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Cheap and Commonplace: Making
the Case for BCG and gd T Cells in
COVID-19
Alexandra L. Morrison1*, Sally Sharpe1, Andrew D. White1 and Mark Bodman-Smith2

1 Public Health England, National Infection Service, Porton Down, United Kingdom, 2 Infection and Immunity Research
Institute, St George’s University of London, London, United Kingdom

Antigen-specific vaccines developed for the COVID-19 pandemic demonstrate a
remarkable achievement and are currently being used in high income countries with
much success. However, new SARS-CoV-2 variants are threatening this success via
mutations that lessen the efficacy of antigen-specific antibodies. One simple approach to
assisting with this issue is focusing on strategies that build on the non-specific protection
afforded by the innate immune response. The BCG vaccine has been shown to provide
broad protection beyond tuberculosis disease, including against respiratory viruses, and
ongoing studies are investigating its efficacy as a tool against SARS-CoV-2. Gamma delta
(gd) T cells, particularly the Vd2 subtype, undergo rapid expansion after BCG vaccination
due to MHC-independent mechanisms. Consequently, gd T cells can produce diverse
defenses against virally infected cells, including direct cytotoxicity, death receptor ligands,
and pro-inflammatory cytokines. They can also assist in stimulating the adaptive immune
system. BCG is affordable, commonplace and non-specific, and therefore could be a
useful tool to initiate innate protection against new SARS-CoV-2 variants. However,
considerations must also be made to BCG vaccine supply and the prioritization of
countries where it is most needed to combat tuberculosis first and foremost.

Keywords: gamma delta T cell, Bacille Calmette-Guérin vaccine, trained immunity, non-specific immunity,
COVID-19, innate immunity, vaccine, antiviral
INTRODUCTION

In January 2020 the WHO declared Coronavirus disease 19 (COVID-19) a Public Health
Emergency of International Concern (PHEIC), and a pandemic in March 2020. As of July 2021
this virus is responsible for nearly four million deaths worldwide (1). COVID-19 represents a broad
spectrum of clinical syndromes, from asymptomatic disease, mild flu-like symptoms, to severe
pneumonia and acute respiratory distress syndrome (ARDS). Safe and effective vaccines have now
been developed to combat COVID-19 spread. However, the highly specific nature of these vaccines
leaves them susceptible to escape mutations. This, along with additional concerns around supply,
especially in low- and middle-income countries (LMICs), justifies the search for common,
affordable and non-specific strategies to be used in combination with specific vaccines or as an
org September 2021 | Volume 12 | Article 74392415
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interim measure. Here we make the case for the Bacille
Calmette-Guerin (BCG) vaccine and its role in stimulating
gamma delta (gd) T cells, particularly the Vd2 subset.

The causative agent of COVID-19 is severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a
positive sense single stranded RNA virus, able to spread
between humans in close contact, via respiratory droplets
produced from coughs and sneezes, and probable fomites. The
virus is able to enter the respiratory epithelial cells of the
oropharynx and upper airway via its spike glycoprotein, which
targets the angiotensin converting enzyme 2 (ACE2) receptor.
Binding causes conformational changes in the spike protein,
mediating the fusion of the viral and cell membranes and the
release of the viral nucleocapsid into the cell (2). Part of the
reason SARS-CoV-2 is more transmissible than SARS-CoV is
because of structural differences on its surface proteins that allow
stronger binding to the ACE2 receptor (3, 4).

SARS-CoV-2 variants are now being identified that have a
multitude of further mutations that allow even stronger binding
of the ACE2 receptor, and therefore are spread even more easily.
An example of this is the N501Y mutation, present in the Alpha
variant, which alters an amino acid within the six key residues in
the receptor biding domain of the spike glycoprotein, which has
arisen independently in various locations including the UK,
South Africa and Australia (5). It has been shown that
additional mutations may result in lessened antibody
effectiveness (6), and there is growing concern around variants
rendering existing vaccines less efficacious. The current principal
variant of concern in the UK, the Delta variant, contains
mutations in the spike protein, including E484K and L452R,
that, in addition to strengthening ACE2 receptor binding, can
reduce the ability of vaccine stimulated antibodies to attach to
the altered spike protein (7, 8). In light of these concerns, vaccine
strategies that are able to offer a broader base of protection, and
therefore are more resistant to mutations than single target
strategies, could prove an important additional tool in our
arsenal against SARS-CoV-2 variants.

Vaccines against SARS-CoV-2 including those manufactured
by Pfizer, Moderna and AstraZeneca, are currently being used in
wealthy nations with great success. However, with production
limited and demand greatly exceeding supply, it may be some
years before LMICs are able to complete their own nationwide
COVID-19 vaccination programs. This vaccine inequality
only enhances opportunities for additional mutations to arise
that further reduce vaccine protection. Continued research
into additional strategies that could be used in conjunction
with SARS-CoV-2 antigen specific vaccines to combat COVID-19
is needed.

BCG is the most widely used vaccine in the world, and in
recent years has been used most extensively in LMICs. When it
was first introduced to Europe in the 1920s it was observed that
vaccination provided non-specific, otherwise known as off-
target, protection against a range of diseases, particularly
respiratory infections (9). Since the SARS-CoV-2 pandemic
there have been many observational studies reporting a level
of protection in BCG vaccinated adults and children (10–12).
Frontiers in Immunology | www.frontiersin.org 26
An ecological study found both cases and deaths in countries
with national BCG vaccination programs were significantly
lower in March 2020 than in countries without (10). Escobar
et al., found that with every 10% increase in BCG index (an
estimation of vaccination coverage) there was a corresponding
10.4% decrease in COVID-19 deaths (11). Additionally, in Japan,
prefectures with higher BCG vaccine coverage had fewer
COVID-19 infections (12). However, another study in Sweden
looked at people born just before or just after 1975, when
universal BCG vaccination ceased, and did not find any
statistically significant difference in COVID-19 cases and
hospitalizations (13). Twelve randomized control trials (RCTs)
studying BCG and COVID-19 are presently underway in various
countries, although results from most of these studies are still
many months away. However, the findings from one randomized
trial are now available in preprint; the ACTIVATE-2 study,
which revaccinated elderly Greek patients with BCG, found a
reduction in COVID-19 clinical and microbiological diagnoses
compared to the placebo group (14).

Recent articles have outlined how BCG is able to reprogram
the innate system, resulting in an altered innate immune
response to subsequent infections (15). This so-called ‘training’
of innate immune cells , which includes epigenetic,
transcriptional, and functional reprogramming, is thought to
be largely responsible for much of the off-target beneficial impact
of BCG on non-tuberculosis diseases, including viral diseases.
The pathways impacted by trained immunity include those that
may be important for the control of COVID-19 disease, as
reviewed by others (16–22).

Much is now known about BCG and its ‘training’ of innate
cells, but less is known about the role of gd T cells in this non-
specific action. gd T cells, of which Vd1 and Vd2 cells are the
main subtypes in humans, are unconventional T cells that bridge
the innate and adaptive immune system. They have been shown
to be a significant component of the early innate immune
response to many viral infections. Importantly, Vd2 T cells
proliferate rapidly after BCG stimulation, as well as being one
of the main producers of IFN-g in this vaccination response.
Studies have also shown they demonstrate recall responses.
These long lasting, memory-like responses, which include
rapid production of proinflammatory cytokines and cytotoxic
granules essential for viral clearance (23), indicate gd T cells
might be a key player in BCG non-specific protection to viruses,
including SARS-CoV-2.
THE HETEROGENOUS EFFECTS OF
BCG VACCINATION

BCG is an attenuated form of Mycobacterium bovis which has
been used in humans as a tuberculosis (TB) vaccine since the
1920s. BCG remains to this day a critical component of the
strategy to combat TB, with the focus on vaccinating infants
shortly after birth in endemic areas. Although there is a high
efficacy against childhood TB (24), protection wanes with age,
September 2021 | Volume 12 | Article 743924
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and the efficacy of adult BCG vaccination varies widely
in different studies from 0 – 80% (25). Revaccinating in
adolescence has been proposed as one way to boost this
protection, with Nemes et al. demonstrating revaccination
reduced the rate of sustained QuantiFERON TB Gold InTube
(QFT)-conversion, reflecting better bacterial control and
clearance (26). The REVAX clinical trial is ongoing to assess
whether revaccination of adolescence may be a useful tool for
TB control.

After BCG was introduced in the 1920s, epidemiological
studies reported that BCG vaccination greatly reduced infant
mortality, beyond that which could be explained by a reduction
in TB alone (9). These observations were confirmed by RCT
studies, including one showing that giving BCG to low birth
weight children could reduce mortality by 50% (27). The
reduction in mortality was mostly from respiratory infections,
which are for the most part viral, and sepsis. Another recent RCT
study found BCG can protect the elderly against respiratory
infections (14). Observational studies looking at BCG in humans
have demonstrated protective roles for BCG in syncytial virus
infection (28); respiratory tract infections and pneumonia in
older individuals (29, 30); and yellow fever (31). This non-
specific protective role in viral infections has also been
demonstrated in vaccinated mice, where studies as early as
the 1970s showed BCG vaccination reduced influenza virus
titer (32), and provided a level of protection against herpes
simplex virus (HSV) (33). Another study found that even the
administration of just components of the mycobacterial cell wall
was enough to provide some protection against vaccinia virus and
herpes simplex virus 2 (HSV2) (34). Now studies are showing a
similar effect with COVID-19, with one retrospective cohort
study finding an association between BCG vaccine in the five
years prior and a lower incidence of sickness and extreme fatigue
during the COVID-19 pandemic (35). Where BCG can be used
on its own to stimulate innate immunity, it has also successfully
been used as an adjuvant in more specific vaccine strategies
against SAS-CoV-2 infection (36).

The non-specific protection afforded by BCG is often referred
to as ‘trained immunity’. Although much is still uncertain
regarding how this protection comes about, it is now known to
involve long-lasting changes in cells of the innate immune
system, including monocytes, macrophages, dendritic cells
(DCs), mucosal associated invariant T (MAIT) cells, natural
killer (NK) cells and gd T cells. Most innate cells were previously
believed to be static and unchanged after encountering stimuli
(37), and therefore investigations into trained immunity have
resulted in a shift of central immune system dogma. The changes
that result in the non-specific protection BCG provides against
many viral infections are likely a combination of epigenetic,
transcriptional, and functional reprogramming, as well as the
induction of memory-like cells (15, 38).

Epigenetic changes after BCG include the upregulation of
innate cell transcripts in the bone marrow of hematopoietic cells,
as well as inducing greater DNA-accessibility around genes
associated with inflammation in existing innate cells (39).
Chemical modifications (methylation and acetylation of
Frontiers in Immunology | www.frontiersin.org 37
histones) allow for greater accessibility of chromatin, and
easier transcription of genes (40). This results in the rapid and
sustained upregulation of antimicrobial responses in innate cells
upon subsequent infection, of which monocytes and NK cells are
the most characterized. Kleinnijenhuis et al., demonstrated that
macrophages isolated from BCG vaccinated healthy adults
showed enhanced production of the pro-inflammatory
cytokines IL-1b, TNF-a and IL-6 when stimulated ex vivo with
unrelated bacterial and fungal antigens (41). Similar findings
have been seen in against viruses, with BCG vaccination inducing
greater protection against attenuated yellow fever virus vaccine
strain, which correlated with an increase in the upregulation of
IL-1b (31). A further RCT in Ugandan infants found that just
delaying BCG vaccination from birth to six weeks old,
significantly increased infectious disease incidence. They found
the protection afforded by BCG was related to histone
trimethylation at the promoter region of pro-inflammatory
cytokines, including TNF and IL6, indicating immune cells
were primed for pro-inflammatory responses (42). Specifically,
monocytes show a particular increase in H3K4me3 histone
modification, involved in transcriptional activation of TLR4,
TNFa, and IL6 genes (43, 44)

These responses are also longer lasting than initially thought
possible by innate cells. BCG trained monocytes were identified
in the blood three months after vaccination, when their normal
half-life in circulation may only be up to one day (39). Both NK
and gd T cells have been shown to exhibit memory-like
properties after BCG vaccination, that are sustained for several
months (38). The memory phenotype of gd T cells induced in
response to BCG was observed by Hoft et al., in 1998, after
PBMCs from BCG vaccinated humans were cultured with
mycobacterial antigens. Seven days later the cell type that had
undergone the greatest expansion in comparison to cells from
unvaccinated control cultures was the gd T cell (45). Primate
studies demonstrated the occurrence of a recall expansion by gd
T cells after Mycobacterial tuberculosis (M. tb) infection, and the
kinetics of the recall expansion was dissimilar to the M. tb
primary expansion (46). This recall expansion coincided with
protective immunity. Recently the expansion of Vd2 T cells after
BCG was confirmed in humans in vivo as well as the production
of IFN-g by Vd2 T cells after vaccination (47). Interestingly,
other donor unrestricted T (DURT) cells, such as MAIT and NK
cells were not altered after BCG vaccination or revaccination in
humans in this study.
GAMMA DELTA T CELLS

gd T cells are important players in the early immune response to
infections or malignant transformation, as well as being involved
in the adaptive response. gd T cells are powerful effector cells,
despite only representing 0.5-5% of circulating T cells in
homeostatic conditions (48). Their numbers rapidly expand in
the circulation in response to stimuli due to the non-MHC
restricted recognition of unprocessed antigens. gd T cells also
represent a much higher proportion of immune cells at barrier
September 2021 | Volume 12 | Article 743924
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surfaces such as mucosal and epithelial sites lending weight to
their role as first-line effectors. Individual T cell receptor (TCR)
variable region d (Vd) gene segments are associated with distinct
ligand recognition and anatomical location. The positioning of
these gd T cells suggests a direct role of the TCR in each of these
locations. The TCR may even be involved in retaining the cell at
these locations (49). Thus, gd T cells are usually categorized into
two main types based on Vd region: Vd1 and Vd2. In humans
Vd1 cells usually localize to tissues and are the main TCR type in
the gut and skin. Some tissues contain highly specialized Vd1
cells that are not found anywhere else in the body. For example,
Vg3Vd1 skin dendritic epidermal T cells (DETC) arise
exclusively in the epidermis, and Vg5Vd1 cells are only found
in the intestinal epithelium. Vd2 make up the largest population
of gd T cell family in the circulation of humans. The Vd2 chain
preferentially pairs with the Vg9 (called Vg2 in an alternative
nomenclature) chain (50). These Vg9Vd2 cells comprise between
70 and 90% of the peripheral blood gd T cell population.
Although they make up less than 5% of total blood lymphocytes
in healthy individuals, they can expand rapidly, up to 60% of
peripheral blood lymphocytes, in certain infectious diseases due to
their unique ligand recognition (51). This Vd2 subtype is also
responsible for the majority of the expansion in gd T cells after
BCG stimulation (45).

gd T cells are involved in the first line of defense to a number
of diseases, including cancer, bacterial infections, and viral
infections. Studies have demonstrated their rapid activation
and cytotoxicity to various viruses, including cytomegalovirus
(CMV) (52, 53), influenza A virus (54–56), human
immunodeficiency virus (HIV) (57–59), hepatitis B and C
viruses (HBV and HCV) (60–62), Epstein Bar Virus (EBV)
(63) and severe acute respiratory syndrome (SARS) virus (64),
as reviewed by others (50, 51, 65–69). Additionally, gd TCR
knockout mice show an increase in viral titer or reduced survival
when infected with West Nile virus or vaccinia virus (70, 71).
After the 2003 SARS outbreak Poccia et al., evaluated
lymphocytes in the circulation of survivors three months after
initial infection. Interestingly, the number of ab T cells did not
differ from that of healthy uninfected subjects, but the numbers
of Vd2 T cells were substantially higher (64). This expansion was
associated with higher anti-SARS-CoV immunoglobulin G
(IgG). In vitro experiments showed that stimulated Vd2 cells
could kill cells infected with SARS-CoV, and that IFN-g was
involved in this response (64). Consequently, it is highly likely
that gd T cells could also be involved in the protective immune
response to SARS-CoV-2.

Very few studies have investigated gd T cells in SARS-CoV-2
infections, and the majority of information is in the context of
severe disease. Laing et al., evaluated peripheral blood from
hospitalized patients and showed lymphocytes were depleted in
COVID-19 disease, the lymphocytes present were hyperactivated,
whereas DC andmonocyte functions were dampened. The drop in
lymphocytes included gd T cells, which were highly reduced in the
circulation compared with healthy controls, especially the Vd2
subset. This has also been reported by other studies (72–74). Lei
et al., showed that the gd T cells remaining in the blood had a
Frontiers in Immunology | www.frontiersin.org 48
CD25+ activated phenotype, although the very early activation
marker CD69 did not increase compared to healthy controls,
which the authors suggested may be because this marker was
expressed earlier in infection (72). Notably, PD-1 expression did
not change in these gd T cells compared with controls, which
suggests they were not exhausted. This contrasts with the finding
that CD8+ cells showed heightened expression of both PD-1 and
TIM3 related to disease severity, indicating a more exhausted
phenotype in these cells as disease advances (75). Lastly, Lei et al.,
showed a dramatic increase in the proportion of gd T cells co-
expressing CD4, suggesting a role for this cell type, which is
typically low in humans in homeostasis. Odak et al., showed a
striking reduction in effector memory cells within the gd T cell
population, and an increase in naïve cells, and suggested that the
effector memory gd T cells may be recruited to the lungs. They also
theorized that the reappearance of effector cells in the blood was
associated with recovery from COVID-19 (74).

Many features of gd T cells make them promising players in
the SARS-CoV-2 response, including their key role in
immunosurveillance of mucosal and epithelial barriers, their
recognition of viral entry via a number of different pathways,
and their functional responses that can act to kill virally infected
cells as well as their ability to stimulate the adaptive
immune system.

gd T Cell Recognition of Viral Infection
The mechanisms behind gd T cell recognition of viral infections
like SARS-CoV-2 are not as clearly understood as other cell
types. gd T cells use many different pathways to recognize foreign
antigens and stress signals, and it is likely that different
combinations of these pathways work synergistically in distinct
viral infections to initiate and amplify responses. The main
pathways include toll like receptors (TLRs), the gd TCRs, and
natural killer-like receptors.

gd T cells express a variety of TLRs which bind to pathogen
associated molecular patterns (PAMPs). Of particular
importance are TLR 2 and 4 expressed on their cell membrane,
which can recognize viral glycoprotein and glycolipids, as well as
TLR 3 and 7, expressed on endosomes, which recognize viral
RNA (76, 77). The binding of TLRs to PAMPs induces
transcription factor upregulation, leading to pro-inflammatory
cytokine production. The synergistic effects of TCR and TLR
stimulation has been demonstrated in vitro by Wesch et al.,
where IFN-g production in response to direct TCR stimulation is
dramatically increased when TLR 3 is also stimulated with a
synthetic analogue of its natural PAMP (78). TLR recognition of
SARS-CoV-2 glycolipids, glycoprotein and RNA is likely a vitally
important step in this immune response.

The Vd2 TCR can recognize small phosphoantigens in a way
that is unique, and likely responsible for its prolific responses in
cancer, mycobacterial infection, and BCG vaccination. The first
small phosphoantigen found to stimulate Vd2 cells was a
pyrophosphate intermediate of the mevalonate isoprenoid
synthesis pathway, isopentenylpyrophosphate (IPP) (79). This
pathway exists in all mammalian cells, and during normal
physiological conditions, IPP is at a low concentration inside the
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cells and does not cause activation of Vd2 cells. However,
disruptions to the mevalonate pathway caused by a number of
events, including dysregulated metabolism in tumors,
pharmacological interference, or infections results in increases in
intracellular IPP. Above a certain threshold IPP bound to the
intracellular portion of butyrophilin-3A1 (BTN3A1) and BTN2A1
induces a conformational change that allows interaction of
BTN2A1 with the Vg chain of the TCR and likely also allow
BTN3A1 to interact with the Vd chain (80–82). Other small
phosphoantigens that stimulate the BTN3A1 conformation
change and subsequent Vd2 TCR responses have now been
identified. The most significant of these is produced by
mycobacteria, including BCG, called (E)-4-hydroxy-3-methyl-
but-2-enyl pyrophosphate (HMBPP). Microbial HMBPP, an
intermediate of the MEP/DOXP pathway, has been found to
activate Vd2 cells with a potency 30000 times that of IPP (83).

Studies have suggested that the phosphoantigen/BTN
mechanism of Vd2 TCR activation may also have a role in
viral infections, in addition to its importance in mycobacteria
and cancer. Blocking the mevalonate pathway upstream with
mevastatin, and therefore halting IPP synthesis, prevented the
activation and proliferation of Vd2 cells in an in vitro EBV
infection (63). A similar outcome was seen when the mevalonate
pathway was blocked in influenza A virus infection, where Vd2
IFN-g production was significantly reduced (54). It is currently
unknown to what extent this pathway is active in SARS-CoV-2
infections. However, as it is likely responsible for much of the
Vd2 cell expansion after BCG, it is an important mechanism in
the development of BCG primed anti-viral responses. Unlike
Vd2 cells, the Vd1 TCR does not recognize phosphoantigen/
BTN, and therefore Vd1 cells proliferate less in response to BCG
stimulation, although they are able to recognize BCG infected
cells through the recognition of mycobacterial lipids on CD1.
Recognition of CD1 in the context of viral infection is less
understood, as there are no known virus specific lipids that
exist in large enough quantities to be expressed on CD1.
However, there is evidence that lipids derived from the host
are presented on CD1 and can stimulate NK cells in viral
contexts (84). The differentiation of CD1 displaying host lipid
in homeostasis in comparison to viral infection, where
substantial relocation of endosomal CD1 occurs has been
hypothesized to mediate this stimulation (85). Some viruses,
including Kaposi sarcoma associated herpesvirus (KCHV) and
HIV actively induce the internalization of CD1, signifying
CD1 presentation to NK cells or gd T cells may contribute to
protection (85).

In addition to TLRs and TCRs gd T cells express other
receptors, several of which are likely to be important in the
recognition of viral infection, including NK type receptors
(NKRs), DNAX Accessory Molecule 1 (DNAM1), and the
Natural Cytotoxicity receptors (NCRs) NKp30, NK44 and
NKp46. This review focuses on the NKR natural killer group
2-member D (NKG2D) only, as other NKRs have been recently
reviewed by Caron et al. (69). NKG2D is an activating C-type
lectin originally found on Natural Killer cells, but also highly
expressed on both Vd1 and Vd2 T cells. It recognizes MHC class
Frontiers in Immunology | www.frontiersin.org 59
I polypeptide-related sequence A and B (MICA and MICB) and
UL16 binding proteins (ULBPs). MICA, MICB and ULBPs can
be expressed by the majority of cells, but are normally in very low
abundance. Expression of these ligands is induced as part of the
DNA damage response used by cells after stresses such as
infection or malignant transformation (86). Once induced,
their interaction with NKG2D on gd T cells can assist
activation and produce a powerful cytotoxic response. It is
currently unknown the extent to which SARS-CoV-2 infection
upregulates NKG2D ligands, however many ligands have been
found to be upregulated on virally infected cells (69). For
example, CMV infected cells have been shown to upregulate
MICA and ULBP1-3 (87); EBV infected cells can upregulate
MICA, MICB and ULBP4 (88, 89); and cells infected with either
influenza A or Sendai virus can upregulate MICB (90). Blockade
of NKG2D can also lead to a reduction in gd T cell anti-viral
responses (63).

gd T Cell Responses to Viral Infection
gd T cells can mediate the killing of virally infected cells through
a number of mechanisms. These include directly killing infected
cells via cytotoxic molecules, and expression of membrane
bound TNF-family members FasL and tumor-necrosis factor-
related apoptosis-inducing ligand (TRAIL), as well as indirectly
via the production of pro-inflammatory cytokines, and assisting
in DC maturation to stimulate the adaptive immune system.
These responses are important in the defense against SARS-
CoV-2 infection and COVID-19 disease progression (91).

gd T cells can secrete cytotoxic granules containing
granzymes, perforin, and granulysin. These molecules have
various effects on target cells that promote cell death. Perforin
is able to form pores in target cell membranes, disrupting the
osmotic balance, leading to an influx of Ca+ ions present at the
immune synapse and pro-apoptotic signaling. Perforin also
allows entry of granzymes. Granzyme B directly cleaves
proteins involved in the caspase pathway, resulting in caspase-
mediated apoptosis. It can also initiate the mitochondrial cell
death pathway by cleaving BH3 interacting-domain death
agonist (BID) (92). Granulysin can cause cell death in similar
ways to granzyme B, and can also interfere with the target cell’s
endoplasmic reticulum, which leads to pro-apoptotic signaling.
Additionally, it has recently been shown that the 15kDa isoform
of granulysin produced by gd T cells, previously thought to be an
inert precursor to the 9kDa isoform, can actually cause the
migration and maturation of DCs (93). Other Granzymes that
have been shown to kill virally infected cells in animal and in
vitro models include granzyme M, H and K (94–96). Of interest,
these lesser known granzymes may be able to inhibit viral
replication by directly cleaving viral proteins, without
necessarily killing the host cell, as exemplified by Granzyme M
in a murine model of CMV infection (97).

gd T cells can produce proinflammatory cytokines in response
to viral recognition, including IFN-g and TNF-a (98). These two
cytokines trigger a multitude of pathways in target cells that can
ultimately lead to the inhibition of viruses at all stages of their
replication: viral entry, viral protein synthesis, viral assembly, and
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viral release, as recently reviewed (69). Many gd T cells produce
multiple pro-inflammatory cytokines simultaneously, which have
synergistic effects on virally infected cells, and are particularly
effective for viruses that have evolved escape mechanisms from
one or many of the cytokine-induced pathways.
BCG STIMULATION OF gd T CELLS TO
COMBAT NON-TUBERCULOSIS
DISEASES

BCG stimulation of the immune system to target diseases other
than TB is not a new concept, and has in fact been used for many
decades before it was known how BCG could influence cells of
the innate immune system, including gd T cells. BCG has been
used as a first line treatment for non-invasive bladder cancer
since the 1970s, and can out-perform chemotherapeutic agents
(99). BCG can also be used in the treatment of inoperable
cutaneous melanoma (100–103). Studies have provided
evidence that Vd2 cells are contributing, at least in part, to
BCG-induced regression of cancer cells, with BCG injections
causing infiltration of Vd2s into tumors and IFN-g production
(104). Other mycobacteria preparations are also in the process of
commercialization, including IMM-101, an attenuated
preparation of Mycobacterium obuense, which when used in
combination with the first line treatment for inoperable
pancreatic ductal adenocarcinoma (PDAC), the overall survival
of patients improves (105).

BCG has many antigens that are potent stimulators of the
immune system, and gd T cells in particular. For example, BCG
has a variety of cell wall lipids and proteins that are recognized by
TLRs. Lipids from internalized BCG are also known to be
displayed on CD1 molecules, that may be recognized by Vd1
cells. As mentioned earlier, mycobacteria also produce the small
phosphoantigen HMBPP, which potently stimulates Vd2 TCRs.
Therapeutics have been developed to specifically target this
activation pathway using synthetic HMBPP and similar
analogues, like Picostim (106, 107), as well as nitrogen-
containing bisphosphonates (NBPs), which block the
mevalonate pathway, leading to IPP accumulation (108, 109).
Tu et al., expanded Vd2 cells in vitro with the NBP pamidronate
(PAM) and injected them into influenza infected humanized
mice, demonstrating an improvement in disease severity and
control of viral replication (110). Studies have also shown the
NKG2D ligand MICA to be upregulated on epithelial and DCs
afterM. tb in humans (111), and mice NKG2D ligands Rae-2 and
MULT1 are upregulated after BCG infection in the murine
model (112).

