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Ion channels are the second largest drug target family. Ion channel dysfunction may lead to a number of diseases such as Alzheimer’s disease, epilepsy, cephalagra, and type II diabetes. In the research work for predicting ion channel–drug, computational approaches are effective and efficient compared with the costly, labor-intensive, and time-consuming experimental methods. Most of the existing methods can only be used to deal with the ion channels of knowing 3D structures; however, the 3D structures of most ion channels are still unknown. Many predictors based on protein sequence were developed to address the challenge, while most of their results need to be improved, or predicting web servers are missing. In this paper, a sequence-based classifier, called “iCDI-W2vCom,” was developed to identify the interactions between ion channels and drugs. In the predictor, the drug compound was formulated by SMILES-word2vec, FP2-word2vec, SMILES-node2vec, and ECFPs via a 1184D vector, ion channel was represented by the word2vec via a 64D vector, and the prediction engine was operated by the LightGBM classifier. The accuracy and AUC achieved by iCDI-W2vCom via the fivefold cross validation were 91.95% and 0.9703, which outperformed other existing predictors in this area. A user-friendly web server for iCDI-W2vCom was established at http://www.jci-bioinfo.cn/icdiw2v. The proposed method may also be a potential method for predicting target–drug interaction.

Keywords: ion channels, word2vec, node2vec, data augmentation, LightGBM


INTRODUCTION

Ion channels are pore-forming membrane proteins that mediate the transport of ions in all living cells (Green, 1999) by controlling cell signaling during the change of the cellular physiology in organs (Gabashvili et al., 2007). For example, ion channels regulate the membrane potential by mediating the permeation of specific ion species through their transmembrane pores (Sumino et al., 2019). On other hand, dysfunction of ion channels may lead to over 55 different channelopathies (Qiang et al., 2018), such as epilepsy, arrhythmia, and type II diabetes (Tinaquero et al., 2020). It is also believed that the majority of patients with thyroid diseases and cardiac arrhythmia are ion channel blockers (Roepke et al., 2009) such that ion channels become important therapeutic targets.

As an essential step of drug discovery procedure, the identification of ion channel–drug interaction has lately become a hot topic issue since it involves costly, time-consuming, and challenging work during the development of new medicine (Knowles and Gromo, 2003). It has been reported that ionotropic glutamate receptor subfamily core is formed by two transmembrane helices and an intracellular reentrant pore helix (Amin et al., 2018); voltage-gated ion channels, including potassium channels and calcium channels, consist of six transmembrane helices (Kaufmann et al., 2019). Therefore, ion channels may be analyzed by using conventional methods of protein, and identification of ion channel–drug interactions inherently is a protein–drug interaction problem. There are many unpaired small molecule compounds for finding potentially new medications; many state-of-the-art computational methods have been developed to discover new drugs in the past few years (Xiao et al., 2013; Chen et al., 2018; Wang et al., 2020). Yamanishi et al. (2008) used statistical approach to predict the interaction between drugs and four targets on the base of the similarity. Wang et al. (2020) proposed a sequence-based method for identifying the protein–drug interaction. Since ion channel–drug interaction involves two substances, the methods that combine the biological information of ion channels and the chemical information of drugs are often used, and proper representation of proteins and drugs is essential to identify ion channel–drug with high efficiency.

For the feature extraction from protein, there are many classic algorithms applied to extract the feature from amino acid sequence, such as one hot encoding (Wang et al., 2019), composition of k-spaced amino acid pairs (CKSAAP; Chen et al., 2006), amino acid composition (AAC; Reczko and Bohr, 1994), and pseudo amino acid composition (PseAAC; Chou, 2005). The technology of natural language processing (NLP) was used to deal with secondary-structure prediction and subcellular localization (Elnaggar et al., 2020) in proteomics area. Furthermore, the deep learning techniques have been used to extract sequence features for protein–drug interaction. In order to get a protein feature (Wang et al., 2020), protein sequences were encoded using one hot encoding, and the information is then fed into a deep learning model, such as recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU; Shen et al., 2020).

For the processing of drug molecules, a variety of descriptors are used to represent drugs to fill the gap in analyzing the 3D structure for drugs, such as two-dimensional molecule graph (Bemis and Kuntz, 1992), MOL file (Qiu et al., 2020), simplified molecular-input line-entry system (SMILES; Jaeger et al., 2017), fingerprint and global descriptions of molecular by biophysical and chemical properties including the molecular weight (MW) and the partition coefficient for lipophilicity (Clark et al., 2019; Daina and Zoete, 2019). In these descriptors, drug molecules are usually represented with SMILES or Morgan fingerprint (Morgan FPs). The representation of SMILES string involves four overall steps: graph mol structure normalization, canonical labeling, tree traversal, and SMILES generation (O’Boyle, 2012), which is usually the start step for many computational methods such as recurrent neural networks (RNNs; Karimi et al., 2019), convolutional neural networks (CNNs; Huang et al., 2020), and graph neural networks (GNN; Tsubaki et al., 2019). Take extended connectivity fingerprints (ECFPs) as an example for Morgan FPs; all substructures around all heavy atoms of a molecule within a defined radius are generated and assigned to a unique identifier (called Morgan identifier), which would be compressed into a shorter fixed-length string (Zhou et al., 2020). The drug’s MOL file or SMILES can be acquired from http://www.kegg.jp/kegg/ or https://www.ebi.ac.uk/chembl/, and the software called OpenBabel1 could be used to convert the MOL file or SMILES into molecular fingerprint files in multiple formats: FP2, FP3, FP4, and MACSS.

Some novel encoding techniques were provided for proteins and drugs based on word2vec algorithm. As word2vec could map a class X of objects into a latent vector space where the geometric relationship is characterized by the semantic relationship between the objects (Grohe, 2020), it has been adapted to classify the protein sequences of protein families and predict the localization of proteins and the compound properties of drugs (Jaeger et al., 2017; Yang et al., 2018). Jaeger et al. (2018) proposed that the word2vec may identify the interaction between drugs and target proteins based on the amino acid sequences of proteins and the Morgan fingerprints of drugs. Zhang et al. (2019) further proposed a new predictor by using the amino acid sequences of proteins and the SMILES strings of drugs.

The study of ion channel--drug interaction networks is an important topic for drug development, while the computational prediction accuracies cannot meet the practical needs. Although deep learning methods are widely used in protein-target prediction, it is still in the exploratory stage for identifying ion channel--drug interaction. In addition, many research focused on constructing a complex neural network to extract interaction information, but for a method to encode a sequence, which is a crucial point of protein and drug representation, it gets rare attention. Thus, this paper was initiated in an attempt to develop a new powerful predictor based on the sequences of ion channels and the SMILES of drugs. There are four innovative characteristics of this work: (1) To get a better representation of protein, amino acid sequences were divided into words (k-grams) and encoded with the AAindex, which would be fed into word2vec to get distributed representations vectors of words. (2) To find the best way for the representation, two major descriptions, SMILES (SMILES_word2vec), and FP2 (FP2_word2vec), were separately tested for comparison on the basis of several combined features. (3) To augment the training dataset and get more information about the linking between different functional groups, the RDKit2, an open source chemistry informatics and machine learning toolkit, was used to generate different SMILES strings for the same molecule, and finally note2vec was applied to generate drug vectors (SMILES_node2vec). (4) To make full use of the drug and protein features mentioned above, the feature combination was performed deeply, and the prediction results improved significantly.



MATERIALS AND METHODS


Benchmark Dataset

As more and more interactive pieces of information are in the database, such as DrugBank, KEGG, STITCH, ChEMBL, and TTD, many deep research studies have been carried out in drug discovery. In this work, the identification of ion channel–drug interaction is defined as a supervised prediction task in which a pair of counterparts interact with each other in the drug–target networks. The established KEGG database is utilized to define the pair of counterparts as it has an amount of interaction information of drugs and drug targets.

In this work, the benchmark dataset S is defined by:

[image: image]

where S+ is the set of interactive ion channel–drug pairs, and S– is the set of non-interactive ion channel–drug pairs, and the symbol ∪ represents the union in the set theory. The positive subset S+ contains 1,476 ion channel–drug pairs collected by Yamanishi et al. (2008).

To build the negative dataset, the approach was performed with the following steps: (i) Each pair in subset S+ was separated (drug ID and ion channel ID) into a single ion channel and drug. (ii) Each of the single ion channels was re-coupled with each of the single drug; therefore, the drug and ion channel are put into synthesized pairs in such a way. Those pairs that were in S+ were removed, and it was made sure that none of the pairs that were in S+ appeared in S–. (iii) The synthesized pairs were randomly picked until the number of selected pairs was the same as the number of pairs in S+. The dataset S– contains 1,476 non-interactive ion channel–drug pairs.

An independent validation test is applied to evaluate the developed predictor for avoiding the overfitting of data from the reference (Yamanishi et al., 2008). The validation dataset, denoted as Check808, contains 404 interactive pairs and 404 non-interactive pairs. These pairs consist of the ion channels in S and new drug targets taken from the KEGG database. Any pairs have to be removed from the validation dataset if they appeared in the benchmark dataset.

Nuclear receptors (NRs) are another frequent target for drug development, but drug–NR pairs are more difficult in the protein–drug predict task. The dataset of NRs is used to verify the feature extraction method and the robustness of iCDI-W2vCom. The NR dataset contains a positive subset of 86 interactive drug–NR pairs, taken from the reference (Yamanishi et al., 2008) and a negative subset of 86 non-interactive pairs. The non-interactive pairs are different from the interactive pairs.



Measurement

In the experiment, the performances of the predictor were evaluated with the following four metrics: accuracy (Acc), sensitivity (Sn), precision (Prec), and Matthews correlation coefficient (MCC; Jiao and Du, 2016). They were applied to evaluate the models and are shown in formula (2).

[image: image]



Representation of Ion Channel

The ion channel with the sequence length l is formulated in the following format:

[image: image]

where R1 represents the first residue in ion channel sequence, R2 represents the second, …, and Rl represents the l-th one. How can we extract sequence information to represent an ion channel? We should translate a protein sequence into a digital vector that can well represent an ion channel.

In the article, three amino acids are divided into one word to construct the wordbook. As shown in the following example, a sequence of nine amino acids can be divided into three sets of non-overlapping 3-gram. Then G would be grouped as:

[image: image]

where G = G1 G2 …Gj…GL GL+1, L = [l/3], L is a round down of l/3, and GL+1 may be Ø or only contains one or two residues, which are due to the remainder of l/3.

The AAindex database indexes are the biophysical and chemical properties of amino acids and pairs of amino acids3 (Zhou et al., 2020). In this paper, five groups of AAindex were selected for the experiment, which are the same as the reference (Wang et al., 2020), and the corresponding values of amino acids are shown in Table 1. The AAindex1 physicochemical property stands for “hydropathy index,” AAindex2 for “molecular weight,” AAindex3 for “isoelectric point (PI),” AAindex4 for “pK-N,” and AAindex5 for “pK-C.”


TABLE 1. Five physicochemical property codes for each of the 20 native amino acids.

[image: Table 1]
With the AAindex values, the ion channel sequence G would be encoded into a vector shown as follows:

[image: image]

where ρ(R) is the AAindex value of reside R, and ||Gj|| is the number of residues in group Gj, j = 1,2,…,L(L+1 when the remainder of l/3 is not equal to zero). Therefore, a new corpus of words is constructed through AAindex indices. The corpus may reduce the number of words made of amino acids string. For example, a word made of AAindex indices may take the place of a triplet composed of amino acids D, E, and F with a total of nine words. Such an expression may also combine triplicates with similar properties together. In particular, the hydrophilic coefficient is used to code the triplicates; the words “EFG” and “DFG” will be combined into the same word.

Although word2vec is an unsupervised method, here, an auxiliary prediction task was defined to train the word representation model with one of the following two approaches: (1) continuous bag-of-words (CBOW), which may predict a word from the context words, and (2) Skip-gram, which predicted the context based on a word. In CBOW, the order of words in the context is not important due to the bag-of-words assumption, while the adjacent words are assigned with higher weights in Skip-gram. We mainly used the Skip-gram model to train the word2vec model.

The classical Skip-gram model consists of an input layer, projection layer, and output layer. The model learns information from corpus and stores the derived knowledge in weights θ. The positive samples of Skip-gram model are words gI and their contexts C(gI). Contexts of a word gI, which was derived from a window of size k around the word: C(g) = gi–k,…,gi–1,gi+1,…,gi+k, where the window size k is a parameter for word2vec; the negative samples are generated by relatively simple method called negative sampling.

The hyperparameters of Skip-gram were set as follows: the embedding dimension is d = 64, the context window size is k = 4, and the number of negative examples is k = 8. After training for 30 epochs, we get a final wordbook. The process of constructing the original triplicate workbooks (Wordbooks-Orig) is shown in Figure 1A, as a result, each word would be represented with a 64-dimensional vector, and each word and its corresponding vector are storied in “Wordbooks-Orig.” The process of constructing a Wordbooks-AAindex is shown in Figure 1B. Finally, each word encoded with AAindex indices is represented with a 64-dimensional vector; the words and their vectors are storied in “Wordbooks-AAindex.”


[image: image]

FIGURE 1. The processes of constructed (A) Wordbooks-Orig and (B) Wordbooks-AAindex.


Figure 2 illustrates the process of generating protein representation through Orig_word2vec and AAindex_word2vec, respectively. In Figure 2A, amino acid sequences were divided into 3-gram, and then looked up the “Wordbooks-Orig” to obtain a vector for every word. The representation for a protein is finally obtained by averaging every word over the length dimension of the protein. In Figure 2B, every word was encoded in AAindex_word2vec with AAindex indices, which may help generate more efficient vectors of words. For example, when to handle a ion channel sequence through AAindex_word2vec, we divide it into 3-gram and encode every word with AAindex indices, then the “Wordbooks-AAindex” were looked up to obtain a vector for every word. The representation for a protein is finally obtained by averaging every word over the length dimension of the protein.


[image: image]

FIGURE 2. The processes of generating protein representation through (A) Orig_word2vec and (B) AAindex_word2vec.


In the word2vec model, the features learned at each layer are not visual. To explore what information word vectors imply, t-distributed stochastic neighbor embedding (t-SNE; van der Maaten and Hinton, 2008), a non-linear dimensionality reduction algorithm, was used to projected the vectors of ion channels from 64-dimensional to 3D space. As shown in Figure 3, the coordinates of points are the values after dimensionality reduction, and the color of points are termed G_X, G_Y, and G_Z, respectively, which are three coefficients derived from the second-order gray model (Xiao et al., 2008). In Figures 3A–C, the coordinates of points are the values after dimensionality reduction, and the color is three coefficients derived from the second-order gray model. In Figures 3D–F, the coordinates of points are the values after dimensionality reduction, and the color is the PI, MW, and extinction coefficient of different segments (ECDF). We can find that word vectors can learn implicitly the three coefficients derived from the second-order gray model (G_X, G_Y, and G_Z), PI, MW, and ECDF.


[image: image]

FIGURE 3. Projected the AAindex2_word2vec from 64-dimensional to 3D space. (A–C) The coordinates of points are the values after dimensionality reduction, and the color is three coefficients derived from the second order gray model. (D–F) The coordinates of points are the values after dimensionality reduction, and the color is isoelectric point(PI), molecular weight (MW), extinction coefficient of different segments (ECDF).




Representation of Drug

Due to the complex three-dimensional structure and unique properties of drugs, the characterization of drug performance stored in the computer often lose a lot of information. Fortunately, there are many approaches to represent drugs with different characteristics, which involve molecular diagram, Morgan FPs, SMILES, and so on.

(1) Representing drug with word2vec

The word2vec has been used to generate vectors via SMILES or FP2. There is still a need to know which one is the best choice for this issue. As shown in Figure 4A, the SMILES string can be divided into n-gram. Here, the sequence of the drug was divided into non-overlapping 3-gram, and word2vec algorithm was selected to generate the word vector. In addition, the process to construct FP2_word2vec is shown in Figure 4B.
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FIGURE 4. The processes of generating (A) SMILES_word2vec and (B) FP2_word2vec.


(2) Representing drug with node2vec

The node2vec (Grover and Leskovec, 2016) may also represent the drug feature, and it captures the information between nodes in networks (Grohe, 2020; Shen et al., 2021). Here, the node2vec is applied to obtain node features for a complementary characteristic of the drug.

Simplified molecular-input line-entry system strings are divided into functional groups taken as the nodes of the network. The functional group comprises multiple atoms or atomic groups, and its physicochemical properties are fundamental in the pharmacodynamic phase of the mechanisms of action of many drugs (Silva et al., 2019). In the SMILES, the SMILES strings are marked: no mark for single key, ‘‘ = ’’ for double key, ‘‘#’’ for triple key, and ‘‘(‘‘ or ‘’)’’ for branch chain4. The SMILES of the drug molecules is separated by the special marks, and every part is taken as a node.

The node2vec regards a random path generated by a random walk as a set of words. A data augmentation approach is chosen to generate more paths and get more information between nodes in the networks. As shown in Figure 5, RDKit was used to generate different SMILES strings for the same molecule. These SMILES strings are all valid structures. RDKit generates different SMILES strings by rotating the molecular graph to generate different SMILES strings whose starting atom and the direction of graph enumeration are randomly selected. In the procedure of training node2vec, data augmentation approach can better obtain the connection relation between functional groups and get a better node vector (Tetko et al., 2020).
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FIGURE 5. Generation of different SMILES strings for the same molecule.


The process of generating SMILES_node2vec is shown in Figure 6. In Figure 6A, the SMILES strings are divided into function groups, and the Nodebooks-Function Group is generated by the node2vec model. In Figure 6B, SMILES strings were first divided into function groups, and then the “Nodebooks-Function Group” was looked up to obtain a vector for every word. The representation for a drug is finally obtained by averaging every word over the length dimension of the drug.
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FIGURE 6. The processes of (A) constructing Wordbooks-Orig and (B) generating SMILES_node2vec.


(3) Representing drug with ECFPs

In the drug database, the drugs in SMILES format (Weininger, 1988) may be further fed into RDKit, to extract their ECFPs (Zhou et al., 2020), such that a drug can be represented by a 1,024-D binary vector.

The multiple ways of representing a molecule and the different levels of uncertainty regarding those representations have been a central part of this expertise. In this paper, we try to improve the accuracy of ion channel–drug interaction by feature combination. In Rayhan et al. (2019), it is shown that an ensemble boosting method performs much better than other methods in DTI prediction. The feature subset of drugs includes SMILES-word2vec (Feature SMILES), FP2-word2vec (Feature FP2), SMILES-node2vec (Feature Node), and ECFP (Feature ECFP). As shown in Table 2, the subsets of the feature mentioned above are tested with the LightGBM classifier via fivefold cross-validation, and the feature dimension of the six learners are shown in the last column of the table.


TABLE 2. Profile of the six learners.
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Prediction Engine

Once the protein and drug were represented by vectors, some machine learning models would be utilized for the prediction process. We compared the performance of different algorithms involved in LightGBM (LGB; Ke et al., 2017), gradient boosting decision tree (GBDT; Friedman, 2000), random forest (RF; Liaw and Wiener, 2002), and deep neural networks (DNNs) on the ion channel dataset (Pedregosa et al., 2011). All these models were implemented in Python 3 (Python ≥3.6) environment with LightGBM package (Zhang et al., 2017) and Scikit-learn library (Pedregosa et al., 2011).



RESULTS AND DISCUSSION

The original triplicates workbooks (Orig_word2vec) were used for the first experiment, and five AAindex_word2vec were used for comparison. Results are listed in Table 3. It was found that the AAindex_word2vec for the proteins improved the performance of the classifier greatly. As listed in the tables, bold values mean that they are the best scores compared with other methods.


TABLE 3. Performance of different protein representations on the ion channel dataset.
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Comparing the experimental results of original drug expression PF2, the SMILES string as input, and using word2vec to extract features in other articles, this work combined the features of drugs in different descriptions. We can find that the combination of SMILES_word2vec (Feature SMILES), SMILES_node2vec (Feature node), FP2_word2vec (Feature FP2), and ECFP (Feature ECFP) has achieved the optimal effect. Table 4 shows the result comparison of fivefold cross-validation. The descriptors of molecules mentioned above are ambiguous or missing some information, but those descriptors are highly complementary, and experimental findings show that drug feature combination is useful.


TABLE 4. Performances of different drug descriptions on the ion channel dataset.
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The AUC curves of LGB, GBDT, RF, and DNN on the ion channel dataset are shown in Figure 7. The LightGBM approach performs quite high AUCs in the test such that it is selected as the predictor. The parameter values of LightGBM model are num_leaves of 48, max_depth of 9, learning_rate of 0.03, n_estimators of 600, min_child_samples of 3, and other parameters are set with their default values. The flowchart of the proposed iCDI-W2vCom model is shown in Figure 8. The model inputs the SMILES strings of accessible drugs and the amino acid sequences of ion channels. The feature subsets are fed into the LightGBM predictor for a final prediction with a fivefold cross-validation method.
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FIGURE 7. ROCs of different models on the channel–drug interaction dataset.
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FIGURE 8. Flowchart of the iCDI-W2vCom model.


Predictor was optimized by using AAindex1_word2vec for ion channel and feature combination for drug. Table 5 shows the results of the proposed model on the ion channel–drug interaction dataset via fivefold cross-validation. The ICDI-W2vCom based on both the word2vec model and node2vec model has an average AUC of 0.9703, Acc of 91.95%, precision of 91.18%, sensitivity of 92.95%, MCC of 0.8402 vs. other newly publish methods of 0.8900, 89.10%, 88.30%, 91.20%, 0.8060, respectively. Thus, our performance has been improved, surpassing other existing classifiers as shown in Table 6.


TABLE 5. Results of the proposed model in channel–drug interaction dataset.
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TABLE 6. Performances of different methods on channel–drug interaction dataset.
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Using the ion channel–drug interaction benchmark datasets as training dataset and Check808 as an independent test set, different algorithms were tested, and the results are listed in Table 7.


TABLE 7. Performance comparisons on Check808.

[image: Table 7]
According to the results, the features we generate can very well characterize the channel–drug interactions, and the default classifier LGB has a better generation ability by comparison with RF, DNN, and GBDT.

The proposed method achieved good performance in the NR dataset. The results are listed in Table 8. Compared with the previously published articles (Wang et al., 2018; Wang et al., 2020), the ICDI-W2vCom has great AUC, Acc, Sen, and MCC values such that it gets good robustness.


TABLE 8. Performances of different methods on NR–drug interaction datasets.
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CONCLUSION

In the research, the proposed model based on AAindex encoding sequences and word2vec algorithm significantly improved the learning ability of predictors. This inspires us that, in small datasets, coding protein words according to their physical and chemical properties may reduce the number of words in the lexicon, which trained the word2vec model faster and generate a high quality of word. By using conventional protein processing methods and knowledge, the parameters of deep learning could be reduced, and the computation would be simplified. Furthermore, by using the t-SNE algorithm to project the vectors of ion channels from 64-dimensional to 3D space vectors, vectors can learn implicitly features represented by other protein-encoding methods (for example, the gray model) and physicochemical properties. This work suggests that word2vec can also be accepted in ML as many previous works do.

The multiple ways of representing a molecule and the different levels of uncertainty regarding those representations have been a central part of this expertise. Therefore, we try to fuse drug information of different descriptions to represent drugs comprehensively. In this paper, the expression of drugs was enhanced through the combination of different features, and the performance of the classifier was improved greatly.
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3
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Despite experimental data linking HIF-1α dysfunction to inflammatory airway conditions, the effect of single nucleotide polymorphisms within the HIF1A gene on these conditions remains poorly understood. In the current study, we complete a phenotype wide association study to assess the link between SNPs with known disease associations and respiratory phenotypes. We report two SNPs of the HIF1A gene, the intronic rs79865957 and the missense rs41508050. In these positions the A and the T allele are significantly associated with allergic rhinitis and acute bronchitis and bronchiolitis, respectively. These findings further support the role of HIF-1α in inflammatory pulmonary conditions and may serve as a basis to refine our understanding of other HIF-1α associated phenotypes.
Keywords: phenotype, hypoxia inducible factor, inflammation, airway, HIF1A, rhinitis, bronchiolitis, SNP
INTRODUCTION
Hypoxia inducible factor (HIF) is central in the mammalian response to hypoxia. (Majmundar et al., 2010) HIF-1 is a nuclear factor that consists of a Hypoxia inducible factor 1α (HIF-1α) and a Hypoxia inducible factor 1β (HIF-1β) subunit. (Wang and Semenza, 1993; Gladek et al., 2017) While HIF-1β is stable regardless of the oxygen concentration, HIF-1α is rapidly degraded under normoxic conditions. (Yu et al., 1998; Gladek et al., 2017) Under hypoxic conditions however, HIF-1α is stabilized, leading to formation of HIF-1. (Ke and Costa, 2006; Slemc and Kunej, 2016) HIF-1 then in turn acts as a transcription factor, affecting over 98 target genes associated with up to 20 biological pathways. (Ke and Costa, 2006; Slemc and Kunej, 2016) Given this central role, it comes as no surprise that variations within the highly conserved HIF1A gene have been associated with a wide array of pathologic conditions. (Majmundar et al., 2010) Apart from playing an important role in normal lung development, HIFs have been shown to play a central role in the development of multiple pulmonary conditions, including pulmonary hypertension, Chronic obstructive pulmonary disease (COPD) and lung cancer angiogenesis. (Shimoda and Semenza, 2011) Despite this, within pulmonology, to date, variations within the HIF1A gene have only been associated with COPD and lung cancer. (Chan et al., 2017; Gladek et al., 2017; Paradowska-Gorycka et al., 2018; Wang et al., 2018; Hoang et al., 2019; Huang et al., 2020) Our current study sets out to examine the association between single nucleotide polymorphisms (SNPs) in the HIF1A gene and respiratory phenotypes. By starting with SNPs of interest, the Phenotype Wide Association Study (PheWAS) design flips the direction of inference commonly used in genome-wide association studies (GWAS). (Bush et al., 2016) To do so, it integrates data captured from patient’s electronic health records (EHRs) with their genetic information. The major benefit of this approach is that it allows us to focus our efforts specifically on SNPs with known disease associations within this master regulator gene, improving the likelihood that found associations are based on molecular mechanisms that are relevant to the disease phenotypes uncovered.
METHODS
Single Nucleotide Polymorphisms Selection
SNPs were selected from enriched literature review, including recently completed review by Gladek et al. (Gladek et al., 2017) All studies identified with keywords “HIF1a” and “variant” published after their literature review was completed, were reviewed. SNPs significantly associated with human disease were included in the current study (Table 1).
TABLE 1 | Minor allele frequency for all SNPs included in the current study, unless otherwise indicated the data was pulled from the genome aggregation database (Karczewski et al., 2020).
[image: Table 1]Population
Subjects were drawn from The Children’s Hospital of Philadelphia (CHOP) biorepository at the Center for Applied Genomics (CAG). The pediatric samples included in this biorepository are linked to subjects’ EMRs. All subjects have consented to both genomic analysis and EMR mining (Gottesman et al., 2013).
Genotype Imputation
Genotype data were generated by the Center for Applied Genomics on patients recruited from CHOP and were acquired on four major genotyping arrays (HumanHapMap550, 610Q, OMNI2.5M and the GSA array). Where possible, data from similar arrays were merged. Data were filtered for genotype missingness (geno 0.1), individual missingness (0.02), and minor allele frequency (MAF) (0.01) using PLINK v1.9. (Chang et al., 2015) Data were imputed using the TOPMed v2 reference panel on the TOPMed Imputation Server. (Fuchsberger et al., 2015; Das et al., 2016; Taliun et al., 2021) Imputed genotypes were filtered on combinations of Rsq (imputation quality metric) and MAF [(MAF ≥ 0.05 and Rsq > 0.3) OR (MAF < 0.05 and Rsq > 0.5)] using BCFTools v1.10.2, and only SNPs that remained in 85% of samples were retained for use in PheWAS analysis (Danecek et al., 2021).
Ancestry Identification
Subjects in the PheWAS cohort were separated by ancestry based on the results of principal component analysis (PCA). PCA was performed using flashpca on approximately 2.4 million imputed SNPs with MAF >0.01 that had been pruned for linkage disequilibrium using PLINK v1.9 (Abraham and Inouye, 2014; Chang et al., 2015) The first three principle components were plotted, and ancestry designation was performed by comparison to the reference genotypes from the HapMap consortium. (Altshuler et al., 2010) The complete dataset contained 71,600 individuals: 34,410 Caucasians, 31,507 African Americans, 2644 Hispanics, and 3039 East Asians.
PheWAS
A PheWAS was conducting using the published PheWAS R package from Carroll et al. (v0.99.5-5). (Carroll et al., 2014) International Classification of Diseases 9 (ICD-9) codes were obtained from an anonymized extraction of the Children’s Hospital of Philadelphia diagnosis database that contained subjects that had been recruited into the patient collection of the Center for Applied Genomics. Counts of the occurrence of each ICD-9 code for each subject were generated, and the resulting table was converted into the PheWAS phenotype table by a function in the R package. Subjects were included in the case group for each PheWAS phenotype if they possessed two or more occurrences of any of the ICD-9 codes that composed the phenotype in question. Subjects were listed as controls for the PheWAS phenotype if they lacked the case-defining ICD-9 codes, as well as ICD-9 codes corresponding to closely related phenotypes. Conversion from ICD-9 codes to PheWAS phenotypes was performed using the default translation table included in the R package. Phenotypes were analyzed in the PheWAS if they were represented by 20 or more cases in the cohort. The subject’s sex and age were included as covariates in the analysis, as were the 10 flashpca generated principle components and a variable representing the group in which genotyping array had been imputed. Genotypes were extracted from the imputed data as allele dose information to preserve some information regarding genotype probability, and the allele doses were used as the genotype inputs to the PheWAS. The PheWAS analysis was performed individually on each PCA-defined ancestry, and then a meta-analysis was performed combining all four ancestries using the PheWAS-meta function provided in the PheWAS R package. For the association test, a logistic regression model, adjusted for age and sex was used. For defining significance in this study, we set a FDR threshold of 0.05. As a total of 2146 traits were analyzed, the over-conservative significance threshold based on Bonferroni correction was p = 2.3 × 10–5.
In Silico Validation
SNP’s significantly associated with respiratory disease were validated in an independent cohort by querying the publicly available Open Target Genetics database. (Ghoussaini et al., 2021) The Ensembl VEP was then used to assess the likely effect of these variants. (McLaren et al., 2016) To assess chromatin state and regulatory potential associated with the locations of the SNPs, other publicly available databases including Haploreg and Encode were queried.
RESULTS
We found 42 SNPs that have been previously associated with different medical conditions, including various cancers, cardiovascular diseases, metabolic disorders and (auto) immune diseases. This includes the 34 SNPs identified by Gladek et al. (Gladek et al., 2017) In addition, eight more SNPs were identified in studies published after their literature review was completed (Chan et al., 2017; Paradowska-Gorycka et al., 2018; Wang et al., 2018; Hoang et al., 2019; Huang et al., 2020).
Of the 42 SNPs included in our PheWAS, nine were significantly associated with at least one disorder. Table 2 summarizes the data for all the SNP-phenotype associations passing False Discovery Rate (FDR) or Bonferroni test. Most of the detected associations were from cohorts with less than 500 cases. However, the A allele of SNP rs79865957 was found to be significantly associated with allergic rhinitis (Figure 1) in a European cohort of 4,348 cases and 18,794 controls with an allele frequency of 0.08%. The OR was 2.86, Beta 1.05, SE 0.25 and p-value 3.48E−05. The second, rs41508050, the T allele was significantly associated with acute bronchitis and bronchiolitis (Figure 2) in an African American cohort of 2,234 cases and 21,463 controls with an allele frequency of 0.18%. The OR was 0.32, Beta 1.21, SE 3.36 and p-value 0.0001.
TABLE 2 | SNP-phenotype associations passing False Discovery Rate (FDR) or Bonferroni test.
[image: Table 2][image: Figure 1]FIGURE 1 | PheWAS results for rs79865957.
[image: Figure 2]FIGURE 2 | PheWAS results for rs41508050.
Using the Open Target Genetics database rs79865957, the A allele was found to have been previously positively associated with both chronic airway obstruction (OR 1.94, p-value 0.0019, Beta 0.663) and asthma (OR 1.34, p-value 0.033, Beta 0.292). It has also been negatively associated with paternal chronic bronchitis/emphysema (OR 0.75, p-value 0.0069, Beta −0.293). Using Ensemble Variable Effect Predictor (VEP), it was found to be a likely intron variant for HIF1Α. For rs41508050, the T allele was previously negatively correlated with “Bring up phlegm/sputum/mucus on most days” (OR 0.72, p-value 0.0026, Beta −0.328) and is a missense variant for HIF1Α.
The publicly available HaploReg tool was queried for both SNPs. SNP rs79865957 has four SNPs in linkage disequilibrium (r2 ≥ 0.8), two of which (rs76269977 and rs142660658) are intronic in the HIF1A gene. It is located in a regulatory region but not in a constrained sequence. It has histone H3K4me1_Enh enhancer marks in a lung carcinoma line and both H3K4me1_Enh and H3K27ac in a fetal lung fibroblast line. It is also a DNAse hypersensitivity site in a fetal lung fibroblast line. SNP rs41508050 has no other SNPs in linkage disequilibrium, is in a regulatory region and in a constrained sequence both by Genomic Evolutionary Rate Profiling and SiPhycons. It has histone H3K27ac_Enh marks in both lung fibroblast and lung carcinoma lines and is a DNase hypersensitivity site in a lung carcinoma cell line. Looking at Encode it had RFX5 bound in the GM12878 lymphoblastoid cell line. (Table 3)
TABLE 3 | Summary of chromatin state and regulatory potential associated with the locations of the SNPs.
[image: Table 3]DISCUSSION
We present the results of a HIF-1α PheWAS analysis focused on association with respiratory phenotypes. We identified two SNPs that are significantly associated with respiratory disease. Given the allele rarity in our patient population, the Open Target Genetics database was queried in further support. This resource integrates knowledge derived from the UK Biobank with published data from other sources and provides an independent cohort to validate our findings. (Baumann and Cabassa, 2020) The prior associations with allergic airway disease in the form of asthma for rs79865957 and association with bringing up phlegm/sputum/mucus for rs41508050 are consistent with the respective associations with allergic rhinitis and acute bronchitis and bronchiolitis in our cohort, suggesting the association may be driven by the underlying biological “inflammation” process which is the central driver across all these phenotypes involving different organs. To address the likely impact of these variants we used the Ensembl VEP and the publicly available HaploReg tool (Ward and Kellis, 2012; McLaren et al., 2016), both of which underscore the possible significance of both variants. Adding to the evidence supporting a functional impact are the previously published associations between rs79865957 and diabetic kidney disease and between rs41508050 and angina versus myocardial infarction as initial presentation of coronary disease (Hlatky et al., 2007; Huang et al., 2020).
Previously, variations within the HIF1A gene have been associated with COPD, lung cancer and a host of non-pulmonary conditions. (Gladek et al., 2017) Both the SNPs reported here had prior significant disease associations. First, rs79865957 was previously associated with diabetic kidney disease in a Han Chinese population. (Nava-Salazar et al., 2011) While to our knowledge the functional consequences of this SNP have not been eluded, the authors hypothesized that in a high glucose environment HIF1A transcription may be stimulated. Additionally, rs41508050 has a known association with the development of stable angina as opposed to myocardial infarction as initial presentation of coronary artery disease. (Hlatky et al., 2007) In vitro studies have previously linked this variant with a higher transcriptional activity. (Nava-Salazar et al., 2011) However, to our knowledge, the current study is the first to report on the association between SNPs of the HIF1A gene and allergic rhinitis, acute bronchitis and bronchiolitis. The reported association with allergic rhinitis is consistent with previously published experimental data highlighting the role of HIF-1α in allergic airway pathology. In an allergic airway disease model, HIF-1α inhibition decreased Th2 inflammation as measured by reduced IL-4, IL-5 and IL-13. (Kim et al., 2010) Beyond this, in a mouse model downregulation of HIF-1 or blockade of HIF-1α reduced cellular infiltrate in peribronchial lung tissues, thickness of smooth muscle and eosinophil infiltration. (Huerta-Yepez et al., 2008) Likewise, the role of HIF-1α in bronchiolitis is supported by experimental data on the consequences of HIF-1α stabilization by the Respiratory Syncytium Virus. (Kilani et al., 2004)
Traditionally, GWAS identify SNPs significantly associated with human disease. These findings are then used to guide animal studies aiming to prove a causal link between the SNP and the disease. As briefly discussed above, the PheWAS design flips this process. It allowed us to look specifically at a highly conserved gene known to play a central role in the diseases of interest. In doing so, we were able to narrow down the list of SNPs within the HIF1A gene that play a potential role in respiratory pathology. Beyond this, we were able to detect significant effects of rare allelic variants. Conversely, this study design by definition excludes variants on other genes. While this is a limitation of the current study, given the hypoxemia dependent stabilization of HIF-1α and the experimental data supporting a role of HIF-1α in pulmonary conditions as outlined above it seemed reasonable to focus on HIF1A. Future studies may expand on the current work by including other members of the HIF family. Furthermoree, knowing that SNPs within the HIF1A gene are associated with respiratory diseases future studies can now refine our understanding of the associated phenotypes by looking at differences between patients with and without these SNPs.
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The novel coronavirus pneumonia COVID-19 infected by SARS-CoV-2 has attracted worldwide attention. It is urgent to find effective therapeutic strategies for stopping COVID-19. In this study, a Bounded Nuclear Norm Regularization (BNNR) method is developed to predict anti-SARS-CoV-2 drug candidates. First, three virus-drug association datasets are compiled. Second, a heterogeneous virus-drug network is constructed. Third, complete genomic sequences and Gaussian association profiles are integrated to compute virus similarities; chemical structures and Gaussian association profiles are integrated to calculate drug similarities. Fourth, a BNNR model based on kernel similarity (VDA-GBNNR) is proposed to predict possible anti-SARS-CoV-2 drugs. VDA-GBNNR is compared with four existing advanced methods under fivefold cross-validation. The results show that VDA-GBNNR computes better AUCs of 0.8965, 0.8562, and 0.8803 on the three datasets, respectively. There are 6 anti-SARS-CoV-2 drugs overlapping in any two datasets, that is, remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide, and mizoribine. Molecular dockings are conducted for the 6 small molecules and the junction of SARS-CoV-2 spike protein and human angiotensin-converting enzyme 2. In particular, niclosamide and mizoribine show higher binding energy of −8.06 and −7.06 kcal/mol with the junction, respectively. G496 and K353 may be potential key residues between anti-SARS-CoV-2 drugs and the interface junction. We hope that the predicted results can contribute to the treatment of COVID-19.
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INTRODUCTION

Novel coronavirus pneumonia COVID-19, erupted in Wuhan, Hubei, China, has become a global public health challenge (Nittari et al., 2020). By July 26, 2021, it has caused 192,284,207 confirmed cases and 4,128,152 deaths (WHO, 2021). Although the COVID-19 vaccine has been researched and developed in many countries and regions, it still fails to avoid the risk of infection. Therefore, it is an urgent task to design effective drugs for the COVID-19 treatment (Khan et al., 2020a).

COVID-19 is caused by SARS-CoV-2 infection. SARS-CoV-2, like most coronaviruses, is a positive single stranded virus with unique coronal protein spikes (Khan et al., 2020b). It invades human body through SARS-CoV-2 Spike (S) protein binding with the surface of host angiotensin-converting enzyme 2 (ACE2) (Morse et al., 2020). Based on the homology between SARS-CoV-2 and other RNA viruses (such as SARS-CoV and MERS-CoV), we can investigate RNA virus-related FDA-approved drugs to find possible chemical agents for preventing COVID-19.

Computational methods for identifying potential antiviral drugs against COVID-19 contain structure-based methods and network-based methods. Structure-based methods are a pivotal implement based on computer-aided drug design and structural molecular biology. The type of methods aims at predicting binding sites between chemical agents and target proteins and thus elucidating basic biochemical processes (McConkey et al., 2002). Lan et al. (2020) determined the crystal structure of receptor-binding domain (RBD) in which the S protein binds to ACE2. Li et al. (2021) screened 21 antiviral, antifungal and anticancer compounds to identify possible SARS-CoV-2 papain inhibitors based on silicon molecular docking. Elfiky, 2020a utilized sequence analysis and molecular docking to construct an anti-COVID-19 RNA-dependent RNA polymerase (RdRp) prediction model. Panda et al. (2020) used molecular docking technique to implement virtual screening among SARS-CoV-2 protein, main protease, and RDB/ACE2 complex and FDA-approved antiviral drugs. Maurya et al. (2020) screened possible antiviral natural products against the S protein and its cellular receptor from Ayurveda through molecular docking. Choudhary et al. (2020) utilized a structure-based virtual screening technique to find possible inhibitors for SARS-CoV-2 entering cells. Wang et al. (2020a) investigated the development of structure-based methods and emphasized the limitations and further works of anti-SARS-CoV-2 drug research. Gahlawat et al. (2020) exploited structure-based virtual screening technique to investigate the inhibition effects of major proteases in coronavirus.

Network-based methods have been broadly applied to anti-SARS-CoV-2 drug screening. For example, Peng et al. (2020) built one virus-drug (VDA) association dataset and employed a regularized least square classifier to explore the therapeutic clues of COVID-19 by combining drug chemical structures, virus complete genome sequences, bipartite local model and neighborhood association information. Zhou L. et al. (2020) exploited a KATZ algorithm (VDA-KATZ) to predict candidate drugs for the SARS-CoV-2 prevention on the VDA dataset. Peng et al. (2021) continued to construct two VDA datasets and developed a random walk with restart method (VDA-RWR) to prioritize drugs related to COVID-19. Zhou Y. et al. (2020) designed a formidable network-based method to reposition the existing chemical agents and quickly screened latent drug combinations for COVID-19. Taz et al. (2021) identified the infectious responses between SARS-CoV-2 and idiopathic pulmonary fibrosis-infected lung cells based on protein-protein interaction network. Du et al. (2021) probed a network-based virus-host interaction prediction method and considered its application on SARS-CoV-2. Messina et al. (2020) studied pathogenesis of SARS-CoV-2 infection to discover the etiopathogenesis of COVID-19 by analyzing virus-host interactome. Ahmed (2020) found that Vitamin D may inhibit SARS-CoV-2 infection based on a network analysis approach. Stolfi et al. (2020) used a broader molecular map to reveal potential therapeutic strategy for COVID-19.

Computational methods effectively prioritize potential drugs for the SARS-CoV-2 infection. In this work, we propose a Virus-Drug Association (VDA) prediction algorithm, VDA-GBNNR, to discover potential chemical agents against COVID-19 based on virus similarity, drug similarity, VDA network, Gaussian Association Profile Kernel (GAPK), and Bounded Nuclear Norm Regularization (BNNR). VDA-GBNNR is compared with three existing VDA prediction methods, that is, VDA- RLSBN (Peng et al., 2020), VDA-KATZ (Zhou L. et al., 2020), VDA-RWR (Peng et al., 2021) and one network-based microRNA-anticancer drug association prediction model SMiR-NBI (Li et al., 2016) on three VDA datasets. The experimental results show that VDA-GBNNR computes the best AUC, accuracy, sensitivity, and specificity. In addition, the inferred top six antiviral drugs against SARS-CoV-2, remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide, and mizoribine come together in any two datasets. Molecular dockings between the six compounds and the junction of SARS-CoV-2 S protein and human ACE2 are implemented to calculate molecular binding energies and identify binding sites between them. Niclosamide and mizoribine are found to have the strongest binding energy of −8.06 and −7.06 kcal/mol with the junction, respectively.



MATERIALS AND METHODS

In this study, inspired by the works provided by Chen and Huang (2017); Chen et al. (2018b), Yang et al. (2019), and Liu et al. (2020) we develop a VDA prediction framework (VDA-GBNNR) to screen underlying drugs for inhibiting COVID-19. First, virus similarity and drug similarity are calculated based on virus complete genomic sequences, drug chemical structures, and Gaussian Association Profiles (AP). Second, a BNNR model is developed to complete unknown associations between viruses and drugs. Finally, the predicted top anti-SARS-CoV-2 drugs are docked with the junction of the S protein bound with ACE2. The overall workflow is shown in Figure 1.


[image: image]

FIGURE 1. Overall flow chart of VDA-GBNNR.



Datasets

Three VDA datasets are obtained from Peng et al. (2021). Each dataset contains virus similarity matrix, drug similarity matrix, and VDA matrix. In each dataset, virus complete genomic sequences were downloaded from the NCBI database (Coordinators, 2018), and MAFFT (Katoh et al., 2019) (a multi-sequence alignment tool) was utilized to compute virus sequence similarity matrix Wvv. Drug chemical structures were obtained from DrugBank (Wishart et al., 2018) and RDKit (an open-source chemical information software) was used to calculate drug chemical structure similarity matrix Wdd. VDA matrix Wvd is achieved by searching the DrugBank, NCBI, and PubMed (Motschall and Falck-Ytter, 2005) databases. In Wvd, Wij = 1 if virus vi interacts with drug dj; otherwise, Wij = 0. Table 1 shows the details of three VDA datasets.


TABLE 1. Details of three VDA datasets.

[image: Table 1]


Similarity Computation


GAPK Similarity

For a given virus vi, the Gaussian association profile AP(vi) is defined as the ith row of a VDA matrix Wvd to describe its association information with all drugs. GAPK similarity between two viruses [i.e., (vi, vj)] is calculated by Eq. (1).

[image: image]

where γv represents normalized kernel bandwidth based on bandwidth parameter [image: image], and m is the number of viruses.

For a given drug di, its Gaussian association profile AP(di) is defined as the ith column of a VDA matrix Wvd to describe its association information with all viruses. GAPK similarity between two drugs [i.e., (di, dj)] is computed by Eq. (2):

[image: image]

where γd indicates normalized kernel bandwidth based on bandwidth parameter [image: image], and n is the number of drugs.



Similarity Integration

Complete genomic sequence similarity Wvv, chemical structure similarity Wdd, and GAPK similarity (GV and GD) are integrated to compute the final virus similarity matrix SV (Eq. 3) and drug similarity SD (Eq. 4). The parameter w is introduced to measure the importance between biological similarity and GAPK similarity.
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Heterogeneous Network Construction

A heterogeneous virus-drug network is constructed by integrating virus similarity network, drug similarity network and VDA network. The edge between two viruses/drugs is weighted according to their similarity. The heterogeneous network can be represented as a bipartite graph G(V, D, E), where E(G) = {eij} ⊆ V × D, eij represents the edge between the virus vi and the drug dj, V and D represent virus set and drug set, respectively. The adjacency matrix of the heterogeneous network is defined as Eq. (5).

[image: image]

where Wvd denotes known VDA matrix, Mdd and Mvv represent the adjacency matrices of drug similarity network and virus similarity network, respectively. Hence, the adjacency matrix can be rewritten as Eq. (6).

[image: image]



VDA-GBNNR Model

In three VDA datasets, known VDAs in the matrix Wvd account for about 10.26, 8.72, and 5.90% among all possible virus-drug pairs, respectively. That is, the majority of virus-drug pairs are unlabeled and need to be completed. Therefore, we aim to complete unknown elements through a bounded nuclear norm regularization model.

The rank of a matrix describes information redundancy, and lower rank denotes less information redundance. Indeed, VDA prediction can be represented as a low-rank matrix completion problem. Therefore, we built the following model to complete the missing association information in a VDA matrix by Eq. (7):

[image: image]

where A is a matrix after completion, rank(⋅) indicates the rank of a matrix, M ∈ ℛ (m + n) × (m + n) is a given VDA matrix, Ω is the set of index pairs (i, j) which contains all known VDAs in M, and PΩ is the projection operator on Ω.

[image: image]

The solution of rank (A) in Eq. (7) is a non-convex problem. Based on the nuclear norm optimization provided by Candes and Recht (2013), the model Eq. (7) can be solved by Eq. (9):

[image: image]

where ||A||* denotes the nuclear norm of A and can be obtained by summating all singular values in A.

The elements in virus similarity matrix Wvv and drug similarity matrix Wdd are between 0 and 1, and the elements in VDA matrix Wvd are either 1 or 0. Therefore, the predicted association scores for unknown virus-drug pairs are expected to be between 0 and 1. The value closer to 1 denotes bigger probability that a virus and a drug pair is linked, and vice versa. However, the elements in Eq. (9) may be any real value in (−∞, + ∞). To ensure that the predicted results are within the interval of [0, 1], a bounded constraint is added to Eq. (9). In addition, there may exist data noise when evaluating virus similarities and drug similarities. To solve this problem, we build a matrix completion model with noise tolerance based on rank minimization by Eq. (10):

[image: image]

where ||⋅||F denotes Frobenius norm and ∈ indicates the noise level.

Since the noise level is unknown, it is difficult to choose the most appropriate parameters in Eq. (10). Therefore, a soft regularization term is introduced to tolerate unknown noise and reduce computational complexity. Thus, a bound nuclear norm regularization model (VDA-GBNNR) is developed to screen possible associations between viruses and drugs by Eq. (11):

[image: image]

where α is a parameter used to balance the nuclear norm and the error term, and each element in A satisfies 0 ≤ Aij ≤ 1.

Through introducing an auxiliary matrix W, Eq. (11) can be optimized using alternating direction method of multipliers defined by Eq. (12).

[image: image]

where the initial term A1 = PΩ (M). Consequently, the augmented Lagrange function can be defined by Eq. (13).

[image: image]
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where B denotes the Lagrange multiplier and β > 0 indicates the penalty parameter. At each iteration, VDA-GBNNR alternatively calculates Wk + 1, Ak + 1 and Bk + 1 by fixing other two terms. The specific solutions about Wk + 1, Ak + 1 and Bk + 1 were provided by Yang et al. (2019). VDA-GBNNR can update VDA matrix [image: image] by completing the missing elements in Wvd.



RESULTS


Evaluation Metrics

In this study, sensitivity, specificity, accuracy, and AUC are used to evaluate the performance of our proposed VDA-GBNNR method. Accuracy denotes the proportion of correctly inferred positive and negative VDAs to all positive and negative VDAs. Sensitivity denotes the ratio of correctly predicted positive VDAs to all positive VDAs. Specificity represents the rate of correctly identified negative VDAs to all negative VDAs. The details are defined by Eqs. (14)–(16):
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where TP, FP, FN, and TN indicate true positive, false positive, false negative, and true negative, respectively.

AUC denotes Area Under the Receiver Operating Characteristic (ROC) Curve. In the curve, the horizontal axis indicates False Positive Rate (FPR) and the vertical axis indicates True Positive Rate (TPR). FPR denotes the proportion of predicted false positive VDAs to all negative VDAs and TPR demonstrates the proportion of true positive VDAs to all positive VDAs. They are defined by Eqs. (17)–(18):

[image: image]
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Experimental Settings and Parameter Selection

In the experiment, we conduct fivefold cross validation for 10 times to evaluate the performance of VDA-GBNNR. Eighty percent of elements in the VDA matrix Wvd are randomly selected as the training set and the remaining is used the testing set. Parameters α, β, w, and γ′ are set in the range of [0.1, 1, 10, 100], [0.1, 1, 10, 100], [0, 0.1, 0.2,…, 1], and [0.5, 1, 1.5,…, 3], respectively. The optimal parameter combination is obtained by grid search. Table 2 shows parameter combinations when the top 10 AUCs are confirmed based fivefold cross validation for 10 times.


TABLE 2. Parameter settings for the top 10 AUCs.

[image: Table 2]
Table 3 shows the optimal parameter settings for VDA-KATZ, VDA-RLSBN, VDA-RWR, and VDA-GBNNR based on grid search. The four methods obtain the best performance when parameters are set the corresponding values provided by Table 3. In the SMiR-NBI method, there is no parameter to set.


TABLE 3. Optimal parameter settings for different models.
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Performance Comparison With Other Methods

To evaluate the performance of VDA-GBNNR, we compare it with four classical association prediction methods based on fivefold cross validation, that is, SMiR-NBI, VDA-RLSBN, VDA-KATZ, and VDA-RWR. SMiR-NBI prioritized miRNAs as possible biomarkers to depict their responses to anticancer drug therapy on a heterogeneous drugs-miRNA network. VDA-KATZ, VDA-RLSBN, and VDA-RWR are the newest three VDA prediction algorithms. The experiments are implemented for 100 times and the average performance is taken as the final results. Table 4 gives sensitivities, specificities, accuracies, and AUCs of the five VDA identification models on the three VDA datasets.


TABLE 4. Performance comparison of different methods.

[image: Table 4]
From Table 4, it can be seen that VDA-RLSBN obtains better performance than VDA-GBNNR in dataset 1. However, VDA-GBNNR achieves the best sensitivity, specificity, accuracy, and AUC on dataset 2 and the best specificity, accuracy, and AUC on dataset 3, significantly outperforming other four VDA prediction methods including VDA-RLSBN. For example, in dataset 2, VDA-GBNNR computes the highest accuracy of 0.8365, better 87.11, 9.92, 13.59, and 20.94% than SMiR-NBI, VDA-KATZ, VDA-RLSBN, and VDA-RWR, respectively. VDA-GBNNR still calculates the best AUC of 0.8562, better 51.58, 3.11, 8.05, and 22.04% than the four methods, respectively.

On dataset 3, although SMiR-NBI obtains the best sensitivity of 0.9232, the performance calculated by VDA-GBNNR significantly outperforms SMiR-NBI in terms of specificity, accuracy, and AUC. VDA-GBNNR computes the highest accuracy of 0.8482, better 93.63, 32.99, 28.06, and 17.10% than SMiR-NBI, VDA-KATZ, VDA-RLSBN, and VDA-RWR, respectively. VDA-GBNNR achieves the best AUC of 0.8803, higher 50.27, 3.69, 6.12, and 19.08% than the above four methods, respectively. Figure 2 shows the AUC values computed by five VDA prediction models on three VDA datasets.


[image: image]

FIGURE 2. The AUC values of five VDA prediction models on three datasets. (A) The AUC values of five VDA prediction models on dataset 1. (B) The AUC values of five VDA prediction models on dataset 2. (C) The AUC values of five VDA prediction models on dataset 3.




Performance of BNNR With Gaussian Kernel or Not

In this section, we investigate the effect of GAPK on the prediction performance. In the BNNR model (VDA-BNNR) without GAPK, the adjacent matrix [image: image] is used to represent the heterogeneous virus-drug network where Wvv and Wdd denote virus complete genomic sequence similarity and drug chemical structure similarity, respectively. The comparison results are illustrated in Figure 3. From Figure 3, we can observe that VDA-GBNNR improves the prediction performance compared to VDA-BNNR.


[image: image]

FIGURE 3. Performance comparison between VDA-BNNR and VDA-GBNNR on three datasets. (A) Performance comparison between VDA-BNNR and VDA-GBNNR on dataset 1. (B) Performance comparison between VDA-BNNR and VDA-GBNNR on dataset 2. (C) Performance comparison between VDA-BNNR and VDA-GBNNR on dataset 3.




Case Study

After confirming the prediction performance of VDA-GBNNR, we further discover potential available drugs applied to the treatment of COVID-19. Small molecules with the top 10 association scores with SARS-CoV-2 are shown in Tables 5–7. In addition, we search the recent documents and find that all the inferred top 10 chemical agents have been reported by COVID-19-related publications in the three datasets. In particular, remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide and mizoribine come together in any two datasets.


TABLE 5. The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 1.
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TABLE 6. The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 2.

[image: Table 6]

TABLE 7. The predicted top 10 antiviral drugs against SARS-CoV-2 in dataset 3.

[image: Table 7]Remdesivir is an intravenous nucleotide prodrug bound with viral RdRp and can inhibit viral replication through premature termination of RNA transcription (Amirian and Levy, 2020). It has been validated to be able to inhibit the replication of SARS-CoV and MERS-CoV (Sheahan et al., 2017). The drug has obtained an emergency use authorization to treat the patients infected by SARS-CoV-2 from the Food and Drug Administration (FDA) (Moirangthem and Surbala, 2020).

Favipiravir is a guanosine analog targeting RdRp and blocking the rhinoviruses replication (Kocayiğit et al., 2021). The drug is effective against a large-scale grippe virus types and subtypes (Furuta et al., 2017). Two recent open-label experiments discovered its therapeutic effective on COVID-19 (Cai et al., 2020; Prakash et al., 2020). It has been also applied to the treatment of COVID-19 by the Japanese government (Hoang and Anh, 2020), and exhibited hopeful results in clinical researches in Russia and China. More importantly, its anti-SARS-CoV-2 experiments are conducting in the United States, the United Kingdom and India (Joshi et al., 2020).

Ribavirin is an antiviral drug against hepatitis C virus and other RNA viruses (Tian et al., 2021). It can inhibit viral RNA synthesis and hander normal viral replication by binding to viral RNA (Kim et al., 2019). It combines closely with RdRp and is a powerful antiviral drug against SARS-CoV-2 (Elfiky, 2020b). Clinical trials about the treatment of ribavirin on the patient with COVID-19 have been conducted (Zarandi et al., 2021).

Mycophenolic acid is an antibiotic extracted from penicillium species. Mycophenolic acid can block the production of guanosine monophosphate by inhibiting inosine monophosphate dehydrogenase. Mycophenolic acid is also an immunosuppressive drug with a strong anti-proliferation effect (Kim et al., 2019). Studies suggest that mycophenolic acid has a potential inhibitory effect on the enzyme reproduced by SARS-CoV-2 (Muhseen et al., 2021).

Niclosamide is an oral bioavailable chlorosalicylanilide with deworming and potential anti-tumor effect (Kim et al., 2019). Niclosamide has various biological activities, for instance, anti-tuberculosis activity (Piccaro et al., 2013), antibacterial activity (Imperi et al., 2013), anticancer activity (Osada et al., 2011), and extensive antiviral activity resistant to coronaviruses (SARS-CoV and MERS-CoV) (Xu et al., 2020). Niclosamide can prevent cells from the cytopathic impact produced by the SARS-CoV-2 infection, suggesting that it may be applied to threat the COVID-19 pandemic (Shamim et al., 2021).

Mizoribine is an imidazole nucleoside antibiotic isolated from bacillus brucellosis (Mizuno et al., 1974). Mizoribine lacks antimicrobial activity, however, it has powerful immunosuppressive activity and has been used in clinic after kidney transplantation (Tajima et al., 1984). It may be used as a potentially beneficial drug for hypertensive patients infected by COVID-19 (Jakovac, 2020).



Molecular Docking

Inspired by molecular docking provided by Peng et al. (2021), we further investigate the binding energy between the predicted six anti-SARS-CoV-2 drugs and the junction of the S protein-ACE2 interface by molecular docking. The chemical structures of the overlapping six small molecules are achieved from DrugBank in the PDB format. The PDB file is then converted to the PDBQT format by AutoDock4 (Morris et al., 2009). The structure of the S protein bound with ACE2 is downloaded from the RCSB Protein Data Bank (Burley et al., 2017), and the PDBID number is 6M0J. The predicted drugs are then regarded as ligands, and the junction of the S protein-ACE2 interface is regarded as receptors.

Table 8 illustrates molecular docking results including molecular binding energies and binding sites. It can be observed that the six drugs have higher molecular docking energies with the junction of the S protein-ACE2 interface. More importantly, the key residues between the six small molecules and the interface junction are Q493 and K68 for remdesivir, G496 and K353 for favipiravir, G496, Q493, R403, and K353 for ribavirin, G496, F390, and K353 for mycophenolic acid, E37 for niclosamide, and N439, Q506, N330, and Q325 for mizoribine. In addition, the results suggest that G496 and K353 may be potential key residues between anti-SARS-CoV-2 drugs and the interface junction.


TABLE 8. Molecular docking between antiviral drugs and the junction of the S protein-ACE2 interface.

[image: Table 8]Figure 4 demonstrates the dockings between remdesivir, favipiravir, ribavirin, mycophenolic acid, niclosamide and mizoribine and the junction of the S protein-ACE2 interface. In the figure, cyan indicates the S protein, green represents human ACE2, and the circles in each subgraph denotes key residues.
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FIGURE 4. Molecular docking between the predicted six anti-SARS-CoV-2 drugs and the domain of the S protein bound to ACE2.




DISCUSSION

With the rapid spread of SARS-CoV-2, it is vital to screen specific drugs for patients infected by COVID-19. Although vaccines have been launched, it is well known that the effect of vaccines for SARS-CoV-2 is mainly prevention, rather than treatment. After vaccination, it cannot completely ensure that people will not be infected by SARS-CoV-2. Therefore, it is an urgent task to find possible clues of treatment for patients with the infection of COVID-19. Furthermore, the research and development of a new drug need consume a vast of time and resource. Hence, it may be a more appropriate strategy to screen anti-SARS-CoV-2 drug candidates from existing FDA-approved drugs.

In this manuscript, we arrange three VDA datasets including VDA matrix, virus complete genomic sequence similarity matrix, and drug chemical structure similarity matrix. First, virus GAPK similarity and drug GAPK similarity are computed. Second, the final similarity is obtained by integrating biological similarity and GAPK similarity. Third, a bounded nuclear norm regularization model is developed to predict anti-SARS-CoV-2 drug candidates. Finally, molecular docking is applied to measure the binding capabilities between the predicted anti-SARS-CoV-2 drugs and the junction of the spike protein-ACE2 interface. Although datasets used in this work is relatively small, we used three VDA datasets to evaluate the performance of VDA-GBNNR. More importantly, antiviral drugs against COVID-19 screened by the proposed VDA-GBNNR method come together in at least two VDA dataset instead of one dataset.

VDA-GBNNR can obtain the best prediction performance. It may mainly be the following advantages. First, GAPK similarity can effectively depict the association similarity between two viruses (or drugs). Second, the proposed bound nuclear norm regularization model can reduce the overfitting problem. Finally, range constraint makes all the predicted association scores can be within a predefined range.



CONCLUSION

In this study, we integrate the heterogeneous virus-drug network and design a VDA prediction model based on bounded nuclear norm regularization to explore potential anti-SARS-CoV-2 drugs. Experimental results show that VDA-GBNNR is an effective VDA identification method. The six FDA-approved drug candidates are found to be potential antiviral drugs against SARS-CoV-2. We hope that the inferred drugs can contribute to the inhibition of COVID-19.

In the future, first, we will integrate various data resource and build larger dataset. Second, we will consider different computational models (Gaur and Chaturvedi, 2019; Liu et al., 2019; Gutiérrez-Cárdenas and Wang, 2021), for example, matrix decomposition (Chen et al., 2018a), bidirectional label propagation (Wang et al., 2019), network distance analysis (Zhang et al., 2021), internal confidence-based collaborative filtering recommendation (Wang et al., 2020b), sparse subspace learning with Laplacian regularization (Chen et al., 2017) to search possible associations between viruses and drugs. Third, we will try to use deep learning methods to predict drugs for COVID-19 (Wang et al., 2017; Alakus and Turkoglu, 2021; Kang et al., 2021). Finally, we will also investigate the relationship between antimicrobial compounds and COVID-19.
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Purpose: Glioblastoma multiforme (GBM) is the most widely occurring brain malignancy. It is modulated by a variety of genes, and patients with GBM have a low survival ratio and an unsatisfactory treatment effect. The irregular regulation of RNA binding proteins (RBPs) is implicated in several malignant neoplasms and reported to exhibit an association with the occurrence and development of carcinoma. Thus, it is necessary to build a stable, multi-RBPs signature-originated model for GBM prognosis and treatment response prediction.
Methods: Differentially expressed RBPs (DERBPs) were screened out based on the RBPs data of GBM and normal brain tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Program (GTEx) datasets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses on DERBPs were performed, followed by an analysis of the Protein-Protein Interaction network. Survival analysis of the DERBPs was conducted by univariate and multivariate Cox regression. Then, a risk score model was created on the basis of the gene signatures in various survival-associated RBPs, and its prognostic and predictive values were evaluated through Kaplan-Meier analysis and log-rank test. A nomogram on the basis of the hub RBPs signature was applied to estimate GBM patients’ survival rates. Moreover, western blot was for the detection of the proteins.
Results: BICC1, GNL3L, and KHDRBS2 were considered as prognosis-associated hub RBPs and then were applied in the construction of a prognostic model. Poor survival results appeared in GBM patients with a high-risk score. The area under the time-dependent ROC curve of the prognostic model was 0.723 in TCGA and 0.707 in Chinese Glioma Genome Atlas (CGGA) cohorts, indicating a good prognostic model. What was more, the survival duration of the high-risk group receiving radiotherapy or temozolomide chemotherapy was shorter than that of the low-risk group. The nomogram showed a great discriminating capacity for GBM, and western blot experiments demonstrated that the proteins of these 3 RBPs had different expressions in GBM cells.
Conclusion: The identified 3 hub RBPs-derived risk score is effective in the prediction of GBM prognosis and treatment response, and benefits to the treatment of GBM patients.
Keywords: glioblastoma multiforme, RNA binding proteins, overall survival, risk score model, prognostic model
INTRODUCTION
As the most widespread malignant neoplasm in human brain, glioblastoma multiforme (GBM) has retained a severe incidence ratio and prognosis (Johnson et al., 2013; Davis, 2016). Even though therapeutic methods to GBM diagnosis and treatment are continually ameliorating, which includes surgical resection, temozolomide (TMZ) chemotherapy and radiotherapy, average survival of 15 months remains unsatisfactory (Kim et al., 2018; Ramos et al., 2018). Presently, diagnosis of GBM mainly relies on examination of histopathology, neoplasm molecular biomarkers and imaging assessments, which is certainly not applicable to early diagnosis (Batash et al., 2017). Thus, to improve the treatment effects and life quality of patients, more knowledge of GBM molecular mechanism is needed to create efficient approaches for early detection.
RNA binding proteins (RBPs) refer to the proteins that interact with several RNAs, and participate in most post-transcriptional modulation processes and cellular homeostasis (Hentze et al., 2018; Gebauer et al., 2020). RBPs mediate the modulation of RNA splicing, polyadenylation, stability, localization, translation, and degradation via binding to targeted RNAs and then forming ribonucleoprotein complexes (Wende et al., 2019). Taking post-transcriptional modulation into consideration, no doubt abnormally dysregulated RBPs are intimately associated with the incidence and development of many diseases, such as cancers (Pereira et al., 2017; Neelamraju et al., 2018). Recently, some researchers uncover that RBPs facilitate tumorigenesis not only by raising oncogene levels, but also by reducing tumor suppressor gene levels (Guo and Jia, 2018; Zhang et al., 2018). Therefore, a lot of attention has turned to the roles of RBPs in cancers.
It is reported that RBPs present a close relationship to glioma’s occurrence and development (Xu et al., 2018; Yi et al., 2018). For example, the expression of PCBP2 is dramatically increased at a higher stage of glioma. Ablating PCBP2 greatly decreases the colony formation and invasion capability of GBM cells (Han et al., 2013; Luo and Zhuang, 2017). HuR is overexpressed in high-grade malignancies (GBM and medulloblastoma). Additionally, HuR could bind and stabilize mRNAs of growth factors that are associated with the progression of brain neoplasm (Nabors et al., 2001). In glioma and medulloblastoma, MSI1 expression is significantly elevated (Kanemura et al., 2001). Based on these findings, we attempt to systematically investigate RBPs’ functions to understand their roles in GBM.
In current years, data mining and bioinformatics analysis have been largely applied in research on carcinomas. A large number of high-throughput data produced by microarrays and next-generation sequencing are gathered in public datasets. Among them, The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) get extensively adopted. Exploration of tumor expression features and identification of prognostic indicators and biomarkers can be greatly aided by mining these data. Based on the methylation array data in TCGA dataset, Rajendra P. Pangeni et al. analyzed tumor subtype-associated epigenetic regulation in GBM bulk tumors using genome-wide methylation and transcription (Pangeni et al., 2018). Based on the Gene Expression Omnibus (GEO) database, Huiwen Gui et al. used bioinformatics analysis to determine that GAPDH, RHOA, RPS29, and RSS27A are the hub genes of Alzheimer’s disease (Gui et al., 2021).
Here, our study is to carry out a comprehensive analysis of GBM in TCGA and CGGA to determine the survival-related differentially expressed RBPs (DERBPs), and used a series of bioinformatics analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein-Protein Interaction (PPI), to get the hub RBPs and key pathways in GBM. Based on the selected hub RBPs and public data, we establish a risk model for prognosis and treatment response prediction.
MATERIALS AND METHODS
Data Acquirement
We obtained 1,092 normal brain tissue samples of 201 individuals from the Genotype-Tissue Expression Program (GTEx, https://www.gtexportal.org/home/datasets), 153 GBM samples with relevant clinical data from TCGA (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga), and 85 GBM samples with relevant clinical data from CGGA cohort (https://www.cgga.org.cn/download.jsp). 1542 RBPs were extracted from the above-mentioned 3 RNA-sequencing data cohorts (Li et al., 2020a). DERBPs were determined by the negative binomial distribution method between a normal brain and GBM tissues. Besides, the Limma package (http://www.bioconductor.org/packages/release/bioc/html/limma.html) was carried out here on the basis of the negative binomial distribution. It fits a universal linear gene model and utilizes empirical Bayes shrinkage for the assessments of interspersion and fold change (FC). We preprocessed original data by Limma package and ruled out genes with a mean value <1. Additionally, the DERBPs got determined by the Limma package with the standard criteria of |log2 FC| ≥ 1 and false discovery rate (FDR) < 0.05.
KEGG Pathway and GO Enrichment Analyses
GO and KEGG got employed to evaluate the DERBPs’ biological functions. CC (cellular component), MF (molecular function) and BP (biological process) were the main classifications of GO. The clusterProfiler package in R participated in all enrichment analyses (Yu et al., 2012). Statistical significance was defined as p and FDR values <0.05.
Construction of Protein-Protein Interaction Network
The DERBPs were input to the STRING database (Search Tool for the Retrieval of Interaction Gene, http://www.string-db.org/) (Li et al., 2020a) to determine PPI data. The construction and visualization of PPI networks were performed by Cytoscape 3.7.0 software.
Prognostic Model Construction
To assess whether the DERBPs had an association with survival, univariate Cox proportional hazards regression analysis was carried out in TCGA GBM cohort for overall survival (OS). Then, the hub RBPs related to survival were further identified using multivariate Cox proportional hazards regression among candidate genes.
According to the gene signatures of survival-related hub RBPs determined by multivariate Cox proportional hazards regression, we established a risk score model as the formula described below.
[image: image]
“n” represents key RBPs number in total; “[image: image]” indicates gene [image: image] ’s regression coefficient; “[image: image]” represents the gene [image: image] ’s expression value. In the validation CGGA dataset, “[image: image]” used was the same as that in the TCGA.
For exploring the prognosis and prediction abilities of risk score, we classified GBM patients into high- and low-risk groups on account of the median risk score survival analysis. Kaplan-Meier (KM) method with the log-rank test was conducted for the survival rate analyses of the two groups. Clinicopathological parameters and risk scores were analyzed through univariate and multivariate Cox regressions to ensure that risk scores possessed significance in clinical. In addition, the SurvivalROC (receiver operating characteristic) package completed the ROC curve analysis to evaluate the above model’s prognostic ability (Heagerty et al., 2000). A validation cohort of 85 GBM patients with responsible prognosis from CGGA was employed to confirm the prognostic model’s predictive capability. Lastly, RMS R package was utilized to generate the nomogram including calibration plots to predict OS.
GBM Tissue Samples
The resected neoplasm specimens of two GBM patients were obtained from the Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University. Histological grading got classified according to WHO criteria. This experiment got the permission of the Institutional Review Board of Harbin Medical University, and written informed consent was signed by every patient. GBM-1 and GBM-2 cells were derived from patient fresh GBM specimens.
Human Cell Lines
HEB (normal human glial cell) and U-87 MG (GBM cell) cells were kindly provided by Prof. Qian He (Shenzhen People’s Hospital, Shenzhen, China), all GBM cells were cultivated in DMEM with 10% FBS, penicillin (100 U/ml) and streptomycin (100 mg/ml) in a 37°C environment containing 5% CO2.
Western Blot
Tissue and cellular proteins were extracted using tissue extraction buffer and RIPA buffer with protease inhibitor cocktail (Sigma, P8340), respectively. SDS-PAGE was used to separate equal quantities of protein which was then transferred to nitrocellulose membranes. Antibodies applied here were listed as follows: anti-BICC1 (Sigma, HPA045212), anti-GNL3L (Sigma, SAB4502257), anti-KHDRBS2 (ThermoFisher Scientific, PA5-96508), anti-β-Actin (Sigma, A1978) and horseradish peroxidase-conjugated anti-rabbit/mouse IgG (Cell Signaling, 7074 and 7076). Compared with β-Actin, the expressions of target proteins were calculated and then generalized to the equivalent expressions in HEB cells.
Statistical Analysis
The representative data were derived from five separate experiments and shown as the mean ± SEM. Graphpad Prism 7.0 or R software (https://www.r-project.org/) was adopted for statistical analysis. Unpaired Student’s t-tests with Mann-Whitney U tests and one-way ANOVA with Kruskal-Wallis H tests were used to examine differences between two or more groups. The correlation of risk score with clinicopathological parameters was studied by Pearson Chi-Square test and Fisher’s exact test. The log-rank test was for the statistical significance evaluation of the differences in each dataset, and the KM technique was used to create survival curves for the subgroups in each dataset. p < 0.05 indicated significance in statistics.
RESULTS
Analysis of the DERBPs in Patients With GBM
The crucial prognosis role of RBPs in GBM was comprehensively studied by several advanced computational methods. Supplementary Figure S1 showed our study design. The GBM dataset (TCGA) contained 153 tumor samples in comparison to 1,092 normal brain samples (GTEx Portal). All derived data from the two datasets were preprocessed by the R software packages. In total, 1542 RBPs were analyzed and 160 RBPs were retained, consisting of 52 RBPs with upregulation and 108 RBPs with downregulation (Figure 1). Our data indicated GBM existed various DERBPs in comparison with normal brain tissues.
[image: Figure 1]FIGURE 1 | The DERBPs between GBM and normal brain tissues. (A) Volcano plot showing the log2FC of RBPs in GBM compared to normal brain tissues, and the corresponding–log10FDR in TCGA and GTEx datasets. Genes with FDR below 0.05 and log2FC above 1 (below -1) were marked with red (blue) dots. (B) Heat map of the RBPs in TCGA and GTEx datasets. DERBPs, differentially expressed RBPs; FC, fold change; FDR, false discovery rate.
Functional Enrichment Analysis of the DERBPs
The DERBPs comprised two groups of upregulation and downregulation. We conducted functional enrichment analysis of the two groups by GO and KEGG. Regarding GO analysis, BP, CC, and MF terms were applied to annotate these DERBPs’ functions. BP analysis demonstrated DERBPs with upregulation were primarily associated with defense response to viruses, RNA catabolic processes and RNA phosphodiester bond hydrolysis (Figure 2A), and that the DERBPs with downregulation were mainly related to the regulation of RNA splicing, RNA splicing and mRNA metabolic process (Figure 2B). By the CC analysis, both upregulated and downregulated DERBPs were enriched in total ribonucleoprotein granules and cytoplasmic ribonucleoprotein granules (Figure 2). MF analysis results showed DERBPs with upregulation were associated with catalytic activity acting on RNA, double-stranded RNA binding and mRNA 3′-UTR binding (Figure 2A), while those with downregulation were largely linked with catalytic activity acting on RNA, mRNA 3′-UTR binding and translation regulator activity (Figure 2B). The KEGG analysis demonstrated DERBPs with upregulation were significantly related to influenza A, mRNA surveillance pathway, ribosome biogenesis in eukaryotes and RNA transport. And those with downregulation were significantly associated with RNA transport, mRNA surveillance pathway, and RNA polymerase degradation (Table 1).
[image: Figure 2]FIGURE 2 | GO enrichment analysis of DERBPs based on BP, CC, and MF biological processes. (A) GO enrichment analysis of upregulated RBPs. (B) GO enrichment analysis of downregulated RBPs. The y-axis shows a significantly enriched project (p < 0.05, FDR < 0.05). GO, Gene Ontology; DERBPs, differentially expressed RBPs; BP, biological process; CC, cellular component; MF, molecular function.
TABLE 1 | KEGG pathway analysis of DERBPs.
[image: Table 1]Selection of RBPs Related to Prognosis
In order to study the pivotal DERBPs in GBM, we utilized Cytoscape software to create a PPI network, containing 120 nodes and 260 edges (Supplementary Figure S2). To deeply evaluate the prognosis values of 120 RBPs, univariate Cox regression analysis of each for OS was conducted and we obtained 6 prognosis-associated candidate hub RBPs. As shown in Figures 3A, 2 RBPs displayed an inverse correlation with survival, and 4 RBPs exhibited a positive correlation with survival (p < 0.05) (Figure 3A and Table 2). Following that, multiple stepwise Cox regression was used to evaluate the influence of the 6 potential hub RBPs on patient survival time and clinical outcomes. We eventually identified 3 hub RBPs, including G Protein Nucleolar 3 Like (GNL3L), BicC Family RNA Binding Protein 1 (BICC1), and KH RNA Binding Domain Containing, Signal Transduction Associated 2 (KHDRBS2), correlating with OS (Figure 3B and Table 2). High expression of BICC1 was found in GBM and its expression was inversely correlated with survival (HR > 1). Low expression of KHDRBS2 was found in GBM and its level was positively correlated with survival (HR < 1). Of interest, expression of GNL3L was dramatically higher in GBM, but its increase in expression exhibited a positive correlation with survival (HR < 1). Our results collectively implied that these 3 hub RBPs had close relations with the OS in GBM patients.
[image: Figure 3]FIGURE 3 | Cox regression analysis in TCGA GBM cohort. (A) Univariate Cox regression analysis for identification of hub RBPs in TCGA dataset. (B) Multivariate Cox regression analysis to identify prognosis related hub RBPs.
TABLE 2 | 3 prognosis-associated hub RBPs identified by univariate and multivariate Cox regression analysis.
[image: Table 2]The Survival and Treatment Response was Predicted by the 3 Hub RBPs-Derived Risk Score Model in TCGA GBM Cohort
Next, a risk score model was built according to the above 3 hub RBPs. Each patient’s risk score got acquired from the formula below: [image: image] “E” indicates the expression values of pertinent RBPs, and “β” represents the regression coefficient determined from multivariate Cox stepwise regression analysis according to the TCGA GBM cohort (Table 2). Then, we assessed predictive ability by conducting a survival analysis. TCGA GBM patients got classified into low- and high-risk subgroups with the standard of the median value. The data suggested compared with the low-risk group, the high-risk group presented an unsatisfying OS status (Figure 4A). A time-dependent ROC analysis was used to further assess the predictive capability of the 3 RBPs-derived risk model. Our data revealed RBPs risk score model’s area under the ROC curve (AUC) was 0.723 (Figure 4B), suggesting it displayed a moderate diagnosis ability. Figures 4C–E showed the expression heat maps of the 3 hub RBPs, patient survival status and the risk score of the signature comprised of 3 RBPs in the low and high-risk subgroups.
[image: Figure 4]FIGURE 4 | Risk score analysis of 3-genes prognostic model in TCGA cohort. (A) OS analysis among TCGA GBM patients stratified by risk score. (B) ROC curve for forecasting OS based on risk score. (C) Expression heat map of the 3 hub RBPs. (D) Survival status of the TCGA GBM patients. (E) The risk score values in low- and high-risk subgroups. OS, overall survival.
A high-risk score was strongly linked with IDH1-wild type and mesenchymal subtype, according to an analysis of the correlation between the risk score and clinicopathological features (Figures 5A,B and Supplementary Table S1). The IDH1-wild type or mesenchymal subtype GBM was linked to a bad prognosis (Supplementary Figure S3), as shown in earlier research (Yan et al., 2009; Wang et al., 2017), implying that a high-risk score might be associated with an unsatisfying prognosis.
[image: Figure 5]FIGURE 5 | Risk score predicts the prognosis and treatment response in TCGA GBM cohort. (A) Risk scores in IDH1-mut GBM and IDH1-wt GBM. (B) Risk scores in Non-Mes GBM and Mes GBM. (C–D) KM OS analysis of TCGA GBM patients stratified by risk score combined with IDH1 status (C) and combined with expression subtypes (D). (E–F) KM OS analysis of TCGA GBM patients with radiotherapy (E), or TMZ chemotherapy (F) according to the risk score. KM, Kaplan-Meier; OS, overall survival; IDH, isocitrate dehydrogenase; IDH1-wt, IDH1-wild type; IDH1-mut, IDH1-mutation; Mes, mesenchymal; Non-Mes, non-mesenchymal; TMZ, temozolomide. Data are shown as mean ± SEM.
KM survival analysis of the above two groups was performed to confirm the risk score’s prognosis relevance. Survival analysis indicated GBM patients with a high-risk score and IDH1-wild type had the worst results (Figure 5C), and in the non-mesenchymal subgroup, patients with a high-risk score had a shorter survival time than those with a low-risk score (Figure 5D). Univariate and multivariate analyses were employed to validate the prognosis significance of risk score (Supplementary Table S2). Moreover, in GBM patients suffering from radiation or TMZ chemotherapy, a high-risk score was linked to a poor result, showing the risk score might predict the treatment effects (Figures 5E,F).
The Prognosis and Treatment Response was Predicted by the Risk Score Model in CGGA GBM Cohort
To deeply confirm the prediction ability of risk score, the 3 hub RBPs-derived risk score model was assessed, and KM survival analysis got performed in CGGA dataset of GBM. It was found that those with a high-risk score got a worse OS than patients with a low-risk score (Figure 6A). The AUC of the prognostic model counted 0.707, which showed a similar result compared to AUC in TCGA cohort (Figure 6B). Figures 6C–E showed the expression heat maps of 3 hub RBPs, patient survival status, and the risk score of the signature comprised of 3 RBPs in low- and high-risk subgroups. We found that compared to GBM patients with IDH1-mutation and a low-risk score, those with IDH1-mutation and a high-risk score tended to have a poor outcome, while no obvious survival difference was observed in GBM patients with a high-risk or low-risk score in the IDH1-wild type subgroup (Figure 7A), probably because of tumor heterogeneity and small sample size. Similarly, in comparison with non-mesenchymal GBM patients having low-risk scores, those having high-risk scores had worse survival time (Figure 7B). Finally, a high-risk score was linked with bad results in GBM patients undergoing radiotherapy or TMZ chemotherapy (Figures 7C,D). Collectively, these findings suggested the risk score model could forecast GBM patients’ prognosis and therapy evaluation.
[image: Figure 6]FIGURE 6 | Risk score analysis of 3-genes prognostic model in CGGA cohort. (A) OS analysis among CGGA GBM patients stratified by risk score. (B) ROC curve for forecasting OS based on risk score. (C) Expression heat map of the 3 hub RBPs. (D) Survival status of the CGGA GBM patients. (E) The risk score values in low- and high-risk subgroups. OS, overall survival.
[image: Figure 7]FIGURE 7 | Performance of risk score in predicting the survival and treatment response in CGGA GBM cohort. (A) Risk scores in IDH1-mut GBM and IDH1-wt GBM (left), and KM OS analysis of CGGA GBM patients stratified by risk score combined with IDH1 status (right). (B) Risk scores in Non-Mes GBM and Mes GBM (left), KM OS analysis of CGGA GBM patients stratified by risk score combined with expression subtypes. (C–D) KM OS analysis of CGGA GBM patients with radiotherapy (C), or TMZ chemotherapy (D) according to the risk score. KM, Kaplan-Meier; OS, overall survival; IDH, isocitrate dehydrogenase; IDH1-wt, IDH1-wild type; IDH1-mut, IDH1-mutation; Mes, mesenchymal; Non-Mes, non-mesenchymal; TMZ, temozolomide. Data are shown as mean ± SEM.
Nomogram Design on the Basis of the Hub RBPs
3 RBPs signatures were combined for nomogram construction to create a predictive estimation approach (Figure 8). According to the multivariate Cox analysis, points were distributed to respective variables through the nomogram scale. A horizontal line was drawn for each variable with demarcations for the number of points, the whole points were counted for each patient and generalized to a range of 0–100. The evaluated survival rates of GBM patients could be determined by drawing a vertical line from the total point axis to each prognosis axis in the next 3 years. This nomogram would facilitate the clinical treatment for GBM patients.
[image: Figure 8]FIGURE 8 | Nomogram for predicting 1, 2, and 3-years OS of GBM patients in the TCGA cohort.
Validating the Differentially Expressed 3 Hub RBPs in GBM Cells
To confirm the dysregulated expressions of the 3 hub RBPs (BICC1, GNL3L, and KHDRBS2) in GBM, western blot was carried out to measure their protein levels in GBM cells and normal glial cells. Figure 9 indicated BICC1 and GNL3L were upregulated in GBM cells, while KHDRBS2 was downregulated.
[image: Figure 9]FIGURE 9 | Validation of the differential expression of the 3 RBPs in GBM cells. (A–D) Western blot images (A) and the relevant quantification of BICC1 (B), GNL3L (C), and KHDRBS2 (D) in GBM cell line U-87, primary GBM cells (GBM-1 and GBM-2), and normal glial cell line HEB. The relative expression of target proteins is quantified in comparison with β-Actin and normalized to the corresponding expression in HEB cells. Data are shown as mean ± SEM from five independent experiments, *p < 0.05, **p < 0.01, ***p < 0.001.
DISCUSSION
GBM is featured with complicated background on the molecular level (Reifenberger et al., 2016), while high-throughput data on GBM studies makes it easier to find the molecular diagnosis and prognosis biomarkers. In our context, we comprehensively investigated the DERBPs of GBM from TCGA and GTEx cohorts, and uncovered 3 hub RBPs (BICC1, GNL3L, and KHDRBS2) abnormally expressing in GBM. The risk score model originated from the 3 hub RBPs exhibited vital functions in the prediction of GBM patients’ prognosis and treatment response.
Firstly, we screened for the GBM DERBPs through RNA sequencing data from TCGA and GTEx datasets, rather than only TCGA. The normal brain tissue samples in TCGA were acquired from tissues surrounding tumors, which couldn’t represent normal brain tissue samples completely. The GTEx dataset contained 1,092 samples of 11 brain regions from 201 normal individuals (Consortium, 2015; Mu et al., 2019). In this way, the discovered RBPs (52 upregulated and 108 downregulated) might surely have a stable and particular expression in GBM than that in normal control. We built co-expression and PPI networks for these RBPs by thoroughly studying key biological pathways. Next, we discovered that BICC1, GNL3L, and KHDRBS2 levels were associated with survival by univariate and multivariate Cox regression analysis. Among them, upregulated BICC1 exhibited a negative correlation with survival, indicating it functioned as an oncogene. Downregulated KHDRBS2 displayed a positive correlation with survival, so it might function as a tumor suppressor gene in GBM. Of note, expression of GNL3L was considerably higher in GBM while being positively correlated with survival, so GNL3L was an indicator of lower risk in GBM (HR < 1). In addition, western blot analysis confirmed that the 3 hub RBPs were differentially expressed in GBM cells. As a result, the risk score model was created using the signature of the 3 hub RBPs.
According to prior research, regulation of translation, RNA processing and RNA metabolism are all linked to the incidence and progression of a range of human diseases (Subramanian and Simon, 2010; Caffarel and Coleman, 2014; Reifenberger et al., 2016). In our study, the functional enrichment analysis indicated the abnormal RBPs governed the carcinogenesis and development of GBM via the mRNA surveillance pathway, RNA degradation, ribosome synthesis, and RNA degradation. Although most connections between RBPs and tumors remain confusing, there are still some findings of them (Wang et al., 2018). For instance, PTBP1 can enhance glioma proliferation and migration by increasing the inclusion of exon 3 in RTN4 mRNA (Cheung et al., 2009). HNRNPA2B1 promotes glioma development and aggressiveness (Golan-Gerstl et al., 2011). PTRF, alias Cavin1, is recognized as a non-canonical RBP in GBM and is also identified as a prognosis-related factor (Huang et al., 2018; Wang et al., 2020a). In addition, FNDC3B, a membrane protein, not only promotes migration and invasion of glioma cells, but can also act as a prognostic biomarker (Fischer et al., 2017; Wang et al., 2020a). SLC25A43, a molecular marker, is also proved to be related to a poor prognosis in GBM (Haitina et al., 2006; Wang et al., 2020a).
Herein, the 3 hub RBPs-derived risk score performed well in predicting the GBM patients’ survival status in TCGA, and their prognosis functions could be reproduced in CGGA. According to the ROC curve study, the 3 RBPs signatures had the diagnosis ability to determine the GBM patients with a bad prognosis. The constructed nomogram facilitated the OS prediction in the following 3 years more quantitatively. In addition, the risk score model could forecast the treatment effects of GBM patients undergoing radiotherapy or chemotherapy. Therefore, a prospective risk score model derived from multi-RBPs signature was established, which could be utilized as a biomarker for GBM’s prognosis and prediction.
Among the 3 hub RBPs, BICC1 is implicated in the post-transcriptional regulation of mRNA (Rothé et al., 2015; Davidson et al., 2016). Inhibition of BICC1 expression can promote cell apoptosis and suppress cell proliferation in tumor cells (Wang et al., 2020b). GNL3L, HSR1-MMR1 family, is a putative nucleolar GTPase existing throughout eukaryotes (Thoompumkal et al., 2016). GNL3L has been discovered as a factor involved in the maintenance of the tumorigenic properties of tumor-initiating cells (Kannathasan et al., 2020). Moreover, GNL3L may enhance NF-κB-regulated tumor cell viability via the upregulation of antiapoptosis-related genes (Thoompumkal et al., 2015; Kannathasan et al., 2020). However, no previous study has assessed the effects of GNL3L in GBM. As for KHDRBS2, although the relation of KHDRBS2 overexpression to better OS in lung adenocarcinoma is well understood (Li et al., 2020b), little is known about it in GBM. The biological activities of these 3 hub RBPs have offered some insight into the value of risk score in GBM prognosis and prediction, but more research of them in GBM development and the potential mechanisms is needed.
The risk score’s applicable efficacy may be beneficial for directing treatment options to improve the clinical outcome of GBM patients. Patients with high-risk scores should accept aggressive treatment, while those with low-risk scores should avoid excessive therapies that might result in unwanted side effects. As a result, it is critical to put the risk score into clinical practice that is guaranteed by promising research to deeply confirm the value of risk score in GBM prediction and prognosis.
This study has some limitations. First, the number of clinical samples used to verify 3 hub RBPs is not large enough. Secondly, the biological functions of these 3 RBPs in GBM need to be further explored. Finally, the clinical application value of risk scores remains to be further verified.
Our systematic exploration of DERBPs through a sequence of bioinformatics analyses in GBM, and identified a total of 160 DERBPs (52 upregulated and 108 downregulated). The results of functional analysis showed that RBPs are mainly involved in mRNA surveillance pathway, RNA degradation, ribosome synthesis, and RNA degradation. Univariate and multiple COX regression analysis showed that BICC1, GNL3L, and KHDRBS2 are related to the prognosis of GBM patients. A risk score model was constructed based on the differential expressions of 3 hub RBPs. In addition, we analyzed the expression levels of 3 hub RBPs in GBM tissues and cell lines. This risk score model performs favorably in the prediction of GBM patients’ therapy and prognosis, which potentially optimizes treatment decisions.
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Lung adenocarcinoma (LUAD) is a prevalent cancer killer. Investigation on potential prognostic markers of LUAD is crucial for a patient’s postoperative planning. LUAD-associated datasets were acquired from Gene Expression Omnibus (GEO) as well as The Cancer Genome Atlas (TCGA). LUAD metabolism-associated differentially expressed genes were obtained, combining tumor metabolism-associated genes. COX regression analyses were conducted to build a five-gene prognostic model. Samples were divided into high- and low-risk groups by the established model. Survival analysis displayed favorable prognosis in the low-risk group in the training set. Favorable predictive performance of the model was discovered as hinted by receiver’s operative curve (ROC). Survival analysis and ROC analysis in the validation set held an agreement. Gene Set Enrichment Analysis (GSEA), tumor mutation bearing (TMB), and immune infiltration differential analysis were performed. The two groups displayed differences in glycolysis gluconeogenesis, P53 signaling pathway, etc. The high-risk group showed higher TP53 mutation frequency as well as TMB. The low-risk group displayed higher immune activity along with immune score. Altogether, this study casts light on further development of novel prognostic markers for LUAD.
Keywords: lung adenocarcinoma, prognosis prediction, GSEA enrichment analysis, TP53, immune infiltration
INTRODUCTION
Lung cancer (LC) is a leading cause of cancer-associated deaths and the commonest cancer worldwide (Chen et al., 2016). There is a lack of specific symptoms and tumor markers in the early stage of lung adenocarcinoma (LUAD). Most patients are in the late stage when diagnosed and develop lymph nodes and multiple metastases in other sites (Siegel et al., 2019). Major therapeutic methods for LUAD include surgical excision, platinum chemotherapy, radiotherapy, or/and targeted therapy. Unfortunately, LUAD patients have a poor prognosis, and terminal patients usually relapse in the early stage, with a 5 years overall survival (OS) lower than 20% (Torre et al., 2016; Siegel et al., 2021). Thus, the development of prognostic markers for LUAD is warranted.
Metabolism is a prerequisite for all life activities of an animated body, while tumor occurrence is often accompanied by reprogramming of cell metabolism. A tumor reprograms the metabolism pathway to meet the requirements for malignant cell biosynthesis and nutrition, which is regarded as one of the markers of cancers (DeBerardinis and Chandel, 2016; Pavlova and Thompson, 2016). Studies displayed two hallmarks of cancer metabolism: metabolic interactions with the microenvironment as well as alterations in metabolite-driven gene regulation (Pavlova and Thompson, 2016; Anastasiou, 2017). The following are typical examples: Enhanced glycolysis stimulates production of lactic acid, and the latter inhibits T cell proliferation in the tumor microenvironment (Fischer et al., 2007). Oscar et al. (Colegio et al., 2014) also found that massive lactic acid in the tumor microenvironment stimulates M2-like polarization of macrophages to accelerate cancer progression. Thus, further understanding of cancer metabolism pathway and finding key metabolism targets offer guidance for targeted therapy of cancer metabolism.
With the rapid development of biological technology and bioinformatics, the exploration of cancer diagnosis and prognostic biomarkers based on bioinformatics method has recently been in the limelight. Mo et al. (2020) identified and validated the prognosis potential of hypoxia-related feature genes in LUAD based on the hypoxia-related microenvironment. These genes may be new targets for immune therapy. Zhang et al. (2019) built a risk score model using 14 immune-related genes, presenting a rationale for the prognosis of diverse immunophenotypes. Gao et al. (2021) constructed a ferroptosis-associated gene signature using bioinformatics analysis and hinted at a possible option for LUAD treatment by targeting ferroptosis-associated genes. Therefore, it is promising to establish a prognostic model based on public data combining immunity, hypoxia, and other characteristics.
Here, a five-gene prognostic model was established based on mRNA expression data of LUAD in The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) using several bioinformatics methods. We also identified metabolism-associated prognostic markers in LUAD. This investigation offers a rationale for the development of prognostic biomarkers of LUAD.
MATERIALS AND METHODS
Dataset Download and Processing
mRNA expression data (normal: 59, tumor: 535) in fragments per kilo-base of exon per million fragments mapped (FPKM) and count formats (normal: 59, tumor:535), clinical data, and single-nucleotide variant (SNV) data (VarScan2 Annotation, sample number: 561) were downloaded from TCGA (https://portal.gdc.cancer.gov/; October 20th, 2020). Dataset GSE72094 was accessed from GEO (https://www.ncbi.nlm.nih.gov/geo/) as the validation set. Raw data were provided by GPL15048 platform.
Screening of Lung Adenocarcinoma Metabolism-Associated Genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis
Differential expression analysis was undertaken on the normal group and tumor group in the training set using “edgeR” package to screen differentially expressed genes (DEGs). The threshold value was set as |logFC| > 1.5 and false discovery rate (FDR) < 0.05 (Robinson et al., 2010). Tumor metabolism-associated gene sets compiled by Possemato et al. (2011) were downloaded from Pubmed (Supplementary Table S1). DEGs were intersected with tumor metabolism-associated genes to obtain DEGs associated with LUAD metabolism. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on metabolism-associated DEGs using “clusterprofiler” package (q value < 0.05) (Yu et al., 2012).
Screening of Prognostic Feature Genes Associated With Metabolism in Lung Adenocarcinoma
Samples whose survival time is less than 30 days in TCGA-LUAD were removed. Univariate COX regression analysis was undertaken on metabolism-associated DEGs using “survival” package to obtain survival-related DEGs in LUAD (p < 0.05) (Modeling Survival Data, 2013). To avoid overfitting of the statistical model, “glmnet” package was used to perform LASSO COX regression analysis on the above-screened DEGs (Friedman et al., 2010). Penalty parameter “λ” was selected to remove genes with strong relevance through cross validation to reduce the complexity of the model. Finally, “survival” package was used to undertake multivariate COX regression analysis on the above genes. Prognostic feature genes associated with LUAD metabolism were identified. A risk score model was established, and the risk score was calculated by using the following formula:
[image: image]
The number of prognostic feature genes associated with metabolism is denoted by n; the expression level of gene i is denoted by expi; the regression coefficient of gene i is denoted by βi.
Analysis of Predictive Performance of Risk Score
The risk scores of patients in TCGA-LUAD were calculated based on the expression levels of prognostic feature genes associated with metabolism. The patients were divided into high- and low-risk groups with median risk score as the threshold value. Survival curves of the two groups were drawn using “survival” package. Receiver’s operative curve (ROC) of patient’s 1-, 3-, and 5 years OS was drawn with “timeROC” package. The area under the curve (AUC) was calculated. The results were validated in the validation set to evaluate the predictive performance of the model (Blanche et al., 2013).
Gene Set Enrichment Analysis on High- and Low-Risk Groups
Gene Set Enrichment Analysis (GSEA) enrichment analytics tool was accessed from http://www.gsea-msigdb.org/gsea/index.jsp. The signaling pathway enrichment in high- and low-risk groups was analyzed using GSEA software (p < 0.05) to differentiate biological functions in the two groups. The significance of the enrichment score was analyzed by permutation test (permutation test time: 1,000) (Subramanian et al., 2005).
Tumor Mutation Bearing in Two Groups and Analysis of Mutation Genes in Lung Adenocarcinoma
Tumor mutation bearing (TMB) is defined as the total number of detected somatic cell gene coding errors, base substitutions, errors in gene insertion, or deletions per million bases (Yarchoan et al., 2017). The significance of TMB in the two groups in TCGA-LUAD was analyzed using Wilcoxon test. Mutation genes in the high- and low-risk groups were analyzed, combining SNV mutation data. Waterfall plots of the top 30 gene mutations in the two groups were drawn by R package “GenVisR” (Skidmore et al., 2016).
Evaluation of Immune Infiltration in Two Groups
R package “estimate” was used to assess the stromal score, immune score, and tumor purity in LUAD samples in TCGA. Single simple GSEA (ssGSEA) analysis was performed on 29 immune cells using “GSVA” package to assess the immune infiltration levels of each tumor sample. Differential expression analysis was performed on immune infiltration levels in the two groups using Wilcoxon test (Barbie et al., 2009).
RESULTS
Differentially Expressed Genes Identification and Enrichment Analyses
Altogether, 3,591 DEGs were acquired through differential expression analysis on normal and tumor groups in TCGA-LUAD in the training set (|logFC| > 1.5, FDR <0.05), including 2,553 upregulated and 1,038 downregulated genes (Figure 1A). As shown in Figure 1B, 562 LUAD metabolism-associated DEGs were acquired by overlapping DEGs and tumor metabolism-associated gene sets. GO and KEGG enrichment analyses were undertaken on metabolism-associated DEGs in LUAD. GO enrichment analysis showed that these genes were mostly enriched in biological functions including regulation of membrane potential, small molecule catabolic process, organic acid transport, and cellular response to xenobiotic stimulus (Figure 1C). KEGG enrichment analysis showed that these genes were mostly enriched in signaling pathways including the metabolism of xenobiotics by cytochrome P450, retinol metabolism, drug metabolism-other enzymes, arachidonic acid metabolism, and purine metabolism (Figure 1D).
[image: Figure 1]FIGURE 1 | Screening of metabolism-associated DEGs in LUAD and functional enrichment analysis. (A) Volcano plot of differential expression analysis on tumor group and normal groups in TCGA-LUAD dataset. Red: significantly upregulated DEGs. Green: significantly downregulated DEGs. (B) Overlap of DEGs and metabolism-associated genes in LUAD to acquire metabolism-associated DEGs in LUAD. (C) Bubble diagram of GO enrichment analysis on DEGs associated with metabolism in LUAD. Nodes: enriched terms. The node size is proportional to the number of enriched genes; the deeper red color of node indicates the smaller p values. (D) Bubble diagram of KEGG enrichment analysis on DEGs associated with metabolism in LUAD. Nodes: enriched terms. The node size is proportional to the number of enriched genes; the deeper red color of node indicates the smaller p values.
Prognostic Model Construction Based on Feature Genes
Combining patient’s survival data in TCGA-LUAD in the training set, 562 DEGs associated with metabolism of LUAD were subjected to univariate COX regression analysis. Altogether, 117 genes relevant to survival were acquired (Supplementary Table S2). Optimal penalty parameter “λ” was chosen through cross validation. Eight metabolism-associated prognostic feature genes were acquired (Figures 2A,B). These eight feature genes were subjected to multivariate regression analysis. Lastly, five optimal prognostic feature genes associated with LUAD metabolism were obtained to establish a risk score model (Supplementary Table S3). Protective factors were CYP4B1 and SLC24A4. Hazard ratio (HR) was 0.94 and 0.89. Risk factors were CRIK2 (1.09), ABCC2 (1.05), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (1.27) (Figure 2C).
[image: Figure 2]FIGURE 2 | Construction of a five-gene based prognostic model. (A) The coefficients of 117 survival-related genes vary with the penalty parameter lambda in LASSO regression analysis. (B) Selection range of the optimal penalty parameter (λ) of LASSO COX regression model. The upper coordinate indicates the number of genes corresponding to different lambda values. (C) Forest plot of multivariate COX regression analysis. *p < 0.05. **p < 0.01.
Evaluation of the Performance of the Five-Gene Based Prognostic Model
Risk scores of samples in TCGA-LUAD in the training set were calculated. Samples were then divided into high- and low-risk groups according to the median score. Meanwhile, we drew survival status plots, survival curves, and ROC curves of the two groups (Figures 3A–D). Survival analysis suggested poorer survival status in the high-risk group in comparison with the low-risk group. ROC curve showed that AUC values of 1-, 3-, and 5 years survival curves were 0.7, 0.7, and 0.66. The favorable prognosis predictive performance of the model was further proved by survival curve and ROC curve of GSE72094 in the validation set (Figures 3E,F). As shown by heat map of expression levels of five feature genes in the two groups, with the increasing of risk scores, the expression of risk factors (CRIK2, ABCC2, GAPDH) were gradually elevated, while the expression of protective factors (CYP4B1, SLC24A4) was decreased (Figure 3G). Overall, the constructed model could predict the LUAD patient’s prognosis well.
[image: Figure 3]FIGURE 3 | Performance of the prognostic model. (A) Distribution of risk score of each LUAD sample in the training set (green: patients having low-risk score; red: patients having high-risk score). (B) Scatter diagram of survival status of LUAD patients according to risk score (green: survived patients; red: dead patients). (C) Survival curves of high- and low-risk groups in the training set. (D) ROC curves of the prognostic model in the training set. (E) Survival curves of the high- and low-risk groups in the validation set. (F) ROC curves of the prognostic model in the validation set. (G) Heat map of the expression of the five feature genes in the high- and low-risk groups in the training set.
Gene Set Enrichment Analysis Enrichment Analysis
Based on KEGG pathway enrichment analysis, the high- and low-risk groups displayed significant differences in pathways like pyrimidine metabolism, glycolysis gluconeogenesis, P53 signaling pathway, glyoxylate and dicarboxylate metabolism, riboflavin metabolism, and purine metabolism (Figures 4A–F). These pathways were mostly relevant to signaling pathways like cell carbohydrate metabolism pathway, lipid metabolism pathway, and P53 signaling pathway relevant to cell cycle, apoptosis, and aging.
[image: Figure 4]FIGURE 4 | GSEA enrichment analysis. (A–F) Enrichment of high- and low-risk groups in pyrimidine metabolism, glycolysis gluconeogenesis, P53 signaling pathway, glyoxylate and dicarboxylate metabolism, riboflavin metabolism, and purine metabolism, respectively.
Analysis of Tumor Mutation Bearing and TP53 Mutation
As indicated by Wilcoxon test, high-risk groups exhibited significantly higher TMB (Figure 5A). Further analysis on gene mutation revealed differences in the top30 mutation genes in the two groups (Figures 5B,C). GSEA showed that high- and low-risk groups had differences in the P53 signaling pathway. Combining clinical data and SNV data in TCGA-LUAD and GSE72094 datasets, we acquired mutation of TP53 genes in the two groups in two datasets. Chi-square test indicated that TP53 mutation frequency in the high-risk group was evidently higher than that in the low-risk group in two datasets (p < 0.001, Table 1 and Figures 5D,E.
[image: Figure 5]FIGURE 5 | Analysis of TMB and mutation genes. (A) Box plot of TMB differences in high- and low-risk groups in TCGA-LUAD dataset. Blue: low-risk group. Yellow: high-risk group. (B) Waterfall plot of top30 genes in low-risk group in TCGA-LUAD. X-axis: samples; y-axis: top 30 genes. Different colors of modules represent different mutation types. (C) Waterfall plot of top 30 genes in the high-risk group in TCGA-LUAD. (D) Histogram of TP53 mutation in high- and low-risk groups in TCGA-LUAD. X-axis: TP53-mutation and TP53-wild in two groups. Y-axis: sample number. (E) Histogram of TP53 mutation in two groups of GSE72094 validation set.
TABLE 1 | TP53 frequency status in high and low risk groups in TCGA-LUAD and GSE72094 datasets.
[image: Table 1]Differential Expression Analysis of Immune Infiltration
R package “estimate” was used to evaluate the infiltration levels of stromal cells, immune cells in TCGA-LUAD samples to acquire stromal score, immune score, and ESTIMATE score. Stromal score, immune score, and ESTIMATE score in the high-risk group were evidently lower than those in the low-risk group (Figure 6A). Subsequently, ssGSEA method was used to analyze the immune activity of LUAD samples. Enrichment levels of 29 types of immune cell sets were acquired. Differences in immune infiltration and activity of these 29 cells in the two groups were also compared. Stromal score, immune score, and ESTIMATE score were decreased with the elevation of risk score, whereas tumor purity was increased. the low-risk group showed higher immune infiltration levels (Figure 6B). In detail, immune cells like T helper cells in the low-risk group had higher infiltration levels (p < 0.001, Figure 6C), and most immune function products such as human leukocyte antigen (HLA) had higher expression level (Figure 6D). In summary, the low-risk group showed higher immune activity, which may lead to better prognosis.
[image: Figure 6]FIGURE 6 | Analysis of differences in immune infiltration in two groups in TCGA-LUAD dataset. (A) Differential expression analysis on stromal score, immune score, and ESTIMATE score in the high- and low-risk groups. Blue: low-risk group, red: high-risk group. (B) Enrichment levels of 29 immune-related cells and types in two groups. Tumor purity, stromal score, immune score, and ESTIMATE score of each patient in two groups. (C) Analysis of differences in immune cell infiltration levels in two groups. Blue: low-risk group, red: high-risk group. (D) Analysis of differences in each immune function in two groups. Blue: low-risk group. Red: high-risk group.
DISCUSSION
With the development of scientific research, it has been found that researching a direction solely (such as genome, proteome, transcriptome) cannot explain all biomedical problems. From a comprehensive perspective, analyses of interaction between genes, proteins, and molecules also cast light on the pathogenesis of human diseases. The bioinformatics method emerged as required by time. Biomarkers found by this method greatly enhance tumor research efficiency. To date, the establishment of cancer prognostic models has been a mainstream of tumor research. For instance, Zheng et al. (2021) identified 12 prognostic feature genes associated with ferroptosis in low level glioma. Jiang et al. (2019) analyzed the glycolysis gene expression profiles of hepatocellular carcinoma and acquired a prognostic model based on metabolism-associated feature genes. This investigation combined tumor metabolism-associated gene sets and TCGA-LUAD dataset to identify metabolism-associated prognostic markers in LUAD and established a five-gene-based prognostic model. The results of this investigation cast light on the research and development of novel biomarkers of LUAD.
TP53 is a common mutation gene in tumors (Giacomelli et al., 2018). We analyzed TP53 mutation in two groups. The high-risk group showed high TP53 mutation frequency whether in TCGA-LUAD or GSE72094. TP53 mutation is an adverse prognostic factor for advanced non-small-cell lung cancer (NSCLC) (Jiao et al., 2018) and a hallmark event of advanced sporadic colon cancer (Watanabe et al., 2019). Moreover, Haupt et al. (2019) found that high TP53 frequency and P53 network dysregulation trigger low survival rate of male cancer patients in North America. It is worthy to note that GSEA enrichment analysis also showed differences in P53 signaling pathway in the high- and low-risk groups. A study also found important functions that P53 performs in metabolism homeostasis. P53 inhibits aerobic glycolysis and stimulates oxidative phosphorylation via several mechanisms to offset the Warburg effect of cancer (Berkers et al., 2013). Thus, we speculated that P53 signaling pathway was inhibited by high TP53 mutation frequency in the high-risk group. Therefore, the role as an inhibitor that P53 played was hampered leading to poor prognosis of the high-risk group.
Based on GSEA enrichment analysis, the two groups mainly showed differences in pathways like pyrimidine metabolism and glycolysis gluconeogenesis. Enhanced Warburg effect and nucleotide metabolism are considered as markers of cancers (Lu, 2019; Siddiqui and Ceppi, 2020). A reference reported that enhanced Warburg effect glycolysis accelerates lactic acid accumulation to influence the tumor microenvironment (TME) and may damage immune cell functions in the TME (Vaupel et al., 2019). In our five-gene-based risk score model, GAPDH has been reported as a key enzyme during glycolysis (Zhong et al., 2018). In addition, CARM1-mediated GAPDH methylation inhibits glycolysis in liver cancer cells (Zhong et al., 2018). Pyridine is an important component of RNA. Pyridine metabolism disorder triggers life activities disorders like DNA copy and protein translation, which may also indirectly lead to immune response disorder. Thus, we postulated that enhanced glycolysis and pyridine metabolism were factors for patient’s poor prognosis.
We also analyzed the two groups with respect to immune cell infiltration. It was discovered that the low-risk group had higher immune scores and immune activity, among which immune scores of helper T cell, dendritic cells (DCs), HLA, and C-C chemokine receptor (CCR) were significantly higher than other immune cells. HLA is the expression product of major histocompatibility complex (MHC) class I molecules, which enables to present endogenous antigen and activate CD8+T cells. CD8+T cells can identify infected cells or cancer cells and activate B cells to form different antigens to perform body immunity functions (Rock et al., 2016). Helper T cells abound with cell classifications, among which Tfh cells can generate IL-21 and express Bcl6 to help B cells to form corresponding antigens. Treg cells can regulate immune response to maintain immune cell homeostasis (Zhu and Zhu, 2020). DCs are center modulators of the adaptive immune responses and prerequisite for T-cell-mediated cancer immunity (Gardner and Ruffell, 2016). CCL16, a ligand of CCR1, accelerates the anti-cancer impacts of DCs and macrophages (Cappello et al., 2006). In this investigation, the low-risk group showed a favorable prognosis. The possible cause may be that helper T cells and MHC class I activate CD8+T cells in TME and activate B cells to secrete a lot of cytokines along with CCR regulation.
On the above, this investigation used bioinformatics analysis to screen metabolism-associated prognostic markers of LUAD. The markers can predict patient’s prognosis well and shed light on the development of novel prognostic markers for LUAD. However, these results came from pure bioinformatics analysis and lack of experimental validation. A series of molecular, cellular, and animal experiments were planned for the future to clarify the mechanism of feature genes screened in LUAD.
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Considering that traditional biological experiments are expensive and time consuming, it is important to develop effective computational models to infer potential essential proteins. In this manuscript, a novel collaborative filtering model-based method called CFMM was proposed, in which, an updated protein–domain interaction (PDI) network was constructed first by applying collaborative filtering algorithm on the original PDI network, and then, through integrating topological features of PDI networks with biological features of proteins, a calculative method was designed to infer potential essential proteins based on an improved PageRank algorithm. The novelties of CFMM lie in construction of an updated PDI network, application of the commodity-customer-based collaborative filtering algorithm, and introduction of the calculation method based on an improved PageRank algorithm, which ensured that CFMM can be applied to predict essential proteins without relying entirely on known protein–domain associations. Simulation results showed that CFMM can achieve reliable prediction accuracies of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database, which are remarkably higher than 14 competitive state-of-the-art predictive models as a whole, and in addition, CFMM can achieve satisfactory predictive performances based on different databases with various evaluation measurements, which further indicated that CFMM may be a useful tool for the identification of essential proteins in the future.
Keywords: essential proteins, collaborative filtering model, PDI network, data integration, prediction model
INTRODUCTION
Researches show that essential proteins are not only important for survival of organisms but also play critical roles in the development of life processes. Hence, it is of practical significance to identify potential essential proteins (Meng et al., 2021). With the development of biotechnologies, some essential proteins have been identified successively by traditional biological experiments such as single gene knockouts (Giaever et al., 2002), RNA interference (Cullen and Arndt, 2005), and so on. However, since these traditional biological experiments are quite time consuming and expensive, it has become a hot topic to predict essential proteins by developing computational models (Wang et al., 2013). Up to now, a large number of computational models have been developed to detect essential proteins based on protein–protein interaction (PPI) networks, which can be roughly classified into two major categories. Among them, the first category of models focuses on adopting only topological features of PPI networks to predict essential proteins. For instance, based on the rule of centrality–lethality proposed (Jeong et al., 2001), a series of models, such as DC (Degree Centrality) (Hahn and Kern, 2005), SC (Subgraph Centrality) (Estrada and Rodríguez-Velázquez, 2005), BC (Betweenness Centrality) (Joy et al., 2005), EC (Eigenvector Centrality) (Bonacich, 1987), IC (Information Centrality) (Stephenson and Zelen, 1989), CC (Closeness Centrality) (Wuchty and Stadler, 2003), and NC (Neighbor Centrality) (J. Wang et al., 2012), have been designed in succession for inferring essential proteins based on topological features of PPI networks. Except for these models, Li et al., 2011) proposed a novel model called LAC to predict potential essential proteins based on neighborhoods of protein nodes in PPI networks. B. Xu et al. (2019) developed a model to detect essential proteins by applying random walks on PPI networks. Wang et al. (2011) presented a model called SoECC based on edge clustering coefficients to infer essential proteins. Qin et al. (2016) designed a method called LBCC based on characteristics of PPI networks to predict essential proteins. However, due to the incompleteness of PPI networks, all these first category of models cannot achieve satisfactory prediction accuracies of potential essential proteins.
In order to overcome the incompleteness of PPI networks, in recent years, another category of models have been proposed by integrating topological features of PPI networks and some biological information of proteins to infer essential proteins. For example, Chen et al. (2017) developed a computational model to infer essential proteins by combining PPI networks with gene ontology and KEGG pathway. Zhang X. et al. (2018) presented a prediction model by combing gene expression data with PPI networks to predict essential proteins. W. Peng et al. (2015a) proposed a prediction model called UDoNC by integrating protein domains with PPI networks to infer essential proteins. Jiang et al. (2015) developed a method called IEW to detect key essentials by combining domain interactions and topological features of PPI networks. Zhao et al. (2019) put forward a prediction model called RWHN to infer key proteins by integrating PPI networks with protein domains and some other biological information. Lei et al. (2018) put forward a prediction model named RSG by integrating subcellular localization and GO data of proteins with PPI networks to infer key proteins. Y. Fan et al. (2016) proposed a novel prediction model by adopting Pearson correlation coefficients and subcellular localization to update the PPI network Qin et al. (2017) put forward a method for recognizing essential proteins based on the topological information of PPI networks and orthologous information of proteins. Peng et al. (2012) proposed an advanced iterative algorithm named ION for identifying key proteins based on the topological information of PPI networks and homologous information of proteins. Li et al. (2012) put forward a novel prediction method called Pec through integrating the PPI network with the gene expression of proteins to improve the accuracy of the prediction model. Zhang et al. (2013) presented a novel calculation model named CoEWC by combining PPI networks with the gene expression profiles of proteins to recognize potential key proteins. Liu et al. (2020) proposed a novel prediction model named DEP-MSB by integrating biological features of proteins and topological features of PPI networks. Zhao et al. (2014) put forward an advanced iterative algorithm named POEM for detecting key proteins through combining gene expression data of proteins and topological properties of PPI networks to infer key proteins. Fang et al. (2018) proposed a novel feature selection model named ESFPA by adopting improved swarm intelligence to identify key proteins. Liu et al. (2018) developed an advanced model named EPPSO to recognize key proteins through utilizing improved particle swarm optimization. Zhang W. et al. (2018) presented a computational model called TEGS to recognize key proteins by combining biological information of proteins and topological features of PPI networks. S. Li et al. (2020) developed a novel prediction model called CVIM by combining PPI networks and orthologous information of proteins for inferring essential proteins. Z. Chen et al. (2020) presented a novel strategy named NPRI by combining various biological data of proteins and the topological features of PPI networks to infer key proteins. Although the second category of methods can greatly improve the predictive accuracy of potential essential proteins, it remains to be a challenging work to scientifically integrate topological features of PPI networks and biological features of proteins to effectively improve the accuracy of essential protein prediction.
Inspired by the above methods, in this paper, a novel Collaborative Filtering Model-based Method (CFMM) was proposed to predict potential essential proteins, in which, an original protein–domain interaction (PDI) network was constructed first, and then, considering that the number of known interactions between domains and proteins was quite limited, an updated PDI network was built by applying the collaborative filtering algorithm on the original PDI network. Next, based on the updated PDI network, some key topological features and biological features of proteins were extracted, which would be further integrated together to infer potential essential proteins based on an improved PageRank algorithm. Finally, in order to estimate the performance of CFMM, it was compared with 14 competitive prediction models such as DC (Hahn and Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005), BC (Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson and Zelen, 1989), CC (Wuchty and Stadler, 2003), NC (J. Wang et al., 2012), ION (Peng et al., 2012), Pec (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM ((Zhao et al., 2014), TEGS (Zhang W. et al., 2018), CVIM (S. Li et al., 2020), and NPRI (Z. Chen et al., 2020) based on three kinds of well-known public databases. And as a result, CFMM can achieve better prediction accuracies than all these competing methods.
MATERIALS
In this section, in order to construct the original PPI network, we first downloaded known PPI data from the DIP database (Xenarios et al., 2002), the Krogan database (Krogan et al., 2006) and the Gavin database (Gavin et al., 2006) separately. After removing self-interactions and repeated interactions, we finally obtained 1,167 essential proteins, 3,926 nonessential proteins, and 24,743 known interactions between 5,093 proteins from the DIP database, 14,317 known interactions between 3,672 proteins from the Krogan database, and 7,669 known interactions between 1855 proteins from the Gavin database, respectively. Moreover, we downloaded the dataset of 1,107 different domains from the Pfam database (Bateman et al., 2004). The subcellular localization data from the COMPARTMENTS databases (X. Peng et al., 2015b), (Binder et al., 2014), which consists of 4,865 proteins involved in 11 kinds of subcellular localizations, including the cytoskeleton, mitochondrion, nucleus, peroxisome, plasma, extracellular, endosome, vacuole, endoplasmic, cytosol, and Golgi. Additionally, The gene expression data were provided by Tu et al. (2005), which include 6,777 gene expressions products and 36 samples. The dataset of orthologous information of proteins are from the InParanoid database (Östlund et al., 2010), which includes a collection of pairwise comparisons between 100 whole genomes. Finally, in order to verify the accuracy of CFMM, we further downloaded a set of 1,293 essential genes from four diverse databases such as MIPS (Mewes et al., 2004), DEG (Zhang and Lin, 2009), SGD (Cherry et al., 1998), and SGDP (Saccharomyces Genome Deletion Project, 2012) separately. The detailed information of datasets downloaded from the DIP, Krogan, and Gavin databases are shown in the following Table 1.
TABLE 1 | Detailed information of datasets downloaded from the DIP, Krogan, and Gavin databases.
[image: Table 1]3 METHOD
As illustrated in Figure 1, CFMM consists of the following three major steps:
[image: Figure 1]FIGURE 1 | Flowchart of collaborative filtering model-based method (CFMM).
Step 1: First, an original PDI network will be constructed based on known protein–domain interactions downloaded from given public databases, and then, a recommendation matrix will be obtained by applying the collaborative filtering algorithm on the original PDI network.
Step 2: Next, based on known PPI data and biological information of proteins downloaded from public databases, key topological features and biological features of proteins will be extracted separately, and then, an improved entropy weight method will be applied to effectively integrate all these features.
Step 3: Finally, based on a newly designed distribution rate matrix, an iterative algorithm will be proposed to infer potential essential proteins based on an improved PageRank algorithm.
Construction of Protein–Domain Interaction
Based on known protein–domain interactions downloaded above, we can first construct an original network [image: image] as follows: for any given protein node [image: image] and domain node [image: image], if and only if there is a known interaction between them, there is an edge between pi and [image: image] in PDI. Then we can further obtain an adjacency matrix [image: image] as follows: for any given protein pi and domain [image: image], if and only if there is a known interaction between [image: image] and [image: image], there is [image: image] = 1; otherwise, there is [image: image]. Due to limited known PDI, obviously, [image: image] is a sparse matrix. Hence, in order to improve the density of [image: image], we will apply the collaborative filtering algorithm on [image: image] according to the following steps:
Step 1: Applying the protein-based collaborative filtering algorithm on PDI as follows:
First, based on [image: image] and PDI, we will construct a novel co-occurrence matrix [image: image] as follows: for any two given proteins [image: image] and [image: image], there is [image: image], if and only if there is at least one common domain node existing between them; otherwise, there is [image: image]. Hence, a similarity matrix [image: image] between protein and protein can be calculated after normalizing [image: image] as follows:
[image: image]
Here, [image: image] denotes the number of known domains associated to [image: image] in PDI; in other words, it denotes the sum of elements equaling to one in the [image: image] row of [image: image]. [image: image] represents the number of known domains related to both [image: image] and [image: image] simultaneously.
Based on matrices [image: image] and [image: image], we can further obtain a novel recommendation matrix [image: image] as follows:
[image: image]
Next, for any given protein node [image: image] and domain node [image: image]in PDI, if the interaction between [image: image] and [image: image] is associated already, then for a protein node [image: image] other than [image: image], it is no doubt that the higher the similarity between [image: image] and [image: image], the more possibility that there may exist a potential association between [image: image] and [image: image]. Thereafter, we can define the recommendation standard between protein [image: image] and [image: image] based on the similarities between proteins as follows:
[image: image]
Here, [image: image] denotes the number of proteins in PDI. Based on the above Eq. 3, for any given domain node [image: image], if there is a protein node [image: image] satisfying [image: image], then we will further recommend the protein [image: image] to the domain [image: image]. Thereafter, we will add a new association edge between [image: image] and [image: image] in [image: image] and obtain an update protein–domain adjacency matrix [image: image].
Step 2: Applying the domain-based collaborative filtering algorithm
Similarly, we can also obtain an original adjacency matrix [image: image] and a co-occurrence matrix [image: image]. Obviously, as for the matrix [image: image], there is [image: image]. However, as for the matrix [image: image], for any two given domains [image: image] and [image: image], there is [image: image], if and only if there is at least one common protein node existing between them; otherwise, there is [image: image]. After normalizing [image: image], we can calculate the similarity between [image: image] and [image: image] as follows:
[image: image]
where [image: image] represents the number of known proteins associated with [image: image] in PDI, and [image: image] represents the number of known proteins related to [image: image] and [image: image] simultaneously.
We can as well define the recommended standard and recommendation matrix as follows:
[image: image]
[image: image]
Here, [image: image] means the number of domains in [image: image]. In particular, if there exists a domain node [image: image] in the [image: image] column of[image: image] satisfying [image: image], then we further recommend the protein [image: image] to domain [image: image]. Thereafter, we also add a new association edge between [image: image] and [image: image] in [image: image] and obtain an update association [image: image].
Step 3: Mutual recommendation between proteins and domains
Based on the updated matrix [image: image] and [image: image], the[image: image] is [image: image] dimension matrix, and [image: image] is [image: image] matrix. By transposing the matrix [image: image], it is obvious that we can construct the mutual recommendation matrix [image: image] as follows:
[image: image]
For instance, according to Figure 1 and the given matrix [image: image], we can obtain its corresponding matrices [image: image], [image: image], and [image: image] as follows:
[image: image]
To be specific, as illustrated in Figure 1, if tanking the domain node [image: image] as an instance, then it is obvious that there are two protein nodes [image: image] and [image: image] associated with [image: image] from the matrix [image: image]. In addition, according to Eq. 2, we can as well obtain the recommended standard [image: image]. Hence, we will recommend the protein node [image: image] to [image: image]. In the same way, the protein node [image: image] will be recommended to [image: image] as well. On the contrary, [image: image] and [image: image] are less than the recommended standard [image: image] = [image: image] = 1.01. So there is no need to recommend the protein node [image: image] and [image: image] to [image: image]. In addition, according to a previous description, it is obvious that these novel edges between [image: image] and [image: image], [image: image] and [image: image], [image: image] and [image: image], [image: image] and [image: image] will be added to the original protein–domain association matrix [image: image] in the same time. Similarly, we can apply the domain-based collaborative filtering algorithm. Thereafter, we can obtain a recommendation protein–domain adjacency matrix based on PDI. Finally, as shown in Figure 2. We can get the mutual recommendation matrix MRM.
[image: Figure 2]FIGURE 2 | Flowchart of mutual recommendation.
Construction of the Weighted Protein–Protein Interaction Network
For any two given protein [image: image] and [image: image], we estimate the relationship between [image: image] and [image: image] by applying the Gaussian kernel interaction profile (van Laarhoven et al., 2011) and further obtain an [image: image] dimensional weight matrix between proteins [image: image] based on the mutual recommendation matrix [image: image]. [image: image]represents the relationship between protein [image: image] and [image: image], and it can be defined as follows:
[image: image]
where
[image: image]
Here, [image: image] and [image: image] represents the vector at the [image: image] and [image: image]column of the mutual recommendation matrix [image: image] separately. [image: image] is an adjustment coefficient, which controls kernel bandwidth based on normalizing the new bandwidth parameter [image: image].
Calculate the Score of Multiple Features of Protein
Previous research has indicated that with similar functions, co-expressed and complex topologies are more likely to be essential proteins. Inspired by them, in this paper, we combine biological and topological features to detect potential proteins by subcellular localizations, gene expression data, and orthologous information and PPI networks.
It is obvious that the location information of a protein in a cell is an important characteristic of essential proteins. First, we analyze the 11 kinds of subcellular location relationship between the known essential proteins, and the Figure 3 statistical distribution of each subcellular location is shown in Figure 4. We can find that essential proteins are not randomly distributed in different subcellular locations, and essential proteins appear more often in the nucleus and mitochondrion, which means that proteins in the nucleus and mitochondrion are more possible to be essential proteins. What is more, from Figure 4, there are more essential proteins in the nucleus and mitochondrion and a few essential proteins in the peroxisome and extracellular, which provides us with convenience.
[image: Figure 3]FIGURE 3 | Statics of localization for known key proteins.
[image: Figure 4]FIGURE 4 | The number of proteins in each subcellular locations based on the DIP and Krogan protein databases.
In order to distinguish the importance of different subcellular locations, let [image: image] means the number of all subcellular localizations and [image: image] represent the number of proteins associated with the [image: image] subcellular localization. Then [image: image] denotes the average number of proteins related to each subcellular localization. The score of the [image: image] subcellular localization [image: image] can be expressed as follows:
[image: image]
[image: image]
Let [image: image] represent the set of subcellular localizations associated with the protein [image: image]. Therefore, for a given protein [image: image], its subcellular localization score [image: image] is computed as the sum of the scores of all subcellular locations where it appears.
[image: image]
Similar to describing subcellular scores, for any given protein[image: image], let[image: image] mean the score of orthologous information. Hence, we can define its feature of orthology information score for [image: image] as follows:
[image: image]
We use the Pearson correlation coefficient (Priness et al., 2007) as a similarity measure of gene expression profiles to calculate the expression intensity of two genes.
[image: image]
Here [image: image] represents the expression level of [image: image] at the [image: image] time node. [image: image] is the average gene expression value of protein [image: image], and [image: image] is the standard deviation of protein [image: image]. Thereafter, let [image: image] denote the set of neighbors of protein [image: image]. So we can compute its new functional score of protein [image: image] as follows:
[image: image]
where
[image: image]
It is a fact that essential proteins are more likely products of complex functions (Dezso et al., 2003). In addition, it is obvious that triangles have stable characteristics. Inspired by this, we further utilize the major triangle topological feature calculated by the original PPI network for obtaining each protein topological feature score. Therefore, for a given protein [image: image], we can calculate the topological feature score as follows:
[image: image]
Based on the above formulas for any given protein [image: image], we can obtain the main topological and biological feature scores.
In order to effectively solve the problem of multifeature integration, we apply an improved entropy weight method (Dastbaz et al., 2018) to automatically generate the best parameters to integrate biological features. Based on the protein characteristics we have normalized, let [image: image] represent all features; then we can further construct an [image: image] dimensional matrix [image: image] and an [image: image] dimensional matrix [image: image] as follows:
[image: image]
[image: image]
Next, based on our normalized biological features, we can obtain the entropy value of each feature separately as follows:
[image: image]
Therefore, for the [image: image] protein biological feature, we can calculate the entropy weight of each feature by the following formula:
[image: image]
Based on the above formula, for a given protein [image: image] , we can further calculate its integrated biological score as follows:
[image: image]
Finally, according to the above Eq. 18, for any given protein [image: image], we can further obtain its initial score as follows.
[image: image]
Here, [image: image] is a proportion parameter with a value between 0 and 1.
Construction of the Prediction Model Collaborative Filtering Model-Based Method
According to[image: image], our prediction model CFMM can apply improved PageRank to identify potential proteins. Let [image: image], and for any two given proteins [image: image] and [image: image], we can define the distribution rate possibility matrix as follows:
[image: image]
Based on the above distribution rate matrix DRPM, let a possibility vector [image: image], [image: image] mean the score vector of protein at the [image: image] and [image: image] time separately; therefore, we can iteratively compute the protein ranks as follows:
[image: image]
Here the parameter [image: image] ∈ (0, 1) in order to adjust the proportion [image: image] and initial score [image: image].
Based on the above descriptions, our prediction method CFMM can be concisely described as follows.
 | 
[image: ]PERFORMANCE EVALUATION
Comparison Between Collaborative Filtering Model-Based Method and 14 Representative Methods
In order to further evaluate the performance of CFMM in this section, two different datasets, the DIP database and the Krogan database, are adopted to compare CFMM with 14 competitive detection models, which include DC (Hahn and Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005), BC (Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson and Zelen, 1989), CC (Wuchty and Stadler, 2003), NC (J. Wang et al., 2012), ION (Peng et al., 2012), Pec (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM ((Zhao et al., 2014), TEGS (Zhang W. et al., 2018), CVIM (S. Li et al., 2020), and NPRI (Z. Chen et al., 2020). For the purpose of observing the accuracy of the experiment more intuitively, we chose to use a bar graph to compare the 1, 5, 10, 15, 20, and top 25% of each method. Figure 5 shows that the comparison of the identifying results of different algorithms on the DIP and Krogan database separately. From Figure 5A, the newly put forward CFMM method detected a larger number of essential proteins in the top 1–25% compared with 14 other competitive methods. It is obvious that CFMM can reach the accuracy of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database. Among the top 25% proteins predicted by the CFMM method, there are 668 proteins correctly detected, which indicates that the CFMM method has superior advantages over other methods. From Figure 5B, we can see that CFMM can reach the accuracy of 94.59, 75.54, 70.03, 65.34, 60.08, and 54.68% in the top 1, 5, 10, 15, 20, and 25%, which are superior to all 14 advanced methods, except that in the top 10% CFMM-predicted 257 proteins, they are a little lower than NPRI. Therefore, we can make a conclusion that CFMM always obtains the better prediction accuracy from the top 1% to the top 25%.
[image: Figure 5]FIGURE 5 | (A) Performances achieved by CFMM and other candidate methods under the DIP database. (B) Performances achieved by CFMM and other candidate methods under the Krogan database.
Validated by Jackknife Methodology
Due to the jackknife methodology (Holman et al., 2009) that can evaluate the advantages and disadvantages of the prediction model, in this section, we will apply the jackknife method to assess the predictive effect of our proposed mode CFMM. Figures 6, 7 show the experimental comparisons between CFMM and 14 advanced competitive methods based on the first 1,000 candidate proteins. By observing Figure 6A, it is obvious that CFMM can achieve better performance than the seven network topology-based methods including DC, SC, BC, EC, IC, CC, and NC. What is more, Figure 6B shows that the performance of CFMM is better than the other seven methods that are based on the combination of biological information of proteins and PPI networks including Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI. From Figure 7A, we can easily conclude that the CFMM is advanced than these centrality-based methods including DC, IC, EC, BC, CC, SC, and NC. Although the performance curves of CFFM and NPRI overlap partially, as the number of candidate proteins increases to 450, the predictive performance of CFMM will be significantly higher than that of NPRI. Therefore, based on the above description, we can make a conclusion that the performance of CFMM is not only superior to the first category of methods, such as DC, SC, BC, EC, IC, CC, and NC, but also better than these multiple biological data methods including Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
[image: Figure 6]FIGURE 6 | Comparison of jackknife curves of CFMM and 14 other methods under the DIP database. (A) Comparison between CFMM and DC, IC, EC, SC, BC, CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
[image: Figure 7]FIGURE 7 | Comparison of jackknife curves of CFMM and 14 other methods under the Krogan database. (A) Comparison between CFMM and DC, IC, EC, SC, BC, CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
Differences Between Collaborative Filtering Model-Based Method and Competitive Methods
In order to further prove the accuracy of the CFMM model, we will analyze the differences between CFMM and other models based on the top 100 predicted proteins under the DIP database and the Krogan database separately, and comparison results are shown in Tables 2, 3, respectively. Here ME denotes one of the 14 competitive methods. [image: image] represents the number of essential proteins predicted by both CFMM and ME. [image: image] denotes the number of essential proteins recognized by the CFMM but not by ME, and |ME−CFMM| means the number of key proteins predicted by ME but ignored by CFMM. In addition, [image: image] represents the set of key proteins recognized by CFMM but not by ME. [image: image] means the set of essential proteins predicted by ME but not by CFMM. Hence, Tables 2, 3 show the difference between the 14 competitive methods and CFMM under the DIP and Krogan datasets separately. Figure 8 indicates that CFMM can achieve much better predictive performance than all these competing methods as a whole.
TABLE 2 | The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the DIP database.
[image: Table 2]TABLE 3 | The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the Krogan database.
[image: Table 3][image: Figure 8]FIGURE 8 | The X-axis represents different protein predicted methods. The Y-axis represents the proportion of essential proteins in {ME−CFMM} or {CFMM−ME}.
Validation by Receiver Operating Characteristic Curve
The receiver operating characteristic (ROC) curve and precision recall curve (PR) are used to scientifically prove the performance of the prediction model. The area under the curve (AUC) is used to evaluate the performance of the prediction method. The closer the AUC value is to 1, the better the prediction performance of the method. The curve can be plotted by the ratio of true positive rate (TPR) to false positive rate (FPR) according to different thresholds (Peng et al., 2020). Hence, we will further utilize the ROC curves to compare CFMM with other advanced models. Figures 9, 10 indicate that the ROC curves and PR curves of CFMM and other competitive models are based on the DIP and Krogan databases separately. It is obvious that CFMM has a higher AUC curve than other competitive models. Although we can see that the ROC curve of CFMM and the NPRI ROC curves overlap slightly, the AUC value of CFMM is higher than NPRI. Finally, in order to prove the applicability of CFMM, we will further test it in the Gavin database and compare with other methods. The experimental results are shown in Tables 4, 5.
[image: Figure 9]FIGURE 9 | The precision recall (PR) curves and receiver operating characteristic (ROC) curves between CFMM and other advanced methods based on the DIP database. (A) The PR curves and the ROC curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
[image: Figure 10]FIGURE 10 | The PR curves and ROC curves between CFMM and other advanced methods based on the Krogan database. (A) The PR curves and the ROC curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.
TABLE 4 | The area under the curve (AUC) value of each method under the DIP and Krogan databases.
[image: Table 4]TABLE 5 | The number of key proteins recognized by CFMM and other methods based on the Gavin database.
[image: Table 5]The Analysis of Parameter
In this section, we discuss the effect of the two self-defined parameters α and [image: image] on the prediction results of CFMM. We set the parameter α to vary from 0.1 to 0.9, then the CFMM algorithm is ran nine times from α = 0.1 to α = 0.9 separately. Finally, the number of true essential proteins identified by CFMM based on the DIP and Krogan databases are shown in Tables 6, 7 separately. Here we select from the top 1% to the top 25% of the proteins identified by CFMM. The prediction accuracy is based on the number of essential proteins that are truly identified. It is obvious that the closer α value is to 1, the higher the prediction accuracy CFMM can achieve. So, we consider that the parameter α on all the databases is 0.9, which can achieve the best performance. When α is set to 0.9, and [image: image] is set to 0.65, the amount of true essential protein is closest to its average level. Therefore, as a result, we will set α and [image: image] on the DIP and Krogan databases to 0.9 and 0.65 separately, while for the Gavin database, the optimum parameters α and [image: image] will be set to 0.9 and 0.8, respectively.
TABLE 6 | Effects of the parameter α to CFMM based on the DIP database.
[image: Table 6]TABLE 7 | Effects of the parameter α to CFMM based on the Krogan database.
[image: Table 7]DISCUSSION
Accumulating evidence have shown that prediction of essential proteins is important for the development of an organism in biological process, complex disease diagnoses, and drug design. However, the requirement of identifying key protein prediction accuracy is not satisfied only through biological experiments and relying on the topological characteristics of the PPI network. In this manuscript, we constructed an original protein–domain network by combining protein and domain associations first. Then we formulated the prediction of potential essential proteins as a problem of the recommendation system and obtained an updated recommendation network through applying a novel mutual recommendation between protein and domain to the original association network. Next, after we integrate the biological features, we combine with the major topological features to obtain the initial protein score. Finally, we design a novel distribution rate matrix and apply an iterative algorithm based on the improved PageRank algorithm to calculate protein scores iteratively. In addition, we apply the CFMM method on the DIP database, Krogan database, and Gavin database to testify the performance, respectively. Experiments show that CFMM can achieve better performance than other advanced methods. In future work, we will use multi-information fusion method to integrate various information related to proteins and machine learning methods to further improve the prediction performance (Peng et al., 2017; Zhou et al., 2019).
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Knowledge about protein-protein interactions is beneficial in understanding cellular mechanisms. Protein-protein interactions are usually determined according to their protein-protein interaction sites. Due to the limitations of current techniques, it is still a challenging task to detect protein-protein interaction sites. In this article, we presented a method based on deep learning and XGBoost (called DeepPPISP-XGB) for predicting protein-protein interaction sites. The deep learning model served as a feature extractor to remove redundant information from protein sequences. The Extreme Gradient Boosting algorithm was used to construct a classifier for predicting protein-protein interaction sites. The DeepPPISP-XGB achieved the following results: area under the receiver operating characteristic curve of 0.681, a recall of 0.624, and area under the precision-recall curve of 0.339, being competitive with the state-of-the-art methods. We also validated the positive role of global features in predicting protein-protein interaction sites.
Keywords: protein-protein interaction, deep learning, machine learning, extreme gradient boosting, protein functions
INTRODUCTION
Proteins are one of the most important components of the cell, and also are the principal undertaker of the activities of life. The functions of proteins are manifested mainly by interacting with various molecules such as DNA/RNA, proteins, or other ligands (Dias and Kolaczkowski, 2017). The protein-protein interaction (PPI) plays a key role in the cellular process such as signal transduction, transport, and metabolism (Li et al., 2019) and also is involved in the pathogenesis of diseases such as Alzheimer’s cervical cancer, bacterial infection, and prion diseases (Cohen and Prusiner, 1998; Selkoe, 1998; Loregian et al., 2002). Therefore, knowledge of PPI is critical for understanding the molecular mechanisms hidden in the phenomenon of life (Das and Chakrabarti, 2021). Many experimentally verified or computationally predicted PPIs have been hosted for scientific research in public databases such as the Human Protein Reference Database (Keshava Prasad et al., 2009), STRING (Von Mering et al., 2005), the database of interacting proteins (Salwinski et al., 2004), and the protein interaction database (Kerrien et al., 2007). The protein-protein interaction site (PPIS) is defined as surface residues where proteins interact with each other (Aumentado-Armstrong et al., 2015). The identification of PPIS is the premise for determining PPI (Wang et al., 2019). The knowledge about PPIS holds vast potential to infer cell regulatory mechanisms, locate drug targets, identify structures and functions of protein complexes (Deng et al., 2009; Orii and Ganapathiraju, 2012), and uncover disease pathogenesis (Kuzmanov and Emili, 2013). Drug discovery and development are also closely associated with PPIS (Sperandio, 2012; Petta et al., 2016). Therefore, identifying PPIS is of great importance in the field of molecule biology.
It is not only costly but also time-consuming and labor-intensive to identify PPIS by experimental methods such as alanine scanning mutagenesis and crystallographic complex determination (Aumentado-Armstrong et al., 2015; Krï¿ ½ger and Gohlke, 2010; Bradshaw et al., 2011). Since Jones and Thornton pioneered a computational method for predicting and analyzing PPIS in 1997 (Jones and Thornton, 1997; Jones and Thornton, 1997), more than thirty other computational methods have been developed (Zhou and Shan, 2001; Fernandez-Recio et al., 2004; Neuvirth et al., 2004; Bradford and Westhead, 2005; Chen and Zhou, 2005; Chung et al., 2006; Liang et al., 2006; Patel et al., 2006; Li et al., 2007; Ofran and Rost, 2007; Porollo and Meller, 2007; Qin and Zhou, 2007; Tjong et al., 2007; Chen and Jeong, 2009; Dosztányi et al., 2009; Du et al., 2009; Engelen et al., 2009; Šikić et al., 2009; Fiorucci and Zacharias, 2010; Murakami and Mizuguchi, 2010; Shoemaker et al., 2010; Segura et al., 2011; Xue et al., 2011; Zhang et al., 2011; Chen et al., 2012; Jordan et al., 2012; La and Kihara, 2012; Li et al., 2012; Qiu and Wang, 2012; Zellner et al., 2012; Bendell et al., 2014; de Moraes et al., 2014; Singh et al., 2014; Wang et al., 2014; Aumentado-Armstrong et al., 2015; Bagchi, 2015; Dayal et al., 2015; Maheshwari and Brylinski, 2015; Dick and Green, 2016; Jia et al., 2016; Kuo and Li, 2016; Wei et al., 2016; Hou et al., 2017; Zhao et al., 2017; Guo et al., 2018; Northey et al., 2018; Wang et al., 2019; Wang et al., 2019; Zhang and Kurgan, 2019; Zhang and Kurgan, 2019; Deng et al., 2020; Li, 2020; Zeng et al., 2020; Zhu et al., 2020; Wang et al., 2021; Wang et al., 2021). Due to their efficiency, computational methods are becoming essentially complementary to experimental methods. Most computational methods for identifying PPIS are based on machine learning algorithms where the prediction performance depends heavily on learning algorithms and feature extractions. The learning algorithms used for PPIS prediction generally include conditional random fields (Li et al., 2007), support vector machines (Bradford and Westhead, 2005), random forest (Chen and Jeong, 2009), XGBoost (Deng et al., 2020), logistic regression (Zhang and Kurgan, 2019), Bayes method (Murakami and Mizuguchi, 2010), and artificial neural networks (Singh et al., 2014). These learning algorithms are not suitable for enough large number of training samples. Recently, deep learning algorithms have been developed that have achieved significant superiority over traditional learning algorithms, especially in many difficult cases such as image classification (Krizhevsky et al., 2012; He et al., 2016) and protein structure prediction (Callaway, 2020). Features used for PPIS prediction generally include evolutionary information (Caffrey et al., 2004; Carl et al., 2008; Choi et al., 2009), secondary structure (Guharoy and Chakrabarti, 2007; Ofran and Rost, 2007; Li et al., 2012) and physicochemical, biophysical and statistical features such as accessible surface area (de Vries and Bonvin, 2008; Hou et al., 2017) and backbone flexibility (Bendell et al., 2014). According to its source, features are divided into sequence-based, structure-based, and hybrid features, which are a combination of sequence and structure features (Zeng et al., 2020). The sequence-based feature is cheaper to calculate but does not contain any information from structures that might be responsible for protein functions. The structures of most proteins are not available, while structural information generally obtained by computational prediction contain noise, which sometimes heavily effected subsequent discrimination. Information from neighboring residues of interaction sites is important to determine protein-protein interaction sites. In addition, there exists binding signals far from interaction sites. Zeng et al. (2020) demonstrated that inclusion of global features increased the performance of predicting protein-protein interaction sites. Both the local and the global features were obtained by non-linear degeneration. That is to say, during the transformation from proteins to features, information is lost. In addition, the local and the global features also contained noise. The deep learning-based encoder answers these issues above. Inspired by this, we used the DeepPPISP proposed by Zeng et al. (2020) to refine features of protein-protein interaction sites, Extreme Gradient Boosting (XGBoost) to learn a classifier for unknown PPIS prediction.
DATASETS
For a fair comparison with other state-of-the-art methods, we used the same three datasets as in the literature (Zeng et al., 2020). These datasets are named respectively Dset_186, Dset_72 (Murakami and Mizuguchi, 2010), and Dset_164 (Singh et al., 2014). The procedure of collecting them is briefly described as follows. All the data originated from the PDB database (Berman et al., 2000). Dset_186, Dset_72 and Dset_164 consisted of 186, 72, and 164 non-repetitive protein sequences with the resolution less than 3.0 Å, respectively. In each dataset, sequence homology between any two sequences was less than 25%. Three datasets were integrated, containing in total 422 protein sequences. Two proteins had no definition of secondary structure of proteins (DSSP) file without which their features cannot be computed. Thus these two protein sequences were removed by Zeng et al. (2020). Finally, the remaining 420 protein sequences were used.
Protein-protein interaction binding sites are determined by the absolute solvent accessibility of amino acids. If the absolute solvent accessibility was less than 1 Å2, the amino acid was considered to be a binding site, and otherwise it was a non-interaction site. There were 5,517, 6,096, and 1,923 binding sites, as well as 30,702, 27,585, and 16,217 non-interaction sites in the Dset_186, Dset_164, and Dset_72 datasets respectively. 83.3% of the protein sequences were randomly selected as the training set and 16.7% of the protein sequences as the testing set. The training set was further divided into two parts: 90% of the training set was used for training and 10% was used for verification. Finally, 300 protein sequences were used for training (containing 65,869 amino acid residues), 50 protein sequences for verification (containing 7,319 amino acid residues), and 70 protein sequences for independent testing (containing 11,791 amino acid residues) (Zeng et al., 2020).
METHODS
The proposed method called DeepPPISP-XGB consisted of three main steps: extracting features, training a classifier, and predicting PPIS (Figure 1A). The DeepPPISP was a deep learning model proposed by Zeng et al. (Zeng et al., 2020) for PPIS (Figure 1B). Here, we used it as an encoder of amino acid sequences, because the deep learning algorithms have a powerful ability to represent objects. We trained the DeepPPISP model with the training set. The input of the first fully connected layer in the trained DeepPPISP was used as a representation of the input. The XGBoost classifier was trained by the preprocessing features of the encoder. For unknown protein sequences which have secondary structure, raw protein sequence, and position-specific scoring matrix feature, the trained DeepPPISP extracted preprocessing features firstly and then the trained XGBoost classifier predicted PPIS.
[image: Figure 1]FIGURE 1 | The architecture of DeepPPISP-XGB model. (A) Illustration of the DeepPPISP-XGB workflow, which consists of three modules: extracting feature, training classifier, predicting PPIS. (B) The architecture of DeepPPISP model, which contain embedding layer, different scale convolutions, fully connected layers and output layer.
DeepPPISP
As shown in Figure 1B, the DeepPPISP proposed by Zeng et al. (Zeng et al., 2020) for PPIS prediction had three types of input: position-specific scoring matrix (PSSM), secondary structure, and raw protein sequences. The PSSM is an excellent feature extractor for protein sequences and thus have widely been applied to problems in the field of computational biology, such as predicting protein post-translational modification (Huang et al., 2013; Huang et al., 2014; Dehzangi et al., 2017), membrane type (Wang et al., 2019), protein-RNA binding site (Liu et al., 2021), and structure (Guo et al., 2021). The quality of PSSM features is closely associated with the underlying multiple sequence alignments. Although there are many multiple sequence alignment algorithms including HIMMER (Eddy, 2011; Wheeler and Eddy, 2013) (Johnson et al., 2010) and Hhbilits (Remmert et al., 2012), PSI-BLAST (Altschul et al., 1997) is still a popular multiple sequence alignment and homology search algorithm. Here, PSI-BLAST was used to search NCBI’s non-redundant (NR) sequence database with three iterations and an E-value threshold of 0.001.
Many protein-protein interfaces are related to secondary structures (Taechalertpaisarn et al., 2019). Information about protein secondary structure is helpful to predict PPIS. The DSSP program (Touw et al., 2015) was used to generate nine state secondary structures: α-helix, 310- helix, π-helix, β-bridge, β-strand, β-turn, bend, loop or irregular, and no secondary structure. Therefore, each amino acid residue corresponded to a 9-dimensional vector. The primary protein sequence is valuable information and thus is essential to predict protein properties. One-hot encoding was used to encode the protein sequences. There are 20 kinds of common amino acids in the protein sequences, so each amino acid residue corresponds to a 20-dimensional 0/1 vector. The protein-protein interaction is closely associated with neighboring residues of interaction sites. The local feature of interaction sites contributes to the identification of PPIS. The sliding window method was used to collect the neighboring residues of the interaction sites. The size of the sliding window was seven. For example, if the interaction site was at position i, residues at position i-3, i-2, i-1, i, i+1, i+2, and i+3 were separated. Because each residue corresponds to a 20-dimensional PSSM feature, a 9-dimensional secondary structure feature, and a 20-dimensional one-hot feature vector, a window of seven amino acid residues was encoded into a 343-dimensional vector which was called the local feature.
Protein-protein interaction is not only linked to the local information of interacting sites, but also to global information. Zeng et al. (2020) demonstrated that the inclusion of global information improved the performance of predicting PPIS. A 500-residue peptide was used to represent the global feature of PPIS. If the number of amino acid residues in the protein sequence was less than 500, it was padded with a 0. Each peptide corresponds to a 500*49-dimensional vector called a global feature.
The local and the global features were fed into the DeepPPISP (Zeng et al., 2020). The DeepPPISP was made up of one embedding layer, three different scale convolutions, two fully connected layers, and an output layer (Figure 1B). For more detail, readers can refer to the reference (Zeng et al., 2020).
Both the local features or global features would contain a certain degree of noise. The dimension is large, especially for global features. The DeepPPISP was used to extract a more informative representation. The DeepPPISP was trained on the training data in a supervised manner. The local and global features were fed into the trained DeepPPISP, and the input to the first fully connected layer was the abstract representation of the raw features. Compared with the raw features, the abstract representation was of low dimension and had low noise.
XGBoost Algorithm
The XGBoost proposed by Chen and Guestrin, 2016 belongs to Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and both are tree boosting algorithms. Compared with traditional tree boosting, the XGBoost used a theoretically justified weighted quantile sketch for approximate learning, a novel sparsity aware algorithm for handling sparse data, and an effective cache-aware block structure for out-of-core tree learning (Chen and Guestrin, 2016). In addition, the XGBoost performed faster as it exploited parallel and distributed computing. The XGBoost has such a significant superiority that it has widely been used in many areas including machine learning and data mining challenges.
The XGBoost is an addition model. At each iteration, the XGBoost learns a new tree that fits the residual between the predicted result of the previous trees and the true values of the training samples.
Assume that [image: image] denotes a training set, where m and n represented the numbers of features and samples, respectively. At the t-th iteration, the aim of the XGBoost is to learn a function [image: image] so that
[image: image]
where [image: image] is the fitting value of the previous t−1 trees for the i-th sample. To search for [image: image], the loss function with the regularization was used as the objective function:
[image: image]
where [image: image] was the loss function which was generally defined as
[image: image]
[image: image] denotes the regularization. The loss function [image: image] was approximated by the second-order Taylor series, namely
[image: image]
where [image: image] and [image: image] were the first- and the second-order gradients of the loss function with respect to [image: image] respectively. [image: image] was defined by
[image: image]
where T was the number of leaf nodes and [image: image] was the weight of the j-th leaf node. The objective function was equivalently rewritten as
[image: image]
The set of instances of the leaf node j was defined by
[image: image]
The objective function was further represented as
[image: image]
Given a fixed tree [image: image], the optimal value of each leaf node was calculated by
[image: image]
and the optimal value of the whole tree was calculated by
[image: image]
It was expensive and impossible to exhaust all the possible trees for the training data. In practice, the greedy algorithm was used, which started from one node and iteratively split the node. Assume that before the node was split, the objective function of the tree was
[image: image]
After the node k was split into the left tree[image: image] and the right tree [image: image], the objective function was
[image: image]
The gain of node splitting was calculated by
[image: image]
The gain was used to assess the split candidates.
EVALUATION METRICS
In the area of machine learning, the frequently used evaluation metrics include accuracy (ACC), Recall, Precision, F1-score (F1), and Matthews correlation coefficient (MCC) which are respectively calculated by the following formulas:
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where TP and TN denote respectively the numbers of the true positive and the true negative samples, and FP and FN denote the numbers of the false positive and false negative samples. The F1-score ranges from 0 to 1. F1-score values close to 1 indicated the best prediction. The MCC represents the correlation coefficient between the actual classification and the predicted classification. The range of MCC values is −1 to 1, where 1 meant perfect prediction, and −1 indicated the worst prediction. The area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) were also used to evaluate the performances.
EXPERIMENTS
Visualization of Preprocessing Features
To investigate the ability of the features to discriminate protein-protein interaction sites from non-interaction sites, we used the Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2020) to depict the first two principal components. The UMAP is a powerful tool for dimension reduction and visualization. As shown in Figure 2, the features processed by the DeepPPISP demonstrated a tighter cluster than the raw features, indicating that features generated by the DeepPPISP were more discriminative. To further evaluate the performance of the preprocessed features, we performed 5-fold cross-validation and independent tests. Figure 3A showed the ROC curves of the 5-fold cross-validation over both the preprocessing features and raw features, while Figure 3B depicted the ROC curves of the independent tests. The performance of preprocessed features is equivalent to or better than those of raw features. It must be pointed out that the user-defined parameters were identical in the XGBoost classifiers. Comparison with other methods
[image: Figure 2]FIGURE 2 | UMAP diagrams of (A) raw features of the training set, (B) preprocessing features of the training set, (C) raw features of the testing set, and (D) preprocessing feature of the testing set.
[image: Figure 3]FIGURE 3 | The ROC curves of (A) 5-fold cross validation and (B) independent test. The red dotted line is a control line on which AUROC = 0.5.
Due to its versatile roles in the cellular process, the identification of protein-protein interaction sites is increasingly becoming a hot topic and is also a challenging task. Over the past decades, more than 10 methods have been proposed to predict protein-protein interaction sites (Patel et al., 2006; Du et al., 2009; Murakami and Mizuguchi, 2010; Wang et al., 2014; Zhang and Kurgan, 2019; Northey et al., 2018; Zeng et al., 2020; Chen et al., 2012; Šikić et al., 2009; Fiorucci and Zacharias, 2010; Dosztányi et al., 2009; La and Kihara, 2012; Bradford and Westhead, 2005; Chen and Jeong, 2009; Chung et al., 2006; Fernandez-Recio et al., 2004; Shoemaker et al., 2010; Ofran and Rost, 2007; Qin and Zhou, 2007; Liang et al., 2006; Li et al., 2007; Zhou and Shan, 2001; Neuvirth et al., 2004; Porollo and Meller, 2007; Segura et al., 2011; Qiu and Wang, 2012; Wei et al., 2016; Zhu et al., 2020; Guo et al., 2018; Kuo and Li, 2016; Wang et al., 2021; Maheshwari and Brylinski, 2015; Li, 2020; Dick and Green, 2016; Wang et al., 2019; Zhao et al., 2017; Jia et al., 2016; Deng et al., 2020; Singh et al., 2014; Hou et al., 2017; Li et al., 2012; Wang et al., 2019; Bagchi, 2015 #412; Zhang and Kurgan, 2019). We compared the proposed method with six other state-of-the-art methods. These six competing methods were DeepPPISP (Zeng et al., 2020), SCRIBER (Zhang et al., 2019), IntPred (Northey et al., 2018), RF_PPI (Hou et al., 2017), SPRINGS (Singh et al., 2014), PSIVER (Murakami and Mizuguchi, 2010), ISIS (Ofran and Rost, 2007), and SPPIDER (Porollo and Meller, 2007). PSIVER was a Naïve Bayes-based classifier that used features from PSSM and accessibility, while SPPIDER combined fingerprints with information from the sequences and structures for PPIS predictio. Both SPRINGS and ISIS were neural network-based methods. The former used evolutionary information, averaged cumulative hydropathy, and predicted relative solvent accessibility, while the latter used structural features and evolutionary information. RF_PPI was a random forest-based classifier for PPIS prediction, while the DeepPPISP was a deep learning-based classifier. The performances of these seven methods over the independent test were listed in Table 1.
TABLE 1 | Comparison with other state-of-the-art methods.
[image: Table 1]The DeepPPISP-XGB method achieved the highest value in terms of Recall, F1-score, AUROC, AUPRC, and MCC, and it reached the second-highest performance in terms of Precision. Although ISIS got the best ACC, its performance in other respects was lower than those of DeepPPISP-XGB. The DeepPPISP-XGB method improved the Recall by 4.7%, 5.5%, 11.6%, 11.2%, 2.6%, 15.6%, 26.2%, and 16.5%, in comparison with DeepPPISP, SCRIBER, IntPred, RF.PPI, SPRINGS, PSIVER, ISIS, and SPPIDER, respectively. The DeepPPISP-XGB method increased F1-score and MCC by 0.5% and 0.3%, and the AUROC by 1%, in comparison with DeepPPISP.
K-fold cross-validation is a common method in regression or classification questions. In the k-fold cross-validation, the training set was split into k parts. One part was tested and other k−1 parts were trained. The procedure was performed k times. We carried out 10-fold cross-validations, and the principle was shown (Supplementary Figure S1). Figure 4 showed ROC curves for the 10-fold cross-validations. The mean and the standard deviation of the AUROCs were 0.741 and 0.006, respectively. Supplementary Table S1 lists the ACC, Precision, Recall, F1-score, AUROC, AUPRC, and MCC for each cross-validation.
[image: Figure 4]FIGURE 4 | The ROC curves of 10-fold cross validation on the train set. The minimum AUROC value cross validation is 0.730 at the first fold. The maximum value of the cross validation is 0.752 at the ten-th fold. The green line represents the ROC curve of the cross validation mean. The mean value of AUROC is 0.741. The red dotted line is a control line on which AUROC = 0.5.
To further evaluate the predictive performance of the DeepPPISP-XGB method, four machine learning algorithms were used for PPIS prediction. Decision tree (Safavian and Landgrebe, 1991) is a widely utilized classification algorithm, which is made up of the root node, internal nodes, and leaf node. Random forest (RF) (Breiman, 2001) is an ensemble learning algorithm. It consists of many weak classifiers which determine the sample category. Extremely randomized tree (ERT) (Geurts et al., 2006) is similar to RF but the decision tree of ERT is randomly divided. Support vector machine (SVM) is a statistical algorithm proposed by Boser et al. (Boser et al., 1992). These classifiers were implemented in the Scikit-Learn package (v0.24.2) which has been widely utilized in computational biology. The ROC curves and the precision-recall curves are shown in Figure 5. The XGBoost classifier obtained an AUROC value of 0.681 and an AUPRC value of 0.339 on the independent test, significantly better than four classifiers.
[image: Figure 5]FIGURE 5 | The ROC curves (A) and precision-recall curves (B) for 5 algorithms on the independent test.
The Effects of the Global Features
After removing global features, we trained DeepPPISP-XGB. The user-defined parameters of the DeepPPISP-XGB were the same as the previous. Table 2 shows the performance of predicting PPIS by using local features alone. The ROC and the precision-recall curves were displayed in Figure 6. The experimental results showed that the inclusion of the global features was beneficial to improve PPIS prediction, which was in agreement with the findings of Zeng et al. (2020).
TABLE 2 | Predictive performance when using local features and using combined local and global features with the DeepPPISP-XGB model.
[image: Table 2][image: Figure 6]FIGURE 6 | The ROC curves (A) and the precision-recall curves (B) for both local and global & local features on the independent test.
CONCLUSION
We presented a PPIS prediction algorithm based on the DeepPPISP and the XGBoost. The DeepPPISP served as a feature extractor to remove redundant information of the protein sequences. The XGBoost was used to construct a classifier for predicting PPIS. The DeepPPISP-XGB achieved competitive performances with other state-of-the-art methods.
SOURCE CODE
Source code is available at: https://github.com/fatancy2580/DeepPPISPXGB-master.
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Background: Thyroid cancer is a frequent endocrine tumor in women. It is of great significance to investigate the molecular mechanism of progression of thyroid cancer.
Methods: Gene expression data set and clinical data were downloaded from The Cancer Genome Atlas database for differential expression analysis. The triplet of downstream transcription factors (TFs) and modulatory genes of target lncRNA in thyroid cancer was predicted by the lncMAP database. mRNA and protein expression of lncRNA LBX2-AS1, RARα, and FSTL3 were detected by qRT-PCR and western blot. The localization of lncRNA LBX2-AS1 in cells was tested by Fluorescence in situ hybridization assay. The RNA immunoprecipitation assay was applied to verify the binding relationship between lncRNA LBX2-AS1 and FSTL3. ChIP and dual-luciferase assays were used to prove the binding relationship between RARα and FSTL3. Cell function experiments were used to test cell proliferation, migration and invasion in each treatment group. The role of lncRNA LBX2-AS1 in thyroid cancer progression was also confirmed in nude mice.
Results: Bioinformatics analysis indicated that lncRNA LBX2-AS1, RARα, FSTL3 were remarkably fostered in thyroid cancer tissue, and LBX2-AS1 was evidently correlated with clinical features. The LncMAP triplet prediction showed that LBX2-AS1 recruited TF RARα to modulate FSTL3. RIP assay confirmed that LBX2-AS1 was prominently enriched on RARα. ChIP and dual-luciferase report assays unveiled that RARα bound to the promoter region of FSTL3 and functioned as a TF. Cell function experiments uncovered that LBX2-AS1 boosted the progression of thyroid cancer. The rescue experiments showed that LBX2-AS1 recruited the TF RARα to hasten the transcription activity of FSTL3 and thus promoted the development of thyroid cancer.
Conclusion: The integrative results demonstrated that LBX2-AS1 activated FSTL3 by binding to TF RARα to hasten proliferation, migration and invasion of thyroid cancer.
Keywords: thyroid cancer, lncRNA LBX2-AS1, RARα, Fstl3, malignant progression
INTRODUCTION
LncRNAs are a class of key non-coding RNA involved in gene regulation. So far, lncRNA has been uncovered to be correlated with a variety of human diseases (especially cancer) (Guo et al., 2016; Zhang et al., 2019a). LncRNA acts as a co-activator to bind transcription factors (TFs) and boost their transcriptional activity to activate or suppress the transcription of specific targets (Caretti et al., 2006; Feng et al., 2006), which is the limelight of research currently. For instance, lncRNA TMPO-AS1 boosts the transcription activity of LCN2 by binding to the TF E2F6, thereby facilitating the development of ovarian cancer (Zhao et al., 2020). LBX2-AS1 is a key lncRNA involved in tumorigenesis. So far, many studies have uncovered that LBX2-AS1 plays a part in fostering the development of cancer. For instance, lncRNA LBX2-AS1 promotes human cancers like glioma (Chen et al., 2020), gastric cancer (Peng et al., 2020), esophageal squamous cell carcinoma (Zhang et al., 2019b), colorectal cancer (Li et al., 2021), and ovarian cancer (Cao et al., 2021). Many studies have dug the role of lncRNA LBX2-AS1 in cancers, but there are few studies on the effect of lncRNA LBX2-AS1 in thyroid cancer by recruiting TF to modulate downstream mRNA. As a result, studying the function of lncRNA-TF-mRNA regulation axis in thyroid cancer is of great significance for targeted drug treatment of thyroid cancer.
The molecular mechanism of LncRNA-TF-mRNA is often explored in cancers. For example, lncRNA TMPO-AS1 hastens the transcriptional activity of LCN2 by binding to the TF E2F6, thereby boosting the development of ovarian cancer (Zhao et al., 2020). Our study revealed that the lncRNA LBX2-AS1/RARα/FSTL3 axis may affect the progression of thyroid cancer through bioinformatics method. RARα, a nuclear receptor TF, plays a vital role during development processes and normal physiological functions (Khetchoumian et al., 2008; Zhu et al., 2010). RARα is differentially expressed in different tumor tissues, and it also interacts with its target genes to participate in tumor growth, metastasis, drug resistance and other processes (Altucci et al., 2007; Liu et al., 2012). For instance, RARα overexpression enhances the malignant transformation during mammary tumorigenesis (Doi et al., 2015). RARα up-regulating EGFR expression can lead to resistance to 5-FU in colon cancer (Gu et al., 2020). FSTL3 is a new type of cytokine that can regulate insulin sensitivity and counteract the signal transduction of activin or myostatin. Studies have proved that FSTL3 is involved in modulating tumor progression. For instance, FSTL3 overexpression accelerates progression of non-small cell lung cancer cells (Gao et al., 2020). FSTL3 is elevated and hastens tumor cell proliferation by antagonizing endogenous activin in invasive breast cancer (Razanajaona et al., 2007). Although some studies focused on the effects of RARα and FSTL3 on tumor development, much less has been understood on RARα/FSTL3 axis regulation on tumor.
Combining the previous research and bioinformatics research results, this study speculated that the lncRNA LBX2-AS1/RARα/FSTL3 axis can affect the development and progression of thyroid cancer. Subsequently, molecular experiments, cell experiments and animal model experiments confirmed that lncRNA LBX2-AS1 can recruit the TF RARα to foster the expression of FSTL3 to boost development of thyroid cancer. This finding can lay a foundation for the future development of targeted drugs for thyroid cancer.
MATERIALS AND METHODS
Bioinformatics Approaches
The lncRNA-seq expression data set (normal: 58, tumor: 510) and the clinical data of thyroid cancer were acquired from The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga). The normal sample was applied as the control group, and differential analysis was carried out using R package “edgeR” (|logFC| > 1, FDR < 0.05). The lncATLAS database (https://lncatlas.crg.eu/) was employed to analyze the subcellular localization of the target lncRNA. Through the lncMAP database (http://bio-bigdata.hrbmu.edu.cn/LncMAP/index.jsp), the triplet of downstream TFs and regulatory genes of target lncRNA in thyroid cancer was predicted. Meanwhile, RNA-Protein Interaction Prediction was utilized to evaluate the possibility of interaction between lncRNA and TF. JASPAR database (http://jaspar.genereg.net/) was adopted to predict the binding sequences of target gene promoter region and TF (the first 2000 bp of target gene transcription start position was selected).
Cell Cultivation
Normal human thyroid cell line HTori-3 (BNCC338687), human thyroid cancer cell lines TPC-1 (BNCC338689), KTC-1 (BNCC340144), and FTC-133 (BNCC337959) were bought from BeNa Culture Collection (Shanghai, China). The above cell lines were cultivated in Roswell Park Memorial Institute (RPMI)-1640 medium plus 10% fetal bovine serum (FBS) at routine culture conditions.
Cell Transfection
si-LBX2-AS1, oe-LBX2-AS1, oe-FSTL3, si-RARα, sh-LBX2-AS1, and the corresponding negative controls were all provided by Ribobio (China). In accordance with the operating instructions, si-LBX2-AS1, oe-LBX2-AS1, oe-FSTL3, si-RARα, sh-LBX2-AS1, and the corresponding negative controls were transfected into TPC-1 and KTC-1 using Lipofectamine 2000 kit (Themo Fisher, United States).
Fluorescence in Situ Hybridization
KTC-1 cells were seeded in a confocal dish for 24 h. Then the cells were fixed, pre-hybridized, and hybridized with LncRNA LBX2-AS1 oligodeoxynucleotide probe (GenePharma, Shanghai, China) in hybridization buffer overnight. The fluorescent FISH kit (GenePharma, China) was applied to detect the signal of the probe, then DAPI was adopted to stain the nucleus. Finally, the image was checked under a confocal microscope.
qRT-PCR
TRIzol reagent (Life Technologies, United States) was utilized to extract total RNA from the cells, and then RNA concentration was measured using NanoDrop 2000 system (Thermo Fisher Scientific, Inc., United States). In line with the kit instructions, total RNA was reversely transcribed by PrimeScript RT Master Mix (Takara, P.R., Japan). The miScript SYBR Green PCR Kit (Qiagen, Germany) was applied to perform qRT-PCR on the Bio-Rad CFX96 real-time PCR detection system (Bio-Rad Laboratories, Hercules, United States) to test the expression levels of lncRNA LBX2-AS1, RARα, and FSTL3. β-actin served as a standardized endogenous control. The 2−ΔΔCt value was conducted to compare the relative expression levels of lncRNA LBX2-AS1, RARα, and FSTL3. The primer sequences are listed in Table1.
TABLE 1 | Primer sequences for qPCR.
[image: Table 1]CCK-8
Cell Counting Kit-8 (MedChemExpress, United States) was utilized to examine cell viability. The transfected cells were planted into 96-well plates, and 10 μl of CCK-8 detection reagent was supplemented after the cells were cultured for 1, 2, 3, and 4 days. The cells were then incubated for 2 h, and microplate reader was applied to measure the absorbance at 450 nm. Three biological experiments were repeated in each group.
Scratch Healing Assay
When the cell confluence reached 80%, a 200 μl pipette tip was utilized to gently scratch a line on the culture dish. Phosphate buffer saline (PBS) was used to wash the culture dish twice briefly to remove cell debris, and then fresh serum-free medium was added to continue to culture the cells for 48 h. The scratch images at 0 and 48 h and the width of the scratches were photographed using a microscope to detect the migration of thyroid cancer cells. Relative wound sizes are calculated by normalizing the line widths by the width of the control group at 0 h.
Transwell
Transwell assay was conducted to test the migration and invasion of thyroid cancer cells. Firstly, cells were seeded in the upper chamber pre-coated with Matrigel in a Transwell experimental device (Corning, United States) with an 8 μm pore size. Then, RPMI-1640 medium with 10% FBS was supplemented to the lower chamber. After the cells were cultured at 37°C for 1 day, a cotton swab was used to wipe the non-invading cells on the upper surface of the membrane. The migrating cells were fixed with 4% paraformaldehyde, and then stained with crystal violet for 30 min. Finally, five fields were randomly chosen under an optical microscope to take pictures and count the number of cells.
Western Blot
The cells were lysed with radioimmunoprecipitation assay lysis buffer (Thermo Fisher, United States). Then the total proteins were extracted and BCA kit (Beyotime, China) was applied to test the protein concentration. Separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (50 μg/lane), the protein samples were transferred to polyvinylidene fluoride membrane. At room temperature, 5% skimmed milk was employed to seal the membrane for 2 h. Then, the membrane was cultivated with primary antibodies overnight at 4°C. Afterwards, the membrane was incubated with secondary antibody for 2 h at room temperature. Finally, the hypersensitive chemiluminescence kit (Thermo Fisher Scientific) was utilized to visualize the protein on the membrane. The primary antibodies utilized in this study were mainly anti-β-actin, anti-RARα, anti-FSTL3, anti-N-cadherin, anti-Vimentin, anti-MMP2, and anti-MMP9 (Invitogen, United States). The secondary antibody used was horseradish peroxidase-(HRP-) labeled goat anti-rabbit IgG (Invitogen, United States).
RNA Immunoprecipitation
Binding of LBX2-AS1 to RARα was explored using RIP kit (millipore, United States). Pre-cooled PBS was applied to wash the KTC-1 cells and then the supernatant was discarded. An appropriate amount of lysis buffer (P0013B, Beyotime) was employed to lyse the cells, and then cells were centrifuged at 14,000 rpm and 4°C for 10 min. A portion of the cell extract was taken out as the input group, and another portion was incubated with the magnetic bead-antibody complex for co-precipitation. The specific experimental operation method was as follows: 50 μl magnetic beads was taken from each co-precipitation reaction system, washed and resuspended in 100 μl RIP Wash Buffer. 5 μg antibody was added for binding. After being washed, the magnetic bead-antibody complex was resuspended in 900 μl RIP Wash Buffer, and 100 μl cell extract was added for incubation at 4°C overnight. The sample was placed on a magnetic stand to collect the magnetic bead-protein complex. After the sample was digested with proteinase K, RNA was extracted for subsequent qRT-PCR detection. anti-RARα (Invitogen, United States) was used in RIP and mixed at room temperature for 30 min. IgG (Invitogen, United States) was served as a negative control.
Chromatin Immunoprecipitation Assay
Firstly, KTC-1 cells were transfected with pCMV-RARα. After 24 h of transfection, ChIP assay was carried out using IP-grade anti-RARα antibody (Invitrogen, United States) and the corresponding simple ChIP enzymatic chromatin IP kit (CST, United States). qPCR was applied to detect purified DNA. The detection primers used are shown in Table 2.
TABLE 2 | Primer sets for ChIP assay.
[image: Table 2]Dual-Luciferase Assay
The pmirGLO-FSTL3-promoter-wild type (WT) and pmirGLO-FSTL3-promoter-mutant (MUT) luciferase reporter vectors (Promega, United States) were transfected. Then, the thyroid cancer cell line KTC-1 was seeded in 96-well plates. FSTL-WT and FSTL-MUT, si-NC and si-LBX2-AS1, oe-NC, and oe-RARα plasmids were co-transfected with the cells. After 48 h of incubation, the luciferase intensity was measured using the dual-luciferase reporter system (Promega, United States).
Immunohistochemistry Assay and Hematoxylin-Eosin Staining
The HE staining was performed according to the following steps: the tumor was fixed in 4% paraformaldehyde solution (Aladdin, China) for 48 h at room temperature, dehydrated, and embedded in paraffin. A microtome was applied to slice the tumor with a thickness of 4 μm, and then the slices were stained with HE reagent after deparaffinization.
In the IHC experiment, the paraffin slices in the previous steps were first deparaffinized, and then 3% hydrogen peroxide was added for incubation to eliminate peroxidase activity. The slices were arrested with 5% goat serum, and then were incubated with Ki67 antibody (Abcam, Cambridge, United Kingdom) at 4°C overnight. The next day, the slices were incubated with the secondary antibody goat anti-mouse IgG H and L (Abcam, Cambridge, United Kingdom) at 37°C for 1 h. After incubation, the slices were washed with washing buffer (Beyotime, China) at room temperature, and then developed using DAB kit (Solarbio, DA1010, China). Finally, the slices were observed and photographed.
Tumor Xenograft
To perform tumor xenograft assay, KTC-1 cells were transfected with sh-NC and sh-LBX2-AS1 stably. Subsequently, 10 nude mice (4–5 weeks) were randomly divided into groups (n = 5) and then injected subcutaneously with the harvested cells. The tumor volume of nude mice was measured every 5 days, and calculated according to the formula (x (Zhang et al., 2019a) × y)/2 (x = width; y = length). After 40 days, the mice were sacrificed. The tumor weight was measured and further analyzed.
Statistical Analysis
All data were dealt with SPSS 22.0 statistical software. Measurement data were expressed as mean ± standard deviation. The comparison between the two groups used was t-test, and the comparison among multiple groups adopted was one-way analysis of variance. p < 0.05 illustrated that the difference was statistically significant.
RESULTS
LncRNA LBX2-AS1 is Evidently Up-Regulated in Thyroid Cancer Tissue and Cells
As revealed by informatics results, compared with normal thyroid tissue, LBX2-AS1 was prominently boosted in thyroid cancer tissue (Figure 1A), and LBX2-AS1 was correlated with clinical features (T, N, Stage) (Table 3). The subcellular localization results indicated that LBX2-AS1 was expressed in both cytoplasm and nucleus (Figure 1B). In combination with the results of previous studies (Tang et al., 2019; Li et al., 2021), we noted that LBX2-AS1 boosted malignant progression of thyroid cancer. To verify its expression level in thyroid cancer, we performed qRT-PCR and found that LBX2-AS1 was markedly up-regulated in thyroid cancer cell lines, and highly expressed in TPC1 and KTC-1 cell lines (Figure 1C). Subsequently, it was proved that lncRNA LBX2-AS1 was expressed both in nucleus and cytoplasm by FISH (Figure 1D). To further identify the function of LBX2-AS1 in thyroid cancer, si-LBX2-AS1 was transfected into thyroid cancer cells, and then qRT-PCR verified the transfection efficiency. The experimental results revealed that cells transfected with si-LBX2-AS1 showed remarkably descended expression level of LBX2-AS1 and good transfection efficiency (Figure 1E), indicating that the cells could be utilized for subsequent functional verification experiments.
[image: Figure 1]FIGURE 1 | LncRNA LBX2-AS1 is evidently activated in thyroid cancer tissue and cells. (A) Expression of lncRNA LBX2-AS1 in normal and tumor tissue samples; (B) The subcellular localization results of lncRNA LBX2-AS1 in 15 cell lines, based on the CN RCI value; (C) LncRNA LBX2-AS1 expression in thyroid cancer cell lines TPC-1, KTC-1, FTC-133, and human normal thyroid cell line HTori-3; (D) Localization of lncRNA LBX2-AS1 in thyroid cancer cells, scale bar = 20 μm; (E) Transfection efficiency of si-LBX2-AS1 in KTC-1 and TPC1 cell lines; *p < 0.05.
TABLE 3 | The relationship between LBX2-AS1 expression and the clinicopathological features of patients with thyroid cancer.
[image: Table 3]LncRNA LBX2-AS1 Fosters Progression of Thyroid Cancer Cells
In the previous study, it was found that level of LBX2-AS1 in thyroid cancer tissue and cells was prominently hastened. Based on the literature, we speculated that LBX2-AS1 may promote thyroid cancer (Yang et al., 2021). To verify the above conjecture, we further tested proliferation, migration and invasion of thyroid cancer cells. The results showed that silencing LBX2-AS1 markedly reduced viability of KTC-1 and TPC1 cells (Figure 2A). The results of scratch healing and Transwell assays uncovered that silencing LBX2-AS1 in KTC-1 and TPC1 cells evidently suppressed migration and invasion of thyroid cancer cells (Figures 2B,C). Concludingly, LBX2-AS1 promoted malignancy of thyroid cancer process.
[image: Figure 2]FIGURE 2 | LncRNA LBX2-AS1 fosters progression of thyroid cancer cells. (A) CCK-8 detected viability of KTC-1 and TPC1 cells; (B) Scratch healing tested invasion of KTC-1 and TPC1 cells; (C) Transwell detected invasion of KTC-1 and TPC1 cells; *p < 0.05.
LncRNA LBX2-AS1 Modulates Progression of Thyroid Cancer Cells via Regulating FSTL3
The results of bioinformatics indicated a significantly positive correlation between FSTL3 and LBX2-AS1 (Figure 3A), and FSTL3 was evidently highly expressed in tumor tissue (Figure 3B). Combining a previous study (Gao et al., 2020), it was believed that lncRNA LBX2-AS1 regulates the progression of thyroid cancer through FSTL3. To verify it, oe-FSTL3, oe-LBX2-AS1, and si-LBX2-AS1 plasmids were used to transfect KTC-1 cells, respectively. As expressed in the experimental results, FSTL mRNA and protein expression levels were prominently reduced after silencing LBX2-AS1 (Figure 3C), while LBX2-AS1 overexpression significantly increased FSTL mRNA and protein expression levels (Figure 3D). In addition, overexpressing FSTL and silencing LBX2-AS1 meanwhile could restore FSTL3 mRNA and protein expression levels (Figure 3E), as well as the proliferation, migration and invasion of KTC-1 cells (Figures 3F–H). These results further confirmed that LBX2-AS1 modulated progression of thyroid cancer cells through FSTL3.
[image: Figure 3]FIGURE 3 | lncRNA LBX2-AS1 modulates progression of thyroid cancer cells via regulating FSTL3. (A) Pearson correlation analysis of LBX2-AS1 and FSTL3; (B) FSTL3 expression in normal tissue and tumor tissue; (C–E) qRT-PCR and western blot detected the expression of FSTL3 mRNA and protein in different transfection groups; (F) CCK-8 method detected viability of KTC-1 cells in different transfection groups; (G) Scratch healing detected migration of KTC-1 cells in different transfection groups; (H) Transwell detected invasion of KTC-1 cells in different transfection groups; *p < 0.05.
LncRNA LBX2-AS1 can Recruit RARα
Many lncRNAs has been reported to participate in molecular regulatory pathways by interacting with DNA or RNA-binding proteins. In an effort to explore molecular mechanism of regulatory effect of LBX2-AS1 on FSTL3, we analyzed correlation between RARα and LBX2-AS1 expression. Result revealed that RARα was markedly positively correlated with LBX2-AS1 (Figure 4A). At the same time, the RPISeq database score indicated that LBX2-AS1 interacted with RARα with high reliability (Figure 4B), and RARα was prominently boosted in thyroid cancer tissue (Figure 4C). Therefore, we speculated that RARα, as a TF, may be recruited to the FSTL3 promoter by LBX2-AS1. To confirm it, we conducted RIP assay, and the results suggested that LBX2-AS1 was prominently bound to RARα (Figure 4D).
[image: Figure 4]FIGURE 4 | LncRNA LBX2-AS1 can recruit RARα. (A) Heat map of Pearson correlation analysis between RARα and LBX2-AS1; (B) LBX2-AS1 and RARα protein interaction score predicted by RPISeq database. It is predicted that LBX2-AS1 binds to RAR protein in the case of both the SVM and RF scores are higher than 0.5 simultaneously; (C) Box plot of RARα expression in normal and tumor groups; (D) RIP assay on KTC-1 cells using RARα and IgG antibodies; *p < 0.05.
LBX2-AS1 Modulates FSTL3 by Recruiting RARα to Hasten Progression of Thyroid Cancer
Correlation analysis confirmed an evident positive correlation between FSTL3 and RARα (Figure 5A). The JASPAR database was applied to examine the binding site of RARα and the TSS region of the FSTL3 promoter, finding that RARα had a binding site on the promoter (Figure 5B). To further study the regulation of RARα on the expression of FSTL3, we employed si-RARα and oe-RARα to treat KTC-1 cells, respectively. It was unveiled that si-RARα could reduce the expression of FSTL3 protein (Figure 5C) while oe-RARα increased the protein expression (Figure 5D). Subsequently, the binding relationship between RARα and the FSTL3 promoter was validated by ChIP assay. It was found that RARα could bind to the FSTL3 gene promoter (Figure 5E). To further confirm the binding relationship is functional, dual-luciferase assay was performed on KTC-1 cells. Overexpressing RARα increased the activity of WT FSTL3 luciferase, but had no effect on the activity of MUT FSTL3 luciferase (Figure 5F). Besides, silencing LBX2-AS1 reduced the enrichment of FSTL3 on RARα, but silencing LBX2-AS1 and overexpressing RARα meanwhile restored the enrichment (Figure 5G). On the contrary, overexpressing LBX2-AS1 enhanced the binding between RARα and FSTL3 promoter, but overexpressing LBX2-AS1 and silencing RARα meanwhile had an opposite effect (Figure 5H). In addition, the dual-luciferase assay further proved that silencing LBX2-AS1 reduced the WT FSTL3 luciferase activity, but silencing LBX2-AS1 and overexpressing RARα at the same time could restore the luciferase activity (Figure 5I). Overexpression of LBX2-AS1 enhanced WT FSTL3 luciferase activity, but overexpressing LBX2-AS1 while silencing RARα had an opposite effect (Figure 5J). We further tested the abilities of cell proliferation, migration, and invasion. As the experimental results indicated, silencing LBX2-AS1 markedly reduced the cell viability, migration, and invasion of KTC-1 cells, but when silencing LBX2-AS1 and overexpressing RARα at the same time, the inhibitory effect was offset (Figures 5K,M.,O). Moreover, overexpression of LBX2-AS1 prominently promoted cell viability, migration and invasion of KTC-1 cells, but when RARα was silenced and LBX2-AS1 was overexpressed meanwhile, the promotion effect was reversed (Figures 5L,N,P). These findings demonstrated that LBX2-AS1 modulated the expression of FSTL3 by recruiting the RARα to hasten the progression of thyroid cancer.
[image: Figure 5]FIGURE 5 | LBX2-AS1 modulates the expression of FSTL3 by recruiting RARα to hasten the progression of thyroid cancer. (A) Pearson correlation analysis between RARα and FSTL3; (B) The binding relationship between the FSTL3 promoter region and RARα was predicted by the JASPAR database; (C,D) Western blot detected FSTL3 protein expression in KTC-1 cells in different transfection groups; (E) RARα and IgG antibodies were used to perform RIP assay on KTC-1 cells; (F) Dual-luciferase assay detected the luciferase activity of KTC-1 cells in different transfection groups; (G,H) RARα and IgG antibodies were used to perform ChIP assay on KTC-1 cells; (I,J) Dual-luciferase assay detected the luciferase activity of KTC-1 cells in different transfection groups; (K,L) CCK-8 detected the cell viability of KTC-1 cells in different transfection groups; (M,N) Scratch healing detected the migration of KTC-1 cells in different transfection groups; (O,P) Transwell detected the invasion of KTC-1 cells in different transfection groups; *p < 0.05.
The Impact of LBX2-AS1 on Tumors Is Verified in Nude Mice
The tumor volume and weight of mice inoculated with sh-LBX2-AS1 transfected cells were reduced (Figures 6A,B). Western blot showed that the protein expression levels of FSTL3, Vimentin, N-cadherin, MMP2 and MMP-9 in the mice tumor tissue in the sh-LBX2-AS1 experimental group were decreased (Figure 6C), indicating that FSTL3 expression was increased at protein level and EMT was promoted. In addition, it was detected by IHC that silencing LBX2-AS1 decreased the expression of Ki67, indicating that the proliferation of thyroid cancer cells inoculated subcutaneously in mice was inhibited when LBX2-AS1 was silenced (Figure 6D). These findings suggested that LBX2-AS1 can be utilized as a potential therapeutic target of thyroid cancer.
[image: Figure 6]FIGURE 6 | The effect of LBX2-AS1 on tumors is verified in nude mice. (A) Tumor volume in different transfection groups; (B) Tumor weight in different transfection groups; (C) Western blot detected protein expression of FSTL1 and invasion and migration related factors (N-cadherin, Vimentin, MMP-2, MMP-9) in nude mice; (D) IHC detected Ki67 expression in mice; *p < 0.05.
DISCUSSION
In recent years, it has been discovered that lncRNAs can be employed as new and potential biomarkers for the prognosis and treatment of human cancers. The role and modulatory mechanism of lncRNAs in human cancers have become a research hotspot. Studies have confirmed a closely correlation between abnormal expression of lncRNA LBX2-AS1 and progression of tumors. For instance, LBX2-AS1 promotes E2F2 expression through sponge adsorption of miR-455-5p and miR-491-5p, thereby fostering progression of ovarian cancer (Cao et al., 2021). Overexpression of lncRNA LBX2-AS1 boosts the proliferation of colorectal cancer (Li et al., 2021). Herein, we revealed and verified that LBX2-AS1 was prominently highly expressed in thyroid cancer through bioinformatics analysis and cell biological experiments. Moreover, the results of cell function experiments showed that LBX2-AS1 could hastened progression of thyroid cancer cells, which is consistent with previous studies.
FSTL3 plays a part in cancers as a new type of cytokine. A study found that FSTL3 overexpression enhances proliferation and migration of non-small cell lung cancer cells (Gao et al., 2020). FSTL3 is facilitated in invasive breast cancer and can boost tumor cell proliferation by antagonizing endogenous activators (Razanajaona et al., 2007). Here, FSTL3 was prominently highly expressed in thyroid cancer tissue through bioinformatics analysis. Subsequently, cell experiments and molecular experiments displayed that after LBX2-AS1 was silenced, FSTL mRNA and protein expression levels were markedly reduced, and the proliferation, migration and invasion of KTC-1 cells were also suppressed. In addition, it was further confirmed by rescue experiments that LBX2-AS1 regulated progression of thyroid cancer cells through FSTL3.
Bioinformatics analysis suggested that there was a new TF RARα in the downstream of LBX2-AS1. At present, there are still few reports on RARα as a cancer factor. A study displayed that the overexpression of RARα enhances the malignant transformation during mammary tumorigenesis (Doi et al., 2015). In addition, another study indicated that RARα promotes the interaction of estrogen receptor coactivators and participates in estrogen-induced gene transcription in breast cancer cells (Ross-Innes et al., 2010). Bioinformatics analysis found that RARα was evidently elevated in thyroid cancer tissue and it was positively correlated with LBX2-AS1. Subsequently, RIP assay validated the binding relationship between LBX2-AS1 and RARα.
As a coactivator, lncRNA binds to TFs and enhances the transcriptional activity to activate or suppress the transcription of specific targets (Caretti et al., 2006; Feng et al., 2006), which is one of the regulatory mechanisms that have been studied more currently. For instance, LncRNA-BX111 recruits the TF YB1 to regulate the transcription of ZEB1 to foster the metastasis and progression of pancreatic cancer (Deng et al., 2018). It was demonstrated lncRNA TMPO-AS1 potentially fosters LCN2 transcriptional activity by binding to TF E2F6, and thus, stimulates the progression of ovarian cancer (Zhao et al., 2020). In this study, combined with the bioinformatics analysis and research of predecessors, it was speculated that LBX2-AS1 modulated the expression of FSTL3 by recruiting RARα to hasten the progression of thyroid cancer. ChIP assay and dual-luciferase report assay verified the binding relationship between RARα and FSTL3 gene promoter. Through cell and molecular experiments, it was revealed that silencing LBX2-AS1 reduced the enrichment of RARα on FSTL3, but silencing LBX2-AS1 and overexpressing RARα simultaneously had the opposite effect. In addition, the dual-luciferase assay further proved that silencing LBX2-AS1 could reduce the WT FSTL3 luciferase activity, but silencing LBX2-AS1 and overexpressing RARα meanwhile had the opposite effect. We further tested the cell proliferation, migration and invasion. As uncovered in the experimental results, silencing LBX2-AS1 prominently reduced the cell viability, migration and invasion of KTC-1 cells, but when silencing LBX2-AS1 and overexpressing RARα meanwhile, the inhibitory effect was restored. In vivo experiments in nude mice confirmed our conjecture, indicating that LBX2-AS1 modulated the expression of FSTL3 by recruiting RARα to accelerate the progression of thyroid cancer.
Collectively, this study uncovered the LBX2-AS1/RARα/FSTL3 modulatory axis in thyroid cancer. Subsequently, through cell experiments, molecular experiments, and in vivo experiments, it was unveiled that LBX2-AS1 boosts the transcriptional activity of FSTL3 by recruiting the binding of RARα, thereby hastening progression of thyroid cancer cells. This study discovered the molecular mechanism of LBX2-AS1 function in promoting cancer in thyroid cancer, providing a theoretical basis for the progression of targeted drugs for thyroid cancer.
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To investigate the correlation between gene mutation and knee osteoarthritis (KOA), a whole-exome sequencing (WES) was applied to analyze blood samples of four KOA patients and two normal subjects in a family. Gene mutations were identified by gene-trapping and high-throughput sequencing analysis across the differences between the patients and normal subjects. The interactive gene network analysis on the retrieval of interacting genes (STRING) database and the KOA-related genes expression data sets was performed. A possibly detrimental and nonsynonymous mutation at the kallikrein-related peptidase 6 (KLK6) gene (rs201586262, c. C80A, P27H) was identified and attracted our attention. KLK6 belongs to the kallikrein family of serine proteases and its serum level is known as a prevalent biomarker in inflammatory and malignant diseases. KLK6 expresses in the extracellular compartment for matrix degradation, highlighting that KLK6 plays a role in the pathogenesis of KOA. By using the gene databases, the KOA-related genes were mined after de-duplication and IL6 was selected as the most relevant gene through interactive analysis of protein-protein interaction (PPI) network. The data suggested that KLK6 gene mutation and the related expression alteration of IL6 gene might determine the occurrence of hereditary KOA. The is the first study discovering the gene mutation of KLK6 as a factor of pathogenesis of KOA, especially the hereditary KOA.
Keywords: KLK6, IL6, knee osteoarthritis, mutation, whole-exome sequencing
INTRODUCTION
Knee osteoarthritis (KOA) is the most common and disabling joint disease, affecting up to 25% of people over the age of 50 years worldwide (Goff and Elkins, 2021). It is associated with degeneration of whole joint components, such as cartilage, subchondral bone, synovial membrane, periarticular muscles, and para-articular tendons, resulting in joint swelling, pain, and dysfunction (Slomski, 2020). Given the high disease burden and impact on health care systems, there is a need to develop effective remedies for KOA (van Tunen et al., 2018; Moghimi et al., 2019). Currently, the strategies used for KOA management mainly focus on relieving pain, decreasing inflammation and enhancing functional improvement through physiotherapy, pharmacotherapy, and end-stage surgery (Arden et al., 2021). The etiology and pathogenesis of KOA are driven by a variety of factors. Environmental stress and genetic mutations are two main pathogenic factors of KOA (Magnusson et al., 2019). For instance, obesity-induced biomechanical overload on joints results in periarticular trauma and joint deformity constituting the mechanical pathogenesis of KOA. Recent studies (Wilkinson, 2021) have shown that genetic mutations in cartilage matrix proteins can induce the onset of KOA lesions. This suggests that KOA may be a hereditary disease in some cases. However, this has not been clarified to date.
Genetic factors, such as heritable and somatic mutations, contribute to the development and progression of many diseases. Thus, understanding the genetic heterogeneity of diseases is a necessary prerequisite for accurate diagnosis and precise application of therapy. Gene sequencing technologies have been developed to identify pathogenic genes, hence provide new perspectives into the molecular mechanisms involved in hereditary diseases (Wang et al., 2018). For instance, the whole-exome sequencing (WES) method is routinely used as a diagnostic tool. Generally speaking, WES is a genetic testing method that describes an individual’s entire exon makeup (Karapetis et al., 2008; Silva et al., 2017; Wise et al., 2019). This makes WES an ideal method for analyzing the potential genetic mechanisms of malignancies, such as familial breast cancer and pancreatic cancer, based on high-throughput genomic data (Petersen et al., 2017). Previous research has revealed one shared variant (rs3732378) at position 280 in the transmembrane domain of CX3CR1 in four severely affected family members of developmental dysplasia of the hip with the help of WES, with the result that caused a threonine (polar) to methionine (non-polar) alteration (Feldman et al., 2013). For non-neoplastic diseases, this method can be used to confirm the diagnosis of genetic disease as well as to assess genetic risk and predict drug responses. A previous study (Min et al., 2007) identified 9 novel variants contributing to the early-onset of KOA, 2 (IDH1 Y183C and NRP2) of which were promising. These two variants (NRP2 c.1938–21 T > C and IDH1 c.933–28C > T) occurred together on haplotypes with radiographic signs of KOA in two out seven families. Further mutation analysis of the linkage area on chromosome 2q33.3-2q34 may reveal variants involved in advanced KOA. Thus, WES presents a promising method for the diagnosis of hereditary diseases.
Here, by using WES, the KOA-related mutations were detected from six members (four KOA patients and two healthy subjects) of a family. The STRING database and the gene databases (GeneCard database, Pharmacogenomics Knowledgebase (PharmGKB) database, Online Mendelian Inheritance in Man® (OMIM) database, and DrugBank database) were used for discovering potential connections between the mutations and KOA. The mutation of KLK6 (rs201586262, c. C80A, P27H) was identified as the most relevant gene mutation to the KOA family. This is the first study on the relationship between KLK6 mutation and KOA.
MATERIALS AND METHODS
Ethics Statement
All blood samples used in this study were acquired by the Ethical Committee of the First Affiliated Hospital, Zhejiang Chinese Medical University. Besides, the study was conducted in accordance with the Declaration of Helsinki and informed consent was acquired from all participants.
Sample Collection
Blood samples of four KOA patients and two normal subjects were collected from one family in the First Affiliated Hospital, Zhejiang Chinese Medical University. All patients were Chinese and had been diagnosed by the American College of Rheumatology (ACR) Diagnostic Criteria for Knee Osteoarthritis (1995) and the Standards for Diagnosis and Treatment of Traditional Chinese Medicine (1994). Patients who were treated with other drugs and other methods within a week, caught tumor-related diseases and severe inflammatory diseases, or underwent surgery at joints were excluded. We collected 4 ml of blood for each person and all samples were stored at −80°C with dry ice transportation.
DNA Isolation and Storage
Approximately 3 ml blood samples from all six participants were collected in EDTA-coated centrifugal tubes and DNA was extracted as previously described (Bulla et al., 2016). Nanodrop 2000 (Thermo Scientific) was used for DNA quantification. For further analysis, extracted DNA from each specimen was first collected and then stored at −80°C.
WES
WES was performed by the Illumina HiSeq3000 paired-end sequencing (Guangzhou Ruibo Biotechnology Co., Ltd.) after using Agilent SureSelect All Exon Targeting Kit V6+ Cosmic for libraries preparation.
Variant Calling
The Genome Analysis Toolkit (GATK Version: 4.1.0.0, https://gatk.broadinstitute.org/hc/en-us) was used for variant discovery (Min et al., 2007). Raw reads were mapped to the hg38 human reference genome using Burrows-Wheeler Aligner (Version: 0.7.1) (Li and Durbin, 2010). Germline mutation was called using HaplotypeCaller in its default single-sample mode according to GATK. CNN score variants and filter variant tranches tools were both applied to filter variants for further analysis.
Variation Annotations and Analysis
Functional annotations of variants were performed with ANNOVAR (Version 2019-10-24) using target databases of the hg38 human reference genome (Yang and Wang, 2015). After annotations, one coding variant was identified: 1) shared at least in three affected individuals; 2) absent in two unaffected individuals; 3) rare, with a minor allele frequency (MAF) of ≤1% in the 1,000 Genomes Project (1 KG), Exome Aggregation Consortium (ExAC) and Genome Aggregation Database (GnomAD); 4) nonsynonymous mutation; 5) possible detrimental mutation according to the default scores from SIFT (Sim et al., 2012), polyphen2 (Emadi et al., 2020) and FATHMM (Shihab et al., 2013).
STRING Analysis
Protein-protein interaction (PPI) referred to the connecting process in which two or more protein molecules form protein complexes through noncovalent bonds using the STRING database (https://string-db.org/) (Athanasios et al., 2017). Briefly, the column of “protein by name” and the organism of “Homo sapiens” were chosen to construct a framework of a net. Then, the network type (full network), the meaning of network edges (evidence) and active interaction sources (including text mining, experiments, databases, co-expression, neighborhood, gene fusion, co-occurrence) were used as primarily basic settings. A confidence level of a minimum required interaction score of medium confidence (Value = 0.4) and a limitation of the max number of 20 interactors in the network were set to discover the potential connections. Finally, a protein interaction network was constructed, and then the graphic of the visual result was downloaded for further analysis.
Targeted and Overlapped Genes Related to KOA
Using “Knee Osteoarthritis” as a keyword, the KOA-related genes were searched in the following four databases: GeneCard database (Stelzer et al., 2016) (https://www.genecards.org/), PharmGKB database (Whirl-Carrillo et al., 2012) (https://www.pharmgkb.org/), OMIM database (Amberger et al., 2015) (https://www.omim.org/), and DrugBank database (Wishart et al., 2018) (https://go.drugbank.com/). For the DrugBank database, the relevant score greater than or equal to 20 was enrolled in this study, whereas a value of greater than 80 will be deleted. For the GeneCards database, the relevant score greater than or equal to 10 was regarded as an inclusion criterion. Then, the KLK6-connected genes from the STRING database and overlapped KOA-related genes from the four databases were selected, and a visual diagram was constructed using an R package (Bayani and Diamandis, 2011).
RESULTS
Participants Information
Six previously unreported Chinese subjects in a family were included in this study. Four subjects (F2-6, F2-7, F2-12, F3-15) were diagnosed with KOA, and the other two non-KOA subjects (F3-13, F3-14) acting as a control. The percentage of females was 75% in all patients and only male members were in the normal controls. The relationship between family members was depicted in Figure 1.
[image: Figure 1]FIGURE 1 | Pedigrees of all participants in four generations of this study. Each individual was represented by a circle (if female) or a square (if male). Black shaded symbols denoted subjects diagnosed with KOA. Abbreviation: KOA, knee osteoarthritis.
Sequencing Analysis
The WES results revealed a total of 311,770 variants co-existing in at least three-quarters of KOA members. After deleting variants appearing concurrently in control specimens, 51377 variants were retained from all DNA sequence variations. Using the databases (ExAC and gnomAD) and 1000g2015aug for ANNOVAR, we set the minor allele frequency (MAF) less than or equal to 0.01 to acquire a rare mutation. After that, 84 variants were acquired for further analysis. Of these remaining variants, 23 variants were nonsynonymous, regardless of beneficial, harmful, or fatal to the expression products of genes. Finally, to further explore the key mutation and exclude beneficial mutation genes, we went on to screen the detrimental mutation in ANNOVAR results using the default parameters and ultimately the KLK6 gene was identified. The screening process of variants was depicted in Figure 2. As a result, we identified a potential nonsynonymous and detrimental mutation in the KLK6 gene (rs201586262, c. C80A, P27H), which occurred simultaneously in the same generation of F2-6, F2-7, and F2-12. However, the patient F3-15 in the next generation was not detected the same mutation. The accurate mutation site has been marked in the three-dimensional Figures 3A,B.
[image: Figure 2]FIGURE 2 | Flow chart of mutation sites selection.
[image: Figure 3]FIGURE 3 | The location and distribution of KLK6. (A) The rs201586262 mutation of KLK6 protein. (B) The magnification of the rs201586262 mutational site. (C) The location of KLK6 gene on a chromosome. Note: Red color arrows represent a specific mutation site. (D) The distribution of KLK6 in the microenvironment. Note: The deeper the color, the higher confidence of the KLK6 expression.
Besides, the KLK6 gene is located in the chromosomal region 19q13.3–13.4 (Figure 3C) and encoded for an enzyme with trypsin-like properties that can degrade the extracellular matrix (ECM) (Bayani and Diamandis, 2011). The result was consistent with the high expression in extracellular space (https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLK6&keywords=KLK6) and shown in Figure 3D. Furthermore, the cytosine located at 80 in the KLK6 gene has mutated to adenine, leading to its encoded protein mutation from proline to histidine.
PPI Network Construction and Databases Preparation
To further detect the KLK6-related gene, a PPI network was performed using STRING. As shown in Figure 4A, the result indicated that 20 most closely genes were related to KLK6, such as KNG1, EGF, SPINK9, SERPINC1, IL6, SNCA, YAF2, DSC1, KRT10, SPINK6, SPRR1B, FLG, SPINK5, DSG1, A2ML1, APP, EPRS, CDSN, GLIS1, and GABPB1.
[image: Figure 4]FIGURE 4 | (A) PPI network of KLK6-connected genes. (B) The relationship between KLK6-connected genes and four KOA-related genes databases. (C) The demo diagram showed the relationship between KLK6-connected genes and other databases. Note: Red color marked the crossed genes. Abbreviation: PPI, protein-protein interaction; KLK6, kallikrein-related peptidase six; KOA, knee osteoarthritis; PharmGKB, Pharmacogenomics Knowledgebase; OMIM, Online Mendelian Inheritance in Man.
Afterward, to further unravel the crossed genes, four databases were used to search KOA-related genes. After removing duplicates, a total of 105 KOA-related genes were identified by searching the GeneCard, OMIM, PharmGKB, and DrugBank databases, and the total gene names were provided in Table 1. After the overlapping analysis, we ultimately found a crossed gene (IL6) between KLK6-connected genes derived from the STRING and GeneCard database. The Venn diagram (Figure 4B) and a demo (Figure 4C) clearly pictured the relationship between KLK6-connected genes in the STRING database and multiple KOA-related genes in the other four databases.
TABLE 1 | KOA-related genes in the database.
[image: Table 1]DISCUSSION
KOA is a chronic fading joint disease and is characterized by degeneration of articular cartilage in multiple locations (Iagnocco and Naredo, 2012). The pathogenesis of KOA has been linked to multiple mechanisms, such as agedness, obesity, gender, heredity, sports injury, inflammation, and some metabolic factors (Sandell, 2012). In recent years, studies have uncovered new molecular pathogenic factors of KOA (Chu et al., 2017; Casalone et al., 2018). Previous studies have found a positive association of two AKNA polymorphisms (rs10817595 and rs3748176) with KOA from a blood DNA bank of 181 KOA patients and 140 healthy controls (Martínez-Nava et al., 2018). Analysis of genetic variations in 3217 KOA patients and 2,214 healthy controls revealed a nonsynonymous ADAMTS14 polymorphism (rs4747096) significantly associated with KOA in females (Rodriguez-Lopez et al., 2009). Meanwhile, liquid biopsy showed great potential in disease detection and the research on blood gene expression in KOA become a hot topic. Through a systematic review of the literature, Luo et al. (Luo et al., 2019) found that the deficiency of G protein-coupled receptors induced osteoporosis, osteoarthritis, and delayed fracture healing. In this study, blood samples were obtained from patients with familial KOA and two normal members who served as the control group. To our knowledge, none has reported the role of gene mutations in familial KOA. Herein, we investigated the role of gene mutations in KOA inheritance. Based on the WES, a detrimental mutation (rs201586262, c. C80A, p. P27H) in the KLK6 gene was found in three patients (F2-6, F2-7, F2-12) of the same generation. A total of 124 SNPs (100 genes) and 105 SNPs (104 genes) were respectively reported to be significantly associated with KOA risk (Aubourg et al., 2021; Boer et al., 2021). However, none of the reported SNPs were found in our data. About 173 genes were found both present in our study and other publications (Supplementary Table 1). By filtering the minimum allele frequency (≤1%), these SNPs and genes were all eliminated.
The human tissue kallikreins (KLKs) were an important family of about 15 serine proteases that regulate the proteolysis of endogenous substrates (Yousef and Diamandis, 2001). KLKs genes were localized on chromosome 19q13.4 and have been implicated in various physiological and pathological processes (Borgoño and Diamandis, 2004). KLK6 was a 223-amino acid residues serine protease expressed in multiple tissues and organs (Petraki et al., 2001). The results of PCR showed that KLK6 is expressed in the prostate, kidney, endometrium, brain, and spinal cord (Anisowicz et al., 1996; Yamashiro et al., 1997). Using the ELISA test, antigens against KLK6 were found in breast cyst fluid, male and female serum and milk (Diamandis et al., 2000). The immunohistochemical assay revealed that KLK6 was localized in normal human tissues (Petraki et al., 2001). It has been reported that the KLK6 gene could be cloned independently of other genes, such as zyme in brain tissue (Little et al., 1997), protease M in breast tissue (Anisowicz et al., 1996), and neurosin in a colon carcinoma cell line (Mitsui et al., 2002). Other studies demonstrated that KLK6 played an important role in many non-neoplastic diseases, such as inflammatory and degenerative illnesses, as well as trauma lesions of the central nervous system (Silva et al., 2017). Evidence from prior studies demonstrated that the KLK6 gene and its expressed products might regulate the degradation of β-amyloid or turnover of amyloid precursor protein (Ogawa et al., 2000). Most recent works (Yousef et al., 2003) have shown that the expression of this gene was significantly elevated in cancers, such as ovarian cancer, but studies on the expression of this gene in arthritis were few. Previous studies have also shown that blood KLK6 concentration was influenced by the advanced age and underlying neurologic pathology. Ghosh et al. (Ghosh et al., 2004) found that hK6 (also known as KLK6) was involved in matrix protein degradation and degradation of high-molecular-weight ECM proteins such as fibronectin, laminin, vitronectin and collagen.
The ECM was recognized as an active entity composed of hydrated macromolecular proteins and sugars (Akhmanova et al., 2015). Actually, ECM contained adhesive proteins, notch signaling molecules, and proteoglycans, all of which regulated and modulated various activities (Sánchez-Romero et al., 2019). The ECM connected with the body matrix and formed a major component of tissues. Basically, cells were surrounded by ECM which was an organized spatial network providing both structural and biochemical support to the cells. In this study, the results showed that cytosine located on the number 80 of the KLK6 gene was mutated to adenine, resulting in a change from proline to histidine and denaturation of the KLK6 protein. This mutation-induced change may increase the binding ability of KLK6 to its substrates during catalytic process, and as a result, this promoted the degradation of the extracellular matrix. Chondrocytes that secreted and formed the main components of ECM played an important role in maintaining joint homeostasis. In KOA, the equilibrium between synthesis and degradation of ECM was disrupted leading to remodeling of corresponding articular cartilage tissues (Rahmati et al., 2017). This indicated that the KLK6 gene may indirectly negatively influence KOA.
The STRING was adopted to construct PPI networks. The STRING database, complemented with computational predictions, was aimed to collect, score and build PPI networks (Szklarczyk et al., 2019). The PPI contributes to a better understanding of the interactive internet of target genes or proteins. Hence, it was significant to integrate all PPIs under one framework, and visualization of networks was necessary to provide data analysis using pipelines in diverse areas (Khurana et al., 2017; Huang et al., 2018). In this study, a total of 20 genes that were closely related to KLK6 were identified in the PPI. The proteins encoded by these genes were predicted to play a role in the development of KOA. To further explore the roles of these genes in KOA, we analyzed the four most commonly used databases to determine whether there was an intersection or not. Interestingly, analysis of data from the GeneCards database revealed that IL6 and KNG1 were overlapping genes.
GeneCards was a searchable, integrative database that could provide us with comprehensive information and be beneficial to predict human disease genes. Meanwhile, this database could provide us with gene-centric data from multiple sources, such as genetic, transcriptomic, genomic, proteomic, clinical, and functional information (Stelzer et al., 2016). As a result, the screening data provided by GeneCards may indicate a crucial means for associating diseases with their causative genes. In this study, the IL-6 in the GeneCards database was found and the connection of the PPI network may reveal a significant meaning for KLK6. Besides, numerous studies have revealed a connection between IL-6 and KOA. For instance, IL-6 was significantly increased in the articular synovial membrane, subchondral bone, or cartilage of KOA patients, confirming its roles in KOA pathogenesis (Wang and He, 2018). Previous studies (Greene and Loeser, 2015) had revealed that increasing IL-6 levels in the blood could significantly reduce the patients’ physical function. Meanwhile, elevated IL-6 had been linked to increased risk of KOA progression. A recent clinical study covering 33 patients with different Kellgren-Lawrence grades showed that IL-6 and IL-10 were significantly higher in both serum and synovial fluid of KOA patients compared with samples from normal control (Sachdeva et al., 2019).
This article had some limitations: (a) if the information and samples of all members in the enrolled family with KOA were available at the beginning of the study, then a WES could be performed for all family members. (b) the lack of complete patient medication records made it impossible to determine whether the missense mutation of KLK6 interfered with drug efficacy. (c) given the lack of direct trios (father, mother, child) relationship between the members, the transmission disequilibrium test could not be used to conduct family-based analysis. (d) the risk of bias was inevitable because of the small number of samples involved.
In spite of these limitations, our results added values to the understanding of the pathogenesis, accurate diagnosis and targeted therapy, as well as classification of a new hereditary-related KOA subtype. In the future, we will conduct animal and molecular experiments to verify the role of KLK6 in KOA.
CONCLUSION
WES analysis of blood samples identified a detrimental mutation of KLK6 (rs201586262, c. C80A, P27H) gene that may contribute to the development of KOA in a family. Analysis of four gene-related databases revealed that IL6 gene was overlapped with KLK6 in KOA. This study demonstrated for the first time that mutation of the KLK6 gene might modulate the development of KOA, especially the hereditary KOA, which still need futher verification by experiments.
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Pulmonary arterial hypertension (PAH) is a disease leading to right heart failure and death due to increased pulmonary arterial tension and vascular resistance. So far, PAH has not been fully understood, and current treatments are much limited. Gene expression profiles of healthy people and PAH patients in GSE33463 dataset were analyzed in this study. Then 110 differentially expressed genes (DEGs) were obtained. Afterward, the PPI network based on DEGs was constructed, followed by the analysis of functional modules, whose results showed that the genes in the major function modules significantly enriched in immune-related functions. Moreover, four optimal feature genes were screened from the DEGs by support vector machine–recursive feature elimination (SVM-RFE) algorithm (EPB42, IFIT2, FOSB, and SNF1LK). The receiver operating characteristic curve showed that the SVM classifier based on optimal feature genes could effectively distinguish healthy people from PAH patients. Last, the expression of optimal feature genes was analyzed in the GSE33463 dataset and clinical samples. It was found that EPB42 and IFIT2 were highly expressed in PAH patients, while FOSB and SNF1LK were lowly expressed. In conclusion, the four optimal feature genes screened here are potential biomarkers for PAH and are expected to be used in early diagnosis for PAH.
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INTRODUCTION
According to the classification of pulmonary hypertension (PH) of the World Health Organization (WHO), pulmonary arterial hypertension (PAH) arising from pulmonary vascular diseases is the first type of PH. The clinical symptoms of PAH mainly include fatigue dyspnea, chest distress, chest pain, syncope, and right heart failure (Galiè et al., 2015, 2016). In accordance with statistics, 11–50 people out of one million suffer from PAH worldwide (Lau et al., 2017). Common PAH types encompass idiopathic PAH (IPAH), heritable PAH (HPAH), drug and toxicant–associated PAH, disease-associated PAH, PAH with long-term calcium channel blocker, pulmonary vein–/blood capillary–involved PAH, and persistent PH of the newborn PAH (Rosenzweig et al., 2019).
Currently, the diagnosis of PAH includes initial screening through Doppler echocardiography, followed by the classification of patients by hemodynamics diagnosis, and etiological diagnosis through ventilation/perfusion scan and nighttime blood saturation determination (Thenappan et al., 2018). Risk stratification should be performed on PAH patients before treatment to evaluate the severe degree. Treatment measures often vary among patients with different types and severe degrees, mainly including general measures (rehabilitation training, vaccination, contraception, etc.), supportive treatment (anticoagulant, diuretic, etc.), and specific therapy targeting four PAH-related molecular pathways (Thenappan et al., 2018; Galiè et al., 2019). However, these treatments can only retard disease progression, instead of completely healing. With advancement in PAH diagnostic technology and treatment methods, patients’ 1- and 3-year survival rates have been remarkably increased (Lau et al., 2017). However, as shown in a survey on PAH patients during 2001–2012 in the United States, despite a decrease in PAH-related hospitalizations, the in-hospital mortality rate remained the same and the treatment expense increased dramatically (Anand et al., 2016). Hence, finding an efficient and economical diagnostic method is helpful to tackle the problems faced currently and to improve people’s understanding of the pathogenesis of PAH.
Because of the gradual mature of sequencing technology, gene sequencing has been widely applied in PAH research. A study analyzed gene expression profiles of pulmonary tissue and found different characteristics in gene expression among pulmonary fibrosis patients with and without PH (Mura et al., 2012). Other than pulmonary tissue, researching gene expression profiles of the PAH patients’ peripheral blood is of great utility. For instance, Hemnes et al. (Hemnes et al., 2015) unearthed mRNAs to distinguish vasodilator-responsive PAH (VR-PAH) and vasodilator–non-responsive PAH (VN-PAH) in the peripheral blood. Construction of a disease classifier based on patients’ gene expression data through the machine learning method has been a hot spot in recent years (Camacho et al., 2018). At present, machine learning has been widely applied in clinical diagnosis of cardiovascular diseases, such as coronary artery calcium scoring (Al’Aref et al., 2019). Integration of key mRNAs and traditional diagnostic methods may increase the accuracy of the latter. In this study, we posited that healthy people and PAH patients possess different characteristics at gene expression level. The dataset of peripheral blood gene expression of healthy people and PAH patients was downloaded from the Gene Expression Omnibus (GEO) database. A support vector machine–recursive feature elimination (SVM-RFE) machine learning algorithm was applied to screen feature genes that could identify healthy people and PAH patients. Afterward, the diagnostic performance of the feature gene-based SVM classifier was analyzed via receiver operating characteristic (ROC) curve. Finally, gene expression was tested in the collected clinical samples. Feature genes in this study can be used for diagnosis and work as potential biomarkers, providing a reference for the subsequent research of PAH mechanism.
MATERIALS AND METHODS
Data Source and Technical Route
The gene expression data of the GSE33463 dataset were accessed from GEO database (http://www.ncbi.nlm.nih.gov/geo) on 4th April, 2020 (platform No.: GPL6947). The gene expression data of 41 healthy samples and 72 PAH patients were used in the present study. 72 PAH patients included 30 IPAH and 42 systemic sclerosis–associated pulmonary arterial hypertension (SSc-PAH). In the previous context, the technical route in this study is shown in Figure 1.
[image: Figure 1]FIGURE 1 | Technical route in this study.
Identification of Differentially Expressed Genes
To analyze gene expression changes of PAH patients, differential expression analysis was undertaken on PAH samples with healthy samples as the control. R package Limma was employed (Ritchie et al., 2015), and DEGs were screened with |log2FC| > 1, FDR < 0.05 as threshold values.
Enrichment Analyses and Construction of Protein–Protein Interaction Network
To explore DEG-involved biological functions, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed with R package clusterProfiler (Yu et al., 2012). A p value < 0.05 and q value < 0.05 were used to screen significantly enriched items. Meanwhile, the STRING database (version: 11.0) was used to build a PPI network of PAH DEGs (Szklarczyk et al., 2019). The STRING database contains the interaction of known or predicted proteins/genes. The interaction network between the DEGs was predicted with an interaction score >0.4 as the threshold value in this study. The predicted results were visualized through Cytoscape software (Shannon et al., 2003). MOCODE (a plugin in Cytoscape) was applied to screen major functional modules in the PPI network (Chen et al., 2019).
SVM-RFE Analysis
SVM-RFE is a backward feature elimination method (Guyon et al., 2002; Lin et al., 2017). First, all input features were taken as a feature set F. A classifier model was built based on the SVM algorithm, and the model performance was validated using leave-one-out cross validation (LOOCV). Meanwhile, the weight |w| of each feature gene in feature set F was calculated according to the support vector on the SVM classifier hyperplane. The feature gene ranking the last in weight was deleted in the next round of SVM-RFE training, and the remaining feature genes constituted a new feature gene set for re-ranking in the next training. The step was repeated until the feature gene set F was 0. Feature genes were sequenced and selected among PAH DEGs by using the python package sklearn (Pedregosa et al., 2012). The key parameters were set as follows: estimator selecting linearSVC, kernel = “linear.” The performance of the PAH classifier was evaluated by four indexes based on the confusion matrix: sensitivity, specificity, accuracy, and MCC.
Analysis of Classifier Performance and Feature Gene Expression
To validate the diagnostic performance of the optimal feature genes, the ROC curve analysis was performed with R package timeROC. First, all healthy samples and the PAH samples were randomly shuffled. Afterward, the predictive efficiency of the single optimal feature gene and SVM model based on the optimal feature gene set was validated by the LOOCV. Finally, the ROC curve was established, and the area under the curve (AUC) was calculated. The AUC value is one of the indexes to assess the predictive performance of the model. Besides, the Wilcoxon test was used to detect the expression differences of optimal feature genes in healthy samples and PAH samples. A p value less than 0.05 was considered statistically significant.
Clinical Sample Collection
This study included 10 PAH patients who received treatment in Wuxi Huishan District People’s Hospital from February 2020 to February 2021. PAH patients met the following criteria: in the resting state, mean pulmonary arterial pressure (mPAP) ≥25 mmHg, pulmonary capillary wedge pressure (PCWP) ≤15 mm Hg, and pulmonary vascular resistance (PVR) ≥3 wood units (McLaughlin et al., 2009). Meanwhile, 10 healthy people without pulmonary disease, autoimmune disease, or other disease history were recruited as healthy control. Samples in this study have been approved by the ethics committee of this hospital. All patients have signed the informed consent.
Determination of Optimal Feature Gene Expression of Clinical Samples
Peripheral blood mononuclear cells (PBMCs) were isolated from the collected peripheral blood samples through human monocyte separation solution (Axis-Shield, Norway). Following the manufacturer’s instructions, total RNAs of PBMCs were extracted with an RNeasy Mini Kit (Qiagen, German). The concentration of extracted RNA was detected by a NanoDrop One (Thermo Fisher, USA). Afterward, RNA was reverse-transcribed to obtain cDNA with the QuantiTect Reverse Transcription Kit (Qiagen, German) according to the manufacturer’s instructions. Thereafter, two-step RT-qPCR was performed with the QuantiNova SYBR Green PCR Kit (Qiagen, German) to detect the expression of optimal feature genes. Gene primer sequences are listed in Table 1. β-actin was taken as the internal control. The 2−ΔΔCt method was applied to analyze the relative expression of target genes. Three groups of biological replicates were set in each experiment.
TABLE 1 | Primer sequence of optimal feature genes.
[image: Table 1]Statistical Analysis
After clinical experimental data were obtained, GraphPad Prism 6.0 was used for analysis. The expression differences of genes in the control group and experimental group were tested by using the t test. A p value less than 0.05 indicated statistically significant.
RESULTS
Identification of DEGs in PAH Patients and Screening of Major Function Modules
Differential expression analysis was undertaken on the gene expression profiles of healthy samples and PAH samples. A total of 110 DEGs were obtained (61 upregulated DEGs, 49 downregulated DEGs) (Figure 2A), whose functions were then predicted by the GO and KEGG enrichment analyses (Supplementary Figure S1). A PPI network of DEGs was constructed by using the STRING database (interaction score >0.4). A total of 81 nodes and 300 interacting pairs were obtained (Figure 2B). Then, we used MCODE to screen top two major functional subsets in the PPI network (Figures 2C,D). In top one major functional subset, the TLR7, CXCR4, and CX3CR1 genes were relevant to PAH according to Marasini et al. (2005); Zhang et al. (2020); Zhang et al., (2021). Functional enrichment analysis was undertaken on genes in this subset, and it was found that genes in this subset were mainly enriched in interleukin-2 production, type I interferon signaling pathway, neuroinflammatory response, and the regulation of glial cell migration (Figures 2E,F).
[image: Figure 2]FIGURE 2 | DEGs of PAH patients and DEG functional annotation and enrichment analyses. (A) Volcano plot of differential expression analysis of PAH samples relative to healthy samples (red dots: significantly highly expressed genes; green dots: significantly lowly expressed genes). (B) PPI network based on PAH DEGs (red nodes: differentially upregulated genes; blue nodes: differentially downregulated genes); node size represents connectivity of this gene in the PPI network. The larger the node, the higher is the connectivity, and the smaller the node, the less is the connectivity. (C,D) The major function modules in the PPI network; (E,F) GO function enrichment analysis for the genes in the top one major function module.
All in all, PAH patients had certain changes in the gene expression level compared with healthy people. The analysis exhibited that the major function modules in the PPI network constructed by DEGs may play a part in immune-related biological functions.
PAH Feature Genes Screened Using SVM-RFE Analysis
In a bid to screen feature genes that could be used for the PAH patients’ diagnosis and prognosis prediction, we screened DEGs using SVM-RFE. The accuracy of the classifier reached 0.938 as the number of feature genes = 4, 107, 108, and 109, as shown in Figure 3. The generalization ability of the model declined as the feature number increased. Therefore, four feature genes (EPB42, IFIT2, FOSB, and SNF1LK) were finally selected as the optimal ones. Some data on the four gene-based classifiers are given as follows: sensitivity (0.927), specificity (0.944), accuracy (0.938), and the Matthews correlation coefficient (MCC) value (0.867).
[image: Figure 3]FIGURE 3 | Results of SVM-RFE feature gene selection. X-axis refers to the number of feature genes in RFE analysis. Y-axis refers to the accuracy of the model. Blue broken line refers to the tendency of accuracy with the number of feature genes. Red vertical line refers to the number of optimal feature genes as the accuracy was the largest.
Analyses of ROC and Optimal Feature Gene Expression
For further validation of the diagnostic performance of the four optimal feature genes, here, we compared the predictive effect of four optimal feature genes alone and their combined SVM classifier. ROC analysis showed that the AUC value of four feature gene-based SVM classifiers was 0.95, significantly higher than that of four feature genes alone (Figure 4A). The expression of the four genes was analyzed based on the GSE33463 dataset to probe their expression in PAH patients. As demonstrated by Figures 4B–E, EPB42 and IFIT2 were significantly highly expressed in PAH patients, while FOSB was remarkably lowly expressed. No marked difference was found in SNF1LK expression in healthy people and PAH patients. From the previous results, a combination of the four optimal feature genes dramatically elevated the diagnostic performance of the model. Moreover, EPB42, IFIT2, and FOSB expression levels had marked differences between healthy people and PAH patients.
[image: Figure 4]FIGURE 4 | Analyses of ROC and optimal feature gene expression. (A) The diagnostic performance of the four optimal feature genes alone and their combination evaluated by ROC analysis. (B–E) The expression differences in EPB42, IFIT2, FOSB, and SNF1LK in GSE33463 between normal samples and PAH samples.
Validation of the Expression of Optimal Feature Genes in Clinical Samples
The expression of optimal feature genes was further validated in the peripheral blood mononuclear cells of PAH patients by collecting clinical samples. The analysis exhibited that the expression of EPB42 and IFIT2 was significantly upregulated in PAH patients while the expression of FOSB and SNF1LK was markedly downregulated (Figures 5A–D). The results coincided with the analysis results in the GSE33463 dataset.
[image: Figure 5]FIGURE 5 | Validation of the expression of optimal feature genes in clinical samples. (A,B) Relative to healthy people, EPB42 and IFIT2 are significantly highly expressed in the peripheral blood mononuclear cells of PAH patients. (C,D) Relative to healthy people, FOSB and SNF1LK are significantly lowly expressed in the peripheral blood mononuclear cells of PAH patients. *p < 0.05.
DISCUSSION
In recent years, personalized medicine has become increasingly popular for evaluating the patients’ prognosis or therapeutic effect by determining specific disease biomarkers in tissue or blood (Savoia et al., 2017). It is practicable to apply this method for disease diagnosis. For example, four potential diagnostic genes for IPAH were obtained by analyzing the mRNA sequencing data of lung tissue, as evidenced by Zeng et al. (2021). However, the transcriptome analysis of blood samples is more feasible than that of tissue samples in actual clinical diagnosis. Therefore, this work downloaded gene expression profiles of healthy people and PAH patients in the GEO database and established the PAH classifier via a series of bioinformatics analyses.
First, 110 PAH DEGs were obtained by differential expression analysis. The corresponding PPI network analysis revealed a close interplay between these genes. Afterward, function enrichment analysis was performed to analyze the potential functions of these DEGs and the major function modules of the PPI network. The results of the GO enrichment analysis of the top1 function module indicated that several immune-related biological functions were involved in interleukin-2 production, type I interferon signaling pathway, and neuroinflammatory response. Interestingly, dysregulation of cytokines is considered a significant indicator for PAH patients. Likewise, it was reported that many PAH patients suffer from autoimmune and inflammatory diseases (Jafri and Ormiston, 2017; Thenappan et al., 2018), which is consistent with our GO prediction.
After determining the involved biological functions of DEGs in PAH progression, we screened the optimal feature genes to be used for PAH diagnosis through SVM-RFE. SVM-RFE is an algorithm that combines SVM and recursive feature elimination (RFE) proposed by Guyon (Guyon et al., 2002). This algorithm is used for gene selection before classification research. The features are sorted by the SVM classification criteria based on importance or contribution, gradually eliminating the lowest-scored features, iterating repeatedly, and obtaining a subset of features that make the model the most accurate or with the least error (Duan et al., 2005). This method is widely used for the analysis of various disease data (Li et al., 2012; Sahran et al., 2018). Four feature genes were finally acquired: EPB42, IFIT2, FOSB, and SNF1LK. A bioinformatics study presented that IFIT2 is a key gene to SSc-PAH and a potential biomarker, and SSc-PAH is a common PAH relevant to the connective tissue diseases (Zheng et al., 2020). A study illustrated that FOSB shows a highly expressed trend in chronic obstructive pulmonary disease (COPD), while it is lowly expressed in idiopathic pulmonary fibrosis (IPF) (Villaseñor-Altamirano et al., 2020). The FOSB expression varies in different pulmonary diseases and is an underlying biomarker to distinguish COPD-caused PAH and other types of PAH. The other two genes have been rarely researched in PAH. We assessed the expression of optimal feature genes in the GSE33463 dataset and clinical samples. We discovered high expression levels of EPB42 and IFIT2 and low expression levels of FOSB and SNF1LK in PAH patients. According to the above results, four optimal feature genes were taken as PAH classifier and potential PAH biomarkers.
Overall, a four optimal feature gene-based PAH classifier was acquired via a series of bioinformatics analyses based on PAH gene expression data downloaded from the public database. ROC curve analysis suggested that the diagnostic performance of the classifier was favorable and could accurately distinguish healthy people and PAH patients. The expression of these genes was then tested via clinical samples. Few studies have showed concern for the early diagnosis of PAH, while the most common challenge for clinical diagnosis is to determine whether patients had PH or PAH. Right heart catheterization is currently required to accurately diagnose PH and PAH, and the PAH diagnostic–related classifiers built in this study provide a direction for early diagnosis of PAH and reduce patient pain. Clinically, early diagnosis and active intervention can not only slow the progression of PAH but also reduce the fatality rate of disability and may even achieve early cure. However, limitations still exist in this study. For instance, clinical samples were fairly few. Thus, ROC analysis and other subsequent analyses based on these samples are not convincing. In addition, we did not exclude the possibility of other diseases in patients, which may affect the results. We expect to validate the model in more clinical samples and to further explore the feasibility of the model in clinical diagnosis by comparing with the existing methods.
DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.
AUTHOR CONTRIBUTIONS
ZS and JS contributed to the study design. JH conducted the literature search. ZS acquired the data. JS wrote the article. XB and LL performed data analysis and drafted. BY and KD revised the article. ZS gave the final approval of the version to be submitted.
FUNDING
This study was supported by the National Natural Science Foundation of China (81870197).
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.781011/full#supplementary-material
Supplementary Figure S1 | Supplementary Figure of GO and KEGG analyses forof DEGs (A) Bubble plot of GO functional annotation of DEGs. The color of circles denotes statistical significance. The size of the circles denotes the number of enriched DEGs. X-axis denotes the percentage of the number of enriched DEGs inout of all genes. BP: biological process. CC: cellular component. MF: molecular function; (B) KEGG pathway enrichment analysis of DEGs.
REFERENCES
 Al'Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., et al. (2019). Clinical Applications of Machine Learning in Cardiovascular Disease and its Relevance to Cardiac Imaging. Eur. Heart J. 40, 1975–1986. doi:10.1093/eurheartj/ehy404
 Anand, V., Roy, S. S., Archer, S. L., Weir, E. K., Garg, S. K., Duval, S., et al. (2016). Trends and Outcomes of Pulmonary Arterial Hypertension-Related Hospitalizations in the United States: Analysis of the Nationwide Inpatient Sample Database from 2001 through 2012. JAMA Cardiol. 1, 1021–1029. doi:10.1001/jamacardio.2016.3591
 Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C., and Collins, J. J. (2018). Next-Generation Machine Learning for Biological Networks. Cell 173, 1581–1592. doi:10.1016/j.cell.2018.05.015
 Chen, S., Yang, D., Lei, C., Li, Y., Sun, X., Chen, M., et al. (2019). Identification of Crucial Genes in Abdominal Aortic Aneurysm by WGCNA. PeerJ 7, e7873. doi:10.7717/peerj.7873
 Duan, K. B., Rajapakse, J. C., Wang, H., and Azuaje, F. (2005). Multiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Trans. Nanobioscience 4, 228–234. doi:10.1109/tnb.2005.853657
 Galiè, N., Humbert, M., Vachiery, J.-L., Gibbs, S., Lang, I., Torbicki, A., et al. (20152016). ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 37, 67–119. doi:10.1093/eurheartj/ehv317
 Galiè, N., Channick, R. N., Frantz, R. P., Grünig, E., Jing, Z. C., Moiseeva, O., et al. (2019). Risk Stratification and Medical Therapy of Pulmonary Arterial Hypertension. Eur. Respir. J. 53. doi:10.1183/13993003.01889-2018
 Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. J. M. L. (2002). Gene Selection for Cancer Classification Using Support Vector Machines. Computational Systems Bioinformatics . 46, 389–422. doi:10.1023/a:1012487302797
 Hemnes, A. R., Trammell, A. W., Archer, S. L., Rich, S., Yu, C., Nian, H., et al. (2015). Peripheral Blood Signature of Vasodilator-Responsive Pulmonary Arterial Hypertension. Circulation 131, 401–409. discussion 409. doi:10.1161/CIRCULATIONAHA.114.013317
 Jafri, S., and Ormiston, M. L. (2017). Immune Regulation of Systemic Hypertension, Pulmonary Arterial Hypertension, and Preeclampsia: Shared Disease Mechanisms and Translational Opportunities. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R693–R705. doi:10.1152/ajpregu.00259.2017
 Lau, E. M. T., Giannoulatou, E., Celermajer, D. S., and Humbert, M. (2017). Epidemiology and Treatment of Pulmonary Arterial Hypertension. Nat. Rev. Cardiol. 14, 603–614. doi:10.1038/nrcardio.2017.84
 Li, X., Peng, S., Chen, J., Lü, B., Zhang, H., Lai, M., et al. (2012). A Novel Gene Selection Algorithm for Identifying Metastasis-Related Genes in Colorectal Cancer Using Gene Expression Profiles. Biochem. Biophys. Res. Commun. 419, 148–153. doi:10.1016/j.bbrc.2012.01.087
 Lin, X., Li, C., Zhang, Y., Su, B., Fan, M., and Wei, H. (2017). Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics. Molecules 23. doi:10.3390/molecules23010052
 Marasini, B., Cossutta, R., Selmi, C., Pozzi, M. R., Gardinali, M., Massarotti, M., et al. (2005). Polymorphism of the Fractalkine Receptor CX3CR1 and Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Clin. Dev. Immunol. 12, 275–279. doi:10.1080/17402520500303297
 McLaughlin, V. V., Archer, S. L., Badesch, D. B., Barst, R. J., Farber, H. W., Michael, A M, et al. (2009). ACCF/AHA 2009 Expert Consensus Document on Pulmonary Hypertension: a Report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: Developed in Collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 119, 2250–2294. doi:10.1161/CIRCULATIONAHA.109.192230
 Mura, M., Anraku, M., Yun, Z., McRae, K., Liu, M., Waddell, T. K., et al. (2012). Gene Expression Profiling in the Lungs of Patients with Pulmonary Hypertension Associated with Pulmonary Fibrosis. Chest 141, 661–673. doi:10.1378/chest.11-0449
 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2012). Scikit-learn: Machine Learning in Python
 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007
 Rosenzweig, E. B., Abman, S. H., Adatia, I., Beghetti, M., Bonnet, D., Haworth, S., et al. (2019). Paediatric Pulmonary Arterial Hypertension: Updates on Definition, Classification, Diagnostics and Management. Eur. Respir. J. 53. doi:10.1183/13993003.01916-2018
 Sahran, S., Albashish, D., Abdullah, A., Shukor, N. A., and Hayati Md Pauzi, S. (2018). Absolute Cosine-Based SVM-RFE Feature Selection Method for Prostate Histopathological Grading. Artif. Intell. Med. 87, 78–90. doi:10.1016/j.artmed.2018.04.002
 Savoia, C., Volpe, M., Grassi, G., Borghi, C., Agabiti Rosei, E., and Touyz, R. M. (2017). Personalized Medicine-A Modern Approach for the Diagnosis and Management of Hypertension. Clin. Sci. (Lond) 131, 2671–2685. doi:10.1042/CS20160407
 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303
 Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al. (2019). STRING V11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-wide Experimental Datasets. Nucleic Acids Res. 47, D607–D613. doi:10.1093/nar/gky1131
 Thenappan, T., Ormiston, M. L., Ryan, J. J., and Archer, S. L. (2018). Pulmonary Arterial Hypertension: Pathogenesis and Clinical Management. BMJ 360, j5492. doi:10.1136/bmj.j5492
 Villaseñor-Altamirano, A. B., Moretto, M., Maldonado, M., Zayas-Del Moral, A., Munguía-Reyes, A., Romero, Y., et al. (2020). PulmonDB: a Curated Lung Disease Gene Expression Database. Sci. Rep. 10, 514. doi:10.1038/s41598-019-56339-5
 Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS 16, 284–287. doi:10.1089/omi.2011.0118
 Zeng, H., Liu, X., and Zhang, Y. (2021). Identification of Potential Biomarkers and Immune Infiltration Characteristics in Idiopathic Pulmonary Arterial Hypertension Using Bioinformatics Analysis. Front. Cardiovasc. Med. 8, 624714. doi:10.3389/fcvm.2021.624714
 Zhang, L., Zeng, X. X., Li, Y. M., Chen, S. K., Tang, L. Y., Wang, N., et al. (2021). Keratin 1 Attenuates Hypoxic Pulmonary Artery Hypertension by Suppressing Pulmonary Artery media Smooth Muscle Expansion. Acta Physiol. (Oxf) 231, e13558. doi:10.1111/apha.13558
 2020). Zhang, T., Kawaguchi, N., Tsuji, K., Hayama, E., Furutani, Y., Sugiyama, H., et al. Silibinin Upregulates CXCR4 Expression in Cultured Bone Marrow Cells (BMCs) Especially in Pulmonary Arterial Hypertension Rat Model. Cells9. doi:10.3390/cells9051276
 Zheng, J. N., Yang, L., Yue, M. Y., Hui, S., Tian, T. Z., Wen, Q. S., et al. (2020). Identification and Validation of Key Genes Associated with Systemic Sclerosis-Related Pulmonary Hypertension. Front. Genet. 11, 816. doi:10.3389/fgene.2020.00816
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2021 Shang, Sun, Hui, Yu, Bian, Yang, Deng and Lin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 30 November 2021
doi: 10.3389/fgene.2021.789485


