after their habitual wake time (after 25 h of
wakefulness). During the night of sleep deprivation, all subjects
remained awake in a semi-recumbent position in dim light (<15
lux) until the next morning. Bedtime and wake time in the
laboratory were determined using averaged regular schedules
obtained from sleep diary entries (recorded 7 days prior to BSL).

Polysomnographic Recordings
PSG recordings included EEG electrodes (10–20 system,
referential montage with linked ears), chin EMG and left and
right electrooculography (EOG). PSG was recorded using a Grass
Model 15 amplifier system (gain 10,000; bandpass 0.3–100 HZ).
Signals were digitalized at a sampling rate of 256 Hz using
commercial software (Harmonie, Stellate System). Sleep stages
were visually scored on C3 in 20-s epochs on a computer screen
according to standard criteria (Rechtschaffen and Kales, 1968).

EEG artifacts were detected automatically (Brunner et al., 1996)
and then inspected visually to ensure appropriate rejection from
analysis.

Automatic Algorithm Detection of Sleep Spindles
Sleep spindles were detected automatically on artifact-free
NREM epochs for left and right parasagittal scalp derivations
(i.e., Fp1, F3, C3, P3, O1 and Fp2, F4, C4, P4, O2). EEG
data were first bandpass filtered from 11 to 15 Hz with a
linear phase Finite Impulse Response filter (−3 dB at 11.1
and 14.9 Hz). Forward and reverse filtering was performed
to obtain zero-phase distortion and to double the filter order.
The root mean square (RMS) of the filtered signal was then
calculated with a 0.25 s time window and thresholded at its
95th percentile (Schabus et al., 2007). A spindle was identified
when at least two consecutive RMS time-points exceeded the
threshold, reaching duration criterion (0.5 s; no superior limit
but 98% of spindles were ≤1 s). Four spindle characteristics were
derived: density (number of spindles/minutes of NREM sleep,
expressed in nb/min), amplitude (peak-to-peak difference in
voltage, expressed in µV), frequency (number of cycles/second,
expressed in Hz), and duration (expressed in seconds). Spindle
characteristics were assessed over the entire night. Spindle
characteristics from left and right electrodes were averaged
together (prefrontal: FP1–FP2, Frontal: F3–F4, Central: C3–C4,
Parietal: P3–P4, Occipital: O1–O2).

Statistical Analyses
Preliminary Analyses
To evaluate possible interaction between sex, age and sleep
conditions, 3-way mixed design analysis of variance (ANOVA)
with two independent factors (age groups: young and middle-
aged; sex groups: men and women) and one repeated measure
(2 sleep conditions: BSL, REC) were performed on PSG
variables and spindle characteristics for each topographical site
(prefrontal, frontal, central, parietal, occipital). No significant
interactions between age group, sex and sleep condition were
found for PSG characteristics and all spindle characteristics,
except for sleep spindle density in the central area (F(1,57) = 5.64,
p = 0.02). Post hoc analysis revealed an age group by sleep
condition interaction for women (F(1,32) = 5.14, p = 0.03) and not
for men (F(1,25) = 1.39, p = 0.25). Middle-aged women showed a
stronger decrease in spindle density in the central area compared
to young women. In men, spindle density was lower from BSL
to REC in both age group resulting in only a main effect of sleep
condition (F(1,25) = 72.58, p < 0.0001). Consequently, data from
men andwomenwere pooled together, except for spindle density,
which was analyzed separately in men and women.

Analyses
Two-way ANOVAs with one independent factor (2 age groups)
and one repeated measure (2 sleep conditions: BSL, REC) were
performed on PSG sleep variables. Mixed ANOVAs with one
independent factor (2 age groups) and two repeated measures
(2 sleep conditions: BSL, REC; 5 derivations: Prefrontal, Frontal,
Central, Parietal and Occipital) were performed for each spindle
characteristic.
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P values for repeated measures with more than two levels
were adjusted for sphericity with Huynh-Feldt corrections, but
original degrees of freedom were reported. Differences in main
effects and in interactions were assessed with post hoc multiple
mean comparisons, and effect size (ES) were measured using
the partial ETA square and Wilk’s Lambda partial ETA square
when applicable. Results were considered significant when
p ≤ 0.05.