Therefore, BCG can stimulate gd T cell activation through a
variety of pathways, many of which are still unknown, and these
can have synergistic effects on transcription to amplify anti-viral
responses. Anti-viral gd T cells responses that may be induced by
BCG include the production of cytotoxic molecules, including
granzyme B, granulysin and perforin (113); inflammatory
cytokines, including IFN-g and TNF-a (23); and the
upregulation of death receptor ligands (69). Activated gd T
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cells can also enhance the maturation and migration of DCs
and present antigens themselves, thereby stimulating the
adaptive immune system. This is summarized in Figure 1.
Although this review is focused on gd T cells due to their
potential in COVID-19, BCG also impacts biological pathways
of other cells of the immune system, as already discussed,
including macrophages, NK cells, and MAIT cells, inducing
epigenetic modifications to genes such as IL1b, TNFa, TLR4
and IL6, marking these cytokines as important and allowing for
their rapid upregulation (44). Taken together, BCG are able to
activate gd T cells in similar ways to viral infections, and induce
the production of molecules that are critical to the anti-viral
response. Therefore, it is likely that priming gd T cells with BCG
can actively contribute to SARS-CoV-2 control and moderate the
severity of the COVID-19 disease.
CONCLUDING REMARKS

The BCG vaccine is affordable, commonplace, and non-specific.
This makes it a rapid tool to implement in a pandemic such as
COVID-19. Although we are only beginning to understand the
innate mechanisms behind BCG’s broad protection, its impact
on non-tuberculosis morbidity and mortality has been noted for
a century (9). BCG vaccination can expand and prime innate and
effector cells, including gd T cells. gd T cells are of particular
interest, as BCG vaccination can induce them to direct potent
anti-viral responses against infected cells, as well as stimulate the
adaptive immune system. They have also been shown to be
activated and not exhausted after COVID-19 infection. However,
we need to remain aware of the vital role BCG already has in
protecting against TB, particularly in infants in LMICs. Neonatal
BCG vaccination remains a crucial component of TB control,
and any delay to vaccination, such as that observed by BCG
shortages in the past years, can have significant impacts on TB
meningitis rates (114) and would be a major setback to global TB
strategies. Any approach using BCG as a tool against COVID-19
should first prioritize BCG vaccines where they are needed most
in LMICs with a high incidence of TB.

Considerations should also be made to the target age group
and impacts of boosting and revaccination. BCG vaccination in
the elderly has been shown to help protect against respiratory
diseases, like COVID-19, indicating that BCG can also impact
the innate immune system later in life (14). However, the efficacy
of using BCG vaccination in adults to control TB varies widely
(25). Vaccinating adolescents could conceivably have dual effects
reducing the transmission of SARS-CoV-2 andM. tb (26). Using
this dual strategy could have the greatest impact on reducing
morbidity. The efficacy of BCG vaccination also varies globally,
thought to be due to a number of factors including strains used,
genetic and socio-economic differences, as well as interference
via prior mycobacterial exposures, called masking and blocking.
These are all factors that need to be considered in any BCG
strategy to combat COVID-19 as they may impact how long
non-specific protection lasts and as well as the requirement for
boosting vaccinations.
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Countries where TB rates are high often coincide with
countries that have seen a delay in their antigen specific SARS-
CoV-2 vaccine roll-out, and therefore are likely to be the
countries where variants have full rein to develop. This last
year has seen the rapid spread of variants across the world, and
further mutations are expected to threaten the protection
afforded by the current vaccines. BCG vaccination may provide
a measure of protection independent of specific viral antigens,
and therefore is unlikely to provide any selection pressure for
new mutations, and is in fact likely to help control against new
variants. If studies show BCG provides protection from
COVID-19, a well-considered BCG strategy could contribute
to the global effort against both COVID-19 and TB.
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FIGURE 1 | Priming Vd2 cells with BCG, and subsequent non-specific anti-viral responses. Vd2 T cells are activated after BCG vaccination through a number of
mechanisms. HMBPP produced by BCG infected host cell causes conformational changes on intercellular domains of butyrophilin (BTN) molecules, such as
BTN3A1 and BTN2A1, which allows the extracellular domain to interact with the Vd2 TCR. Mycobacteria have been shown to induce the expression of NKG2D
ligands on cells which can activate Vd2 cells through NKG2D. Vd2 cells have many TLRs that can recognize BCG PAMPs. Non-specific responses induced that have
anti-viral activity include directly killing infected cells through the secretion of cytotoxic granules containing perforin, granzymes and granulysin, or initiation of
death-inducing pathways, FASL and TRAIL. They can also indirectly contribute to killing through the production of pro-inflammatory cytokines TNF-a and IFN-g
inducing the maturation and migration of DCs, leading to induction of the adaptive immune system. Vd2 cells may also recognize virally infected cells directly via
NKG2D and Vd2 TCR. Infected cells can upregulate NKG2D ligands (e.g. MICA, MICB), and can have altered metabolisms, which induces conformation changes to
BTN molecules. Created with BioRender.com.
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Vaccines: Specific, Cross-Mycobacterial and Off-Target Effects. Paediatr
Respir Rev (2020) 36:57. doi: 10.1016/J.PRRV.2020.08.004

19. Weng C-H, Chan PA. BCG as an Adjunct or Alternative Vaccine to Prevent
COVID-19? J Travel Med (2020) 27(7):1–3. doi: 10.1093/JTM/TAAA175

20. Chumakov K, Avidan MS, Benn CS, Bertozzi SM, Blatt L, Chang AY, et al.
Old Vaccines for New Infections: Exploiting Innate Immunity to Control
COVID-19 and Prevent Future Pandemics. Proc Natl Acad Sci (2021) 118
(21):e2101718118. doi: 10.1073/PNAS.2101718118

21. Vashishtha VM. Are BCG-Induced Non-Specific Effects Adequate to
Provide Protection Against COVID-19? Hum Vaccines Immunother
(2021) 17(1):88. doi: 10.1080/21645515.2020.1794219
Frontiers in Immunology | www.frontiersin.org 812
22. Aspatwar A, Gong W, Wang S, Wu X, Parkkila S. Tuberculosis Vaccine
BCG: The Magical Effect of the Old Vaccine in the Fight Against the
COVID-19 Pandemic. Int Rev Immunol (2021) 1–14. doi: 10.1080/
08830185.2021.1922685

23. Fowler DW, Copier J, Wilson N, Dalgleish AG, Bodman-Smith MD.
Mycobacteria Activate gd T-Cell Anti-Tumour Responses via Cytokines
From Type 1 Myeloid Dendritic Cells: A Mechanism of Action for Cancer
Immunotherapy. Cancer Immunol Immunother (2012) 61(4):535–47.
doi: 10.1007/s00262-011-1121-4

24. Trunz BB, Fine P, Dye C. Effect of BCG Vaccination on Childhood
Tuberculous Meningitis and Miliary Tuberculosis Worldwide: A Meta-
Analysis and Assessment of Cost-Effectiveness. Lancet (2006) 367
(9517):1173–80. doi: 10.1016/S0140-6736(06)68507-3

25. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PEM, et al.
Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of
Randomized Controlled Trials. Clin Infect Dis (2014) 58(4):470–80.
doi: 10.1093/cid/cit790

26. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al.
Prevention of M. Tuberculosis Infection With H4:IC31 Vaccine or BCG
Revaccination. N Engl J Med (2018) 379(2):138–49. doi: 10.1056/
nejmoa1714021

27. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, et al.
Randomized Trial of BCG Vaccination at Birth to Low-Birth-Weight
Children: Beneficial Nonspecific Effects in the Neonatal Period? J Infect
Dis (2011) 204(2):245–52. doi: 10.1093/infdis/jir240

28. Stensballe LG, Nante E, Jensen IP, Kofoed PE, Poulsen A, Jensen H, et al.
Acute Lower Respiratory Tract Infections and Respiratory Syncytial Virus in
Infants in Guinea-Bissau: A Beneficial Effect of BCG Vaccination for Girls:
Community Based Case-Control Study. Vaccine (2005) 23(10):1251–7.
doi: 10.1016/j.vaccine.2004.09.006

29. Wardhana, Datau EA, Sultana A, Mandang VV, Jim E. The Efficacy of
Bacillus Calmette-Guerin Vaccinations for the Prevention of Acute Upper
Respiratory Tract Infection in the Elderly. Acta Med Indones (2011) 43
(3):185–90.

30. Ohrui T, Nakayama K, Fukushima T, Chiba H, Sasaki H. Prevention of
Elderly Pneumonia by Pneumococcal, Influenza and BCG Vaccinations. Jpn
J Geriatr (2005) 42(1):34–6. doi: 10.3143/geriatrics.42.34

31. Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al.
BCG Vaccination Protects Against Experimental Viral Infection in Humans
Through the Induction of Cytokines Associated With Trained Immunity.
Cell Host Microbe (2018) 23(1):89–100.e5. doi: 10.1016/j.chom.2017.12.010

32. Spencer JC, Ganguly R, Waldman RH. Nonspecific Protection of Mice
Against Influenza Virus Infection by Local or Systemic Immunization With
Bacille Calmette-Guerin. J Infect Dis (1977) 136(2):171–5. doi: 10.1093/
infdis/136.2.171

33. Starr SE, Visintine AM, Tomeh MO, Nahmias AJ. Effects of
Immunostimulants on Resistance of Newborn Mice to Herpes Simplex
Type 2 Infection. Proc Soc Exp Biol Med (1976) 152(1):57–60. doi: 10.3181/
00379727-152-39327

34. Ikeda S, Negishi T, Nishimura C. Enhancement of Non-Specific Resistance
to Viral Infection by Muramyldipeptide and Its Analogs. Antiviral Res
(1985) 5(4):207–15. doi: 10.1016/0166-3542(85)90025-7

35. Moorlag SJCFM, van Deuren RC, van Werkhoven CH, Jaeger M, Debisarun
P, Taks E, et al. Safety and COVID-19 Symptoms in Individuals Recently
Vaccinated With BCG: A Retrospective Cohort Study. Cell Rep Med (2020) 1
(5):100073. doi: 10.1016/j.xcrm.2020.100073

36. Counoupas C, Johansen MD, Stella AO, Nguyen DH, Ferguson AL,
Aggarwal A, et al. A Single Dose, BCG-Adjuvanted COVID-19 Vaccine
Provides Sterilizing Immunity Against SARS-CoV-2 Infection in Mice.
bioRxiv (2021) 2020.12.10.419044. doi: 10.1101/2020.12.10.419044

37. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LABB, Jacobs C, Xavier RJ,
et al. BCG-Induced Trained Immunity in NK Cells: Role for Non-Specific
Protection to Infection. Clin Immunol (Orlando Fla) (2014) 155(2):213–9.
doi: 10.1016/j.clim.2014.10.005

38. Lau CM, Sun JC. The Widening Spectrum of Immunological Memory. Curr
Opin Immunol (2018) 54:42–9. doi: 10.1016/j.coi.2018.05.013

39. Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J, van der Velden WJFM,
et al. BCG Vaccination in Humans Elicits Trained Immunity via the
September 2021 | Volume 12 | Article 743924

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1128/mmbr.69.4.635-664.2005
https://doi.org/10.1126/science.abb2507
https://doi.org/10.1016/j.cmi.2020.04.023
https://doi.org/10.1016/j.cmi.2020.04.023
https://doi.org/10.1136/bmj.m4944
https://doi.org/10.1038/s41591-021-01270-4
https://doi.org/10.1016/j.chom.2021.03.008
https://doi.org/10.3390/v13071192
https://doi.org/10.1038/s41577-020-0337-y
https://doi.org/10.1111/all.14345
https://doi.org/10.1073/pnas.2008410117
https://doi.org/10.1016/j.jinf.2020.08.013
https://doi.org/10.1093/cid/ciaa1223
https://doi.org/10.1016/j.cell.2020.08.051
https://doi.org/10.1038/s41577-020-0285-6
https://doi.org/10.1038/s41577-020-0285-6
https://doi.org/10.1016/J.CELL.2020.04.042
https://doi.org/10.17269/S41997-020-00439-7
https://doi.org/10.1016/J.PRRV.2020.08.004
https://doi.org/10.1093/JTM/TAAA175
https://doi.org/10.1073/PNAS.2101718118
https://doi.org/10.1080/21645515.2020.1794219
https://doi.org/10.1080/08830185.2021.1922685
https://doi.org/10.1080/08830185.2021.1922685
https://doi.org/10.1007/s00262-011-1121-4
https://doi.org/10.1016/S0140-6736(06)68507-3
https://doi.org/10.1093/cid/cit790
https://doi.org/10.1056/nejmoa1714021
https://doi.org/10.1056/nejmoa1714021
https://doi.org/10.1093/infdis/jir240
https://doi.org/10.1016/j.vaccine.2004.09.006
https://doi.org/10.3143/geriatrics.42.34
https://doi.org/10.1016/j.chom.2017.12.010
https://doi.org/10.1093/infdis/136.2.171
https://doi.org/10.1093/infdis/136.2.171
https://doi.org/10.3181/00379727-152-39327
https://doi.org/10.3181/00379727-152-39327
https://doi.org/10.1016/0166-3542(85)90025-7
https://doi.org/10.1016/j.xcrm.2020.100073
https://doi.org/10.1101/2020.12.10.419044
https://doi.org/10.1016/j.clim.2014.10.005
https://doi.org/10.1016/j.coi.2018.05.013
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Morrison et al. BCG and gd T Cells in COVID-19
Hematopoietic Progenitor Compartment. Cell Host Microbe (2020) 28
(2):322–34.e5. doi: 10.1016/j.chom.2020.05.014

40. Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG,
et al. Trained Immunity: A Program of Innate Immune Memory in Health
and Disease. Science (2016) 352(6284):427. doi: 10.1126/science.aaf1098

41. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, et al.
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Blocking of EphA2 on Endometrial
Tumor Cells Reduces Susceptibility
to Vd1 Gamma-Delta T-Cell-
Mediated Killing
Robert Hudecek1*‡, Barbora Kohlova2‡, Ingrid Siskova1, Martin Piskacek2*
and Andrea Knight2*†

1 Department of Gynecology and Obstetrics, University Hospital Brno and Masaryk University, Brno, Czechia, 2 Faculty of
Medicine, Department of Pathological Physiology, Masaryk University, Brno, Czechia

Background: Endometriosis is a common gynecological disease characterized by the
presence of endometrial tissue outside the uterus causing chronic inflammation, severe
pain, and infertility. However, the innate immunity of gamma-delta (gd) T lymphocytes in
endometriosis has not been characterized. Women with endometriosis present numerous
endocrine and immune dysfunctions and elevated risk for endometrial, ovarian, and breast
cancers. The tyrosine kinase EphA2 is often overexpressed in cancer including
endometrial carcinoma.

Methods: We analyzed Vd1 and Vd2 gd T cells in peripheral blood and paired peritoneal
fluid samples in endometriosis patients (n = 19) and compared the counts with that of age-
and sex-matched healthy donors (n = 33) using flow cytometry. Vd1 and Vd2 T cells
isolated from healthy donors were used against KLE, RL-95, and Ishikawa endometrial
tumor cells in 4 h flow cytometric cytotoxicity assays. The EphA2 blocking studies were
performed using antibody, small-molecule inhibitor ALW-II-41-27, and the CRISPR/Cas9.

Results: We determined Vd1 T cells substantially reduced in patients’ peripheral blood
(p < 0.01) and peritoneal fluid (p < 0.001). No differences were found for circulating Vd2 T
cells compared with peritoneal fluid samples. We observed inherent cytotoxic reactivity of
Vd1 and Vd2 gd T lymphocytes against endometrial tumor cells. Importantly, we found
reduced specific lysis of EphA2-positive cell lines KLE and RL-95 by Vd1 T cells in the
EphA2 antibody blocking studies and by the EphA2 inhibitor. Furthermore, Vd1 T-cell-
mediated killing was significantly decreased in RL-95 cell EPHA2 knockout. Finally, potent
cytolytic activity exerted by Vd1 T cells was significantly reduced in EPHA2 knockouts in
renal A-498 and colon HT-29 carcinoma cell lines.

Conclusions: We determined variable levels of Vd1 and Vd2 gd T cells in endometriosis
patients. We observed inherent cytotoxic reactivity of gd T-cell subsets against
endometrial cell lines. Specifically, we found that blocking of EphA2 expression resulted
in significant inhibition of endometrial tumor killing mediated by Vd1 gd T cells.
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These results suggest that EphA2 is involved in tumor cell lysis and contributes to
susceptibility to Vd1 gd T cells cytotoxic reactivity.
Keywords: gamma-delta T cells, endometriosis, peritoneal fluid, tyrosine kinase EphA2, cytotoxicity,
innate immunity
INTRODUCTION

Endometriosis is a hormone-dependent gynecological disease
characterized by the presence of endometrial tissue outside the
uterine cavity. The disease affects around 10% of reproductive-
aged women (1). Retrograde menstruation is accepted for the
pathogenesis when menstrual endometrial tissue fragments and
viable cells escape apoptosis, evade normal immune surveillance,
enter into peritoneal cavity where adhered, develop a blood
supply, and grow into endometriosis lesions (1, 2). Hormonal
treatments are believed to reduce proliferation of endometrial
lesions by reducing estrogen activity. Increased concentrations of
prostaglandins have been reported in peritoneal fluid of
endometriosis patients and may be involved in the progression
of the disease (3). It is well established that women with
endometriosis exhibit numerous endocrine and immune
dysfunctions. Specifically, they display aberrant numbers of
immune cells and cytokines present in the plasma and
peritoneal fluid (PF), which has been shown to contribute to
chronic pain and infertility described by endometriosis women
(4–7). The immune cells including macrophages, natural killer
(NK) cells, cytotoxic T cells, and dendritic cells that lost the
ability to effectively detect and destroy autologous endometrial
menstrual tissue contribute significantly to the development of
acute and chronic inflammation. In addition to decreased NK
cell cytotoxicity (8–12) enhanced activation of monocytes and
peritoneal macrophages (13, 14) have been well documented. It is
still uncertain whether the aberrant activity of these immune
cells causes endometriosis or whether they act as secondary
enhancers of the disease. Recent evidence suggests that biology
of endometriosis significantly overlaps those considered to be
hallmarks of cancer and essential alterations in cell physiology
including sustained proliferative signaling, evasion of growth
suppressors, activation of invasion and metastasis, induction of
angiogenesis, resistance to cell death, compromised immune
detection, tumor promoting inflammation, and genome
instabil ity (15). It is understood that women with
endometriosis present elevated risk for cancer by 90% for
ovarian cancer, 40% for non-Hodgkin’s lymphoma, and 30%
for breast cancer. Many women with endometriosis are also
diagnosed with polycystic ovary syndrome (PCOS).

Endometrial cancer (EC) is the most common malignancy of
the female reproductive system (16). It tends to develop after
menopause in women with a median age at onset of 63 years.
Several risk factors have been identified, such as obesity (17),
diabetes, PCOS, and infertility. Endometrial carcinoma arises
from the lining of the uterus and can be broadly divided into two
types: endometrioid carcinomas, affecting approximately 80% of
patients, which can be graded according to the relative
proportion of solid tumor and the nonendometrial carcinomas,
org 217
which have a hormone-independent pathogenesis and unknown
precursor lesion (16). An early stage EC patients’ prognosis is
generally favorable.

Human gamma-delta (gd) T lymphocytes play critical roles in
immune surveillance mediating potent inflammatory response
and contributing to prominent tumor killing (18, 19). gd T cells
account for 1%–10% of T cells in the peripheral blood in adults
and are often enriched as resident cells within the solid organs
and mucosal tissues. They are considered the first line of innate
immune defense, but they also have the possibility to create
immunological memory and therefore also belong to adaptive
immunity (20, 21). In contrast to conventional ab T cells, gd T
cells display a non-MHC-restricted antigen recognition. Human
gd T cells can be divided according to their T-cell receptor (TCR)
delta chain usage into two major populations, namely Vd1 and
Vd2 T cells (22). Recent study highlighted the role of gd T cells in
cancer as the most significant favorable prognostic immune
subset associated with overall survival outcomes across 39
malignancies (23). However, to our knowledge, gd T cells in
endometriosis patients have not been characterized.

The Eph receptors represent the largest family of receptor
tyrosine kinases. Together with their respective ligands, they
have been extensively studied for the roles they play during
embryonic development, particularly within the central nervous
system (24). As a unique feature, bidirectional signaling in Eph/
ephrin ligands between cells is fundamentally involved in
developmental processes, such as axonal guidance, remodeling
of blood vessels or correct formation of crypt and villi in the
intestinal epithelium (24, 25). Some Eph receptors, especially
EphA2 is often overexpressed and functionally altered in many
cancers including breast (26), ovarian (27), and endometrial
(28, 29) carcinomas, which correlated with, e.g., increased
invasiveness, increased metastatic potential, prominent
vascularization, and consequently with poor patient outcome.
Most recently, EphA2 has been identified as a stress antigen
recognized by a Vd1 TCR (30).

We conducted the present study to determine the numbers of
gd T-cell subsets in endometriosis patients. We demonstrate for
the first time the prominent cytotoxicity of gd T cells against
endometrial tumor cell lines. Next, we show that the EphA2
receptor is highly important in tumor recognition and killing by
Vd1 gd T cells.
MATERIALS AND METHODS

Patient Characteristics
Patients (n = 19) have been enrolled from the Department of
Gynecology and Obstetrics, Faculty Hospital Brno. The study
was approved by the local institutional ethics committee of the
October 2021 | Volume 12 | Article 752646
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Faculty of Medicine, Masaryk University. The study was
performed in accordance with the Declaration of Helsinki.
Written informed consents were obtained from all patients.
Endometriosis was assessed according to the revised American
Fertility Society (r-AFS) classification during laparoscopy.
Patients received no hormonal therapy for a minimum of
3 months prior to laparoscopic surgery.

The patient characteristics are shown in Table 1.

Sample Collection and Preparation
Peripheral blood (PB) and peritoneal fluid (PF) samples were
obtained from endometriosis patients and were processed within
2 h of collection. PF samples were taken during the planned
surgery from lower pelvis cavity by fine needle suction from
cavum Douglasi at the opening phase of diagnostic laparoscopy
prior the surgical procedure as less invasive technique for more
patients than tissue biopsy. At the same time, it allows to obtain
sufficient volumes of biological material for subsequent analysis.
Buffy coats from age- and sex-matched healthy volunteers
(n = 33) were collected at the Transfusion and Tissue Bank,
Faculty Hospital Brno. Peripheral blood mononuclear cells
(PBMCs) were isolated from blood by density gradient
centrifugation using Lymphoprep (Stem Cell Technologies)
following the manufacturer’s recommendations. Plasma
samples were collected and stored at −80°C.

Cell Culture
Endometrial carcinoma cell lines KLE (ATCC® CRL1622™) and
RL95-2 (ATCC® CRL1671™) were purchased from ATCC
(American Type Culture Collection, VA, USA). Ishikawa cell line
was purchased from Sigma-Aldrich (St. Louis, MO, USA). KLE and
RL95-2 cell lines were maintained in Dulbecco’s modified Eagle’s
medium (DMEM/F12) supplemented with 10% fetal bovine serum
(FBS) and 2%penicillin/streptomycin (all ThermoFisher Scientific);
RL95-2 cells with the addition of 5ug/ml of insulin (Sigma-Aldrich,
MO, USA). The Ishikawa cell line was maintained in MEM
supplemented with 5% FBS and 2% penicillin/streptomycin.
Frontiers in Immunology | www.frontiersin.org 318
In addition, human tumor cell lines including myeloma
(U266, EJM) and chronic myeloid leukemia (LAMA-84, KYO-
1) were purchased from DSMZ (German Collection of
Microorganisms and Cell Cultures GmbH, Germany). Renal
(A-498), prostate (DU-145), breast adenocarcinoma (MCF-7)
and histocytic lymphoma (U937), chronic myeloid leukemia
(K562), acute monocytic leukemia (THP-1) and glioblastoma
(U87 MG) cells were purchased from ATCC. Glioblastoma cells
(U-373 MG and U251 MG) were purchased from The European
Collection of Authenticated Cell Culture (ECACC). Myeloma
cell lines (OPM-2, LP-1, KMS-11) were a kind gift from Dr.
Krejci (Institute of Biology, Masaryk University Brno). Cells lines
(U266, LAMA-84, KYO-1, K562, U-937, THP-1, EJM) were
cultured in RPMI-1640 containing 10% FBS, 2mM L-glutamine,
and 2% penicillin/streptomycin. Cell lines (A-498, DU-145, HT-
29, U-87 MG, MCF-7) were cultured in modified Eagle’s
medium (MEM) (Sigma Aldrich) with 10% FBS, 2 mM L-
glutamine, and 2% penicillin/streptomycin. The MCF-7 cells
were supplemented with nonessential amino acids (NEAA,
Sigma Aldrich). Cell lines (U251 MG, U-373 MG) were
cultured in DMEM/F12 with 10% FBS. All cells were grown at
37°C in 5% CO2 atmosphere up to 70%–80% confluence;
adherent cells were harvested by using gentle dissociation
solution TrypLE (Gibco, Thermo Fisher Scientific) and
counted by using Trypan blue exclusion.

The EphA2 inhibitor ALW-II-41-27 was purchased from
MedChem Express (Monmouth Junction, NJ, USA). It was
dissolved in sterile DMSO at 10 mM stock concentration and
solution stored in aliquots at −20°C.

Flow Cytometric Phenotyping
The cell phenotype was assessed by fluorescence-activated cell
sorting (FACS) by using staining with the monoclonal antibodies
MICA, MICB, CD112, CD155, B7-H6 (R&D Systems, clone
875001), and EphA2 (R&D Systems, clone 371805). The tumor
cell lines were harvested, washed with cold phosphate-buffered
saline (PBS, Sigma) containing 2% FBS, and incubated for 30 min
on ice with fluorescently labelled monoclonal antibodies. Gamma-
delta T cells were identified in freshly isolated PBMCs labelled with
CD3 (Thermo Fisher Scientific, clone SK7), Vd1 TCR (Thermo
Fisher Scientific, clone TS8.2), Vd2 TCR (BD Pharmingen, clone
B6) or Vd2 TCR (Sony, clone B6). CD27 (BD Pharmingen, clone
M-T271), and CD45RA (Exbio, clone MEM-56) were used for
immunophenotyping. Samples were washed and acquired using
FACSCanto® (BD Biosciences) and data analyzed using FlowJo®

software (FlowJo, Ashland, OR, USA). Forward and side scatter
gating were used to discriminate live cells from dead cells and gd T
cells were derived from SSC vs. FSC-gated bulk PBMCs with
doublet exclusion (FSC-A vs. FCS-H). To determine the
placement of the gates, appropriate fluorescence minus one
(FMO) and unstained controls were used.