[image: image2]
Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation
Bo Hu1†, Wen Ge2†, Yuliang Wang3†, Xiaobin Zhang4, Tao Li5, Hui Cui6, Yongjun Qian5*†, Yangyang Zhang4* and Zhi Li7*
1Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
2Department of Cardiothoracic Surgery, Shuguang Hospital, Affiliated to Shanghai University of TCM, Shanghai, China
3Department of Immunology, Nanjing Medical University, Nanjing, China
4Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
5Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
6School of Life Science and Technology, Shanghai Tech University, Shanghai, China
7Department of Cardiovascular Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
Edited by:
Tao Huang, Shanghai Institute of Nutrition and Health (CAS), China
Reviewed by:
Xin Zhao, Shandong University, China
Jinzhu Hu, Nanchang University, China
* Correspondence: Zhi Li, zhili_cths@163.com; Yangyang Zhang, zhangyangyang_wy@vip.sina.com; Yongjun Qian, qianyongjun@scu.edu.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Received: 05 October 2021
Accepted: 08 November 2021
Published: 30 November 2021
Citation: Hu B, Ge W, Wang Y, Zhang X, Li T, Cui H, Qian Y, Zhang Y and Li Z (2021) Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation. Front. Genet. 12:789485. doi: 10.3389/fgene.2021.789485

Atrial fibrillation (AF) is an abnormal heart rhythm related to an increased risk of heart failure, dementia, and stroke. The distinction between valvular and non-valvular AF remains a debate. In this study, proteomics and metabolomics were integrated to describe the dysregulated metabolites and proteins of AF patients relative to sinus rhythm (SR) patients. Totally 47 up-regulated and 41 down-regulated proteins in valvular AF, and 59 up-regulated and 149 down-regulated proteins in non-valvular AF were recognized in comparison to SR patients. Moreover, 58 up-regulated and 49 significantly down-regulated metabolites in valvular AF, and 47 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF patients were identified in comparison to SR patients. Based on analysis of differential levels of metabolites and proteins, 15 up-regulated and 22 down-regulated proteins, and 13 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF were identified relative to valvular AF. KEGG pathway enrichment analysis showed the altered proteins and metabolites were significantly related to multiple metabolic pathways, such as Glycolysis/Gluconeogenesis. Interestingly, the enrichment pathways related to non-valvular AF were obviously different from those in valvular AF. For example, valvular AF was significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF was more related to Citrate cycle (TCA cycle). Correlation analysis between the differentially expressed proteins and metabolites was also performed. Several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate played crucial roles in valvular AF, while Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase were crucial in non-valvular AF. Then two hub networks were recognized as potential biomarkers, which can effectively distinguish valvular AF and non-valvular persistent AF from SR samples, with areas under curve of 0.75 and 0.707, respectively. Hence, these metabolites and proteins can be used as potential clinical molecular markers to discriminate two types of AF from SR samples. In summary, this study provides novel insights to understanding the mechanisms of AF progression and identifying novel biomarkers for prognosis of non-valvular AF and valvular AF by using metabolomics and proteomics analyses.
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INTRODUCTION
Atrial fibrillation (AF) is the most common arrhythmia with an abnormal atrial rhythm, resulting in increasing risk of heart failure, and stroke (Zhou et al., 2019). AF attacks more than 30 million individuals in developed countries (Christophersen et al., 2016), and this number is expected to grow sharply in the next 20 years. However, the AF-associated atrial electrical, and structural remodeling mechanisms are more complicated and variable in patients compared with other types of arrhythmia. Various heart diseases may lead to atrial remodeling, resulting in the development of AF, whereas AF can also give rise to atrial remodeling due to the progression of others arrhythmia (Anne et al., 2005). The probable reason is that different risk factors contribute to adverse atrial remodeling in given individuals to induce AF. In clinical practice, AF can be divided into paroxysmal AF (up to 7 days with spontaneous termination), persistent AF (more than 7 days, needing medical or electrical cardioversion), long-standing persistent AF (sustaining at least 1 year) and permanent AF (long-term maintenance of sinus rhythm not an option) (Fauchier et al., 2015). Heart valve-related AF is also most common in patients with rheumatic mitral stenosis, and the non-valvular related AF refers to the unclear etiology with no valvular heart disease (Fauchier et al., 2015). Despite a large number of basic and clinical studies, little is known about the basic mechanical difference between valvular and non-valvular AF. In addition, identifying more reliable biomarkers for early diagnosis is urgent and can help understand the pathological mechanism of AF and provide new therapeutic targets.
Recently, various “omics” techniques were applied to identify the molecular changes and mechanisms of AF-associated remodeling. Proteomics and metabolomics were employed to investigate the entire proteome and metabolome levels in an indicated disease sample (Sühling et al., 2018; Chen et al., 2020). Both of them are complementary to genomics and transcriptomics, and are more sensitive to external factors and better reflect the real physiological status of a biological system. The rapidly-developed liquid chromatography—mass spectrometry (LC–MS)-based “omics” techniques achieve confirmed analysis of numerous metabolite or protein level patterns in biological samples, offering valuable data for biomarker screening and pathological and biological research (Lewis et al., 2008).
In this context, by integrating proteomics and metabolomics, we describe the dysregulated metabolites and proteins of AF patients relative to SR patients. Our results also provide candidate biomarkers for distinguishing valvular and non-valvular AFs from SR patients, reveal the fundamental differences between them and give a hint of emphasizing the available treatment strategies for AF.
METHODS
Clinical Specimens
Left atrial appendages were harvested from AF patients undergoing cardiovascular surgery with procedures approved by the Ethics Committee Board of Shanghai East Hospital (0402017). Subjects (20 patients) suffered from long-standing persistent AF sustaining more than 1 year. Ten of them were recruited with rheumatic mitral stenosis, and the other ten were admitted after diagnosis with non-valvular AF. For comparison, ten matched SR patients of left atrial appendages were collected from healthy donors. The specimens were immediately snap-frozen and stored in liquid nitrogen.
Partial Least Squares Discrimination Analysis (OPLS-DA)
The overall proteomic and metabolic changes in AF were determined by OPLS-DA on R package “mixOmics” (Rohart et al., 2017). Additionally, a univariate analysis of Wilcoxon Mann-Whitney U test was conducted for differential analysis.
Differential Analysis and Pathway Enrichment
Dysregulated metabolites and protein were selected and mapped into the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://home.jp/kegg/) for pathway enrichment analysis.
Correlation Analysis Between Metabolomics and Proteomics
The correlative metabolites between metabolomics and proteomics were screened by Pearson correlation analysis. All the nodes were loaded to CytoScape for network construction in the light of the correlation data.
Model Construction and Biomarker Identification
Receiver’s operating characteristic (ROC) curves were drawn with the R package “pRoC” for evaluating the diagnostic performance of metabolite biomarkers. We calculated the area under the curve (AUC) to assess the prediction accuracy.
Statistical Analysis
We performed statistical analyses using R 3.6.2 and presented the data as mean ± standard error of mean (SEM). Grouped t-test was conducted for metabolomics and proteomics analyses between the AF and SR groups. The significant metabolites and proteins were determined according to p < 0.05 and foldchange (FC) ≥2; p < 0.05, respectively. KEGG enrichment analysis was conducted to assess the metabolic pathways. χ2-test was applied for categorical variable analysis.
RESULTS
Overview of This Workflow
Metabolomic and proteomic analyses were carried out using 10 persistent non-valvular AF samples, 10 valvular AF samples, and 10 SR samples. Through univariate and multivariate analyses, we analytically integrated the metabolic and proteomic data to find out significantly different metabolites and proteins between AF samples and SR samples. Further bioinformatic analyses were applied to reveal the significantly enriched pathways, providing clues about the pathological mechanism (Figure 1).
[image: Figure 1]FIGURE 1 | The flowchat of the analysis in this study.
Proteomics Profiling Analysis of Valvular AF and Non-Valvular AF Samples
Proteomics samples were analyzed by univariate analysis. Differentially expressed proteins were identified with the criteria of false discovery rate (FDR)-adjusted p < 0.05 and FC > 2 for up-regulation, FDR-adjusted p < 0.05 and FC < 0.5 for down-regulation. There were 47 proteins with significant up-regulation and 41 proteins with significant down-regulation in valvular AF patients compared to the SR group. The dramatically up-regulated proteins in valvular AF were obviously down-regulated in the SR group (Figure 2B). Among them, both Integrin alpha -V heavy/light chain and Periodin were significantly changed, with the FCs of 0.108 and 7.941 respectively (Figure 2A). Additionally, PLS-DA of all protein expression data in these two groups found that the protein profile of valvular AF tissues was greatly distinguished from that of SR tissues, indicating that valvular AF underwent pathological alteration (Figure 2C). KEGG pathway enrichment analysis of differentially expressed proteins revealed totally 21 significantly expressed metabolic pathways, including multiple metabolic pathways such as Glycolysis/Gluconeogenesis, Metabolism of xenobiotics by cytochrome P450, Base excision repair, Pentose phosphate pathway, and Purine metabolism (Figure 2D).
[image: Figure 2]FIGURE 2 | Proteomics profiling analysis of valvular AF and non-valvular AF samples. (A, B) The volcano plot (A) and heatmap (B) showed the differently expressed proteins in valvular AF compared to SR samples. (C) PLSDA analysis showed the protein profiles between valvular AF and SR tissues. (D) KEGG analysis of differently expressed proteins in valvular AF. (E, F) The volcano plot (E) and heatmap (F) showed the differently expressed proteins in non-valvular AF compared to SR samples. (G) PLSDA analysis showed the protein profiles between non-valvular AF and SR tissues (H) KEGG analysis of differently expressed proteins in non-valvular AF.
Similar methods were applied to analyze the proteomics data of non-valvular AF, and found 59 significantly up-regulated proteins and 149 significantly down-regulated proteins in non-valvular AF compared to SR samples. The most significantly changed proteins included ATP-citrate synthase and Apolipoprotein E, with the FCs of 0.131 and 8.823, respectively (Figure 2E). Together with the analysis of valvular AF, PLSDA showed the protein profiles of non-valvular AF tissues were greatly distinguished from those of SR patient tissues, indicating non-valvular AF also underwent pathological alteration (Figures 2F,G). Then 24 significant pathways were predicted to be related to non-valvular AF, including Spliceosome, Ribosome, Phagosome, Endocytosis, Pathogenic Escherichia coli infection, Oxidative phosphorylation, Citrate cycle (TCA cycle), Dilated cardiomyopathy (DCM), and Cardiac muscle contraction. Interestingly, the enrichment pathways related to non-valvular AF were extremely different from those in valvular AF. For example, valvular AF was significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF was more related to Citrate cycle (TCA cycle) (Figure 2H).
These analyses demonstrated that both valvular AF and persistent non-valvular AF tissues were greatly changed in protein levels compared with SR patient tissues and were strongly heterogeneous, implying the differences in the pathogenesis and clinical treatment should be distinguished between the two types of AF (Figure 2).
Metabolomic Profiling Analysis of Valvular AF and Non-Valvular AF Samples
We next performed metabolomics analysis of valvular AF and non-valvular AF samples. The differential analysis revealed 58 up-regulated and 49 down-regulated metabolites, both significantly, in valvular AF compared to the SR patient group (Figures 3A,B). Especially, the alterations of 20-hydroxy-PGF2a and Glutathione were the most significant, with FCs of 0.016 and 23.796, respectively. There were 47 up-regulated and 122 down-regulated metabolites, both significantly, in persistent non-valvular AF samples compared to SR patient groups (Figures 3E,F). Among them, Thymine and Thiopental were changed the most significantly, with FCs of 0.018 and 133.832, respectively. Besides, PLS-DA revealed that the metabolomics maps changed greatly in both valvular AF and persistent non-valvular AF compared to those from the SR patients, which are consistent with proteomics differences (Figures 3C,G). Notably, the signaling pathways of valvular AF and persistent AF were largely different in metabolomics enrichment analysis. The altered metabolites in valvular AF were mainly enriched in glutamine and fructose metabolism (Figure 3D), and those of non-valvular AF were significantly enriched in metabolism of valine, glycine, pentose, arginine, phenylalanine and fructose, and phenylalanine synthesis (Figure 3H). Fructose metabolism was the only common pathway between valvular AF and persistent AF (Figures 3D,H).
[image: Figure 3]FIGURE 3 | Metabolomic profiling analysis of valvular AF and non-valvular AF samples. (A,B) The volcano plot (A) and heatmap (B) showed the differently expressed metabolites in valvular AF compared to SR samples. (C) PLSDA analysis showed the protein profiles between valvular AF and SR tissues. (D) KEGG analysis of differently expressed metabolites in valvular AF. (E,F) The volcano plot (E) and heatmap (F) showed the differently expressed metabolites in non-valvular AF compared to SR samples. (G) PLSDA analysis showed the protein profiles between non-valvular AF and SR tissues (H) KEGG analysis of differently expressed metabolites in non-valvular AF.
Metabolomics and Proteomics Analyses of Valvular AF and Non-Valvular AF
By analyzing the differential levels of persistent non-valvular AF and valvular AF, we screened metabolites and proteins with FC > 1.5 and FC < 0.5 in the proteome and metabolome respectively compared to valvular AF (Figures 4A,D). There were 15 up-regulated proteins and 22 down-regulated proteins, 13 up-regulated metabolites and 122 down-regulated metabolites, all significantly, in persistent non-valvular AF compared to valvular AF samples. PLS-DA demonstrated that the protein and metabolism profiles of persistent non-valvular AF were not completely separated from those of valvular AF (Figure 4B), but can be fully divided by metabolomics analysis (Figure 4E). Hence, metabolomics differences suggest the pathological characteristics of persistent non-valvular AF and valvular AF, which exhibit higher similarity with phenotypic changes.
[image: Figure 4]FIGURE 4 | Metabolomics and proteomics analyses of valvular AF and non-valvular AF samples. (A–C) The volcano plot (A), PLSDA analysis (B) and heatmap (C) showed the differently expressed proteins in non-valvular AF compared to valvular AF samples. (D–F) The volcano plot (D), PLSDA analysis (E) and heatmap (F) showed the differently expressed metabolites in non-valvular AF compared to valvular AF samples.
Correlation Analysis of Differentially Expressed Proteins and Different Levels of Metabolites
We firstly screened out the metabolites and proteins with FC > 1.5 and FC < 0.5 respectively in valvular AF and non-valvular AF tissues in comparison with the SR patient tissues. Among them, 104 metabolites and 59 proteins were found in valvular AF. Correlation analysis uncovered obvious clustering patterns in these proteins and metabolites, indicating the proteins and metabolites as-screened can represent the metabolism changes in valvular AF (Figure 5A). The 158 metabolites and 56 proteins in persistent non-valvular AF were screened, and had obvious clustering patterns according to correlation analysis, indicating these proteins and metabolites as-screened are representative of metabolic changes in persistent AF (Figure 5B). By sorting the absolute values of correlation coefficient, we drew a network diagram of the top100-related proteins and metabolites on Cytoscape. Several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate all played crucial roles in valvular AF. Meanwhile, Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase were crucial in non-valvular AF.
[image: Figure 5]FIGURE 5 | Correlation analysis of the differentially expressed proteins with metabolites. (A,B) The correlation analysis of differentially expressed proteins with metabolites in valvular AF (A) and non-valvular AF (B). (C, D) We constructed differentially expressed proteins and metabolites interaction networks in valvular AF (C) and non-valvular AF (D).
Identification of Hub Networks to Predict Valvular AF and Non-Valvular AF
To identify the potential biomarkers to distinguish persistent non-valvular AF from valvular AF, we applied more stringent screening on proteomics and metabolomics. Then, the proteins-metabolites pairs with correlation coefficient > 0.6 were selected for further analysis. The hub networks in valvular AF included Diglykokoll, Rhamnose, and Myosin−binding protein H−like (Figure 6A), and the hub networks in non-valvular AF included 2−Hydroxyadenine, Deoxyguanosine, Methionine sulfoxide, and SPP2 (Figure 6B). These metabolites and proteins were highly suppressed in valvular AF and persistent non-valvular AF (Figures 6C,D). These substances were then applied to establish a model that can effectively distinguish valvular AF and non-valvular persistent AF from SR patient samples, with AUC of 0.75 (Figure 6E) and 0.707 (Figure 6F), respectively. Hence, these metabolites and proteins can be used as potential clinical molecular markers for discriminating two types of AF from SR patient samples.
[image: Figure 6]FIGURE 6 | Identification of hub networks to predict valvular AF and non-valvular AF. (A, B) We identified the hub network in valvular AF (A) and non-valvular AF (B). (C, D) The metabolites and proteins of hub networks were highly suppressed in valvular AF (C) and persistent non-valvular AF (D).(E, F) The hub network can effectively distinguish valvular AF (E) and non-valvular persistent AF (F) from SR samples.
DISCUSSION
AF is one of the most common and severe abnormal arrhythmias (Schmidt et al., 2011). Exploring ideal biomarkers for its diagnosis at early stage is still needed. Early detection of asymptomatic AF will offer a chance to take precautions against or to reduce undesirable disease consequences by implementing suitable treatment tactics. Over the past 20 years, catheter-based infrequent surgery and mixed ablation techniques are proven to be more successful in controlling heart rhythm of AF patients (Parkash et al., 2021). Unfortunately, the ablation technology efficiency varies largely among different clinical forms of AF, as it maximizes in paroxysmal AF and minimizes in long-term persistent AF (Margulescu and Mont, 2017). We comprehensively analyzed the dysregulated molecules in valvular AF and non-valvular AF samples and discovered significant differences in proteins and metabolites. The integrated multi-omics and bioinformatics data proved that identification of key pathways and characteristic genes in the two forms of AF and relevant AF-related metabolic pathways may help to study the underlying mechanism of AF and to unearth potential targets for diagnosis and treatment.
Proteomics is largely applied into research at large-scale protein levels, and enables researchers to investigate the protein alterations that lead to the pathological progression of diseases (Chambers et al., 2000; Sühling et al., 2018). Proteome can reflect the cell phenotype and variations that are potentially associated with cells and tissue functions (Mirauta et al., 2020). Compared with genetics, the proteomics and metabolomics are closely related to the phenotype of diseases and better manifest the disease progression (Barallobre-Barreiro et al., 2013). Over the past decades, several studies reveal the special metabolomics pattern in AF (Mayr et al., 2008; Jung et al., 2018). For example, Mayr et al. (2008) reported beta-hydroxybutyrate, ketogenic amino acid and glycine levels increased in persistent AF. Jung et al. (2018) found the levels of fatty acids and phospholipids were different between AF patients and SR patients. However, the special metabolomics patterns in valvular AF and non-valvular AF remain largely unknown. In this study, we metabolomically analyzed valvular AF and non-valvular AF samples to identify the potential roles of metabolomics in AF. The combined use of proteomics and metabolomics results revealed 47 up-regulated and 41 down-regulated proteins in valvular AF, and 59 up-regulated proteins and 149 down-regulated proteins in non-valvular AF compared to the SR patient samples. Meanwhile, we identified 58 up-regulated and 49 significantly down-regulated metabolites in valvular AF, and 47 up-regulated metabolites and 122 down-regulated metabolites in persistent non-valvular AF samples compared to the SR patient samples. KEGG pathway enrichment analysis revealed a total of 21 significantly enriched metabolic pathways, including multiple metabolic pathways such as Purine metabolism. Reportedly, plasma uric acid level increased in AF patients and was associated with AF burden. Interestingly, uric acid is an end product of purine metabolism (Guerreiro et al., 2009). Adenosine is purine metabolism-related metabolite that can induce AF. The purine metabolic pathway is closely implicated and strongly related to AF progression. For example, uric acid, the end-product of purine metabolism, plays a crucial role in cardiovascular diseases, such as atrial fibrillation and cardiovascular death. Increased uric acid levels in serum are related to AF (Watanabe, 2012; Borghi et al., 2020). Interestingly, the enrichment pathways related to non-valvular AF are extremely different from those in valvular AF. For example, valvular AF is significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF is more related to Citrate cycle (TCA cycle). Reportedly, glycolysis activity was intensified in AF (Becerra-Tomás et al., 2021). Targeting Glycolysis may be a potential therapy for AF (Becerra-Tomás et al., 2021). Inducing the Warburg effect can markedly improve myocardial fibrosis remodeling in AF (Hu et al., 2019). However, the association between the glycolysis pathway and AF is unclear. We found Glycolysis played a crucial role in valvular AF, but not in non-valvular AF. Moreover, by comparing the differences inmetabolomics and proteomics between valvular AF and non-valvular AF samples, we found metabolomics differences illustrated the pathological characteristics of persistent non-valvular AF and valvular AF, exhibiting a higher similarity with phenotypic changes.
We next analyzed the correlations of differentially expressed proteins and metabolites. Several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate played crucial roles in valvular AF. Meanwhile, Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase were crucial in non-valvular AF. Interestingly, several of them were related to multiple crucial signaling in AF. For example, circulating glutamate and taurine levels are associated with the generation of reactive oxygen species in paroxysmal AF (Takano et al., 2016), and taurine prevents electrical remodeling in AF models (Yang et al., 2017). High-level lactate was observed in AF and related to AF remodeling, such as severe oxidative stress injury and mitochondrial control of apoptosis (Xu et al., 2013). We next identified two hub networks as potential biomarkers to distinguish persistent non-valvular AF and valvular AF from SR patient samples. The hub networks in valvular AF included Diglykokoll, Rhamnose, and Myosin−binding protein H−like. The hub networks in non-valvular AF included 2−Hydroxyadenine, Deoxyguanosine, Methionine sulfoxide, and SPP2. These models can effectively distinguish valvular AF and non-valvular persistent AF from SR patient samples, with AUCs of 0.75 and 0.707, respectively, indicating that these metabolites and proteins can be used as potential clinical molecular markers for discriminating two types of AF from SR patient samples.
CONCLUSION
Through metabolomic and proteomic analyses, we identified differential levels of proteins and metabolites in non-valvular AF and valvular AF compared to SR samples, and found the huge metabolic profiling differences between non-valvular AF and valvular AF. KEGG pathway enrichment analysis showed altered proteins and metabolites were significantly related to metabolic pathways. Interestingly, the enrichment pathways related to non-valvular AF are significantly different from those in valvular AF. For example, valvular AF is significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF is more related to Citrate cycle (TCA cycle). Based on correlation analysis of differential levels of proteins and metabolites, several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate play a crucial role in valvular AF. Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase are crucial in non-valvular AF. We next identified two hub networks as potential biomarkers, which can effectively distinguish valvular AF and non-valvular persistent AF from SR patient samples, with AUCs of 0.75 and 0.707, respectively. Hence, these metabolites and proteins can be used as potential clinical molecular markers to discriminate the two types of AF from SR patient samples. In summary, this study can provide a novel insight to understanding the mechanisms about the progression of AF and identifying novel biomarkers for the prognosis of non-valvular AF and valvular AF by using metabolomics and proteomics analyses.
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The inhibitory regulators, known as immune checkpoints, prevent overreaction of the immune system, avoid normal tissue damage, and maintain immune homeostasis during the antimicrobial or antiviral immune response. Unfortunately, cancer cells can mimic the ligands of immune checkpoints to evade immune surveillance. Application of immune checkpoint blockade can help dampen the ligands expressed on cancer cells, reverse the exhaustion status of effector T cells, and reinvigorate the antitumor function. Here, we briefly introduce the structure, expression, signaling pathway, and targeted drugs of several inhibitory immune checkpoints (PD-1/PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, and IDO1). And we summarize the application of immune checkpoint inhibitors in tumors, such as single agent and combination therapy and adverse reactions. At the same time, we further discussed the correlation between immune checkpoints and microorganisms and the role of immune checkpoints in microbial-infection diseases. This review focused on the current knowledge about the role of the immune checkpoints will help in applying immune checkpoints for clinical therapy of cancer and other diseases.
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INTRODUCTION
Activation of T cells plays an important role in the process of immunity (Lenschow and Bluestone, 1993). During normal immune response, the process that T cells accept antigen peptides presented by major histocompatibility complex (MHC) on antigen-presenting cells (APCs) via T-cell receptor (TCR) in order to exert its function is called the first signal for T-cell activation. The second signal for T-cell activation is a costimulatory signal which comes from a combination between CD28 on T cells and CD80(B7-1)/CD86(B7-2) on APCs (Lenschow et al., 1996; Nandi et al., 2020). This activation process also requires cytokines such as IL-2 to help. The rightly activated T cells or in tandem with B cells will eliminate threats, while uncontrolled activation of T cells would bring serious consequences such as autoimmune diseases (Takeuchi et al., 2020). Therefore, scientists devoted their lives to shed light on how the immune system regulates itself.
In the last two decades, the understanding of regulatory pathways in immune responses to cancer immunotherapies remains unclear. The enormous progress was made in 1996; Leach and his colleagues (Linsley et al., 1991; Leach et al., 1996) have been validated that blockade of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) could downregulate T-cell responses and enhance antitumor responses in immunocompetent mouse models. In 2000, Gordon J. Freeman identified that CTLA-4 structurally similar protein-programmed death 1 (PD-1) could bind to its ligand PD-L1 and lead to the inhibition of lymphocyte proliferation (Freeman et al., 2000). The binding of B- and T-cell lymphocyte attenuator (BTLA) to its ligand HVEM may lead to decreased T-cell proliferation and cytokine production (Murphy et al., 2006). The binding of T-cell immunoglobulin and mucin domain-containing 3 (TIM-3) to its ligand galectin-9 could result in T helper 1 (Th1) cell death (Zhu et al., 2005). V-domain Ig suppressor of T-cell activation (VISTA) is a potent T-cell suppressor and inhibits T-cell immune response in animal models (Wang et al., 2011). During these processes, the set of costimulatory or coinhibitory molecules, which regulate the activation, effector functions, and interactions among APCs and T lymphocytes, provides a critical checkpoint in the regulation of T-cell immunity and maintenance of immune homeostasis. As their function in the balance of the immune system, these costimulatory or coinhibitory proteins are defined as immune checkpoint proteins (Figure 1, Table 1). A direct consequence of these findings was to reveal the regulatory pathways involved in immune responses in cancer and infectious diseases.
[image: Figure 1]FIGURE 1 | Immune checkpoint receptors and their ligands. Two signals participate in T-cell activation: 1) T cells recognize antigen presented by MHC-II molecules on APCs through TCR; 2) T cells accept costimulatory signals CD80/CD86 through CD28.
TABLE 1 | The expression and mechanism of the immune checkpoints.
[image: Table 1]Immune checkpoint proteins have been playing a significant role in inflammatory reactions and cancer immunotherapy. A number of immune checkpoint proteins were shown to be dysregulated in cancers and infectious diseases, including PD-1/PD-L1, CTLA-4, lymphocyte activation 3 (LAG-3), TIM-3, VISTA, and Indoleamine-2,3 dioxygenase 1 (IDO1). These immune checkpoints and other regulatory cells, such as regulatory T cells (Tregs), myeloid-derived suppressors cells (MDSCs), M2 macrophages, and cytokines, are often enhanced during infections and cancers (Pauken and Wherry, 2015). Pathogens can develop immune checkpoints to limit host-protective antigen-specific immune response (Dyck and Mills, 2017). The cancer cells can disrupt the immune response and cleverly escape from immunity by dysregulating immune checkpoint signaling. Many similarities exist between cancer and infectious disease (Hotchkiss and Moldawer, 2014). They can utilize similar receptors to detect damage-associated molecular patterns (DAMP) and pathogen-associated molecular patterns (PAMPs), respectively (Vance et al., 2017). In the meantime, persistent stimulation of the immune system and induction of T-cell-mediated inflammation can be aroused. In pathogen-infected diseases, with elevated expression of the immune checkpoint molecules on T cells as it is in cancer, the immune checkpoint blockade therapy may bring favorable consequences (Wykes and Lewin, 2018). So, agonists of costimulatory signals or antagonists of inhibitory signals function as good ways for cancer therapy and also could help to reverse the state of immune suppression in chronic infection. Some antibodies that targeted immune checkpoint molecules to reverse the suppression of the immune system have been applied in the clinical treatment of cancer (Remon and Besse, 2017; Chen et al., 2019). However, the unexpected events of an immune checkpoint inhibitor (ICI) have emerged as frequent complications at the same time.
Here, we review the mechanisms, functions, and adverse events of common immune checkpoints in cancer and infectious diseases. We also discuss the impact of the bacterial microbiome on the relationship between cancer therapy and the immune system.
BIOLOGY OF IMMUNE CHECKPOINT PROTEINS
PD-1/PD-L1
PD-1 is a 288 amino acid protein that is encoded by the PDCD1 gene and belongs to the immunoglobulin superfamily (Tavares et al., 2018). PD-1 can be expressed on T cells, B cells, natural killer cells (NKs), dendritic cells (DCs), macrophages, and monocytes (Ahmadzadeh et al., 2009). T cells inducibly express PD-1 after activation (Han et al., 2020), while different from other members of the CD28 superfamily, which has Src homology (SH2) binding motifs and/or SH3 binding motifs in their cytoplasmic tail, the cytoplasmic tail of PD-1 possesses a sequence that can form an immunoreceptor tyrosine-based inhibition motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) that can recruit Src homology 2 domain-containing protein tyrosine phosphatases (SHP-2), resulting in the inhibitory function (Neel et al., 2003; Patsoukis et al., 2020).
The two ligands of PD-1, PD-L1 (also known as B7-H1) and PD-L2 (B7-H2), differ in expression patterns (Panjwani et al., 2018). PD-L1 is expressed on many cells, including B cells, T cells, macrophages, tumor cells, and other tissue cells such as vascular endothelial cells (Ritprajak and Azuma, 2015; Dermani et al., 2019). Ligation of PD-1 and PD-L1 can lead to T-cell dysfunction and anergy, helping PD-L1 expressing tumor cells escape from cytotoxic T-cell-mediated cell death (Ritprajak and Azuma, 2015; Dermani et al., 2019).
PD-1/PD-L1 blockade not only facilitates T-cell function but also restores NKs antitumor response (Hsu et al., 2018). PD-L1 expression on cancer cells resulted in the generation of more aggressive tumors in vivo. Depleting NKs before PD-L1 expressed or not tumor cell implantation resulted in similar growth of tumors and mortality. However, no such effect occurring with depletion of CD4+ and CD8+ T cells indicates that NKs take a vital position in immune checkpoint blockade (Hsu et al., 2018).
It is reported that several signaling pathways would participate in the PD-1/PD-L1 axis. For example, PD-1−PD-L1+ regulatory B cells must exert their immunosuppressive function through activation of the PI3K/AKT/NF-κB signaling pathway in breast cancer (Liu et al., 2021). PTEN is a critical inhibitor of the PI3K/AKT signaling pathway. In microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) gastrointestinal tumors, mutation of PTEN, especially in the phosphatase domain, could be negative predictors of PD-1 blockade treatment (Chida et al., 2021). Blockade of MAPK pathway through MEK1 and two inhibitors prevented the expression of PD-L1 in lung adenocarcinoma cells (Stutvoet et al., 2019), whereas inhibition of ERK could improve the anti-PD-L1 checkpoint blockade effect in preclinical pancreatic ductal adenocarcinoma (Henry et al., 2021). What we have listed above indicates that MAPK pathway activity could also severely influence the PD-L1 axis despite the PI3K pathway. Similarly, using inhibitors of the JAK/STAT pathway, which was reported to suppress PD-L1 upregulation, showed that it can also take part in regulating the PD-L1 axis (Doi et al., 2017).
CTLA-4
CTLA-4 is a 223 amino acid protein, which belongs to the immunoglobulin superfamily and consists of an IgV domain, a transmembrane region, and a cytoplasmic tail containing a conserved YVKM motif (Rowshanravan et al., 2018). Stored in endocytic vesicles, CTLA-4 is transported to the cell membrane to be colocalized with TCR on the cell surface. Dependent on dynamin and clathrin adaptor protein complex (AP2), which targets the YVKM motif, internalization of CTLA-4 from cell surface for degradation and recycling is rapid (usually within minutes) (Shiratori et al., 1997). Then CTLA-4 can be transported to cell membrane again or compartment of lysosome for degradation. Such regulation of AP2 can be disrupted by the phosphorylation of the YVKM motif after T-cell activation (Qureshi et al., 2012). Lipopolysaccharide responsive and beige-like protein (LRBA) may inhibit degradation of CTLA-4 by disrupting transportation of CTLA-4 to the lysosome via binding to YVKM sequence and promote recycling of CTLA-4. Patients with LRBA deficiency raised autoimmunity syndrome designating that accurate CTLA-4 trafficking is important for autoimmune diseases (Lo et al., 2015; Rowshanravan et al., 2018).
The phenomenon that CTLA-4, often expressed on antigen-specific T cells, has a higher affinity (10–100-fold) for CD80 dimer and CD86 monomer than CD28 is considered to be a conventional concept about how CTLA-4 downregulates the immune response (Linsley et al., 1994; van der Merwe et al., 1997). Different from antigen-specific T cells that upregulated CTLA-4 after activation, Tregs constitutively express a high range of CTLA-4 ensuring immune homeostasis and immunosuppressive capacity. Intriguingly, there have been studies proved that CD80 and CD86 on APC can be captured and deleted by CTLA-4 expressed on CD4+CD25+Foxp3+ Tregs (Qureshi et al., 2011; Tekguc et al., 2021), while patients or carriers with CTLA-4 mutation showed diminished Tregs inhibitory function and impaired trans-endocytosis of CD80 (Schubert et al., 2014). These discoveries provide a proper explanation for the rapid endocytic behavior of CTLA-4 that CTLA-4 may exhibit its inhibitory function by trans-endocytosis. Also, there have been studies about other mechanisms undergoing CTLA-4 inhibition. Kong et al. found that protein kinase C-η (PKC-η) was recruited to and physically associated with the CTLA-4 expressed on Tregs in the immunological synapse. PKC-η-deficient Tregs lacked their suppressive function, leading to lymphoproliferation and autoimmune syndromes (Kong et al., 2014). In addition, competitively binding with CD28, CTLA-4 limited the positive costimulation of CD28 by blocking the downstream PI3K/AKT and NF-κB signaling pathway (Pages et al., 1994; Olsson et al., 1999). The anti-CTLA-4 antibody (ipilimumab) eliminated Tregs in an Fc-dependent manner to achieve clinical relief, which may be due to relieved NKs cytotoxicity suppressed by Tregs (Romano et al., 2015; Khan et al., 2020). For anti-CTLA-4 antibodies therapy, CD8+ T cells were required for the therapeutic effect. Fas-FasL and perforin interactions also were important for CTLA-4 blockade (van Elsas et al., 2001).
LAG-3
Firstly identified in 1990 by Triebel and colleagues, lymphocyte activation 3 (LAG-3, CD223), an immune inhibitory receptor, is a 503 amino acid protein encoded by lymphocyte activation gene that is located on chromosome 12, containing eight exons (Triebel et al., 1990; Sierro et al., 2011). Belonging to the Ig superfamily, LAG-3 contains four extracellular Ig-like domains D1, D2, D3, and D4, which share approximately 20% amino acid homology with that of CD4. Comprising unlike intracellular region with CD4, LAG-3 is closely related but exhibits divergent functions with CD4 (Maruhashi et al., 2020). The cytoplasmic tail of LAG-3 has three conserved motifs. The first motif, which has not been considered functional, contains a hypothesized serine phosphorylation site containing two serine residues in humans. It is reported that the second motif, which has conserved six amino acid sequences (KIEELE), plays an important role in dampening T-cell proliferation, cytokine production, and cytolytic function. The third motif is a glutamic acid and proline dipeptide repeat which can colocalize LAG-3 with CD3, CD4, and CD8 molecules (Goldberg and Drake, 2011; Ruffo et al., 2019).
LAG-3 can be detected from CD4+ and CD8+ T cells, Tregs, NKs, and plasmacytoid DCs and do not express on naive T cells similar to PD-1 and CTLA-4 (Goldberg and Drake, 2011). Activation of LAG-3 can elevate intratumoral Tregs activity, and blocking of it will upregulate T-cell function and reinvigorate CD8+ tumor-infiltrating lymphocytes (TILs) to eliminate tumor cells (Lecocq et al., 2020). CD4+CD25+ Tregs from LAG-3 (−/−) mice exhibited reduced regulatory activity. Treated with anti-LAG-3 antibody, suppression induced by Tregs was inhibited in vitro and in vivo. It is obvious that LAG-3 marks Tregs populations and intermediates their regulatory function (Huang et al., 2004). As a transmembrane protein receptor which is similar to CD4 with greater affinity for MHC-II molecules on APCs (Triebel et al., 1990), there are also other proposed ligands for LAG-3 like galectin-3, fibrinogen-like protein 1 (FGL-1), α-synuclein, and LSECtin (Xu et al., 2014; Kouo et al., 2015; Mao et al., 2016). Recent research showed that FGL-1 worked as an important ligand of LAG-3 in its inhibitory effect on T cells. The expression of LAG-3 can be elevated on exhausted T cells in cancer. FGL-1 is upregulated in several human cancers, and genetic ablation or blockade of the FGL-1/LAG-3 interaction by monoclonal antibodies (mAbs) would enhance T-cell responses and antitumor immunity. Wang et al. expected a poor prognosis in non-small-cell lung cancer (NSCLC) patients with high plasma FGL-1 treated with anti-PD therapy (Wang et al., 2019a). The precise function of ligands of LAG-3 still needs to be clarified.
TIM-3
TIM-3 is a transmembrane protein encoded by HAVCR2 and identified on IFN-γ-producing CD4+ Th1 cells and CD8+ type 1 cytotoxic T cells firstly. Then it is also discovered on monocytes, Tregs, DCs, and NKs (Wolf et al., 2020). The fact that administration of antibody to TIM-3 could enhance Th1-dependent autoimmune disease strongly implying that TIM-3 works as an inhibitory molecule on T-cell function (Monney et al., 2002). Indeed, TIM-3 is found to be coregulated and coexpressed with other immune checkpoint receptors, such as PD-1 and LAG-3 (Chihara et al., 2018). High expression of TIM-3 on effector T cells also indicates severe T-cell exhaustion or dysfunction (Avery et al., 2018).
Without known inhibitory signaling motifs in its cytoplasmic tail, TIM-3 contains five conserved tyrosines to play its role. TIM-3 can be found in lipid rafts and is recruited to the immunological synapse upon T-cell activation (Clayton et al., 2014). TIM-3 interacts with HLA-B associated transcript (BAT3) in ligand unbound form and maintains T-cell activation by recruiting an active form of tyrosine kinase LCK, while in ligand-bound form, tyrosine phosphorylation in its cytoplasmic tail will release BAT from TIM-3 and recruit tyrosine kinase FYN resulting in immune synapse disruption, phosphatase recruitment, and cell apoptosis (van de Weyer et al., 2006; Rangachari et al., 2012).
It has been demonstrated that IL-27/NFIL3 axis promotes permissive chromatin remodeling of the TIM-3 locus, induces TIM-3 expression, and is crucial for the induction of TIM-3 in vivo. IL-27-conditioned Th1 cells exhibit inhibitory function through NFIL3 in intestinal inflammation (Zhu et al., 2015). In human acute myeloid leukemia (AML), activation of TIM-3 works through NF-κB and β-catenin signaling pathways to promote self-renewal of leukemic stem cells (Kikushige et al., 2015). In hepatocellular carcinoma (HCC), TIM-3 was significantly upregulated in NKs and suppressed their cytokine production and cytotoxic activity through inhibiting PI3k/Akt/mTORC1 signaling pathway (Tan et al., 2020).
Different ligands of TIM-3 show various effects. The well-studied ligands of TIM-3 are galectin-9 (Gal-9), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1), high mobility group box-1 protein (HMGB1), and phosphatidylserine (PtdSer). In T cells, ligation between Gal-9 and carbohydrate motifs on the IgV domain of TIM-3 functions in an immunosuppressive way which will induce T-cell apoptosis (Du et al., 2017; Dixon et al., 2018). CEACAM-1 coexpressed with TIM-3 is considered to be required for the regulatory function of TIM-3 (Huang et al., 2015). HMGB1 can bind to DNA released from dying cells and facilitate the uptake of DNA by Toll-like receptors. The interaction between HMGB1 and TIM-3 interferes with the innate immune response induced by nucleic acid (Nogueira-Machado et al., 2011; Chiba et al., 2012; Urban-Wojciuk et al., 2019). PtdSer-TIM-3 interaction shows clues for participating in apoptotic clearance cells, and more consequences between their interaction are waiting to be found (Nakayama et al., 2009).
Gal-9 binding with TIM-3 can cause an influx of calcium and mediate aggregation and apoptosis of effector Th1 cells in vitro. Administration of Gal-9 can result in selective loss of IFN-γ-producing cells and suppression of Th1 autoimmunity (Zhu et al., 2005). PtdSer engagement will induce TIM-3 phosphorylation leading to dysfunction of NKs in HCC (Tan et al., 2020). In head and neck squamous cell cancer (HNSCC), blockade of TIM-3 by mAbs induced the reduction of Tregs and increased IFN-γ production of CD8+ T cells, while the population of CD206+ M2 macrophages was not significantly reduced (Liu et al., 2018). Intriguingly, TIM-3 can also play an immunostimulatory role in NKs, DCs, and macrophages (Gleason et al., 2012; Zhang et al., 2012; Yang et al., 2013; Clayton et al., 2014).
VISTA
V-domain Ig suppressor of T cell activation (VISTA), also termed as PD-1H, B7-H5, V-set immunoregulatory receptor (VSIR), stress-induced secreted protein 1 (SISPQ), and differentiation of embryonic stem cells 1 (Dies1), is a conventional transmembrane protein whose IgV domain homology with PD-L1 and encoded by the gene located on chromosome 10 (Huang et al., 2020). Although containing a similar molecular sequence with the B7 superfamily, VISTA does not possess ITIM/ITAM (immunoreceptor tyrosine-based activation motif). VISTA is expressed on myeloid cells (e.g., monocytes, conventional DCs, macrophages, and circulating granulocytes), T cells, Tregs, and TILs (Hosseinkhani et al., 2021). There are increasing pieces of evidence showing VISTA as a regulatory immune checkpoint. In mice lacking VISTA, they would develop spontaneous T-cell activation, cutaneous lupus erythematosus, and production of inflammatory cytokines and chemokines (Wang et al., 2014; Liu et al., 2015; Han et al., 2019). With the presence of VISTA on erythroid cells, the transformation from naive CD4+ T cells to Tregs would be accelerated through the production of TGF-β (Shahbaz et al., 2018).
Though the binding pattern of VISTA is not clear, several studies showed that VISTA could act as both ligand on APCs and receptor on T cells (Flies et al., 2014; Lines et al., 2014). Researches have reported V-Set and Immunoglobulin domain containing 3 (VSIG-3) as the ligand for VISTA in impeding cytokine and chemokine production (Wang et al., 2019b). In consideration of elevated expression of VISTA or VSIG-3 in many cancers, such as colorectal cancer (CRC), HCC, and intestinal-type gastric cancers, the blockade of the VISTA/VSIG-3 pathway can work as a new target for immune checkpoint therapy. Besides, Alan et al. presented that VISTA can bind to P-selectin glycoprotein ligand-1 (PSGL-1) in a pH-dependent model (Johnston et al., 2019). Meanwhile, a study of VISTA in malignant pleural mesothelioma shows that VISTA expression was associated with better overall survival (OS), suggesting VISTA’s prognostic value (Muller et al., 2020).
IDO1
Indoleamine-2,3 dioxygenase 1 (IDO1) is one of the three enzymes which catalyze the first rate-limiting step in the oxidative metabolism of tryptophan, an essential amino acid for T-cell proliferation and differentiation. It is mainly distributed in DCs, macrophages, and monocytes (Munn and Mellor, 2013).
Tumor cells can recruit IDO-expressed DCs into the tumor microenvironment (TME). Due to the aggregation of IDO, lack of tryptophan will lead to stagnation of T-cell proliferation and differentiation in many ways. First, decreased tryptophan means elevated uncharged Trp-tRNA, which leads to activation of a stress response kinase, general control nonderepressible 2 (GCN2) (Munn et al., 2005). Then eukaryotic initiation factor-2 (eIF-2) is phosphorylated by GCN2, and translation of protein required for generation and proliferation of effector T cells will be limited. Second, degradation of tryptophan results in suppression of mammalian target of rapamycin complex 1 (mTORC1) and PKC-θ associated with induction of autophagy. Apoptosis of effector T cells will be reinforced (Metz et al., 2012). Third, IDO1 can induce Tregs through increased activity of aryl hydrocarbon receptor (AHR) binding with kynurenine, a metabolite of tryptophan (Mezrich et al., 2010). Thus, the unbalanced metabolism of tryptophan can promote tumor development and evade immune detection indicating that the application of IDO1 inhibitor is also a promising means to enhance antitumor immunity in theory. In status quo, clinical application of IDO1 inhibitor displayed a controversial outcome with rare effect on monotherapy and combination therapy. Although the agents might not be suitable for such types of cancer involved in research, they may be helpful in other diseases.
SINGLE AGENT AND COMBINED THERAPY IN CANCER
Balckburn et al. have demonstrated that T-cell function decreases with increased expression of immune checkpoints, so targeting these immune checkpoint proteins to modulate immune responses holds great promise for cancer immunotherapy (Blackburn et al., 2009). The purpose of immune checkpoint blockade is mainly to suppress CD8+ T cells and improve tumor-specific immune response. The mAbs by targeting checkpoints CTLA-4 and PD-1/PD-L1 have achieved the US Food and Drug Administration (FDA) approval for the treatment of different cancers (Peggs et al., 2006; Hodi et al., 2010).
Ipilimumab was the first FDA-approved recombinant humanized anti-CTLA-4 immunoglobulin G1 monoclonal antibody in 2011 for the treatment of advanced melanoma in patients who cannot be surgically cured or have metastasis (Vaddepally et al., 2020). It can also work well with intermediate or poor-risk advanced renal cell carcinoma (RCC), MSI-H/dMMR CRC, metastatic NSCLC, unresectable malignant pleural mesothelioma, and HCC, which have been previously treated with sorafenib, in combination with nivolumab (Pinto et al., 2019; McKay et al., 2020; Baas et al., 2021; Casak et al., 2021; Saung et al., 2021). In 2014, nivolumab and pembrolizumab (PD-1 blockade) were approved by the FDA as a humanized IgG antibody for the treatment of unresectable or metastatic melanoma (Prasad and Kaestner, 2017; Finkelmeier et al., 2018). In 2016, the PD-L1 blockade, atezolizumab, a humanized IgG antibody, officially worked as a second-line treatment for locally advanced or metastatic urothelial carcinoma (Patel et al., 2017). With the maturity of theory and technology, the usage range of PD-1/PD-L1 blockade has gradually expanded, including metastatic nonsquamous NSCLC, advanced RCC, unresectable or metastatic, recurrent HNSCC, MSI-H/dMMR CRC, relapsed or refractory classical Hodgkin lymphoma (cHL), locally advanced or metastatic urothelial carcinoma, cervical cancer, gastric cancer, and esophageal cancer (Ansell et al., 2015; Beckermann et al., 2017; Chae et al., 2018; Lin et al., 2018; Saito et al., 2018; Oliveira et al., 2019; Wang and Li, 2019; Nassar et al., 2020; Wu et al., 2020). Pembrolizumab and nivolumab targeting PD-1 showed promising results in melanoma and NSCLC with an objective response rate (ORR) of 40–45% (Darvin et al., 2018). LAG-3 is coexpressed with many inhibitory immune checkpoints, especially PD-1, and this signifies a more exhausting state than expressing PD-1 alone. Utilization of coblockade for PD-1 and LAG-3 shows better curative effects. Relatlimab (in combination with nivolumab) is the first LAG-3 blocking antibody to demonstrate a benefit for patients in a Phase 3 study (Lipson et al., 2021). IMP321, a recombinant soluble LAG-3 Ig fusion protein of which multiple phases I and phase II trials have been completed, may enhance T-cell response, expand the percentage of long-lived effector-memory CD8+ T cells, and rarely induce immune-related adverse events (irAEs) (Brignone et al., 2009; Wang-Gillam et al., 2013). TIM-3, as an immunoinhibitory molecule, indicates the most terminal state of T cells, whose antibodies are being studied and evaluated for clinical trials, including Sym023 (NCT03489343), TSR-022 (NCT03680508), LY3321367 (NCT03099109), and MBG453 (NCT02608268). Many studies focus on the combination between anti-TIM-3 antibody and anti-PD-1 antibody in patients with advanced relapsed or a refractory solid tumor. There are also some ongoing clinical trials that evaluate the safety and feasibility of different ICIs in various tumors. Therapeutically targeting BTLA, VISTA, TIM-3, and TIGIT remain in preclinical stages to treat advanced solid malignancies (Derre et al., 2010) (NCT02671955, NCT02817633, NCT02608268, and NCT03119428).
The combination of immune checkpoints may improve clinical response rates. CTLA-4 and PD-1 blockade combination could increase effector T-cell infiltration into B16 melanoma in mice (Curran et al., 2010). Nivolumab plus ipilimumab in patients with metastatic melanoma yielded a response rate from 40% with treatment alone to 72% among patients who were PD-L1-positive (Larkin et al., 2015). In an open-label, randomized, phase 3 study (CheckMate 743), the results showed that nivolumab plus ipilimumab prolonged the median of the OS by nearly one-third versus chemotherapy (18.1 versus 14.1 months) and 2-years OS rates by nearly a half (41 versus 27%) (Baas et al., 2021). Early data using relatlimab plus nivolumab showed promising antitumor activity with an 11.5% ORR (NCT01968109). Now more and more researches focus on combination medication on relatlimab in HCC (NCT04658147), melanoma (NCT03743766), refractory MSI-H solid tumor (NCT03607890), HNSCC (NCT04326257), and so on. Although the clinical effectiveness of these ICIs gained great success in cancer immunotherapy, a subset of patients still does not respond to these inhibitors.
There are also some studies that showed that immune checkpoint blockade combined with radiotherapy, chemotherapy, and targeted drugs could improve the antitumor efficacy (Twyman-Saint Victor et al., 2015; Ebert et al., 2016; Shi et al., 2016). In the murine HCC model, combination with anti-TIM-3 and radiotherapy significantly shrink the tumor growth and elongate the OS compared with monotherapy (Kim et al., 2021). In an open-label, randomized, phase III trial (CheckMate 649), nivolumab plus chemotherapy reveals promising prospects than chemotherapy alone with superior OS and progression-free survival (PFS) benefit (Janjigian et al., 2021). Guidelines recommended using atezolizumab plus nab-paclitaxel for first-line treatment of unresectable, locally advanced, or metastatic triple-negative breast cancer (TNBC) with PD-L1 expressed on tumor-infiltrating immune cells. A survival analysis found that the OS, safety outcomes, and occurrence of immune-mediated adverse events of atezolizumab plus nab-paclitaxel were all ameliorated than placebo plus nab-paclitaxel (Emens et al., 2021). A TLR9 binding CpG-ODN adjuvant with a systemic anti-CTLA-4 antibody could increase the survival of mice bearing poorly immunogenic B16 melanoma (Davila et al., 2003).
IMMUNE-RELATED ADVERSE EVENTS INDUCED BY ICIS
As we know, immune checkpoint blockade has demonstrated a significant promise in the clinic across a range of cancer indications (Chen and Mellman, 2017). However, the immune checkpoint blockade can reinforce host immunity at an expanse of uncontrolled effects that results in a unique spectrum of toxicities defined as immune-related adverse effects (irAEs) (Xu et al., 2018). The degree of irAEs is divided into five grades, comprising mild, moderate, severe, life-threatening, and death, elucidated on Common Terminology Criteria for adverse events from US National Cancer Institute (Cancer Therapy Evaluation Program, 2017). Some key oncology societies recently published comprehensive guidelines for irAEs, including the American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), the Society for Immunotherapy of Cancer Toxicity Management Working Group, and the National Comprehensive Cancer Network (Connolly et al., 2019; Ramos-Casals et al., 2020). The referred organs/system of irAEs include, but are not limited to, cardiac, dermatological, endocrine, gastrointestinal, neurological, muscular, pulmonary, ocular, renal, skeletal, and systemic toxicities.
Paolo et al. declared that irAEs occurring in patients treated with ipilimumab were dose-dependent (Ascierto et al., 2017). Generically, the earliest and the most frequent symptom that showed up during ICI therapy (both anti-CTLA-4 and anti-PD-1) was dermatological changes (Sandigursky and Mor, 2018). A meta-analysis of irAEs in phase III randomized controlled trials of lung cancer proposed that the most frequent irAEs were diarrhea, skin rash, and hypothyroidism (Berti et al., 2021). Another network meta-analysis specifically presented that the main irAEs of ipilimumab were related to the gastrointestinal system (diarrhea, 29%) and skin (rash, 31%), while nivolumab and pembrolizumab were referred to as less frequency in irAEs with maculopapular rash (13%), erythema (4%), hepatitis (3%), arthralgia (12%), hypothyroidism (8%), and hyperglycemia (6%), respectively (Almutairi et al., 2020). A retrospective analysis about North American Intergroup trial E1609 with 1,673 patients proclaimed that grade 1-2 irAEs were associated with longer relapse-free survival (RFS) and OS versus no irAEs, while grade 3-4 showed lesser benefit from RFS and no benefit from OS (Tarhini et al., 2021). Combined immunotherapy could induce more severe and sustained irAEs than monotherapy (Choi and Lee, 2020).
T cells can undergo spontaneous differentiation into Tfh cells in CTLA-4-deficient mice, while not in CD28-deficient mice, they might be applied to explain lethal multiorgan autoimmune symptoms in CTLA4−/− mice (Walker, 2017). As precise mechanisms of irAEs have not been elucidated, some potential ones have been proposed: 1) Increased production of proinflammatory cytokines or chemokines can lead to immune-related damage in tissue which is anatomically prone. 2) Enhanced differentiation of lymphocytes containing T cells and B cells contributes to overpriming of T-cell-mediated immunity and overproduction of autoantibodies (Risbjerg et al., 2020; Ho et al., 2021). 3) Related to off-target effects of ICIs, hypophysitis induced by ipilimumab might be ascribed to targeting CTLA-4 expressed on pituitary tissues (Iwama et al., 2014). 4) The composition and percentage of the commensal microbiome may influence the curative effect for patients treated with ICI (Figure 2). The conclusion discovered from several kinds of research said that various irAEs were associated with the different superior microbiome, application of antibiotics was linked to poor prognosis, and fecal microbiota transplantation (FMT) could reduce immune colitis (Pierrard and Seront, 2019; Hommes et al., 2020; Andrews et al., 2021; Seton-Rogers, 2021). 5) Genetic susceptibility includes HLA haplotypes (Stamatouli et al., 2018).
[image: Figure 2]FIGURE 2 | Potential mechanisms of immune-related adverse events. 1) Blocking the interaction between PD-1 on T cells and PD-L1 on tumor cells may enhance the release of inflammatory cytokines from T cells. 2) Monoclonal antibodies, like anti-CTLA-4, may recognize antigen presented by the normal tissue (hypothalamic and pituitary tissues). 3) Overresponse of naive lymphocytes could proliferate autoreactive T cells and B cells. 4) The gut microbiome, which may be altered after ICI treatment, may influence T-cell function.
For the treatment of irAEs, there have been some guidelines providing algorithms for most of the frequently occurring irAEs. 1) Before ICI initiation, patients’ condition should be evaluated, including family history, general physical condition, and baseline laboratory tests (Ramos-Casals et al., 2020). 2) For those suffering grade I or II irAEs in hardly lethal organs, they could continue/hold immunotherapy. Otherwise, they would better take immunosuppressive or immune-modulating drugs, including corticosteroids, as first-line medicine to control irAEs and relieve clinical symptoms (Esfahani et al., 2020). 3) For those who may bring irreversible or fatal consequences, it is necessary to withhold ICIs and apply steroids or other immunosuppressants immediately (Brahmer et al., 2021). 4) Individual basis should be taken into account when resuming discontinued ICIs owing to irAEs. There are also artificial solutions such as developing engineering antibodies that can induce responsive immune defense and limit systemic exposure of CTLA-4 blockade at the same time (Pai et al., 2019; Lacouture et al., 2021).
MICROBIOME RELATED TO ICI
With an estimated average of 3.8*1013 commensal bacterial resident in a 70 kg “reference man,” it is fluent in believing that gastrointestinal microbes play an important role in immunity (Sender et al., 2016). To date, there have been some oncogenic gut bacteria such as Salmonella typhi, Helicobacter spp., and Helicobacter pylori (Schwabe and Jobin, 2013; Gagnaire et al., 2017). On the contrary, some bacteria are thought to be beneficial for the proliferation of effector T cells and enhance antitumor efficacy (Pickard et al., 2017; Roy and Trinchieri, 2017). It is harder for mice supported in antibiotic exposed or germ-free conditions to benefit from CTLA-4 blockade versus those in specific pathogen-free environments (Vetizou et al., 2015). Thus, the linkage between microbiome and ICI needs to be elucidated (Table 2).
TABLE 2 | The role of immune checkpoints in bacteria-related diseases.
[image: Table 2]Clinical studies have reported that bacterial species can be differentially abundant in responders versus nonresponders (Katayama et al., 2019). Through feeding with B. fragilis, immunization with B. fragilis polysaccharides, or adoptive B. fragilis-specific T cells transfer, mice that failed in CTLA-4 blockade could regain their immunity. Transplantation of microbiota from melanoma patients to mice proved that B. fragilis favored the CTLA-4 blockade (Vetizou et al., 2015). In metastatic melanoma, Chaput et al. reported that patients with enriched Faecalibacterium and other Firmicutes as baseline microbiota presented a better prognosis than those with Bacteroides. However, the Bacteroidetes bring little colitis than Faecalibacterium (Chaput et al., 2017). In linkage with this, Gopalakrishnan et al. discovered that Faecalibacterium was enriched in responders, while Bacteroides thetaiotaomicron was enriched in nonresponders in melanoma patients (Gopalakrishnan et al., 2018). Using 16S ribosomal RNA gene sequencing, Matson et al. found out that Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium were more abundant in anti-PD-1 responders with metastatic melanoma (Matson et al., 2018).
The potential mechanisms through which the immune response is regulated by the microbiome may be as follows (Mazmanian et al., 2005; Helmink et al., 2019; Hayase and Jenq, 2021): 1) Through linkage between PAMPs and pattern recognized receptors (PRRs, such as Toll-like receptors), the adaptive immune response can be activated by APCs. 2) Cancer cells can bear cross-reactive neoantigens with microbiota, thus inducing an immune response. 3) Cytokines secreted by APCs or lymphocytes can be altered with specific metabolites or bacterial byproducts. 4) Metabolites entering the bloodstream could elicit a systemic response.
It also has been reported that irAEs induced by CTLA-4 occur most commonly and frequently at sites of the GI tract rich in bacteria. Disrupting the gut microbiota via antibiotics could potentially impair antitumor immune responses as well as response to immune checkpoint blockade (Helmink et al., 2019). Reconstruction of GI microbiome using FMT from healthy or responding donors shows a promising therapeutic effect with ICI-associated colitis relief and proportion of Tregs increase (Wang et al., 2018).
Still, the limitations of FMT should be taken into consideration. The connection between favorable microbiota and certain immune checkpoint blockade needs to be cleared. There could be adverse events induced by FMT, as we talked about above in IrAEs, either.
IMMUNE CHECKPOINT MOLECULES IN VIRUS-INFECTED DISEASES
In chronic viral infection and cancer, due to long-term and low magnitude exposure to antigen, that T cell progressively loses its effector function with elevated coinhibitory receptor constitutive expression in order to diminish tissue damage is called “T-cell exhaustion.” Many pathogens and cancers promote inhibitory interactions to escape immune surveillance (Table 3). Thus, reversing the T-cell state is regarded as an effective solution in infectious diseases.
TABLE 3 | The role of immune checkpoints in virus infection diseases.
[image: Table 3]In mice with chronic LCMV infection, blockade of PD-1 restored CD8+ T cell function, suggesting that T-cell exhaustion is reversible. In patients with chronic hepatitis B, CTLA-4 blockade can reinvigorate hepatitis B virus- (HBV-) specific CD8+ T cells in both intrahepatic and peripheral compartments (Cao et al., 2018). With the coinhibition of PD-1 and CTLA-4, the effector function of HCV-specific CD8+ T cells can be restored in chronic hepatitis C patients (Cho et al., 2017). Meanwhile, inhibition of PD-1 can induce the production of cytokines (e.g., IFN-γ) in HIV/HBV-specific CD8+ T cells to enhance immune response (Jubel et al., 2020). Coexpressing with PD-1, LAG-3, TIM-3, and TIGIT blockade can also reverse dysfunctional T-cell responses and reduce cytokines production. It is widely known that TIM-3 is highly upregulated on virus and tumor Ag-specific CD8+ T cells, and antagonizing TIM-3 helps restore the function of CD8+ T cells (Clayton et al., 2014). Expression of LAG-3 has been reported to be associated with a reduction in invariant NKTs IFN-γ production during chronic HIV infection (Juno et al., 2015).
DISCUSSION AND FUTURE PERSPECTIVES
Immune checkpoints are some vital regulators of the immune system. Now in most referred contexts, immune checkpoints are equivalent to inhibitor regulators of the immune system. Despite the immune checkpoint molecules that we have discussed above, there are still other immune checkpoint molecules, such as BTLA, KIR, A2AR, B7-H4, NOX2, HO-1, and SIGLEC7. Besides, the stimulatory immune checkpoints are also promising targets for immune therapy, such as CD40, CD122, CD137, OX40, and GITR. Relying on neoantigen expressed on tumor cells, T cells can target and exclude potential threats. So as to escape from host immunity, tumor cells requisition inhibitory molecules to bind and silence immune cells. The availability of immune checkpoint blockade as one of the effective supplemental methods for tumor treatment has been verified. However, some tumors show low immunogenicity and cannot respond effectively to immune checkpoint blockade. For initially responding tumors, selection of low immunogenic clones and inducement of tolerance due to tumor heterogeneity will develop frequent relapses and even hyperprogression in nonresponders, of which the range was between 4 and 29% (Denis et al., 2020). Such phenomenon is known as resistance (Sharma et al., 2017). The mechanisms of resistance can be divided into intrinsic and extrinsic (Figure 3). The intrinsic mechanisms are composed of lack of tumor antigen presentation, alteration of several inhibitory signaling pathways, and upregulation of other immune checkpoints. The extrinsic mechanisms are predominantly referred to as various elements in the TME (Baxter et al., 2021). To reverse the resistance and ameliorate patients’ symptoms, researchers came up with the idea to turn the “cold” immune response to “hot.” The strategies applied under such fundamental idea consist of turning down the volume of inhibitory immune signals, triggering T-cell priming, increasing the costimulatory signals, and modulation of the TME (Attili et al., 2021; Weiss and Sznol, 2021).
[image: Figure 3]FIGURE 3 | Mechanisms of resistance from ICI treatment. 1) β2M mutations lead to loss of HLA and antigen-presenting function. 2) Additional inhibitory signals expression. 3) Little tumor-infiltrating lymphocytes present in the tumor microenvironment resulting in nonresponse. 4) Immune suppressive cells in TME. 5) Loss of IFN-γ sensitivity. 6) Formation of low immunogenicity clone under selective pressure.
Meanwhile, the sailing of drug development is never smooth. Hundreds of clinical trials to develop new agents targeted at immune checkpoints have been terminated due to low responsiveness and fatal irAEs. IrAEs induced by ICI are an impassable mountain lying in front of us, with death as the most severe consequence. The clinical trial testing sym022 (anti-LAG-3 mAb) in humans with metastatic cancer, solid tumors, or lymphoma exhibits an unwanted outcome with high progression and irAEs rate (NCT03489369). In addition, the mechanisms under ICI still need to be shed light on.
In conclusion, despite the shortcomings of immune checkpoint blockade in clinical application, it is a promising strategy for cancer therapy, with a considerable proportion of applicants achieving an objective response. Further studies are needed to be explored to elucidate precise mechanisms, achieve potential will, and ameliorate adverse events to benefit more patients with tumors and other diseases.
AUTHOR CONTRIBUTIONS
Literature search: HZ and YY, tables and figures: JY and YZ, writing the original manuscript: XC and YZ; editing manuscript: JY; review and editing manuscript: JL, MZ, and YZ.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
REFERENCES
 Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., et al. (2009). Tumor Antigen-specific CD8 T Cells Infiltrating the Tumor Express High Levels of PD-1 and Are Functionally Impaired. Blood 114 (8), 1537–1544. doi:10.1182/blood-2008-12-195792
 Almutairi, A. R., McBride, A., Slack, M., Erstad, B. L., and Abraham, I. (2020). Potential Immune-Related Adverse Events Associated with Monotherapy and Combination Therapy of Ipilimumab, Nivolumab, and Pembrolizumab for Advanced Melanoma: A Systematic Review and Meta-Analysis. Front. Oncol. 10, 91. doi:10.3389/fonc.2020.00091
 Andrews, M. C., Duong, C. P. M., Gopalakrishnan, V., Iebba, V., Chen, W.-S., Derosa, L., et al. (2021). Gut Microbiota Signatures Are Associated with Toxicity to Combined CTLA-4 and PD-1 Blockade. Nat. Med. 27 (8), 1432–1441. doi:10.1038/s41591-021-01406-6
 Ansell, S. M., Lesokhin, A. M., Borrello, I., Halwani, A., Scott, E. C., Gutierrez, M., et al. (2015). PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin's Lymphoma. N. Engl. J. Med. 372 (4), 311–319. doi:10.1056/NEJMoa1411087
 Ascierto, P. A., Del Vecchio, M., Robert, C., Mackiewicz, A., Chiarion-Sileni, V., Arance, A., et al. (2017). Ipilimumab 10 Mg/kg versus Ipilimumab 3 Mg/kg in Patients with Unresectable or Metastatic Melanoma: a Randomised, Double-Blind, Multicentre, Phase 3 Trial. Lancet Oncol. 18 (5), 611–622. doi:10.1016/S1470-2045(17)30231-0
 Attili, I., Tarantino, P., Passaro, A., Stati, V., Curigliano, G., and de Marinis, F. (2021). Strategies to Overcome Resistance to Immune Checkpoint Blockade in Lung Cancer. Lung Cancer 154, 151–160. doi:10.1016/j.lungcan.2021.02.035
 Avery, L., Filderman, J., Szymczak-Workman, A. L., and Kane, L. P. (2018). Tim-3 Co-stimulation Promotes Short-Lived Effector T Cells, Restricts Memory Precursors, and Is Dispensable for T Cell Exhaustion. Proc. Natl. Acad. Sci. USA 115 (10), 2455–2460. doi:10.1073/pnas.1712107115
 Baas, P., Scherpereel, A., Nowak, A. K., Fujimoto, N., Peters, S., Tsao, A. S., et al. (2021). First-line Nivolumab Plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): a Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet 397 (10272), 375–386. doi:10.1016/S0140-6736(20)32714-8
 Baxter, M. A., Middleton, F., Cagney, H. P., and Petty, R. D. (2021). Resistance to Immune Checkpoint Inhibitors in Advanced Gastro-Oesophageal Cancers. Br. J. Cancer 125 (8), 1068–1079. doi:10.1038/s41416-021-01425-7
 Beckermann, K. E., Johnson, D. B., and Sosman, J. A. (2017). PD-1/PD-L1 Blockade in Renal Cell Cancer. Expert Rev. Clin. Immunol. 13 (1), 77–84. doi:10.1080/1744666X.2016.1214575
 Berti, A., Bortolotti, R., Dipasquale, M., Kinspergher, S., Prokop, L., Grandi, G., et al. (2021). Meta-analysis of Immune-Related Adverse Events in Phase 3 Clinical Trials Assessing Immune Checkpoint Inhibitors for Lung Cancer. Crit. Rev. Oncology/Hematology 162, 103351. doi:10.1016/j.critrevonc.2021.103351
 Blackburn, S. D., Shin, H., Haining, W. N., Zou, T., Workman, C. J., Polley, A., et al. (2009). Coregulation of CD8+ T Cell Exhaustion by Multiple Inhibitory Receptors during Chronic Viral Infection. Nat. Immunol. 10 (1), 29–37. doi:10.1038/ni.1679
 Brahmer, J. R., Abu-Sbeih, H., Ascierto, P. A., Brufsky, J., Cappelli, L. C., Cortazar, F. B., et al. (2021). Society for Immunotherapy of Cancer (SITC) Clinical Practice Guideline on Immune Checkpoint Inhibitor-Related Adverse Events. J. Immunother. Cancer 9 (6), e002435. doi:10.1136/jitc-2021-002435
 Brignone, C., Escudier, B., Grygar, C., Marcu, M., and Triebel, F. (2009). A Phase I Pharmacokinetic and Biological Correlative Study of IMP321, a Novel MHC Class II Agonist, in Patients with Advanced Renal Cell Carcinoma. Clin. Cancer Res. 15 (19), 6225–6231. doi:10.1158/1078-0432.CCR-09-0068
 Cancer Therapy Evaluation Program (2017). CTCAE. Available at: https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf. 
 Cao, H., Zhang, R., and Zhang, W. (2018). CTLA-4 Interferes with the HBV-specific T cell Immune Response (Review). Int. J. Mol. Med. 42 (2), 703–712. doi:10.3892/ijmm.2018.3688
 Casak, S. J., Marcus, L., Fashoyin-Aje, L., Mushti, S. L., Cheng, J., Shen, Y.-L., et al. (2021). FDA Approval Summary: Pembrolizumab for the First-Line Treatment of Patients with MSI-H/dMMR Advanced Unresectable or Metastatic Colorectal Carcinoma. Clin. Cancer Res. 27 (17), 4680–4684. doi:10.1158/1078-0432.CCR-21-0557
 Chae, Y. K., Arya, A., Iams, W., Cruz, M. R., Chandra, S., Choi, J., et al. (2018). Current Landscape and Future of Dual Anti-CTLA4 and PD-1/pd-L1 Blockade Immunotherapy in Cancer; Lessons Learned from Clinical Trials with Melanoma and Non-small Cell Lung Cancer (NSCLC). J. Immunotherapy Cancer 6 (1), 39. doi:10.1186/s40425-018-0349-3
 Chaput, N., Lepage, P., Coutzac, C., Soularue, E., Le Roux, K., Monot, C., et al. (2017). Baseline Gut Microbiota Predicts Clinical Response and Colitis in Metastatic Melanoma Patients Treated with Ipilimumab. Ann. Oncol. 28 (6), 1368–1379. doi:10.1093/annonc/mdx108
 Chen, D. S., and Mellman, I. (2017). Elements of Cancer Immunity and the Cancer-Immune Set point. Nature 541 (7637), 321–330. doi:10.1038/nature21349
 Chen, Y., Zhou, Y., Tang, L., Peng, X., Jiang, H., Wang, G., et al. (2019). Immune-Checkpoint Inhibitors as the First Line Treatment of Advanced Non-small Cell Lung Cancer: A Meta-Analysis of Randomized Controlled Trials. J. Cancer 10 (25), 6261–6268. doi:10.7150/jca.34677
 Chiba, S., Baghdadi, M., Akiba, H., Yoshiyama, H., Kinoshita, I., Dosaka-Akita, H., et al. (2012). Tumor-infiltrating DCs Suppress Nucleic Acid-Mediated Innate Immune Responses through Interactions between the Receptor TIM-3 and the Alarmin HMGB1. Nat. Immunol. 13 (9), 832–842. doi:10.1038/ni.2376
 Chida, K., Kawazoe, A., Kawazu, M., Suzuki, T., Nakamura, Y., Nakatsura, T., et al. (2021). A Low Tumor Mutational Burden and PTEN Mutations Are Predictors of a Negative Response to PD-1 Blockade in MSI-H/dMMR Gastrointestinal Tumors. Clin. Cancer Res. 27 (13), 3714–3724. doi:10.1158/1078-0432.CCR-21-0401
 Chihara, N., Madi, A., Kondo, T., Zhang, H., Acharya, N., Singer, M., et al. (2018). Induction and Transcriptional Regulation of the Co-inhibitory Gene Module in T Cells. Nature 558 (7710), 454–459. doi:10.1038/s41586-018-0206-z
 Cho, H., Kang, H., Lee, H., and Kim, C. (2017). Programmed Cell Death 1 (PD-1) and Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4) in Viral Hepatitis. Ijms 18 (7), 1517. doi:10.3390/ijms18071517
 Choi, J., and Lee, S. Y. (2020). Clinical Characteristics and Treatment of Immune-Related Adverse Events of Immune Checkpoint Inhibitors. Immune Netw. 20 (1), e9. doi:10.4110/in.2020.20.e9
 Clayton, K. L., Haaland, M. S., Douglas-Vail, M. B., Mujib, S., Chew, G. M., Ndhlovu, L. C., et al. (2014). T Cell Ig and Mucin Domain-Containing Protein 3 Is Recruited to the Immune Synapse, Disrupts Stable Synapse Formation, and Associates with Receptor Phosphatases. J.I. 192 (2), 782–791. doi:10.4049/jimmunol.1302663
 Connolly, C., Bambhania, K., and Naidoo, J. (2019). Immune-Related Adverse Events: A Case-Based Approach. Front. Oncol. 9, 530. doi:10.3389/fonc.2019.00530
 Curran, M. A., Montalvo, W., Yagita, H., and Allison, J. P. (2010). PD-1 and CTLA-4 Combination Blockade Expands Infiltrating T Cells and Reduces Regulatory T and Myeloid Cells within B16 Melanoma Tumors. Proc. Natl. Acad. Sci. 107 (9), 4275–4280. doi:10.1073/pnas.0915174107
 Darvin, P., Toor, S. M., Sasidharan Nair, V., and Elkord, E. (2018). Immune Checkpoint Inhibitors: Recent Progress and Potential Biomarkers. Exp. Mol. Med. 50 (12), 1–11. doi:10.1038/s12276-018-0191-1
 Davila, E., Kennedy, R., and Celis, E. (2003). Generation of Antitumor Immunity by Cytotoxic T Lymphocyte Epitope Peptide Vaccination, CpG-Oligodeoxynucleotide Adjuvant, and CTLA-4 Blockade. Cancer Res. 63 (12), 3281–3288.
 Denis, M., Duruisseaux, M., Brevet, M., and Dumontet, C. (2020). How Can Immune Checkpoint Inhibitors Cause Hyperprogression in Solid Tumors. Front. Immunol. 11, 492. doi:10.3389/fimmu.2020.00492
 Dermani, F. K., Samadi, P., Rahmani, G., Kohlan, A. K., and Najafi, R. (2019). PD‐1/PD‐L1 Immune Checkpoint: Potential Target for Cancer Therapy. J. Cel Physiol 234 (2), 1313–1325. doi:10.1002/jcp.27172
 Derré, L., Rivals, J.-P., Jandus, C., Pastor, S., Rimoldi, D., Romero, P., et al. (2010). BTLA Mediates Inhibition of Human Tumor-specific CD8+ T Cells that Can Be Partially Reversed by Vaccination. J. Clin. Invest. 120 (1), 157–167. doi:10.1172/JCI40070
 Dixon, K. O., Das, M., and Kuchroo, V. K. (2018). Human Disease Mutations Highlight the Inhibitory Function of TIM-3. Nat. Genet. 50 (12), 1640–1641. doi:10.1038/s41588-018-0289-3
 Doi, T., Ishikawa, T., Okayama, T., Oka, K., Mizushima, K., Yasuda, T., et al. (2017). The JAK/STAT Pathway Is Involved in the Upregulation of PD-L1 Expression in Pancreatic Cancer Cell Lines. Oncol. Rep. 37 (3), 1545–1554. doi:10.3892/or.2017.5399
 Du, W., Yang, M., Turner, A., Xu, C., Ferris, R., Huang, J., et al. (2017). TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. Ijms 18 (3), 645. doi:10.3390/ijms18030645
 Dyck, L., and Mills, K. H. G. (2017). Immune Checkpoints and Their Inhibition in Cancer and Infectious Diseases. Eur. J. Immunol. 47 (5), 765–779. doi:10.1002/eji.201646875
 Ebert, P. J. R., Cheung, J., Yang, Y., McNamara, E., Hong, R., Moskalenko, M., et al. (2016). MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade. Immunity 44 (3), 609–621. doi:10.1016/j.immuni.2016.01.024
 Emens, L. A., Adams, S., Barrios, C. H., Diéras, V., Iwata, H., Loi, S., et al. (2021). First-line Atezolizumab Plus Nab-Paclitaxel for Unresectable, Locally Advanced, or Metastatic Triple-Negative Breast Cancer: IMpassion130 Final Overall Survival Analysis. Ann. Oncol. 32 (8), 983–993. doi:10.1016/j.annonc.2021.05.355
 Esfahani, K., Elkrief, A., Calabrese, C., Lapointe, R., Hudson, M., Routy, B., et al. (2020). Moving towards Personalized Treatments of Immune-Related Adverse Events. Nat. Rev. Clin. Oncol. 17 (8), 504–515. doi:10.1038/s41571-020-0352-8
 Finkelmeier, F., Waidmann, O., and Trojan, J. (2018). Nivolumab for the Treatment of Hepatocellular Carcinoma. Expert Rev. Anticancer Ther. 18 (12), 1169–1175. doi:10.1080/14737140.2018.1535315
 Flies, D. B., Han, X., Higuchi, T., Zheng, L., Sun, J., Ye, J. J., et al. (2014). Coinhibitory Receptor PD-1H Preferentially Suppresses CD4+ T Cell-Mediated Immunity. J. Clin. Invest. 124 (5), 1966–1975. doi:10.1172/JCI74589
 Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J. Exp. Med. 192 (7), 1027–1034. doi:10.1084/jem.192.7.1027
 Gagnaire, A., Nadel, B., Raoult, D., Neefjes, J., and Gorvel, J.-P. (2017). Collateral Damage: Insights into Bacterial Mechanisms that Predispose Host Cells to Cancer. Nat. Rev. Microbiol. 15 (2), 109–128. doi:10.1038/nrmicro.2016.171
 Gleason, M. K., Lenvik, T. R., McCullar, V., Felices, M., O'Brien, M. S., Cooley, S. A., et al. (2012). Tim-3 Is an Inducible Human Natural Killer Cell Receptor that Enhances Interferon Gamma Production in Response to Galectin-9. Blood 119 (13), 3064–3072. doi:10.1182/blood-2011-06-360321
 Goldberg, M. V., and Drake, C. G. (2010). LAG-3 in Cancer Immunotherapy. Curr. Top. Microbiol. Immunol. 344, 269–278. doi:10.1007/82_2010_114
 Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., et al. (2018). Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients. Science 359 (6371), 97–103. doi:10.1126/science.aan4236
 Han, X., Vesely, M. D., Yang, W., Sanmamed, M. F., Badri, T., Alawa, J., et al. (2019). PD-1H (VISTA)-mediated Suppression of Autoimmunity in Systemic and Cutaneous Lupus Erythematosus. Sci. Transl. Med. 11 (522), eaax1159. doi:10.1126/scitranslmed.aax1159
 Han, Y., Liu, D., and Li, L. (2020). PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 10 (3), 727–742. 
 Hayase, E., and Jenq, R. R. (2021). Role of the Intestinal Microbiome and Microbial-Derived Metabolites in Immune Checkpoint Blockade Immunotherapy of Cancer. Genome Med. 13 (1), 107. doi:10.1186/s13073-021-00923-w
 Helmink, B. A., Khan, M. A. W., Hermann, A., Gopalakrishnan, V., and Wargo, J. A. (2019). The Microbiome, Cancer, and Cancer Therapy. Nat. Med. 25 (3), 377–388. doi:10.1038/s41591-019-0377-7
 Henry, K. E., Mack, K. N., Nagle, V. L., Cornejo, M., Michel, A. O., Fox, I. L., et al. (2021). ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma. Mol. Cancer Ther. 20, 2026–2034. doi:10.1158/1535-7163.MCT-20-1112
 Ho, A. K., Ho, A. M.-H., Cooksley, T., Nguyen, G., Erb, J., and Mizubuti, G. B. (2021). Immune-Related Adverse Events Associated with Immune Checkpoint Inhibitor Therapy. Anesth. Analg 132 (2), 374–383. doi:10.1213/ANE.0000000000005029
 Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 363 (8), 711–723. doi:10.1056/NEJMoa1003466
 Hommes, J. W., Verheijden, R. J., Suijkerbuijk, K. P. M., and Hamann, D. (2020). Biomarkers of Checkpoint Inhibitor Induced Immune-Related Adverse Events-A Comprehensive Review. Front. Oncol. 10, 585311. doi:10.3389/fonc.2020.585311
 Hosseinkhani, N., Derakhshani, A., Shadbad, M. A., Argentiero, A., Racanelli, V., Kazemi, T., et al. (2021). The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead. Front. Immunol. 12, 676181. doi:10.3389/fimmu.2021.676181
 Hotchkiss, R. S., and Moldawer, L. L. (2014). Parallels between Cancer and Infectious Disease. N. Engl. J. Med. 371 (4), 380–383. doi:10.1056/NEJMcibr1404664
 Hsu, J., Hodgins, J. J., Marathe, M., Nicolai, C. J., Bourgeois-Daigneault, M.-C., Trevino, T. N., et al. (2018). Contribution of NK Cells to Immunotherapy Mediated by PD-1/pd-L1 Blockade. J. Clin. Invest. 128 (10), 4654–4668. doi:10.1172/JCI99317
 Huang, C.-T., Workman, C. J., Flies, D., Pan, X., Marson, A. L., Zhou, G., et al. (2004). Role of LAG-3 in Regulatory T Cells. Immunity 21 (4), 503–513. doi:10.1016/j.immuni.2004.08.010
 Huang, X., Zhang, X., Li, E., Zhang, G., Wang, X., Tang, T., et al. (2020). VISTA: an Immune Regulatory Protein Checking Tumor and Immune Cells in Cancer Immunotherapy. J. Hematol. Oncol. 13 (1), 83. doi:10.1186/s13045-020-00917-y
 Huang, Y.-H., Zhu, C., Kondo, Y., Anderson, A. C., Gandhi, A., Russell, A., et al. (2015). CEACAM1 Regulates TIM-3-Mediated Tolerance and Exhaustion. Nature 517 (7534), 386–390. doi:10.1038/nature13848
 Iwama, S., De Remigis, A., Callahan, M. K., Slovin, S. F., Wolchok, J. D., and Caturegli, P. (2014). Pituitary Expression of CTLA-4 Mediates Hypophysitis Secondary to Administration of CTLA-4 Blocking Antibody. Sci. Transl. Med. 6 (230), 230ra245. doi:10.1126/scitranslmed.3008002
 Janjigian, Y. Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021). First-line Nivolumab Plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal junction, and Oesophageal Adenocarcinoma (CheckMate 649): a Randomised, Open-Label, Phase 3 Trial. Lancet 398 (10294), 27–40. doi:10.1016/S0140-6736(21)00797-2
 Johnston, R. J., Su, L. J., Pinckney, J., Critton, D., Boyer, E., Krishnakumar, A., et al. (2019). VISTA Is an Acidic pH-Selective Ligand for PSGL-1. Nature 574 (7779), 565–570. doi:10.1038/s41586-019-1674-5
 Jubel, J. M., Barbati, Z. R., Burger, C., Wirtz, D. C., and Schildberg, F. A. (2020). The Role of PD-1 in Acute and Chronic Infection. Front. Immunol. 11, 487. doi:10.3389/fimmu.2020.00487
 Juno, J. A., Stalker, A. T., Waruk, J. L., Oyugi, J., Kimani, M., Plummer, F. A., et al. (2015). Elevated Expression of LAG-3, but Not PD-1, Is Associated with Impaired iNKT Cytokine Production during Chronic HIV-1 Infection and Treatment. Retrovirology 12, 17. doi:10.1186/s12977-015-0142-z
 Katayama, Y., Yamada, T., Shimamoto, T., Iwasaku, M., Kaneko, Y., Uchino, J., et al. (2019). The Role of the Gut Microbiome on the Efficacy of Immune Checkpoint Inhibitors in Japanese Responder Patients with Advanced Non-small Cell Lung Cancer. Transl Lung Cancer Res. 8 (6), 847–853. doi:10.21037/tlcr.2019.10.23
 Khan, M., Arooj, S., and Wang, H. (2020). NK Cell-Based Immune Checkpoint Inhibition. Front. Immunol. 11, 167. doi:10.3389/fimmu.2020.00167
 Kikushige, Y., Miyamoto, T., Yuda, J., Jabbarzadeh-Tabrizi, S., Shima, T., Takayanagi, S.-i., et al. (2015). A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression. Cell Stem Cell 17 (3), 341–352. doi:10.1016/j.stem.2015.07.011
 Kim, K. J., Lee, H. W., and Seong, J. (2021). Combination Therapy with anti‐T‐cell Immunoglobulin and Mucin‐domain Containing Molecule 3 and Radiation Improves Antitumor Efficacy in Murine Hepatocellular Carcinoma. J. Gastroenterol. Hepatol. 36 (5), 1357–1365. doi:10.1111/jgh.15319
 Kong, K.-F., Fu, G., Zhang, Y., Yokosuka, T., Casas, J., Canonigo-Balancio, A. J., et al. (2014). Protein Kinase C-η Controls CTLA-4-Mediated Regulatory T Cell Function. Nat. Immunol. 15 (5), 465–472. doi:10.1038/ni.2866
 Kouo, T., Huang, L., Pucsek, A. B., Cao, M., Solt, S., Armstrong, T., et al. (2015). Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol. Res. 3 (4), 412–423. doi:10.1158/2326-6066.CIR-14-0150
 Lacouture, M. E., Sibaud, V., Gerber, P. A., van den Hurk, C., Fernández-Peñas, P., Santini, D., et al. (2021). Prevention and Management of Dermatological Toxicities Related to Anticancer Agents: ESMO Clinical Practice Guidelines☆. Ann. Oncol. 32 (2), 157–170. doi:10.1016/j.annonc.2020.11.005
 Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 373 (1), 23–34. doi:10.1056/NEJMoa1504030
 Leach, D. R., Krummel, M. F., and Allison, J. P. (1996). Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 271 (5256), 1734–1736. doi:10.1126/science.271.5256.1734
 Lecocq, Q., Keyaerts, M., Devoogdt, N., and Breckpot, K. (2020). The Next-Generation Immune Checkpoint LAG-3 and its Therapeutic Potential in Oncology: Third Time's a Charm. Ijms 22 (1), 75. doi:10.3390/ijms22010075
 Lenschow, D. J., and Bluestone, J. A. (1993). T Cell Co-stimulation and In Vivo Tolerance. Curr. Opin. Immunol. 5 (5), 747–752. doi:10.1016/0952-7915(93)90132-c
 Lenschow, D. J., Walunas, T. L., and Bluestone, J. A. (1996). CD28/B7 System of T Cell Costimulation. Annu. Rev. Immunol. 14, 233–258. doi:10.1146/annurev.immunol.14.1.233
 Lin, W., Chen, M., Hong, L., Zhao, H., and Chen, Q. (2018). Crosstalk between PD-1/pd-L1 Blockade and its Combinatorial Therapies in Tumor Immune Microenvironment: A Focus on HNSCC. Front. Oncol. 8, 532. doi:10.3389/fonc.2018.00532
 Lines, J. L., Pantazi, E., Mak, J., Sempere, L. F., Wang, L., O'Connell, S., et al. (2014). VISTA Is an Immune Checkpoint Molecule for Human T Cells. Cancer Res. 74 (7), 1924–1932. doi:10.1158/0008-5472.CAN-13-1504
 Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K., and Ledbetter, J. A. (1991). CTLA-4 Is a Second Receptor for the B Cell Activation Antigen B7. J. Exp. Med. 174 (3), 561–569. doi:10.1084/jem.174.3.561
 Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., and Peach, R. (1994). Human B7-1 (CD80) and B7-2 (CD86) Bind with Similar Avidities but Distinct Kinetics to CD28 and CTLA-4 Receptors. Immunity 1 (9), 793–801. doi:10.1016/s1074-7613(94)80021-9
 Lipson, E. J., Tawbi, H. A.-H., Schadendorf, D., Ascierto, P. A., Matamala, L., Gutiérrez, E. C., et al. (2021). Relatlimab (RELA) Plus Nivolumab (NIVO) Versus NIVO in First-Line Advanced Melanoma: Primary Phase III Results from RELATIVITY-047 (CA224-047). J. Clin. Oncol. 39, 9503. doi:10.1200/JCO.2021.39.15_suppl.9503
 Liu, J.-F., Wu, L., Yang, L.-L., Deng, W.-W., Mao, L., Wu, H., et al. (2018). Blockade of TIM3 Relieves Immunosuppression through Reducing Regulatory T Cells in Head and Neck Cancer. J. Exp. Clin. Cancer Res. 37 (1), 44. doi:10.1186/s13046-018-0713-7
 Liu, J., Yuan, Y., Chen, W., Putra, J., Suriawinata, A. A., Schenk, A. D., et al. (2015). Immune-checkpoint Proteins VISTA and PD-1 Nonredundantly Regulate Murine T-Cell Responses. Proc. Natl. Acad. Sci. USA 112 (21), 6682–6687. doi:10.1073/pnas.1420370112
 Liu, M., Wei, F., Wang, J., Yu, W., Shen, M., Liu, T., et al. (2021). Myeloid-derived Suppressor Cells Regulate the Immunosuppressive Functions of PD-1−pd-L1+ Bregs through PD-L1/PI3K/AKT/NF-κB axis in Breast Cancer. Cell Death Dis 12 (5), 465. doi:10.1038/s41419-021-03745-1
 Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., et al. (2015). Patients with LRBA Deficiency Show CTLA4 Loss and Immune Dysregulation Responsive to Abatacept Therapy. Science 349 (6246), 436–440. doi:10.1126/science.aaa1663
 Mao, X., Ou, M. T., Karuppagounder, S. S., Kam, T.-I., Yin, X., Xiong, Y., et al. (2016). Pathological α-synuclein Transmission Initiated by Binding Lymphocyte-Activation Gene 3. Science 353 (6307), aah3374. doi:10.1126/science.aah3374
 Maruhashi, T., Sugiura, D., Okazaki, I.-m., and Okazaki, T. (2020). LAG-3: from Molecular Functions to Clinical Applications. J. Immunother. Cancer 8 (2), e001014. doi:10.1136/jitc-2020-001014
 Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M.-L., et al. (2018). The Commensal Microbiome Is Associated with Anti-PD-1 Efficacy in Metastatic Melanoma Patients. Science 359 (6371), 104–108. doi:10.1126/science.aao3290
 Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., and Kasper, D. L. (2005). An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 122 (1), 107–118. doi:10.1016/j.cell.2005.05.007
 McKay, R. R., McGregor, B. A., Xie, W., Braun, D. A., Wei, X., Kyriakopoulos, C. E., et al. (2020). Optimized Management of Nivolumab and Ipilimumab in Advanced Renal Cell Carcinoma: A Response-Based Phase II Study (OMNIVORE). Jco 38 (36), 4240–4248. doi:10.1200/JCO.20.02295
 Metz, R., Rust, S., Duhadaway, J. B., Mautino, M. R., Munn, D. H., Vahanian, N. N., et al. (2012). Ido Inhibits a Tryptophan Sufficiency Signal that Stimulates mTOR: A Novel Ido Effector Pathway Targeted by D-1-Methyl-Tryptophan. Oncoimmunology 1 (9), 1460–1468. doi:10.4161/onci.21716
 Mezrich, J. D., Fechner, J. H., Zhang, X., Johnson, B. P., Burlingham, W. J., and Bradfield, C. A. (2010). An Interaction between Kynurenine and the Aryl Hydrocarbon Receptor Can Generate Regulatory T Cells. J.I. 185 (6), 3190–3198. doi:10.4049/jimmunol.0903670
 Monney, L., Sabatos, C. A., Gaglia, J. L., Ryu, A., Waldner, H., Chernova, T., et al. (2002). Th1-specific Cell Surface Protein Tim-3 Regulates Macrophage Activation and Severity of an Autoimmune Disease. Nature 415 (6871), 536–541. doi:10.1038/415536a
 Muller, S., Victoria Lai, W., Adusumilli, P. S., Desmeules, P., Frosina, D., Jungbluth, A., et al. (2020). V-domain Ig-Containing Suppressor of T-Cell Activation (VISTA), a Potentially Targetable Immune Checkpoint Molecule, Is Highly Expressed in Epithelioid Malignant Pleural Mesothelioma. Mod. Pathol. 33 (2), 303–311. doi:10.1038/s41379-019-0364-z
 Munn, D. H., and Mellor, A. L. (2013). Indoleamine 2,3 Dioxygenase and Metabolic Control of Immune Responses. Trends Immunol. 34 (3), 137–143. doi:10.1016/j.it.2012.10.001
 Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D., et al. (2005). GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy Induction in Response to Indoleamine 2,3-dioxygenase. Immunity 22 (5), 633–642. doi:10.1016/j.immuni.2005.03.013
 Murphy, K. M., Nelson, C. A., and Šedý, J. R. (2006). Balancing Co-stimulation and Inhibition with BTLA and HVEM. Nat. Rev. Immunol. 6 (9), 671–681. doi:10.1038/nri1917
 Nakayama, M., Akiba, H., Takeda, K., Kojima, Y., Hashiguchi, M., Azuma, M., et al. (2009). Tim-3 Mediates Phagocytosis of Apoptotic Cells and Cross-Presentation. Blood 113 (16), 3821–3830. doi:10.1182/blood-2008-10-185884
 Nandi, D., Pathak, S., Verma, T., Singh, M., Chattopadhyay, A., Thakur, S., et al. (2020). T Cell Costimulation, Checkpoint Inhibitors and Anti-tumor Therapy. J. Biosci. 45, 50. doi:10.1007/s12038-020-0020-2
 Nassar, A. H., Mouw, K. W., Jegede, O., Shinagare, A. B., Kim, J., Liu, C.-J., et al. (2020). A Model Combining Clinical and Genomic Factors to Predict Response to PD-1/pd-L1 Blockade in Advanced Urothelial Carcinoma. Br. J. Cancer 122 (4), 555–563. doi:10.1038/s41416-019-0686-0
 Neel, B. G., Gu, H., and Pao, L. (2003). The 'Shp'ing News: SH2 Domain-Containing Tyrosine Phosphatases in Cell Signaling. Trends Biochem. Sci. 28 (6), 284–293. doi:10.1016/S0968-0004(03)00091-4
 Nogueira-Machado, J. A., Volpe, C. M. d. O., Veloso, C. A., and Chaves, M. M. (2011). HMGB1, TLR and RAGE: a Functional Tripod that Leads to Diabetic Inflammation. Expert Opin. Ther. Targets 15 (8), 1023–1035. doi:10.1517/14728222.2011.575360
 Oliveira, A. F., Bretes, L., and Furtado, I. (2019). Review of PD-1/pd-L1 Inhibitors in Metastatic dMMR/MSI-H Colorectal Cancer. Front. Oncol. 9, 396. doi:10.3389/fonc.2019.00396
 Olsson, C., Riebeck, K., Dohlsten, M., and Michaëlsson, E. (1999). CTLA-4 Ligation Suppresses CD28-Induced NF-Κb and AP-1 Activity in Mouse T Cell Blasts. J. Biol. Chem. 274 (20), 14400–14405. doi:10.1074/jbc.274.20.14400
 Pagès, F., Ragueneau, M., Rottapel, R., Truneh, A., Nunes, J., Imbert, J., et al. (1994). Binding of Phosphatidyl-Inositol-3-OH Kinase to CD28 Is Required for T-Cell Signalling. Nature 369 (6478), 327–329. doi:10.1038/369327a0
 Pai, C.-C. S., Simons, D. M., Lu, X., Evans, M., Wei, J., Wang, Y.-h., et al. (2018). Tumor-conditional Anti-CTLA4 Uncouples Antitumor Efficacy from Immunotherapy-Related Toxicity. J. Clin. Invest. 129 (1), 349–363. doi:10.1172/JCI123391
 Panjwani, P. K., Charu, V., DeLisser, M., Molina-Kirsch, H., Natkunam, Y., and Zhao, S. (2018). Programmed Death-1 Ligands PD-L1 and PD-L2 Show Distinctive and Restricted Patterns of Expression in Lymphoma Subtypes. Hum. Pathol. 71, 91–99. doi:10.1016/j.humpath.2017.10.029
 Patel, R., Bock, M., Polotti, C. F., and Elsamra, S. (2017). Pharmacokinetic Drug Evaluation of Atezolizumab for the Treatment of Locally Advanced or Metastatic Urothelial Carcinoma. Expert Opin. Drug Metab. Toxicol. 13 (2), 225–232. doi:10.1080/17425255.2017.1277204
 Patsoukis, N., Duke-Cohan, J. S., Chaudhri, A., Aksoylar, H.-I., Wang, Q., Council, A., et al. (2020). Interaction of SHP-2 SH2 Domains with PD-1 ITSM Induces PD-1 Dimerization and SHP-2 Activation. Commun. Biol. 3 (1), 128. doi:10.1038/s42003-020-0845-0
 Pauken, K. E., and Wherry, E. J. (2015). Overcoming T Cell Exhaustion in Infection and Cancer. Trends Immunol. 36 (4), 265–276. doi:10.1016/j.it.2015.02.008
 Peggs, K. S., Quezada, S. A., Korman, A. J., and Allison, J. P. (2006). Principles and Use of Anti-CTLA4 Antibody in Human Cancer Immunotherapy. Curr. Opin. Immunol. 18 (2), 206–213. doi:10.1016/j.coi.2006.01.011
 Pickard, J. M., Zeng, M. Y., Caruso, R., and Núñez, G. (2017). Gut Microbiota: Role in Pathogen Colonization, Immune Responses, and Inflammatory Disease. Immunol. Rev. 279 (1), 70–89. doi:10.1111/imr.12567
 Pierrard, J., and Seront, E. (2019). Impact of the Gut Microbiome on Immune Checkpoint Inhibitor Efficacy-A Systematic Review. Curr. Oncol. 26 (6), 395–403. doi:10.3747/co.26.5177
 Pinto, J. A., Raez, L. E., Oliveres, H., and Rolfo, C. C. (2019). Current Knowledge of Ipilimumab and its Use in Treating Non-small Cell Lung Cancer. Expert Opin. Biol. Ther. 19 (6), 509–515. doi:10.1080/14712598.2019.1610380
 Prasad, V., and Kaestner, V. (2017). Nivolumab and Pembrolizumab: Monoclonal Antibodies against Programmed Cell Death-1 (PD-1) that Are Interchangeable. Semin. Oncol. 44 (2), 132–135. doi:10.1053/j.seminoncol.2017.06.007
 Qureshi, O. S., Kaur, S., Hou, T. Z., Jeffery, L. E., Poulter, N. S., Briggs, Z., et al. (2012). Constitutive Clathrin-Mediated Endocytosis of CTLA-4 Persists during T Cell Activation. J. Biol. Chem. 287 (12), 9429–9440. doi:10.1074/jbc.M111.304329
 Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., et al. (2011). Trans-endocytosis of CD80 and CD86: a Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science 332 (6029), 600–603. doi:10.1126/science.1202947
 Ramos-Casals, M., Brahmer, J. R., Callahan, M. K., Flores-Chávez, A., Keegan, N., Khamashta, M. A., et al. (2020). Immune-related Adverse Events of Checkpoint Inhibitors. Nat. Rev. Dis. Primers 6 (1), 38. doi:10.1038/s41572-020-0160-6
 Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., et al. (2012). Bat3 Promotes T Cell Responses and Autoimmunity by Repressing Tim-3-Mediated Cell Death and Exhaustion. Nat. Med. 18 (9), 1394–1400. doi:10.1038/nm.2871
 Remon, J., and Besse, B. (2017). Immune Checkpoint Inhibitors in First-Line Therapy of Advanced Non-small Cell Lung Cancer. Curr. Opin. Oncol. 29 (2), 97–104. doi:10.1097/CCO.0000000000000351
 Risbjerg, R. S., Hansen, M. V., Sørensen, A. S., and Kragstrup, T. W. (2020). The Effects of B Cell Depletion on Immune Related Adverse Events Associated with Immune Checkpoint Inhibition. Exp. Hematol. Oncol. 9, 9. doi:10.1186/s40164-020-00167-1
 Ritprajak, P., and Azuma, M. (2015). Intrinsic and Extrinsic Control of Expression of the Immunoregulatory Molecule PD-L1 in Epithelial Cells and Squamous Cell Carcinoma. Oral Oncol. 51 (3), 221–228. doi:10.1016/j.oraloncology.2014.11.014
 Romano, E., Kusio-Kobialka, M., Foukas, P. G., Baumgaertner, P., Meyer, C., Ballabeni, P., et al. (2015). Ipilimumab-dependent Cell-Mediated Cytotoxicity of Regulatory T Cells Ex Vivo by Nonclassical Monocytes in Melanoma Patients. Proc. Natl. Acad. Sci. USA 112 (19), 6140–6145. doi:10.1073/pnas.1417320112
 Rowshanravan, B., Halliday, N., and Sansom, D. M. (2018). CTLA-4: a Moving Target in Immunotherapy. Blood 131 (1), 58–67. doi:10.1182/blood-2017-06-741033
 Roy, S., and Trinchieri, G. (2017). Microbiota: a Key Orchestrator of Cancer Therapy. Nat. Rev. Cancer 17 (5), 271–285. doi:10.1038/nrc.2017.13
 Ruffo, E., Wu, R. C., Bruno, T. C., Workman, C. J., and Vignali, D. A. A. (2019). Lymphocyte-activation Gene 3 (LAG3): The Next Immune Checkpoint Receptor. Semin. Immunol. 42, 101305. doi:10.1016/j.smim.2019.101305
 Saito, H., Kono, Y., Murakami, Y., Shishido, Y., Kuroda, H., Matsunaga, T., et al. (2018). Highly Activated PD-1/pd-L1 Pathway in Gastric Cancer with PD-L1 Expression. Ar 38 (1), 107–112. doi:10.21873/anticanres.12197
 Sandigursky, S., and Mor, A. (2018). Immune-Related Adverse Events in Cancer Patients Treated with Immune Checkpoint Inhibitors. Curr. Rheumatol. Rep. 20 (10), 65. doi:10.1007/s11926-018-0770-0
 Saung, M. T., Pelosof, L., Casak, S., Donoghue, M., Lemery, S., Yuan, M., et al. (2021). FDA Approval Summary: Nivolumab Plus Ipilimumab for the Treatment of Patients with Hepatocellular Carcinoma Previously Treated with Sorafenib. Oncol. 26 (9), 797–806. doi:10.1002/onco.13819
 Schubert, D., Bode, C., Kenefeck, R., Hou, T. Z., Wing, J. B., Kennedy, A., et al. (2014). Autosomal Dominant Immune Dysregulation Syndrome in Humans with CTLA4 Mutations. Nat. Med. 20 (12), 1410–1416. doi:10.1038/nm.3746
 Schwabe, R. F., and Jobin, C. (2013). The Microbiome and Cancer. Nat. Rev. Cancer 13 (11), 800–812. doi:10.1038/nrc3610
 Sender, R., Fuchs, S., and Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. Plos Biol. 14 (8), e1002533. doi:10.1371/journal.pbio.1002533
 Seton-Rogers, S. (2021). Microbiota Links to Immunotherapy Toxicity. Nat. Rev. Cancer 21 (9), 540. doi:10.1038/s41568-021-00390-w
 Shahbaz, S., Bozorgmehr, N., Koleva, P., Namdar, A., Jovel, J., Fava, R. A., et al. (2018). CD71+VISTA+ Erythroid Cells Promote the Development and Function of Regulatory T Cells through TGF-β. Plos Biol. 16 (12), e2006649. doi:10.1371/journal.pbio.2006649
 Sharma, P., Hu-Lieskovan, S., Wargo, J. A., and Ribas, A. (2017). Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168 (4), 707–723. doi:10.1016/j.cell.2017.01.017
 Shi, L., Chen, L., Wu, C., Zhu, Y., Xu, B., Zheng, X., et al. (2016). PD-1 Blockade Boosts Radiofrequency Ablation-Elicited Adaptive Immune Responses against Tumor. Clin. Cancer Res. 22 (5), 1173–1184. doi:10.1158/1078-0432.CCR-15-1352
 Shiratori, T., Miyatake, S., Ohno, H., Nakaseko, C., Isono, K., Bonifacino, J. S., et al. (1997). Tyrosine Phosphorylation Controls Internalization of CTLA-4 by Regulating its Interaction with Clathrin-Associated Adaptor Complex AP-2. Immunity 6 (5), 583–589. doi:10.1016/s1074-7613(00)80346-5
 Sierro, S., Romero, P., and Speiser, D. E. (2011). The CD4-like Molecule LAG-3, Biology and Therapeutic Applications. Expert Opin. Ther. Targets 15 (1), 91–101. doi:10.1517/14712598.2011.540563
 Stamatouli, A. M., Quandt, Z., Perdigoto, A. L., Clark, P. L., Kluger, H., Weiss, S. A., et al. (2018). Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 67 (8), 1471–1480. doi:10.2337/dbi18-0002
 Stutvoet, T. S., Kol, A., Vries, E. G., Bruyn, M., Fehrmann, R. S., Terwisscha van Scheltinga, A. G., et al. (2019). MAPK Pathway Activity Plays a Key Role in PD‐L1 Expression of Lung Adenocarcinoma Cells. J. Pathol. 249 (1), 52–64. doi:10.1002/path.5280
 Takeuchi, Y., Hirota, K., and Sakaguchi, S. (2020). Impaired T Cell Receptor Signaling and Development of T Cell-Mediated Autoimmune Arthritis. Immunol. Rev. 294 (1), 164–176. doi:10.1111/imr.12841
 Tan, S., Xu, Y., Wang, Z., Wang, T., Du, X., Song, X., et al. (2020). Tim-3 Hampers Tumor Surveillance of Liver Resident and Conventional NK Cells by Disrupting PI3K Signaling. Cancer Res. 80 (5), canres.2332.2019–1142. doi:10.1158/0008-5472.CAN-19-2332
 Tarhini, A. A., Kang, N., Lee, S. J., Hodi, F. S., Cohen, G. I., Hamid, O., et al. (2021). Immune Adverse Events (irAEs) with Adjuvant Ipilimumab in Melanoma, Use of Immunosuppressants and Association with Outcome: ECOG-ACRIN E1609 Study Analysis. J. Immunother. Cancer 9 (5), e002535. doi:10.1136/jitc-2021-002535
 Tavares, A. B. M. L. A., Lima Neto, J. X., Fulco, U. L., and Albuquerque, E. L. (2018). Inhibition of the Checkpoint Protein PD-1 by the Therapeutic Antibody Pembrolizumab Outlined by Quantum Chemistry. Sci. Rep. 8 (1), 1840. doi:10.1038/s41598-018-20325-0
 Tekguc, M., Wing, J. B., Osaki, M., Long, J., and Sakaguchi, S. (2021). Treg-expressed CTLA-4 Depletes CD80/CD86 by Trogocytosis, Releasing Free PD-L1 on Antigen-Presenting Cells. Proc. Natl. Acad. Sci. USA 118 (30), e2023739118. doi:10.1073/pnas.2023739118
 Triebel, F., Jitsukawa, S., Baixeras, E., Roman-Roman, S., Genevee, C., Viegas-Pequignot, E., et al. (1990). LAG-3, a Novel Lymphocyte Activation Gene Closely Related to CD4. J. Exp. Med. 171 (5), 1393–1405. doi:10.1084/jem.171.5.1393
 Twyman-Saint Victor, C., Rech, A. J., Maity, A., Rengan, R., Pauken, K. E., Stelekati, E., et al. (2015). Radiation and Dual Checkpoint Blockade Activate Non-redundant Immune Mechanisms in Cancer. Nature 520 (7547), 373–377. doi:10.1038/nature14292
 Urban-Wojciuk, Z., Khan, M. M., Oyler, B. L., Fåhraeus, R., Marek-Trzonkowska, N., Nita-Lazar, A., et al. (2019). The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front. Immunol. 10, 2388. doi:10.3389/fimmu.2019.02388
 Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., and Chandra, A. B. (2020). Review of Indications of FDA-Approved Immune Checkpoint Inhibitors Per NCCN Guidelines with the Level of Evidence. Cancers 12 (3), 738. doi:10.3390/cancers12030738
 van de Weyer, P. S., Muehlfeit, M., Klose, C., Bonventre, J. V., Walz, G., and Kuehn, E. W. (2006). A Highly Conserved Tyrosine of Tim-3 Is Phosphorylated upon Stimulation by its Ligand Galectin-9. Biochem. Biophysical Res. Commun. 351 (2), 571–576. doi:10.1016/j.bbrc.2006.10.079
 van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P., and Davis, S. J. (1997). CD80 (B7-1) Binds Both CD28 and CTLA-4 with a Low Affinity and Very Fast Kinetics. J. Exp. Med. 185 (3), 393–404. doi:10.1084/jem.185.3.393
 van Elsas, A., Sutmuller, R. P. M., Hurwitz, A. A., Ziskin, J., Villasenor, J., Medema, J.-P., et al. (2001). Elucidating the Autoimmune and Antitumor Effector Mechanisms of a Treatment Based on Cytotoxic T Lymphocyte Antigen-4 Blockade in Combination with a B16 Melanoma Vaccine. J. Exp. Med. 194 (4), 481–490. doi:10.1084/jem.194.4.481
 Vance, R. E., Eichberg, M. J., Portnoy, D. A., and Raulet, D. H. (2017). Listening to Each Other: Infectious Disease and Cancer Immunology. Sci. Immunol. 2 (7), eaai9339. doi:10.1126/sciimmunol.aai9339
 Vétizou, M., Pitt, J. M., Daillère, R., Lepage, P., Waldschmitt, N., Flament, C., et al. (2015). Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science 350 (6264), 1079–1084. doi:10.1126/science.aad1329
 Walker, L. S. K. (2017). EFIS Lecture: Understanding the CTLA-4 Checkpoint in the Maintenance of Immune Homeostasis. Immunol. Lett. 184, 43–50. doi:10.1016/j.imlet.2017.02.007
 Wang, J., Sanmamed, M. F., Datar, I., Su, T. T., Ji, L., Sun, J., et al. (2019a). Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell 176 (1-2), 334–347. doi:10.1016/j.cell.2018.11.010
 Wang, J., Wu, G., Manick, B., Hernandez, V., Renelt, M., Erickson, C., et al. (2019b). VSIG-3 as a Ligand of VISTA Inhibits Human T-Cell Function. Immunology 156 (1), 74–85. doi:10.1111/imm.13001
 Wang, L., Le Mercier, I., Putra, J., Chen, W., Liu, J., Schenk, A. D., et al. (2014). Disruption of the Immune-Checkpoint VISTA Gene Imparts a Proinflammatory Phenotype with Predisposition to the Development of Autoimmunity. Proc. Natl. Acad. Sci. 111 (41), 14846–14851. doi:10.1073/pnas.1407447111
 Wang, L., Rubinstein, R., Lines, J. L., Wasiuk, A., Ahonen, C., Guo, Y., et al. (2011). VISTA, a Novel Mouse Ig Superfamily Ligand that Negatively Regulates T Cell Responses. J. Exp. Med. 208 (3), 577–592. doi:10.1084/jem.20100619
 Wang, Y., and Li, G. (2019). PD-1/PD-L1 Blockade in Cervical Cancer: Current Studies and Perspectives. Front. Med. 13 (4), 438–450. doi:10.1007/s11684-018-0674-4
 Wang, Y., Wiesnoski, D. H., Helmink, B. A., Gopalakrishnan, V., Choi, K., DuPont, H. L., et al. (2018). Fecal Microbiota Transplantation for Refractory Immune Checkpoint Inhibitor-Associated Colitis. Nat. Med. 24 (12), 1804–1808. doi:10.1038/s41591-018-0238-9
 Wang-Gillam, A., Plambeck-Suess, S., Goedegebuure, P., Simon, P. O., Mitchem, J. B., Hornick, J. R., et al. (2013). A Phase I Study of IMP321 and Gemcitabine as the Front-Line Therapy in Patients with Advanced Pancreatic Adenocarcinoma. Invest. New Drugs 31 (3), 707–713. doi:10.1007/s10637-012-9866-y
 Weiss, S. A., and Sznol, M. (2021). Resistance Mechanisms to Checkpoint Inhibitors. Curr. Opin. Immunol. 69, 47–55. doi:10.1016/j.coi.2021.02.001
 Wolf, Y., Anderson, A. C., and Kuchroo, V. K. (2020). TIM3 Comes of Age as an Inhibitory Receptor. Nat. Rev. Immunol. 20 (3), 173–185. doi:10.1038/s41577-019-0224-6
 Wu, Y., Sang, M., Liu, F., Zhang, J., Li, W., Li, Z., et al. (2020). Epigenetic Modulation Combined with PD-1/pd-L1 Blockade Enhances Immunotherapy Based on MAGE-A11 Antigen-specific CD8+T Cells against Esophageal Carcinoma. Carcinogenesis 41 (7), 894–903. doi:10.1093/carcin/bgaa057
 Wykes, M. N., and Lewin, S. R. (2018). Immune Checkpoint Blockade in Infectious Diseases. Nat. Rev. Immunol. 18 (2), 91–104. doi:10.1038/nri.2017.112
 Xu, C., Chen, Y.-P., Du, X.-J., Liu, J.-Q., Huang, C.-L., Chen, L., et al. (2018). Comparative Safety of Immune Checkpoint Inhibitors in Cancer: Systematic Review and Network Meta-Analysis. BMJ 363, k4226. doi:10.1136/bmj.k4226
 Xu, F., Liu, J., Liu, D., Liu, B., Wang, M., Hu, Z., et al. (2014). LSECtin Expressed on Melanoma Cells Promotes Tumor Progression by Inhibiting Antitumor T-Cell Responses. Cancer Res. 74 (13), 3418–3428. doi:10.1158/0008-5472.CAN-13-2690
 Yang, X., Jiang, X., Chen, G., Xiao, Y., Geng, S., Kang, C., et al. (2013). T Cell Ig Mucin-3 Promotes Homeostasis of Sepsis by Negatively Regulating the TLR Response. J.I. 190 (5), 2068–2079. doi:10.4049/jimmunol.1202661
 Zhang, Y., Ma, C. J., Wang, J. M., Ji, X. J., Wu, X. Y., Moorman, J. P., et al. (2012). Tim-3 Regulates Pro- and Anti-inflammatory Cytokine Expression in Human CD14+ Monocytes. J. Leukoc. Biol. 91 (2), 189–196. doi:10.1189/jlb.1010591
 Zhu, C., Anderson, A. C., Schubart, A., Xiong, H., Imitola, J., Khoury, S. J., et al. (2005). The Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity. Nat. Immunol. 6 (12), 1245–1252. doi:10.1038/ni1271
 Zhu, C., Sakuishi, K., Xiao, S., Sun, Z., Zaghouani, S., Gu, G., et al. (2015). Erratum: Corrigendum: An IL-27/NFIL3 Signalling axis Drives Tim-3 and IL-10 Expression and T-Cell Dysfunction. Nat. Commun. 6, 7657. doi:10.1038/ncomms8657
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2021 Cai, Zhan, Ye, Yang, Zhang, Li and Zhuang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 03 January 2022
doi: 10.3389/fgene.2021.806740