Pearson correlations were performed between all-night
spindle characteristics during baseline sleep and the change in
sleep efficiency between BSL and REC sleep (absolute and % in
change) in the young and the middle-aged groups separately and
in the two groups pooled together with age as a control variable.
In these analyses, we applied a more severe level of significance
(i.e., p ≤ 0.01) to correct for multiple comparisons.

Results

Sleep Architecture
Sleep efficiency and duration was lower during REC sleep as
compared to BSL sleep in both age groups. However, this
reduction of sleep efficiency and duration was more prominent
in the middle-aged than in the young subjects. SWS was higher
during REC sleep compared to BSL sleep, but this effect was
less prominent in middle-aged compared to young subjects. As
for sleep latency, % of stages 2 and REM sleep, they were all
lower in REC sleep when compared to BSL sleep. Finally, middle-
aged subjects showed a higher percentage of stage 2 sleep in
comparison to younger participants (see Table 1 for all effects).

All-Night Spindle Characteristics
Significant interactions between sleep conditions and derivations
were found for spindle density in men (F(4,128) = 6.35,
p < 0.0001) and in women (F(4,128) = 18.32, p < 0.0001;
see Figure 1). For both men and women, spindle density
was lower in REC sleep compared to BSL sleep in all
derivations. The effect was stronger in the central area and
weaker in the prefrontal region. No significant effect of age
or interaction between age groups and sleep conditions was
found for spindle density in men (interaction: F(1,25) = 0.24,
p = 0.63; age only: F(1,25) = 0.79, p = 0.38) or in women

FIGURE 1 | Spindle density is shown in all derivations for BSL (black
squares) and REC (open triangle; mean ± standard error of mean) for
women and men. Simple effects analyses showed significant interactions
(p < 0.0001) between sleep condition and all derivations for both sexes.
(Women—Prefrontal: F(1,59) = 36.64; Frontal: F(1,59) = 139.71; Central:
F(1,59) = 165.14; Parietal: F(1,59) = 89.87 and Occipital: F(1,59) = 121.42;
Men—Prefrontal: F(1,59) = 16.56; Frontal: F(1,59) = 54.48; Central:
F(1,59) = 72.58; Parietal: F(1,59) = 36.41 and Occipital: F(1,59) = 46.57). Stars
indicate significant differences between BSL and REC in both age groups (for
women and men, ES: **>0.7; *<0.7).

(interaction: F(1,32) = 1.21, p = 0.28; age only: F(1,32) = 1.59,
p = 0.22).

Significant interactions between sleep conditions
and derivations were also found for spindle amplitude
(F(4,236) = 32.57, p< 0.0001) and spindle duration (F(4,236) = 7.17,
p < 0.0001; see Figures 2–4 for post hoc analyses). Compared to
BSL sleep, spindle amplitude was higher during REC sleep for
the prefrontal area but lower for central, parietal, and occipital
areas. Finally, compared to REC sleep, spindles lasted longer
only in the central and parietal areas in BSL sleep. No significant
effect of age groups (F(1,59) = 2.0, p = 0.16) or interaction

TABLE 1 | Polysomnographic variables for young and middle-aged subjects in both sleep conditions.

Young Middle-Aged Age effect Condition effect Age × Condition interaction

PSG variables BSL REC BSL REC F(p) F(p) F(p)

Sleep latency (min) 9.2 (5.8) 3.5 (3.6) 10 (5.9) 5.2 (4.8) n.s. F = 46.5 (p < 0.0001) n.s.
Sleep duration (min) 437.3 (38.5) 377.9 (65.1) 428.8 (46.2) 335.1 (59.7) F = 5.5 (p = 0.02) F = 83.5 (p < 0.0001) F = 4.3 (p = 0.04)
Efficiency (%) 91.1 (5.7) 79.8 (14.4) 87.7 (6.1) 69.2 (13) F = 10.2 (p = 0.002) F = 89.2 (p < 0.0001) F = 5.1 (p = 0.02)
Stage 1 (%) 7.7 (3.7) 7.9 (5.4) 7.9 (3.4) 8.6 (3.6) n.s. n.s. n.s.
Stage 2 (%) 59.8 (5.6) 56.5 (9.5) 66.4 (5.6) 65.8 (6.7) F = 25.1 (p < 0.0001) F = 5 (p = 0.03) n.s.
SWS (%) 9.1 (6.4) 16.8 (9.8) 3.9 (4.1) 8.7 (7.3) F = 15.2 (p < 0.0001) F = 94 (p < 0.0001) F = 5 (p = 0.03)
REM (%) 23.4 (4.9) 18.7 (6.7) 21.8 (4.4) 17 (6.4) n.s. F = 45.6 (p < 0.0001) n.s.
NREM (min) 301.9 (35.6) 276.5 (51.5) 297.2 (39.9) 252.0 (51.9) n.s. F = 28.3 (p < 0.0001) n.s.