Isolation of Polyclonal Vd1 and Vd2 gd
T Lymphocytes
Fresh gd T-cell populations were sorted by positive selection
using anti-TCR Vd1 (Beckman Coulter, clone R9.12) or anti-
TCR Vd2 (BD Pharmingen, clone B6) monoclonal antibodies
TABLE 1 | Study subjects.

Parameters Endometriosis patients Controls

Number (n) 19 33
Age (years)
Median 33 29
Range 24–48 18–48

Disease stage*
I 3
II 4
III 5
IV 7

Menstrual cycle
EPP 8

LPP 3

ESP 5

LSP 3
*Classification according to r-AFS.
EPP, early proliferation phase; LPP, late proliferation phase; ESP, early secretory phase;
LSP, late secretory phase.
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and magnetic microbeads (Miltenyi Biotec, Germany) according
to manufacturer’s instruction. The cell purity was routinely
greater at 97%.

Cytotoxicity Assay
Freshly sorted Vd1 or Vd2 gd T lymphocytes were incubated with
tumor target cells at indicated effector:target (E:T) 5:1 and 10:1
ratios in duplicates for 4 h co-culture at 37°C as described previously
(31). Briefly, tumor target cells were washed in Hank’s buffered
saline solution (HBSS, Invitrogen Life Technologies) to remove FBS
and culture media. Cells were resuspended in diluent C (Sigma) and
labeled with PKH67 fluorescent dye (Sigma). To-Pro-3 iodide
(1 mM in PBS) (Invitrogen Life Technologies) was added
immediately prior to the acquisition on the flow cytometer. At
least 10,000 target cells were acquired after gating out the green
fluorescence of PKH67 dye and the proportion of To-Pro-3 iodide
positive cells. Background target cell death was determined from the
cells incubated in the absence of effector cells. In the blocking
experiments, the EphA2 antibody (R&D Systems, clone 371805)
and ALW-II-41-27 EphA2 inhibitor (10 µM, 1 µM) or DMSO as a
control were added to tumor cultures prior the cytotoxicity assays.

RNA Extraction, cDNA Synthesis,
Real-Time PCR
Total RNA has been extracted from tumor cell lines using
RNeasy Mini kit (Qiagen) according to manufacturer’s
instruction. RNA was eluted in RNAse-free water and stored
in −80°C. Complementary DNA (cDNA) has been synthesized
using 20 ng/µl total RNA that has been reverse transcribed using
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). The glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) housekeeping gene has been used as an internal
control by quantitative real-time polymerase chain reaction
(real-time qPCR). cDNAs were amplified using TaqMan®

Gene Expression Assay (ID : Hs01072272_ml, Applied
Biosystems). Samples were analyzed on StepOne™ Real-Time
PCR Systems (Applied Biosystems).

Generation of EPHA2 Knockout
by the CRISPR/Cas9 method
The EPHA2 gene knockout was performed with the EPHA2
CRISPR gRNA + Cas9 in Lenti-particles (supplied from
antibodies-online GmbH) and used closely following
manufacturer’s instructions. Briefly, vector pLenti-U6-sgRNA-
SFFV-Cas9-2A-Puro (product number ABIN5252263) was used
to generate EPHA2 knockouts in human endometrial cancer line
RL95-2, renal carcinoma cell line A-498, and colon carcinoma
cell line HT-29. After infection, positive clones were selected by
3.5 mg/ml puromycin, and the single clones were transferred
separately into 48-well plates and further passaged. The EPHA2
knockouts were confirmed by flow cytometry after antibody
staining (anti-EPHA2, R&D Systems, clone 371805).

Statistical Analysis
Data analyses were performed using GraphPad Prism5 software
(GraphPad Software Inc., La Jolla, CA). The Student’s t-test was
Frontiers in Immunology | www.frontiersin.org 419
used to determine significant differences between groups.
Differences between sample groups were evaluated with the
nonparametric Mann-Whitney U test. p < 0.05 values were
considered to be significant. Data are expressed as mean ±
standard deviation (SD).
RESULTS

gd T Cell Subsets in Peripheral Blood
and Peritoneal Fluid Samples in Patients
With Endometriosis
First, we aimed to determine the two major populations of gd T
cells (Vd1 and Vd2 subsets, respectively) in peripheral blood (PB)
samples from patients with endometriosis (n = 19) and compared
the frequencies with age- and sex-matched healthy donors (HD,
n = 33). Flow cytometric analysis of peripheral blood mononuclear
cells (PBMCs) where proportion of Vd1 and Vd2 gd T cells among
leukocyte gate followed by the percentage of CD3 lymphocytes is
shown in Figure 1A. Immunophenotyping of Vd1 (Figure 1B)
and Vd2 (Figure 1C) using the CD27 and CD45RA antibodies to
determine the naïve/memory/effector memory and TEMRA
phenotypes was analyzed, and representative flow plots are
shown. We found significantly low percentages of Vd1 T cells in
PB (p = 0.008) (median 0.5%, range 0.1%–2.4%) in endometriosis
patients compared with HD (median 0.9%, range 0.1%–3.8%), as
shown in Figure 2A, whereas Vd2 T cells showed no difference
between the endometriosis patients (median 1.5%, range 0.2%–
7.9%) and healthy controls (median 2.4%, range 0.3%–11.9%), as
shown in Figure 2B. Next, the absolute counts of Vd1 and Vd2 gd
T cells in PB in patients compared with HD were determined in
Figures 2C, D, respectively. We found dramatically reduced Vd1
T-cell absolute counts in patients PB (p = 0.0002) (median 2.23
cells/µl, range 0.14–14.01) and HD controls (median 13.3 cells/µl,
range 0.11–242.1). No differences in Vd2 T-cell counts were
observed between the patients PB (median 9.8 cells/µl, range
0.12–118.7) and HD controls (median 17.3 cells/µl, range
0.11–198).

Second, we analyzed gd T-cell infiltration in patient’
peritoneal fluid (PF) samples and compared the counts with
paired PB. We found most patients with dramatically reduced
Vd1 T cells in PF (median 0.1%, range 0%–2.8%) compared with
PB samples (median 0.5%, range 0.1–2.4%) (p = 0.001) in
Figure 2E. Similarly, no significant differences were identified
for circulating Vd2 T cells (median 1.5%, range 0.2%–7.9%)
compared with PF samples (median 2.0%, range 0%–11.5%), in
Figure 2F. These results show for the first time the presence of
Vd1 and Vd2 gd T cells in peritoneal fluid in patients
with endometriosis.

Third, we found most Vd1 T cells of naïve (CD27+CD45RA+)
and TEMRA (CD27-CD45RA+) phenotype in patients PB shown
in Figure 3A. Peritoneal fluid samples showed majority of Vd1 T
cells at the memory stage of differentiation (CD27+CD45RA-) in
Figure 3B. Vd2 T cells in patients PB and PF samples were
predominantly of memory phenotypes in Figures 3C, D.
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gd T-Cell-Mediated Killing of Endometrial
Tumor Targets
We analyzed the cytotoxic function of Vd1 and Vd2 gd T cells
freshly sorted from healthy donors against endometrial tumor
cell lines including Ishikawa, KLE, and RL95-2. We determined
the 4-h killing reactivity shown as percentages of specific lysis of
Vd1 and Vd2 gd T cells at 5:1 and 10:1 E:T ratio. All of the tested
gd T lymphocytes efficiently killed the tumor targets. First, the
summary of Vd1 T cell-mediated killing (n = 4) at 5:1 E:T against
KLE (mean 29.8%, SD 4.2%), RL95-2 (mean 28.4%, SD 12.7%)
and Ishikawa (n = 3, mean 25.1%, SD 3.8%) in Figure 4 is shown.
Importantly, significant antiendometrial reactivity of Vd1 T cells
was detected at 10:1 E:T against KLE (mean 34.8%, SD 1.3%),
RL95-2 (35.9%, SD 14.2%), and Ishikawa (mean 37.8%,
SD 4.3%).

Second, summary of Vd2 T-cell-mediated killing against KLE,
RL95-2, and Ishikawa (Figure 4) is shown. At low E:T ratio of
5:1, the specific lysis was detected against KLE (n = 5, mean
44.4%, SD 10.3%), RL95-2 (n = 4, mean 26.0%, SD 8.6%), and
Ishikawa (n = 4, mean 34.4%, SD 6.4%). Prominent ability of Vd2
gd T cells to recognize and kill endometrial tumor targets was
observed at 10:1 E:T against KLE (mean 49.8%, SD 11.1%),
RL95-2 (mean 33.2%, SD 8.8%) and Ishikawa (mean 40.7%, SD
10%). Altogether, the endometrial tumor killing was comparable
for gd T-cell subsets isolated from different donors and was
reproducible between the assays for all cell lines.

The EphA2 Expressed on Endometrial
Tumor Cells Is Involved in Vd1 T-Cell-
Mediated Killing
To elucidate possible mechanisms involved in gd T cell
cytotoxicity, we evaluated several molecules typically involved
in gd T-cell killing including the MICA and MICB as ligands for
the NKG2D receptor; CD112 and CD155 as ligands for the
DNAM-1 receptor; and ligand B7-H6 for the NKp30 receptor.
We analyzed the surface expression of MICA, MICB, CD112,
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CD155, and B7-H6 on target endometrial tumor cell lines
including Ishikawa, KLE and RL95-2 by flow cytometry.
Variable expression of these markers is shown in Figure 5A.
Furthermore, we analyzed the expression of the EphA2 receptor,
which is known to be overexpressed in many human
malignancies, including endometrial carcinoma. We showed
activation and high expression of the EphA2 receptor on KLE
and RL95-2 endometrial tumor cell lines but only weak
expression on Ishikawa cells in Figure 5A. In addition, we
determined the EphA2 RNA expression by the real-time qPCR
in a panel of tumor cell lines as fold gene expression in
Figure 5B. We found the highest EphA2 expression in solid
tumors including prostate (DU-145), colon (HT-29), and renal
(A-498) carcinoma cell lines in contrast to mostly negative
hematological cell lines.

Next, we aimed to determine whether the EphA2 is involved
in gd T-cell killing. In the blocking experiments, we first
preincubated the target cells with the EphA2 antibody prior to
4-h cytotoxicity assays and then analyzed the specific lysis of
KLE (Figure 6A) and RL95-2 (Figure 6B) target cells in the
presence/absence of the EphA2. Interestingly, all Vd1 T cells
isolated from healthy donors killed efficiently both tumor cell
lines at 5:1 and 10:1 E:T ratios; however, the cytotoxicity was
reduced when the EphA2 receptor was blocked. The inhibitory
effect of anti-EphA2 on tumor cell killing was determined for
KLE cells in the range 14%–40% (median 25%) and for RL95
cells in the range of 15%–40% (median 26%). Together, these
results suggested that EphA2 was recognized by cytotoxic Vd1 T
cells in the tumor killing.

To validate these findings, we then tested the in vitro effects of
the EPHA2 small-molecule inhibitor ALW-II-41-27 on KLE
endometrial tumor cells. We incubated the KLE target cells
with ALW-II-41-27 inhibitor at 1 and 10 µM concentrations
and showed the specific lysis significantly reduced at both 5:1 and
10:1 E:T ratios in the range 50%–80% (median 71%) (Figure 6C).
Importantly, the inhibition of cytotoxicity by Vd1 T cells was
A B C

FIGURE 1 | Flow cytometric analysis of Vd1 and Vd2 gd T cells. (A) Peripheral blood mononuclear cells (PBMCs) were analyzed where proportion of Vd1 and Vd2 gd
T cells among leukocyte gate followed by the percentage of CD3 lymphocytes. Immunophenotyping of Vd1 (B) and Vd2 (C) T cells using the CD27 and CD45RA
antibodies to determine the naïve, memory, effector and TEMRA phenotypes was analyzed and representative flow plots are shown.
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shown as dose dependent. Next, we used the EphA2-negative
Ishikawa cell line and determined the specific lysis at 10:1 E:T in
the presence of ALW-II-41-27 (1 µM). No significant reduction
of tumor killing was observed (Figure 6D). Of note, the
pharmacological effect of inhibitor ALW-II-41-27 on cell
viability in drug treatment sample relative to a DMSO control
group was determined independently prior the killing assays and
no increase of the spontaneous cell lysis was detected after 4h
(data not shown). In addition, the inhibitor ALW-II-41-27
showed no change in the surface expression of EphA2, B7-H6
and stress ligands in 4-h cytotoxicity incubation (data
not shown).
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Finally, to confirm the inhibition of the EPHA2 resulting in
significantly decreased in vitro tumor cell death, we generated
EPHA2 knockouts (KO) in endometrial cell line RL95-2 by the
CRISPR/Cas9 method. The loss of EPHA2 significantly reduced
specific lysis by 35%–90% (median 45%) by Vd1 T cells in
knockout versus wild type (WT) at 5:1 E:T ratio is shown in
Figure 7A. Next, we observed the Vd1 T-cell cytotoxicity
inhibition of RL95-2 WT versus KO cells and also in the
addition of ALW-II-41-27 inhibitor (1 µM) at 10:1 E:T
in Figure 7B.

To further verify these results, we generated EPHA2
knockouts in A-498 (renal) and HT-29 (colon) tumor cell
A B

C D

E F

FIGURE 2 | Summary of Vd1 and Vd2 gd T cells in endometriosis patients. Percentage of CD3+ Vd1 (A) and Vd2 (B) gd T cells in endometriosis patients (ENDO,
filled circles) and age- and sex-matched healthy donors (HD, empty circles) are shown. Absolute counts of Vd1 (C) and Vd2 (D) gd T cells in PB in patients compared
with HD were determined. Analysis of Vd1 (E) and Vd2 T cells (F) in patient’s peripheral blood (PB) and paired peritoneal fluid (PF) samples. The median values are
shown. Statistically significant differences are presented as **p = 0.008; ***p = 0.0002.
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lines which had previously showed the highest EphA2
expression in Figure 5B. The summary of Vd1 T cell
cytotoxicity results is shown for A-498 in Figure 7C and HT-
29 in Figure 7D. The A-498 KO cells showed significant
protection from specific lysis mediated by Vd1 T cells
compared with WT cells at 10:1 ratio between 40% and 77%
(median 61%). Similarly, HT-29 KO cells presented significant
reduction of tumor killing than WT cells at 10:1 ratio between
42% and 75% (median 44%).

In summary, we evaluated Vd1 gd T-cell cytotoxicity against
tumor cells and found consistently that EphA2 expressed on
cancer cells show susceptibility to cell lysis by tumor-reactive
Vd1 T cells.
DISCUSSION

It is well accepted that women with endometriosis exhibit
numerous immune dysfunctions and that the immune system
plays a central role in its etiology, infertility, increased risk of
ovarian carcinoma, or poor pregnancy outcomes (32).
Pathogenesis of endometriosis is poorly understood, and the
incomplete phenotyping of immune cells within the
endometrium and peritoneal fluid of women with the disease
Frontiers in Immunology | www.frontiersin.org 722
warrants urgent research to identify biomarkers that could be
used to predict or verify the disease.

In this study, we determined for the first time the numbers of
Vd1 and Vd2 gd T-cell subsets in peripheral blood and peritoneal
fluids in patients with endometriosis. We observed dramatically
reduced numbers of circulating Vd1 T cells in endometriosis
women compared with healthy donors; however, no differences
were found for Vd2 T cells between endometriosis patients and
healthy controls. Interestingly, we described the presence of both
Vd1 and Vd2 gd T cell subsets in the peritoneal fluid.

Next, we demonstrated for the first time the cytotoxicity of gd
T-cell subsets against endometrial tumor cell lines including
Ishikawa, KLE, and RL95-2. Both Vd1 and Vd2 gd T cells were
able to lyse tumor cell lines at low 5:1 E:T ratios with specific lysis
ranging between 20% and 68% in the 4-h killing assays. We have
shown earlier similar cytotoxicity of gd T cells against solid
tumor cell lines including DU145 (prostate), MCF7 (breast), and
A498 (renal) carcinomas (31). Together, our results show
frequencies of gd T-cell subsets in endometriosis patients and
their cytotoxicity function against endometrial tumor cell lines.
Recent studies have highlighted the correlation of tumor-
infiltrating gd T lymphocytes with patient disease outcome that
further confirms the role of gd T cells in cancer immune
surveillance (33, 34). Importantly, gd T lymphocytes are being
A B

C D

FIGURE 3 | Immunophenotyping of Vd1 and Vd2 gd T cells in endometriosis patients. Percentage of CD3+ Vd1 T cells (A) in peripheral blood and (B) in peritoneal
fluid samples showing expression of CD27 and CD45RA markers for naïve/memory/effector and TEMRA phenotypes. (C) Percentage of CD3+ Vd2 T cells in
peripheral blood and (D) in peritoneal fluid samples is shown.
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intensively investigated towards better clinical applications and
new immunotherapeutic interventions (35–37).

In order to elucidate possible mechanisms involved in gd T-cell
cytotoxicity, we chose the EphA2 as it is often overexpressed in
many cancers including endometrial carcinomas (28, 29) and also
ranked 25th of cancer antigens prioritized for translational research
(38). We showed high expression of the EphA2 receptor on KLE
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and RL-95 endometrial tumor cell lines, and these were used as
targets in the EphA2 blocking studies. First, we showed reduced
cytotoxicity of Vd1 T cells after we preincubated KLE and RL-95
target cells with the EphA2 antibody prior to 4-h cytotoxicity assays.
Second, we used the EPHA2 small-molecule inhibitor ALW-II-41-
27 on KLE endometrial tumor cells and also showed specific lysis
significantly reduced at both 5:1 and 10:1 E:T ratios. Third, to
FIGURE 4 | Vd1 and Vd2 gd T-cell-mediated killing of endometrial tumor cell lines KLE, RL95-2, and Ishikawa. Freshly sorted gd T cells from three to five healthy
donors (numbered anonymously) were co-cultured with tumor targets for 4 h, and specific lysis was determined at 5:1 and 10:1 E:T ratio. The results from
independent experiments of Vd1 gd T-cell cytotoxic reactivity against KLE, RL-95, and Ishikawa is shown as the mean ± SD of sample duplicates. Summary data
of specific lysis and prominent cytotoxicity of Vd2 gd T cells against KLE, RL-95, and Ishikawa is shown as the mean ± SD of independent experiments
performed in duplicates.
A B

FIGURE 5 | Phenotyping and surface expression of EphA2, MICA, MICB, CD112, CD155, and B7-H6 on target endometrial tumor cell lines including Ishikawa,
KLE, and RL95-2 by flow cytometry. (A) Representative plots are shown as histograms of the unstained controls (red) and histograms representing the stained
samples (blue). Data are expressed as mean fluorescence intensity (MFI, x-axis) versus number of cells (y-axis). (B) Summary of the EphA2 expression analyzed by
the real-time qPCR in a panel of tumor cell lines presented as fold gene expression.
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confirm the effect of EphA2 inhibition, we generated EPHA2
knockout in endometrial cell line RL95-2 by the CRISPR/Cas9
method and showed significantly reduced specific lysis by Vd1 T
cells in knockout versus wild type at 5:1 and 10:1 E:T ratios. Fourth,
to further validate the inhibition of cell lysis by tumor-reactive Vd1
T cells, we used EPHA2 knockouts in renal and colon carcinoma
cell lines. Both A-498 KO and HT-29 KO cells showed significant
protection from specific lysis mediated by Vd1 T cells compared
with WT cells at 10:1 ratio.

In recent years, studies have been accumulating on differential
expression of Eph receptors and their ligands. In particular, the
EphA2 triggers cellular events that are deregulated and implicated in
carcinogenesis (39). In normal adult tissue, EphA2 expression is
absent or present at low levels whereas in malignant cells is
overexpressed and functions as a powerful oncoprotein. Targeting
Eph receptors with antibodies, peptides and small molecule
inhibitors have been widely explored (40–42). Targeting EphA2 is
especially attractive in ovarian cancer, in which overexpression is
present in over 75% of cases. It was shown in multiple preclinical
models of ovarian, breast, and pancreatic cancers that inducing
EphA2 downregulation by antibody-mediated inhibition of
signaling, antibody-mediated downregulation of total EphA2
Frontiers in Immunology | www.frontiersin.org 924
expression, and siRNA-mediated inhibition of expression the
tumor growth is decreased, further prolongs survival and inhibits
angiogenesis (43). Similarly, the pharmacologic inhibition of
EPHA2 by the small molecule inhibitor ALW-II-41-27 reduced
the viability of resistant tumor cells and inhibited tumor growth in
vivo in lung cancer models (44). Moreover, high expression of
EphA2 was found in endometrial carcinoma and was significantly
associated with adverse patient outcome (45).

In summary, we showed for the first time the infiltration of
Vd1 and Vd2 in peritoneal fluid samples in patients with
endometriosis. We determined inherent gd T-cell cytotoxic
reactivity of both subsets from healthy donors against
endometrial tumor targets. Importantly, we found that blocking
of EphA2 expression significantly inhibits cytotoxicity of tumor
reactive Vd1 gd T cells. Modifications of EphA2 expression may
alter the susceptibility to Vd1 gd T-cell-mediated tumor
recognition and killing that might be highly relevant in therapies
targeting EphA2 in solid tumors and EphA2-positive leukemia
(46). Most recent study has identified EphA2 as an antigen
recognized by a Vd1 TCR (30). Our functional data of blocking
EphA2 on three different solid tumor cell lines by CRISPR/Cas9
had significantly modified Vd1 gd T-cell-mediated tumor lysis.
A B

C D

FIGURE 6 | The inhibition of Vd1 T-cell-mediated killing by blocking of EphA2 expression on endometrial tumor cells. The target cells were preincubated with the
EphA2 antibody prior to 4 h cytotoxicity assays and the specific lysis of KLE (A) and RL95-2 (B) cells was determined at 5:1 and 10:1 E:T ratios. Summary data of
specific lysis and cytotoxicity reduction in the presence of EphA2 antibody is shown as the mean ± SD of independent experiments performed in duplicates (HD
numbered anonymously). (C) Analysis of the in vitro effects of the small-molecule inhibitor ALW-II-41-27 at 1 and 10 µM on KLE endometrial tumor cells. Dose-
dependent inhibition of cytotoxicity by Vd1 T cells is shown at 5:1 (pale grey bars) and 10:1 (dark grey bars) E:T ratios. (D) Vd1 T-cell-mediated killing of EphA2-
negative Ishikawa endometrial cell line was analyzed at 10:1 E:T with/without the presence of small-molecule inhibitor ALW-II-41-27 (1 µM) and is shown as the
mean ± SD of independent experiments performed in duplicates.
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Further expression and functional studies are warranted to
demonstrate the therapeutic values of inhibiting the EphA2 in
different malignancies, which may however compromise the
antitumor Vd1 gd T-cell cytotoxicity.
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FIGURE 7 | The inhibition of specific lysis of EphA2-positive RL-95 endometrial cell line. (A) Freshly sorted Vd1 T cells were co-cultured with tumor targets for 4 h,
and cytotoxicity was determined at 5:1 E:T ratio for the wild type (WT, white bars) and the EPHA2 knockout (KO, grey bars) shown as the mean ± SD of
independent experiments performed in duplicates (HD numbered anonymously). (B) Similarly, inhibition of specific lysis by Vd1 T cells was determined at 10:1 E:T
ratio for the wild type (WT, white bars) and the EPHA2 knockout (KO, dark grey bars) with/without the presence of small-molecule inhibitor ALW-II-41-27 (1uM) and
is shown as the mean ± SD of independent experiments performed in duplicates. (C) The EPHA2 knockouts of renal tumor cell line A-498 (grey bars) and colon
adenocarcinoma tumor cell line HT-29 (D) were generated and specific lysis was compared with WT cells (white bars) at 10:1 ratio. Significant inhibition of cell lysis
mediated by tumor-reactive Vd1 T cells was shown as the mean ± SD of independent experiments performed in duplicates.
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Glioblastoma (GBM) is the most common malignant tumor of the central nervous system
with poor prognosis. Although the field of immunotherapy in glioma is developing rapidly,
glioblastoma is still prone to recurrence under strong immune intervention. The major
challenges in the process of immunotherapy are evaluating the curative effect, accurately
distinguishing between treatment-related reactions and tumor recurrence, and providing
guidance for clinical decision-making. Since the conventional magnetic resonance
imaging (MRI) is usually difficult to distinguish between pseudoprogression and the true
tumor progression, many studies have used various advanced imaging techniques to
evaluate treatment-related responses. Meanwhile, criteria for efficacy evaluation of
immunotherapy are constantly updated and improved. A standard imaging scheme to
evaluate immunotherapeutic response will benefit patients finally. This review mainly
summarizes the application status and future trend of several advanced imaging
techniques in evaluating the efficacy of GBM immunotherapy.

Keywords: glioblastoma, immunotherapy, treatment response, pseudoprogression, tumor recurrence,
advanced imaging
INTRODUCTION

Glioblastoma is the most common malignant brain tumor in adult and is extremely aggressive. The
current standard treatment involves maximal safe resection, followed by radiotherapy and adjuvant
chemotherapy (1). Despite this active treatment, the prognosis remains poor, with a median survival
of less than 2 years (2). The main reason is that glioblastoma is strongly aggressive and grows
rapidly, specifically, tumor cells are prone to infiltrate the normal brain parenchyma aside the lesion
(3, 4). Thus, there is a risk of tumor recurrence once tumor stem cells remain after the resection and
follow-up treatment. Many other treatments have been studied, such as immunotherapy, aiming to
stimulate or mobilize the immune system and enhance the antitumor immunity in the tumor
microenvironment, so as to control and kill tumor cells (5). This treatment concept has derived a
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variety of treatment strategies, and remarkable progress of those
methods has been made in the treatment of patients with
intractable solid tumors such as melanoma and nonsmall cell
lung cancer (6, 7). There are also many immunotherapy studies
of glioma not only basic but also clinical. Due to the existence of
blood-brain barrier (BBB) in the central nervous system (8),
obvious loss of lymphatic reflux system (9), and the strong
he t e rogene i t y o f GBM (10) , th e e ff e c t i venes s o f
immunotherapy for brain tumors might be limited.
Fortunately, it has been found that immunotherapy has the
potential to induce immune changes in brain tumors (11, 12).

One of the challenges in the treatment of GBM is how to
assess the treatment response accurately in order to make more
informed clinical decisions. It is important to evaluate the
treatment response to immunotherapy in an early stage by
using noninvasive imaging, which can reduce unnecessary
clinical complications. However, conventional imaging
techniques are usually difficult to distinguish between
pseudoprogression and tumor recurrence. Immune response is
usually accompanied with inflammatory reaction characterized
by the enlargement of enhanced foci, which is easily confused
with the behavior of tumor relapse. Effective immunotherapy
may be mistakenly terminated if being misdiagnosed, thus
causing a negative impact on the prognosis. To solve this
problem, researchers have carried out a lot of researches on
advanced imaging techniques. This review describes the
definition and clinical significance of pseudoprogression,
generalizes the response evaluation criteria of GBM,
summarizes the status and future development direction of
advanced imaging techniques relevant to immunotherapy in
GBM, and discusses the strengths and deficiencies of artificial
intelligence (AI) in monitoring therapeutic response in GBM.
PSEUDOPROGRESSION OF GBM

About 30% of GBM patients who received radiotherapy and
ad juvant t emozo lomide -ba sed chemotherapy had
pseudoprogression, which mainly occurred within 3 months
after treatment (13). According to the Response Assessment in
Neuro-Oncology (RANO) criteria, pseudoprogression was defined
as the appearance of new lesion or an increase in contrast-
enhancing areas, but these changes gradually faded or stabilized
without changing the treatment (14). At present, it is believed that
the enlargement of enhanced foci may be caused by the infiltration
of inflammatory factors after radiotherapy and chemotherapy, but
the real cause of pseudoprogression remains to be further studied.
In addition, the methylation status of the O6-methylguanine-
DNA methyltransferase (MGMT) promoter was associated with
pseudoprogression, and about 2/3 of GBM patients with MGMT
methylation exhibited pseudoprogression (15).