[image: image2]
Single-Cell and Bulk Transcriptome Data Integration Reveals Dysfunctional Cell Types and Aberrantly Expressed Genes in Hypertrophic Scar
Shunuo Zhang, Yixin Zhang* and Peiru Min*
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
Edited by:
Tao Huang, Shanghai Institute of Nutrition and Health (CAS), China
Reviewed by:
Chengfei Zhang, Nanjing Medical University, China
Xuechao Wan, Northwestern University, United States
Juliang Qin, East China Normal University, China
* Correspondence: Peiru Min, aru_ren@msn.com; Yixin Zhang, zhangyixin6688@163.com
Specialty section: This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Received: 01 November 2021
Accepted: 09 December 2021
Published: 03 January 2022
Citation: Zhang S, Zhang Y and Min P (2022) Single-Cell and Bulk Transcriptome Data Integration Reveals Dysfunctional Cell Types and Aberrantly Expressed Genes in Hypertrophic Scar. Front. Genet. 12:806740. doi: 10.3389/fgene.2021.806740

Hypertrophic scar (HS) is a common skin disorder characterized by excessive extracellular matrix (ECM) deposition. However, it is still unclear how the cellular composition, cell-cell communications, and crucial transcriptionally regulatory network were changed in HS. In the present study, we found that FB-1, which was identified a major type of fibroblast and had the characteristics of myofibroblast, was significantly expanded in HS by integrative analysis of the single-cell and bulk RNA sequencing (RNA-seq) data. Moreover, the proportion of KC-2, which might be a differentiated type of keratinocyte (KC), was reduced in HS. To decipher the intercellular signaling, we conducted the cell-cell communication analysis between the cell types, and found the autocrine signaling of HB-1 through COL1A1/2-CD44 and CD99-CD99 and the intercellular contacts between FB-1/FB-5 and KC-2 through COL1A1/COL1A2/COL6A1/COL6A2-SDC4. Almost all the ligands and receptors involved in the autocrine signaling of HB-1 were upregulated in HS by both scRNA-seq and bulk RNA-seq data. In contrast, the receptor of KC-2, SDC4, which could bind to multiple ligands, was downregulated in HS, suggesting that the reduced proportion of KC-2 and apoptotic phenotype of KC-2 might be associated with the downregulation of SDC4. Furthermore, we also investigated the transcriptionally regulatory network involved in HS formation. The integrative analysis of the scRNA-seq and bulk RNA-seq data identified CREB3L1 and TWIST2 as the critical TFs involved in the myofibroblast of HS. In summary, the integrative analysis of the single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data greatly improved our understanding of the biological characteristics during the HS formation.
Keywords: hypertrophic scar, extracellular matrix, single-cell RNA sequencing, cell-cell communication, myofibroblast, keratinocyte
INTRODUCTION
Hypertrophic scar (HS) caused by pathologically excessive collagen deposition from skin fibroblasts in the dermis and subcutis are major types of pathological scars that can be regarded as complications to abnormal wound healing (Haverstock, 2001). Unlike keloids, HS does not extend beyond the borders of the original wound, as myofibroblasts, the main effector cell contributing to dermal fibrosis, are present in hypertrophic scarring, and α-smooth muscle actin (α-SMA) is expressed in a nodular formation in the fibroblasts from HS (Lee et al., 2004; Feng et al., 2020). Meanwhile, abnormal keratinocyte differentiation and proliferation, and significantly increased acanthosis can be observed along with hypertrophic scarring (Niessen et al., 2001).
Through animal models, it is found that inflammatory cells, bone marrow-derived fibrocytes, and several peptide-related compounds may serve as essential players in hypertrophic scar development (Satoyoshi, 1966; Song et al., 2020; Wang et al., 2020). It has been well-recognized that the expressions of keratinocyte-derived interleukin-1 (IL-1), tumor necrosis factor-a (TNF-a), platelet-derived growth factor (PDGF), transforming growth factor-b (TGF-b) and basic fibroblast growth factor (bFGF) are associated with extracellular matrix (ECM) remodeling, and medicines or potential reagents to prevent and treat hypertrophic scars could result in inflammatory inhibition via targeting these molecules (Limandjaja et al., 2018; Wang et al., 2020). A previous research has described that fibrocytes, functioning as antigen-presenting cells, may contribute to the upregulation of the inflammatory response, and another study has demonstrated that the TGFβ1/Smad pathway could regulate ECM synthesis via stimulating fibroblasts and inducing fibroblast differentiation into myofibroblasts, thus promoting the formation of hypertrophic scars (Yang et al., 2005; Liu et al., 2012; Shirakami et al., 2020). Also, activation of PI3K/AKT pathway could lead to hypertrophic scar formation and ECM deposition via upregulated expression of Collagen I, Collagen III, α-SMA, and Cleaved caspase-3 in hypertrophic scar fibroblasts (Xiao, 2020; Zhi et al., 2021). In addition, some transcription factors (TFs) such as CRBE3L1 and TWIST2 have been identified as critical regulators in skin diseases (Crespo et al., 2021; Deng et al., 2021). Importantly, the two TFs were also involved in kidney fibrosis (Grunz-Borgmann et al., 2017; Yamamoto et al., 2021). However, few hypertrophic scar animal models could perfectly reflect human skin injuries, and though much effort has been dedicated to the study of abnormal wound healing, the pathogenesis of hypertrophic scarring has not been fully unveiled, and breakthrough development in the therapeutic management for hypertrophic scars is urgently needed, as hypertrophic scarring would lead to considerable morbidity (Wang et al., 2011; Domergue et al., 2015).
Utilization of single-cell RNA sequencing (scRNA-seq) has helped examine cell variability across tumors and interactions between detected cell types (Kumar et al., 2018), and with the aid of scRNA-seq technologies, exploring fibroblast heterogeneity at a single-cell resolution and cell-cell communication in the context of hypertrophic scarring has now become a reality. Recent study identifies serine proteases as regulators of myofibroblast differentiation using single cell sequencing technology (Vorstandlechner et al., 2020). In the present study, we hope to identify potential cell-cell communications and abnormal transcriptionally regulatory network in hypertrophic scarring.
MATERIALS AND METHODS
Data Collection
The scRNA-seq data of normal and HS samples were collected from Gene Expression Omnibus (GEO) with accession number GSE156326 (Vorstandlechner et al., 2020). The bulk RNA sequencing data was generated by this study. The five normal and five HS skin tissue samples were collected from Nineth People’s Hospital of Shanghai Jiao Tong University, School of Medicine, which was approved by the Human Research Ethics Committee of this hospital. The written informed consents were collected from each patient. All samples were stored in −80°C for the following experiments.
RNA Extraction, Library Construction and RNA Sequencing Analysis
RNA extraction and sequencing was performed at the Beijing Genomics Institute (BGI), using an Illumina HiSeq 4,000 sequencer (Illumina) following the standard manufacturer’s protocols as described by the previous study (Hillen et al., 2019). The raw data was first preprocessed by excluding the reads with low quality. The clean reads were the mapped to human reference genome (GRCh37/hg19) using Hisat v2.2.1 (Kim et al., 2015). The gene expression quantification was performed by using Stringtie v2.1.4 (Pertea et al., 2015) and R ballgown package (Frazee et al., 2015). The default parameters of Hisat and Stringtie were used in this study. The count table was generated by the python script prepDE.py (https://ccb.jhu.edu/software/stringtie/dl/prepDE.py) from Stringtie. The R/Bioconductor DESeq2 (Love et al., 2014) package was applied to differential gene expression analysis.
Cell Clustering Analysis
The unique molecular identifiers (UMIs) count-based scRNA-seq data of six human skin samples from GEO accession GSE156326 were used for the cell clustering analysis, which was implemented in R Seurat package. Cells with less than 200 UMIs were eliminated and features detected in less than three cells were filtered. The multiple datasets were integrated by SCTransform in Seurat package. The top 3,000 highly variable features were selected by FindVariableFeatures. The clusters were found at a resolution of 0.8 by FindClusters, and T-distributed Stochastic Neighbor Embedding (t-SNE) was applied to reduce the dimensionality. The cell-type marker genes were detected by FindAllMarkers function at adjusted p-value < 0.05, minimal percentage difference >0.25, and log2 fold change >0.5. All the marker genes of the cell clusters were collected from the earlier study (Vorstandlechner et al., 2020). This analysis was implemented by R Seurat package (Stuart et al., 2019).
Estimation of Cell Proportion
The cell proportions were estimated using MuSiC(Wang et al., 2019), which used a deconvolution method based on marker genes of cell types and gene expression matrices of both scRNA-seq and bulk RNA-seq to estimate the cell proportions of bulk RNA-seq data. The count-based expression data of both scRNA-seq and bulk RNA-seq was applied to this analysis.
Gene Set Enrichment Analysis (GSEA)
The GSEA was conducted against KEGG, Reactome (Jassal et al., 2020), WikiPathway, and Gene Ontology (GO-bp). The GSEA was implemented in R clusterProfiler (Yu et al., 2012).
Cell-Cell Communication Analysis
The cell-cell communication was predicted by R CellChat (Jin et al., 2021) package. The normalized count and cell types by Seurat were used for this analysis. This analysis was separately conducted on the normal and HS cells.
Transcriptionally Regulatory Network Analysis
The transcriptionally regulatory network analysis was performed by R SCENIC package (Aibar et al., 2017). The AUCell values for the transcription factors (TFs) were used for differential analysis (Aibar et al., 2017).
Statistical Analyses
All the statistical analyses were performed in R (version 4.1.0). The two-sample and pairwise comparisons were conducted by Wilcoxon rank sum test. The symbols of *, **, and *** represent the statistical significance at 0.05, 0.01, and 0.001, respectively.
RESULTS
Single-Cell and Bulk RNA-Seq Reveal the Cellular Diversity and Heterogeneity of Skin Tissues.
To reveal the cellular diversity and heterogeneity of skin tissues, we collected a single-cell RNA sequencing (RNA-seq) dataset of three normal (NS) and three hypertrophic scar (HS) samples from Gene Expression Omnibus (GEO) database (See Materials and methods). After excluding the cells with low quality, we identified 18 cell clusters from 15,276 cells by the dimensional reduction and clustering analysis (Figure 1A), and characterized the cell clusters using the marker genes from previous studies (Solé-Boldo et al., 2020; Vorstandlechner et al., 2020; Liu et al., 2021). The cell clusters included six clusters of fibroblasts (FB-1/2/3/4/5/6, represented by marker genes: FBLN1, COL1A1, APOE, and APCDD1), three clusters of keratinocytes (KC-1/2/3: KRT1 and KRT14), two clusters of endothelial cells (EC-1/2: THBD and SELE), T cells (TC: PTPRC), smooth muscle cells (SMC: ACTA2 and RGS5), Langerhans cells (LA: AIF1), lymphatic endothelial cells (LEC: PROX1 and PDPN), dendritic cells (DC: HLA−DRB1 and CD1C), macrophage (MP: CD68), and melanocyte (MC: MITF) (Figure 1B), suggesting that the cell types were well characterized by the marker genes.
[image: Figure 1]FIGURE 1 | The cell populations and marker genes in the skin samples of hypertrophic scar (HS) and normal skins. (A) The cell clusters visualized by the dimensional reduction of t-distributed stochastic neighbor embedding (t-SNE). Each point represents one cell, and the filled colors represent the cell types. (B) The expression specificity of cell type-specific marker genes within the skin samples using scRNA-seq data. (C) The differential expression of the cell type-specific marker genes between HS and normal skins using bulk RNA-seq data.
To reveal the expression patterns of the cell-type marker genes in skin tissues, we also collected five NS and five HS tissue samples for bulk RNA sequencing. As shown in Figure 1C, the representative marker genes were found to be differentially expressed between the NS and HS tissues (adjusted p-value < 0.05 and fold change >1.5). Moreover, about 26.83% of the cell-type marker genes (376/1,401) were observed to be differentially expressed between NS and HS samples. The deregulation of the cell-type marker genes in HS samples indicated that the cell proportions and gene expression patterns were changed in HS.
Differential Proportion Analysis Reveals Significant Expansion of Fibroblast and Contraction of KC Subpopulations in HS
We next attempted to identify HS-associated cell lineages or clusters that were significantly expanded or contracted in HS. The FB-1 accounted for the largest number of cells, followed by FB-2, TC, and EC-2 based on the single-cell RNA-seq data (Figure 2A). Furthermore, we also conducted gene set enrichment analysis on the marker genes of those cell types to characterize their functionalities (Supplementary Table S1). Remarkably, the three major cell types, including FB-2, EC-2, and T cell, were characterized by collagen degradation, VEGFA-VEGFR2 Signaling Pathway, and TYROBP Causal Network, respectively. The cell proportions of the three NS and three HS samples could be estimated by the single-cell RNA-seq data. To improve the reliability of the differential proportion analysis, we also estimated the cell proportions for the ten bulk RNA-seq samples using MuSiC (Wang et al., 2019), a deconvolution method to estimate cell type proportions from bulk RNA sequencing data. The differential proportion analysis revealed that FB-1 and FB-2 were expanded in HS, while the proportion of KC-2 was reduced in HS (Figure 2B). Accordingly, the FB-1 and KC-2 marker genes were enriched in the up- and down-regulated genes in HS by bulk RNA-seq data (Figure 2C), respectively. However, FB-2 marker genes were enriched in neither the upregulated nor the downregulated genes in HS. These results suggested that the changed proportions of these cell types might be closely associated with HS.
[image: Figure 2]FIGURE 2 | The cell proportions within HS and normal skin samples. (A) The cell proportions within the integrated HS and normal skin samples. (B) The cell types with differential proportions between HS and normal skin. (C) The differential expression levels of the FB-1 and KC-2 specific marker genes between the HS and normal skin samples.
Fibroblast Heterogeneity in Skin Tissues
As fibroblast clusters were identified as the major cell types in skin tissues by scRNA-seq data, we then investigated their functional differences by comparing their expression profiles. The differential gene expression analysis revealed that FB-1, FB-3, FB-4, and FB-5 had their top-ten specific marker genes, while no marker genes specifically upregulated in FB-2 or FB-6 were identified (Figure 3A). Consistent with the excessive ECM deposition observed in bulk RNA-seq data of HS (Figure 3B), ECM-related pathways, such as extracellular matrix organization, elastic fiber formation, collagen formation, and matrix metalloproteinases, and PI3K-Akt signaling were significantly upregulated in FB-1 (Figure 3C). FB-3 was characterized by the inflammatory pathways, such as photodynamic therapy-induced NF-kB survival signaling, NOD-like receptor signaling pathway, and signaling by interleukins (Figure 3C). The oxidative stress and Wnt signaling were identified as the signature pathway of FB-4 and FB-5 (Figure 3C), respectively. These results indicated that fibroblasts were functionally heterogenous in skin tissues.
[image: Figure 3]FIGURE 3 | The fibroblast subpopulations in the skin samples. (A) The expression specificity of the FB subpopulation specific genes across the FB cell populations. (B) The upregulated pathways in FB-1 cells of HS. (C) The subpopulation specific biological functions across the FB subpopulations.
As FB-1 was one of the major cell types expanded in HS, we then investigated the biological function of this FB type. Interestingly, the FB-1 cells from HS samples could be clearly distinguished from those from NS samples (Figure 4A). The graph-based clustering analysis revealed that the C1 subpopulation was significantly enriched by the cells from HS (Figure 4A, hypergeometric test, p-value < 0.05). Moreover, we also found that the myofibroblast gene signatures were higher in C1 and HS, as compared with C2 and NS cells (Figure 4B), respectively, suggesting that the FB-1 from HS might have a myofibroblast phenotype. Moreover, the myofibroblast signature genes, including COL12A1, COL1A1, COL3A1, CTHRC1, and PCSK1N, were expressed higher in C1 than C2 (Figure 4C). The bulk RNA-seq data further confirmed the upregulation of the five genes except PCSK1N (Figure 4D). Notably, the five genes were involved in collagen formation, which is a critical regulator of myofibroblast differentiation (Yuen et al., 2010). These results indicated that HS formation was associated with both the increased proportion and the biological characteristics of myofibroblast.
[image: Figure 4]FIGURE 4 | Biological function of HS-related FB-1 cluster. (A) The clustering of the HS and normal skin (NS)-related FB-1 cells grouped by disease (HS vs NS) and graph-based classification (C1 vs C2), respectively. (B) The differential module score of myofibroblast cells between HS and NS, and C1 and C2. (C) The expression levels of myofibroblast cell marker genes including COL12A1, COL1A1, COL3A1, CTHRC1, and PCSK1N in the HB-1 cells. (D) The differential expression levels of the myofibroblast cell marker genes between HS and NS bulk samples.
Dysregulation of Keratinocytes Signature Genes in HS
As the proportion of type 2 keratinocyte was reduced in HS, we then asked whether KC-2 in HS showed distinct expression patterns relative to those in NS. Compared to KC-1 and KC-3, the KC-2 exerted distinct expression profiles (Figure 5A). The gene set enrichment analysis revealed that the three KC cell types (KC-1/2/3) might be associated with antigen presentation, keratinization, and transforming growth factor-beta (TGFbeta) signaling (Figure 5B). The tSNE analysis revealed that the KC-2 in HS and NS could not be clearly distinguished (Figure 5C), suggesting that the KC-2 in HS and NS showed similar expression patterns. The differential gene expression analysis between KC-2 cells of HS and NS revealed that cell senescence or apoptosis-related pathways such as aging, neuron death, and regulation of neuron apoptotic process were upregulated in KC-2 cells of HS (Figure 5D), suggesting that the keratinocyte apoptosis might be associated with the reduced proportion of KC-2 in HS.
[image: Figure 5]FIGURE 5 | The keratinocyte subpopulations in the skin samples. (A) The expression specificity of the KC subpopulation specific genes across the KC cell populations. (B) The subpopulation specific biological functions across the KC subpopulations. (C) The clustering of the KC-2 cells grouped by disease (HS vs NS). (D) The representative biological functions in KC-2 cells of HS.
Cell-Cell Communications
To decipher the intercellular signaling, we conducted the cell-cell communication analysis between the cell types using CellChat (Jin et al., 2021). As the FB1-1 and KC-2 exhibited dominant functional roles in HS formation, we then investigated the signaling sources of the two cell types. Specifically, we identified 13 ligand-receptor (LR) pairs upregulated in FB-1 of HS and 17 LR pairs downregulated in KC-2 of HS (Figure 6A, adjusted p-value < 0.05). Particularly, we found that the autocrine signaling of HB-1 through COL1A1/2-CD44 and CD99-CD99 achieved the high communication probabilities (Figure 6A). Similarly, the cell-cell contacts between FB-1/FB-5 and KC-2 through COL1A1/COL1A2/COL6A1/COL6A2-SDC4 had the high communication probabilities in the downregulated cell-cell communication network (Figure 6A). The expression analysis revealed that the ligands and receptors such as COL1A1, COL1A2, CD44, and CD99 involved in the signaling transduction of FB-1 had higher expression levels in FB-1, as compared with the other cell types (Figure 6B). In contrast, the receptors involved in the signaling transduction of KC-2 were specifically expressed in KC-2 and KC-3, and the ligands were more specifically expressed in FB-1 and FB-5 (Figure 6B). Moreover, we also investigated the differential expression levels of those ligands and receptors between the HS and NS using the bulk RNA-seq data. Notably, all the ligands and receptors involved in signaling transduction of FB-1 except SELE were found to be upregulated in HS (Figure 6C). Interestingly, the receptor SDC4, which could bind to multiple ligands, were downregulated in HS, suggesting that the reduced proportion of KC-2 and apoptotic phenotype of KC-2 might be associated with the downregulation of SDC4.
[image: Figure 6]FIGURE 6 | The differential cell-cell communications between HS and NS. (A) The upregulated and downregulated signaling in HS. The x- and y-axis represent the cell-cell communications and ligand-receptor pairs, respectively. (B) The expression levels of the ligands and receptors involved in the upregulated or downregulated signaling across the cell types. (C) The differential expression levels of the ligands and receptors between the HS and NS bulk RNA-seq samples.
Transcriptionally Regulatory Network Involved in HS Formation
To infer the transcriptionally regulatory network involved in HS formation, we estimated the transcriptional activities of the transcription factors (TFs) using SCENIC(Aibar et al., 2017). The differential transcriptional activity analysis revealed that the FB-1 cells in HS had higher transcriptional activities of CREB3L1 and TWIST2 than those in NS (Figure 7A). Unfortunately, we did not observe any TFs which showed different activities between HS and NS of KC-2. HS had a higher proportion of the FB-1 cells expressing CREB3L1 than NS as CREB3L1 was lowly expressed in FB-1 (Figure 7B). The FB-1 in HS had a higher expression level of TWIST2 than that in NS (Figure 7B, adjusted p-value < 0.05). The previous study identified JUN as a critical regulator by promoting hypertrophic skin scarring (Griffin et al., 2021). Consistently, we also found that the transcriptional activity of JUN was higher in HS than NS (Supplementary Figure S1).
[image: Figure 7]FIGURE 7 | The transcription factors (TFs) and regulatory network involved in HS. (A) The differential transcriptional activities of the key TFs in FB-1 of HS samples. (B) The differential proportion of FB-1 cells expressing CREB3L1 and differential expression of TWIST2 between the FB1- cells of HS and NS. (C) The differential expression of TFs between the bulk RNA-seq samples of HS and NS. (D,E) Upregulation of TF target genes in the bulk RNA-seq samples of HS by gene set enrichment analysis (GSEA).
Furthermore, we also investigated the expression levels of the TFs and target genes in HS and NS samples using bulk RNA-seq data. Consistently, the two TFs, CREB3L1 and TWIST2, were upregulated in HS as compared with NS using the bulk RNA-seq data (Figure 7C, p-value < 0.01). In according with the finding using scRNA-seq data, the target genes of CREB3L1 or TWIST2 also gathered in the upregulated genes in HS (Figures 7D,E, FDR <0.05). Similarly, the target genes of the two TFs were also significantly overlapped with the upregulated genes in the HS samples from a previous study (GEO accession: GSE188952, Supplementary Figure S2), further indicating that the transcriptional activities of the two TFs were upregulated in HS. These results suggested that the two TFs, CREB3L1 and TWIST2, might play key roles in HS formation.
DISCUSSION
Hypertrophic scar (HS) is a fibroproliferative skin disorder characterized by excessive extracellular matrix (ECM) deposition. However, it is still unclear how the cellular composition, cell-cell communications, and crucial transcriptionally regulatory network were changed in HS. In the present study, we found that fibroblasts (FB) and keratinocytes (KC) had multiple cell clusters. The FB clusters were characterized by excessive ECM deposition, inflammatory, and proliferative signatures. Particularly, excessive ECM deposition, identified as the signature of FB-1, is associated with myofibroblast (Hinz and Lagares, 2020) and fibrosis (Agarwal et al., 2013). Moreover, the FB-1 was expanded in HS and FB-1 accounted for the largest proportion in the HS samples, suggesting that an increase of myofibroblast proportion in HS might be the major cause of the HS. The myofibroblast was considered as a therapeutic target of HS (Feng et al., 2020; Yang et al., 2020). The three KC cell types (KC-1/2/3) might be associated with antigen presentation, keratinization, and transforming growth factor-beta (TGF-beta) signaling. Remarkably, the proportion of KC-2, which might be a differentiated type of KC, was reduced in HS. The cell senescence or apoptosis-related pathways such as aging, neuron death, and regulation of neuron apoptotic process were upregulated in KC-2 cells of HS, suggesting that the keratinocyte apoptosis might be associated with the reduced proportion of KC-2 in HS. It has been well recognized that keratinocyte proliferation and migration are critical for re-epithelialization during cutaneous wound healing (DiPersio et al., 2016; Piipponen et al., 2020).
To decipher the intercellular signaling, we conducted the cell-cell communication analysis between the cell types, and found the autocrine signaling of HB-1 through COL1A1/2-CD44 and CD99-CD99 and the intercellular contacts between FB-1/FB-5 and KC-2 through COL1A1/COL1A2/COL6A1/COL6A2-SDC4. It has been reported that COL1A1/2 expression promotes the myofibroblast differentiation (Gambini et al., 2018), fibrosis (Kong et al., 2019), and HS formation (Bi et al., 2017). The receptor, CD44, was associated with an abnormal accumulation of extracellular matrix (Messadi and Bertolami, 1993). Moreover, CD44 was also identified as a mediator of myofibroblast differentiation and fibrosis (Woods et al., 2021). CD99, the other key receptor expressed in myofibroblast, was implicated in skin disorders (Kazakov et al., 2005; Belonogov and Ruksha, 2013). However, the intracellular signaling regulated by CD99 was still unclear. In contrast, the receptors involved in the signaling transduction of KC-2 were specifically expressed in KC-2 and KC-3, and the ligands were more specifically expressed in FB-1 and FB-5. Interestingly, the receptor SDC4, which could bind to multiple ligands, was downregulated in HS, suggesting that the reduced proportion of KC-2 and apoptotic phenotype of KC-2 might be associated with the downregulation of SDC4. Particularly, SDC4 could induce the keratinocyte activation (Bizzarro et al., 2019; Pessolano et al., 2019), which played a vital role in wound healing (Zhang et al., 2021). The low expression of SDC4 indicated that the signaling from fibroblasts could not be transduced to keratinocyte.
Furthermore, we also investigated the transcriptionally regulatory network involved in HS formation. The integrative analysis of the scRNA-seq and bulk RNA-seq data identified CREB3L1 and TWIST2 as the critical TFs involved in the myofibroblast of HS. Consistently, CRBE3L1 has been identified as one of the critical TFs involved in fibrotic skin diseases by a scRNA-seq study (Deng et al., 2021). The other TF, TWIST2, was relevant to Setleis syndrome (SS), a focal facial dermal dysplasia presenting with bilateral temporal skin lesions (Crespo et al., 2021). Moreover, TWIST1, an important paralog of TWIST2, was involved in the fibrogenesis of keloid fibroblasts, and might serve as a therapeutic target of keloid (Liu et al., 2021), suggesting that TWIST2 might also be considered as a promising therapeutic target in HS.
Even though cell-cell communications and key TFs involved in HS have been predicted based on the integrative analysis, there is still a lack of enough evidence to link the relationship between the transcriptionally regulatory network of CRBE3L1 or TWIST2 and the intercellular signaling like COL1A1/2-CD44 and CD99-CD99, which will be clarified by our future study.
In summary, the present study identified that an increase of myofibroblast proportion in HS, abnormal ligand-receptor interaction, and two key TFs might be promising therapeutic targets for HS. The integrative analysis of the scRNA-seq and bulk RNA-seq data not only identified key cell types altered in HS, but also shed light on the potential cell-cell communications and intracellular TF regulatory network involved in HS, which greatly improved our understanding of the biological characteristics during the HS formation.
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Background: Burn injury is a life-threatening disease that does not have ideal biomarkers. Therefore, this study first applied weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) screening methods to identify pivotal genes and diagnostic biomarkers associated with the skin burn process.
Methods: After obtaining transcriptomic datasets of burn patient skin and normal skin from Gene Expression Omnibus (GEO) and performing differential analysis and functional enrichment, WGCNA was used to identify hub gene modules associated with burn skin processes in the burn patient peripheral blood sample dataset and determine the correlation between modules and clinical features. Enrichment analysis was performed to identify the functions and pathways of key module genes. Differential analysis, WGCNA, protein-protein interaction analysis, and enrichment analysis were utilized to screen for hub genes. Hub genes were validated in two other GEO datasets, tested by immunohistochemistry for hub gene expression in burn patients, and receiver operating characteristic curve analysis was performed. Finally, we constructed the specific drug activity, transcription factors, and microRNA regulatory network of the five hub genes.
Results: A total of 1,373 DEGs in GSE8056 were obtained, and the top 5 upregulated genes were S100A12, CXCL8, CXCL5, MMP3, and MMP1, whereas the top 5 downregulated genes were SCGB1D2, SCGB2A2, DCD, TSPAN8, and KRT25. DEGs were significantly enriched in the immunity, epidermal development, and skin development processes. In WGCNA, the yellow module was identified as the most closely associated module with tissue damage during the burn process, and the five hub genes (ANXA3, MCEMP1, MMP9, S100A12, and TCN1) were identified as the key genes for burn injury status, which consistently showed high expression in burn patient blood samples in the GSE37069 and GSE13902 datasets. Furthermore, we verified using immunohistochemistry that these five novel hub genes were also significantly elevated in burn patient skin. In addition, MCEMP1, MMP9, and S100A12 showed perfect diagnostic performance in the receiver operating characteristic analysis.
Conclusion: In conclusion, we analyzed the changes in genetic processes in the skin during burns and used them to identify five potential novel diagnostic markers in blood samples from burn patients, which are important for burn patient diagnosis. In particular, MCEMP1, MMP9, and S100A12 are three key blood biomarkers that can be used to identify skin damage in burn patients.
Keywords: burn injury, WGCNA, skin wound, peripheral blood, ROC
INTRODUCTION
Thermal injury is a challenging disease and a leading cause of death worldwide (Greenhalgh, 2019). Burns affect approximately 300 million people worldwide annually and have high morbidity and mortality rates, resulting in 176,000 people dying from burn injuries in 2015 (Haagsma et al., 2016). Moreover, severe burns can rapidly disrupt body homeostasis, leading to multi-organ dysfunction and life-threatening injuries (Auger et al., 2017). A key limiting factor for poor clinical outcomes in burn patients is the lack of reliable diagnostic tools to identify critical burn events and their extent, and subsequently initiate targeted intensive treatment (Niggemann et al., 2021). Therefore, clarifying the underlying pathogenesis of burn injury and exploring effective treatments for burn injuries are urgently required.
Burn patient prognosis is improving with the progress of modern medicine; however, due to the limitations and lags of traditional burn diagnosis, patients do not receive appropriate treatment. Research has focused on how to distinguish different degrees of burns by molecular diagnostic methods and on the application of appropriate treatment strategies in a timely manner. Burns are traditionally graded into three levels of thickness based on the degree of tissue damage: superficial (first-degree burns), partial-thickness (second-degree burns), and full-thickness (third-degree burns). Partial-thickness/second-degree burns can be further subdivided into superficial- and deep-part-thickness burns (McGill et al., 2007; Greenhalgh, 2019). Clinical diagnosis by visual and tactile examination remains the current standard for determining the depth of a patient’s burn injury. This method has a serious lag in determining the patient’s condition and does not provide timely information regarding the patient’s progress due to the rapid progression of burn injury (Lee et al., 2020). Therefore, the development of an effective molecular diagnostic burn technique is necessary to improve early burn care, reduce complications, and decrease treatment-associated costs. The inflammatory response triggered by thermal injury frequently transcends the local environment, leading to local verification and changes in blood flow. We hypothesize that the extensive perturbations of the skin caused by thermal injury lead to differential changes in gene expression in peripheral blood tissues, which can be useful for diagnosing burns and identifying changes in burn conditions.
With the rapid development of next-generation sequencing technology, numerous new computational algorithms have been developed to help identify disease-specific biomarkers. Weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath, 2008), a novel systems biology method, assists in the construction of free-scale gene co-expression networks and the detection of gene modules and hub genes. We can determine which modules are associated with disease phenotypes by analyzing the relationship between modules and clinical features (Zhu et al., 2021).
In our study, we aimed to identify potential biomarkers associated with burn injuries. The secondary aim was to assess the discriminative capacity of novel mRNA biomarkers in peripheral blood for burn injury diagnosis by integrated analysis. The flowchart illustrated in the present study is presented in Figure 1. First, we identified differential expression profiles between burn and normal tissues using the GSE8056 dataset. Next, we extracted the top 100 differentially expressed genes (50 upregulated and 50 downregulated) according to log2|FC| size as the most significantly differentially expressed genes (DEGs). Next, we identified the gene module with the greatest correlation with the burn process and investigated the connectivity between this gene module and burned skin features using WGCNA. The key module with the highest level of significant correlation with burned skin injury was identified, and the genes with |gene significance| >0.8 and |module membership| >0.8 were selected as hub genes in the key yellow module. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to clarify the possible functions of key modules. Furthermore, DEGs were subjected to a protein-protein interaction (PPI) network analysis to identify hub genes (degree ≥5). The overlapping genes between hub genes in the key module and hub genes in DEGs were defined as key genes (ANXA3, MCEMP1, MMP9, S100A12, and TCN1), and the expression levels of the five hub genes were evaluated in burn-related GEO datasets and verified by immunohistochemical (IHC) analysis of the collected skin tissues. This is the first report of utilizing WGCNA to explore skin tissue damage-related biomarkers of burn injury. This study lays the foundation for exploring the molecular mechanisms of burn injury and contributes to the identification of potential diagnostic biomarkers for burn injuries.
[image: Figure 1]FIGURE 1 | Study flowchart. (Study workflow. FC, fold change; GEO, Gene Expression Omnibus; GO, Gene Ontology; GS, gene significance; KEGG, Kyoto Encyclopedia of Genes and Genomes; MM, module membership; WGCNA, weighted gene co-expression network analysis).
MATERIALS AND METHODS
GEO Datasets
In this study, we obtained a gene expression microarray from the NCBI GEO official website (Barrett et al., 2013) (https://www.ncbi.nlm.nih.gov). The microarray data were all obtained from the GPL570 platform with the accession number GSE8056 (Ou et al., 2015) (number of burn wound tissues = 9, number of normal skin tissues = 3, tissue source: skin), GSE19743 (Zhou et al., 2010) (number of patient samples = 114, number of normal samples = 63, tissue source: blood), GSE37069 (Peterson et al., 2014) (number of patient samples = 553, number of normal samples = 37, tissue source: blood), and GPL15433 platform for RNAseq count expression profile data GSE139028 (Schutte et al., 2020) (number of patient samples = 6, number of normal samples = 3, tissue source: skin).
DEG Analysis
Microarray data from three datasets were pre-processed using the robust multichip analysis algorithm using Affymetrix default analysis settings (Shanahan et al., 2012). In the event of multiple probes corresponding to one gene, we took the average value as the expression level of the gene. First, burn patients and healthy people (serving as controls) were analyzed for differential expression. The DEGs from GSE8056 were identified using the Limma package (Ritchie et al., 2015) in R on normalized count data. The parameters |logFC| > 2 and p < 0.05 were used as the screening criteria for DEGs. Next, top 100 genes (top 50 upregulated and 50 downregulated) were selected as the significantly DEGs for further analysis. Moreover, we focused on tagging the top 10 genes (5 upregulated and 5 downregulated) and plotted circles using the OmicsCircos (Hu et al., 2014) package to visualize the distribution of the most DEGs on the chromosomes and their expression in each sample. For RNAseq data in GSE139028, expression levels were transcripts per million (TPM)-normalized and ENSG-ID transformed. The TPM values were used to evaluate the gene expression levels.
The GO Term Enrichment and Pathway Analysis of Differential Gene Expression
To evaluate the biological functions and pathways affected by differential gene sets affecting burn patients, the DEG sets from GSE8056 were used to perform GO and KEGG pathway enrichment analysis using the clusterProfiler package (Yu et al., 2012), with Q (Bonferroni-corrected p-value) <0.05 set as the statistically significant threshold. GO terms, including biological processes (BPs), cellular components (CCs), molecular functions (MFs), and KEGG pathways with p < 0.05 and false discovery rate <0.05, were considered statistically significant. The GO and KEGG analysis results were visualized using the “ggplot2” R package.
Construction of Co-expression Modules by WGCNA of Datasets
For co-expression analysis, the DEGs from GSE8056 were selected as hub gene sets for the construction of a WGCNA (Langfelder and Horvath, 2008). We used this gene set with the expression profile dataset GSE19743 to construct the gene co-expression networks. Thereafter, the network modules correlated with the burn process and hub genes in modules were identified, and the corresponding soft thresholds were selected to filter out the key modules to achieve a scale-free network R2 close to 0.9. To further determine the potential biological functions and pathways in the burn injury-related module, we performed GO and KEGG pathway enrichment analyses of the target modules. Meanwhile, key gene sets were screened based on gene significance >0.2 and module membership >0.8. Then, the key gene sets were extracted for GO functional enrichment and KEGG pathway analyses.
GO Enrichment and KEGG Pathway Analysis of Genes in Each Module
GO enrichment and KEGG pathway analyses were performed to determine the potential BPs, CCs, and MFs of genes in each module. Furthermore, significant KEGG pathway and GO enrichment analysis were implemented by the hypergeometric test, with an adjusted p-value (q value) < 0.05 considered significant. The GO enrichment analyses with the top 30 GO enrichment results (10 BPs, 10 CCs, and 10 MFs) were plotted for the bar graphs, whereas GO and KEGG pathway analyses were visualized using the “ggplot2” R package.
PPI Network and the Identification of Hub Genes
To explore the PPIs between hub genes, the hub genes in the key modules filtered using WGCNA were imported into the STRING database (https://www.string-db.org/), which was continuously amplified to obtain a PPI network containing 14 nodes and 21 edges as a way to investigate the role of burn-related DEGs in the network. We identified the five most essential burn injury-associated genes based on the differential expression, functional enrichment results, and PPI network analysis results.
Expression Analysis and Receiver Operating Characteristic Curves of the Five Hub Genes
To validate the accuracy of the obtained key genes, the accuracy of each key gene was evaluated by receiver operating characteristic (ROC) validation and the area under the curve (AUC) value. We used the five identified key genes as the validation set data using GSE37069 with GSE13902 expression data and performed ROC validation using the pROC (Robin et al., 2011) R language package to verify the classification efficacy of the key genes in the validation set data. Alternatively, to verify the accuracy of the obtained key genes, t-tests were performed to determine significant differences in gene expression levels between burn patients and normal controls. Statistical significance was set at p < 0.05.
The Collection of Patient Tissue Specimens and IHC Staining
We collected 13 burn patient skin samples (deep second-degree burn tissue) from 2020 to 2021 from burn patients associated with the Chinese Han population. We received approval from the subject review committee of Foshan First People’s Hospital, and the patients signed an informed consent form and were informed prior to sample collection. After dehydration, formalin-fixed and paraffin-embedded skin tissues were sectioned at 4 μm for IHC. Antigen retrieval was performed by incubating the samples in citrate buffer (pH 6.0) for 15 min. After blocking with a mixture of methanol and 0.75% hydrogen peroxide, sections were incubated overnight with primary antibodies (ANXA3, Abcam, Cambridge, United Kingdom, 1:100; MCEMP1, Abcam 1:150; S100A12, Signalway Antibody, MD, United States, 1:100; TCN1, Invitrogen, MA, United States, 1:50; MMP9, Signalway Antibody, 1:50), followed by incubation with a secondary antibody conjugated with horseradish peroxidase (goat anti-rabbit, 1:500, Cell Signaling Technology, MA, United States). Sections were washed three times with phosphate-buffered saline and incubated with diaminobenzidine. Next, we performed a comprehensive IHC score according to the total degree of staining and the area of positive cells, and the scoring criteria and steps described in our previous article (Zhou et al., 2021).
Analysis of Drug Activity, Transcription Factors, and microRNA Interaction Network of the Five Hub Genes
To further analyze the relationship between the action of key genes and drugs, we used three leading drug-target databases, Drugbank (Wishart et al., 2018) (https://www.drugbank.com/), DGIdb (Cotto et al., 2018) (https://dgidb.genome.wustl.edu/), and PubChem (Wang et al., 2017) (https://pubchem.ncbi.nlm.nih.gov/), to identify drugs acting on the five hub genes based on the active structural domains of drugs and to construct a network of target gene-drug interactions. For target gene transcription factor analysis, we used the ChEA3 (https://maayanlab.cloud/chea3/) prediction database (Keenan et al., 2019) to construct a network between transcription factors and genes. Additionally, the targets of experimentally validated microRNA (miRNA)-mRNA interactions were screened based on Starbase (V2.0) (Li et al., 2014), miRTarBase (Huang et al., 2020), and TarBase (Karagkouni et al., 2018). Next, the collected mutual relationship data were imported into Cytoscape (Shannon et al., 2003) for network visualization.
RESULTS
Study Flowchart
The research flowchart is presented in Figure 1.
Differentiation Analysis
Differential analysis was performed using GSE8056 (burn skin samples vs. normal skin samples). |logFC (fold change)| >1 for upregulated genes and |logFC| >-1 for downregulated genes were selected as standards. A total of 1,373 DEGs (adjusted p-value <0.05) were obtained, of which 673 were upregulated and 700 were downregulated. Volcano and heat maps of the differentially expressed genes are plotted in Figures 2A,B, and it can be seen that the differentially expressed genes exhibit significantly different expression patterns between the burned and normal samples. Next, we extracted the top 100 differentially expressed genes (50 upregulated and 50 downregulated) as the most significant differentially expressed genes according to log2|FC| size. For a visual representation of the top 100 differentially expressed genes, the R package Omiccircos was used to draw the circos-plot for visualization (Figure 2C). Heat maps in the circos-plot were drawn according to the expression patterns in differential analysis corresponding to the samples, with upregulated and downregulated genes connected by red and blue lines, respectively. The top five upregulated genes were S100A12, CXCL8, CXCL5, MMP3, and MMP1, whereas the top five downregulated genes were SCGB1D2, SCGB2A2, DCD, TSPAN8, and KRT25.
[image: Figure 2]FIGURE 2 | Heatmap, volcano plot, and chromosome circos plot for differentially expressed genes identified in the GSE8056 dataset. The volcano map (A) indicates the difference of up-and downregulated genes, where red represents upregulation and blue represents downregulation. Heatmap (B) represents the differentially expressed genes expression patterns of differentially expressed genes in the upper burn patients versus the normal population group. Circos plot (C) shows the top 100 differentially expressed genes expression patterns and the distribution of the chromosomal location where they are located, with the outer circle representing the chromosome and the location of the gene in the chromosome, and the heatmap in the inner circle representing the expression of the top 100 differentially expressed genes (DEGs) in the burn dataset GSE8056. The top 5 upregulated differentially expressed genes (red) and top 5 downregulated differentially expressed genes (blue) according to |log2FC| values are connected in red and blue in the center of the circos plot, respectively.
GO Enrichment Analysis and KEGG Signaling Pathway Analysis of DEGs in GSE8056
To further explore the molecular mechanism involved in the burn injury skin tissues, we performed GO enrichment and pathway enrichment analysis based on the differential gene set previously obtained from the GSE8056 database and found that GO enrichment results were significantly enriched in BPs such as immunity, epidermal development, skin development, CCs such as collagen extracellular matrix (ECM), and MFs such as signal transduction receptor activity (Figure 3A). KEGG pathway analyses of DEGs were significantly enriched for cytokine-cytokine receptor interaction, chemokine signaling pathway, ECM-receptor interaction, glutathione metabolism, and osteoclast differentiation pathways (Figure 3B).
[image: Figure 3]FIGURE 3 | GO and KEGG pathway analyses of DEGs identified in the GSE8056 dataset. (A) The histogram represents the GO pathway analysis of DEGs. The green bar represents BP (Biological process), blue represents CC (Cellular Component), and orange represents MF (Molecular Function). (B) Bubble diagram of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differential genes.
WGCNA and Identification of Hub Genes
The sample clustering dendrogram of GSE19743 (Figure 4A) showed no obvious discrepancy between the samples incorporated into the WGCNA. We selected 8 as the optimal soft threshold power based on the scale-free topology model and the mean connectivity (Figure 4B). The gene cluster dendrogram is shown in Figure 4C, where each leaf and branch on the tree represents a gene and co-expression module, respectively. The heat map (Figure 4D) illustrates the correlation between different modules and burn traits. We obtained 5 modules except for the gray module, in which the yellow consensus module was the most relevant module with burn traits (correlation value = 0.89; significance level p < 0.05). Furthermore, 30 hub genes were selected in yellow co-expression modules with gene significance >0.8 and module membership >0.8. We constructed a scatter plot of the characteristic hub genes in the yellow module (Figure 4E). We then visualized the most significant module in the PPI network using the Cytoscape software (Figure 4F).
[image: Figure 4]FIGURE 4 | Weighted gene co-expression network analysis (WGCNA) of burn-related key modules with PPI network analysis of key modules. (A) Sample clustering dendrogram of GSE19743 to detect outliers. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for selecting various soft-thresholding powers (β). (C) Clustering dendrogram for genes in burn traits; each color below represents one co-expression gene module. (D) Heatmap depicting correlations between module and burn traits. (E) Scatter plot of the key module. Each point in the scatter plot represents one gene. (F) Hub genes in yellow module revealed by PPI using the cytoscape software.
GO Enrichment and KEGG Signaling Pathway Analyses of Differentially Expressed Genes in Different Modules
We performed GO and KEGG pathway enrichment analyses for each module separately to identify the BPs, CCs, and MFs affected by each module in the burn injury process. We used the statistical method of hypergeometric test and selected p-values < 0.05 with corresponding Q-values < 0.05 as the significantly enriched pathways and MFs and found that the blue module was mainly correlated with mitotic nuclear division and chromosome segregation, and affects MFs such as microtubules and microfilaments of cells. In the brown module, the genes primarily affected a series of pathways and MFs at the level of signal regulation, such as protein kinase B signaling and negative regulation of response to external stimuli. The main function of the green module is to affect immune-related BPs, such as neutrophil degranulation and phagocytosis. The most significant BPs for the turquoise module are epidermal development and skin development. Finally, the yellow module plays an important role in the immune response of the body, emergency response to inflammation, and epidermal development (Figures 5, 6).
[image: Figure 5]FIGURE 5 | The GO enrichment results of different modules in WGCNA are shown in the histogram, with different colors representing different categories of genes. Green represents BP, blue represents CC, and orange represents MF (BP: Biological process, CC: Cellular component, MF: Molecular function). (A) GO enrichment analysis results of the blue module. (B) GO enrichment analysis results of the brown module. (C) GO enrichment analysis results of the green module. (D) GO enrichment analysis results of the turquoise module. (E) GO enrichment analysis results of the yellow module.
[image: Figure 6]FIGURE 6 | Histogram of KEGG enrichment results of the modules with the count value and significant p-value. (A) Results of KEGG enrichment analysis for the blue module. (B) Results of KEGG enrichment analysis for the brown module. (C) Results of KEGG enrichment analysis for the green module. (D) Results of KEGG enrichment analysis for the turquoise module. (E) Results of KEGG enrichment analysis for the yellow module.
We performed KEGG pathway analyses for each module separately to investigate the KEGG pathways affected by each module. We used the statistical method of hypergeometric test to select pathways with P- and Q-values <0.05, as significantly enriched pathways, and we found that the blue module predominantly affected pathways related to cell cycle and cell division. In the brown module, genes mainly affected a series of signaling pathways involved in the metabolism of multiple compounds. The green module mainly functions as a biological pathway that affects cell differentiation and phagocytosis. The turquoise module mainly functions in BPs affecting cell junctions and ECM-receptor interactions. Finally, the yellow module plays an important role in the complement and coagulation cascades of the organism, Staphylococcus aureus infection response, and cytokine and cytokine receptor interactions. Meanwhile, we performed GO and KEGG analyses on hub genes in the red module, which are shown in Supplementary Figure S1.
ROC Analysis of the Selected Five Hub Genes
Next, we selected the five most critical burn-related hub genes, ANXA3, MCEMP1, MMP9, S100A12, and TCN1, according to the principle that the expression differences in hub genes were significant and co-occurred in the PPI network and in the enrichment results. Based on the expression data of these genes in GSE37069 and GSE13902 separately, the ROC curve was plotted to assess the diagnostic value of the genes for burn injury (Figure 7). Figures 7A–E depicts the results of ROC validation analysis of the five hub genes ANXA3 (AUC = 96.05%), MCEMP1 (AUC = 95.56%), MMP9 (AUC = 96.63%), S100A12 (AUC = 97.06%), and TCN1 (AUC = 93.11%) in the GSE37069 validation dataset.
[image: Figure 7]FIGURE 7 | The ROC curve of five hub genes in GSE37069 and GSE139028. (A–E) The ROC curve of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 in GSE37069. The x-axis shows specificity, and the y-axis shows sensitivity. ROC, receiver operating characteristic; AUC, area under the ROC curve.
Validation of Expression Levels of 5 Hub Genes in Four Burn-Related Databases
ANXA3, MCEMP1, MMP9, S100A12, and TCN1 were identified as the key hub genes for burn status and were selected for subsequent analysis. We further visualized the expression of these genes in the GSE123568 dataset and found that the expression levels of these genes were significantly higher in the burn group than in the normal group (p < 0.05, Figure 8A). The expression patterns were also verified using GSE19743 (Figure 8B), GSE37069 (Figure 8C), and GSE139028 (Figure 8D) datasets, and the results revealed that the expression levels of the five hub genes were constantly increased in the burn tissues (p < 0.05).
[image: Figure 8]FIGURE 8 | Validation of expression levels of 5 hub genes in 4 burn-related GEO datasets. (A) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients in GSE8056. (B) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients in GSE19743. (C) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients in GSE37069. (D) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients from GSE139028. The red boxplot indicates the burn patient group, and the blue boxplot indicates the normal sample group. A t-test was performed to compare the means of the two groups (* represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents not significant).
Preliminary IHC Validation
IHC staining was performed. These five genes showed significantly high expression in the epidermal tissues of burn patients (Figure 9), demonstrating that their significant changes in the early stages of burn injury may mediate the drastic changes in the immune microenvironment induced by burn injury and induce inflammatory responses.
[image: Figure 9]FIGURE 9 | Expression of the hub genes in burn injury skin tissues. (A) Representative images of immunohistochemical expression of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 in deep second-degree burn skin tissues from second-degree burn patients (N = 13). (B) The histogram demonstrated that ANXA3, MCEMP1, S100A12, TCN1, and MMP9 showed positive expression in second-degree burn samples.
Construction of Drug Activity, Transcription Factors, and miRNA Regulatory Network of the Five Hub Genes
We constructed the regulatory relationships of the target gene-drug interaction network using three drug-target databases, Drugbank, DGIdb, and PubChem. For target gene transcription factor analysis, we extracted and constructed a reciprocal relationship network between target genes and transcription factors through the ChEA3 website. Finally, we used three major miRNA and target gene databases, TarBase (V8.0), Starbase (V2.0), and miRTarbase, to extract the miRNA-target gene relationship based on the reciprocal relationship between miRNA and genes in the structure of miRNA-mRNA pairing relationships. The regulatory network of the above regulatory pairs was mapped and constructed using Cytoscape software (Figures 10A–C).
[image: Figure 10]FIGURE 10 | Construction of interaction network maps with transcription factors (A), miRNAs (B), and drug activity (C) for these five hub genes ANXA3, MCEMP1, MMP9, S100A12, and TCN1. (A) Interaction network diagram of the five hub genes and transcription factors, where red nodes represent key genes and blue nodes represent the transcription factors corresponding to the five hub genes. (B) Interaction network diagram of key genes and miRNAs, where red nodes represent key genes and yellow nodes represent miRNAs corresponding to the five hub genes. (C) Interaction network diagram of key genes and drug activities, where red nodes represent key genes and yellow nodes represent the drugs corresponding to the five hub genes.
DISCUSSION
Burn injury is the leading cause of death around the world; however, the pathophysiology of burn wound tissue requires further investigation. Therefore, we aimed to explore the potential pathogenesis of burn-induced molecular changes in the peripheral blood of patients. We found that burn wound tissue-related genes with significant expression differences were mainly enriched in BPs such as immunity, epidermal development, and skin development, CCs such as collagen ECM, and MFs such as signal transduction receptor activity. KEGG pathway analysis showed significant enrichment of cytokine-cytokine receptor interaction, chemokine signaling pathway, ECM-receptor interaction, glutathione metabolism, osteoclast differentiation, and other pathways. To identify the modules that most strongly associated with genetic changes in burn wounds in blood samples from burned patients, we divided all genes into six separate modules through WGCNA algorithm analysis. The yellow gene module most closely associated with tissue damage in the burn process was also significantly positively correlated in the immune response of the organism, the emergency response to inflammation, and epidermis development. KEGG analysis showed an important role mainly in the complement and coagulation cascade of the organism, S. aureus infection, cytokine-cytokine receptor interactions, and other pathways.
Next, based on the principles of the 1. differential expression of hub genes, 2. co-occurrence in the PPI network, and 3. enrichment results, the five hub genes in the key yellow module were identified as the key genes for burn injury status, namely, ANXA3, MCEMP1, MMP9, S100A12, and TCN1. To verify the results of bioinformatics analysis, we performed ROC curve analysis to evaluate the diagnostic value of the five genes. The results demonstrated that these genes might serve as diagnostic markers for burn injury, because the AUC of these five genes was >0.9 in the GSE37069 validation dataset.
ANXA3, a member of the calcium-dependent phospholipid-binding protein family, has been shown to be involved in cellular growth and signal transduction pathways (Wang et al., 2019; Guo et al., 2021; Yang et al., 2021). Nevertheless, no previous study has documented the role of ANXA3 in burn injury. MCEMP1, a single-pass transmembrane protein, exerts profound influence in regulating mast cell differentiation and immune responses (Li et al., 2005). It was determined, for the first time, that the high expression of MCEMP1 in peripheral blood might serve as a prognostic biomarker of stroke (Raman et al., 2016) and that it plays a role in the pathogenesis of inflammation (Li et al., 2005) and sepsis (Xie et al., 2020). These previous studies demonstrated that MCEMP1 is a key regulator of several inflammation-related diseases. However, whether MCEMP1 is associated with burn injury remains unclear. MMP9 is involved in the degradation of the ECM in BPs, such as reproduction (Wang et al., 2021) and tissue remodeling (Nandi et al., 2020). Burn injuries can trigger tissue changes that can explain the variation in the levels of different biochemical markers that can be recorded both locally and systemically. Certain events observed in burn wounds, such as vascular hyperpermeability, have been associated with MMP released after trauma (Nagy et al., 2015). Furthermore, numerous studies have reported that the chronic inflammatory-induced secretion of MMP9 accelerates inner tissue remodeling after thermal burn injury (Stanciu et al., 2021), which is strongly correlated with the worsening result. It has been reported that S100A12, an epidermal pro-inflammatory cytokine, induced the formation of a hypertrophic scar (Zhao et al., 2017). Therefore, we hypothesized that S100A12 may be involved in the occurrence of burns because it is involved in the formation of skin scarring after burns. TCN1, a member of the vitamin B12-binding protein family, is responsible for the formation of secondary granules in neutrophils and facilitates the transport of cobalamin into cells. It was demonstrated by microarray and experimental methods that TCN1 and S100A12 may affect the disease process of acne by participating in the innate immune and cellular differentiation processes of hair follicles and epidermal keratin-forming cells (Zouboulis et al., 2020). These studies suggest that TCN1 and S100A12 may participate in burn injury. Notably, the expression of these five hub genes was verified in the GSE37069 and GSE139028 datasets, and this expression was significantly increased in the burn group in all four GEO datasets. In addition to developing and validating these five key pivotal genes associated with burn diagnosis, we have also predicted target drugs, transcription factors, and regulatory microRNAs associated with these five burn diagnostic markers, and these predicted target drugs and molecules provide new targets for burn treatment. We should conduct future molecular experiments to identify their role in burn treatment.
In conclusion, using multiple data set analysis, we identified genetic changes in epidermal tissue after burns and the biological functions of this process, and screened the module most relevant to skin damage based on WGCNA analysis in the blood sample dataset of burn patients and analyzed its MFs. Then, we further screened five key genes in the module within that module and then performed expression and ROC analysis to validate their diagnostic efficacy. Finally, preliminary IHC validation of the five hub genes was performed in the epidermal tissues of burn patients.
CONCLUSION
There were several highlights to the current study. First, few studies have focused on identifying diagnostic biomarkers in peripheral blood for burn skin injuries. Skin tissue expression profiles of healthy individuals and burn patients help us to gain a comprehensive understanding of their pathological processes and to identify diagnostic biomarkers for burn injuries. Second, WGCNA has a particular advantage in processing gene expression datasets because it can estimate the connectivity between modules and clinical features. However, this study had some limitations. Here, we validated the expression level and diagnostic efficacy of five potential diagnostic biomarkers identified on a dataset of blood samples from real burn patients and on skin tissue. However, the number of clinical cases we validated was small. The specific roles of these biomarkers in burns, their specific associations with clinical features, such as burn extent and scar healing, and their diagnostic roles require further investigation and validation in a larger number of clinical patients.
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The realization of many protein functions is inseparable from the interaction with ligands; in particular, the combination of protein and metal ion ligands performs an important biological function. Currently, it is a challenging work to identify the metal ion ligand-binding residues accurately by computational approaches. In this study, we proposed an improved method to predict the binding residues of 10 metal ion ligands (Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+). Based on the basic feature parameters of amino acids, and physicochemical and predicted structural information, we added another two features of amino acid correlation information and binding residue propensity factors. With the optimized parameters, we used the GBM algorithm to predict metal ion ligand-binding residues. In the obtained results, the Sn and MCC values were over 10.17% and 0.297, respectively. Besides, the Sn and MCC values of transition metals were higher than 34.46% and 0.564, respectively. In order to test the validity of our model, another method (Random Forest) was also used in comparison. The better results of this work indicated that the proposed method would be a valuable tool to predict metal ion ligand-binding residues.
Keywords: metal ion ligand, binding residues, correlation features, propensity factors, GBM algorithm
1 INTRODUCTION
The realization of protein functions requires interaction with ligands; in particular, metalloproteins formed by the combination of proteins and metal ion ligands play a vital role in biological functions (Barondeau and Getzoff, 2004). For example, the binding of Cu2+ ligand can promote in situ oxidation modification reaction (Cecconi et al., 2002), and the oxygen-promoting compound formed by the combination of Mn2+ ligands and proteins can be used as a catalyst in the process of photosynthesis (Reed and Poyner, 2000). In fact, the mechanism of protein–metal ion ligand binding is that some special protein functions need the precise binding of proteins and ligand-binding residues, while the abnormal binding would lead to many related diseases. For example, abnormal binding residues of Cu2+ ligand can lead to the diseases of Wilson and Menkes (Yuan et al., 1995; Petris et al., 1996). In addition, metal ions have a direct influence on the formation of Alzheimer’s and Parkinson’s diseases (Barnham and Bush, 2008). Therefore, the study of protein–metal ion ligand-binding residues is helpful to understand the mechanism of protein functions, the treatment of diseases, and the design of molecular drugs.
Many reported literatures showed that the appropriate feature parameters were the basis of recognizing metal ion ligand-binding residues (Horst and Samudrala, 2010; Lu et al., 2012; Yang et al., 2013a; Jiang et al., 2016; Cao et al., 2017; Wang et al., 2020). For example, in 2010, Horst and Samudrala (2010) extracted amino acids, local conservatism, and other features of Ca2+ ligand in prediction, and Matthew’s correlation coefficient (MCC) was up to 0.6. In 2012, Lu et al. (2012) adopted a method of fragment conversion, and the prediction accuracy (ACC) of 6 ligands reached 94.6%. In 2016, Jiang et al. (2016) used the information of increment of diversity, matrix score, and autocross covariance as prediction parameters, the ACC values of the Ca2+ ligand exceeded 75.0%, and the MCC value exceeded 0.50. In 2017, Cao et al. (2017) extracted the component and site-conserved information of amino acids, physicochemical features, and structural information, the ACC values were higher than 74.8%, and the MCC values were higher than 0.5.
In terms of algorithms, many machine learning algorithms were used in the recognition of metal ion ligand-binding residues (Hu et al., 2016a; Hu et al., 2016b; Liu et al., 2019; Wang et al., 2019; Liu et al., 2020). For example, in 2016, Hu et al. (2016a) used SVM algorithm and the 9 metal ion ligands; Ionseq obtained good prediction results. In 2019, Wang et al. (2019) applied the SMO algorithm to predict 10 metal ion ligand-binding residues and obtained better prediction results. In 2019, Liu et al. (2019) applied the K-nearest neighbor classifier, and the ACC values of 6 metal ion ligands were higher than 80.0%. In 2020, Liu et al. (2020) used Random Forest (RF) algorithm in predicting the 10 kinds of ion binding residues, and the MCC values were higher than 0.55.
In the prediction works of metal ion ligands, many researchers found several important feature parameters such as amino acid, secondary structure, relative solvent accessibility, hydrophilic–hydrophobic, and polarization charge at the fragment level. In this study, through the statistical analysis for the correlation of amino acids, we found that there exists a high probability of the occurrence of the adjacent, secondary neighbor, and thirdly neighbor of the binding residues. Therefore, we took the amino acid correlation information of amino acids into consideration when extracting feature parameters. In addition, because the binding of metal ion ligands to specific amino acids residues has a certain tendency, we counted the difference between non-binding residues and binding residues bound by different metal ions. Thus, we further took the binding residue propensity factors as feature parameters. In the datasets of this work, the serious imbalance of the positive and negative sets would result in a high false positive in the prediction results. In this study, we chose the GBM (Gradient Boostling) algorithm, which has a comparative advantage in the above problem. The algorithm can optimize the model by continuously reducing the sample errors and improve the prediction overall accuracy by optimizing the algorithm parameters in the prediction.
2 MATERIALS AND METHODS
2.1 Dataset
In this paper, 10 kinds of metal ion ligand-binding residues were studied. In order to ensure the authenticity and reliability of the experimental data source, the datasets constructed by our group (Cao et al., 2017) were from the semi-manual Biolip database (Yang et al., 2013b), which was measured by experiments with high accuracy. The 10 metal ions in the datasets contain Zn2+, Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+. In the datasets, the arbitrary protein sequence was longer than 50 amino acids. In addition, the resolution and sequence identity thresholds were lower than 3 Å and 30%, respectively.
Since the surrounding residues also have an influence on the binding of metal ion ligands, we considered the binding residues and surrounding residues in the datasets. In the work, we used the sliding window method to intercept fragments from the beginning of the protein chains. To ensure that each amino acid can appear in the center of a fragment, we added (L−1)/2 pseudo-amino acids to both ends of a protein chain, in which the pseudo-amino acid was represented by X. If the central position of one fragment was a binding residue, then we defined the fragment as a positive sample; otherwise, it was a negative one. The datasets are shown in Table 1. According to the physicochemical properties of ions, we also divided the 10 metal ion ligands into 3 categories: transition-metal ions (Zn2+, Cu2+, Fe2+, Fe3+, Co2+, and Mn2+), alkaline-earth metal ions (Ca2+ and Mg2+), and alkali-metal ions (Na+ and K+).
TABLE 1 | The benchmark datasets of ten metal ion ligands.
[image: Table 1]2.2 Selection and Extraction of Feature Parameters
2.2.1 Basic Features Parameters
On the basis of the primary sequence of the protein, we selected the amino acids, and physicochemical and predicted structural information as basic feature parameters. These parameters have been widely used in previous works (Hu et al., 2016a; Cao et al., 2017; Liu et al., 2019; Wang et al., 2019; Liu et al., 2020; Wang et al., 2020). The physicochemical features contain hydrophilic–hydrophobic and polarization charge information. According to the hydrophilic–hydrophobic of amino acids (Pánek et al., 2005), we divided the 20 amino acids into 6 categories. Depending on the charged condition of amino acids after the hydrolysis, we divided the 20 amino acids into 3 categories (Taylor, 1986). The detailed classification is presented in Figure 1.
[image: Figure 1]FIGURE 1 | Classification of physicochemical features of amino acids. Note: (A) is 6 categories of the hydrophilic–hydrophobic; (B) is 3 categories of the polarization charge.
By using the ANGLOR software (Wu and Zhang, 2008), we obtained the predicted structural features including secondary structure and relative solvent accessibility from the primary sequence of protein. Here, we divided the secondary structure into three categories: α-helix, β-sheet, and coil. In addition, we divided the relative solvent accessibility into two categories: exposed and buried. If the Boolean values of amino acid were larger than 0.25, then the amino acids were defined as “exposed" ones; otherwise, they were defined as “buried” ones.
2.2.2 Amino Acid Correlation Features
We took a detailed statistical analysis for the correlation features of amino acids. According to the analysis results, we calculated the correlation information of amino acids; the detailed steps were as follows:
2.2.2.1 Sequence-Based Correlation Statistical Analysis
Due to protein folding in the 3D structure, one spatial binding site of a metal ion ligand usually refers to several surrounding binding residues. In this way, although the spatial distance of these surrounding residues is very close, the sequence distance may be very long. For example, on the BS01 binding site of the protein (3I11A), the binding residues bound with Co2+ ligands were located at 86, 88, 90, and 149 positions in the same sequence, respectively. These binding residues may have long-range correlation (Chen et al., 2018; Zhang et al., 2020). Then, for every protein chain, we scanned from the first binding residue and counted the distance between the two binding residues sequentially. Taking Ca2+ and Co2+ ligands as examples, the binding residues are shown in Figure 2.
[image: Figure 2]FIGURE 2 | Correlation probability of Ca2+and Co2+ ligand-binding residues. Note: the abscissa d is the correlation of the binding residues (e.g., d = 0 is the adjacent, d = 1 is the secondary neighbor, d = 2 is the thirdly neighbor). The ordinate p is the probability of correlation between the binding residues.
In Figure 2, the correlations of the adjacent, secondary neighbor and thirdly neighbor between binding residues accounted for a large proportion. Since the occurrence probability of d > 6 is not high, we showed the probability of d < 6 for the 10 metal ions in Table 2.
TABLE 2 | The correlation probability of 10 metal ion ligand-binding residues.
[image: Table 2]From Table 2, we found that the probabilities of the adjacent, secondary neighbor, and thirdly neighbor correlations for the ten ions were different. For a metal ion ligand, we selected the correlation information with probability >10% to extract parameters. In this way, for Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+, we extracted the adjacent and secondary neighbor correlation information. For Zn2+ and Fe3+, we extracted the secondary neighbor and thirdly neighbor correlation information. For Fe2+ and Cu2+, we extracted the second-neighbor correlation information.
2.2.2.2 Further Screening of Related Features
The probability of the occurrence of 400 pairs of amino acids in the positive and negative sets of each ion ligand was counted separately. We used vector B to represent 20 kinds of amino acids and then made a 20*20 matrix J for the 400 pairs of amino acids. The matrix J of the pairs of amino acid was defined as follows:
[image: image]
Then, we calculated the D-values of the probability of 400 pairs of amino acids between the negative sets and the positive sets. For example, the D-value differences of correlation information of Cu2+ secondary neighbor and Fe3+ thirdly neighbor are given in Figures 3, 4, respectively.
[image: Figure 3]FIGURE 3 | The probability difference of the secondary neighbor correlation of Cu2+ positive and negative fragments. Note: the abscissa 1–400 is AA, AC, AD, …, AY, CA, CC, CD, …, CY, …, YA, YC, YD, …, YY. The ordinate is the D-values of the positive sets minus the negative sets.
[image: Figure 4]FIGURE 4 | The probability difference of the thirdly neighbor correlation of Fe3+ positive and negative fragments. Note: the abscissa 1–400 is AA, AC, AD, …, AY, CA, CC, CD, …, CY, …, YA, YC, YD, …, YY. The ordinate is the D-values of the positive sets minus the negative sets.
In Figures 3, 4, the abscissa was the 400 amino acid pairs from matrix J, the corresponding vector (AA, AC, AD, …, AY, CA, CC, CD, …, CY, …, YA, YC, YD, …, YY). The ordinate was the D-values between the positive sets and the negative sets. In Figure 4, If the bars were above the x-axis, it represents that the occurrence probability of amino acids pairs of the positive sets was greater. Otherwise, the probability of the negative sets was greater. In Figure 3, the abscissa values of Cu2+ secondary neighbor correlation were 7, 127, 187, and 327; the corresponding AH, HH, LH, and TH pairs of amino acids had a great difference in probability between positive and negative sets. They tended to appear in positive sets; in particular, the HH had a larger difference in probability. In Figure 4, the abscissa values of the Fe3+ thirdly neighbor correlation were 67, 126, 147, 187, 327, and 347 corresponding to EH, HG, IH, LH, TH, and VH. They had great probability differences between the positive and negative sets, and preferred to appear in positive sets. Among them, EH, LH, and TH were more obvious. The probability difference of EK, LK, LL, and RA between the positive and negative sets was greater, and these pairs preferred to appear in negative sets.
2.2.2.3 Feature Parameters of Amino Acid Correlation
Due to the fact that the 400 pairs of amino acids appear differently between positive and negative sets, the ones with little difference would cause information redundancy of prediction parameters. Therefore, we sorted the absolute values of the probability difference in descending order obtained from the top 100 features. Then, we divided them into 10 groups in order. Within each group, there were 10 features. Finally, we took the amino acid correlation features as feature parameters.
2.2.3 Binding Residues Propensity Factors
Previous studies on predicting the ligand-binding residues were usually based on the binding residues and their surrounding residues. However, the features of the binding residues alone were not taken into consideration. In fact, the ligand-specific binding also has a selective preference for different amino acid residues. Therefore, we counted the amino acid residues that the 10 metal ion ligands preferred to bind. For example, Zn2+ and Fe2+ are shown in Figure 5.
[image: Figure 5]FIGURE 5 | The probability of 20 amino acids in Zn2+ and Fe2+ bounding residues. Note: The abscissa values represents 20 amino acids, the letters of an alphabet in ordinate represents the probability. P represents the binding residue, and N represents the non-binding residue.
In Figure 5, among the 20 amino acids, the four amino acids of C, D, E, and H were more likely to be the binding residues. However, for Zn2+ and Fe2+ ligands, the four amino acids were used differently. In comparison, C and H were more easily bound by Zn2+ ligands, while H was more easily bound by Fe2+ ligands. Therefore, we extracted propensity factor of binding residues as feature parameters. The formula of the propensity factor (Chou and Fasman, 1974) was as follows:
[image: image]
The statistical samples were binding residues and non-binding residues, [image: image], [image: image]; [image: image] is 20 amino acids (i = 1,2, … 20); [image: image] is binding residues or non-binding residues (j = 1,2); [image: image] represents the number of amino acid [image: image] in binding residues or non-binding residues; [image: image] represents the number of amino acid [image: image] in the statistical samples; [image: image] represents the number of binding or non-binding residues; [image: image] represents the number of residues in the statistical samples. If [image: image] is larger than 1, it means that type amino acid [image: image] is more inclined to be amino acid [image: image]. Taking Mn2+ as an example, the values of propensity factor of amino acids D, E, H, and N were larger than 1, indicating that the 4 amino acids were more likely to become binding residues (Table 3).
TABLE 3 | The binding and non-binding residue amino acid propensity factors of Mn2+.
[image: Table 3]2.2.4 Extraction of Feature Parameters
Besides the propensity factors for feature parameters, we also used components, matrix scoring, and information entropy to extract parameters. First, the component information of amino acids, correlation features, secondary structure, and relative solvent accessibility were extracted. Then, the position weight matrix was used to extract the conservative information of the site as a predictive parameter (Hu et al., 2016a; Liu et al., 2019; Wang et al., 2019; Liu et al., 2020; Wang et al., 2020). In this paper, based on the above matrix, the 2L-dimensional site conservative information of amino acids, secondary structure, and relative solvent accessibility were obtained. The position weight matrix formula was as follows:
[image: image]
[image: image]
Where [image: image] denotes the site, [image: image] represents 20 amino acids and pseudo-amino acid X, [image: image] represents the probability of occurrence of amino acid sites at the ith position, and [image: image] represents the background probability. [image: image] represents the number of amino acids j at the ith position, [image: image] represents the number of all amino acids at the ith position, and q represents the number of categories q = 21. Two scoring matrices can be obtained by using positive and negative training sets, and a 2L (L is the window length)-dimensional feature vector can be obtained for arbitrary fragment. Similarly, for the secondary structure (q = 4) and relative solvent accessibility (q = 3), 2L-dimensional site conservation features can also be obtained.
As the number of amino acids included in the classification of the hydrophilic–hydrophobic and polarized charges of amino acids was not uniform, information entropy (Liu et al., 2020; Wang et al., 2020) was used to extract the hydrophilic–hydrophobic and polarized charges. The formulas for information entropy were as follows:
[image: image]
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Where j = 1, 2, … q, q represents the number of categories, [image: image], nj represents the frequency of occurrence of hydrophilic–hydrophobic or polarized charges in the classification, and pj represents the probability of occurrence of a certain category, hydrophilic–hydrophobic (q = 7) and polarized charge (q = 4). For arbitrary fragment, one-dimensional hydrophilic–hydrophobic information entropy and one-dimensional polarization charge information entropy can be obtained.
2.3 Gradient Boosting Machine Algorithm
As an improved Boosting algorithm, GBM algorithm was proposed by Friedman (2001). It achieved excellent results in many data mining competitions and was widely used in many fields (Feng and Li, 2017; Rawi et al., 2017; Hu et al., 2020). The advantage of the GBM is that it inherits the advantages of a single decision tree and discards its shortcomings. It can fit complex nonlinear relationships with fast calculation speed, strong robustness, and high accuracy. The deviation of the model will not have a serious impact on the algorithm. The GBM improves the model by adding a new classifier to continuously decrease the overall residual; after the iteration, the classifier is as follows:
[image: image]
Where m is the number of iterations, [image: image] is the weight value (the distance the loss function drops in its gradient direction), and [image: image] is the fitting function of the sample residuals [image: image] in the iteration process.
This article used the “gbm” package in R software version 3.6.3. Here, in the algorithm, we mainly optimized the four adjustable parameters (i.e., n.trees, interaction.depth, shrinkage, and n.minobsinnode) (Rawi et al., 2017; Hu et al., 2020).
2.4 The Validation Methods and Evaluation Metrics
The 5-fold cross-validation was generally used to identify binding residues (Hu et al., 2016a; Hu et al., 2016b; Liu et al., 2019; Wang et al., 2019; Liu et al., 2020; Wang et al., 2020). The following 4 evaluation indicators were used to evaluate the recognition ability of the prediction model (Jiao and Du, 2016; Chen et al., 2019): sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthew’s correlation coefficient (MCC). The formulas were defined as follows:
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In the above formulas, TP is the number of correctly predicted binding residues, FN is the number of incorrectly predicted binding residues, TN is the number of correctly predicted non-binding residues, and FP is the number of incorrectly predicted non-binding residues.
3 CALCULATION RESULTS AND DISCUSSION
3.1 The Prediction Framework
The prediction parameters from Sections 2.2.3, 2.2.4 are summarized and shown in Table 4. The work flow of identifying the ion ligand binding sites is shown in Figure 6.
TABLE 4 | A summary of prediction parameters.
[image: Table 4][image: Figure 6]FIGURE 6 | The work flow of identifying the ion ligand binding sites. Note: (1), (2), (3), …, (7) represent the different types of features.
3.2 Results and Discussion
In prediction, we used the full parameters of Table 5 and input the combined features into the GBM algorithm. Then, we calculated the results of 7 window lengths (i.e., 5, 7, 9, 11, 13, 15, and 17) on a 5-fold cross-validation test. In the process, we defined the corresponding window lengths as the optimal ones (L) with higher Sn and MCC values. The predicted results of GBM(1) with the optimal window are shown in Table 5.
TABLE 5 | Comparison of 5-fold cross-validation results.
[image: Table 5]In the results of GBM(1) (Table 5), the predicted results of transition-metal ion ligands were better. The Sn and MCC values of Zn2+, Cu2+, and Fe2+ ligands were higher than 29.82% and 0.473, respectively. The Sn and MCC values of Fe3+, Co2+, and Mn2+ ligands were higher than 9.6% and 0.249, respectively. The Sn and MCC values of alkali–metal ion ligands were higher than 7.28% and 0.253, respectively.
In order to test the validity of the amino acid correlation information and binding residue propensity factor, we removed correlation features or propensity factors from the full feature sets. Taking Cu2+ and Na+ ligands as examples, the results are shown in Table 6.
TABLE 6 | The results of 5-fold cross-validation.
[image: Table 6]In comparison with (a), for Cu2+ ligand: the Sn and MCC values of (b) were higher, and Sn and MCC values of (c) increased by 10.1% and 0.072, respectively. When parameters of correlation feature and propensity factor were added, the Sn and MCC value were significantly increased by 11.54% and 0.109, respectively. For Na+ ligand: the Sn and MCC values of (b) were significantly improved by 5.32% and 0.112, respectively. The Sn and MCC values of (c) were increased. When correlation feature and propensity factor were added, the Sn and MCC values increased by 6.54% and 0.138, respectively.
On the addition of feature parameters, different metal ion ligands have different sensitivities. For instance, the Cu2+ ligand was more sensitive to the propensity factor, while the Na+ ligand was more sensitive to the correlation feature. Above all, the results of adding two parameters were better than those of adding one alone.
In order to further improve the prediction accuracy, we optimized the four parameters (e.g., n.trees, interaction.depth, shrinkage, and n.minobsinnode) in the GBM algorithm. According to the reported literature (Rawi et al., 2017; Hu et al., 2020), the parameter range was set as follows: n.trees in n{100,150,200,250,300,350,400,450,500}, interaction.depth in d{3,5,7,9}, shrinkage in r{0.01,0.1}, and n.minobsinnode in m{10,20,30,40,50}. The AUROC values were used as the evaluation indicator to obtain the optimal algorithm parameters by the grid search method. Taking Cu2+ and K+ ligands as examples, the optimal parameters of Cu2+ ligand were (5,250,0.1,40), and the AUROC value was 0.985. The optimal parameters of K+ ligand were (9,200,0.1,10), and the AUROC value was 0.963. The ROC curves corresponding to the optimal parameters of Cu2+ and K+ ligands are shown in Figure 7.
[image: Figure 7]FIGURE 7 | The ROC curve of optimal algorithm parameters for Cu2+and K+ ligands. Note: (A) is Cu2+ ligand; (B) is K+ ligand.
As can be seen in Figure 6, the AUROC values of Cu2+ and K+ ligands both exceed 0.96. For the convenience of comparison, the results after optimizing the algorithm parameters were also added in Table 6.
From the results of GBM(2) in Table 6, it can be seen that the values of Sn and MCC of transition metal ion ligands were higher than 34.46% and 0.564, respectively. The values of Sn and MCC in the results of alkaline Earth metal ion ligands were higher than 10.17% and 0.297, respectively. The values of Sn and MCC in the results of alkali metal ion ligands were higher than 16.97% and 0.392, respectively. In comparison with the results of GBM(1), the results of GBM(2) were significantly improved, in which the Sn and MCC values of the nine ligands (i.e., Cu2+, Fe2+, Fe3+, Co2+, Mn2+, Ca2+, Mg2+, Na+, and K+) increased by more than 6.96% and 0.141, respectively.
To verify the stability of those parameters in prediction, the Random Forest (RF) algorithm was also used on the same parameters. The number of decision trees in the RF was set as 500 (Liaw and Wiener, 2002; Liu et al., 2020). The results of the RF were added in Table 6. Except for the alkali metal ion ligands, the Sn and MCC values of the other ion ligands were higher than 6.94% and 0.214. The predicted results of transition metal ion ligands were better. The Sn and MCC values of Zn2+, Cu2+, and Fe3+ ligands were higher than 27.25% and 0.420, respectively. The Sn and MCC values of Fe2+, Co2+, and Mn2+ ligands were higher than 12.27% and 0.252, respectively. Taken together, with the same parameters by using RF, we also obtained good predicted results. Except for Zn2+, the results of GBM(2) were better than those of RF algorithm. For Cu2+, Fe2+, Co2+, Na+, and K+ ligands, the Sn and MCC values were at least 26.18% and 0.259 higher in the GBM algorithm. For Fe3+ and Mn2+ ligands, the Sn and MCC values were at least 17.5% and 0.214 higher, respectively.
In the field of predicting metal ion ligand-binding residues, Hu et al. (2016a) proposed several predicted methods and obtained well-predicted results. At present, the Ionseq is a method with better predicted results on the unbalanced datasets. Thus, we took a comparison with the method of Ionseq in Table 6. It can be seen that the Sn and MCC values of Cu2+, Fe2+, Mn2+, Mg2+, and K+ ligands were better than those of Ionseq. Due to the fact that the number of binding residues was far less than the number of non-binding residues, it would lead to a high false positive. In order to show the improvement, we took a random protein chain (2 × 11A) bound by Cu2+ ligand as an example. Based on the above optimal model, we made a prediction for this protein chain. The predicted results obtained are shown in Figure 8.
[image: Figure 8]FIGURE 8 | The comparison of identification results. Note: The first row is the protein sequence, the second row is the experimental results, the third row is the optimal predicted results, and the fourth row is the predicted results using the basic parameters. “0” is the non-binding residue, “1” is the binding residue. The red ones indicate TP. The white ones indicate TN. The yellow ones indicate FN. The green ones indicate FP.
By comparing the second and third rows, we obtained that the prediction results of the optimal model (GBM(2)) were TP = 7, TN = 509, FP = 6, and FN = 11. By comparing the second and fourth rows, the prediction results of the prediction model with basic feature parameters were TP = 4, TN = 514, FP = 6, and FN = 9. The comparison showed that the prediction results were significantly improved after adding correlation features and propensity factors.
5 CONCLUSION
In this paper, based on the primary sequence information, the amino acid correlation features and binding residue propensity factors were added as feature parameters for the prediction of the metal ion ligand-binding residues. In comparison with previous works, our improved results proved that the features of amino acid correlation information and propensity factor information were beneficial to the identification of the metal ion ligand-binding residues. With the optimized parameters, the results of GBM were better than those of RF on the same parameters. Therefore, we believe that our proposed method was a valuable tool to identify metal ion ligand-binding residues.
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Objective: Osteoporosis is caused by the dysregulation of bone homeostasis which is synergistically mediated by osteoclasts and osteoblasts. MiR-27a-3p is a key inhibitor of bone formation. Hence, unearthing the downstream target gene of miR-27a-3p is of great significance to understand the molecular mechanism of osteoporosis.
Methods: Bioinformatics analysis was utilized to find the downstream target gene of miR-27a-3p, and dual-luciferase reporter assay was conducted to validate the interplay of miR-27a-3p and GLP1R. Besides, qRT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were employed to verify the impact of miR-27a-3p on GLP1R expression and the differentiation, autophagy, and inflammatory response of MC3T3-E1 pre-osteoblasts.
Results: Dual-luciferase assay validated that miR-27a-3p directly targeted GLP1R. Additionally, posttreatment of MC3T3-E1 cells with miR-27a-3p mimics resulted in a remarkable decrease in expression levels of GLP1R, cell differentiation marker gene, autophagy marker gene, and AMPK. These results indicated that miR-27a-3p targeted GLP1R to inhibit AMPK signal activation and pre-osteoblast differentiation and autophagy, while promoting the release of inflammatory factors.
Conclusion: The miR-27a-3p/GLP1R regulatory axis in pre-osteoblasts contributes to understanding the molecular mechanism of osteoporosis.
Keywords: MiR-27a-3p, GLP1R, osteoblast, differentiation, autophagy, inflammation
INTRODUCTION
Osteoporosis is a typical bone disease resulting from the dysregulation of bone homeostasis (Long, 2011), which is manifested by bone loss, bone resorption prevailing over bone formation, and a reduction in bone volume and density (Yu et al., 2014). Primary osteoporosis is characterized by decreases in osteopsathyrosis and bone mineral density (BMD), whose risk factors included advanced age, the lack of sex hormone, and the increase of oxidative stress (Hendrickx et al., 2015). Bone homeostasis is synergistically modulated by osteoblasts and osteoclasts (Lerner et al., 2019), while organic bone formation is mainly mediated by osteoblasts (Tu et al., 2021). Osteoblast is derived from mesenchyme progenitors and bone precursor cells with the action of a series of transcription factors (TFs), finally differentiating into osteocytes (Long, 2011). Hence, further research on the potential mechanism of autophagy and osteocyte differentiation is urgently needed for osteoporosis therapy.
MiRNAs existing in body fluids can regulate bone formation (Bellavia et al., 2019). MiR-27a-3p is 21 nucleotides in length. A previous study found that miR-27a-3p is a pivotal inhibitor of bone formation, which directly targets primary-response gene osterix and dramatically suppresses osterix expression to inhibit pre-osteoblast differentiation (Xu et al., 2020). This work performed bioinformatics analysis and found that miR-27a-3p might regulate GLP1R to inhibit bone formation. GLP1R is a G protein-coupled receptor of GLP-1 (Song et al., 2017) that activates GLP1R to regulate the insulin secretion, thus affecting osteoporosis (Hennen et al., 2016; Baggio and Drucker, 2021). In addition, liraglutide and Exendin-4 (both are GLP-1 analogue) can upregulate GLP1R expression (Iepsen et al., 2015) to accelerate pre-osteoblast proliferation and differentiation (Feng et al., 2016; Hou et al., 2020; Sun et al., 2020). The above studies exhibited that upregulating the GLP1R expression can dramatically increase bone volume and improve bone micro-architecture as well as the anti-osteoporosis ability of organisms. The interplay between miR-27a-3p and GLP1R may be a vital factor in the occurrence of osteoporosis. Hence, this work investigated the molecular mechanism of miR-27a-3p targeting GLP1R and the effect of the regulatory relationship between these two genes on osteoporosis differentiation.
Autophagy is an energy-supply process during cell differentiation (Ryter et al., 2013), which generates degradation substances to be cyclically used as the selective nutrient supply of cell metabolism (Qi et al., 2017). During osteoblast differentiation, autophagy is activated and inhibiting autophagy can suppress the differentiation ability of osteoblasts (Oliver et al., 2012). Chen et al. (Chen et al., 2017) found that activating the GLP1R expression can induce autophagy, reduce apoptosis, and accelerate the proliferation and differentiation of cells. Besides, autophagy promotes osteoblast differentiation and exerts a protective effect on osteoblasts (Li X et al., 2020). In addition, studies indicated that activating AMPK induces autophagy and facilitates cellular differentiation (Ran et al., 2020; Zhang et al., 2020), whereas inhibiting autophagy reveres the effect of AMPK on osteoblast differentiation (Li et al., 2018). Hence, we speculated that miR-27a-3p is also capable of targeting GLP1R and mediate the AMPK signaling pathway to affect osteoblast autophagy and differentiation, thus influencing bone formation.
The dysregulation of inflammation inhibits bone formation and increases bone resorption. The interaction between osteoblasts and inflammatory cells is critical for bone formation, renewal, and remodeling (Mountziaris et al., 2011). Continuous interactions between mononuclear macrophage-osteoclast lineages release cytokines, chemokines, and other factors and accelerate the repair of mesenchymal stem cell-osteoblast lineage, elimination of proinflammatory activity, and remodeling of normal tissue (Kumagai et al., 2008; Mountziaris et al., 2011; Thwaites et al., 2014). Due to the great impact of inflammation and stress on the occurrence of osteoporosis, we further investigated whether miR-27a-3p-targeting-GLP1R is implicated in inflammatory response. Further, we validated that the regulatory relationship between GLP1R and miR-27a-3p influenced osteoporosis.
Our study introduced bioinformatics analyses to find out downstream mRNAs of miR-27a-3p. Afterward, this work studied the binding between GLP1R and miR-27a-3p, as well as the influences of miR-27a-3p targeting GLP1R on osteoblast differentiation, autophagy, and the release of inflammatory factors (IFs). The research on the regulation of miR-27a-3p-GLP1R is helpful to our understanding of the molecular mechanism of osteoporosis, thus contributing to finding the therapeutic target underlying this disease.
MATERIALS AND METHODS
Cell Culture
MC3T3-E1 pre-osteoblasts (BNCC331990, BeNa Culture Collection, Beijing, China) were used for research on osteoblast differentiation. The cells were stored in minimum essential medium-α (MEM-α) supplemented with 1% penicillin–streptomycin (PS) double antibody and 10% fetal bovine serum (FBS). Thereafter, the cells were cultured in an incubator under standard conditions.
RNA Oligonucleotide Synthesis and Transfection Assays
The oligonucleotides in Table 1 were bought from Sangon Biotech Co., Ltd. (Shanghai, China). GLP1R cDNA was inserted into EcoR I-Hind III (Addgene, Inc., Watertown, MA, USA) sites of the Prk5 vector, and then the oe-GLP1R overexpression vector was obtained. The PCR amplifier of GLP1R cDNA was as follows: forward 5′-GAA​TTC​ATC​AGT​CTG​CGC​ACG​CGG​TTC​CGC-3′; backward 5′-AAG​CTT​GAC​AGT​AGA​CAC​AGA​CTT​TTA​TTT-3′.
TABLE 1 | Synthesis of miR-27a-3p-related oligonucleotide.
[image: Table 1]A total of 100 nM oligonucleotides and 10 ng oe-GLP1R vectors were taken and respectively transfected into MC3T3-E1 pre-osteoblasts with the Lipofectamine® 2000 Transfection Kit (Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA). 48 h later, cells were collected, and corresponding RNA and protein expression in cells was measured.
qRT-PCR Assay
MC3T3-E1 cells were cultured in MEM-α containing 10% FBS for 72 h, and then total RNA was isolated in line with the conventional TRIzol method (Invitrogen, Thermo Fisher Scientific, Inc.). Thereafter, the RNA concentration was gauged, and the RNA sample was diluted to a concentration of 300 ng/μl. Finally, the samples were separated into 3 Eppendorf (EP) tubes and subjected to reverse transcription utilizing the reverse transcription kit (Takara, RR037A, Mountain View, CA, USA).
The quantitative analysis of miR-27a-3p: self-designed stem-loop primer miR-27a-3p RT was used for reverse transcription. The qRT-PCR Kit (Takara, RR820A) was applied to quantitatively analyze miR-27a-3p, using U6 as an internal reference.
Quantitative analysis on related encoding genes involved GLP1R quantitative expression analysis. Osteoblast differentiation marker genes (DMGs) included Runx2, Col1α1 (collagen-1), osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). Autophagy marker genes (AMGs) included BCN1 (ATG7), ATG5, and LC3-II. Inflammatory factor marker genes (IFMFs) included TNFα, interleukin-6 (IL-6), and interleukin-1 (IL-1). β-Actin was used as an internal reference.
The Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) was employed to perform qRT-PCR analysis on each sample 3 times. The conditions for qRT-PCR were initial polymerase activation at 95°C for 2 min followed by 40 cycles of degeneration at 95°C for 1 s and annealing at 60°C for 20 s.
The relative expression levels of genes were calculated using the 2−ΔΔcq method. β-Actin and U6 were respectively internal references of miR-27a-3p and other genes. Primer sequences are shown in Table 2.
TABLE 2 | qRT-PCR primers.
[image: Table 2]Western Blot Bssay
Total proteins were separated using transfected cells that were cultured for 72 h. Then cells were washed twice using phosphate-buffered saline (PBS). Thereafter, cells were scraped down from the culture dish and collected after centrifugation. Afterward, cells were lysed using 100 µl lysis buffer and incubated on the ice for 15 min, followed by centrifugation at 4°C for 15 min. The cell supernatant was mixed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer and heated at 100°C for 5 min. Next, the proteins were isolated in 5%–20% polyacrylamide gel (10 µg total protein/well), and then the isolated proteins were transferred onto a polyvinyl difluoride membrane. Afterward, the membrane underwent a blockage with PBS containing 0.1% Tween-20 and 1% bovine serum albumin (BSA) at usual temperature for 40 min. Then, the membrane was supplemented with primary antibodies for incubation and washed with PBS containing 0.1% Tween-20 for 6 times (5 min/time), followed by a supplement with secondary antibodies for further incubation. After the protein bands were developed and photographed, they were subjected to quantitative analysis using ImageJ software (NIH, Bethesda, MD, USA). β-Actin was the internal reference. Antibodies used in Western blot were purchased from Abcam (Shanghai, China), which included anti-GLP1R (rabbit anti-mouse, monoclonal, cat. no. ab218532), anti-p-AMPK α (rabbit anti-mouse, monoclonal, cat. no. ab133448), anti-AMPKα (rabbit anti-mouse, monoclonal, cat. no. ab32047), anti-β-actin (rabbit anti-mouse, polyclonal, cat. no. ab8227), anti-ATG7 (rabbit anti-mouse, monoclonal, cat. no. ab52472), anti-ATG5 (rabbit anti-mouse, monoclonal, cat. no. ab108327) and anti-LC3B (rabbit anti-mouse, polyclonal, cat. no. ab48394.
Enzyme-Linked Immunosorbent Assay
ELISA was used to test IL-6, IL-1, and TNFα. The ELISA kit (Andy Gene, Beijing, China) was utilized to study the cell supernatant. A 96-well plate was added with diluent (50 μl), cell supernatant (50 μl), and standard substance (50 μl). Then the plate was washed with cleaning solution (400 μl) and supplemented with human IL-1β or IL-6 conjugate (100 μl). After 2 h of incubation, the plate was supplemented with 100 μl substrate solution and was further incubated for 30 min. In the end, the plate was supplemented with 100 μl termination buffer and optical density (OD) reading at 450 nm was gauged with a microplate reader (Bio-Rad, Hercules, CA, USA).
Autophagosome Detection
During the autophagy of cells, the LC3 protein progressively transformed into LC3 I protein and then transformed into LC3 II protein which gathered on the membrane of autophagosomes. After transiently transfecting the pEGFP-C1-LC3 plasmid (outright purchase), if autophagy occurred, the LC3 protein would transform into LC3 II protein which was then gathered on the membrane of autophagosomes. By photographing LC3 II protein using a confocal laser-scanning microscope, we confirmed the occurrence of autophagy. Afterward, we estimated the intensity of autophagy by counting the number of autophagosomes. The processes of observation on autophagosomes in MC3T3-E1 pre-osteoblasts were as follows. Firstly, MC3T3-E1 pre-osteoblasts were cultured in a tazetta of the confocal laser-scanning microscope. Then, an appropriate amount of pEGFP-C1-LC3 plasmid was transfected into MC3T3-E1 pre-osteoblasts via Lipofectamine transfection and the cells were cultured with CO2 in an incubator. After 36 h of culture, the medium was removed and the cells were rinsed using sterile PBS, followed by a fixation with 1 ml of 4% paraformaldehyde (PFA) for 15 min. Thereafter, 4% PFA was removed and the cells were washed with sterile PBS again. Next, the cell nucleus was stained with diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA). A small quantity of PBS was added to cover the surface of the cells which were then photographed under the confocal laser-scanning microscope.
Statistical Analysis
The correlation of expression levels between GLP1R and target miRNA was calculated using the Pearson correlation. Data were subjected to Student-t test or one-way analysis of variance (ANOVA) using Bonferroni correction equipped with GraphPad Prism 6.0 software. All groups were compared, and p < 0.05 indicated a remarkable difference in statistics.
RESULTS
High Expression of miR-27a-3p Inhibits Osteoblast Autophagy and Differentiation
Early studies demonstrated that miR-27a-3p is a critical inhibitor of bone formation (Xu et al., 2020). Besides, autophagy facilitates osteoblast differentiation to protect osteoblasts (Li X et al., 2020), while inhibiting autophagy suppresses the differentiation capacity of the cells (Oliver et al., 2012). To explore the impacts of miR-27a-3p on MC3T3-E1 pre-osteoblast autophagy and differentiation, we used miR-27a-3p mimics, anti-miR-27a-3p, and miR-C (the control for the above two) to process MC3T3-E1 pre-osteoblasts and detected the transfection efficiency of miR-27a-3p (Figure 1A). The results exhibited that the expression levels of AMGs (LC3, ATG5, and ATG7) and DMGs (Runx2, ALP, OCN, BSP, and Col1α1) were markedly reduced in the miR-27a-3p mimic treatment group compared to those in the miR-C control group (Figures 1B,C). On the contrary, the expression levels of AMGs (LC3, ATG5, and ATG7), as well as DMGs (Runx2, ALP, OCN, BSP, and Col1α1), were dramatically increased in MC3T3-E1 pre-osteoblasts treated with the anti-miR-27a-3p inhibitor (Figures 1B,C). Similarly, Western blot demonstrated that the expression levels of autophagy marker proteins LC3-II/LC3-I, ATG5, and ATG7 were notably decreased and the number of autophagosomes was noticeably reduced in the miR-27a-3p mimic group (Figures 1D–F). Additionally, the expression of AMGs (LC3-II/LC3-I, ATG5, and ATG7), as well as the number of autophagosomes, was remarkably increased after cells were treated with anti-miR-27a-3p (Figures 1D–F). Overall, the overexpression of miR-27a-3p inhibited cellular autophagy and differentiation whereas suppressing this gene showed the opposite effect.
[image: Figure 1]FIGURE 1 | MiR-27a-3p affects osteoblast autophagy and differentiation. (A) qRT-PCR validated the transfection efficiency. (B) The expression of cell AMGs (LC3, ATG5, and ATG7) in MC3T3-E1 cells. (C) The expression of cell DMGs (Runx2, ALP, OCN, BSP, and Col1α1) in MC3T3-E1 cells. (D, E) Protein levels of cell AMGs (LC3-I/II, ATG5, and ATG7). (F) LC3-II spot images about GFP-LC3 expression in MC3T3-E1 pre-osteoblasts and merged images about GFP-LC3 (green) and DAPI (blue). Figure A–F: MC3T3-E1 pre-osteoblasts were treated with miR-27a-3p mimics, miR-C, and anti-miR-27a-3p respectively. After 24 h of treatment, the cells were subjected to related quantitative detection. *p < 0.05 denotes a significant difference.
MiR-27a-3p Downregulates GLP1R Expression
GLP1R as a target of miR-27a-3p is also a pre-proliferation factor for osteoblasts and participates in metabolisms associated with bone formation (Hou et al., 2020; Baggio and Drucker, 2021; Iepsen et al., 2015). To predict whether GLP1R could be targeted by miR-27a-3p, we utilized the starBase website to predict the miRNA–mRNA binding relationship. As predicted, miR-27a-3p directly bound the 3′-UTR of GLP1R (Figure 2A). Mature miR-27a-3p included 21 nucleotide sequences: 5′-UUCA​CAGUGG​CUA​AGU​UCC​GC-3′, which could bind with the 3′-UTR of GLP1R (Figure 2A). An early study has reported that overexpressing GLP1R dramatically increases bone mass, improves bone microstructure, and enhances the anti-osteoporosis ability of organisms (Hennen et al., 2016). We therefore deeply investigated the binding relationship between GLP1R and miR-27a-3p.
[image: Figure 2]FIGURE 2 | MiR-27a-3p downregulates GLP1R expression. (A) Schematic plot about miR-27a-3p targeting the 3′ untranslated region of GLP1R and construction of dual luciferase. (B) Outcome of dual-luciferase assay for MC3T3-E cells treated with miR-27a-3p mimics. (C) Result of dual-luciferase assay for MC3T3-E1 cells treated with anti-miR-27a-3p. (D) GLP1R expression was examined. (E, F) Western blot was utilized to measure GLP1R expression. *p < 0.05 indicates a remarkable difference. NS: non-significant difference.
To validate the molecular mechanism by which miR-27a-3p targets GLP1R, we respectively merged WT-GLP1R-3′UTR and MUT-GLP1R-3′UTR sequences downstream of the reporter gene. The results exhibited that the luciferase activity of WT-GLP1R-3′UTR treated with miR-27a-3p mimics was markedly decreased, suggesting that miR-27a-3p mimics dramatically suppressed the intensity of the luciferase reporter gene expressing WT-GLP1R-3′UTR. However, the luciferase activity of MUT-GLP1R-3′UTR showed no difference, indicating that miR-27a-3p mimics could not suppress the activity of the luciferase reporter gene expressing MUT-GLP1R-3′UTR (Figure 2B). Similarly, the luciferase activity of WT-GLP1R-3′UTR treated with the anti-miR-27a-3p inhibitor was significantly increased, suggesting that the anti-miR-27a-3p inhibitor notably enhanced the activity of the luciferase reporter gene expressing WT-GLP1R-3′UTR. On the contrary, no difference was shown in the luciferase activity of MUT-GLP1R-3′UTR, which exhibited that the anti-miR-27a-3p inhibitor had no enhanced effect on the activity of the luciferase reporter gene expressing MUT-GLP1R-3′UTR (Figure 2C). To further verify the regulatory relationship between miR-27a-3p and GLP1R, MC3T3-E1 pre-osteoblasts were treated with miR-27a-3p mimics, miR-C, and anti-miR-27a-3p. Besides, qRT-PCR and Western blot were conducted to examine the mRNA and protein expressions of GLP1R. Contrary to control group miR-C, GLP1R expression was dramatically diminished in the miR-27a-3p mimic treatment group (Figures 2D–F). However, GLP1R expression was remarkably increased in MC3T3-E1 pre-osteoblasts treated with anti-miR-27a-3p (Figures 2D–F). Taken together, miR-27a-3p directly targeted the 3′UTR of GLP1R and inhibited GLP1R expression.
Overexpressing GLP1R Accelerates Pre-Osteoblast Differentiation and Autophagy
To investigate whether overexpressing GLP1R could reverse the suppressive impact of miR-27a-3p on osteoblast differentiation and autophagy, we established the GLP1R overexpression cell line (oe-GLP1R). Thereafter, miR-27a-3p mimics and oe-GLP1R were co-transfected into MC3T3-E1 cells. Contrary to the control groups, oe-GLP1R could restore the effect of miR-27a-3p mimics (Figures 3A,B). Besides, the expressions of AMGs (LC3, ATG5, and ATG7) and DMGs (Runx2, ALP, OCN, BSP, and Col1α1) were restored in co-transfected cells (Figures 3C–F). Additionally, there was a marked increase in the number of autophagosomes as well (Figure 3G). The above results exhibited that the overexpression of GLP1R diminished the inhibitory impact of miR-27a-3p on autophagy and osteoblast differentiation. Generally, miR-27a-3p restrained autophagy and osteoblast differentiation through downregulating the GLP1R expression.
[image: Figure 3]FIGURE 3 | Overexpressing GLP1R facilitates MC3T3-E1 pre-osteoblast differentiation and autophagy. (A, B) Protein expression of GLP1R. (C) mRNA expression of DMGs (Runx2, ALP, OCN, BSP, and Col1α1) in MC3T3-E1 cells. (D) qRT-PCR detected the mRNA expression of AMGs (LC3, ATG5, and ATG7) in MC3T3-E1 cells. (E, F) Western blot detected the protein expression of AMGs (LC3, ATG5, and ATG7). (G) LC3-II blot images about GFP-LC3 expression in MC3T3-E1 pre-osteoblasts and merged images of GFP-LC3 (green) and DAPI (blue). Figure A–G: Cells were grouped into miR-C + vector, miR-27a-3p + vector, and miR-27a-3p + oe-GLP1R, and then the treated cells were co-transfected into MC3T3-E1 pre-osteoblasts, followed by a quantitative detection after 24 h. *p < 0.05 denotes a remarkable significance.
MiR-27a-3p Targets GLP1R to Inhibit the AMPK Signaling Pathway
Studies found that activating AMPK can induce cellular autophagy to accelerate cellular differentiation (Ran et al., 2020; Zhang et al., 2020). Hence, we investigated whether miR-27a-3p targets GLP1R to affect osteoblast autophagy and differentiation by mediating the AMPK signaling pathway. To verify this speculation, we applied compound C (phosphorylation inhibitor) to the oe-GLP1R cell line to figure out whether suppressing AMPK phosphorylation can counteract the enhanced effect of GLP1R overexpression. The assay demonstrated that overexpressing GLP1R significantly enhanced AMPK phosphorylation. However, after the cells were treated with compound C, AMPK phosphorylation was dramatically attenuated (Figures 4A,B). Correspondingly, overexpressing GLP1R markedly increased the expression of AMGs (LC3, ATG5, and ATG7) whereas cells being treated with compound C showed the opposite effect (Figures 4C–E). Meanwhile, the number of autophagosomes was also significantly recovered after the cells were treated with compound C (Figure 4G). Together, suppressing AMPK phosphorylation counteracted the enhanced impact of overexpressing GLP1R on osteoblast autophagy. Additionally, treating with compound C also reduced the expression of DMGs (Runx2, ALP, OCN, BSP, and Col1α1) and reversed the promoted effect of overexpressing GLP1R on osteoblast differentiation (Figure 4F). The above outcomes indicated that suppressing AMPK phosphorylation could counteract the enhanced effect of overexpressing GLP1R on osteoblast autophagy and differentiation. In other words, miR-27a-3p downregulated GLP1R to suppress osteoblast autophagy and differentiation via mediating the AMPK signaling pathway.
[image: Figure 4]FIGURE 4 | Overexpressing GLP1R activates the AMPK signaling pathway. (A, B) Protein levels of AMPK and p-AMPK in MC3T3-E1 cells. (C, D) Expression of AMGs (LC3, ATG5, and ATG7) in MC3T3-E1 cells was examined utilizing Western blot. (E) Expression of AMGs (LC3, ATG5, and ATG7) in MC3T3-E1 cells. (F) Expression of DMGs (Runx2, ALP, OCN, BSP, and Col1α1) in MC3T3-E1 cells was detected using qRT-PCR. (G) LC3-II blot images about GFP-LC3 expression in MC3T3-E1 pre-osteoblasts and merged images of GFP-LC3 (green) and DAPI (blue). *p < 0.05 indicates a marked difference.
MiR-27a-3p Targets GLP1R to Modulate Inflammatory Response
Inflammatory dysregulation leads to an increase in bone resorption and a suppression of bone formation (Hendrickx et al., 2015). The interaction between inflammatory cells and osteoblasts is critical for bone formation, repair, and remodeling (Mountziaris et al., 2011). Finally, inflammation inhibits osteoblast differentiation, resulting in osteoporosis. Hence, we aimed to further investigate whether targeting of GLP1R by miR-27a-3p affects inflammatory response (Figure 5). IL-1, IL-6, and TNF-α are probably indicators for bone injury (Kon et al., 2001; Cho et al., 2002). The MiR-27a-3p mimic activated 3 cytokines at the mRNA level which could be attenuated by the oe-GLP1R + miR-27a-3p mimic (Figure 5A). The protein levels also manifested a similar trend (Figure 5B). Hence, we could conclude that miR-27a-3p facilitated the inflammatory response of cells while overexpressing GLP1R could counteract such effect. MiR-27a-3p therefore targeted GLP1R to accelerate the inflammatory response of osteoblasts.
[image: Figure 5]FIGURE 5 | miR-27a-3p impacts on inflammatory response of MC3T3-E1 pre-osteoblasts. (A) Levels of IFs (IL-1, IL-6, and TNFα) in MC3T3-E1 pre-osteoblasts. (B) The concentration of IFs (IL-1, IL-6, and TNFα) in cell medium. *p < 0.05 denotes a remarkable difference.
DISCUSSION
Our study analyzed and illustrated the relationship between GLP1R and miR-27a-3p in osteoblasts. Firstly, this work validated that miR-27a-3p downregulated GLP1R and that GLP1R mediated the AMPK signaling pathway to modulate osteoblast autophagy and differentiation. Based on the results of previous studies, we proposed an osteoporosis-related regulatory mechanism (Figure 6). In this mechanism, downregulation of GLP1R by miR-27a-3p inhibited AMPK phosphorylation to suppress osteoblast autophagy and differentiation, thus causing osteoporosis.
[image: Figure 6]FIGURE 6 | Schematic plot about the action mechanism of miR-27a-3p in osteoporosis MiR-27a-3p downregulated GLP1R to inhibit osteoblast differentiation and autophagy, thus exacerbating osteoporosis.
The aberrant expression of miRNAs in osteoporosis leads to osteoporosis, and miRNAs can thereby serve as potential targets of treatment for osteoporosis. For instance, miRNA-30a-5p upregulates RUNX2 to induce osteoblast differentiation, thus alleviating osteoporosis (Zhang et al., 2019). On the contrary, miR-125a-5p upregulates TNFRSF1B to induce osteoclasts, thereby aggravating this disease (Sun et al., 2019). MiR-27a-3p is a key inhibitor of bone formation, which can target PPARγ and GREM1 to modulate bone formation and influence downstream osterix to suppress osteoblast differentiation (Xu et al., 2020). This work found that miR-27a-3p could affect osteoblast autophagy and differentiation. Despite the effect of miR-27a-3p on bone formation, miRNA does not usually act as an effector molecule to regulate bone formation. Hence, we further studied the downstream target that might be regulated by miRNA. Bioinformatics and molecular assays suggested that GLP1R was a downstream gene of miR-27a-3p. We, therefore, speculated that miR-27a-3p targeted GLP1R to affect the occurrence of osteoporosis.
GLP1R is expressed in multiple organs (Ceccarelli et al., 2013). Current studies reported that GLP1R is associated with the occurrence of osteoporosis. For example, Hansotia et al. (Hansotia and Drucker, 2005) pointed out that GLP1R contributes to the treatment of diabetes and osteoporosis. In addition, studies also indicated that GLP-1 activates GLP1R to alleviate osteoporosis (Montes Castillo et al., 2019; Schiellerup et al., 2019). Meng et al. (Meng et al., 2016) found that Exendin-4 can activate GLP1R expression to ameliorate osteoporosis via the PKA/β-catenin signaling pathway. After verifying the regulatory relationship between miR-27a-3p and GLP1R, subsequent cellular function assay showed that miR-27a-3p inhibited GLP1R expression to affect osteoblast autophagy and differentiation, which played a vital role in osteoporosis. Previous studies found that liraglutide can activate GLP1R expression to enhance cell autophagy and differentiation via the AMPK signaling pathway (Kong et al., 2018). We speculated that GLP1R could also affect osteoblast autophagy. Hence, we conducted cellular assay and validated that GLP1R increased the expression of autophagy genes like ATG5, ATG7, and LC3 and activated AMPK phosphorylation. In sum, we found that GLP1R regulated the activity and autophagy of the AMPK signaling pathway to influence the occurrence of osteoporosis.
The damage of bone induces acute inflammation to affect the repair of local bone. Cross talk between cells related to bone healing and inflammatory cells is a crucial factor of bone formation, repair, and remodeling (Loi et al., 2016). We also examined the expression of IFs related to osteoblast inflammation, suggesting that miR-27a-3p facilitated the inflammatory response of MC3T3-E1 pre-osteoblasts. Inflammation is an instantaneous reaction, which plays a pivotal part in the healing of fractures and bone damage. Regenerative inflammation of bone tissue contributes to the repair of bone. On the contrary, destructive inflammation leads to the resorption of bone tissue, and dysregulation of inflammation increases bone resorption and suppresses bone formation, causing osteoporosis (Mountziaris et al., 2011). MiRNA also exerts a significant effect on the regulation of bone inflammation. For example, Li et al. (Li Z et al., 2020) pointed out that miR-29a-3p regulates the inflammatory response of osteoclast to affect the occurrence of osteoporosis. The results of our study demonstrated that miR-27a-3p can act as a suppressor of bone formation and destroy the balance of inflammation in bone tissue. Altogether, we assumed that miR-27a-3p targeted GLP1R to regulate inflammatory stress, thereby inhibiting bone formation.
Dysregulation of osteoclasts also contributes to bone loss (Andreev et al., 2020). One study has pointed out abnormally expressed miR-27a-3p during osteoclast formation (Ma et al., 2016). Therefore, we assumed that miR-27a-3p/GLP1R might be implicated in osteoporosis via influencing osteoclast behaviors and plan to evaluate such axis in osteoclasts.
MiR-27a-3p downregulated GLP1R to suppress osteoblast autophagy and differentiation via mediating the AMPK signaling pathway. MiR-27a-3p targeted GLP1R to accelerate inflammatory response of osteoblasts. Besides, targeting GLP1R by miR-27a-3p affected the inflammatory stress of osteoblasts. Our study still has limitations. For example, although AMPK signaling in inflammation and ROS production has been elaborated (Pilon et al., 2004; Wen et al., 2011), we failed to identify whether they happened during miR-27a-3p-induced bone loss. Also, we did not verify the effect of miR-27a-3p on osteoporosis in vivo, which will be a subject of our further study. If we intend to develop osteoporosis drugs based on our results, we still need to perform clinical and animal experiments to verify the results in future studies.
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The Illumina HumanMethylation BeadChip is one of the most cost-effective methods to quantify DNA methylation levels at single-base resolution across the human genome, which makes it a routine platform for epigenome-wide association studies. It has accumulated tens of thousands of DNA methylation array samples in public databases, providing great support for data integration and further analysis. However, the majority of public DNA methylation data are deposited as processed data without background probes which are widely used in data normalization. Here, we present Gaussian mixture quantile normalization (GMQN), a reference based method for correcting batch effects as well as probe bias in the HumanMethylation BeadChip. Availability and implementation: https://github.com/MengweiLi-project/gmqn.
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1 INTRODUCTION
As a well-known epigenetic marker, DNA methylation plays a crucial role in numerous physiological processes as well as complex traits, such as development, phenotype and cancer (Smith and Meissner, 2013; Xu et al., 2013; Joehanes et al., 2016). With the advancement of epigenetic sequencing technologies and a radical decline in sequencing costs, especially the DNA methylation array, massive samples can be used to the explore epigenetic basis of complex traits, which has also resulted in the accumulation of a large amount of DNA methylation array data in public databases (Barrett et al., 2012; Li et al., 2018; Xiong et al., 2020). According to the statistics of DNA methylation array data in the GEO database, Illumina HumanMethylation450 BeadChip (450 k) has become the most widely used means of large-scale methylation profiling of human samples in recent years. The newly emerging Illumina HumanMethylationEPIC BeadChip (EPIC/850 k) uses the same technology as 450 k but covers nearly double the number of CpG sites and will become the main effective strategy of epigenome-wide association studies (EWAS) in the future (Figure 1A). Integrating both large samples from public resources and private data will become a common and main research strategy for future research on potential regulatory mechanisms of complex traits, particularly for EWAS (Yuan et al., 2019). As sample processing and sequencing processes varied amongst laboratories, there are some unavoidable differences which have nothing to do with biological factors but are between-array bias defined as batch effects (Leek et al., 2010; Forest et al., 2018), which will reduce the signal-to-noise ratio and adversely affect downstream analysis.
[image: Figure 1]FIGURE 1 | (A) Statistics of 450 k and EPIC data by year and project number in NCBI GEO database. (B) Distribution of data types of DNA methylation chip projects submitted to the GEO database as of December 2020. There were a total of 1,114 items containing the original “idat” files, and 1,349 items containing TXT or CSV files, indicating that most of the items missed original file. (C) The workflow of GMQN.
A number of DNA methylation array normalization methods have been proposed, each with its own set of advantages and disadvantages in different study scenarios(Niu et al., 2016; Xu et al., 2017; Wang et al., 2020). Many methods, on the other hand, are not well suited to the analysis of a large amount of public data. The majority of methods rely on data from control probes or OOB (out of band) probes, as a result, cannot be used for public data unless the original data are available. However, only approximately half of the 450 k and EPIC projects in GEO, the largest publicly accessible DNA methylation array database, provide original data (Figure 1B). As the well-known normalization method on β-values of DNA methylation, SWAN and BMIQ do not use the information from these two types of probes. Instead, they only deal with within-array bias. (Infinium I and II bias) (Maksimovic et al., 2012; Teschendorff et al., 2013).
Without control probes or OOB, we still have to deal with four types of deviations: Infinium I and II bias, red and green channel signal deviations, background noise, and batch effects. Therefore, we propose a reference-based method for correcting batch effects as well as probe bias in the HumanMethylation BeadChip, which is called Gaussian Mixture Quantile Normalization (GMQN). The method includes four steps: (I) A two-state Gaussian mixture model was fitted to the median values of each Infinium I probe signal intensity from a large single study (GSE105018). For rescaling Infinium I probes, the mean and variance of two components were used as a reference. (II) Fitting of a two-state Gaussian mixture model to the input Infinium I probe signal intensity. (III) Transform the probability of Infinium I probes from each component of input data to quantiles using the inverse of the cumulative Gaussian distribution with the mean and variance estimated from the corresponding reference component. (IV) After reversing the batch effect, GMQN can also normalize Infinium II probes on the basis of Infinium I probes in combination with BMIQ and SWAN, the two well-known normalization methods on β-values of DNA methylation (Maksimovic et al., 2012; Teschendorff et al., 2013) (Figure 1C).
2 MATERIALS AND METHODS
2.1 DNA Methylation Data
Data for method development and testing are taken from the GEO and TCGA databases, which contain 450 k and EPIC records (Table 1). Respectively, the sample information is annotated using a combination of automatic grabbing and manual analysis. The R package “minfi” (http://www.bioconductor.org/packages/release/bioc/html/minfi.html) is primarily used to interpret and preprocess the original signal (Fortin et al., 2016). Considering that some public data only have original methylated and unmethylated signal value files, we use the “preprocessRaw” method to extract the original signal values without any processing. To ensure fairness, the methylated and unmethylated signal values of all probes except the control probe are collected and used as the input value in all subsequent tests and comparisons. The methylation level is represented by β, β = M/(M + U), where M and U represent the intensity of methylation and non-methylation signal values, respectively.
TABLE 1 | Overview of benchmark test dataset.
[image: Table 1]2.2 Reference Data
In GMQN, there are two ways to set the reference signal value distribution. To begin, users can use the function “set reference” in the “GMQN” package to match their own data to fit their own reference distribution. The second option is to use the default reference, which is a two-state Gaussian mixture model fitted to the median values of each Infinium I probe signal intensity from a large single study (GSE105018), including 1,658 whole blood samples obtained from E-Risk cohort participants when they were 18 years old (Hannon et al., 2018). The mean and variance of two components are used as reference for rescaling Infinium I probes.
2.3 GMQN
To eliminate any source of variation that is not related to biology but rather to technical limitations, such as dye bias or batch effects, we must first identify the manifestations of these variations in the data (Dedeurwaerder et al., 2014). To that end, we investigate the signal value distribution characteristics of two types of probes. We found that the signal values of the red and green channels of Infinium I probes can be decomposed into the superposition of two Gaussian distributions, and that the fitting parameters of these Gaussian distributions may efficiently distinguish batches (details in result). Using this feature, we draw on the idea of BMIQ, respectively fit the Gaussian mixture distribution to the signal values of the red and green channels of Infinium I probes, and then adjust the shape of the Gaussian distribution corresponding to different samples to the same shape to the reference to minimize batch effects and other deviations. To achieve this process, GMQN standardizes the data in three steps.
The first step is the establishment of the reference distribution. In order to address the issue of the rapid growth of public data, GMQN adopts a data normalization method based on reference distribution, which is also widely used in the normalization of data in the EWAS Data Hub (https://ngdc.cncb.ac.cn/ewas/datahub/index) (Xiong et al., 2020; Xiong et al., 2021). Usually, we need to average the signal intensity of each probe on the reference data set between samples, and fit the Gaussian mixture distribution to the probe signal intensity on the red and green channels of Infinium I probes respectively. The Expectation-Maximization algorithm is used to estimate the parameters, and the red channel fitting result is expressed as: [image: image] , the green channel fitting result is expressed as: [image: image] , where r is the reference, 1 and 2 respectively represent the two states of the mixed model with a smaller and larger mean, and R and G represent the red and green channels, respectively.
The second step is the normalization between arrays. Between-array normalization is carried out separately for the red and green channels of Infinium I probes. Taking the green channel as an example, we first fit the Gaussian mixture distribution to the signal intensity of the green channel of the input Infinium I probe to obtain the fitting parameters [image: image]. For the state with the smaller mean value, state 1, we perform the following conversion:
[image: image]
[image: image]
where S1 is the signal belonging to state 1 in the green channel signal, ρ is the cumulative distribution probability of the signal value in the Gaussian distribution, and q is the signal value corresponding to the cumulative probability in the reference distribution. Through this step, we map the input signal to the reference signal and eliminate biases such as dye bias and batch effects. The signal in state 2 and the signal in the red channel are processed using similar steps.
The third step is within-array normalization, which mainly includes Infinium I/II-type bias correction. In the second step, we obtained the normalized Infinium I probes signal. Based on Infinium I probes signal, we used BMIQ or SWAN to standardize the Infinium II probes signal. BMIQ and SWAN were fine-tuned to improve the speed and effectiveness, respectively.
2.4 Benchmark Test
Since other methods cannot be used in the absence of original data, in the benchmark test, we compare GMQN, SWAN, BMIQ, and GMQN combined with SWAN and BMIQ (GMQN.SWAN and GMQN.BMIQ). In order to test whether GMQN can improve the effect of SWAN and BMIQ, we designed the following four benchmark tests.
2.4.1 Batch Effects Detection
In order to make the method more universal, we searched the GEO database for two sets of technical replicates, including 450 k and EPIC. The first set (EPIC, GSE139687) has nine samples that are replicated three times each, while the second set (450 k, GSE52731) has 56 repetitions of one sample. For the first data set, we measured the variance at the probe level between every three technical replicates and then averaged the variance among the nine samples. For the second, we directly calculated the variance of the sample at the probe level.
2.4.2 Case-Control Study
Case-control studies are the most common form of research in EWAS. Researchers classify samples into case and control groups and look for differences in methylation sites between the two groups in this form of study. We used the data of two diseases in public sources to evaluate the performance of GMQN in the case-control studies. To simulate two separate batches, we divide the samples in the data set at a ratio of 2:1 into training and test sets for each disease. In the training set, we aim to keep the samples in the same batch of chips, and the batch effect and other errors are kept to a minimum. Differential methylation analysis was performed in both the training and test sets, with the results of the training set acting as the gold standard for detecting consistency between the training and test sets and drawing the receiver operating characteristic (ROC) curve.
2.4.3 Regression Analysis
The term “regression analysis” refers to the process of associating DNA methylation levels with continuous variables such as age, BMI, and so on in order to identify DNA methylation sites that are associated with these variables. Age is a trait that has been reported more frequently in EWAS, and there is a substantial amount of data on it. As a result, we use age as the research object in this study and collect 1,277 sample data sets containing age information from three independent projects. Data from these projects ensure that the sample’s batch effect is high, allowing each standardized method’s effect to be better measured. A large number of studies have reported that there is a linear relationship between DNA methylation and age (Horvath, 2013; Chung et al., 2021), and the Pearson correlation coefficient is particularly suitable for quantifying the linear relationship. Therefore, we calculated the Pearson correlation coefficient between DNA methylation and age as quantitative indicators.
2.4.4 Comparison of the Methylation Levels of Adjacent CpG Sites
Studies have reported that DNA methyltransferase has a limited range of action, resulting in nearly identical methylation levels at adjacent CpG sites in the genome (Zhang et al., 2015; Guo et al., 2017). In this part, we selected 141,653 pairs of probes with a genome distance of less than 10 bp on the chip. We determined the average difference in DNA methylation levels of these probes for each sample and chose 141,653 pairs of probes randomly as controls.
3 RESULTS
3.1 The Signal Intensity Distribution Characteristics of Infinium I Probes and the Principle of GMQN
The signal from the control probe can, ideally, be used to quantify the batch effect between samples. However, most public data lack original data, so we tried to find other manifestations of batch effects. We found that the signal intensity of the red and green channels of Infinium I probes can be approximately decomposed into the superposition of two Gaussian distributions, both in 450 k and EPIC arrays (Figure 2). We speculate that this may be related to the bimodal distribution of human DNA methylation levels. When the methylation value is extremely high (>0.8) or extremely low (< 0.2), one of the two Infinium I probes that detects the site’s methylation level emits almost no light, and the fluorescence signal intensity of these probes constitutes the first peak of the Gaussian distribution, that is, the peak with the smaller mean. The fluorescence signal intensity of other probes constitutes the second Gaussian distribution. Since the methylation levels of the sites corresponding to these probes are dispersed, the Gaussian distribution variance is larger. We cluster the Gaussian distribution parameters fitted by different samples to see if these Gaussian peaks are related to batches. The results show that the fitting parameters of the four Gaussian distributions (two for each of the red and green channels) can be used to distinguish the batches, and that even if the sample difference is large, the parameter difference will be small within the batches (Figure 2).
[image: Figure 2]FIGURE 2 | The signal intensity distribution characteristics of Infinium I probes (450 k data (A,B), EPIC data (C,D)) and clustering results of different batches of samples based on fitting parameters of the Gaussian distributions (E).
Using this feature, we propose a GMQN standardization method. The basic principle of this method is to fit a Gaussian mixture model for Infinium I probes of different batches, and then adjust the Gaussian distribution shapes fitted by different batches to the same to eliminate the batch effect on Infinium I probes. Finally, the Infinium I probes are taken as the standard, and BMIQ or SWAN are used to standardize the Infinium II probes. The signal strength distribution of the red and green channels of Infinium I probes was then measured in two batches of samples in a TCGA tumor project before and after GMQN normalization. We found that the distribution of the two batches differed greatly in both 450 k and EPIC data, and the differences were not due to biological differences (tumor and normal). The distributions of the two batches tend to be consistent after GMQN standardization (Figure 3, Supplementary Figure S3).
[image: Figure 3]FIGURE 3 | The 450 k data signal strength distribution of the red and green channels of Infinium I probes before and after GMQN normalization. The signal intensities of the red (A) and green (B) channels of the two batches were clearly divided into two batches before being corrected. And the differences Were not due to biological differences (tumor and normal) (E,F). After the GMQN correction, the batch effect problem is significantly reduced (C,D).
3.2 GMQN Reduces Technical Variability
Technical repetition is the most direct way to measure the batch effect. As a result, we chose two different sets of technical replicates. The first set (EPIC, GSE139687) has nine samples that are repeated three times each, while the second set (450 k, GSE52731) has 56 repetitions of one sample (Aryee et al., 2014; Li et al., 2020). The variances of the probes of the two sets of samples were determined separately. While each method decreased the variance of the probe methylation level relative to the original data in the two sets of technical replicates, the variance of the probe methylation level after GMQN + BMIQ and GMQN + SWAN treatment was the lowest and second lowest, respectively (Figures 4A,B). In particular, without combining SWAN and BMIQ, GMQN performed best in the first data set (Figure 4A). This demonstrates that GMQN, especially when used in combination with BMIQ and SWAN, is capable of effectively reducing batch effects.
[image: Figure 4]FIGURE 4 | The result of Benchmark Test. (A) and (B): batch effects detection. (C) and (D): case-control study. (E): regression analysis. (F): comparison of the methylation levels of adjacent CpG sites (****p < 10-4, ****p < 10-4)
3.3 GMQN Leads to Better Detection of Differential Methylation
In order to test the effects of GMQN in the case-control studies, we selected normal and disease samples for rheumatoid arthritis and depression (Liu et al., 2013; Zannas et al., 2019). The differential methylation estimation results indicate that there are approximately 50,000 and 1,000 differential methylation positions in the normal and disease samples of these two diseases, respectively (see Supplementary Table S1). The ROC curve shows that compared with the original data, the consistency of the training set and the test set results is greatly improved in rheumatoid arthritis, GMQN + BMIQ has the best effect, while SWAN and the original data have poor results, but whether it is BMIQ or SWAN, the effect can be achieved after combination with GMQN, GMQN, GMQN + BMIQ, and GMQN + SWAN all outperform other methods in the depression group (Figures 4C,D). In case-control studies, these results suggest that GMQN can enhance SWAN and BMIQ effects.
3.4 GMQN Improves the Effectiveness of Regression Analysis
Regression analysis is a crucial form of analysis in EWAS. For continuous traits such as age and BMI, the relevant DNA methylation sites can be found through regression analysis. Compared with case-control studies, the results of regression analysis are often more influenced by data processing methods.
We used data processed by different methods to identify age-related DNA methylation sites to examine the effect of GMQN in regression analysis. Our data in this analysis come from three separate projects, where the batch effect is high and the sample age period is large (from 14 to 94 years old) (Johansson et al., 2013; Liu et al., 2013; Aryee et al., 2014). Using Pearson correlation coefficients of 0.5, 0.6, and 0.7 as thresholds, we measured the number of age-related DNA methylation sites identified by each method (see Supplementary Table S2). The findings show that the GMQN + SWAN treatment group can find more age-related methylation sites than other methods under various thresholds, and GMQN can boost the effects of BMIQ and SWAN under a strict threshold, and improve the effect of regression analysis (Figure 4E). To ensure that the sites found by GMQN are true positive sites, we further analyzed these sites. Surprisingly, we examined the five sites (cg15448975, cg16419235, cg07416237, cg04875128, cg14692377) with Pearson correlation coefficients less than 0.7 after BMIQ analysis and greater than 0.7 after GMQN + BMIQ analysis in the EWAS Atlas (https://ngdc.cncb.ac.cn/ewas/atlas), a curated knowledgebase of epigenome-wide association studies (Li et al., 2019; Xiong et al., 2021), and discovered that all of them were age-related, indicating that the majority of the newly discovered age-related sites in GMQN are true positives.
3.5 GMQN Reduces Differences in Methylation Levels Between Adjacent CpG Sites
The difference in methylation levels between adjacent CpG sites is approximately 13% of that between random sites. Meanwhile, the difference in methylation levels between adjacent CpG sites in the original data group was greater than that in other groups, confirming that this benchmark test is reasonable. The GMQN + BMIQ processed group had the smallest difference in methylation levels between adjacent CpG sites, while the GMQN + SWAN treatment was not as efficient as BMIQ but still better than SWAN (Figure 4F).
3.5 Selection and Evaluation of Reference Data
To help users better choose reference data, we evaluated the default reference (provided by GMQN) and the user’s own data fitting reference by two benchmark test, case-control study and regression analyses (Supplementary Figure S4). The evaluation results show that in the case-control study, there is almost no difference between the two methods of establishing references (Supplementary Figure S4A, Supplementary Figure S4B). In regression analysis, more relevant methylation sites were obtained using the default reference (Supplementary Figure S4C, Supplementary Figure S4D).
4 DISCUSSION
The accumulation of public DNA methylation array data has provided favorable conditions for the advancement of EWAS, allowing data analysts to investigate the association between various traits by massive public data mining without relying on experiments. As a result, we proposed GMQN, a standardized method suitable for massive public DNA methylation array data. In comparison to other DNA methylation array normalization approaches, GMQN has the following advantages: First and foremost, GMQN is a reference-based Gaussian mixture quantile normalization method. It can be used to calibrate a newly added sample to the same level as the previous batch of samples without wasting a lot of computational resources, which will solve the N+1 issue in big data integration. The EWAS data portal of EWAS Open Platform (https://ngdc.cncb.ac.cn/ewas) currently integrates and stores 115,852 methylation chip data using the GMQN (Xiong et al., 2020; Xiong et al., 2021). Second, GMQN will address the issue of batch effect processing and standardization in public data due to missing original data, making it easier for researchers to combine self-produced and public data to investigate epigenetic mechanisms of various phenotypes. Finally, since most DNA methylation chip processing software packages are written in R, GMQN is written in R as well to increase compatibility with other software. Users can easily achieve GMQN standardization using the R package “GMQN”. Users can combine SWAN and BMIQ to perform parallel analysis on multiple CPUs using the two functions “gmqn_swan_parallel” and “gmqn_bmiq_parallel”.
By evaluating 450 k and EPIC array data in four separate application scenarios above, we found that GMQN can effectively minimize noise in public data and increase the accuracy of downstream analysis. GMQN will boost the two well-known methylation chip standardization methods, BMIQ and SWAN, even if it does not perform well in some scenarios, especially when the reference methylation distribution and the methylation data distribution to be standardized are vastly different, as in DNA methyltransferase gene knockout samples versus normal samples. Many DNA methylation array data standardization methods have been developed in recent years (Triche et al., 2013; Yousefi et al., 2013; Fortin et al., 2014; Niu et al., 2016; Xu et al., 2016; Xu et al., 2017; Wang et al., 2020), and they have proven to be invaluable in epigenetics research, especially for EWAS (Marabita et al., 2013; Wang et al., 2015). However, we believe that GMQN can improve the normalization effect to some degree, especially when there are no original data.
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Background: MiR-654-3p can repress malignant progression of cancer cells, whereas no relative reports were about its modulatory mechanism in sinonasal squamous cell carcinoma (SNSCC). This research committed to approaching modulatory effect of miR-654-3p on SNSCC cells.
Methods: Bioinformatics methods were utilized for analyzing interaction of miR-654-3p/cAMP-responsive element binding protein 1 (CREB1)/presenilin-1 (PSEN1). Expression levels of miR-654-3p, CREB1, and PSEN1 mRNA were assessed by quantitative real-time polymerase chain reaction. Western blot was completed for level assessment of CREB1, PSEN1, and epithelial–mesenchymal transition–related proteins. The targeted relationship between miR-654-3p and CREB1, or CREB1 and PSEN1 was authenticated via dual-luciferase assay and ChIP assay. A trail of experiments in vitro was used for detection of the effects of miR-654-3p/CREB1/PSEN1 axis on malignant progression of SNSCC cells.
Results: CREB1 as the downstream target mRNA of miR-654-3p could activate transcription of its downstream target gene PSEN1. Besides, miR-654-3p could target CREB1 to repress PSEN1 expression, thus restraining proliferation, migration, invasion, epithelial–mesenchymal transition, and hastening apoptosis of SNSCC cells.
Conclusion: MiR-654-3p as an antitumor gene targeted CREB1 to hamper malignant progression of SNSCC through miR-654-3p/CREB1/PSEN1 axis.
Keywords: MiR-654-3p, CREB1, PSEN1, sinonasal squamous cell carcinoma, malignant progression, epithelial–mesenchymal transition
INTRODUCTION
Sinonasal squamous cell carcinoma (SNSCC) is a malignancy derived from nasal sinuses, making up 65% of all cases of rhinocarcinoma (Al-Qurayshi et al., 2020). Despite relatively low morbidity of primary SNSCC (only takes up to 3%–5% of head and neck squamous cell carcinoma), its heterogeneity and variation in tissue are generally high, with unusual etiology (such as human papillomavirus, wood chips, leather debris); thus, research on its pathological mechanism, as well as diagnostic and therapeutic regimens, is warranted (Lewis, 2016). Analyses from perspectives of etiology, epidemiology, clinical features, and relatively genetic profiles yield out that SNSCC have markedly different features from other head and neck squamous cell carcinoma (cancer of pharynx, oral carcinoma), and thus, SNSCC can be regarded as a solitary carcinoma (Llorente et al., 2014). Main clinical symptoms of SNSCC conclude rhinocleisis, nosebleed, rhinorrhea, and facial pain; however, most patients present with advanced disease at diagnosis because this series of symptoms is inconspicuous in the early stage (Al-Qurayshi et al., 2020). Hence, a thorough inquiry of SNSCC is rather influential in the area of tumor research.
Existing studies exhibited that miR-654-3p exerts a tumor-repressive effect in varying cancers. For example, miR-654-3p hinders malignant progression of non–small cell lung cancer through PLK4 repression (Pu et al., 2020). MiR-654-3p hampers proliferative, migratory, and invasive potentials of hepatocellular carcinoma, and it is a potential prognostic biomarker (Yang et al., 2020). Besides, miR-654-3p downregulation betokens dismal outcomes of patients with colorectal cancer as well as facilitates malignant progression of the disease (Zhang et al., 2020). Nonetheless, previous studies of SNSCC failed to deal with miR-654-3p. To investigate the impact of miR-654-3p on occurrence and progression of SNSCC, this study focuses on modulatory effect of miR-654-3p on SNSCC.
cAMP-responsive element binding protein 1 (CREB1) as a member of CREB family binds to cAMP-responsive element, thus activating cAMP. Wilderness investigations manifested the involvement of CREB1 in multiplex signaling pathways relative to various cancer cells. For instance, a study demonstrated that imperatorin targets CREB1 to constrain transforming growth factor β 2/ERK axis, thus inhibiting metastasis of esophageal cancer (Xu et al., 2020). Hu et al. (2019), who looked at breast cancer, displayed that CREB1 exerts oncogenic effect through regulating CREB1/lin28/miR-638/VASP regulatory network. In addition, CREB1 is an oncogene in colon carcinoma (Han et al., 2020). Thus, CREB1 plays a vital role in modulating occurrence and progression of tumors. Nonetheless, the existing accounts fail to unveil the role and molecular mechanism of CREB1 in SNSCC, and therefore, we committed to unraveling this issue, as well as mechanism of tumorigenesis.
Dysregulation of presenilin-1 (PSEN1), the dominant component of γ-secretase complex, is a key regulator in tumorigenesis and progression, participating in biological and pathological processes of colorectal cancer, bladder cancer, liver cancer, and so on (Dabrowska et al., 2011; Deng et al., 2015; Ma et al., 2018). Current research denoted that PSEN1 is involved in multiple tumorigenesis, such as cell proliferation, migration, invasion, and apoptosis. PSEN1 hastens gastric cancer invasion and metastasis, which may be a possible biomarker and therapeutic target (Li et al., 2016). Besides, high expression of PSEN1, a tumor repressor, is implicated in the favorable prognosis of patients with type lumA breast cancer (Orzechowska et al., 2016). Numerous studies theorized that PSEN1 repression can hasten radiotherapy and chemotherapy resistance of varying cancers including esophageal cancer and bladder cancer (Deng et al., 2015; Meng et al., 2016). Nevertheless, earlier studies did not find molecular mechanisms by which PSEN1 modulates SNSCC progression. This study committed to unveiling upstream and downstream modulatory sites of PSEN1 in SNSCC progression and the possible impact of PSEN1 on SNSCC.
In the study, experimental results revealed that miR-654-3p hindered cell proliferation, migration, and invasion and stimulated cell apoptosis in SNSCC. Besides, miR-654-3p repressed cell malignant behaviors via targeting CREB1 in SNSCC. Meanwhile, it was ascertained that miR-654-3p downregulated PSEN1 through CREB1 suppression, thus constraining SNSCC cell malignant progression. Hence, miR-654-3p/CREB1/PSEN1 regulatory axis can serve as a novel target for SNSCC management.
MATERIALS AND METHODS
Bioinformatics Analysis
Downstream target genes of miR-654-3p were predicted through mirDIP, Targetscan, miRDB, and starBase databases (http://ophid.utoronto.ca/mirDIP/; http://www.targetscan.org/mamm_31/; http://mirdb.org/; http://starbase.sysu.edu.cn/starbase2/). Venn diagram was plotted for intersection. String database (https://string-db.org/) was used for protein–protein interaction (PPI) network analysis on genes in the intersection; those that had the highest connectivity were selected as downstream target genes. Targetscan was implemented for prediction of binding sites between downstream target genes and miR-654-3p. The htfTarget, TRRUST, and ENCODE databases were introduced to predict downstream target genes of CREB1, and the intersection was selected by plotting Venn diagram. JASPAR (http://jaspar.genereg.net/) was utilized to predict the binding sites of transcription factor CREB1 and the target gene.
Cell Culture
Human SNSCC cell line RPMI2650 (BNCC233970) was provided by BeNa Culture Collection. Cells were cultured in eagle minimal essential medium (ATCC, United States) with 10% fetal bovine serum (FBS; Thermo Fisher Scientific, United States) in an incubator (Thermo Fisher Scientific) at 37°C with 5% CO2.
Cell Transfection
MiR-654-3p mimic and inhibitor, as well as corresponding negative controls (NCs), were provided by Shanghai GenePharma Co. Ltd., China. Complementary DNA (cDNA) sequences of CREB1 and PSEN1 were inserted into pcDNA3.1 (Honor Gene, China) to construct CREB1 overexpression plasmid (oe-CREB1) and PSEN1 overexpression plasmid (oe-PSEN1). Cells were seeded in triplicate in a 24-well plate and were transfected with 500 ng miR-654-3p mimic, inhibitor, NCs, oe-CREB1 and oe-PSEN1plasmids, and empty plasmid by using 2.5 µL Lipofectamine 2000 (Thermo Fisher Scientific). At 48 h after transfection, transfection efficiency was assayed by quantitative real-time polymerase chain reaction (qRT-PCR). Primer sequences were as follows: miR-654-3p mimic 5′-UGG​UUU​ACC​GUC​CAC​AUA​CAU-3′; mimic-NC 5′-GCU​GCU​GAA​UCA​UUA​UCC​CCU​U-3′. miR-654-3p inhibitor 5′-AAG​GUG​AUG​GUC​AGC​AGA​CAU​A-3′; NC-inhibitor 5′-AAG​UCA​GGU​GAU​GGA​CAG​CAU​A-3′.
Flow Cytometry
In brief, 5 × 104 cells were inoculated into 24-well plates and cultured in an incubator. Forty-eight hours later, cells were rinsed twice with phosphate-buffered saline (PBS). Annexin V and propidium iodide (BD Biosciences, United States) were recommended for double-staining. BD FACSCanto II (BD Biosciences) flow cytometer was utilized for analysis.
Quantitative Real-Time Polymerase Chain Reaction
Trizol reagent (Thermo Fisher Scientific) was used to extract cell RNA. Hairpin-it miRNAs qRT-PCR kit (GenePharm) and PrimeScript RT Master Mix (Takara, China) were utilized for cDNA synthesis from miRNA and mRNA. SYBRA Green PCR Master Mix (Takara, Japan) was utilized for miRNA and mRNA expression detection. qPCR analysis was conducted on QuantStudio 3 (Thermo Fisher Scientific) PCR system per specifications (for primers, see Table 1). U6 and β-actin were taken as endogenous references for miR-654-3p and CREB1/PSEN1, respectively.
TABLE 1 | Primer sequences in qRT-PCR.
[image: Table 1]Western Blot
First, radioimmunoprecipitation assay lysis buffer was utilized for cell lysis, and after 15 min of centrifugation at 12,000 revolutions/min, the total protein concentration was assessed with bicinchoninic acid/protein detection kit (Thermo Scientific, New York, United States); 25 μg proteins were separated using 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Afterward, proteins were transferred to polyvinylidene fluoride (Bio-Rad Laboratories, Inc., United States) membrane, which was sealed with 5% skimmed milk for 1 h at room temperature and cultured overnight with primary antibodies at 4°C. Antibodies were all bought from Abcam. Primary antibodies were all rabbit antibodies: anti-CREB1 antibody, anti-PSEN1 antibody, anti–β-actin antibody, anti–E-cadherin antibody, anti–N-cadherin antibody, and antivimentin antibody. Secondary antibody was goat anti-rabbit immunoglobulin G (IgG) H&L (HRP).
Cell Counting Kit-8 Assay
RPMI2650 cells (1 × 104 cells/well) were seeded into a 96-well plate. On days 0, 1, 2, 3, and 4 of incubation, 10 μL CCK-8 solution (MedChem Express, United States) was supplemented to the culture medium for another 3 h of incubation. Afterward, a microplate reader (Bio-Rad Laboratories, Inc.) was implemented for assessment of optical density value at 450 nm.
Wound Healing Assay
RPMI2650 cells were seeded into 6-well plates (1 × 105 cells/well). After cell confluence reached 80%, a 20 μL pipette tip was implemented to create scratches. Cells were then cultured for 24 h. Cell migratory potential was presented as a change in the width of scratch gap before and after healing. A microscope (XDS-800D; Shanghai Caikon Optical Instrument Co., Ltd., China) was used to observe images, and ImageJ software was utilized for analysis (relative wound width = wound width 24 h/wound width 0 h).
Transwell Assay
First, 50 μL of Matrigel (BD Biosciences) was applied on the upper surface of 24-well plate Transwell inserts (BD Biosciences). Next, RPMI2650 cells (1 × 105 cells/well) were resuspended in serum-free medium and inoculated into the upper chamber, while culture medium with 10% FBS (Thermo Fisher Scientific) filled the lower chamber. Twenty-four hours later, cells were subjected to 4% paraformaldehyde for cell fixing and 0.1% crystal violet for cell staining. Finally, a microscope was used for observation, and ImageJ software was used for analysis.
Chromatin Immunoprecipitation
RPMI2650 cells were fixed with formaldehyde for 10 min to cross-linking of proteins with DNA, followed by fragmenting chromatin by an ultrasonic disruptor. After 10 min of centrifugation (4°C, 12,000g), the harvested cells were divided into two fractions for incubation overnight at 4°C with rabbit anti-IgG antibody (ab172730; Abcam, China) and CREB1 antibody (9,197; Cell Signaling, China), respectively. DNA–protein complex was precipitated with protein agarose/agarose, followed by centrifugation at 12,000g for 5°min, and the supernatant was discarded. Nonspecific complexes were eluted and decrosslinked overnight at 65°C. DNA fragments were then isolated and purified by phenol/chloroform. Primer sequences in qRT-PCR are presented in Table 2.
TABLE 2 | ChIP-qPCR primer sequences.
[image: Table 2]Dual-Luciferase Reporter Gene Assay
First, pmirGLO–CREB1–3′-UTR wild type (WT) and pmirGLO–CREB1–3′-UTR-mutant type (MUT), pmirGLO–PSEN1-promoter-WT and pmirGLO–PSEN1-promoter-MUT luciferase reporter vectors (Promega, United States) were constructed. MiR-654-3p mimic/mimic-NC and pmirGLO–CREB1–3′-UTR-WT/pmirGLO–CREB1–3′-UTR-MUT, and oe-NC/oe-CREB1 and pmirGLO–PSEN1-promoter-WT/pmirGLO–PSEN1-promoter-MUT were cotransfected into RPMI2650 cells. After 48 h of cell culture, luciferase activity of each transfection group was assayed with luciferase activity assay kit (Promega) per kit specification.
Statistical Analysis
GraphPad Prism 6 software (GraphPad Software, Inc., La Jolla, United States) was utilized for statistical analysis. All experiments were repeated in at least three replicates. The results were presented as mean ± standard deviation. t Test or one-way analysis of variance was performed for different comparisons. p < 0.05 means statistically significant differences. In figures, * represents p < 0.05.
RESULTS
MiR-654-3p Is a Modulator of Proliferation, Migration, Invasion, and Apoptosis of SNSCC Cells
To investigate possible function of miR-654-3p in SNSCC, we overexpressed or silenced miR-654-3p by transfecting miR mimic or miR inhibitor into SNSCC cells. qRT-PCR was conducted to assess transfection efficacy (Figure 1A). To confirm the influence of miR-654-3p on proliferative potential of SNSCC cells, CCK-8 assay was conducted on each transfection group. As shown in Figure 1B, compared with the control group, proliferative capability of cells in miR-mimic group notably decreased, whereas that of cells in miR-inhibitor group had the opposite result. Wound healing and Transwell assays were carried out for cell detection of migratory and invasive capabilities. As presented in Figures 1C,D, these abilities of cells in miR-mimic group conspicuously decreased, whereas those in miR-inhibitor group showed an opposite trend. Finally, to affirm the impact of miR-654-3p on cell apoptosis, flow cytometry was implemented to assess apoptotic ratio of cells in each transfection group. The results manifested that apoptotic ratio of cells in miR-mimic group was the highest, whereas that of cells in miR-inhibitor group was the lowest, indicating the promotion of miR-654-3p overexpression on cancer cell apoptosis (Figure 1E). Together these findings illustrated that overexpressed miR-654-3p could hinder proliferation, migration, and invasion and foster apoptosis of SNSCC cells.
[image: Figure 1]FIGURE 1 | MiR-654-3p hinders proliferation, migration, and invasion and fosters apoptosis of SNSCC cells. (A) qRT-PCR assessed miR-654-3p level in each transfection group. (B–D) CCK-8, wound healing, Transwell assays measured proliferative, migratory, and invasive abilities of cells in each transfection group, respectively. (E) Flow cytometry detected cell apoptosis in each transfection group; *p < 0.05.
MiR-654-3p Targets CREB1 in SNSCC Cells
Through miRDB, mirDIP, TargetScan, and starBase databases, 113 potential downstream target genes of miR-654-3p were predicted (Figure 2A). On the basis, STRING database was utilized to construct PPI network and to identify a target gene with the highest connectivity, by which CREB1 was screened out as the downstream target gene of miR-654-3p (Figure 2B). Targetscan was used to predict specifically targeted sites of miR-654-3p and CREB1, and miR-654-3p was predicted to bind CREB1 (Figure 2C). Next, dual-luciferase assay was carried out to validate their binding relationship. As illustrated in Figure 2D, forced expression of miR-654-3p constrained luciferase activity of WT-CREB1 3′-UTR, whereas there were no notable changes in luciferase activity of MUT-CREB1 3′-UTR, indicating the binding relationship between miR-654-3p and CREB1. Afterward, qRT-PCR and Western blot were conducted to assess whether miR-654-3p affects CREB1 level, respectively. CREB1 mRNA and protein expression conspicuously decreased in miR-mimic group; in the opposite, CREB1 expression was dramatically increased in miR-inhibitor group (Figures 2E,F). Hence, it could be speculated that upregulated miR-654-3p downregulated CREB1 level in SNSCC cells.
[image: Figure 2]FIGURE 2 | MiR-654-3p targets CREB1 in SNSCC cells. (A) Venn diagram of target genes predicted by miRDB, mirDIP, TargetScan, and starBase databases. (B) Genes of the Top10 highest connectivity in PPI network. (C) Targeted sites of miR-654-3p and CREB1 predicted by Targetscan. (D) The binding of miR-654-3p and CREB1 identified by dual-luciferase assay. (E) CREB1 mRNA level in each transfection group assessed by qRT-PCR. (F) CREB1 protein level in each transfection group measured via Western blot; *p < 0.05.
MiR-654-3p Is an Inhibitor in Malignant Progression of SNSCC via Targeting CREB1
Rescue experiments were designed to investigate the role of miR-654-3p/CREB1 regulatory axis on cell functional level. RPMI2650 cell line was utilized to establish miR-654-3p overexpression (miR-mimc + oe-NC) cell line, miR-654-3p and CREB1 overexpression (miR-mimic + oe-CREB1) cell line, and a control (NC-mimic + oe-NC) cell line for analysis of SNSCC cell biological functions. qRT-PCR, CCK-8, wound healing, and Transwell assays were conducted to assess CREB1 level, cell proliferative, migratory, and invasive capabilities of cells in each transfection group, respectively. qRT-PCR demonstrated that the decreased CREB1 level in miR-mimc + oe-NC group was reversed notably in miR-mimic + oe-CREB1 group (Figure 3A). Cell functional assays manifested that forced expression of miR-654-3p repressed proliferative, migratory, and invasive properties of SNSCC cells, whereas concurrent overexpressing miR-654-3p and CREB1 rescued these effects by miR-654-3p (Figures 3B–D). In addition, to evaluate the impact of miR-654-3p/CREB1 axis on apoptosis of SNSCC cells, flow cytometer was implemented for apoptotic detection of cells in each transfection group (Figure 3E). Compared with the NC-mimic + oe-NC group, the apoptotic ratio of cells in miR-mimc + oe-NC group was noticeably upregulated. But when compared with miR-mimc + oe-NC group, the apoptotic ratio of cells in miR-mimic + oe-CREB1 group was noticeably downregulated, demonstrating that the promoting effect of miR-654-3p on SNSCC cell apoptosis was reversed by CREB1. Moreover, numerous studies reported that CREB1 overexpression is associated with epithelial–mesenchymal transition (EMT) of cancer cells in a variety of cancers (Yan et al., 2018; Dong et al., 2019; Ma et al., 2019; Huang et al., 2020). On account of previous studies, we supposed that CREB1 may affect the EMT process of SNSCC cells; therefore, we carried out Western blotting to measure the expression levels of EMT-related proteins in each transfection group (Figure 3F). The results exhibited that miR-654-3p mimic repressed expression of stromal cell marker proteins N-cadherin and vimentin and increased expression of epithelial marker protein E-cadherin, but CREB1 could reverse this effect. To sum up, overexpressed miR-654-3p constrained proliferation, migration, invasion, and EMT process and facilitated cell apoptosis through targeting CREB1 in SNSCC cells.
[image: Figure 3]FIGURE 3 | MiR-654-3p is an inhibitor in malignant progression of SNSCC via targeting CREB1. (A) Expression of CREB1 mRNA of cells in each transfection group assessed through qRT-PCR. (B) CCK-8 assay measured proliferative potential of cells in each transfection group. (C) Wound healing assay detected migratory ability of cells in each transfection group. (D) Transwell assessed invasive capability of cells in each transfection group. (E) Flow cytometry assessed cell apoptosis in each transfection group. (F) Western blot measured expression levels of EMT-related proteins in each transfection group; *p < 0.05.
CREB1 Targets PSEN1 in SNSCC
After clarifying the impact of CREB1 on SNSCC cells, target genes of the CREB1 transcription factor were identified by htfTarget, TRRUST, and ENCODE databases and were overlapped, and 14 possible target genes were obtained (Figure 4A). A study (Gou et al., 2020) proved that dysregulation of PSEN1 expression is implicated in dismal prognosis of patients with head and neck squamous cell carcinoma. Hence, PSEN1 was selected to study whether it also serves as a key regulator in SNSCC. First, we explored whether CREB1 can bind to PSEN1 promoter and increase its expression. Possible binding sites of PSEN1 in the promoter region of CREB1 were identified by bioinformatics methods (Figure 4B). Subsequently, dual-luciferase assay was introduced to validate binding relationship between CREB1 and PSEN1. As depicted in Figure 4C, forced expression of CREB1 could enhance luciferase activity of WT-PSEN1 3′-UTR, whereas no effect was observed in luciferase activity of MUT-PSEN1 3′-UTR, indicating that there was a binding relationship between CREB1 and PSEN1. ChIP results exhibited that enrichment of PSEN1 at the CREB1 binding site in SNSCC cells was markedly increased (Figure 4D). After oe-CREB1 and oe-NC transfection into RPMI2650 cells, transfection efficiency of CREB1 was assayed (Figure 4E). qRT-PCR results displayed that forced expression of CREB1 could notably enhance PSEN1 level, whereas concurrent overexpression of miR-654-3p and CREB1 notably decreased PSEN1 level (Figure 4F). Collectively, CREB1 could bind to the promoter region of PSEN1 and promote transcription of PSEN1. MiR-654-3p could target CREB1 to suppress PSEN1 level.
[image: Figure 4]FIGURE 4 | CREB1 increases PSEN1 level at transcription level. (A) Venn diagram plotted based on possible target genes downstream of CREB1 predicted by htfTarget, TRRUST, and ENCODE databases. (B) The motif map of CREB1 binding site in PSEN1 promoter region and CREB1 transcription factor. (C) Dual-luciferase assay verified binding of CREB1 and PSEN1. (D) ChIP detected that CREB1 can bind to promoter region of PSEN1. (E) qRT-PCR verified transfection efficiency of CREB1. (F) qRT-PCR assayed PSEN1 level after overexpressing CREB1 or miR-654-3p; *p < 0.05.
MiR-654-3p Regulates PSEN1 via CREB1 to Hamper Malignant Progression of SNSCC Cells