Note. Untransformed mean (standard deviation).
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FIGURE 2 | Spindle amplitude is shown in all derivations for BSL (black
squares) and REC (open triangle; mean ± standard error of mean).
Simple effect analyses showed significant interactions between sleep
condition and derivations (Fpz: F(1,59) = 18.3, p < 0.0001; Fz: F(1,59) = 2.4,
p = 0.12; Cz: F(1,59) = 14.4, p < 0.0001; Pz: F(1,59) = 47.6, p < 0.0001 and
Oz: F(1,59) = 11.8, p = 0.001). Stars indicate significant differences between
BSL and REC in both age groups (ES: **: 0.447, *: [0.166–0.237]).

FIGURE 3 | Spindle duration is shown in all derivations for BSL (black
squares) and REC (open triangle; mean ± standard error of mean).
Simple effect analyses showed significant interactions between sleep
condition and derivations (Prefrontal: F(1,59) = 3.9, p = 0.54; Frontal:
F(1,59) = 0.41, p = 0.53; Central: F(1,59) = 6.65, p = 0.01; Parietal:
F(1,59) = 4.46, p = 0.04; and Occipital: F(1,59) = 2.66, p = 0.11). Stars
indicate significant differences between BSL and REC in both age groups
(ES: *: [0.7–0.10]).

between age groups and sleep conditions (F(1,59) = 0.06 p = 0.81)
were found for spindle amplitude. For spindle duration, a
main effect of age groups was found (F(1,59) = 11.5, p = 0.001)
with no significant interaction between age groups and sleep
conditions (F(1,59) = 0.49, p = 0.49). Hence, middle-aged
subjects showed shorter spindle duration compared to young
subjects.

A significant interaction between age groups, sleep conditions
and derivations was found for spindle frequency (F(4,236) = 4.72,
p = 0.02; see Figure 4 for contrast analyses). In comparison to
BSL sleep, an increase of spindle frequency was observed during
REC sleep for young subjects in all derivations, whereas in the
middle-aged subjects, spindle frequency was higher only in the
prefrontal area.

Spindles Characteristics and Sleep Efficiency
No significant correlations were found between spindle density,
frequency and amplitude at BSL and change in sleep efficiency
from BSL to REC sleep (absolute change and percent of
change) for young subjects. Only a fewmoderate counterintuitive
negative correlations were found between spindle density in

FIGURE 4 | Spindle frequency is shown in all derivations for young
(black dots) and middle-aged (open dots/circle) subjects
(mean ± standard error of mean). Simple effects analyses showed
significant interactions between age condition and sleep condition for each
derivation except in the prefrontal area (Frontal: F(1,59) = 4.0, p = 0.05; Central:
F(1,59) = 9.73, p = 0.003; Parietal: F(1,59) = 12.44, p = 0.001; and Occipital:
F(1,59) = 5.74, p = 0.02). For young subjects: ES = [0.13–0.32]; for all
derivations and for older subjects: ES = 0.20 for Fp1. Stars indicate significant
differences between BSL and REC for young subjects (*: p < 0.0001).

the prefrontal area and the decrease of sleep efficiency in
the middle-aged subjects (absolute change and % of change:
r = −0.46, p < 0.01) and in both age groups combined
(absolute change: r = −0.37, p < 0.01; % of change: r = −0.36,
p < 0.01).

Discussion

Young andmiddle-aged adults showed comparable differences in
spindle density, spindle amplitude and spindle duration during
REC sleep compared to BSL sleep. Only spindle frequency
showed a differential effect of age between BSL and REC
sleep. Although our results illustrated a marked reduction of
sleep efficiency during the day associated with aging, spindle
characteristics were not linked with the ability to maintain REC
sleep.