Patients with pseudoprogression usually have no clinical
symptoms and only show new or enlarged enhanced lesions on
images. Such patients usually only need symptomatic treatment
and do not need to change the treatment project, while patients
with tumor recurrence probably need to resect the lesion again or
find another cure. If there is no accurate distinction between
Frontiers in Immunology | www.frontiersin.org 229
them, the effectiveness of treatment may be reduced. Therefore,
correct identification of pseudoprogression and tumor
recurrence is of great significance to guide clinical
decision-making.
RESPONSE EVALUATION CRITERIA
OF GBM

Noninvasive imaging for GBM can help define widely applicable
treatment response criteria to assess disease progression and
make clinical decisions. In order to address imaging challenges
such as pseudoprogression, multidisciplinary experts developed
RANO criteria (14), which suggested that the original treatment
regimen can be maintained for patients with no clear clinical
symptoms and only tumor progression on imaging. These
patients only need regular follow-up. At present, the RANO
criteria have been widely accepted in the field of neuro-oncology
and applied in clinical and scientific researches. However,
evaluating the therapeutic response to immunotherapy only by
RANO criteria may not be sufficient. For example, the
mechanism of pseudoprogression caused by immunotherapy
may be different from that of standard therapy, which may be
due to the infiltration of immune cells and inflammatory cells. It
is necessary to establish corresponding imaging response criteria
for immunotherapy in GBM.

Based on the important factors above, experts developed
immunotherapy Response Assessment in Neuro-Oncology
(iRANO) criteria for patients with GBM receiving
immunotherapy to provide guidance for imaging changes in
the early stage of progression (16). According to the iRANO
criteria, the time window for pseudoprogression after
immunotherapy is 6 months. Hence, the criteria recommend
that patients with no significant clinical symptoms and evidence
of early imaging progress within 6 months after immunotherapy
should continue to receive immunotherapy before follow-up
imaging confirms the tumor progression. In other words,
patients with evidence of imaging progress outside the time
window after immunotherapy will have a higher probability of
potential true tumor progression, and these patients should be
advised to discontinue ongoing immunotherapy.
APPLICATION OF ADVANCED IMAGING
IN IMMUNOTHERAPY OF GBM

At present, the researches of glioma immunotherapy strategy
mainly include the following: (1) specific peptide vaccine; (2)
immunotoxin therapy; (3) immune checkpoint inhibitors (ICIs)
therapy; (4) dendritic cell (DC) therapy; and (5) chimeric antigen
receptor T-cell (CAR-T) Immunotherapy (17–21). The
feasibility and safety of DC vaccine in the treatment of glioma
have been proved, and it could induce immune response (20). It
is worth noting that a new type of gamma delta T (gd T)-cell
therapy is becoming a rising star of cancer immunotherapy (22).
Unlike the alpha beta T (ab T) cells involved in most T-cell
November 2021 | Volume 12 | Article 790674
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researches and clinical applications, gd T cells recognize their
target cells independently of major histocompatibility complex
(MHC) and do not cause graft-versus-host disease. gd T cells
infiltrate in a variety of tissues, which can quickly respond to the
target cells and release effector cytokines. Furthermore, the
recognition and killing of tumor by gd T cells do not depend
on the expression of single antigen (23). Based on the advantages
of gd T cells, a new CAR-T therapy can be developed to break
through the limited application of ab T-cell-based CAR-T-cell
therapy in solid tumors (including gliomas) (24, 25). Currently,
gd T-cell therapy has been studied in the treatment and
prevention of recurrence of solid tumors including head and
neck cancer, breast cancer, and lung cancer (26–28). The
therapeutic effect in glioma still needs to be verified in a large
number of clinical trials.

Advanced imaging techniques based on physiological or
metabolic characteristics may reflect the state of tumor more
accurately, so various advanced imaging techniques are being
studied to correctly identify immunotherapy-related changes and
tumor progression and provide a credible basis for the treatment
of patients. The advanced imaging techniques used in GBM
currently include perfusion-weighted imaging (PWI), diffusion
imaging, amide proton transfer (APT), magnetic resonance
spectroscopy (MRS), positron emission tomography (PET)
(i.e., Table 1). Some of these imaging techniques have been
used to evaluate the immunotherapy efficacy of glioma. The
following will introduce the basic concepts of these imaging
techniques and describe the latest research progress and future
application prospects that support them in the evaluation of
therapeutic response to immunotherapy.

Perfusion-Weighted Imaging
PWI can reflect tissue perfusion by quantitatively calculating
perfusion parameters including relative cerebral blood volume
Frontiers in Immunology | www.frontiersin.org 330
(rCBV), relative cerebral blood flow (rCBF), mean transit time
(MTT), and time to peak (TTP). When the tumor progresses,
neovascularization and increased perfusion could be observed in
the lesion area. As pseudoprogression is usually caused by
inflammation, there is no neovascularization and the perfusion
is relatively low. As a consequence, these perfusion parameters
can be used to distinguish between pseudoprogression and
tumor recurrence in GBM patients receiving standard
treatment or immunotherapy (30, 40).

DSC-MRI is the most commonly used perfusion technique in
clinic. Evidence has shown that adding perfusion imaging to
conventional MRI in patients with gliomas is helpful for clinical
decision-making (41, 42). A recent meta-analysis including 35
studies on the role of various advanced imaging techniques in
evaluating the therapeutic response of high-grade gliomas
indicated that the diagnostic accuracy of perfusion imaging
was only second to MR spectroscopy (MRS). The sensitivity
and specificity of DSC were 87% and 86%, respectively, while the
sensitivity and specificity of DCE were 92% and 85%, respectively
(43). In addition, a retrospective study comparing the value of
DSC-MRI and DCE-MRI combined with T1WI enhancement
and DWI imaging in predicting the recurrence of GBM revealed
that both the two perfusion imaging could significantly improve
the diagnostic accuracy, and there was no significant difference in
diagnostic performance (42). Similarly, some studies have
compared the diagnostic accuracy of DSC-MRI with three-
dimensional pseudocontinuous arterial spin labeling (3D-
pcASL) and suggested that the ability of 3D-pcASL perfusion
imaging in distinguishing between pseudoprogression and tumor
recurrence in GBM patients is almost the same as that of DSC,
but 3D-pcASL is superior to DSC when the lesions are disturbed
by magnetic susceptibility artifacts (44, 45). The reason is that the
fast spin echo (FSE) technology used in GE 3D-ASL can
effectively overcome the disadvantages of DSC being vulnerable
TABLE 1 | Studies of applying advanced imaging techniques to assess immunotherapeutic responses in GBM.

References Advanced
imaging

Evaluation parameters Tumor type Immunotherapy category Evaluation
criteria

(29) DSC-MRI DrCBVmax GBM DC vaccination RANO
DWI-MRI rADC

(30) DSC-MRI Maximum lesional rCBV ratios Recurrent GBM DC vaccination Macdonald
DWI-MRI Minimum ADC

(31) DSC-MRI rCBV GBM Immunogene-treated NA
(32) DCE-MRI Ve GBM (rats) mAb9.2.27+NK NA
(33) DSC-MRI Interval change in rADC Recurrent GBM ICIs mRANO

DWI-MRI
(34) DWI-MRI Serial parametric response mapping of

ADC
Pediatric diffuse intrinsic pontine
glioma

Peptide-based vaccine NA

(35) DWI-MRI IADC VOI Recurrent GBM ICIs RANO
Pathological

(36) DWI-MRI RSI GBM ICIs Pathological
(37) MRS Cho, NAA, Crea, Lac GBM IL-4 toxin Pathological
(38) Amino acid PET 18F-FET PET/CT GBM DC vaccination RANO
(39) dck PET [18F]-CFA PET/CT GBM (human) DC vaccination and/or PD-1 mAb

blockade
NA

[18F]-FAC PET/CT Orthotopic malignant gliomas
(mice)
November 2021 | Volume 12 | Ar
Ve, extravascular extracellular space volume fraction; IADC, intermediate ADC; VOI, volumes of interest; mAb9.2.27, a monoclonal antibody-targeting NG2; NK, natural killer cells; IL-4,
interleukin 4; mRANO, modified RANO.
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to susceptibility artifacts. The artifacts can attenuate the imaging
signal, usually when the focus is on the skull base, paranasal
sinuses or large surgical resection cavity with blood residue.
Another deficiency of DSC imaging is that the contrast medium
may leak into the space where the BBB is destroyed. When it
happens, the values of rCBV parameters cannot reflect the real
perfusion level (46). Also, there is no unified standard between
different imaging parameters and postprocessing methods. These
factors will affect the diagnostic accuracy of DSC perfusion
imaging to varying degrees.

So far, there are still few researches about the application of PWI
onassessing the immunotherapeutic response ofGBM. Ina studyof
advanced MRI assessing dendritic cell immunotherapy against
GBM, it was found that the difference of relative cerebral blood
volume (△rCBVmax) could effectively differentiate tumor
recurrence from pseudoprogression, with a sensitivity of 67% and
specificity of 75% (p = 0.004), suggesting that the value of△rCBV
mightbemorehelpful todistinguish themthan the absolute valueof
rCBV during follow-up (29) (Figure 1). Research by Vrabec et al.
showed that the maximal rCBV ratios in the contrast-enhancing
area were potential radiological indicators to distinguish between
inflammatory response induced by immunotherapy and tumor
recurrence (30). Another follow-up study on immunogene-treated
glioblastoma multiforme with DSC perfusion imaging combined
with contrast-enhancedMR imaging also supported this view (31).

It is worth noting that both DCE-MRI and ASL techniques
have not been widely explored in GBM patients treated with
immunotherapy, which may be due to the lack of standardized
acquisition parameters of DCE-MRI and the poor image signal
of ASL perfusion imaging. However, these two perfusion
techniques still have their own advantages. For instance, DCE-
MRI can measure vascular permeability by pharmacokinetic
parameters to quantify the movement of contrast media
through BBB (47, 48). Compared with DSC-MRI, the ability of
DCE-MRI of quantifying the permeability can make the
calculation of cerebral blood volume more precise. 3D-pcASL
can avoid the influence of magnetic susceptibility artifacts. If we
could combine the advantages of various perfusion imaging to
make up for the shortcomings, we would have a powerful
supplementary tool to evaluate immunotherapeutic response
in GBM.

Diffusion Imaging
Diffusion-Weighted Imaging (DWI) reflects the diffusion of
water molecules in the tissue of interest. The most widely used
quantitative parameter is the apparent diffusion coefficient
(ADC), which is inversely proportional to the cell density (49,
50). Based on this characteristic, it has been used in tumor
identification, grading, and therapeutic response monitoring
(51–54). In patients with recurrent gliomas, the diffusion of
water molecules within the tumor was limited and the ADC
values decreased, while treatment-related response, such as
pseudoprogression, had higher ADC values than recurrent
gliomas. This point of view was confirmed by a meta-analysis
of diffusion magnetic resonance imaging combined with ADC
measurements for distinguishing between glioma recurrence and
Frontiers in Immunology | www.frontiersin.org 431
pseudoprogression. Six cohort studies were included in the meta-
analysis, and different ADC values were analyzed, including
mean ADC values, relative ADC (rADC), and 5th percentile
values. The results proved that the ADC values of
pseudoprogression was higher than that of tumor recurrence,
which provided a reliable foundation for the differentiation of the
two (55). To date, some researches have applied this technique to
the assessment of glioma immunotherapy and studied the
evaluation effect of different ADC values. Song et al. conducted
a retrospective study of 19 patients with recurrent GBM to
evaluate whether the early changes in the quantitative
parameters of diffusion and perfusion MRI before and after
immunotherapy can determine the treatment-related changes.
They calculated the rADC values and several perfusion
parameters of the lesions before and after treatment and found
that only the change of rADC could be used as an early marker to
evaluate the response within 6 months after treatment (33).
Another study also proved that rADC could help predict the
immuno-therapeutic response and survival rate in patients with
GBM (29) (Figure 2). Moreover, serial parametric response
mapping of ADC performed at multiple time points of therapy
may help identify pseudoprogression as an imaging biomarker in
vaccine therapy for pediatric diffuse intrinsic pontine glioma
(34). However, some studies believe that the application of the
mean ADC values on differentiating pseudoprogression from
tumor recurrence has some limitations, because the ADC values
of cystic and necrotic areas are higher than that of solid tumors,
which will affect the accuracy of the final results. It is considered
that the 5th percentile values are better for the distinction (56,
57). Although ADC has good diagnostic value as a whole, the
practicability of these different ADC parameters needs to be
further studied. In addition, these results need to be verified in
multicenter and larger cohorts.

Another kind of imaging technique commonly used in clinic
is diffusion tensor imaging (DTI), which uses the diffusion
anisotropy of water molecules for imaging. The fractional
anisotropy (FA) images can show the structure and anisotropy
of white matter fibers in the brain, and the change of FA can
evaluate the therapeutic effect. Wang et al. combined DTI and
DSC-MRI and found that the best models to distinguish between
true progression and none-true progression (pseudoprogression
and mixed progression) included FA, linear anisotropy
coefficient (CL), and rCBVmax. It is suggested that the
combination of DTI and DSC perfusion parameters could help
evaluate the therapeutic response of gliomas (58). Although DTI
has not been applied to the evaluation of immunotherapy in
GBM, a recent study on the association of T cell density and
diffusion tensor MRI changes in brain metastases revealed that
FA in the peritumoral region was closely related to the density of
CD3+ T-cell infiltration, indicating that FA could reflect the
tumor immune microenvironment. This finding supports future
researches and can be used to detect the sensitivity of
neurological tumors to immunotherapy (59).

Furthermore, researchers also explored the role of some
advanced diffusion models in assessing therapeutic response of
brain tumors. These techniques are mainly used in scientific
November 2021 | Volume 12 | Article 790674
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FIGURE 1 | A case of glioblastoma relapsed during immunotherapy, T2, ADC map, T1-enhanced, and CBV map from left to right. (A–C) MRI was performed in the
2nd, 6th, and 8th months of immunotherapy, respectively, showing that the edema degree of the lesion was gradually aggravated, the enhancement was more
obvious, and the perfusion was higher.
FIGURE 2 | Another case of glioblastoma developed pseudoprogression during immunotherapy, with FLAIR, ADC map, T1-enhanced, and CBV map from left to
right. (D–G) MRI was performed before immunotherapy and 2, 4, and 6 months after immunotherapy, respectively. Although tumor recurrence was suspected at the
second month, the subsequent two MRI showed that the lesion became smaller, the degree of edema and imitation of diffusion alleviated, and the perfusion
decreased. These two cases demonstrate that the combination of conventional MRI and advanced MRI imaging can accurately identify pseudoprogression and
tumor recurrence of glioblastoma after immunotherapy. The above two figures were reproduced with the permission of (29) (Copyright at Multidisciplinary Digital
Publishing Institute).
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 790674532
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researches, such as intravoxel incoherent motion (IVIM) MRI,
restriction spectrum imaging (RSI) MRI, etc. Based on the
double exponential model, IVIM can simultaneously obtain
diffusion and perfusion parameters reflecting tumor cellularity
and vascularity. Fast diffusion coefficient (D*) mainly reflects
perfusion information, slow diffusion coefficient (D) represents
real diffusion information, and perfusion fraction (f) reflects
blood flow (60). At present, it has been successfully used in
gliomas for grading and distinguishing between treatment-
related changes and tumor progression (61–63). However, this
technique has not been used to monitor the response to
immunotherapy yet. RSI-MRI is an advanced DWI technique,
which provides a direct method for measuring tumor cellularity
in vivo (64). Compared with the traditional DWI model, RSI can
improve the conspicuity and delineation of high-grade tumors
(65), better distinguish between true and pseudoresponse in
antiangiogenic therapy (66), and better display white matter
tracts in peritumoral edema areas (67). These advantages
indicate that RSI-MRI have a good application prospect in the
immunotherapy of neurological tumors. In a case report of
immunotherapy for GBM, authors demonstrated that RSI
could differentiate between pseudoprogression and tumor
relapse while conventional DWI imaging could not provide
more information (36). Despite that these advanced DWI
techniques can provide better tissue structural characteristics
than traditional DWI, the potential pathophysiological
mechanism of tumor is still unknown.

Amide Proton Transfer
Currently, APT is a relatively popular MR molecular imaging
technique that can quantify free proteins with noninvasion and
nonradiation. It reflects the changes of concentration and
environment by detecting amide proton (NH) in endogenous
low-concentration proteins or peptides. This technique displays its
application value in a variety of central nervous system diseases
(68–73) and shows great potential in glioma grading and curative
effect evaluation (74, 75). Ma et al. used three-dimensional APT
imaging technique combined with several conventional MRI
sequences to evaluate the imaging features of tumor recurrence
and pseudoprogression in 32 patients with gliomas who received
standard treatment. It was found that the two kinds of progression
had similar performance on conventional MRI. On the contrary,
patients with tumor recurrence exhibited high signal intensity
(relative to contralateral normal brain tissue) on APT-weighted
(APTw) images, while patients with pseudoprogression showed
equal to mild hyperintensity on APT-weighted images.
Quantitative results demonstrated that compared with
conventional MRI sequences, APTw could greatly improve the
ability of MRI to distinguish between pseudoprogression and
tumor recurrence (76). Additionally, as the therapeutic benefit
and prognosis of glioma are related to its molecular subtypes and
the expression of some proteins, APT imaging can detect the
expression of MGMT protein before operation and provide
relevant information for the possible drug resistance during
treatment and the corresponding targeted therapy (77).

APT also has some shortcomings. In APTw images, red
represents higher protein content, but not all red areas represent
Frontiers in Immunology | www.frontiersin.org 633
lesions or high-grade gliomas. Some tissues present high signal
intensity on APTw images as well, like fat, cysts, and blood vessels.
In addition to gliomas, there are other lesions that may also show
high signal intensity, such as meningiomas, lymphomas, and some
metastases. Most APTw images remove skull information because
of the high signal of skull, which may hide potential lesions near
the cerebral cortex. For this reason, using APT imaging alone to
judge the nature of lesions may not be accurate enough, and it is
best to combine multiple sequences to make a comprehensive
diagnosis. Up to now, no research has reported the use of APT in
the evaluation of immunotherapeutic response in GBM, but
previous studies have shown that APT imaging is of great help
to improve the diagnostic accuracy. If it is to become a powerful
tool to assess immunotherapeutic response, it is necessary to
continue exploiting and developing this technique and carrying
out more clinical and scientific researches.

Magnetic Resonance Spectroscopy
MRS uses the phenomenon of magnetic resonance chemical shift
to determine the molecular composition of substances. It can
simultaneously measure the concentrations of several
metabolites in brain tissue and tumors and can be used to
diagnose, grade, and evaluate the curative effect of brain
tumors (78). The metabolism of brain tumor is exuberant,
while that of chronic inflammation is lower. From the
metabolism degree of lesion, we can decide its composition
and distinguish between benign and malignant tissues (79, 80).
The typical proton magnetic resonance spectroscopy (1H-MRS)
manifestation of glioma exhibits obvious inversion of Cho/NAA
ratio, while inflammatory lesions are characterized by increased
Cho/Cr ratio and normal or decreased NAA/Cr ratio (81, 82).
Thus, the response induced by immunotherapy and tumor
progression in glioma patients can be distinguished by the
concentration of metabolites. Floeth et al. found that the
metabolic data of MRS may help to distinguish between tumor
recurrence and pseudoprogression after local immunotherapy of
GBM and contribute to further decision-making (37). In
addition, a recent meta-analysis suggested that among the
advanced MRI techniques, MRS had the highest diagnostic
accuracy in distinguishing between treatment-related changes
and tumor recurrence, with a sensitivity and specificity of 91%
and 95%, respectively, which showed the good diagnostic
performance of MRS (43).

MRS has some limitations in detecting small lesions
compared with other MR imaging techniques due to its low
spatial resolution, and it needs to be collected in high quantities
because of the low concentration of metabolites in tumor tissues,
which needs more time. The determination of metabolite
concentration may also be affected by MR equipment, pulse
sequence and data postprocessing methods. Lastly, MRS requires
experienced operators to define exactly areas of interest, which is
faced with technical challenges in clinical practice (78).

Positron Emission Tomography
Positron emission tomography-computed tomography (PET-
CT) is a metabolic functional imaging technique, which is
applied to diagnose and analyze lesions by imaging radioactive
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markers. It is commonly used in clinical tumor staging, curative
effect evaluation, and therapy. The most widely used PET tracer
is 18F-fluorodeoxyglucose (18F-FDG) based on glycolysis, whose
tracer concentration occurs in hypermetabolic lesions. Every
technology has some deficiencies, and FDG-PET is no
exception. First of all, the resolution of PET is relatively low,
and normal brain tissue also shows high metabolism. If the lesion
is close to the cerebral cortex, the measured FDG uptake value
cannot reflect the true condition of the lesion. Furthermore,
treatment-related necrotic reactions can also be characterized by
increased glucose metabolism, resulting in increased FDG uptake
(83). Although FDG-PET is widely used in clinic, it may be for
some reasons above that make the accuracy of differential
diagnosis of tumor recurrence and pseudoprogression not high
(84, 85). Therefore, radioactive tracers with higher tumor-
background uptake ratio have been studied.

Due to the increased proliferative activity and amino acid
transport of malignant brain tumors, and the relatively low level
of amino acid uptake in normal brain tissue, the use of amino acid-
based radioactive tracers can improve the tumor-background ratio
to some extent and identify tumors better (86). Till now, some
radioactive tracers based on amino acids have been developed,
such as 11C-methyl-L-methionine (11C-MET) and O-(2-[18F]
fluoroethyl)-L-tyrosine (18F-FET). Studies have indicated that
these two tracers have good accuracy in making a distinction
between treatment-related response and tumor recurrence, and
their manifestations are similar (87). However, 11C-MET is
difficult to be commonly used in clinic owing to its short half-
life and difficulties of preparation. Contrarily, 18F-FET has a long
half-life, and the preparation process is relatively easy. In a study of
immunotherapy with DC vaccination in GBM patients, 18F-FET
PET imaging showed a more accurate identification ability than
that of contrast-enhanced MRI initially (38). Although this study
had several limitations such as a small sample size, it pointed out
that 18F-FET PET had a potential role in monitoring the
immunotherapy efficacy of GBM. In addition, Joseph et al.
speculated that the PET probe for deoxycytidine kinase (dCK)
could be used to distinguish between immune inflammatory
response and enhancement foci caused by other factors in
contrast-enhanced MRI imaging. They applied DC vaccination
and/or PD-1 mAb blockade therapy to mice with orthotopic
malignant gliomas model and GBM patients, and then used
dCK PET probe and contrast-enhanced MRI for imaging
respectively. The ratio of MRI contrast enhancement region to
PET probe uptake area (immunotherapeutic response index) was
used to describe the immune inflammatory activity in tumors.
Finally, it was found that the accumulation of dCK PET probe in
tumors and secondary lymphoid organs increased after
immunotherapy, indicating that the immunotherapeutic
response could be quantified by combining dCK PET probe
with MRI imaging, which could be a potential biomarker for
monitoring tumor immunotherapy (39).

With the gradual development of PET/MRI, the combination
of PET and MRI makes full use of the good soft tissue contrast
and multi-parameter evaluation ability of MRI. Compared with
PET/CT, PET/MRI has superiority in the diagnosis and
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characterization of several diseases (88). Researchers have
found the potential of PET/MRI in evaluating therapeutic
response of GBM (89, 90) and the potential benefit of F-18
fluorothymidine (FLT)–PET/MRI for the diagnosis of melanoma
brain metastasis and treatment monitoring of targeted therapy
and immunotherapy (91). The ability of PET/MRI imaging in
monitoring the treatment response to immunotherapy of GBM
needs to be further studied. The future of PET/MRI is bright, and
any new techniques need lots of researches to prove its value in
clinical application.
APPLICATION OF ARTIFICIAL
INTELLIGENCE IN IMMUNOTHERAPY
OF GLIOMA

AI has developed rapidly in medical field in the past decade,
especially in image identification. Many studies have reported the
application of AI in diagnosis, grading, curative effect evaluation,
and overall survival prediction of glioma, showing the great
superiority of AI technology (92–99). Among them, radiomics is
a new field that uses automatic data mining algorithm to transform
a large number of image data into high-dimensional feature space.
In the identification of treatment response and tumor progression
inglioma, studieshave investigated that thediagnostic performance
of multiparameter radiomics model is better than single parameter
model. The former can findmore hidden information in the image
data of glioma and improve the treatment of patients (100). The
expression status of genes related to the prognosis of GBM can also
be predicted from the features extracted from radiomics (101).
Furthermore, radiogenomics, which combines imaging features
with genome maps, is also helpful to find prognosis-related
immune biomarkers (102). Despite the rapid development of AI,
there are still some problems. Any algorithm needs to provide a
large amount of high-quality data, andmany researches onAI have
a small amount of data, poor quality, and lack unified standards.
These are the problems that need to be solved in the future.
CONCLUSION

Pseudoprogression is the main problem that needs to be tackled
in the treatment process of GBM, and the identification of which
is also essential for the follow-up treatment. However, current
assessment of treatment response of immunotherapy is still in
the exploratory stage and does not meet the standard of routine
clinical use. Fortunately, establishing a standard imaging scheme
is the key to reverse this situation. The advanced imaging
techniques have been widely studied and used as a tool to
evaluate the therapeutic response in GBM. A large number of
studies supported that the combination of various advanced
imaging techniques can improve the diagnostic accuracy,
expanding our prospective to the development of multimodal
imaging. As for now, however, these imaging methods need to be
further verified in multicenter and large sample clinical trials to
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drive them to truly become powerful diagnostic tools in
the future.
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Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million
people aged 50 years and older worldwide. For many decades, glaucoma therapy has
primarily focused on controlling intraocular pressure (IOP) and sound evidence supports
its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting
patients from vision loss. Meanwhile, accumulating data point to the immune-mediated
attack of the neural retina as the underlying pathological process behind glaucoma that
may come independent of raised IOP. Recently, some scholars have suggested
autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief
pathogenic process. This autoimmune process, as well as the pathological features of
glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous
system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis.
In addition, immune modulation therapy, which is regarded as a potential solution for
glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus,
novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative
diseases may serve as valuable inspirations for ophthalmologists. This review focuses on
the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses
potential applications of relevant findings of CNS neurodegenerative diseases in future
glaucoma research.