In the above sections, we clarified that miR-654-3p could regulate CREB1 to hinder the malignant behaviors of SNSCC cells, and CREB1 could increase PSEN1 expression. To investigate whether miR-654-3p can affect malignant progression of SNSCC cells by regulating PSEN1 through CREB1, RPMI2650 cell line was utilized to establish miR-654-3p overexpression (miR-mimc + oe-NC) cell line, miR-654–3p and PSEN1 concurrent overexpression (miR-mimic + oe-PSSEN1) cell line, and control cell line (NC-mimic + oe-NC) to study cell biological functions. qRT-PCR results denoted that PSEN1 mRNA expression was prominently reduced in miR-mimc + oe-NC group, and forced expression of PSEN1 could restore the expression (Figure 5A). Next, cellular functional experiments manifested that forced expression of miR-654-3p and PSEN1 concomitantly could reverse the repressive impact of overexpressing miR-654-3p alone on SNSCC cell behaviors (Figures 5B–D). Cell apoptosis in each group was assayed through flow cytometry, which disclosed that the promotion effect of miR-654-3p overexpression on SNSCC cells could be reversed by concomitant overexpression of miR-654-3p and PSEN1 (Figure 5E). EMT-related proteins were subjected to Western blot for expression analysis. As plotted in Figure 5F, compared with the control group, E-cadherin expression was notably increased, and N-cadherin and vimentin expression was conspicuously reduced in miR-mimc + oe-NC group, whereas those levels exhibited the opposite trend in miR-mimic + oe-PSEN1 group, demonstrating that miR-654-3p could repress EMT process in SNSCC cells, whereas this effect could be reversed by forced expression of PSEN1. Hence, miR-654-3p could regulate PSEN1 via CREB1 to hamper malignant progression of SNSCC cells.
[image: Figure 5]FIGURE 5 | MiR-654-3p regulates PSEN1 via CREB1 to hamper malignant progression of SNSCC cells. (A) qRT-PCR assayed PSEN1 mRNA level in each transfection group. (B) CCK8 assayed cell proliferation in each group. (C) Wound healing assay assessed cell migratory property in each group. (D) Transwell assayed cell invasion in each group. (E) Flow cytometry assayed cell apoptosis in each group. (F) Western blot assayed EMT-related protein level in each group; *p < 0.05.
DISCUSSION
SNSCC is the most common rhinocarcinoma, whereas relative basic research and diagnostic and therapeutic avenues are scarce. The incidence of SNSCC is low compared with other cancers; thus, it is hard to obtain pathological specimens, which leads to less research in SNSCC than other cancers (Lechner et al., 2020). Despite low morbidity, SNSCC has high heterogeneity, which creates hardships for accurate diagnosis and therapeutic regimen establishment in clinical. Current studies evinced that miRNAs can influence onset and progression of SNSCC (Zhao and Wang, 2018; Meng et al., 2020). Hence, this study researched SNSCC pathogenesis from the perspective of miRNAs.
Existing reports manifested that miR-654-3p is a key miRNA that exerts an antitumor role (Pu et al., 2020; Zhang et al., 2020). Duan et al. (2020) disclosed that miR-654-3p hinders cell proliferation, invasion, and sphere formation in breast cancer. Xiong and others manifested that miR-654-3p constrains cell viability and hastens cell apoptosis via targeting RASAL2 in non–small cell lung cancer (Xiong et al., 2021). But previous evidence rarely reported the modulatory role of miR-654-3p in SNSCC. In agreement with earlier studies, our research displayed that miR-654-3p could repress cell malignant behaviors in SNSCC.
In this study, we manifested by bioinformatics methods that CREB1 was a target gene downstream of miR-654-3p, which was proven to facilitate varying malignancies including glioma as a proto-oncogene transcription factor (Chen et al., 2017). Ye et al. (2017) disclosed that CREB1 is markedly increased in colorectal cancer and plays as an oncogene. Li et al. (2020) reported similar findings that forced expression of CREB1 reversed repressive effect of miR-383 on colorectal cancer cell proliferation and glycolysis, as well as promotion effect on cell apoptosis. Moreover, CREB1 silence hinders cell proliferation and EMT in prostate cancer (Wang et al., 2017). As depicted by previous studies, miR-654-3p could decrease the CREB1 level, thus constraining promotion effect of CREB1 on proliferation and EMT in SNSCC.
CREB, as a transcription factor, can bind to CRE sequence and modulate gene transcription, thus upregulating or downregulating specific gene expression (Cha-Molstad et al., 2004). In this study, we revealed that PSEN1 was a target gene downstream of CREB1, and CREB1 fosters PSEN1 transcription through bioinformatics analysis. PSEN1, mainly located in the endoplasmic reticulum, is a ubiquitously expressed protein with multiple transmembrane domains (Li et al., 2016). Earlier studies denoted that miR-193a downregulates the PSEN1 level to constrain cell proliferation and invasion of gastric cancer (Pan et al., 2021), which was in accord with our results. We confirmed through cellular experiments and rescue experiments that miR-654-3p modulated CREB1/PSEN1 axis to constrain proliferation, migration, and invasion and induce apoptosis of SNSCC cells. Besides, PSEN1/γ-secretase complex is conducive to the processing of P-cadherin, N-cadherin, and E-cadherin, thus modulating cell movement and invasion (Li et al., 2016). The result that PSEN1 fosters cancer cell EMT was also confirmed in gastric cancer and lung adenocarcinoma (Guo et al., 2020; Pan et al., 2021). Hence, we speculated that PSEN1 could modulate SNSCC cell EMT and verified the promotion effect by assessing expression of EMT-related proteins in multiple cotransfection groups, whereas miR-654-3p could modulate PSEN1 to hamper SNSCC cell EMT, which was in accord with earlier studies. These findings provide molecular mechanism by which miR-654-3p functions on SNSCC, which lay groundwork of miR-654-3p as a tumor repressor and contribute to precise treatment for SNSCC.
In summary, this study verified that miR-654-3p could target CREB1 to decrease PSEN1 level, thus hindering SNSCC cell proliferation, invasion, migration, and EMT and inducing cell apoptosis. Our research sufficiently proofed the connection between miR-654-3p expression and SNSCC malignant progression. Nevertheless, this study is deficient. The main weakness is the failure in identifying signaling pathways that miR-654-3p/CREB1/PSEN1 axis participates. Further work is required to investigate relative signaling pathways.
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Hepatocellular carcinoma (HCC) has emerged as a primary health problem and threat to global mortality, especially in China. Since pyroptosis as a new field for HCC prognosis is not well studied, it is important to open a specific prognostic model. In this study, consensus clustering method for 42 pyroptosis-related genes to classify 374 HCC patients in the TCGA database. After cox regression analysis of the differentially expressed genes between the two clusters, LASSO-Cox analysis was then performed to construct a pyroptosis-related prognostic model with 11 genes including MMP1, KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A. The ICGC dataset was served as the validation cohort. Patients in the high-risk group had significantly lower overall survival (OS) rates than those in the low-risk group (p < 0.05). COX regression analysis showed that our model could be used as an independent prognostic factor to predict prognosis of patients and was significantly correlated with clinicopathological characteristics. Nomogram showing the stability of the model predicting the 1, 3, 5 year survival probability of patients. In addition, based on the risk model, ssGSEA analysis revealed significant differences in the level of immune cell infiltration and activation of immune-related functional pathways between high and low-risk groups, and patients with the high-risk score may benefit more from treatment with immune checkpoint inhibitors. Furthermore, patients in the high-risk group were more tend to develop chemoresistance. Overall, we identified a novel pyroptosis-related risk signature for prognosis prediction in HCC patients and revealed the overall immune response intensity of the tumor microenvironment. All these findings make the pyroptosis signature shed light upon a latent therapeutic strategy aimed at the treatment and prevention of cancers.
Keywords: pyroptosis, hepatocellular carcinoma, prognosis, tumor microenvironment, risk model, chemoresistance
INTRODUCTION
Hepatocellular carcinoma (HCC), accounting for approximately 90% of all primary liver cancers, is one of the most common and lethal malignancies in the world (Bray et al., 2018). Since the symptoms and physiological features of HCC are not easily detected at an early stage, making it usually impossible for 80% of patients to be treated by surgery at the time of diagnosis, the 5 year survival rate of their patients is still less than 20% despite great progress in current treatment strategies for HCC (Zongyi and Xiaowu, 2020).
Pyroptosis is a novel programmed cell death triggered by inflammatory bodies, which is characterized by the continuous expansion of cells until cell membrane rupture, resulting in the release of cellular contents and then causing a strong inflammatory response (Zhang et al., 2018; Frank and Vince, 2019). The occurrence of pyroptosis depends on the inflammatory caspase and GSDMs protein family. Simply put, the activated caspase cleaves the GSDMs protein and releases its N-terminal domain, which binds membrane lipids and punches holes in the cell membrane, resulting in changes in cell osmotic pressure, and then swells until the cell membrane ruptures (Ding et al., 2016; Feng et al., 2018).
The mechanism and function of pyroptosis in the tumor have been extensively studied, but its relationship with tumor prognosis is not clear. This is because of the complex interaction between pyroptosis and cancer, which leads to pyroptosis as an inflammatory death that can not only inhibit the progression of cancer but also promote tumor growth by providing a suitable microenvironment for tumor cells (Xia et al., 2019). Increasing studies have demonstrated that pyroptosis can promote immune evasion of tumor cells by disturbing the immune microenvironment. Luan et al. (Luan and Ju, 2018) described that activated caspase-1 stimulate pyroptosis and release pro-inflammatory cytokines, which exert a role in promoting HCC. Additionally, NLRP3 can induce pyroptosis and produce mature IL- 1β or IL- 18 to impair the host immune response in gastric cancer (Pachathundikandi et al., 2020). Therefore, further investigation of the role of pyroptosis in HCC is needed to provide new targets and biomarkers for individual treatment and prognosis of HCC.
Classification of HCC patients by high-throughput sequencing technology are a new method, which can accurately identify cancer features and guide clinicians in appropriate treatment strategies. It is therefore of outstanding interest to develop a brand-new gene signature associated with pyroptosis to evaluate the prognosis of individuals with HCC, especially the guidance of targeted therapy.
In the present study, we clustered 374 patients with HCC according to pyroptosis-related genes. On this basis, lasso-cox regression analysis was used to establish a pyroptosis-related risk signature, which represents an interesting new way to explore the prognostic value of patients with HCC, reflecting the immune microenvironment of the tumor and sensitivity to chemotherapy.
MATERIALS AND METHODS
Data Acquisition
RNA sequencing data and corresponding clinical information of 374 HCC patients were downloaded from the TCGA database (http://cancergenome.nih.gov/) as a train set. Similarly, 231 HCC patients were obtained from ICGC (LIRI-JP) (https://dcc.icgc.org/) as a validation set. Patients with no survival information will be excluded from the cohort.
Differentially Expressed Pyroptosis-Related Genes
We extracted 52 pyroptosis-related genes from previously published literature for the follow-up study, as shown in Supplemental Table S1. The “limma” algorithm in R software was performed to obtain the differentially expressed genes (DEGs) according to the screening criteria (p-value<0.05).
The STRING database (https://string-db.org/) was used to build a protein-protein interaction network (PPI) on DEGs and R software was carried out to analyze the inter-regulatory relationships between DEGs (cutoff = 0.4).
Consensus Clustering
Consensus Clustering was performed to confirm different pyroptosis-related subtypes associated with pyroptosis regulators expression via the k-means clustering. The appropriate number of stable HCC clusters was calculated using a clustering algorithm in the “ConsensusClusterPlus” package. 1,000 iterations were performed to ensure the accuracy of the final classification. We screened the DEGs for subsequent analysis based on the samples in the different classifications obtained from the previous clustering analysis. |log2FC| >1 and adjusted p-value <0.05 were considered statistically significant.
Construction and Validation of the Pyroptosis-Related Prognostic Signature
First, DEGs were subjected to univariate cox analysis to obtain genes associated with prognosis in patients with HCC (p-value<0.00001). The obtained prognosis-related genes were then used for Lasso-Cox analysis using the “glmnet” package with 10-fold cross-validation to prevent overfitting of the model, thus obtaining the genes and their coefficients for model construction. The formula for the risk score is as follows:
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Where N = 11, Expi indicates the expression value of eleven genes, and Coei represents the coefficient of the corresponding gene. Patients were classified into high-risk and low-risk groups based on the calculated median risk score, and overall survival (OS) of patients with HCC between two groups was performed by Kaplan-Meier analysis using the “survival” and “survminer” packages. PCA analysis reduces the dimensionality of multivariate data to two or three principal components, which can be visualized graphically with minimal information loss. PCA analysis based on 11 genes signature was carried out by the “Rtsne” package. Univariate cox analysis was carried out to discern latent prognostic factors, and risk score determined by multivariate cox analysis could be used as independent prognostic factor for HCC patients. The ability of the risk model to predict prognosis in HCC patients was assessed using receiver operating characteristic curves (ROC) generated by the “SurvivalROC” package.
Construction of a Prognostic Nomogram
We created a predictive nomogram based on risk score and clinicopathological characteristics to predict the OS probability of patients with HCC at 1, 3, and 5 years. Calibration plots were used to verify the accuracy of the prediction performance of the prognostic nomogram.
Genetic Alterations and Functional Analyses
The Liver Hepatocellular Carcinoma (TCGA, Firehose Legacy) dataset which contained 379 patients were selected for alteration analysis of 11 genes from the cBioPortal (www.cbioportal.org). mRNA expression z-scores (RNA Seq V2 RSEM) were obtained using a z-score threshold of ± 2.0. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on DEGs were performed by employing “clusterProfiler” package. GSEA was conducted to examine a marked difference in the gene set between the low- and high-risk groups in the enrichment of the MSigDB cluster (c2. cp.kegg.v7.4. symbols.gmt). In addition, the activation of various immune cells subsets and immune-related pathways in high- and low-risk groups was examined by utilizing single-sample gene set enrichment analysis (ssGSEA). Expression levels of 47 immune checkpoints were evaluated in high and low-risk groups.
Drug Sensitivity Assessment
The sensitivity of patients with HCC in high- and low-risk groups to four common chemotherapy agents was assessed via the Genomics of Drug Sensitivity in Cancer database (https://www.cancerrxgene.org/). Half maximal inhibitory concentration (IC50) was calculated by using “pRRophetic” package.
Statistical Analysis
All strategy analysis is processed through R software (version 4.0.5). The categorical variables were analyzed using pearson’s chi-square test. Kaplan-Meier analysis and log-rank test were conducted to evaluate the statistical significance in OS between patients in high- and low-risk groups. Univariate and multivariate Cox regression analyses were applied to assess independent prognostic factors. Mann-Whitney test was used to evaluate the ssGSEA score for immune cell infiltration and immune pathway activation in the two risk groups.
RESULTS
Identification of Pyroptosis-Related DEGs in Normal and HCC Tissues
We first extracted 52 pyroptosis-related genes from the TCGA database and then performed differential expression analysis on them in normal and tumor tissues. The results of the heatmap demonstrated that 42 pyroptosis-related genes were identified as DEGs, of which 3 pyroptosis-related genes were downregulated in the tumor, while the remaining 39 genes were upregulated (Figure 1A). To better understand the mode of interaction between these pyroptosis-related DEGs, protein-protein interaction (PPI) analysis of DEGs was conducted with the highest confidence score (0.9) using Homo sapiens dataset, and PPI network retained 31 hub DEGs with complex regulatory relationships (Figure 1B). Furthermore, we calculated the correlation coefficients between genes based on the screening criterion (cutoff >0.4), and the results showed that most of these DEGs were positively regulated, except for CHMP2A and SCAF11, which were negatively regulated (Figure 1C). We preliminarily conclude that most of these pyroptosis-related differentially expressed hub genes affect tumor development and progression by means of positive regulation between each other.
[image: Figure 1]FIGURE 1 | Analysis of the differential expression of pyroptosis-related genes in tumor and normal tissues and their inter-regulatory effects. (A) The heatmap showed the expression levels of 42 pyroptosis-related genes in tumor and normal tissues, where red indicates high expression and blue indicates low expression. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Protein–Protein Interaction interactions among hub pyroptosis-related DEGs. (C) The correlation network among pyroptosis-related DEGs, where red indicates positive regulation and blue indicates negative regulation. A darker color of the line between genes indicates a more significant correlation.
Identification of HCC Classification Based on 42 Pyroptosis-Related DEGs
Based on the expression of 42 pyroptosis-related DEGs together with patient survival information, we identified 2 clusters with unsupervised clustering methods in the TCGA cohort, containing 210 samples in cluster 1 and 160 samples in cluster 2 (Figure 2A). The result of the survival analysis demonstrated that the OS time of patients in cluster two was significantly poorer than that of cluster 1 (Figure 2B). To further explore the differences between the two clusters, we first screened and obtained the 2,291 DEGs of the two clusters according to the screening criteria (logFC>1, fdr<0.05). DEGs expression profiles and clinicopathologic characters comprising age, grade, stage, gender, and survival status were presented on the heatmap, and we found that the expression of most DEGs and the number of patients with high clinicopathological grade were significantly higher in cluster 2 (Figures 2C,D).
[image: Figure 2]FIGURE 2 | Identification of HCC classification based on pyroptosis-related DEGs. (A) 370 patients with HCC were divided into two clusters by the consensus clustering matrix (K = 2). (B) Kaplan-Meier OS analysis of HCC patients in two clusters. (C) Heatmap displaying the expression of DEGs in classification and the relationship between clinicopathologic characters and classification. “Fustat” represents the survival status, where “0” indicates that the patient is still alive and “1” indicates that the patient has died. ***p < 0.001. (D) The number of patients with different clinicopathological grades in two clusters.
GO and KEGG Analyses
To further determine the potential function of DEGs between the two clusters, GO and KEGG analysis were conducted in R software. GO analysis was grouped into three parts: biological process (BP), cellular component (CC) and molecular function (MF). As displayed in Figure 3A, the results of the GO analysis revealed that these DEGs were abundantly enriched in various important immune responses, such as complement activation, B cell-mediated immunity, positive regulation of lymphocyte activation, humoral immune response mediated by circulating immunoglobulin, phagocytosis, immune response-activating signal transduction and immune receptor activity. Further, KEGG enrichment highlighted the role of Cytokine-cytokine receptor interaction, Chemokine signaling pathway, Cell cycle, Cell cycle, Th1 and Th2 cell differentiation, Drug metabolism, Primary immunodeficiency pathways, and so on (Figure 3B).
[image: Figure 3]FIGURE 3 | Enrichment analysis of the differentially expressed genes. (A) GO analysis. (B) KEGG analysis.
Development of a Pyroptosis Risk Signature in TCGA Cohort
Considering the two-sided effect of pyroptosis on tumors, we further explored the prognostic value of pyroptosis risk signature. Univariate Cox regression analysis was performed to obtain 43 prognosis-related genes in the TCGA cohort, and the results showed that all genes were high-risk genes in the HCC (HR > 1, Figure 4A). To shrink the range of candidate genes for building prognostic model, a Lasso Cox regression was applied to the training cohort. Eleven genes including MMP1, KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A, and their coefficients were eventually maintained, and the optimum λ value was determined via the minimum parameter (Figures 4B,C). The formula for calculating the risk score is determined as follows:
[image: image]
[image: Figure 4]FIGURE 4 | Construction of a pyroptosis risk signature in the TCGA cohort. (A) Univariate Cox regression analysis to find prognosis-related genes. (B) The Cross-Validation fit curve calculated by lasso regression method. (C) LASSO coefficient profiles of 11 potential prognostic genes. (D) Genetic alterations of 11 prognostic genes in HCC by cBioPortal database. (E) Spearman correlation analysis of eleven genes in the TCGA cohort. (F) The distribution and median value of the risk scores. (G) Patient survival status distribution in the high- and low-risk groups. (H) PCA plot analysis. (I) Kaplan-Meier overall survival curves for patients assigned to high- and low-risk groups based on the risk score. (J) ROC curve showing the prognostic value of pyroptosis risk scores on the 1-, 3-, and 5 years survival rate.
Moreover, we evaluated the genetic alterations of 11 genes in the TCGA database through the cBioPortal website. The results showed that the mutation frequencies of genes including MEX3A, CBX2, KPNA2, and LPCAT1 were 21%, 15%, 13%, and 10% respectively, with amplification being the most common alteration feature (Figure 4D). Additionally, there was a significant correlation between all 11 genes (Figure 4E). Then, we divided the patients into high- and low-risk groups based on the median risk score. Meanwhile, our study suggested that risk score was increased accompanying higher patient risk level and patients in the high-risk group had higher mortality and shorter survival times (Figures 4F,G). PCA analysis reduces the dimensionality of multivariate data and thus visualizes it graphically. Our results showed that patients in different risk groups were divided into two clusters following PCA analysis (Figure 4H). Besides, Kaplan-Meier analysis indicated that patients with high-risk score were significantly associated with poor prognosis (Figure 4I). The received operating characteristic (ROC) curve was performed to assess the accuracy and feasibility of pyroptosis risk signature to predict survival, and the results revealed that the area under the ROC curve (AUC) was 0.785 at 1 year, 0.710 at 3 years, and 0.671 at 5 years, respectively, displaying a favorable predictive value (Figure 4J).
Validation of a Pyroptosis Risk Signature in an External Cohort
To better verify the predictive power of our risk signature, 231 patients with HCC from the ICGC database were used to create a validation cohort. As shown in Figure 5A, 11 genes were also found to be well correlated with each other in the ICGC database. Then, these cases were classified into low- and high-risk groups (Figure 5B). As with the training group, the number of deaths in the high-risk group was significantly higher compared to the low-risk group (Figure 5C). The PCA analyses demonstrated discernible dimensions between the two groups (Figure 5D). Consistently, Kaplan-Meier analysis showed that patients in the high-risk group had significantly worse survival times than those in the low-risk group (Figure 5E). In addition, the AUCs of 1, 3, and 5 year clinical outcomes were separately 0.750, 0.772, and 0.503, suggesting a good predictive efficacy (Figure 5F). It should be noted that the lack of data on patients with survival beyond 5 years in the low-risk group resulted in the AUCs at 5 years close to 0.5. Collectively, the results obtained from the validation cohort presented a satisfactory performance for the predictive capability of the risk signature.
[image: Figure 5]FIGURE 5 | Validation of a pyroptosis risk signature in the ICGC cohort. (A) Spearman correlation analysis of eleven genes in the ICGC cohort. (B) The distribution and median value of the risk scores. (C) Patient survival status distribution in the high- and low-risk groups. (D) PCA plot analysis. (E) Kaplan-Meier overall survival curves for patients assigned to high- and low-risk groups based on the risk score. (F) ROC curve showing the prognostic value of pyroptosis risk scores on the 1-, 3-, and 5 years survival rate.
Independent Prognostic Value of the Pyroptosis Risk Signature
Univariate and multivariable cox regression analyses were applied to analyze whether risk score could be used as an independent prognostic factor to predict prognosis. Univariate cox analysis revealed that high-risk score was markedly associated with poor prognosis (p < 0.001, HR = 3.055, 95 %CI: 2.301–4.055). Other variables associated with worse prognosis consisted of tumor stage and T stage. Multivariable cox demonstrated that higher risk score was independently correlated with poorer survival, indicating that it could be served as an independent prognostic factor for HCC (p < 0.001, HR = 2.737, 95 %CI: 2.036–3.681) (Figure 6A). These results were validated via the ICGC cohort, which completely echoed the above results (p < 0.001, HR = 1.133, 95 %CI: 1.072–1.198) (Figure 6B).
[image: Figure 6]FIGURE 6 | Prognostic value of the pyroptosis risk signature in HCC. (A,B) Univariate and multivariate Cox analyses evaluating the independent prognostic value of the pyroptosis signature in terms of OS in HCC patients in TCGA and ICGC cohorts. (C) Heatmap showing the relationship between clinicopathological characteristics and different risk groups. **p < 0.01, and ***p < 0.001.
In addition, 11 gene expression profiles and clinicopathologic features from the TCGA cohort were presented in the heatmap Figure 6C and Table 1, and we found that the expression of 11 genes was significantly higher in the high-risk group and that tumor stage, grade, and patient survival status showed significant differences between the high- and low-risk groups (p < 0.01).
TABLE 1 | Detailed distribution of the number of patients with different clinicopathological characteristics in low- and high-risk groups.
[image: Table 1]Construction and Validation of the Prognostic Nomogram
To predict the prognosis of patients more intuitively, a nomogram was created to predict the probability of OS at 1, 3, 5 years (Figure 7A). Variables including age, stage, and risk score were enrolled in the nomogram, and the total score obtained by summing up all of the scores corresponding to each variable was used to calculate the survival probability of each individual. In addition, as seen in Figures 7B–D, the calibration plots indicated a favorable agreement of the prognostic nomogram between the actual and predicted probabilities. Overall, our data suggested that the nomogram had high confidence in predicting patient survival at 1, 3, 5 years and hold promise for improved clinical application.
[image: Figure 7]FIGURE 7 | Construction and Validation of the Prognostic Nomogram. (A) Prognostic nomogram for predicting OS probability of patients at 1, 3, 5 years. (B–D) Calibration curves of nomograms for predicting 1, 3, and 5 year survival probability in TCGA cohort.
GSEA Identifies Pyroptosis-Related Signaling Pathways
To understand the molecular mechanisms that may be involved in HCC and find new potential therapeutic targets, we applied GSEA to compare the high and low-risk groups. The signaling pathways enriched in the high-risk group were associated with processes that promote tumor development, such as cell cycle, DNA replication, p53 signaling pathway, MTOR signaling pathway, pathways in cancer, VEGF signaling pathway, TGF-β signaling pathway, and WNT signaling pathway (Figure 8A).
[image: Figure 8]FIGURE 8 | GSEA enrichment between low- and high-risk groups. (A) GSEA analysis showing that genes were enriched for the characteristics of malignant tumor in the high-risk group.
Pyroptosis-Related Risk Signature Was Significantly Associated With Tumor Immune Microenvironment
To further explore the effect of pyroptosis signature on the immune microenvironment, ssGSEA was applied to analyze the level of immune cell infiltration and activation of immune-related functional pathways in high- and low-risk groups. We found that patients with high-risk score had significantly higher proportions of immune cells including aDCs, Macrophages, Tfh, Treg, but significantly lower proportions of B cells, Mast cells, NK cells (Figure 9A). In addition, there were statistically significant differences in the score of immune-related functions, except for the Cytolytic activity, Inflammation promoting, and Parainflammation in the high- and low-risk groups (Figure 9B). Regarding ssGSEA analysis in the ICGC cohort, the results for the level of immune cell infiltration were generally consistent with the TCGA cohort (Figure 9C), but only three immune-related functions (e.g., MHC class I, Type-I IFN response, and Type-II IFN response) showed significant differences (Figure 9D).
[image: Figure 9]FIGURE 9 | The immune status difference between high- and low-risk HCC patients. (A–D) Comparison of immune cell abundance and immune pathway activation in high- and low-risk groups in the TCGA and ICGC cohort. (E,F) Immune checkpoint expression in high- and low-risk groups in the TCGA and ICGC cohort. (G) Heatmap showing expression of the pyroptosis-related genes in the high- and low-risk groups.
On the basis of previous study that immune checkpoints play an essential role in tumor immune escape, we examined the expression of these molecules between high- and low-risk groups. We found that patients with high-risk score were characterized by high expression of most immune checkpoints (i.e., PDCD1, CTLA-4, HAVCR2, LAG-3, and et al.) (Figures 9E,F). These results suggest that patients with high risk are more likely to form an immunosuppressive tumor microenvironment by upregulating the expression of these molecules. Moreover, the heatmap showed that pyroptosis-related genes were generally upregulated in HCC patients with high-risk score (Figure 9G).
High Risk Score Tended to Chemotherapy Resistance
Chemotherapy resistance is a common phenomenon in the treatment of advanced tumors, and it is also an insurmountable difficulty at present. In the present study, we investigated the IC50 values of four common chemotherapy agents for HCC including Sorafenib, Cisplatin, Docetaxel, and Rapamycin in high- and low-risk groups. Our results showed that the IC50 values for the four chemotherapy agents were significantly higher in the high-risk group, indicating that patients with high-risk score were more prone to develop chemoresistance (Figure 10A).
[image: Figure 10]FIGURE 10 | Chemotherapeutic response in the high-risk and low-risk groups. (A) Box plot visualizing the IC50 of Sorafenib, Cisplatin, Docetaxel, and Rapamycin between low- and high-risk HCC patients.
DISCUSSION
HCC remains one of the most lethal malignancies, with the second-highest mortality rate of all cancers worldwide (Mattiuzzi and Lippi, 2020). An increasing number of studies have confirmed the important role of pyroptosis in tumors, and the findings of the relationship between pyroptosis and tumors are not entirely consistent, indicating the heterogeneity of tumors and the complexity of the immune microenvironment. Pyroptosis can not only impair the progression of the tumor but also create a microenvironment suitable for tumor cell growth and thus contribute to tumor development (Xia et al., 2019). In recent years, many models have been constructed based on data mining of gene expression profiles and clinical outcomes of HCC(Liu et al., 2020b; Hong et al., 2020). However, the perception about the diagnostic and prognostic value of pyroptosis for HCC is still insufficient.
In the present study, we performed consensus clustering to identify two clusters based on 42 pyroptosis-related DEGs, which showed significant survival differences in clusters one and 2. The DEGs between the two clusters were then explored, and the results showed enrichment in terms of functions associated with immune response. To further investigate the prognostic value of pyroptosis on HCC, DEGs were analyzed using univariate Cox and LASSO Cox regression analysis to construct an 11-gene risk signature. GSEA analysis revealed that patients in the high-risk group were associated with activation of oncogenic pathways. When exploring the state of the immune microenvironment, there was a significant difference in the level of immune cell infiltration and immune-related pathway activation in patients with high and low-risk score, and the expression of immune checkpoints was significantly higher in the high-risk group. Drug sensitivity analysis indicated worse chemotherapy outcomes in high-risk groups. The results of this study highlight the potential research value of pyroptosis in HCC.
Here, our pyroptosis risk signature was constructed from 11 risk molecules, including MMP1, KPNA2, LPCAT1, NEIL3, CDCA8, SLC2A1, PSRC1, CBX2, HAVCR1, G6PD, MEX3A, of which KPNA2, LPCAT1, CBX2, MEX3A had higher mutation frequencies in patients with HCC. Previous reports indicate that KPNA2 contributed to the inflammatory processes in tumors (Cai et al., 2016) and was also involved in the carcinogenesis of various malignancies such as melanoma (Yang et al., 2020b), HCC (Zan et al., 2019), colon cancer (Takada et al., 2016), and so forth, and high expression of KPNA2 was associated with poor outcomes of patients. Mao et al. (2019) identified that interfering with the expression of CBX2 inhibits HCC cell proliferation and increases apoptosis. Liu et al. (2020a) emphasized the important research value of the miR-205-LPCAT1 axis in regulating the progression of various tumors. MEX3A was overexpressed in HCC tissue and was also identified as an independent prognostic factor for HCC patients (Yang et al., 2020a). MMP1, a member of the zinc-dependent endopeptidase family, has been proved to be associated with proliferation and metastasis in various cancers (Kessenbrock et al., 2010). Zhou et al. (2017) proposed that NEIL3 maintains genome stability during the S/G2 phase by targeting repair of oxidative damage at telomeres. Interestingly, recent studies indicate that NEIL3 contributes to repairing oxidative telomere damage at mitosis, which is crucial for fighting senescence in HCC cells (Zhao et al., 2021). Knockdown of CDCA8 inhibits HCC cell progression by restoring ATF3 tumor suppressor and inactivating AKT/beta-Catenin signaling (Jeon et al., 2021). SLC2A1 was the gene encoding glucose transporter 1 (Glut-1). GLUT1/SLC2A1, a uniporter that was expressed by various carcinomas, may participate in malignant neoplasm glycometabolism and was associated with the prognosis of gliomas patients (Komaki et al., 2019). Overexpression of PSRC1 promotes the expression of genes related to cell proliferation (Meroni et al., 2021). Ye et al. (2018). identified a potential mechanism of TIM-1(HAVCR1)+Breg cell-mediated immune evasion in HCC. G6PD was also up-regulated in HCC as well as promoting cell invasion and migration (Lu et al., 2018).
It is generally accepted that there is a close interaction between tumors and the complex immune system, and various cancer immunotherapies have been designed to identify and eliminate tumor cells. Natural killer (NK) cells are an essential component of anti-tumor immunity, which can not only directly kill tumor cells, but also affect the anti-tumor behavior of other immune cells (Yuen et al., 2016). Granzyme B in NK cells possessed the same cleavage site as caspase-3, which can cleave GSDME to induce pyroptosis (Zhang et al., 2020). Previous studies have observed that GSDME-induced pyroptosis to suppress tumors was disappeared in mice lacking NK cells and CD8+ T cells, suggesting that this inhibitory effect is reliable on these two immune effector cells in the immune system (Zhang et al., 2020). Our results show that the infiltration of NK cells in the high-risk group was significantly reduced. Although CD8+ T cells were not significantly different, the absence of NK cells may affect tumor cells being induced to pyroptosis.
Besides, increasing studies observed that tumor-associated macrophages were associated with tumor-promoting inflammation and may favor tumor initiation and progression (Mantovani et al., 2017; Ngambenjawong et al., 2017). Meanwhile, high-level intratumoral Tregs designed a generalized immunosuppressive tumor microenvironment and protected tumor cells from the host’s immune surveillance (Nishikawa and Koyama, 2021). Previous study proposed that the presence of B cells in tumors was associated with a better prognosis for patients receiving immunotherapy, and they speculate that B cells may support CD8+T cells to effectively fight tumor cells (Cabrita et al., 2020; Petitprez et al., 2020). Our data illustrated that the infiltration levels of macrophages and regulatory T cells (Tregs) were upregulated for HCC patients with high-risk score, while B cells were downregulated.
Notably, our study found that aDCs were significantly higher in the high-risk group. It has been shown that dendritic cells are the most important cell type for initiating cancer T-cell responses (Hildner et al., 2008; Binnewies et al., 2019), which is a particular advantage for patients with high-risk score. In addition, we found that the type I and II IFN response were decreased in the high-risk group, which was validated in the cohort. Type I interferons (Type I IFNs) are involved in the process of cancer immunoediting, which can not only inhibit the recruitment and activation of Tregs (Hashimoto et al., 2014; Hirata et al., 2019), but also the depletion of Type I IFNs affects the intensity of NK cells in anti-tumor immune responses (Rautela et al., 2015). Type II IFN (IFNγ) treatment can cause cell cycle arrest and inhibit the growth of pancreatic cancer cells by triggering caspase-1- and IRF1-dependent apoptosis (Detjen et al., 2001). These findings suggested that type I and II IFN response may be involved in the pyroptosis-mediated immunosuppression.
Apart from the complex role of pyroptosis in tumors, it has a double-edged sword-like effect in the tumor immune microenvironment. Reck et al. (2019) reported that PD-L1 inhibitor combined with radiotherapy or chemotherapy triggers pyroptosis-induced inflammation within the tumor microenvironment to kill tumor cells. Additionally, Chui et al. (2019) proposed that DPP8/9 inhibitors could cleave NLRP1b to release the C-terminus, thereby triggering caspase-1-induced pyroptosis. Interestingly, our data illustrated that most of the immune checkpoints (PD-L1, PDCD1, TIM3, CTLA4, LAG3, and et al.) were upregulated at the high-risk group, as were the pyroptosis related-genes, indicating that patients with high-risk score may be able to achieve desired therapeutic outcomes when treated with immune checkpoint inhibitors.
Moreover, GSEA analysis indicated that a variety of pathways (e.g., cell cycle, TGF-β signaling pathway, pathways in cancer, and so on) involving the development and progression of tumors were activated in the high-risk group. It is widely accepted that dysregulation of the cell cycle was considered an important marker of tumors (Dominguez-Brauer et al., 2015). Haque et al. (Haque and Morris, 2017) found that TGF-β disturbed the stabilization of the immune system by inhibiting the activation of NK cells and reducing cytokine production. Meanwhile, the results of drug prediction showed that high-risk patients were less sensitive to HCC chemotherapy drugs, including Sorafenib and others. Sorafenib is indicated as a first-line treatment option for patients with unresectable or metastatic advanced HCC. Therefore, future research should be directed at exploring the mechanisms between pyroptosis and drug resistance.
Of course, some limitations of this study have to be considered. First, we need more multicenter and prospective clinical cohorts to validate the predictive value of 11-gene pyroptosis signature for HCC survival in the future. Second, the activated signaling pathways in the high-risk group should be validated in vivo and in vitro experiments. Additionally, the relationship between pyroptosis signature and the overall intensity of immune responses within the HCC microenvironment should be further investigated.
CONCLUSION
In this study, we successfully established and validated a 11-gene risk signature that could serve as an independent prognostic factor for HCC patients. High-risk patients have a worse prognosis and also multiple carcinogenesis-related pathways were activated in high-risk group. Analysis of the tumor immune microenvironment revealed that some immune effector cell infiltration was reduced in the high-risk group, while immunosuppressive cell infiltration was increased, and patients with high-risk score were more prone to receive treatment with immune checkpoint inhibitors. Because of the large variation between patients, our model can guide clinicians to provide support for individualized treatment of patients. Overall, the potential of pyroptosis for oncology treatment will become a promising and noteworthy area in cancer research.
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Objective: This research probed into the molecular mechanisms of long non-coding RNA (lncRNA) VPS9D1 Antisense RNA 1 (VPS9D1-AS1) in lung adenocarcinoma (LUAD).
Methods: lncRNA expression level was evaluated bioinformatically, and its downstream miRNA/mRNA regulatory axis was predicted by bioinformatics methods as well. qRT-PCR was used to measure VPS9D1-AS1, miRNA-30a-5p, and kinesin family member 11 (KIF11) expression. Western blot was performed to measure KIF11 protein expression. Proliferation, migration, and invasion of LUAD cells were all observed by cell biological function experiments. Dual-luciferase assay detected binding between miRNA-30a-5p and VPS9D1-AS1 or KIF11, respectively. RIP experiment detected interaction between VPS9D1-AS1 and miRNA-30a-5p.
Results: VPS9D1-AS1 and KIF11 were increased in LUAD, whereas miRNA-30a-5p was decreased. VPS9D1-AS1 promoted the malignant progression of LUAD cells and could sponge miRNA-30a-5p. MiRNA-30a-5p could restore the impact of VPS9D1-AS1 on LUAD cells. KIF11 was a target downstream of miRNA-30a-5p. VPS9D1-AS1 could upregulate KIF11 expression through competitively sponging miRNA-30a-5p, and KIF11 could restore the impact of miRNA-30a-5p on LUAD cells.
Conclusion: VPS9D1-AS1 could foster malignant progression of LUAD via regulating miRNA-30a-5p/KIF11 axis, suggesting that VPS9D1-AS1 is key to regulating the malignant progression of LUAD.
Keywords: VPS9D1-AS1, miRNA-30a-5p, KIF11, malignant progression, lung adenocarcinoma
INTRODUCTION
Competing endogenous RNAs (ceRNAs) involved in post-transcriptional regulation (Salmena et al., 2011) play an important role in human physiological and pathological mechanisms. Considering the mechanisms of ceRNAs, long non-coding RNA (lncRNA)–miRNA-mRNA logic is prevalently studied. Briefly, the logic explained that lncRNA competingly sponges miRNA, which can regulate mRNA expression by targeting its 3′ untranslated region (3′UTR), resulting in disturbing suppressing effects of miRNA on mRNA expression (Bartel, 2009; Thomas et al., 2010; Wang et al., 2010). Recently, lncRNA-related ceRNA mechanisms have been considered as one crucial factor affecting tumor development.
lncRNA has a length of more than 200 nucleotides (Niu et al., 2017). At present, lncRNA is proved to exert a vital modulatory role in cell biological processes, including X chromosome imprinting, stem cell differentiation, immune response, and chemical resistance (Cai et al., 2019). Meanwhile, recent studies found that lncRNA is often dysregulated in lung adenocarcinoma (LUAD) and presents the function of regulating the progression of lung cancer. For example, Hongyue Zhang reported that HOXA-AS3 is upregulated in LUAD and can promote the proliferation and migration of LUAD cells (Liu et al., 2018). In another paper, Ming Zhao also reported that GMDS-AS1 is decreased in LUAD, inhibiting the proliferation of LUAD cells while promoting apoptosis of LUAD cells simultaneously (Zhao et al., 2020). However, far less has been understood lncRNA-related ceRNA mechanisms in LUAD.
In our study, VPS9D1 Antisense RNA 1 (VPS9D1-AS1) is comprehensively examined and analyzed to expand the understandings of it in LUAD. Several studies have implied its roles in prostate cancer so far. For example, it was reported that VPS9D1-AS1 can upregulate the expression of myocyte enhancer factor 2D through competitively sponging miRNA-4739, thus promoting the malignant progression of prostate cancer (Wang et al., 2020). Jinhua Wang also indicated that lncRNA VPS9D1-AS1 can promote the proliferation of prostate cancer via miRNA-184/c-Myc axis (Wang et al., 2018). Nevertheless, the specific regulatory mechanism of VPS9D1-AS1 in LUAD is warranted. Therefore, we confirmed that VPS9D1-AS1 could promote the malignant progression of LUAD through in vitro experiments. Moreover, the molecular mechanism of VPS9D1-AS1 was investigated in promoting malignant progression of LUAD. This work provides a theoretical basis for VPS9D1-AS1 to be a possible target for treating patients with LUAD.
MATERIALS AND METHODS
Bioinformatics Analysis
The gene expression data of LUAD (59 normal samples and 535 cancer samples) and data of mature miRNAs (46 normal samples and 521 cancer samples) were downloaded from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). On the basis of the downloaded data, a t-test was used to determine VPS9D1-AS1 level in normal and cancer tissues. Then, the cancer samples were classified into high- and low-expression groups on the basis of the median value of VPS9D1-AS1 expression. Survival analysis was done by R package “Survival” (R package version 3.6.1, Kaplan-Meier method). Then, subcellular localization analysis was performed on the target lncRNA via lncATLAS database (http://lncatlas.crg.eu/).
Differential analysis of miRNA (log |FC| > 1.5, FDR < 0.01) and mRNA (log |FC| > 2.0, FDR< 0.01) between normal group and tumor group was performed on the basis of gene expression data by using R package “EdgeR.” At the same time, LncBase database was used to predict miRNAs that had interaction with VPS9D1-AS1. The predicted miRNAs were overlapped with downregulated miRNAs. After Pearson correlation analysis, miRNA with the highest negative correlation was the downstream target regulated by VPS9D1-AS1. Four databases including miRDB, mirDIP, miRTarBase, and starBase were used to predict the downstream mRNAs of target miRNA. The predicted mRNAs were intersected with the upregulated mRNAs. The correlation between target mRNAs and miRNAs was calculated to determine the target mRNA. Survival analysis of the confirmed target mRNA was carried out. The correlation between the target mRNA and clinical features was determined by Wilcoxon test (2 groups) or Kruskal test (>2 groups).
Cell Culture
Human normal lung epithelial cells BEAS-2B (3131C0001000200027), LUAD cells A549 (3131C0001000700150), Calu-3 (3131C0001000700157), H1975 (3131C0001000700193), and SPC-A-1 (3131C0001000700053) were all accessed from Cell Resource Centre of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All the above cells were maintained in DMEM (Thermo Fisher Scientific) containing 10% FBS (Thermo Fisher Scientific). The culture conditions in the incubator were 5% CO2 and 37°C in a humid environment.
Cell Transfection
For overexpressing VPS9D1-AS1 in cells, VPS9D1-AS1 was amplified and cloned into pcDNA3.1 (Invitrogen, Carlsbad, USA). Then, 50 nM pcDNA3.1-LUCAT1 (oe-VPS9D1-AS1) or negative antibody [oe-negative control (NC)] was transfected into A549 cells by 6 μl of Lipofectamine 2000 (Invitrogen, Carlsbad, USA). The transfected cells were screened by puromycin (5 μg/ml; Sigma Aldrich, USA).
For silencing VPS9D1-AS1, overexpressing miRNA-30a-5p and overexpressed kinesin family member 11 (KIF11) cells: sh-VPS9D1-AS1, miRNA-30a-5p-mimic, and oe-KIF11, and their corresponding NCs were all purchased from GeneChem (Shanghai, China). The 50 nM sh-VPS9D1-AS1, miRNA-30a-5p-mimic, oe-KIF11, and their respective NCs were transfected into the cells by 6 μl of Lipofectamine 2000 (Invitrogen, USA), respectively. After 48 h of transfection, cells were cultured for 24 h under the condition of 37°C and 5% CO2 and collected for the subsequent experiment.
qRT-PCR and Subcellular Fractionation
Total RNA was extracted with the RNeasy Mini Kit (Qiagen, New York, USA). lncRNAs and mRNAs were reversely transcribed with the PrimeScript RT Kit (Qiagen, New York, USA). miRNA was reversely transcribed with the Bulge-Loop miRNA qRT-PCR Starter Kit (RiboBio, Guangzhou, China). Then, qRT-PCR analysis was done on ABI PRISM 7900 Sequence Detection System (Applied Biosystems, USA) according to the manual of SYBR Green Master Mix (Applied Biosystems, USA). Both lncRNA and mRNA took GAPDH as internal reference, whereas miRNA took U6 as internal reference. Relative expressions of VPS9D1-AS1, miRNA-30a-5p, and KIF11 were obtained by 2−ΔΔCT method. Primer sequences were shown in Table 1.
TABLE 1 | qRT-PCR primer sequences.
[image: Table 1]The cytoplasm and nucleus of A549 cells were isolated with the PARIS Kit (Thermo Fisher Scientific, USA). Then, RNA was separated from the two parts, with GAPDH as cytoplasmic control and U6 as nuclear control. Finally, qRT-PCR was used for analysis.
Western Blot Assay
The transfected cells were cultured for 48 h and then collected for Western blot assay. The cells were lysed with radioimmunoprecipitation assay lysis buffer (Thermo Fisher Scientific) at 4°C for 10 min. Then, protein concentration was quantified by the BCA Protein Analysis Kit (Beyotime, China). SDS-PAGE was utilized to electrophorese equal amounts of protein samples. Then, proteins were transferred to a PVDF membrane. At room temperature, the membrane was sealed for 1 h with 5% skimmed milk diluted with TBST. Then, primary antibody KIF11 (Abcam) or GAPDH (Abcam) was added, and the membrane was incubated overnight at 4°C. The membrane was fully rinsed with TBST, followed by hybridizing with goat anti-rabbit IgG antibody conjugated with horseradish peroxidase (Abcam, Cambridge, UK) for 2 h. After that, TBST was utilized to rinse the membrane three times. Finally, luminescence was carried out with an enhanced chemiluminescence (ECL) kit (Solarbio, China). All protein bands were observed by photo taking.
Cell Counting Kit-8 Assay
The transfected cells were uniformly suspended and inoculated into 96-well plates (2 × 103 cells/well) and cultured at 37°C for 24 h. Zero, 24, 48, and 72 h later, 10 μl of CCK-8 solution (Dojindo Laboratories, Mashiki-machi, Japan) was added into wells, and the cells were incubated under routine conditions for 4 h. Then, the optical density (OD) value of each well at 450 nm was assayed by a microplate reader (Molecular Devices, Sunnyvale, CA, USA).
Colony Formation Assay
The transfected cells were uniformly suspended and inoculated into six-well plates (4 × 102 cells/well). The six-well plates were cultured in an incubator at 37°C with 5% CO2 for 24 h. After 2 weeks, the formed visible spots were confirmed with the naked eye. Then, 4% paraformaldehyde was utilized to fix cells for 15 min, and 0.1% crystal violet was utilized to stain the cells for 10 min. Phosphate-buffered saline (PBS) was utilized to rinse the excessive crystal violet dye in the wells. The number of colonies was counted.
Scratch Healing Assay
The transfected cells were uniformly suspended and inoculated into six-well plates (8 × 105 cells/well), and lines were drawn at the back side of plates with a marker pen. The six-well plates were cultured in an incubator at 37°C with 5% CO2 for 24 h. After 90% of the wells were covered with cells, a straight line was drawn with a 200-µl pipette tip, and the shedding cells in the wells were washed with PBS. After scratching for 0 and 24 h, the scratched area was photographed under inverted microscope (Zeiss, CFM-500, Oberkochen, Germany) with ×40 magnification. The cell migration rate was calculated. Cell migration rate = (scratch area at 0 h − scratch area at 24 h)/scratch area at 0 h. The assay was independently repeated three times (including three technical replicates and three biological replicates).
Cell Invasion Assay
The transfected cells (8 × 105 cells/well) were evenly suspended and planted into the upper Transwell chamber (Sigma, St. Louis, USA) containing Matrigel (BD Biosciences, USA). Afterward, 650 μl of DMEM plus 20% FBS was added to the lower Transwell chamber, and cells were maintained in an incubator for 24 h under routine conditions. After cell culture, cells were fixed with 4% paraformaldehyde for 15 min and stained with 0.1% crystal violet for 10 min. Cells in the upper insert were carefully swabbed off with a moist cotton swab. Five fields were randomly chosen to take pictures with an inverted microscope (Zeiss, CFM-500, Oberkochen, Germany) with ×40 magnification. The cells were counted.
RNA Binding Protein Immunoprecipitation
RIP analysis was done with the EZ-Magna RIP Kit (Millipore, USA). In short, A549 and H1975 cells were lysed in RIP lysis buffer at 70%–80% fusion. Then, the magnetic beads were coupled with human anti-AGO2 antibody (Millipore) and normal humanized IgG control (Millipore) in RIP buffer. RNA in immunoprecipitate was separated with TRIzol reagent and analyzed by qRT-PCR.
Dual-Luciferase Assay
For dual-luciferase assay on VPS9D1-AS1 and miRNA-30a-5p in this study, the amplified VPS9D1-AS1 mutant (VPS9D1-AS1-Mut) or wild-type (VPS9D1-AS1-Wt) 3′UTR was cloned into the multiple cloning sites of the downstream of pmirGLO (Promega, Madison, USA) luciferase reporter vector. Lipofectamine 2000 was used to co-transfect VPS9D1-AS1-Mut or VPS9D1-AS1-Wt vector with miRNA-30a-5p-mimic or NC-mimic into the cells.
For dual-luciferase assay on miRNA-30a-5p and KIF11, the amplified KIF1-Mut or KIF11-Wt 3’ UTR was cloned into multiple cloning sites of the downstream of pmirGLO (Promega, Madison, USA) luciferase reporter vector. Lipofectamine 2000 was utilized to co-transfect KIF11-Mut or KIF11-Wt vector with miRNA-30a-5p-mimic or NC-mimic vector into the cells. After 48 h of transfection, luciferase reporter analysis system (Promega) was introduced to assay firefly and renilla luciferase activities.
Statistical Analysis
All data were processed with GraphPad Prism 7 software (GraphPad Software, Inc., CA). All experiments were carried out three times in both technical repetition and biological repetition. Measurement data were presented as mean ± SD. Comparison between the two groups was determined by t-test. ANOVA was used for comparison among multiple groups. p < 0.05 means a statistically significant difference.
RESULTS
VPS9D1-AS1 Is Upregulated in LUAD
Some literature manifested that VPS9D1-AS1 is notably highly expressed in varying cancer types and can regulate occurrence and progression of cancer (Yang et al., 2016; Tan and Yang, 2018; Han et al., 2020; Hou et al., 2020). However, the regulatory mechanism of VPS9D1-AS1 in LUAD is still unclear. Hence, we chose VPS9D1-AS1 as the object in this research. We tested VPS9D1-AS1 level in normal tissue and LUAD tissue in TCGA database by t-test. VPS9D1-AS1 was proven remarkably increased in LUAD tissue (Figure 1A). High VPS9D1-AS1 level was correlated with unfavorable prognosis (Figure 1B). However, there was no significant correlation between the abnormal expression of VPS9D1-AS1 and clinical pathology (Supplementary Figure S1). Similarly, we conducted qRT-PCR to detect VPS9D1-AS1 level in BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells. VPS9D1-AS1 was increased in all tested LUAD cells (Figure 1C). Through these results, we finally determined that VPS9D1-AS1 was increased in LUAD.
[image: Figure 1]FIGURE 1 | VPS9D1-AS1 is increased in LUAD. (A) Box plot of VPS9D1-AS1 level. Blue box, normal tissue; red box, LUAD tissue. (B) Survival analysis of high- and low-expression groups with the median value of VPS9D1-AS1 as the cutoff value. (C) qRT-PCR assayed VPS9D1-AS1 level in BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells. * represents p < 0.05 in comparison with BEAS-2B group. All assays were repeated three times in triplicate.
VPS9D1 Facilitates the Cell Proliferation, Migration, and Invasion of LUAD Cells
To unveil how VPS9D1 functioned in LUAD progression, A549 and H1975 cells were chosen for the following related assays. First, we transfected oe-VPS9D1-AS1 and sh-VPS9D1-AS1 into the cells to construct the VPS9D1-AS1 overexpression or silence cell models. The overexpression and silence efficiencies were observed by qRT-PCR (Figure 2A). Then, cellular biological experiments were conducted to observe the impact of overexpressing or silencing VPS9D1-AS1 on the proliferation, migration, and invasion of the cells. The results of CCK-8 assay and colony formation assay indicated that overexpressing VPS9D1-AS1 could notably facilitate LUAD cell proliferation, whereas silencing VPS9D1-AS1 inhibited the cell proliferation (Figures 2B,C). In results of scratch healing assay and cell invasion assay, we also observed that overexpressing VPS9D1-AS1 fostered migration and invasion of the LUAD cells, whereas knockdown VPS9D1-AS1 repressed cell migration and invasion (Figures 2D,E). Through cellular biological function experiments, we fully confirmed that VPS9D1-AS1 could promote the malignant progression of LUAD cells.
[image: Figure 2]FIGURE 2 | VPS9D1-AS1 facilitates the cell proliferation, migration, and invasion of LUAD. (A) The effect of transfecting oe-VPS9D1-AS1 and sh-VPS9D1-AS1 on VPS9D1-AS1 expression in A549 and H1975 cells. (B) The impact of overexpressing or silencing VPS9D1-AS1 on the viability of the LUAD cells. (C) The impact of overexpressing or silencing VPS9D1-AS1 on colony formation ability of the LUAD cells. (D) The impact of overexpressing or silencing VPS9D1-AS1 on migratory ability of the LUAD cells (40×). (E) The influence of overexpressing or silencing VPS9D1-AS1 on invasive ability of the LUAD cells (100 ×). * represents p < 0.05 in comparison with the negative control group. All assays were repeated three times in triplicate.
VPS9D1-AS1 Can Be a Molecular Sponge for miRNA-30a-5p
We mined the miRNAs related to VPS9D1-AS1 through bioinformatics on the basis of ceRNA hypothesis. First, we used lncATLAS database and subcellular fractionation to observe the subcellular location of VPS9D1-AS1. VPS9D1-AS1 was expressed both in cytoplasm and the nucleus (Figures 3A,B), demonstrating that VPS9D1-AS1 could play a modulatory role as a ceRNA in LUAD. Then, we predicted the interacting miRNAs of VPS9D1-AS1 by LncBase. The predicted miRNAs were intersected with the 39 differentially downregulated miRNAs, and three miRNAs were obtained: miRNA-30a-5p, miRNA-378a-3p, and miRNA-378c (Figures 3C,D). Later, we performed Pearson correlation analysis between the predicted miRNAs and VPS9D1-AS1. MiRNA-30a-5p had the highest inverse correlation, which was selected for the research (Figure 3E). In TCGA-LUAD database, downregulation of miRNA-30a-5p in LUAD was shown in Figure 3F. Survival analysis unveiled that prognosis of patients with low miRNA-30a-5p level was better than that of patients with high level (Figure 3G). To verify the above results, qRT-PCR was performed on BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells, which suggested that miRNA-30a-5p was conspicuously increased in LUAD cells (Figure 3H). In addition, qRT-PCR was utilized to observe miRNA-30a-5p level in A549 and H1975 cells with overexpressed or silenced VPS9D1-AS1. The results indicated that overexpressing VPS9D1-AS1 reduced miRNA-30a-5p level, whereas knockdown miRNA-30a-5p enhanced miRNA-30a-5p (Figure 3I). Through these results, we proved that miRNA-30a-5p and VPS9D1-AS1 expression was negatively correlated in LUAD. Next, we observed through RIP that AGO2 could be enriched in VPS9D1-AS1 and miRNA-30a-5p in the cells (Figure 3J), which showed that miRNA-30a-5p and VPS9D1-AS1 could interact with each other. At the same time, in dual-luciferase assay, we also noticed that miRNA-30a-5p-mimic did not affect luciferase activity of VPS9D1-AS1-Mut but reduced that of VPS9D1-AS1-Wt. This result manifested that there were binding sites of miRNA-30a-5p and VPS9D1-AS1 (Figure 3K). In general, these data fully confirmed that VPS9D1-AS1 directly interacted with miRNA-30a-5p.
[image: Figure 3]FIGURE 3 | VPS9D1-AS1 can be a molecular sponge for miRNA-30a-5p. (A) LncATLAS database was used for subcellular localization analysis of VPS9D1-AS1. (B) Subcellular fractionation and qRT-PCR were introduced to analyze relative expression of VPS9D1-AS1 in the nuclear and cytoplasmic of A549 cells. (C) Volcano plot of differentially expressed miRNAs in TCGA-LUAD. Red indicates increased miRNAs, and green represents decreased miRNAs. (D) Intersection of miRNAs that have binding sites with VPS9D1-AS1 and differentially downregulated miRNAs in LUAD in LncBase database. (E) The correlation of VPS9D1-AS1, miRNA-30a-5p, miRNA-308c, and miRNA-378a-3p levels in LUAD tissue. (F) Box plot of miRNA-30a-5p level. Blue plot indicates normal tissue, and red plot indicates LUAD tissue. (G) Survival analysis of high- and low-expression groups with the median value of miRNA-30a-5p as the cutoff value. (H) Expression of miRNA-30a-5p in BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells (* represents p < 0.05 in comparison with BEAS-2B group). (I) Effect of overexpressing or silencing VPS9D1-AS1 on miRNA-30a-5p level in A549 and H1975 cells (* represents p < 0.05 in comparison with the negative control group). (J) Interaction between VPS9D1-AS1 and miRNA-30a-5p. IgG was a negative control (* represents p < 0.05 in comparison with IgG group). (K) Binding of VPS9D1-AS1 and miRNA-30a-5p (* represents p < 0.05 in comparison with the negative control group). All assays were repeated three times in triplicate.
MiRNA-30a-5p Restores the Function of VPS9D1-AS1 on Promoting Cell Proliferation, Migration, and Invasion of LUAD
In VPS9D1-AS1 Can Be a Molecular Sponge for miRNA-30a-5p, we confirmed that VPS9D1-AS1 could sponge miRNA-30a-5p, thereby inhibiting miRNA-30a-5p, but whether miRNA-30a-5p can regulate malignant progression of LUAD was still unknown. Therefore, we co-transfected oe-VPS9D1-AS1 and miRNA-30a-5p-mimic in A549 and H1975 cells and constructed the three transfected groups (oe-NC + NC-mimic group, oe-VPS9D1-AS1 + NC-mimic group, and oe-VPS9D1-AS1 + miRNA-30a-5p-mimic group). qRT-PCR was used to verify that simultaneous transfection of miRNA-30a-5p-mimic could restore miRNA-30a-5p level in the cells to a certain extent (Figure 4A). Then, cellular experiments checked the impact of simultaneous transfection of miRNA-30a-5p-mimic on proliferation, migration, and invasion of these cells. The results suggested that overexpressing miRNA-30a-5p could significantly restore the promoting impact of VPS9D1-AS1 on malignant behaviors of LUAD cells (Figures 4B–E). Hence, VPS9D1-AS1 could accelerate malignant progression of LUAD via sponging miRNA-30a-5p.
[image: Figure 4]FIGURE 4 | MiRNA-30a-5p restores the effect of VPS9D1 on promoting cell proliferation, migration, and invasion of LUAD. (A) Overexpression efficiency of transfecting miRNA-30a-5p-mimic on miRNA-30a-5p level in A549 and H1975 cells. (B) The impact of simultaneous overexpression of VPS9D1-AS1 and miRNA-30a-5p on the viability of the LUAD cells. (C) Effect of simultaneous overexpression of VPS9D1-AS1 and miRNA-30a-5p on the colony formation ability of the LUAD cells. (D) The impact of simultaneous overexpression of VPS9D1-AS1 and miRNA-30a-5p on migratory ability of the LUAD cells (40 ×). (E) The impact of simultaneous overexpression of VPS9D1-AS1 and miRNA-30a-5p on invasive ability of the LUAD cells (100 ×). * represents p < 0.05 when oe-NC + NC-mimic group was compared to oe-VPS9D1-AS1 + NC-mimic group and when oe-VPS9D1-AS1 + NC-mimic group was compared to oe-VPS9D1-AS1+miR-30a-5p-mimic group. All assays were repeated three times in triplicate.
VPS9D1-AS1 Upregulates KIF11 Expression Through Competitive Sponging miRNA-30a-5p
To further study regulatory mechanism of VPS9D1-AS1, it is necessary to mine the downstream mRNAs regulated by miRNA-30a-5p. MRNAs that had binding sites with miRNA-30a-5p were predicted through bioinformatics analysis. The predicted mRNAs were intersected with the 1.968 upregulated mRNAs. Finally, 11 target genes (MYBL2, KIF11, CCNE2, CBX2, CELSR3, LIN28B, FOXG1, GCLC, SLC7A11, MKRN3, and FOXD1) were obtained (Figures 5A,B). The correlation between the 11 target mRNAs and miRNA-30a-5p was analyzed (Figure 5C). The FDR values of these 11 target mRNAs were observed (Supplementary Table S1). Differential analysis was done on the gene expression data between normal and cancer group, and the research progress on these mRNAs in LUAD was checked (Li et al., 2020a; Xiong et al., 2020). We finally selected KIF11 as the research object. The upregulated KIF11 in LUAD in TCGA-LUAD database was shown in Figure 5D. In addition, Wilcoxon test (2 groups) or Kruskal test (>2 groups) was used to test the correlation between KIF11 and clinical features. We also disclosed that KIF11 level was notably positively related to clinical features (Stage, T, M, and N) (Figure 5E). Survival analysis indicated that patients with LUAD with increased KIF11 had an unfavorable prognosis than those with decreased KIF11 (Figure 5F). To verify that KIF11 was the downstream target of miRNA-30a-5p, qRT-PCR and Western blot assays were performed to observe the mRNA and protein levels of KIF11 in BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells. From the results, we verified that KIF11 was increased in LUAD cells (Figure 5G). At the same time, the results of qRT-PCR and Western blot assay denoted that overexpressing miRNA-30a-5p or silencing VPS9D1-AS1 could noticeably downregulate KIF11 level. Adversely, silencing miRNA-30a-5p or overexpressing VPS9D1-AS1 could upregulate the expression of KIF11 (Figures 5H,I). Finally, dual-luciferase assay also manifested that miRNA-30a-5p-mimic was irrelevant to luciferase activity of KIF11-Mut, but it would reduce that of KIF11-Wt (Figure 5J). Through these assays, we fully verified that VPS9D1-AS1 could increase KIF11 level via competitive sponging miRNA-30a-5p in LUAD cells.
[image: Figure 5]FIGURE 5 | VPS9D1-AS1 upregulates KIF11 expression through competitive adsorption of miRNA-30a-5p. (A) Volcano plot of differentially expressed mRNAs in TCGA-LUAD. Red, increased mRNAs; green, decreased miRNAs. (B) The mRNAs that had binding sites with miRNA-30a-5p identified by miRDB, mirDIP, miRTarBase, and starBase databases and were overlapped with the differentially increased mRNAs in LUAD. (C) The correlation between MYBL2, KIF11, CCNE2, CBX2, CELSR3, LIN28B, FOXG1, GCLC, SLC7A11, MKRN3, FOXD1, and miRNA-30a-5p in LUAD tissue. (D) Box plot of KIF11 level. Blue indicates normal tissue, and red indicates LUAD tissue. (E) Correlation between KIF11 and clinical features (Stage, T, M, and N). (F) Survival curve of KIF11. The abscissa, time (in years); the ordinate, survival rate. Red curve, high expression; blue curve, low expression. (G) KIF11 level in BEAS-2B and A549, Calu-3, H1975, and SPC-A-1 cells (* represents p < 0.05 in comparison with BEAS-2B group). (H, I) Effects of overexpressing or silencing miRNA-30a-5p and overexpressing or silencing VPS9D1-AS1 on the protein and mRNA expression of KIF11 in A549 and H1975 cells (* represents p < 0.05 in comparison with the negative control group). (J) The targeting relationship of miRNA-30a-5p and KIF11 (* represents p < 0.05 in comparison with BEAS-2B group). All assays were repeated three times in triplicate.
KIF11 Can Restore the Impact of miRNA-30a-5p on Repressing the Cell Proliferation, Migration, and Invasion of LUAD
In VPS9D1-AS1 Upregulates KIF11 Expression Through Competitive Sponging miRNA-30a-5p, we used bioinformatics to find that KIF11 and clinical features (Stage, T, M, and N) were significantly positively correlated, and KIF11 might be an unfavorable prognostic factor for patients with LUAD. Therefore, by performing rescue experiments, we subsequently observed whether KIF11 could restore the inhibitory impact of miRNA-30a-5p on malignant progression of LUAD cells, and the bioinformatics results were also verified. We simultaneously transfected miRNA-30a-5p-mimic and oe-KIF11 in the LUAD cells. Cells were divided into NC-mimic + oe-NC group, miRNA-30a-5p-mimic + oe-NC group, and miRNA-30a-5p-mimic + oe-KIF11 group. qRT-PCR and Western blot assay were performed to validate that transfecting oe-KIF11 could remarkably increase KIF11 level (Figure 6A). Then, cellular function experiments were conducted to assay proliferation, migration, and invasion of the cells. The results suggested that KIF11 could indeed rescue inhibitory impact of miRNA-30a-5p in LUAD cells (Figures 6B–E). Hence, we fully proved that miRNA-30a-5p could inhibit malignant phenotypes of LUAD cells through KIF11.
[image: Figure 6]FIGURE 6 | KIF11 can restore the inhibitory impact of miRNA-30a-5p on cell proliferation, migration, and invasion of LUAD. (A) Effect of KIF11 expression in A549 and H1975 cells. (B) The impact of simultaneously overexpressing miRNA-30a-5p and KIF11 on the viability of LUAD cells. (C) The impact of simultaneously overexpressing miRNA-30a-5p and KIF11 on colony formation ability of LUAD cells. (D) The influence of simultaneously overexpressing miRNA-30a-5p and KIF11 on migratory ability of LUAD cells (40 ×). (E) The effect of simultaneously forced expression of miRNA-30a-5p and KIF11 on invasive property of LUAD cells (100 ×). * represents p < 0.05 when NC-mimic + oe-NC group was compared to miR-30a-5p-mimic + oe-NC group and when miR-30a-5p-mimic + oe-NC was compared to miR-30a-5p-mimic + oe-KIF11 group. All assays were repeated three times in triplicate.
DISCUSSION
LncRNAs were considered as non-functional “junk sequences” and “transcriptional noise,” but increasing evidence confirmed that many lncRNAs can modulate occurrence and progression of cancers (Loewer et al., 2010; Liu et al., 2018; Luo et al., 2018). Therefore, in this study, we selected VPS9D1-AS1, with an unclear specific regulatory mechanism in LUAD, as the research object. VPS9D1-AS1 was proven overexpressed in lung cancer cells and tissue (Wang et al., 2019a). Similarly, in our study, it was confirmed that VPS9D1-AS1 was upregulated in LUAD. LUAD progress was facilitated via VPS9D1-AS1/miRNA-30a-5p/KIF11 axis. To sum up, highly expressed VPS9D1-AS1 was positively related to poor prognosis of patients with LUAD. VPS9D1-AS1 was first proven that it could facilitate the proliferation, migration, and invasion of LUAD cells. It could be a pro-oncogenic factor in LUAD.
MiRNAs are endogenous non-coding RNAs (Sontheimer and Carthew, 2005). lncRNA was confirmed to play a regulatory role in LUAD through sponge of miRNA. For instance, TTN-AS1 induces proliferation and migration of LUAD cells via sponge of miRNA-4677-3p (Zhong et al., 2019). MAFG-AS1 can hasten proliferation of LUAD cells via sponge of miRNA-774-5p (Sui et al., 2019). Therefore, we observed subcellular localization of VPS9D1-AS1 through lncATLAS database and subcellular fractionation. VPS9D1-AS1 was proven expressed both in cytoplasm and nucleus. Subsequently, miRNAs that could be sponged by VPS9D1-AS1 were excavated, and miRNA-30a-5p, miRNA-378a-3p, and miRNA-378c were finally obtained. Because the inverse correlation between miRNA-30a-5p and VPS9D1-AS1 was the highest, miRNA-30a-5p was selected for study. Meanwhile, research reported that miRNA-30a-5p can be sponged by a variety of lncRNAs, including XIXT, DLEU2, FEZF1-AS1, MALAT1, and NORAD (Pan et al., 2018; Zhang et al., 2019; Li et al., 2020b; Li et al., 2020c; Wu et al., 2020). In addition, studies indicated that miRNA-30a-5p can repress progression of a variety of cancers, like ovarian cancer (Wang et al., 2019b), oral cancer (Ruan et al., 2018), colorectal cancer (Wei et al., 2016), osteosarcoma (Tao et al., 2018), and cutaneous squamous cell carcinoma (Shao et al., 2019). We determined that miRNA-30a-5p was noticeably decreased in LUAD cells. VPS9D1-AS1 was confirmed sponging miRNA-30a-5p. It was also confirmed that miRNA-30a-5p restored the impact of VPS9D1-AS1 on promoting malignant phenotypes of LUAD cells. Thus, we fully verified that VPS9D1-AS1 could induce malignant progression of LUAD through sponge of miRNA-30a-5p.
More and more studies showed that miRNA can induce mRNA degradation or inhibit protein translation, thereby modulating cancer progression (Fang et al., 2015; Enokida et al., 2016). We used bioinformatics to mine the downstream mRNAs of miRNA-30a-5p, and a total of 11 target genes were obtained, namely, MYBL2, KIF11, CCNE2, CBX2, CELSR3, LIN28B, FOXG1, GCLC, SLC7A11, MKRN3, and FOXD1. By observing the correlation between the 11 target mRNAs and miRNA-30a-5p, The FDR values of the 11 target mRNAs, as well as the research progress of them in LUAD, KIF11 was selected for research. KIF11 is a member of the KIF family. Like other KIF members, it has important functions in cells, which is involved in mitosis, and transportation of intracellular vesicles and organelles (Hirokawa, 1998; Lawrence et al., 2004; Wordeman, 2010; Hirokawa and Tanaka, 2015). The latest research suggested that KIF11 also exerts an essential regulatory effect on cancer progression. For example, Bianhua Shi reported that KIF11 can promote the migration of ovarian cancer cells (Shi et al., 2018). Kayo Daigo found that downregulating KIF11 can hasten apoptosis of oral cancer cells, inhibiting cell proliferation at the same time (Daigo et al., 2018). However, it is not known yet whether KIF11 can modulate LUAD malignant progression. We determined that KIF11 was noticeably increased in LUAD cells and confirmed that KIF11 was a downstream target of miRNA-30a-5p. Upregulating KIF11 level restored the inhibitive impact of miRNA-30a-5p on the proliferation, migration, and invasion of LUAD cells. The data fully indicated that miRNA-30a-5p inhibited the malignant phenotype of LUAD cells by targeting KIF11.
In summary, in this study, we found that VPS9D1-AS1 was a tumor-promoting factor for LUAD, which could target KIF11through sponge adsorption of miRNA-30a-5p to promote the malignant progression of LUAD. This discovery revealed a novel regulatory axis of VPS9D1-AS1/miRNA-30a-5p/KIF11 that regulated LUAD cell progression. However, these results are subject to certain limitations. We only verified the results at cellular level. Clinical tissue should be collected for further in vivo experiments. Thus, evidence together lie more theoretical groundworks that VPS9D1-AS1 is a possible target for LUAD treatment.
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Cisplatin (CDDP) chemoresistance seriously affects the prognosis and survival of patients with ovarian cancer (OC). Previous research has shown that circular RNA CDR1as is biologically associated with a large number of cancers. However, the molecular mechanism underlying the role of CDR1as in CDDP chemoresistance in OC remains unclear. Here, we investigated the mechanism of CDR1as in CDDP-resistant OC. First, we employed bioinformatics analysis and quantitative real-time PCR (qRT-PCR) to determine the expression of CDR1as and related RNAs in CDDP-sensitive and -resistant OC tissues and cells. Then, functional experiments were used to determine cell proliferation, invasion, migration, and apoptosis in CDDP chemoresistance and parent OC cells in vitro. The effect of CDR1as in CDDP chemoresistance OC progression was tested in nude mice in vivo. Moreover, dual-luciferase assays and RNA immunoprecipitation (RIP) were performed to confirm the interactions of CDR1as and related RNAs. Finally, we used Western blotting to determine protein expression levels. Our findings interpret the underlying mechanisms of the CDR1as/miR-1299/PPP1R12B axis and shed light on the clinical applications for CDDP-chemoresistant OC.
Keywords: ovarian cancer, cisplatin chemoresistance, CDR1as, miR-1299, PPP1R12B
INTRODUCTION
Ovarian cancer (OC) is one of the most common malignant tumors of the female reproductive organs and the second most common form of cancer, followed by cervical cancer and uterine body cancer. OC is considered to be the most fatal form of cancer in gynecological oncology with the highest mortality rate (Barani et al., 2021). Due to the lack of sensitive diagnosis and specific symptoms, OC patients are difficult to identify in the early stage of disease. Surgical resection and cisplatin-based chemotherapy still serve as the main treatments for OC. However, 50% of OC patients acquire drug resistance after several cycles of cisplatin (CDDP) chemotherapy. The 5-year survival rate ranges from 25% to 30% in OC (Long et al., 2019). Therefore, it is necessary to further investigate the underlying molecular mechanisms of carcinogenesis and CDDP chemoresistance in OC so that we can improve the prognosis and survival of patients with advanced OC.
Circular RNAs (circRNAs) are a new form of non-coding RNAs (ncRNAs) that lack both a 5′-cap structure and a 3′-poly-A tail; these are considered to represent by-products of aberrant splicing (Huang et al., 2020). circRNAs can regulate transcription and function as competitive endogenous RNAs (ceRNAs) to sponge microRNAs (miRNAs) and suppress their expression (Chen, 2016). circRNAs are widely expressed in mammalian cells and differ across diverse tissues and cell lines. Circular RNA hsa_circ_0001946, also known as cerebella degeneration-associated protein 1 antisense transcript (CDR1as) or ciRS-7, contains more than 70 binding sites for miR-7 (Hansen et al., 2013). CDR1as is located on the X chromosome (chrX: 139865339–139866824) and is 1,485 bp in size. CDR1as has been discovered in multiple tumors and participates in various biological processes, such as proliferation, invasion, and migration (Jian et al., 2020). In glioma, CDR1as can disrupt the complex of p53 and MDM2 to inhibit tumorigenesis (Lou et al., 2020). CDR1as can sponge miR-1270 to dysregulate AFP levels and promote tumor progression in hepatocellular carcinoma (Su et al., 2019) and can also enhance E2F3 expression to promote nasopharyngeal carcinoma by sponging miR-7-5p (Zhong et al., 2019). However, the specific relationship between CDR1as and CDDP resistance in OC remains unknown.
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that contain 21–25 nucleotide RNAs. miRNAs can play a critical role in gene expression and cell differentiation and bind to target mRNAs to cause the inhibition of mRNA translation or degradation (Rupaimoole and Slack, 2017). miR-1299 is known to regulate the occurrence of cancers and play different roles. It has also been reported that miR-1299 is involved in the paclitaxel resistance of OC (Zhao et al., 2020). Nevertheless, the exact role of miR-1299 in CDDP chemoresistant OC remains unknown. Therefore, we aimed to investigate the regulatory mechanism and potential function of CDR1as and miR-1299 in CDDP chemoresistant OC.
The protein phosphatase 1 regulatory subunit 12B gene (PPP1R12B), also referred to as MYPT2, is a member of the KARPP-32 family. PPP1R12B mRNA has been confirmed to be involved in dimerization and protein–protein interaction (Grassie et al., 2011). Through bioinformatic analysis (Diana, TargetMiner, TargetScan, miRDB), we found complementary binding sequences between miR-1299 and PPP1R12B. However, thus far, PPP1R12B has yet to be the main focus of any study on OC.
In this study, we investigated the effects of CDR1as and demonstrated that CDR1as enhances CDDP sensitivity to OC and acts as a sponge for miR-1299 via the upregulation of PPP1R12B. Our findings may be beneficial to the treatment of OC patients with CDDP chemoresistance and provide a basis for investigating the diagnostic and therapeutic values of the molecular mechanisms involved in CDDP-resistant OC.
MATERIALS AND METHODS
Microarray and RNA-Seq Analyses In Silico
Raw data of GSE45553 and GSE51683 with the same platform were obtained from GEO database (https://www.ncbi.nlm.nih.gov/geo/). Samples in either dataset were selected and grouped by either resistance to CDDP or not. The robust multichip average preprocessing methodology and nearest neighbor averaging strategy were applied using “oligo” (Carvalho et al., 2007) and “impute” (Troyanskaya et al., 2001) packages, followed by batch effect removal using “Combat” (Johnson et al., 2007) function for processing the raw data and accurate integrating analysis. All circRNA transcripts from circBase being downloaded (Glazar, et al., 2014), a re-annotation method was performed using the SeqMap tool to map probes to circRNA transcripts without mismatches (Jiang and wong, 2008; Du et al., 2013). Meanwhile, the reference genome (hg19) from the UCSC genome browser (https://genome.ucsc.edu/) and comprehensive gene annotation from GENCODE (v38lift37 version) (https://www.gencodegenes.org/) were downloaded to discard the probes that mapped to other transcripts, retaining ones that re-annotated to circRNAs uniquely. Duplicated circRNAs with the same probe ID were merged by their arithmetic mean values. Differentially expressed circRNAs were screened out using the “limma” package with thresholds set as adjusted p-value < 0.05 and | log2-fold change (FC)| > 1 (Jiang and Wong, 2008). Also, the mRNA-sequencing profiles (level 3) were downloaded from The Cancer Genome Atlas (TCGA), while the RNA-seq datasets of normal ovarian tissue were separated from the Genotype-Tissue Expression (GTEx) (Carithers et al., 2015).
Tissues
Six pairs of ovarian cancer tissues and adjacent normal tissues were obtained from the Department of Obstetrics and Gynecology in the First Affiliated Hospital of Harbin Medical University between 2017 and 2019. All the patients had received radical surgical resection without chemotherapy or radiotherapy prior to surgery. The samples were stored at −80°C. The collection of human samples was approved by the Biomedical Ethics Committee of Harbin Medical University First Affiliated Hospital (Ethics number 2020JS20).
Cell Culture and Treatment
We purchased a human OC cell line SKOV3 and CDDP-resistant strains (SKOV3/CDDP) from the American Type Culture Collection (ATCC, United States). We also purchased the human OC cell line HO8910 and CDDP-resistant strains (HO8910/CDDP) from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). The SKOV3, SKOV3/CDDP, and HO8910/CDDP cell lines were maintained in Roswell Park Memorial Institute 1640 (RPMI-1640) culture medium (Sigma, St. Louis, MO, USA). HO8910 and 293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, USA) with high glucose. All cells were cultured with 10% fetal bovine serum (FBS) (Ausbian, Graz, Austria) and 1% penicillin–streptomycin (100 IU/ml) at 37°C with 5% CO2.
RNA Extraction and Quantitative Real-Time PCR
Total RNAs (circRNAs, miRNAs, and mRNAs) were isolated from tissues and cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in accordance with the manufacturer’s protocol. mRNA was reversely transcribed into complementary DNA (cDNA) using a PrimeScript RT Reagent Kit (TaKaRa, Shiga, Japan). circRNA and miRNA were directly reverse transcribed using the Bulge-Loop miRNA qRT-PCR Starter Kit (RiBoBio, Guangzhou, China). qRT-PCR assays were carried out with the Power SYBR Green PCR Mix and an Agilent Mx3000P PCR system (Stratagene, La Jolla, CA, USA). The expression levels of circRNAs and mRNAs were normalized by GAPDH or β-actin while those of miRNAs were normalized by U6. The CT value was measured, and the 2−∆∆Ct method was used to analyze the results. All experiments were performed in triplicate. The primer sequences are listed in Table 1.
TABLE 1 | Primer sequences for real-time PCR.
[image: Table 1]Cell Transfection
We purchased a CDR1as knockdown lentivirus (including sh-RNA1, sh-RNA2, and sh-RNA3), a negative control lentivirus (sh-Control), a CDR1as overexpression lentivirus (h-CDR1as), and a control lentivirus (h-Control), from Hanbio Biotechnology (Shanghai, China). miR-1299 mimics and controls were synthesized by GenePharma (Shanghai, China). The transfection was carried out using Lipofectamine 2000 reagent (Thermo Fisher Scientific, Waltham, MA, USA), and 293T cells were cultured in 12-well plates (5 × 104/well). Cells were harvested for 48 h after transfection. Stable transfected cell lines were then selected with puromycin for 7–10 days. The sequences of CDR1as knockdown lentivirus are listed in Supplementary Table 1.
CCK-8 Assay
Cell proliferation was determined with a Cell Counting Kit-8 assay (Beyotime, Shanghai, China). Cells were seeded into 96-well plates (Corning, NY, USA) (1 × 103/well), and 10 μl of CCK-8 solution was added to each well at three collection times (24, 48, and 72 h). After 30 min of incubation at 37°C, the absorbance of each well was measured at 450 nm using a Microplate Reader ELx800 (BioTek Instruments Inc., Highland Park Winooski, VT, USA). The CCK-8 assays were carried out in triplicate.
5-Ethynyl-2′-Deoxyuridine Assay
We used a 5-ethynyl-2′-deoxyuridine (EdU) assay kit (RiboBio, Guangzhou, China) to perform EdU assays. We seeded 1 × 104 cells into 96-well plates for overnight incubation. On the second day, we added 100 μl of EdU solution (50 μM) into the cells and incubated it for 2 h. Then, the cells were fixed with 4% paraformaldehyde for 30 min. Then, we added 100 μl of Apollo Reaction Solution to the wells and incubated it for 30 min; this was followed by incubation with 100 μl of Hoechst 33342 in the dark for 30 min. Finally, the cells were photographed with an EVOS M5000 Inverted Fluorescence Microscope (Thermo Fisher Scientific, USA).
Cell Apoptosis Assay
Cell apoptosis assays were carried out with an Annexin V-allophycocyanin (APC)/propidium iodide (PI) apoptosis kit (MULTI SCIENCES, Hangzhou, China) in accordance with the manufacturer’s protocol. Then, 1 × 106 cells were seeded and washed twice with phosphate balanced solution (PBS). Then, cells were suspended in 500 μl of 1× binding buffer. The cells were then stained using 5 μl of Annexin V-APC and 10 μl of PI for 5 min in the dark at room temperature. The samples were measured by an Apogee A50-Micro Flow cytometer (Apogee, Kent, UK).
Wound Healing Assay
Cells were cultured in 6-well plates for wound healing assays. When cell confluency reached 80%–90%, the cells were scratched with a 200-μl plastic pipette tip in the middle of the 6-well plates. Then, the cells were washed with PBS to remove the cell debris. Then, we added medium (without FBS) to the 6-well plates for 24 h. Images of wound healing were acquired by microscopy at 0 and 24 h. ImageJ software was used to analyze the width of the wound.
Transwell Assay
Transwell chambers (Corning Costar, Cambridge, MA, USA, 8.0 μm pore size) were used to determine the extent of cell migration. The upper chamber was covered with 45 μl of Matrigel (BD Biosciences, San Jose, CA, USA). We then seeded the upper chamber with 1 × 105 cells in 200 μl of medium (without FBS). Then, 550 μl of medium containing 20% FBS was loaded into the lower chamber. After 24 h, the surface cells in the upper chamber were wiped softly with cotton swabs. Cells on the lower side of the upper chamber were fixed with 4% paraformaldehyde for 1.5 h and then stained with crystal violet solution for 30 min at room temperature. Images were then acquired by an Inverted Fluorescence Microscope (Carl Zeiss, Germany). Cell numbers were determined and compared using ImageJ software. Experiments were repeated at least three times.
Dual-Luciferase Reporter Assay
First, we seeded 293T cells into 24-well plates. Then, we used Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) for transfection. We co-transfected cells with CDR1as and PPP1R12B wild-type or mutant plasmids (CDR1as-wt, CDR1as-mut, PPP1R12B-wt, PPP1R12B-mut) and miR-1299 mimic or miR-NC. After 48 h, luciferase activity was measured using a Luciferase Reporter Assay System (Promega, WI, USA) according to the manufacturer’s instructions. The plasmids were obtained from Hanbio Biotechnology (Shanghai, China). All experiments were carried out in triplicate.
RNA Immunoprecipitation Assay
RIP assays were carried out with a Magna RNA Immunoprecipitation (RIP) Kit (Millipore, Bedford, MA, USA) in accordance with the manufacturer’s protocol. The AGO2 and IgG antibodies used for RIP assays were purchased from Abcam (Cambridge, MA, USA). First, we cultured 1 × 107 SKOV3 or HO8910 cells in 1 ml of PBS. Then, the cell lysates were incubated with RIP buffer on ice for 30 min. The cell lysates were immunoprecipitated with anti-AGO2 or anti-IgG with protein A/G magnetic beads. Magnetic bead-bound complexes were immobilized with magnet, and unbound materials 10–15 times were washed off with PBS. The complex bound to the magnetic beads was eluted, and the RNAs are extracted. Finally, the immunoprecipitated RNAs were detected by qRT-PCR.
Western Blotting
Cells were seeded into 1 ml of PBS. Total proteins were then lysed with RIPA lysis buffer containing protease inhibitors. Then, 20 μg of total protein (per sample) was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto a polyvinylidene fluoride (PVDF) membrane (Millipore, USA). The membranes were incubated with specific primary antibodies (anti-PPP1R12B, anti-Akt, anti-p-Akt, anti-mTOR, anti-p-mTOR, anti-GAPDH, or anti-β-actin) (Abcam, USA) overnight at 4°C. Then, the membranes were washed thrice with TBST buffer and then incubated with appropriate secondary antibodies (anti-rabbit/mouse IgG) (CST, Danvers, MA, USA) for 2 h in the dark. Positive signals were then detected using a chemiluminescence detection system (Applygen, Beijing, China). GAPDH and β-actin were used as loading controls.
Tumor Xenograft Study
Twelve BALB/c nude female mice at 4 weeks of age were purchased from Charles River Laboratories (Beijing, China). In order to prevent the murine stress response, we housed mice with free access to food and water for 1 week in specific pathogen-free conditions. Then, we suspended 5 × 106 SKOV3 cells that were stably transfected with knockdown CDR1as lentivirus or control lentivirus in 100 μl of cold PBS and injected this solution into the dorsal flanks of the nude mice. After 1 week, we divided the mice randomly into a treatment group and a control group. Mice in the treatment group were injected with CDDP (5 mg/kg) twice a week; mice in the control groups were injected with the same dose of PBS. Twenty-eight days later, the mice were sacrificed to collect tumors and calculate their size. Tumor volume was estimated by the following formula: volume = 0.5 × length × width2. Animal experiments took place in the Animal Experiment Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. This study was carried out according to the Guidelines for the Care and Use of Laboratory Animals and was approved by the Institutional Animal Care and Use Committee of Harbin Medical University First Affiliated Hospital.
Statistical Analysis
GraphPad Prism version 9.0 and Statistical Product and Service Solutions (SPSS) were used for statistical analysis. Results are presented as the mean value ± standard deviation (SD). The Student’s t-test and one-way analysis of variance (ANOVA) were used to compare two or more groups. p < 0.05 was considered statistically significant.
RESULTS
CDR1as Was Downregulated in OC and Associated With CDDP Chemoresistance
First, we re-annotated probes and detected the expression of CDR1as in two microarray datasets (Supplementary Figure 1). We created a hierarchical clustering heatmap showing all differentially expressed circRNAs (Figure 1A). Compared with the CDDP-sensitive group, the levels of CDR1as were reduced in the CDDP-resistant group (Figures 1B,C). Subsequently, we confirmed the expression of CDR1as in OC and adjacent normal tissues by qRT-PCR analysis. As shown in Figure 1D, CDR1as was expressed at significantly higher expression levels in non-tumor (normal) tissues compared to OC tissues. Furthermore, we also verified the expression of CDR1as in OC cell lines by qRT-PCR. The expression levels of CDR1as showed a reducing trend decreasing from CDDP-sensitive OC cells (SKOV3 and HO8910) to CDDP-resistant OC cells (SKOV3/CDDP and HO8910/CDDP) (Figure 1E). These results showed that CDR1as was highly expressed in CDDP-resistant OC tissues and cell lines and may be related to the promotion of CDDP chemoresistance in OC.
[image: Figure 1]FIGURE 1 | Circular RNA CDR1as significant downregulated in OC resistant tissues and cell lines. (A,B) The heatmap and volcano plot show variation in circRNAs expression between CDDP-resistant and -sensitive OC cell lines. (C) The expression of CDR1as in CDDP-resistant and -sensitive cell lines by bioinformatics analysis. (D) Expression levels of CDR1as in OC tissues and their adjacent normal tissues by qRT-PCR. (E) qRT-PCR of CDR1as expression in CDDP resistant OC cell lines (SKOV3/CDDP and HO8910/CDDP) and the parental cell lines (SKOV3 and HO8910). These results were presented as the mean ± SDs. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
CDR1as Inhibited CDDP Chemoresistance in OC In Vitro
To explore the role of CDR1as, we conducted loss- and gain-of-function studies in CDDP-sensitive and -resistant OC cells. First, we constructed three types of CDR1as knockdown lentiviruses (sh-RNA1, sh-RNA2, sh-RNA3) and a control lentivirus (sh-Control). The transfection efficiency was determined by qRT-PCR. sh-RNA2 successfully knocked down CDR1as in SKOV3 cells when compared to sh-RNA1 and sh-RNA3, while the HO8910 cells were successfully knocked down by sh-RNA3 (Figure 2A). In addition, the CDDP-resistant cells (SKOV3/CDDP and HO8910/CDDP) were transfected with a CDR1as overexpression lentivirus (h-CDR1as) or control lentivirus (h-Control). qRT-PCR was used to verify the efficiency of transfection (Figure 2B). Subsequently, we constructed stable transfected cell lines (SKOV3-sh-CDR1as, SKOV3-Control, SKOV3/CDDP-h-CDR1as, SKOV3/CDDP-Control, HO8910-sh-CDR1as, HO8910-Control, HO8910/CDDP-h-CDR1as, and HO8910/CDDP-Control).
[image: Figure 2]FIGURE 2 | CDR1as suppresses the cell proliferation in vitro. (A,B) Verification the efficiency of downregulated CDR1as in SKOV3 and HO8910 cells (A) and overexpressed CDR1as in SKOV3/CDDP and HO8910/CDDP cells (B) by qRT-PCR. (C,D) MTT determined the IC50 of CDDP. (E,F) CCK-8 assays detected the cell proliferation of CDDP-sensitive (E) and -resistant OC cells (F) in the presence of CDDP. (G,H) EdU assays were performed to identify the cell proliferation of transfected CDDP-sensitive (G) and -resistant OC cells (H). These results were presented as the mean ± SDs. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
MTT assays showed that SKOV3/CDDP and HO8910/CDDP had acquired CDDP resistance. The half maximal inhibitory concentration (IC50) of CDDP was higher in SKOV3/CDDP and HO8910/CDDP cells than in the parental cells SKOV3 and HO8910 cells (Figures 2C,D). CCK-8 assays showed that the overexpression of CDR1as reduced the ability of cell proliferation in SKOV3/CDDP and HO8910/CDDP cells at the IC50 of CDDP, while downregulated CDR1as increased the proliferation of SKOV3 and HO8910 cells (Figures 2E,F). Simultaneously, EdU assays also demonstrated that CDR1as inhibited proliferative capacities of CDDP-sensitive and -resistant OC cells (Figures 2G,H). Furthermore, cell apoptosis was determined by Annexin V-APC and PI double staining and flow cytometry. As shown in Figure 3A, in SKOV3/CDDP and HO8910/CDDP cells, the number of apoptotic cells (B + D) was increased when CDR1as was overexpressed and the cells were treated CDDP compared with the control. In addition, the knockdown of CDR1as decreased the extent of cell apoptosis in SKOV3 and HO8910 at a concentration of 5 μg/ml CDDP (Figure 3B). These results demonstrated that CDR1as could facilitate cell apoptosis and suppress CDDP chemoresistance in OC. In addition, wound healing and Transwell assays were used to confirm the effect of CDR1as on cell migration and invasion in OC. Results from wound healing assays showed that the overexpression of CDR1as significantly attenuated migration in both SKOV3/CDDP and HO8910/CDDP cells, while silencing CDR1as reserved this phenomenon in SKOV3 and HO8910 cells (Figures 4A,B). Transwell assays indicated that the overexpression of CDR1as could restrain the invasion ability of SKOV3/CDDP and HO8910/CDDP cells in the presence of CDDP while cell invasion was promoted with the reduced expression of CDR1as in SKOV3 and HO8910 cells (Figures 4C,D).
[image: Figure 3]FIGURE 3 | CDR1as promotes the cell apoptosis. (A,B) The cell apoptosis rates of the CDDP-resistant and -sensitive OC cells transfected with CDR1as were determined by flow cytometric analysis. These results were presented as the mean ± SDs. ***p < 0.001 and ****p < 0.0001.
[image: Figure 4]FIGURE 4 | CDR1as reduces the cell migration and invasion. (A,B) Wound healing assays detected the effect of CDR1as on cell migration. (C,D) Cell invasion analysis of CDDP-resistant and -sensitive cell lines on CDR1as expression. These results were presented as the mean ± SDs. **p < 0.01, ***p < 0.001 and ****p < 0.0001.
CDR1as Suppressed the CDDP Chemoresistance in OC Cells In Vivo
Next, we investigated the clinical relevance of the association between CDR1as and CDDP resistance in vivo. We subcutaneously injected 1 × 107 SKOV3 cells that were stably transfected with or without knockdown CDR1as into the each dorsal flanks of female BALB/c nude mice. The mice were then divided into four groups: group 1, SKOV3-sh-CDR1as + CDDP; group 2, SKOV3-sh-CDR1as + PBS; group 3, SKOV3-Control + CDDP; and group 4, SKOV3-Control + PBS. CDDP (5 mg/kg) were injected into group 1 and group 3 twice a week, while group 2 and group 4 were injected into the same dose of PBS (Figures 5A,B). The tumor volume and body weight measurements of nude mice were taken once 4 days. The inhibition of CDR1as in OC cells significantly increased tumor growth (Figures 5C,D). Therefore, CDR1as promoted the response of OC cells to CDDP treatment and suppressed CDDP chemoresistance in vivo.
[image: Figure 5]FIGURE 5 | CDR1as promotes CDDP sensitive of OC cells in vivo. (A) The tumor burden of SKOV3 cells transfected with sh-CDR1as or Control lentivirus. (B) The subcutaneous xenograft tumors with or without CDDP treatment were isolated. (C) Tumor volume was measured using a caliper. (D) The growth curves of nude mice body weight. These results were presented as the mean ± SDs. **p <0.01.
CDR1as Exerts Functionality by Sponging MiR-1299
To address whether CDR1as could act as a sponge for miRNAs in OC cells, we first performed the bioinformatics analysis for target prediction. Three online tools RNAInter (RNAInter), CircInteraction (CircInteraction), and CircBank (CircBank) were used to predict miRNAs that contain binding sites to the CDR1as sequence. Then, another online database (HMDD) was used to detect miRNAs associated with OC; this database features experimental evidence. Subsequent Venn analysis, as shown in Figure 6A, indicated that miR-1299 (which contained 19 binding sites) was filtered out and predicted to be a possible target for CDR1as. miR-1299 was associated with 19 7mer sponge sites in the 3′-UTR of CDR1as. To confirm the interaction between CDR1as and miR-1299, a dual luciferase reporter assay was designed in 293T cells. The CDR1as full-length wild type (CDR1as-wt) and mutant type (CDR1as-mut; without the miR-1299 binding site) were cloned into a luciferase reporter vector. miR-1299 mimics significantly reduced the luciferase activity of CDR1as-wt. However, there was no obvious effect of the CDR1as-mut reporter following transfection with miR-1299 mimics (Figure 6B). Furthermore, the RNA Immunoprecipitation (RIP) assays were performed with argonaute 2 (AGO2) antibody in SKOV3 and HO8910 cells. We then used qRT-PCR to detect the expression levels of CDR1as and miR-1299 enriched by anti-AGO2 antibody and anti-IgG antibody. Our results demonstrated the specific enrichment of CDR1as and miR-1299 in the AGO2 group when compared to the IgG group (Figure 6C). These results indicated that CDR1as might function as a miR-1299 sponge in OC cells.
[image: Figure 6]FIGURE 6 | CDR1as serves as a miRNA sponge of miR-1299. (A) RNAInter, CircInteraction, CircBank, and HMDD databases were used to predict the target miRNA of CDR1as. (B) The interaction between CDR1as and miR-1299 in 293T cells was verified using dual luciferase report assay. (C) RIP experiments enriched CDR1as and miR-1299 by qRT-PCR in OC cells. These results were presented as the mean ± SDs. **p < 0.01 and ****p < 0.0001.
MiR-1299 Promoted CDDP Chemoresistance in OC
To evaluate the potential functional association between miR-1299 and OC cells, we confirmed the expression of miR-1299 in CDPP-sensitive and -resistant OC cells. By qRT-PCR, we found that the expression of miR-1299 was increased in SKOV3/CDDP and HO8910/CDDP compared with SKOV3 and HO8910 (Figure 7A). We also found that the effects of miR-1299 were opposite to those of CDR1as on CDDP-resistant OC cells. To further verify the role of miR-1299 in OC, we designed rescue experiments. SKOV3 and HO8910 cells were transfected as follows: 1) sh-Control + miR-NC; 2) sh-CDR1as + miR-NC; 3) sh-Control + miR-1299 mimic; and 4) sh-CDR1as + miR-1299 mimic. CCK-8 (Figure 7B) and EdU assays (Figure 7C) showed that the miR-1299 mimic significantly reversed the cell proliferation effects caused by the downregulation of CDR1as. Flow cytometry analyses further indicated that co-transfection with sh-CDR1as and miR-1299 mimic significantly suppressed the cell apoptosis when compared with the controls (sh-Control + miR-NC). Moreover, miR-1299 could also inhibit the cell apoptosis in OC cells (Figure 7D). Based on these results, we found that the increased cell proliferation and decreased cell apoptosis caused by the knockdown of CDR1as could be reversed by the overexpression of miR-1299 in OC cells.
[image: Figure 7]FIGURE 7 | The relationship between miR-1299 and CDR1as in OC cells. (A) The expression of miR-1299 in cell lines by qRT-PCR. (B,C) Proliferation of CDR1as-knockout OC cells that transfected with miR-1299 mimic or miR-NC was detected by CCK-8 (B) and EdU assays (C). (D) Flow cytometry analyzed the CDR1as-knockout OC cell apoptosis rate with or without miR-1299 transfected. These results were presented as the mean ± SDs. *p < 0.05, **p <0.01, ***p < 0.001, and ****p < 0.0001.
PPP1R12B Was Identified as a Direct Target of MiR-1299
The downstream target genes of miR-1299 were further analyzed with four databases (Diana, TargetMiner, TargetScan, and miRDB) so that we could better identify the mode of molecular regulation. We identified 47 mRNAs (Figure 8A). Figure 8B shows the expression profiles of mRNAs obtained from the TCGA and GTEx databases. PPP1R12B showed the most significant downregulatory trend in the TCGA cohort compared with the normal tissue cohort (Figures 8C,D). Then, we further identified the target genes using the GSE45553 dataset and found that PPP1R12B was significantly downregulated in CDDP resistant cell lines (Figures 9A,B). Therefore, we hypothesized that PPP1R12B might be a direct target of miR-1299. Dual-luciferase reporter assays were performed to confirm the binding of PPP1R12B to miR-1299 in 293T cells. The luciferase reporter vector that contained the wild-type miR-1299-binding sites at the PPP1R12B 3′-UTR and miR-1299 were decreased relative to those containing mutated binding sites (Figure 9C). In addition, we investigated the expression of PPP1R12B in OC cells. As shown in Figure 9D, compared with CDDP-resistant OC cells, CDDP-sensitive OC cells showed an obvious increase in the expression of PPP1R12B mRNA by qRT-PCR. Western blotting also verified the protein expression of PPP1R12B in OC cells (Figure 9E). Results indicated that PPP1R12B was downregulated in CDDP-resistant cells and was directly targeted by miR-1299.
[image: Figure 8]FIGURE 8 | The predicted target mRNAs of miR-1299. (A) Candidate mRNAs predicted by four databases to target miR-1299. (B,C) Heatmap (B) and volcano plots (C) showed different expressed genes that bind to miR-1299 in TCGA and GTEx. (D) The different expression of PPP1R12B in TCGA and GTEx. These results were presented as the mean ± SDs. ****p < 0.0001.
[image: Figure 9]FIGURE 9 | PPP1R12B is a direct target of miR-1299. (A,B) The heatmap (A) and volcano plot (B) revealed the mRNAs expression profiles in GSE45553. (C) The expression of PPP1R12B in CDDP-resistant and -sensitive cell lines by GSE45553. (D) The interaction between PPP1R12B and miR-1299 in 293T cells was verified using dual luciferase report assay. (E) PPP1R12B expression in cells lines. (F) The protein expression of PPP1R12B in cell lines by Western blotting. (G) Knockout CDR1as activates Akt/mTOR signaling pathway. These results were presented as the mean ± SDs. *p < 0.05 and ****p < 0.0001.
CDR1as Inhibited the Akt/mTOR Signaling Pathway in OC
Western blotting analysis was used to confirm the involvement of the Akt/mTOR signaling pathway in CDDP-resistant OC. The expression levels of p-Akt and p-mTOR were increased in SKOV3/CDDP cells (Figure 9F). Furthermore, the roles of CDR1as in the Akt/mTOR pathway were also investigated. We discovered a significant trend in the expression of p-Akt and p-mTOR that were contrary to the level of CDR1as expression. The levels of CDR1as did not alter the expression of Akt and mTOR. These results suggested that the Akt/mTOR signaling pathway was activated by the knockdown of CDR1as.
DISCUSSION
CDDP is one of the most widely used drugs in the chemotherapy treatment of OC. Despite the improvements in chemoradiotherapy, targeted therapy, and immunotherapy, CDDP chemoresistance is one of the most significant factors that lead to treatment failure in OC patients and seriously threaten the survival rate of OC patients (Zhang et al., 2020). Consequently, understanding the pathogenesis of CDDP resistance in OC is vital if we are to develop better therapy and prognosis of patients. Recently, an increasing number of studies have verified the critical roles of circRNAs in tumor development and CDDP chemoresistance (Zhang et al., 2019). An increasing body of literature now supports the fact that CDR1as is deregulated in many types of cancers, such as bladder cancer, liver cancer, nasopharyngeal cancer, and esophageal squamous cell cancer (Zhong et al., 2019, Meng et al., 2020). Therefore, CDR1as plays a vital role in the progression and metastasis of CDDP chemoresistance in OC. However, the molecular mechanisms and underlying role of CDR1as remain obscure and need to be investigated in CDDP-resistant OC. In our research, multiple bioinformatics methods and datasets were employed and confirmed that CDR1as expression was downregulated in OC tissues and cells. Furthermore, compared with CDDP-sensitive OC cells, CDR1as expression was significantly reduced in CDDP-resistant OC cells. The downregulated expression of CDR1as suppressed OC tumorigenesis and predicted CDDP resistance and a poor prognosis in OC patients. We are the first to determine the role of circRNA CDR1as in CDDP resistance in OC. Next, we investigated the functions of CDR1as as a key regulator in cell proliferation, apoptosis, migration, and invasion in vitro and in nude mouse tumor xenografts in vivo.
To investigate the effect of CDR1as on CDDP chemoresistance in OC, we performed CCK-8 and EdU assays. We found that the upregulation of CDR1as inhibited the proliferation of CDDP resistance OC cells in response to CDDP treatment. Then, wound healing and Transwell assays were performed; we found that the overexpression of CDR1as promoted cell migration and invasion in CDDP-resistant OC cells. Furthermore, flow cytometry analysis showed that the upregulation of CDR1as could promote cell apoptosis in CDDP-resistant OC cells. Moreover, a nude mouse tumor xenograft model was established to further investigate the clinical relevance of CDR1as on CDDP chemoresistance OC. The tumor xenograft data indicated that the knockdown of CDR1as increased tumor growth and enhanced the cell resistance to CDDP treatment. Based on these experiments, CDR1as acts as a tumor suppressor in OC and could suppress CDDP chemoresistance.
It is well known that circRNAs can act as sponges of miRNAs to modulate gene expression in cancer. For example, circFAM13B can sponge miR-212 to promote the proliferation of hepatocellular carcinoma (Xie et al., 2021). CircCUL2 regulates gastric cancer malignant transformation by sponging miR-142-3p (Peng et al., 2020). In oral squamous carcinoma cells, circ-SCMH suppresses CDDP chemoresistance by sponging miR-3383p and regulating LIN28B (Qiu et al., 2021). In this study, we used three online databases for bioinformatics analysis to predict the potential downstream miRNAs of CDR1as. Interestingly, we observed that CDR1as was a sponge of miR-1299. By dual-luciferase reporter assays and RIP assays, we confirmed the direct interaction of miR-1299 and CDR1as. Furthermore, the abundance of miR-1299 was increased in CDPP-resistant OC cells compared with their parent cells. We also carried out rescue experiments. miR-1299 was shown to contribute to CDDP resistance by CCK-8, EdU assays, and flow cytometric analysis.
In light of the ceRNA hypothesis, circRNAs can form a new complex regulatory network to regulate miRNA target gene expression (Thomson and dinger, 2016). By analyzing four databases, we found that PPP1R12B was the target gene of miR-1299 and was significantly downregulated in CDDP-resistant OC. Dual-luciferase reporter assays demonstrated that miR-1299 could target the 3′UTR of PPP1R12B. qRT-PCR was also used to demonstrate the expression of PPP1R12B in OC cells. Western blotting also confirmed the protein expression of PPP1R12B. This was the first evidence to indicate that PPP1R12B participates in CDDP chemoresistance in OC. However, the underlying upstream mechanism of PPP1R12B in CDDP chemoresistance in OC has yet to be fully investigated.
The Akt/mammalian target of rapamycin (mTOR) signaling pathway is a classic intracellular pathway and plays an important role in various tumors (Deng et al., 2019). Irregularities in the Akt/mTOR signaling pathway are reported to be a significant therapeutic target in OC (Brabec and Kasparkova, 2005). In osteoarthritis, the downregulation of CDR1as can activate the AKT/mTOR signaling pathway (Zhou et al., 2020). Currently, the relationship between CDR1as and the Akt/mTOR signaling pathway has not been explored in CDDP chemoresistance OC. In this study, we confirmed that the Akt/mTOR pathway was activated in CDDP-resistant cells in OC. The data also showed that the downregulation of CDR1as could enhance the expression of p-Akt and p-mTOR. However, there were no significant changes in the expression of total Akt or total mTOR. However, the mechanisms underlying the action of CDR1as on the Akt/mTOR signaling pathway in CDDP chemoresistance OC has yet to be investigated.
Based on these findings, we carried out a series of studies to demonstrate the role of the CDR1as/miR-1299/PPP1R12B axis in OC. We found that the levels of CDR1as were decreased in OC tissues and cells. Compared with CDDP-sensitive OC cells, the expression of CDR1as was downregulated in CDDP-resistant OC cells. CDR1as could bind with miR-1299 to target PPP1R12B mRNA. CDR1as enhanced CDDP chemotherapy sensitivity in OC. The downregulation of CDR1as activated the Akt/mTOR signaling pathway. Together, our findings reveal the relationship between CDR1as, miR-1299, and PPP1R12B mRNA in CDDP chemoresistance in OC. Our study also provides novel evidence and sheds light on highlighting a therapeutic target for CDDP chemoresistance in OC patients.
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Purpose: To determine the independent risk factors associated with malignant nonspiculate and noncalcified masses (NSNCMs) and evaluate the predictive values of extratumoral structural abnormalities on digital mammography.
Methods: A total of 435 patients were included between January and May 2018. Tumor signs included shape, density, and margin, which were evaluated. Extratumoral signs were classified into extratumoral structural abnormalities (parenchymal and trabecular) and halo; subclassification included contraction, distortion, pushing and atrophy sign of parenchyma, parallel, vertical, and reticular trabecula sign, and narrow and wide halo. Univariate and multivariate analysis was performed. The positive predictive value (PPV) of the independent predictor was calculated, and diagnostic performance was evaluated using the receiver operating characteristic curve.
Results: Of all cases, 243 (55.8%) were benign and 192 (44.2%) were malignant. Extratumoral contraction sign of parenchyma was the strongest independent predictor of malignancy (odds ratio [OR] 36.2, p < 0.001; PPV = 96.6%), followed by parenchymal distortion sign (OR 10.2, p < 0.001; PPV = 92%), parallel trabecula sign (OR 7.2, p < 0.001; PPV = 85.6%), and indistinct margin of tumor (OR 4.3, p < 0.001; PPV =70.9%), and also parenchymal atrophy sign, wide halo, vertical trabecula, age ≥ 47.5 years, irregular shape, and size ≥ 22.5 mm of tumor (OR range, 1.3-4.0; PPV range, 56.6-83.6%). The diagnostic performance of most of the extratumoral signs was between that of indistinct margin and irregular shape of tumor.
Conclusion: The subclassification of extratumoral structural abnormalities has important predictive value for mammographic malignant NSNCM, which should be given more attention.
Keywords: breast, nonspiculate and noncalcified masses, extratumoral structural abnormalities, predictive value, digital mammography
INTRODUCTION
Breast cancer remains a global public health problem (Masood and Rosa, 2011). The incidence of breast cancer in Chinese women continues to rise (Bai et al., 2020). Digital mammography is one of the important imaging tools for breast cancer screening and diagnosis (Fischer et al., 2006; Zeeshan et al., 2018). The morphological analysis of mammographic signs is still one of the research tasks of radiologists, regardless of the development of imaging technology and artificial intelligence.
Mass is the most common imaging manifestation of breast cancer and also the main sign of benign disease. Digital mammography descriptors include shape, density, and margin according to the Breast Imaging Data and Reporting System (BI-RADS), which are further classified in detail (Fischer et al., 2006; Zeeshan et al., 2018). Spiculate mass is more likely to be evaluated as malignancy because of its very high positive predictive value (Burrell et al., 1996; Liberman et al., 1998). Calcifications may be associated with mass, and the type of calcification will increase radiologists’ confidence in evaluating mass. Then, we classified the remaining masses as nonspiculate and noncalcified masses (NSNCMs). We are interested in these types of masses because more attention is often required to consider malignant possibility.
A review of previous literatures related to mammographic masses showed that most of them focused on signs of the mass itself. The most common impression is that round or oval mass with circumscribed margin is more likely to be benign, whereas a malignant mass has irregular shape (Liberman et al., 1998; Berment et al., 2014; Li et al., 2017; Nakashima et al., 2017; Woods et al., 2021). However, some malignant tumors also present circumscribed margin (Meyer et al., 1989; Wang et al., 2008; Yoo et al., 2010). Therefore, more morphologic information should be mined to predict malignant NSNCMs on mammography and provide clues for clinical management decisions.
The interaction between the tumor and the microenvironment is an important mechanism in the process of tumor growth and metastasis (Troester et al., 2009). The evolution of breast cancer requires co-optation of the surrounding stromal tissues to facilitate progression and support metabolic demand (Jones et al., 2013). Normal-appearing stromal tissues surrounding breast tumors can harbor abnormalities (Li et al., 2002). Therefore, our study will explore the classification and subclassification of extratumoral signs, which was rarely seen in the previous literature. The purpose of this study is to determine the independent risk factors associated with malignant NSNCMs and evaluate the predictive value of subclassification of extratumoral structural abnormalities by analyzing tumor signs and extratumoral signs on digital mammography.
MATERIALS AND METHODS
Patients
The hospital institutional review board approved our observational study and waived the need for informed consent because the study was performed retrospectively using routinely acquired mammograms.
The keyword “mass” was searched in the digital mammography report interface of the picture archiving and communication system (PACS) of our hospital. The limited date was from January to May 2018, and the subject was inpatients. There were 813 patients in total; subsequently, there were 241 (29.6%) spiculate masses and calcified masses, and 137 (16.9%) cases not suitable for this study were excluded (Figure 1) Eventually, 435 (53.5%) patients with NSNCMs were included, who underwent surgery and were pathologically confirmed. They were all female, and the mean age ±standard deviation was 46.1 ± 11.6 years (range, 16–76 years).
[image: Figure 1]FIGURE 1 | Flowchart shows the process of enrolling patients in this study.
Digital Mammography
Mammograms were obtained using a full field digital mammography system (MS-3500, Fuji, Japan; Inspiration, Siemens, Germany). Examinations were performed by experienced technologists using the automatic exposure mode, and the manual exposure mode was used when the mass was large. Conventional craniocaudal and mediolateral oblique views were obtained. The supplemented position was performed when necessary. The examinational pressure was based on the maximum tolerance of the patient by communication. All mammograms were transmitted to both the picture archiving and communication system and the diagnosis workstation.
Imaging Analysis
Each enrolled patient had 4 images [2 in mediolateral oblique (MLO) view and 2 in craniocaudal (CC) view]. The MLO view image size was 65.67*82.33 inches, and the resolution was 300 dpi. The CC view image size was 28.92*38.89 inches, and the resolution was 300 dpi.
Two radiologists, respectively, reviewed all mammographic views on the specialized diagnostic workstation (5.8 M dual display screen) without knowledge of the pathological diagnosis. The imaging data were recorded by a radiologist with 5 years of breast imaging experience and reviewed by a deputy chief physician who has been engaged in mammography diagnosis for 16 years. Both two radiologists reached a consensus after discussion for inconsistent descriptors.
Tumor signs were evaluated and recorded using the BI-RADS lexicon (Uchiyama and Fukuda, 1989; Zhou et al., 2014), including shape (round, oval, and irregular), density (high, equal, and low), and margin (circumscribed, obscured, and indistinct). At the same time, the mass size was recorded and based on its largest diameter.
In this study, based on BI-RADS and our breast imaging experience, extratumoral signs of NSNCM were classified into extratumoral parenchymal structural abnormalities, extratumoral trabecular structural abnormalities, and halo signs, which were further subclassified (Figure 2). The subclassification of parenchymal abnormalities included contraction, distortion, pushing, and atrophy sign (Figure 3). The detailed explanation was as follows: parenchymal contraction sign was defined as aggregation and contraction toward the mass, distortion sign was described as losing normal texture, pushing sign meant that the displacement of parenchyma due to compression of mass, and atrophy sign meant the reduction of parenchyma outside the mass compared to the normal contralateral area. Then, the trabecular abnormalities were subclassified according to the direction to the edge of the mass, including parallel, vertical, and reticular trabecula signs (Figure 4). Halo signs were also divided into narrow (width <0.5 mm) and wide (width ≥0.5 mm). All of the extratumoral signs were detected in at least one mammographic view.
[image: Figure 2]FIGURE 2 | Flowchart shows the subclassification of extratumoral signs in this study.
[image: Figure 3]FIGURE 3 | Subclassification of parenchymal abnormalities. (A) A mass with extratumoral contraction sign of parenchyma in a 49-year-old woman proved to be invasive ductal carcinoma grade Ⅱ pathologically. (B) A mass with extratumoral distortion sign of parenchyma in a 48-year-old woman proved to be invasive ductal carcinoma grade Ⅲ pathologically. (C) A mass with extratumoral pushing sign of parenchyma in a 45-year-old woman proved to be fibroadenoma pathologically. (D) A mass with extratumoral atrophy sign of parenchyma in a 45-year-old woman proved to be invasive ductal carcinoma grade Ⅲ pathologically.
[image: Figure 4]FIGURE 4 | Subclassification of trabecular abnormalities. (A) A mass with parallel trabecula sign in a 56-year-old woman proved to be invasive ductal carcinoma grade Ⅲ pathologically. (B) A mass with parallel trabecula sign in a 55-year-old woman proved to be invasive ductal carcinoma grade Ⅲ pathologically. (C) A mass with vertical trabecula sign in a 61-year-old woman proved to be invasive ductal carcinoma grade Ⅲ pathologically. (D) A mass with reticular trabecula sign in a 62-year-old woman proved to be invasive ductal carcinoma grade Ⅱ pathologically.
Statistical Analysis
Continuous data were expressed as mean ± standard deviation, and categorical variables were expressed as a percentage. First, univariate analysis was performed, and the Student’s t-test was used for identifying the differences of age and mass size between the two groups. Tumor signs and extratumoral signs between benign and malignant NSNCMs were compared using the chi-square test (with Yates correction) and Fisher’s exact test. Multivariate logistic regression analysis was subsequently performed to determine independent risk factors for malignancy. All variables with p < 0.2 at univariate analysis were considered for the multivariate model (David and Hosmer, 2013). At the same time, optimal cut-off values of age and mass size for distinguishing malignant from benign were estimated by a receiver operating characteristic (ROC) curve analysis (Youden index), which were also taken into multivariate regression analysis. Here, we adopted the stepwise method to select variables and obtained the independent risk factors of malignant NSNCM.
The positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of independent risk factors were calculated using histopathological diagnosis as the standard of reference. The diagnostic performance for the significant independent predictor was estimated as the area under the receiver operating characteristic curve (AUC). The diagnostic performance was regarded as low (AUC = 0.5–0.6), moderate (AUC = 0.6–0.8), or high (AUC >0.8) (Xu et al., 2014).
All statistical analyses were performed by using R software (version 4.0.3; R Development Core Team, Vienna, Austria). A level of p < 0.05 was considered to indicate a significant difference.
RESULTS
Pathologic Diagnosis
Of all 435 NSNCMs, 243 (55.8%) were benign and 192 (44.2%) were malignant pathologically. Benign NSNCMs included fibroadenoma (n = 155, 63.8%), adenosis (n = 60, 24.7%), ductal papilloma (n = 20, 8.2%), inflammatory (n = 5, 2.1%), cystic ductal dilatation (n = 2, 0.8%), and tubular adenoma (n = 1, 0.4%). Malignant NSNCMs included invasive ductal carcinoma grade Ⅰ (n = 8, 4.2%), invasive ductal carcinoma grade Ⅱ (n = 95, 49.5%), invasive ductal carcinoma grade Ⅲ (n = 73, 38%), mucinous carcinoma (n = 3, 1.6%), solid papillary carcinoma (n = 3, 1.6%), encapsulated papillary carcinoma (n = 1, 0.5%), medullary carcinoma (n = 1, 0.5%), invasive tubulocarcinoma (n = 1, 0.5%), and ductal carcinoma in situ (n = 7, 3.6%).
Univariate Analysis of Mammographic Tumor Signs and Age
The univariate analysis results of mammographic tumor signs and age between benign and malignant NSNCMs are shown in Table 1. There were significant differences in most of the shape, density, margin, mass size, and age. Among them, the tumor signs with malignant risk were indistinct margin, high density, irregular shape, the elderly, and large masses (p < 0.001). Benign NSNCMs were more common with circumscribed or obscured margin, equal or low density, and oval shape and associated with about 40 years of age and smaller masses. The round shape was not statistically significant between the two groups (p = 0.959).
TABLE 1 | Univariate analysis of tumor signs and age between benign and malignant NSNCMs.
[image: Table 1]Optimal Cut-Off Value of Age and Mass Size
The optimal cut-off value of age was 47.5 years by ROC analysis (Figure 5A). The optimal cut-off value of mass size was 22.5 mm by ROC analysis (Figure 5B).
[image: Figure 5]FIGURE 5 | Optimal cut-off value of age and mass size. (A) The optimal cut-off of the age is 47.5 (B) The optimal cut-off of mass size is 22.5. The ROC analyses were based on continuous data of age and mass size.
Univariate Analysis of Mammographic Extratumoral Signs
The univariate analysis results of mammographic extratumoral signs between benign and malignant NSNCMs are shown in Table 2. An overall analysis showed that extratumoral structural abnormalities were highly correlated with malignancy (p < 0.001), which appeared externally in 95.3% of malignant masses. In detail, there were significant differences in the subclassification of parenchymal abnormalities. The signs significantly associated with malignancy included parenchymal contraction sign, distortion sign, and atrophy sign, while pushing sign was more common around benign masses (p < 0.001). In subclassification of trabecular abnormalities, parallel trabecula sign and vertical trabecula sign were malignant risk factors, and there was significant difference between the two groups (p < 0.001), while reticular trabecula sign was not statistically significant (p = 0.084). Regarding halo sign, wide halo sign or absent halo were commonly seen in malignancy, while narrow halo was the opposite (p < 0.001 to p = 0.009).
TABLE 2 | Univariate analysis of extratumoral signs between benign and malignant NSNCMs.
[image: Table 2]Multivariate Logistic Regression Analysis
Logistic regression analysis results of variables associated with malignant NSNCMs are shown in Table 3. Extratumoral contraction sign of parenchyma was the strongest independent predictor of malignant NSNCM (odds ratio [OR] 36.2, p < 0.001), followed by parenchymal distortion (OR 10.2, p < 0.001), parallel trabecula sign (OR 7.2, p < 0.001), and indistinct margin of tumor (OR 4.3, p < 0.001), and also extratumoral atrophy sign of parenchyma (OR 4.0, p < 0.001), wide halo (OR 4.0, p = 0.022), vertical trabecula sign (OR 3.5, p < 0.001), age ≥47.5 years (OR 2.9, p < 0.001), irregular shape (OR 2.5, p = 0.007), and size ≥22.5 mm of tumor (OR 1.3, p = 0.002). Factors not independently associated with malignancy included high density of tumor, extratumoral reticular trabecula, and absent halo (p > 0.05).
TABLE 3 | Multivariate logistic regression analysis of variables associated with malignant NSNCM.
[image: Table 3]PPV and ROC Curve Analyses of Independent Risk Factors
The results of statistical diagnostic indicators and the ROC curve in evaluating independent malignant risk factors are shown in Table 4 and Figure 6. The PPV and AUC of important independent predictors are shown below: extratumoral contraction sign of parenchyma had the highest PPV (96.6%) and moderate AUC (0.64), parenchymal distortion had higher PPV (92%) and moderate AUC (0.61), parallel trabecula sign also had higher PPV (85.6%) and high AUC (0.80), and indistinct margin of tumor had both high PPV (70.9%) and AUC (0.81). Other predictors had varying PPV (range, 56.6–83.6%) and moderate or near-moderate AUC (range, 0.59-0.72).
TABLE 4 | Statistical diagnostic indicators of independent malignant risk factors.
[image: Table 4][image: Figure 6]FIGURE 6 | ROC curve of independent malignant risk factors. The optimal cut-off 47.5 was selected using the age prediction model. The optimal cut-off 22.5 was selected using the size prediction model. The figure was edited using Adobe illustrator (version number CS6) (without changing the result).
DISCUSSION
Our study showed that most of the extratumoral signs were independent predictors for malignant NSNCM. Among them, the malignant risk and PPV of subclassification of extratumoral structure abnormalities were higher than tumor signs in different degrees. The diagnostic performance of most of the extratumoral signs was between that of indistinct margin and irregular shape of tumor. This is a gratifying result, which means that for the digital mammographic evaluation of NSNCM, we need to analyze the tumor signs and extratumoral signs at the same time.
In this study of NSNCM, margin and shape of tumor were significantly different from benign to malignant. Consistent with other research studies, an indistinct margin or irregular shape is a suspicious malignant feature (Liberman et al., 1998; Kettritz, 2005; Berment et al., 2014). Since the subject of our study was NSNCMs and extratumoral signs were included, the independent malignant risk of indistinct margin or irregular shape was not higher; it was lower than in previous literatures (Liberman et al., 1998; Kettritz, 2005; Berment et al., 2014). Our data showed that 70.9% of the indistinct margin masses and 79% of the irregular masses were malignant; the PPVs of these were higher than in other literatures (Burrell et al., 1996; Liberman et al., 1998). However, the proportion of irregular shape in malignant NSNCM is not high, but the oval shape was the majority (72.9%) in our study. Then, high density was not independent of malignancy in the study. There are different opinions on the reliability of density in predicting malignancy (Xu et al., 2014; Woods et al., 2021). More attention should be paid to malignant tumors with similar morphological manifestations to those of benign. In this study, 8.8% of NSNCMs with circumscribed margin were malignant, which was similar to a 9% frequency of carcinoma in circumscribed masses reported by Liberman L (Soysal et al., 2015; Dias et al., 2019). Furthermore, circumscribed masses on tomosynthesis images are not guaranteed to be benign lesions (Xu et al., 2014; Woods et al., 2021). Therefore, more morphologic signs were needed to stratify the risk of NSNCM.
Duo to the interaction between the heterogeneity of breast cancer and the organism microenvironment, a variety of growth and spread modes of tumor are determined (Soysal et al., 2015; Dias et al., 2019). Tumors and their surrounding area represent spatially organized “ecosystems” (Sofopoulos et al., 2019). Outward invasion of breast carcinoma and defense response of the organism will inevitably show different signs in different imaging. In order to obtain more information for predicting malignant NSNCM, we classified the extratumoral signs into extratumoral structural abnormalities (parenchymal and trabecular) and halo sign. Owing to the diversity of them, further subclassification was carried out. In this study, masses with extratumoral structural abnormalities were significantly correlated with malignancy. The subclassification sign may appear severally or several may coexist. It indicated that the tumor signs and extratumoral signs of breast carcinoma are an inseparable whole on the image.
The study showed that most of the subclassification of extratumoral structural abnormalities was independently associated with malignancy, which is of positive significance to evaluating NSNCM. Extratumoral contraction sign of parenchyma was the strongest independent predictor of malignancy, followed by parenchymal distortion sign and parallel trabecula sign, the risks of which were higher than indistinct margin of tumor. In addition, the malignant risk of extratumoral parenchymal atrophy sign and vertical trabecula sign was also higher than that of irregular shape of tumor. It indicated that the independent risk factors of extratumoral structural abnormalities were greatly significant for mammographic evaluation of malignant NSNCM compared with the tumor signs.
Among all extratumoral independent predictors for malignancy, parenchymal contraction sign showed the highest PPV (96.6%) and moderate diagnostic performance in our study. Desmoplastic reaction may be a marker of local malignancy (Mezi et al., 1997), and this phenomenon was considered to be a reaction and response of the host tissue against tumor (Martinez and Smith, 2021). Much periductal fibrosiselastic reaction (Uchiyama and Fukuda, 1989; Zhou et al., 2014) may probably be the most direct cause of contraction sign. The sign can be manifested as a banded or “wedge-shaped” contraction of peritumoral or quadrantal parenchyma, also the traction of the edge. Nearly one-third of the malignancies showed parenchymal contraction sign in this study, which is relatively easy to identify on a mammogram. Another independent predictor was the distortion sign of parenchyma with higher PPV (92%) and moderate diagnostic performance, which may be related to desmoplastic reaction or edema (Uematsu, 2015). Parenchymal deformation may appear around the mass or the whole breast. The possibility of extensive edema by lymphatic tumor emboli (Liu et al., 2020) should be considered when the mass is accompanied by diffuse distortion of parenchyma. Furthermore, parenchymal atrophy sign was also an independent predictor with high PPV (76.8%), which may be related to the dominant growth of carcinoma. Atrophic sign may be evaluated by contrasting bilateral breasts because of individual differences.
The invasion of carcinoma and host reaction will not only cause abnormalities in extratumoral parenchyma but also the trabecular structure. Abnormal trabeculae may be hyperplastic fibrous, dilated lymphatic vessels, or ductal system. For subclassification, parallel and vertical trabecula sign were independent predictors for malignant NSNCM, the PPVs of which were 85.6 and 83.6%, respectively. Parallel trabecula sign had high diagnostic performance, which was similar to that of tumor indistinct margin. According to our experience and the study, parallel trabecula sign also has high predictive value for evaluation of malignant NSNCMs, which occur in 68.2% malignancy but only in 9.1% benign masses. Approximately parallel trabeculae surround the mass and are present even away from the mass, and may also appear in deep fat or subcutaneous fat. Extratumoral trabecular abnormalities may exist alone or together with parenchymal abnormalities. Mammography is useful for showing the direction and distribution of trabeculae. Comparative observation or experience is also needed.
Here, we would like to mention the architectural distortion in the BI-RADS lexicon (D’Orsi et al., 2013), which is defined as no visible masses, the appearance of thin straight lines radiating from a point, and focal retraction, distortion, or absence of curvature of the parenchymal edge. In the part of BI-RADS associated features, architectural distortion can be used in combination with other imaging findings to indicate the deformation and retraction of parenchyma near the lesion. Some literatures reported mammographic architectural distortion with different PPVs; however, masses were excluded (Shaheen et al., 2011; Bahl et al., 2015). Biopsy is required even when tomography finds more architectural distortions that reduce the PPV (Alshafeiy et al., 2018). However, detailed analyses of architectural distortion associated with masses are rarely reported. In the study, subclassification of extratumoral signs includes but is not limited to this descriptor. Also, the thin lines from a point are not suitable for masses, while the most common sign around malignant NSNCM is parallel trabecula sign. The extratumoral structure abnormalities may represent different pathologic mechanisms from pure architectural distortion. Therefore, it is necessary to classify and subclassify the extratumoral signs separately in order to supplement predictable information of malignancy on a mammogram.
Regarding extratumoral halo sign, although halo sign is well known for radiologists, there are different reports about its formation. The usual result is from compression of fat by circumscribed mass. Also, study suggested that the halo was a perceptual illusion (Mach band) (Gordenne and Malchair, 1988). Previous literature reported that halo sign could be considered as a marker of benign lesion in females <50 years (Sánchez-Camacho González-Carrato et al., 2018). Our data analysis showed that wide halo sign was associated independently with malignant NSNCM, but the PPV of it was not high compared with those of other extratumoral signs. In addition, two basic pieces of information including age and mass size were statistically analyzed. After univariate analysis showed significant difference, the optimal cut-off values were further determined in order to facilitate the reference in clinical practice. Age ≥47.5 years and mass size ≥22.5 mm were also independent risk factors for malignancy. 70.6% mammographic NSNCMs were malignant in patients older than 47.5 years. In the elderly, those masses that appear to be “benign” are carefully evaluated and further biopsies may be needed.
Our study has several limitations. First, this was a retrospective single-center study. Furthermore, morphological analysis was performed only. The pathological mechanism of extratumoral signs needs to be further explored. The signs were based on visual evaluation and some require experience, so there may be differences between observers. As for the microlobulated margin of mass, it may be more suitable to describe the morphology, so there was no record in our study at present. Also, our study excluded phyllodes tumor because of special biological behavior.
In conclusion, morphological classification and subclassification of extratumoral signs were performed in this study and indicated that the subclassification of extratumoral structural abnormalities have important predictive value for malignant NSNCM on digital mammography. The combination of extratumoral signs identified at mammogram with tumor signs may provide better malignant prediction in patients with NSNCM than tumor signs alone. Whether for prediction of malignancy or further prediction of biological behavior, the extratumoral signs, especially the subclassification of extratumoral structure abnormalities, should be paid continuous attention.
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Morchella sextelata is an edible and medicinal fungus with high nutritional, medicinal, and economic value. Recently, M. sextelata has been produced through artificial cultivation in China, but its stable production remains problematic because the details of its growth and development process are limitedly understood. Herein, to investigate the dynamic process of M. sextelata development, we integrated the transcriptomics and metabolomics data of M. sextelata from three developmental stages: the young mushroom period (YMP), marketable mature period (MMP), and physiological maturity period (PMP). The results showed that the transcriptome changed dynamically at different stages and demonstrated the significant enrichment of pathways that regulate plant growth and development, such as N-glycan biosynthesis and carbon and purine metabolism. Similarly, small-molecule metabolites, such as D-fructose-1,6-biphosphate, which was upregulated during the YMP, dihydromyricetin, which was upregulated during the MMP, and L-citrulline, which was upregulated during the PMP, also showed phase-dependent characteristics. Then, combined analysis of the transcriptome data and metabolome traits revealed that the transcriptome may affect metabolic molecules during different growth stages of M. sextelata via specific enzymes, such as α-glucosidase and glucanase, which were included in two opposite transcriptome modules. In summary, this integration of transcriptomics and metabolomics data for understanding the vegetative growth of M. sextelata during different developmental stages implicated several key genes, metabolites, and pathways involved in the vegetative growth. We believe that these findings will provide comprehensive insights into the dynamic process of growth and development in M. sextelata and new clues for optimizing the methods for its cultivation application.
Keywords: regulation mechanism, pathway, transcriptomics, metabolomics, nutritional composition, cultivation
INTRODUCTION
The genus Morchella comprises edible and medicinal macrofungi, also known as morels because they have a structure similar with the upper cover. The members of this genus are highly appreciated for their nutraceutical, pharmaceutical, and economic importance and good taste (Tietel and Masaphy, 2018) and have been used as a traditional herbal medicine for centuries (Mau et al., 2004). Like most edible fungi, Morchella spp. contain high levels of unsaturated fatty acids, and are rich in a variety of mineral elements, vitamins, fresh substances, aromatic components, and bioactive components (Liu et al., 2016). In addition, numerous studies regarding the medicinal efficacy of Morchella spp. have mainly focused on their immune-regulatory, anti-fatigue, anti-cancer, hepatoprotective, and blood pressure-lowering abilities (Du et al., 2015; Liu et al., 2016; He et al., 2017; Liu et al., 2018). Furthermore, there is a premium demand for Morchella spp. among suppliers and consumers (Stott and Mohammed, 2004); the annual sale of Morchella spp. likely ranges from $5 million to $10 million in western North America (Pilz et al., 2007).
Due to the limited natural yield of wild morels, many attempts have been made for their artificial cultivation over the years. Moreover, a few species of Morchella have been successfully domesticated in America and China in recent years (Masaphy, 2010), including M. sextelata (Liu et al., 2020). The genetic and biological characteristics of M. sextelata, such as the mechanisms underlying its fruit formation, metamorphosis of its sclerotia, and exogenous nutrition, remain poorly understood; furthermore, spore formation at different stages of its life cycle has been reported to restrict its healthy development (Liu et al., 2015). Further, there are only a few studies regarding the developmental process of M. sextelata. Therefore, as M. sextelata is a rare and difficult to cultivate fungus, it is necessary to explore and analyze the molecular dynamics of its growth and development more comprehensively.
In this study, to elucidate the dynamic molecular panorama of the transcription and metabolism of M. sextelata during its growth, we integrated the transcriptomics and metabolomics data from three developmental stages (the young mushroom period (YMP), marketable mature period (MMP), and physiological maturity period (PMP)); these data are based on morphological and developmental changes in this fungus. We identified the key genes, metabolites, and pathways associated with its vegetative growth and then investigated the associated signal cascades. Overall, this study may help us understand the metabolic mechanisms and nutritional composition of M. sextelata and optimize the conditions for its cultivation.
MATERIALS AND METHODS
Fungi and Growth Conditions
M. sextelata was cultivated using exogenous nutrient bags, which contained 100% straw or 85–90% straw and 15–10% husk, mixed with 1% lime and 1% gypsum. During the cultivation process, the soil was kept moist, the relative humidity in the shed was controlled between 85 and 90%, and the temperature was in the range of 8–20°C, ensuring that ventilation and “half shade and half sunlight” were maintained.
The fruiting body of this fungus shows a smooth cover, an unfolded ridge, a light-gray or gray-brown color, and a slightly expanded cylinder during the YMP. When the fruiting body caps grow to 3–6 cm in size, they can be sold as fresh mushrooms in the market; this stage was named the MMP. During the PMP, the color of the fruiting body’s cap is reddish-brown to dark reddish-brown, the cap layer is pale-pink, and the stipe is smooth, white, and trapezoid.
RNA Extraction and Sequencing
Nine samples were collected for transcriptome sequencing (three samples in each stage). Total RNA was extracted using the TRIzol Reagent (Invitrogen) and purified using the Plant RNA Purification Reagent (Invitrogen), as described by the manufacturer. A total of 1 µg of RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, United States), following the manufacturer’s recommendations; index codes were added to attribute sequences to each sample.
The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia), according to the manufacturer’s instructions. After cluster generation, the prepared libraries were sequenced on an Illumina Novaseq platform and 150-bp paired-end reads were generated.
RNA-Sequence Analysis
Index of the reference genome was built and paired-end clean reads were aligned to the reference genome using Hisat2 v2.0.5 (Kim et al., 2015). The mapped reads of each sample were assembled using StringTie v1.3.3b (Pertea et al., 2015) via a reference-based approach. FeatureCounts v1.5.0-p3 (Liao et al., 2014) was used to count the numbers of reads mapped to each gene. Next, the expected number of FPKM (Fragments Per Kilo base of transcript sequence per Millions of base pairs sequenced) of each gene was calculated on the basis of the length of the gene and the number of reads mapped to this gene.
Metabolite Extraction
A total of eighteen samples were collected for metabolomics, with six samples in each stage. Tissues (100 mg) were individually ground with liquid nitrogen and the homogenate was resuspended in 500 μl of prechilled 80% methanol and 0.1% formic acid, followed by thorough vortexing. The samples were then incubated on ice for 5 min and then centrifuged at 15,000 rpm (at 4°C) for 10 min. A portion of the supernatant was diluted with LC-MS-grade water to yield a final methanol concentration of 53%. The samples were subsequently transferred to a fresh Eppendorf tube and were then centrifuged at 15,000 g (at 4°C) for 20 min. Finally, the supernatant was injected into the LC-MS/MS system. Equal volumes of each experimental sample were taken and blended as quality control (QC) samples. The blank sample used was an aqueous solution of 53% methanol containing 0.1% formic acid (instead of the experimental sample); the pretreatment process for the blank sample was the same as that for the experimental sample. Note: The liquid samples (100 μl each) and prechilled methanol (400 μl) were mixed via thorough vortexing. The cell sample (50 μl each) and prechilled 80% methanol (200 μl) were mixed via thorough vortexing, followed by sonication for 6 min. This step was repeated once again, and then, the steps followed were the same as those mentioned above.
HPLC-MS/MS Analysis
Positive-Ion Mode
The LC-MS/MS analyses were performed using an ExionLC™ AD system (SCIEX) coupled with a QTRAP® 6,500 + mass spectrometer (SCIEX). The samples were injected into a BEH C8 Column (100 × 2.1 mm; 1.9 μm) using a 30 min linear gradient at a flow rate of 0.35 ml/min for the positive-polarity mode. The eluents used were eluent A (0.1% formic acid-water) and eluent B (0.1% formic acid-acetonitrile). The solvent gradient was set as follows: 5% B, 1 min; 5–100% B, 24.0 min; 100% B, 28.0 min; 100–5% B, 28.1 min; 5% B, 30 min. The QTRAP® 6,500 + mass spectrometer was operated in the positive-polarity mode with a curtain gas setting of 35 psi, collision gas setting of medium, ion spray voltage of 5,500 V, temperature of 500°C, and ion source gas ratios of 1:55 and 2:55.
Negative-Ion Mode
The samples were injected onto a HSS T3 Column (100 mm × 2.1 mm in size) using a 25 min linear gradient at a flow rate of 0.35 ml/min for the negative-polarity mode. The eluents used were eluent A (0.1% formic acid-water) and eluent B (0.1% formic acid-acetonitrile). The solvent gradient was set as follows: 2% B, 1 min; 2–100% B, 18.0 min; 100% B, 22.0 min; 100–5% B, 22.1 min; 5% B, 25 min. The QTRAP® 6,500 + mass spectrometer was operated in the positive-polarity mode with a curtain gas setting of 35 psi, collision gas setting of medium, ion spray voltage of −4,500 V, temperature of 500°C, and ion source gas ratios of 1:55 and 2:55.
Metabolite Identification and Quantification
The detection of the experimental samples using MRM (multiple reaction monitoring) was based on the novo gene in-house database. The Q3 quadrant was used for metabolite quantification. The following parameters were used for metabolite identification: Q1 quadrant, Q3 quadrant, RT (retention time), declustering potential (DP), and collision energy (CE). The data files generated by the HPLC-MS/MS analysis were processed using the SCIEX OS Version 1.4 to integrate and correct the peaks. The main parameters were set as follows: minimum peak height, 500; signal/noise ratio, 10; and Gaussian smooth width, 3. The area of each peak represents the relative content of the corresponding substance.
Statistical Analysis
Differential expression analysis of two conditions was performed using the DESeq2 R package v1.16.1 (Love et al., 2014). The resulting p-values were adjusted using the Benjamini and Hochberg’s approach (adjusted p-value). We used the clusterProfiler (Yu et al., 2012) module of the R package to test the statistical enrichment of differentially expressed genes (DEGs) in the KEGG pathway analysis. Using EBSeq-HMM(Leng et al., 2015), we obtained the differentially expressed metabolites and their corresponding expression paths (i.e., “Up–Down”). Further, the relationship between expression abundance and time was calculated using the spearman algorithm in psych R package v2.1.3. The fuzzy clustering method in the Mfuzz R package (Kumar and Futschik, 2007), which is insensitive to noise, was performed to mine the transcriptomic modules of the DEGs.
RESULTS AND DISCUSSION
Sample Correlation and PCA Analysis of the M. Sextelata Transcriptome
To investigate the expression dynamics during different sclerotial development stages, samples from the three developmental stages, i.e., the YMP, MMP and PMP, were collected for the RNA sequencing. PCA analysis of the gene expression profiles indicated that the first (PC1) and second (PC2) principal components accounted for 66.75 and 21.99% of the total variance, respectively. The results showed that the samples obtained from the three developmental stages were divided into three distinct regions (Figure 1A). This implied that the transcriptome showed marked changes during the different developmental stages of M. sextelata, and that the transcriptome may control phenotypic changes during development. The Spearman correlation coefficients of the samples were calculated based on the gene expression profiles, i.e., the abundance of gene expression, in each sample. The correlation was mapped to the respective colors in the form of a bubble heat map (Figure 1B). In addition, the correlation matrix revealed that there were significant differences between the transcriptomes at the different stages, and the similarity between the transcriptomes at the different stages was high. This not only confirmed the differences in the transcriptomes, but also showed the high sample quality and stability of the sequencing results. Genes with an adjusted p-value<0.05 and |log2FoldChange|≥1.0 were presented in the form of heat map (Figure 1C). The DEGs from nine samples were divided into specific clusters, as illustrated by the cluster dendrogram, hinting that these genes were involved in specific phenotypes at different developmental stages.
[image: Figure 1]FIGURE 1 | Dynamic transcriptional changes during three growth stages of M. sextelata. (A): PCA analysis of the samples from the three stages. (B): The correlation heat map of the samples from the three stages. (C): The heat map showing the differentially expressed genes among the three stages (the red and blue colors indicate the pathways enriched by the upregulated and downregulated genes, respectively). Bar plots representing the KEGG enrichment results (the red and blue bars indicate the pathways enriched by the upregulated and downregulated genes, respectively) for (D): YMP vs. MMP and (E): MMP vs. PMP. (F): The number of differentially expressed genes at the three different stages, i.e., the young mushroom period (YMP), marketable mature period (MMP), and physiological maturity period (PMP).
Dynamic Transcriptional Changes During the Three Development Stages of M. Sextelata
The upregulated or downregulated differential DEGs of M. sextelata were enriched in the KEGG pathway analysis. The enrichment results for the YMP, compared with the MMP stage (YMP vs. MMP) and MMP compared with the PMP stage (MMP vs. PMP) were presented as bar graphs (Figures 1D–F). The functional annotation of DEGs indicated that the stage-specific genes were involved in the metabolic or development-related pathways; with the growth of M. sextelata, the pathways were activated or inhibited procedurally. The DEGs upregulated during the YMP were significantly enriched in the N-glycan biosynthesis pathway. Previous studies have reported that N-glycans are essential for the development and reproduction of rice (Veit et al., 2015), and were also related to the root growth of Arabidopsis thaliana (Liebminger et al., 2010). This implied that N-glycans play a key role in the development of M. sextelata during the juvenile period. Compared with the juvenile period and the PMP, carbon metabolism was highly activated in the immature commodity fruiting body period. Carbon catabolism provides fungi with energy in the form of reducing equivalents and ATP, as well as essential precursor metabolites for the biosynthesis of essential metabolites (Patyshakuliyeva et al., 2013). Previous studies on mushrooms have shown that the rate and flow of carbon metabolism during fruiting body development are high (Wells et al., 1987; Claydon et al., 1988; Patyshakuliyeva et al., 2013) and that the degradation of xylan is decreased at the end of the mushroom production cycle (Waksman and Nissen, 1932; Wood and Leatham, 1983). This is consistent with the activation of carbon metabolism during the MMP and inhibition of carbon metabolism during the PMP in morels, implying that M. sextelata also followed this carbon metabolism pattern. Meanwhile, purine metabolism, which showed the same trend from the YMP to the PMP, has been proved to provide tolerance to plants against various stresses, regulate their growth (Kawagishi, 2021), and remain at a high levels during the fruiting body growth of Lentinula edodes (Wang et al., 2018). The proteasome directly affects the renewal of certain proteins that are involved in cell cycle control and cell apoptosis and was found to be associated with fruiting body development (Yamada et al., 2006). In order to facilitate future research regarding this aspect, the genes involved in significant pathways associated with this process are listed in Supplementary Table S1. The numbers of DEGs that were upregulated or downregulated in different pairwise comparisons were represented using bar plots (Figure 1F). All these results showed the dynamic transcriptome panorama during the three stages of M. sextelata growth. Gene ontology analysis also have been conducted with transcriptomics data, but it didn’t detect any significantly term (Supplementary Figure S2 and Supplementary Table S1).
PCA Analysis of Metabolic Samples From M. Sextelata
To investigate the dynamic process of metabolism during the different developmental stages of M. sextelata, samples from the three developmental stages, i.e., the YMP, MMP and PMP, were collected for metabolomics analysis. A total of 394 metabolites (150 and 244 detected in the negative-ion and positive-ion mode, respectively) were detected by HPLC-MS/MS. PCA analysis showed that the first (PC1) and second (PC2) principal components accounted for 35.60 and 18.37% of the total variance, respectively. The samples from the three developmental stages of M. sextelata were divided into three distinct regions based on the transcriptional characteristics (Figure 2A), consistent with findings from a previous metabolome-based research (Deng et al., 2021). This indicated that the changes of metabolites in the different developmental stages of M. sextelata were very notable, consistent with the results of the transcriptome analyses, suggesting that metabolome data can be used to study the developmental phenotypic changes of M. sextelata. Further, three QC samples were used to monitor the stability of the analysis. The high correlation among the QC samples indicates that the detection method is stable and can be used for subsequent analysis.
[image: Figure 2]FIGURE 2 | Dynamic metabolomics changes during the three growth stages of M. sextelata. (A): PCA analysis of the samples during the three stages and the QC reference. (B) The heatmap of metabolites showing distinct patterns among the three growth stages. The time-dependent trend analysis divides the metabolites into four different patterns: Up−Up, Up−Down, Down−Up, and Down−Down. (C) The circular clustering tree consists of nine samples, considering differential metabolites as the feature vector. (D) A line chart showing the relative expression patterns of the potential marker metabolites of each cluster.
Identification of Time-Dependent Metabolite Modules of M. Sextelata
There were 53 differentially expressed metabolites identified based on the empirical Bayesian mixing model; these were presented in the form of heat map (Figure 2B). These differential metabolites could be divided into four different patterns with dynamic changes and were associated with the growth of M. sextelata. In the Down−Down pattern, the levels of metabolites, including some carbohydrate metabolites, such as D-fructose-1,6-biphosphate, D-mannose-6-phosphate, and D-(+)-glucono-1,5-lactone, decreased during the growth of M. sextelata. This hinted that a large amount of carbohydrates was stored during the YMP, and their levels decreased with the growth and development of M. sextelata. Further, the mechanism underlying plant growth regulation depends on the acquisition of sugar via the signal transduction pathway (Van den Ende, 2014). In addition, uridine 5′-monophosphate and thymidine are involved in pyrimidine metabolism, which is related to arginine biosynthesis in morels (Zrenner et al., 2006). N,N-Dimethylglycine, which was involved in the Down−Up pattern, was upregulated during the YMP and downregulated during the MMP. This was consistent with the findings of a previous research, which reported that the energy requirements during the YMP were met by the oxidation of amino acids and the degradation of other storage compounds, until the photosynthetic machinery is fully functional (Galili et al., 2014). In addition, free amino acids were related to the flavor of mature morels (Wang et al., 2019). This provided physiological clues regarding the source of nutrition for M. sextelata during the YMP and the flavor during the PMP. Dihydromyricetin and adenosine monophosphate, which were involved in the Up−Down pattern, were upregulated during the MMP and were involved in the biosynthesis of secondary metabolites; this could mediate ecological interactions, which may give the organism a selective advantage by improving its viability or fecundity. These metabolic molecules may have a protective effect on M. sextelata during the MMP. In the Up–Up model, the levels of L-citrulline and fumaric acid, which serve as auxiliary molecules associated with arginine metabolism, gradually increased with the growth of M. sextelata. This pattern has also been found in previous studies (Deng et al., 2021), and arginine is an essential metabolite in many cells and developmental processes (Winter et al., 2015). Moreover, fumaric acid is an essential component of the tricarboxylic acid cycle (TCA), implying the energy enhancement during the PMP. Based on the differentially expressed metabolites observed using the three stages, the Euclidean distance was calculated, and then, the hierarchical clustering method was used to display the similarity between the samples in the form of circular tree (Figure 2C). The patterns of these significant changes can be used to cluster the samples well; accordingly, the clustering tree was divided into three main branches. The detailed information regarding the pattern of metabolite changes during the different growth stages of M. sextelata are listed in Supplementary Table S3. All these results revealed that the growth-associated metabolites were stage-specific.
Transcriptional Basis of Dynamic Changes in Growth-Dependent Metabolites
Based on the unsupervised clustering method, a total of eight functional modules were identified; the genes in these modules showed different expression patterns (Figure 3A, Supplementary Table S4). The genes in module 1 tended to be highly expressed during the MMP, while those in modules 7 and 8 showed mutually exclusive expression. It implied that distinct functional modules played their own specific roles during the different growth periods of M. sextelata and served to better explain the developmental physiological changes in this mushroom. To gain further insights into the physiological changes occurring during the different growth stages, the functional modules and metabolites were jointly analyzed, establishing a module-trait relationship network. The correlation bubble graph (Figure 3B) showed that modules 7 and 8, which showed opposite transcriptional expression trends, had a correlated pattern in the metabolite network. Module 7 was specifically related to carbohydrate metabolites, such as D-fructose-1,6-biphosphate and D-(+)-glucono-1,5-lactone and this module also contained enzymes such as α-glucosidase, glycoside hydrolase, and pentokinase, which play important roles in the process of sugar and glycoconjugates in organisms (Minic and Jouanin, 2006; Minic, 2008). Furthermore, protein tyrosine phosphatase and glucanase were included in module 8. Glycanase is unevenly distributed in plants and aids microspore development and fruit maturation. Protein tyrosine phosphatase performs important physiological functions in plant growth, organ development, signal transmission, and stress response. It was seen that module 8 was closely related to sugars and phosphoric acid. These results revealed that some specific enzymes played important roles in the growth process of M. sextelata via the regulation of the levels of metabolic molecules. Additionally, module 1 showed high positive relation with green trend which down-expressed in MMP and up-expressed in YMP and PMP periods which contained metabolic molecules, such as Baicalin, 5′-Deoxy-5'-(Methylthio)Adenosine and acetaminophen. Meanwhile, module 2 was highly similar with module 3 in the red metabolic molecule pattern but contrary in other metabolic pattern. In addition, module 4 and module 5 had a consistent contrary pattern across all metabolic molecule pattern. Furthermore, module 4 and module 6 which had distinct expression trend had a common impact on metabolic molecules.
[image: Figure 3]FIGURE 3 | Joint analysis of dynamic changes in growth-dependent metabolites. (A) Modules of differentially expressed genes during the three growth stages of M. sextelata, as obtained using fuzzy c-means clustering. (B) Bubble map showing the module–metabolite correlations. The blue and red colors indicate positive and negative correlations, respectively. Each column corresponds to a module indicated by different colors.
CONCLUSION
In this study, we explored the transcriptome and metabolome dynamics of M. sextelata during its growth process and identified the key genes, metabolites, and pathways involved in the vegetative growth of this fungus. At first, the results of the transcriptome analysis indicated that the metabolic activity of M. sextelata showed tremendous changes during the three growth stages, and these changes may be related to the phenotype. The metabolomics analysis also proved the existence of stage-dependent small molecules, such as D-fructose-1,6-biphosphate, D-mannose-6-phosphate, and D-(+)-glucono-1,5-lactone. Furthermore, joint analysis of the transcriptome and metabolome data revealed that the transcriptome may affect the metabolic molecules at different stages through some specific enzymes, such as α-glucosidase, glycoside hydrolase, and tyrosine phosphatase, serving important physiological functions associated with plant growth, organ development, and signal transmission. In summary, these results provide comprehensive insights into the dynamic processes associated with the vegetative growth of M. sextelata and new clues for optimizing the conditions for its cultivation.
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 Liebminger, E., Hüttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., et al. (2010). Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development inArabidopsis Thaliana. The Plant Cell 21, 3850–3867. doi:10.1105/tpc.109.072363
 Liu, C., Sun, Y., Mao, Q., Guo, X., Li, P., Liu, Y., et al. (2016). Characteristics and Antitumor Activity of Morchella Esculenta Polysaccharide Extracted by Pulsed Electric Field. IJMS 17, 986. doi:10.3390/ijms17060986
 Liu, H., Xu, J., Li, X., Zhang, Y., Yin, A., Wang, J., et al. (2015). Effects of Microelemental Fertilizers on Yields, mineral Element Levels and Nutritional Compositions of the Artificially Cultivated Morchella Conica. Scientia Horticulturae 189, 86–93. doi:10.1016/j.scienta.2015.03.047
 Liu, W., Cai, Y., Zhang, Q., Shu, F., Chen, L., Ma, X., et al. (2020). Subchromosome-Scale Nuclear and Complete Mitochondrial Genome Characteristics of Morchella Crassipes. IJMS 21, 483. doi:10.3390/ijms21020483
 Liu, W., Chen, L., Cai, Y., Zhang, Q., and Bian, Y. (2018). Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of Morchella Importuna. IJMS 19, 2525. doi:10.3390/ijms19092525
 Love, M. I., Huber, W., and Anders, S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15, 550. doi:10.1186/s13059-014-0550-8
 Masaphy, S. (2010). Biotechnology of Morel Mushrooms: Successful Fruiting Body Formation and Development in a Soilless System. Biotechnol. Lett. 32, 1523–1527. doi:10.1007/s10529-010-0328-3
 Mau, J.-L., Chang, C.-N., Huang, S.-J., and Chen, C.-C. (2004). Antioxidant Properties of Methanolic Extracts from Grifola Frondosa, Morchella Esculenta and Termitomyces Albuminosus Mycelia. Food Chem. 87, 111–118. doi:10.1016/j.foodchem.2003.10.026
 Minic, Z., and Jouanin, L. (2006). Plant Glycoside Hydrolases Involved in Cell wall Polysaccharide Degradation. Plant Physiol. Biochem. 44, 435–449. doi:10.1016/j.plaphy.2006.08.001
 Minic, Z. (2008). Physiological Roles of Plant Glycoside Hydrolases. Planta 227, 723–740. doi:10.1007/s00425-007-0668-y
 Patyshakuliyeva, A., Jurak, E., Kohler, A., Baker, A., Battaglia, E., de Bruijn, W., et al. (2013). Carbohydrate Utilization and Metabolism Is Highly Differentiated in Agaricus Bisporus. BMC Genomics 14, 663. doi:10.1186/1471-2164-14-663
 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T., and Salzberg, S. L. (2015). StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 33, 290–295. doi:10.1038/nbt.3122
 Pilz, D., McLain, R., and Alexander, S. (2007). Ecology and Management of Morels Harvested from the Forests of Western North America. Pacific Northwest Research Station: U.S. Department of Agriculture, Forest Service. 
 Stott, K., and Mohammed, C. (2004). Specialty Mushroom Production Systems: Maitake and Morels. Kingston, Australian: RIRDC. 
 Tietel, Z., and Masaphy, S. (2018). True Morels (Morchella)-Nutritional and Phytochemical Composition, Health Benefits and Flavor: A Review. Crit. Rev. Food Sci. Nutr. 58, 1888–1901. doi:10.1080/10408398.2017.1285269
 Van den Ende, W. (2014). Sugars Take a central Position in Plant Growth, Development and, Stress Responses. A Focus on Apical Dominance. Front. Plant Sci. 5, 313. doi:10.3389/fpls.2014.00313
 Veit, C., Vavra, U., and Strasser, R. (2015). “N-glycosylation and Plant Cell Growth,” in Plant Cell Expansion ed . Editor JM Estevez (New York, NY: Springer New York), 183–194. doi:10.1007/978-1-4939-1902-4_16
 Waksman, S. A., and Nissen, W. (1932). On the Nutrition of the Cultivated Mushroom, Agaricus Campestris, and the Chemical Changes Brought about by This Organism in the Manure Compost. Am. J. Bot. 19, 514–537. doi:10.1002/j.1537-2197.1932.tb09668.x
 Wang, J., Xiao, J., Geng, F., Li, X., Yu, J., Zhang, Y., et al. (2019). Metabolic and Proteomic Analysis of Morel Fruiting Body (Morchella Importuna). J. Food Compost. Anal. 76, 51–57. doi:10.1016/j.jfca.2018.12.006
 Wang, Y., Zeng, X., and Liu, W. (2018). De Novo transcriptomic Analysis during Lentinula Edodes Fruiting Body Growth. Gene 641, 326–334. doi:10.1016/j.gene.2017.10.061
 Wells, T. K., Hammond, J. B. W., and Dickerson, A. G. (1987). Variations in Activities of Glycogen Phosphorylase and Trehalase during the Periodic Fruiting of the Edible Mushroom Agaricus Bisporus (Lange) Imbach. New Phytol. 105, 273–280. doi:10.1111/j.1469-8137.1987.tb00864.x
 Winter, G., Todd, C. D., Trovato, M., Forlani, G., and Funck, D. (2015). Physiological Implications of Arginine Metabolism in Plants. Front. Plant Sci. 6. doi:10.3389/fpls.2015.00534
 Wood, D. A., and Leatham, G. F. (1983). Lignocellulose Degradation during the Life Cycle ofAgaricus Bisporus. FEMS Microbiol. Lett. 20, 421–424. doi:10.1111/j.1574-6968.1983.tb00160.x
 Yamada, M., Sakuraba, S., Shibata, K., Taguchi, G., Inatomi, S., Okazaki, M., et al. (2006). Isolation and Analysis of Genes Specifically Expressed during Fruiting Body Development in the basidiomyceteFlammulina Velutipesby Fluorescence Differential Display. FEMS Microbiol. Lett. 254, 165–172. doi:10.1111/j.1574-6968.2005.00023.x
 Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS: A J. Integr. Biol. 16, 284–287. doi:10.1089/omi.2011.0118
 Zrenner, R., Stitt, M., Sonnewald, U., and Boldt, R. (2006). Pyrimidine and Purine Biosynthesis and Degradation in Plants. Annu. Rev. Plant Biol. 57, 805–836. doi:10.1146/annurev.arplant.57.032905.105421
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Deng, Lan, Chen, Wang, Li, Xu, Cao, Xie and Xie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 04 February 2022
doi: 10.3389/fgene.2021.831318