In our study, during REC sleep compared to BSL sleep,
homeostatic sleep propensity was higher (due to sleep loss)
and circadian wake propensity increased (due to daytime
sleep). Studies evaluating the circadian modulation of sleep
spindles have reported higher spindle frequency during daytime
sleep as compared to nighttime (Wei et al., 1999; Knoblauch
et al., 2003b, 2005). On the other hand, studies showed
a reduction in spindle frequency under higher compared
to lower sleep homeostatic pressure in young participants
(Knoblauch et al., 2003a). During REC sleep, young subjects
showed faster spindle frequency compared to BSL sleep over
all derivations. This result suggests that in young subjects,
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the enhancement of spindles frequency by the circadian
modulation during daytime overrides the homeostatic pressure
for a reduction in spindle frequency induced by the 25-
h sleep deprivation. In the middle-aged participants, faster
spindle frequency during REC sleep was observed only in
the prefrontal area. This observation supports a previous
study that showed an age-related reduction in time-of-day
modulation of spindle frequency using a 40-h multiple-nap
paradigm under constant-routine conditions (Knoblauch et al.,
2005).

In the present study, spindle density was lower in REC sleep
compared to BSL in all derivations, but this decrease was more
prominent in central and frontal areas. These results confirm a
previous study, which showed lower spindle density, especially
in the frontal derivation, after a 40-h sleep deprivation in young
subjects (Knoblauch et al., 2003a). Our results are also congruent
with studies showing that spindle incidence and density are lower
during daytime compared to night-time sleep (Wei et al., 1999;
Knoblauch et al., 2005). Compared to BSL sleep, women showed
a stronger decrease in spindle density in the central derivation
than men. Higher sigma power and spindle density in women
compared to men has been reported in previous studies (Gaillard
and Blois, 1981; Carrier et al., 2001; Huupponen et al., 2002;
Lafortune et al., 2014). However, no studies have yet evaluated
whether homeostatic and circadianmodulations of sleep spindles
differ between men and women.

Compared to BSL sleep, spindle amplitude was higher during
REC sleep for the prefrontal area but lower for central, parietal
and occipital areas. These results do not support one previous
study, which reported higher spindle amplitude in central,
parietal and occipital areas during nocturnal sleep after a 40-h
sleep deprivation (Knoblauch et al., 2003a). However, circadian
studies showed lower spindle amplitude when sleep is initiated
at a circadian time corresponding to daytime (Wei et al., 1999;
Knoblauch et al., 2005). Hence, circadian modulation of spindle

amplitude probably explains the decrease in spindle amplitude
in central, parietal and occipital derivations during daytime REC
sleep in our study.

Finally, compared to REC sleep, spindles lasted longer only in
the central and parietal areas in BSL sleep. No change in spindle
duration was previously reported in nocturnal recovery sleep
after a 40-h sleep deprivation (Knoblauch et al., 2003a). Studies
evaluating the circadian modulation of spindle duration found
conflicting results. One forced desynchrony study reported
shorter spindle duration in the central derivation when sleep was
initiated at a circadian time corresponding to daytime compared
to night-time (Wei et al., 1999), whereas a 40-h nap study
showed longer spindle duration in the frontal derivation but
shorter duration in the parietal derivation when naps occurred
during daytime compared to night-time (Knoblauch et al.,
2005).

Middle-aged subjects showed lower sleep efficiency
when compared to younger subjects. No significant
positive relationship was found between sleep spindles
characteristics during the BSL night and change in sleep
efficiency between BSL and REC. Our study suggests that
individual spindle characteristics do not predict the ability
to override the circadian waking signal after sleep loss.
Similarly, Knoblauch et al. (2005) did not observe any
relationship between the day-night difference in spindle
frequency and the day-night difference in wake time. Our
results are also in line with our previous results showing
no relationship between SW and change in sleep efficiency
between BSL and REC sleep (Lafortune et al., 2012). Taken
together, these results indicate that individual characteristics
in NREM sleep oscillations do not predict the increased
wakefulness during daytime recovery sleep. Further studies
should aim at understanding the mechanisms that explain
the greater sensitivity in older individuals to circadian
challenges.
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