Keywords: glaucoma, T cell, autoimmune, neurodegenerative disease, immune modulation therapy
INTRODUCTION

The retina is an extension of the central nervous system (CNS) in the eye. Retinal ganglial cells
(RGCs) are the primary sites of pathology in glaucoma (1). Their cell bodies reside in the inner
retina, while their axes extend a long way through the optic nerve into the brain. Thus, glaucoma is
considered a leading neurodegenerative disease that is estimated to affect 79.6 million people
worldwide in 2020 (2). The pathogenic mechanisms of RGC loss in glaucoma are multifactorial,
including elevated intraocular pressure (IOP), aging, oxidative stress, excitotoxicity, and
mitochondrial dysfunction, but the full picture of glaucoma remains elusive due to its nature of
high complexity and chronicity (3, 4). The role of immune-mediated neurodegeneration in
glaucoma has been established in recent decades and is regarded as an important component in
the pathogenesis of glaucoma.
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Activation of residential immunocompetent cells in the retina
(microglia and macroglia) and infiltration of peripheral immune
cells (T cells, B cells, macrophages, monocytes, etc.) are found to be
pathogenic and associated with the RGC loss (5, 6). Based on the
discovery of autoantigens and self-reactive T cells, some scholars
have proposed glaucoma to be an autoimmune disease with T cells
playing a central role (7–9). Meanwhile, the essential roles of
autoreactive T cells in the maintenance of tissue homeostasis and
restriction of inflammation in the retina and CNS have also been
elucidated in animal studies (10, 11). Evidence of either neurotoxic
or neuroprotective roles of autoreactive T cells indicates the
complexity of neuroinflammation in the progression of
glaucoma. The role of autoreactive T cells is multifaceted, and
an imbalance in T cell/microglia interactions is considered to be
the culprit of glaucoma. Based on this, immunomodulation
therapy has been proposed as a potential strategy for
glaucoma (12).

As a representative of neurodegenerative disease in the eye,
glaucoma shares many common pathological features with other
CNS neurodegenerative disorders, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and multiple sclerosis (MS) (13–
15). Most importantly, they are all characterized by compromised
barrier function and chronic neuroinflammation toward self-
antigens (16–18). As the strategy to harness the immune response
is most extensively explored in AD, it may provide valuable insights
and experience for the development of a possible immune
modulation therapy for glaucoma. In this review, we focus on the
role of autoreactive T cells in glaucoma pathology and treatment
options and systematically review publications in PubMed, Embase,
and the Cochrane Library based on the topics of “glaucoma”, “T
cell”, and “neurodegeneration”.
STRESS RESPONSE AND GUT DYSBIOSIS
ACTIVATE PERIPHERAL T CELLS WITH
AUTOIMMUNE BEHAVIORS IN
GLAUCOMA PATIENTS

Heat Shock Proteins in Stress Response
In glaucoma eyes, chronic stress challenges such as elevated IOP,
oxidative stress, glutamate excitotoxicity, deprivation of
neurotrophic factors, and ionic imbalance are considered to be
primary triggers for neuroinflammation and RGC loss (19, 20).
These stress stimuli can be sensed by multiple mechanical and
nonmechanical stress receptors expressed on RGCs, including
pannexin-1 (Panx1), P2X7 receptor (P2X7R), and transient
receptor potential vanilloid isoform 4 (TRPV4), which leads to
the production of danger signals (21). Heat shock proteins (HSPs)
are one of such signal and have been recognized as principal
autoantigens involved in the pathogenesis of glaucoma in both
animal disease models and patients (22–25). HSPs are a group of
highly conserved proteins that are ubiquitous in cellular organisms
and are classified based on their molecular weights into 7 major
families (small HSPs, HSP40, HSP60, HSP70, HSP90, HSP100,
and HSP110) (26). Under physiological and stressful conditions,
HSPs can serve as molecular chaperones to help refold misfolded
Frontiers in Immunology | www.frontiersin.org 240
proteins, enhance the survival of cells, and resist apoptosis (27, 28).
Thus, HSPs are innate protectors of cells in the stress response. In
addition, although most HSPs are constitutively intracellular
components, under stress challenges, their expression is
upregulated, and some HSPs can be released into the
extracellular space to provoke immune reactions (29). Complex
autoantibody patterns, including antibodies for small HSPs
(HSP27, B-crystallin, and vimentin) and HSP70 in the aqueous
humor have been detected in patients with various subtypes of
glaucoma (30, 31). HSPs can induce both innate and adaptive
immunity (32). In addition, a high local level of HSP27 itself is also
found to be sufficiently pathogenic for glaucoma neural damage
(33). However, it should be noted that HSPs should not be solely
considered as proinflammatory factors but may induce immune
suppression at suitable concentrations (34). Some HSPs also have
neuroprotective effects. For example, induction of endogenous
HSP72 in rats protects against neurodegeneration in acute IOP
elevation (35, 36). Ongoing clinical trials are even applying HSPs
to suppress the overactivation of the immune system in patients
with rheumatoid arthritis and COVID-19 (37, 38). Thus, in
patients with glaucoma, it is generally believed that aberrant
production of HSPs under stress conditions and dysregulated
autoimmune response in the long term, such as in the case of
gut dysbiosis, may tilt the balance and result in uncontrolled
neuroinflammation (39).

Gut Microbiota Shapes the
Immune System
Recently, researchers have revealed a potential link between gut
dysbiosis and glaucoma, with the immune system as the
connecting bridge. The gut microbiota is a critical factor that
shapes the peripheral immune system and has been found to
contribute to the activation of autoimmune T cells in glaucoma
and other neurodegenerative diseases (40–42). The gut
microbiota serves as the major source of bacterial HSPs in the
human body, which cross-react with the highly conserved
human HSPs to provoke autoimmunity and RGC damage
(40, 43).

The pathological roles of gut dysbiosis in glaucoma are found to
be chiefly mediated by T cells rather than autoantibodies or
humoral immunity. In a mouse ocular hypertension (OHT)
model induced by microbead injection, transient elevation of IOP
resulted in a prolonged activation and infiltration of interferon-g-
secreting CD4-positive T cells in the RGC layer and subsequent
neurodegeneration. The activated T cells were reactive to HSP27,
which, along with its autoantibody, were found to increase in the
serum after the OHT challenge. This prolonged autoimmunity to
the retina, however, was absent in TCRb-/- mice with deficit T cell
immunity but not in Igh6-/- mice with deficit B cell immunity (40).
On the other hand, although the infiltration of plasma cells in the
retina and deposition of autoantibodies are also evident in the retina
of glaucoma animal models, their causative roles in glaucoma
remain elusive based on the finding that inhibition of B cells or
autoantibody deprivation brings no significant benefits of RGC
protection (44–46). Moreover, mice raised in a germ-free
environment were found to be resistant to chronic OHT
challenge and did not result in similar T cell infiltration in the
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retina, indicating the fundamental role of preexisting gut microbiota
modulation of the immune system in the trigger of glaucomatous
retinal damage (40).

The exact mechanisms of how gut microbiota shapes the host
systemic immune system remain to be further elucidated, and the
local gut mucosal immune system, as well as the compromised gut
vascular barrier (GVB), have been suggested to play a role. Studies
have found thatprimaryopen-angleglaucoma(POAG)patientshave
different compositions of gut microbiota compared to healthy
individuals, with a higher abundance of Prevotellaceae,
Enterobacteriaceae, Escherichia coli, and decreased number of
Megamonas and Bacteroides plebeius (47). Helicobacter pylori
infection was also linked to POAG and normal-tension glaucoma
(NTG) in a recent meta-analysis (48). The opening of the GVB and
dislocation of bacteria and bacterial elements not only affects
autoimmune T cells, but may initially result in an overall chronic
shift from the anti-inflammatory microenvironment to the pro-
inflammatory one locally, systemically, and even at far target sites
such as the brain and retina by activating the innate immune system
(49). In amouse experiment, a single peripheral administrationof the
bacterial element lipopolysaccharide (LPS) resulted in prolonged
activation of brain resident microglial cells for over 10 months,
resulting in progressive neurodegeneration (50). In the retina,
resident microglia can recognize microbial pathogen-associated
molecular pattern (PAMP) molecules via Toll-like receptors
(TLRs), and upregulate the secretion of proinflammatory cytokines,
including interleukin (IL)-6, IL-1b, and tumor necrosis factor-a
(TNF-a), as well as major histocompatibility complex (MHC) II,
an essential element for antigen presentation to T cells during
peripheral bacterial infection (51, 52). The chronic activation of
innate immunity in the retina, in turn, can facilitate the homing and
infiltration of peripheral primed T cells into the retina. Studies have
found that peripheral T cells responsive to microbial antigens in the
intestine through autoreactive T cell receptors (TCRs) can break the
blood-retinal barrier (BRB) and infiltrate the retina, which has
previously been considered an immune-privileged site (53). This
so-called “dual-hit hypothesis” (first hit in GVB and second hit in
BRB) proposed by Braak et al. was first used to describe the potential
role of gut dysbiosis in the pathogenesis of PDbut is also supposed to
be suitable for glaucoma and other neurodegenerative disorders
(Figure 1). Interestingly, in patients with POAG, dislocation of gut
Helicobacter pylori is even found in the trabecular meshwork (54).
However, it is not clear whether the dislocation of gut bacteria itself is
pathogenic or essential for glaucoma or is it just an epiphenomenon
ofGVBimpairment. Inaddition, recent evidencealso suggests that an
imbalance in the oral microbiota may also contribute to the
pathogenesis of glaucoma, which needs further investigation (55,
56). Above all, emerging evidence suggests that gut dysbiosis may
result in the activation of both innate and adaptive immune systems.
Through the cross-reaction of human and bacterial HSPs,
peripherally-activated T cells may break the BRB and result in
RGC damage under stressful conditions.

Recently, modulation of the gut microbiota to reshape the
systemic immune response has become an emerging therapy for
glaucoma. A study found the beneficial roles of fermented maize
slurry and its supernatant rich in probiotic bacteria to reshape
gut microbiota in rats in the modulation of retinal immune
Frontiers in Immunology | www.frontiersin.org 341
reaction and protection of RGCs (57). Further studies, especially
clinical trials, to illuminate the crosstalk between the retina and
gut may provide more valuable information on the pathogenesis
of glaucoma and explore the possible intervention methods.
COMPROMISED BRB IS ESSENTIAL
FOR T CELL INFILTRATION IN
GLAUCOMA EYES

The neural retina is a delicate visual transmission system and is
firmly protected from the BRB, which controls the entrance of
peripheral immune cells under normal conditions (58). Recently,
some scholars have proposed the breakdown of BRB as an essential
pathogenic step in glaucoma (59). This theory, although lacks
definite evidence, is primarily supported by the observations of
retinal T cell infiltration in different animal models of glaucoma (40,
60–62). In addition, the breakdown of blood-brain barrier (BBB)
has been observed in some other CNS neurodegenerative diseases.
Their common pathogenic features with glaucoma and the similar
structures of the BBB and BRB also suggest the potential role of BRB
breakdown in glaucoma development (13, 63–65).

The neural retina is isolated from the systemic circulation by the
inner BRB (iBRB, formed with nonfenestrated retinal capillary
endothelium, vascular basement membrane, pericytes, astrocytes
end-feet, and microglial cells) and from the leaky choroidal vessels
by the outer BRB (oBRB, formed with tightly connected RPE that
stands on the Bruch’s membrane) (66). Acute IOP elevation is
sufficient to alter the protein levels of tight junctions and adherens
junctions of the RPE and subsequently affect the integrity of the
BRB in glaucoma animal models (67). In dogs with primary
glaucoma, disruption of PRE and extravasation of T cells and
plasma proteins suggest the breakdown of both iBRB and oBRB
(60). Acute induction of OHT in rats results in a significant
reduction in pericyte coverage after 7-10 days, but the extent of
vascular leakage remains unchanged (68). However, in patients with
POAG and NTG, neurodegeneration is a slowly progressive event,
and the breakdown of the BRB is likely associated with the long-
standing retinal parainflammation otherwise. For example, aging as
a contributing factor of glaucoma is associated with the progressive
loss of BRB integrity and a low level of retinal inflammation (69).
Some degenerative proteins such as amyloid-beta (Ab) and
hyperphosphorylated tau (p-tau), which are hallmarks of CNS
neurodegenerative diseases are also found in the retina of
glaucoma patients (14). These degenerative proteins contribute to
the local inflammatory response and compromise BRB function by
damaging tight junctions of the RPE and activating retinal
microglial cells (70–72). The parainflammation state makes the
retina vulnerable to the attack by adaptive autoimmune cells of
peripheral origin.

The infiltration of T cells into retinal parenchyma includes 2
major steps: first, the extravasation from retinal vessels and then
the breaching of glia limitans formed by astrocyte end-feet. The
whole process is a continuous action that relies on the close
interaction of T cells with multiple local factors and cells, as
discussed in detail below.
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T Cell Extravasation
As retinal capillaries are nonfenestrated, T cells have to escape
through the tightly-connected vascular endothelium to reach the
paravascular space in the retina (Figure 2). The extravasation of
T cells into the retina is decided by the state of T lymphocyte
activation, the state of retinal vascular endothelium, the
microenvironment of the neuroretina, and local blood flow,
which all affect the lymphocyte-endothelium interaction (73,
74). A study of T cell subsets in glaucoma patients revealed a
significant shift in the T cell population and a greater stimulation
Frontiers in Immunology | www.frontiersin.org 442
response (75). When the BRB is intact and vascular endothelial
cells are nonactive, peripherally-activated T lymphocytes can
also cross the BRB and scan the retina for immune surveillance.
Nevertheless, intravenous infusion of 5×106 activated
ovalbumin-specific T cells in rats only results in the transient
opening of the BRB and activation of resident retinal microglial
cells that subsides within 3 days (76). This indicates that intact
and quiescent BRB can endure the challenge of systemic
inflammation. However, when the retina is inflamed, activated
vascular endothelium becomes highly adhesive for circulating
FIGURE 1 | “Dual-hit hypothesis” for the association of peripherally-activated T cells during gut dysbiosis with glaucoma. In gut dysbiosis, the alteration of the
components of gut microbiota, compromised mucin and gut epithelium, and dislocation of bacteria result in chronic local inflammation. Autoreactive T cells primed
by microbial HSPs are generated and enter the systemic circulation (first hit). In the retina, the chronic stress response results in the release of HSPs and activation of
residential microglia. Autoreactive T cells breach the compromised BRB and become reactivated in the retinal parenchyma (second hit). T cells can further induce the
apoptosis of RGCs via the interaction of Fas/FasL.
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lymphocytes by the upregulation of the expression of surface
adhesion molecules, and a higher level of T cell extravasation is
expected. The whole process of T cell trafficking across the
retinal vascular endothelium is a complex action and includes
4 steps: tethering and rolling on the luminal surface, activation,
firm adhesion on the vascular endothelium, and diapedesis
(Figure 2) (74). In the initial step, the interaction of selectins
Frontiers in Immunology | www.frontiersin.org 543
and integrins on the surface of lymphocytes and endothelial cells
helps capture circulating immune cells to roll slowly and finally
become arrested at the luminal surface (77). This initial
attachment is not firm enough, and subsequent activation via
chemokines presented by endothelial cells is needed to induce
clustering and conformational changes of integrins to improve
their affinity and avidity (78). T lymphocytes, now tightly
FIGURE 2 | Infiltration of peripheral T cells into the retinal parenchyma during the pathogenesis of glaucoma. The BRB is tightly protected with nonfenestrated
vascular endothelium, basement membrane, pericytes, and glia limitans formed by astrocyte end-feet. T cells need to first reach the perivascular space and then
breach the glia limitans to finally infiltrate the retinal parenchyma. T cell extravasation includes steps of initial tethering and rolling, activation, firm adhesion, and final
diapedesis. In the perivascular space, T cells need to be reactivated by antigen-presenting cells and secrete cytokines and MMPs to breach the glia limitans. Otherwise,
T cells have to travel back to the vessel. In glaucoma, the local proinflammatory microenvironment favors the infiltration of T cells due to the higher abundance of molecules
(cytokines, selectins, and chemokines) and cells (microglia, dendritic cells) involved in these processes.
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grasped by endothelial cells, can break tight junctions and crawl
out of blood vessels via transcellular or paracellular pathways
(79–81).

In patients with glaucoma, the alterations of both T cell states
and induced expression of local cytokines/chemokines may
collectively contribute to the elevated extravasation of T cells.
Some proinflammatory cytokines, particularly interferon-g (IFN-
g), tumor necrotizing factor-a (TNF-a), and interleukin-1 (IL-
1), are elevated in the aqueous humor or tears of glaucoma
patients, indicating a globally proinflammatory state (82–84).
These cytokines help T cell tethering and rolling by inducing the
expression of integrins on the cell surface (85). Under resting
conditions, only approximately 5% of lymphocytes derived from
peripheral lymph nodes adhere to the retinal vascular
endothelium, which doubles when the endothelium is activated
by IFN-g or IL-1 (86). In addition, peripherally activated T
lymphocytes are also able to upregulate the expression of
intercellular adhesion molecule-1 (ICAM-1) on the retina, a
key integrin molecule for T cell rolling (87). In addition, RGCs
of glaucomatous eyes demonstrate significantly elevated
expression of genes involved in chemokine signaling (88). In
the murine retina, the b chemokine and its receptor C-C
chemokine ligand 5/C-C chemokine receptor type 5 (CCL5/
CCR5) are constitutively expressed and can respond to IOP
challenge (89). CCR5, which is inducible on activation, is found
to be involved in the recruitment of T-helper 1 (Th1) cells into
the mouse retina (90). Another pair of chemokines (C-X-C
motif) ligand 10/(C-X-C motif) receptor 3 (CXCL10/CXCR3)
are found to be induced by acute IOP elevation and subsequently
contribute to the release of proinflammatory cytokines, elevated
expression of E-selectin, and infiltration of inflammatory cells
(91). In patients with glaucoma, the levels of chemokines of
macrophage chemoattractant protein-1 (MCP-1), CXCR3,
CCL2, and CCL7 show prognostic value and are correlated
with disease progression (92–94). On the other hand, the
induced expression of corresponding chemokines and
receptors on the T cell surface under inflamed conditions
favors their interplay with the vascular endothelium (90, 95).
Overall, the activation of both T cells and the vascular
endothelium are two arms of inflammatory episodes in
glaucoma that promote T cell extravasation.

The Breaching of Glia Limitans and Roles
of Antigen-Presenting Cells
The retinal vessels are tightly wrapped with end-feet of astroglial
cells that serve as a double barrier for T cell infiltration into the
retinal parenchyma after extravasation (Figure 2). This physical
barrier, named glia limitans, is concentric to the retinal vessels
and creates a paravascular space. Tightening glia limitans with
induced matrix metalloproteinase-3 attenuates lymphocyte
infiltration after optic nerve injury (96). To cross the glia
limitans, primed T cells need to be reactivated by the cognate
antigen presented by antigen-presenting cells (APCs) or
otherwise have to re-enter the retinal circulation. Thus, such
APCs serve as major gatekeepers of the BRB, as they decide the
fate of extravasated T cells. Compared with the CNS, the retina
Frontiers in Immunology | www.frontiersin.org 644
lacks meningeal layers and choroidal plexus which harbor
numerous MHC-II+ APCs such as marginal dendritic cells and
meningeal macrophages (97). In the pathogenesis of glaucoma, it
is still under debate whether the APCs that initiate retinal
inflammation are exogenous or activated resident cells. To
serve as initial APCs, candidate cells need to distribute in the
paravascular region and constitutively express MHC-II and
costimulatory molecules. In a canine model of acute primary
angle-closure glaucoma (PACG), infiltration of MHC-II+

phagocytes in the optic nerve and retina is observed within the
first 24 hours, along with the infiltration of circulatory immune
cells and RGC loss (98). However, it is controversial whether the
infiltration of systemic phagocytes precedes the infiltration of T
cells or vice versa. Some researchers also identified some innate
players that may serve as initial APCs in the retina. A special
group of microglial cells that are located in the paravascular
space instead of retinal parenchyma are found to constitutively
express high levels of CD45, MHC-I, and MHC-II (99).
However, these CD45+ microglial cells demonstrate only a
weak activation effect on primed T cells (100). Thus, the player
(s) of initial antigen presentation and associated antigen in
glaucoma remain to be determined, and their dynamic change
and interplay with T cells during the disease course need to be
further investigated. The initial antigen presentation process may
serve as a novel therapeutic target to halt the initiation of
neuroinflammation in glaucoma.

Currently, the study of BRB breakdown and the pathogenesis
of glaucoma is still an emerging research field, and many detailed
aspects remain to be determined. As suggested by studies of AD,
the breakdown of the BBB seems to be one of the initiating events
that contribute to the subsequent tissue deposition of
degenerated proteins and immune cell infiltration (101). Acute
animal glaucoma models suggest the temporary breakdown of
the BRB in response to elevated IOP and a globally
proinflammatory state that facilitates T cell infiltration.
However, whether BRB breakdown only serves as the initial
trigger of glaucoma neuroinflammation or is essential during the
full term of disease progression remains to be determined by
appropriate animal models and clinical studies. In addition, the
spatial-temporal pattern of T infiltration in the glaucoma retina
remains largely unknown.
RETINAL GLIOSIS AND INTERPLAY WITH
T CELLS

The retinal parenchyma harbors a group of endogenous
immunocompetent cells including microglial cells, astrocytes,
and Müller cells, and the latter two are also called macroglial
cells. Under physical conditions, retinal glial cells closely interact
with neurons and are highly versatile, participating in functions
of mechanical support, metabolite transport, nourishment, tissue
remodeling, and immunosurveillance (102). As key players of the
retinal immune system, glial cells are distinct from conventional
immune cells in the systemic circulation, as they are sequestered
by the BRB and have no access to lymph nodes for lymphocyte
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priming. Nevertheless, the compromised BRB of glaucoma
enables their contact with myeloid-derived peripheral immune
cells that infiltrate the retina. These glial cells serve as sensors,
mediators, and effectors of the immune response and are found
to be early responders in the pathogenesis of glaucoma
(103, 104).

Different States of Retinal Glial Cells
In glaucoma eyes, resident glial cells undergo a dynamic change
with close coordination of each other in a time-dependent
manner during the disease course (105, 106). This process, so-
called “retinal gliosis” contributes to both neurodegeneration and
neuroprotection, depending on the severity and chronicity of the
reaction. Retinal microglial cells and astrocytes are highly
heterogeneous and can be chiefly divided into 2 states after
activation, i.e., the neurotoxic form (M1 and A1 phenotype,
respectively) and neurotrophic form (M2 and A2 phenotype)
(107, 108). For example, retinal microglial cells, as the major
effector and APCs, assume an M1 phenotype with amoeboid
morphology when stimulated by the proinflammatory cytokine
interferon-g (IFN-g), and are able to release TNF-a, IL1-b,
superoxides, proteases, and reactive oxygen species (ROS). On
the other hand, when stimulated by IL-4, microglial cells turn
into the M2 phenotype characterized by thin cell bodies with
ramified processes. The M2 phenotype is associated with
immunomodulatory cytokines such as IL-4, IL-10, IL-13, and
TGF-b (Figure 3) (5, 109). Animal models of acute OHT suggest
that a predominant M1/A1 type of microglial cells and astrocytes
in the acute phase contributes to the early proinflammatory state,
which may subside thereafter. The dynamic turnover and
interplay between microglial and macroglial cells in glaucoma
set the background of retinal inflammation, which is reviewed in
detail by Zhao et al. (110).

T Cell-Microglial Interplay for
Neurotoxicity
In the acute phase, infiltrated T cells interact with neurotoxic
glial cells to induce the escalation of inflammation. This process
can result in neurotoxicity and damage to RGCs if not properly
controlled. Once breaching the BRB, peripherally activated T
cells can interact with microglial cells, which serve as the bridge
between innate immunity and adaptive immunity. The roles of
microglia are versatile. First, microglial cells act as early sensors
of the retinal stress response via inherent Toll-like receptors
(TLRs) on their surfaces (111). They are found to rapidly
respond to extrinsic danger signals such as HSPs and oxidative
stress and assume a predominant M1 phenotype within 24 hours
after the induction of OHT (112–114). For example, extracellular
HSP27 can activate TLRs and their downstream nuclear factor-
kappa-light-chain-enhancer (NFkB) pathway in microglial cells,
which subsequently promotes the release of proinflammatory
cytokines (TNF-a, IL-6, and IL-1b) and chemokines (MCP-1,
MCP-3, MIP-1a, MIP-1b) to facilitate the recruitment and
activation of T cells (115–117). Knockout of TIR-domain-
containing adapter-inducing interferon-b (TRIF), an adaptor
molecule downstream of the TLR3 pathway, results in reduced
Frontiers in Immunology | www.frontiersin.org 745
microglial activation and preserves RGCs following damage
(118). Recently, studies found that microglial cells can also
propagate inflammatory signals in a paracrine way through the
release of exosomes and activate remote microglial cells (119,
120). Another important function of retinal microglial cells is
their role as APCs. In the retinal parenchyma, APCs are
responsible for the reactivation of T cells with cognate antigens
by the expression of MHC class II molecules and costimulatory
molecules (CD40, CD86, B7, etc.), which can subsequently result
in the clonal proliferation of T cells (121). In glaucoma eyes,
activated microglial cells gain a stronger ability of antigen
presentation and secretion of proinflammatory immune
mediators, which further escalate retinal inflammation (122,
123). Conversely, T helper cells are also able to differentially
modify the phenotypes of microglial cells via the secretion of
proinflammatory or suppressive cytokines (124, 125). CD4+ Th1
cells secrete IFN-g for M1 conversion, while the Th2 interferon
IL-4 is associated with the M2 phenotype. Adoptive transfer of
primed T cells from hereditary glaucoma mice leads to focal
activation of Iba1+ microglial cells with amoeboid morphology
that stand in close proximity to infiltrated T cells (126). In
tyrosinase T cell receptor (TCR) transgenic mice that
spontaneously develop glaucoma, marked infiltration of T cells
is observed. T cells, through induction of effector cytokines, lead
to a robust increase in glial fibrillary acidic protein+ (GFAP) glial
cells that colocalize to T cells in the nerve fiber layer (61). Above
all, as demonstrated in Figure 3, the interactions of T cells and
retinal microglia are reciprocal and collectively shape the
inflammatory background in glaucoma.

Both T cells and microglia can directly contribute to RGC
loss, but there are also some distinctions in their mechanisms of
action, and their relative contributions remain elusive.
Histological studies reveal that the neuroinflammation
characterized by retinal gliosis and T cell infiltration parallel
ongoing neural degeneration spatially and temporally (68, 127,
128). Primed T cells after immunization with HSP27 and HSP60
can induce the apoptosis of retinal ganglion cells by secretion of
fas-ligand (FasL) and upregulation of its receptor on RGCs (129).
On the other hand, microglial cells can also contribute to RGC
loss in other distinct ways such as pyroptosis and complement-
mediated synaptic pruning (130). In glaucomatous eyes, both
intrinsic and extrinsic apoptosis pathways of RGCs are involved
in cell death (116).