[image: image2]
HER2 Positivity Is Affected by the Papillary Structure and Has a Bidirectional Prognostic Value for Gallbladder Carcinoma
Lingli Chen1, Lei Xu1, Licheng Shen1, Rongkui Luo1, Dongxian Jiang1, Yueqi Wang2, Wei Li3 and Yingyong Hou1*
1Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
2Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
3Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
Edited by:
Tao Huang, Shanghai Institute of Nutrition and Health (CAS), China
Reviewed by:
Rongbin Wang, Anhui College of Traditional Chinese Medicine, China
Yiran Li, Second Military Medical University, China
* Correspondence: Yingyong Hou, Hou.yingyong@aliyun.com
Specialty section: This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Received: 08 December 2021
Accepted: 27 December 2021
Published: 04 February 2022
Citation: Chen L, Xu L, Shen L, Luo R, Jiang D, Wang Y, Li W and Hou Y (2022) HER2 Positivity Is Affected by the Papillary Structure and Has a Bidirectional Prognostic Value for Gallbladder Carcinoma. Front. Genet. 12:831318. doi: 10.3389/fgene.2021.831318

Gallbladder carcinoma (GBC) is responsible for 80%–95% of biliary tract malignancies and has a dismal prognosis. Human epidermal growth factor receptor 2 (HER2) is a promising therapeutic target of GBC. Through immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) methods, HER2 expression and gene amplification were identified on high-output tissue microarrays (TMAs) developed in 306 GBC cases to investigate its relationship with GBC and clinicopathological characteristics. Adenocarcinomas accounted for 223 (72.9%) of the cases, with 62 (27.8%) being papillary adenocarcinoma or having partial papillary structure. HER2 positivity was studied in 16.1% (36/223) of patients with adenocarcinoma and 41.9% (26/62) in adenocarcinoma with papillary structures. For 143 radically resected primary GBC cases with 24 HER2-positive tumors, survival data were valid; the median survival time was not reached, and the 5-year survival rate was 52.9%. All patients in stages 0–I survived, and the results of the HER2-positive group and the stage II HER2-negative group were similar (p = 0.354). However, in stage III, the mortality rate in the HER2-positive group was reduced (p = 0.005) and that in stage IV was higher (p = 0.005). In conclusion, HER2 positivity was significantly higher in patients with papillary GBC. The predictive value of HER2 varies by clinical stage, with no prediction in the early stages, better in stage III, and worse in stage IV.
Keywords: gallbladder carcinomas, papillary adenocarcinoma, prognosis, HER2, HER2 positivity
BACKGROUND
Human epidermal growth factor receptor 2 (HER2), alias Neu or ErbB2, is an important oncogene that has an essential function in cell proliferation and dedifferentiation (Yarden and Sliwkowski, 2001) and has also been extensively studied in breast (Slamon et al., 2001; Slamon et al., 2011), gastric (Bang et al., 2010), and colon cancer (El-Deiry et al., 2015). HER2 positivity is responsible for probably 15%–20% of breast cancer and remains the only predictive factor for the selection of targeted therapies, except for hormone receptors (Loibl and Gianni, 2017). Overexpression or amplification of HER2 is thought to be present in 15%–20% of advanced gastric and gastroesophageal junction cancers (Van Cutsem et al., 2015). Chemotherapy plus the anti-HER2 antibody trastuzumab is the recommended first-line therapy (Muro et al., 2019) based on the randomized, multicenter, phase 3 ToGA (Trastuzumab for Gastric Cancer) trial, in which the overall survival (OS) was significantly longer with chemotherapy plus trastuzumab than with chemotherapy alone (Bang et al., 2010).
Gallbladder carcinoma (GBC) represents 80%–95% of patients with biliary tract malignancy and ranks fifth in digestive cancer. Since most cases are in the advanced stage, GBC often leads to a poor prognosis and a less than 1-year median survival rate (Lazcano-Ponce et al., 2001). Even with the current first-line standard-of-care treatment (gemcitabine–cisplatin) for advanced GBCs, the median OS is less than 1 year (Valle et al., 2014). Thus, to improve the prognosis in GBC, a new therapeutic target is required, and HER2 is a promising approach. In the MyPathway basket trial, HER2-positive tumors were treated with pertuzumab and trastuzumab (Hainsworth et al., 2018). Thirty (26%) of 114 patients with HER2 amplification/overexpression had objective responses. The study included seven biliary cancers/GBCs, and the objective response rate was 29% (2/7) (95% CI = 4–71). However, current data for HER2-positive ratio present in GBC are contradictory. HER2 status in GBC shows considerable heterogeneity, and the frequency of the HER2-positive ratio varies from 0% to 31.3% in different studies (Albrecht et al., 2020; Hiraoka et al., 2020).
In the present study, a large, well-characterized cohort of patients with GBC was established. HER2 status was determined in this cohort with the recommended testing guidelines for gastric cancer using a combination of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) methods. The purpose of this study was to study in depth the HER2 status of GBC patients and assess whether HER2 is related to clinicopathological characteristics and prognosis.
MATERIALS AND METHODS
Sample and Tissue Selection
All study participants provided informed consent before starting the study, and the study design obtained approval from the Ethics Committee of Zhongshan Hospital, Fudan University. Between 2013 and 2018, a total of 306 patients with primary GBC who underwent surgery at Zhongshan Hospital participated in the study. Clinicopathological parameters, such as sex, age, type of surgery, histological classification, TNM classification, and American Joint Committee on Cancer 8th stage, were reviewed. The World Health Organization’s 5th classification was applied for histological categorization. Patient histology slices were reviewed, and blocks with sufficient representative tissue were chosen, avoiding areas of massive necrosis, to construct high-output tissue microarrays (TMAs) (Shi et al., 2013). Serial tissue sections of 4 μm were adopted for hematoxylin and eosin staining, IHC, and FISH.
IHC and FISH
HER2 IHC was conducted using anti-HER2 antibodies, an automated slide stainer, and iView DAB detection kit (Ventana Medical System, Tucson, AZ, United States). HER2 IHC scoring was based on gastric cancer. As IHC was applied on TMAs, if stained tumor cells were <10%, the whole block would be stained.
In the HER2 IHC scoring criteria (Hofmann et al., 2008), no tumor cell staining or <10% was recorded as 0. Faint membranous staining in more than 10% of tumor cells was recorded as 1+. A score of 2+ indicates weak to moderate complete or basolateral membranous staining in over 10% of tumor cells, while 3+ indicates moderate to strong staining.
FISH was conducted using Pathvysion HER2 DNA Probe Kit (Abbott Laboratories, Abbott Park, IL, United States) on the GBC TMAs following the manufacturer’s instructions.
HER2 positivity represented either a 3+ or a 2+ IHC score with positive FISH results (HER2 gene amplification).
Follow-Up
All patients were followed up, but patients with the following conditions were excluded from survival analysis: 1) if they received neoadjuvant chemotherapy and/or radiation; 2) had other accompanying malignant tumors (such as gastric or colon cancer); 3) had non-radical surgery; and 4) perioperative death. A total of 146 patients who received radical surgery and were diagnosed with adenocarcinoma (AC) [otherwise signet cell carcinoma/poorly cohesive carcinoma or mucinous adenocarcinoma (MAC)] were included in the survival analysis. The survival data for 143 patients were obtained.
Statistical Analysis
The χ2 test was used to analyze categorical data. For parametric data, Student’s t-test was used for comparing two means. Survival curves were analyzed with the Kaplan–Meier method. During the survival analysis, cases that were not followed up and fatalities that were not caused by GBC were censored. The log-rank or Breslow’s tests was used to assess the significance of discrepancies in the survival curves. SPSS (version 22.0) was utilized for all statistical data processing. A p < 0.05 was considered to denote statistically significant differences.
RESULTS
Overexpression of the HER2 Protein
The HER2 IHC results for 306 GBCs are shown in Table 1. In total, 18 were classified with a 3+ score (5.9%), 37 were classified with a 2+ score (12.1%), 26 were classified with a 1+ score (8.5%), and 225 (73.5%) cases were classified with a score of 0.
TABLE 1 | HER2 overexpression and amplification of 306 gallbladder carcinomas
[image: Table 1]HER2 Gene Amplification
The results of HER2 gene amplification in 306 cases assessed using FISH are shown in Table 1. Overall, 42 (13.7%) patients exhibited HER2 amplification. All 18 (100%) tumors with a 3+ immunostaining score exhibited HER2 gene amplification. Among the 37 tumors with a 2+ immunostaining score, 18 (48.6%) showed amplification. Six (2.4%) of the 251 tumors with negative immunostaining (scored as 0/1+) showed HER2 amplification. According to the recommended HER2 testing guidelines for gastric cancer, 36 (11.8%, 18 IHC 3+ and 18 IHC 2+, and HER2 amplified) cases were interpreted as HER2-positive and 270 (88.2%) cases were interpreted as HER2-negative.
Clinicopathological Characteristics of the Cohort
The clinicopathological characteristics of the 306 GBC cases are displayed in Table 2. The male/female ratio was 1:1.49 (123/183), and the median age was 65 years (range = 27–91 years). Of 306 GBC cases, 223 (72.9%) were AC; 27 (8.8%) were squamous cell carcinoma (SCC)/adenosquamous carcinoma (ASC); 20 (6.5%) were intracystic papillary neoplasm with high grade (ICPN-HG), biliary intraepithelial neoplasia of high grade (BilIN-HG), or tumor in situ (Tis); 16 (5.2%) were neuroendocrine neoplasm (NEN)/mixed neuroendocrine/non-neuroendocrine neoplasm (MiNEN); 10 (3.3%) were poor cohesive carcinoma/signet ring cell carcinoma (por/sig); 6 (2.0%) were undifferentiated carcinoma; and 4 (1.3%) were MAC. Among 223 ACs, 62 (27.8%) were papillary carcinomas or carcinomas with partial papillary structures. Regarding the 8th edition of the AJCC cancer staging scheme, 32 (10.5%) cases were in stages 0–I, 71 (23.2%) in stage II, 122 (39.9%) in stage III, and 81 (26.5%) were in stage IV. Two hundred and fifteen patients (70.3%) underwent radical surgery, while 91 (29.7%) had non-radical surgery or biopsy. Fifteen patients had competing malignancies either simultaneously or heterochronously.
TABLE 2 | Comparison of the clinicopathological features between a HER2-positive and a HER2-negative status
[image: Table 2]Correlation Between HER2 and Clinicopathological Features
The clinicopathological differences between GBC with or without a HER2-positive status are displayed in Table 2. The ratio of HER2-positive status in AC (not including HG/Tis, por/sig, or MAC) was 16.1% (36/223). All GBC with HER2 amplification was AC (36/36, 100%). SCC/ASC, por/sig, MAC, undifferentiated carcinoma, and NEN/MiNEN were HER2-negative. No statistical differences were observed between the HER2-positive and HER2-negative cases with respect to age, sex, surgery type, or clinical stage.
The presence of papillary structure in AC was associated with HER2 positivity. Among 223 ACs, 62 cases showed papillary structure or partial papillary structure with a HER2-positive ratio of 41.9% (26/62) (Figures 1A–C), while 161 cases showed no papillary structure with a HER2-positive ratio of 6.2% (10/161, p = 0.001).
[image: Figure 1]FIGURE 1 | Correlation between morphology and HER2 expression and amplification. (A) Papillary adenocarcinoma (HE, ×20). The presence of papillary structure in adenocarcinoma (AC) was associated with HER2 positivity. (B) Papillary adenocarcinoma. HER2 immunohistochemistry (IHC) score of 3+ shows strong complete membranous reactivity in all tumor cells. (C) Papillary adenocarcinoma. Tumor cells exhibited HER2 amplification.
Survival Analysis
As most HER2-positive cases were AC (not including por/sig or MAC), only primary AC cases who underwent radical surgery without neoadjuvant radiation and/or chemotherapy and did not have competing malignancies were included in the survival analysis. A total of 146 cases of primary AC after radical resection were included in the survival analysis. The survival data of 143 cases were available, including 119 HER2-negative and 24 HER2-positive patients. The next period was 1–72 months. The median survival time was not reached, and the 5-year survival rate was 52.9%. Also, clinical stage was significantly correlated with OS and disease-free survival (DFS) (p = 0.001; Figures 2A, B). The median survival time and DFS were 48 and 15 months in stage III and were 15 and 7 months in stage IV, respectively.
[image: Figure 2]FIGURE 2 | Relationship between prognosis and clinical stages and HER2 status in adenocarcinoma (AC) patients who underwent curative surgeries. (A) Clinical stage was markedly related to overall survival (OS) (p = 0.001) in all 143 patients. The median OS was 48 months in stage III and was 15 months in stage IV. (B) Clinical stage was related to disease-free survival (DFS) (p = 0.001). The median DFS was 15 months in stage III and was 7 months in stage IV. (C) In the univariate analysis of all 143 patients, those with HER2 positivity tended to have better OS compared to those with a HER2-negative status, but the finding was not significant (p = 0.137). (D) In the univariate analysis of 143 patients, those with HER2 positivity did not show worse or better DFS in comparison to patients with a HER2-negative status (p = 0.615). (E) In stage II, the prognostic outcome of the HER2-positive group was similar to that of the HER2-negative group (p = 0.354). (F) In stage II, the DFS of the HER2-positive group was also similar to that of the HER2-negative group (p = 0.261). (G) The HER2-positive group had low mortality in stage III (p = 0.005). The median OS was 34 months in the HER2-negative group, but this has not been reached by the HER2-positive group. (H) The median DFS was 12 months in the HER2-negative group and was 26 months in the HER2-positive group (p = 0.191). (I) The HER2-positive group had higher mortality at stage IV (p = 0.005) compared to the HER2-negative group (median OS of 10 and 23 months, respectively). (J) The HER2-positive group had shorter DFS in stage IV (p = 0.161) compared to the HER2-negative group (median DFS of 4 and 8 months, respectively).
Patients with HER2 positivity did not have poorer or better OS or DFS than patients with a HER2-negative status, according to the univariate analysis (p = 0.137, p = 0.615) (Figures 2C, D). The HER2-positive group showed a trend toward higher mortality before 20 months and lower mortality after 20 months than did the HER2-negative group. The prognosis of the HER2-positive and HER2-negative groups in stages 0–I, II, III, and IV were compared. All patients in stages 0–I survived, regardless of whether HER2 was positive or not. In stage II, the prognostic outcome of the HER2-positive group was similar to that of the HER2-negative group (p = 0.354, p = 0.261) (Figures 2E, F). Compared with the HER2-negative group, the HER2-positive group had longer OS and DFS in stage III (p = 0.005, p = 0.191) (Figures 2G, H) and shorter OS and DFS in stage IV (p = 0.005, p = 0.161) (Figures 2I, J).
DISCUSSION
GBC is the most prevalent biliary tract cancer and is the fifth most frequent digestive tract cancer globally (Misra et al., 2003). As GBC patients at an early stage do not have obvious symptoms or signs, most are diagnosed at a late stage. GBC is not sensitive to chemotherapy or radiotherapy, and the prognosis of patients at an advanced stage is poor. It is known that HER2 is a prognostic and therapeutic target in gastric, breast, and colon cancer (Meric-Bernstam et al., 2019). HER2 status was evaluated in GBC and its prognostic value assessed.
The HER2 status in GBC showed considerable heterogeneity, and the frequency of HER2 positivity varied from 0% to 25% in different studies (Albrecht et al., 2020; Matsuyama et al., 2004; Nakazawa et al., 2005; Chaube et al., 2006; Kawamoto et al., 2007; Puhalla et al., 2007; Harder et al., 2009; Shafizadeh et al., 2010; Kumari et al., 2012; Toledo et al., 2012; Roa et al., 2014; Moy et al., 2015; Yoshida et al., 2016). Studies were conducted with IHC or IHC combined with ISH with different cutoff values from 2004 to 2019 on GBC samples of different sizes (6–221). The differences in the positive ratios may have been caused by variations in the detection methods used, cutoff values, sample sizes, and geographic and ethnic differences. Herein, HER2 status was evaluated in a large Chinese cohort based on the recommended testing guidelines for gastric cancer using a combination of IHC and FISH. This study avoided the problems common before 2011, such as the lack of approved antibodies or the inconsistent interpretation standards. The HER2-positive ratios were 11.8% (in all GBCs) and 16.1% (in ACs), which are similar to the results of studies with a larger sample size from Japan (16.6%, n = 221, in 2016) (Yoshida et al., 2016) and are slightly higher than that of India (9.6%, n = 104, in 2012) (Kumari et al., 2012) and Chile (12.8%, n = 187, in 2014) (Roa et al., 2014), but differed from that of Germany (5.4%, n = 186, in 2019) (Albrecht et al., 2020). We speculated that the differences may have been caused by race and/or geography. In this research, TMAs were used as the research object of HER2 expression in GBC. Although TMAs can assess the status of HER2 in GBC, there is still a certain possibility of false positives or negatives. A previous study assessed the sampling errors in specimens of biopsy size in gastric cancer by contrasting tissue sections and the corresponding TMAs (Warneke et al., 2013) and found a false-negative rate of 24% and a false-positive rate of 3% for TMAs. This indicates that the HER2-positive ratio may be higher than 16.1% in patients with AC.
Papillary structure in carcinoma is markedly associated with HER2 positivity. In this study, the HER2-positive ratio was 41.9% in papillary AC or AC with papillary structure and 6.2% in common ACs. Gastric cancer (Oono et al., 2018) and lung adenocarcinoma (Kim et al., 2017) have also reported the same phenomenon. The HER2-positive rate of papillary adenocarcinomas was especially high in gastric cancer (62%, 8/13, p = 0.023) (Oono et al., 2018) and lung cancer (17%, 7/41, p = 0.029) (Kim et al., 2017). Several studies have also evaluated the relationship between HER2 and papillary structures in GBC (Yoshida et al., 2016; Albrecht et al., 2020). Due to the small size of papillary AC (n = 10) or because these studies evaluated mixed tumors with other types of cancer, no statistical relationship was found. In this study, 62 (27.8%) were papillary carcinomas or carcinomas with partial papillary structures among 223 ACs. The HER2-positive ratio of 41.9% (26/62) was significantly higher than that of ACs without papillary structures. This indicates that a HER2 test should be applied in gallbladder ACs with papillary structures to investigate targeted therapies.
In most cases, HER2 amplification and protein overexpression have been consistent; however, abnormalities have been observed, wherein the overexpression of HER2 protein was inconsistent with the expression of the gene. In this study, 6 (2.4%) of the 251 tumors with negative immunostaining (scored as 0/1+) showed HER2 amplification. In other words, in some cases, HER2 amplification may not lead to protein overexpression, which was also observed in gastric (Hofmann et al., 2008) and breast cancer (Todorovic-Rakovic et al., 2005). Similarly, a considerable proportion of human cancers with moderate overexpression of HER2 does not show gene amplification (Jimenez et al., 2000; Bofin et al., 2004). These findings indicate that other mechanisms are involved in the regulation of HER2 expression. Zuo et al. reported that forkhead box P3 (FOXP3) gene alterations (deletion, somatic mutations of functional significance, and downregulation) are common in breast cancer samples, and they found that these alterations correlated significantly with HER2 overexpression regardless of the status of HER2 amplification (Zuo et al., 2007). These data demonstrate that FOXP3 is an important oncogene that may regulate the HER2 gene (Zuo et al., 2007).
Although HER2 is a separate prognostic factor in breast (Loibl and Gianni, 2017) and gastric cancer (Gravalos and Jimeno, 2008), a HER2-positive status does not show prognostic value for the OS or DFS of GBC. However, some studies found that the HER2-positive group tended to have shorter OS and/or DFS (Albrecht et al., 2020; Roa et al., 2014; Yoshida et al., 2016). The prognosis of the same tumor at different stages was completely different, so the clinical stage is also a separate prognostic factor. In this study, no patient in stages 0–I died of GBC, and the median survival time of stage II patients was not reached, while those of stage III and IV patients were 48 and 15 months, respectively. Thus, tumors at different stages may be regarded as different subgroups; they have different molecular events. Similarly, a molecule may have different roles at different stages of the tumor (Xu et al., 2017a). Here, the prognostic value of HER2 was analyzed for GBC at different stages. HER2 positivity was not prognostic for OS or DFS in stages 0–II, with low mortality in stage III (p = 0.005) and high mortality in stage IV (p = 0.005). These results suggest that HER2 might have different roles alone or in combination with other molecules at different stages during the development of GBC. The same phenomenon has been observed in the prognostic significance of induced myeloid leukemia cell differentiation one copy number gain in esophageal squamous cell carcinoma (Xu et al., 2017b). Whether this finding is constant or accidental requires further research.
The limitation of this study is that it cannot reflect the actual status of HER2 heterogeneity in GBC. As TMA was used in this study, the samples we chose did not fully reflect the characteristics of the tumors, and heterogeneity is an important feature of tumors. Another limitation is that this is a retrospective study. Since none of the patients included in this study received anti-HER2 therapy, its impact on patients cannot be assessed. The study was unable to evaluate the effects of anti-HER2 therapies on these patients. However, HER2 status is the basis of anti-HER2 therapies in GBC, and this study provides evidence for treatment.
In conclusion, the frequency of HER2 positivity was reported in a large, well-characterized Chinese cohort of patients with GBC with the recommended testing guidelines for gastric cancer using a combination of IHC and FISH. The HER2-positive rate was 16.1% in AC, and more than 40% in papillary AC or AC with papillary structure. HER2 positivity had a bidirectional prognostic significance in patients with GBC at different clinical stages. The above results provide the basis for targeted treatment for HER2.
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In clinical genetic testing, checking the concordance between self-reported gender and genotype-inferred gender from genomic data is a significant quality control measure because mismatched gender due to sex chromosomal abnormalities or misregistration of clinical information can significantly affect molecular diagnosis and treatment decisions. Targeted gene sequencing (TGS) is widely recommended as a first-tier diagnostic step in clinical genetic testing. However, the existing gender-inference tools are optimized for whole genome and whole exome data and are not adequate and accurate for analyzing TGS data. In this study, we validated a new gender-inference tool, seGMM, which uses unsupervised clustering (Gaussian mixture model) to determine the gender of a sample. The seGMM tool can also identify sex chromosomal abnormalities in samples by aligning the sequencing reads from the genotype data. The seGMM tool consistently demonstrated >99% gender-inference accuracy in a publicly available 1,000-gene panel dataset from the 1,000 Genomes project, an in-house 785 hearing loss gene panel dataset of 16,387 samples, and a 187 autism risk gene panel dataset from the Autism Clinical and Genetic Resources in China (ACGC) database. The performance and accuracy of seGMM was significantly higher for the targeted gene sequencing (TGS), whole exome sequencing (WES), and whole genome sequencing (WGS) datasets compared to the other existing gender-inference tools such as PLINK, seXY, and XYalign. The results of seGMM were confirmed by the short tandem repeat analysis of the sex chromosome marker gene, amelogenin. Furthermore, our data showed that seGMM accurately identified sex chromosomal abnormalities in the samples. In conclusion, the seGMM tool shows great potential in clinical genetics by determining the sex chromosomal karyotypes of samples from massively parallel sequencing data with high accuracy.
Keywords: massively parallel sequencing data, Gaussian mixture model, gender, sex chromosomal abnormality, aneuploidy
INTRODUCTION
The next-generation sequencing (NGS) technology has revolutionized human biology and medicine in the last decade. NGS is routinely used in clinical genetic testing for molecular diagnosis of hereditary disorders, infectious diseases, and immune disorders, non-invasive prenatal genetic testing, and personalized precision medicine, especially for cancer patients (Phillips and Douglas, 2018; Phillips et al., 2020). Clinical genetic testing is a diagnostic tool that involves genome sequencing to identify pathogenic gene mutations (genetic variants) in human diseases (McPherson, 2006). This may involve targeted gene sequencing (TGS) of single or multiple genes, whole exome sequencing (WES), or whole genome sequencing (WGS) (Di Resta et al., 2018). TGS is highly accurate, robust, and cost-effective. Therefore, TGS has been used for the diagnosis of several human diseases including hearing loss, vision loss, cardiovascular disorders, neurologic disorders, cancer risk, and renal disorders (Lin et al., 2012; Saudi Mendeliome, 2015).
Parallelized TGS analysis of large patient cohorts requires rigorous quality control (QC) and preprocessing to identify the pathogenic gene variants (Lee et al., 2017). Verification of the concordance between self-reported gender and genetically inferred gender is an essential QC step because misregistration of clinical information, sample swaps, sample pollution, or sex chromosomal abnormalities can result in wrong conclusions and affect treatment decisions (Taylor et al., 2015; Webster et al., 2019). Sex chromosomal abnormalities are reported in approximately 1 in 448 newborn children (Nielsen and Wohlert, 1990). Therefore, there is a higher probability of gender inconsistencies in larger cohorts. Cytogenetic karyotyping is the gold standard method for confirming the gender of an individual and identifying chromosomal abnormalities. The highly conserved sex chromosomal marker gene, amelogenin, is widely used for identifying gender using short tandem repeat (STR) typing (Thangaraj et al., 2002; Ma et al., 2012). The 6 bp deletion within intron 1 of the amelogenin gene in the X chromosome is used to distinguish the PCR amplified products of the amelogenin gene in the X and Y chromosomes (Sullivan et al., 1993). However, these methods are time- and labor-consuming.
Several computational tools such as PLINK, seXY, and XYalign, have been developed for gender inference based on genome-wide WES or WGS data. PLINK inferred gender by calculating F coefficients from the genotyping array data using X chromosome homozygosity/heterozygosity rates; samples with F coefficient values of more than 0.8 were designated as males and samples with F coefficient values of less than 0.2 were considered as females (Purcell et al., 2007). The seXY tool is based on the logistic regression model and identifies gender by considering X chromosome heterozygosity and Y chromosome missingness in the genotyping array data (Qian et al., 2017). XYalign tool identifies gender from both WES and WGS datasets by extracting the read counts mapped to the sex chromosomes and calculating the ratio of X and Y read counts in a scatter plot (Webster et al., 2019). However, none of these tools are optimized for analyzing TGS panel data, which contains significantly reduced information compared to the whole genomic or exome data. As shown in Table 1, the performance of the existing tools was not satisfactory in reporting gender using the TGS data. Furthermore, sex chromosomal abnormalities were not clearly identified by the PLINK, seXY, and XYalign tools. Few studies reported the sex chromosomal abnormalities of individuals based on the ratio of sequencing reads that were mapped to the X and Y chromosomes from the genotyping array and WGS data (Bycroft et al., 2018; Turro et al., 2020). However, this methodology has not been automated. Therefore, there is an urgent need to construct highly accurate bioinformatics tools for gender inference from TGS data and reporting sex chromosomal abnormalities.
TABLE 1 | Gender prediction accuracy of different methods for samples in dataset 1.
[image: Table 1]In this study, we verified the performance and accuracy of the new gender inference tool, seGMM, using both in-house and publicly available TGS, WES, and WGS datasets. The seGMM tool used unsupervised learning to integrate the information of the X and Y chromosomes from the TGS, WES, or WGS datasets and classified the samples into one of the six sex chromosomal karyotypes (XX, XY, XYY, XXY, XXX, and X).
MATERIALS AND METHODS
Data
We compared the performances of three existing gender-inferring methods and seGMM using the TGS data from the following 3 datasets: 1) Dataset 1: exon-targeted sequencing data of 1,000 genes (34 X chromosomal genes and two Y chromosomal genes) for a cohort of 110 males and 98 females from the 1,000 Genomes Project (Supplementary Table S1) (Genomes Project et al., 2010); 2) Dataset 2 (in-house): massive parallel sequencing of 785 deafness-related genes (eight genes in the X chromosome) for an in-house cohort of 8,805 males and 7,582 females; and 3) Dataset 3: targeted sequencing data of 187 autism risk genes (13 genes in the X chromosome) for a cohort of 42 females and 205 males from the Autism Clinical and Genetic Resources in China (ACGC) (Guo et al., 2018).
We also used the following two publicly available datasets (Supplementary Tables S2, S3) and one in-house dataset for analyzing the performance of seGMM in determining gender using WES and WGS data: 1) Dataset 4: exome sequencing data of 164 males and 118 females from the 1,000 Genomes Project (Genomes Project et al., 2015); 2) Dataset 5 (in-house): exome sequencing data of 1,257 males and 1,136 females; and 3) Dataset 6: high-coverage whole genome sequencing data of 11 males and 16 females from the 1,000 Genomes Project (Genomes Project et al., 2015).
The publicly available BAM files were previously mapped to the reference genome (GRCh37) and directly used for downstream analyses. For the in-house datasets, Fastp was used to remove the adapters and low-quality reads, and the quality of sequencing data was evaluated using measures such as Q20, sequence duplication levels, coverage, and GC content (Chen et al., 2018). Clean DNA sequencing reads were mapped to the human reference genome (GRCh37) using the BWA-MEM algorithm (Li and Durbin, 2009). Duplicated reads in the BAM files from the public and in-house datasets were removed using the sambamba tool (Tarasov et al., 2015). The variants were identified based on the Genome Analysis Toolkit best practices recommendations (McKenna et al., 2010) and filtered with VCFtools (Danecek et al., 2011) using parameters such as missing data in more than 50% of samples, minor allele count <3, overall SNP quality (QUAL) score <30, and read depth <5.
Gender Inference Using seGMM
The model for seGMM included five gender-associated features, namely, X chromosome heterozygosity (XH), reads mapped to the X chromosome (Xmap), reads mapped to the Y chromosome (Ymap), the ratio of X/Y counts (XYratio), and the mean depth of the sex-determining region of the Y chromosome (SRY) gene (SRY_dep). The seGMM tool computed XH as the fraction of all genotypes on the X chromosome with two different allele calls, excluding the missing genotypes. Xmap/Ymap was computed as the fraction of high-quality reads (mapq > 30) that mapped to the X/Y chromosome divided by the total number of high-quality reads that mapped to the genome using the samtools algorithm (Li et al., 2009). XYratio was computed as the ratio of Xmap to Ymap (Xmap/Ymap). SRY_dep was determined using the mosdepth tool (Pedersen and Quinlan, 2018). The seGMM tool allows the users to customize feature selection for the GMM model because different TGS panel designs may only provide some features. For example, if the gene panel contains only genes located on the X chromosome, the relevant features on the X chromosome (XH and Xmap) are extracted and put into the model for gender determination.
The features extracted from the BAM and VCF files were normalized to the same level using the scale function in R 4.1.2 (R Core Team., 2021). Then, the mclust (v.5.4.9) R package was used to perform model-based clustering with the expectation-maximization (EM) algorithm and the samples were classified into two clusters (Scrucca et al., 2016). The gender was inferred based on the cluster results for a group of samples. The outliers were identified when uncertainty (probability of being assigned to two different clusters) was greater than 0.1. When a single sample was submitted, gender was inferred using the reference data that was analyzed with the same features as those in the seGMM model (Figure 1).
[image: Figure 1]FIGURE 1 | Schematic diagram of seGMM. The seGMM tool automatically collects features from the input VCF and BAM files and builds the GMM model. The output of seGMM includes gender prediction results and identification of samples with abnormal sex chromosomes.
Identifying Potential Sex Chromosomal Abnormalities in the Sequenced Samples
We defined the gates to classify individual karyotypes. The distribution of Xmap and Ymap in the females and males of the large cohort was normal. The ratio of samples with sex chromosomal abnormalities was 0.022% (Nielsen and Wohlert, 1990). This data was in agreement with the empirical rule, which states that 99.7% of normally distributed data lies within 3 standard deviations (sd) of the mean. Hence, we defined the normal gates as mean±3sd. The fold changes in Xmap or Ymap values indicated sex chromosomal aneuploidy.
To identify sex chromosomal abnormalities in the samples, we first calculated the mean value and standard deviation values of Xmap (mean_xmap and sd_xmap) and Ymap (mean_ymap, and sd_ymap) in the genetically determined male and female samples. The values for the males and females were denoted as m and f, respectively. The following six gates were then used to classify the karyotypes of individuals:
XY Gate
○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m
○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m
XYY gate:
○ mean_xmap_m - 3 sd_xmap_m < x < mean_xmap_m + 3 sd_xmap_m
○ y > 2 mean_ymap_m
XX gate:
○ mean_xmap_f - 3 sd_xmap_f < x < mean_xmap_f + 3 sd_xmap_f
○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f
XXY gate:
○ x > 2 mean_xmap_f
○ mean_ymap_m - 3 sd_ymap_m < y < mean_ymap_m + 3 sd_ymap_m
XXX gate:
○ x > 3 mean_xmap_f
○ mean ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f
X gate:
○ x < 0.5 mean_xmap_f
○ mean_ymap_f - 3 sd_ymap_f < y < mean_ymap_f + 3 sd_ymap_f
Comparing the Performance of seGMM With Other Existing Gender-Inference Methods
The performance of seGMM was compared to PLINK 1.9, XYalign (v.1.1.6), and seXY (v.20170316). For PLINK 1.9, the pseudoautosomal region of the X chromosome was first split off with the parameter--split-x. Then, the parameter--check-sex was run without parameters. After reviewing the distribution of F estimates, the parameter--check-sex was rerun with parameters corresponding to the empirical gap. XYalign was performed following the method described in the original literature. The CHROM_STATS module was used to obtain the depths of chromosomes 1, X, and Y. The depths of X and Y chromosomes were normalized relative to the depth of chromosome 1. Then, a scatter plot of normalized X and Y chromosomes depth was plotted to assess gender in samples. Gender of the samples was inferred with seXY using the X.ped and Y.ped data that was derived from PLINK. The training dataset was provided by seXY. We expected to compare seGMM and other existing tools for all the six datasets. However, target gene panel data for datasets 2 and 3 did not contain genes on the Y chromosome. Therefore, the performance of XYalign and seXY was not available for these two datasets.
STR Analysis for Verifying Gender
The STR analysis was performed using the customized multiplex PowerPlex® 16 System, which allowed co-amplification and four-color detection of amelogenin and other gene loci. The following primers were used for amplifying amelogenin: forward, 5′- GTT​AG​ACG​TGT​GCT​TCA​ACT​TCA​GCT​ATG​AGG​TAA​TTT​TTC—3′; reverse, 5′- ATC​CGA​CGG​TAG​TGT​CCA​ACC​ATC​AGA​GCT​TAA​ACT​GG-3′. All genetic loci were amplified simultaneously in a single tube and analyzed in a single lane. One of the primers for the amelogenin gene was labeled with carboxyrhodamine (ROX). The amplicons were separated in the ABI 3730XL Genetic Analyzer and the data was extracted using GeneMapper ID v3.2. The gender was inferred according to the peaks for the amelogenin gene. If only one peak was observed for the amelogenin locus, the gender was designated as female. If two distinct peaks differing by 6 bp were observed in the amelogenin locus, the gender was designated as male.
Quantitative Determination of Y Chromosome Copy Number
Genomic DNA (gDNA) was extracted using the MagMAX High Purity Free DNA Separation Kit (Magen, China). DNA concentration of the samples was measured using the NanoDrop One spectrophotometer (Thermo Fisher Scientific, United States). The working concentration of all DNA samples was 20 ng/µl. The primers targeting SRY, zinc finger protein Y-linked (ZFY), and deleted in azoospermia 1 (DAZ1) genes were designed using the Primer-BLAST online tool to determine the Y chromosome copy number (Ye et al., 2012). RPP30 was used as the internal control. All the primers used in this study are listed in Supplementary Table S4. The qPCR reaction mix included 0.6 µl of gDNA, 0.4 µl of each primer, 5 µl of iTaq™ Universal SYBR® Green Supermix (Bio–Rad, United States), and 3.6 µl of double-distilled water. Each sample was analyzed with three replicates. The quantitative real-time PCR assay (RT–qPCR) was performed in the QuantStudio 5 Real-Time PCR system (Thermo Fisher Scientific) using the following conditions: initial hot start cycle at 98°C for 2 min followed by 40 cycles consisting of denaturation at 98°C for 10 s, annealing at 60°C for 10 s, and the final extension step of 30 s at 72°C.
RESULTS
The seGMM Tool Shows Better Performance Compared to Other Tools for the TGS Data
The distribution of XH, Xmap, Ymap, and XYratio values for dataset 1 (n = 208) shown in Figures 2A–D. The accuracy of seGMM was 99.52% and none of the samples were outliers (Figure 2E; Table 1). The accuracy of seGMM in females and males was 98.98 and 100%, respectively. The XYratio of one female sample (NA19054) resembled that of males and was incorrectly classified as male by seGMM. The gender-inference performance of seGMM for dataset 1 was superior to PLINK, seXY and XYalign. The PLINK tool analysis showed that the F coefficients for the dataset1 samples ranged from 0 to 0.9 and gap of F coefficients was not observed (Supplementary Figure S1). The accuracy of PLINK was 81.44% by running --check-sex without parameters. The accuracy of seXY for the dataset 1 was only 62.5% (Table 1). XYalign does not directly indicate predicted gender. Therefore, plotting the normalized sequence depth of the sex chromosomes and cluster samples along two ellipses using the stat_ellipse function resulted in a confidence level of 99.99%. XYalign plot showed that one female sample was located along with the male samples and three female samples were located between the two ellipses. Hence, the predicted gender of these four female samples was ambiguous (Supplementary Figure S2) and the accuracy of XYalign is 98.08%.
[image: Figure 2]FIGURE 2 | The performance of seGMM in the TGS datasets. (A–D) Distribution of features collected from dataset 1. (E–G) Sample classification results of datasets 1, 2, and 3 based on seGMM. The colors represent different sample clusters. Dir1 and Dir2 represent the eigenvectors that specify the discriminant subspace generated from the features included in the GMM model.
The performance of seGMM for the target gene panel data was validated using dataset 2 (n = 16,387) and dataset 3 (n = 247). The read counts, base quality, and GC distribution of the sequencing data of all the 16,387 subjects in dataset 2 was assessed. The average total number of sequence read per sample was 10.72 million. The average quality score for all bases was above 30 and the average GC content was 50.11% per subject. The average targeted sequence coverage was 90.43%, and unique mapping rate of each sample was 99.26%. We identified 16,988 variants in eight genes located on the X chromosome. Because the target gene panel for dataset 2 did not contain genes on the Y chromosome, we only used XH and Xmap to analyze the performance of the seGMM model. XH and Xmap plots showed distinct clusters for males and females (Supplementary Figure S3). The overall accuracy of seGMM and PLINK was 99.92 and 87.10%, respectively (Figure 2F; Table 2). The accuracy of seGMM in females and males was both 99.98%. One self-reported female sample (HL-001200) and two self-reported male samples (CTRL-002692 and CTRL-002753) were misclassified. Therefore, we performed STR analysis with the sex chromosome marker gene, amelogenin, to verify the gender of these three ambiguous samples. All these three samples were identified as males because two distinct peaks were observed with a difference of 6 bp for the amelogenin gene (Figures 3A–C). CTRL-002692 and CTRL-002753 were misclassified because all other male samples had a XH value of 0, while these two samples had a non-zero value (XHCTRL-002692 = 0.0025; XHCTRL-002753 = 0.0046), which could be caused by the individual variation in targeting region.
TABLE 2 | Gender prediction accuracy of different methods for samples in datasets 2 and 3.
[image: Table 2][image: Figure 3]FIGURE 3 | Experimentally verified gender of HL-001200 (A), CTRL-002692 (B) and CTRL-002753 (C). The green box shows the location of the amelogenin loci.
The overall accuracy of seGMM for dataset 3 was 92.31% (97.56% for females and 84.88% for males, Figure 2G and Table 2). The accuracy of PLINK was only 38.87% for dataset 3. The performances of seGMM and PLINK were significantly better for datasets 1 and 2 compared to dataset 3 because the number of X chromosome SNPs (81) were lower and sequencing data for the Y chromosome was absent in dataset 3, thereby affecting the distribution of XH values from the male and female samples (Supplementary Figure S4A). In contrast to PLINK, seGMM collected additional information for the reads mapped to the X chromosome, thereby enabling better separation between the female and male samples (Supplementary Figure S4B). Furthermore, we assessed the performance of seGMM using features only extracted from the X chromosome in dataset 1. The seGMM tool showed that 59 samples were outliers and the accuracy for the remaining samples was only 84.56%. We then evaluated the computation time of different methods using 1 core, 10 cores and 20 cores on a server with 64 Intel(R) Xeon(R) CPU E7-8895 v3 at 2.60 GHz. The analysis time for the seGMM tool was longer than PLINK and seXY because it collected additional features such as reads mapped to the X and Y chromosomes. Moreover, the analysis time for seGMM with 1 core was longer than XYalign and 10 times faster than XYalign with 20 cores (Supplementary Table S5).
The seGMM Tool Shows Better Accuracy Than Other Known Tools for the WES and WGS Data
We then evaluated the performance of the seGMM tool for the WES and WGS data. First, we analyzed the publicly available WES data (dataset 4). The accuracy of seGMM was 100% for the samples in dataset 4 (n = 282) (Table 3 and Supplementary Figure S5). The accuracy of PLINK and seXY was also 100%. The accuracy of XYalign was 99.65% (Supplementary Figure S6).
TABLE 3 | Gender prediction accuracy of different methods for the WES and WGS datasets.
[image: Table 3]Next, we analyzed the in-house WES data (dataset 5, n = 2,393) using seGMM and other tools. In dataset 5, the average number of sequencing reads per sample was 114.43 million. The average Q20, Q30 and GC content of the reads per subject was 97.36%, 93.21%, and 51.23%, respectively. Furthermore, the average unique mapping rate for each individual sample was 99.92%. We identified 89,273 variants on the X chromosome and 4,866 variants on the Y chromosome. The concordance between inferred gender and self-reported gender using the seGMM tool based on the five features for the in-house WES dataset 5 was 99.75% (99.76% for males and 99.74% for females, Figure 4A, Supplementary Figure S7). Six mismatched samples (HL-005584, HL-006009, HL-006904, HL-007335, HL-007935 and HL-012246) were identified by comparing SNP-inferred gender and self-reported gender. This indicated misregistration of clinical information for some samples. Therefore, we performed STR analysis to validate the gender of these six samples. Three samples were classified as females because they showed only one peak for the amelogenin locus, whereas the remaining three samples showed two distinct peaks with a difference of 6 bp and were classified as males (Table 4). The results demonstrated that the actual accuracy of seGMM prediction was 100%. We also evaluated the correlation between age and reads mapped to the Y chromosome in the male samples (Supplementary Figure S8A) and reads mapped to the X chromosome in the female samples from the in-house WES dataset 5 (Supplementary Figure S8B). The results showed significant negative correlation (p = 6.899e-09; correlation coefficient: −0.17) between reads mapped to the Y chromosome and age, thereby indicating loss of Y chromosome during aging.
[image: Figure 4]FIGURE 4 | The prediction accuracy of seGMM in inferring the gender of samples from the in-house WES dataset. (A) Sample clustering results of seGMM. The colors represent different sample clusters. Dir1 and Dir2 represent eigenvectors that specify the discriminant subspace generated from the features included in the GMM model. (B) Scatter plot shows the reads mapped to the X and Y chromosomes. As shown, we identified three samples (HL-029620, HL-009382 and HL-019110) with XYY sex chromosome karyotypes.
TABLE 4 | Experimental verification of gender prediction results for samples in the in-house WES data.
[image: Table 4]We then compared the performances of PLINK, seXY and XYalign for dataset 5 using the corrected gender information. The accuracy of PLINK was 99.79% with five mismatched samples (HL-033182, HL-020292, HL-011500, HL-019211 and HL-012554) (Table 3). The accuracy of XYalign was 99.91% with two mismatched samples (HL-009389 and HL-012554). Overall, six samples were mismatched, as predicted by PLINK and XYalign. STR analysis showed that the gender of these samples was consistent with their self-reported gender and matched the predicted results of seGMM analysis (Table 4). Furthermore, the accuracy of seXY was 49.23%. The loss of accuracy in seXY for dataset 5 was because the distribution of Y chromosome missingness in the male and female samples were confounded (Supplementary Figure S9). Finally, the performances of these tools were assessed using the WGS data (dataset 6, n = 27). The accuracy of all tools was 100% for dataset 6 (Table 3).
The seGMM Tool Identifies Samples With Sex Chromosomal Abnormalities
The seGMM tool can identify six sex chromosomal karyotypes (XX, XY, XYY, XXY, XXX, and X) using Xmap and Ymap. In a large cohort, the distribution of Xmap and Ymap was normal in females and males. The Xmap or Ymap values of samples with sex chromosome abnormalities such as XYY and XXY were significantly different and were recognized as outliers compared to samples with normal sex chromosomes. Three samples in dataset 5 (HL-029620, HL-009382 and HL-019110) were classified as the XYY karyotype. In dataset 5, the average rate of reads mapping to the X and Y chromosomes in the female samples were 0.035 ± 0.0020 and 1.61e-05 ± 3.36e-05, respectively, and 0.018 ± 0.0011 and 0.00067 ± 0.00014, respectively, for the male samples. The rate of reads mapping to the Y chromosome for the three outlier samples was twice as high as the mean value of Ymap in all the male samples (YmapHL-029620 = 0.0015, YmapHL-009382 = 0.0018, and YmapHL-019110 = 0.0015), thereby suggesting a XYY karyotype by seGMM (Figure 4B). Furthermore, although HL-009389 and HL-012554 samples were located close together in the middle of the plot, they were correctly predicted by seGMM as female and male, respectively (Figure 4B). This is because features such as Xmap and SRY_dep, which are not shown in Figure 4B, clearly separated all female and male samples (Supplementary Figure S10). This demonstrated the significance of incorporating key features to improve the accuracy of the gender prediction model. In the other datasets, sex chromosomal abnormalities were not identified.
Next, we evaluated the accuracy of the data-based sex chromosome karyotype of these three samples by analyzing the copy number ratios of Y chromosome-specific genes (SRY, ZFY and DAZ1) by RT–qPCR. We used HL-007935 and HL-012246 samples as controls for females and males based on the STR analysis results. The copy number ratio for normal females was 0. The copy number ratio for normal male samples was 1. We analyzed the copy number ratios of HL-029620, HL-009382 and HL-019110 samples in dataset 5 and found that the copy number ratio of HL-019110 was 2 (Figure 5). This confirmed that the karyotype for the HL-019110 sample was XYY.
[image: Figure 5]FIGURE 5 | Quantitative determination of Y chromosome copy number.
DISCUSSION
In this study, we characterized the performance of the new gender inference tool, seGMM, in comparison with the other established gender inference tools using NGS data, especially TGS panel data. The seGMM tool used unsupervised clustering to classify samples based on X and Y sex chromosomal features. The performance and accuracy of the seGMM tool were significantly better than other existing gender inference tools using TGS, WES, and WGS data. Furthermore, seGMM accurately predicted six different sex chromosomal karyotypes, including those with sex chromosome abnormalities. The mean and standard deviation values of Xmap and Ymap were used to determine potential sex chromosome aneuploidy in the male and female samples by seGMM. Previous studies have identified sex chromosomal aneuploidy in samples by measuring the intensities of X and Y chromosomes (Bycroft et al., 2018; Turro et al., 2020). A similar strategy was incorporated into the seGMM tool and used to validate a sample with sex chromosome karyotype XYY in the in-house WES dataset. Samples with sex chromosomal abnormalities may result in false calling of the genotype. This can affect identification of pathogenic variants in the sex chromosomes. Therefore, samples with sex chromosome abnormalities should be removed or recalled genotypes to ensure accuracy of the clinical diagnosis.
The seGMM tool applies unsupervised learning algorithm to infer gender of samples from the TGS panel data to overcome the pitfalls of existing tools. The TGS panel consists of a select set of genes with known or suspected association with the disease under study. The advantage of TGS in clinical genetic testing includes high sequencing depth of the genes of interest, which allows identification of rare and causative variants (Eggers et al., 2016; Bewicke-Copley et al., 2019). The data size of TGS depends on the number of genes included in the panel and the methods used for targeted sequencing including target enrichment by hybridization capture and amplicon sequencing. Hence, the number of variants and sequencing depth of the X and Y chromosomes varies for different TGS panels. The accuracy of existing methods in inferring gender using TGS data is unsatisfactory because the algorithms are either based on a data-dependent threshold or supervised learning on a fixed sample set (Purcell et al., 2007; Qian et al., 2017). PLINK uses a data-dependent threshold strategy that determines gender by computing the F coefficients based on the observed and expected number of homozygous markers and requires reasonable minor allele frequency estimates. However, variants detected in the TGS datasets tend to have lower minor allele frequency and the number of variants detected in the X chromosome are limited. Therefore, F coefficient of the male and female samples based on the TGS data is ambiguous. Furthermore, the logistic regression classifier for the seXY tool was based on GWAS data collected from prostate cancer and ovarian cancer samples, and was not suitable for TGS panels because the distribution of X chromosome heterozygosity and Y chromosome missingness varied between the TGS panel dataset and the training dataset. In contrast, seGMM applied a Gaussian mixture model to infer gender. Therefore, the performance and accuracy of seGMM were higher for data with different covariance structures and were adaptable to include fresh samples.
Our study also demonstrated that the gender-inference accuracy of seGMM improved when the information from both X and Y chromosomes was available. For example, the accuracy of seGMM for dataset 1 was 84.56% when the data included only X chromosomal features, but the accuracy increased to 99.52% upon adding Y chromosomal features. Moreover, the accuracy of seGMM was lower for male samples compared to female samples in datasets 2 and 3 because the sequencing data did not contain information on genes in the Y chromosome. Our data also suggested that addition of probes that target unique regions of the Y chromosome such as the SRY exon, which is involved in typical male sex development (Gubbay et al., 1990; Parma and Radi, 2012), is helpful for inferring genders using the TGS panel data.
DNA sequencing data from the lymphoblastoid cell lines (LCLs) established from the EBV-infected peripheral blood mononuclear cells (PBMCs) may confound the prediction of sex chromosomal karyotypes. A previous study demonstrated that EBV transformation adversely affected the genomic DNA stability; mosaic loss of X chromosome was observed in 7% (2/29) of the samples analyzed (Shirley et al., 2012). The false-positive rates due to EBV-induced mutations in LCLs may reduce the accuracy of predicting the sex chromosomal karyotypes. The majority of samples in the 1000G WES data were derived from LCLs, but we did not identify any sample in this dataset with abnormal sex chromosomal aneuploidy. The box plots of reads mapped to the Y chromosome showed a much lower value for one male sample (NA12413) compared to the others, thereby indicating potential loss of chromosome Y (Supplementary Figure S11). However, we could not confirm if the loss of Y chromosome was due to LCLs or as a result of authentic sex chromosome abnormalities since experimental validation is required for further analysis.
A few critical considerations are necessary while applying seGMM. First, seGMM is not applicable when the targeted sequencing data does not include genes located on the X and Y chromosomes. Secondly, seGMM requires a sufficient sample size to train an accurate model. Therefore, prediction accuracy should be enhanced for small sample datasets by including reference data (using --reference function parameter). We have provided two reference datasets that were generated from the 1000G WES and WGS datasets. In addition, samples sequenced with the same version of TGS panel can be used to build a user’s own reference to maximize the accuracy of gender prediction. When applying seGMM, the experimental and analytical methods between reference data and testing data need to be consistent to prevent bias. Thirdly, parallel computing (using --num_threshold function parameter) is recommended to speed up the analysis since the seGMM tool collects more features than the other existing tools. Lastly, the use of Empirical Rule to classify individual karyotypes improves the recall rate, but may magnify false positives rate, as has been reported in previous study using this strategy (Turro et al., 2020). In addition, many factors may contribute to false positive predicition results, including the copy number variations such as large deletions or insertions on the sex chromosomes or genetic chimerism. Therefore, to overcome this limitation, karyotyping of predicted abnormal samples is recommended to confirm the sample karyotype.
In conclusion, we demonstrate that the performance and accuracy of seGMM, a new tool to infer sex chromosomal karyotypes based on a Gaussian mixture model, was significantly higher and satisfactory for TGS, WES, and WGS datasets, including those with samples containing sex chromosomal abnormalities compared to other existing tools. Hence, seGMM is a promising tool for inferring the gender of samples in TGS, WES, and WGS datasets.
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Objective: Intervertebral disc degeneration (IDD) is the major cause of low back pain. We aimed to identify the key genes for IDD pathogenesis.
Methods: An integrated analysis of microarray datasets of IDD archived in public Gene Expression Omnibus was performed. Bioinformatics analyses including identification of differentially expressed mRNAs/microRNAs/long non-coding RNAs (DEMs/DEMis/DELs), pathway enrichment, and competitive endogenous RNA (ceRNA) network construction were performed to give insights into the potential functions of differentially expressed genes (DEGs, including DEMs, DEMis, and DELs). The diagnostic value of DEMis in distinguishing IDD from normal controls was evaluated through receiver operating characteristic (ROC) analysis.
Results: DEGs were identified in IDD, including H19 and HOTAIR. In the DEMis–DEMs network of IDD, miR-1291, miR-4270, and miR-320b had high connectivity with targeted DEMs. Cell death biological processes and the JAK–STAT pathway were significantly enriched from targeted DEMs. The area under the curve (AUC) of 10 DEMs including miR-1273e, miR-623, miR-518b, and miR-1291 in ROC analysis was more than 0.8, which indicated that those 10 DEMs had diagnostic value in distinguishing IDD from normal individuals.
Conclusions: DELs H19 and HOTAIR were related to IDD pathogenesis. Cell death biological processes and the JAK–STAT pathway might play key roles in IDD development.
Keywords: H19, HOTAIR, differentially expressed genes, JAK–STAT pathway, intervertebral disc degeneration
INTRODUCTION
Spinal degenerative disease is a major health problem with a social burden worldwide. Intervertebral disc degeneration (IDD) is a major cause of back, neck, and radicular pain, which is characterized by the loss of nucleus pulposus cell (Waddell, 1996; Andersson, 1999; Ma et al., 2016).
The intervertebral disc comprises an outer circumferential annulus fibrosus (AF) and an inner nucleus pulposus (NP), bordered by two cartilaginous endplates (Johnson et al., 2015). It is reported that IDD is linked to various pro-inflammatory cytokines. Recently, a series of articles displayed non-coding RNAs, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (small endogenous RNAs that posttranscriptionally regulate gene expression), are involved in the initiation and progression of IDD. lncRNA HCG18 suppresses the growth of NP cells and promotes the IDD development through the miR-146a-5p/TRAF6/NFκB axis (Xi et al., 2017). The overexpression of miR-146a could promote IDD through the TRAF/NF-κB pathway (Lv et al., 2017). Decreased miR-155 contributes to the up-regulation of MMP-16 in vivo, which degrades aggrecan and collagen type II, leading to the dehydration and degeneration of discs (Zhang et al., 2017).
Although great progress has been made in the mechanism research of IDD, the mechanisms of initiation and development in IDD remain elusive. In the present work, we performed an integrated analysis of public microarray datasets of IDD to elaborate IDD pathogenesis and identify non-coding RNAs to distinguish IDD patients from healthy controls for potential clinical management.
MATERIALS AND METHODS
Microarray Datasets
Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/) is an international public database that archives high-throughput sequencing gene expression data. In order to explore the different expression profiling in IDD, we searched datasets from the GEO database with the keywords “intervertebral disc degeneration” AND “Homo sapiens” AND “gse”. Expression data generated from the human annulus disc tissue of IDD patients and healthy controls were incorporated into our work. Four mRNA expression datasets (including GSE23130, GSE15227, GSE17077, and GSE70362) and 3 miRNA expression datasets (GSE116726, GSE63492, and GSE45856) were included. The basic information of datasets is shown in Table 1. This study has been approved by the Ethics Committee of Tianjin First Central Hospital.
TABLE 1 | Detail information of microarray datasets.
[image: Table 1]Differentially Expressed mRNAs/miRNAs/circRNA/lncRNA in IDD
In order to minimize the heterogeneity among different datasets, raw data were performed for log2 transformation and normalization, and then, the metaMA package was used to combine data from multiple datasets. Individual p values were calculated, and false discovery rate (FDR) was obtained by using the Benjamini–Hochberg method. Differentially expressed mRNAs (DEMs), miRNAs (DEMis), circRNAs (DECs), and lncRNAs (DELs) were investigated in IDD. In our work, mRNAs with p value < 0.05, miRNAs with FDR<0.01, circRNAs with FDR<0.01, and lncRNAs with FDR<0.01 were considered as DEMs, DEMis, DECs, and DELs, respectively.
miRNA Regulatory Network Construction
The DEM-associated target genes were predicted using the miRwalk3 (http://mirwalk.umm.uni-heidelberg.de/), which stores predicted data obtained with a machine learning algorithm including experimentally verified miRNA–target interactions. The target genes were then overlapped with the DEMs, and the negative interaction pairs between DEMis and DEMs (according to their expression levels) were used to construct the DEMi–DEM network using Cytoscape software (version 3.6.1; www.cytoscape.org).
CeRNA Regulatory Network Construction
The starBase database (version 2.0; starbase.sysu.edu.cn/index.php) (Cardenas-Gonzalez et al., 2017) was used to screen the interactions between DELs and DEMis, which were then integrated with the miRNA–mRNA interactions to establish the DEL–DEMi–DEM ceRNA network using Cytoscape software (version 3.6.1; www.cytoscape.org). Human sequences of DECs and DEMis were downloaded from the circBase (www.circbase.org) (Li et al., 2020) and miRBase (version 21; www.mirbase.org) (Chen et al., 2019) databases, respectively. miRanda (cbio.mskcc.org/miRNA2003/miranda.html) (Ren et al., 2020) was used to predict the interactions between DECs and DEMis. The interaction pairs between DECs and DEMs were then integrated with the DEMi–DEM interactions to establish the DEC–DEMi–DEM ceRNA network using Cytoscape software (version 3.6.1; www.cytoscape.org). The overlapped DEMi–DEM in the aforementioned two ceRNA networks was also selected to construct the lncRNA/circRNA–miRNA–mRNA network.
ROC Curve Analysis
In order to explore the diagnostic value of DEMis in IDD, the pROC package in R language curves was used to depict the receiver operating characteristic (ROC), and the area under the curve (AUC) was calculated. The DEMis with AUC≥0.8 were considered as having the performance of distinguishing IDD patients from healthy controls. The diagnostic value of DEMis in GSE116726, GSE63492, and GSE45856 datasets was investigated in the present study.
Enrichment of Biological Function
The biological functions of DEMs in IDD were predicted by both Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function and pathway through online software Genecodis3 (http://genecodis.cnb.csic.es) as a non-redundant and modular enrichment analysis tool for functional genomics (Tabas-Madrid et al., 2012). The enriched KEGG pathway with FDR <0.05 was the significant enrichment term.
Validation of the Expression Level of DECs, DELs, and DEMs
The expression levels of DEC, DEL, and DEM candidates were explored in external datasets, including GSE124272, GSE150408, and GSE153761. Both GSE124272 (8 IDD patients and 8 healthy individuals) and GSE150408 (17 IDD patients and 17 healthy individuals) store transcriptomic profiling data of the whole blood of patients with IDD and healthy individuals. GSE153761 (3 IDD patients and 3 healthy individuals) stores transcriptomic profiling data of the cervical cartilage endplate of patients with IDD and healthy individuals.
Statistical Analysis
The statistical significance between groups was assessed by unpaired Student’s t-test. p < 0.05 was statistically significant. * indicates p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.
RESULTS
Different Expression Analysis
A total of four mRNA expression datasets including 52 healthy controls (HCs) and 31 IDD patients were used to identify the DEMs in IDD. A total of 1995 DEMs including 907 down-regulated and 1,078 up-regulated DEMs were identified in IDD vs. HC. Three miRNA expression datasets including 11 HCs and 11 IDD patients were used to identify the DEMis in IDD. Eighty-four DEMis including 10 up-regulated DEMis and 74 down-regulated DEMis were identified in IDD compared with HCs. A total of 256 DELs including 107 up-regulated and 149 down-regulated DELs were identified in IDD patients. In addition, 589 DECs including 328 up-regulated and 261 down-regulated DECs were identified in IDD patients. The hierarchical cluster heatmaps indicated that these DECs (Figure 1A), DELs (Figure 1B), DEMis (Figure 1C), and DEMs (Figure 1D) could distinguish IDD from control samples.
[image: Figure 1]FIGURE 1 | Heatmap of DECs (A), DELs (B), DEMis (C), and DEMs (D) in IDD and healthy individuals. DECs: differentially expressed circular RNAs; DEL: differentially expressed long non-coding RNAs; DEMi: differentially expressed microRNAs: DEMs: differentially expressed mRNAs; and IDD: intervertebral disc degeneration.
miRNAs–Target Genes Network
We constructed the interaction network between miRNAs and target genes in IDD based on the identified miRNA–target gene interaction pairs of reverse association using Cytoscape software. As shown Figure 2, 8,673 miRNA–target gene pairs of reverse correlation between 80 DEMis and 1,268 DEMs were identified in IDD, which included 7,906 pairs between 70 down-regulated DEMis and 885 up-regulated DEMs (Figure 2A) and 767 pairs between 10 up-regulated DEMis and 383 down-regulated DEMs (Figure 2B). In up-regulated DEMis pairs, miR-3189-3p, miR-3714, miR-1291, and miR-302c-5p had the high connectivity with DEMs, which interacted with 126, 112, 97, and 93 DEMs. In the down-regulated DEMis pairs, miR-4270, miR-3162-5p, miR-320b, miR-3138, miR-3198, miR-3679-5p, miR-3622a-5p, and miR-4257 interacted with more than 200 DEMs, respectively.
[image: Figure 2]FIGURE 2 | DEMis-targeted DEMs network in IDD. (A) Network among down-regulated DEMis and up-regulated DEMs; (B) network among up-regulated DEMis and down-regulated DEMs; green and purple node indicated down-regulated DEMis and up-regulated DEMis, respectively, and red and turquoise node indicated up-regulated DEMs and down-regulated DEMs, respectively. DEMis: differentially expressed microRNAs; DEMs: differentially expressed mRNAs; and IDD: intervertebral disc degeneration.
The underlying functions of the DEMs in the miRNA–mRNA network were also analyzed using the Genecodis database as described in Materials and Methods. The biological process GO annotation and KEGG pathway of target genes of DEMis with FDR <0.05 were considered as significant enrichment terms. As Figure 3A shows, skeletal system development and cell death biological processes including the apoptotic process and regulation of apoptotic process with FDR <0.05 were significantly enriched. The JAK–STAT signaling pathway, ECM-receptor interaction, Parkinson’s disease, and Alzheimer’s disease with FDR <0.05 were also significantly enriched (Figure 3B).
[image: Figure 3]FIGURE 3 | The enriched biological functions and pathways of the DEMs in the DEMis-targeted DEMs network in IDD. (A) The enriched biological process of targeted DEMs; (B) the enriched KEGG pathway of targeted DEMs. DEMs: differentially expressed mRNAs; IDD: intervertebral disc degeneration; and KEGG: Kyoto Encyclopedia of Genes and Genomes.
ceRNA Network
Using the starBase database, 26 DEMis were predicted to regulate 55 DELs; this was used to establish the lncRNA–miRNA–mRNA ceRNA network via integration with the miRNA–mRNA network (Figure 4). This network comprised 933 nodes (26 DEMis, 55 DELs, and 852 DEMs) and 2,801 interactions. Notably, down-regulated HOTAIR may function as a ceRNA to suppress the inhibitory effects of hsa-miR-454-3p on CRNKL1 and PDGFRB and hsa-miR-642a-5p on MMP13, MAP4K4, and PIK3R1, thus leading to their up-regulated expression. Similarly, up-regulated H19 may regulate the targeted effects of hsa-miR-454-3p on CRNKL1 and PDGFRB, as well as hsa-miR-2355-5p on PBX1 and TFDP2. Functional analysis of genes in the lncRNA-related ceRNA network revealed that they were significantly enriched in leukocyte transendothelial migration, focal adhesion, and ECM-receptor interaction.
[image: Figure 4]FIGURE 4 | lncRNA–miRNA–mRNA ceRNA network among DELs, DEMis, and DEMs in IDD. DEL: differentially expressed long non-coding RNAs; DEMi: differentially expressed microRNAs; DEMs: differentially expressed mRNAs; IDD: intervertebral disc degeneration; and ceRNA: competitive endogenous RNA.
Using the miRanda database, 5 DECs were predicted to regulate 17 DEMis; this information was used to establish the circRNA–lncRNA–mRNA ceRNA network via integration with the miRNA–mRNA network (Figure 5). Notably, up-regulated hsa_circRNA_001838 may function as a ceRNA to suppress the inhibitory effects of hsa-miR-4306 on FAM46A, VASH1, and CMTM6, thus resulting in their up-regulated expression. Functional analysis of genes in the lncRNA-related ceRNA network revealed that they were significantly enriched in leukocyte transendothelial migration, focal adhesion, and ECM–receptor interaction.
[image: Figure 5]FIGURE 5 | circRNA–lncRNA–mRNA ceRNA network among DECs, DEMLs, and DEMs in IDD. DEC: differentially expressed circular RNAs; DELs: differentially expressed long non-coding RNAs; DEMs: differentially expressed mRNAs; IDD: intervertebral disc degeneration; and ceRNA: competitive endogenous RNA.
ROC Analysis of DEMis
In our ROC analysis, the AUC of 2 out of 84 up-regulated DEMis was greater than 0.8, as shown in Figures 6A,B. The AUC of miR-1291 and miR-518b was 0.835 and 0.802, respectively. As shown in Figure 7, the AUC of 8 out of 74 down-regulated DEMis was greater than 0.8. The AUC of miR-1273e was greater than 0.9; the AUC of miR-623, miR-890, and miR-584-5p was 0.818; the AUC of miR-155-5p, miR-892b, miR-512-3p was 0.810; and the AUC of miR-454-3p was 0.802.
[image: Figure 6]FIGURE 6 | ROC analysis of up-regulated DEMis in IDD. (A) ROC analysis of miR-1291; (B) ROC analysis of miR-518b. DEMis: differentially expressed microRNAs; IDD: intervertebral disc degeneration; and ROC: receiver operating characteristic.
[image: Figure 7]FIGURE 7 | ROC analysis of down-regulated DEMis in IDD. (A) ROC analysis of miR-1273e, (B) ROC analysis of miR-623, (C) ROC analysis of miR-890, (D) ROC analysis of miR-584-5p, (E) ROC analysis of miR-155-5p, (F) ROC analysis of miR-892b, (G) ROC analysis of miR-512-3p, and (H) ROC analysis of miR-454-3p. DEMis: differentially expressed microRNAs; IDD: intervertebral disc degeneration; and ROC: receiver operating characteristic.
Exploration of the Expression Level of DEMs and DECs
For DEMs, CRNKL1 was up-regulated in IDD patients in these three datasets with no significant difference (Figures 8A–C); PDGFRB was up-regulated in IDD patients in GSE150408 (Figure 8D) and GSE153761 (Figure 8E) datasets with no significant difference; IL1R1 had a trend of significant up-regulation in IDD patients in GSE124272 (Figure 8F); and CXCL12 (Figures 8H,I) was up-regulated in both GSE124272 and GSE153761 datasets with no significant difference. For DECs, only GSE150408 stores circRNA data of IDD patients. We found that hsa_circ_0001175 was up-regulated in IDD with no significant difference; in addition, hsa_circ_0000200, hsa_circ_0000926, and hsa_circ_0001838 were down-regulated in IDD with no significant difference (Figures 8J–M).
[image: Figure 8]FIGURE 8 | Validation of the expression of candidate DECs, DEMis, and DEMs in external GEO microarray datasets related to IDD. The difference of CRNKL1 expression between IDD and HC in GSE124272 (A), GSE150408 (B), and GSE153761(C); the difference of PDGFRB expression between IDD and HC in GSE150408 (D) and GSE153761(E); the difference of IL1R1 expression between IDD and HC in GSE124272 (F) and GSE153761 (G); the difference of CXCL12 expression between IDD and HC in GSE124272 (H) and GSE153761 (I); the difference of hsa_circ_0001175 expression between IDD and HC in GSE153761 (J); the difference of hsa_circ_0000200 expression between IDD and HC in GSE153761 (K); the difference of hsa_circ_0001838 expression between IDD and HC in GSE153761 (L); the difference of hsa_circ_0000926 expression between IDD and HC in GSE153761 (M). DEC: differentially expressed circular RNAs; DEMis: differentially expressed microRNAs: DEMs: differentially expressed mRNAs; IDD: intervertebral disc degeneration; and GEO: Gene Expression Omnibus.
DISCUSSION
In the present work, differentially expressed genes in IDD were identified and their potential roles were explored; in addition, the expression level of differentially expressed genes was validated in external IDD transcriptomic profiling datasets.
We found that CRNKL1, IL1R1, and CXCL12 were up-regulated in the discovery (GSE23130, GSE15227, GSE17077, and GSE70362) and external datasets. CRNKL1 encodes crooked neck pre-mRNA splicing factor 1, which has been reported to be a hub gene in the protein–protein interaction network identified in osteoporosis (Qian et al., 2019). It also has been identified as a potential prognostic biomarker in esophageal adenocarcinoma (Li et al., 2017). However, its expression status in IDD has not been documented. CXCL12 encodes C-X-C motif chemokine ligand 12, a stromal cell-derived alpha chemokine member of the intercrine family. Previously published articles have demonstrated that CXCL12 is implicated in IDD (Er et al., 2020; Zhong et al., 2021). Serum CXCL12 level is positively related to lumbar IDD and its clinical severity (Er et al., 2020). The miR-623/CXCL12 axis inhibits LPS-induced nucleus pulposus cell apoptosis and senescence (Zhong et al., 2021).
In this study, we found that lncRNA H19 was up-regulated in IDD. The ceRNA network suggested that up-regulated H19 might regulate the targeted effects of hsa-miR-454-3p on CRNKL1 and PDGFRB and hsa-miR-2355-5p on PBX1 and TFDP2. It is reported that H19 aggravates IDD by promoting the autophagy and apoptosis of nucleus pulposus cells through the miR-139/CXCR4/NF-kappaB axis (Sun et al., 2021). H19 could target miR-22 to modulate H2O2-induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling (Wang et al., 2018). In this work, both miR-139 and miR-22 were not dysregulated in IDD. The discordant findings might be attributed to different IDD cohorts between our work and previous studies. We also found that lncRNA HOTAIR was down-regulated in IDD. The ceRNA network suggested that HOTAIR might function as a ceRNA to suppress the inhibitory effects of hsa-miR-642a-5p on MMP13, MAP4K4, and PIK3R1, thus leading to their up-regulated expression. It is reported that HOTAIR serves as a miRNA-34a-5p sponge to reduce nucleus pulposus cell apoptosis via a NOTCH1-mediated mechanism (Shao et al., 2019). In addition, HOTAIR could modulate IDD changes via the Wnt/β-catenin pathway (Zhan et al., 2019). miR-34a-5p was not dysregulated in IDD. The discordant findings might be attributed to the different IDD cohorts between our work and previous studies. Consistent with previous studies, we found that H19 and HOTAIR were dysregulated in IDD. The ceRNA mechanisms related to H19 and HOTAIR identified in this study should be validated through in vitro and in vivo studies.
It is reported that miR-623, miR-663b, miR-193a-5p, miR-376c-3p, miR-664a-5p, miR-4297, and miR-155 are significantly down-regulated in IDD and miR-2355-5p was significantly up-regulated in IDD (Wang et al., 2011; Li et al., 2015; Ji et al., 2016; Wang et al., 2016), which are in line with our analyses. It is indicated that our bioinformatics analyses were acceptable. In the present work, 10 DEMs having diagnostic value in distinguishing IDD patients from normal individuals were identified. Of those, four DEMis miR-1273e (AUC = 0.909), miR-623 (AUC = 0.818), miR-890 (AUC = 0.818), and miR-584-5p (AUC = 0.818) had high performance in distinguishing IDD from HC. Two DEMis miR-1273e and miR-623 were top 10 down-regulated DEMis in IDD. miR-890 and miR-584-5p were the top 12 and top 17 down-regulated DEMis, respectively. A series of articles have reported that miR-1273e and miR-623 play key roles in clinical disease. miR-1273e is significantly down-regulated and associated with endocapillary glomerular inflammation (Cardenas-Gonzalez et al., 2017). Inhibited miR-1273e promotes cell proliferation, invasion, and migration and inhibits cell apoptosis in gastric cancer (Dou et al., 2019). miR-623 suppresses tumor progression in hepatocellular carcinoma, gastric cancer, and pancreatic cancer (Jiang et al., 2018; Chen et al., 2019; Li et al., 2020; Ren et al., 2020). miR-890 could inhibit proliferation and invasion and induce apoptosis in triple-negative breast cancer cells by targeting CD147. miR-584-5p has been reported to be implicated in hepatocellular carcinoma, non-small-cell lung cancer, osteosarcoma, and gastric cancer. However, the biological roles of miR-1273e, miR-623, miR-890, and miR-584-5p in IDD have not been documented in the literature.
miR-518b and miR-1291 were the top 10 up-regulated DEMis in IDD, and the AUC of miR-518b and miR-1291 was 0.802 and 0.835, respectively, in the ROC analyses. miR-1291 had high connectivity with target DEMs, which targeted 96 DEMs including RASSF1 as a top 20 down-regulated DEM. Dysregulated miR-518b is involved in the progression of esophageal squamous cell carcinoma and glioblastoma (Zhang et al., 2012; Xu et al., 2017). miR-1291 has been implicated in the development of various cancers including pancreatic cancer, renal cell carcinoma, and prostate cancer (Yamasaki et al., 2013; Cai et al., 2019; Tu et al., 2019). Currently, the roles of miR-518b, miR-1291, and RASSF1 in IDD have not been investigated.
The JAK–STAT signaling pathway and cell death biological process were significant enrichment in IDD. IL-12 could aggravate IDD by stimulating TNF-alpha through the JAK–STAT signaling pathway (Chen et al., 2017). Cellular loss from cell death has been reported to contribute to the degradation of the ECM and plays an important role in the process of IDD degeneration (Zhao et al., 2006; Ding et al., 2013). In our work, the regulation of the apoptotic process and apoptotic process were significant enrichment terms. The overexpression of miRNA-143 promotes the progression of nucleus pulposus apoptosis by directly targeting BCL2 in human IDD (Zhao et al., 2017).
There are several limitations in the present work. First, the diagnostic value of 10 DEMis which had potentially diagnostic value in distinguishing IDD from HC in our analysis was not explored in a large clinical cohort. Second, the expression levels of DELs in IDD were not validated due to the fact that external lncRNA expression data generated from the IDD cohort with more than 3 IDD cases were unavailable in the GEO database at the time of article submission. Validation of the expression levels of DELs in IDD should be performed in further work. Third, the biological functions of candidate differentially expressed genes should be investigated in in vitro and in vivo studies.
CONCLUSION
In summary, our study might provide an additional framework for understanding the pathogenesis of IDD and pave the way for the diagnostic and therapeutic prospective of IDD.
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Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease in postmenopausal women. It has been known that long non-coding RNAs (lncRNAs) play a regulatory role in the progression of osteoporosis. However, the mechanism underlying the effects of exosome-derived lncRNA on regulating the occurrence and development of PMOP remains unclear. Exosomes in the serum of patients PMOP were collected and identified. RNA sequencing was performed to obtain the expression profile of exosome-derived lncRNAs in the serum of PMOP patients. RNA sequencing identified 26 differentially expressed lncRNAs from the exosomes between healthy people and PMOP patients. Among them, the expression of TCONS_00072128 was dramatically down-regulated. A co-location method was employed and searched its potential target gene caspase 8. TCONS_00072128 knockdown notably decreased the expression of caspase 8, while the osteogenic differentiation of BMSCs was also reduced. Reversely, TCONS_00072128 overexpression enhanced caspase 8 expression and osteogenic differentiation of BMSCs. Moreover, the continuous expression of caspase 8 regulated by TCONS_00072128 significantly activated inflammation pathways including NLRP3 signaling and NF-κB signaling. Simultaneously, RIPK1 which has emerged as a promising therapeutic target for the treatment of a wide range of human neurodegenerative, autoimmune, and inflammatory diseases, was also phosphorylated. The results of the present study suggested that exosome-derived lncRNA TCONS_00072128 could promote the progression of PMOP by regulating caspase 8. In addition, caspase 8 expression in BMSCs was possible to be a key regulator that balanced cell differentiation and inflammation activation.
Keywords: lncRNA, exosome, caspase 8, osteogenic differentiation, PMOP
INTRODUCTION
Postmenopausal osteoporosis (PMOP) is well known as one of systemic metabolic bone diseases, a decreased estrogen levels in vivo is one of the main reasons (Khosla et al., 2012; Khosla and Monroe, 2018). The morbidity among middle-aged older women is up to 50% (Gennari et al., 2016). The pathogenesis of PMOP is based on animbalance between formation of osteoblast and resorption of osteoclasts. This may lead to decreased bone mass, changed the bone tissue structure and increased bone brittleness and fracture (Black and Rosen, 2016). Existing studies have shown that osteoporosis and bone density are heritable, and studies have found that more than 60 susceptibility loci are associated with osteoporosis and bone density. Among them, polymorphisms of several genes include tumor necrosis factor (TNF)-α, interleukin (IL)-10, osteoprotegerin, estrogen receptor 1 gene, estrogen receptor α, cannabinoid receptor 2, Vitamin D receptor gene and low-density lipoprotein receptor-related protein 5 are all related to PMOP (Black and Rosen, 2016; Khosla and Monroe, 2018).
The main clinical treatment of PMOP recently to inhibit bone resorption includes hormone therapy (Gambacciani and Levancini, 2014), calcium supplements (Christenson et al., 2012) and bone marrow mesenchymal stem cells (BMSCs) treatment (Payal et al., 2017). BMSCs, the precursors of osteoblasts, play an important role in tissue regeneration due to their functions of differentiation and self-renewal (Confalonieri et al., 2018). Therefore, it is important in osteoporosis treatment to induce the directional differentiation of BMSCs to bone tissue (Li et al., 2016; Xiao et al., 2016; Liu et al., 2017; Kuang et al., 2019; Nehlin et al., 2019). For this purpose, more studies focus on promoting the osteogenic differentiation capacity of BMSCs by multiple treatment, such as extracellular vesicles and exosomes (Xiao et al., 2017; Liu et al., 2019; Yang et al., 2019; Teng et al., 2020; Li et al., 2021; Tao et al., 2021; Xu et al., 2021). Exosomes coordinate signaling cascades during bone remodeling through non-coding RNA, like miRNA (Xu et al., 2021) or long non-coding RNA (Tao et al., 2021) to regulate RNA transcription. Study have shown that cardiac progenitor cell-derived exosomal miR–21 can decrease oxidative stress to protect myocardium via targeting Programmed Cell Death 4 (PDCD4) (Xiao et al., 2016). It was reported that exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells can transfer miR-21–5p and greatly reduces osteocyte apoptosis for the treatment of glucocorticoid-induced osteonecrosis of femoral heads in rats by activating the AKT serine/threonine kinase (AKT) signaling pathway (Kuang et al., 2019). Liu et al. reported that stem cell-derived exosomes can promote cartilage regeneration (Liu et al., 2017). Li et al. concluded that exosomes derived from human BMSCs can transfer miR-186 to promote osteogenesis in ovariectomy (OVX) rats by the Hippo signaling pathway (Li et al., 2021). However, little is known about the mechanism of PMO, and effective treatment of PMO is limited. It is still to be studied that whether exosome-derived lncRNAs works in osteogenesis. Based on these observations, exploring a new exosome-derived lncRNA associated with PMOP is potential and beneficial to devote a probably therapeutic strategy for PMOP.
In this study, we elucidate the regulatory role and molecular mechanism of TCONS_00072128 /caspase 8 axis in osteogenic differentiation of BMSCs. Our data indicated that TCONS_00072128 has a great effect on osteogenic differentiation and inflammation of BMSCs by regulating caspase 8. The results provided new insights into the regulation of osteogenic differentiation in the treatment of PMOP.
MATERIALS AND METHODS
Sample Collection
Blood samples from PMOP patients and healthy people were collected from the Seventh Medical Center of Chinese PLA General Hospital, Beijing (Table 1). All samples obtained had been informed consent from the patients.
TABLE 1 | Information of clinical samples.
[image: Table 1]For candidates’ enrollment, all candidates are postmenopausal women. They have no Smoke, wine, or bone metabolism drug of histories, with no metabolic syndrome, Skeletal disease, the blood system disease, and cancer. Healthy group had never been diagnosed with osteoporosis or its complications, and the Z value of hip bone density test (BMD) was greater than 1. PMOP patients have similar height and weight ratio, and the Z value of hip bone density test (BMD) was less than −1.
Cell Culture
MC3T3-E1 subclone 24 cells (CL-0251, China) and dedicated complete medium (CM-0251, China) were purchased from Procell Life Science and Technology Co., Ltd. MC3T3-E1 cells were used for investigation of osteogenic differentiation as a precursor cell model. Cells were cultured in incubator with 5% CO2 at 37°C. The medium was changed every 2 days. BMSCs (CP-H166, China) and dedicated complete medium (CM-H116, China) were purchased from Procell Life Science and Technology Co., Ltd. BMSCs were cultured in incubator with 5% CO2 at 37°C. The medium was changed every 3 days. When BMSCs were passaged for 3–5 times, cells were treated with lentivirus infection or 5 μM caspase 8 inhibitor Z-IETD-FMK (HY-101297, MCE) for 1 day or 7 days before subsequent experiments. This study was approved by the Seventh Medical Center of Chinese PLA General Hospital.
Isolation and Characterization of Exosome
The exosome from serum were isolated with exoEasy Maxi Kit (Qiagen, Germany) following manufacturer’s instructions. The size and quantity of isolated exosome were determined with a Nanosight NS300 (NanoSight Ltd., UK), and the morphology of 2% phosphotungstic acid-stained exosome was observed with a transmission electron microscope (H-7650 Hitachi microscope; Hitachi, Japan).
Exosome RNA Extraction, Library Preparation, and Sequencing
Exosomal RNA was isolated with Total Exosome RNA Isolation reagent (Invitrogen, USA) as manufactures instructed. The RNA concentration was assessed using a NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). The RNA integrity was analyzed using an Agilent 2,100 Bioanalyze (Agilent Technologies, Foster City, CA, USA). The isolated exosome RNA was incubated with Ribo-Zero rRNA remove beads (Illumina, Inc., San Diego, CA, USA.) to deplete the ribosomal RNA (rRNA) and fragmented into small pieces. The fragmented RNA was ligated to 5’ adapter and then, reverse transcribed with tagged random hexamer, and the cDNAs was ligated to adapter with Unique Molecular Identifiers (UMI). Then, several cycles of PCR amplification were performed to build a library. After the quality inspection of the library, the generated libraries were sequenced on an Illumina HiSeq3000 (Illumina Inc, CA). Subsequently, data analyses were performed in silico.
Sequencing Data Analysis
The raw read sequences were filtered to remove adapter sequences and low‐quality reads by using Trimmomatic software and de-duplicates with UMI. The clean reads were mapped with human reference genome assembly (GRCh38) to define mRNA and lncRNA profiles by HISAT2 aligner. Clean reads were also annotated to GENCODE to calculate reads per kilobase per million reads. Differential expression of lncRNAs was identified by DE Seq package, based on cut-off criteria of log2(FC) >1 or log2(FC) <−1. To annotate gene functions, all differential expressed lncRNAs were aligned against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) database with GO seq R package and KOBAS (v3.0) software.
Recombinant Lentivirus Infection
As for TCONS_00072128 knockdown, sequence targeting TCONS_00072128 was cloned into Lenti-U6-RFP-Puro vector (#JLSW13252, Gene Line Bioscience). Sequences are listed as below:
Sh-TCONS_00072128 For:
5′-CCA​GAA​CAT​CCT​TCA​CAA​ATT​CAA​GAG​ATT​TGT​GAA​GGA​TGT​TCT​GGT​TTT​TT-3′; LncRNA TCONS_00072128 sequence was cloned into pLent-EF1a-FH-CMV-GP vector (#JLSW13454, Gene Line Bioscience). HEK293T cells were transfected by using second-generation packaging vectors to generate lentiviruses. Then the target cells were infected and selected by puromycin selection.
Quantitative Real-Time PCR
Target cells were treated with Trizol (#15596026, Invitrogen) according to the reagent instructions to extract the total RNA. The purity and concentration of total RNA were detected by UV spectrophotometer. Total RNA was reverse transcribed into cDNA followed by the requirements of the reverse transcription kit (#K1621, Thermo Scientific). PCR amplification was used by SYBR Green qPCR Master Mix (Thermo Scientific). Subsequently, the expressions of target genes were analyzed after amplification and actin expression as an endogenous reference gene was used. The primers of lncRNA TCONS_00072128 (F: 5- ACA​CCG​CTG​AGA​AGG​ATG​TG -3; R: 5- ACT​CGA​CCA​CGT​AGA​CTC​CA -3), caspase8 (F: 5- ACG​ACC​ATG​AGA​TTG​GCA​GT -3; R: 5- CAG​TCA​CTT​TCA​CCG​GGA​GG-3), RIPK1 (F: 5- GCT​GGC​TGA​GTA​CAC​TGG​AG -3; R: 5- CAG​GGG​TGT​TTA​TCC​CAT​CTG​A-3), NLRP3 (F: 5- ATC​AAC​AGG​CGA​GAC​CTC​TG -3; R: 5- GTC​CTC​CTG​GCA​TAC​CAT​AGA -3), IL-1β(F: 5- GAA​ATG​CCA​CCT​TTT​GAC​AGT​G -3; R: 5- TGG​ATG​CTC​TCA​TCA​GGA​CAG -3), NF-κB (F: 5- CGT​ACA​CGT​CTT​GCC​CTC​AT -3; R: 5- ATA​CCC​CAG​ATC​CTC​CAG​CA -3), NF-κB P65 (F: 5- ATC​ATC​GAA​CAG​CCG​AAG​CA -3; R: 5- TGA​TGG​TGG​GGT​GTG​TCT​TG -3), and Bactin (F: 5- ACC​CTA​AGG​CCA​ACC​GTG​AAA -3; R: 5- ATG​GCG​TGA​GGG​AGA​GCA​TA -3) were designed and synthesized from the Sangon Biotech.
Western Blot
Western blot was performed to detect exosome-specific biomarkers CD63, CD81 and calnexin. A reducing Laemmli buffer was used to dissolve the target exosomes (5 μg) and boiled for 5 min at 95°C.
Protein samples were resolved in a 10% sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE). After that, proteins were transferred to a PVDF membrane. The membranes contained proteins were blocked in 5% skimmed milk in PBS containing 0.5% Tween-20 at room temperature for 1 h. When blocking step finished, membranes were probed with the anti-CD63 (#556019, BD Pharmingen), anti-CD81 (#555675, BD Pharmingen) and Calnexin (ab75801, Abcam) at 4°C overnight. Then, membranes were washed with T-TBS 3 times, each time for 5 min. The washed membranes were incubated with the appropriate horseradish peroxidase-labeled secondary antibody (#ab6721, Abcam) for 45 min. The enhanced chemiluminescence (ECL) reagent (#32109, Thermo Scientific) was added on membranes for 1 min to detect the positive immunoreactive bands. Other primary antibodies of Caspase8 (#AF6442,Affinity), RIP (#ab20298, Abcam), Phospho-RIPK1(Ser161) (#66854-1-Ig,Proteintech), NLRP3(#ab263899, Abcam), IL-1 Beta (#66737-1-Ig, Proteintech), NF-kB p65 (#ab32536, Abcam), NF-kB p65 (phospho S536) (#ab76302, Abcam), COL1A1(#GTX112731, GeneTex), Osteopontin (#GTX31886, GeneTex), Osteocaltin (#GTX55255, GeneTex), ALP (#ab108337, Abcam), RUNX2 (#12556S, CST), actin (#ab179467, Abcam) and GAPDH (#ab181602, Abcam) were used to detected protein expressions in BMSCs.
Alizarin Red Staining & ALP Staining
Alizarin red staining (ARS) was purchased from Sigma (#A5533, Germany). It was performed after exosome treatment for MC3T3-E1 cells, or lentivirus infection infected BMSCs at 1 and 7  days, individually. Cells were fixed with 70% ethanol at room temperature for 60 min. Removed the ethanol and the cells were washed with 1 × PBS (pH7.2, without calcium and magnesium) for 2 times before use. Cells were covered with ARS fluid, avoid light incubation at 37°C for 60 min. cleaned the stained slides slowly with double steaming water for 3–5 min. The images were visualized under a light microscope (Leica DMIRB, Germany).
Alkaline Phosphatase staining (ALP) kit was purchased from Abcam (#ab242287, Germany). The staining process was carried out according to the kit instructions. The MC3T3-E1 cells were treated with exosomes for 14 days. Gently aspirated the medium from the MC3T3-E1 cells and wash with 1 ml of 1× PBST for 2–3 times. Removed the wash solution and added Fixing Solution into the plate, about 0.4 ml per well for a 24-wellplate. Incubated them at room temperature for 2 min. Then removed the Fixing Solution and wash the fixed cells with 1 ml of 1 × PBST twice. Aspirated the washed PBST and added 0.4 ml per well ALP Staining Solution for incubation at room temperature for 30 min. Removed the solution and washed the cells twice. Observed the purple stained cell colonies by using alight microscope.
Construction of Weighted Correlation Network Analysis Analysis
The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings.
Statistical Analysis
Statistical analysis was carried out using the SPSS13.0 software (IBM Corp, NY). The significant differences in expression levels between PMOP patients and healthy people groups were tested using a two-tailed Student’s t test. The significance of the GO terms or enrichment of pathway was evaluated using the Fisher’s exact test. p values less than 0.05 was considered statistically significant. Unless indicated, results are from at least three-independent experiments.
RESULTS
Exosomes Identification
To identify the characteristics of exosomes from PMOP patients, we isolated exosomes from patients’ serum. A typical cup-shaped morphology of exosomes was detected by transmission electron microscopy (TEM) (Figure 1A). Nanoparticle tracking analysis (NTA) showed an average exosome size of 74 ± 18 nm (Figure 1B). CD63 and CD81, the protein markers of exosomes, were detected; in contrast, calnexin was barely detected, which is an integral protein not expressed in exosomes (Figure 1C). These data indicate that the exosomes were successfully isolated with high purity and were suitable for subsequent experiments.
[image: Figure 1]FIGURE 1 | Identification of exosomes from healthy (NC) and PMOP patients (PP). (A) Morphology of exosomes was scanned by Transmission electron microscopy (TEM), scale bar = 100 nm. (B) The diameter distribution of exosomes. (C) Protein expressions of exosomal markersCD63, CD81, and Calnexin. All results are presented with three replicates.
Roles of Exosomes for Osteogenesis Differentiation
Next, we evaluated the osteogenesis differentiation effect on MC3T3-E1 cells by treating exosomes. MC3T3-E1 cells were cultured with osteogenesis induction medium for 14 days. Compared with the treatment of exosomes from healthy people (NEXO group) and PMOP patients (FEXO group), the staining results showed that exosomes from PMOP patients affected ALP expression during MC3T3-E1 cell osteogenesis (Figure 2A). Correspondingly, the expressions of Runx2, OPN, OCN and ALP on both mRNA and protein levels in FEXO group decreased (Figures 2B,C), indicating that exosomes may affect cell osteogenesis differentiation.
[image: Figure 2]FIGURE 2 | Verification of the effect of exosomes on osteogenic differentiation. (A) ALP staining for MC3T3-E1 cells treated with NEXO and FEXO, individually. (B,C) qPCR and WB analysis of osteogenesis-related gene expressions in MC3T3-E1 cells. All results are presented with three replicates. *p ≤ 0.05, ***p ≤ 0.001.
High Throughput Analysis of LncRNAs From Exosomes
There are various lncRNAs in the exosome. When cells take up exosomes, lncRNAs were transferred into cells and subsequently affect the cell function. To distinguish the differences of exosomes from different groups, we performed RNA-seq to explore and identify candidate exosome-derived lncRNAs to evaluate the association of these exosome-derived lncRNAs with PMOP. Total exosomes RNAs from 2 healthy (NC) and 2 PMOP patients (PP) were subjected to RNA-seq. A total of 26 differentially expressed lncRNAs (DE-lncRNAs) were identified, including 20 downregulated lncRNAs and 6 upregulated lncRNAs (Figures 3A–C). Then, the target genes of the DE-lncRNAs were investigated. firstly, the WGCNA (weighted correlation network analysis) was performed to explore the relationship between the DE-lncRNAs and mRNAs. There were 13,572 relationship pairs, including 10,170 pairs of positive correlation and 3,402 pairs of negative correlation (Supplementary Material S1).
[image: Figure 3]FIGURE 3 | Analysis of differentially expressed lncRNAs in exosomes from healthy (NC) and PMOP patients (PP). (A) MA plot of differential expression lncRNAs. (B) numbers of differential expression lncRNAs. (C) Clustering of differentially expressed genes. Hierarchical clustering based on FPKMs, where log10 (FPKM+1) is used for clustering. (D) cis-regulatory target genes of DE lncRNAs were shown. (E) Three pairs of potential lncRNAs and mRNAs interactions were both identified in the two methods. (F) RNA level of TCONS_00072128 in serum exosomes derived by healthy people and PMOP patients.
Then, the co-location method was employed to search the potential target genes of the DE-lncRNAs. And totally 87 within 100 kb in either direction in the chromosome of DE-lncRNAs were identified as cis-regulatory target genes (Figure 3D). Among the predicted lncRNAs-targets interactions, three pairs were both identified in co-location method and WGCNA (Figure 3E). among them, we focused on a novel defined lncRNA TCONS_00072128and its target gene caspase 8. To verify the RNA level of TCONS_00072128 in exosomes, exosomes derived by patients’ serum were collected to detect RNA level of TCONS_00072128 (Figure 3F). The result was consistent with the prediction of RNA-seq.
Silencing of TCONS_00072128decreasedcaspase 8 Expression and Osteogenic Differentiation of BMSCs
Previously studies had revealed that caspase 8 played an important role in osteogenesis differentiation (Meng et al., 2018; Kratochvílová et al., 2020). We then focus on whether TCONS_00072128 affects osteogenesis differentiation. To identify whether TCONS_00072128affects caspase 8, BMSCs were infected with lentivirus sh-TCONS_00072128 and OE-TCONS_00072128. After infections, Cells were induced to differentiate into osteoblasts for 7 days. The results showed that both caspase 8 mRNA expressions and protein levels were significantly suppressed in sh-TCONS_00072128 group (Figures 4A,B). In contrast, OE-TCONS_00072128 group upregulated caspase 8 expression, these data identified the positive correlation between TCONS_00072128 and caspase 8 we predicted by RNA-seq before.
[image: Figure 4]FIGURE 4 | Role of TCONS_00072128-mediated caspase-8 activation in osteogenic differentiation of BMSCs. (A–D) Western blot analysis with caspase 8and ALP extracted from BMSCs treated with lentivirus infection. OE, overexpressed TCONS_00072128. Sh, depressed TCONS_00072128. (E) ARS staining for BMSCs treated with lentivirus infection at day 1 and day 7. All results are presented with three replicates. *p ≤ 0.05, ***p ≤ 0.001.
To test whether TCONS_00072128 affect osteogenic differentiation by modulating caspase 8, ALP expression was detected. As shown in Figures 4C,D, OE-TCONS_00072128 group showed higher expression of ALP. This result demonstrated that TCONS_00072128 overexpression positively regulated caspase 8and promoted ALP expression so that heighten the capacity of osteogenic differentiation of BMSCs.
Recent reports referred that caspases-8 participated in osteogenic differentiation (Kratochvílová et al., 2020) and lead to β-catenin proteolysis in vitro (Van de Craen et al., 1999). then, we tested whether TCONS_00072128regulated caspase 8 activation affects osteogenesis of BMSCs. The variation of Alizarin red S staining indicated the effect of TCONS_00072128 inosteogenesis (Figure 4E). BMSCs were cultured by using osteogenic differentiation medium for 7 days. Staining for mineral deposition (ARS) confirmed that OE-TCONS_00072128 group promoted BMSCs differentiation over the control at day 7. Reversely, sh-TCONS_00072128 group limited the mineral deposition of BMSCs. These data demonstrated that osteogenic differentiation of BMSCs was occurred in 7 days after induction, these variations were regulated by TCONS_00072128 mediated caspase 8 expression.
TCONS_00072128-Mediated Caspase 8 Expression Regulates Osteogenic Differentiation and Occurrence of Inflammation
NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) pathway has been known to induce osteogenic differentiation (Wei et al., 2015; Wang et al., 2017). Caspase 8 is one of the impact factors for NLRP3 inflammation (Xu et al., 2020). Different from NLRP3 pathway, NF-κB ligand RANKL contributes to osteoclast formation (Xiong et al., 2018). Therefore, we further explored whether osteogenic differentiation was related by NLRP3 and NF-kB pathways throughTCONS_00072128 mediated caspase 8 expression.
As shown in Figures 5A,B, sh-TCONS_00072128group inhibited caspase 8 expression. Meanwhile, this suppressed expression of caspase 8 decreased NLRP3 and IL-1β expression, as well as RIPK1 and NF-κB p65 phosphorylation at both day 1 and day 7. The former showed consistent results with previous studies, the latter implied the regulatory role of caspase 8 in inflammation development during osteogenic differentiation through NF-κB signaling. During the period of osteogenic differentiation, sh-TCONS_00072128 group, which simulated osteoporosis, inhibited the inflammation factors such as NLRP3and NF-κB, indicating that the inflammation inhibition may have a positive effect; However, the decreased expression of Caspase8 inhibited cell differentiation, even though cell growth was not significantly affected, the differentiation capacity may become lower. On the other hand, although the increased expression of Caspase8 caused by overexpression of TCONS_00072128 improved differentiation capacity, the expression of NLRP3, but not NF-κB P65 phosphorylation, increased significantly during differentiation, especially on day 7.Even more, RIPK1, a key protein for cell apoptosis and necroptosis, its phosphorylation was activated, suggesting that overregulation of caspase8 would activate NLRP3/IL-1β pathways, possibly leading to intensified cell death.
[image: Figure 5]FIGURE 5 | caspase 8 expression regulates osteogenic differentiation and occurrence of inflammation via multiple pathways. (A–B) Western blot analysis with caspase 8, RIPK1, p-RIPK1, NLRP3, IL-1β, NF-kB P65 and p-NF-kB P65 extracted from BMSCs treated with lentivirus infection and were induced by osteogenic medium for 1 and 7 days individually. (C) ARS staining and (D) Western blot analysis for caspase 8 associated proteins extracted from BMSCs treated with lentivirus infection and caspase 8 inhibitor Z-IETD-FMK for 7 days. All results are presented with three replicates. *p ≤ 0.05, ***p ≤ 0.001.
To further clarify the effect of caspase 8 during BMSCs differentiation, we used caspase 8 inhibitor Z-IETD-FMK. Cells were treated with Z-IETD-FMK for 7 days, the staining results indicated that the capacity of BMSCs differentiation was partially inhibited, even the cells had become many more (Figure 5C). Furthermore, the suppressed expression of caspase 8 also decreased NLRP3, IL-1β expression and NF-κB p65 phosphorylation (Figure 5D), which implied thatcaspase8 was possible to balance cell differentiation and activate inflammation induced apoptosis.
DISCUSSION
Osteoporosis is still a significant medical and socioeconomic challenge around the world, with the characteristics of the systemic impairment of bone mass, and microarchitecture, ultimately enhancing the propensity of fragility fractures (Christenson et al., 2012; Payal et al., 2017; Khosla and Monroe, 2018). Osteoblasts arise from several types of skeletal stem cells, including skeletal, mesenchymal stem cells (MSCs), with osteogenic differentiation potential (Xiao et al., 2016; Nehlin et al., 2019). BMSCs are crucial components in process of new bone formation and are relatively easy to obtain and have a low risk of tumor after implantation. It has been shown that exosomes participate in the regulation of bone homeostasis, which were secreted from BMSCs, osteoclasts, osteoblasts, and endothelial cells. Previous studies have found that osteoclast-secreted exosomes can inhibit osteoblast activity and suppress osteoblastic bone formation (Li et al., 2016; Sun et al., 2016). Exosomes derived from osteoblasts or BMSCs can promote osteoblastogenesis (Cui et al., 2016; Lu et al., 2016). In addition, endothelial cell secreted exosomes can inhibit osteoclastogenesis in vitro and reduce bone resorption in vivo (Song et al., 2019). According to the functional molecules contained in those exosomes, the molecular mechanism of them was further explored that affecting osteogenic differentiation, such as non-coding RNA (Lu et al., 2016; Fan et al., 2021; Qiu et al., 2021). lncRNAs can participate in epigenetic regulation, transcriptional and posttranscriptional regulation by different mechanisms. lncRNA MEG3 inhibits osteogenic differentiation through down-regulating miR-133a–3p and its expression is increased in bone marrow stem cell of ovariectomized mice and osteoporosis patients (Lu et al., 2016). LncRNA DANCR up-regulated in blood mononuclear cells promoted bone resorption through releasing TNF-α and IL-6 and finally resulted in osteoporosis. LncRNA NTF3-5 promotes osteogenic differentiation and bone regeneration through down-regulating miR-93–3p (Cui et al., 2016; Song et al., 2019). In our study, we focused on a new lncRNA TCONS_00072128 derived from exosomes to verify its regulation effect on osteogenesis. Moreover, exosomes contained TCONS_00072128 are ubiquitous in PMOP patients’ blood, which can be a potential biomarker or direct target to osteogenic differentiation.
The activated NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important player in aging-related chronic diseases like osteoporosis, especially because of the causal caspase-1 activation and its correlation to adipose accumulation in bone tissues. NLRP3 inflammasome was reported as the most clinically implicated inflammasome NLRP3 inflammasome is an intracellular protein complex involved in initiation of innate immune response (Wei et al., 2015; Wang et al., 2017). NLRP3 inflammasome contains NLRP3, apoptotic speck protein (ASC) and pro-caspase-1. NLRP3 plays critical roles in multiple chronic diseases. Activated NLRP3 protein is capable of recruiting ASC and pro-caspase-1 to assemble NLRP3 inflammasome. As such, NLRP3 inflammasome sets up the stage for caspase-1 activation, and triggers secretion of inflammatory interleukin (IL)-1β and IL-18 (Wang et al., 2017). Ultimately, NLRP3 inflammasome causes low-grade systemic inflammation and chronic organ failure. The overt increase of cortical bone in NLRP3−/− aging mice compared with wild type counterparts was observed, indicating NLRP3 may twist round MSC differentiation from osteogenesis to adipogenesis(Wei et al., 2015; Wang et al., 2017; Xu et al., 2020).
The relationship between osteogenic differentiation and apoptosis is a dynamic process. Generally, osteogenic differentiation relies on sufficient cells by cell proliferation, so cell apoptosis may not play a major role in the middle and early stages of differentiation, but in late stage. Caspase8 is a member of the apoptotic protein family. It is a molecular switch of apoptosis, necrosis, and pyrolysis (Fritsch et al., 2019). It is highly expressed in osteoclasts (Eva et al., 2018) and is also necessary for the process of osteogenic differentiation (Makio and Akifumi, 2003). Some studies found that TNF-α stimulated human periodontal ligament stem cells inhibited the osteogenic differentiation, in which caspase8 expression is higher (Meng et al., 2018). However, under the treatment of azithromycin, the inhibition of osteogenic differentiation was reversed, as well as the expression of caspase8, indicating the complex relationship between apoptosis and differentiation. In our study, TCONS_00072128 changed the expression of caspase8 accompanied by osteogenic differentiation, even changes in inflammation activation. In recent years, other studies have had similar results. For example, during the process of osteogenic differentiation of MC3T3-E1 cells, the expression intensity of caspase8 increased over time (Kratochvílová et al., 2020). There is a controversial conclusion as to how caspase8 work in the process of osteogenic differentiation. The possible reason may be that caspase8 has non-apoptotic activities, such as promoting cell migration (Dörte et al., 2009) and lymphocyte proliferation (Holli et al., 2008), even more obvious in tumors (Giulia et al., 2018).
Although the expression of caspase 8 promotes differentiation, the continuous accumulation effect leads to activation of the signaling pathways of inflammation and apoptosis, leading to programmed cell death. This is consistent with the results of previous studies (Christina et al., 2015; Kim et al., 2019). Therefore, we infer that in an osteoporotic environment, exosomes with low TCONS_00072128 expression are absorbed by mesenchymal stem cells, thereby reducing the expression of caspase 8. Although mesenchymal stem cells can proliferate as a result, osteogenic differentiation is slow, and even many poorly differentiated, non-differentiated cells are produced, and ultimately cannot undergo osteogenic differentiation. Therefore, in the process of osteogenic differentiation of BMSCs, caspase8 may play multiple roles instead of simply apoptosis. This is also one of our in-depth research directions in the future, to clarify the detailed molecular mechanism of exosome-derived lncRNA regulating caspase 8.
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Metagenomic studies unravel details about the taxonomic composition and the functions performed by microbial communities. As a complete metagenomic analysis requires different tools for different purposes, the selection and setup of these tools remain challenging. Furthermore, the chosen toolset will affect the accuracy, the formatting, and the functional identifiers reported in the results, impacting the results interpretation and the biological answer obtained. Thus, we surveyed state-of-the-art tools available in the literature, created simulated datasets, and performed benchmarks to design a sensitive and flexible metagenomic analysis pipeline. Here we present MEDUSA, an efficient pipeline to conduct comprehensive metagenomic analyses. It performs preprocessing, assembly, alignment, taxonomic classification, and functional annotation on shotgun data, supporting user-built dictionaries to transfer annotations to any functional identifier. MEDUSA includes several tools, as fastp, Bowtie2, DIAMOND, Kaiju, MEGAHIT, and a novel tool implemented in Python to transfer annotations to BLAST/DIAMOND alignment results. These tools are installed via Conda, and the workflow is managed by Snakemake, easing the setup and execution. Compared with MEGAN 6 Community Edition, MEDUSA correctly identifies more species, especially the less abundant, and is more suited for functional analysis using Gene Ontology identifiers.
Keywords: metagenomics, bioinformatics, taxonomic classification, functional annotation, pipeline, shotgun sequences
1 INTRODUCTION
The recent reduction of sequencing costs, a consequence of second-generation sequencing technology advances, notably benefited the metagenomics field. Metagenome shotgun sequencing became widely used, allowing microbial DNA sequencing from an environmental sample without selecting any particular gene. The taxonomic classification of environmental DNA provides species composition information for biodiversity studies (Pedersen et al., 2015). Shotgun data also contains information about the microbial community functional activity, adding ecological information to metagenomic studies.
There are two metagenomic analysis approaches: read classification and metagenomic assembly (Breitwieser et al., 2019). These approaches share common analysis steps, such as data preprocessing, the alignment against a reference database, taxonomic classification, and functional annotation. The difference is a step to assemble reads into contigs, after the preprocessing, on the assembly approach. The choice between direct read classification and assembly-based analysis depends on the analysis goal and research question. Read classification is useful for organisms with close relatives represented in the reference database. For samples collected from exotic environments, when no close relatives are expected to be found in the reference database, the assembly approach is desirable. But one approach does not exclude the other, and assemblies may be used to support classifications made directly from the reads. There are several tools available for each analysis step, with varying accuracies. Therefore, the toolset choice impacts the analysis results and conclusions (Lindgreen et al., 2016), and efficiently selecting a toolset to conduct a complete metagenomics analysis remains challenging.
Some tools are well established, such as the DIAMOND aligner (Buchfink et al., 2015), which stands out for its speed and accuracy. Hence, this aligner is commonly used in pipelines and tools for metagenomics and metatranscriptomics, such as SAMSA2 (Westreich et al., 2018), MetaErg (Dong and Strous, 2019), HUMAnN2 (Franzosa et al., 2018), eggNOG-mapper (Huerta-Cepas et al., 2017), and GO FEAT (Araujo et al., 2018). The DIAMOND aligner performs protein alignments, a compute-intensive task that produces a functional result with protein identifiers (IDs) according to the database used as reference.
As a consequence, these tools and pipelines for metagenomic analysis present results with specific identifiers. GO FEAT reports Gene Ontology (GO) identifiers in its results, and eggnog-mapper reports Orthologous Groups identifiers. Even using DIAMOND for the alignments in both tools, the different reference databases used for each one make the intermediate files not exchangeable. Thus, the alignment must be performed for each tool separately to get the two types of identifiers. To ease multiple executions, some pipelines for metagenomic shotgun sequences analysis are fully automated, such as Sunbeam (Clarke et al., 2019) and MetaErg. Sunbeam, for example, adopts the use of the Snakemake workflow management software (Köster and Rahmann, 2012) to achieve reproducibility and automation.
MEGAN 6 is a software widely used for microbiome analysis that translates protein IDs into others, such as GO and InterPro, using SQLite databases. MEGAN is available in two versions, the Community Edition (CE) (Huson et al., 2016) and the Ultimate Edition (UE). The CE is freely available and allows the download of an SQLite dictionary mapping NCBI-nr (National Center for Biotechnology Information—non-redundant) accessions to taxonomy, eggNOG, and a mix of InterPro and GO IDs. Whereas the UE requires an annual license and includes mappings for KEGG, SEED, RDP, and Pfam IDs.
The selection of tools suited for each step of a metagenomic analysis is a challenge. The standalone pipelines available in the metagenomics field produce results containing a specific set of functional identifiers, narrowing the capabilities to extract insights beyond the scope of the identifier type reported. Web-based pipelines might restrain access to intermediate files, useful to conduct other analyses, and the fine-tuning of tool’s parameters to achieve a better result. We aim with this work to address these presented issues by surveying tools from the literature and benchmarking them to design a fully automated analysis pipeline that allows functional annotation transfer through user-built identifier mapping dictionaries.
Here we introduce a new pipeline for metagenomic analyses. The MEDUSA pipeline performs steps for both metagenomic approaches, accurate and sensitive taxonomic classifications, and functional annotations using fast disk storage repositories created from plain text dictionaries. The whole pipeline is available as an environment at the Anaconda Cloud, easing software acquisition and setup via the Conda package manager. Installing and running details can be found in the Supplementary Material.
2 MATERIALS AND METHODS
2.1 Pipeline Overview
We surveyed the literature and selected a set of state-of-the-art tools for each of four analysis steps: preprocessing, alignment, assembly, and taxonomic classification. Fastp was chosen for its speed and features, as the interactive quality control report produced reading the input only once. Bowtie2 for speed and accuracy, obtaining a low misclassification rate. Kaiju for achieving the highest Matthews Correlation Coefficient (MCC) (Chicco and Jurman, 2020) at the species and genus level. Lastly, DIAMOND and MEGAHIT for the performance in published benchmarks. Figure 1 shows the workflow designed to include these tools and perform all steps required for a comprehensive metagenomic analysis.
[image: Figure 1]FIGURE 1 | MEDUSA analysis workflow. Squares highlight the protocol steps, and third-party tools are depicted as cyan capsules. The python icon represents the tool implemented for the functional annotation.
2.2 Datasets
2.2.1 Dataset for Trimming
To assess trimming tools, we downloaded the run SRR5371509 from the Sequence Read Archive (SRA). The original raw reads from this bovine fecal metagenome were split into files containing 1, 5, 10, and 40 million reads in a paired-end (PE) format.
2.2.2 Dataset for Decontamination
To assess decontamination tools, we downloaded a human primary assembly from NCBI (RefSeq NC_000004.12) and used the InSilicoSeq software (Gourlé et al., 2019) to create three simulated datasets. The primary assembly NC_000,004.12 represents the assembled human chromosome 4, used by InSilicoSeq as the source to generate human reads for these simulated datasets. The InSilicoSeq software can download random genomes directly from NCBI. It is possible to choose between bacteria, viruses, archaea, or a combination of these options with the argument --ncbi/-k, as well as the number of genomes with the argument --n_genomes/-u. For this dataset we downloaded 200 bacterial genomes with InSilicoSeq, using --seed 5 to control the random number generation. Each dataset was created with 4 million reads, with human reads composing 25%, 50%, and 75% of the dataset, and bacterial reads generated by InSilicoSeq composing the remaining.
2.2.3 Dataset for Assembly
Critical Assessment of Metagenome Interpretation (CAMI) (Meyer et al., 2021) provides reads and its respective gold-standard assembly (GSA). Three datasets, labeled as low, medium, and high complexity, were created for the first CAMI challenge using the CAMISIM microbial community and metagenome simulator. The low complexity dataset has a small insert size, the medium complexity has differential abundances of respective organisms, and short and long insert sizes, and the high complexity dataset is a time series of samples with a small insert size. The small insert size has 270 bp, and the long has 5,000 bp. To assess the assembly, we downloaded the low, medium, and high complexity datasets from the first CAMI challenge.
2.2.4 Dataset for Taxonomic Classification
Some reads used in metagenome studies end not being assigned to a taxonomic identifier. This outcome means that these reads have no matches among the reference database sequences, and as these reads may be from organisms not present in the reference database, they are labeled as “unknown organisms.” To assess the taxonomic classification, we created a dataset containing 509,688 Illumina MiSeq reads following a lognormal distribution with InSilicoSeq, from which 99,918 are negative control (NC) reads simulating unknown organisms. Although the number of reads to be generated was set to 500,000 and 100,000 (20% of the simulated dataset), respectively, using the --n_reads InSilicoSeq argument, the output presents a slightly different number of reads. The metadata from this dataset can be found in our GitHub repository. This dataset was generated from 394 bacterial, 73 archaeal, and 40 viral sequences, without duplicates, randomly downloaded by InSilicoSeq. To simulate the unknown organisms, NC, we used InSilicoSeq and 199 bacterial sequences, shuffled by the esl-shuffle command from HMMER (HMMER, 2021) v3.3 (http://hmmer.org/) using non-overlapping windows of size 500 (-w 500). In what follows, this dataset will be mentioned as Dataset 1 (D1).
2.2.5 Dataset for Functional Annotation
We selected sequences from 10 bacterial organisms to use as a source to create 400,433 reads with InSilicoSeq. The GenBank identifiers from the selected sequences are described in the Supplementary Material. The UniProt ID mapping API (https://www.uniprot.org/help/api_idmapping) was used to convert the GenBank IDs (EMBL_ID) to UniProt IDs (ACC), allowing to transfer curated UniProtKB/Swiss-Prot GO information from the UniProt IDs to the GenBank IDs. Finally, these sequences were concatenated with the NC created to assess the taxonomic classification. In what follows, this dataset will be mentioned as Dataset 2 (D2).
2.2.6 Public Dataset Selected
We selected a public human gut metagenome shotgun data from a patient with Crohn’s disease (run SRR579292 from the BioProject PRJNA175224). In what follows, this dataset will be mentioned as Dataset 3 (D3).
2.3 Benchmarks
As the preprocessing involves different tasks, such as quality control and host sequences removal, two benchmarks were designed to evaluate tools for these purposes.
2.3.1 Trimming Tools Benchmark
The quality control check is performed to identify and remove low-quality reads, and the following tools able to accomplish this task were selected for comparison: AfterQC (Chen et al., 2017), BBDuk (BBTools, 2021) (http://jgi.doe.gov/data-and-tools/bb-tools/), Cutadapt (Martin, 2011), Fastp (Chen et al., 2018a), SOAPnuke (Chen et al., 2018b), and Trimmomatic (Bolger et al., 2014). We applied these tools to the dataset created to assess the trimming performance, processing the PE files, and also only the forward reads, to simulate a single-end (SE) input. The inputs were processed using one and four computing cores to assess the reduction in the elapsed time, an expected consequence of the parallelism. The speed of each tool was measured using the “time” Unix command and averaging three runs. As a reference for the elapsed time, we also ran the FastQC software (Babraham, 2021) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC is a tool used to create visual reports detailing the quality of the reads before and after the preprocessing. As the parallelism supported by FastQC only allows the use of multiple inputs, not reducing the time required for processing one input, it was benchmarked with one computing core.
2.3.2 Decontamination Tools Benchmark
The strategy used for host sequences removal is to use a tool to align the reads against a reference genome, such as the Ensembl Homo sapiens GRCh38 for reads sequenced from humans, and then filter out the aligned sequences. To align reads against a reference genome we selected: BBMap (BBTools, 2021) (http://jgi.doe.gov/data-and-tools/bb-tools/), Bowtie2 (Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009), and HISAT2 (Pertea et al., 2016). We measured the speed of the tools and, as the source used to generate each read from the decontamination dataset is known, the quality of the results using the MCC. The MCC ranges from -1, only false negatives (FN) and false positives (FP) classifications, to 1, a perfect classification with only true negatives (TN) and true positives (TP).
2.3.3 Assembly Tools Benchmark
The assembly step produces contigs, longer DNA sequences resulting from the overlap of reads. Modern assemblers, such as MEGAHIT (Li et al., 2016) and MetaSPAdes (Nurk et al., 2017), use de Bruijn graphs. These assemblers were extensively benchmarked by the CAMI. Thus, researchers might use assemblers and submit the results to CAMI, or assess the results using MetaQUAST (Mikheenko et al., 2016) and the GSA. To benchmark MEGAHIT and MetaSPAdes, we used the low, medium, and high complexity datasets from the first CAMI challenge.
2.3.4 Taxonomic Tools Benchmark
It is possible to assign a taxonomy identifier to a read using different approaches, such as the use of k-mers or alignments. BASTA (Kahlke and Ralph, 2019) and Krona (Ondov et al., 2011) transfer annotations to alignment results. While Kaiju (Menzel et al., 2016) and Kraken 2 (Wood et al., 2019) perform classifications using reads as inputs. We applied BASTA and Krona to the DIAMOND output resulting from the alignment of this dataset against the NCBI-nr database. DIAMOND, Kraken 2, and Kaiju indices were built using the NCBI-nr as reference database. Krona is mainly used for taxonomic results visualization, but it is possible to use ktClassifyBLAST to assign taxonomy identifiers to BLAST/DIAMOND results. As the annotation transfer performed by Krona is simpler than the performed by BASTA, we used Krona’s MCC as a lower bound reference for taxonomic classifications based on annotation transfer.
2.4 Aligner Choice
For the alignment, we selected DIAMOND due to its speed, accuracy, and adoption in several tools and pipelines. As the Bowtie2 output is used as the DIAMOND input, we use SAMtools (Li et al., 2009) to extract the unaligned reads from the Bowtie2 output. As a protein aligner, the DIAMOND output might be used for both taxonomic and functional analyses. Amino acid sequences are more conserved than DNA sequences when taking into account evolutionary distances among sequences. Furthermore, homology searches using a six-frame translation of DNA sequences against protein databases improve taxonomic and functional results. The DIAMOND software performs this task by building a double-index, over the translated reads and the protein database, sorted lexicographically and traversed linearly to determine matching seeds. Seeds are amino acid fragments, varying according to the DIAMOND sensitivity mode used, with more sensitive modes using more seeds on the matchings. The DIAMOND is used in our pipeline to align the sequences after the preprocessing, with the NCBI-nr as the reference protein database. Then, the protein identifiers reported in DIAMOND results are used to get a functional identifier of interest in the functional annotation step.
2.5 Annotation Transfer for Functional Results
The DIAMOND output contains functional information, appearing in the results as RefSeq and GenBank IDs due to the use of NCBI-nr as the protein database. To allow the reuse of an alignment output to obtain different functional IDs, we implemented a tool in Python to transfer annotations to BLAST/DIAMOND alignment results. This tool, named annotate, creates fast disk storage repositories from custom plain text dictionaries, filter hits according to user-defined thresholds, and assigns functional IDs to the best hit possible from each read. Alignments not meeting thresholds for e-value, bit-score, percent identity, or alignment length, are ignored. If a read contains no alignment passing the thresholds, or none could be mapped, it is assigned to “Unknown”. Furthermore, it is also possible to omit unknown mappings from the output or to map all the alignments. Annotate processes the alignment output linearly, requiring less time and memory than to create a new database and perform a new alignment.
2.6 Automating the Analysis and Comparing With MEGAN 6 CE
The pipeline designed after the benchmarks is composed of the tools most suited for each step. The pipeline’s execution rules were detailed using Snakemake, a workflow management system for scalable and reproducible data analyses. To ease software acquisition and setup, we created an environment containing all the pipeline’s tools and dependencies at the Anaconda cloud. Finally, we used three datasets, D1, D2, and D3, to assess the pipeline’s results compared to those obtained by MEGAN v6.18.3 CE. The D1 was the dataset created to benchmark the taxonomic tools. The D2 was created using 10 bacterial sequences as source, with curated functional information. D1 metadata allows assessing the taxonomic results, and D2 assesses the functional results.
We used a phred score threshold of 20 to trim all datasets, the Ensembl Homo sapiens GRCh38 DNA primary assembly to identify host sequences, and the NCBI-nr as the reference database. We preprocessed and aligned the three datasets with the designed pipeline, submitting the outputs to the taxonomic and functional analyses using MEGAN 6 CE and MEDUSA. For MEGAN, the only argument changed was the identity threshold, set to 80%. As the default minimum percent identity threshold used by MEGAN is 0%, we changed it to conduct a fair comparison between both methodologies with more accurate hits. A percent identity threshold above 70% is frequently used for this purpose. We choose 80% to achieve higher accuracies in the results, and we set this value as the default percent identity threshold used by annotate. We created a dictionary for the functional analysis performed by our pipeline, mapping GenBank and RefSeq IDs to GO IDs. It was done using the UniProt ID mapping file and the R programming language (version 4.0.5).
3 RESULTS
3.1 Trimming Tools Results
The trimming tools benchmark results are depicted in Figure 2. SOAPnuke was removed from the results for presenting outputs with a different number of reads when the only parameter change was the number of cores. AfterQC presented execution times much slower than the other tools, and as Fastp was developed as a faster alternative to it, we discarded AfterQC from the benchmark results. FastQC was benchmarked with only one computing core as its implementation of parallelism does not reduce the processing time for a single file. As expected, FastQC was faster than other tools using one core due to the reduced number of tasks performed. Fastp is the second-fastest tool when only one computing core is used and is fast enough when four computing cores are used. Only Fastp and FastQC produce visual reports, both containing information from before and after the processing. The benefits from producing the report may overcome the low increase in the elapsed time on scenarios with a larger number of reads. As an all-in-one FASTQ preprocessor, Fastp has useful features as PE reads merging and performs more tasks.
[image: Figure 2]FIGURE 2 | Trimming tools benchmark. Single-end (SE) and paired-end (PE) inputs, containing 1, 5, 10, and 40 million reads, were processed by the selected tools. A phred score threshold of 20 was used for all tools. The “time” Unix command was used to measure the elapsed time, and the times depicted in the panels are the average of three runs. Panels (A,C), respectively, depict the time for SE and PE inputs using only one thread. Panels (B,D), respectively, depict the time for SE and PE inputs using four threads.
3.2 Decontamination Tools Results
Figure 3 shows the elapsed time and MCC from the host sequences removal tools in the decontamination benchmark. The datasets used in this benchmark were labeled according to their composition, with the label b1h3 meaning 25% of bacterial reads and 75% of human reads. BBMap was the slowest tool on all scenarios, and HISAT2 was the fastest. As all tools achieved a high MCC, above 0.99, we inspect the FN and FP counts to distinguish the performances. Figure 4 shows the FN and FP for SE and PE reads. Overall, the BWA-MEM algorithm had more FP, and HISAT2 had more FN. BBMap and Bowtie2 achieved a higher MCC on the scenarios with fewer human reads, being more sensitive than BWA and HISAT2 to detect contaminants on these scenarios.
[image: Figure 3]FIGURE 3 | Decontamination tools benchmark for time and Matthews Correlation Coefficient. Single-end (SE) and paired-end (PE) inputs, composed by 25% (b3h1), 50% (b2h2), and 75% (b1h3) of human reads, were processed by the selected tools. The Ensembl Homo sapiens GRCh38 DNA primary assembly version 102 was used as a reference to build the indices. The “time” Unix command was used to measure the elapsed time, and the time depicted in panels (A,C) is the average of three runs. Panels (B,D), respectively, depict the Matthews Correlation Coefficient (MCC) for SE and PE inputs.
[image: Figure 4]FIGURE 4 | Decontamination tools misclassification benchmark. Panels (A,C), respectively, depict the false negative (FN) counts for the single-end (SE) and paired-end (PE) inputs. Panels (B,D), respectively, depict the false positive (FP) counts for the SE and PE inputs.
3.3 Assembly Tools Results
In the assembly benchmark, all tests performed with MetaSPAdes failed due to memory-related issues. MetaSPAdes 3.15.2 was unable to allocate the required memory on all runs, and version 3.13 fails due to a segmentation fault right after starting the job. MEGAHIT finished all runs successfully and was chosen to compose the pipeline due to the results from CAMI benchmarks (Meyer et al., 2021).
3.4 Taxonomic Tools Results
The taxonomic tools benchmark results are shown in Figure 5. Kraken 2 ran fast and without errors, but classified only 2129 reads from 507429 (0.42%). We built again the Kraken 2 index and noticed that only a few identifiers from NCBI-nr were mapped. We then used the fix_unmapped script from Kraken tools, but although the new index correctly mapped almost all identifiers, no reads were classified (0%). For the tools that require alignment results, such as Krona and BASTA, we need to consider the time spent to align the reads. BASTA requires less space on the disk to store the databases needed for the analyses, but the runs took more than 20 days and were aborted. Comparing the classifications performed by Krona and Kaiju, Kaiju achieved better performance at species and genus level and runs faster as processes the reads, accepting SE and PE inputs.
[image: Figure 5]FIGURE 5 | Taxonomic tools benchmark. Krona and BASTA require an alignment output to classify the reads, while Kaiju and Kraken accept Single-end (SE) or paired-end (PE) inputs. DIAMOND was used to align the D1 reads, and the NCBI-nr was used as reference to build the indices and databases. The “time” Unix command was used to measure the elapsed time, and the time depicted in panel (A) is the average of three runs, not taking into account the time needed to build the indices and databases. Panel (C) depicts the database size in GB, being smaller for transfer annotation tools (Krona and BASTA). Panels (B,D), respectively, depict the Matthews Correlation Coefficient (MCC) at the species and genus level. BASTA is not depicted in panel (D) as the classification took more than 20 days.
3.5 Comparison Results
General information about the alignment and the analyses outputs are shown in Supplementary Tables S1–S9. The metrics resulting from the analyses of both simulated datasets are shown in Supplementary Tables S10, S11. To compute the MCC, allowing the functional result comparison, a true positive was defined as at least one expected GO ID assigned to a read. MEDUSA outperformed MEGAN in these functional results, with MEGAN obtaining a negative MCC (-0.22 MEGAN against 0.59 MEDUSA–Supplementary Table S11). Our pipeline assigned slightly more reads than MEGAN in the taxonomic analysis (Supplementary Table S2), and was much more efficient to identify the different species (51% MEGAN against 95% MEDUSA–Supplementary Table S12) and genus (78% MEGAN against 99% MEDUSA–Supplementary Table S12) present in D1 (Figure 6).
[image: Figure 6]FIGURE 6 | Reads correctly classified in the taxonomic analyses. True positives compared to the expected at species (A) and genus (C) levels. The proportion between these values at species (B) and genus levels (D).
4 DISCUSSION
Inspecting the results obtained by the tools benchmarks, and the comparison between MEGAN and MEDUSA, we outline the following findings. Fastp, an ultra-fast all-in-one FASTQ preprocessor, aggregates several useful features, being an excellent tool for preprocessing. As the DIAMOND aligner currently supports only SE reads, fastp is used after the host sequences removal to merge the PE reads. This contributes to minimizing the number of tools required to run the pipeline, avoiding a tool for the specific purpose of merging reads, such as PEAR (Zhang et al., 2014). Besides the implementation in C++, fastp runs faster by reading the FASTQ input only once. The report, saved in HTML and JSON, contains information about the reads before and after the processing. Bowtie2 obtained a low misclassification rate in our decontamination benchmark, and a recent study also chose Bowtie2 as the most suited tool to identify contaminants (Czajkowski et al., 2019). Kraken 2 might perform better using a different database, but we used the NCBI-nr as the reference protein database for all tools to conduct a fair comparison.
In D1 taxonomic results, the MEDUSA output was more standardized than the MEGAN output. Kaiju produces an output containing predetermined taxonomic ranks, defined by the user, being the following ranks used in our pipeline: superkingdom, phylum, class, order, family, genus, and species. The output from MEGAN contains descriptions like “NCBI” and “cellular organisms”, this counts as a valid classification but does not help to extract meaningful information from the results. The output from MEDUSA was more suited to estimate the correct taxonomic composition at species and genus levels. Furthermore, the less abundant species and genus were detected only by MEDUSA.
As the sequences used to create D2 are associated with 281 different GO terms, the criteria to count an annotation as a TP in the functional result is reasonably achievable. Yet, MEGAN obtained a negative MCC. In D2 functional results (Supplementary Tables S13–S18), MEDUSA assigned 303 distinct terms, while MEGAN assigned only 48. Besides, MEGAN assignments frequently include terms too broad, as the ontology roots shown in D3 functional results (Supplementary Tables S19–S23). This excessive presence of ontology roots hinders the extraction of biological insights. As D3 is a real dataset, we cannot measure the metrics without the ground truth, but both methodologies agree on the most abundant descriptions for the taxonomic results (Supplementary Tables S24–S26).
MEDUSA is a pipeline for shotgun metagenomic data deployed by the Conda package manager and managed by Snakemake. The Snakemake rules produce results for the reads with and without performing the assembly, but users can easily change this behavior by editing the rules. The intermediate files stored, that might be further inspected, are used by Snakemake to skip steps previously done when the pipeline is restarted. We also introduce annotate, an annotation transfer tool for user-built functional dictionaries. MEDUSA is easy to acquire, set up, and run, simplifying comprehensive metagenomic analyses. Advantages over MEGAN 6 CE involve more customizable thresholds to filter out alignment outputs for functional analysis, use of fast disk storage dictionaries created from plain text files and the flexibility to transfer any functional identifier, a more sensitive taxonomic classification, and fully automated steps to prepare the inputs for taxonomic and functional analyses.
As MEDUSA is obtained via the Conda package manager, additional software can be easily obtained using the Bioconda channel (Dale et al., 2018) to extend the pipeline. Similarly, one of the tools used by the pipeline can be replaced by one installed via Conda that produces a compatible output. To change the rules used during the pipeline execution, the user must edit the Snakefile, changing the commands called to run the software. New rules may be created in the Snakefile, written as Shell Script, and targets may be removed or included under the rule “all”. By default, our Snakefile has four targets that are related to taxonomic and functional outputs, half of them for analysis done with an assembly of contigs. If the user has no interest in an analysis performed with assembly, the two lines for the targets related to the contigs may be commented or deleted. This way, Snakemake will not perform any rule to create these files, as they are no more present in the targets.
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Background: More and more studies show that long non-coding RNAs (lncRNAs) have miniature open reading frames that can be translated into short peptides. Here, we identify the long non-coding gene LINC00665 and its short peptides (CIP2A-BP) in hepatocellular carcinoma (HCC) and explore how they contribute to HCC progression.
Materials and methods: First, GSE101728 data were acquired through the Gene Expression Omnibus for identification of differentially expressed genes (DEGs), and gene set enrichment analysis (GSEA) was conducted to find enriched biological pathways. Then, further bioinformatics analysis was carried out on the screened long non-coding genes, and LINC00665 expression was detected in HCC and normal liver samples. The relations between LINC00665 expression, HCC prognosis, and clinical characteristics were studied. Receiver operating characteristic (ROC) analysis was also applied to verify the LINC00665 prediction in HCC prognosis. In addition, pertinent experiments on LINC00665 and CIP2A-BP were also carried out to explore their roles in the progression of HCC.
Results: As a result, we screened out 332 DEGs in total, including 130 upregulated and 202 downregulated DEGs. These DEGs were mainly enriched in posttranscriptional regulation of gene expression, RNA processing, nucleolus, and gene silencing biological pathways. In addition, we found that LINC00665 was increased in HCC samples, which substantially indicated its poor prognosis. Compared with normal tissues, LINC00665 had higher expression in the pathological stages III and IV, tumor-free groups, people no more than 60 years old, and stages T3, T4, N0, N1, and M1. ROC curve indicated that the variable INC00665 had certain accuracy in predicting overall survival (OS). Moreover, in functional experiments, LINC00665 knockdown could significantly decrease HCC cell proliferation, migration, and invasion, while overexpressed CIP2A-BP could markedly increase HCC cell proliferation, invasion, and migration.
Conclusion: Our findings not only disclose a unique mechanism by which CIP2A-BP encoded by LINC00665 promotes HCC carcinogenesis but suggest that these long non-coding genes and short peptides could be used as biomarkers for HCC diagnosis and prognosis and new targets for HCC therapy.
Keywords: hepatocellular carcinoma, LINC00665, CIP2A-BP, biomarkers, biological information analysis
BACKGROUND
Liver cancer (LC) is an extremely harmful malignant tumor in surgical diseases, which is generally divided into primary and secondary types (Sia et al., 2017). The former originates from the liver epithelial or mesenchymal tissues, including hepatocellular carcinoma (HCC), cholangiocarcinoma, and mixed liver cancer (Bosch et al., 1999; Bosch et al., 2004). The latter is formed by the metastasis of malignant tumors from the stomach, pancreas, biliary tract, and others to the liver (Ananthakrishnan et al., 2006). Reports from the International Agency for Research on Cancer show that during 2020, more than 900,000 people worldwide had been diagnosed with LC; the incidences of men and women were 6.3 and 3.0%, respectively, and the number of deaths exceeded 830,000 (Rodriguez-Acevedo et al., 2020). Currently, clinical investigations have found that viral hepatitis, food contaminated by Aspergillus flavus and its mycin, drinking alcohol, water pollution, chemical carcinogens, and genetic factors are all risk factors for LC occurrence (Yuen and Wong, 2020). Due to the hidden incidence, rapid invasive growth, and high mortality, the treatment and prognosis of patients are relatively poor (Jiao et al., 2019). Therefore, to prolong the survival time of patients and improve their life quality, there is an urgent need for the emergence of safe and effective anticancer technologies.
Long non-coding RNA (lncRNA) is a kind of non-coding RNA which is transcribed in most eukaryotic genomes (Wright, 2014). Studies have found that lncRNA can perform its functions by binding to DNA/RNA or proteins in the regulation of multiple biological processes like genome imprinting, X chromosome silencing, chromatin modification, nuclear transport, transcription activation, and interference (Yang et al., 2015). In addition, lncRNA is also associated with human cell differentiation, growth, reproduction, gender regulation, aging, and many diseases (Shi et al., 2013). Presently, there have been many studies on lncRNA and LC. For instance, Feng et al. (2019) analyzed the role of lncRNA PCNAP1 in the replication of hepatitis B virus (HBV) and found that lncRNA PCNAP1 enhanced HBV replication by regulating the miR-154/PCNA/HBV axis, thereby driving the occurrence of LC. Wu et al. (2019) demonstrated that high-expressed lncRNA CEBPA-AS1 in LC tissues promoted the size of tumors and the survival activity of cancer cells. However, further exploration on the mechanism of lncRNA in LC is needed.
LINC00665 belongs to the lncRNA class, and it has been reported to have certain functions in multiple diseases, such as triple-negative breast cancer (Guo et al., 2020) and osteosarcoma (Zhang et al., 2020). Chen et al. (2020) observed highly expressed LINC00665 in prostate cancer tissues, and it could significantly promote the expression of SND1 by inhibiting miR-1224-5p through bioinformatics and functional experimental analysis. As a short peptide encoded by LINC00665, CIP2A-BP is also found to have an indispensable role in many cancers. For example, CIP2A-BP can interact with CIP2A to inhibit the PI3K/Akt/NFkB pathway in triple-negative breast cancer, thereby affecting the survival activity of cancer cells (Guo et al., 2020). Here, we will focus on the specific mechanism of LINC00665 and CIP2A-BP in HCC.
MATERIALS AND METHODS
Public Database
The Cancer Genome Atlas (TCGA, https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) database (Hutter and Zenklusen, 2018) is a groundbreaking cancer genome research project, covering more than 20,000 primary cancers and matching normal samples. Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) (Chicco, 2022) is the world’s biggest and most comprehensive public gene data collection, encompassing nearly all illnesses and incorporating gene expression, mutation, alteration, and other data. We screened the HCC chip expression data from the TCGA and GEO databases and determined LINC00665 as an HCC clinical diagnostic marker for follow-up research.
Acquisition of Microarray Data and Filtering of Differentially Expressed Genes
We downloaded the GSE101728 dataset from the GEO database, which contained 7 HCC and 7 adjacent tumor-free samples. After that, DEG analysis was performed on the genes in these samples by the GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) tool, and the filtering condition for upregulated DEGs was set to a fold change (FC) > 2, and that for downregulated DEGs was FC < 0.5, both satisfying p < 0.001.
Gene Set Enrichment Analysis
GSEA (http://software.broadinstitute.org/gsea/index.jsp) is a computational approach for identifying potential biological pathways based on RNA expression profiles. After the DEGs were screened out, we explored the Gene Ontology (GO) enrichment of these DEGs in the Molecular Signatures Database (MSigDB) database (https://www.gsea-msigdb.org/gsea/msigdb) through the GSEA method, and results with p < 0.05 had statistical significance.
Expression Analysis of LINC00665
Next, the expression level of LINC00665 was verified in HCC and normal samples based on the GSE101728 dataset in the GEO database, and then the relevant expression levels of LINC00665 were analyzed in HCC normal tissues and tumor tissues in the TCGA database.
Prognostic Analysis of LINC00665
We analyzed the relationship between LINC00665 and the overall survival (OS) time of HCC patients in the Kaplan–Meier (KM) plotter website and showed the hazard ratio (HR) with 95% confidence intervals (CI) and the log-rank p-value. A p value less than or equal to 0.05 was considered statistically significant. By analyzing the prognosis of patients, it was helpful to understand the impact of LINC00665 on HCC short-term and long-term prognosis.
Clinical Characteristic Analysis of LINC00665
Afterward, we used normal tissues as a control to verify the expression of LINC00665 in HCC patients with different conditions in the TCGA database, including pathologic stage (stages I–IV), tumor status (tumor-free, with tumor), age (≤60, >60), T stage (T1–T4), N stage (N0 and N1), and M stage (M0 and M1), and the final results were displayed using box plots.
Diagnostic Efficiency Evaluation for Hepatocellular Carcinoma
The receiver operating characteristic (ROC) curve, also known as the sensitivity curve, is used to describe the inherent truthfulness of diagnostic tests. This time, we drew the ROC curve about the OS of HCC patients based on the GraphPad Prism tool, evaluated the correlation between LINC00665 expression and OS, and calculated the relevant area under the curve (AUC) values and 95% CI to explore the clinical diagnostic value. A p value <0.05 was selected as the cutoff criteria.
Cell Culture and Transfection
Human LC cells (MHCC97H and SNU387) were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China), and cultured in RPMI1640 medium (Gibco, United States) containing 10% fetal bovine serum (Hyclone, United States). After that, the environment in the culture medium was maintained at 37°C containing 5% CO2. Then, with vector as a control, LINC00665 (over-LINC00665, si-LINC00665 #1, and si-LINC00665 #2) and CIP2A-BP (over-CIP2A-BP) were transfected. Finally, based on the transfection efficiency, si-LINC00665 #2 and over-CIP2A-BP were chosen for the next study.
Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
Total RNA was extracted from MHCC97H and SNU387 cells by TRIzol (Invitrogen, CA, United States), and then complementary DNA (cDNA) was synthesized by using an miRNA First-Strand cDNA Synthesis Kit (Tiangen, Beijing, China). Subsequently, qRT-PCR was conducted by using a SuperReal PreMix Plus SYBR Green Kit (Tiangen, Beijing, China) and miRcute Plus miRNA qPCR Detection Kit (Tiangen, Beijing, China). Finally, the 2−ΔΔCT equation method was used to compute potential gene expression.
Cell Proliferation Assay
In the cell proliferation experiment, we first seeded the cells into a 96-well plate at a density of 1 × 103 and then injected a certain amount of CCK-8 (Cell Count Kit-8; Beyotime Biotechnology, Shanghai, China) solution into each well at 0, 24, 48, 72, and 96 h. Finally, si-NC was used for comparison, and the relative cell numbers after LINC00665 knockdown and overexpression of CIP2A-BP were calculated by microscopy to determine cell proliferation activity.
Transwell Assay
For cell migration and invasion, we used Transwell methods. First, after incubating the MHCC97H and SNU387 cell lines for 24 h, the excess cells on the surface of the upper chamber were wiped off. Then, the cells in the lower chamber were stained with 0.5% crystal violet (Sigma-Aldrich, United States), the five fields of view were randomly selected to take pictures, and the average number of the stained cells per field was counted to observe the migration ability. Next, MHCC97H and SNU387 cell lines were placed in the upper chamber coated with 2 mg/ml Matrigel for the detection of invasion ability.
Statistical Analysis
For statistical analyses, GraphPad Prism 5 (GraphPad Software, United States) was used. Data from three independent experiments were exhibited as mean ± standard deviation (SD). For parametric data, unpaired, 2-tailed Student’s t-tests were used, and for non-parametric data, a 2-sided Mann–Whitney U test was used. Differences with p < 0.05 indicated statistical significance.
RESULTS
Identified Results of Differentially Expressed Genes
After analyzing the lncRNAs in the GSE101728 data set by the GEO2R method, we obtained 332 DEGs, of which 130 were upregulated and 202 were downregulated. Furthermore, the top 10 upregulated DEGs were LOC344887, LUCAT1, HOXA-AS2, PTTG3P, LINC01136, LOC254896, PVT1, DUXAP8, CELSR3-AS1, and MIR4435-2HG. The top 10 downregulated DEGs were MIR6829, LINC00977, TTTY14, MIR6131, LINC00635, LINC01405, MIR29C, RAB11B-AS1, FCGR2C, and DNM3OS. The distribution of these DEGs in the sample was shown by a heat map and a volcano map (Figures 1A,B).
[image: Figure 1]FIGURE 1 | Analysis results of 332 DEGs. (A) Heat map. The blue part represents HCC samples, and the pink part represents control samples. (B) Volcano map. Red represents DEGs that are upregulated, green represents DEGs that are downregulated, and gray represents not changed genes.
Enriched GO Terms in Gene Set Enrichment Analysis
According to GSEA, we got 4 GO-related enrichment items, namely, posttranscriptional regulation of gene expression (normalized enrichment score, NES = 1.304, p = 0.062, false discovery rate, FDR = 0.016), RNA processing (NES = 1.300, p = 0.036, FDR = 0.009), nucleolus (NES = 1.353, p = 0.024, FDR = 0.006), and gene silencing (NES = 1.189, p = 0.151, FDR = 0.040, Figures 2A–D).
[image: Figure 2]FIGURE 2 | GSEA results. (A) Enrichment plot for posttranscriptional regulation of gene expression. (B) Enrichment plot for RNA processing. (C) Enrichment plot for the nucleolus. (D) Enrichment plot for gene silencing.
LINC00665 Expressions in Public Databases
In the GSE101728 data set, compared with normal tissues, LINC00665 was upregulated in HCC tissues (Figure 3A). Similarly, the analysis of the TCGA database demonstrated that LINC00665 expression in the tumor tissues was also significantly upregulated (Figure 3B).
[image: Figure 3]FIGURE 3 | Expression analysis of LINC00665 in HCC. (A) GSE101728 data set. (B) TCGA database. ***p < 0.001.
Clinical Prognosis of LINC00665
To explore the role of LINC00665 in HCC prognosis, we plotted the KM survival curve to show the effect of differentially expressed level LINC00665 on the OS of patients. In OS (HR = 1.62, log-rank p = 0.006), OS for stage 2 (HR = 2.43, log-rank p = 0.032), and OS for grade 2 (HR = 1.87, log-rank p = 0.021), the high expression of LINC00665 reduced the patients’ survival probability and shortened the patients’ time (Figures 4A–C).
[image: Figure 4]FIGURE 4 | KM survival curve. Red represents the high expression, and black represents is the low expression. (A) OS, 370 samples. (B) OS stage 2, 85 samples. (C) OS grade 2, 177 samples.
LINC00665 Expressions in Hepatocellular Carcinoma Patients With Different Clinical Characteristics
Figures 5A–F show the relative levels of LINC00665 in different clinical stages of HCC patients. In comparison with normal groups, LINC00665 had a higher expression in the pathological stages III and IV, tumor-free, ≤60 group, and stages T3, T4, N0, N1, and M1. Then, it could be concluded that with the further development of the tumor, the expression of LINC00665 gradually increased, which was closely related to clinical diagnosis.
[image: Figure 5]FIGURE 5 | Box plot indicated the expression levels of LINC00665 in HCC patients with different clinical characteristics. (A) Pathologic stage. (B) Tumor status. (C) Age. (D) T stage. (E) N stage. (F) M stage. *p < 0.05, **p < 0.01, ***p < 0.001.
Analysis of ROC Curve
The ROC curve was adopted to assess the sensitivity of LINC00665 to the prognosis of HCC patients. According to Figure 6A, it was found that the variable LINC00665 had certain accuracy in predicting OS (AUC: 0.778, CI: 0.730–0.826). In addition, the results in Figure 6B indicated that the AUCs of 1, 3, and 5 years were 0.609, 0.544, and 0.565, respectively, indicating that the predictive ability of the variable LINC00665 had low accuracy.
[image: Figure 6]FIGURE 6 | ROC curve analysis. The ordinate represents sensitivity, and the abscissa represents 1-specificity. (A) OS. (B) The blue line represents the 1-year OS, the red line is the 3-year OS, and the green is the 5-year OS.
Knockdown of LINC00665 Expression Inhibited the Proliferation, Migration, and Invasion of Hepatocellular Carcinoma Cells
To explore the specific functional role of LINC00665 in HCC, we first knocked down LINC00665 in MHCC97H and SNU387 with si-LINC00665 #1 and si-LINC00665 #2 (Figure 7A). In the results of siRNA transfection, the knockdown effect of si-LINC00665 #2 was more evident, which could effectively inhibit the relative expression level of LINC00665 in HCC cells. Thus, si-LINC00665 #2 was applied for the next experiments. Then, in the CCK-8 experiment, compared with si-NC, the cell proliferation activities of MHCC97H and SNU387 transfected with si-LINC00665 #2 were significantly inhibited (Figures 7B,C). Furthermore, we also observed that the HCC cell migration and invasion were also significantly reduced after the knockdown of LINC00665 expression (Figures 8A–D).
[image: Figure 7]FIGURE 7 | Knockdown LINC00665 inhibited the proliferation of HCC cells, and overexpression of CIP2A-BP promoted proliferation of HCC cells. (A) Knockdown transfection of LINC00665 in HCC cells (si-LINC00665 #1 and si-LINC00665 #2). (B) The effect of si-LINC00665 #2 on the proliferation of MHCC97H cells. (C) The effect of si-LINC00665 #2 on the proliferation of SNU387 cells. (D) Overexpression transfection of CIP2A-BP in HCC cells. (E) The effect of over-CIP2A-BP on the proliferation of MHCC97H cells. (F) The effect of over-CIP2A-BP on the proliferation of SNU387 cells. *p < 0.05, **p < 0.01.
[image: Figure 8]FIGURE 8 | Knockdown of LINC00665 expression inhibited the migration and invasion of HCC cells. Knockdown of LINC00665 expression significantly inhibited the invasive and migratory abilities in MHCC97H and SNU387 cells. (A,C) Fields of view observed by the microscope. (B,D) Histograms of invasion and migration results. **p < 0.01.
Overexpression of CIP2A-BP Promoted Proliferation, Invasion, and Migration of Hepatocellular Carcinoma Cells
In addition, we also verified the effect of overexpressed CIP2A-BP on the activities of HCC cells. According to the results in Figure 7E, it was found that the contents of CIP2A-BP in MHCC97H and SNU387 cells were significantly increased compared with NC vector. The experimental results of CCK-8 proved that over-CIP2A-BP increased the relative cell number of HCC (Figures 7F,G), and Transwell also showed that under the microscope observation, the invasion and migration of MHCC97H cells transfected with over-CIP2A-BP were significantly increased (Figures 9A,B). From this, we could conclude that the overexpression of CIP2A-BP was positively related to the cell proliferation, invasion, and migration of HCC cells.
[image: Figure 9]FIGURE 9 | Overexpression of CIP2A-BP promoted invasion and migration of HCC cells. The effect of over-CIP2A-BP on the (A) invasion and (B) migration ability of MHCC97H cells. *p < 0.05.
DISCUSSION
A growing number of studies show that abnormally expressed lncRNAs are found in various human cancers, and they may influence multiple biological processes like cell cycle progression, apoptosis, cell migration, and invasion (Luo et al., 2017; Li et al., 2018; Wang et al., 2020). In addition, the molecular mechanisms on how lncRNAs exert their biological roles are omnifarious and intricate. During these mechanisms, the function of small open reading frames on their translation products (short peptides) has been largely ignored due to the difficulty in identifying functional small open reading frames (Andrews and Rothnagel, 2014; Ruiz-Orera and Albà, 2019). Here, we aimed to investigate the molecular mechanism among lncRNAs, peptides, and HCC.
In the present study, we screened the non-coding genes in the data set GSE101728 containing 7 HCC samples and 7 normal samples from adjacent tissues. In the identified non-coding gene, we determined to study the regulatory mechanisms of the lncRNA LINC00665 in LC because there have been reports on LINC00665 and human diseases. Later, we detected LINC00665 expressions in GSE101728 and TCGA datasets, and the results exhibited that LINC00665 was upregulated in HCC groups, which was consistent with what the previous research reported. Also, LINC00665 was knocked down in HCC cell lines to observe the effect of its decrease on the HCC cell proliferation, migration, and invasion. The experimental results exhibited that LINC00665 knockdown significantly reduced the cell activities in HCC.
Moreover, we detected the short peptide CIP2A-BP produced by LINC00665 and investigated its functions in HCC. We overexpressed CIP2A-BP in HCC cell lines and found that overexpressed CIP2A-BP significantly increased the cell number in CCK-8 experiments. Transfection experiments also showed an evident increase in the number of MHCC97H cells in CIP2A-BP, so MHCC97H was used for the following experiments. Also, the experimental findings demonstrated increased cell invasion and migration under microscope observation. From these, we can conclude that both LINC00665 and CIP2A-BP have oncogenic roles in HCC development.
Moreover, to investigate the biological information of HCC, we screened the DEGs from the data set of GSE101728, in which we obtained 332 DEGs, including 130 upregulated and 202 downregulated DEGs. In the TCGA public database, LINC00665 had a high level in HCC tissues. In addition, we also predicted the prognostic effect of LINC00665 in liver cancer patients through the KM survival curve and ROC analysis. It was demonstrated whether in the staging or grading of patients with LC, the highly expressed LINC00665 had a lower survival time and poor prognosis in HCC patients. ROC curve indicated that the variable LINC00665 had certain accuracy in predicting OS. Then, the relation between LINC00665 and clinical characteristics was also investigated. Compared with control groups, LINC00665 had higher expressions in the pathological stages III and IV, tumor-free group, people no more than 60 years old, and stages T3, T4, N0, N1, and M1.
In the functional analysis, GSEA was also performed on DEGs. The results indicated that they were mainly enriched in posttranscriptional regulation of gene expression, RNA processing, nucleolus, and gene silencing biological pathways. Currently, there have been studies on these pathways and HCC progression. For instance, nucleoli usually appear as single or more homogeneous spherical bodies and are the most prominent structures in eukaryotic interphase nuclei. The main function of the nucleolus is to synthesize ribosomes and RNA (rRNA) (Scheer and Hock, 1999; Boisvert et al., 2007). Ribosome biogenesis is an important biological process that controls the rate of protein synthesis in cells (Leary and Huang, 2001; Gupta and Santoro, 2020). Abnormal ribosome synthesis has been linked to cancer and malignant transformation in a growing number of studies. Yu et al. (2015) created a high-resolution map of histone modification marks at rDNA in human liver cancer cells, providing new evidence for chromatin-mediated rDNA regulation in LC. As for gene silencing, it represents a process in eukaryotes about the recognition and clearance of abnormal RNA from cells induced by double-stranded RNA (Meister and Tuschl, 2004; Duchaine and Fabian, 2019). Presently, numerous articles have demonstrated that gene silencing is related to HCC. For example, Wei et al. (2010) explored the silencing effect of aldo–keto reductase family 1 member B10 gene on the proliferation and apoptosis of HCC cells.
In conclusion, LINC00665 and CIP2A-BP have oncogenic functions in HCC development, and they could be new therapeutic targets and prognostic biomarkers for HCC treatment. In addition, these data emphasize that lncRNA-encoded peptides can encode functional peptides with clinical and therapeutic relevance. Nevertheless, there are several limitations in this article. We studied the role of LINC00665 and CIP2A-BP in HCC. HCC is a malignant disease with extensive molecular heterogeneity. Therefore, in the future, it would be worth exploring other potential regulatory mechanisms of CIP2A-BP in other HCC subtypes. Also, investigating CIP2A-BP upstream regulation would help clarify the comprehensive tumor-suppressive roles of CIP2A-BP. A deeper understanding of LINC00665 and CIP2A-BP should be explored.
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Single-pass membrane proteins, which constitute up to 50% of all transmembrane proteins, are typically active in significant conformational changes, such as a dimer or other oligomers, which is essential for understanding the function of transmembrane proteins. Finding the key motifs of oligomers through experimental observation is a routine method used in the field to infer the potential conformations of other members of the transmembrane protein family. However, approaches based on experimental observation need to consume a lot of time and manpower costs; moreover, they are hard to reveal the potential motifs. A proposed approach is to build an accurate and efficient transmembrane protein oligomer prediction model to screen the key motifs. In this paper, an attention-based Global-Local structure LSTM model named GLTM is proposed to predict dimers and screen potential dimer motifs. Different from traditional motifs screening based on highly conserved sequence search frame, a self-attention mechanism has been employed in GLTM to locate the highest dimerization score of subsequence fragments and has been proven to locate most known dimer motifs well. The proposed GLTM can reach 97.5% accuracy on the benchmark dataset collected from Membranome2.0. The three characteristics of GLTM can be summarized as follows: First, the original sequence fragment was converted to a set of subsequences which having the similar length of known motifs, and this additional step can greatly enhance the capability of capturing motif pattern; Second, to solve the problem of sample imbalance, a novel data enhancement approach combining improved one-hot encoding with random subsequence windows has been proposed to improve the generalization capability of GLTM; Third, position penalization has been taken into account, which makes a self-attention mechanism focused on special TM fragments. The experimental results in this paper fully demonstrated that the proposed GLTM has a broad application perspective on the location of potential oligomer motifs, and is helpful for preliminary and rapid research on the conformational change of mutants.
Keywords: single-pass membrane protein, dimer motif, Bi-LSTM network, self-attention mechanism, motif localization model
INTRODUCTION
Single-pass membrane proteins are one of the most widely classified membrane proteins, composed of a single transmembrane ™ helix and several water-soluble domains, and play an important role in cell signaling, motility, and material transport (Rawlings 2016). Compared with the active state of the multi-pass membrane protein is located within the TM helical bundle, the single TM helix of single-pass membrane protein was initially considered as a merely hydrophobic anchor (Zviling et al., 2007). However, the TM helix of single-pass membrane protein has been verified in making crucial contributions to the protein-protein interaction in recent years.
The intramembrane helix-helix interaction of single-pass membrane protein was firstly confirmed in the dimerization process of human glycophorin A (GpA). In the 3D model for the homo-dimer of human GpA, researchers observed the most helix contact points occurred in the GxxxG motif of TMD (Russ and Engelman 2000). Moreover, the statistical result indicated that the GxxxG motif was one of the significant expression residue pairs in the TM domain (Senes et al., 2000), and these single-pass membrane proteins have a high homo-dimerization tendency when their TM domain contains GxxxG motif (Brosig and Langosch 1998). Except for the GxxxG motif, the polar residue and the leucine zipper also confirmed their irreplaceability in the assembly of oligomeric complexes (Li et al., 2012). The interhelical hydrogen bond of the polar residue directly influences their dimerization degree (LaPointe et al., 2013). The leucine zipper is a [image: image] heptad repeat motif with leucine at every fourth position and hydrophobic residues at every first position. This “knobs-into-holes” type of side-chain packing facilitates self-associates of the TM domain (Oates et al., 2010). Significantly, the conformational change of single-pass membrane protein as typically receptor activation basis selectively regulated cellular signaling (Hubert et al., 2010). Many diseases are directly related to the dysfunction of transmembrane receptor proteins, research of oligomers offers the opportunity to design drug targets and develop new pharmaceuticals (Cymer and Schneider 2010).
The amino acid residues frequency of the TM domain was used to distinguish different homo-oligomer forms in the earliest oligomer prediction model (Song and Tang 2005); their prediction results confirmed the importance of residue composition for protein quaternary structures. To avoid losing important sequence context information of protein sequence, the pseudo-amino acid composition (PseAAC) was proposed to replace the simple amino acid composition (Zhang et al., 2006). Discrete wavelet transformation was used to decompose digit signals of protein primary structure into different coefficients, and screen out effective global context features (Qiu et al., 2011). This global feature description method combined with a decision-tree algorithm obtained outstanding prediction accuracy (Sun et al., 2012). Moreover, the functional domain was discovered to be involved in molecular evolution in recent years. The functional domain information has been confirmed to improve the prediction performance, but the application of these oligomer prediction models was limited in the poor interpretability. For single-pass membrane proteins, an interpretability motif discovery approach was employed to locate their potential oligomer motifs by corresponding oligomer prediction results.
In previous functional motif detection studies, researchers mainly adopted rigorous statistical formulation to search for overexpression subsequence patterns (Liang et al., 2012). TMSTAT directly calculated the frequency of all pairs and triplets of residues to screen out overexpression subsequence patterns in the TM domain (Senes et al., 2000). A regular expressions algorithm was used to more precisely specify special residues position and interval size in SLiMFinder (Edwards et al., 2007). As researchers realized the complexity of nearby residues dependence, Markovian models were gradually used to discover potential motif patterns, such as NestedMICA (Dogruel et al., 2008), weighted hmm (Song and Gu 2015), and HH-MOTiF (Prytuliak et al., 2017). Note that these oligomer motifs as biologically defined anchors or landmarks are limited in a sequence interval. The discriminative motif discovery models DEME (Redhead and Bailey 2007) and DlocalMotif (Mehdi et al., 2013) introduced spatial confinement scores of each subsequence pattern to distinguish unrelated subsequence patterns and local functional motifs. DiMotiF proposed peptide-pair encoding (PPE) to probabilistic segmentation variable-length subsequence patterns and screened out positively related subsequences as potential motifs after annotating possible secondary structures of these subsequences (Asgari et al., 2019). Although these above search algorithms have strong statistical analysis ability to detect subtle subsequence pattern signals from large datasets, these motif discovery approaches cannot define their corresponding biological function for discovered subsequence patterns.
In this paper, we propose a motif localization model called GLTM to locate potential dimer motifs in the dimer prediction process. The Global-Local Bi-LSTM structure was the fundamental component of our motif localization model, and this idea of bilayer structure referred to the influence of highly conserved subsequence patterns and TM domain context information on oligomerization. Combined with the advantage of a Global-Local structure and the character of one-hot encoding, GLTM achieved a new data enhancement on the data preprocessing module. Additionally, new positional penalization was proposed to encourage a self-attention mechanism focused on known subsequence patterns. In the benchmark dataset, GLTM reached 97.5% accuracy and successfully located most key residue with self-focus and position penalization. Moreover, we discuss the existing deficiencies and application prospects of the motif localization model in the dimerization study of residue mutations.
MATERIALS AND METHODS
Dataset
The Membranome database was the first comprehensive resource on single-pass membrane proteins and is widely used to assist analysis and computational modeling of single-pass membrane protein and their complexes (Lomize et al., 2017). The Membranome database collects and compiles diverse data of single-pass membrane proteins, including amino acid sequence, domain architecture, protein topology, and oligomeric states. More importantly, Membranome contains known key residues involved in the homo-dimerization interface according to both mutagenesis studies and computational models.
A new benchmark dataset was established and used for training and testing our motif localization model. Firstly, 334 homo-dimers, which were verified by nuclear magnetic resonance (NMR), mutagenesis experiments, crystal structures of dimers, or other validation methods of TM helix association, were collected from Membranome. Secondly, the orthologs of these 334 homo-dimers with similar oligomerization tendencies were collected from UniProt. Thirdly, chosen dimer motifs were spatially confined in the TM domain, and the C-terminal region of the TM domain participated in helix-helix interactions. Forty residues length of dimer fragment and no-dimer fragment were intercepted from each collected single-pass membrane protein sequence. Finally, the R1937 benchmark dataset collected 524 dimer fragments, 1,413 no-dimer fragments, and 24 known motif positions based on 70% maximal identity.
Construction of GLTM Model
In bioinformatics areas, machine learning models widely used k-mers as the protein sequences representation method. Fixed-length subsequences were segmented from the original sequence and regarded as units of biological sequences to encoding in the k-mers treatment method. However, the directly one-hot encoding for subsequence units ignores these strong coupling effects between different positions in the oligomer research of TM protein (Liang et al., 2012). This means that the representation method of short sequence fragments needs to intensify the context information of the TM domain for the oligomer prediction task. Hence, an improved k-mers treatment method was proposed to intensify the independence of every residue based on Global-Local Bi-LSTM bilayer structure.
GLTM consists of the data preprocessing module, local Bi-LSTM layer, global Bi-LSTM layer, and self-attention layer (Figure 1A). The first data preprocessing module used the random step selection approach to segment the original sequence and used improved one-hot encoding to represent these repeated expression residues. Standard one-hot encoding used independent binary vector dimensions to respectively represent twenty standard amino acids (Jing et al., 2020). The K length of local subsequences was converted to a k*20 binary vector by standard one-hot encoding. Our improvement strategy takes advantage of the LSTM network, memory cell of LSTM accepts previous output and cell states as input, and transmits current output and cell states to the next memory cell, this Bi-LSTM structure effectively utilizes sequence context information. Referred to the idea of one-hot encoding, two new binary vector dimensions were proposed to represent repeatedly residues information between contiguous windows, and two window states were appended in every local window to represent repetitious residues numbers. Therefore, the bidirectional feature extraction process preferentially accepted repetition residues information on the local Bi-LSTM layer, and original local subsequences were encoded to k+2*22 binary vectors (Figure 1B).
[image: Figure 1]FIGURE 1 | (A) GLTM model composed of data preprocessing module, local Bi-LSTM layer, global Bi-LSTM layer, and self-attention layer. After continuous twenty times prediction, the model chose the subsequence fragment that was predicted more than 10 times as potential motif. (B) Data preprocessing module used no-fixed step and improved one-hot encoding to encode original sequence fragment.
After the data preprocessing module finished subsequences encoding, the encoded vectors directly input into their corresponding local window in the local Bi-LSTM layer. The next global Bi-LSTM layer only accepted the final state output of every local window to extract oligomerization features. Significantly, the weight redistribution process of the self-attention mechanism was the most critical function to locate motif. In order to redress these false weight redistribution processes, new penalization terms were proposed and applied in the last self-attention layer.
Two Penalization Terms in Attentional Mechanism
The self-attention mechanism was widely applied in deep learning, and the redistributive weight of subsequence represented its importance degree for prediction results. Hence, in our motif localization model GLTM, the highest weight of local subsequence was regarded as the potential oligomer motif. When well-trained, GLTM had high prediction accuracy in recognizing dimer fragments. However, accurately locating motifs was always difficult in our previous experiments. This underlying problem, named shortcut learning, is a common deep learning symptom. Shortcut learning typically shows that the deep learning model usually chooses unintended features in prediction results without restricted conditions. Position penalization and self-focus penalization terms were proposed to reduce these fault localization of unintended subsequence patterns.
[image: image]
GLTM randomly chooses [image: image] local window numbers from each sequence fragment, and the feature number of a local window is set as [image: image] in each unidirectional. Global Bi-LSTM hidden state [image: image] is a weight matrix with a shape of [image: image]-by-[image: image]. The calculation of annotation vector [image: image] needs to set an arbitrary hyperparameter [image: image]. The weight matrix [image: image] is sized [image: image]-by-[image: image], and the matrix [image: image] has the shape [image: image]-by- [image: image]. The [image: image] ensures all elements of annotation vector [image: image] sum up to 1.
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The window position score vector [image: image] of these known dimer motifs was calculated in the data preprocessing module. Symbol [image: image] is an arbitrarily constant parameter, [image: image] represents the window center-positive of corresponding local subsequence, and [image: image] is the center of these known oligomer motifs.
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Self-focus penalization term enhances single-window weight by minimizing the disparity between [image: image] and an identity matrix. Position penalization is used to learn known motif distribution by minimizing the disparity between annotation vector [image: image] and window position score vector [image: image] for these known dimer motifs.
RESULTS AND DISCUSSION
Visualization Result of 26 Known Dimers
In order to verify our model performance, we visualized prediction results and localization results for these containing key residues sequences in Figure 2. Note that the same sequence fragment has hundreds of digital matrix representations in the encoding stage. GLTM chose the highest weight local subsequence as a predicted dimer motif when this sequence representation was predicted to dimers and repeated this process twenty times to obtain the more robust localization result. Three color regions were used to mark different localization degrees for the dimer motif, the blue region represents that a subsequence has been predicted to be a dimer motif, the orange region represents more than five predictions as a dimer motif. The subsequences with the most robust prediction result, predicted more than 10 times, comprise the red region. These key residues involved in known dimerization are signalled by a black underline.
[image: Figure 2]FIGURE 2 | Visualization result of 26 known dimers. True time represents the total true prediction number in twenty prediction results. Black solid line shows key residues for known dimerization process. Different levels of potential motifs have been labeled in red, orange, and blue, respectively. The red denotes to the most important residues in dimerization.
We show the prediction performance of GLTM with the different window size and number parameters in Table 1, and three evaluation indices were both more than 90% in all experiments. Most known key residues were steadily located in visualization results, in particular for the GxxxG motif of glycophorin A and YxxxxT motif of ζζ which belong to these overexpression subsequence patterns. Only mere unconventionality motifs were successfully located. It may cause by the scarcity of special dimer samples, and this guess was repeatedly verified in the following experiments.
TABLE 1 | Accuracy performance of the model with different window size and window number.
[image: Table 1]Effect of Two Penalization Terms
In previous experiments, we discovered these successfully located motifs lower than a quarter of the known key residues. In order to enhance the localization accuracy, we proposed two penalization terms to reduce mislocated subsequences, one was self-focus penalization, and the other was position penalization. The self-focus penalization was proposed to distinguish the critical local subsequence in the weight redistribution process. However, diversified oligomer motif localization only relied on self-focus penalization was insufficient. Position penalization was used to encourage the local window weight distribution to approximate the corresponding motif position distribution for these known dimer motifs.
In order to compare the localization performance with different penalization combinations, we showed the localization results of part known dimer sequences in Figure 3. Moreover, we drew the located subsequences position distribution of these dimer fragments and no-dimer fragments in Figure 4. Obviously, without self-focus penalization and position penalization, the located subsequence distribution for dimer fragment and no-dimer fragment had the same crest position. This means that the weight redistribution process focused on the specific position information rather than subsequence patterns. This tendency deviated from our oligomer motif localization principle. Two penalizations were both successfully reduced the unintended feature extraction for specific position information. However, part end-terminal subsequences were mislocated as potential motifs only with self-focus penalization. With self-focus and position penalization, GLTM reaches outstanding localization accuracy and stability in motif localization tasks.
[image: Figure 3]FIGURE 3 | Part localization results of GLTM with different penalization combination.
[image: Figure 4]FIGURE 4 | (A) The position distribution of located subsequences for dimer fragments. (B) The position distribution of high weight subsequences for no-dimer fragments.
Dimer Motif Localization of TNF Receptor Superfamily
The tumor necrosis factor receptors superfamily (TNFRSF) is one of the most important single-pass membrane protein families. Most TNF receptors are candidates for antibody-based immunotherapy. A recently growing number of studies showed some tumor necrosis factor receptors play an active role in receptor signaling. In driving signaling, dimerization is an essential process which participates in the assembly of higher-order structures (Pan et al., 2019). In recent dimerization research, part potential dimer motifs of TNFRSF were speculated by alignment of TNFRSF sequences from various organisms (Zhao et al., 2020). These speculated dimer motifs referenced to prior biological knowledge had high credibility.
In order to verify our motif localization performance in the TNFRSF dataset, these TM sequences of TNFRSF were collected from UniProt version 2020_10. In the prediction results, partial TM sequences were falsely predicted to dimerize, and these subsequences of high weight were also marked in Figure 5. False prediction results were caused by the whole hydrophobicity discrepancy between training samples. Moreover, we noticed the most speculated dimer motifs was the GxxxG motif for TNFRSF, the known subsequence patterns information of the polar residue and the leucine zippers influenced specific GxxxG motif localization in position penalization.
[image: Figure 5]FIGURE 5 | Different levels of potential motifs has been predicted and labeled in red, orange and blue, respectively. Red denotes to the core of the potential motifs. The speculative motifs generated by alignment of homologous species are marked by black solid line for comparison.
We designed contrast experiments to verify the localization effect of position penalization. We set three new training datasets that include the different known motifs’ information. The RA dataset included the information of the known GxxxG motif, the polar residue, and the leucine zippers. The RB dataset only utilized the information of the known GxxxG motif, and the RC dataset had the information of polar residue and leucine zippers. High position score subsequences were collected from the training set, and their residue occurrence frequency was calculated as the reference subsequences in Figure 6. The located subsequences represented the residue occurrence frequency for these located subsequences. Besides these originally richly “blue” residues, the position penalization enhanced the specific motif localization performance according to supplied motif information.
[image: Figure 6]FIGURE 6 | Three contrast experiments respectively used RA, RB, and RC training datasets which include different known motifs information. Corresponding reference subsequence represents the residues frequency of high window score subsequences. The located subsequence represents the frequency of 20 amino acid residues for all located subsequences.
The Influence of Sequence Context for Its Dimerization
Oligomer motifs were usually simplified as a helix-helix interactions paradigm, but more and more studies have certified that these subsequence frames cannot simply be regarded as a surrogate tool for oligomer state determination (Li et al., 2012). Other residues also influence helix-helix interactions besides oligomer motifs. For instance, the TM domain context highly determines the thermodynamic stability of TM helix-helix interactions than local GxxxG motif in glycophorin A (Bano-Polo et al., 2012). The SDS-PAGE analysis of glycophorin A mutants demonstrated that the C-terminal region residues were also important for their helix packing (Bano-Polo et al., 2012). Partial residues deletion and replacement will damage oligomerization to different degrees (Orzaez et al., 2000). Moreover, researchers guessed the distance between the dimerization motif and the flanking charged residues play a key role in the stability of TM helix-helix interactions. We chose 17 sequence fragments to research oligomerization based on previous residue mutation experiments of glycophorin A and ζζ. The first fifteen sequence fragments had confirmed their dimerization degree in previous biological experiments, and the dimerization interface of the last seven mutants was destroyed by residue replacement.
Most mutants of single hydrophobic residue replacement were predicted to dimerize in Figure 7. Although the prediction results of single residue mutants differ widely from the actual dimerization degree, other mutants were successfully predicted to not dimerize when the hydrophobic residues had been massively replaced. Significantly, the GxxxG motif and YxxxxT motif were stable when located in most mutants. This visualization results demonstrated that GLTM captured these overexpression subsequence patterns and considered sequence context information in oligomer prediction. Current experiments were limited in the lack of oligomer data. The motif localization model has broad application prospects in mutant oligomerization research with the rapid growth of sequencing data.
[image: Figure 7]FIGURE 7 | Visualization results of 17 mutants. The labels of first 11 mutants were confirmed in biological experiments, and the labels of last six mutants were speculated to be by their destroyed dimerization interface.
CONCLUSION
In this paper, we propose an attention-based Global-Local structure Bi-LSTM model named GLTM to locate potential dimer motif. The three main components of GLTM can be summarized as follows: The first component was data preprocessing module, this module improved one-hot encoding to achieve a new data enhancement approach of subsequence segmentation; The secondary global-local Bi-LSTM structure was proposed to respectively extract local subsequence patterns and global context features; Proposed position and self-focus penalization reduce these irrelevant subsequences localization in tertiary attention mechanism layer. GLTM successfully located the most known key residues in the established benchmark dataset. In comparative experiments, the visualization results demonstrated the effectiveness of our proposed position and self-focus penalization. Different from the oligomer motif discovery method, our motif localization model achieved end-end motif localization function without multiple homologous sequences alignment. More importantly, our motif localization model has broad application prospects in the research of mutant oligomerization.