T Cell-Microglial Interplay for
Neuroprotection
The role of the bidirectional interplay between T cells andmicroglial
cells is multifaceted. Apart from neurotoxicity, it also enhances the
clearance of dead neurons via phagocytosis, prevents escalation of
inflammation, and sets the chance for subsequent tissue remodeling
and neural repair, which may benefit the survival of remaining
RGCs (131). Damaged neurons can release intracellular
components after necrosis, such as DNA and nucleotides, which
are highly proinflammatory and trigger the spread of inflammation.
Activated microglial cells gain stronger mobility and phagocytic
power and quickly move to the damaged site to isolate damaged
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neurons. As found in other CNS neurodegenerative diseases, tissue
deposition of Ab and p-tau is evident in glaucoma eyes (132, 133).
These degenerative proteins are pathogenic and involved in
progressive neuron death. In the CNS, Ab can be taken up by
activated microglial cells via phagocytosis and contribute to T cell
activation (134, 135). In turn, primed T cells with Ab immunization
can also enhance the uptake and removal of Ab in the brain and
demonstrate beneficial effects (136, 137). IL-4 and IL-10 secreted
mainly by Th2 cells are beneficial for the clearance of tissue
deposition and debris by accelerating microglial phagocytic
activities (138). In addition, activated retinal microglial cells and
infiltrating macrophages secrete proinflammatory IL-6 and TNF-a
to stimulate CD4+CD25+ T cells and suppress T cell-mediated
cytotoxicity (139). Following the phase of intense attack, microglial
cells, macroglial cells, and T cells coordinate to resolve immune
reactions in the retina. In this phase, microglial cells convert from
the proinflammatory M1 phenotype to the neuroprotective M2
Frontiers in Immunology | www.frontiersin.org 846
phenotype and are able to secrete neurotrophic factors to promote
neuronal survival. The retina, as an immune-privileged tissue, also
possesses multiple negative regulatory circuits to restrict
inflammation. For example, retinal microglial cells, as well as
neurons and endothelial cells, were found to constitutively express
CD200. Through interaction with the CD200 receptor, it attenuates
the activation of myeloid cells (140). Microglial cells upregulate the
expression of programmed death ligand-1 (PD-L1) at the peak
phase of activation and suppress Th1 function via interaction with
PD1 on their surfaces (141, 142).

Above all, it is generally accepted that the T cell-microglia
interaction has both protective and destructive consequences and is
related to the disease course. However, it is still under debate how to
appropriatelymodify the immune process and benefit the survival of
RGCs in glaucoma patients. Some animal studies in acute OHT
explicitly support the beneficial role of neurons by suppressing
microglial functions in different ways (143–146). However, this
FIGURE 3 | Interaction of T cells and microglia for neurodegeneration and neuroprotection. Upon activation, microglia assume either the M1 (neurotoxic) or M2
(neurotrophic) phenotype. The Th1 cytokine IFN-g is associated with classic activation of the M1 phenotype. M1 microglia secrete proinflammatory cytokines, chemokines,
and inducible nitric oxide synthase (iNOS). The Th1/M1 interaction results in the escalation of retinal inflammation and may lead to neurodegeneration if the reaction is not
well controlled. In turn, the Th2 cytokines IL-4 and IL-13 are involved in alternative activation into the M2 phenotype, which secretes anti-inflammatory cytokines and
neurotrophic factors. The Th2/M2 interaction results in the alleviation of inflammation and helps neuron survival. In addition, activated M1 microglia can transform into M2
microglia via the acquired deactivation process in the presence of IL-10 and TGF-b to control the overactivation of the immune response.
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may notmimic the true chronic nature of glaucoma inmost patients.
It seems that this prompt immune reaction elicited by the stress
response is at least beneficial in the restriction of neuroinflammation,
but the longstanding insults of IOP fluctuation may lead to chronic
activation of the microglia-T cell axis that exceeds the normal
immunomodulation. As suggested by animal models of glaucoma,
retinal gliosis is not only an early response but also persists in the
chronic phase. Microglial cells remain activated after IOP returns to
the normal level, which may potentially explain the ongoing
neurodegeneration in patients after IOP has been controlled (147).
Autopsy studies in postmortem glaucoma eyes may serve as direct
evidence for marked retinal gliosis and infiltration of activated
microglial cells in the optic nerve head (111, 148, 149).
Glaucomatous eyes of humans also assume a chronic environment
of neuroinflammation characterized by IgG autoantibody
accumulation and increased levels of proinflammatory cytokines
(45). In addition, from the point of view of T cells, there is a lasting
imbalance of Th1/Th2 cells that tilts to the proinflammatory side in
glaucoma patients (150, 151). These findings support the theory that
chronic insults from endogenous (IOP, oxidative stress, etc.) and
exogenous sources (gut dysbiosis, aging, etc.) lead to overactivation
and disorder in immune regulation that turns the T cell-microglial
axis into a predominant neurotoxicmode in the long term.Above all,
this suggests the validity of immune modulation therapy in the
treatment of glaucoma, as discussed in more detail in the
section below.
THE EMERGING ROLE OF T CELL-BASED
IMMUNE MODULATION THERAPY IN THE
TREATMENT OF GLAUCOMA - A LESSON
FROM CNS NEURODEGENERATIVE
DISEASES

As discussed earlier, the immune reactions of T cells and
microglia have both beneficial and detrimental effects on RGC
survival, depending on whether they are properly evoked and
regulated. In glaucoma, the chronic local proinflammatory
microenvironment unfavorably shapes the immune reaction to
the neurotoxic form and leads to progressive RGC loss.
Considering the essential role of immune cells in tissue repair
and maintenance of homeostasis, it is generally accepted that
immune modulation, instead of simple immune suppression, is a
valid option for glaucoma. The term “protective autoimmunity”,
which refers to the beneficial roles of autoreactive T cells in the
protection of neurons in the CNS, has been recognized for more
than 2 decades (152, 153). This subsequently leads to the active
exploration of T cell-based immune modulation therapy in
glaucoma and other CNS neurodegenerative diseases.

Protective Autoimmunity in the CNS
and Retina
Under physical conditions, peripherally primed T cells that
recognize self-antigens can patrol the retina and brain
parenchyma over time. This immunosurveillance is not only
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helpful for immune detection but also plays a role in maintaining
neural homeostasis by actively engaging in multiple physiological
activities, including neurogenesis, regulating spatial learning and
memory, and assisting neuron survival with neurotrophic factors
(154). Deprivation of CNS-specific autoreactive T cells halts the
normal development of the CNS system and is involved in
cognitive impairment in animal models and exacerbation of
CNS injury (155). On the other hand, accumulating evidence
suggests that the T cell-mediated immune response may also
provide beneficial effects in neuroprotection in the case of acute
neural damage. In a rat model of optic nerve crush and contusive
spinal cord injury, single low-dose g-irradiation treatment
induces the activation of proinflammatory T cells that
ultimately leads to spontaneous recovery, which is absent in
mice with T cell deficiency or transferred with regulatory T cells
(Tregs) (11). A prior traumatic brain injury evoked protective
autoimmunity that was found to prevent RGC loss when the
contralateral optic nerve was crushed later in a rat model (10).
These protective effects are chiefly dependent on neuron-specific
autoimmune T cells, as evidenced by the finding that only
transgenic T cells overexpressing the T cell receptor for the
CNS-specific antigen of myelin basic protein (MBP) rather than
the nonself antigen of ovalbumin demonstrate protective effects
on RGC survival after optic nerve injury (156). Thus, the
involvement of autoimmune T cells in the protection of
neurons during acute CNS insult indicates the validity of the
immune modulation approach for the treatment of glaucoma.

Cop-1 Therapy
One investigated approach of immune modulation therapy in
glaucoma is active immunization with a weak self-antigen that
stimulates a moderate autoreactive T cell response. Autoimmune
T cells are expected to regulate the immune response in a
beneficial way and coordinate with local and other circulatory
immune cells to boost faster tissue repair. Copolymer-1 (Cop-1,
or glatiramer acetate), a synthesized analog of MBP, is a suitable
candidate because it serves as a weak agonist of numerous self-
antigens in the CNS. Immunization with Cop-1 has been tested
in many CNS neurodegenerative diseases, and its commercial
product Copaxone® has been approved by the US Food and
Drug Administration (FDA) for the treatment of MS (157).
Glaucoma shares common aspects of pathogenesis with MS,
including generation and tissue deposition of common
autoantibodies (anti-MBP) and activation of local microglial
cells (45, 158). Clinical examination with optical coherence
tomography (OCT) also indicates a close relationship between
retinal RGC damage and MS neuropathy (15). Thus, Cop-1 as an
approved therapy for MS is also explored in glaucoma treatment.
Coculture of Cop-1-stimulated T cells and retinal microglia
results in their reciprocal activation and the release of insulin-
like growth factor-1 (IGF-1), brain-derived neurotrophic factor
(BDNF), TNF-a, and IL-10 in vitro, which favors RGC survival
in vitro (159). Immunization with Cop-1 by subcutaneous
injection in a rat glaucoma model results in elevated
intraretinal T cell infiltration and prevention of RGC loss,
which indicates that the induced T cell response is more
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protective than destructive (160). In addition, Cop-1
immunization has been delivered in combination with stem
cell transplantation to rescue and replenish RGCs in animal
glaucoma models. Cop-1 immunization induces a local favorable
environment by balancing the levels of proinflammatory (IFN-g)
and anti-inflammatory (IL-4) cytokines and the secretion of
neurotrophic factors (161). Activated T cells also release
chemoattractants (such as MCP-1) to facilitate the recruitment
of stem cells and progenitor cells to damaged sites (162, 163).
The synergic action results in improved landing and survival of
transplanted stem cells and alleviates nerve damage in glaucoma
animal models (164, 165). Recently, the interim results of an
ongoing double-masked clinical trial investigating Cop-1
immunization for the treatment of acute primary angle-closure
glaucoma (PACG) have been disclosed (trial No. 01936129).
Thirty-eight patients with PACG received either 2 subcutaneous
injections of Cop-1 or the placebo without adjuvant, one within
24 hours of onset, and the other one week later. The patients in
the Cop-1 group demonstrated improved mean deviation and a
trend of a lower mean number of progressing points, but the
retinal nerve fiber layer thickness showed no difference after 16
weeks. Due to the small sample sizes in both arms and high
interpersonal variation, the researchers could not confirm the
protective role of Cop-1 in PACG based on the current evidence
(166). In addition, as no serum or immune examination test
results were reported, whether the 2 subcutaneous injections of
Cop-1 without adjuvant elicit an adequately strong and long-
lasting immune response cannot be determined.

Concerns and Further Considerations on
Immune Modulation Therapy for Glaucoma
Although immune modulation therapy seems to be a reasonable
treatment option for glaucoma and has been well explored in CNS
neurodegenerative diseases, in clinical practice, many conditions
need to be optimized. Safety is a chief concern. Immunization with
R16, a self-peptide from interphotoreceptor retinoid-binding
protein, in a mouse model of acute OHT led to neuron
protection but induced monophasic autoimmune uveitis in a
susceptible mouse strain (167). More experience from CNS
clinical trials warns that the stimulation of unwanted
detrimental immune responses could lead to adverse events. In a
phase II clinical trial investigating the tolerability and efficacy of
intramuscular injection of self-antigen Ab42 with QS-21 as the
adjuvant in patients with mild to moderate AD, subacute
meningoencephalitis occurred in 6% of patients in the test arm,
which led to the termination of the study (168). An aberrant Th1
cell response is speculated to be responsible for the adverse
inflammatory response, as QS-21 is a strong inducer of Th1 and
infiltration of active T cells was found in an autopsy study (169).
Similar meningoencephalitis has been reported in amyloid
precursor protein-transgenic (APP/Tg) mice that express limited
IFN-g, but not in other strains. The activation of Th1 cells in a
proinflammatory environment and their interplay with microglial
cells are causative of neuroinflammation (170). Moreover, the
adoptive transfer of Ab-activated Th1 cells, but not Th2 cells, in
mice results in local microglial activation and exacerbation of AD
Frontiers in Immunology | www.frontiersin.org 1048
in a mouse model (171). As the patients with CNS
neurodegenerative diseases such as AD and glaucoma assume a
generally proinflammatory state, the immune response with self-
antigen vaccination should be carefully modified, as the induction
of proinflammatory Th1 cells may further tilt the balance of
immunity. In turn, a vaccination that induces a predominant
Th2 response is preferred and helps restore Th1/Th2 imbalance
(151, 172). In the study of AD, a dominant Th2-type response has
been achieved by multiple means, such as applying Th2-inducing
adjuvants (alum) (173), modifying the structures of the self-
antigen (174), liposome coating (175), DNA vaccination (176),
intranasal immunization (177), and transcutaneous delivery (178),
but activation of Th1 cells cannot be fully eradicated and may still
be considered a potential risk. Currently, the only safety data of
immune modulation therapy in glaucoma patients come from the
pilot clinical trial of the Cop-1 vaccine, which shows no other
adverse events other than injection site pain (166). In a rat
glaucoma model, systemic administration of Cop-1 with
complete Freud’s adjuvant evokes a strong Th2 response and IL-
4 secretion that peaks at 7 days and lasts for more than 31 days,
with no obvious Th1 activation (179). In addition, as an old drug
in MS that has been monitored for more than 2 decades,
subcutaneous injection of Copaxone® daily or three times per
week is well tolerated, which is also suitable for children and
pregnant women (180, 181). These results support the Cop-1
vaccine as a relatively safe therapy, but its long-term safety in
glaucoma should be further elucidated.

Currently, Cop-1 vaccination is the only immune modulation
therapy that has been tested in animals and patients with
glaucoma, and more clinical data are expected to reflect its
validity in patients. In CNS neurodegenerative diseases, many
forms of passive or active immune modulation therapy have
been explored, including self-antigen vaccination (182), DNA
vaccination (183, 184), and transfer Treg cells (185, 186). The
highly shared pathological and immunological features of
glaucoma with other CNS neurodegenerative diseases support
these therapies as rational options for glaucoma, which is worth
further investigation. In addition, parallel changes in retinal
neurons with the CNS have been observed in animals and
patients on immune modulation therapy for CNS disorders
(187, 188). However, the development and clinical translation
of a mature immune modulation therapy for glaucoma are much
more challenging than expected. Experience from clinical trials
of AD and other CNS neurodegenerative diseases implicates
numerous factors that may affect the efficacy and safety of
immune modulation therapy, including antigens for immune
induction, the time window of injection, frequency and amount
of injection, drug delivery route, adjuvants, drug carriers, and
individual factors (age, sex, etc.) (153). The development of a
suitable regimen for a specific disease should be explored on a
case-by-case basis. For example, Cop-1 immunization prior to or
on the day of OHT damage significantly prevents RGC loss,
while immunization 48 hours later generates no protection (189).
In addition, a single Cop-1 immunization with complete Fraud’s
adjuvant in a mouse acute OHT model is protective, but it dose
not work for the optic nerve transection injury or amyotrophic
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lateral sclerosis (ALS) (190, 191). On the other hand, daily
subcutaneous injection of Cop-1 is most effective for MS, but
this regimen causes negative effects on the female mouse ALS
model (191). Thus, a careful selection of regimens based on
extensive animal and human studies is essential for an immune
modulation therapy for glaucoma. Most importantly, researchers
need to keep in mind that chronic neurodegeneration is
multifactorial and highly complicated, and the efficacy
observed on pathology may not translate into clinical
improvement. For example, Ab42 immunization in
Alzheimer’s patients showed obvious benefits of prolonged
plaque removal. Nevertheless, most of the patients progressed
to Braak stage V-VI and developed severe dementia before death
(192). Thus, a reliable clinical evaluation of drug efficacy is vital
for immune modulation therapy of glaucoma and other
neurodegenerative diseases.

Above all, the development of a mature immunomodulation
therapy for glaucoma needs many more investigations on its
safety and practical conditions. Special attention should be given
to avoid unwanted exacerbation of the Th1-mediated response.
In addition to Cop-1 immunization, more novel therapies, such
as DNA vaccination and cell therapy, are also worthy of
investigation in glaucoma.
SUMMARY AND CONCLUSIONS

The perspectives on the pathogenesis of glaucoma are
continuously updating, and debates are ongoing as new
evidence from animal or clinical studies comes out. Although
the research, diagnosis, and treatment focus primarily on IOP, T
cell-mediated immune attack and its dynamic interplay with
retinal microglial cells have been recognized to be the culprit of
glaucoma. Researchers are attempting to shape the immune
reaction to take advantage of its favorable neuroprotective
effect. However, currently, no clear clinical evidence on the
beneficial role of immunomodulation therapy in glaucoma
patients has been illuminated on patients. Most importantly,
signs of activation of autoimmunity and imbalance of immune
reactions, including autoantibodies, a shift in the T cell
subpopulation, and activation of retinal innate immunity, are
clearly involved in the early phase of glaucoma. However,
whether these clinical signs and associated biomarkers can
assist the early diagnosis and primary prevention of glaucoma
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remains elusive. In addition, basic research on the autoimmune
aspects of glaucoma is still a fresh field. Many theories of
immune reactions in glaucoma basically come from findings
from other CNS neurodegenerative diseases. In particular, the
spatial-temporal breakdown of the BRB and retinal infiltration of
peripheral immune cells during the chronic disease course in
glaucoma patients are needed to illuminate the real contribution
of T cells. As with other neurodegenerative diseases, a chronic
animal disease model that mimics the true complexity and
chronicity of glaucoma development in humans is lacking.
Thus, findings from the acute OHT model may not reflect the
whole picture, and more autopsy studies from human glaucoma
samples may provide more valuable information. Moreover, the
close overlap of glaucoma with other CNS neurodegenerative
diseases indicates the need for a closer follow-up of patients in
both ophthalmic and neurologic clinics. Their common
pathogenesis in immune-mediated neurodegeneration indicates
the possibility of their parallel progression and reaction to
common therapies. Therefore, the ophthalmic follow-up of
patients with CNS neurodegenerative disease going on trials of
immunomodulation therapy may also provide valuable insights
for glaucoma treatment.
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et al. Bilateral Early Activation of Macroglial Retinal Cells in a Mouse Model
Frontiers in Immunology | www.frontiersin.org 1452
of Unilateral Laser-Induced Experimental Glaucoma. Glia (2017) 65:E104.
doi: 10.1002/glia.23157

104. Bosco A, Steele MR, Vetter ML. Early Microglia Activation in a Mouse
Model of Chronic Glaucoma. J Comp Neurol (2011) 519(4):599–620.
doi: 10.1002/cne.22516

105. Wang M, Wang X, Zhao L, MaW, Rodriguez IR, Fariss RN, et al. Macroglia-
Microglia Interactions via TSPO Signaling Regulates Microglial Activation in
the Mouse Retina. J Neurosci Off J Soc Neurosci (2014) 34(10):3793–806.
doi: 10.1523/jneurosci.3153-13.2014

106. Ellis-Behnke RG, Jonas RA, Jonas JB. The Microglial System in the Eye and
Brain in Response to Stimuli In Vivo. J Glaucoma (2013) 22(Suppl 5):S32–5.
doi: 10.1097/IJG.0b013e3182934aca

107. Tang Y, Le W. Differential Roles of M1 and M2 Microglia in
Neurodegenerative Diseases. Mol Neurobiol (2016) 53(2):1181–94.
doi: 10.1007/s12035-014-9070-5

108. Fan YY, Huo J. A1/A2 Astrocytes in Central Nervous System Injuries and
Diseases: Angels or Devils? Neurochem Int (2021) 148:1–20. doi: 10.1016/
j.neuint.2021.105080

109. Varnum MM, Ikezu T. The Classification of Microglial Activation
Phenotypes on Neurodegeneration and Regeneration in Alzheimer’s
Disease Brain. Archivum Immunologiae Therapiae Experimentalis (2012)
60(4):251–66. doi: 10.1007/s00005-012-0181-2

110. Zhao X, Sun R, Luo X, Wang F, Sun X. The Interaction Between Microglia
and Macroglia in Glaucoma. Front Neurosci (2021) 15:610788. doi: 10.3389/
fnins.2021.610788

111. Luo C, Yang X, Kain AD, Powell DW, Kuehn MH, Tezel G. Glaucomatous
Tissue Stress and the Regulation of Immune Response Through Glial Toll-
Like Receptor Signaling. Invest Ophthalmol Visual Sci (2010) 51(11):5697–
707. doi: 10.1167/iovs.10-5407
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High TRGV 9 Subfamily
Expression Marks an Improved
Overall Survival in Patients With
Acute Myeloid Leukemia
Xueting Kong1†, Jiamian Zheng1†, Xiaxin Liu1†, Wandi Wang1, Xuan Jiang1, Jie Chen2,
Jing Lai2, Zhenyi Jin1,3* and Xiuli Wu1*
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Background: Heterogeneous T cells in acute myeloid leukemia (AML) have the
combinatorial variety generated by different T cell receptors (TCRs). gd T cells are a
distinct subgroup of T cells containing TCRg (TRGV) and TCRd (TRDV) subfamilies with
diverse structural and functional heterogeneity. Our previous study showed that clonally
expanded TRDV T cells might benefit the immune response directed against AML.
However, the features of the TRGV repertoire in AML remain unknown. To fully
characterize the features of gd T cells, we analyzed the distribution and clonality of
TRGV I-III subfamilies (TRGV II is also termed TRVG 9), the proportions of gd T cell subsets,
and their effects on the overall survival (OS) of patients with AML.

Methods: In this study, the complementarity-determining region 3 (CDR3) size of TRGV
subfamilies in gd T cells of peripheral blood (PB) from de novo AML patients were analyzed
by Genescan analysis. Expression levels of TRGV subfamilies were performed by real-time
quantitative PCR. The proportions of total gd T cells and their Vg9+ Vd2+ T cells subsets
were detected by multicolor flow cytometry assay. We further compared the correlation
among the TRGV gene expression levels, the proportion of Vg9+ Vd2+ T cells, and OS in
AML.

Results: We first found that the distribution pattern and clonality of TRGV subfamilies
were changed. The expression frequencies and gene expression levels of three TRGV
subfamilies in AML samples were significantly lower than those in healthy individuals (HIs).
Compared with HIs, the proportions of total gd T cells and Vg9+ Vd2+ T cells were also
significantly decreased in patients with AML. In addition, patients with AML who had
higher expression levels of the TRGV gene and higher proportion of Vg9+ Vd2+ T cells
showed better OS than their counterparts. Furthermore, high expression levels of TRGV 9
and proportion of Vg9+ Vd2+ T cells were identified as independent protective factors for
complete remission in patients with AML.
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Conclusions: The restriction of TRGV usage might be related to the preference of usage
of gd T cells. Higher expression of TRGV subfamilies might be associated with better OS in
AML. Higher TRGV 9 expression and increased Vg9+ Vd2+ T cells subfamilies might
indicate a better prognosis in patients with AML.
Keywords: acute myeloid leukemia, gd T cells, TRGV repertoire, clonality, prognosis
INTRODUCTION

Acute myeloid leukemia (AML) is a malignant clonal disease
originating from hematopoietic stem cells and characterized by
genetic and clinical heterogeneity and high mortality (1). Despite
considerable progress in treating hematological malignancies,
clinical outcomes of patients older than 60 years are unfavorable,
and the overall long-term survival in patients with AML remains
poor (2). Recent studies have revealed that T cell immunodeficiency
is a common characteristic of patients with AML, mainly due to
peripheral T cells that restricted oligoclonal T cell repertoires,
reduced thymic output function, and lower activation and
response to antigens (3, 4).

T cells recognize specific ligands by specific T cell receptors
(TCRs), which are heterodimers consisting of either ab and gd
chains. Genes encode for the variable domains of TRG (g chain)
and TRD (d chain), which are assembled by somatic
recombination from variable (V), diversity (D, only for TRD),
and joining (J) segments and compose three hypervariable or
complementarity-determining regions (CDR1, CDR2, and
CDR3) that occur during T cell differentiation (5, 6). The TRG
gene contains several different functional variable (TRGV)
segments belonging to four subgroups (TRGV I–IV), and the
TRD gene contains at least eight functional TRDV segments that
are subdivided into eight TRDV subfamilies (TRDV 1–8) (5–9).
Previous studies showed that TRGV IV was a pseudogene, which
was a simple combination between TRGV IV and TRGC segment
lacking TRGJ segment and there was no any rearrangement in
CDR3 by sequencing (10, 11). Hence, the analysis of TRGV
repertoire was acquired in three TRGV subfamilies in the present
study. Nowadays, according to their TRD (TCRd) chain usage,
human gd T cells are mainly divided into 2 major subsets
including Vd1 and Vd2 in peripheral blood (PB). Several
functional TRG (TCRg) gene segments are generally divided
into Vg2, g3, g4, g5, g8, g9, g10 (also termed TRGV 2, TRGV 3,
TRGV 4, TRGV 5, TRGV 8, TRGV 9 and TRGV10, respectively)
(12, 13). The V-genes of TRGV 2-5 and TRGV 8 have a relatively
high sequence similarity, which are different from TRGV 9
sequences. Different TCRg chains and TCRd chains can be
combined to form different types of gd T cells (14). Although
emia; TCRs, T cell receptors; CDR,
B, peripheral blood; HIs, healthy
, real-time quantitative PCR; WBC,
T, platelet; BM, bone marrow; FAB,
ission; OR, odds ratio; CI, confidence
atio; ITP, immune thrombocytopenic
se; MM, multiple myeloma; HSCT,
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Vd1 T cells are predominantly associated with the Vd1
comprising TRGV 2, TRGV 3, TRGV 4, TRGV 5, TRGV 8,
which belonging to TRGV I subsets, the majority of Vd2 T
cells express an invariant TCR harboring TRGV 9, which
belonging to TRGV II subsets (15). In addition, TRGV 10
belongings to TRGV III subsets (12). In the PB of healthy
individuals (HIs), there is a predominant expression in the gd
T cell population, which is the cell expressing Vg9 together with
Vd2, termed Vg9+ Vd2+ T cells (15, 16). The roles of some T cell
subgroups in cancer are controversial because they have been
suggested to play both an anti-tumor role and a pro-tumor role.
The heterogeneous T cells in AML have the combinatorial
variety generated by different TCRs, which might explain why
some special T cell subsets have a controversial role in cancer
immunity. Although PD-1+Vb5.2+ and PD-1+Vb12+ CD8+ T
cells were thought to be related to poor prognosis in AML (17),
our previous study found that clonally expanded TRDV T cells
might benefit the immune response directed against AML (18).
However, the features of the TRGV repertoire in AML remain
unknown, and the cellular immunity characteristics of AML have
yet to be fully elucidated. To further understand the
heterogeneity of gd T cells, in this study, we first analyzed the
distribution pattern and clonality of TRGV subfamilies and
further investigated correlation between expression levels of
TRGV subfamilies and proportion of Vg9+ Vd2+ T cells and
their clinical relevance in patients with AML.
MATERIALS AND METHODS

Samples
PB samples were collected from 75 patients with de novo AML (42
males and 33 females,median age 48 years, range 18–88 years) from
January 2015 toDecember 2021. A total of 51HIs (29males and 22
females,median age 45 years, range 25–83 years) served as controls.
Among the total samples, there were 56 patients with AML and 33
HIswere used to analyze the expression levels ofTRGV subfamilies.
Of the 56 patients identified, 50 patients with both available TRGV
gene expression data and outcome information were eventually
included in the survival analysis. In addition, the PB of extra 19
patients withAML and 18HIs were analyzed by flow cytometry. Of
the 19 patients, 18 patients with both available flow cytometry data
and outcome information were also included in survival analysis.
The clinical information was showed in Table 1 and
Supplementary Table 1. Informed consent was obtained from all
participants. The protocol of all experiments was approved by the
Ethics Committee of First Affiliated Hospital, Medical School of
Jinan University.
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Mononuclear Cell Isolation and gd TCell Sorting
The Ficoll–Hypaque gradient centrifugation method was used to
isolate mononuclear cells from fresh PB. The gd T cells were
sorted by gd monoclonal antibodies and MACS magnetic cell
sorting technique (Miltenyi Biotec, Germany) (19). All samples
were freshly obtained and subjected to immediate preparation.

RNA Isolation and cDNA Synthesis
According to the manufacturer’s recommendations, total RNA of gd
T cells was extracted by Trizol (Invitrogen, USA). Superscript II Kit
(Gibco, USA) was used to synthesize the first single-strand
complementary DNA (cDNA). Subsequently, the quality of cDNA
was confirmed by RT-PCR for b2 microglubin (b2M) gene
amplification (the primers of b2M gene for RT-PCR were list in
Table 2) (20).

RT-PCR for TRGV Subfamily Amplification
and Genescan Analysis for TRGV
Subfamily Clonality Analysis
Three sense TRGV primers and a single TRGC reverse primer
were used in unlabeled PCR for the amplification of the TRGV
Frontiers in Immunology | www.frontiersin.org 358
subfamilies. Runoff PCR was performed with fluorescent primers
labeled at the 5’ end with the FAM fluorophore (Cg-FAM) (TIB
MOLBIOL GmbH, Germany). A DNA thermal cycler (BioMetra,
Germany) was used to perform this reaction process. The
primers are listed in Table 2. PCR was performed as described
in our previous report (19–21). Aliquots of cDNA (1 mL) were
amplified in 20 mL reactions with one of the three Vg primers and
a Cg primer. The final reaction mixture contained 0.5 mM sense
primer and antisense primer, 0.1 mM dNTPs, 1.5 mMMgCl2, 1×
PCR buffer, and 1.25 U Taq polymerase (Promega, USA). After 3
min of denaturation at 94°C, 40 PCR cycles were carried out
(94°C for 1 min, 60°C for 1 min, and 72°C for 1 min and a final
elongation for 6 min at 72°C). All PCR products were stored at
4°C and ready for Genescan analysis (22).

Aliquots of the unlabeled PCR products (2 mL) were subjected
to a cycle of runoff reaction with a fluorophore-labeled Cg-FAM
primer. The labeled runoff PCR products (2 mL) were heat-
denatured at 94°C for 4 min with 9.5 mL of formamide (Hi-Di
Formamide, ABI, USA) and 0.5 mL of size standards
(GENESCAN™-500-LIZ™, Perkin Elmer, USA). The samples
were then loaded on 3100 POP-4™ gel (Performance Optimized
Polymer-4, ABI, USA) and resolved by electrophoresis in an ABI
3100 DNA sequencer for size and fluorescence intensity
determination using Genescan software (23).

Real-Time Quantitative PCR (qPCR) for
TRGV Gene
Thegeneexpression levelsof theTRGV subfamilies incDNAof gdT
cells were determined by qPCR with SYBR Green I technique, and
the b2-microglobulin (b2M) gene was used as an endogenous
reference. The primers are listed in Table 2. qPCR was performed
as described by Stams WAG et al. and our previous study (10, 24–
26). In brief, qPCR was performed in a total volume of 20 mL with
approximately 1mL cDNA, 0.5 mMof each primer (one of the three
TRGV sense primer and the antisense primer Cg for TRGV
amplification, b2M-for and b2M-back primers for b2M gene
amplification), 2x RealMastrMix 10 mL (Tiangen, China). After 2
min of denaturation at 95°C, 40 PCR cycles were carried out (95°C
for 15 s, 58°C for 20 s, and 72°C for 30 s). At the end of each run,
melting curve analysis was performed starting at 65°C up to 95°C
with an increase of 1°C per 2 s to verify primer specificities. Specific
amplification of PCR products was analyzed by melting curve
analysis. qPCR was repeated in at least three separate
experiments. The following equation was used to calculate the
relative expression level to the b2M gene for each target PCR.
RelativemRNAexpression= 2-DCt × 100% [DCt =Ct(TRGV subfamilies)

– Ct(b2M)] (15).
TABLE 1 | Clinical characteristics of AML patients.

Factor AML

Number 75
Age (median; range) 48 (18-88)
Gender (Male/Female) 42/33
WBC (×109/L), (median; range) 23.10 (1-325.42)
RBC (×1012/L), (median; range) 2.51 (1.28-5.67)
PLT (×109/L), (median; range) 44.1 (4-632)
BM blast cells (%), (median; range) 63 (20-94)
FAB subtype (n=75)
M0 6
M1 2
M2 16
M3 12
M4 9
M5 18
M6 /
M7 /
Undetermined 12
Gene mutation
FLT3 (+/-) 12/63
NPM1 (+/-) 9/66
PML/RARA (+/-) 8/67
MLL (+/-) 6/69
TP53 (+/-) 4/71
AML1/ETO (+/-) 5/70
Others (+/-) 9/66
Unknown (+/-) 29/46
Cytogenetic abnormality
Normal (+/-) 6/69
Abnormal (+/-) 25/50
Unknown (+/-) 44/31
Treatment
Chemotherapy (+/-) 66/9
HSCT (+/-) 9/66
AML, acute myeloid leukemia; WBC, white blood cell; RBC, red blood cell; PLT, platelet;
BM blast cells, bone marrow blast cells; FAB, French-American-British; M0, minimally
differentiated AML; M1, AML without maturation; M2, AML with maturation; M3, acute
promyelocytic leukemia; M4, acute myelomonocytic leukemia; M5, acute monocytic
leukemia; M6, pure erythroid leukemia; M7, Acute megakaryoblastic leukemia; HSCT,
hematopoietic stem cell transplantation; /, unknown.
TABLE 2 | Sequences of primers used in RT-PCR and qPCR.

Primer Sequence

TRGV I 5’-TACCTACACCAGGAGGGGAAG-3’
TRGV 9 5’-GGCACTGTCAGAAAGGAATC-3’
TRGV III 5’-TCGACGCAGCATGGGTAAGAC-3’
Cg 5’- GTTGCTCTTCTTTTCTTGCC-3’
Cg-FAM 5’-FAM-CATCTGCATCAAGTTGTTTATC-3’
b2M-for 5’-TACACTGAATTCACCCCCAC-3’
b2M-back 5’-CATCCAATCCAAATGCGGCA-3’
F
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Flow Cytometry
The following monoclonal antibodies APC/Cy7 anti-human
CD3 (clone SK7), PE/Cy7 anti-human TCR g/d (clone B1),
PerCP anti-human TCR Vd2 (clone B6), and APC anti-human
TCR Vg9 (clone B3; Biolegend, USA) were used for cell surface
staining following the manufacturer’s instructions (27). The
stained cells were examined with BD FACS VERSE flow
cytometer (BD, USA), and data were analyzed by Flowjo
software (Flowjo LLC, USA).

Statistical Analysis
In this study, data were presented as median. Fisher’s exact test
was used to compare expression frequencies of three TRGV
subfamilies between AML patients and HIs. Kruskal–Wallis test
was used for comparison of different gene expression levels from
different TRGV subfamilies in AML and HIs. Differences in
mRNA expression level of TRGV between two groups were
analyzed using the Mann–Whitney U test. Pearson correlation
analysis was used to analyze the correlation of mRNA expression
levels of TRGV subfamilies between two groups. Binary logistic
regression analysis was performed to determine associations
between expression levels of three TRGV subfamilies and
clinical outcome of the AML patients. Through Kaplan-Meier
method and cox regression analysis the effect of TRGV
expression and the proportion of Vg9+ Vd2+ T cells on
prognosis of AML were analyzed. All analyses included the
following variables: including gender, age, white blood cell
(WBC), red blood cell (RBC), platelet (PLT), bone marrow
(BM) blast cells, French-American-British (FAB) subtype, gene
mutation and treatment in patients. Only values with P < 0.05
was regarded as statistically significant. All results were analyzed
by SPSS 25.0 and GraphPad Prism 8.4.
RESULTS

Expression Pattern and Clonality of the
TRGV Repertoire in Patients With De Novo
AML
In this study, the CDR3 region of three TRGV subfamily
genes was analyzed by Genescan analysis in gd T cells from
30 patients with de novo AML and 10 HIs to assess the spectral
pattern visually. Diversity and clonality of TCR repertoire
demonstrated the ability of specific amplifications to respond
to antigen stimulation. Based on the CDR3 TCR rearrangement
lengths, the clonality of gd T cells was characterized as
multipeaks and oligopeaks responding to polyclonality and
oligoclonality. Polyclonality of the TRGV subfamily genes
displayed a Gaussian distribution consisting of three or more
peaks, and oligoclonality was a skewed spectral profile showing
a single dominant peak. In this study, all patients with AML had
a significantly skewed TCR repertoire with 16–21 of the three
TRGV subfamilies (TRGV I, 9, and III) detected in each patient.
Among AML samples, the most frequently expressed subfamily
members were TRGV III (70%, 21/30) and TRGV 9 (66.67%, 20/
30). TRGV I from patients with AML was detected only in 16
Frontiers in Immunology | www.frontiersin.org 459
cases (53.33%, 16/30; Figures 1A–D). All of the three TRGV
subfamilies could be detected in gd T cells from HIs. The
expression frequencies of the TRGV I and TRGV 9
subfamilies in patients with AML were lower than those in
HIs (TRGV I: P = 0.007, TRGV 9: P = 0.043), whereas the TRGV
III subfamily in AML was similar to that in HIs (P = 0.081;
Figures 2A–C).

The deviation from the Gaussian profile could indicate a
clonally expanded pattern. The PCR products produced only one
peak, which represented that CDR3 lengths were identical,
named oligoclonal pattern. We further analyzed the different
clonotypic expansion patterns in HIs and patients with AML.
Oligoclonal expansion was detected in the TRGV subfamily from
six out of 30 cases in patients with AML (Figure 1D). The
expression frequencies of clonally expanded TRGV subfamilies
in the patients with AML were as follows: TRGV III (17%, 5/30),
TRGV I (10%, 3/30), and TRGV 9 (10%, 3/30). However, there
were no clonally expanded TRGV subfamilies that could be
identified in HIs. Based on the clonally expanded pattern, we
divided the clonal expansion frequency of the three TRGV
subfamilies into three groups: polyclonality, oligoclonality and
negative groups. The results showed a significant difference
between patients with AML and HIs, and the clonal expansion
frequencies of the TRGV subfamilies were statistically higher
than those of HIs (TRGV I: P = 0.004; TRGV 9: P = 0.040; and
TRGV III: P = 0.028; Figures 2D–F).

Gene Expression Level of the
TRGV Subfamily
Subsequently, we focused on detecting expression levels of TRGV
subfamilies by qPCR, so we expanded the samples’ quantity, and
further collected extra 26 AML samples on the basis of the
original 30 samples. Therefore, three TRGV genes expression
levels in a total of 56 patients with AML and 33 HIs as control
were detected in our study. Results showed significant differences
of expression levels in the TRGV subfamilies of HIs (c2 = 9.998,
P = 0.007) between TRGV I and TRGV 9 (P = 0.158), TRGV 9
and TRGV III (P = 0.002), and TRGV I and TRGV III (P = 0.082;
Figure 3A). There were also significant differences in the TRGV
subfamilies of AML (c2 = 7.208, P = 0.027) between TRGV I and
TRGV 9 (P = 0.679), TRGV 9 and TRGV III (P = 0.014), and
TRGV I and TRGV III (P = 0.032; Figure 3B). We further
compared the gene expression levels of the TRGV subfamilies in
patients with AML and HIs. The gene expression levels of the
three TRGV subfamilies in AML were lower than those in HIs
(P < 0.001, P < 0.001, and P < 0.001; Figures 3C, G).

We also obtained more insight to investigate the correlation of
the gene expression levels of the threeTRGV subfamilies inHIs and
patients with AML. In HIs, a significant positive correlation was
found in the expression levels ofTRGV I andTRGV9 (r= 0.582,P<
0.001),TRGVI andTRGVIII (r=0.485,P=0.004), andTRGV9and
TRGV III (r = 0.591, P < 0.001; Figures 3D–F). A positive
correlation in the expression levels of TRGV I and TRGV 9 (r =
0.479, P < 0.001), TRGV I and TRGV III (r = 0.611, P < 0.001), and
TRGV 9 and TRGV III (r = 0.609, P < 0.001) was also observed in
patients with AML (Figures 3D–F).
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Proportions of Total gd T Cells and Vg9+
Vd2+ Subsets in patients With AML
Based on previous finding, we were more interested in
proportions of total gd T cells and Vg9+ Vd2+ T cell subsets
from PB, so another 19 AML samples and 18 HIs were further
collected and analyzed for FACS (Figures 4A–D). Compared
with HIs, significantly lower proportions of total gd T cells
(median: 4.83% vs. 10.5%) and Vg9+ Vd2+ T cells (median:
Frontiers in Immunology | www.frontiersin.org 560
57.9% vs. 84.25%) were found in patients with AML (P < 0.001
and P = 0.001, respectively; Figures 4E, F).

TRGV Repertoire and Its Clinical
Relevance in AML
Despite the increased insight into the phenotype of gd T cells,
whether it correlates with clinical outcome remains poorly
understood. To further understand the role of the TRGV
A C

B D

FIGURE 1 | Distribution and clonality of TRGV subfamilies in gd T cells from 10 healthy individuals and 30 patients with AML. The feature of distribution and clonality
of TRGV subfamilies in healthy individuals and patients with AML (A, B). Expression pattern of TRGV subfamilies in one case of healthy individual and six AML patients
(C, D). P, polyclonality; O, oligoclonality; N, negative.
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subfamily and the prognosis of patients with AML, we analyzed
correlation between the expression levels of TRGV subfamily genes
and the frequency of Vg9+ Vd2+ T cells with the clinical prognosis of
AML. We first focused on whether expression levels of TRGV
subfamily genes affected AML clinical prognosis and assessed the
clinical prognosis of the 56 AML patients. Due to 6 patients who
refused therapy and voluntarily left the hospital, we finally analyzed
the prognosis and outcome of 50 AML patients. Univariate and
multivariate logistic regression analysis were used to analyze the
expressive levels of three TRGV subfamilies and other impact
factors, including gender, age, WBC, RBC, PLT, BM blast cells,
AML subtype, gene mutation and treatment in patients with AML.
The patients who followed up after first-cycle chemotherapy were
divided into complete remission (CR) and non-CR groups based on
BM smears and flow cytometry analysis. Univariate logistic
regression analysis demonstrated high WBC counts was an
independent risk factor for CR (P = 0.023, odds ratio (OR) =
1.013, 95% confidence interval (CI): 1.002-1.024), whereas high
expression levels of TRGV I, TRGV 9, and TRGV III were the
significant independent protective factors for CR (TRGV I: P =
0.012, OR = 0.211, 95% CI: 0.062-0.711; TRGV 9: P = 0.012, OR =
0.211, 95% CI: 0.062-0.711; TRGV III: P = 0.003, OR = 0.141, 95%
CI: 0.039-0.504),. However, there was no significant difference in
Frontiers in Immunology | www.frontiersin.org 661
gender, age, RBC, PLT, BM blast cells, AML subtype, gene mutation
and treatment (P > 0.05). Interestingly, multivariate logistic
regression analysis showed that TRGV 9 expression was an
independent protective factor for CR (TRGV 9: P = 0.035, OR =
0.079, 95% CI: 0.007-0.831). Besides, we further used univariate and
multivariate cox regression analysis to further analyze the
relationship between those factors and overall survival (OS) in
AML patients. Univariate cox regression analysis showed that high
counts of WBC (P = 0.001, hazard ratio (HR) = 1.010, 95% CI:
1.004-1.015) and the AML subtype (non-M3) (P = 0.047, HR =
7.845, 95% CI: 1.028-59.865) was associated with unfavorable OS in
AML patients. Importantly, high expression levels of TRGV I,
TRGV 9, and TRGV III were associated with favorable OS in
AML patients (TRGV I: P = 0.018, HR = 0.258, 95% CI: 0.084-
0.794; TRGV 9: P = 0.004, HR = 0.111, 95% CI: 0.025-0.488; TRGV
III: P = 0.028, HR = 0.283, 95% CI: 0.092-0.871). Multivariate cox
regression analysis also showed that high TRGV 9 expression could
mark an improved OS in patients with AML (TRGV 9: P = 0.048,
HR = 0.084, 95% CI: 0.007-0.979; Table 3).

Furthermore, we also used the same way to access the
relationship between the proportion of gd T cells, Vg9+ Vd2+ T
cells and the prognosis of 19 AML patients. Univariate logistic
regression analysis showed that the high proportion of Vg9+ Vd2+
A B C

D E F

FIGURE 2 | Frequencies of the TRGV subfamilies in gd T cells from 10 healthy individuals and 30 patients with AML. The expression frequencies of three TRGV
subfamilies in healthy individuals and patients with AML (using the Fisher’s exact test) (A–C). The clonal expansion frequency of the three TRGV subfamilies in healthy
individuals and patients with AML (using the Fisher’s exact test) (D–F). P, polyclonality; O, oligoclonality; N, negative.
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T cells was an independent protected factor for CR (P = 0.044, OR
= 0.963, 95% CI: 0.927-0.999), and age was an independent risk
factor for AML-CR (P = 0.035, OR = 1.128, 95% CI: 1.009-1.261),
but there was no significant difference in gd T cells and other
factors (gender, age, WBC, RBC, PLT, BM blast cells, AML
subtype, gene mutation and treatment) (P > 0.05) (data were
not showed). Due to insufficient numbers of AML samples, there
was no significant difference in multivariate logistic regression
analysis. There was one patient was voluntarily left the hospital
because of impact of COVID-19 in total 19 AML patients, so we
collected outcome of 18 AML patients. Univariate cox regression
analysis showed that patients with high proportion of gd T cells
had low risk of death than those with low proportion (P = 0.008,
hazard ratio (HR) = 0.109, 95% CI: 0.021-0.564), while
multivariate cox regression analysis showed no significant
difference (P > 0.05) (data were not showed).
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The Relationship Between TRGV
Expression and Prognosis in AML Patients
The survival analysis demonstrated that the high expression
levels of TRGV I, TRGV 9 and TRGV III were significant
related to better OS (P = 0.011; P < 0.001; P = 0.019)
(Figures 5A–C). To better understand the combination of
three TRGV subfamilies in predicting the OS of AML patients,
we divided patients into the following 3 groups: TRGV Ihigh

TRGV 9high TRGV IIIhigh, TRGV I, TRGV 9, or TRGV IIIhigh and
TRGV Ilow TRGV 9low TRGV IIIlow. Interestingly, the results
suggested that the group of TRGV Ihigh TRGV 9high TRGV IIIhigh

had longer survival time (P = 0.001) (Figure 5D). Next, we
further access the proportion of Vg9+ Vd2+ T cells from PB with
the clinical outcome of AML patients. The OS in high Vg9+ Vd2+

T cells were longer than those in low Vg9+ Vd2+ T cells group
(P = 0.039) (Figure 5E).
A

B

C

D G

E

F

FIGURE 3 | Pattern of expression levels of three TRGV subfamilies in gd T cells from 33 cases with healthy individuals and 56 cases with AML (using the Mann
Whitney test) (A–C). Correlations among three TRGV subfamilies in 33 healthy individuals and 56 patients with AML (using the Pearson correlation analysis) (D–F).
Heatmap representing the expression levels of three TRGV subfamilies in 33 healthy individuals and 56 patients with AML (G).
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DISCUSSION

The attractive features of gd T cells include non-MHC-restricted
antigen recognition and abundant cytokine secretion capacity,
Frontiers in Immunology | www.frontiersin.org 863
which have raised expectations for their application in cancer
adoptive immunotherapy (28–30). The combinatorial variety
generated by different TCRs might be the reason why gd T cells
can exert diverse actions in distinct pathological types of diseases
A

C

B

D

E

F

FIGURE 4 | Gating strategy for identifying the percentage of gd T cells from PB in 18 HIs and 19 patients with AML. Flow cytometry detection of the percentage of
CD3+ gd T cells and Vg9+ Vd2+ T cells in HIs (A, B) and patients with AML (C, D). The percentage of gd T cells in HIs and patients with AML (using the Mann Whitney
test) (E). Comparison of the percentages of Vg9+ Vd2+ T cells in HIs and patients with AML (using the Mann Whitney test) (F).
TABLE 3 | Univariate and multivariate logistic and cox regression analysis in AML patients.

Variables Univariate logistic regression Multivariate logistic regression Univariate cox regression Multivariate cox regression

OR P-value OR P-value HR P-value HR P-value
(95% CI) (95% CI) (95% CI) (95% CI)

Sex (reference male)
Female 0.923 (0.297, 2.865) 0.890 0.212 (0.026, 1.697) 0.144 1.602 (0.617, 4.158) 0.333 0.957 (0.314, 2.919) 0.938
Age (year) 1.034 (0.999, 1.070) 0.059 1.064 (1.000, 1.134) 0.052 1.016 (0.985, 1.049) 0.309 1.002 (0.964, 1.042) 0.915
WBC, 109/L 1.013 (1.002, 1.024) 0.023 1.010 (0.991, 1.029) 0.325 1.010 (1.004, 1.015) 0.001 1.009 (1.000, 1.018) 0.059
RBC, 1012/L 1.139 (0.599, 2.168) 0.691 4.044 (0.797, 20.528) 0.092 0.896 (0.512, 1.568) 0.700 3.049 (1.093, 8.503) 0.033
PLT, 109/L 1.000 (0.994, 1.006) 0.975 1.001 (0.992, 1.010) 0.824 1.000 (0.995, 1.005) 0.984 1.004 (0.996, 1.012) 0.341
BM blast cell, % 1.002 (0.972, 1.033) 0.905 1.024 (0.974, 1.075) 0.354 1.007 (0.981, 1.034) 0.592 1.008 (0.973, 1.045) 0.653
FAB subtype (reference non-M3)
M3-AML 4.275 (0.816, 22.390) 0.086 1.071 (0.045, 25.315) 0.966 7.845 (1.028, 59.865) 0.047 4.584 (0.197, 106.861) 0.343
Gene mutation (reference non-FLT3 mutation)
FLT3 mutation 0.404 (0.073, 2.235) 0.299 0.126 (0.009, 1.711) 0.120 1.475 (0.48, 4.532) 0.497 1.937 (0.373, 10.060) 0.431
Treatment (reference chemotherapy)
HSCT 0.800 (0.169, 3.793) 0.779 0.904 (0.110, 7.427) 0.925 0.438 (0.099, 1.932) 0.276 0.294 (0.032, 2.656) 0.275
TRGV I 0.211 (0.062, 0.711) 0.012 1.243 (0.086, 17.973) 0.873 0.258 (0.084, 0.794) 0.018 0.552 (0.026, 11.652) 0.703
TRGV 9 0.211 (0.062, 0.711) 0.012 0.079 (0.007, 0.831) 0.035* 0.111 (0.025, 0.488) 0.004 0.084 (0.007, 0.979) 0.048*
TRGV III 0.141 (0.039, 0.504) 0.003 0.069 (0.004, 1.161) 0.063 0.283 (0.092, 0.871) 0.028 1.221 (0.067, 22.238) 0.893
February 2
022 | Volume 13 | Article
AML, acute myeloid leukemia; CR, complete remission; OS, overall survival; OR, odds ratio; 95% CI, 95% confidence interval; HR, hazard ratio; WBC, white blood cell; RBC, red blood cell;
PLT, platelet; M3, acute promyelocytic leukemia; HSCT, hematopoietic stem cell transplantation. *P < 0.05.
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(31). T cell immunodeficiency is a common feature in different
hematological malignancies, including AML, immune
thrombocytopenic purpura (ITP), B cell non-Hodgkin lymphoma,
and graft-versus-host disease (GVHD) (21, 32–34). Analysis of
alterations in the TCR repertoire is a practical approach that can
help understand the involved immunological abnormalities and
provide guidance for clinics in translational research (19). Analysis
of the TRGV and TRDV repertoire provides a global picture of the
distribution and clonal expansion of TCR gd subfamilies in ITP,
multiple myeloma (MM), and GVHD (21, 32, 35, 36). Our previous
study also showed the clonally expanded TRDVT cells in AML (18).
However, the features of the TRGV repertoire in AML
remain unknown.

In this study, we investigated the expression pattern of TCR Vg
(TRGV) subfamilies and characterized the correlation between the
expression of TRGV and clinical outcome in patients with AML.
To further compare the difference in TCR repertoire diversity,
three TRGV gene spectral profiles were examined by Genescan
analysis. In HIs, polyclonal expanded T cells, which showed a
small proportion of multiple peaks, were detected in the majority
of the TRGV subfamily. By contrast, a clonotypic expansion
pattern, which included a high peak together with one or a few
lower peaks named oligoclonality, was a common pattern for each
sample. Skewed expression of the TRGV repertoire was an obvious
Frontiers in Immunology | www.frontiersin.org 964
characteristic of patients with AML compared with HIs who
expressed nearly all of the TRGV subfamilies, which indicated
that patients with AMLmight have low diverse immune responses
due to gd T cell immunodeficiency. The T cell spectra are
commonly characterized by a Gaussian distribution containing
6–8 peaks, which are named polyclonality in HIs, representing a
repertoire that guarantees sufficiently diverse T cell clones (37).
The clonally expanded T cell repertoire was also detected in all
samples in this study. Multiple oligoclonal expanded TRGV
subfamilies were demonstrated in patients with AML who were
different from HIs. Thus, the oligoclonal TRGV repertoire might
be associated with leukemia-associated antigen.

We also found that the gene expression levels of the TRGV
repertoire in gd T cells between AML and HIs were different, and
lower expression levels were found in TRGV genes in AML than
in HIs. The change and pattern of TRGV subfamilies
demonstrated that restrictive TRGV usage might be related to
the preference of usage of gd T cells. The biological significance of
the difference observed remains unknown, so we attempted to
characterize the association between the expression level of the
TRGV repertoire and clinical patient characteristics. Our
previous study showed that TIGIT+ Foxp3+ gd T cells and
TIGIT+ CD226- gd T cells were related to the clinical outcome
of patients with AML (38, 39). In the present study, we further
A B

D E

C

FIGURE 5 | Overall survival (OS) analysis of the gene expression levels of three TRGV subfamilies in 50 AML patients and the percentages of Vg9+ Vd2+ T cells in 18
AML patients. Kaplan–Meier curves showed the OS for the high (blue line) and low (red line) TRGV expression groups (A–C). Kaplan–Meier curves showed the OS
for the co-high expression (blue line), single high expression (green line), and co-low expression (red line) of TRGV I, TRGV 9 and TRGV III (D). Kaplan–Meier curves
showed the OS for the high (blue line) and low (red line) percentages of Vg9+ Vd2+ T cells (E).
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analyzed the relationship between the expression of the TRGV
repertoire and the OS of patients with AML. Our results showed
that a higher expression level of TRGV subfamilies was
associated with better OS in patients with AML, and patients
with highly TRGV I, TRGV 9, and TRGV III genes co-expressed
had better OS than their counterparts. Moreover, we found that
TRGV 9 was an independent protective factor in AML-CR,
thereby indicating that patients with high TRGV 9 expression
may have the better prognosis than those with low expression. In
addition, our data showed that increased Vg9+ Vd2+ T cells
subfamilies in patients with AML might correlate with better
therapeutic effects. Related research showed that gd T cells played
an essential role in cancer (40). Such cells have a long-term
disease-free survival advantage to patients with AML and
increased gd T cells following hematopoietic stem cell
transplantation (HSCT) (41, 42). The known pleiotropic effects
of gd T cells suggest multiple mechanisms by which gd T cells
might promote survival after HSCT, which were consistent with
our findings in patients with AML. Understanding the
characteristics of TRGV subsets in patients with AML may be
helpful for clinical application and promote the treatment of
patients. However, these gd T cell subfamilies exerted certain
anti-leukemia effects, so the anti-leukemia potency of gd T cells
could be exhausted due to prolonged antigenic stimulation. In
the long run, we should choose a specific anti-tumor gd T cell
subgroup in gd T cell immunotherapy and try to use a
combination of gd T cell adoptive immunotherapy and
immune checkpoint inhibitors.