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Long noncoding RNAs (lncRNAs) play important roles in a variety of biological processes. Knocking out or knocking down some lncRNA genes can lead to death or infertility. These lncRNAs are called essential lncRNAs. Identifying the essential lncRNA is of importance for complex disease diagnosis and treatments. However, experimental methods for identifying essential lncRNAs are always costly and time consuming. Therefore, computational methods can be considered as an alternative approach. We propose a method to identify essential lncRNAs by combining network centrality measures and lncRNA sequence information. By constructing a lncRNA-protein-protein interaction network, we measure the essentiality of lncRNAs from their role in the network and their sequence together. We name our method as the systematic gene importance index (SGII). As far as we can tell, this is the first attempt to identify essential lncRNAs by combining sequence and network information together. The results of our method indicated that essential lncRNAs have similar roles in the LPPI network as the essential coding genes in the PPI network. Another encouraging observation is that the network information can significantly boost the predictive performance of sequence-based method. All source code and dataset of SGII have been deposited in a GitHub repository (https://github.com/ninglolo/SGII).
Keywords: essential lncRNA, lncRNA-protein interaction network, protein-protein interaction network, network centrality, systematic method
INTRODUCTION
Long noncoding RNAs (lncRNAs) refer to non-coding RNAs with a length over 200 nt. LncRNAs play a major role in epigenetic control, cell differentiation, autophagy, apoptosis, and embryonic development (Mercer et al., 2009; Rinn and Chang, 2012; Chen, 2016). Many cellular processes are regulated by lncRNAs. For examples, RNA splicing, translation, and signal transductions are related to lncRNA regulations (Khalil and Rinn, 2011; Da Sacco et al., 2012; Zhu et al., 2013; Hu et al., 2017; Zhang et al., 2018, 2021; Li et al., 2019; Pyfrom et al., 2019; Zhao et al., 2020). In addition, lncRNAs are related to a variety of complex diseases, including cancers, nervous system diseases, and cardiovascular diseases (Fenoglio et al., 2013; Uchida and Dimmeler, 2015; Schmitt and Chang, 2016).
Knocking out or knocking down some lncRNA genes can lead to death or infertility. These lncRNAs are called essential lncRNAs, which are of vital importance for survival and development. Identification of essential lncRNAs provides insight into the minimum requirements of normal cell functioning and normal organism development. Experimental methods have been applied to identify essential lncRNAs. Li et al. established the single lncRNA knockout mouse model, as well as the multiple lncRNA knockout mouse model (Li and Chang, 2014). By large-scale phenotypic analysis, they found that knocking out lncRNAs, such as Fendrr, Peril, and Mdgt, showed perinatal and postpartum lethality (Li and Chang, 2014). Watanabe et al. found that Dnm3os has an essential role in the normal growth and bone development of mice (Watanabe et al., 2008). Zhou et al. proposed that Meg3 deletion in female rats can result in skeletal muscle defect and perinatal death (Zhou et al., 2012). These studies provide helpful insights for identifying essential lncRNAs. However, experimental methods for identifying essential lncRNA genes are not always feasible due to many factors, which may also produce misleading results (Jathar et al., 2017). Therefore, computational approaches are considered as alternative ways.
Computing essentiality of a coding gene has been widely studied. Most of the existing methods define the essentiality measures based on the topological importance of a protein in protein-protein interaction networks. Various types of centralities have been introduced in this regard. For example, Jeong et al. found that hub nodes with high connections in the protein-protein interaction (PPI) network are often indispensable, which allows them to use the degree centrality (DC) to identify essential proteins (Jeong et al., 2001). Joey et al. introduced the betweenness centrality (BC) to measure the essentiality of proteins, as they found that PPI network is modularized (Joy et al., 2005). Wang et al. used eigenvector centrality (EC) to predict essential proteins, which measures the importance of nodes by calculating the connection with high index nodes in the network (Wang et al., 2013). Wuchty et al. found that closeness centrality (CC) measure using local information is useful in predicting essential proteins (Wuchty and Stadler, 2003). Many more methods have tried to incorporate different types of information in predicting essential proteins (Li et al., 2012; Wang et al., 2012; Zhong et al., 2013; Campos et al., 2019; Zhang et al., 2020; Liu et al., 2021). However, these centrality measures are not always working, due to incomplete protein-protein networks and frequent false-positives in the high-throughput experiments for identifying protein-protein interactions. Therefore, sequence-based methods were also considered. Zeng et al. defined the Gene Importance Calculator (GIC) score using only genomic sequence information (Zeng et al., 2018). The GIC score was derived from a logistic regression model. It can score not only coding genes but also non-coding genes.
As far as we can tell, the GIC score is the only available essentiality measure that can be applied on non-coding genes, including lncRNA genes (Zeng et al., 2018). However, the design of the GIC score ignored all information that is buried in the lncRNA-protein interactions (LPI). We believe that the LPI information has a similar role in identifying essential lncRNAs to that of PPI in identifying essential coding genes.
With the development of high-throughput experimental technologies, many databases have been established for non-coding genes and their interactions. The NPInter database provides a comprehensive archive of molecular interactions involving noncoding RNAs(Hao et al., 2016). NONCODE database is an integrated knowledge database dedicated to non-coding RNAs and their annotations (Zhao et al., 2016). However, essential gene databases, like the DEG database, focus more on recording essential coding genes (Zhang et al., 2004). The essential non-coding genes are rarely recorded, particularly for complex organisms, like human and mouse. This is a primary challenge in developing a systematic method for measuring essentiality of non-coding genes.
By curating data from various literatures, as well as public databases, we established a dataset as the basis for developing a computational method to measure non-coding gene essentiality. In this work, we proposed the systematic gene importance index (SGII) by combining various centralities on the lncRNA-protein-protein heterogeneous network and sequence-based essentiality scores. By comparing our measure to both network-based methods and sequence-based method, we found that network information can boost the sequence-based method significantly.
MATERIALS AND METHODS
Dataset Curation
We downloaded human and mouse lncRNA-protein interactions from the NPInter database v4.0 (Hao et al., 2016). Self-interactions and duplicates were removed. The mouse lncRNA-protein interaction network involves 33255 lncRNAs, 182 proteins, and 102051 interactions. The human lncRNA-protein interaction network contains 41589 lncRNAs, 3237 proteins, and 394895 interactions. We downloaded human and mouse protein-protein interaction data from BioGrid database version 4.4 (Oughtred et al., 2021). The mouse protein-protein interaction network includes 9744 proteins and 52342 interactions. The human protein-protein interaction network includes 19106 proteins and 644235 interactions.
We combine the lncRNA-protein interactions and protein-protein interactions by matching the name of the proteins in both datasets, producing a heterogeneous network with two types of interactions. The mouse network was composed by 9845 proteins and 33255 lncRNAs with 102051 lncRNA-protein interactions and 52342 protein-protein interactions. The human network was composed by 19553 proteins and 41589 lncRNAs with 394895 lncRNA-protein interactions and 644235 protein-protein interactions. The sequences of all lncRNAs in both human and mouse interaction networks were obtained from the NONCODE database version 5 (Zhao et al., 2016).
According to literatures (Penny et al., 1996; Marahrens et al., 1997; Lee, 2000; Sado et al., 2001; Grote et al., 2013; Klattenhoff et al., 2013; Sauvageau et al., 2013; Yildirim et al., 2013; Zeng et al., 2018), eight mouse lncRNAs, including Xist, Gas5, Meg3, Tsix, Gt (ROSA) 26Sor, Dnm3os, Fendrr, and Braveheart, were identified as essential lncRNAs. The remaining 33247 lncRNAs in the mouse network were marked with unknown status. For human lncRNAs, we curated a set of lncRNAs that are reported to be essential in various conditions from literatures (Supplementary Table S1). This set contains 63 lncRNAs. The names of these lncRNAs and the conditions that they are reported to be essential, are listed in Supplementary Table S1, along with literatures of the original reports. In addition, 11 mouse lncRNAs, which are homologous of human essential lncRNAs, were also collected for validation purpose, as homologous usually have similar essentiality (Georgi et al., 2013).
Gene Importance Calculator
Gene Importance Calculator (GIC) (Zeng et al., 2018) is a useful essentiality indicator for both protein-coding genes and noncoding genes. It is based solely on sequence information. The GIC score (g) is defined as follows:
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where θ(p) is derived from a logistic regression model. θ(p) can be defined as
[image: image]
where α1, α2, …, α5, β0, β1 and β2 are regression coefficients, L the length of RNA sequence, e the minimum free energy of RNA secondary structure, p the conditional probability that a gene is essential, and fi the occurrence frequency of a triplet in the sequence. The five types of triplets, which are considered in the GIC, are CGA, GCG, TCG, ACG and TCA (Zeng et al., 2018).
When calculating the GIC score, we need to use the external program RNAfold (Lorenz et al., 2011), which requires a sequence length less than 20000 nt. Therefore, only 24450 mouse lncRNAs and 29481 human lncRNAs can be calculated for GIC. All other lncRNAs have lengths too long for the RNAfold to work.
Network Centralities
We formulate the heterogeneous graph as G = (V, E), where V is the set of all nodes, including lncRNAs and proteins, and E the set of all interactions, including lncRNA-protein and protein-protein interactions. Without losing generality, we note the number of all nodes as n. The network can be represented as an adjacency matrix A∈{0.1}n×n. The element on the ith row and the jth column of A can be denoted as ai,j. If ai,j = 1, the ith node and the jth node have interactions between them. If ai,j = 0, there is no interaction between the ith node and the jth node. Given ai,j, we can define four different centrality measures, including degree centrality (DC), betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EC) for each node in the network.
The degree centrality of the ith node can be defined as follows:
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The betweenness centrality of the ith node can be defined as follows:
[image: image]
where σu,v is the number of shortest paths between the uth node and the vth node, and σu,v(i) the number of shortest paths between the uth node and the vth node that pass the ith node.
The closeness centrality of the ith node is defined as follows:
[image: image]
where R(i) is the set of nodes that can reach the ith node, di,j the length of the shortest path between the ith node and the jth node, and |.| cardinal operator of a set.
The eigenvector centrality of the ith node is defined as follows:
[image: image]
where xmax(i) is the ith dimension of the normalized eigen vector x that corresponds to the largest eigen value of adjacency matrix A. Let λmax be the largest eigen value of A, the following relationships are satisfied in finding x:
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where ||.|| is the vector norm operator.
Systematic Gene Importance Index
Our network model contains two types of nodes, lncRNAs, and proteins. It also involves two types of interactions, the lncRNA-protein interactions and protein-protein interactions. Essentially, it is a lncRNA-protein-protein interaction (LPPI) heterogeneous network. Figure 1 illustrates a part of the LPPI network for human and mouse respectively.
[image: Figure 1]FIGURE 1 | A part of the LPPI network. (A) Human dataset. The network contains the lncRNA CRNDE and 14 interacting proteins; (B) Mouse dataset. The network contains the lncRNA Xist and 14 interacting proteins.
We propose the Systematic Gene Importance Index (SGII) as a comprehensive measure of gene essentiality, particularly for non-coding genes. SGII is a combination of the sequence-based GIC score and centrality measures, which have been elaborated as above.
For the ith node in the LPPI network, we compute its BC, CC, DC and EC, which can be noted as bi, ci, di and ei, respectively. Its GIC score is noted as gi. We sort all nodes according to their BC, CC, DC, EC and GIC in a descending order, respectively. The rank of the ith node after sorting according to BC, CC, DC, EC and GIC can be noted as rb(i), rc(i), rd(i), re(i) and rg(i), respectively.
Let si be the degree of the ith node, which can be computed as follows:
[image: image]
Given a threshold z, if si ≥ z, the centrality measures will determine the essentiality of a gene directly. For convenience, we define the centrality-based essentiality indicator function for the ith node according to BC, CC, DC, and EC respectively as follows:
[image: image]
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where k is a rank threshold parameter. The ith node is identified as essential when
[image: image]
is satisfied.
If si < z, we rely on the GIC score to determine the essentiality of a gene. Similarly, we can define the indicator function for GIC ranking, as follows:
[image: image]
where t is another rank threshold parameter. The ith node is essential if
[image: image]
is satisfied.
The whole flowchart of SGII is illustrated in Figure 2.
[image: Figure 2]FIGURE 2 | The flowchart of SGII. The method SGII consists of two parts. For lncRNAs whose degree is greater than or equal to z, four types of centralities were used to determine whether they were essential lncRNAs. For lncRNAs whose degree is less than z, GIC was used.
Performance Evaluation
In evaluating SGII, we use three statistics to describe its predictive performance. These statistics include sensitivity (s), false positive rate (r), and Fisher’s exact test score (f), which are defined as follows:
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where nt is the number of known essential lncRNAs that are identified as essential lncRNAs, n+ the total number known essential lncRNAs, nf the number of lncRNAs with unknown essentiality that are identified as essential, n- the total number of lncRNAs with unknown essentiality and p the p-value of Fisher’s exact test. Since SGII is a direct scoring method with manually configurable cutoff values, no training procedure is involved in the whole process. This is different to machine learning based methods. We cannot treat the above sensitivity and false positive rate as comparable to those in evaluating machine learning methods, as the knowledge of essential lncRNAs is too limited to perform any kind of cross-validations. This is also why we introduced the Fisher’s exact test to further quantifying the quality of our results. It will measure how likely a result in whole is random or not. The bigger f value is, the results are less likely to be random.
Parameter Calibration
There are eight parameters in the GIC, which represent all the coefficients in the model built by GIC method. We took all the parameter values from literature (Zeng et al., 2018). The values for the mouse model are β0 = 0.1625, β1 = 2.638 × 10–4, β2 = 2.194, α1 = 19.88 (for CGA), α2 = 37.59 (for GCG), α3 = 50.37 (for TCG), α4 = 35.44 (for ACG), and α5 = -64.66 (for TCA). The values for human model are β0 = 0.7417, β1 = 2.612 × 10–4, β2 = 4.295, α1 = 48.66, α2 = 15.64, α3 = 76.23, α4 = -1.113, and α5 = -60.29.
Three parameters are introduced in combining centralities and GIC, which are noted as z, k and t. We first perform a grid search of k and t with a given value of z. The pairs of k and t, which maximize the score f, are recorded for every different z. These values are further sorted to find the best z, k and t combination. When performing the grid search on the mouse dataset, k = 1, 3, 5, 7, 9, and t = 1, 3, 5, 7, 9. When performing the grid search on the human dataset, k = 5, 10, 15, 20, 25 and t = 5, 10, 15, 20, 25. For both datasets, z = 5, 10, 15, 20. Finally, we set z = 15, k = 5, t = 9 for mouse dataset, and z = 5, k = 20, t = 5 for human dataset. All results for different parameters are provided in supplementary materials, as Supplementary Table S2.
RESULTS AND DISCUSSIONS
Characters of the lncRNA-Protein-Protein Heterogeneous Network
We first explore the basic statistical characters of the LPPI network. We plot the degree distribution of the mouse and human network respectively in Figure 3. It is intuitively that the distribution of the degree follows the common power law distribution, which is similar to the PPI networks (Jeong et al., 2001). Since in the PPI network, essential proteins are usually rare and with high degrees, we assume that in our LPPI network, the essential lncRNAs have similar properties.
[image: Figure 3]FIGURE 3 | The degree distribution of lncRNAs in mouse network and human network, respectively. (A) The degree distribution of lncRNAs in mouse network; (B) The degree distribution of lncRNAs in human network. No protein-protein interaction is counted in producing these distributions.
As we have mentioned in the method section, several lncRNAs with a length too long to calculate its secondary structure were not counted in our analysis. It becomes a question whether these lncRNAs have preferences to large or small amounts of interactions. We plot the degree distribution with and without those over-length lncRNAs for mouse and human datasets, respectively, in Figure 4. It is hard to find differences on the degree distributions. We therefore believe that, for a lncRNA, its length alone is not a major contributing factor to its interactions in the LPPI network. This also implied that the essentiality, which we believe to be associated with local network structure, has no direct relationship with the length of the lncRNA. These over-length lncRNAs were kept in the network as dummy nodes, which means we did not compute their essentiality at all, regardless of whether they have a degree over the threshold or not.
[image: Figure 4]FIGURE 4 | The degree distribution of lncRNAs in mouse network and human network with and without over-length lncRNAs. (A) The degree distribution of lncRNAs in mouse network with over-length lncRNAs; (B) The degree distribution of lncRNAs in mouse network without over-length lncRNAs; (C) The degree distribution of lncRNAs in human network with over-length lncRNAs; (D) The degree distribution of lncRNAs in human network without over-length lncRNAs.
Integrating Centrality Measures and the GIC Score
Figure 5 gives scatter plots of GIC pairing with each of the four types of centralities on human and mouse datasets, respectively. For the mouse dataset, the red dots, which represent essential lncRNAs, tend to appear in the top-right part of the plots, while the blue dots, which denote all other lncRNAs, spread much wider. Although the red dots are relatively rare, but their top-right preference is still observable. For human dataset, this preference is not intuitively obvious.
[image: Figure 5]FIGURE 5 | The scatter plots of GIC pairing with each of the four types of centralities on mouse dataset and human dataset, respectively. (A) BC pairing with GIC on mouse dataset; (B) BC pairing with GIC on human dataset; (C) CC pairing with GIC on mouse dataset; (D) CC pairing with GIC on human dataset; (E) DC pairing with GIC on mouse dataset; (F) DC pairing with GIC on human dataset; (G) EC pairing with GIC on mouse dataset; (H) EC pairing with GIC on human dataset. Red dots represent known essential lncRNAs, while blue dots represented all others. When drawing panel (A), BC scores of mouse HOTAIR and Xist are too high to be plotted in the scope. Their (BC,GIC) values are (0.01.0.39) and (0.01.0.94). When drawing panel (B), NEAT1, MALAT1, U1 are too distant to other dots, so they cannot be reasonably plotted in the scope. Their (BC,GIC) values are (0.03.0.40), (0.01.0.43) and (0.005.0.54).
This allows us to carry out further quantitative analysis on combining the centrality measures and the GIC scores. A primary challenge is that the number of known essential lncRNAs is too small for a machine learning algorithm to train on. In addition, some essential lncRNAs are only involved in a very limited number of interactions. For example, the Braveheart (Bvht) lncRNA, which is essential, has only one interaction record in the database. We think this may be due to the incomprehensive knowledge of the lncRNA-protein interaction network. As the estimation of centrality measures highly rely on the interaction enrichment of a node in the network, when dealing with a lncRNA with limited number of interactions, we turn to rely on the GIC score.
With the settings in the method section, we combined four types of centrality measures and the GIC scores. On the mouse dataset, we identified 2284 essential lncRNAs from altogether 24450 lncRNAs. Among the 2284 lncRNAs, eight lncRNAs are known to be essential, accounting for 100% of all known essential lncRNAs, resulting a p-value = 5.73 × 10–9 (Fisher’s exact test). On the human dataset, we identified 5063 essential lncRNAs, from altogether 29481 lncRNAs, Among the 5063 essential lncRNAs, 41 lncRNAs are reported to be essential in various conditions in literatures, accounting for 65% of all curated essential lncRNAs (p-value = 3.59 × 10–17, Fisher’s exact test). This result clearly indicates that our method is effective to identify essential lncRNAs.
Systematic Comparison Between Different Configurations of SGII
As SGII is the first attempt to combine the network information and sequence information to identify essential lncRNAs, we explore which kind of centrality measure is more capable to identify essential lncRNAs along with the GIC scores. We first plot the distribution density of different centralities and the GIC scores on mouse and human datasets respectively. As in Figure 6, BC and DC centrality measures along with the GIC scores appear to have much better separation than the CC and EC measures on the mouse dataset, while on the human dataset, only BC and DC present an intuitive separation.
[image: Figure 6]FIGURE 6 | The distribution density of different centralities and the GIC scores on mouse dataset and human dataset respectively. (A) The distribution density of BC on mouse dataset; (B) The distribution density of BC on human dataset; (C) The distribution density of CC on mouse dataset; (D) The distribution density of CC on human dataset; (E) The distribution density of DC on mouse dataset; (F) The distribution density of DC on human dataset; (G) The distribution density of EC on mouse dataset; (H) The distribution density of EC on human dataset; (I) The distribution density of GIC on mouse dataset; (J) The distribution density of GIC on human dataset. The red bars represent known essential lncRNAs, while the blue bars for all others. The vertical axis for the red bars are on the right side of the panel, while blue on left. When drawing panel (A), BC scores of mouse HOTAIR and Xist are too high to be plotted in the scope. Their BC values are 0.01 and 0.01. When drawing panel (B), BC scores of human NEAT1, MALAT1, U1 are too far to be drawn in the scope. Their BC values are 0.03, 0.01 and 0.005.
However, considering the large differences on axis scale for essential lncRNAs and all lncRNAs, these intuitive observations may be misleading. Therefore, we performed a quantitative comparison using eight different conditions, GIC alone, GIC combined with each one of four types of centralities, GIC combined with BC and DC, GIC combined with CC and EC, and GIC combined with all four types of centralities. The parameters of all comparison are optimized as in method section (Table 1).
TABLE 1 | Comparison for different configurations of SGII on mouse and human datasets.
[image: Table 1]The first observation on Table 1 is that the best combination of centrality measure and the GIC is not the combination of all four types of centralities. For the mouse dataset, the BC + DC + GIC method has the best significance level and lowest FPR value. For the human dataset, the BC + GIC method reaches the highest significance level. A second to the best significance level is obtained again by BC + DC + GIC method, with the highest sensitivity value. Therefore, we think that the BC + DC + GIC may be a better way to identify essential lncRNAs than the current configuration of SGII. This consists with the impression from Figure 6. However, due to the limited number of available data and current results, it is possible that this observation does not reflect a comprehensive scene of identifying essential lncRNAs. Therefore, we keep the configuration of SGII to combine all four kinds of centralities and the GIC score, for an unbiased way of identifying essential lncRNAs.
Comparative Analysis Between Human and Mouse Essential lncRNAs
At a closer look to Table 1, it appears that the Fisher’s exact test reports much more significant results on both datasets when GIC is combined with centralities, which proves that integration of centrality measures and GIC is effective. Another observation is that SGII gives under-expected sensitivity values on the human dataset. However, the significance levels on the human dataset are generally way higher than that of the mouse dataset. This may be the results of two differences between the mouse and the human datasets. First, the human dataset is collected from literatures of lncRNAs in various conditions, including tumor cell line experiments. Essential lncRNAs, which are identified by one type of cell line experiments, may be different to those from the original essential gene definitions. As direct essential gene experiments on human are not feasible, the quality of the dataset is not comparable to the mouse dataset. This also applies to the coding gene data (Austin et al., 2004). Secondly, the number of essential lncRNAs in the human dataset is roughly eight times of that of mouse dataset. Since the computation process of the significance level is affected by the raw counts, it is anticipated that systematic differences on significance levels exist.
To further confirm the above explanations, we performed the following analysis. We find homologous genes of human essential lncRNAs in mouse. According to the studies in coding genes, these genes are likely to also produce essential lncRNAs(Georgi et al., 2013). Altogether 11 homologous genes in mouse were identified as lncRNA genes in the mouse LPPI network. We used SGII to test if we can identify these homolog essential lncRNAs (Table 2).
TABLE 2 | Performance analysis on mouse homologs to human essential lncRNAs.
[image: Table 2]Obviously, sensitivity is dropping in comparison to the mouse essential lncRNAs. However, it should be noted that the FPR is also dropping, which indicates much less false positives. The significance levels remain almost the same as the mouse essential lncRNAs. Again, the BC + GIC method obtained the best significance level, while the BC + DC + GIC method obtained a second to the best significance level with the highest sensitivity. This result confirmed that the significance level difference between human and mouse dataset is largely caused by the raw counts of the dataset. It also suggests that the BC + GIC or BC + DC + GIC method may be a better choice than combining all types of centralities and the GIC score.
The importance of BC can be understood intuitively. If we think the cellular system as a system composed of molecules. The interactions between molecules transfer information. A high BC value indicated that the node is critical as an information hub in many shortest paths between other nodes. Therefore, dropping such nodes will easily break many information channels simultaneously, which will eventually destroy the whole system. That makes it an essential node in the network.
For the DC measure, the intrinsic mechanism is similar. The DC measure is directly associated to the degree of a node. If a node with many edges is dropped, it is more likely that the whole network collapses. This consists with the observations in coding genes. In addition, although some other kinds of centralities, like the NC (new centrality) (Wang et al., 2012), can identify essential coding genes better, it does not work well in non-coding genes. This is an expected result. For NC to work in the LPPI network, it requires that dense interactions exist among the proteins that interacting the same lncRNAs. However, we did not observe this phenomenon in our dataset. The NC is difficult to be estimated for many lncRNAs, due to lacking such kind of interactions.
Functional Analysis of Essential lncRNA in the Mouse Genome
We took the essential lncRNA gene in mouse genome for functional analysis. For every lncRNA that was predicted as essential in mouse genome, we first map this lncRNA to the Ensembl database (Howe et al., 2021) using either gene name or sequence information. The mapped genes are then uploaded to the Gene Ontology online system for functional enrichment analysis. The top three enrichment of functions are “nucleic acid binding” (GO:0003676), “heterocyclic compound binding” (GO:1901363) and “organic cyclic compound binding” (GO:0097159). As we have mentioned, this is expected for lncRNAs. They realize their functions through bindings with other molecules.
CONCLUSION
SGII is the first attempt to combine lncRNA-protein interactions and lncRNA sequence information for identifying essential non-coding RNAs. Since the study on collecting and identifying essential coding genes has been performed for over a decade, it is time to step forward to the essentiality of non-coding genes, as non-coding genes are much more common than coding genes in mouse and human genomes. Due to the limited number of known essential lncRNAs, SGII does not use conventional machine learning algorithms, but applies simple scoring schemes and statistical tests. By combining BC, CC, DC, EC and GIC scores, SGII achieved a better performance than using only sequence information. Since the knowledge for constructing LPPI network may be incomprehensive, we applied the centrality measures only on those lncRNAs with enough interactions. For those lncRNAs with limited number of interactions, we turned to rely on its sequence to score the essentiality.
The results support our assumption that essential lncRNAs have similar roles as essential coding genes in the LPPI network. Particularly, we found that BC appears to be more important than other kinds of centrality measures. Due to the limited number of known essential lncRNAs, it is not feasible to explore further optimization of different weight on different centralities. When more essential lncRNAs are reported and recorded, we believe that modern machine learning algorithms will provide deeper insights in identifying essential non-coding genes. As a summary, we listed the prediction results of SGII on mouse and human datasets in Supplementary Table S3 in supplementary materials, which may be useful for life science studies. A more comprehensive collection of essential lncRNAs is being curated. We plan to establish a database that is dedicated in recording essential lncRNA information in future.
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Identification of Novel Biomarkers With Diagnostic Value and Immune Infiltration in Burn Injury
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Burn injury is an intractable problem in the field of surgery where screening relevant target genes and exploring pathological mechanisms through bioinformatic methods has become a necessity. Herein, we integrated three burn injury mRNA microarray datasets from the Gene Expression Omnibus database to analyze the hub differentially expressed genes (DEGs) between burn injury patient samples and healthy human samples; we conducted multiple functional enrichment analyses and constructed the protein–protein interaction (PPI) network. Finally, we evaluated the immune infiltration in the burn injury microenvironment. A total of 84 intersection DEGs (32 upregulated and 52 downregulated) were screened in burn injury patients via integrated analyses. Upregulated genes were primarily enriched in regulation of T cell activation, regulation of response to DNA damage stimulus, positive regulation of innate immune response, positive regulation of defense response. We also identified 10 hub genes from the PPI network (CCNB2, MYO10, TTK, POLQ, VASP, TIMP1, CDK16, MMP1, ZYX, and PKMYT1). Next, we found that 22 immune cells were substantially changed during the burn injury by CIBERSORT. In addition, we verified that VASP and POLQ are two novel diagnostic markers in burn processes with high diagnostic efficacy via immunohistochemistry. In summary, we identified several key genes involved in burn injury and provided a favorable basis for elucidating the molecular mechanisms of burn injury through comprehensive bioinformatic analysis.
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INTRODUCTION
Burn injury primarily refers to damage to tissues, including skin and mucous membranes, caused by heat. In some severe cases, it can also involve subcutaneous and submucosal tissues and even internal organs. According to statistics from the World Health Organization, approximately 300,000 people die from burn injuries worldwide every year (Roshangar et al., 2019). In particular, the healing of a deep burn injury is a complex process involving multiple factors and an intractable problem in the surgical field (Gerber et al., 2019). Burn injury not only damages the cells, tissues, and blood vessels but also affects the release of various growth factors and cytokines. Severe burns may be accompanied by insufficient blood supply, severe infections, and even sepsis, which will seriously prolong the wound healing time. In addition, a burn injury usually requires long-term treatment and multiple reconstructive surgical operations, which may cause irreversible damage to the patient’s mental health. Studies have shown that burn patients often show a tendency of depression and require long-term psychological treatment, which seriously affects their life quality (Smolle et al., 2017).
Currently, bioinformatic analysis is an important tool for analyzing the expression data and screening for target genes in many diseases. The full use of gene detection technology and bioinformatics will effectively explore the mechanism of various diseases, including burn injury. Numerous studies have revealed that there are many gene expression changes at different stages of burn injury (Fang et al., 2020). A strong immune and stress response disorder is one of the most important features in the early stage of burn injury, and many studies indicate that the high-mobility group box protein 1, a nuclear protein, is increased in burn injury patients, which is due to it passive release from damaged cells (Lantos et al., 2010). In the repair stage, various molecules are involved in scar formation. Transforming growth factor β1 (TGF-β1) can mediate fibrosis of wounds and form hypertrophic scars after burning; Smad7 can negatively regulate the TGF-β1/Smad pathway, thereby preventing fibrosis mediated by TGF-β1 (Zhang et al., 2020). Molecular changes can also be observed in some serious burn complications. Cystic fibrosis transmembrane conductance regulator and downstream signaling were critical in modulating the gut ischemia and hypoxia post severe burn, which resulted in sepsis and multiple organ failure (Liu et al., 2020).
Most burn injury–related studies use single microarrays or mouse microarrays (Gao et al., 2016; Zou et al., 2017). However, key differentially expressed genes (DEGs) and biological pathways identified in these burn injury studies present a high false-positive rate in a single microarray and a low level of evidence for mouse microarrays, limiting the accuracy of the results. Further comprehensive analysis is needed to identify the key molecular markers and diagnostic targets. This study integrates three burn injury mRNA microarray datasets from the Gene Expression Omnibus (GEO) database to analyze the hub DEGs between burn injury patients and healthy human samples. We conducted multiple functional enrichment analyses and constructed a protein–protein interaction (PPI) network; finally, we explored the immune infiltration in the burn injury microenvironment and we verified that VASP and POLQ are two novel diagnostic markers in burn processes with high diagnostic efficacy via immunohistochemistry. Our study aimed to identify several key genes involved in burn injury and provide a favorable basis for elucidating its underlying molecular mechanisms.
MATERIALS AND METHODS
Data Source and Differential Expression Analysis
We downloaded three microarray datasets of burn injury tissue and normal tissue from the GEO dataset1 for further analysis (GSE8056, GSE19743, GSE37069) (Barrett et al., 2013). Next, we performed principal component analysis (PCA) and differential expression analysis (Ringnér, 2008). We divided the data into two groups: the burn injury group and the normal group and used the R package “limma” to analyze datasets and screen out DEGs (Ritchie et al., 2015). Thresholds of |log2FC| > 1.0 and an adjusted p-value < 0.05 were selected.
Functional Enrichment Analysis
Metascape2 is a powerful online tool for analyzing gene function annotation (Zhou et al., 2019) and provides gene enrichment analysis and PPI network analyses. This tool was used to analyze the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In addition, a series of analyses were performed in the DisGeNET database (Piñero et al., 2017), Trrust database (Han et al., 2018), and PaGenbase database (Pan et al., 2013).
Construction of PPI Network
The STRING database3 is a practical online tool that can be used to construct PPI networks (Szklarczyk et al., 2015). Since the upregulated DEGs were highly enriched in functions and pathways that are closely related to burn injury and immune response, all the upregulated DEGs were included in the database for analysis, and the interaction threshold was set to 0.4. The Cytoscape software was used for visualization (Doncheva et al., 2019), and CytoHubba was used to analyze hub genes in the network (Chin et al., 2014). In the PPI network, we screened 10 hub genes, and correlation was shown by different shades of colors.
Gene Set Enrichment Analysis (GSEA)
To identify the signal transduction pathways that were differentially activated between the burn injury group and the normal group, we selected an ordered list of genes through the “limma” R package and then performed a gene set enrichment analysis.
Expression Level and Receiver Operating Characteristic (ROC) Curves of Top 10 Hub Genes.
We analyzed the expression levels of 10 hub genes in burn injury and normal tissues in the GSE37069 dataset and constructed a columnar scatter plot. In addition, using the package “pROC” to perform the ROC analysis (Robin et al., 2011), the specificity and sensitivity of each gene were obtained, and the area under the curve (AUC) of each hub gene was calculated.
CIBERSORT
CIBERSORT4 can enumerate cell type composition in gene expression data through deconvolution algorithm, and it has been used to evaluate immune cell infiltration in many diseases, estimated abundances of immunocytes had been assessed by 22 given kinds of immunocytes accompanying with 1,000 permutations. Then, the immune cell matrix was visualized by the R package of “ggplot2”. Finally, we constructed the correlation heatmap for visualizing the correlation of infiltrating immune cells by “corrplot” package.
Patient Tissue Specimens
Fifteen clinical samples were obtained from the Chinese Han population from 2020 to 2021. This study was approved by the Ethics Committee of Foshan First People’s Hospital (AF-SOP-20-1.4-0). All subjects provided written informed consent, in accordance with the Declaration of Helsinki.
Immunohistochemistry (IHC) Staining and Histologic Scoring
Paraffin-embedded tissues were sectioned at 4 μm for IHC analysis. Antigen retrieval was performed by incubating the samples in citrate buffer (pH 6.0) for 15 min. After blocking with a mixture of methanol and 0.75% hydrogen peroxide, sections were incubated overnight with primary antibody (VASP, Signalway Antibody, 1:100; POLQ, Signalway Antibody, 1:50), followed by incubation with a secondary antibody conjugated with horseradish peroxidase (goat anti-rabbit, 1:500, Cell Signaling Technology). Sections were washed three times with phosphate-buffered saline and incubated with diaminobenzidine. The process of histologic scoring and analysis was as described in our previous study (Zhou et al., 2021).
RESULTS
Differential Expression Analysis Results
We obtained three datasets (GSE8056, GSE19743, GSE37069) from the GEO database, including 779 samples (676 burn patients and 103 healthy controls). PCA revealed that burn patients and healthy control samples in the three datasets showed a significantly different gene expression profile (Figures 1A–C). Next, we separately conducted a differential expression analysis of the three datasets and analyzed their intersection. Finally, 32 upregulated and 52 downregulated DEGs were obtained (Figures 1D,E). In addition, volcano maps of DEGs and heatmaps of important DEGs are displayed in Figure 2.
[image: Figure 1]FIGURE 1 | Principal component analysis and Venn plots of DEGs. (A) PCA results of GSE8056 dataset; (B) PCA results of GSE19743 dataset; (C) PCA results of GSE37069 dataset; (D) Venn plot of upregulated DEGs; (E) Venn plot of downregulated DEGs.
[image: Figure 2]FIGURE 2 | Differential expression analysis in three datasets. (A) The gene expression heatmap of important DEGs in the GSE8056 dataset; (B) the volcano plot of the differential expression analysis in the GSE8056 dataset; (C) the gene expression heatmap of important DEGs in the GSE19743 dataset; (D) volcano plot of differential expression analysis in GSE19743 dataset; (E) the gene expression heatmap of important DEGs in the GSE37069 dataset; (F) volcano plot of differential expression analysis in GSE37069 dataset.
Functional Enrichment Analysis
According to the results of GO, the upregulated DEGs were primarily enriched in regulation of T cell activation, regulation of response to DNA damage stimulus, positive regulation of innate immune response, positive regulation of defense response, positive regulation of cell-cell adhesion, positive regulation of apoptotic signaling pathway, neutrophil activation involved in immune response, myeloid cell activation involved in immune response, mitotic cell cycle phase transition, leukocyte degranulation, leukocyte activation involved in immune response, extracellular matrix disassembly, cellular component disassembly (Figures 3A,B). In addition, the upregulated DEGs were primarily enriched in pathways in cancer, Fc gamma R-mediated phagocytosis, and cell cycle (Figure 3C). In the Reactome database, neutrophil degranulation, signaling by interleukins and extracellular matrix organization are some important pathways (Figure 3D). The GO of downregulated DEGs were primarily enriched in tumor necrosis factor production, response to nutrient, cellular response to external stimulus, regulation of chemokine production, regulation of cellular response to stress, positive regulation of transferase activity, positive regulation of protein kinase activity (Figures 3E,F).
[image: Figure 3]FIGURE 3 | Analysis results of functional enrichment. (A,B) GO analysis of up-regulated DEGs; (C) enrichment analysis of the KEGG of up-regulated DEGs; (D) enrichment analysis of the REACTOME pathway of up-regulated DEGs; (E,F) GO analysis of down-regulated DEGs.
In addition, the analysis results of a series of databases are shown in Figure 4, PaGenBase database analysis showed that upregulated genes were mainly enriched in the cardiac myocytes (cell-specific), bone marrow, and spleen (tissue-specific). TRRUST database analysis uncovered STAT3, RELA, TP53, and NF-κB1 to be the main transcription factors regulating the upregulated genes. Besides, DisGeNET database disease enrichment analysis demonstrated that the upregulated genes were associated with carcinoma of larynx, gingivitis, malignant neoplasm of larynx. Compared with the downregulated DEGs, the upregulated genes were more involved in immune-related functions, which may be closely related to the stress and immune responses triggered by the burn injury.
[image: Figure 4]FIGURE 4 | Comprehensive database analysis. (A,B) Biological functions of upregulated genes analyzed through Metascape database; (C) tissue and cell characteristics of upregulated genes in PaGenBase database; (D) enrichment of transcriptional regulators of upregulated genes in TRRUST database; (E) DisGeNET database enrichment analysis of diseases involving upregulated genes; (F,G) Biological functions of downregulated genes analyzed through Metascape database; (H) DisGeNET database enrichment analysis of diseases involving downregulated genes; (I) enrichment of transcriptional regulators of downregulated genes in TRRUST database.
PPI Network and Hub Genes
Based on our previous findings, we constructed a PPI network of upregulated genes by Cytoscape software and we analyzed this network (Figures 5A,B). Finally, using the CytoHubba to analyze hub genes, we identified 10 genes with the highest scores (CCNB2, MYO10, TTK, POLQ, VASP, TIMP1, CDK16, MMP1, ZYX, and PKMYT1) (Figure 5C). We suggest that these 10 genes are hub genes in the PPI network, and play an important role in the basic pathological process of burn injury, with the potential to serve as important markers in burn injury.
[image: Figure 5]FIGURE 5 | PPI network of upregulated DEGs and hub genes. (A,B) PPI network of up-regulation DEGs; (C) identified hub genes by CytoHubba.
GSEA
Twenty important KEGG pathways were identified in the GSEA, including 10 pathways that were positively related to key genes, and 10 pathways that were negatively related key genes, including the following important pathways: P53 signaling pathway, purine metabolism, VEGF signaling pathway, vascular smooth muscle contraction, complement and coagulation cascades, focal adhesion, oocyte meiosis, cell cycle, ECM receptor interaction, progesterone mediated oocyte maturation (positively correlated) (Figures 6A–J). Leishmania infection, cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), B cell receptor signaling pathway, apoptosis, antigen processing and presentation, T cell receptor signaling pathway, ribosome, primary immunodeficiency, natural killer cell mediated cytotoxicity (negatively correlated) (Figure 6K-T). These results suggest that hub genes may be involved in these signaling pathways and have important effects on burn injury.
[image: Figure 6]FIGURE 6 | GSEA enrichment analysis. (A-J) 10 positively correlated pathways in burn injury; (K-T) 10 negatively correlated pathways in burn injury.
Expression Level and ROC Curves of Top 10 Hub Genes
In the analysis of the expression level of hub genes, we found that burn tissues were significantly upregulated compared with normal tissues. Among them, CDK16 and ZYX were upregulated with p < 0.001, CCNB2, TTK, POLQ, MYO10, MMP1, TIMP1, VASP, and PKMYT1 with p < 0.0001 (Figure 7). The high expression of hub genes may be involved in the progression and basic pathological process of burns. In addition, the ROC curves were constructed based on the acquired sensitivity and specificity, thus we can judge the diagnostic ability of each gene. The AUC of all hub genes reached 0.68 (Figure 8).
[image: Figure 7]FIGURE 7 |  (A–J) Comparison of the expression levels of 10 hub genes between normal and burn injury groups.
[image: Figure 8]FIGURE 8 |  (A–J) Receiver operating characteristic curves of 10 hub genes in PPI network.
Infiltrating Immune Cells and Histologic Scoring in Burn Injury
Based on the results of the immune infiltration analysis on the GSE37069, GSE8056, and GSE19743 datasets, we constructed a heatmap of immune cell expression for each dataset (Figures 9A–C). In addition, we constructed the correlation heatmap for visualizing the correlation of infiltrating immune cells and some hub genes (Figure 9D). Compared with normal tissues, burn injury tissues have a high expression of a variety of immune cells, which indicates that burn-injured tissues have a complex immune infiltration in the pathological process, and multiple cells work together to form, develop, and repair burn injury through the inflammatory process. Since all 10 hub genes have good diagnostic values, we selected two genes with AUC >0.9 for further validation. Finally, we evaluated the expression of VASP and POLQ, the IHC staining results demonstrated that VASP and POLQ were highly expressed in the burn injury tissues (Figure 10).
[image: Figure 9]FIGURE 9 | Immune infiltration analysis in the three datasets. (A) The expression heatmap of 22 immune cells in GSE37069; (B) the expression heatmap of 22 immune cells in GSE8056; (C) the expression heatmap of 22 immune cells in GSE19743; (D) correlation heatmap of immune cells in burn injury.
[image: Figure 10]FIGURE 10 | Immunohistochemistry staining and histologic scoring. IHC staining demonstrated that VASP (A) and POLQ (B) showed high expression; (C) results of histologic scoring and analysis.
DISCUSSION
Burn injury is common in daily life and may affect anyone, it is characterized by high morbidity and mortality (Jeschke et al., 2020). The main characteristics of burns are abnormal activation of the immune function, uncontrolled inflammation, metabolic changes, and infections (Sood et al., 2016; Stanojcic et al., 2018). These challenges may be unpredictable and may lead to organ failure and sepsis in patients (Church et al., 2006; Tejiram et al., 2019). Burn injuries require prompt treatment at the very early stages to reduce the possibility of irreversible consequences. However, the key molecules and functional alterations leading to this process are largely unknown; therefore, the identification of early biomarkers is needed to inhibit the worsening of the inflammatory response and promote wound healing in the early stage. We conducted a comprehensive bioinformatic analysis on a cohort of 676 burn patients and 103 healthy controls and identified 84 DEGs in the burn injury group (32 upregulated and 52 downregulated). The results of the enrichment analysis and GSEA showed that these genes are closely related to immune response, inflammation, stress, and immune cell activation. In addition, the top 10 burn-related genes identified in the PPI network showed similar functional characteristics and diagnostic values for burn injuries.
First, we identified 84 DEGs in the three GEO datasets. Biological process enrichment was performed and revealed that it was primarily enriched in the metabolic process, regulation of cell death, regulation of immune response, regulation of defense responses, regulation of leukocyte activation, and regulation of other innate immune responses in the burn injury. Biological responses, such as innate immune responses and metabolic processes, have been identified to play a vital role in burn injury (Lord et al., 2014; Williams and Herndon, 2017). Moreover, the upregulated DEGs were enriched in the cell cycle and neutrophil degranulation. Studies have reported that neutrophil degranulation plays a central role in the early stages of burn injury. To prevent endotoxemia and systematic inflammation response, the neutrophils are recruited to the site of inflammation by a mass of cytokines, and they kill pathogens through phagocytosis and degranulation (Walsh et al., 2000; Yu and Sun, 2020). The downregulated genes were primarily enriched in the regulation of cellular responses to stress, regulation of kinase activity, and regulation of transferase activity. This process is closely associated with the breakdown of proteins and a highly catabolic state after burn injury (Wise et al., 2019), thus the pathological basis of burns may be caused by a variety of potential pathways. Various factors, including genomics, oxidative stress, and immune dysfunction, play an important role in its progression, which indicates that immune inhibitors may be an important treatment for burn injury.
We identified 10 hub genes from the PPI network (CCNB2, MYO10, TTK, POLQ, VASP, TIMP1, CDK16, MMP1, ZYX, and PKMYT1), which are associated with the underlying pathological mechanism of burn injury and can be regarded as important target genes; future research should focus on these genes and explore their role in burn injury. However, the mechanisms underlying burn injury are largely unclear. To clarify the potential functions of burn-related genes, we performed GSEA of the hub genes. We found that some pathways are activated in burn injury, such as the VEGF signaling pathway, vascular smooth muscle contraction, complement and coagulation cascades, B cell receptor signaling pathway, and T cell receptor signaling. Most burn injuries usually present vascular destruction, and studies have shown that VEGFA/VEGFR2 signal transduction pathway may be involved in vascular reconstruction (Duchesne et al., 2019); at this time, the increase of proteins related to angiogenesis is more conducive to vascular remodeling (Demirci et al., 2015). Inflammation is another problem that cannot be ignored after a burn injury. Usually, in trauma, the interaction of the complement and coagulation systems provides the first line of defense against pathogens entering the body. Studies have shown that activation of the complement cascade is related to thrombosis and multiple organ failure. Meanwhile, it is often believed that there is an interaction between the coagulation system and complement system in sepsis (Oikonomopoulou et al., 2012), especially in severe burn injury cases.
Burn injuries are accompanied by immune and inflammatory responses. Burn injury not only cause damage to the skin tissue, but also cause immune system disorders due to the lack of barriers (Boldeanu et al., 2020), and immune dysfunction after burn injury leads to disordered signaling pathways in various cells. Burn injury can trigger early and severe pro-inflammatory CD4+ T cell responses in the immune system, suggesting that the injury may be a signal of CD4+ T cell activation. In addition, it also includes the upregulation of pro-inflammatory cytokines (TNF-α, interleukin-1β, and IL-6) and other processes (Purcell et al., 2006; Abbas et al., 2018). Of note, progesterone mediated oocyte metabolism was also observed in GSEA, a series of endocrine reactions occur after burn injury, in which almost all known hormones are involved (Ballian et al., 2010). Using CIBERSORT, we explored the correlation of burn injury and 22 infiltration immune cell types and we found that 22 immune-infiltration cells were significantly changed during the injury process. The immune infiltration level can be drastically altered during this process, especially in B cells and T cells. We found that there is an upregulation of eosinophils and naive B cells in GSE8056, which is consistent with previous research that reported that elderly patients have eosinophil infiltration in the early stage of burn wound healing (Ringnér, 2008). Identifying the changes in immune cells is important for clarifying the mechanism of wound formation and development in burn injuries.
Moreover, in the present study, we analyzed the diagnostic utility of 10 hub genes, and the ROC revealed that most of the genes showed promising diagnostic value. The AUC curves of the nine hub genes were reached 0.70. In particular, vasodilator-stimulated phosphoprotein (VASP) and DNA polymerase theta (POLQ) both showed excellent discriminative power in detecting burn injury in skin tissue. However, the relationship between VASP and POLQ and its mechanism in burn injury has not yet been investigated. VASP is a cytoskeletal effector protein that plays an important role in immunity and is related to motility, adhesion, and sensory capacity in many cells (Kwiatkowski et al., 2003). POLQ is a central modulator in the repair of double-strand breaks from external pressure (Higgins et al., 2010), although the physiological functions associated with this protein are not yet fully understood, we speculate that this protein may be involved in the complex cellular stress process of burn injury. Based on the above considerations, these genes might play an important role in burn injury and have the potential to be used as diagnostic biomarkers in the future. Therefore, it is necessary to conduct further analyses to evaluate the effects of these genes.
Although this study is the first to explore the pathogenesis of burn injury by integrated bioinformatics analysis, it still presents some limitations and shortcomings. The data in the database are still relatively limited and incomplete. Due to the lack of clinical information, we could not perform further stratified analysis of patients based on relevant clinical characteristics. Future research should focus on additional in vivo and in vitro experiments to clarify the role of hub genes and their underlying mechanisms.
In conclusion, this study explored the underlying molecular mechanisms of burn injury by comprehensive bioinformatic analysis, and we also identified 10 hub genes with excellent diagnostic value through enrichment analysis, PPI network and ROC curves, this study is crucial for elucidating biological mechanisms and exploring related molecular targets in burn injury.
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Cell–cell interaction event (CCEs) dysregulation may relate to the heterogeneity of the tumor microenvironment (TME) and would affect therapeutic responses and clinical outcomes. To reveal the alteration of the immune microenvironment in bone marrow from a healthy state to multiple myeloma (MM), scRNA-seq data of the four states, including healthy state normal bone marrow (NBM) and three disease states (MGUS, SMM, and MM), were collected for analysis. With immune microenvironment reconstruction, the cell types, including NK cells, CD8+ T cells, and CD4+ T cells, with a higher percentage in disease states were associated with prognosis of MM patients. Furthermore, CCEs were annotated and dysregulated CCEs were identified. The number of CCEs were significantly changed between disease states and NBM. The dysregulated CCEs participated in regulation of immune cell proliferation and immune response, such as MIF-TNFRSF14 interacted between early B cells and CD8+ T cells. Moreover, CCE genes related to drug response, including bortezomib and melphalan, provide candidate therapeutic markers for MM treatment. Furthermore, MM patients were separated into three risk groups based on the CCE prognostic signature. Immunoregulation-related differentiation and activation of CD4+ T cells corresponded to the progression status with moderate risk. These results provide a comprehensive understanding of the critical role of intercellular communication in the immune microenvironment over the evolution of premalignant MM, which is related to the tumorigenesis and progression of MM, which moreover, suggests a way of potential target selection for clinical intervention.
Keywords: single-cell RNA-seq, multiple myeloma, immune microenvironment, cell-cell interaction, immunoregulation
INTRODUCTION
Multiple myeloma (MM) is a common, genetically heterogeneous, and incurable cancer (Palumbo and Anderson, 2011). MM is the second largest hematological malignancy (Hagen and Stiff, 2019), which is mainly characterized by the malignant proliferation of plasma cells in the bone marrow (BM). There are two precursor stages of MM, including monoclonal gammopathy of unknown significance (MGUS) and smoldering MM (SMM) (Rajkumar, 2019). The proportion of patients in the MGUS and SMM stages who develop into MM is about 1% and 10% each year (Dhodapkar, 2016). During patient progression from normal BM (NBM)–MGUS–SMM–MM, early immune changes are demonstrated (Zavidij et al., 2020). The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system (Perrin et al., 2021). Systematically uncovering the alterations of the immune TME, especially intercellular communications in immunoregulation, may improve the efficacy of immunotherapy.
Recent studies on MM reveal the important role of immune TME. Compared with healthy control samples, MM patients were proved to have heterogeneous immune TME (Ledergor et al., 2018). Poorly characterized disease heterogeneity hampers early diagnosis of MM and treatment improvement. Natural killer (NK) cells were found increased in the precursor states of MM, associated with the changes of the chemokine receptors’ expression (Zavidij et al., 2020). Chemokine receptors are a important receptor family in cell-to-cell interaction of TME. Cell communication-related ligand and receptors, including VEGF, TNF, play crucial roles in the growth, survival, and dissemination of malignant plasma cells in patients of MM (Jasrotia et al., 2020). Further studies are needed to uncover the landscapes of cell interaction alteration from precursor states to MM, aiming to reveal the molecular mechanism between disease progression.
In this study, scRNA-seq data of samples in healthy and precursor disease states to MM, including NBM, MGUS, SMM, and MM, were integrated to reconstruct the immune microenvironment related to MM. The percentage of immune cell types, including NK, CD8+ T, and CD4+ T cells, were analyzed and associated with the prognosis of MM patients. Cell-to-cell communication events between immune cells were then annotated. The CCE changes between different pathological states were analyzed. The dysregulated CCEs were defined and selected in our work, their function annotated, and drug relation investigated when available. Disease state–specific CCE-based interaction networks were constructed. Finally, a cell interaction–based prognostic signature was constructed to stratify the MM patients. The changed cell interaction may result in the immunosuppressive microenvironment related to tumorigenesis and progression of MM. Cellular interaction genes could be candidate markers or drug targets for MM precision treatment. Our study provides a bioinformatics workflow of analyzing cell-to-cell interactions in scRNA-seq data for the interpretation of precision medicine research.
MATERIALS AND METHODS
Data Collection
Aiming to reveal the microenvironment alterations associated with MM tumorigenesis, scRNA-seq data were collected from Gene Expression Omnibus (GEO). The GEO data set GSE124310 (Zavidij et al., 2020), including single-cell transcriptome profiles of samples from NBM, MGUS, SMM, and MM were downloaded. The sequencing libraries were constructed using the 10X genomics platform. Cellranger (v.2.0.1), the single-cell software suite from the 10X Genomics platform was used for alignment and counting analysis with the reference genome (hg38). The matrix generated by cellranger was downloaded. Further, bulk RNA-seq data for MM samples from MMRF were downloaded from the GDC data portal.
Single Cell RNA-Seq Data Analysis
Seurat (Version 3.1.1) (Stuart et al., 2019) was mainly used for scRNA-seq data integration and downstream analysis. The quality of cells were then evaluated based on three metrics, cells with percent. mt < 20%, gene number >200 and <2500, and genes expressed in fewer than three cells were filtered. The data was integrated by IntegrateData function to eliminate the batch effect. Then, 30 principal components (PCs) were used for dimensional reduction and cell clustering. The resolution parameter was 0.5. Cluster specific markers were identified by FindAllMarkers and FindMarkers functions. The R package SingleR (Aran et al., 2019) was performed for cell type annotation.
Cell–Cell Interaction Analysis
Aiming to reveal the CCEs among different cell types and compare the difference between MM and the precursor stages, cellphoneDB (Version 2.1.5) (Efremova et al., 2020) was applied. The interaction pairs with p-value < .05 were reserved as significant CCEs. Fisher’s exact test was performed to identify CCE enriched cell types. Here, to define dysregulated CCEs in our work, according to the annotation in cellphoneDB, the expression of interacting pairs were calculated by formula 1. Then, we defined the CCE fold change (formula 2), and the CCE with the absolute value of fold change >0.25 refers to this CCE being differentially interacted and dysregulated in two pathological states. Further, the genes in CCE were separated as ligand and receptor for further functional investigation. The genes annotated as the “True” receptor in the interacting pair were set as receptors interacted in the CCE. The “False” one was set as ligand. Ligand-derived cell types were treated as regulatory cells (source cell types), and the receptor-derived cell types as regulated cells (target cell types). Functional enrichment analysis was performed to reveal the alteration of biological processes and pathways in target cells.
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Immune Cell Infiltration in Microenvironment
CIBERSORT (Newman et al., 2015) and ImmuCellAI (Miao et al., 2020) were performed to estimate immune infiltrates with transcriptome profiles of MM patients. MM samples from MMRF with tissue source as “Primary Blood Derived Cancer—Bone Marrow” were analyzed in this study. There are 22 infiltrated immune cell types predicted by CIBERSORT. Whereas, by ImmuCellAI, 24 immune cell types, mainly including 18 T cell subtypes, were predicted. The patients are split into two groups according to the infiltrated proportion of the immune cells. The number of patients in the smaller group should be greater than 20% of all patients. The Kaplan–Meier survival plot (KM-plot) was applied to compare the two cohorts, and the log-rank p-value are calculated. The infiltrated immune cells with log-rank p-value < .05 were associated with MM patients’ progression. Further, univariable Cox regression analysis was performed to identified progression-related infiltrated immune cell types, too.
Cancer Drug Response Prediction
The Cancer Treatment Response gene signature DataBase (CTR-DB) was used for cancer drug response prediction. Genes involved in cellular communications were used as input. The AUC >0.7 and the AUC-adjusted p value <.05 were set as the thresholds for genes that can be used for drug response prediction. The expression of genes in the response and nonresponse groups were shown with a box plot. The ROC was also plotted.
CCE-Based Prognosis Signature Construction
The genes function in cell interactions were used to constructed CCE-based prognosis signature. According to the results of univariable Cox regression analysis, genes with p-value < .05 were identified as significance associated with MM progression (overall survival, OS). Aiming to establish a robust prognostic signature, the transcriptome profiles of 763 samples in MMRF were separated as a training set (457 samples, about 60%) and test set (306 samples, about 40%). Furthermore, multivariable Cox regression analyses were performed with significant progression-related genes in the training set. The Akaike information criterion (AIC) statistic was used to select a model with function step in R packages stats. There are seven CCE genes retained in this study. The risk score was constructed based on the gene expression and the corresponding regression coefficients as follows:
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[image: image] denotes the coefficient of [image: image] and [image: image] represents the ith marker gene in the prognostic model. To graphically exhibit the prognostic outcomes, samples were separated into three groups, including the high, moderate, and low risk groups. KM survival curves were generated then. The signature was validated in the test set.
Statistical Analysis and Functional Enrichment Analysis
Functional enrichment analysis was performed with genes by clusterProfiler (Version 3.10.1) (Yu et al., 2012) in R. Enriched terms were kept with adjusted p-value <.05. Protein–protein interactions (PPIs) were annotated by STRING database (Version 11.0) (Szklarczyk et al., 2019). PPIs with a combined score ≥0.7 were reserved for next step analysis. Cytoscape (Version 3.7.2) (Shannon et al., 2003) was used to construct the CCE-based gene interaction network. Gene set enrichment analysis (GSEA, Version 4.1.0) was performed to identify enriched terms in different risk groups. All the statistical analyses in this study were calculated in R (Version 4.0.3) and Python (Version 3.7.7). Figures were plotted by the corresponding R package or by ggplot2 (Version 3.1.1) in R.
RESULTS
Immune Microenvironment Reconstruction Based on scRNA-Seq
After quality control, there are about 25,000 cells from 32 samples reserved for immune microenvironment (IME) reconstruction. According to the expression patterns, the cells were clustered into 16 cell groups (Supplementary Tables S1, S2). There are 10 cell subtypes (Figures 1A–C). The proportion of cell subtypes in the samples were compared to identify the difference in immune environment in the four states (Figure 1D). Early B cells and plasmacytoid dendritic cells had significantly high proportions in NBM compared with the disease status (Wilcox test, p-value < .05). The early B cells seemed to be gradient increasing in MGUS-SMM-MM while NK, CD4+ T, and CD8+ T cells were found to have significantly higher proportion in disease status than in NBM. The CD8+ T cells have a higher proportion in MGUS samples, higher than SMM and MM, showing a gradual downward trend. The median proportion of CD8+T cells in MM was higher than that in NBM.
[image: Figure 1]FIGURE 1 | Diverse cell types in MM and precursor stages delineated by single-cell RNA-seq analysis. The UMAP plot demonstrates cell types (A), main cell subtypes (B), and cells’ source in the clusters (C). Boxplot of the cells with significant proportion change in the four stages (D).
Infiltrated Immune Cell Proportion Changes Related to MM Progression
To reveal the role of proportionally changed immune cells in MM IME, the infiltrated immune cells of MM samples were estimated with the transcriptome profiles. There are 22 immune cell types predicted by CIBERSORT (Figure 2A) and 24 immune cell types predicted by ImmuCellAI. The plasma cells and memory B cells were found to have higher proportions in MM tissues, consistent with MM being a bone marrow plasma cell malignancy disease. The infiltration of 10 cell types resulted in the CIBERSORT prediction, including plasma, naive CD4+ T, and activated NK cells, which are significantly related to the prognosis (Figure 2C, Supplementary Figure S2). Among the infiltrated immune cell types predicted by ImmuCellAI, 14 cell types, mainly T cell subtypes, are significantly related to the prognosis (Figures 2B,D–F, Supplementary Figure S3, Supplementary Table S3). The cell types with different proportions in MM precursor states, including B, plasma, dendritic, CD8+T, naive CD4+T, and activated NK cells, are significantly related to the prognosis (p-value <.05). Among them, MM patients with the high infiltrating proportion of CD8+ T cells have a higher survival probability (p-value < .01), which is consistent with CD8+ T cells participating in cellular immunity to eliminate tumor cells and slow down the development of the disease. This suggests that alternations in the immune microenvironment play an important role in the occurrence and development of diseases and are related to the prognosis of patients.
[image: Figure 2]FIGURE 2 | Infiltrated immune cells in MM associated with patients’ prognosis. Boxplot of the infiltrated immune cells (A); KM-plot of the cells with infiltrated score predicted by CIBERSORT and ImmuCellAI (B–F).
Immunoregulation Alteration in MM and Precursor Related to Tumorigenesis and Drug Response
Aiming to reveal the functional roles of immune cells in disease progression, CCEs between immune cells were annotated. There are 330 significant interaction events in NBM, 349 in MGUS, 372 in SMM, and 477 in MM (Figure 3A, Supplementary Figure S4, Supplementary Table S4). Monocytes were found with more CCEs in the immune microenvironment. To clarify whether there are significant differences in the number of interaction events under different interaction conditions, a contingency table is set up to perform Fisher’s exact test for data involving the number of CCEs and the number of other CCEs under different pathological conditions (Figure 3B).
[image: Figure 3]FIGURE 3 | CCEs in MM and precursor stages annotated with CellPhoneDB. The Circos plot for the CCEs of immune cell interaction in MM TME (A): the outside and inside circles represent the percentage and the count of CCEs, separately. The three-tiered ring from outside in represents the total CCEs of this cell type, the CCEs when the cells are regulated cell types, and the CCEs when the cells as regulatory cells. The input for Fisher’s exact test in the analysis (B). The results of Fisher’s exact test when we calculated the CCEs of each cell types [color bar means log2 (odds ratio)] (C). The results of CCEs in target cells when the target cell interacted with another cell type (D). Dysregulated CCEs interacted in EarlyB-CD8T (E). The boxplot for TNFRSNF14 in the response and nonresponse groups of melphalan (F) and the ROC for drug response prediction of melphalan (G) in CTR-DB; The KM-plot of TNFRSNF14 and MIF in GDC MMRF (H).
First, we compared the cell interaction events of different cell types in the IME. The CD8+ T cells were with more CCEs in MGUS (Figure 3C) than in NBM (p-value < .05), SMM (p-value < .05), and MM (p-value < .1). It is consistent with the high proportion of CD8+ T cells (higher median) in the MGUS samples. Although the difference of the proportion of CD8+ T cells in the three pathological states are not at a significant level, there is a significant decrease of CCEs. The cell interaction event alterations may relate to the cell ratio changes. For CD4+ T cells and NK cells with higher cell proportion in pathological states, no significantly more CCEs were detected. DC cells were found with more CCEs in SMM, significantly more than MGUS and MM (p-value < .05).
Next, we analyzed the CCE alteration of the cells treated as the target cell type. When CD8+ T cells were targeted by early B cells (EarlyB_CD8T), CCEs in MM, SMM, and NBM are significantly more than MGUS (Figure 3D). Dysregulated CCEs were identified (refer to the methods section) then. MIF-TNFRSF14 was differentially interacted both in SMM and MM (Figure 3E), whereas elevated expression of MIF, a pro-inflammatory cytokine (Alibashe-Ahmed et al., 2019) and an oncogene (Yao et al., 2021), was associated with stronger suppression of T-cell proliferation (Zhang et al., 2017). The TNFRSF14 gene encodes a member of the tumor necrosis factor (TNF) receptor superfamily, which plays a role in the signal transduction pathway that activates inflammatory and inhibitory T-cell immune response. TNFRSF14 was identified as a marker for drug response prediction of melphalan in melanoma (Figures 3F,G, Supplementary Table S5) (Liu et al., 2021), and melphalan was used as the first line of therapy for MM patients in MMRF. The expression of MIF and TNFRSF14 were found associated with MM patients’ progression from MMRF (KM-plot, log-rank p-value < .05, Figure 3H). Therefore, the dysregulated CCE MIF-TNFRSF14 may imply a drug response mechanism.
Furthermore, the CCEs, including LCK_CD8 receptor and CD58_CD2, were found differentially interacted in MM, specifically. LCK is a proto-oncogene, a member of the Src family of protein tyrosine kinases (PTK), and the protein encoded by it is a key signal molecule for the selection and maturation of developing T cells. CD2 interacts with the lymphocyte function-related antigen CD58 (LFA-3), participating in mediation of adhesion between T cells and other cell types. CD2 is related to the triggering of T cells, and its cytoplasmic domain is related to signal transduction functions. Similarly, there are specific cell interaction events in the interaction of other cell types (Supplementary Figure S5).
Disease State–Specific Interaction Network Construction Based on CCE
The receptor and ligand genes involved in cell interactions in the IME under different pathophysiological conditions were integrated to construct the progression-related gene interaction network of NBM–MGUS–SMM–MM (Supplementary Figures S6–S8). A total of 115 receptor or ligand genes are used to construct a PPI network. Pathological state–specific ligand and receptor genes and associated genes were extracted to show the key interaction relationships while in MGUS, CTLA4 and CD86 were uniquely identified and with a higher degree in the network (Figure 4A). Binding of the CD86 encoding protein with cytotoxic T-lymphocyte-associated protein 4 (CTLA4) negatively regulates T-cell activation and diminishes the immune response (Tekguc et al., 2021). CD86 is involved in the regulation of B cell function, playing a role in regulating the level of IgG produced (Lanier et al., 1995). CD52, an approved nontherapeutic target for MM (Touzeau et al., 2017), is the unique gene in SMM immunoregulation (Figure 4B). HGF is the unique hub gene in the immune-interaction network of MM (Figure 4C). The HGF, which can regulate cell growth, cell motility, and morphogenesis in a variety of cell and tissue types, plays an important role in angiogenesis, tumor formation, and tissue regeneration.
[image: Figure 4]FIGURE 4 | PPI network constructed with key ligand and receptor genes of CCEs. The MGUS-specific network (A). The SMM-specific network (B). The MM-specific network (C). Enriched GO BP terms and KEGG pathways as gain or loss functions in comparison of MM to SMM (D,E), SMM to MGUS (F,G), and MGUS to NBM (H,I).
To clarify the functional alteration related to pathological state gradient change in NBM–MGUS–SMM–MM, the receptor genes in differentially interacted CCEs were functionally annotated and enriched (Figures 4D–I, Supplementary Figure S9). In the comparison between MM and SMM, the receptor genes in the upregulated CCEs are significantly enriched in osteoclast differentiation, B cell receptor signaling pathway, and lymphocyte activation. Compared with the upregulated CCE in MGUS, SMM has a higher enrichment ratio in the hematopoietic cell lineage, and is significantly enriched in positive regulation of lymphocyte activation and monocyte proliferation. Compared with NBM, MGUS is significantly enriched in the NF-kappa B signaling pathway, B cell receptor signaling pathway, viral protein and cytokine, and its receptor interaction. The osteoclast differentiation pathway is significantly enriched with a higher gene ratio in MM than in SMM, MGUS, and NBM. This is consistent with MM patients with osteolytic changes, such as bone pain, osteoporosis, pathological fractures, and other pathological symptoms. The NF-kappa B signaling pathway has a higher gene ratio in MGUS (NBM < MGUS > SMM > MM). It plays an important role in the regulation of immune responses, such as infection, and its dysfunction has an important relationship with the occurrence of diseases, such as inflammation and cancer (Hoesel and Schmid, 2013; Vrábel et al., 2019).
CCE-Based Prognosis Signature Construction
OS-related genes in MM patients were identified by univariate Cox regression analysis first. There are 3153 genes (FDR <0.05) reserved for functional annotation. The significantly enriched pathways and terms (Supplementary Figure S10), including cell cycle, DNA replication, mismatch repair, and DNA replication, were associated with tumorigenesis and progression of cancers. Genome instability increasing the tendency of genome changes is a sign of cancer, including MM (Alagpulinsa et al., 2020).
The ligand and receptor genes significantly associated with MM progression remained. The OS-related CCE genes were used as input features to construct the model. After feature selection, seven genes (CD38/ALOX5/TGFBR3/ICAM3/ANXA1/ALCAM/PECAM1) were finally involved in MM prognostic model construction (Figure 5A). According to the predicted scoring of the model, patients can be divided into three groups, including high, low, and medium risk groups. The OS time of patients in the three risk groups is significantly different (median OS time is 18.43, 26.17, and 30.00 months, p-value <.001) (Figure 5B). Whereas, in the test set, the prognosis of the three groups of patients was significantly different (p-value < .01) (Figure 5C). Assessment of model accuracy, 3-year AUC for the training set was 0.735 and the value for the test set was 0.667 (Figure 5D).
[image: Figure 5]FIGURE 5 | Construction of the prognosis model based on the CCE genes in TME. The forest plot of the seven genes in the model (A), KM estimates of OS of MM patients in the training data set (B) and in the test data set (C). Based on the seven-gene signature, patients were divided into three risk groups according to risk score; the receiver operating characteristic (ROC) curve for OS survival predictions for the signature in training set and test set (D).
GSEA analysis was performed on the three risk groups. Compared with the medium and low risk groups, the pathways including cell cycle and P53 signal pathway were significantly enriched in the high-risk group (Figure 6). The enriched pathways are similar to prognostic-related pathways. The NOTCH signaling pathway and complement and coagulation cascades signaling pathway were with higher enrichment score in the medium risk group than in the low risk group (Supplementary Figure S11). In addition, the activation and differentiation of CD4+ T cells and the differentiation of T-Helper 2 cells were significantly enriched in MM, too. The activation of the Notch signaling pathway affects the biological functions of myeloma cells in MM and promotes the reprogramming of stromal cells in the BM, supporting the growth and survival of tumor cells (Colombo et al., 2020). CD4+ T cells in MM can induce effective antitumor immune responses by interacting with antigen-presenting cells in the tumor microenvironment (Haabeth et al., 2020).
[image: Figure 6]FIGURE 6 | The results of GSEA analysis for comparison of high and low risk groups. Enriched KEGG pathways (A) and GO BP terms (B) in the high risk group.
DISCUSSION
By profiling transcriptomics data of thousands of cells, scRNA-seq make it easy to study the cellular heterogeneity of the TME and the cellular communication alteration. Cellular communication is critical to coordinating diverse biological processes, such as development, differentiation, programmed cell death, and inflammation (Efremova et al., 2020; Jin et al., 2021). This study aims to investigate how the context-dependent crosstalk of different cell types enables physiological processes to proceed from precursor states to MM.
Currently, in our study, the transcriptional level sequencing data of immune cells from precursor states and MM were collected and analyzed. The study on cell communication dysregulation in the IME provides a new perspective for understanding the pathogenesis development. Cells, including early B, NK, CD8+ T, and CD4+ T cells, had different proportions from samples in disease states compared with NBM. The changed cell types participated in cellular immunity and immunoregulation of IME and were associated with MM progression. We identified differentially interacted cell types then. CD8+ T cells in MGUS had significantly more CCEs than in NBM, SMM, and MM, whereas the proportion of CD8+ T cells in disease states was not significantly different. Furthermore, the ligand-receptor interacting pair MIF-TNFRSF14 were identified interacted between early B and CD8+ T cells in SMM and MM. The expression of MIF was associated with stronger suppression of T-cell proliferation (Zhang et al., 2017). MIF induces the expression of CD84, which is a regulator of the immunosuppressive microenvironment in MM (Lewinsky et al., 2021). The TNFRSF14 is the marker for the drug response prediction of melphalan (Liu et al., 2021), which was used in the first line of therapy of MM (Buda et al., 2021). Thus, the dysregulated CCEs participating in IME regulation in the tumorigenesis of MM may proceed to the immune cell proportion change.
Furthermore, the disease state–specific immune interaction network was extracted to illustrate the mechanism of IME dysregulation. The unique hub gene HGF is associated with MM-induced bone disease by promoting osteoclast formation (Tsubaki et al., 2020). Furthermore, Met and NF-κB inhibitors, including bortezomib (BTZ), which is usually used for MM treatment, may also potentially mitigate MM-induced bone disease in patients expressing high levels of HGF by inhibiting osteoclast formation (Tsubaki et al., 2020). In summary, the different interacted CCEs were associated with disease development and might affect therapeutic responses and clinical outcomes of MM. A seven-gene MM prognosis prediction signature based on dysregulated CCE was constructed, which can be applied successfully for prognostic stratification in MM. The model exhibits good enough prediction ability. This suggests again the important role of cellular interaction in the development of MM. Future studies are needed to explore the precision treatment of MM patients stratified by the cellular interaction signature to improve the prognosis.
In conclusion, our comprehensive characterization of cells at the single level from different states from NBM–MGUS–SMM–MM revealed the cell composition nature and cellular communication pattern in the IME. Alteration of cellular communications between immune cell types were associated with the disease phenotype and clinical behavior. It may be indicative of surveillance for the alteration from NBM to MM. The IME in precursor states may accelerate tumorigenesis of MM. The genes involved in cellular communication such as TNFRSF14 and HGF related to drug response might serve as therapeutic markers in MM.
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As a multifaceted syndrome, sepsis leads to high risk of death worldwide. It is difficult to be intervened due to insufficient biomarkers and potential targets. The reason is that regulatory mechanisms during sepsis are poorly understood. In this study, expression profiles of sepsis from GSE134347 were integrated to construct gene interaction network through weighted gene co-expression network analysis (WGCNA). R package DiffCorr was utilized to evaluate differential correlations and identify significant differences between sepsis and healthy tissues. As a result, twenty-six modules were detected in the network, among which blue and darkred modules exhibited the most significant associations with sepsis. Finally, we identified some novel genes with opposite correlations including ZNF366, ZMYND11, SVIP and UBE2H. Further biological analysis revealed their promising roles in sepsis management. Hence, differential correlations-based algorithm was firstly established for the discovery of appealing regulators in sepsis.
Keywords: WGCNA, differential correlation, regulatory network, biological analysis, sepsis
INTRODUCTION
Sepsis and septic shock with subsequent multi-organ failure contribute to the leading causes of death among patients in adult intensive care unit (ICU), which are due to massive inflammatory responses to infection (Abe et al., 2020; Markwart et al., 2020). The incidence of sepsis is approximately 20 million cases each year with 30–50% high mortality in the United States (Fleischmann et al., 2016). Advances in understanding pathophysiology of sepsis reveal that it occurs not only with inflammation-related responses but also modifications in non-immunological pathways (Rello et al., 2017; Yu et al., 2021). Despite great improvement in surgery, pharmacological approaches and serum biomarkers including procalcitonin (PCT), C-reactive protein (CRP), lactate and cell-free DNA has been made in initial detection and therapy of sepsis, the incidence and mortality rates are still rising rapidly due to complexity of sepsis and lack of targeted drugs (Povoa et al., 2005; Saukkonen et al., 2008; Riedel et al., 2011; Rhee et al., 2015). Thus, novel risk genes and related regulatory networks need to be identified to illustrate sepsis etiology and direct researchers to develop effective therapeutic strategies.
Accumulating studies have used transcriptome data comprised of cellular components contents between disease and healthy tissues to decipher potential molecular mechanisms of sepsis (Zhang et al., 2020a; Fang et al., 2021; Yu et al., 2021). Meanwhile, most of these studies incorporated differentially expressed genes and gene correlation data to explore gene interaction networks, followed by enrichment analysis to clarify function of unknown genes (Balamuth et al., 2020; Zhai et al., 2020; Zhang et al., 2020b). Nevertheless, the biggest limitation is that the observed gene correlations may be redundant because they appeared in both two states, adding difficulties in the discovery of true causative genes. The solution to this problem comes to the identification of differential correlations referring to alterations of correlated patterns under different conditions (Ideker and Krogan, 2012; Li et al., 2015; Zhou et al., 2021). Currently, differential correlations in sepsis have been poorly understood, hence it is in urgent need to orchestrate network dynamics for identifying novel candidate genes.
Here, an in silico framework was proposed to identify hub genes with differential correlations in sepsis (Figure 1A). First, the networks of gene expression were constructed using weighted gene co-expression network analysis (WGCNA), which found correlated genes based on gene connectivity and formed gene modules (Ghazalpour et al., 2006; Yang et al., 2018). Twenty-six modules were detected in the network, among which blue and darkred modules exhibited the most significant associations with sepsis. Next, differential correlations of genes in these two modules were calculated and significant differences between sepsis and healthy tissues utilizing R package DiffCorr were identified. Finally, we identified some novel genes including ZNF366, ZMYND11, SVIP and UBE2H. Further biological analysis revealed their promising roles in sepsis management.
[image: Figure 1]FIGURE 1 | Clustering dendrogram of sepsis and healthy tissues. (A) The workflow of this study. (B) Clustering dendrogram of 156 patients with sepsis and 82 healthy subjects and trait heatmap. (C) The relationship between soft threshold (power) and network properties. Left panel: The relationship between soft-threshold (power) and scale-free topology. Right panel: The relationship between soft threshold (power) and mean connectivity.
METHODS
Sepsis Expression Profiles
The HTA2.0 microarray data of 156 patients with sepsis and 82 healthy subjects was downloaded from GEO with primary data accession number GSE134347 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE134347). Patient characteristics were described in (Scicluna et al., 2020).
Co-Expression Network Construction
Screening of correlated gene pairs was performed by an R package WGCNA (Langfelder and Horvath, 2008). And step-by-step calculation was as follows:
Step 1 The Pearson correlation coefficient between gene Xi and Xj was calculated, and matrix X was converted into the correlation matrix S between genes:
[image: image]
Step 2 Weighted adjacency matrix aij was constructed and suitable soft-threshold power β was selected:
[image: image]
Step 3 The degree of separation of nodes was calculated. The adjacency matrix is converted into unsigned topological overlap matrix (TOM) to calculate degree of intergenic dissimilarity (Zhang and Horvath, 2005), based on which genes were distributed in different modules:
[image: image]
In the above formula, lij represented the sum of product of adjacency coefficients of all common adjacent genes of gene i and j. aij represented the adjacency coefficient between gene i and j. ki represented synthesis of adjacency coefficients of gene i with all neighboring nodes. If TOMij was 0, it meant that gene i and j were isolated and not connected to all other genes. If TOMij was 1, it meant that these two genes were adjacent to all surrounding genes and were also connected to each other. In other words, TOM represented the similarity of genes, so the dissimilarity between genes could be calculated:
[image: image]
Step 4 DistTOMij was used for hierarchical clustering, and genes were divided into different co-expression modules (Li and Horvath, 2007). WGCNA adopted Dynamic Tree Cut Method to construct the cluster tree, which was a top-down merging algorithm. Through iteration and decomposition of gene clusters, stable gene clusters were eventually achieved (Langfelder et al., 2008). Here, the minimum module size was set as 30 to identify modules and draw dendrogram.
Step 5 Identify trait-related modules. Herein, trait was defined as disease. We defined gene significance (GS) as relationship between gene expression levels and disease. Moreover, module membership (MM) represented the degree of relationship between module feature genes and disease. The higher MM represented the higher correlation between modules and disease. At last, we identified two modules most relevant to disease. One module exhibited positive correlation and another negative correlation.
Differential Correlation Evaluation
R package DiffCorr was utilized for the visualization and identification of differential correlations in biological networks. This package was based on Fisher’s z-test and details were explained in (Fukushima, 2013; Zhou et al., 2021).
Gene Enrichment Analysis
R package clusterProfiler was implemented to conduct enrichment analysis of clustered genes in blue and darkred modules. We used a hypergeometric distribution test for the classification of enrichment terms. And p values were adjusted by false discovery rate (FDR) method, the cutoff of which was set to be 0.05 (Yu et al., 2012).
Gene Network Visualization
Cytoscape (3.9.0) was used to realize visualization of networks (Doncheva et al., 2019).
Statistical Analysis
We applied Student’s t-test to identify genes differentially expressed between sepsis and healthy samples. p values were adjusted by the Benjamini–Hochberg method (Hochberg and Benjamini, 1990). Differentially expressed genes were defined as adjusted p value less than 0.05. We employed Fisher’s z-test to evaluate differential correlations of gene pairs between sepsis and healthy patients. And lfdr less than 0.05 was regarded as significant differential correlations.
RESULTS AND DISCUSSION
Co-Expression Network Construction
Pearson’s correlation coefficient was applied to cluster samples from GSE134347. After removing outliers, a sample clustering tree was drawn (Figure 1B). Co-expression network was constructed from 25,245 coding and non-coding genes through WGCNA approach. We set soft-thresholding power five for satisfying scale-free topology of network, in which the corresponding R2 was 0.81 (Figure 1C). And we detected twenty-six modules in the network, as shown in a cluster dendrogram (Supplementary Material S1). The members in each module were listed in Supplementary Material S2. Apart from the grey module consisted of many un-classified members, orange module contained the minimum 33 genes, while the maximum 10,821 genes were included in turquoise module.
Next, we quantified module-trait associations (Figure 2), in which the blue and darkred modules exhibited the most significant associations with sepsis. The corresponding correlation coefficients of blue and darkred modules were 0.88 (p = 2 × 10–78) and −0.77 (p = 2 × 10–48), respectively. In addition, GS and MM analysis demonstrated that genes highly significantly associated with sepsis were also the most crucial factors of modules associated with sepsis (Supplementary Material S3).
[image: Figure 2]FIGURE 2 | Identification of modules associated with the clinical traits of sepsis. Heatmap of the correlation between the module eigengenes and clinical traits of sepsis. All genes were clustered into twenty-six modules, of which each was labeled with one color.
Module Genes Enrichment
Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these two modules were performed. As shown in Figure 3A, genes in the blue module were significantly enriched in ncRNA metabolic process, Herpes simplex virus 1 infection, and Th17 cell differentiation. Notably, as a less well studied subset of CD4+ Th cells, reduced Th17 cell responses have been observed in sepsis on account of low expression levels of involved transcription factors, bringing about increased susceptibility of patients to secondary fungal infections (Monneret et al., 2011; Hotchkiss et al., 2013). Our study provided additional evidence on the pivotal roles of Th17 cell function in sepsis. As shown in Figure 3B, genes in the darkred module were enriched in neutrophil activation involved in immune response and neutrophil degranulation. Consistent with previous studies, abnormal behaviors of neutrophil including delayed apoptosis have been witnessed during the early stage of sepsis (Drifte et al., 2013). Meanwhile, the most severely reduced neutrophil function has been investigated in patients with the highest risk of acquiring nosocomial infections (Nedeva, 2021), bestowing the importance of neutrophil responses on sepsis occurrence and progression.
[image: Figure 3]FIGURE 3 | Functional enrichment analysis of genes in the blue and darkred modules. (A) Left panel: GO analysis showed top ten enriched biological processes in blue module. Right panel: KEGG analysis showed top ten enriched pathways in blue module. (B) Left panel: GO analysis showed top ten enriched biological processes in darkred module. Right panel: KEGG analysis showed top ten enriched pathways in darkred module.
Differential Correlations Identification
We further chose genes in the blue and darkred modules to estimate differential correlations, which were grouped based on expression patterns in each subtype (sepsis or healthy) under the cluster. molecule function of DiffCorr package. We utilized (1-correlation coefficient) as a distance measure based on cutree function. Two functions named get. eigen.molecule and get. eigen.molecule.graph were applied for module networks visualization (Figure 4). The comp.2. cc.fdr function offered the resultant pair-wise differential correlations among blue and darkred modules.
[image: Figure 4]FIGURE 4 | Module networks. The blue (A) and darkred (B) module networks from GSE134347 were shown. Each node represented one module. Each edge represented module correlation.
R package DiffCorr also identified oppositely correlated pairs. For example, two genes positively correlated in sepsis tissues and negatively correlated in healthy tissues, or vice versa. These switched gene pairs were worthy noticed for their crucial roles in understanding molecular mechanisms in the progression of sepsis. Totally one hundred and seventy-four oppositely correlated gene pairs from the blue module and forty-nine from the darkred module were obtained (Supplementary Material S4), whose interaction networks were presented in Figure 5. The top ten significant differentially correlated gene pairs between sepsis and healthy tissues from blue and darkred modules were shown in Table 1.
[image: Figure 5]FIGURE 5 | Differential co-expressed gene networks in the blue (A) and darkred (B) modules from GSE134347. Each node represented one gene. Each edge represented correlation between two genes, in which red meant positive correlation and green negative correlation. The thicker edge represented the stronger correlation coefficient.
TABLE 1 | Top ten significant differentially correlated gene pairs from blue and darkred modules between healthy and sepsis tissues.
[image: Table 1]Biological Analysis of Hub Genes With Differential Correlations
Lastly, we focused on four hub genes acting as master regulators due to possessing most links with other genes. Zinc finger protein 366 (ZNF366), also known as DC-SCRIPT, belongs to the zinc ring finger protein family and has recently been reported to regulate dendritic cell development (Søndergaard et al., 2015; Wang et al., 2018). ZNF366 has been shown to suppress toll like receptor-mediated expression of IL-10 through modulating NF-κBp65 activation (Søndergaard et al., 2015). Decreased numbers and disabilities of dendritic cells have been widely observed in sepsis followed by immune responses alterations (Roquilly and Villadangos, 2015; Venet and Monneret, 2017; Wang et al., 2020). Additionally, sepsis-induced dendritic cell blockade has been reported to prevent mice from sepsis-induced death (Meng et al., 2017). We also observed its elevated levels in sepsis compared to healthy samples (Figure 6A). Given the great importance of ZNF366 in coordinating dendritic cell function, our study expanded its roles in sepsis progression which needed further validations.
[image: Figure 6]FIGURE 6 | The expression levels of ZNF366 (A), ZMYND11(B), SVIP (C) and UBE2H (D) in sepsis and healthy samples from GSE134347. These four hub genes were all differentially expressed. ***p < 0.001.
Another zinc finger protein that takes the central position in the differentially co-expressed gene network is MYND-type containing 11 (ZMYND11), which is the negative regulator of NF-κB signaling and vastly impacts the replication of various viruses including Hendra virus and Epstein-Barr virus (Ikeda et al., 2010; Stewart et al., 2013). As previously described, numerous patients with sepsis witnessed the activation of NF-κB pathway initiated by pathogen-associated molecular pattern or danger-associated molecular pattern, emphasizing its great contributions during sepsis (Hayden et al., 2006; Chen et al., 2019; Wang et al., 2019). In line with it, significant lower levels of ZMYND11were detected in sepsis than healthy samples (Figure 6B). Also, impaired NF-kB activation has been correlated with sepsis-induced acute lung injury (Chen et al., 2021). Thus, it could be inferred that ZMYND11 participated in sepsis progression through NF-κB signaling and further mechanisms needed to be explored.
Small p97/VCP-interacting protein (SVIP), localized to the ER membrane by myristoylation, is highly expressed in central nervous system and related to autophagy modulation (Wu et al., 2013; Jia et al., 2019). Further mechanisms have demonstrated that overexpression of SVIP protected hepatocytes from the toxicity of CCL4 through enhancing LC3 lipidation and activating autophagy (Jia et al., 2019). Prior studies have also found its essential roles in lysosomal dynamic stability and autophagosomal-lysosomal fusion (Johnson et al., 2021). Autophagy dysregulation has been observed in organ injury induced by sepsis, in which autophagy exerted vital effects on programmed cell death pathway and inflammation (Lo et al., 2013; Qiu et al., 2018; Zhao et al., 2019). Meanwhile, animal experiments have endowed autophagy with protective roles in septic brain injury (Su et al., 2015). Also, higher levels of SVIP were observed in sepsis compared to healthy samples (Figure 6C). Based on the above evidence, our study firstly illustrated the underlying roles of SVIP in sepsis through autophagy-related pathways.
Firstly identified in yeast and human placenta, ubiquitin conjugating enzyme E2 H (UBE2H) belongs to the structurally and functionally conserved family of E2s and is involved in ubiquitination and proteasome-mediated protein degradation and regulated by TNF-α signaling (Kaiser et al., 1994; Li et al., 2003; Clague et al., 2015). Increasing evidence has indicated the potential roles of UBE2H in human brain diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease and autistic disorder (Martin et al., 2009; Sokolowski et al., 2018; Lim and Joo, 2020). Nevertheless, there is scant report on the links between UBE2H and sepsis. Previous data has shown that body protein loss during sepsis was caused by upregulation of ubiquitin genes and ubiquitin-proteasome pathway (Hasselgren and Fischer, 1997). Moreover, as a hypoxia-mediated gene, UBE2H may be speculated to participate in tissue hypoxia in septic shock (Rello et al., 2017). Here, we also found elevated levels of UBE2H in sepsis compared to healthy samples (Figure 6D). Therefore, our study firstly revealed the function of UBE2H in sepsis, offering experimental clues for further investigations.
CONCLUSION
As the preliminary steps toward genetic regulatory networks, gene correlation approaches offered clues about uncovering function of mysterious genes. In this study, WGCNA and DiffCorr were employed to find out novel hub genes including ZNF366, ZMYND11, SVIP and UBE2H, and we proposed for the first time their causative factors during sepsis progression. Although biological analysis proved their vital roles in understanding pathogenesis of sepsis, these genes were not confirmed experimentally. Next we plan to integrate more datasets and conduct functional experiments including loss-of-function to underline mechanisms explaining their ability to trigger abnormal host response to infection.
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Protein-protein interaction (PPI) prediction is meaningful work for deciphering cellular behaviors. Although many kinds of data and machine learning algorithms have been used in PPI prediction, the performance still needs to be improved. In this paper, we propose InferSentPPI, a sentence embedding based text mining method with gene ontology (GO) information for PPI prediction. First, we design a novel weighting GO term-based protein sentence representation method to generate protein sentences including multi-semantic information in the preprocessing. Gene ontology annotation (GOA) provides the reliability of relationships between proteins and GO terms for PPI prediction. Thus, GO term-based protein sentence can help to improve the prediction performance. Then we also propose an InferSent_PN algorithm based on the protein sentences and InferSent algorithm to extract relations between proteins. In the experiments, we evaluate the effectiveness of InferSentPPI with several benchmarking datasets. The result shows our proposed method has performed better than the state-of-the-art methods for a large PPI dataset.
Keywords: protein-protein interaction, gene ontology, text mining, sentence representations, infersent
INTRODUCTION
Protein-protein interaction (PPI) plays a vital role in cellular systems of organisms (Zhao et al., 2020). Most biological processes within a cell are induced by a variety of interactions among the proteins, such as signal transduction, immune response, and cellular organization (Sun et al., 2017). PPI detection is very important for researchers to study the properties of cellular systems and improve the understanding of disease and provide a basis for the development of novel therapeutic approaches (Liu et al., 2020).
Due to the importance of PPI in the field of biology, a variety of computational methods based on various sources of biological information have been proposed for PPI prediction. Researchers have been predicting PPIs using a protein sequence (Hashemifar et al., 2018; Li et al., 2018; Yao et al., 2019) and PPI network information (Liu et al., 2020; Yang et al., 2020). For example, in DeepFE-PPI (Yao et al., 2019), a new residue representation method named Res2vec is designed for protein sequence representation, combining effective feature embedding function and powerful deep learning technology to infer PPI. Research results of previous works (Hashemifar et al., 2018; Li et al., 2018; Yao et al., 2019; Liu et al., 2020; Yang et al., 2020) show that protein sequence and PPI network information based PPI prediction model can achieve high predictive accuracy, but they have high time complexity because computation is complicated by protein vectorized representations based on protein sequence information (Liu et al., 2020).
Gene ontology (GO) information is applied to PPI prediction (Smaili et al., 2018; Duong et al., 2019; Zhong et al., 2019). GO (Consortium, 2004) is a standard ontology that describes biological entities and relationships between them. It is organized as a directed acyclic graph (DAG), named GO graph. In a GO graph, each node is a GO term, and each edge between the nodes is the relationship between the terms. Since these GO terms are used to annotate biomedical entities, a protein is represented by a set of GO terms. Therefore, the semantic similarity between GO terms can reflect the properties of relationship between proteins to some extent. GO based methods can make accurate predictions at a lower cost, and they analyze the relationship between two proteins by comparing the similarity between GO terms (Consortium, 2017). Previous methods (Resnik, 1995; Lin, 1998; Pekar and Staab, 2002; Wang et al., 2007) compute the semantic similarity between two GO terms according to the structure of a GO graph. According to the similarities between two terms in GO, the semantic similarity between two proteins is calculated by AVG (Xu et al., 2008), Max (Pesquita et al., 2009), best match average (BMA) (Li et al., 2010), and so on. The structure-based methods are roughly divided into two types: node-based or edge-based. Node-based methods such as Resnik (Resnik, 1995) and Lin (Lin, 1998) focus on the information content (IC) of the most informative common ancestor (MICA). Edge-based methods such as Pekar (Pekar and Staab, 2002) consider the longest path from the nearest common ancestor to root, the longest path between GO terms and their common ancestor. Wang and others (Wang et al., 2007) developed a hybrid method to calculate semantic similarity using the topology of GO graph structure, and they consider the different kinds of relationships in GO graph. However, GO structure-based methods mainly consider the locations of GO terms in the GO graph, they did not fully mine information of the GO graph and gene ontology annotation (GOA). GO graph includes the term-term relations of GO terms, while GOA includes the term-protein annotations between GO terms and proteins (Zhong et al., 2019). Each GOA record also contains evidence from published experiments or inferences using computational methods (Liu and Thomas, 2019). By fully mining the GO graph and GOA, relevant information can be captured from term-term relationships and term-protein annotations relationships to predict PPI. Therefore, in order to make reliable PPI predictions, we need to fully mine relevant information of the GO structure and GO annotation at the same time (Mazandu et al., 2017).
Text mining techniques have been applied to extract protein information and construct PPI networks (Ma et al., 2019). A text mining method can make full use of a great quantity of literature to reveal potential protein-related knowledge. Deep learning architecture can utilize multiple hierarchical layers to extract effective features (Jin et al., 2020). Recently, some researchers used word embedding techniques to represent proteins with word vectors based on a large scale of corporation and predicted PPIs based on the protein vectors (Smaili et al., 2018; Duong et al., 2019; Zhong et al., 2019). When they generate the protein vectors, the relations between GO terms (for short, named GO-GO relations) or relations between proteins and GO terms (for short, named protein-GO relations) were considered. But they did not fully utilize the protein-GO relations, GO-GO relations, and protein-protein interactions together to construct the PPI prediction model.
In this paper, we propose InferSentPPI, an efficient supervised sentence embedding based PPI prediction method by capturing information of GO structure and GO annotation. Comparing with the normal corpus-based approach, InferSentPPI considers three kinds of relationships together, which are protein-GO relations, GO-GO relations, and protein-protein interactions. To utilize protein-GO relations, InferSentPPI regards a protein as a sentence, and it represents protein with GO terms. Its related GO term’s vectors are the words that make up the sentence. To utilize semantic relations between GO terms, the GO term vectors are created by Word2vec from the GO graph structure. InferSentPPI uses the modified supervised sentence embedding model InferSent (Conneau et al., 2017), which can capture associations between GO terms annotating the proteins in the PPI datasets. Therefore, our method can fully mine the information of GO graph, GO annotation, and PPI information to obtain high quality protein vector representations for reliable PPI prediction.
The main contributions of this study are as follows:
(1) A new protein sentence embedding based PPI prediction method with GO information was designed and implemented.
(2) Three kinds of biological relationships are applied to PPI prediction together, which are protein-GO relations, GO-GO relations, and protein-protein interactions. It fully mines the information of GO graph, GO annotation, and PPI information to obtain high quality protein vector representations for improving the performance of PPI prediction.
(3) An efficient GOA preprocessing method, generation of weighted protein-GO annotation axioms for protein sentence representations based on the reliability, is proposed for improving the performance of PPI prediction.
METHODS
Overview
InfersentPPI includes three main stages: preprocessing, protein sentence representation, and InferSent_PN as shown in Figure 1. In preprocessing, we exact the protein-GO annotation axioms and GO term vectors from GO graph and GOA separately, which are supposed by GO resource. We also extract PPIs from the PPI database. In protein sentence representations, protein is represented by its related GO term vectors first. Then protein sentence corpus is generated, which is composed of pairs of protein sentences and PPI labels. In the third stage, we apply InferSent_PN model to predict PPIs, which is constructed based on protein sentence embedding. Finally, we get relationships between proteins, PPI positive or PPI negative.
[image: Figure 1]FIGURE 1 | The workflow of InferSentPPI method.
Preprocessing
Preprocessing consists of three parts: annotation axiom generation, GO term vector generation, and protein screening process. Annotation axiom generation is a task to extract the relationship between protein and GO terms and represent protein with its related GO terms. GO term vector generation is a word embedding based task to mine semantic information between GO terms from GO structure. The protein screening process is a task to find the available PPIs from the PPI databases.
Annotation Axiom Generation
GOA includes the term-protein annotations between GO terms and proteins. Therefore, we extract the reliable annotation relationship between GO terms and proteins from GOA.
To obtain reliable protein-GO annotation axioms, we filter GOA records according to reliable evidence. The record of protein-GO annotation axioms from GOA is defined as the following: Protein_GO_record (GO, protein) = {GO ID, protein ID, Evidence Code}.
The specific generation steps are as shown in Figure 2. First, only the reliable protein-GO annotation axioms are needed; thus, we delete the annotation records without reliable evidence whose “Evidence Code” field value is “IEA” or “ND”, and obtain the reliable GOA record file. The evidence code “ND” indicates that biological data of the gene or gene product being annotated is not available. The evidence code “IEA” indicates the protein-GO relation is not manually reviewed and cannot generally be traced to an experimental source. Here, reliable protein-GO relations from an experiment directly supporting or it is manually reviewed. So, evidence code can reflect the reliability of protein-GO relations effectively. Second, based on the reliability, we give a weight to the protein-GO annotation axioms. We keep the protein-GO annotation axioms that appear many times in the GOA record file and note the repeated times as the weight. If an annotation record appears many times, it means that the correlation between them can be proved many times in different papers. Therefore, the number of repetitions can be used as a quantitative index to evaluate the reliable evidence of the annotation record. The final protein-GO annotation axioms with different weights are called “PGAA_ Weight”. We also generate protein-GO annotation axioms without the weight, named “PGAA_ noWeight”.
[image: Figure 2]FIGURE 2 | The workflow of the annotation axiom generation.
GO Term Vector Generation
GO graph includes the semantic relationships between GO terms. Thus, we apply the Word2vec (Mikolov et al., 2013) algorithm to generate the GO term vectors learning the network structural information from GO-GO relations. GO term vectors imply semantic relationships between GO terms because vectors are generated based on GO graph. Learned vectors can be applied to a variety of bioinformatics applications, such as predicting protein-protein interactions. This method is already used by other papers to generate the semantic GO term vectors and proved to be useful in predicting protein-protein interactions, such as Onto2vec (Smaili et al., 2018). GO term vector GOV can be specified in the following form:
[image: image]
where v1, v2, v3, … ,vn are the components of GOV.
Protein Screening Process
To obtain available PPI datasets for constructing the Infersent_PN model, first we select the PPIs whose protein can map UniProt ID because proteins without UniProt ID cannot find their related GO terms. Then we select the PPIs whose proteins have their related GO terms and can be represented by GO terms.
Protein Sentence Representation
Protein is annotated by several GO terms. Therefore, protein can be represented by a set of vectors of a GO term. An n-dimensional protein vector P can be specified in the following form:
[image: image]
where GOV1, GOV2, GOV3, … ,GOVn are the GO term vectors.
In this work, a protein is regarded as a sentence; a GO term is regarded as a word; a sentence corpus PC is composed of protein sentences and relationship label between protein pairs. PC can be specified in the following form: PC=(Pi, Pj, L) where Pi and Pj are any two proteins, and L is the relationship label.
To get the protein sentence corpuses used in the InferSent_PN model, the following three steps as shown in Figure 3 need to be completed: 1) Step 1, we combine the annotation axioms generated by preprocessing module with the PPI dataset for the experiment to get the PPI data with GO term notes. Obviously, we take PPI data with GO term notes as sentence corpus. 2) Step 2, we sample the same number of positive and negative protein interaction pairs from PPI data with GO term notes to be used in next step. 3) Step 3, we combine the representations of GO terms generated by the preprocessing module with PPI with GO term notes to obtain the training data of InferSent_PN, which is composed of pairs of protein sentence representations and relationship labels between protein pairs.
[image: Figure 3]FIGURE 3 | The workflow of the protein sentence representation.
InferSent_PN
To detect the relationship between PPIs, we proposed a new prediction method InferSent_PN, which is based on the InferSent algorithm (Conneau et al., 2017). InferSent (Conneau et al., 2017) is a classification model based on neural network structure for Natural Language Inference (NLI) tasks, and the first layer is the word vectors of all the words in the train set. Comparing with original InferSent algorithm, the structure of the model is modified for PPI prediction. Conneau used GloVe (Pennington et al., 2014) word vector in InferSent, but we use GO term vectors to train Word2vec for InferSent_PN model because GO term vectors imply more semantic biological information. Conneau tried different encoder models for construction of InferSent, such as LSTM, GRU, BiLSTM with mean/max pooling, self-attentive network, and hierarchical ConvNet. Among them, BiLSTM has the best performance. In this work, InferSent_PN model utilizes the convolutional neural network (CNN) as the sentence coder since the order of words has little effect on the results of the model, and the performance of CNN is better than BiLSTM. InferSent classifies data into three classes with labels of ‘Entailment’, ‘Contradiction’, or ‘Neutral’. However, InferSent_PN classifies data into two classes, ‘positive’ and ‘negative’.
InferSent_PN method regards protein as sentence, protein sentence P, and vector representations of GO terms as word vector (GO term vectors GOV). Training data of InferSent_PN is composed of pairs of protein sentences and relationship label between protein pairs. The workflow of InferSent_PN model is shown in Figure 4. First, a pair of the sets of GOVs annotating proteins input InferSent_PN model, sets of GOVs are encoded by the sentence encoder to obtain protein sentence embedding Pi and Pj. Pi and Pj embedding goes through the middle layer of extracting the features of these two vectors, and finally outputs the probability of belonging to every category in the output layer for PPI prediction.
[image: Figure 4]FIGURE 4 | The workflow of the InferSent_PN model.
The formula for predicting PPI is as following Eq. 1:
[image: image]
The input of InferSent_PN is (a set of GOVs, a set of GOVs) as (protein i, protein j). In Section 2.2.1, we introduced two versions of a method to generate annotation axioms of InferSentPPI. Based on the two methods, we have implemented two versions of the InferSentPPI method. Using “PGAA_noweight” in the InferSentPPI method is named as the “InferSentPPI_ noweight_ PGAA” method, and using “PGAA_Weight” in the InferSentPPI method is named as “InferSentPPI _ weight_ PGAA".
RESULTS AND DISCUSSION
Datasets
To test the efficiency of a proposed method, seven benchmark datasets were applied in the experiments. The seven benchmark datasets are a yeast (S. cerevisiae) dataset and a human dataset from the STRING database (Damian et al., 2017), a yeast (the S. cerevisiae core) dataset, an E. coli dataset, a Homo sapiens dataset, and a mice dataset (Hashemifar et al., 2018) from a database of interacting proteins (DIP), and a human dataset from the human protein references databases (HPRD).
The STRING S. cerevisiae dataset contains 6,392 proteins and 2,007,135 interactions, and the DIPS. cerevisiae core contains 5,594 positive protein pairs and 5,594 negative protein pairs. The STRING human dataset contains 19,577 proteins and 11,353,057 interactions, and the HPRD human dataset is made up of 3,899 positive protein pairs and 4,262 negative protein pairs. Interaction pairs with reliable GO annotation records were left through the preprocessing step. Then, the dataset used for the experiment is shown inTable 1.
TABLE 1 | The number of PPIs in seven test datasets after the preprocessing.
[image: Table 1]Evaluation Metrics
To evaluate the performance of PPI prediction, we used six measures, including Accuracy, Precision, Recall, F1, Area Under the ROC curve (AUC_ ROC), and area under PR curve (AUC_ PR). Accuracy is the ratio of the number of samples correctly classified by the classifier to the total number of samples. Precision calculates the proportion of the number of positive samples for correct prediction to the number of samples whose prediction is positive. Recall calculates the proportion of the number of samples whose prediction is positive and correct to the number of samples that are actually positive. ROC curve and PR curve are widely used to evaluate the performance of classification and prediction tasks (A and B, 2018). ROC curve is defined by the relationship between true positive rate (TPR) and false positive rate (FPR). PR curve is defined by the relationship between Precision and Recall. Recall is the abscissa and Precision is the ordinate.
Model Construction and Parameter Setting
We randomly selected 90% of yeast dataset and human dataset to train the InferSentPPI model. The selection of batch size has some influence on the training of the InferSentPPI model. By setting batch size = 2 in model training, InferSentPPI has the best performance on the yeast test set. In addition, by setting batch size = 1 in model training, InferSentPPI has the best performance on the human test set. So, we set the batch size to one for the yeast dataset and set the batch size to two for the human dataset.
The similarity between GO terms is calculated by three exiting methods, Resnik (Resnik, 1995), Lin (Lin, 1998), and Pekar (Pekar and Staab, 2002). The semantic similarity between two proteins are calculated based on the similarities between related GO terms by three methods, average value (AVG) (Xu et al., 2008), maximum value (Max) (Pesquita et al., 2009), and best match average (BMA) (Li et al., 2010). Compared with AVG and Max, BMA achieved the best performance. Thus, we select BMA to calculate the similarity between proteins.
According to the similarities between two terms in GO, the semantic similarity between two proteins is calculated by AVG (Xu et al., 2008), Max (Pesquita et al., 2009), and best match average (BMA) (Li et al., 2010), which are defined by Eqs 2–4:
[image: image]
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where[image: image] and [image: image] are the pair of proteins,[image: image] and[image: image] are the set of GO terms that annotate the protein[image: image] and [image: image], respectively. The information content (IC) is a similarity measurement method between two terms in ontology, and the detailed calculation formula is shown in the Supplementary Material file.
Comparison With Existing GO Structure-Based Methods
To evaluate the effectiveness of proposed methods, we compare InferSentPPI with representative GO structure-based PPI prediction methods (Resnik, 1995; Lin, 1998; Pekar and Staab, 2002; Wang et al., 2007). In the experiment, we used DIP yeast dataset and HPRD human dataset to evaluate the performance InferSentPPI method. We randomly selected 10% of the data as the test set, which is independent of train data.
Tables 2 and 3 show the evaluation results of our proposed models and the compared models on two different datasets, HPRDhuman dataset and DIPyeast dataset. The best results on each dataset are highlighted in bold. The six evaluation indicators performance of InferSentPPI on DIPyeast dataset and HPRDhuman dataset are better than four other traditional GO structure-based models, including Resnik, Lin, Wang, and Pekar. The PPI prediction method uses supervised sentence embedding technology to regard protein as sentence and vector representation of GO term as a word vector. So, it can effectively capture the relationship between proteins from a GO structure and a GO annotation for reliable PPI prediction.
TABLE 2 | Performance comparison of six methods on the yeast dataset from DIP.
[image: Table 2]TABLE 3 | Performance comparison of six methods on the human dataset from HPRD.
[image: Table 3]On the DIP yeast and HPRD human datasets, five leading evaluation indicators of InferSentPPI_weight_GOA are better than InferSentPPI_unique_GOA. It means the model’s performance generated on a corpus with weighted GO annotations is better than the model generated on a corpus with weightless GO annotations. The result indicates that the quantitative index of GO annotation reliability successfully provides valuable information for PPI prediction.
Figure 5 reports the ROC curves of our model and four traditional GO structure-based models on DIP yeast dataset and HPRD human dataset. The AUC_ROC of the two methods on DIP yeast and HPRD human data sets reached 0.99 and 0.96. From the results, we noticed that the InferSentPPI method is stable in predicting both positive and negative datasets. AUC_ ROC is usually applied to evaluate the model’s classification performance, which is independent of the selected threshold. The results show that the proposed method still effectively classifies the datasets under different thresholds.
[image: Figure 5]FIGURE 5 | ROC curves of five PPI prediction methods on the main dataset. (A) Yeast dataset from DIP. (B) Human dataset from HPRD.
Comparison With State-Of-The-Art GO Information-Based Methods
To evaluate the effectiveness of proposed methods, we compare InferSentPPI with state-of-the-art GO information-based PPI prediction methods, Onto2Vec (Smaili et al., 2018) and GO2Vec (Zhong et al., 2019). In this experiment, we used yeast and human datasets from STRING to test the performance of InferSentPPI and other existing methods.
The performance comparison results of the methods are shown in Table 4. The best result on each dataset is highlighted in bold. The AUC_ROC of the two methods on yeast and human datasets from STRING reached 0.8745 and 0.8233. The result shows that the performance of InferSentPPI is better than two state-of-the-art GO information-based PPI prediction methods.
TABLE 4 | AUC_ROC of three GO Information-based methods on yeast and human dataset from STRING.
[image: Table 4]Comparison With a State-Of-The-Art Sequence-Based Method
To deeply evaluate the effectiveness of proposed methods, we compare InferSentPPI with a state-of-the-art sequence-based method DeepFE-PPI (Yao et al., 2019). The result is shown in Table 5. In the experiment, we used the DIP yeast dataset and HPRD human dataset to evaluate the performance InferSentPPI method. We also randomly selected 10% of the data as the test set independent of train data.
TABLE 5 | Performance comparison of three methods on the DIP yeast and HPRD human datasets.
[image: Table 5]The number of PPIs in the DIP yeast dataset used in the experiment is 10 times larger than the HPRD human dataset. On the DIP yeast dataset, the four evaluating indicators of the two methods of the InferSentPPI are better than the sequence-based PPI prediction method DeepFE-PPI. However, neither of the two methods of the InferSentPPI outperforms DeepFE-PPI on the HPRD human dataset, which is much smaller than the DIP yeast dataset. The experiment result shows that the InferSentPPI performs better than DeepFE_PPI when there is sufficient training data.
Performance Comparison on Independent Species-specific PPI Datasets
To sufficiently evaluate the generalization and robustness of the InferSentPPI model, the model from the first experiment, trained on the DIP yeast dataset, is used to predict PPI on three species-specific PPI datasets (E. coli, H. sapiens, mice) (Zhou et al., 2011).
On three species-specific PPI datasets, Table 6 reports the accuracy of the InferSentPPI model, which is trained on the yeast dataset from the first experiment. In Table 6, the model’s accuracy is 0.9522 on the yeast test set, and the performance of this model on the PPI test set of other species is also stable. In addition, the accuracy of this model on the mouse dataset reaches 0.95, including 100 positive records, which is smaller than the others. On the E. coli positive dataset, including 1,112 records, the accuracy of our model also reaches 0.90. The availability of our model in predicting multiple species is proved. It means that the InferSentPPI method can obtain a better generalization model from a single species data set with sufficient data.
TABLE 6 | Performance (accuracy) of InferSentPPI on different independent datasets.
[image: Table 6]CONCLUSION
Accurate prediction of PPI can help us understand the underlying molecular mechanisms and significantly promote drug discovery. The method based on GO information can be used to make reliable PPI predictions. In this paper, we apply the modified supervised sentence embedding model InferSent to mine GO information and PPI data, used to predict PPIs. We used seven different datasets to evaluate our method to thoroughly test the InferSentPPI model. Compared with representative GO information-based methods and a sequence-based PPI prediction method, the experimental results show the effectiveness and generalization of the InferSentPPI method. The result also indicates that the quantitative index of GO annotation reliability successfully provides valuable information for PPI prediction. “PGAA_ Weight” can improve the performance of PPI prediction.
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Background: Osteoporosis is a common orthopedic disease with high prevalence in patients older than 50 years. Osteoporosis is often detected only after the fracture and is hard to treat. Therefore, it is of great significance to explore the molecular mechanism of the occurrence of osteoporosis.
Methods: The expression of Heme oxygenase-1 (HO-1) in people with different bone mineral density (BMD) was analyzed based on public databases. GenHacncer and JASPAR databases were adopted to search and verify the upstream transcription factor of HO-1. qRT-PCR, western blot and tartrate-resistant acid phosphatase assays were performed to explore the impact of HO-1 and Kruppel-like factor 7 (KLF7) on osteoclast differentiation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding relationship between KLF7 and HO-1. Finally, Hemin, the agonist of HO-1, was applied in rescue assays, thereby verifying the mechanism of KLF7 modulating osteoclast differentiation by HO-1.
Results: Bioinformatics analysis revealed that HO-1 was highly-expressed while KLF7 lowly-expressed in people with high BMD. Besides, a potential binding site of KLF7 was found on the promoter region of HO-1. ChIP assay further manifested the targeting relationship between HO-1 and KLF7. Western blot and TRAP staining unveiled that osteoclast differentiation was suppressed by HO-1, while facilitated by KLF7. Rescue experiments indicated that over-expressed HO-1 could reverse of the promoting effect of KLF7 on osteoclast differentiation.
Conclusion: The study confirmed that osteoclast differentiation was promoted by KLF7 constraining HO-1, thereby facilitating osteoporosis. The cognation of the pathogenesis of osteoporosis was further enriched. New treatment could be developed on this basis.
Keywords: osteoporosis, osteoclast genesis, HO-1, KLF7, transcription factor
1 INTRODUCTION
Osteoporosis is a common orthopedic disease, which is characterized by low bone mineral density (BMD), the deterioration of bone microarchitecture and the increase of fracture occurrence (Langdahl, 2021). According to the statistics from Strom’s team (Ström et al., 2011), there have been approximately 200 million people suffering from osteoporosis worldwide. Osteoporosis is mainly caused by a disorder of bone renewal and repair. In healthy human bodies, there is a balance that osteoclasts absorb old bone and stimulate osteoblast to synthesize collagen and form new bones, thereby maintaining the bone renewal and the health of bone tissue (Ukon et al., 2019). With the increase of people’s age, such balance is broken, resulting in a decrease in BMD and the fragility of bone tissue, thereby causing fracture (Ukon et al., 2019). Accordingly, it is particularly important to further explore the molecular mechanisms influencing the development of osteoporosis based on the above mechanisms.
Heme oxygenase-1 (HO-1) is known as a negative regulator of osteoclast differentiation and is involved in the process of bone renewal and repair. Generally, Hrf2/HO-1 pathway is considered to be a key pathway that influences the occurrence of osteoporosis (Han et al., 2019). Previous studies indicated that melatonin can activate Nrf2/HO-1 pathway to decrease oxidative damage, so as to inhibit the occurrence of osteoporosis (Ma et al., 2020). Nrf2/HO-1 was also found to improve and relieve the symptoms of osteoporosis by inhibiting inflammatory responses and accelerating the formation of osteoblast (Xu et al., 2019; Liu et al., 2021). Additionally, Ke et al. (2015) reported that the amount and viability of osteoclasts were significantly increased in mice with HO-1 deficiency. The content of reactive oxygen in serum of these mice is significantly higher than that of normal mice. Florczyk-Soluch et al. (2018) also given the negative regulation of HO-1 on osteoclasts. Hence, the exploration on the related factors affecting HO-1 expression is of great value for the research on the pathogenesis of osteoporosis.
Kruppel-like factor 7 (KLF7) is a transcription factor (TF) that accelerates the regeneration in the central nervous system axon (Galvao et al., 2018). It was found to regulate the expression of its target genes in various diseases (Guan et al., 2019; Li et al., 2021). For instance, KLF7 facilitates the growth and metastasis of pancreatic cancer via upregulating the expression of ISG gene (Gupta et al., 2020). Besides, it was revealed that KLF7 is also involved in the occurrence of orthopedic diseases. For example, a study manifested that the overexpression of KLF7 in bone marrow stromal stem cells can promote the regeneration of sciatic nerve (Li et al., 2019). Recently, a bioinformatics study suggested that KLF7 can affect patient’s BMD, which makes it a key target of osteoporosis (Chen et al., 2017). Due to the limitations of bioinformatic studies, the biological role of KLF7 in osteoporosis has not been fully elucidated yet. Taken together, both HO-1 and KLF7 are key genes that impact the growth of bones. Further studies on them therefore will benefit the elucidation of molecular mechanism that causes the occurrence of osteoporosis.
Based on previous studies and bioinformatics results, it could be postulated that HO-1 and KLF7 could regulate the osteoclast differentiation. Molecular and cell experiments were performed to prove that KLF7 accelerates osteoclast differentiation by suppressing HO-1, thereby the development of osteoporosis was affected. The result of this study disclosed the molecular mechanism of KLF7/HO-1 in osteoporosis, which provides theoretical basis for clinical treatment and drug development of osteoporosis.
2 MATERIALS AND METHODS
2.1 Cell Lines and Cell Culture
Murine mononuclear macrophage leukemia cell line RAW264.7 (BNCC337875) was purchased from BeNa Culture Collection (BNBIO, China). The cells were cultured in 90% Dulbecco’s modified eagle medium (DMEM) + 10% fetal bovine serum (FBS)and then placed in an incubator with 5% CO2 at a constant temperature of 37°C. Recombinant mouse macrophage colony stimulating factor (M-CSF, MedChemExpress, USA) and recombinant mouse receptor activator of nuclear factor kappa-B ligand (RANKL, MedChemExpress, USA) proteins were used to activate RAW264.7 to differentiate into osteoclasts. In short, after the cells in the medium have grown to an appropriate level, the medium was replaced with the medium containing 30 ng/ml M-CSF and 50 ng/ml RANKL. Cells were then used for subsequent assays after being incubated for an appropriate time. Hemin (HO-1 activator) was added into the medium at a final concentration of 10 μM. After 8 h of culture, M-SCF and RANKL were used to activate macrophage differentiation in accordance with the above processes.
2.2 Bioinformatics Analysis
Osteoporosis-related gene expression data of blood leukocytes were downloaded from GSE56815 dataset (https://www.ncbi.nlm.nih.gov/gds/), including data of 40 females with low BMD and 40 females with high BMD. The subjects were classified into high and low BMD groups according to their BMDs. Then limma package was used for differential expression analysis and data standardization. Gene expression was visualized using Graphpad Prism. T-test was utilized to analyze the significance of the differences between gene expression in the two groups.
TFs involving in the upstream regulation of HO-1 were predicted using GenHancer database (https://www.genecards.org/Guide/GeneCard#enhancers). These predicted TFs were intersected with differentially expressed TFs in osteoporosis. The expression of acquired TFs and HO-1 were subjected to Pearson correlation analysis. Thereafter, the gene significantly correlated with HO-1 was adopted as the object of the study.
Jaspar database (http://jaspar.genereg.net/) was employed to predict the binding relationship between the predicted target TF and HO-1. Firstly, the 5’ end sequence extending from the transcription start site (TSS) region at 2,000 bp in the upstream of HO-1 gene was downloaded from National Center of Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/). Thereafter, this sequence was compared with the TF in Jaspar database. The result was determined as the possible binding site on the TF.
2.3 Cell Transfection
si-HO-1, oe-KLF7/si-KLF7 and their negative controls oe-NC/si-NC were procured from Gene Pharma (Gene Pharma, China). 5 ul of Lipofectamine3000 (Themo Fisher, USA) was used to transfect 50 nM si-HO-1 and oe-KLF7/si-KLF7 into cells. Successfully transfected cells were collected after 72 h.
2.4 Tartrate-Resistant Acid Phosphatase Staining
The treated cells were collected and inoculated into 24-well plate (1.5×104/well), followed by a fixation with 10% formaldehyde solution. TRAP staining kit (Sigma-Aldrich, USA) was applied to stain the inoculated cells, after which the stained cells were observed under a microscope. A single colony with more than 3 cells whose nucleus was stained (TRAP-positive) was counted as an osteoclast.
2.5 RNA Extraction and Quantitative PCR Detection
TRIzol kit (Invitrogen, USA) was used for the extraction of total RNA from the cells based on the instructions of the manufacturer. The concentrations of extracted RNA were assessed utilizing NanoDrop™ One (Thermo Fisher, USA) and then diluted to an equal level. Afterwards, QuantiTect Reverse Transcription Kit (Qiagen, German) was employed to reversely transcribe RNA into cDNA which were then used for qPCR detection proceeding with SYBR™ Green PCR Master Mix (Thermo Fisher, USA). In brief, 1 ng cDNA, appropriate dose of primers, ddH2O and SYBR™ Green PCR Master Mix were mixed up. Then the mixture was added into LightCycler® 480 (Roche, UK) for qPCR detection. GAPDH was used as internal reference of the obtained data. The relative expressions were calculated using 2−ΔΔCT method for subsequent analyses. Table 1 presented the sequences of primers used.
TABLE 1 | Primer sets for qPCR assay.
[image: Table 1]2.6 Western Blot Assay
After the cells were treated in accordance with experimental design, they were collected for the extraction of total proteins using radioimmunoprecipitation assay (RIPA) lysis buffer. The content of total protein was measured using bicinchoninic acid (BCA) kit. After the proteins were extracted, 30 μg total proteins were placed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for isolation. Thereafter, the proteins were transferred onto a polyvinylidene fluoride (PVDF) which was then blocked with 5% nonfat-dried milk. Afterwards, the membrane was sequentially incubated with primary anti-HO-1 (Abcam, USA), anti-GAPDH (Abcam, USA), anti-NFAT2 (CST, USA), anti-TRAP (Abcam, USA), anti-CTSK, anti-KLF7 (Invitrogen, USA) and corresponding secondary antibody (CST, USA). The concentration of the proteins was gauged utilizing electrochemiluminescence (ECL) luminescence reagent. Each assay was repeated three times.
2.7 Chromatin Immunoprecipitation
First of all, RAW264.7 cells were transfected using pCMV-Myc-KLF7. After 24 h of transfection, anti-Myc antibody (Invitrogen, USA) and corresponding Simple ChIP enzymatic chromatin IP kit (CST, USA) were subjected to ChIP assay following the instructions of the manufacturer. In the end, depurated DNA was detected using qPCR. The primers used for detections were as follows (Table 2).
TABLE 2 | Primer sets for ChIP-qPCR assay.
[image: Table 2]2.8 Statistics Analysis
All data in this study were denoted as MEAN ± standard deviation (SD). GraphPad Prism and R software were adopted for analysis and drawing. Analysis of variance and Student’s T-test was utilized for differential evaluations among groups. p < 0.05 denoted a statistical significance.
3 RESULTS
3.1 HO-1 Suppresses Osteoclast Differentiation
Firstly, patients’ gene expression data in GSE56815 dataset were downloaded. It was found that the expression of HO-1 was remarkably up-regulated in females with high BMD in comparison with the ones with low BMD. (Figure 1A). In combination with previous studies (Han et al., 2019), we posited that HO-1 expression in blood mononuclear cells somehow affected the BMD of the subjects. Accordingly, raw264.7 was selected for the osteoclast differentiation assay. Group settings were as follows: si-NC + PBS, si-NC + hemin and si-HO-1+PBS groups. Of them, hemin is a kind of heme metabolite, which is considered to promote HO-1 expression (Zwerina et al., 2005). Firstly, we verified the promoting effect of hemin on HO-expression and the transfection efficiency of si-HO-1. It was suggested that HO-1 was highly-expressed in RAW264.7 cells after being treated with hemin while expression of HO-1 was dramatically downregulated after being treated with si-HO-1 (Figure 1B). TRAP staining exhibited that the differentiation ability of osteoclasts after treatment with Hemin was diminished while knockdown on HO-1 expression resulted in an enhancement on such ability (Figure 1C). Finally, we employed western blot to validate the expression of the osteoclasts markers protein. The results revealed that the expression levels of TRAP, NFAT2, and CTSK protein were reduced after Hemin treatment. When HO-1 expression was knock down, the expression levels of TRAP, NFAT2, and CTSK protein were increased (Figure 1D). The above results indicated that HO-1 was highly expressed in high-density people. The promotion of HO-1 expression would inhibit osteoclast differentiation, while knocking down HO-1 promoted osteoclast differentiation.
[image: Figure 1]FIGURE 1 | HO-1 can suppress osteoclast differentiation. (A) Differences in HO-1 expression level between low and high BDM female. (B) Changes of HO-1 mRNA and protein expression levels after si-HO-1 and hemin treatment. (C) TRAP staining shows that HO-1 could affect osteoclast differentiation. (D) Changes of expression levels of proteins related to osteoclast differentiation after HO-1 silencing and hemin treatment. *p < 0.05.
3.2 KLF7 is an Upstream Regulator of HO-1
To dissect the factor that affects HO-1 expression and explore potential therapeutic target of osteoporosis, we used bioinformatics approaches to investigate the regulator in the upstream of HO-1. GenHancer was first adopted to predict the TFs that might affect expression of HO-1. Then the expression data of GSE56815 were downloaded, and 358 differentially expressed genes were screen out (Figure 2A). Differentially expressed genes and possible TFs were intersected. Thereafter a total of 11 differentially expressed TFs were obtained (Figure 2A). Subsequently, correlation analysis was performed on 11 TFs and HO-1. The result suggested a negative correlation between the expression of KLF7 and HO-1 (Figure 2B). Then the expression of KLF7 were tested in people with low and high BMD. The result indicated that KLF7 was significantly lowly-expressed in people with high BMD (Figure 2C). After the TF interacting with KLF7 was found, there was a binding site of KLF7 on the promoter of HO-1 detected by Jaspar database (Figure 2D). The binding relationship of KLF7 to the HO-1 gene promoter was then verified by ChIP assay, and the results implied that KLF7 could bind the HO-1 promoter (Figure 2E). All the above results revealed that KLF7 was an upstream regulator of HO-1. The expression of KLF7 and HO-1 was negatively correlated, where KLF7 negatively regulated the expression of HO-1.
[image: Figure 2]FIGURE 2 | KLF7 is an upstream regulator of HO-1. (A) Venn plot for screening DE-TFs in osteoporosis. (B) Correlation analysis between KLF7 and HO-1 expressions. (C) KLF7 expression in high/low BDM population. (D) Predicted KLF7 binding sites on HO-1 TSS. (E) ChIP and qPCR assays of the enrichment of KLF7 on the HO-1 promoter region. *p < 0.05, ***p < 0.001.
3.3 Highly-Expressed KLF7 Can Promote Osteoclast Differentiation
Underlying the results of bioinformatics analysis, we speculated that KLF7 could also influence osteoclast differentiation. In support to our speculation, we first constructed si-KLF7 and oe-KLF7 plasmids to processed the cells. The outcome indicated that the knockdown of KLF7 expression led to a marked decrease in mRNA and protein expressions of KLF7, whereas it had an opposite impact on those of HO-1 (Figure 3A). Besides, the high expression of KLF7 dramatically elevated the expression of mRNA and protein expressions of KLF7 while it resulted in a remark decrease in those of HO-1 (Figure 3A). Additionally, the result of TRAP staining exhibited that the knockdown of KLF7 expression attenuated the differentiation ability of osteoclasts, whereas the high expression of this gene strengthened such ability (Figure 3B). Finally, we carried out western blot assay to examine osteoclast-related protein expressions, suggesting that KLF7 affected the expression of osteoclast markers protein (Figure 3C). In sum, the above results suggested that KLF7 could negatively regulate the expression of HO-1, and KLF7 could promote osteoclast differentiation.
[image: Figure 3]FIGURE 3 | KLF7 can regulate osteoclast differentiation. (A) Protein and mRNA expression levels of KLF7 and HO-1 after si-KLF7 and oe-KLF7 treatment. (B) TRAP staining showed that macrophage differentiation could be affected by silencing and overexpressing KLF7. (C) Changes of the expression levels of osteoclast markers after KLF7 silence and overexpression. *p < 0.05.
3.4 KLF7 Constrains Osteoclast Differentiation by Down-Regulating HO-1
After the possible effects of KLF7 on osteoclast differentiation were clear, we further validated the binding relationship between TF KLF7 and HO-1. First of all, we separately used hemin and oe-KLF7 to process the osteoclasts. Hemin enhanced HO-1 expression, whereas oe-KLF7 could reverse this effect. (Figure 4A). Based on the above results, we respectively used hemin and oe-KLF7 to process RAW264.7 cells, revealing that hemin notably inhibited osteoclast differentiation. However, after the overexpression of KLF7, this inhibited effect was attenuated (Figures 4B,C). Taken together, the above results indicated the regulatory relationship between KLF7 and HO-1 that KLF7 suppressed HO-1 expression to facilitate osteoclast differentiation.
[image: Figure 4]FIGURE 4 | KLF7 promotes osteoclast differentiation by suppressing HO-1 expression. (A) qPCR and western blot results showed changes of KLF7 and HO-1 expressions after hemin treatment and KLF7 overexpression. (B) TRAP staining showed osteoclast differentiation regulated by HO-1 and KLF7. (C) Expression levels of osteoclast markers measured by western blot assay. *p < 0.05.
4 DISCUSSION
The clinical treatment of osteoporosis mainly includes calcium and vitamin-based nutrients, estrogen receptor modulators, disphosphonates, and anti-RANKL drugs, etc. (Qaseem et al., 2017). Although the above drugs can enhance bone weight of osteoporosis patients, the prevention and treatment of fractures are not ideal (Sozen et al., 2017). With the breakthrough of targeted drugs in the treatment of cancer, this kind of drugs were gradually applied in the treatment of other diseases. For example, the anti-RANKL desulumab is an emerging anti-osteoporosis targeted drug, which also shows excellent clinical effects (Lewiecki, 2018). Therefore, exploring the molecular mechanism that affects the pathogenesis of osteoporosis and possible effective therapeutic molecular targets are effective ways to develop new treatments and drugs for osteoporosis.
HO-1 is a key gene that is usually found to affect the damage repair of the bones. Many studies have investigated the impact of HO-1 on osteoporosis. Studies proved that osteoclast differentiation is among various factors that affect osteoporosis (Blangy et al., 2020). For example, the occurrence of adolescent Paget’s bone disease is induced by the overactivity of osteoclasts caused by heredity (Masi et al., 2015; Palagano et al., 2018). Besides, in research relating to the influence of HO-1 on osteoporosis, researchers revealed that thorn protein can activate Nrf2/HO-1 signaling pathway to obstruct the formation of osteoclast (Liu et al., 2021). Li et al. (2018) found that lutein inhibits oxidative stress and inflammatory response in osteoporosis model via regulating Nrf2/HO-1, thus suppressing the development of this disease. Herein, it was found that HO-1 could inhibit the osteoclasts differentiation and osteoporosis in mice, which was consistent with the results of previous studies.
The regulation of TF is the commonest regulatory form of gene expression, and the related regulatory relationship of transcription factor is regarded as a key factor that affects the occurrence of osteoporosis. For instance, TFs like AP‐1 and Mitf can impact the activity of NF-kB pathway by modulating NFATc1 and then induce macrophage to differentiate into osteocyte (Pang et al., 2019). Moreover, the osteoclasts differentiation was also considered to be related to the expression of TFs. Recent studies discovered that the TF SREBP2 can promote osteoclast differentiation by affecting the expression of RANKL (Inoue and Imai, 2014). Through bioinformatics analysis, miR-204-5p was found as a key regulator to alter bone health condition in the elderly, while KLF7 was identified as a target gene of miR-204-5p (Chen et al., 2017). Similarly, by utilizing bioinformatics approaches and ChIP assay, this study found that TF KLF7 could bind HO-1 and their expression was negatively correlated. Thereafter, TRAP staining and western blot unveiled that KLF7 promoted the expression of osteoclast markers and osteoclast differentiation. KLF7 is also found to be involved in the progression of diseases. For instance, in research relating to diabetes, KLF7 can directly bind to the promoter region in IL-6 and accelerate the overexpression of IL-6 in inflammatory signaling TLR4/NF-kB/IL-6, thereby causing inflammation (Wang et al., 2017; Zhang et al., 2018). Generally, it is well-accepted that KLF7 exerts its effect on promoting the transcription of downstream genes in the cells. However, in recent years, researchers discovered that the KLF family can also inhibit the expression of target genes by blocking transcription cofactors. For example, Tang et al. (2021) found that KLF12 can bind to the promoter of ENO2 and transcriptionally inhibit the expression of ENO2. Kong et al. (2018) reported that KLF4 can transcriptionally inhibit the expression of STK33 in gastric cancer cells. Therefore, we speculated that KLF7, which belongs to the KLF family, also showed the characteristic of inhibiting the transcription of downstream gene. Herein, similar regulation was unveiled, namely, KLF7 suppressed the expression of the downstream gene HO-1thereby promoting osteoclasts differentiation. This regulatory axis in osteoporosis was first discovered in this study.
The results of this study confirmed that the TF KLF7 could induce osteoclast differentiation by inhibiting HO-1, thereby promoting the development of osteoporosis. Our study provides a novel possible target for the development of osteoporosis drugs, which is of great clinical value. Although cell experiments have proved the role of KLF7 in osteoclast differentiation, but it has not been verified at animal level, which is a shortcoming of this study. Therefore, we plan to carry out further animal experiments to further explore the therapeutic value of KLF7 in osteoporosis.
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After major mass extinction events, ancient plants and terrestrial vertebrates were faced with various challenges, especially ultraviolet (UV) light. These stresses probably resulted in changes in the biosynthetic pathways, which employed the MIO (3,5-dihydro-5-methylidene-4H-imidazole-4-one)-dependent enzymes (ammonia-lyase and aminomutase), leading to enhanced accumulation of metabolites for defense against UV radiation, pathogens, and microorganisms. Up to now, the origin and evolution of genes from this superfamily have not been extensively studied. In this report, we perform an analysis of the phylogenetic relations between the members of the aromatic amino acid MIO-dependent enzymes (AAM), which demonstrate that they most probably have a common evolutionary origin from ancient bacteria. In early soil environments, numerous bacterial species with tyrosine ammonia-lyase genes (TAL; EC 4.3.1.23) developed tyrosine aminomutase (TAM; EC 5.4.3.6) activity as a side reaction for competing with their neighbors in the community. These genes also evolved into other TAL-like enzymes, such as histidine ammonia-lyase (HAL, EC 4.3.1.3) and phenylalanine ammonia-lyase (PAL; EC 4.3.1.24), in different bacterial species for metabolite production and accumulation for adaptation to adverse terrestrial environmental conditions. On the other hand, the existence of phenylalanine aminomutase (PAM; EC 5.4.3.10) and phenylalanine/tyrosine ammonia-lyase (PTAL; EC 4.3.1.25) strongly indicates the horizontal gene transfer (HGT) between bacteria, fungi, and plants in symbiotic association after acquiring the PAL gene from their ancestor.
Keywords: MIO-dependent enzymes, a mass extinction event, microbial coevolution, rooted phylogenetic tree, minimal ancestor deviation
INTRODUCTION
MIO Prosthetic Group
Usually, the side chains of proteogenic amino acids act as nucleophiles in enzymatic catalysis. Due to the lack of strongly electrophilic groups, enzymes use metal ions and organic molecules to assist in electrophilic catalysis (Bischoff and Schlüter, 2012; Punekar, 2018). Besides cofactors from the environment, posttranslational modifications/conversions (PTMs) of amino acid side chains that provide a strongly electrophilic center are of the same importance in enzymes. (Müller, 2018). MIO (3,5-dihydro-5-methylidene-4H-imidazole-4-one) is such a catalytic moiety for the elimination of ammonia from arylalanine amino acids, which belong to arylalanine ammonia-lyase and aminomutase. This highly electrophilic moiety is spontaneously folded by an inner amino acid triad (Ala/Ser/Cys/Thr)-Ser-Gly. The glycine amide lone pair attacks the π* orbital of carbonyl in the amino acid, which is located at two positions preceding glycine. This nucleophilic attack is electronically unfavorable; therefore, mechanical compression from neighboring residues and connections with internal water molecules play a vital role by promoting backbone cyclization (Baedeker and Schulz, 2002; Sánchez-Murcia et al., 2016). The formation mechanism of MIO is similar to the chromophore in green (GFP) and red fluorescent protein (RFP) (Figure 1) (Reid and Flynn, 1997; Baedeker and Schulz, 2002).
[image: Figure 1]FIGURE 1 | The proposed mechanism for the MIO in HAL and GFP formation by posttranslational modification.
The MIO prosthetic group performs a nucleophilic attack on the substrate arylalanine amino acid, forming a covalent amino-MIO intermediate to enhance its acidity. In the most accepted E1cB mechanism of ammonia elimination in AAM, the intermediate binds the MIO at the benzylic position of the amino acid and is deprotonated by the enzymatic base. Then, the intermediate yields a carbanion intermediate and releases ammonia in the subsequent step. In the alternative mechanism (Friedel–Crafts), this reaction occurs at the aryl side chain of the substrate (Figure 2) (Punekar, 2018).
[image: Figure 2]FIGURE 2 | Two proposals for ammonia elimination by R. toruloides PAL. The other residues help to orient and stabilize the carboxyl group of arylalanine amino acids.
Structures of MIO-dependent Enzymes
According to the crystal structure, the members of AAM are homotetramers, comprising four identical active sites that build among the residues of three interlocking monomeric subunits in a nose-to-tail way separately. Each monomer is composed of a rigid central core domain, a globular N-terminal domain, and an elongated C-terminal domain. In the N-terminal region, the MIO prosthetic group is located in a narrow tunnel, which is created by an inner and an outer loop. These two loops cap the tunnel and enclose the active site from solvents in HAL. However, they are more mobile in eukaryotic PAL, which restricts the access of the substrate and influences the mutase and lyase activity in MIO-dependent enzymes. The catalytic tyrosine residue (Tyr110 in Rhodosporidium toruloides PAL) on the inner loop is highly conserved in HAL, TAL, and PAL, which is necessary for catalytic activity since the mutants of this residue to alanine and phenylalanine are completely inactive (Röther et al., 2002; Wybenga et al., 2014). The residues in the carboxyl binding pocket promote the MIO prosthetic group formation and also interact with the substrate, representing essential binding sites in the active center (Wybenga et al., 2014), whereas the hydrophobic binding pocket provides sufficient space for the aromatic ring of the substrates and modulates the substrate specificity (Nagy et al., 2019).
Phenylpropanoid Pathway
Replying to abiotic environmental stress, plants activate the phenylpropanoid pathway to accumulate phenolic secondary metabolites. As a major component of phenylpropanoids, flavonoids provide significant protective effects to plants in response to various unfavorable conditions (drought, heavy metals, salinity, and UV radiations) (Sharma et al., 2019). Photoprotection is the most important functional role of flavonoids. The epidermal flavonoids reduce protein and DNA damage by preventing dimerization of thymine, adsorbing radiations, and scavenging the reactive oxygen species (Kootstra, 1994; Treutter, 2006). Other specific metabolites, monolignols, confer tolerance to plant cell walls against chilling stress. The phenylpropanoid accumulation is regulated by the gene expression of corresponding enzymes in the biosynthesis pathway (Sharma et al., 2019).
PAL is the first regulatory enzyme that transforms l-phenylalanine into trans-cinnamic acid, controlling the carbon flux from the shikimate pathway to phenylpropanoid metabolism. The subsequent enzyme is cinnamic acid 4-hydroxylase (C4H; EC 1.14.13.11), which reduces trans-cinnamic acid, leading to the formation of p-coumaric acid. 4-coumaric acid-CoA ligase (4CL; EC 6.2.1.12) catalyzes the ATP-dependent formation of the p-coumaroyl CoA, which serves as the branch point in phenylpropanoid biosynthesis. The conversions by these initial three enzymes are necessary and form the main pathway skeleton in the higher plants. In general, l-phenylalanine is starting immediately from the shikimate pathway, and in certain monocot species, p-coumaric acid may directly be produced from l-tyrosine through PTAL with bifunctional activity, bypassing the hydroxylation by C4H (Figure 3). In comparison to dicotyledonous plants, these monocots form the cell walls with higher proportions of syringyl (S)-rich lignins, more esterified coumaric acid as well as flavonoid tricin (Barros et al., 2016). This preferential composition suggests the existence of alternative routes with PTAL in the lignin biosynthetic pathway. The methylation of caffeic acid in this parallel pathway employs the caffeate/5-hydroxyferulate 3-O-methyltransferase (COMT), encouraging an efficient conversion step of p-coumaric acid to caffeic acid through the cytosolic coumarate 3-hydroxylase (C3H) (Figure 3). This alternative pathway with PTAL and C3H in monocots bypasses the synthesis of H and G lignins by membrane-bound cytochrome P450, leading to the enhancing of (S)-lignin content efficiently (Barros et al., 2019).
[image: Figure 3]FIGURE 3 | The phenylpropanoid pathway in plants for the production of flavonoids and monolignols under abiotic stress conditions.
Histidine Pathway
Histidine catabolism is initiated by HAL, which is a universal enzyme to form trans-urocanic acid and release ammonia in the bacterial pathway. trans-Urocanic acid is transformed into 4-imidazole-5-propionate by urocanate hydratase (EC 4.2.1.49). Subsequently, the ring is cleaved by imidazolonepropionase (EC 3.5.2.7). Depending on the organism species, l-glutamate is generated by various enzymes from N-formimino-l-glutamate. In mammals, the N-formimino-l-glutamate is hydrolyzed by tetrahydrofolate (THF)-dependent glutamate formiminotransferase (EC 2.1.2.5). In bacteria, some genera (Bacillus, Klebsiella, and Salmonella) eliminate the formimino group in one step by formininoglutamase (EC 3.5.3.8), whereas the other genera, such as Pseudomonas, coregulate the hutF and hutG genes and express formimidoylglutamate deiminase (EC 3.5.3.13) and N-formylglutamate deformylase (EC 3.5.1.68) to yield the l-glutamate (Figure 4) (Bender, 2012; Kohlmeier, 2015).
[image: Figure 4]FIGURE 4 | Different histidine degradation pathways. Conversion of histidine to glutamate.
HAL is crucial for growth in children, primarily in the skin and the liver. For example, one disease, histidinemia, results from a deficiency of HAL (Brosnan and Brosnan, 2020). The trans-urocanic acids, as UV-absorbing compounds, accumulate in the stratum corneum of the skin because of the absence of urocanase to eliminate them. Under UV light, trans-urocanic acid is isomerized into cis-urocanic acid until the quantity equation of these two isomers. The latter form probably initiates the immunoregulation under UV exposure (Norval, 2001).
RESULTS
Phylogenetic Analysis
To explore the evolutionary history of AAM, a phylogeny of 268 available biochemical-characterized protein sequences from the SwissProt was reconstructed (Bairoch et al., 2004). As displayed in Figure 5 and Supplementary Figure S1, AMM sequences from various phyla are grouped in two well-supported clusters (bootstrap support: 96%). One group contained all PAL sequences across different phyla and one eukaryotic HAL from Dictyostelium discoideum. The second cluster comprised all bacterial TALs/TAMs and the rest of the HALs. Overall, the phylogeny suggests that the arylalanine amino acids ammonia-lyase and aminomutase likely share common ancestry.
[image: Figure 5]FIGURE 5 | Phylogenetic tree of arylalanine amino acid ammonia-lyase and aminomutase homologs retrieved from the Swissprot database. Characterized ammonia-lyases are shown in the square while characterized aminomutases are shown in the circle. The color coding corresponds to the substrates of the enzymes: histidine (yellow), phenylalanine (green), tyrosine (purple). The source organisms in the tree are color-coded in the outer ring according to their origin.
In the first group, the eukaryotic PALs represent a well-supported (100%) major phylogenetic branch with two groups in fungi and plants, which acquired the corresponding genes from a bacterial ancestor. The closest relatives of these sister groups are bacterial PAL from Anabaena variabilis and Nostoc punctiforme (91%). Both of these species are known to occur in diazotrophic symbiotic associations with fungi and plants that support the assumption of quite early genetic transfer of PALs from the bacterial ancestor to fungi and plants through an ancient symbiosis (Meeks et al., 2001). In contrast to PALs in bacteria and fungi, the phylogeny of the plant PALs diversified into three major sub-branches, including the acrogymnospermae, the liliopsida, and the eudicotyledons, which were described as the largest source of PALs. Among the plant PAL clusters, the acrogymnosperm clade was located between fungi and angiosperm and split into two mainly well-supported branches (100%) with monofunctional PAL from Pinus taeda in one branch as well as the PAL from genus Taxus (Taxus canadensis and Taxus wallichiana var. chinensis), which exhibits PAM activity as a side reaction, in the other branch. Furthermore, D. discoideum, as an obvious outsider among the eukaryotic HAL with the strong support of its position (100%), formed the deepest branching lineage in this large group and linked to the PALs clusters, indicating a probable single event of HGT from a prokaryotic ancestor in early age.
The second large group was further clearly separated into two branches with great statistical support (96%). One branch included all bacterial TALs/TAMs, which were found within the deep branching stable lineage, indicating that they were closer to the common ancestor than bacterial HALs. In the other branch, the genus Streptomyces (Streptomyces avermitilis, Streptomyces coelicolor, and Streptomyces griseus) developed a distinct bacterial HAL clade that divided off at the branching point from genus Thermoplasma (Thermoplasma acidophilum and Thermoplasma volcanium). Although this clade was located at a poorly supported position (44%), it still suggests that the HGT of the HAL gene could have occurred between the domains of Bacteria and Archaea. The phylogenetic tree shows the bacterial HAL mainly distributed into two large branches with all Proteobacteria in one branch and the Terrabacteria, Fusobacteria, and Spirochaetes in another branch. In the second branch, the eukaryotic HALs arose at an unsupported position, which was close to the bacterial clade of genus Deinococcus.
Sequence Alignment
Usually, PALs and TALs have strict specificity for their natural substrates. Among them, the monofunctional TALs occur mainly in the bacterial kingdom though they are relatively rare in the archaea and eukaryotes. However, partial ammonia-lyases in fungi (R. toruloides) and monocots (Zea mays) are bifunctional with similar efficiency to phenylalanine and tyrosine. It is intriguing to assume the appearance of these PTALs by genetic transformation directly from bacterial TALs. Alternatively, as the bifunctional enzymes emerge in random species, this neofunctionalization event might be explained by mutations of residues in the enzymatic active center.
To explain the appearance of this bifunctional enzyme in plants and fungi, the sequence alignment was created with all enzymes with TAL activity and PALs in monocots from the phylogenetic tree (Figure 5). The carboxylate group of arylalanine amino acids is bound in a network of hydrogen bonds with the highly conserved residues of Asn247, Asn380, and Arg341 (in ZmPTAL) to stabilize the carbanion intermediate (Calabrese et al., 2004; Wu et al., 2012). The residues that surround the aromatic ring of amino acids (His123, Leu124, Tyr440, Lys443, Ile447, and Asp471 in ZmPTAL) are usually the key contributor to substrate selectivity (Supplementary Figure S2) (Baedeker and Schulz, 2002; Ritter and Schulz, 2004). Comparison of these residues from resulting multiple sequence alignments suggests that the RtPTAL and ZmPTAL shared a higher degree of similarity in residue groupings with monofunctional PALs in monocots than bacterial TAL/TAMs. It supports the hypothesis that the bifunctional PTAL might originate in monocots by mutation and then were transferred through HGT to fungi.
Based on mutagenesis research and sequence alignment analysis, it is apparent that residues 137 and 138 strongly influence substrate selectivity in the AAM family. The His89Phe (His123 in ZmPTAL) mutation introduced the hydrophobic residue in TAL from Rhodobacter sphaeroides, resulting in complete substrate selectivity switch from tyrosine to phenylalanine (Watts et al., 2006).
DISCUSSION
The Origin of AAMs and Mass Extinction Events
Interestingly, members of the AAM family usually are reported to play key roles in the production of radioprotective intermediates in both animals and plants. For instance, urocanic acid, the deaminated product from histidine by HALs, is a major epidermal chromophore that provides protection against UV-induced immunosuppression (Noonan et al., 1992). Similarly, in the plant kingdom, PALs are involved in the biosynthesis of flavonoids, which serve as DNA-protective metabolites against UV damage (Kootstra, 1994). Before the formation of the stratospheric ozone layer, ancient organisms suffered under higher UV exposure, which limited the possibility of land colonization (Hessen, 2008; Voosen, 2020). Thus, the ocean surface provided the primary protective shield for early marine organisms by adsorbing the most of the sun’s harmful ultraviolet radiation (Whitehead et al., 2000). The presence of the stratospheric ozone layer in the earlier Cambrian (around 600 million years ago) is thought to have influenced the divergence of multicellular animals, which led to the Cambrian explosion (Falkowski, 2011). The ozone layer served as a protective shield and promoted the colonization of land by higher plants and arthropods. The latter invaded and colonized the land during the Ordovician period, whereas the land plants appeared later (Rota-Stabelli et al., 2013). During land colonization, these organisms were exposed to a higher level of UV radiation than under water (Averof et al., 1995; Rubinstein et al., 2010), which presumably favored the evolution of the AAM gene in the common ancestors of early land dwellers. During this evolution of the related gene, the ancestors of vascular plants and terrestrial animals may have obtained or stimulated the ability to prevent damage from UV radiation.
The phylogenetic relations demonstrate that eukaryotic HAL probably evolved from prokaryotic ancestors earlier than plant PAL in multiple independent events, consistent with molecular time trees (Rota-Stabelli et al., 2013). Both arthropod and green algae are considered to be earlier colonizers of the terrestrial environment. Curiously, available genomic data indicate that the HUT pathway is missing in most lower metazoans and the arthropod, whereas the PALs are absent in red and green algae based on the available genomic data (Emiliani et al., 2009; Bender, 2012). The waxy cuticle of green algae and the exoskeleton or chitinous cuticles of arthropods might be considered to be various strategies to escape excessive UV exposure on the land. It can also be argued that AAMs did not evolve immediately after land colonization. The major extinction events were synchronous with volcanism. The volcanic gases resulted in ozone layer depletion, thereby elevating UV radiation on land (Lindström et al., 2019). Sculpture malformation in plant spores, spore tetrads, and pollen indicates the biological stress and evolutionary pressure on plants by increased UV radiation during the extinction interval (Benca et al., 2018; Marshall et al., 2020). Under high UV intensities, the frequency of this malformation increased in plant spores and pollen because of the DNA damage before the formation of the protective wall layer (Fields et al., 2020). Most immediately, ancient organisms, especially the ones that lived on land and in shallow water, were exposed to a high level of UV radiation during this period. As a strong mutagenic agent, UV irradiation might favor the appearance of AAM genes or at least the natural selection of organisms with AAM. Notably, the absence of the pal gene in terrestrial vertebrates and the disappearance of the HUT pathway in fungi and plants may also suggest a huge elimination of the old dominant species during the mass extinction event.
Microbial Coevolution in the Early Terrestrial Ecosystem
Ancient bacteria faced the major challenge of limited natural resources and space and conflict with their neighbors within a community by the production of small antibiotic compounds. As the precursor of various antibiotics, β-tyrosine was generated through bacteria with TAM to compete against others. Based on the available genomic information, the representative bacterial species with TAL/TAM activity could be isolated from soil, for example, Cupriavidus, Streptomyces, and Myxococcus, which suggests that this gene arose in an early soil environment.
Except for the RsTAL from Rhodobacter sphaeroides, the other TALs exhibit tyrosine aminomutase activity with different preferred enantioselectivity, matching the configuration of their β-tyrosine-containing secondary metabolites: (S)-TAM from Streptomyces globisporus involves the synthesis of (S)-3-chloro-5-hydroxy-β-tyrosine in the antitumor antibiotic C-1027; In Chondromyces crocatus, TAM converts (S)-α-tyrosine to (R)-β-tyrosine for production of the cytotoxic chondramides (Rachid et al., 2007). Furthermore, the arrangement of enantioselectivity within the bacterial TAM clades reflects an independent evolutionary relationship, indicating that these traits of TAM may have evolved convergently (Krug and Müller, 2009). According to the most deeply branching line formed by RsTAL in the phylogenetic tree, it could be assumed that the ancestors of bacterial TAMs may have evolved from ancient bacterial TAL for the production of the chemical inhibitor and to impair nearby competitive organisms.
The hutH gene, encoding the cytosolic enzyme HAL, is considered an ancient and basal gene, participating in a core metabolism for the degradation pathway of l-histidine. It distributes broadly in bacteria and promotes them to utilize histidine as carbon and nitrogen sources (Fuchs and Kane, 1985). The loss of the HUT pathway in bacteria only leads to their lack of sufficient capacity for the utilization of histidine, but this is not lethal. Based on the phylogeny, the most coherent hypothesis for the HAL origin would be the HAL-like enzyme gene transfer from ancient TAL-bacteria to Streptomyces bacteria and/or thermophilic or halophilic archaea at quite early ages. Among the other archaea as well as among lower eukaryotes, the appearance of HAL is irregular and rare, whereas all vertebrates, especially mammals, require the hutH gene to metabolize histidine and suffer the disease caused by a deficiency of HAL (Ghadimi et al., 1962; Taylor et al., 1991). Of the protozoa HAL, it has so far only been assured in D. discoideum, which is identified as two homologs: the one placed in the eukaryotic HAL clade and the other one situated close to the cyanobacteria clade. It is noteworthy that the HUT pathway is absent from cyanobacteria. In cyanobacteria, the enzyme to catalyze phenylalanine conversion was the other member of AAM: PAL.
The bacterial PALs were rooted at the deepest position among the PAL clades, which is a clear indication of the original PAL emergence in bacteria. According to the evolutionary analysis of Glomeromycotina, it is proposed that the ancestral fungi have been found in symbiotic association with green algae or cyanobacteria before terrestrial colonization (Prasad et al., 2020). Nevertheless, neither HAL nor PAL orthologs in red and green algae were identified in the available genomic data. Besides this, the existing genomic information of bacteria and fungi with the pal gene, even the nearby amoebae with HAL activity, have a relatively high dependency on the soil environment, which might indicate that the gene transfer arose during coevolution between bacterial, fungi, and plants in the early terrestrial environment (Emiliani et al., 2009).
In most plant species, PAL is encoded by a multigene family, containing up to five members that express differently in numerous tissues or reply to various environmental stress conditions. For example, in Arabidopsis thaliana, pal3 is expressed at a relatively lower level than the other three genes (pal1, pal2, and pal4) in stem tissue, whereas pal3 seems to be mainly expressed in leaves, the most UV exposed plant tissue. Among these three genes, pal1 and pal2, sharing the common promoter elements, mainly exist in roots and stems in biosynthesis processes related to abiotic imports, whereas the gene pal4 was expressed also in seeds (Raes et al., 2003). This gene duplication could be traced back to gymnosperms: P. taeda owns five pal genes, representing different tissues with various levels of expression (Bagal et al., 2012). It seems that plants received the pal genes from the bacterial ancestor and expanded mainly through gene duplication. Moreover, Shang et al. report that seven pal genes are tandemly arranged with four pseudogenes in two chromosomes from Cucumis sativus and point out that these pal genes were duplicated more recently as the splitting of cucumber from the other dicots (Shang et al., 2012).
Structurally, the quaternary sizes of the prokaryotic HALs (∼500 amino acids) and eukaryotic PALs (∼710 amino acids) from the AAM superfamily are diverse because of the presence of an additional C-terminal multihelix domain in the latter enzyme (Figure 6) (Allwood et al., 1999; Ritter and Schulz, 2004; Pilbák et al., 2006). These extended domains in plants are implicated to destabilize the enzyme for rapid regulation of the phenylpropanoid biosynthesis and adaptation of the varying environmental stresses. The phosphorylation site of PAL from Phaseolus vulgaris is determined as Thr545, whereas the most accessible cleavage sites by trypsin and chymotrypsin from R. toruloides PAL are identified as Arg123 and Tyr110, which are located in the extended regions to decrease the lifetime of PAL (Gámez et al., 2005).
[image: Figure 6]FIGURE 6 | (A) Overlap X-ray crystal structures of PpHAL from Pseudomonas putida (PDB entry 1GKM, blue), RtPAL from R. toruloides (PDB entry 1T6J, yellow), and RsTAL from Rhodobacter sphaeroides (PDB entry 2O6Y, pink) (B) The inner (blue) and outer (red) loops in RsTAL from two chains. The MIO is colored in red.
PTAL and PAM
PTAL, a specifical ammonia-lyase in monocots (especially the Poaceae family), is associated with the biosynthesis of stress-induced syringyl-rich lignins (Barros and Dixon, 2020). Among eight pal genes from the Brachypodium distachyon, only BdPTAL1 was expressed as the enzyme with additional TAL activity (Barros et al., 2016). The monocots with PTAL activity clustered with each other and were distinct from dicots. It can be assumed that this gene acquired an inverted substrate selectivity toward tyrosine after the early duplication event in monocots. The pattern of distribution of fungal and plant PTALs in the phylogenetic tree (Figure 4) and sequence alignment results (Supplementary Figure S2) might suggest that this gene originated in monocots and then transferred through HGT to fungi.
In other instances, yew species produce defensive metabolites, paclitaxel derived from β-phenylalanine, to protect themselves against widespread wood-degrading fungi (Malik et al., 2011). As long-lived species, yew trees are reasonably susceptible to fungal infection because they can form lateral buds on the old branches and the stem, which lead to a crash of barks (Thomas and Polwart, 2003). In these bark-cracking tissues, paclitaxel is mainly accumulated to hinder the pathogen attack (Talbot, 2015). The rate-limiting step of the side chain assembly process in the taxol biosynthesis is catalyzed by PAM that presumably evolved from the plant PAL ancestors in gymnosperms (Walker et al., 2004; Steele et al., 2005). Compared with the yew species, the other gymnosperms, such as P. taeda, employ the monofunctional PAL without any aminomutase activity. According to phylogenetic analysis, it is tough to conclude whether the PAL from P. taeda lost the catalysis ability as PAM during evolution in the early ages or the PAM gene in Taxus species comes from the ancient bacteria that obtained the PAM-like aminomutase. The taxol-producing endophytic fungi, including the Penicillium species, which tend to have PAL with aminomutase activity, could be isolated from the genus Taxus (Soliman and Raizada, 2013). Moreover, epiphytic and pathogenic fungi from the other hosts as well as saprophytic fungi are reported as taxol producers, especially the pathogenic fungi Pestalotiopsis malicola, which is isolated from soil, proposing another possible evolutionary scenario that points to a probable PAM origin from fungi (Bi et al., 2011). Based on this hypothesis, the old gymnosperms might obtain genes through HGT against fungal infection.
The dynamic simulation indicates that the inner loop is more conformationally flexible at higher temperatures or with more hydrophilic residues (A77T, I79S, C89T, and L97G in Taxus chinesis PAM), affording lyase features to aminomutase. Furthermore, the reaction temperature also influences the distance between phenolic O-atom of catalytic essential residue tyrosine and exocyclic methylene C-atom of the MIO prosthetic group in PcPAL from Pelargonium crispum, whereas HALs are highly tolerant to temperatures due to their stable inner loop (Pilbák et al., 2006; Heberling et al., 2015; Attanayake et al., 2018). Thus, the inner loop flexibility and environmental temperature are the determinants that distinguish the mutase vs. lyase activities. It is noteworthy that the growth rates of various fungal pathogens, like taxol producer P. islandicum, are significantly enhanced by the combination of warm temperatures and high humidity (Mannaa and Kim, 2018). It may indicate that the PAM emergence in plants is related to their protecting themselves against the pathogen fungi.
CONCLUSION
The AAMs share a similar structure with highly electrophilic MIO and a common catalytic mechanism. Among them, eukaryotic PALs and HALs are involved in various metabolic and catabolic pathways to form several protection compounds under UV radiation. The corresponding genes most probably originated because of the fluctuating UV intensity. Our results indicate that the bacterial TALs have been developed and can produce antibacterial compounds under water-limited environments in the soils. Under UV exposure at an early age, some ancient bacteria were able to metabolize histidine by HAL or accepted phenylalanine as substrates by PAL, respectively. During further evolution, land plants and fungi obtained the PAL gene from bacteria through an early symbiosis while the terrestrial vertebrates inherited the HAL gene from their bacterial ancestor.
To conflict with the other organisms and withstand the pathogen infraction, the PAL gene was expressed in certain plants or fungi species as bifunctional PTAL or PAM. These corresponding genes were transferred through HGT between these two phyla. It may indicate that a symbiotic association involving bacteria, fungi, plants, and amoebae occurred in ancient terrestrial environments. Unlike PAM and TAM, there is no obvious genome evidence of the existence of aminomutase to produce β-histidine. It cannot be excluded that histidine aminomutase did not provide great advantages and, thus, disappeared during later evolution.
This review provides a phylogenetic framework for further evolutionary research of AAM, which has multiple meanings for studies of engineering in metabolic pathways and enzymatic biotechnology. Furthermore, more genomic data of new species and phylogenetic lines of this enzyme superfamily as well as substrate specificity data from well-investigated enzymes are also needed to find the missing puzzle pieces and integrate the evolutionary history.
METHODS
Phylogenetic Analysis
To explore the phylogenetic history of arylalanine amino acid AAM, 268 available sequences were identified from SwissProt (Bairoch et al., 2004). These sequences were aligned using MAFFT version 7.3 (Katoh and Standley, 2013). After deleting the gaps within the resulting alignments by Gblocks (Talavera and Castresana, 2007), the 100% identified sequences were manually trimmed. The maximum likelihood trees were performed using the IQ-TREE version 1.4 (Minh et al., 2020) with the best-fit substitution model (LG + G) inferred by PhyML SMS servers (Lefort et al., 2017). Branch supports were assessed with 1000 bootstrap replicates and rooted using a minimal ancestor deviation (MAD) approach (Tria et al., 2017). The resulting phylogenetic tree was visualized with annotations by the online tool “interactive Tree of Life” (iTol) (Letunic and Bork, 2019).
Sequence Analysis
The sequences of all TALs and certain PALs from monocots were identified from the SwissPort in UniProt knowledgebase (UniProtKB) and aligned with MAFFT version 7.3. Abbreviations and accession numbers from Swissport are RsTAL, Rhodobacter sphaeroides TAL (Q3IWB0); SgTAM, Streptomyces globisporus TAM (Q8GMG0); CmTAL, Cupriavidus metallidurans TAL (Q1LRV9); CcTAM, Chondromyces crocatus TAM (Q0VZ68); MfTAM, Myxococcus fulvus TAM (B8ZV93); RtPTAL, R. toruloides PTAL (P11544); ZmPTAL, Zea mays PTAL (Q8VXG7); BfPAL, Bromheadia finlaysoniana PAL (Q42609); NpPAL, Narcissus pseudonarcissus PAL (A0A2H5AIY6); OsPAL, Oryza sativa subsp. Japonica (P14717); TaPAL, Triticum aestivum PAL (Q43210).
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Supplementary Figure S1 | Bootstrap tree of arylalanine amino acid ammonia-lyase and aminomutase homologs retrieved from Swissprot.
Supplementary Figure S2 | Partial sequence alignment of eukaryotic PTALs, prokaryotic TAL/TAMs, and certain PAL in monocots. Shown is the location of the residues in the active center that are suggested to represent major roles for substrate selectivity. The specific residues in various domains are highlighted in different colors.
ABBREVIATIONS
4CL, 4-coumaric acid-CoA ligase; AAM, Aromatic amino acid MIO-dependent enzyme; C3H, Cytosolic coumarate 3-hydroxylase; C4H, Cinnamic acid 4-hydroxylase; COMT, 3-O-methyltransferase; GFP, Green fluorescent protein; HAL, Histidine ammonia-lyase; HGT, Horizontal gene transfer; HUT, Histidine pathway; MIO, 3,5-dihydro-5-methylidene-4H-imidazole-4-one; PAL, Phenylalanine ammonia-lyase; PAM, Phenylalanine aminomutase; PTAL, Phenylalanine/tyrosine ammonia-lyase; PTM, Posttranslational modification; RFP, Red fluorescent protein; TAL, Tyrosine ammonia-lyase; TAM, Tyrosine aminomutase; UV, ultraviolet.
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As a key element of the tumor microenvironment (TME), immune cell infiltration (ICI) is a frequently observed histologic finding in people with triple-negative breast cancer (TNBC), and it is linked to immunotherapy sensitivity. Nonetheless, the ICI in TNBC, to the best of our knowledge, has not been comprehensively characterized. In our current work, computational algorithms based on biological data from next-generation sequencing were employed to characterize ICI in a large cohort of TNBC patients. We defined various ICI patterns by unsupervised clustering and constructed the ICI scores using the principal component analysis (PCA). We observed patients with different clustering patterns had distinct ICI profiles and different signatures of differentially expressed genes. Patients with a high ICI score tended to have an increased PD-L1 expression and improved outcomes, and these patients were associated with decreased tumor mutational burden (TMB). Interestingly, it was showed that patients with high TMB exhibited an ameliorated overall survival (OS) than patients with low TMB. Furthermore, TMB scores only affected the prognosis of TNBC patients in the low-ICI score group but not in the high group. Finally, we identified a new immune-related lncRNA (irlncRNA) signature and established a risk model for the TNBC prognosis prediction. In addition, the high-risk group was related to poor prognosis, a high infiltration level of plasma B cells, monocytes, M2 macrophages, and neutrophils and a low PD-L1 expression. Therefore, the characterization and systematic evaluation of ICI patterns might potentially predict the prognosis and immunotherapy response in TNBC patients.
Keywords: triple-negative breast cancer, immune cell infiltration, PD-L1, tumor mutational burden, immune-related lncRNAs
HIGHLIGHTS

1) Identification of TNBC patients by utilizing the ICI scoring system to predict the prognosis and immunotherapeutic response.
2) The correlation of ICI scores with the PD-L1 expression and TMB score.
3) Construction of a novel 13-irlncRNA signature to evaluate the prognosis of TNBC patients.
INTRODUCTION
As a type of aggressive cancer, triple-negative breast cancer (TNBC) includes the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 protein (HER-2). TNBC takes up roughly 10–20% of all breast cancers, and it is generally related to unfavorable prognosis compared with non-TNBC (Kumar and Aggarwal, 2016). Since TNBC responds to neither hormonal therapy nor medications targeting Her-2 protein, chemotherapy and immunotherapy play a pivotal role in the treatment of TNBC (Lyons, 2019). Immunotherapy empowers the host’s natural immune system to fight against tumor cells by activating various immune cells such as macrophages and CD8 T cells (Muenst et al., 2016). Studies have shown promising results that immunotherapy can improve the prognosis of TNBC. For instance, a current meta-analysis has noted that the blockade of PD1/PD-L1 can significantly improve the pathological complete response rates in TNBC patients, especially in patients at a high risk of relapse (Tarantino et al., 2021). Numerous results have demonstrated that higher infiltration levels of T lymphocytes are observed in TNBC, and the TNBC patients have the most promising outcomes in single-agent cancer immunotherapy compared with other molecular subtypes (Sugie, 2018). Nonetheless, not all TNBC patients would be universally appropriate for immunotherapy. Therefore, it is urgently vital to look for novel bio targets which can aid in the precise pretreatment selection of patients.
High-density inflammatory cell infiltration is not an uncommon histologic finding in TNBC, especially in high-grade TNBC. Advances in the field of immunotherapy have rejuvenated intense investigations on the so-called tumor microenvironment (TME), which predominately consists of transformed cells, including immune and stromal cells. Many studies concerning TME have elucidated that tumor-infiltrating lymphocytes (TILs) are intimately implicated in metastasis, recurrence, therapeutic response, and even patient survival of TNBC. For instance, Oshi and colleagues have found that inflammation is associated with improved prognosis in TNBC patients, while worse outcomes are observed in other types of breast cancer (Oshi et al., 2020). TNBC cells have also been observed to secrete interleukin (IL)-4, IL-10, and other factors (Laoui et al., 2011) to promote tumor-associated macrophage polarization toward M2, which is associated with fast tumor progression (Sousa et al., 2015). By comparison, increased TILs are linked with the increased disease-free survival (DFS) in TNBC (Tomioka et al., 2018), which may be related to escalated response to immunotherapy. However, given the intimate and complex interaction between tumor cells and various inflammatory cell infiltrates, it is insufficient to use single populations of inflammatory cells for predicting prognostication. Instead, characterization of the overall immune cell landscape would probably offer more valuable information. In addition, recent studies have focused on constructing the irlncRNA signature to predict the response of immunotherapy in many cancers, such as bladder cancer (Zhang L et al., 2020), hepatocellular carcinoma (Hong et al., 2020), clear cell renal cell carcinoma (Sun et al., 2020), and breast cancer (Shen et al., 2020). However, no studies have attempted to construct an irlncRNA risk model in TNBC patients.
In our current work, we analyzed the biological information obtained from next-generation sequencing to elucidate the gene expression profiles in TNBC and characterize the intra-tumoral landscape of the infiltrated immune cells. In addition, we demonstrated that TNBC could be categorized into two discrete subgroups with distinct outcomes based on the infiltration pattern of immune cells. We also established the immune cell infiltration (ICI) scoring system for predicting the prognosis and immunotherapeutic response. Finally, we identified a novel 13-irlncRNA signature and established a risk model to evaluate TNBC prognosis, as well as the correlation between clinicopathologic variables and the PD-L1 level or tumor mutational burden (TMB) score.
MATERIALS AND METHODS
Discovery Cohort and Validation Cohort
The discovery cohort contained 435 TNBC samples from three available datasets (TCGA program and GSE33926 and GSE103091 datasets). The reads per kilobase of exon per million reads mapped (RPKM) data of 146 TNBC samples were acquired from TCGA (The Cancer Genome Atlas). The FPKM values were converted into TPMs to eliminate statistical biases inherent in the FPKM measure (Wagner et al., 2012). The microarray datasets (51 cases from GSE33926 and 238 cases from GSE103091) were from the GEO datasets (Gene Expression Omnibus). The corresponding array annotation files were adopted to annotate data, and genes represented by multiple probes were collapsed by averaging. The expressions of 13,723 genes were obtained after the three databases got merged and normalized. The “Combat” algorithm was applied to adjust the batch effect from multiple batches of microarray experiments (Johnson et al., 2007). Normalized expression matrices of the METABRIC program were obtained from cBioPortal for Cancer Genomics (http://www.cbioportal.org/). A total of 209 cases of basal-like breast cancer were set as the validation cohort.
The Unsupervised Clustering of Tumor-Infiltrating Immune Cells
The CIBERSORT R package (Newman et al., 2015) was applied to evaluate the percentages of the 22 TILs by gene expression profiles, and 1,000 permutations were performed. As a newly developed algorithm, ESTIMATE (Yoshihara et al., 2013) was for inferring the fraction of immune and stromal cells, and their scores were determined to assess the infiltration levels of the cells in each sample. The ICI pattern of each TNBC sample was used to conduct hierarchical agglomerative clustering. The ConsensusClusterPlus R package was applied to conduct unsupervised clustering (Yu et al., 2012).
Kaplan–Meier Plotter for Survival Analysis
OS (overall survival) analysis got conducted by the Kaplan–Meier plotter, and the log-rank test was for evaluating the differences between distinct subgroups. A p-value < 0.05 of the log-rank test was regarded as the statistical significance.
Identification of DEGs Concerning the ICI Phenotype
The samples were categorized into the ICI clusters, and DEGs (differentially expressed genes) about ICI patterns were identified based on the optimal cutoff (FDR < 0.05 and |fold-change| > 1) through the limma R package.
Functional Enrichment Analysis for DEGs
GO (gene ontology) analyses containing the BP (biological process), MF (molecular function), and CC (the cellular component), as well as KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses, were performed using the R module profiler package to reveal the different biological pathways in gene signature groups A and B.
Construction of High- and Low-ICI Score Groups
Each patient was categorized by unsupervised clustering based on the DEG values. ICI gene signature A was given to DEG values that were favorably related with the cluster signature, whereas signature B was given to DEG values that was negatively associated with the cluster signature. By using PCA (principal component analysis), the primary element became the signature score by the calculation formula as follows: ICI score (Zhang X et al., 2020) = ∑PC1A- ∑PC1B.
GSEA in High- and Low-ICI Score Groups
GSEA was carried out through the GSEA software (Gene Set Enrichment Analysis, 4.0.1 version, http://software.broadinstitute.org/gsea/index.jsp). GSEA (Subramanian et al., 2005) examined a group of related genes that are highly up- or downregulated in a predetermined phenotype, allowing big gene sets to be broken down into smaller, more coherent sets, such as those that reflect a specific route.
Construction of the irlncRNA Prognostic Model
To acquire irlncRNAs, 2,483 immune-related genes were obtained from the ImmPort database, and the correlation analysis was applied through the standards of correlation coefficients > 0.4 and p < 0.001. Subsequently, univariate and multivariate Cox regressions, as well as Lasso regression, were performed to establish a risk model. The AUC (area under the curve) values were computed, and the ROC (receiver operating characteristic) curve was plotted. The samples were categorized into high- and low-risk groups based on the best cutoff value. KMA was conducted to evaluate the OS between the two categories.
Correlation of the Risk Score and ICI
Seven common methods, containing xCell, EPIC, quanTIseq, CIBERSORT-ABS, MCPcounter, TIMER, and CIBERSORT, were adopted to assess the ICI scores. The Wilcoxon signed-rank test and Spearman test were for the different analysis between distinct risk groups and immune infiltration statuses, and the correlation coefficients were calculated.
Statistical Analyses
All data were processed by R software (version 4.0.3). The statistical analysis between the two categories was determined through the Wilcoxon rank-sum test, and the Kruskal–Wallis test was adopted for over two categories. The coefficient was calculated with Spearman correlation analysis. A Chi-square test was performed for the relationship between TMB and ICI scores. A p < 0.05 indicated the statistical significance.
RESULTS
The Characterization of ICI in the Discovery and Validation Cohorts of TNBC
CIBERSORT and ESTIMATE algorithms were combined to evaluate the infiltration level of immune and stromal cells in TNBC samples. In total, 435 cases were merged as the discovery cohort. A total of 209 cases of basal-like breast cancer from the METABRIC program were obtained as the validation cohort. The ConsensusClusterPlus R package was employed for unsupervised clustering to divide patients into different groups. Two distinct ICI subtypes were identified by unsupervised clustering (Figure 1A) with obviously different OS in both cohorts (log-rank test: p = 0.042, discovery cohort; p = 0.036, and validation cohort, Figure 1B) revealing that ICI cluster A had an improved prognosis compared with ICI cluster B. To further expound on the inherent divergences of the two subtypes, we compared 22 immune cell compositions, as well as immune and stromal scores. The infiltrations of only regulatory T cells (Tregs), resting NK cells, M0 macrophages, and activated mast cells were increased in ICI cluster A of the discovery and validation cohorts. The ICI cluster B was featured with high infiltration levels of the majority of rest immune cells, such as naive B cells, memory B cells, plasma, CD8 T cells, naive CD4 T cells, activated memory CD4 T cells, delta gamma T cells, and resting mast cells in the discovery cohort, and the immune and stromal scores were also greater. The result of the validation cohort conformed to the discovery cohort, except for naive B cells, memory B cells, naive CD4 T cells, and M1 macrophages (Figure 1C). Moreover, the correlation coefficient heatmap of the discovery cohort (Figure 1D) displayed a significant relation among immune cells, such as an obvious positive association between naive B cells and naive CD4 T cells, M0 macrophages and activated mast cells, and resting dendritic cells and eosinophils, and a marked negative correlation between CD8 T and resting memory CD4 T cells, and M0 macrophages and resting mast cells. Various immune cells, such as delta gamma T cells, were positively related to the Immune Score, while M0 macrophages were negatively correlated with the Immune Score, and helper follicular T cells were negatively correlated with the Stromal Score, which conformed to the results of the validation cohort (Figure 1E). Furthermore, the Wilcoxon rank-sum test was performed to analyze the PD-L1 expression in the two ICI subtypes, and the outcomes demonstrated the PD-L1 level was significantly greater in ICI cluster B compared with cluster A in both cohorts (Figure 1F). Figure 1G illustrates the unsupervised clustering of ICI with abundant clinical information in TCGA-TNBC and GSE33926 datasets.
[image: Figure 1]FIGURE 1 | Characterization of ICI in two cohorts of TNBC. (A) Two independent ICI subtypes were determined through the ConsensusClusterPlus R package in the discovery and validation cohorts. (B) OS curves of two ICI subtypes in two cohorts. The log-rank test showed p = 0.042 and p = 0.036 in the discovery and validation cohorts. (C) Estimation of the fraction of 22 immune cells, as well as immune and stromal scores in ICI clusters A and B of two cohorts (D,E) Interaction of 22 immune cells, as well as immune and stromal scores, in the discovery cohort (D) and validation cohort (E). (F) Different PD-L1 levels between ICI clusters A and B in two cohorts. (G) Unsupervised clustering of ICI with distinct clinical phenotypes in TCGA-TNBC and GSE33926 datasets. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
Determination of the Immune Gene Subtype in the Discovery Cohort of TNBC
A total of 149 DEGs were obtained with the limma R package using the cutoff criteria of FDR <0.05 and |fold-change|> 1. Based on these DEGs, unsupervised clustering was performed, and the discovery cohort was divided into four genomic clusters (A, B, C, and D) (Figure 2A). Kaplan–Meier analysis (KMA) showed that clusters A and B were correlated with a significantly favorable prognosis, while clusters C and D were associated with a poor prognosis (Figure 2B). The difference in ICI was significant in the four-gene clusters, except for eosinophils, activated NK, and dendritic cells (Figure 2C). Gene clusters A and B were featured with a high Immune Score, while gene clusters C and D had the opposite results. The correlation coefficients between 22 immune cells and the Immune Score or Stromal Score were determined by correlation analysis (Figure 2D). We also found that the PD-L1 level was dramatically related to distinct gene clusters. Gene clusters A and B had a higher PD-L1 expression than gene clusters C and D (Figure 2E). Furthermore, we integrated the expressions of DEGs and clinical-pathological characters with gene clusters A–D. The heatmap is shown in Figure 2F. Next, we detached DEGs as gene signatures A and B that were positively or negatively associated with gene clusters, respectively. To remove the superfluous genes, the Boruta algorithm was performed, and 134 DEGs were selected to conduct further study. Finally, GO enrichment analysis showed different pathways between gene signatures A and B, indicating that distinct gene clusters were involved in different BPs. Figure 2G (gene signature A) and 2H (gene signature B) show the top 30 enriched pathways, revealing that gene signature A was enriched in multicellular organismal homeostasis, the extracellular matrix, and extracellular matrix structural constituent pathways, and gene signature B was related to the external side of the plasma membrane, T-cell activation, and cytokine receptor binding pathways.
[image: Figure 2]FIGURE 2 | Identification of immune gene subtypes in the discovery cohort of TNBC. (A) Unsupervised clustering was performed, and the discovery cohort was divided into four gene clusters (A–D). (B) KMA for four gene clusters, p = 0.010. (C) Fraction of 22 tumor-inﬁltrating immune cells, as well as immune and stromal scores, among four gene clusters. (D) Interaction of 22 immune cells, as well as immune and stromal scores, in the discovery cohort of TNBC. (E) PD-L1 expression levels in the four gene clusters. (F) Heatmap of DEGs in four gene clusters with distinct clinicopathological characteristics. (G,H) GO analysis of gene signatures A (G) and B (H). *p < 0.05; **p < 0.01; and ***p < 0.001.
TNBC High- or Low-Score Groups According to ICI Scores
According to gene signatures A and B, we used PCA to obtain ICI scores A and B of each TNBC patient. Figure 3A showed the allocation of patients in the four-gene clusters, as well as the ICI score and survival state. To compare immune conditions between high- and low-ICI score groups, we selected 15 immune-related genes, including CD274, IDO1, PDCD1, LAG3, HAVCR2, and CTLA4, which acted as immune checkpoint-related genes, and CD8A, IFNG, TNF, CXCL9, GZMA, GZMB, TBX2, CXCL10, and PRF1, which served as immune activation-related genes. We performed the Wilcoxon rank-sum test and found that all of these genes had higher expressions in the high-ICI score group than the low-ICI score group, except that TBX2 had no statistical significance (Figure 3B). Furthermore, we performed GSEA and found that different pathways were associated with the high- and low-ICI groups, respectively. Figure 3C showed the top five pathways with the most significant difference, indicating that a high ICI score was related to T-cell receptor, B-cell receptor, chemokine, fc_epsilon_ri signaling pathways, and proteasome, whereas the low-ICI score group was enriched with glycosylphosphatidylinositol gpl anchor biosynthesis, aminoacyl tRNA biosynthesis, nitrogen metabolism, homologous recombination, and glycosphingolipid biosynthesis lacto and neolacto series pathways. To compare the OS of the two groups, we performed the KMA and log-rank test. Although no obvious difference was detected (p = 0.056), the TNBC patients of the TCGA cohort had a better prognosis in the high-ICI score group (Figure 3D).
[image: Figure 3]FIGURE 3 | TNBC high- or low-score groups according to ICI scores. (A) Alluvial diagram of ICI gene cluster distribution in the four-gene groups with distinct ICI scores and survival states. (B) Expressions of immune checkpoint and immune activation relevant genes between two groups. (C) GSEA analysis in high- and low-ICI score groups. (D) KMA for two groups in the TCGA-TNBC cohort. p = 0.056.
A Combination of ICI and TMB Scores Can Be Used to Predict the Prognosis in TNBC
Increasing evidence has shown that TMB has an important effect on the immunotherapeutic response of cancer patients (Rizvi et al., 2015). To reveal the inherent correlation between TMB and ICI score groups, we assessed the TMB levels of TNBC patients in the TCGA cohort. Our data revealed that patients had a dramatically lower level of TMB in the high-ICI score group (p = 0.031, Figure 4A). We further ensured TMB and ICI scores had an obvious negative relation (Figure 4B). Interestingly, the patients with high TMB had a better OS than individuals with low TMB (Figure 4C). Considering the prognosis value of ICI and TMB scores, we further assessed the antagonistic impacts of these scores on the prognosis stratification of TNBC patients. It showed the low-TMB + low-ICI score group had the worst prognosis, while the high-TMB + high-ICI score group and low-TMB + high-ICI score group had a favorable prognosis. We also observed no remarkable difference existed between high-TMB and low-TMB patients in the high-ICI score group, whereas the high-TMB group displayed a remarkably favorable prognosis compared with the low-TMB group in the low-ICI score group (Figure 4D). All the findings demonstrated the combination of ICI and TMB scores might better predict the immunotherapeutic response and outcomes in TNBC patients.
[image: Figure 4]FIGURE 4 | Combination of ICI and TMB scores to predict prognosis in TNBC. (A) Compared TMB level between two ICI score subgroups. p = 0.031. (B) Correlation between ICI and TMB scores in four gene clusters. Spearman test, correlation coefficient (R) =−0.2, p = 0.019. (C) OS curves for high- and low-TMB groups of the TCGA-TNBC cohort. p = 0.026. (D) KMA for patients in the TCGA-TNBC cohort was stratiﬁed by both TMB and ICI scores. p = 0.002.
Construction of the irlncRNA Prognostic Model
To establish an irlncRNA risk model, we obtained 2,483 immune-related genes from the ImmPort database. By performing the correlation analysis, we identified 1,370 irlncRNAs. Integrated with survival information, univariate Cox regression analysis was adopted to obtain survival-related irlncRNAs. Lasso analysis (Figure 5A) and multivariate Cox regression analysis (Figure 5B) were further applied to establish a prognosis signature. The expressions of 13 irlncRNAs were for calculating the risk score by the following formula: risk score = Exp (DLGAP-AS1) × (-0.61) + Exp (AC104083.1) × (0.08) + Exp (LINC00472) × (0.63) + Exp (YTHDF3-AS1) × (−0.62) + Exp (CA3-AS1) × (1.21) + Exp (AC104958.2) × (0.86) + Exp (LINC00839) × (0.23) + Exp (AC245297.4) × (−0.87) + Exp (BRWD1-AS2) × (2.26) + Exp (USP30-AS1) × (−0.44) + Exp (AL133338.1) × (−0.69) + Exp (NIFK-AS1) × (−1.15) + Exp (AC016888.1) × (0.34). Next, we plotted a 5-year ROC curve and calculated the AUC, and the maximum inﬂection point was accepted as the cutoff point by the AIC values (Figure 5C). The 3, 5, and 10-year ROC curves were also mapped with high AUC values over 0.75 (Figure 5D). KMA suggested a significantly better prognosis in the low-risk group than the high-risk group (Figure 5E, log-rank test, p < 0.001).
[image: Figure 5]FIGURE 5 | Construction of the irlncRNA prognostic model. (A) Lasso regression analysis. (B) Forest map of identified irlncRNAs by Cox proportional hazard regression. (C) ROC curve was plotted with the AUC value and optimal cutoff value. (D) The 3-, 5- and 10-year ROC curves were mapped with AUC values. (E) KMA between the high- and low-risk groups, p < 0.001.
Correlation of the Risk Score With Clinicopathologic Variables, Immune Cells, PD-L1 Expression, and TMB Score
Furthermore, we compared the AUC values between the risk score and traditional clinicopathologic variables, including clinical, T, M, N, stages, and age. Figure 6A showed that the risk score with the highest AUC value was compared with other variables. Moreover, the chi-square tests revealed the risk score was associated with clinical, N and T stages (Figure 6B). To study the mechanism between irlncRNA risk scores and ICI, the Spearman test was conducted, revealing that high-risk score was negatively related to most immune cells, except for plasma B, monocytes, M2 macrophages, and neutrophil cells (Figure 6C). In addition, the PD-L1 expression was lower in the high-risk group than that of the low-risk group (Figure 6D). However, there was no statistical difference in the TMB score between the two groups (Figure 6E). These findings indicated the irlncRNA risk score was related to the PD-L1 level but not with the TMB score.
[image: Figure 6]FIGURE 6 | Correlation of the risk score with clinicopathological variables, immune cells, PD-L1 expression, and TMB scores (A,B) A comparison of 5-year ROC curves (A) and correlation analysis (B) between risk scores and traditional clinicopathologic variables. (C) Spearman analysis between risk scores and ICI with seven common methods. (D) Different PD-L1 expression levels in the high-risk and low-risk groups. (E) Compared TMB level in the high-risk and low-risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001.
DISCUSSION
In our current work, we successfully constructed the ICI scoring system and demonstrated that it could be used as a robust biomarker for predicting the immunotherapeutic response in a cohort consisting of 644 TNBC patients. Although immunotherapy is highly effective in suppressing tumor growth and improving patient life quality, it is limited by the high cost. This conundrum is further aggravated by the fact that only a minority of patients favorably receive immunotherapy. As a result, it is vital to accurately identify people who might benefit from immunotherapy.
To devise novel immune-modulatory strategies to deal with TNBC, we need to better understand the immune characteristics and profiles of TNBC. Herein, we categorized TNBC from a meta-cohort including 435 samples into ICI clusters A and B. The ICI cluster B, characterized by more infiltrations of CD4 T, CD8 T, B, activated NK cells, M1 macrophages, and high expression of immune checkpoint molecule PD-L1 showed improved OS, which was consistent with the previous studies (Wu et al., 2019; Tokumaru et al., 2020; O'Melia et al., 2021). Intense ICI has been reported to be present in as high as 48% of TNBC cases, especially in TNBC with the basal-like subtype (Harano et al., 2018). TNBC patients with high levels of immune infiltration, which are measured by immune signatures, show an improved OS (Iwamoto et al., 2011). In addition, for TNBC patients undergoing neoadjuvant chemotherapy, intense ICI is associated with a higher pathological complete response and a better outcome. A neoadjuvant GeparSixto trial has shown that a subset of TNBC patients with strong immunologic signals can hopefully benefit from the immunotherapy strategy (Denkert et al., 2015). Researchers have reported that PD-L1 is expressed in immune cells of 40–65% TNBC tissues (Beckers et al., 2016), and PD-L1 ( + ) tumors have a greater CD8 ( + ) T-cell infiltration compared with PD-L1 (−) tumors (Mittendorf et al., 2014). However, some PD-L1 (−) patients still obtain a clinical response with immune checkpoint inhibitors (Ribas and Hu-Lieskovan, 2016). Furthermore, only an objective response rate of 18.5% has been reported in TNBC patients in a recent phase Ib clinical trial of PD-L1 immune checkpoint inhibition (Nanda et al., 2016). Therefore, simple ICI alone is insufficient for the precise prediction of immunotherapeutic response.
Therefore, we hypothesized that a combination of data from the ICI model and immune-related signature would offer more information concerning individualized immunotherapy. We observed that ICI gene clusters A and B were linked with a favorable prognosis and a dramatically greater immune score than clusters C and D. In addition, there were increased infiltrations of B cells, CD8 T cells, activated memory CD4 T cells, and M1 macrophages cells in ICI gene clusters A and B. Therefore, patients categorized into clusters A or B might benefit from immunotherapy. In contrast, clusters C and D with higher infiltrations of plasma, resting memory CD4 T cells, M0 cells, and M2 macrophages, exhibited an immune-cold phenotype. Plasma cell-predominant breast cancer has been reported as an independently predicted value for worse OS and DFS (Wei et al., 2016). In contrast, research has shown that aforementioned median densities of CD38+ plasma cells are associated with a better DFS but not OS (Yeong et al., 2018). Presently, we revealed that TNBC patients with high infiltrations of plasma cells had a poor outcome. M0 and M2 macrophages are strongly associated with a poor outcome, contributing to cell migration in breast cancer (Ali et al., 2016; Tu et al., 2021). Furthermore, we divided DEGs into ICI gene signatures A and B to obtain tumor subtype-speciﬁc biomarkers, which have been well studied to enhance the outcome prediction (Callari et al., 2016). Compatible with previous studies, ICI gene signature A was linked to multicellular organismal homeostasis and extracellular matrix pathways, which have been noted to portend improved survival for patients with breast cancer (Roy and Walsh, 2014).
Through GSEA, we revealed that genes involved in the T- and B-cell receptor, proteasome, and chemokine signaling pathways were related to the high-ICI score group. However, glycosylphosphatidylinositol gpl anchor biosynthesis, aminoacyl tRNA biosynthesis, nitrogen metabolism, and homologous recombination pathways were connected with the low-ICI score group, which have been rarely reported in cancer. The KMA showed the high-ICI score group exhibited a better prognosis compared with the low-ICI score group, although there was no statistical significance (p = 0.056). Furthermore, increasing evidence demonstrates TMB is related to immunotherapeutic response in breast cancer (Thomas et al., 2018) and other types of cancer (Zhang et al., 2019; Lv et al., 2020). For instance, Romualdo et al. have shown that a high TMB has a relation with a longer OS in metastatic TNBC patients treated with anti-PD-1/L1 therapies (Barroso-Sousa et al., 2020). In line with this result, our study indicated TNBC patients with a higher TMB exhibited a better OS. We also noted that TMB was remarkably increased in patients with low ICI scores, indicating a significant negative relation between TMB and ICI scores. The combined use of TMB and ICI scores suggested that patients with a low-TMB + low-ICI score had the worst prognosis. We also found that TMB scores had no prognostic value in the high-ICI score group, whereas the high-TMB + low-ICI score group had a favorable prognosis compared with the low-TMB + low-ICI score group. This finding suggested that the combination of ICI and TMB scores could improve the prediction of outcomes to immunotherapy.
Furthermore, we identified a novel 13-irlncRNA signature to design a risk model to assess TNBC prognosis. Among these irlncRNAs, LINC00472 acts as a tumor suppressor and predictive marker in breast cancer (Shen et al., 2015a). The high expression of LINC00472 has been correlated with ER-positive, low-grade breast cancer, and favorable molecular subtypes (Shen et al., 2015b). The cell experiment has confirmed that LINC00472 suppresses the phosphorylation of NF-kB through binding to IKKβ in breast cancer (Wang et al., 2019). The nuclear lncRNA Linc00839 is upregulated in chemoresistant breast cancer cells, and its overexpression enhances Myc and activates the PI3K/AKT signaling pathway, thus facilitating proliferation, invasion, and migration, as well as leading to a poor prognosis in breast cancer (Chen et al., 2020). By calculating the AUC values, we verified the risk model could better forecast the 3-, 5-, and 10-year survival rate than the traditional clinicopathologic characteristics. Moreover, a high-risk score marked with poor prognosis and low PD-L1 had a positive relation with infiltrations of plasma B cells, monocytes, M2 macrophages, and neutrophils, which was consistent with the ICI score.
CONCLUSION
Collectively, we comprehensively evaluated the ICI landscape of TNBC with biological information obtained from next-generation sequencing with computational algorithms. Characterization of the ICI landscape served to elucidate the complex and dynamic anti-/pro-tumor immune response regulation in TNBC. Moreover, the ICI patterns were negatively correlated with TMB in TNBC. Therefore, the characterization and systematic evaluation of the ICI patterns in combination with TMB scores in TNBC might potentially serve to identify candidate patients for optimal individualized immunotherapy. The combination of ICI and TMB scores might function as a potentially effective biomarker for immunotherapeutic response prediction in TNBC patients. Furthermore, a novel 13-irlncRNA signature was determined and applied to conduct a risk model to accurately predict TNBC prognosis.
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Changes of cell type composition across samples can carry biological significance and provide insight into disease and other conditions. Single cell transcriptomics has made it possible to study cell type composition at a fine resolution. Most single cell studies investigate compositional changes between samples for each cell type independently, not accounting for the fixed number of cells per sample in sequencing data. Here, we provide a metric of the distribution of cell type proportions in a sample that can be used to compare the overall distribution of cell types across multiple samples and biological conditions. This is the first method to measure overall cell type composition at the single cell level. We use the method to assess compositional changes in peripheral blood mononuclear cells (PBMCs) related to aging and extreme old age using multiple single cell datasets from individuals of four age groups across the human lifespan.
Keywords: single cell transcriptomic analysis, cell type composition, sample level analysis, sample-to-sample comparison, diversity statistics
INTRODUCTION
Tissues are composed of heterogenous cell types that demonstrate differences in biological function (Raj and van Oudenaarden, 2008; Choi and Kim, 2019). Gene expression profiling methods such as single cell RNA-sequencing (scRNA-seq) have made it possible to profile the genome-wide gene expression levels for each single cell of a sample, to account for cell-to-cell variability (Chen et al., 2019; Tanay and Regev, 2017; Choi and Kim, 2019), and to identify and characterize cell types in a given tissue (Jaitin et al., 2014; Macosko et al., 2015; Zheng et al., 2017). ScRNA-seq has been extensively applied in multiple research areas to study cell types and states, as well as cell types compositional changes, across diseases and conditions (Shalek et al., 2014; Baron et al., 2016; Muraro et al., 2016; Villani et al., 2017; Butler et al., 2018; Schaum et al., 2018; Mathys et al., 2019; Velmeshev et al., 2019).
Most methods to analyze cell type composition at a single cell level model each cell type independently from other cell types (Haber et al., 2017; Luecken and Theis, 2019; Hashimoto et al., 2019; Wilk et al., 2020; Zheng et al., 2020; Zhu et al., 2020). For example, changes of peripheral blood mononuclear cells (PBMCs) composition observed between supercentenarians and younger age controls in Hashimoto et al., 2019 were assessed for each cell type independently using a Wilcoxon rank sum test. Other studies have taken a similar approach when assessing compositional changes between groups of samples at the single cell level (Haber et al., 2017; Luecken and Theis, 2019; Hashimoto et al., 2019; Wilk et al., 2020; Zheng et al., 2020; Zhu et al., 2020). However, high throughput sequencing data are in fact compositional (Gloor et al., 2016, 2017; Lin and Peddada, 2020). The approach we propose rests on the observation that a sample in scRNA-seq data is composed of cell abundances across cell types that are in constrained proportions, given the total number of cells in the sample (Gloor et al., 2016; Gloor et al., 2017; Lin and Peddada, 2020). In other words, the proportion of cell types within a sample are in fact dependent on each other: if the proportion of one type increases, then others need to decrease (Luecken and Theis, 2019). It is thus necessary to account for this dependency when assessing overall cell type compositional changes across samples. In addition, there is no method that provides a numerical summary of a sample overall cell type composition that can be used to compare samples in different conditions (Luecken and Theis, 2019).
Here, we introduce a statistic to summarize the distribution of the proportions of cell types in a sample. Using three single cell transcriptomic datasets of PBMCs comprising four age groups, we show the utility of this statistic to describe changes in PBMCs composition in aging and extreme old age.
MATERIALS AND METHODS
Cell type diversity statistic. The statistic makes three assumptions: 1) To make different samples of cells comparable, cell abundances must be normalized based on the total number of cells in a sample; 2) After conditioning on the total number of cells in a sample (Gloor et al., 2017), the cell type composition data is a simplex (Aitchison, 1982), and when the proportion of one cell type changes, the proportion of the other cell types must change as well to maintain the total fixed; and 3) To make the statistic comparable across different cell type resolutions, the statistic must be normalized. Formally, we denote by [image: image] the proportion of cell type [image: image] in a sample s with [image: image] cells, so that [image: image]
The statistic is adapted from alpha diversity measures applied in ecology and microbiome studies (Whittaker, 1972; Olde Loohuis et al., 2018; Calle, 2019). We measure the overall cell type composition of a sample by the adjusted entropy
[image: image]
In the formula, [image: image] is the maximum value of [image: image] that is reached when [image: image] for all indexes [image: image] so that the distribution is uniform. The minimum value of [image: image] is 0, which corresponds to a mass-point distribution with [image: image] for all indexes [image: image] but one. The adjusted entropy [image: image] therefore ranges between [image: image]. A sample with more uniformity in cell type proportions, and hence more variability, will result in a greater cell type diversity statistic and [image: image] in a sample with equal proportions of all cell types. A sample with cell type proportions that are skewed towards specific cell types, and less variability, will have a lower statistic and [image: image] when all cells are of one type.
Data. To demonstrate the utility of the cell type diversity statistic, we analyzed three single cell transcriptomic datasets of PBMCs representing regular aging and extreme old age. One dataset comprised samples of 7 centenarians from the New England Centenarian Study (NECS) (Sebastiani and Perls, 2012) and 2 younger age controls. We downloaded a publicly available scRNA-seq dataset of PBMCs from 45 younger age controls (van der Wijst et al., 2018), which we will refer to as NATGEN, and a publicly available scRNA-seq dataset of PBMCs from 5 younger age controls and 7 supercentenarians, which we will refer to as PNAS (Hashimoto et al., 2019). We integrated these datasets and stratified the samples into four age groups of the human lifespan: 12 subjects of younger age (20–39), 26 subjects of middle age (40–59), 14 subjects of older age (60–89), and 14 subjects of extreme longevity (100–119). Data processing steps and identification of the 12 cell types are described in the Supplement.
Application of cell type diversity statistic. We integrated the datasets to generate a matrix of cell type abundances across samples from all three datasets. We calculated the cell type proportions for each sample such that the sum of the cell type proportions for a particular sample equals to 1. We applied the cell type diversity statistic to different cell type resolutions: 1) based on the proportions of lymphocytes and myeloid cells; and 2) based on the proportions of the 12 lymphocyte and myeloid subpopulations that were detected in the data. For both resolutions, we measured the cell type diversity statistic per sample and compared the differences of the statistics between the four age groups using ANOVA and pairwise T-tests with significance level 0.05.
RESULTS AND DISCUSSION
We applied the cell type diversity statistic to the cell type proportions from the three scRNA-seq datasets of younger age individuals and centenarians to assess overall compositional changes across four age groups: younger age (20–39), middle age (40–59), older age (60–89), and extreme old age (100–119 years of age). We first calculated the cell type proportions for each sample across the four age groups (Figure 1A, Supplementary Table S1) and we observed a shift in the distribution of cell proportions from lymphocyte and myeloid cell types from younger ages to centenarians (Figure 1A).
[image: Figure 1]FIGURE 1 | Cell type diversity statistic to summarize PBMCs composition across age groups. (A). Proportions of 12 cell types discovered in scRNA-seq of PBMCs from different age groups. Each bar represents the proportions of lymphocyte (blue-green gradient) and myeloid (red-yellow gradient) cell types (y-axis) in a sample. (B). Each boxplot represents the distribution of the diversity statistic of the proportions of lymphocyte and myeloid cells in younger, middle, older, and extreme old age individuals (x-axis). The differences of the statistics across age groups were statistically significant (F-test p-value = 0.0001873) (C). Each boxplot represents the distribution of the diversity statistic of the proportions of the 12 cell types grouped by younger, middle, older, and extreme old age (x-axis). The differences of the statistics across age groups were statistically significant (F-test p-value = 0.0001875). The diversity statistic was significantly higher, in the extreme old age group compared to each younger age control group: younger age group (t-test p-value = 0.00115), middle age group (t-test p-value = 0.00016), and older age group (t-test p-value = 0.00363).
We then calculated the cell type diversity statistic to measure the variability of the proportion of lymphocyte and myeloid cells in each sample (Supplementary Table S2). Comparing the cell type diversity statistics across the four age groups, we found a significant difference in the distribution of the statistics across the four age groups (F-test p-value = 0.0001873) (Figure 1B). The increased value of the cell type diversity statistic in the extreme old age group is consistent with the shift in abundances from lymphocytes to myeloid cells, which is an expected change in the immune system with aging (Geiger et al., 2013). We also applied the cell type diversity statistic to measure the variability of the proportions of 12 lymphocyte and myeloid subpopulations in each sample (Supplementary Table S3). We again found a significant difference in the distribution of the statistic in the four age groups (F-test p-value = 0.0001875) (Figure 1C). Specifically, centenarians had significantly increased cell type diversity statistics compared to each younger age control group: younger age group (t-test p-value = 0.00115), middle age group (t-test p-value = 0.00016), and older age group (t-test p-value = 0.00363) (Figure 1C). The pattern of the cell type diversity with age groups suggests that centenarians have a more uniform distribution of cell types compared to individuals of younger ages even at a finer resolution of cell types.
The analyses illustrate how the cell type diversity statistic can be used in combination with visualizations of cell type proportions to provide a numerical summary of the distribution of cell types in different conditions. We showed an application of this metric in the context of aging to summarize changes of the distribution of cell types across different age groups, at different resolutions. The metric showed a significant change of the distribution of 12 cell types in extreme old age compared to younger age groups, as well as a significant change of the proportion of lymphocytes and myeloid cells that are biologically relevant to aging (Geiger et al., 2013). Although in our analysis the distribution of the cell type diversity statistics did not change with different cell type resolutions, in other applications the statistic could change since the distribution of the proportions of subpopulations of cells can be very different.
One major challenge in the analysis of single cell transcriptomics data is in the identification and annotation of cell types. There are varying methods to identify cell types (Andrews et al., 2021; Adil et al., 2021; Shekhar and Menon, 2019; Luecken and Theis, 2019) and the resolution of cell type for analysis should be selected based on the biological question of interest (Luecken and Theis, 2019). Another challenge of this type of analyses is accounting for cell types that are not detectable under specific conditions. Other metrics are needed to account for cell types that are not detected in all conditions.
The cell type diversity statistic is applied as a global summary of cell type composition, and additional analyses are required to quantify individual cell type changes and to adjust this analysis for additional covariates. The recent method scCoda uses a Bayesian Dirichlet regression model to examine individuals cell type changes and accounts for the constrained proportions in single cell composition data is particularly promising (Büttner et al., 2021).
Entropy as a metric to study composition level data has been applied in many fields including analyses of microbiome data (Whittaker, 1972; Olde Loohuis et al., 2018; Calle, 2019). The importance in applying this metric to single cell transcriptomics is that it accounts for the constrained proportions of cell types in each sample, and ignoring these constraints can results in inconsistencies when assessing compositional changes (Gloor et al., 2016; Gloor et al., 2017; Calle, 2019; Luecken and Theis, 2019).
CONCLUSION
We present the cell type diversity statistic, an entropy-based measure to assess and summarize the overall cell type composition of samples in single cell gene expression data. The diversity statistic allows for the investigation of global cell type compositional changes applicable to studying disease and other conditions at the single cell level. We demonstrate the utility of this method by its application to single cell datasets of aging and extreme old age, and show that it can reveal novel changes in composition in aging at different resolutions.
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The global efforts to control COVID-19 are threatened by the rapid emergence of novel SARS-CoV-2 variants that may display undesirable characteristics such as immune escape, increased transmissibility or pathogenicity. Early prediction for emergence of new strains with these features is critical for pandemic preparedness. We present Strainflow, a supervised and causally predictive model using unsupervised latent space features of SARS-CoV-2 genome sequences. Strainflow was trained and validated on 0.9 million sequences for the period December, 2019 to June, 2021 and the frozen model was prospectively validated from July, 2021 to December, 2021. Strainflow captured the rise in cases 2 months ahead of the Delta and Omicron surges in most countries including the prediction of a surge in India as early as beginning of November, 2021. Entropy analysis of Strainflow unsupervised embeddings clearly reveals the explore-exploit cycles in genomic feature-space, thus adding interpretability to the deep learning based model. We also conducted codon-level analysis of our model for interpretability and biological validity of our unsupervised features. Strainflow application is openly available as an interactive web-application for prospective genomic surveillance of COVID-19 across the globe.
Keywords: SARS-CoV-2, natural language preprocessing, genomic surveillance, unsupervised modeling, supervised predictions
INTRODUCTION
New variants of SARS-CoV-2 continue to rage across the globe causing devastating waves of the pandemic. Such waves may continue to occur and many lives can be saved through early preparedness. COVID-19 is reported to have claimed 5.45 million lives as of 10 January 2022 (WHO Coronavirus 2021 (COVID-19) Dashboard). A large number of these deaths are attributed to unexpected surges in infections caused by new strains with higher pathogenicity such as the Delta variant of SARS-CoV-2, prompting international health organizations such as the CDC and WHO to declare these as variants of concern (CDC, 2022). The most recent surge of Omicron across the globe with its potential for escaping immunity has seriously undermined the efficacy of global vaccination programs. Most studies around the globe have focussed on forecasting case time series using traditionally reported administrative data. Standard epidemiological approaches such as compartmental and agent-based modeling have been used extensively for forecasting COVID-19 caseloads (Arora et al., 2020). Additionally, numerous studies have used time series analysis, social media mining and multimodal approaches have been utilized for case predictions (Kapoor et al., 2020; Melin et al., 2020; Qin et al., 2020; Reiner et al., 2020; Rodríguez et al., 2020; Wu et al., 2020; Ayan et al., 2021). Earlier, initiatives such as Nextstrain (Hadfield et al., 2018) have focused on providing high-quality tracking information for the strains and lineages as these emerge without forecasting or predictions. Hence early prediction of caseloads and emerging variants through genomic signals remains an open challenge for COVID-19.
Unsupervised embeddings have been shown to capture highly nonlinear and contextual relationships (Mikolov et al., 2013). Biological sequences contain a plethora of information that can be exploited for genomic surveillance. However, there is a paucity of studies that explore the use of unsupervised embeddings for machine learning based prediction of surges in infections. In these models, codons (tri-nucleotides, 3-mers) translations represent a natural basis for word representations and have been utilized in the past for learning embedding models for modelling various outcomes such as mutation susceptibility and gene sequence correlations (Yilmaz, 2020) (Wu et al., 2021). Recently, Hie et al. used machine learning along with word embedding techniques to model the semantics and grammar of amino acids corresponding to antigenic change to predict the mutations which might lead to viral escape (Hie et al., 2021). Similarly, Maher et al. predicted emerging mutations of SARS-CoV-2 variants and evaluated biological and neural network based predictors of emerging mutations (Maher et al., 2021). Here, we propose Strainflow (Figure 1), a prospectively validated pipeline with prediction and prospective validation of surges 2 months ahead of time. Our empirical experiments demonstrate interpretable features based on Entropy of the latent space of SARS-CoV-2 spike region, thus aiding an early warning system for emergence of new variants of concern and case surges.
[image: Figure 1]FIGURE 1 | Architecture of the Strainflow pipeline.
RESULTS
Genomic Sequence-Based Language Modelling Captures Emerging Diversity in the SARS-CoV-2 Spike Gene
Our results validate the idea that a complex combination of codon weights may confer evolutionary advantage to the variant. The combinations of weights were learned using state-of-the-art unsupervised embeddings for capturing the latent space of spike DNA sequences of SARS-CoV-2. The framework of Strainflow is depicted in the figure below (Figure 2A). The global tSNE plot represents dynamic emerging patterns derived from latent space representations of spike genes of SARS-CoV-2 (Figure 2B) from September, 2020 to March, 2021, along with specific geographic locations (country-level) such as India, United Kingdom, United States, and Brazil.
[image: Figure 2]FIGURE 2 | Latent space of spike genes derived using Strainflow preserves spatiotemporal information of SARS-CoV-2 spread. (A) The implementation framework of Strainflow (details described in the method section) (B) tSNE plot showing distinct spatio-temporal relationship based on the latent space learned from the spike gene of 0.308 million SARS-CoV-2 genomes collected till 31 March 2021 (world), India, United Kingdom, United States, and Brazil. (C) Embeddings estimated or predicted from the Strainflow model for 0.45 million SARS-CoV-2 spike genes from the month of April, 2021 to June, 2021. (D) Embeddings estimated or predicted from the Strainflow model for 1.79 million SARS-CoV-2 spike genes from the month of July, 2021 to January, 2022. (E) Heatmap showing the scaled entropy for 18 countries from March, 2020 to January, 2022 (showing data for a. training: March, 2020 to March, 2021, b. prediction: April, 2021 to June, 2021, and c. validation: July, 2021 to January, 2022). The entropies for each country were scaled to the same range to visualize the temporal trends within the country.
To investigate the information content in the latent space of the spike gene learned by our Strainflow pipeline, we performed qualitative and quantitative analysis on 2.7 million SARS-CoV-2 spike genes collected from December, 2019 to January, 2022. Qualitative analysis was performed by performing dimensionality reduction with a fast tSNE method called Flt-SNE (Linderman et al., 2019). We compared the 2D t-SNE plot of the world with four countries (India, United Kingdom, United States, Brazil) from September, 2020 to January, 2022, which clearly highlights the dynamic changes in the spike genes across countries in different months (Figures 2B,C,D). Additionally, quantitative analysis of the latent space was performed by calculating the fast sample entropy of each latent dimension (Tomčala, 2020). To compare the monthly entropy of the latent dimensions of different geographical regions, the mean entropy was calculated and normalized across the months for each country. We observed the highest entropy (information content) for India, United Kingdom, United States and Brazil in the months of February-2021, January-2022, August-2020, and January-2022 respectively. Interestingly, we observed high entropy for 4 months from August, 2020 to November, 2020 in the United States (Figure 2E). This highlights that the spike protein latent space representation learned by Strainflow could be used as a proxy to capture the spatiotemporal entropy or diversity in the emerging SARS-CoV-2 strains across different countries.
Preservation of Spatiotemporal Information of SARS-CoV-2 Spread Depicted With Phylogenetic Analysis
Sequence-level embeddings were obtained from the codon embeddings and investigated for the presence of genomically meaningful characteristics. The phylogenetic tree derived from the embeddings for the United Kingdom (Figure 3A) shows two clear temporally split clusters for 2020 and 2021 sequences, which may be indicative of different strains in these time periods. The temporality of the collected sequences was found to be preserved in the two clusters, although the model was trained only on genome sequences.
[image: Figure 3]FIGURE 3 | Phylogenetic trees constructed using cosine similarities between 400 randomly sampled sequence embeddings. (A) Dendrogram for strains from the United Kingdom: Cluster 1 (blue) contains strains from the period October 2020–December 2020, while Cluster 2 (orange) contains strains collected between January 2021–March 2021. (B) Dendrogram for 16 countries across the globe: Chinese, Australian and England strains form tight clusters (marked in purple, green, and magenta), while strains from Italy, France, Brazil, Japan, Canada, United States, Scotland, and India are dispersed with other countries.
The phylogenetic tree with globally collected sequences (Figure 3B) demonstrates that geospatial information is also preserved in the sequence embeddings. The dendrogram constructed using cosine distance between embeddings revealed clear clusters of geospatially close regions. Embeddings from geographically close locations were clustered together (Figure 3), and countries closer geographically had similar embedding patterns (Figure 4). This highlights that our de novo embeddings captured these similarities without the need for standard alignment methods or expert knowledge of lineages. Clusters for China (purple), Australia (green), and England (magenta) are highlighted in Figure 3B. Strains from Italy, France, Brazil, Japan, Canada, United States, Scotland, and India were found to be dispersed with other countries. Overall, Strainflow captures the temporal emergence of strains and geographic information in a country-specific manner.
[image: Figure 4]FIGURE 4 | Sum of sample entropy for each latent dimension for different countries. Country pairs (A) - France and Germany, (B) United States and Canada show a similar distribution of total sample entropy across dimensions, while each pair differs from the other.
Entropy in the Latent Space Dimensions Captures Variability in the Spike Gene
Entropy of a latent dimension has biological significance as it intuitively captures the variation in codon level changes during a certain time window. Each latent dimension encodes a combination of codon weights and increase in entropy represents frequent changes to these weights. Temporal changes in entropy are therefore expected to uncover the explore-exploit cycles of SARS-CoV-2 spike gene changes, hence biologically indicative of future trends. To compare different geographical regions, the sum of sample entropy was computed for each latent dimension across all the months. This revealed that certain geospatial regions such as France and Germany (Figure 4A) and United States and Canada (Figure 4B) have similar total entropies across the latent dimensions, indicating that strains in these regions have been accumulating similar genomic changes.
Entropy Dimensions Are Predictive of New COVID-19 Caseloads
We then attempted to decipher the relationship between monthly sample entropy and monthly new COVID-19 cases in different countries. Detrended cross-correlation coefficient was calculated at different lag values, which revealed that entropy dimensions have a leading relationship with new cases (Figures 5A,B). This suggests that the genome sequence data in a given month can be used to predict new cases in subsequent months. A lead period of 2 months was chosen and Boruta algorithm was employed to assign feature importance scores to different dimensions, which revealed that dimension 32 is the most significant predictor of new cases (Figure 5C). Significant dimensions from Boruta analysis were used for further modeling. Random forest based regression modelling on the predictive features achieved a total R-squared of 73% on the validation set. The predicted cases were found to be highly correlated with the actual cases (Table 1), which suggests that our model can indicate the directional change of cases for different countries. Further, the predicted relative change in cases between successive months was found to be correlated to the actual relative changes (Supplementary Table S1), which suggests that our model can also indicate the magnitude of change that we expect to observe in the cases.
[image: Figure 5]FIGURE 5 | Relationship of the entropy of latent space dimensions with COVID-19 caseloads. (A) Detrended Cross-correlation coefficient values for different lags between Entropy dimension 32 and new cases for United States. High values are observed for a lead of 1 and 2 months. (B) Line plot for Sample Entropy dimension 32 and monthly new cases for United States, indicating that the entropy in dimension 32 has a leading relationship with the cases. (C) Detrended Cross-correlation coefficient values for different lags between Entropy dimension 27 and new cases for India. (D) Line plot for Sample Entropy dimension 27 and monthly new cases for India, indicating that the entropy in dimension 27 has a leading relationship with the cases. (E) Feature importance scores from the Boruta algorithm for predicting cases in the month following the next month.
TABLE 1 | Pearson and Spearman’s Correlation coefficients between predicted and actual cases in different countries.
[image: Table 1]Our model can be therefore used to predict the COVID-19 caseloads in several countries. Both United States (Figure 6A) and Japan (Figure 6C) show an increase in the sample entropy across the time period April–June 2021, concurrent with the respective spreads in these countries. Our model predicts new caseloads with a 2-month lead time, which strongly predicts a spike in new cases both in United States (Figure 6B) and Japan (Figure 6D) in the months of July and August, 2021. For India our model predicted a decline in the number of cases for the month of July and August, 2021 (Figures 6E,F). Therefore our model may be used as an epidemiological early warning system to predict new caseloads.
[image: Figure 6]FIGURE 6 | Prediction of new COVID-19 cases with Sample Entropy values of the latent dimensions. (A) Line plot showing the Entropy values of the selected features and new COVID-19 cases for the United States (B) Actual and predicted cases based on the entropy values of selected features for the United States. The model predicts a rise in cases for July and August 2021. (C) Entropy of selected features and new cases for Japan. (D) Actual and predicted cases for Japan. A spike in cases is predicted for July and August 2021. (E) Entropy of selected features and new cases for India. (F) Actual and predicted cases for India.
Codons Associated With the Predictive Features Could Be Linked to SARS-CoV-2 Variants
We further assessed the potential link of the predictive features with SARS-COV-2 variants by extracting the top 10 contributing codons and their associated weights for each dimension (Supplementary Table S2). The intuition behind this idea is that the codons with high weights in a given dimension, when mutated in the viral sequence, are likely to cause a significant change in the entropy of the associated dimensions. Therefore each predictive feature can be linked to codons, which can further be mapped to Variants of concern (VOCs) and Variants of Interest (VOIs) (Supplementary Table S3). Despite the fact that our model cannot directly capture the SARS-CoV-2 variants, it was observed that dimension-32 captures the CTG, CGG codons (ranks 5 and 8 respectively), known to be involved in the mutation T19R. Similarly, dimension 3 captures three codons (ACG, CGG, CAC) that are associated with multiple variants such as K417T, L452R, and D1118H, causing increased infectivity, pathogenicity, and spread. Dimension 30 captures codons CAT and CAC associated with Δ69 and D1118H respectively which are linked to B.1.1.7 lineage.
Codon weights (Supplementary Table S2) of a given predictive feature provide an opportunity to associate with specific Variants of concern (VOCs) and Variants of Interest (VOIs), and to predict emerging SARS-CoV-2 variants. Distinct dimensions capture country-specific changes and may be surveilled to monitor the spread of the pandemic. This approach was back-validated with several real-world examples. For instance, dimension 32 captures the codons CGG (R) and CAC (R), which are found in B.1.429 lineage (L425R mutation). Dimension 3 captures CGG which is seen in L452R (associated with lineage B.1.617.1), which was first observed in India in December 2020 and was found to have increased infectivity and transmissibility.
Prospective Validation of the Model in the Delta and Omicron Surges Revealed Interpretable Predictive Features
For investigating the potential of our predictive features to track the spread of SARS-CoV-2, we used the codon level information of the SARS-CoV-2 delta variant for the spike gene and extracted the weights of these codons specific to each feature. We selected Dimensions 3, 4, 12, 13, 15, 16, 25, 28, 30, 32 with high absolute weights for the codons related to the delta variants (Figure 7A). The entropy of these features was contrasted with the caseloads in England (Figure 7B), India (Figure 7C), and United States (Figure 7D). Overall, the temporal tracking of these features may be used as a surrogate to track the spread of various SAR-CoV-2 variants.
[image: Figure 7]FIGURE 7 | Potential association of codons observed in SARS-CoV-2 Delta variant (lineage B.1.617.2) with their corresponding entropy features, and the trend of caseloads with the entropy features. (A) Absolute latent space weights of the codons associated with the entropy features linked to the Delta variant. Line plots showing the entropy features and cases in countries, (B) England, (C) India, and (D) United States The entropies show an increasing trend in the months April–June 2021 for India and United States, indicating a possible surge in the delta variant in these countries. (E) Predicted and Actual cases for India. The region shaded in grey represents the months for which the case prediction model was prospectively validated. (F) Entropy and Caseloads for India. Explore-exploit patterns in the genomic feature-space can be observed.
Our case prediction model was frozen in June, 2021 and prospectively predicted the caseloads from July, 2021 to December, 2021. Our model predicted the case upsurge in India due to the Omicron variant in November, and December, 2021 (Figure 7E) 2 months ahead of time. Although the model fails to predict the exact values of cases, it is useful as a trend indicator. Further, we observe explore-exploit cycles in the entropy-space of India prior to the case peak due to the Delta variant in May, 2021 (Figure 7F). A similar exploration phase can be observed for the months from September–November, 2021, which may be indicative of an upcoming case peak driven by the Omicron variant.
DISCUSSION
We have implemented an approach for analyzing the emerging strains based on the latent space of spike protein coding nucleotide sequences. We chose the nucleotide sequences instead of proteins in order to capture and track the variations that may not have immediate functional consequences. Our approach has two main underlying tenets: 1) long-range interactions are known to modulate the functional interaction between receptor binding domain and ACE2 receptors, hence may be captured in the NLP models that capture 3-mer changes and context, and 2) latent dimensions may be differentially correlated with indicators of spread, thus providing a data-driven handle for tracking and predicting variants of concern and variants of interest (Mugnai et al., 2020). The pipeline takes advantage of temporal changes in the semantics of mutating sequences. Preservation of phylogenetic structure based upon the similarity matrix obtained using the embeddings validated that the latent dimensions capture spatio-temporal information. Analyzing the dynamic patterns and underlying correlations in the 30,000 base pair long sequence of SARS-CoV-2 is important to highlight the mechanistic understanding of mutations (Shishir et al., 2021). SARS-CoV-2 seems to show a particularly high frequency of recombinations arising due to the absence of a proof-reading mechanism and sequence diversity, which calls for urgency in studying its transmission pattern (Rouchka et al., 2020; Mandal et al., 2021). Therefore predicting mutations in the spike protein, which binds to ACE2 receptors can help us estimate the spread of disease and the efficacy of therapeutic treatments and vaccines (Li et al., 2020; Srivastava et al., 2021).
While most research studies have attempted to predict the exact number of cases and have failed, our work is focussed on early prediction of trends from a non-obvious source of data. Unlike obvious data sources, the inter-relationships between codons in genome sequences are complex and less likely to be influenced or biased. Furthermore, sequencing data are made routinely available via various national and global consortia for genomic surveillance of SARS-CoV2. Our study also highlights the potential for triangulating insights from completely unrelated datasets, an approach that is expected to eliminate systematic biases in reporting by independent organizations. Further studies may triangulate insights from disparate, heterogeneous datasets such as mobility, genome surveillance, testing and case predictions to partially solve the problem of biases in individual datasets.
Entropy is a measure of the disorder of a system. We hypothesized that mutations increase the chaotic dynamics in the latent space of spike genes. To calculate entropy, we used the accelerated versions of the Approximate Entropy and Sample Entropy algorithms, called Fast Approximate Entropy and Fast Sample Entropy (Tomčala, 2020). Both algorithms aim to quantify how often different patterns of data are found in a time series. Fast Approximate Entropy, however, is a biased statistic and depends on the length of the series. Since we could have different counts of genome sequences collected each month, we preferred Sample Entropy, which is independent of the length of the series. Entropy values were calculated for each latent dimension in each month. Thereafter, Detrended Cross-Correlation Analysis (DCCA) was performed between the entropy dimensions and the new cases (Prass and Pumi, 2020b). DCCA is a modification of the standard cross-correlation analysis for finding relationships between non-stationary time series. High cross-correlation for different lead periods revealed that the entropy values in a given month could be used to predict the new cases in different countries in subsequent months. Different countries had different lead times at which the highest cross-correlation was observed between the entropy dimensions and the cases, ranging from 1 to 6 months. Overall, a lead time of 2 months was chosen to model the new cases. An empirical analysis was also done with daily values of entropy and new cases. Entropy was calculated in rolling windows, and cross-correlation analysis was performed between entropy and new cases at different lead periods. Although the cross-correlation values were found to be significant, the values were low and ranged between −0.1 to 0.1. Therefore, we decided to use the monthly entropy values for the modelling exercise.
To predict new COVID-19 cases, a random forest regression model was trained on the monthly entropy data. With sample entropy, we achieved an R-squared value of 73% on the validation set, while with approximate entropy, the value was only 10%. Therefore the model trained on sample entropy was selected. The predictions from the model were found to be highly correlated with the actual cases, indicating that our model can be used for preemptive warning signals for the rise in cases in different countries. Further, the actual and the predicted difference in the number of cases in consecutive months was found to be correlated, which suggests that the relative change in the cases in consecutive months predicted by our model is linked to the relative change in the number of cases. Overall, we recommend that our model be used to predict dangerous trends and not the actual number of cases. Further, the mapping from latent dimensions to Variants of Concern (VOCs) and Variants of Interest (VOIs) may help us track the country-specific spread of different variants.
The COVID-19 pandemic has been a dynamically evolving scenario, with new strains emerging and vaccines being developed. With the SARS-CoV-2 genome constantly mutating, we anticipate an underlying change in the grammar of the sequence, underpinning the need to update our language model every few months. Further, the regression model for caseloads needs to be periodically retrained too. An empirical analysis led us to discover that the Random forest model used for prospective validation from November, 2021 onwards performed better in terms of predicting the number of cases than the model used for prospective validation from July 2021 (Supplementary Figure S2). However, both models indicate similar trends in cases for most countries.
Further, models trained on genomic sequences can be used for predicting infection severity based on Co-associations between the SNPs of Co-morbid Diseases and COVID-19 (Wang et al., 2020b). The machine learning models can also be trained on genomic sequences for COVID-19 classification (Arslan, 2021). Although the variance explained by our model is low, however, we were able to compute the variability associated with spike protein mutations. So our method showed a potential way to estimate the new cases variability associated with spike protein mutations. Our methods can be incorporated with the epidemic projections model to better predict the epidemic trajectories. The latent dimensions may further be employed to predict the clinical consequences of emerging strains. The currently available vaccines are intended for early SARS-CoV-2 strains, but with new emerging variants, immune responses triggered by these vaccines may be weaker and short-lived. As seen in the devastating second wave of the pandemic in India, newer SARS-CoV-2 variants have acquired an increased pathogenic potential resulting in rapid clinical progression and overwhelmed health systems. Mitigating such events in the future will require stronger surveillance systems in place. Our study offers a promising solution in this direction and lays the foundation for proactive genomic surveillance of COVID-19.
Our study has the following limitations. Our approach of codon embeddings does not indicate the position where the codon change may have happened in the spike gene. This is because low-dimensional embeddings do not preserve the positional encoding of words. However, we are investigating advanced approaches such as complex-valued word embeddings with positional encodings and transformer models such as BERT to overcome our current limitations (Wang et al., 2020a; Lee et al., 2020; Wolf et al., 2020). The latter are considered expensive and data-hungry models and it will remain to be evaluated if the gain of positional information may be countered by the loss of prediction accuracy for forecasting new cases in the future. However, we believe that the availability of sequences for a wide variety of viral pathogens presents an exciting opportunity to train data-hungry models that may be able to transfer insights across pathogens and yet remain interpretable. Further, our Strainflow model is trained only on the spike gene of the viral genome, which does not represent the complete variation spectrum of the virus. To mitigate this shortcoming, we will develop a genome-level Strainflow pipeline for SARS-CoV-2. Furthermore, the present study does not consider the interaction between the spike gene and other genes in the SARS-CoV-2 genome. We have not considered the interaction between the ACE2 receptor sequence for the human and the spike gene sequences due to the unavailability of such large-scale paired data. However, we believe this is a strength of our study as we were able to extract relevant features as well as make valid predictions using the spike region of the SARS-CoV-2 gene alone.
Our current approach does not explicitly capture specific positional mutations. Although the ad-hoc analysis for codon weights on significant dimensions allows us to rank the codon level changes, the predictive feature is a complex nonlinear combination of these changes which may eliminate strongly associated features. The E484Q mutation was not captured as the most important in our model. However, this may be because other codon level changes such as L452R and their combinations may be correlated and hence a proxy for E484Q. Importantly, the B.1.617 variant has both L452R and E484Q mutations and L452R change was predictive and captured in the top ten ranks for multiple latent dimensions (3, 4, 10, 12, 13, 15, 16).
Finally, a relatively small number of samples were used to construct the supervised predictive model for case prediction. As more data becomes available in subsequent months, we can produce more confident case predictions. An empirical validation depicted that we require a minimum of 100 samples per month for calculating the sample entropy. This also underscores the need for a more reliable and agile approach to deposit country-level datasets on repositories such as GISAID. We make an appeal to the countries to facilitate the sharing of such data in order to be prepared for any future waves of the current pandemic and for preventing the new emergence of strains. We believe our study is an instance of the new paradigm of pathogen surveillance using a novel language modelling approach that is potentially scalable to infectious disease surveillance and antimicrobial resistance.
METHODS
Datasets
Training dataset: The dataset was downloaded from GISAID EpiCoV (April 8, 2021 release) (Shu and McCauley, 2017). 0.36 million genome sequences (December, 2019–June, 2021) with high nucleotide completeness, coverage, complete temporal information, and presence of less than 5% non-identified nucleotide bases (N) were downloaded. The sequences included 63 countries, including India, United Kingdom, United States, Australia, New Zealand, Germany, Russia, Italy, France, Mexico, Canada, China, Japan, Pakistan, Bangladesh, Iran, Iraq, the continent of South America, and Africa. Duplicate samples were removed, and whole genome sequences were parsed using CoV-Seq to extract nucleotide sequences corresponding to each of the 12 Coding DNA Sequences (Liu et al., 2020). Accession IDs that did not cover 12 coding regions were discarded, yielding 0.31 million high-quality SARS-CoV-2 genome sequences for language modelling. The spike gene region of each sequence was filtered and used for all subsequent analysis. We downloaded country-wise COVID-19 data for new cases from a publicly available repository maintained by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).
Evaluation dataset: We downloaded around 0.6 million genome sequences submitted to GISAID from April 2021 to June 2021. We used our trained model to predict the latent representations for these sequences.
Word Embeddings in Strainflow Pipeline
In our Strainflow pipeline, we have adopted a word2vec model (Mikolov et al., 2013). Low dimensional representations for the genome sequences were learned using the word2vec model. Non-overlapping sequences of 3-mers (codons) were considered as words for training the model, which was implemented in Gensim (Řehůřek and Sojka, 2010). The skip-gram algorithm was used, with a fixed window size of twenty and vector size of thirty-six. For generating a consensus embedding for a particular strain, genomic sequences were represented by taking the mean of each codon occurring in the sequence dimension-wise. The mean was calculated by summing across all the k-mers over each dimension and then dividing it by the total number of codons present in the sequence. For selecting the dimension size for our word embeddings, we calculated the PIP (Pairwise Inner Product) loss (Yin and Shen, 2018). PIP loss is a metric used for calculating the dissimilarity between two word embedding matrices. For the embedding matrix of strains (E), the PIP matrix is defined as the dot product of the embedding matrix with its transpose ([image: image]. The PIP loss between two embedding matrices is defined as the norm of the difference between their PIP matrices.
[image: image]
Various word2vec models were trained on the dataset with different vector sizes varying in multiples of three. Based on the PIP loss calculations, we found out that word embeddings with 36 dimensions showed a differential dent in the curve (change in straight line), due to which we selected this to be the dimension of the word embeddings (Supplementary Figure S1).
Phylogenetic Analysis Using the Latent Dimensions of the Spike Genes
To evaluate the phylogenetic properties based on the latent dimensions of the spike gene, we computed the cosine distances among spike genes of SARS-CoV-2 with the 36 latent dimensions. The pairwise distance was further used for hierarchical clustering using the ‘hclust’ function in R statistical programming language. This analysis was performed using 400 random sequences of spike genes from 16 countries. The visualization of the phylogenetic tree derived based on the latent dimensions was done using “iTOL” software (Figure 2) (Letunic and Bork, 2021).
Entropy of the Latent Dimensions
To quantify the properties of latent dimensions, we have used a well-known information theory based algorithm suitable for time series datasets, called “Fast Sample Entropy” (Pan et al., 2011). To compute Fast Sample Entropy, we have used the “FastSampEn” function in the “TSEntropies” package in R (Tomcala, 2018). Fast Sample Entropy can be computed as follows.
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where,
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[image: image] is a set of sub-sequences of length m belonging to the i-th neighbourhood, and
[image: image] is the number of these neighbourhoods.
In our case, “x” is the latent dimension of the spike genes of the SARS-CoV-2 strains per month for a given country with default values of “m” and “r.” Entropy was computed for each latent dimension on a monthly basis for each country. To compare geographies across months, we used average entropy derived from 36 latent dimensions, followed by normalization using all the monthly entropies for a given country (Figure 1D). To compare the entropy of the latent dimensions among countries, we used the total entropy of the country for each dimension and visualized it with line graphs (Figure 3).
Detrended Cross Correlations Analysis
To investigate the information content (entropy) of the latent dimensions with the new cases observed for COVID-19, we used the Detrended Cross Correlation Analysis (Prass and Pumi, 2020b) Here, DCCA captures the long-range cross correlation between time series (entropy of the months and caseloads for a given country). We tested both time series for stationarity using Augmented Dickey-Fuller (ADF) test (Mushtaq, 2011). The ADF test was implemented using the function “adf.test” available in the “tseries” package in R (Trapletti et al., 2020). Due to the non-stationary distribution of the estimated entropies and the caseloads for a given country, we used the “DCCA” R package (Prass and Pumi, 2020a). Cross-correlation was calculated between the entropy dimensions at time t + h and new cases at time t, where h = 0, ±1, ±2, ±3 … ±10.
Machine Learning Based Identification of Significant Predictive Features
Country-wise monthly total new cases data was taken at the end of each month. Total new cases data for each month was merged to monthly entropy dimensions data from March, 2020 to June, 2021. We used a regression based machine learning approach called “Boruta,” a wrapper algorithm around a random forest algorithm to select the most relevant entropy dimensions for the prediction of subsequent 2 months’ new cases(Kursa et al., 2010; Kursa and Rudnicki, 2020). We used the default parameters with the modification of the maximum runs as 1,000. We selected the confirmed entropy dimensions as the most relevant predictive features for the prediction of new-cases.
Model Development and Evaluation for Prediction of New Cases in Subsequent Months
To predict the new cases in the next to next months, we used a regression based random forest model using the most relevant predictive features using the “Boruta” R package (Kursa and Rudnicki, 2020). The model training was performed using entropy data from March, 2020 to February, 2021; and the fitted model was validated on entropy data from March, 2021 to April, 2021. The regression modelling was performed using 1,000 decision trees using the “randomForest” package in R (Liaw and Wiener, 2002).
Top Codons Associated With Predictive Features
To find the top codons associated with the latent dimensions, we extracted the absolute weights of each codon for a given dimension. The top 10 codons having the highest absolute weights (contribution) were identified corresponding to each dimension to link these to SARS-CoV-2 variants. We collected the SARS-CoV-2 variants and their associated genetic variations at the codon level linked to the spike gene, and a list of codons associated with VOIs and VOCs was curated (Supplementary Table S4); (Lopez-Rincon et al., 2021; Naveca et al., 2021; Peacock et al., 2021; Srivastava et al., 2021; CDC, 2022). The curated list is based on the CDC guidelines, and we are consistent with their definition of lineage and variant (CDC, 2022).
Strainflow Algorithm
The algorithm for the Strainflow pipeline has been described below:
1. We have collected the SARS-CoV-2 sequences from the GISAID EpiCoV database. High quality sequences with complete temporal information were filtered.
2. We extracted the spike gene region of these sequences from FASTA files using the CoV-Seq tool. A CSV containing these sequences and other metadata such as country names and dates was created.
3. The sequences were splitted into chunks of three characters (codons). A splitted sequence represents a document with three-letter words.
4. We trained a word2Vec model on the spike gene sequences for learning 36-dimensional word embeddings. The average of all word embeddings in a given sequence was treated as the embedding of the sequence.
5. We calculated the sample entropies of each dimension of our embeddings for each month and country.
6. New COVID-19 cases for each country in each month were calculated using data from the JHU CSSE repository.
7. A feature selection algorithm (Boruta) was used for selecting the entropy dimensions predictive of caseloads 2 months in advance.
8. Random Forest regression algorithm was used for predicting new cases 2 months ahead of time. The inputs to the model are the country names and important features extracted from the Boruta algorithm. The predictor variable is the caseload 2 months ahead of time for each country.
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Currently, most of the personal health data (PHD) are managed and stored separately by individual medical institutions. When these data need to be shared, they must be transferred to a trusted management center and approved by data owners through the third-party endorsement technology. Therefore, it is difficult for personal health data to be shared and circulated over multiple medical institutions. On the other hand, the use of directly exchanging and sharing the original data has become inconsistent with the data rapid growth of medical institutions because of the need of massive data transferring across agencies. In order to secure sharing and managing the mass personal health data generated by various medical institutions, a federal personal health data management framework (PHDMF, https://hvic.biosino.org/PHDMF) has been developed, which had the following advantages: 1) the blockchain technology was used to establish a data consortium over multiple medical institutions, which could provide a flexible and scalable technical solution for member extension and solve the problem of third-party endorsement during data sharing; 2) using data distributed storage technology, personal health data could be majorly stored in their original medical institutions, and the massive data transferring process was of no further use, which could match up with the data rapid growth of these institutions; 3) the distributed ledger technology was utilized to record the hash value of data, given the anti-tampering feature of the technology, malicious modification of data could be identified by comparing the hash value; 4) the smart contract technology was introduced to manage users’ access and operation of data, which made the data transaction process traceable and solved the problem of data provenance; and 5) a trusted computing environment was provided for meta-analysis with statistic information instead of original data, the trusted computing environment could be further applied to more health data, such as genome sequencing data, protein expression data, and metabolic profile data through combining the federated learning and blockchain technology. In summary, the framework provides a convenient, secure, and trusted environment for health data supervision and circulation, which facilitate the consortium establish over medical institutions and help achieve the value of data sharing and mining.
Keywords: personal health data, blockchain, smart contract, data provenance, data sharing
INTRODUCTION
With the development of information technology, personal health data (PHD) have started their transformation from a paper copy version to an electronic recording form. Currently, many personal health data are managed and transformed into electronic data in individual medical institutions, from where they must be transferred to a trusted central data management agency when need to be shared. Then, an authorization process based on third-party endorsement should be conducted before the original data being shared. Therefore, it is difficult to share personal health data among multiple medical institutions. In recent years, the rapid development of blockchain technology has provided us with a solution for personal health data storage and supervision without third-party endorsement.
Performing as an incorruptible and traceable distributed ledger, blockchain technology was first mentioned and practiced in Bitcoin (Nakamoto, 2009). Blocks are linked by hashing algorithms, so the original chain structure would get destroyed once any data in any block has been tampered with. In practice, the public blockchain and consortium blockchain are usually used for multi-party’s data supervision, while the former allows anyone to join the blockchain and the latter only permits authorized members to participate in the blockchain. For example, Bitcoin and Ethereum (Buterin, 2015) allow anyone or any organization to act as a blockchain node with reading and writing permission, while Hyperledger Fabric (Androulaki et al., 2018) allows only the recognized members to act as the blockchain nodes. The decentralization of public blockchain is achieved using the consensus algorithm of Byzantine fault tolerance (Lamport et al., 1982), which is applied in fields such as proof-of-work (PoW) (Dwork and Naor, 1993) and proof-of-stock (PoS) (King and Nadal, 2012); while for consortium blockchain, the Byzantine fault tolerance consensus algorithm is used together with the crash tolerance consensus algorithm such as raft (Ongaro and Ousterhout, 2014). Many public blockchains, known as blockchain 1.0, such as Bitcoin does not support smart contracts; instead, they are restricted in the “mining” of cryptocurrencies; therefore, coupled with the lack of regulation and the electricity resources wastes, governments from various countries have already shown their resistance to such blockchains. In addition to the “mining”, Ethereum and other public blockchains that support smart contracts, known as blockchain 2.0, are utilized in some decentralized financial applications (Hofman, 2017; Du et al., 2020). The blockchain 2.0 is limited to the financial field since its public nature worries many enterprises. The blockchain 3.0, supporting smart contract and federal organization, such as Hyperledger Fabric, has been widely used in the fields of finance, healthcare, judiciary, and logistic industries (Azaria et al., 2016; Ahmad et al., 2021; Li et al., 2021; Tao and Ling, 2021).
Due to the full disclosure nature of public blockchain, it is not suitable for supervision of personal health data; instead, an encryption algorithm is needed to guarantee data privacy and security. Meanwhile, the extremely low throughput of public blockchain also limits its application in health fields, for instance, the maximum throughput of Bitcoin is 7tps (Croman et al., 2016), and 15tps for Ethereum (Wang et al., 2019). Yue et al. (2016) have proposed the healthcare data gateway (HGD) that uses the consortium blockchain framework to store data; only specific personnel are granted access to the data, and patients would be able to manage their own personal health data as well. Griggs et al. (2018) fulfilled the real-time tracking and updating patients’ health data through applying the private blockchain framework coupled with remote medical sensor technology. Li et al. (2018) proposed a blockchain-based data preservation system (DPS) for medical data, which ensures the primitiveness and verifiability of stored data with the blockchain technology and secures data privacy with encryption algorithms. Ahram et al. (2017) constructed a protected health information system (PHI) called HealthChain, which realizes data scalable extension and privacy ensurance based on the Hyperledger Fabric permission network and smart contracts. Dagher et al. (2018) developed a PHI system called Ancile on the basis of Ethereum to achieve data access control and privacy security, with more attention attached to data sharing between owners and users. Ivan (2016) used public blockchain to store encrypted personal health data, in which data can be freely accessed and monitored by patients. Chen et al. (2018) combined blockchain with cloud services for managing and sharing personal health data. Wang et al. (2018) established a personal health data blockchain framework based on parallel execution to model and represent patients’ health and to analyze corresponding therapeutic regimens and clinical recommendations through computation. Azaria et al. (2016) proposed MedRec, a decentralized record management system to handle electronic medical records (EMRs), in which patients can access information from different medical institutions through its proof-of-work consensus algorithm. Jiang et al. (2018) offered a healthcare information exchange (HIE) platform called BlocHIE that uses two loosely coupled blockchains to handle electronic medical records and personal health data, with the combination of off-chain storage and on-chain verification to satisfy requirement of privacy and authorization. Zhang et al. (2018) built up an FHIRChain-based (Fast Healthcare Interoperability Resources) decentralized app, using digital health identities to authenticate participants. This app allows users to share specific and structured pieces of information rather than the entire document, so that the granularity level of shared data would decrease, and the readability of data and flexibility of sharing are improved. Xia et al. (2017) provided a blockchain-based system named MedShare, which solves the problem of health data sharing in the untrusted environment by employing smart contracts for data access control and provenance auditing.
The applications of blockchain technology mentioned above mostly focus on data privacy, security, and sharing. In these applications, the sharing processes are usually conducted through exchanging original health data, such as how Ancile sends health data to the users through HTTPS. Even though FHIRChain decreases the granularity level of data in which pieces of information could be sent partially and selectively, and the concern of data breaches still exists due to the inadequate supervision during the sharing process. Additionally, considering the rapid increase in the quantity of personal health data held by individual medical institutions, the mechanism of sharing original data has become unable to support the consortium system due to the ever-increasing amount of data exchanging across agencies. To overcome difficulties of health data supervision and circulation, we designed and developed a flexible and scalable personal health data management framework (PHDMF, https://hvic.biosino.org/PHDMF). The framework adopted consortium blockchain over multiple medical institutions, which offered the channel for more institutions to join the system in virtue of its nature of scalability. Additionally, the framework could guarantee personal health data security due to its exclusiveness to parties that were not involved in the blockchain, which solved the problem of data supervision in the circulation of the multi-party data-sharing process. Finally, a trusted computing environment was provided by the framework, in which data sharing with a meta-analysis could be performed by applying statistic information data instead of original data. The framework provides a convenient, secure, and trusted environment for health data exchange and circulation, which helps achieve the value of data sharing and mining.
MATERIALS AND METHODS
Framework Design
The personal health data management framework (PHDMF) was designed as a federal system based on consortium blockchain technology, which allowed the authorization, supervision, and modification of personal health data and provided a multi-party data sharing and mining solution as well (Figure 1). The interface layer provided the website and application programming interface (API) for users communicating with the system; the data layer consisted of local node servers and central servers, while the local node servers performing as the distributed storage scheme for personal health data of multi-party medical institutions, and the central servers offering data transaction management and statistic computation in a trusted environment; therefore, after the authorization of the data owner, statistic data from consortium participants could be collected for aggregate statistical analysis; the blockchain layer was designed as an infrastructure on the basis of the Hyperledger Fabric platform for recording the process of data authorization, operation, and modification.
[image: Figure 1]FIGURE 1 | Structure of the personal health data management framework. The framework was composed of interface layer, data layer, and blockchain layer.
In the system, an off-chain storage and on-chain verification combining strategy was adopted for personal health data storage and supervision (Figure 2). When data owners wanted to release their health data in the consortium, the hash value of health data would be calculated and recorded on the blockchain. Meanwhile, the original health data would be stored on local node servers. Then, data owners should verify the hash value of original data whether it was consistent with that on the blockchain in order to make tamper-resistant data. The adoption of an off-chain storage and on-chain verification combining strategy made the massive data transferring process being of no further use in data sharing. In practice, the local servers provided both data storage access and permission authorization interface. Data storage and access behaviors included data operation of upload, iteration, modification, download, and statistical analysis; permission authorization behaviors included the applying and processing of the permission request. The central servers provided three types of functions, namely, account management, authorization verification, and data verification and computation. Account management included account registration, log in, tracking, modification, and connection test; authorization verification offered a verifying mechanism for permission authorization of the whole system; data verification and computation implemented data hash value comparison and multi-party’s information data statistical calculation. The blockchain component offered a block generation mechanism of smart contract for data operation recording and a block information query and revise managements.
[image: Figure 2]FIGURE 2 | Physical implementation of the PHDMF. The framework consisted of the central servers, local node servers, and underlying blockchain.
System Implementation
The PHDMF adopted a front-end and back-end separation architecture. In detail, some webpage technologies such as HTML, CSS, and Vue were used for the front-end, while the Flask and Hyperledger Fabric platform were utilized for the back-end transaction handing and federal organization.
Vue has responsive programming and componentization features, and it possesses advantages including lightweight framework, simplicity, two-way data binding, componentization, separation of data and structure, virtual DOM, and fast running speed. Performing as a single-page application, Vue allows partial refresh of the page, so no request of all data and DOM are required for every redirection, access speed as well as user experience could be improved, and development time could be saved because of the third-party UI library.
Flask has the advantage of handiness, simplicity, and strong expansibility. Wide options for third-party libraries are also available, which together with the rich Python data analysis and machine learning libraries could provide the future development of the system with strong expansibility.
Hyperledger Fabric is the first open-source distributed ledger platform for enterprise application scenarios. Led by the Linux Foundation and founded by 30 initial business members including IBM, Hyperledger Fabric has a good open-source community. Fabric introduces permission management and supports dynamic node scaling and thus could serve as a technical solution for a flexible and scalable consortium blockchain.
RESULTS
Applying for Becoming a Member of the Health Data Consortium
The personal health data management framework (PHDMF) was designed to support a federal data consortium, which provided a flexible and scalable technical solution for member extension. In practice, when a user of medical institute wanted to become a new member of the data consortium, one should submit a participant application form to the management agency of the consortium first. After being approved by the consortium, one should download node client software of the framework. Then, one should install the software and configure blockchain parameters according to user guidance of the framework so that the new node could communicate with other nodes of the consortium correctly (Figure 3). Finally, one could store personal health data in local servers and release these data within the framework.
[image: Figure 3]FIGURE 3 | Node configuration of the PHDMF. Consortium members should configure the blockchain parameters within the framework.
Data Release and Storage for Consortium Members
In PHDMF, the strategy of data off-chain storage and on-chain verification reduced the storage space and waived the data key requirement for local servers, which was conducive to the expansion of the consortium. Data of consortium members could be released and protected securely by employing a distributed storage system, and the consistency of the hash value between stored data and blockchain records ensured the integrity and reliability of shared data. In practice, members of the consortium could upload their local personal health data using the graphic tool under the data mart of PHDMF. While the hash value of the uploaded health data would be recorded on the blockchain, the original health data would still be stored in the local storage space (Figure 4). After data being released in the PHDMF, data owners could configure access permission for these data within the consortium.
[image: Figure 4]FIGURE 4 | Data storage and release for consortium members. The framework adopted a distributed storage system, with massive personal health data mainly stored in the local server of consortium members.
Data Permission Configuration and Authorization in the Consortium
The permission configuration allowed data owners to set permission (allow access or deny access) for their published data in the data mart of PHDMF. Third-party users could apply for access permission to public data released by the consortium members and are only allowed to use the data after being authorized by the data owners (Figure 5). Data owners could grant access to third-party users through the smart contract (Figure 6). In practice, third-party users could browse data released in the data mart of PHDMF; then, they needed to apply for access permission to interested data. After that, the data owners would receive the application and could either allow or deny access requests. The smart contract recorded processing of each application for permission and authorization, thus implementing data management and provenance.
[image: Figure 5]FIGURE 5 | Personal health data permission configuration. Data owners could assign allowing or denying access permission to a specific dataset. Third-party users could apply for access permission to a released dataset.
[image: Figure 6]FIGURE 6 | Personal health data permission authorization. Data owners could grant or deny access to third-party users through the smart contract.
Data Provenance on the Consortium Blockchain
The blockchain recorded data operations such as upload, update, delete, authorization, and query in a distributed ledger manner. In detail, smart contracts were applied to transparently store and record data transactions and thus provided data provenance traceability for the consortium.
As shown in Figure 7, operations including data upload and update were involved in the process of owner-released health data on the PHDMF system. The blockchain recorded the dataset file, hash value, operation description, operator, time, and other information of the operation in an anti-tampered manner. Data owners and third-party users could query and browse the operation records through data provenance of the PHDMF system to ensure data security in the consortium. Moreover, users of the PHDMF system could browse consortium members’ information (node of distributed ledgers) through the node information menu, which described the detailed information of federal participants.
[image: Figure 7]FIGURE 7 | Data provenance on the consortium blockchain. Data provenance could be carried out through referring to dataset files, hash values, operation description, operators, time, and other information stored on the blockchain.
Central Trusted Computing Environment and Data Statistical Analysis
For data sharing, the Ancile platform (Dagher et al., 2018) transmits complete user’s health data through HTTPS protocol, while FHIRChain (Zhang et al., 2018) shares data that are more fine-grained, and also the personal health data sharing on related medical blockchain is the whole original data. Nevertheless, such a sharing channel would require methods such as user agreements or electronic contracts to prevent data secondary sharing, which will be difficult to achieve. Even though it is possible to trace data records on the blockchain, it is hard to ensure the rights and interests of data owners. Here, we provided a new data-sharing technical solution in the PHDMF system, in which a central trusted computing environment for data exchange was offered. In practice, a central server was applied to build up a trusted environment for data collection and computation. First, third-party users would apply access permission to interested datasets released by the members of PHDMF. After authorization of dataset’s owners, statistic information data of these datasets instead of original health data were delivered to the trusted computing environment of the central server, in which an aggregate statistical analysis was performed. Finally, third-party users could obtain analytical results of multi-party datasets without granting the right to access original health data. Except for statistic methods, such a solution could be further applied in federated learning approaches. This data-sharing solution could greatly protect the rights and interests of dataset owners and provide third-party users with the expected outcome without compromising data security. As shown in Figure 8, third-party users could select multiple health datasets for aggregate analysis, and then statistical results of physiological indexes were presented in the form of bar charts, including sample number, sample maximum, sample minimum, and sample mean.
[image: Figure 8]FIGURE 8 | Aggregate statistical result for personal health data. Data from multiple parties would be delivered to the trusted computing environment on a central server in which aggregate statistical analysis would be performed.
DISCUSSION
In this study, we built up a healthcare federal framework in the concern about data management and circulation based on the blockchain technology, which could ensure data security in the sharing process without the involvement of a third-party endorsement. In the blockchain layer of the framework, some mature cryptographic algorithms were adopted to make recorded data tamper resistant. Meanwhile, data provenance was guaranteed through recording every data operation and transaction by smart contracts. Additionally, an application of on-chain and off-chain combination architecture could effectively reduce the storage space required and waive the need of data keys, which benefited the scalability of the consortium. Finally, a data-sharing prototype was provided in the framework and that data sharing and aggregate statistical analysis could be performed without sharing the original data. During the analysis process, the third-party users could only read the statistical results but not download the original data; therefore, data from multiple parties can be shared for analysis purposes without having its original contents leaked. Such a data-sharing prototype could be further applied to more health data, such as genome sequencing data, protein expression data, metabolic profile data with the federated learning and the blockchain technology.
There are some drawbacks of the framework which should be optimized in future. First, the single-customer transaction throughput of the framework (based on the Hyperledger Fabric platform) reaches hundreds of times per second currently; however, such processing speed is not compatible with the future data expansion. Therefore, better strategies and algorithms should be designed to improve the transaction throughput of the framework. Second, security of the framework needs more improvements because the current encryption algorithm of the blockchain such as RSA may not be able to provide sufficient security faced with the quantum computing technology. Last, more comprehensive management strategies are needed to prevent smart contracts from developing vulnerability. Smart contracts of the framework are applied in a transparent and explicit manner, which is easy to be attacked by a computer virus. Therefore, a more secure strategy for smart contracts should be developed in future for the framework.
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Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent and heritable childhood behavioral disorders. Although a number of ADHD-susceptible regions had been identified, details about the variations of genes and their related patterns involved in ADHD are still lacking. In this study, we collected 25 Chinese parents–offspring trios, each of which consisted of a child diagnosed with ADHD and his/her unaffected parents, and analyzed the variations from whole-genome sequencing data. SNVs in reported ADHD-susceptible regions and on the genes whose functions were related to dopamine were screened, and we identified a set of variants with functional annotations which were specifically detected in ADHD children, including most SNVs in the gene coding region that might impair protein functions and a few SNVs in promoter or 3′ untranslated region (3′-UTR) that might affect the regulation of relative gene expression in a transcriptional or posttranscriptional level. All the information may further contribute to the understanding, prediction, prevention, and treatment of ADHD in clinical.
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INTRODUCTION
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent and heritable childhood behavioral disorders, which affects 2%–6% of school-age children (Bakker et al., 2003; Ford et al., 2003). ADHD is typically characterized by inattention, excessive motor activity, impulsivity, and distractibility (Hawi et al., 2005). People with ADHD are at risk for a wide range of functional impairments: school failure, peer rejection, injuries due to accidents, criminal behavior, occupational failure, divorce, suicide, and premature death (Faraone and Larsson, 2019). It has been estimated that at least 15% of children diagnosed with ADHD (childhood ADHD) will continue to retain a full diagnosis by the age of 25, approximately 40% will show just partial remission and continue to experience impairing symptoms, and only 40% will get a complete remission (Franke et al., 2018). ADHD is commonly assumed to be heterogeneous and multifactorial in genetics, with the involvement of many environmental risk factors, including prenatal and perinatal events, environmental toxins, and dietary and psychosocial stimuli (Thapar et al., 2013). However, the underlying etiological mechanisms of ADHD remain largely unclear.
Classical genetic studies indicate that ADHD is strongly heritable, with an estimated heritability for childhood ADHD on an average of 75% (Faraone et al., 2005). In the first genome-wide scan for ADHD, four chromosomal regions, 5p12, 10q26, 12q23, and 16p13, were suggested to be possibly susceptible regions by the multipoint maximum LOD scores (MLSs) greater than 1.5, but no region exceeded the criterion for significant or suggestive linkage (Fisher et al., 2002). Another independent group (Ogdie et al., 2004) accomplished a genome-wide scan of 308 affected sibling pairs and presented strong evidence for four susceptible chromosomal locations (5p13, 6q12, 16p13, and 17p11), with an overlap of only one nominally significant region (16p13) with the previous report. Moreover, Ogdie et al. (2003) and Smalley et al. (2002) performed linkage analyses on a same 270 affected sib-pair cohort and identified suggestive ADHD linkage for 17p11 (MLS = 2.98) and four other regions with MLS values greater than 1.0, including 5p13, 6q14, 11q25, and 20q13. Moreover, a most recent GWAS-based meta-analysis on 20,183 individuals diagnosed with ADHD and 35,191 controls identified additionally 12 independent ADHD risk loci in the genetic background of the European population (Demontis et al., 2019).
Apparently, the genetic basis of ADHD is highly heterogeneous. Although a number of ADHD-susceptible regions had been identified with more or less overlaps in several studies, details of the variations of genes and their related patterns involved in ADHD, particular in East Asian populations, are still lacking. In this study, a cohort of 25 Chinese parents–offspring trios, in which each trio consisted of a child diagnosed with ADHD and his/her unaffected parents, were collected, and whole-genome sequencing (WGS) was performed; a set of novel variants associated with ADHD were identified through the systematic screening on this cohort.
MATERIALS AND METHODS
Sample Collection
The cohort consisted of 25 parents–offspring trios. Within each trio, the child was clinically diagnosed as an ADHD patient, while his/her parents were presented with no history of ADHD. All samples were collected from West China Mental Health Center. This study was approved by the Ethics Committee of Chongqing Ninth People’s Hospital. Informed consent for DNA analysis was obtained from each family in line with local institutional review board requirements at the time of collection.
DNA Extraction, Library Construction, and Sequencing
Genomic DNA extracted from peripheral blood of each sample was fragmented to an average size of ∼350 bp and subjected to DNA library construction using established Illumina paired-end protocols. The Illumina Novaseq 6000 platform (Illumina Inc., San Diego, CA, United States) was utilized for genomic DNA sequencing in Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) to generate 150-bp paired-end reads, with a minimum coverage of 10× for ∼90% of the genome (mean coverage of 30×).
Raw Sequencing Data Processing
After sequencing, conversion and demultiplexing of Illumina Base Call Files (bcl files) were performed with bcl2fastq software (Illumina). The resulting fastq data were submitted to in-house quality control software for removing low-quality reads and then were aligned to the reference human genome (GRCh37/hg19) using the Burrows–Wheeler Aligner (Li and Durbin, 2009), and duplicate reads were marked using Sambamba (Tarasov et al., 2015).
SNV/Indel Calling and Annotation
Single-nucleotide variants (SNVs) and indels were called with Samtools (Li et al., 2009) to generate gVCF files. Annotation was performed using ANNOVAR (8 June 2017) (Wang et al., 2010). The annotations included minor allele frequencies from public databases, as well as deleteriousness and conservation scores enabling further filtering and assessment of the variants. The influence of variants on protein functions was predicted by the Polyphen2_HDIV algorithm (for multifactorial disorders) based on the HumanDiv database. The influence of variants on miRNA regulatory sites was annotated with the TargetScanS database, and the influence of variants on transcriptional factor (TF) regulatory sites was annotated with the TRANSFAC database.
Other Public Data Source and Data Plotting
Human brain mRNA and miRNA expression data were downloaded from ENCODE (https://www.encodeproject.org/). Gene enrichment assays were performed with the R clusterProfiler package (Yu et al., 2012). Plots were drawn by ggplot2.
RESULTS
Features of Variants in Reported ADHD-Susceptible Regions
As expected, none of the 25 ADHD children in the cohort carried any explicit pathologic or likely pathologic variants. Alternatively, the frequencies of all single-nucleotide variants (SNVs) located in the reported ADHD-susceptible regions in the human genome are shown in Figure 1A, in which red and green indicate high and low frequencies, respectively. Moreover, genes in these regions with the expression level lower than RPKM = 1 in the human brain (based on ENCODE dataset) were considered very low expressed, and SNVs on these genes were dropped for their limited functional contribution in the central nerve system (Supplementary Figure S1A). Then the retained SNVs were further filtered based on the rules shown in Figure 1B. Only those SNVs that were de novo gained (homo_gain, hetero_gain or compound hetero_gain) or form homozygotes (homo_inherit) in ADHD children, but were not found in certain genotypes of unaffected parents in the whole cohort, were kept and considered as the potentially ADHD-susceptible sites. The distribution of these sites in gene body regions and regulatory regions (promoters) is shown in Figure 1C.
[image: Figure 1]FIGURE 1 | Distribution of filtered SNVs in the reported ADHD-susceptible regions. (A) A map showing the reported ADHD-susceptible regions in the human genome and the distribution of the variations in these regions in the cohort. Color annotation: red to green, high to low frequency detected in the cohort. (B) A diagram depicting the strategies for SNV filtering in the cohort. (C) Heatmaps showing the distribution of filtered SNVs in ADHD children as well as in genomic regions including promoters, 5′-UTR, coding region (exon), and 3′-UTR. Genotype categories of each site were labeled in different colors as indicated in the legend.
Among all the filtered SNVs, the influence of gene coding region (exons) variations on protein functions was predicted by the Polyphen2_DHIV program and annotated as benign, possibly damaging, or probably damaging (Supplementary Figure S1B). Genes corresponding to those SNVs labeled as possibly damaging or probably damaging are shown in Figure 2A, and part of these genes, including CACNA1H, PKD1, DYNC2H1, LRP6, and RGS11, played primarily neuron-related functions that might contribute to ADHD, such as dopaminergic neuron differentiation, midbrain development, ion channel activity, and Wnt signaling pathway (Figure 2B). Other detailed information of these obtained coding region SNVs are listed in Table 1.
[image: Figure 2]FIGURE 2 | Functional annotation on the filtered SNVs in the reported ADHD-susceptible regions. (A) A dot plot showing the information of filtered SNVs in coding regions and their corresponding genes. SNV genotype, influence on protein functions, and gene expression level were marked by dot shape, color, and size, respectively. (B) A heat plot showing the distribution of certain genes on neuron-related functions potentially involved in ADHD. (C) Bar plot showing the expression levels of certain genes, including the genes corresponding to functional annotated SNVs in the promoter or 3′-UTR and their relative regulators in human brain tissue. (D) Bar plot showing the expression levels of miRNAs that targeted the site affected by the identified SNV. (E) A heat plot showing the distribution of certain genes corresponding to SNVs in the promoter or 3′-UTR on neuron-related functions.
TABLE 1 | Information of filtered SNVs in the coding region of genes in reported ADHD-susceptible regions.
[image: Table 1]Besides coding regions, variants in 3′-UTR (3′ untranslated region) may interfere with the motifs for mRNA–miRNA mutual recognition and variants in promoter region may change the cis-element recognized by certain transcriptional regulators. Among all filtered SNVs in this cohort, only two variants in the promoter regions and one variant in 3′-UTR were annotated to impact certain cis-elements (Supplementary Figure S1C) and the miRNA-binding site (Supplementary Figure S1D), respectively. Notably, all these SNVs corresponding genes, including ZNF598, WFS1, and ULK2, as well as their regulator PAX5, ELK1, miR-130A, and miR-301A/B, showed a moderate to high expression level in the human brain (Figures 2C,D), suggesting the potential involvement of these regulatory patterns in ADHD pathogenesis. Moreover, the regulatory target genes ZNF598, WFS1, and ULK2 primarily played roles in protein ubiquitination, neuron death, and axonogenesis, all of which may contribute to ADHD (Figure 2E). Other detailed information of this part of SNVs is listed in Table 2.
TABLE 2 | Information of filtered SNVs in the promoter region and 3′-UTR of genes in the reported ADHD-susceptible regions.
[image: Table 2]Features of Variants in Other Dopamine-Related Genes
On the other hand, the pathogenesis of ADHD has been closely associated with the dopamine-related processes (Kahn et al., 2003; Zhou et al., 2010). Herein, we examined the functional annotations of genes corresponding to those filtered SNVs in the reported ADHD-susceptible regions and found that among the whole set of genes participating in dopamine-related processes as annotated by the Gene Ontology and Reactome database, only a small section located the reported ADHD-susceptible regions (Figure 3A, Supplementary Figure S2A). Following the identical criteria used for SNV filtering, we obtained an additional set of SNVs that were corresponding to the genes involved in dopamine-related processes while were not in reported ADHD-susceptible regions, and the distribution of these SNVs in gene body regions is shown in Figure 3B. Accordingly, the influence of these coding region (exons) variations on their corresponding genes was predicted by Polyphen2_DHIV, and notably, there was a variation (rs798488) in GNA12 causing the start codon mutation that led to none or N-terminal truncated protein translation (Figure 3C). In addition, genes corresponding to those SNVs predicted as possibly or probably damaging contained PPFIA4, TSPOAP1, ADCY6, FLNA, and LAMA2, and these genes were primarily involved in the process of dopamine neurotransmitter release and dopamine receptor signaling (Figure 3D). On the other hand, no SNVs in 3′-UTR (Supplementary Figure S2B) or promoter regions (Supplementary Figure S2C, D) were annotated to have an impact on any known cis-elements or miRNA-targeting sites. Detailed information of this part of SNVs is listed in Table 3.
[image: Figure 3]FIGURE 3 | Distribution and functional annotation of filtered SNVs in dopamine-related genes. (A) A heatmap showing the distribution of intersect genes on dopamine-related functions and in the reported ADHD-susceptible regions (colored in cyan). (B) Heatmaps showing the distribution of filtered SNVs locating in dopamine-related genes in ADHD children and in genomic regions including 5′-UTR, coding region (exon), and 3′-UTR. Genotype categories of each site were labeled in different colors as indicated in the legend. (C) A dot plot showing the information of filtered SNVs and their corresponding genes. SNV genotype and the influence on protein functions, and gene expression level were marked by dot shape, color, and size, respectively. (D) A heat plot showing the distribution of certain genes corresponding to SNVs in coding regions on dopamine-related functions.
TABLE 3 | Information of filtered SNVs in the coding region of dopamine-related genes.
[image: Table 3]DISCUSSION
Attention-deficit/hyperactivity disorder (ADHD) is generally described as a multifactorial genetic disorder; however, the genetic basis of its pathogenesis is less studied. Although a set of susceptible regions have been identified based on linkage analysis in several independent cohorts, such as 4p16.1, 5p12-13, 6q12-14, 10q26, 11p15.5, 11q25, 12q23, 16p13, 17p11, and 20q13 (Fisher et al., 2002; Smalley et al., 2002; Ogdie et al., 2003; Ogdie et al., 2004; Faraone et al., 2005), the knowledge of exact genes and variants involved in ADHD is still lacking. In this study, we collected 25 unrelated parents–offspring trios in which only the 25 children were diagnosed with ADHD, and called the variants from the whole-genome sequencing (WGS) data of all 75 samples. The SNV filtering strategy used for this study is based on the hypothesis that de novo and homozygous variants specifically detected in ADHD children are more likely to contribute to the pathogenesis of ADHD. With such criteria, we screened the SNVs in two sections: the SNVs in the reported ADHD-susceptible regions and the SNVs on genes that play dopamine-related functions (Kahn et al., 2003; Zhou et al., 2010). Among all obtained variants, SNVs in 3′-UTR account for the majority. However, few of them showed influence on gene expression based on mRNA–miRNA interaction. The situation of SNVs in promoter regions is similar. In contrast, a much higher number of SNVs in the gene coding region showed a potential impact on protein functions, although the total amount of these SNVs is less. Another feature of these filtered SNVs is that recurrent SNVs in 25 ADHD children in the cohort are common, but functional annotated SNVs are few and rarely recurrent, partially due to the relatively low frequency of de novo variation events.
In this study, identified functional SNVs in promoter regions contain rs67529412 and rs866882393 corresponding to ZNF598 and WFS1, respectively. Notably, both of these sites were de novo variations in this cohort, and allele frequency (AF) of neither site was included in the Chinese or East Asian population in the 1000 Genomes database, implying the very low frequency of these variants. Particularly, the variant of rs866882393, which eliminates the PAX5-binding motif in the promoter region of WFS1, was recurrently detected in three ADHD children, and it has been reported that the expression of WFS1 is closely correlated with neuronal differentiation (Tekko et al., 2014; Li et al., 2020). rs117345841 is the uniquely identified functional SNV in 3′-UTR and has a low AF of approximate 0.06 in the Chinese population in the 1000 Genomes database, and the variation in this site impairs the ULK2-miR-130A/miR-301A/B interaction. Notably, the function of ULK2 is related to neuron axon development.
Identified functional SNVs in gene coding regions that may impair protein functions are many. Among these sites, corresponding genes, CACNA1H, PKD1, DYNC2H1, LRP6, PPFIA4, TSPOAP1, ADCY6, FLNA, and LAMA2, are annotated to play central nervous system-related functions. Particularly, defects in synapse formation and function lead to various neurological diseases, and a recent study suggests that protein PKD1 functions upstream of N-cadherin, a classical synaptic adhesion molecule, to promote functional synapse formation (Cen et al., 2018). CACNA1H is also highly associated with mental disorders. A genome-wide analysis based on 232,964 cases and 494,162 control for eight mental disorders including ADHD suggested that polygenic risk sites of interest were enriched in genes previously associated with neuroticism, cognitive ability, and nocturnal sleep phenotypes, and CACNA1I is one of the genes associated with cognitive ability (Cross-Disorder Group of the Psychiatric Genomics Consortium, 2019). Han et al. (2018) found that 10 of 35 patients, all of whom were diagnosed differently with developmental delay (DD) and/or intellectual disability (ID), were found to have underlying genetic etiology and carried autosomal dominant inheritance of nine gene mutations, including a heterozygous missense mutation (c.5675G > A; p. R1892H) of the CACNA1H identified in a 13-year-old male patient with intermittent epileptic discharges in the right temporal areas and an overall IQ of 68 (mild ID). Moreover, MTF1-activated CACNA1H transcription in COCH (coagulation factor c homolog) neurons encodes the ability to burst action potentials and cause social stress–induced anxiety-like behaviors by synapsing directly with a subset of GABAergic inhibitory neurons in the lateral septum (Jing et al., 2021), and CACNA1H was also identified as a susceptibility gene in amyotrophic lateral sclerosis (ALS) (Rzhepetskyy et al., 2016). In addition, Wnt/LRP6 signaling is a key regulator of axonal remodeling, synaptic plasticity, neurite growth, and β-catenin-independent neurotransmitter release (Acebron and Niehrs, 2016), and a genome-wide linkage study has defined a broad susceptibility region of late-onset Alzheimer’s disease on chromosome 12, which contains the LRP6 gene (De Ferrari et al., 2007). Moreover, rs2302686 in LRP6 and a variant in ADCY6 are de novo variations, and the gene functions are related to the dopaminergic neuron development and the dopamine receptor signaling pathway, respectively.
Although this study cannot give the full view of the genetic basis of ADHD, it provides a series of novel insights for the understanding of ADHD in the Chinese population. Taken together, in this study, in a cohort containing 25 ADHD trios, we identified a set of SNV variations specifically in ADHD children and annotated to be functional for gene expression regulation or protein function, and linked some of these sites to the reported ADHD-susceptible regions or dopamine-related functions based on the annotation of their corresponding genes. All the information may further contribute to the understanding, prediction, prevention, and treatment of ADHD in clinical.
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Gastrointestinal stromal tumors (GISTs) are common ICC precursor sarcomas, which are considered to be a potential malignant mesenchymal tumor driven by specific KIT or PDGFRA signals in the gastrointestinal tract. The standard treatment for GIST without metastasis is surgical resection. GIST with metastasis is usually treated with tyrosine kinase inhibitors (TKIs) only but cannot be cured. The TKI imatinib is the main drug of GIST drug therapy. In adjuvant therapy, the duration of imatinib adjuvant therapy is 3 years. It has been proved that imatinib can improve the overall survival time (OS). However, many GIST patients develop drug resistance due to the long-term use of imatinib. We were forced to look for new strategies to treat GIST. The purpose of the current academic work is to study the drug-resistant genes of imatinib and their potential mechanisms. A total of 897 differentially expressed genes (DEGs) were found between imatinib-sensitive cell line GIST882 and imatinib-resistant cell line GIST430 by RNA sequencing (RNA-seq). After analyzing the DEGs, 10 top genes were selected (NDN, FABP4, COL4A1, COLEC11, MEG3, EPHA3, EDN3, LMO3, RGS4, and CRISP2). These genes were analyzed by RT-PCR, and it was confirmed that the expression trend of FABP4, COL4A1, and RGS4 in different imatinib-resistant cell lines was in accord with the GEO database. It is suggested that these genes may play a potential role in the clinical diagnosis and treatment of imatinib resistance in GIST.
Keywords: GIST, gastrointestinal stromal tumor, imatinib, DEG (differentially expressed gene) analysis, resistance, gene chip
INTRODUCTION
Gastrointestinal stromal tumors (GISTs) are sarcomas mainly derived from the precursor of interstitial cells (ICCs). It is the most common of all sarcomas (Blay, Kang, Nishida, & von Mehren, 2021). GISTs are heterogeneous tumors, including various molecular entities with usually mutually exclusive mutations of activated oncogenes, mainly KIT or platelet-derived growth factor-alpha (PDGFRA) mutations (Heinrich et al., 2008; Gastrointestinal Stromal Tumor Meta-Analysis, 2010). Bleeding, pain, and obstruction are common clinical symptoms of GIST. GISTs are rare tumors, with an incidence of ∼1.2 per 105 individuals (Nilsson et al., 2005). Most GISTs occur in the stomach (60% Mel 65%), followed by the small intestine (20% Mel 25%), while GISTs in the rectum (3–5%), colon (1–2%), and other sites (8–10%) are rare (Casali et al., 2018; Joensuu et al., 2020; von Mehren et al., 2014). In the epidemiological survey of GISTs, the median age is a broad range, estimated to be 60–65 years.
GIST is not classified as benign or malignant but is stratified according to its malignant clinical risk: very low, low, intermediate, or high. Mietinnn et al. demonstrated that the metastatic risk of GIST increases with tumor size, but not with mitotic count (Miettinen, Lasota, & Sobin, 2005). At present, surgical resection is still the main method for the treatment of GIST. GIST with metastasis is usually treated only with tyrosine kinase inhibitors and cannot be cured. Therefore, an early diagnosis is the only way to improve its prognosis. GISTs are resistant to standard cytotoxic therapy for other sarcomas. However, tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA have significantly improved survival rates. In the context of advanced disease, TKI treatment has significantly increased the median survival time in the past 20 years, from 18 months to more than 5 years (Casali et al., 2018; von Mehren et al., 2014). The majority of these patients benefit from imatinib treatment; however, a large proportion of patients develop imatinib resistance within 2 years. Although some prognostic biomarkers have been exploited, the imatinib resistance of GIST remains weak due to its difficulty in early detection (Daar, 2012).
Therefore, more reliable resistant biomarkers should be explored as a target for improving the treatment effect and better understanding the underlying mechanism (Demetri et al., 2006). Gene chip, which was used for more than 10 years, can quickly detect differentially expressed genes and was proved to be a reliable technique that could make huge data produced and stored in public databases (Zheng et al., 2021). Therefore, a large number of valuable clues could be explored for new research on the basis of these data. Furthermore, many bioinformatics studies on GIST have been produced in recent years (Zhang et al., 2021), which proved that the integrated bioinformatics methods could help us to further study and better explore the underlying mechanisms.
In this study, first, we have chosen GSE89673 from Gene Expression Omnibus (GEO) (Kelly, Gutierrez Sainz, & Chi, 2021). Second, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs were performed using the “clusterProfiler” R package. The top ten upregulated genes (NDN, FABP4, COL4A1, COLEC11, MEG3, EPHA3, EDN3, LMO3, RGS4, and CRISP2) were selected for subsequent analysis. Third, we verified these genes and identified three prominent differential expression genes by PCR between the imatinib-sensitive cell line GIST882 and imatinib-resistant cell line GIST430 (London & Gallo, 2020). In conclusion, the bioinformatics analysis of our study provides some additional useful biomarkers, which could be an effective target for GIST patients (W.-K. Huang et al., 2020).
MATERIALS AND METHODS
Identification of Differential Expression Genes
The data of imatinib-sensitive cell lines GIST882 and imatinib-resistant cell lines were downloaded from GSE89673. The data were divided into two groups: imatinib-sensitive cell line group and imatinib-resistant cell line group, and the differential expression of genes between the two groups was analyzed. R language software (R.4.1.2) and R package (“limma”) were used to analyze data sets and filter out DEG (W. K. Huang et al., 2020). “adj.P.Val <0.05” “|logFC|≥2” were taken as the standard. The volcano figure and heatmap were created by “ggplot2” package.
Enrichment Analysis of DEGs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs were performed using the “clusterProfiler” R package (Heinrich et al., 2020).
PPI Network Construction and Module Analysis
Search Tool for the Retrieval of Interacting Genes (STRING; http://string.embl.de/) is a powerful online tool for building PPI networks. It can build DEG PPI networks based on known and predicted PPI and then analyze functional interactions between proteins. Based on the online tool STRING, the PPI of DEG is constructed, and the confidence score is ≥0.7. Then, the PPI network is visualized by Cytoscape software (version 3.5.1).
Quantitative Real-Time PCR (qPCR)
Total RNAs of the samples were isolated using the Absolutely RNA Microprep kit (Agilent Technologies, Santa Clara, CA, United States). Total cDNA was synthesized by the High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, United States). The qPCR was performed by using SYBR Green qPCR mix (Invitrogen, Carlsbad, CA, United States) on a light cycler instrument (Bio-Rad Laboratories, Hercules, CA, United States) (Gelderblom et al., 2020). The primer sequences are listed in Table 1.
TABLE 1 | Primer sequences used for real-time PCR assay.
[image: Table 1]RESULTS
Identification of Differential Expression Genes
Using the condition of adj.P.Val <0.05, |logFC|≥2, a total of 897 genes were found to be differentially expressed between the imatinib-sensitive cell line GIST882 and imatinib-resistant cell line GIST430. Of these, 431 genes were upregulated and 466 were downregulated. Differentially Expressed Genes (DEGs) in the two groups are represented in Figure 1. The RNA expression levels of these genes are represented by the heatmap shown in Figure 2.
[image: Figure 1]FIGURE 1 | Volcano map of differential expression analysis in GIST882 and GIST430 data sets.
[image: Figure 2]FIGURE 2 | Heatmap of differentially expressed genes in GIST882 and GIST430 data sets.
Enrichment Analysis of DEGs
In order to further explore the role of DEGs in imatinib-resistant cell lines, GO and KEGG enrichment analyses were undertaken on obtained DEGs. The DEGs were mainly involved in the positive regulation of axonogenesis, regulation of vasculature development, response to acid chemical, collagen-containing extracellular matrix, neuronal cell body, cell leading edge, extracellular matrix structural constituent, sulfur compound binding, and growth factor binding in GO analysis (Figure 3). Moreover, KEGG pathway analysis suggested that DEGs were mainly involved in human papillomavirus infection (Blay et al., 2020), Cushing syndrome, small-cell lung cancer, AGE−RAGE signaling pathway in diabetic complications, amebiasis, ECM−receptor interaction, PPAR signaling pathway, steroid hormone biosynthesis, and bladder cancer (Figure 4).
[image: Figure 3]FIGURE 3 | Analysis results of functional enrichment.
[image: Figure 4]FIGURE 4 | Enrichment analysis by KEGG of DEGS.
Experimental Validations of DEGs
The top ten upregulated genes (NDN, FABP4, COL4A1, COLEC11, MEG3, EPHA3, EDN3, LMO3, RGS4, and CRISP2) were selected for subsequent analysis (Table 2). After screening candidate genes, qPCR was used to verify these candidate genes. After three kinds of GIST cells were treated with imatinib, the following figure showed that the expression of FABP4, COL4A1, and RGS4 in imatinib-sensitive lines GIST882 and GIST-T1 decreased significantly compared with GIST430 cell lines. This is consistent with the database results (Figure 5).
TABLE 2 | Top ten upregulated genes of DEGs.
[image: Table 2][image: Figure 5]FIGURE 5 | Expression levels of FABP4, COL4A1, and RGS4 in different GIST cell lines determined using quantitative real-time polymerase chain reaction. “**” means p-value < 0.01, “***” means p-value < 0.001.
Protein Product Co-Expression Network Analysis
The FABP4, COL4A1, and RGS4 genes were studied for possible interactions with each other using the STRING database. It was predicted that these DEGs would have significant interactions. The PPI network contained 33 numbers of nodes (each node indicates proteins), and the edges present interactions. The FABP4 network showed the enriched co-expressed genes (PPI enrichment, p < 0.05) functionally associated with mediator of RNA polymerase II transcription subunits 1 and 30 (MED1 and MED30), nuclear receptor coactivator 1 (NCOA1), retinoic acid receptor RXR-alpha (RXRA), CREB-binding protein (CREBBP), peroxisome proliferator-activated receptor (PPARG), phosphatase and Tensin homolog (PTEN), and hormone-sensitive lipase (LIPE). COL4A1 is directly connected to the integrin (ITG) family source genes, COL4A (collagen alpha) family source genes, and prolyl 4-hydroxylase subunit alpha (P4HA) family source genes. Similarly, it has been observed that RGS4 interacts with important target proteins such as regulator of G-protein signaling (RGS) family source genes and guanine nucleotide-binding protein G (GNA) family source genes (Figure 6).
[image: Figure 6]FIGURE 6 | PPI network of DEGs obtained from the STRING database. The protein network was calculated based on the neighborhood score with higher confidence (confidence score >0.99).
DISCUSSION
To identify more useful biomarkers of resistance to imatinib in GIST, this study used bioinformatics methods on the basis of GSE89673 datasets (Toulmonde et al., 2019). We analyzed mRNA expression profile chip data GSE89673, which compared the mRNA expression changes of the drug-resistant cell line GIST430 with the sensitive cell line GIST882. The mRNA expression changes of the sensitive cell line GIST882 were further analyzed. There were 897 differential genes, of which 431 were upregulated and 466 were downregulated. GO and KEGG enrichment analyses were undertaken on obtained DEGs. The DEGs were mainly involved in the positive regulation of axonogenesis, regulation of vasculature development, response to acid chemical, collagen-containing extracellular matrix, neuronal cell body, cell leading edge, extracellular matrix structural constituent, sulfur compound binding, and growth factor binding in GO analysis. Moreover, KEGG pathway analysis suggested that DEGs were mainly involved in the human papillomavirus infection, Cushing syndrome, small-cell lung cancer, AGE−RAGE signaling pathway in diabetic complications, amebiasis, ECM−receptor interaction, PPAR signaling pathway, steroid hormone biosynthesis, and bladder cancer.
Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP, is mainly expressed in adipocytes and macrophages. Elevated levels of circulating FABP4 are associated with obesity, insulin resistance, diabetes, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events (Y. Zhang et al., 2021). It has been shown that the knockdown of FABP4 leads to increased 5-levels of hydroxymethylcytosine in DNA, downregulation of key genes associated with ovarian cancer metastasis, and reduced survival of replication to cancer cells (Furuhashi, Saitoh, Shimamoto, & Miura, 2014). More studies have shown that high FABP4 expression in advanced serous ovarian cancer cells reduces the rate of metastatic tumor growth in mice. Thus, the small-molecule inhibitor (BMS309403) of FABP4 not only significantly reduced tumor load in syngeneic in situ mouse models but also increased cancer cell sensitivity to carboplatin both in vitro and in vivo. Lipid desaturation of SCD1 in cancer cells and the lipid transport of FABP4 produced by tumor endothelial cells (TECs) promote the survival of cancer cells and the resistance to iron death in the TME. The blockade of FABP4 and SCD1 activity in tumors inhibited these processes and significantly reduced tumor recurrence (Wan, Guo, Zhu, & Qu, 2020). FABP4 is highly expressed in cancer tissues and is associated with TNM stage, differentiation, and lymph node metastasis in colorectal cancer studies (Y. Zhang et al., 2021).
COL4A1 is the major anti-angiogenic gene induced by p53 in human adenocarcinoma cells, and p53 directly activates the transcription of the COL4A1 gene by binding to its 26-kbp enhancer region downstream of the 3’ ending (Mukherjee et al., 2020). Some studies have analyzed 206 surgical pathology specimens from breast cancer and adjacent tissues using immunohistochemical staining with antibodies specific to COL4A1 and evaluated the correlation between clinical results and the IHC score of COL4A1 (Wang et al., 2020). The correlation between COL4A1 expression and long-term OS and RFS in breast cancer patients was further investigated by Kaplan–Meier analysis. The results showed that COL4A1 is associated with breast cancer prognosis (Plaisier & Ronco, 1993). Through a comprehensive screening of the expression profiles of collagen genes, COL4A1 was the most differentially expressed collagen gene in HCC. Proliferation and metastasis of HCC cells were promoted by FAK-Src signaling after upregulation of COL4A1 (Y. Zhang et al., 2021). Recent studies show that COL4A1 expression is upregulated by the transcription factor RUNX1 and found that HCC cells with high COL4A1 expression are sensitive to the treatment of FAK or Src inhibitors. It is concluded that COL4A1 may be a potential target for the diagnosis and treatment of HCC (Wang et al., 2020).
Regulators of G protein signaling 4 (RGS4) are negative regulators of G protein signaling, and elevated RGS4 levels have been reported to be associated with a variety of human diseases, including cancer (Xue, Wang, Meng, Jiao, & Dang, 2017). RGS4 is an important regulator of melanocyte apoptosis, and the rate of apoptosis is significantly reduced at low RGS4 expression levels. RGS4 induces inactivation of the PI3K/AKT pathway, resulting in reduced E2F1 and cyclin D1 expression with the effect of limiting cell proliferation and invasion (Guda, Velpula, Asuthkar, Cain, & Tsung, 2020). Recent studies have shown that the different proteins of the RGS family are all involved in tumor development. For example, overexpression of RGS1 inhibited CXCL12-mediated human plasmacytoma cell migration, and epigenetic inhibition of RGS2 has been associated with prostate cancer progression and overexpression of RGS5 on lung cancer cells (He et al., 2019). The overexpression of RGS17 promotes the propagation of lung tumor cells through the circulating AMP-PKA-CREB pathway (Cheng et al., 2016). Therefore, there is a consensus suggesting that RGS proteins can be used as potential candidates for tumor diagnosis and treatment (Xiao & Gao, 2019).
Numerous studies have proved that FABP4, COL4A1, and RGS4 were related to various types of cancer progression; however, we searched GIST on PubMed with no reports on our screened differential genes and GIST. Therefore, the data in our study could provide useful information and direction for future study on GIST (Vincenzi et al., 2018).
CONCLUSION
In sum, our bioinformatics analysis study identified DEGs between the imatinib-sensitive cell line GIST882 and imatinib-resistant cell line GIST430 on the basis of a microarray dataset. The results showed that FABP4, COL4A1, and RGS4 could play key roles in the imatinib resistance of GIST (Serrano et al., 2019). However, these predictions should be verified by a series of experiments in the future (Duan et al., 2019). Anyway, these data may provide some useful information and direction into the potential biomarkers and biological mechanisms of GIST (Hu et al., 2019).
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Covariates

fustat
fustat
Age
Age
Gender
Gender
Grade
Grade
Grade
Grade
Grade
Stage
Stage
Stage
Stage
Stage

EEERRE T

Bold values represent statistically significant.

G4
unknow
Stage |
Stage I
Stage Il
Stage IV
unknow
al

T2

]

T4
unknow
Mo

M
unknow
NO

N1
unknow

Total

240 (64.86%)
130 (35.14%)
232 (62.7%)
138 (37.3%)
121 (32.7%)
249 (67.3%)
56 (14.86%)
177 (47.84%)
121 (32.7%)
12 (3.24%)
5 (1.35%)
171 (46.22%)
85 (22.97%)
85 (22.97%)
5 (1.35%)
24 (6.49%)
181 (48.92%)
93 (25.14%)
80 (21.62%)
13(3.51%)
3(0.81%)
266 (71.89%)
4(1.08%)
100 (27.03%)
252 (68.11%)
4 (1.08%)
114 (30.81%)

Low-risk

136 (73.51%)
49 (26.49%)
110 (59.46%)
75 (40.54%)
55 (20.73%)
130 (70.27%)
41 (22.16%)
97 (52.43%)
44 (23.78%)
1(0.54%)
2 (1.08%)
101 (54.59%)
35 (18.92%)
32 (17.3%)
3 (1.62%)
14 (7.57%)
109 (58.92%)
36 (19.46%)
33 (17.84%)
4(2.16%)
3 (1.62%)
130 (70.27%)
2 (1.08%)
53 (28.65%)
122 (65.95%)
1(0.54%)
62 (33.51%)

High-risk

104 (56.22%)
81 (43.78%)
122 (65.95%)
63 (34.05%)
66 (35.68%)
119 (64.32%)
14 (7.57%)
80 (43.24%)
77 (41.62%)
11 (5.95%)
3 (1.62%)
70 (37.84%)
50 (27.03%)
53 (28.65%)
2 (1.08%)
10 (5.41%)
2 (38.92%)
7 (30.81%)
47 (25.41%)
9 (4.86%)
0 (0%)
136 (73.51%)
2(1.08%)
47 (25.41%)
130 (70.27%)
3 (1.62%)
52 (28.11%)

P value

7.00E-04

0.237

0.2678

0.0035

8.00E-04

0.6704
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PPV (%)

Age > 47.5 years 70.6 (127/180)
Size 2 22.5 mm 56.6 (94/166)
Tumor signs

Imegular shape 79.0 (49/62)

Indistinct margin 70.9 (175/247)
Etratumoral signs parenchyma

Gontraction 96.6 (56/58)

Distortion 92.0 (46/50)

Atrophy 76.8 (43/56)
Trabecula

Parallel 86.6 (131/153)

Vertical 83.6 (56/67)

Wide halo 69.4 (77/111)

PPV, positive predictive value: NPV, negative predictive value.

NPV (%)

74.5 (190/255)
63.6 (171/269)

61.7 (230/373)
91.0 (171/188)

63.9 (241/377)
62.1(239/385)
60.7 (230/376)

78.4 (221/282)
63.0 (232/368)
64.5 (209/324)

Sensitivity (%)

66.1(127/192)
49.0 (94/192)

25.5 (49/192)
91.1 (175/192)

29.2 (56/192)
24.0 (46/192)
22.4 (43/192)

68.2 (131/192)
29.2 (56/192)
40.1 (77/192)

Specificity (%)

78.2 (190/243)
70.4 (171/243)

94.7 (230/243)
70.4 (171/243)

99.2 (241/243)
98.4 (239/243)
94.7 (230/243)

90.9 (221/243)
95.5 (232/243)
86.0 (200/243)

Accuracy (%)

72.9 (317/435)
60.9 (265/435)

64.1 (279/435)
79.5 (346/435)

68.3 (297/435)
65.5 (285/435)
62.8 (273/435)

80.9 (352/435)
66.2 (288/435)
65.7 (286/435)
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Variable 0Odds ratio
Age = 47.5 years 29
Size = 22.56 mm 13
Tumor signs
Imegular shape 25
High density 15
Indistinct margin 43
Extratumoral signs parenchyma
Contraction 362
Distortion 102
Atrophy 40
Trabecula
Parallel 72
Vertical 35
Reticular 17
Helo
Absent 25
Wide 40

95% confidence interval

16,53
07,25

1.0, 6.4
08,29
21,90

1.3, 17.0
35,343
18,94

39,137
15,87
04,70

09,72
15,119

NSNCM, nonspiculate and noncalcified masses.

p value

<0.001
0.002

0.007
0.061
<0.001

<0.001
<0.001
<0.001

<0.001
<0.001
0259

0.736
0022
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Characteristic

ETSA
Absent
Present

Parenchyma®
Contraction
Distortion
Pushing
Atrophy

Trabecula®
Parallel
Vertical
Reticular

Halo
Absent
Narrow
Wide

Data in parentheses are percentages and data in brackets are 95% confidence intervals.

Total (n =
435)

162 (37.2)
273 (62.8)

58 (13.3
50 (11.5)
65(14.9)
56 (12.9)

153 (35.2)
67 (15.4)
153.4)

214 (49.2)
110 (25.3)
111(25.5)

Benign NSNCM
(n =243)

153 (63.0)
90 (37.0

2(08)
4(1.7)
55 (22.6)
13 (5.4)

22 (9.1)
1145
5(2.1)

106 (43.6)
103 (42.4)
34 (14.0)

Malignant NSNCM
(n=192)

9(4.7)
183 (95.3)

56 (29.2)
46 (24.0)
10(5.2)
43 (22.4)

131 (68.2)
56 (29.2)
10(5.2)

108 (56.2)
7(87)
77 (40.1)

NSNGM, nonspiculate and noncalcified masses; ETSA, extratumoral structural abnommaiites; Cl, conficence interval.
*Parcentage was prapartion of each subclassification of parenchymal ar trabecular structural abnormalties fo the fotal number, o the benign NSNCM or malkgnant NSNCM.

0Odds ratio
[95% €I

003 (001, 0.1]
33.8(173, 743

45.9 [140, 30.4)
18.1 (7.1, 62.3]
02(0.1,04)
5.1[27,10.1]

213127, 37.1)
86[45,17.8
2609, 86]

17111, 2.4)
0.1 [0.02, 0.1]
4.1[26,6.6)

p value

<0.001
<0.001

<0.001
<0.001
<0.001
<0.001

<0.001
<0.001
0.084

0.009
<0.001
<0.001
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Characteristic

Age (years)®
Size (mm)®
Shape
Round
Oval
Irreguiar
Density
Low
Equal
High
Margin
Ciroumscribed
Obscured
Indistinct

AbrData in parentheses are percentages and data in brackets are 95% confidence intervals.; NSNCM, nonspiculate and noncalcified masses; Ci, confidence interval.

Total (n =
435)

46.1 £ 11.6
226 +13.1

7(16)
366 (84.1)
62(14.3)

30(6.9)
166 (33.2)
239 (54.9)

137 (31.5)
51(11.7)
247 (56.8)

8Nata are means + standard deviations.

Benign NSNCM
(n =243)

41.3 £ 10.1
20.3 £ 10.2

407
226 (93.0)
1363

27 (11.1)
128 (52.7)
88(36.2)

125 (51.5)
46 (18.9)
72 (29.6)

Malignant NSNCM
(n=192)

52.2 + 104
255155

3(1.6)
140 (72.9)
49 (25.5)

3(1.6)
38 (19.8)
151 (78.6)

12 (6.3
586
175 91.1)

0Odds ratio
[95% CI]

1.101.1,1.9]
1.0[1.0,1.1]

09 (0.2, 4.6]
02(0.1,04]
6032 119

0.1(0.03,04)
0.2[0.1,0.3]
6.4[4.2,10.0

0.10.08,0.1]
0.1[0.04,0.3)
241 (139, 439)

p value

<0.001
<0.001

0.959
<0.001
<0.001

<0.001
<0.001
<0.001

<0.001
<0.001
<0.001
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Gene

CDR1as
miR-1299
PPP1R12B
B-Actin

GAPDH forward

ué

Primer sequences (5'-3)

Forward: ACCCAGTCTTCCATCAACTGG
Reverse: TTGACACAGGTGCCATCGGA
Forward: GGGAAATCGTGCGTGACAT
Reverse: CTGGAAGGTGGACAGCGAG
Forward: ATCACGGAGCCAGTGTAGGTATT
Reverse: GCCTGCCTCACATCCTCTATTTT
Forward: CTCCATCCTGGCCTCGCTGT
Reverse: GCTGCTACCTTCACCGTTCC
TGCACCACCAACTGCTTAGC

Reverse: GGCATGGACTGTGGTCATGAG
Forward: GGAACGATACAGAGAAGATTAGCA
Reverse: GTGCAGGGTCCGAGGT
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Country

United States
India
Germany
France
England
Japan

Brazil

Pearson correlation

0.97
091
0.91
0.86
0.82
071
0.48

p value

8.41x10°
6.13x 10°
6.78 x 10°
7.35x 10°
2.89 x 107
4.38x 10°
861x 102

Spearman’s correlation

094
0.97
0.87
0.97
0.66
0.63
0.45

p value

0.00
0.00
7.67 x 10°°
0.00
1.22 x 1072
1.92 x 1072
1.12x 10™
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Sample ID

HL-006584
HL-006009
HL-006904
HL-007335
HL-007935
HL-012246
HL-033182
HL-020292
HL-011500
HL-019211
HL-009389

HL-012554

Size of PCR
products in the
amelogenin loci (bp)

209.15
209.06

209.04
214.8
209.06
214.85
209.11

200.18
214.92
209.02

200.19

209.25
215.07
200.19
215.04
200.27

209.26
215.03

Self-reported gender

Male
Male
Female
Female
Male
Female
Female
Female
Male
Male
Female

Male

seGMM inferred gender

Female
Female
Male
Male
Female
Male
Female
Female
Male
Male
Female

Male

Experimentally
validated gender

Female
Female
Male
Male
Female
Male
Female
Female
Male
Male
Female

Male
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Datasets PLINK XYalign seXY seGMM

1000G phase3 WES data 100 9965 100 100
1000G phase3 high quality WGS data 100 100 100 100
In-house WES data 9979 9991 4923 100
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Methods Dataset 2 Dataset 3

PLINK 87.10 38.87
seGMM 99.02 92.31
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Tools

PLINK
sexXY

XYalign
seGMM

Accuracy for all samples
(%)

81.44
62.5
98.08
99.62

Accuracy for male samples
(%)

48.28
45.45
100
100

Accuracy for female
samples (%)

100
81.63
95.92
98.98
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Characteristics, n (%)

Median age (years)
Sex
Male
Female
Histopathological classification
AC
ASC/SCC
Ho/Tis
MINEN/NEN
por/sig
Undifferentiated CA
MAC
Cinical stage
0l
IA-IB
NA-1IB
NVA-VB
Type of surgery
Curative
Pallative/biopsy

Total (n = 306)

65

123 (40.2)
183 (59.8)

223 (72.9)
27 @8)
20(6.5)
16 (5.2)
10 3.3)
620
4(1.3)

32 (10.5)
71(232)
122 (39.9)
81(26.5)

215 (70.3)
1(29.7)

HER2 status
Negative(n = 270) Positive(n = 36) p-value
645 655 0652
108 (40.0) 15 (41.7) 0.848
162 (60.0) 21(58.3)
187 (69.3) 36 (100) 0034
27 (10.0) 0
20 (7.4) 0
16 (59) 0
10 (3.7) 0
622 0
4(1.5) 0
30 (11.1) 2(66) 0.69
60 (22.2) 11(30.6)
107 (39.7) 15 (41.7)
73(27.0 8(22.2)
188 (69.6) 27 (75.0) 0508
82 (30.4) 9250

HER2, human epidermal growth factor receptor 2; AC, adenocarcinoma; ASG, adenosquamous carcinoma; SCC, squamous cell carcinoma; Hg, intraepithelial neoplasia of high grade;
Tis, tumor in situ. MINEN, mixed neuroendocrine/non-neuroendocrine neoplasm; NEN, neuroendocrine neoplasm; por/sig, poor cohesive carcinoma/signet ring cell carcinoma; MAC,
mucinous adenocarcinoma. N represents the number of samples; P<0.05 indicates the statistical significance.
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HER2 expression (IHC)

Total

0
HER2 gene status Not ampified 202 (84.1%)
Amplfied 3(7.1%)
Total 225 (73.5%)

HER?, human epidenmal growth factor recepior 2 HC. immunohistochemmistry

1 2
23 (8.7%) 19 (7.2%)
3(7.1%) 18 (42.9%)
26 (8.5%) 37 (12.1%)

3

0 264
18 (42.9%) 42
18 (5.9%) 306
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SNV_ID

680277
61732315
12220848
152244008
152644275
1798488
NA
52301868
1050457
143873038
5781798819

Gene.

RGS8
PPFIA4
LAMA2
LAMA2
GNA12
GNAT2
ADCYB
TSPOAP1
PALM
FLNA
FLNA

Cytoband

19253
1932.1
6622.33
6622.33
222
70222
12q13.12
17q22
19133
Xq28
Xq28

Genotype

homo,_inherit
homo_inherit
homo_inherit
homo_inherit
homo_inherit
homo_inherit
hetero_gain
homo_inherit
homo_gain
homo_gain
homo_gain

Ref

H0>00-40>00 -

z

0HOHA>» 0> 040

AAChange

PN3S
PAB25S
PA2S83V
PT2632A
pT2al
PMIV.
PL32OF
PG1770E
PTI07A
PV528M
PKE7ER

X1000g_Chinese

0146179
0171096
0621262
0124585
0222501
0219269
NA
0.144518
0534884
0047826
0006522

X1000g EAST

01399
0.1577
0.6369
0.1319
02321
02282
NA
0.1161
05446
0.0419
0.0065

Polyphen2 HDIV_category

Berign
Possibly damaging
Probably damaging
Benign

Benign

Start codon mutation
Probably damaging
Probably damaging
Benign

Probably damaging
Benign

Frequency in

1/25
1/25
325
2/25
1/25
1/25
1/25
1/25
1/25
325
1/25
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SNV_ID Gene Cytoband Genotype Ref At X1000g Chinese  X1000g EAST

Region TF/miRNA Sites  Frequency_in_c
r$67529412 ZNF598 16p13.3 homo_gain c G NA NA Promoter  ELK1_01 1/25
866882393  WFS1 4p16.1 hetero_gain G c NA NA Promoter  PAX5_01 325
117345841 ULK2 17p11.2 hetero_gain T c 0.064784 0.0665 3-UTR miR-130/301 1125
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SNV_ID Gene CytoBand Ref At  AAChange  X1000g_Chinese  X1000g EAST  Polyphen2 HDIV_category  Frequency.in
517244632 GOBLL1 26243 G A pTeal 0.044851 00327 Possibly damaging 125
513362036 CONUL. 5633.3 G A pHiseY 0.164452 0.1627 Possibly damaging 2125
10764749 MKIST 106262 c T pR2426Q 0104651 01181 Probably damaging 125
152071496 MKI67 10g262  homo_inhert G G pT25088 0104651 0.119 Probably damaging 125
52152143 MKI67 109262 homo_inhert G T pGes2s 0.104651 0.1181 Probably damaging 125
153740423 MKi67 100262 homo_inhert T A pEl043V 0.104651 01181 Probably damaging 125
157938342 LsP1 11p165  homo_inhert T A pHQ 0767442 07688 Possibly damaging 1125
$17301,182  DYNG2H1 116223 homo_inhert G T pHaay 0.086379 00933 Possibly damaging 125
r$688906 DYNG2H1 116223 homo_inhert A G pKI4IR 0782392 0.7827 Possibly damaging 2125
152302686 LRP6 120132 heterogan G C  pS8ITC 0009967 00109 Probably damaging 125
152041290 AKAP3 12p1332  heterogan A G pSTO0L 0.126246 01647 Probably damaging 1125
152041291 AKAPY 1201332 heteogan G A 0.126246 0.1647 Probably damaging 1125
512227879 PARPBP 120232 homo_inhert G A p\BIM 0033223 00327 Probably damaging 125
5144896967  NPIPAS 16p13.11  heterogan  C T pE6EK 0.023256 00268 Possibly damaging 1125
62038492 NOMO1 16p13.11  heterogan A G PpEN153G NA NA Possibly damaging 125
10508 HCFC1R1 16p133  homo_inhert G T pPI3Q 0.109635 01181 Possibly damaging 125
545450806 PDIA2 16p133  homo_inherit  C T pA3lEV 0018272 00198 Possibly damaging 125
45478794 PKD1 16p133  homo_inhert G A pT3500M 0.068106 00625 Possibly damaging 125
545520833 PDIA2 16p133  homo_inhert  C G pRas2A 0021595 00218 Probably damaging 1125
61734410 CACNAIH  16p133  homo_inhert  C T pPodL 0835548 08383 Possibly damaging 2125
159806942 RGST1 16p133  homo_inhert  C T pvieM 0.325581 03185 Probably damaging 1125
511649804 RAI 17p112  homo_inhert G A pPIBST 0.845515 08353 Probably damaging 125
152272962 BCAS4 2091313 homo_inhert G T pEseD 0131229 01329 Probably damaging 125
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Methods Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

(19) (93) (196) (279) 371 (464)
DC 7 36 101 158 222 264
(o3 16 65 19 163 213 254
cC 1 45 93 136 180 221
BC 9 40 86 122 162 201
sC 0 17 87 130 190 240
EC 0 38 94 134 166 209
NC 1 51 123 170 213 259
CoEWC 16 69 136 190 237 275
Pec 15 69 142 193 238 285
ION 17 73 150 207 263 312
POEM 17 74 148 199 249 296
CVIM 16 80 160 219 27 322
NPRI 16 75 153 221 278 323

CFMM 19 84 162 222 280 332
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Method

CFMM
NPRI
CVIM
TEGS
ION
POEM
CoEWC
Pec

cC

EC
NC
sC
BC
DC

AUC (DIP)

0.7854
0.7683
0.7559
0.7386
0.7522
0.6662
0.6513
0.6329
0.6291
0.6657
0.6384
0.6879
0.6384
0.625

0.6704

AUC (Krogan)

0.7877
0.7768
0.7458
0.7287
0.7413
0.6726
0.6404
0.6316
0.6114
0.6573
0.6167
0.6584
0.6167
0.6248
0.6583





OPS/images/fgene-12-752732/inline_7.gif





OPS/images/fgene-12-763153/fgene-12-763153-t003.jpg
Different methods (ME)

DC

(o3

EC
sC
BC
cc
NC
Pec
CoEWC
POEM
ION
TEGS
CVIM
NPRI

[CFMM & ME|

|CFMM - ME|

83
88
95
95
92
95
52
57
59
55
70
42
33
39

Percentage of key
proteins in (%)(CFMM - ME)

84.34
85.23
86.32
86.32
85.87
86.32
88.46
77.19
77.97
85.45
82.86
80.95
75.76
76.92

Percentage of key
proteins in (%)(ME - CFMM]

4247
44.32
38.95
38.95
40.22
43.16
50.00
56.14
52.54
58.18
65.71
52.38
7273
53.85
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Different methods (ME)

DC

(o3

EC
sC
BC
cc
NC
Pec
CoEWC
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CVIM
NPRI

|CFMM & ME|

cuooo

46
47
56
38
58
44
76

|CFMM - ME|

32388RLER

a4
62
42
56
24

Percentage of key
proteins in (%){CFMM - ME}

88.30
88.30
88.30
88.30
88.42
88.42
89.23
87.04
84.91
84.09
88.71
80.95
85.71
91.67

Percentage of key
proteins in (%)(ME - CFMM]

4255
40.43
32.98
32.98
41.05
37.89
36.92
59.26
54.72
65.91
70.97
64.29
83.93
87.50
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database Proteins Interactions Essential proteins Gene expression

DIP 5,003 24,743 1,167 4,981
Krogan 3,672 14,317 029 3,610
Gavin 1,855 7,669 714 1,827
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Number
Sex

Age

Menopause age
Femoral neck T score
Femoral neck Z score
Lumber spine T score
Lumbar spine Z score
Height (cm)

Weight (kg)

PMOP patient

GS14
female

63
54
-2.4
-1
-29
-1.2
156
50

Gs18
female

64
48
-28
-13
=25
-1
156
55

Healthy people

Dzhg DzZn13
female female
57 69
50 50
-06 -0.7
17 1.1
14 07
26 28
165 164
66 64
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Rank

Top 1% (51)
Top 5% (255)
Top 10% (510)
Top 15% (764)
Top 20% (1,019)
Top 25% (1,274)

0.1

47
206
357
469
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650

0.2

47
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574
653

03
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867

0.4

47
208
361
476
573
656

0.5

47
209
361
480
571
658

0.6

47
209
359
483
575
661

0.7

47
210
358
485
576
665

0.8

47
213
360
485
573
867

0.9

47
212

488
569
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Features ACC Precision Recall F1 Mmcc

Local features 0.654 0.276 0.461 0.345 0.138
Global & local features 0.633 0.296 0.624 0.402 0.209
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Method ACC

SPPIDER® 0622
Isis® 0.604
PSIVER® 0.653
SPRINGS? 0631
RF.PPF 0.598
IntPred? 0.672
SCRIBER® 0616
DeepPPISP? 0.655
DeepPPISP-XGB 0.633

"Results reported by DeepPPISP (Zeng et al., 2020).

Precision

0.209
0211
0.253
0.248
04173
0.247
0.274
0.303
0.296

Recall

0.459
0.362
0.468
0.598
0512
0.508
0.569
0.577
0.624

F1

0.287
0.267
0.328
0.35

0.258
0.332
0.37

0.397
0.402

AUROC AUPRC

- 0.23
- 024
- 0.25
e 0.28
- 0.21
0.635 0.307
0.671 0.82
0.681 0.339

mcc

0.089
0.097
0.138
0.181
0.118
0.165
0.159
0.206
0.209

The highest results are highlightad in bold and the second-highest results are marked in italics. Valuss that were not reporied by the comesponding source are indicated by “—
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Dataset HC IDD Platform

mRNA expression profiling (52 HC vs. 31 IDD)
GSE23130 17 8 GPL1352 [U133_X3P)] Affymetrix Human X3P Array
GSE15227 12 3  GPL1352 [U133_X3P] Affymetrix Human X3P Array
GSE17077 9 10 GPL1352 [U133_X3P] Affymetrix Human X3P Array
GSE70362 14 10  GPL17810 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

miRNA expression profiling (11 HC vs. 11 1DD)
3 3 GPL20712 Agilent-070156 Human miRNA [MIRNA version]
GSE116726
GSES3492 5 5  GPL19449 Exiqon mRCURY LNA microRNA Array, 7th generation REV- hsa, mmu,
and mo (miRBase v18.0)
GSE45856 8 3 GPL11434 mRCURY LNA microRNA Aray, 6th generation- hsa, mmu, and mo

Year

2011
2009
2009
2015

2018

2016

2014

Country

United States

United States

United States
Ireland

China
China

China

Author

Helen Gruber
Helen Gruber
Helen Gruber
Peadar
O'Gaora

Jian Chen

Hai-Giang
Wang
BO Zhao

PMID

19535298
20109216
26489762

30487517
26484230

24173697
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Algorithm CFMM

Input: original protein-domain network, original PP network subcellular data, orthologous data, expression data, the iteration termination condition ¢, and adjustment
parameter .

Output: the final score of proteins.

Step 1: Apply the protein-based collaborative fitering aigorithm by Eqs 1-3.

Step 2: Apply the domain-based collaborative fittering algorithm by Eqs 4-6.

Step 3: Calculate the weights between proteins based on the MRM based on Eqs 7-9.
Step 4: Compute the protein feature score based on Eqs 10-23

Step 5: Establishing distribution network based on Eq. 24.

Step 6: Let £ = t + 1, calculate prosos ¢t + 1) according to Eq 26.

Step 7: Repeat step6 until Proscors t + 1) = Proscon (2 < .

Step 8: Sorting the proteins Scores Prosoe ¢ + 1) through descending order.
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Databases Count
STRING database 20
DrugBank database 57
GeneCards database 55
OMIM database 3
PharmGKB database 9

Gene names

KNG, EGF, SPINK9, SERPINC1, IL6, SNCA, YAF2, DSC1, KRT10, SPINK6, SPRR1B, FLG, SPINK5, DSG1, A2ML1, APP,
EPRS, CDSN, GLIS1, GABPB1

NRTH3, NR1H2, ALOX5, CYP1A2, CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP2E1, CYP2C9, CYP2D6, PTGS1, PTGS2,
TTR, CYP2C9, CYP2C19, CYP1A2, CYP2C8, ALB, ABCC4, ABCC1, SLC22A6, SLC22A8, SLCO1C1, SLC22A11,
UGT2B7, CYP3A4, CYP2B6, CYP2C18, CYP2E1, SLCO1B1, ABCB11, UGT1A3, UGT1A9, UGT2B4, ALOX5, SCN4A,
ASIC1, KCNQ2, KCNQ3, PLA2G2A, ABCB1, SLC6A4, SLCBA3, SLCBA2, CYP1A2, CYP2D8, CYP2C9, ALB, ORM1,
ORM2, ABCB1, TRPV1, CYP1A2, CYP2C19, CYP2C9, CYP2E1

COL2A1, COMP, ACAN, MATN3, COL9A1, SMAD3, COL9A2, GDF5, MMP13, SLC26A2, COL9A3, COL11A2, TGFB1,
FBN1, RUNX2, FRZB, TRPV4, DDR2, COL10AT, COL11AT, IL1B, TNF, IL6, TGFB3, IL10, PTGS2, UFSP2, MMP3, CANT,
TRAPPC2, ASPN, FGFR3, CCN6, TGFB2, MMP1, COL5A2, TGFBR1, GALNS, IL1RN, COL1A1, TGFBR2, CRP, CXCLS,
IL17A, TNFSF11, ALB, CHST3, MMP2, TNFRSF118B, BGLAP, MMP9, IL1A, TIMP1, SMAD4, COL5A1

ACAN, ASPN, COL2A1

CCAL1, OAP, OMD, TINAGL1, SLEN1, SLEN2, SLENS, TINAG, GPNMB

Abbreviation: KOA, knee osteoarthritis; STRING, the search tool for the retrieval of interacting genes; OMIM: Online Mendelian Inheritance in Man; PharmGKB, pharmacogenomics
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Age (years)
age <65
age=65

Event
Yes
No

T
T
T2
T3
T4
™

N
No
N1
NX

M
Mo
M1
MX

stage
Stage |
Stage I
Stage I
Stage IV

*Means death event

Low expression LBX2-AS1
(N = 250)

209 (83.6%)
41 (16.4%)

10 (4.0%)
240 (96.0%)

80 (32.0%)

92 (36.8%)

72 (28.8%)
5(2.0%)
1(0.4%)

127 (50.8%)
91 (36.4%)
32 (12.8%)

130 (52.0%)
3(1.2%)
117 (46.8%)

151 (60.4%)
36 (14.4%)
47 (18.8%)
16 (6.4%)

High expression LBX2-AS1
(N = 249)

214 (85.9%)
35 (14.1%)

6 (2.4%)
243 (97.6%)

60 (24.1%)
72 (28.9%)
98 (39.4%)
18 (7.2%)
1(0.4%)

101 (40.6%)
131 (52.6%)
17 (6.8%)

151 (60.6%)
6 (2.4%)
92 (36.9%)

130 (52.2%)
16 (6.4%)

64 (25.7%)

39 (15.7%)

p-value

0.546

0.451

0.00229

<0.001

0.0621

<0.001
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RARa upstream
Forward AGCACCAGCTTCCAGTTAGTGG
Reverse CAAAGCAAGGCTTGTAGATGCGG
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Gene

LBX2-AST
RARa
FSTL3
p-actin

Forward primer (5'-3')

AGTTTGTCCCAGGTT TGGCA
AGCACCAGCTTCCAGTTAGTGG
ACATTGACACCGCCTGGTCCAA
TCCGGCACTACCGAGTTATC

Reverse primer (5'-3)

CATGCCAGGGTCCTT GTTCT
CAAAGCAAGGCTTGTAGATGCGG
ACTCCACGCCGTCGCACGAAT
GATCCGGTGTAGCAGATCGC
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Primer

EPB42
IFIT2
FOSB
SNF1LK
p-actin

Forward (5-3')

CCCCATGGATTTGAAGTGCC
AAGCACCTCAAAGGGCAAAAC
GTGAGAGATTTGCCAGGGTC
GTCCCTCGGAAGGAACTAGC
GTGGGGCGCCCAGGCACCT

Reverse (5-3)

AGTGTGACCAGCCTTCCTAGA
TCGGCCCATGTGATAGTAGAC
AGAGAGAAGCCGTCAGGTTG
CTCGCGTTTTTCCTTAGCTG
CTTCCTTAATGTCACGCACGATTG
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Ratio Ratio

TP53 TCGA-LUAD  0.35021097  0.606567377 3.12E-08  1.26E-07
GSE72094 0.140703518  0.346733668 3.01E-06  1.20E-05
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Ligands

Remdesivir

Favipiravir

Ribavirin

Mycophenolic acid

Niclosamide
Mizoribine

Molecular formula

Co7HasNeOsP

CsH4FN3Oo

CgH12N40s

C17H200s

C13HgCloN»O4
CoH13N30g

Binding energy (kcal/mol)

—7.00

—5.32

—6.59

—7.00

—8.06
—7.06

Binding sites

Q493
K68
G496
K353
496, Q493, R403
K353
G496
F390, K353
E37
N439, Q506
N330, Q325
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Datasets Methods Sensitivity Specificity Accuracy AUC
Dataset 1 SMiR-NBI 0.8342 0.1925 0.2069 0.5728
VDA-KATZ 0.6976 0.6684 0.6691 0.8803
VDA-RLSBN 0.9279 0.9841 0.9298 0.9085
VDA-RWR 0.4824 0.7831 0.8278 0.8582
VDA-GBNNR 0.8224 0.8460 0.8400 0.8965
Dataset 2 SMiR-NBI 0.8339 0.0939 0.1078 0.4146
VDA-KATZ 0.5512 0.7574 0.7535 0.8296
VDA-RLSBN 0.5517 0.7391 0.7228 0.7873
VDA-RWR 0.5022 0.6643 0.6613 0.6675
VDA-GBNNR 0.8358 0.8425 0.8365 0.8562
Dataset 3 SMiR-NBI 0.9232 0.0431 0.0540 0.4378
VDA-KATZ 0.7116 0.5666 0.5684 0.8478
VDA-RLSBN 0.7004 0.6048 0.6102 0.8264
VDA-RWR 0.5053 0.7057 0.7032 0.7123
VDA-GBNNR 0.8611 0.8519 0.8482 0.8803

The bold values represent the best performance among five VDA prediction methods.
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Zanamivir
Laninamivir
Presatovir
Peramivir
Valganciclovir
Maribavir
Mizoribine

Baloxavir marboxil

References

PMID: 33857725, 33267759 , 32268351, 32127666, 32020029, 32282022,
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PMID: 32127666, 32297571, 32034637,
DOI: 10.1038/d41573-020-00016-0

PMID: 32294562, 32511320
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PMID: 32147628, 33281124
DOI: 10.1101/2020.07.13.20180
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PMID: 32127666, 32373347
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Remdesivir

Ribavirin

Mycophenolic acid
Cidofovir
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Niclosamide
Pleconaril
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BCX4430 (Galidesivir)

References

PMID: 32869558, 32282022, 32297571, 33130203,
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PMID: 33857725, 33267759, 32258351, 32127666,
32020029, 32282022, 32023685, 32022370, 32297571,
32035533, 31971553, 31996494

PMID: 33550050, 32222463, 32127666, 32869558,
32282022, 33556871, 32034637, 32227493, 26492219,
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DOI: 10.1038/d41573-020-00016-0

PMID: 33525411, 32579258

PMID: 32546018,
DOI: 10.1007/810067-020-05133-0
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References
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Category

Upregulated
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway

Downregulated

Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway
Pathway

Term

hsa05164
hsa03015
hsa03008
hsa05162
hsa00970
hsa03013
hsa04620
hsa05160
hsa03018

hsa03013
hsa03015
hsa03020
hsa03018
hsa03008
hsa03040
hsa05134
hsa05164
hsa00970
hsa05016

Description

Influenza A

mRNA surveilance pathway
Ribosome biogenesis in eukaryotes
Measles

Aminoacyl-tRNA biosynthesis

RNA transport

Toll-iike receptor signaiing pathway
Hepatitis C

RNA degradation

RNA transport

mRNA surveillance pathway

RNA polymerase

RNA degradation

Ribosome biogenesis in eukaryotes
Spliceosome

Legionellosis

Influenza A

AminoacyltRNA biosynthesis
Huntington disease

Note: Category: KEGG pathway. Count: the number of DERBP.
Abbreviations: DERBPs, cifferentially axpressed RINA binding proteins: KEGG, Kyoto Encyclopedia of Genes and Genomes.

p Value

2.86221E-06
0.000382507
0.000840096
0.001824335
0.002015354
0.00476635

0.007266019
0.021283853
0.03688456

5.02482E-10
8.49591E-07
0.000196405
0.003062616
0.008126664
0.017563625
0.018917424
0.024818692
0.024904555
0.025840768

FDR

7.53213E-05
0.00503299

0.007369263
0.010607124
0.010607124
0.020905044
0.02731586

0.070012673
0.107849589

1.96703E-08
1.65447E-05
0.002549819
0.029820204
0.063302434
0.10064299
0.10064299
0.10064299
0.10064299
0.10064299
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Factor

BICC1
RNASE2
GNL3L
KHDRBS2
WDR3
MRPL38

Abbreviations: HR. hazard ratio; Cl. confidence interval,

Up/Down

Up
Up
Up
Down
Down
Down

Univariate analysis

Multivariate analysis

HR

1.253
1.059
0.691
0.538
0.709
0.260

95% CI

1.007-1.568
1.002-1.118
0.520-0.920
0.355-0.814
0.525-0.957
0.069-0.979

p Value

0.042
0.039
0.011
0.003
0.025
0.046

0.231

-0.527
-0.402

HR 95% CI
1.259 0.990-1.602
0.669 0.498-0.898
0.590 0.382-0911

p Value

0.059

0.007
0.017
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Protein feature

Orig_word2vec
AAindex1_word2vec
AAindex2_word2vec
AAindex3_word2vec
AAindex4_word2vec
AAindex5_word2vec
All_word2vec

AUC

0.9720
0.9703
0.9717
0.9700
0.9676
0.9682
0.9730

Acc (%)

91.29
91.95
91.69
91.77
91.22
91.22
92.13

Prec (%)

90.75
91.18
90.76
91.15
90.85
90.32
91.17

Sen (%)

91.91
92.95
9272
92.41
91.65
92.20
93.13

MCcC

0.8262
0.8402
0.8344
0.8355
0.8247
0.8248
0.8430

ACC, accuracy; Prec, precision; Sen, sensitivity; MCC, Matthews correlation coeffi-
cient. Bold values mean that they are the best scores compared with other

methods.
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Learner-1
Learner-2
Learner-3
Learner-4
Learner-5
Learner-6

AUC

0.9598
0.9675
0.9625
0.9703
0.9696
0.9703

Acc (%)

90.24
91.26
91.33
91.25
91.51
91.95

Prec (%)

88.98
90.26
90.41
90.16
90.16
91.18

Sen (%)

91.61
92.33
92.36
92.46
93.03
92.95

MCcC

0.8054
0.8256
0.8271
0.8257
0.8310
0.8402

Bold values mean that they are the best scores compared with other methods.
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Test AUC Acc (%) Prec (%) Sen (%) MCC

1 0.9680 90.89 89.98 91.82 0.8180
2 0.9650 90.53 87.50 94.07 0.8132
3 0.9779 92.70 92.73 93.07 0.8579
= 0.9695 93.08 93.04 93.12 0.8615
5 0.9711 92.53 92.65 92.42 0.8506

Average 0.9703 £ 0.0043 91.95 £ 1.03 91.18 £2.15 92.95+0.73 0.8402 + 0.0205
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SNP ID Substitution MAF

rs19567767 T>C 0.326-0.952
rs12434438 G>A 0.117-0.841%
rs10873142 C>T 0.338-0.914
rs41508050 C>T 0.000292-0.0189
rs2301113 C>A 0.188-0.881
rs11549465 C>T 0.0366-0.1556
rs11549467 G>A 0.000674-0.0431
rs199775054 G>C 0.000-0.001°
rs113182457rs60361955 insGT Unavailable
rs2057482 T>C 0.658-0.939
rs2783778 CT 0.184-0.870
rs7148720 T>C 0.00676-0.151
rs1535679 A>C 0.185-0.872
rs28708675 AST 0.000218-0.370
rs1319462 G>A 0.682-0.944
rs1957755 G>A 0.000-0.075
rs41362550 T>C 0.0283-0.0755
rs7143164 G>C 0.0485-0.523
1951795 A>C 0.227-0913
rs12435848 ASG 0.249-0.912
rs2301104 G>C 0.000344-0.0147
rs10129270 G>A 0.0311-0.373
rs8006745 T>A 0.369-0.952
rs779897997 C>A Unavailable
4899056 T>C 0.262-0.948
rs11158358 G>C 0.655-0.928
rs2301111 G>C 0.222-0.902
rs966824 T>C 0.717-0.977
rs41492849 C>T 0.0000648-0.00207
rs34005929 G>A 0.000459-0.00943
rs61755645 AST 0.00161-0.0150
rs4902080 T>C 0.654-0.977
rs4902082 C>T 0.226-0.862
rs17099207 G>A 0.237-0.399
rs142179458 G>A 0.000574-0.0282
rs12434439 G>C 0.110-0.506
rs76308410 C>T 0.0621-0.149
rs74481028 ASG 0.0759-0.226
rs7161527 T>C 0.686-0.939
rs10147275 T>G 0.680-0.939
rs2301108 ASG 0.379-0.952
rs79865957 G>A 0.000230-0.00210

“Data from the Allle Frequency Aggregator (Phan Y] et al., 2020)
bData from the 1000 Genomes Project (Auton et al., 2015).
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Population  phecode

European 5733
2511

476

1551

961.1

696

Afican 242
569

531
5789
42711
3009
3009
3792
5735

483
7

Asian 195
348

801.1

Description

Hepatomegaly

Hypoglyoemia

Alergc intis

Malgnant neopiasm of er, primary
Poisoning/allery of sufonarmides.
Psoriasis and related disorders
Thyrotoxicosis with or ithout goiter
Other disorders of ntestine

Peptic uicer (exc. esophageal)
Hemorthage of gastrontestinal tract
Paroxysmal supraventricular tachycardia
Postiraumatic stress disorder
Postiraumatic siress disorder
Disorders of vireous body
Jaundice (not of newborn)

Acute bronchis and broncrioltis
‘Sleep related movement disorders
(Cancer, suspected or other

Other conditons of brain

Fracture of foot

sop

1561755645
1S61755645
1579865957

15142179458

15142179458
1528708675

15142179458

15142179458

15142179458

15142179458

15142179458

151951795
152301111

1534005929
1534005929
1541508050
1579865957
15230104
15230104
1579865957

beta

1728033876
1.33952494
1111814428
2.97285E+15
74.05386998
1346806715
3491251843
329947623
4.401347385
4.169090079
394818387
0671463911
0720505023
5.024227052
3027318192
1211842424
4791384583
2851754693
1929317425
~3.2555E+14

oR

0.409601308
0337650972
0278703888
86170822.24
17.24313765
0340112245
0848041087
080271968
1148701204
1137501266
1106947085
0162919352
0.162403177
1.198711003
0742762183
0317605334
1207932763
0671497479
0492152257
5224978797

SE

5620574578
3817220663
3.030860017
Inf
1456432
3845127319
3262701628
27.00844186
81.56068832
6465650292
5184113103
1957100245
2,085471008
1520526818
20,64180095
3.350668887
1204680513
1731814322
6884809237
0

3

2.48E-05
7.276-05
6.66E-05

o

1.75E-05
7.50E-05
3B4E-05
395E-05

000012732

0000247213

000036146
376E-05
9.14E-06
277€-05
4.59E-05

0.000135874
7.29E-05
247E-05
885E-05

0

n_cases

107
264

4318
20
118
220
72
o7
20
31
38
9
9
21
235

2234
3
25
51
20

n_controls

30,884
28,603
18794
32275
28,063
29,124
28,558
28,861
20,609
27,843
26415
23,629
23629
25418
28,047
21,463
23,361
2616
2399
2474

bonferroni

TRUE
FALSE
FALSE
TRUE
TRUE
FALSE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE

far

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
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RFDT (Wang Wang (Wang The proposed method

etal., 2018) etal., 2020)

AUC 0.8900 £0.0200  0.8895 % 0.0146 0.9703 + 0.0043
ACC (%) 89.10 £ 1.50 88.82 £ 0.65 91.95 + 1.03
Prec (%) 87.60 £ 1.60 88.30 £ 0.16 91.18 + 215
Sen (%) 91.20 £1.90 89.50 £ 0.73 9295+ 073
MCC 0.8060 & 0.024 0.7763 £ 0.0134 0.8402 + 0.0205

Bold values mean that they are the best scores compared with other methods.
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RF
AUC 0.8916
Acc (%) 81.68
Prec (%) 86.23
Sen (%) 78.10
MCC 0.6388

DNN

0.9058
85.64
82.22
89.44

0.7170

GBDT

0.9370
87.25
86.16
88.43

0.7454

LGB

0.9630
90.47
89.64
91.35

0.8096

RF, random forest; DNN, deep neural network; GBDT, gradient boosting decision
tree; LGB, LightGBM. Bold values mean that they are the best scores compared

with other methods.
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RFDT (Wang Lei (Wang The proposed method
etal.,, 2018) et al., 2020)
AUC 0.7230 £ 0.0380 0.8074 + 0.0933 0.9014 + 0.0325
Acc (%) 71.10 £ 4.60 82.22 £ 3.17 87.14 +£ 3.23
Prec (%) 68.00 +£12.10 84.74 + 1253 84.73 + 4.42
Sen (%) 75.90 £ 10.00 79.98 £ 12.70 83.66 + 4.55
MCC 0.5790 £ 0.0400 0.6573 + 0.0699 0.7338 + 0.0673

Bold values mean that they are the best scores compared with other methods.
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Primer sets Sequence (5'-3)

KLF7 upstream
Forward GGCGAGCTATTTTTAGAGGGCT
Reverse GCATCTAGTGGAGGGTCGGAG
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Primer sets Sequence (5'-3)

HO-1

Forward AAGCCGAGAATGCTGAGTTCA
Reverse GCCGTGTAGATATGGTACAAGGA
KLF7

Forward CTCACGAGGCACTACAGGAAAC
Reverse TGGCAACTCTGGCCTTTCGGTT
GAPDH

Forward GGAGCGAGATCCCTCCAAAAT

Reverse GGCTGTTGTCATACTTCTCATGG
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Associated Associated

immune bacteria/diseases

checkpoints

PD-L1 Oral administraion of Bifidobacterium in
melanoma

PD-1 Akkermansia muciniphia in epithelial
tumors

PD-1 Faecalbactenum

PD-L1 Staphylococcus aureus bacterial
preumonia in mouse model

PD-1 Mycobacterium tuberculosis infection of
thesus macaques

PD-1 Helicobacter pyloriin NSCLC

PD-1 Streptococcus pneumoniae infection in
mice

CTLA4 Faecalbacterum genus and other
Fimmicutes in melanoma patients

CTLA4 Oral administration of Bacteroides fragis,
Bacteroides thetaiotaomicron,
Burkholderia cepacia, or a combination of
B. fragils and Burkholderia cepacia

CTLA4 Staphylococcus aureus infection in mice

CTLA4 Mycobacterium tubercuiosis BCG
infection

CTLA4 Heficobacter pylori nfection in mice

CTLA4 Listeria monocytogenes infection

CTLA4 Mics infected with Nippostrongylus
brasifensis

PD-1 and Fungal sepsis in mice

CTLA4

LAG3 Mycobacterium tubercuiosis

LAG3 Mycobacterium tubercuiosis

LAG-3 Staphylococcus aureus and
Streptococcus pyogenes

LAG3 Plasmodium parastes

LAG3 Sepsis

DOt Mycobacterium tubercuiosis

IDO1 Autoimmune epicicymitis

IDO1 Coxiella bumeti

D01 Mycobacterium tubercuiosis

Dot Staphylococcus aureus and Toxoplasma
gondi

D01 Chiamydia trachomatis

D01 Uropathogenic Escherichia cofi

D01 Candida albicans

DOt Aspergilus species

DOt A primary fungal in pulmonary
paracoccidioidomycosis

VISTA| Experimental autoimmune
encephalomyeitis

TM-3 Mycobacterium tubercuiosis

Related immune
or other
cells

Antigen-specific CD8+ T cells

CCR9+CXCR3+CD4+ T ymphooytes

CD8+ T cell

OD4+ T cel; CDB+ T cell

Mtb-specific CD4 T cells

CD8+ T cel

Pneumococcal capsule-specific B cels

Peripheral blood Tregs.

B. fragils-specific T cells

Lowlevel of IL:6 production; high evel of
monocyte chemoattractant protein-1

Enhances mycobacterialinfection-
induced lymphocyte expansion and
effector cell cytokine production in the
draining lymph node but does not alter
the number or function of hmphocytes at
the primary site of nfection

Regulation of balance between Thi and
Th2 response

Listeria monocytogenes-specific CD4+
and CD8+ T cells

Toels

Reverse sepsis-induced suppression of
IFN-gamma andincreased expression of
MHC-ll on APCs

CD4+ T cells and NK cells

CD4+ T cells

MAIT

Tosl

CD4+ T cells; CD8+ T cells

Macrophage, CD141+ tolerogenic DCs,
and myeloid-iineage cells

Plasmacytoid dendriic cells and
reguiatory T cells

Host cells

Macrophages

Human retinal pigment epithelial (NRPE)
cells

Human endometral carcinoma cell fne;
peripheral blood mononuciear cels.

epithelial cel

Treg

Treg

Toel

D4+ effector T cels; CDB+ effector
Toels

Macrophage

Influence on
efficacy

Bifidobacterium-treated mice showed

a better antitumor effect compared to
non-Bifidobacterium-treated mice

Enhancing the antitumor effect of PD-1
blockade

Patients with high Faecalbacterium
‘abundance had a significantly
prolonged PFS versus those witha low
‘abundance

Ant-PD-L1 therapy did not alter
sunival in this pneumonia model

Animals treated with ant-PD-1
monodional antibody developed worse
disease and higher granuloma
bacterial loads compared

H. pylor seroposithity associated with
a decreased NSCLG patient OS and
PFS on ant-PD-1 therapy

PD-1 expression on B cels
suppresses protective humoral
immune responses to Streptococcus
pneumoniae

Longer progression-free sunvival and
overall sunvival and more frequent
‘occurrence of ipiimumab-induced
coitis

Eiicting the antitumor immune.
response

It attenuates disease severity but may
prolong the healing time required for .
aureus skin infections, having no
impact on bacterial clearance in skin
tissues

Enhancing immune response in the
mediastinal lymph node with no
improvement in clearance of
mycobacteria in the lungs, iver, or
spleen

Inhibition of the development of gastric:
inflammation, accomparied by an
increasing ratio of H. pylori-specific
19G1/lgG2a in serum

Increasing numbers of CD4+ and
CD8+ T cells and conferring stronger
‘and rapid bacteril clearance

Profound reduction in adult worm
numbers and early termination of
parasite egg production

Improving sunvival in bacterial sepsis

Enhancing high bacterial burdens

Modulating adaptive immunity

Meain coinfibitory molecule expressed
by SEB-exposed MAIT cells

Anovel therapeutic strategy for this
devastating infectious disease

Improving the survival and bacterial
‘clearance in septic mice

M. tuberculoss bacterial burden
promotes dysregulated homing of
CD4+ Telsinthe T-cellzone of BALT
‘and poor restoration of CD4” T cellsin
the lung interstiium

Ido1 responds differentl to
autoimmune-mediated infammation in
the testis compared with the
epicidymis

1DO1 production as a key cel-
‘autonomous defense mechanism that
limits infection by C. bumetii

1DO is associated with Mib immune
escape

Inhibiting the growh of T. gondii and'S.
aureus

IDO1 catalyzes the degradation of
tryptophan, which can eiminte C.
trachomatis infection in vitro

1DO1 actiity reguiates PMN

‘chemotaxis in response to epithelial
bacterial infection

Contributing to establish immune
tolerance and allow fungi colonization

Controling fungal burdens of
Aspergilus species by activaling
distinct populations of Treg cells

Controling fungal loads and immunity,
the impairment of IDO1 activity could
play amajor role in the pathogenesis of
Severe forms of human pumonary

Treatment with VISTA-blocking mAb
led to more severe disease in the EAE
mode.

TIM-3-immunoglobuiin fusion protein
reduced the M. tuberculosis burden
in M. tuberculosis-infected mice. TIM-
3/Gal9 pathway in tiggering
antibacterial activity in M. tuberculosis-
Silochad Fuivian fastabiags

Mechanism

Oral administration of Bifidobacterium
alone improved tumor control to the
same degree as anti-PD-L1 therapy, and
combination treatment neary abolished
tumor outgrowth. Augmented denditic
cel function leading to enhanced CDB+
T-cel priming and accumuation in the
tumor microenvironment mediated the
effect. Commensal Bifidabacterium-
derived signals moduate the activation of
DGs in the steady state, which in tum
supports improved effector function of
tumor-specific CDB+ T cells

Oral gavages with A. muciniphia and E.
hirae increased the eficacy of PD-1
blockade with respect to tumor growth
and A. muciniohia and E. hirae induced
denditic cels to secrete IL-12, a Thi
Gytokine involved in the immunogenicity
of PD-1 blockade in eubiotic contions.
Oral supplementation with A. muciniohia
after FMT with nonresponder feces
restored the efficacy of PD-1 blockade in
an interleukin-12-dependent manner by
increasing the recnitment of
GCR9+CXCRB+CDA+ T ymphocytes
into mouse tumor beds

Patients with a high abundance of
Clostridiales, Ruminococcaceae, or
Faecallbacterium in the gut had higher
levels of effector CD4+ and CD8+ T cells
in the systemic circulation with a
presenved cytokine response to anti-PD-
1 therapy, whereas patients witha higher
abundance of Bacteroidales in the gut
microbiome had higher levels of
requiatory T cells (Treg) and myeloid-
derived suppressor cells (MDSC) in the
systemic circulation, with a blunted
cytokine response

Low dose- (LD or high dose- (HD-) SA:
LD-SA and HD-SA produced lethaliy of
15 and 70% respectively by 168 h. At24
h, LD-infected animals exhibited
increased lung monocyte PD-LT
expression (p = 0.0002) but lower
bacterial counts (o = 0.0002) compared
to HD-animals. By 48 h, infection
induced lung neutrophil or macrophage
PD-L1 expression (o < 0.0001)

IFN-y and TNF have both been
previously implicated in increased
growth of Mib after PD-1 blockade.
Inflamimatory pathways (TNF; IFN-y),
normally important for host defense, are
required for the exacerbation of Mtb
infection after PD-1 blockade

H. pylori seropositty is associated with
reduced effectiveness of ant-PD1
immunotherapy n patients with NSCLC.
H. pylor infection affects not only DG
function but also that of monocytes and/
or macrophages. Indeed, in humans, it
observed a decreased number of cells
from the monocyte fineage and a
substantially decreased expression of
genesinduced by typel nterferon, IFN-,
and IL-6 in the tumors of infected
patients with NSCLC undergoing anti-
PDT treatment

B-celkintrinsic PD-1 expression
suppresses the protective humoral
immune response 10 the capsule of S.
pneumoniae. The selective suppression
of TI-2 (T-cel-independent type 2) Ab
responses by PD-1 interactions with B7-
H1 and B7-DC points to anovel role for
PD-1 in reguiating Ag-specific B-cell
responses to carbohydrate Ags

The Inducible T-cell COStimulator (COS)
molecue is significantly upreguiated on
GD4" T celis after ipiimurab (animmune.
checkpoint inhibitor () targeting CTLA-
4) treatment in patients who belong to
Faecalibacterium- driven cluster A

“The geodistribution of B (8. ragiis) in the
mucosal layer of the inestine and its
association with Burkholderizles
recognized through the pyrin/caspase-1
infammasome, synergizing with TLR2/
TLR4 signaling pathways, may account
for the immunomaodulatory eflects of
ant-CTLA-4 Ab

The pathogenic role of T-cel activationin
certain S. aureus infections and the.
potential use of CTLA4 Ig to dimirish
tissue damage in those conditions

GTLA- 4 blockade increased the
antigen-specific expansion and
ierentiation of lymphocytes in the
draining lymph node that is typically
induced in response to a BCG lung
infection

The predominance of Th response by
GTLA-4 blockade leads to aninhibition of
the development of gastric inflammation.
GTLA-4 signaling could contributeto the.
regulation of Th subsets and the
development of gastric inflammation in
H. pylor infection

Blockade of CTLA-4 results i increased
numbers of L. monocytogenes-speciic
CD4+ and CDB+ T cels after primary
infection with attenuated L.
‘monocytogenes and confers more rapid
bacterial clearance after secondary
challenge with viruent L.
monocytogenes

The abilty of CTLA4 blockade to
accelerate primary immune responses to
a protective level during an acute
infection incicates ts potentia as an
immunotherapeutic tool for deaing with
infectious agents

Blockade of cytotoxic T-ymphocyte
antigen-4 (CTLA-4), a second negative
costimuatory molecule that is
upreguiated in sepsis and acts like PD-1
1o suppress T-cell function, also
improved sunvival in fungal sepsis

Our data show that LAG-3 expressed
primary on CD4p T oells, presumably by
regulatory T cells bt also by natural kler
cell. The expression of LAG-3 coincides
with high bacterial burdens and changes
in the hosttype 1 helper T-cel response.
LAG-3 marks a subpopulation of Tregs
that are highy active and produce high
levels of the cytokine IL-10, which are
recruited to the lungs of primates with
uncontrolled Mt repiication

LAG-3 may modulate adaptive immunity
to Mtb infection by interfering with the.
‘mitochondrial apoptosis pathway

SEB-induced upreguiation of LAG-3 on
MAIT cels appears to rely on IL-12 and
IL-18. SEB-induced MAIT cell anergy
can be reversed by blocking LAG-3

Expression of the inhibitory receptors
PD-1 and LAG-3 on CD4p T cels and
their reduced IL-2 production are
‘common characteristc features of
Plasmocium infection

LAG-3 was upregulated on CD4+ and
CDB+ T cells, CD19+ B cels, natural
Kiler cells, CD4+CD25+ regulatory T
cells, and dendiic cels. Both LAG-3
knockout and anti-LAG-3antibody hada
positive effect onsunvival and onblood or
peritoneal bacterial clearance in mice
undergoing GLP. Cytokine levels and
T-cel apoptosis decreased in anti-LAG-
3 antibody-treated mice. Induced T-cel
apoptos's decreased, whereas
interferon  secretion and prolferation
were improved by anti-LAG-3 antibody
in vitro. Interleukin 2 receptor was.
upreguiated on T cels in both wid-type
and LAG-3 knockout mice

undergoing CLP

The macaque model of M. tuberculosis
infection showed IDO-expressing cellsin
the macrophage-rich layer of
granulomas, which fkely serves to
prevent optimal interactions between
CDA+ T cells and M. tuberculosis-
infected antigen-presenting cels (APCS).
Moreover, increased expression of IDO'
comelated with M. tuberculosis bacterial
burden, and IDO1 expression was also
associated with poorly formed BALT

1DO1 is known for ts tolerogenic and
immunosuppressive propertes, exerted
by modulating plasmacytoid denditic
cels and reguiatory T cells. Idot
responds differently to autoimmune-
mediated inflammation in the testis
compared with the epididymis

1DO1 contrbutes to IFN-y-mediated
restriction of C. bureti. IDO1 is an
enzyme that catabolizes celular
tryptophan to kynurenine metabolites,
thereby reducing tryptophan avaiabilty
in cells. Cels deficient in IDOT function
were more permissive for C. burneti
replcation when treated vith IFN-y, and
supplementing IFN-y-treated cells with
tryptophan enhanced intracelluiar
replcation. Additionally, ectopic
expression of IDOT in host cells was
sufficient to restrict repication of C.
‘bumetiin the absence of IFN-y signaling.
Using differentiated THP1 macrophage-
fike cell, t was determined that IFN-y
activation resuited in IDO1 production
and that supplementation of IFN-
y-activated THP1 cels with tryptophan
enhanced C. bumeti repication

Rv1737c s predominantly expressed by
the Mib in latent infection. In this study,
we have characterized the R1737c
functions n the recrutment and
activation of macrophages, which play a
cardinal role in innate and adaptive
immunity. Rv1737¢ induced the
tolerogenic phenotype of macrophages
by upregulating the expression of
indoleamine-2,3-dioxygenase 1 (DO1)

We found that an IFN-y stimuation of
hPRE cells induced the expression of
1DO1, which inhibited the growth of T.
gondiiand S, aureus. Costimulation with
IFN-, interleckin-1 beta, and tumor
necrosis factor alpha induced a strong
expression of iNOS. The INOS-derived
itric oxide production was dependent
on cel-culture conditions; however, it
could not cause antimicrobial effects.
iNOS did not act synergistically with
1DO1. Instead, INOS actiity inhibited
1DO1-medated tryptophan degradation
and bacteriostasis

In PBMCs infected with C. trachomatis
there was a significant upreguiation in
1DO levels, which was independent of
IFN-y. I fact, C. trachomatis infection in
PBMCs falled to induce IFN-y levels in
comparison to the uninfected culture

The idea of an expanded role for IDO in
innate celuiar responses through the
AHR-mediated effects of kynurenine
metabolites on neutrophi function, in
addiion to the previously dentified roles
in adaptive immune regulation

Subsequent inflammatory Thi-type
immunity was modulated by induced
Treg cells, which required the TRIF
pathway as well, and acted through
activation of IDO in denditic cells and
Th17 cell antagonism (17947673)

S. cerevisiae has only one IDO gene
(BNA2) and, to date, it has only been
associated with one function, NAD +
synthesis

1DO infibition was shown to induce.
increased fungal loadss in resistant and
susceptible mice concomitantly with
increased induction of NO synthesis

VISTA overexpression on tumor cells
interferes with protective antitumor
immunity i vivo in mice. These findings
show that VISTA, a novel
immunoreguiatory molecule, has
functional actvities that are:
nonredundant with other Ig superfamiy
members and may play a role in the
development of autoimmunity and
immune surveilance in cancer

The TH cell surface molecule TIM-3 has
evolved o inhibit the growth of
intracelular pathogens via ts ligand G,
which in tum inhibits expansion of
effector TH1 cels to prevent futher
Hesiss Illarviation

PMID
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Immune
checkpoints

PD-1

CTLA-4

LAG-3

TIM-3

VISTA

IDO1

Expression

Activated T cells, Tregs, B cells, NK
cells, DCs, macrophages, and
monocytes

Activated T cells and Tregs

Activated T cells, Tregs, NK cells, DCs,
and B cells

Activated T cells, TH17 cells, Tregs,
DCs, NK cells, and monocytes

Myeloid cell, T cells, and Tregs

A heme-containing enzyme
participates in tryptophan metabolism

Ligand

PD-L1 and PD-L2

CD80 and CD 86

MHC-Il, LESCtin, Galectin-
3, FGL-1, and a-synuclein

Galectin-9, CEACAM-1,
HMGB-1, and PtdSer

VSIG-3 and PSGL-1

L-Tryptophan

Mechanisms

ITSM recrits SHP-2, which acts as a bridge between
two PD-1 molecules and induces inhibitory function of
PD-1

Conserved YVKM molif in the cytoplasmic tail of

CTLA-4 mediates recruitment of SH2-domain-
containing proteins to regulate immune response

The KIEELE motif is considered to be essential for
LAG-3 mediated inhibition

TIM-3 exerts its function through several tyrosine
residues

VISTA has the potential function of both a receptor
and a ligand. The precise mechanism of VISTA needs
to be explored

Accumulation of kynurenine metabolites leads to
suppression of T cells and induction of Tregs

PMID

30851633,
32184441, and
28443090

10411922,
18845758, and
29794465

33488626 and
34067904

29069302 and
31676858

29375120 and
31690319

20720200 and
33883013
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Methods Sen® (%)

cllog

BC + GIC

CC + GIC

DC + GIC

EC + GIC

BC + DC + GIC

CC + EC + GIC

BC + CC + DC + EC + GIC

“Sen stands for Sensitiviy, as Eq. 17.

°FPR, stands for False Positive Rate, as Eq. 18.
“Fisher's Exact Test Score is defined in Eq. 19.

45.45
7273
45.45
54.55
45.45
81.82
45.45
45.45

FPR® (%)

8.98
179
122
125
117
5.89
147
117

YWhen GIC, was used alone, it is applied on all IncRNAs.

Fisher’s
exact test score®

2.77
11.75
6.90
8.75
7.00
9.36
7.00
7.00
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Methods Dataset Sen® (%) FPR® (%) Fisher's
exact test score®

clog Mouse 75.00 8.98 490
BC + GIC Mouse 100.00 9.53 8.16
CC + GIC Mouse 100.00 9.48 818
DC + GIC Mouse 100.00 9.55 8.16
EC + GIC Mouse 100.00 9.32 824

BC + DC + GIC Mouse 87.50 4.54 850
CC + EC + GIC Mouse 100.00 9.31 824

BC + CC + DC + EC + GIC Mouse 100.00 931 824

GIC Human 26.98 14.97 191

BC + GIC Human 66.67 12.49 2261
CC + GIC Human 63.49 16.37 16.15
DC + GIC Human 7143 20.51 17.25
EC + GIC Human 66.67 19.94 14.90
BC + DC + GIC Human 71.43 18.33 1923
CC + EC + GIC Human 65.08 18.19 1545
BC + CC + DC + EC + GIC Human 65.08 17.07 16.45

“Sen stands for Sensitivity, as Eq. 17.

*FPR, stands for False Positive Rate, as Eq. 18.
“Fisher's Exact Test Score is defined in Eq. 19.

YWhen GIC, was used alone, it is applied on all IncRNAs.
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Associated
immune
checkpoints

PD-1

CTLA-4

CTLA4

CTLA4

CTLA4

CTLA-4

PD-1/CTLA-4

PD-1/CTLA-4

PD-1/CTLA-4

LAG3

LAG-3

LAG-3

LAG3

LAG-3

DOt

DOt

Dot

VISTA

TIM-3

TIM-3

TIM-3

TIM-3

TIM-3

Associated  Associated diseases

virus

HBY

HY

omv

HPV

Lomv

HBYV

HY

HIV

EBV

HIV

HBYV

HPV

Lomv

HIV

HPV16

HPV

HIV

HIV

HoV.

Lomv

Friend virus

HBY

Acute or chronic HBV
infection disease.

Chronic HCV-infected
chimpanzees

HiV-infected patients.

Chronic CMV infection
after renal transplantation

HPV associated
‘squamous cell carcinoma
of the head and neck

Mice chronically infected
with LOMV

Chronic HBV infection

Patients with
hepatocellular carcinoma
and chronic HOV infection

HiV-infected patients.

HiV-infected patients.

HAV-associated hepatiis

Intraperitoneally inject
EBV-infected human cord
blood into NSG mice

SiVinfected long-term
antiretroviral therapy-
treated rhesus macaques

ADS

Hepatoceluiar carcinoma

oPSCC

Folicular lymphorma

Chronic viral infections.

HIV-1 infection

Head and neck squamous
cell carcinomas

Chronic infection

ADS

ADS

HCV infection

Chronic LOMV infection

Acute Friend virus-
induced disease

Chronic HBV infection

Related immune
cells or
other cells

HBsAg-specifc B cell unable to
mature into Ab-secreting cels
and displayed increased
expression of CD21lo and PD-1

Restoring intrahepatic CD4+
and CDB+ T-cel immunity

Increasing CDB+ T cells in
patients with chronic HIV
infection

Higher positive rate of PD-1 in
CMV-speciic CD4+ T cell from
viremic transplant recipients,
loss of IL-2 production

Cancer cells

Virus-specific CD8+ T cell

CTLA-4 is upregulated on HBV-
specific CDB+ T cels with the
highest level of Bim protein

Cancer cells

No pattern was noted regarding
the change from baselinein CD4
or CDB T cells

CTLA-4 was upregulated in HIV-
specific CD4+ T cells but not
CD8+ T cells

Isolated PBMC, PD-1, and
CTLA-4 on T cells were
measured by flow cytometry

Increasing EBV-specific T-cell
response and enhancing tumor
infitration by CD4+ and CDB+
Tcels

Decreasing total and intact SIV-
DNA in CD4+ T cells and B-cell
folicles

Toel

CD8 (+) T cells

©D8 (+) T cells

CD8 T cells

CD8 T cells

OD4+ T cells

HPV16-speciic CD8+ T cels

Invariant natural kiler T; T cell

CD4+ and CDB8+ T cells

Toels

HCV-specific CTLs

CD8 T cell

CD8 T cell

CD4+ and CDB+ T cells

Influence on
efficacy

Anti-PD-1 antibodies could partially
restore HBsAg-specific B-cel
maturation

Significant reduction in HCV viremia in
responder animal

Cof blocking CD3%/adenosine and PD-
1 signaling showed a synergic effect in
restoring CDB+ T-cell function (secrete
functional cytokines and kil autologous
reservoir cels) in vito

Blockade of PD-1/PD-L1 couid reverse
functional anergy of CMV-specific
CD4+ T cell and increase 10-fold
prolferation in CMV-specific GD4+
Teel

Pembroizumab was tolerated with
17% grade 3-4 IFAES; the overall
response was 25% in HPV-positive
patients

Blockade of the CTLA-4 had o effect
on either T-cell function or viral control

Blocking CTLA4 can increase the
expansion of IFN-gamma producing
HBV-specific DB+ T cells

Anti-GTLA-4 showed a good safety
profil; no patients needed steroids due
to severe irAES; disease control rate
was 76.4%

No serious adverse events or dose-
limiting toxiciies and ipiimumab were
‘associated with variations in HIV RNA

CTLA-4 expression correlated
positively with disease progression and
negatively with the capacity of CD4+
T cels to produce interteukin 2 in
response to viral antigen. In vitro
blockade of GTLA-4 augmented HIV-
speciic CD4+ T-cell function

Significantly higher expression of PD-1
and CTLA-4 onT cells consistent with a
viral-protective effect of PD-1 and
CTLA4, thereby preventing the
destruction of virus-infected
hepatocytes in AHA

‘Combination of PD-1/CTLA-4
blockade reduced the size of
lymphoma, decreased the number of
both latently and lytically EBV-infected
B cells

Inducing robust latency reversal and
reducing total levels of integrated virus.
No enhanced SIV-specific CD8+ T-cell
responses or viral control

High viral load, faster disease
progression, and rapid retum of viremia
following treatment interruption

Acting as a suppressor of HBV-specific

HPV-related OPSCC might be more
suscepible to single or combined anti-
LAG-3 antibody therapy than HPV-
negative OPSCC patients

Inhibiting cell prolferation, cytotoxicity
function, and eytokine production

LAG-3 s continuously upregulated on
LCMV-specific exhausted CD8 T cells;
italone does not significantly contribute
to T-cel exhaustion

IDO may represent a citical iniiating
event thatresultsininversion of the T(H)
17/7 (reg) balance and in the
consequent maintenance of a chronic:
inflammatory state in progressive HIV
disease

The HPV16 CTL epitopes identified in
this study, in combination with
blockade of HPV + HNSCC-specific
PD-1/IDO-1 checkpoints, may be
useful for targeted immunotherapy

Induction of IDO1 in HPV-infected skin
contributes to evasion of host immurnity

Gal-0 and VISTA expression was
‘associated with impaired T-cell effector
functions

Blocking the TIM-3 signaling pathway
restored prolferation and enhanced
cytokine production in HIV-1-specific
T cells

Blockade of either PD-1 or TIM-3
enhanced in vitro prolferation of HCV-
specific GTLs to a simiar extent,
whereas cytotoxicity against a
hepatocyte cell e that expressed
cognate HOV epitopes was increased
exclusively by TIM-3 blockade

Targeting both PD-1 and TIM-3 is an
effective immune strategy for treating
chronic viralinfections

Combinedblockade of PD-1and TM-3
during the priming difierentiation phase
rescued FV-specific CD8 (+) T cells
from becoming terminally exhausted,
resuting in improved CD8 (+) T-cell
functionality and virus control

Overexpression of TIM-3 is involved in
disease progression of CHB and that
TIM-3 may participate in skewing of
Thi/Te1 response, which contributes
to the persistency of HBV infection

Mechanism

HBV infection has a marked impact on
‘global and HBV-specific humoral
immunity, yet HBsAg-specific B cels are
‘amenable to a partial rescue by B-cell
maturing cytokines and PD-1 blockade

Successful PD-1 blockade likely requires
acritical threshold of preexisting virus-
specifc T cell in ver and warrants
‘consideration of therapeutic vaccination
strategies in combination with PD-1
blockadle to broaden narrow responses

Combined blockade of CD39/adenosine
and PD-1 signaling in vitro may exert a
synergistc effect in restoring CDB+ T-cel
function in HIV-1-infected patients

Expression of PD-1 defines a reversible
defect of CMV-specific CD4 T cells that
‘are associated with viremia, and blocking
PD-1 signaling may provide a potential
target for enhancing the function of
‘exhausted T celsin chronic CMV infection

Greater antitumor activity was recorded in
patients with squamous cel carcinoma
tumors of the head and neck that
expressed higher levels of PD-LT and
interferon-y-related genes. Thus,
pembrolizumab might represent a new
treatment approach for patients with
squamous cel carcinoma of the head and
neck

Inhibition mediated by PD-1 reqires
close proximity of PD-1 1o the site of TCR
‘engagement and does not signal in the
absence of a TCR signal. Following
‘crossiinking by PD-1 ligand, the
immunoreceptor tyrosine-based switch
motif (TSM)in the cytoplasmic domain of
PD-1 is phosphorylated and recruts the
phosphatases SHP-1 and SHP-2. These
phosphatases act on proximal signaling
Kinases of the TCR pathway, reducing the
TCR signal and leading to diminished
T-cell activation and cytokine production.
‘Therefore, under conditions of persistent
antigen, T cells may moduiate their
responsiveness by upreguiating inhibitory
receptors such as PD-1 that attenuate
TCR signaling

CTLA-4is expressed by HBV-speciic
CD8+ T celis with high levels of Bim and
heips to dive this proapoptotio
phenotype

HCV-specific CDB+ T cells that are
‘exhausted express various inhibitory
receptors, indluing CTLA-4 that acts
synergisticall with the programmed cell
death-1 receptor (PD-1) to enforce their
‘exhaustion state. Moreover, CTLA-4 is
preferentially upregulated in PD-1+ T cells
from the fiver of chronically HCV-infected
patients. It seems possible that the revival
of antiviral T-cellimmunity in patients with
long-lasting chronic HCV infection
following tremefimumab therapy may
result from increased GD4+ T cell help
‘and recovery of CD8+ T-cel exhaustion
Ipifmumab treatment of an HIV-infected
patient on antiretrovial therapy increased
CD4+ T cells, predominantly total memory
‘and effector-memory cels, postinfusion
along with transient increases in CD8+
T cels without change i cell activation
Furthermore, ipiimumab increased cell-
‘associated unspliced HIV RNA and a
subsequent decline in plasma HIV RNA

GTLA-4 igation can suppress effector
T-cell functions both directly through
CTLA-4 expressed on effector cells and
indirectly through CTLA-4 expressed on
CD4+CD25+ Treg cels. A CTLA4-
mediated effect of Treg cells can probably
‘occur in vivo both by direct T-cel-T-cell
‘contact and indirectly by induction of
indoleamine-2,3-dioxygenase in dendritic
cells

‘The changing expression of PD-1 and
GTLA-4 during the symptomatic and
recovery phases of AHA points o the
protective effects of these inhibitory
molecules, perhaps by suppressing the
actiity of cytotoxic T cells, thereby
preventing the induced fuminant
destruction of HAV-infected hepatocytes

PD-1/CTLA-4 blockade markedly
increases EBV-specific T-cell responses
and is associated with enhanced tumor
infitration by D4+ and CD8+ T cells

Dual GTLA-4/PD-1 blockade produced a
significant reduction in cell-associated
SIV-DNA within LN CD4+ TEM, the CD4+
T-cel subpopulation most activated from
‘combined treatment. Importantly, in situ
hybridization assays demonstrated a
significant reduction in the number of
VRNA+ and vONA + cells following dual
CTLA-4/PD-1 blockade in the LN,
incluing in the BCF

Although mechanisms and functions of
LAG-3 remain controversial, LAG-3
‘earlyinhibits immune responses. IfLAG-
3 blockade improves immune function
during HIV infection, it could help deplete
the HIV reservoir by reversing latency and
restoring immunity of exhausted cells

SinceLAG-3 is an inhibitory molecule that
plays a downreguatory role on T-cell
responses, we found the correlation
between LAG-3 expression and HBV-
specific CDB+ T cels dysfunction

Possible reasons for this may be the
interrelationship of muliple components
in the tumor immune microenvironment,
as it has been reported that the
‘coexpression of LAG-3 with other
inhibitory molecues suchas TIM-3 or PD-
1 induces the exhaustion ofimmune cells,
resuiting in downregulated cytokine
expression

LAG-3 expression could be substantilly
upregulated on CD4+ or CDB+ T cells by
IL-12, a cytokine that has been shown to
induce T-cel exhaustion and be increased
in the serum of lymphorma patients.
Furthermore, we found that blockade of
both PD-1 and LAG-3 signaling enhanced
the function of inratumoral CD8+ T cells
resulting in increased IFN-y and IL-2
production

LAG-3 is upregulated on LGMV-specific
‘exhausted CD8 T cell; it does not
significantly contribute to T-cell
‘exhaustion alone. To effectively interfere
with T-cel exhaustion, it i very likely that
severalinhibitory receptors wil have to be
targeted simultaneously

IDO1-dependent tryptophan catabolism
may be an important link between
immune activation andthe gradual deciine
of immune function seen in progressive
HV infection

Our findings implicate mechanisms of
T-cell escape in HPV + HNSCC, wherein
high tumoral HPV-antigen load results in
high expression of immune dysfunction
‘genes on tumor cels (e.g., IDO-1) and
dysfunction of HPV-specific CTLS (e.g.,
E7; E2-CTLs). HPV + HNSCCs
‘expressing IDO-1 might similarty be driven
by HPV-specific-CTL infitration in
response to high tumoral HPV-antigen
load

Inhibiting IDO activiy using 1-methyl-DL-
tryptophan (1-D/L-MT) promotes K14E7
skin gratt rejection. Increased IDO1
‘expression and activity in K14E7 skin
require IFN-g and invariant natural Killer T
(NKT) cels, both of which have been
shown to negatively regulate T-cell
effector function and suppress K14E7
graft rejection. Furthermore, DCs from
K14E7 skin express higher levels of IFN-g
receptor (FN-gR) than DGs from control
skin

A dramatic reduction in the production of
oytokines by T cells expressing PD-1,
CD160, CD39, TIM-3, and VISTA. In
‘contrast to other coinhibitory molecules,
the pattern of cytokine production was
ot diferent between 284+ and 2842
CD4+ T cells, and interestingly 284+
CDB+ T cells exhibited higher cytokine
production capabilties compared with
2842 CDB+ T cells

In progressive HIV-1 infection, TIM-3
‘expression was upregulated on HIV-1-
specific CD8 + T cels. TIM-3-expressing
T cels failed to produce cytokine or
proliferate in response to antigen and
‘exhibited impaired Stats, Erk1/2, and p38
signaiing. Blocking the TIM-3 signaling
pathway restored prolieration and
‘enhanced cytokine production in HIV-1-
specific T cels

Early accumuiation of PD-1+TIM-3+
T cells is associated with functional
impairment and consequently with the
development of persistent HCV. The
present study provides a basis for
improving current therapies by
simultaneous blockade of muliple
inhibitory pathways that could result in
additive efficacy without excessive toxicity

Whereas TIM-3 was only transiently
‘expressed by CD8 T cells after acute
infection, virus-speciic CD8 T cels
retained high TIM-3 expression
throughout chronic infection. The majority
(approximately 65-80%) of lymphocytic
choriomeningits virus-specific CD

T cels in lymphoid and nonlymphoid
‘organs coexpressed TIM-3 and PD-1.
‘This coexpression of TIM-3 and PD-1 was
‘associated with more severe CD8 T-cel
‘exhaustion in terms of proiferation and
secretion of effector cytokines such as
IFN-y, TNF-a, and IL-2. Interestingly, CD8
T cells expressing both inhibitory
receptors also produced the suppressive
cytokine IL-10. Most importanty,
‘combined blockade of TIM-3 and PD-1
pathways in vivo synergisticall improved
CD8 T-cell responses and viral control in
chronically infected mice.

TIM-3 and CTLA-4 were recently found to
be overexpressed on HIV- and hepatitis C
virus-specific CD4+ and CD8+ T cels and
to act to suppress effector functions of
activated T cels. Upreguiation of LAG-3.
was also shown to correlate with the
impaired effector functions and
exhaustion of CD8+ T cells

‘The expression of TIM-3 s upregulated on
Grculating GD4+ and CDB+ T cellsin CHB
patients. TIM-3 was highly expressed on
T cells from AHB patients as well;
however, its expression decreased
dynamicaly in the convalescence phase,
TIM-3 expression positively corelated
with disease severity and negatively
‘correlated with Thi/Tc1 response in CHB
patients
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Ligand Method

Cu?* (a)
(o)
()
(@
Na* (a)
b)
(©
(@

Sn (%)

29.28
31.13
39.38
40.82
1.84
7.16
5.32
8.38

S, (%)

99.85
99.85
99.85
99.86
99.99
99.96
99.97
99.96

Acc (%)

98.86
98.88
99.00
99.03
98.27
98.33
98.32
98.35

MmccC

0.461
0.479
0.533
0.570
0.116
0.228
0.202
0.254

The prediction parameter of (a) is (1)+(2)+(3)+(4)+(5); the prediction parameter of (b) is
(1)+(2)+(3)+(4)+(5)+(6); the prediction parameter of (c) is (1)+(2)+(@)+()+(5)+(7); the
prediction parameter of () is (1)+(2)+(3)+(4)+(5)+(6)+(7).
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Features

Amino acid
Structure

Physicochemical

Two feature parameters

Extraction of feature parameters and dimensions

(1) amino acid: 21-dimensional component information + 2L-dimensional position conservation information

(2) secondary structure: 4-dimensional component information + 2L-dimensional position conservation information

(3) refative solvent accessibilty: 3-cimensional component information + 2L-dimensional position conservation information
(4) hydrophilic-hydrophobic: 1-dimensional entropy value

(5) charge: 1-dimensional entropy value

(6) correlation features: 20-dimensional component information (Fe** and Cu* correlation features are 10-cimensional)
(7) 2-dimensional binding residue propensity factors
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FP

0.1691
0.8155
5.0717
2.5358
0.3309
0.2841
9.1739
0.1966
0.5819
0.0599

FRT 28 MDD 0.2

Fn

1.0113
1.0025
0.9448
0.9792
1.0091
1.0097
0.8892
1.0109
1.0057
1.0127

<ET<<0WITOTVZZ

FP

0.1871
1.0771
0.0799
0.397
0.4359
0.4785
0.4109
0.1349
0.2386
0.4079

Fn

1011
0.999
1.0125
1.0082
1.0076
1.0071
1.008
1.0117
1.0103
1.008

F, is the propensity of binding residues; F,, is the propensity of non-binding residues.





OPS/images/fgene-13-844604/fgene-13-844604-g003.gif
S
T

(GGES of Source-Target Cels
in Target Cel Type






OPS/images/fgene-12-793800/fgene-12-793800-t002.jpg
Ligands

2Pt
Pt
Fe?*
Fe®
Co™
Mn?*
Ca®*
Mg
Na*
K"

0.040
0.087
0.028
0.082
0.134
0.150
0.247
0.216
0.434
0.547

0.120
0.180
0.190
0.126
0.144
0.161
0.240
0.1656
0.139
0.108

0.184
0.071
0.087
0.105
0.066
0.058
0.097
0.090
0.080
0.035

0.082
0.087
0.066
0.072
0.072
0.041
0.032
0.048
0.017
0.025

0.046
0.082
0.024
0017
0.032
0.016
0.035
0.016
0.005
0.008

0.022
0.016
0.017
0.018
0.009
0.005
0.012
0.007
0.010
0.010

0.016
0.011
0.014
0.006
0.007
0.011
0.008
0.006
0.007
0.010





OPS/images/fgene-13-844604/fgene-13-844604-g002.gif
E Cell Composition

i

i

il
T

§§ 1
il
LITUT'T'T
=
!
|






OPS/images/fgene-12-793800/fgene-12-793800-t001.jpg
Metal ion ligand Chains P N Metal ion ligand Chains

Zne* 1,428 6,408 405,113 Mn?* 459
Cu* 17 485 33,947 Ca?* 1,287
Fe?* 92 382 29,345 Mg?* 1,461
Fe®* 217 1057 68,829 Na* 78
Co** 194 875 55,050 K" 53

The second column is the number of protein chains: P is the number of binding residues; N is the number of non-binding residues.
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5212
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Ligands

202+

cu?*

Fe®"

Ca?*

Mg

Method

GBM™
GBM®
RF

lonseq
GBM"
GBM?
RF

lonseq
GBM™
GBM®
RF

lonseq
GBM™
GBM®
RF

lonseq
GBM"
GBM®
RF

lonseq
GBM"
GBM®
RF

lonseq
GBM"
GBM®
RF

lonseq
GBMm™
GBM®
RF

lonseq
GBM"
GBM?
RF

lonseq
GBM®"
GBM®
RF

lonseq

L

1
1"
1"
13
15
15
15
15
13
13
13
9

15
15
15
1
1
1
1
13
13
13
1
13
13
13
9

15
15
15
15
13
13
13
13
13
13
13
1

Sn (%)

20.82
38.17
39.18
43.56
40.82
59.38
33.20
50.65
37.17
55.50
21.20
54.08
18.45
44.75
27.25
55.27
12.69
43.54
1277
9.60
34.46
16.62
31.07
3.79
10.76
6.94
2272
1.80
10.17
712
5.57
8.38
16.97
0.2
77.14
7.28
25.61
0.93
852

Sp (%)

99.85
99.90
99.77
99.57
99.86
99.95
99.83
99.69
99.85
99.92
99.88
99.51
99.86
99.93
99.78
99.81
99.94
99.95
99.81
99.93
99.97
99.82
99.82
99.97
99.97
99.75
99.04
99.99
99.98
99.96
99.98
99.96
99.97
100
74.04
99.98
99.96
100
99.88

Acc (%)

98.76
98.94
98.83
99.21
99.03
99.38
98.89
99 0.01
99.04
99.35
98.87
98.84
98.63
99.10
98.69
99.21
98.57
99.06
98.45
98.73
99.09
98.71
99.01
98.36
98.47
86.21
98.18
98.92
99.02
98.96
99.49
98.35
98.52
98.25
74.09
97.41
97.90
97.26
97.32

MmccC

0.473
0.570
0.531
0.504
0.570
0.747
0.488
0.587
0.527
0.705
0.383
0.577
0.349
0.634
0.420
0.637
0.308
0.632
0.252
0.249
0.564
0.299
0.455
0.161
0.302
0214
0211
0.108
0.297
0.214
0.183
0.254
0.392
0.045
0.152
0.253
0.488
0.005
0.228

L is the optimal window; GBM" is the result of the default setting of the GBM, algorithm

parameters; GBM? is the result of optimizing the GBM, algorithm parameters.
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Molecule X

ZMYMENB
ZNF366
ZNF609
ZNF366
ZNF366
ZNF282
ZNF366
ZNF366
ZNF366
ZNF282
ZDHHC3
TRMT6
TRMT6
TRMT6
TSPO
ZDHHC19
ZDHHC19
SVIP
SVIP
ZDHHC3

a1 ~eal FDR.

Molecule Y

FAM20A
GOLGA1
FAM20A
WDR37
FBXW2
ATP11B
SDHC
PAG1
MAP2K6
AGTPBP1
Cl4orf159
BTN3A1
OSCAR
CA4
TRMT6
UBE2H
TRMT6
CKAP4
CMTM4
IL10

r1 (Sepsis)

0.406621495
0.410168886
0.42304016
0.443006043
0.401904401
0.422093972
0.418454554
0.436699597
0.427097546
0.512056621
-0.709976288
-0.57700653
0.519497637
0.564335391
0.570633674
0.584905223
0.586845831
0.603948148
0.632331442
0.635678135

12 (Healthy)

-0.728163034
-0.681188564
-0.680428116
-0.647605336
-0.643995081
-0.63235805
-0.626207078
-0.610998009
-0.609906763
-0.592121258
0.51884008
0.498814377
-0.537521238
-0.491940678
-0.551005684
452219991
-0.641186062
-0.440800517
-0.468788719
-0.408650989

Ifdr® (Difference)

0000000000000 O0O0O00O0O0O

Module color

Blue
Blue
Blue
Blue
Blue
Blue
Blue
Blue
Blue
Blue
Darkred
Darkred
Darkred
Darkred
Darkred
Darkred
Darkred
Darkred
Darkred
Darkred
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Project id

GSE52731
GSE139687
GSE42861
GSE128235
GSE125105
GSE42861
GSE87571
GSE87571
GSE42861
GSE125105
GSE42861
GSE87571

Number of samples

56
27
689
537
210
335
732
732
689
210
335
732

Benchmark test

batch effects detection
batch effects detection

case-control study

case-control study

regression analysis

regression andlysis

regression analysis

comparison of the methylation levels of adjacent sites
case-control study (reference evaluation)

regression analyss (reference evaluation)

regression analysis (reference evaluation)

regression analysis (reference evaluation)

Annotation

Rheumatoid Arthitis
Depression

Age

Age

Age

Rheumatoid Arthritis
Age

Age

Age

Platform

450k
EPIC
450k
450k
450k
450k
450k
450k
450k
450k
450k
450k
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Genes.

miR-27a-3p
U6
Runx2
ALP
OCN
BSP
Collal
GLPIR
B-actin
ATGT
ATGS
LC3
IL-1
IL-6
TNFa

Forward primers

5"-GCGGGCGTTCACAGTGGCTA-3'
5'-CTCGCTTCGGCAGCACA-3'
5-ATGATGACACTGCCACCTCTGAC-3'
5"-TGACCTTCTCTCCTCCATCC-3'
5"-TGCTTGTGACGAGCTATCAG-3'
5'-AAGCAGCACCGTTGAGTATGG-3'
5'-GCAACAGTCGCTTCACCTACA-3
5"-GGGCCAGTAGTGTGCTACAA-3'
5'-CGTGACATTAAGGAGAAGCTG-3"
5"-GTTGCCGTTATACTGTTCT-3
5'-AAAGATGTGCTTCGAGATGTGT-3"
5"-GACGGCTTCCTGTACATGGTTT-3'
5"-GCTCTGCCATTGACCATCTTTC-3
5'-CCAATTTCCAATGCTCTCCT-3'
5"-GACATCACTGGAGTTTCCCCT-3"

Backward primers

5'-CAGTGCAGGGTCCGAGGT-3'
5'-AACGCTTCACGAATTTGCGT-3'
5'-AACTGC CTGGGGTCTGAAAAAGG-Y'
5'-CTTCCTGGGAGTCTCATCCT-3
5'-GAGGACAGGGAGGATCAAGT-3'
5'-CCTTGTAGTAGCTGTATTCATCCTC-3'
'-CAATGTCCAAGGGAGCCACAT-3'
5'-CTTCACACTCCGACAGGTCC-3'

5'- CTAGAAGCATTTGCGGTGGAC -3
5'-TTTCCACCTCTTCTTTGA-3'
5'-CACTTTGTCAGTTACCAACGTCA-3'
TGGAGTCTTACACAGCCATTGC-3'
“TGTTACTGCCACCACATTCTCC-3
5'-ACCACAGTGAGGAATGTCCA-3'
5'-CCCTCCATACACCCGACTTT-3"
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Gene Sequence 5'-3"

miR-27a-3p mimics 5'-UUCACAGUGGCUAAGUUCCGC-3'
Anti-miR-27a-3p 5'-GCGGAACUUAGCCACUGUGAA-3'
miR-C (control) 5"-UUCUCCGAA CGUGUCACGUTT-3'
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