CONCLUSION

Taken together, in addition to the previously reported clonally
expanded TRDV T cells in AML (18), our data further provide a
detailed profile and feature of the TRGV repertoire in patients
with AML. Importantly, the patients with AML who had high
expression level of the TRGV gene or higher proportion of Vg9+

Vd2+ T cells were associated with favorable OS, which may be
related to resorting anti-AML gd T function. Further studies are
required to confirm and dissect the detailed mechanisms. These
findings could partially explain to promote our understanding of
the cellular immune features of gd T cells, which brings hope for
immunotherapy to treat AML patients.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding authors.
Frontiers in Immunology | www.frontiersin.org 1065
ETHICS STATEMENT

The protocol of all experiments was approved by the Ethics
Committee of the First Affiliated Hospital of Jinan University.
The patients/participants provided their written informed
consent to participate in this study. Written informed consent
was obtained from the individual(s) for the publication of any
potentially identifiable images or data included in this article.
AUTHOR CONTRIBUTIONS

XW and ZJ were involved in experimental design and the concept
development. XK and XL conducted the experiments. WW and XJ
contributed to data analysis and figure preparation. JC and JL
provided all samples and clinical data. ZJ, XK, and XW drafted the
manuscript. All authors read and approved the final manuscript.
FUNDING

This study was supported by grants from the National Natural
Science Foundation of China (Nos. 81800143, 81770150, 81200388,
and 82170220), Natural Science Foundation of Guangdong
Province (No. 2018A0303130220 and 2020A1515010817), the
Science and Technology Planning Project of Guangzhou City of
China (No. 201804010425), Medical Scientific Research Foundation
of Guangdong Province (No. A2018565 and A2017198), Special
Funds for the Cultivation of Guangdong College Students’ Scientific
and Technological Innovation (No. 202010559078), and
Guangdong College Students’ Scientific and Technological
Innovation (Nos. CX21283, CX21285, and CX20137).
ACKNOWLEDGMENTS

We want to thank the Flow Facility of Biological Translational
Research Institute of Jinan University, as well as the healthy
volunteers who donated blood for this project. We also thank
Professor Yangqiu Li from Jinan University, who gave valuable
suggestions and guidance for the experiment.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2022.823352/
full#supplementary-material
REFERENCES

1. Vago L, Gojo I. Immune Escape and Immunotherapy of Acute Myeloid
Leukemia. J Clin Invest (2020) 130(4):1552–64. doi: 10.1172/jci129204
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Medical University (Army Medical University), Chongqing, China, 2 Chongqing Key Laboratory for Disease Proteomics,
Chongqing, China

For the skin immune system, gd T cells are important components, which help in
defensing against damage and infection of skin. Compared to the conventional ab T
cells, gd T cells have their own differentiation, development and activation
characteristics. In adult mice, dendritic epidermal T cells (DETCs), Vg4 and Vg6 gd T
cells are the main subsets of skin, the coordination and interaction among them play a
crucial role in wound repair. To get a clear overview of gd T cells, this review synopsizes
their derivation, development, colonization and activation, and focuses their function in
acute and chronic wound healing, as well as the underlining mechanism. The aim of this
paper is to provide cues for the study of human epidermal gd T cells and the potential
treatment for skin rehabilitation.

Keywords: gdT cells, wound healing, DETCs, Vg4, Vg6, homeostasis
INTRODUCTION

gd T cells (according to their gd TCR) were first identified as a novel T-cell subset in the mid-1980s
(1). As a gap between innate and adaptive immune response, they participate in regulating
carcinoma (2), maintaining antimicrobial barrier (3), wound healing (4), psoriasis (5) and graft
rejection (6). gd T cells represent less than 5% of peripheral lymphocyte population in mice, human
and rat (7, 8), whereas it constitutes a relatively large fraction of T lymphocytes in chicken, sheep,
cattle and pig (15–50%) (8). In adult mice, gd T cells are unequally distributed (9); there are less than
5% of total T cells in the lung, approximately 20–40% of the intraepithelial T cells of intestinal,
approximately 10–20% of total T cells in the reproductive tracks, approximately 50–70% of skin
dermal T cells and approximately 95% of epidermal T cells. In addition, they are divided into Vg1-7
gd T subsets according to the g chain (10). Almost all gd T cells in epidermis are dendritic epidermal
T cells (DETCs: named by its dendritic morphology), expressing an invariant Vg5Vd1 TCR
(according to Tonegawa’s nomenclature, which is adopted in this paper), equal to Vg3Vd1 TCR
(according to Garman’s nomenclature) (11, 12). They maintain a homeostatic population by self-
renew and can secrete growth factors such as IGF-1 (Insulin-like growth factor 1) and KGF-1/KGF-
2 (keratinocyte growth factor 1/2) etc. (13) Most gd T cells in dermis are Vg4 T and Vg6 Cells, they
can secrete IL-17A (interleukin-17A), IFN-g (interferon-g) and the growth factors (4).

In humans, gd T cells are classified based on the presented Vd gene segment. Until now, there
exists three true Vd genes: Vd1-3; and seven functional Vg gene segments: Vg2-5, Vg8, Vg9, and
Vg11 (14). Vd1 gd T cells primarily colonized in the dermis, and a small population is distributed in
org April 2022 | Volume 13 | Article 875076168
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the epidermis, whereas Vd2 TCRs are mainly distributed in
peripheral blood and dermal (15, 16). Human epidermal gd T
cells play a functionally similar role as DETCs in promoting
wound healing via secreting insulin-like growth factor 1 (IGF-1)
and regulating cutaneous carcinoma (17, 18). However, they are
not called DETCs as they do not possess dendritic morphology
and take different molecular mechanisms in epidermis homing,
antigen recognition and activation.

The skin, which is essential in defencing against external
pathogens and environmental factors such as the microbes
attack, ultraviolet radiation and heat injury (15, 19), serves as
the largest interface between the body and the external
environment. On one side, skin needs enough defending power
to maintain homeostasis; on the other side, it needs fast and
effective responses to repair the injury and restore the integrity
upon injury or inflammation. Wound repair mainly contains
four overlapping stages, which includes hemostasis,
inflammation, proliferation and remodeling (20). Immune cells
manage wound repair by secreting cytokines and chemokines to
induce inflammatory microenvironment and promote re-
epithelialization. DETCs, Vg4 T cells and Vg6 T cells are the
main subsets of skin T lymphocytes and the equilibrium,
coordination and interaction among them significantly affect
their effectiveness in wound repair. This review primarily focuses
on the discussion the rodent and murine gd T cells, including
their development, differentiation, colonization, activation, their
functions and the underlining mechanism in wound healing. In
addition, by consolidating the recent research breakthrough in
the field, perhaps this article may also provide potential cues for
the study of human skin gd T cells and the potential treatment for
skin rehabilitation.
THE DEVELOPMENT AND COLONIZATION
OF gd T CELLS

gd T cells and ab T cells originate from the same progenitor in
the thymus. When bone marrow-derived hematopoietic stem
cells (HSC) migrate into the thymus, Notch receptor 1 (Notch
1) and Delta-like 4 (DLL-4) signaling leads to the generation of
T cell progenitors called double-negative cells expressing CD4-

and CD8- (DNs, CD4- and CD8-) (19, 21, 22), which commit
them to the T-cell fate. Then these immature thymocytes pass
through four developmental stages, from DN1 to DN4 (23, 24).
DN1 cells are uniformly bipotent, they can give rise to both ab
and gdT cells (25); the next DN2 stage initiates the divergence
of ab and gd T cells, and in this stage, cells expressing IL-7R
and SOX13 (one high mobility group (HMG) box TF) and
other unknown factors exhibiting the tendency to gdT cells fate
(26, 27). TCR d, g and b start to rearrange stochastically
(somatic recombination of the V, D, and J genes encoding the
V domain of the corresponding TCR proteins) (28–30), and
then weak signal strength boosts the divergence of ab lineage
(preTCR: consisting of the invariant pTachain paired with a
full-length b chain), while the strong signal enhances the gdT
cells and selectively promotes the precisely rearranged and
Frontiers in Immunology | www.frontiersin.org 269
paired gd chain (TCR gd) (28, 29, 31–33), DETCs, IFN-g-
producing V g1 cells and IL-17A-producing V g6 cells are
markedly depleted in mice with attenuated TCR signaling of
their own (34, 35), this process is called the positive selection.
The invalidly rearranged cells or validly rearranged cells
without sufficient activation signaling from ligand undergo
apoptosis similar to the death of the ab T cells without useful
TCR. Whether this phenomenon leads to the successive
development characteristic of gd T cells has to be verified.
Partial cells of this stage retain bipotency, whereas other cells
just give rise only to ab or gd T cells (36). The divergence of ab
and gd lineage is completed at the DN3 stage, and by this stage,
almost all of the cells complete lineage commitment, with a
major population exhibiting ab lineage restriction (25). But the
precursor cells with type of TCR (preTCR or gd TCR) can’t
dictate the lineage choice, as the gd TCR and ab TCR can
generate ab and gd lineage cells under some special
circumstances, respectively (37–39); transitioning into the
DN4 stage, the TCRa chain gene-rearrangement begins,
which generates double positive(CD4+, CD8+) ab T cells (DP
ab T cells) marking the point of irreversible commitment to the
ab lineage (36, 40). Then the DP ab cells commit the positive
and negative selection and get matured (41). While the subset
of immature gd T cells will develop the effector commitment,
the relatively weaker signals enhance the IL-17–producing gd T
cell subset, and progressively stronger signals promote IFN-g–
producing and innate gd T cells (24). However, there has no
direct evidence whether the stronger or weaker signal leads to
higher productions of IFN-g- or IL-17A- V g4 T cells,
respectively. CD24 or heat-stable antigen (HSA) is recognized
as the marker of gd T cell lineage for irreversible commitment.
The expression of CD24+CD73+ indicates that these cells are
unable to switch to the ab T cells (19, 42). Therefore, the TCR
signaling operates in sequential developmental windows with
distinct outcomes, and it determines the lineage and effector
commitment successively (10). In addition, TCR gd-
independent factors are crucial in gd T cells differentiation,
such as the miRNAs, Sox4/Sox13/RORg axis (SRY-box-
containing gene 4/13/retinoid-related orphan receptor g axis),
and Notch signaling (13, 43, 44). Thus, every subset has its own
development characteristic.

The development of the gd subset occurs step by step as
follows: T cell commitment–ab/gd lineage commitment–gd
subset commitment–effector commitment (Figure 1);
therefore, the same factor can take different functions during
disparate stages. This theory can reconcile some inconsistent
research results. For instance, IL-7 and the transcription factor
SOX13 promote the survival and development of early precursor
cells and are absolutely required for TCRg gene rearrangement.
However, at the later stage, their function mainly promotes the
IL-17-producing cells (26, 27, 45, 46). Besides, the same factor
can give rise to an identical or a different function for various
subsets at the same cross-section in time, just like the PLZF and
Egr2/3/id3; the former promotes the development of the Vg1+
and Vg6+ cells (47, 48), while the later one takes an opposite
function in IL-17- and IFN-g-producing cells (10).
April 2022 | Volume 13 | Article 875076
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DETCs expressing a canonical Vg5Vd1 TCR are a restricted
antigen repertoire and act exclusively as resident T cells in the
murine epidermis (12). They derive from DETC progenitors
which are restrictedly generated in the embryonic thymus at day
13 to 17 (49), and at E16 and E18 (50), DETCs egress from the
thymus and move to the epidermal layer where they self-renew.
Existing research have confirmed that the development of
DETCs can be influenced by ERK-Egr-Id3 axis (35), Lck (51),
Syk (52), ZAP-70 (53), IL-7R/JAK/STAT pathway (54, 55),
RunX3 (regulating CD103 and CD122) (56), miRNAs
(downregulating CD122/IL-2Rb and CD45RB expression) (43)
and Skint-1 (promoting the selective development of Vg5+
DETC) in the thymus (35, 57); their skin-homing are affected
by the ITK (through promoting CCR10 and S1PR1 expression)
(58, 59), SIPR1 (sphingosine-1-phosphate receptor 1, involved in
thymic egress) (60), GPR15 (orphan G protein-linked
chemoattractant receptor 15, regulating the recruitment of gdT
cells to skin) (61), CD103 (62), E, P-selectins ligands (63)
(Expressed on DETCs, binding to selectins expressed on the
endothelium), CCR10 (64) and CCR4 (63) (binding to CCL27/28
expressed by keratinocytes), Vg5 T cells have low expression in
CCR9 and CCR7, so they will not migrate into lymphoid organ
Frontiers in Immunology | www.frontiersin.org 370
and spleen. Matured DETCs express the markers including
CD27–, CD69+, T-bet+, NKG2D+, JAML+, CD100+, and
CD103+ (15).

Vg4 T cells appearing at the late fetal stage(from E16)and
afterward (49), are the dominant subset of murine peripheral gd
cells. In addition, Vg4 T cells exist in peripheral lymphoid organs,
blood, liver, lung, spleen and dermis (65). They are divided into
two main subsets: IL-17A+Vg4 T cells (CCR6+CD27-), and IFN-
g+Vg4 T cells (CCR6-CD27+) (66). The majority of gd T cells in
lymph node are IL-17A gdT cells, whereas a large population in
splenic is IFN-g gd T cells (67); the mechanism leading to this
biased distribution is unclear. The development of IL-17A
producing cells is also regulated by the comprehensive factors,
such as Sox4/Sox13/RORgt/IL-17 axis (68), Notch signaling/Hes-1
axis (44, 69), Wnt signaling pathway/TCF1 and Lef1 axis (70),
TGF-b (71), Blk (B lymphoid kinase, a Src family kinase) (72) and
IL-7 (45). Moreover, CCR6 is recognized to be critical for their
homing to skin, CCR6-deficiency reduced the number of both Vg4
and Vg6+ cells in the skin (73). Other research reports that thymic
Vg4 requires extrathymic environment for skin homing, such as
getting activated or obtaining CCR6 expression (74). Matured IL-
17 producing Vg4 T cells (thymus-derived) contain variable d
FIGURE 1 | Development of ab and gd T cells. Hematopoietic stem cells migrating into thymus get lymphocytes commitment, the lymphocytes then get ab
commitment and gd commitment. ab cells passing through sequential single positive selection and negative selection get matured. Somatic recombination of V,
D, J genes forms different gd chain, which produces varied gd precursors. Among them, cells with valid gd chain, getting enough stimulation and appropriate
environment get survived, cells with invalid gd chain and getting insufficient ligand stimulation get apoptosis. Survived gd T cells then undertake effector
commitment and get matured.
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chain. Most of them express CD3+, CD4-, CD8-, CD44+, CD69+,
RORgt+, CCR6+, CD25+, CD27-, Scart2+, CD45RB-, CD122-,
CD27-, NK1.1-, T-bet-, IL-23R (31, 66, 75–80). Recent research
found that some IL-17 producing gd T cells are bone derived, and
they often just have d4 chain. In addition, they express CCR2+ and
require IL-23 and IL-1b for their reprogramming from CD27+ gd
T cells (81, 82). In addition, IFN-g-producing gdT cells are affected
by ERK-Egr-Id3 axis (10, 34), ThPOK/PLZF/T-bet axis (83),
researches have reported thymic gd T cells with antigen-
experience or binding antigen have high affinity in producing
IFN-g (67), matured IFN-g producing Vg4 T cells have variable d
chain. Their expression characteristics are CD3+, CD4-, CD8-,
CD44+, T-bet+, NK1.1+, CCR6-, CD27+, CD45RB+, CD122+(IL-
2/IL-15 receptor b chain) (31, 66, 75–80).

Vg6 T cells, which exclusively express the Vd1 TCR chain
(74), are generated solely in the thymic second wave around
embryonic day E14 (up to the birth) (49). In mice, about half of
the dermal gd T cells are the Vg6 T cells, while the rest mainly
express Vg4 TCR (4, 74). Vg6 T cells also localize to uterine
epithelia, tongue and meninges, enthesis, pLNs, testis (79, 84–
86). Conventionally, dermal Vg6 T cells are considered bona fide
tissue-resident cells that do not recirculate out of the skin and
their generation is restricted to the confined window of fetal
development. Furthermore, Vg6 T cells cannot be induced in
adult animals with the phenomenon that Vg6+ gd T cells become
rare in the adult thymus (87, 88). But recent research confirmed
that they have a high mobility and can travel between pLNs and
tissues (79); however, whether the proliferated Vg6+ in pLNs or
thymus refill the pool of terminally differentiated skin Vg6
remains to be tested. Their development is affected by IL-7
(45), TGF-b (71), Blk (72), PLZF (47). Matured Vg6 cells
exhibit the expression characteristics of CD27–, IL-23R+,
RORgt+, CCR6+, CD69+, CD44+, Scart1+, cMAF+, PLZF+,
PD-1 receptor and CCR2 (15, 79).
gd T CELLS IN MAINTAINING
SKIN HOMEOSTASIS

Skin comprises two major compartments, the epidermis and the
dermis. The epidermis is mainly composed of keratinocytes
(~95%) and residing immune cells (~5%, mainly are
Langerhans cells (LC) and T cells) (89). The immune cell
composition is subject to species specific differences. In naïve
wild type (WT) mice, DETCs dominate the epidermal T cell
compartment(~95%). Human epidermis is home to both gd and
ab T cells, while resident T cells in epidermis show effector
functions very similar to that of DETC (90).

The DETCs proliferate and maintain a homeostatic population
by themselves, which cannot be reconstituted with bone marrow
cells or fetal thymocytes (88).Aryl hydrocarbonreceptor (AhR)and
Linker for activation of T cells (LAT) are recognized to be the
important factors in maintaining DETCs proliferative expansion
and self-renewal (91). AHR-KOmice and LAT–deficient mice lack
peripheral DETCs neither through affecting the DETCs generation
nor skin homing (92). DETCs are characterized with lots of
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dendrites; most of the dendrites anchor to the apical epidermis
where they are immobilized at distal. The remaining dendrites are
positioned within the basal epidermis and are highly mobile (93).
PALPs (containing prominent co-clusters of TCR and proteins
phosphorylated on tyrosine residues) (94) of the apically oriented
dendrites contribute the anchoring of DETCs to the squamous
keratinocyte junctions, E-cadherin receptor integrinaEb7(CD103)
highly enriched at the ends of apical dendrites modulates the
dendrite anchoring, which binds with E-cadherin expressed by
keratinocytes. This structure allows the frequent contact of DETCs
with the neighbouring cells as well as continuous scanning for
antigens in the skin surface (94). Although healthy skin does not
appear to express DETC TCR ligand detectable by soluble Vg5Vd1
TCR tetramers (95), low grade stresses from outside environment
might sustain a basal expression of ligands sufficient for TCR
activation but below the sensitivity of currently existed detection
method. This presence of agonistic TCR-proximal signalsmake the
DETCs to be a semi-activated state via Lck-dependent TCR
activation (94), these semi-activated DETCs establish a polarized
conduit system for transepithelial cargo transport, which
contributes to the accumulation of matured lysosomes and the
probe of the epidermal molecular composition (96). Normally,
semi-activated DETCs express CD122 and CD69 (marker of pre-
activation/semi-activation), their autocrine cytokines can help
maintaining steady state of themselves and other cells (93),
including IL-13, IGF-1, GM-CSF (Table 1). IL-13 plays an
important role in regulating epithelial cells homeostasis and
maintaining skin integrity through promoting EC (Epithelial
cells) maturation and transiting through epidermis, the mice
lacking canonical DETCs or IL-13 shows a higher degree of water
loss, a poorer barrier function and a declined tolerance to damage
compared to the WT skin (97); IGF-1 can protect themselves and
keratinocytes from apoptosis (98), while GM-CSF is crucial for LC
maturation (92). In turn, the paracrine cytokines by neighboring
keratinocytes, fibroblasts and other cells are crucial in keeping the
homeostasis of DETCs (96, 99). IL-7 secreted by keratinocytes and
fibroblast mesenchymal cells serves as a growth factor for DETCs
(100); IL-15 secreted by epithelial cells helps the survival and
proliferation of DETCs via binding IL-15Ra (CD215) expressed
on DETCs (101).

The immune cells residing in the dermis under homeostasis
include dermal subsets of dendritic cells (DCs), mast cells, T cells
(ab and gd T cells), innate lymphoid cells (ILC), B cells,
macrophages and NK cells (102). gd T cells of dermis mainly
comprised of Vg4 and Vg6 gd T cells. Vg6 gd T cells represent
virtually 100% of the dermal gd T cells in newborn mice, but
comprise only about 40% in adult mice, as the Vg4 gd T cells in the
dermis gradually increase over time (103). The majority of Vg6+ gd
T cells display tissue residency, but may retain the capability to
circulate between tissues, while the Vg4 T cells display the
recirculating characteristic. Recent researches have indicated that
both dermal Vg4 and Vg6 T subsets are radioresistant (74, 104).
Under homeostasis conditions, both subsets can traffic between
tissues and lymph nodes at a slow but steady rate (79, 87, 105, 106);
a substantial flux of gd T cells through the skin to draining LNs is
observed through analysis of skin-draining lymph in cattle (107).
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It is proposed that CCR6-dependent manner contributes to
homeostatic gdT17 cell trafficking, CCR6 can bind with CCL20
expressed in mucocutaneous sites and subcapsular region of
primate LNs (108), while CCR2-dependent manner dominates
the activated trafficking (73), this trafficking characteristic
facilitates their immune surveillance function. Upon activated by
ligands such as the specific ligands triggered by the imiquimod
treatment, the migration will significantly increase. However, it
seems that theVg4+ dermal cells are able tomigratemore efficiently
than the Vg6+ gdT cells (103, 109). For the resident Vg6gdT cells,
they usually act as persistent effector cells in the skin, high
expressions of the anti-apoptotic BCL2A1 protein protects them
from activation-induced cell death (79). However, whether the
residentVg6+Tcells canbe refilledby theVg6Tcells frompLNand
thymus is uncertain, and interesting to be tested. For the Vg4 cells,
they can be reconstituted by thymic Vg4+ cells and bone marrow,
but they need to go to the periphery andmature beforemigrating to
the dermis (74, 81). The CCR6 expressed on their surface and the
CCL20 expressed by epidermal keratinocytes, endothelial cells, and
dendritic cells are crucial for their recruitment (82).

Collectively, DETCs exist in epidermis, they maintain a
homeostatic population by self-renewal. Under homeostasis,
they secrete IL-13, IGF-1 and GM-CSF to help in epithelial
cells maturation and proliferation. IL-7 and IL-15 secreted by
epithelial cells contribute to the survival and proliferation of
DETCs, PALPs of the apically oriented dendrites contribute to
the anchoring of DETCs to the keratinocyte junctions. Vg4 and
Vg6 T are main subsets in the dermis, they traffic between tissues
and lymph nodes at a slow but steady rate under homeostasis,
CCR6 expressed on their surface combining with the CCL20
expressed in mucocutaneous sites and subcapsular region of
primate LNs is an important pathway (Figure 2).
THE ACTIVATION OF gd T CELLS

gd TCRs have the ability for both innate and adaptive ligand
recognition via either germline-encoded regions of the receptor,
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resemble the PRRs or adaptive antigen binding via the CDRs,
this pattern seems to be distinguished from ab TCRs (102). Most
ab TCRs bind to MHC I/II (major histocompatibility complexes
I/II) which presents small peptide fragments derived from
pathogens or pathological tissues. Together with co-receptor
engagement of CD4 or CD8 and co-stimulation through
CD28, this elicits ab T-cell activation (110). Similar to ab T
cells, the activation of gd T cells may require the engagement of
both gd TCR and co-receptors, including junctional adhesion
molecule-like protein (JAML) (111), Toll-like receptor (TLR)
(112), the semaphorin CD100 (113) and C-type lectin-like
stimulatory receptor-natural killer group 2D (NKG2D) (114).
As no general restricting molecule could be identified, no
effective methods can assess whether the recognition of certain
antigens by gd TCRs is generalized, and the affinity of TCRs to
their antigens is typically low, the antigens activating the gd TCR
or gdT cells have not yet been clearly identified up to now. Recent
years, many studies have been conducted to explore the antigens.
The antigens activating the gd T cells can be divided into 4
categories (115): First of all, MHC or MHC-like recognition
antigen includes MHC-Ib molecule T10/T22 (116), MART-1
(117), MHC-related protein 1 (MR-1) (118). Secondly, there are
IG-like recognition of antigens, including Annexin A2 (119),
ephrin receptor A2 (EphA2) (120), the human DNA mismatch
repair protein MutS-Homologue 2 (hMSH2) (121), heat shock
protein (HSP) 60 (122), PE(phycoerythrin) (123). Thirdly, this
group contains Phosphoantigen, including 4-hydroxy-3-methyl-
bu t -2 - eny lpyrophosphate (HMBPP) , I sopenteny l
pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) (124). Lastly, there are B7 receptor family-like
proteins, including BTNLs (BTNL1 and BTNL6 in mice,
BTNL3 and 8 in human) (125, 126). Furthermore, the antigens
can be categorized into DAMPs and PAMPs (damage associated
molecular patterns and pathogen-associated molecular patterns)
according to their derivation, the former ones are generated
in cell necrosis (often associated with tissue injury), whereas
the controlled cell death, or apoptosis, does not lead to
the generation of DAMPs, the latter ones are elicited by
TABLE 1 | Main cytokines, chemokines, and receptors of DETCs, Vg4 and Vg6 T cells in skin homeostasis and wound healing.

Cytokines Main function Receptors Main function

IGF-1 Binding with IGF-1R, promotes keratinocytes survival and
regulates their differentiation, prevents the apoptosis of DETCs.

CCR10/CCR4 Mediates DETCs migration and location via binding with
CCL27/28.

KGF-1/KGF-2 Induces keratinocytes proliferation, differentiation and migration. CCR6+ Contributes to homeostatic gd T cells trafficking (Vg4 and
Vg6).

IL-13 Regulates skin homeostasis and protects against
carcinogenesis.

CCR2+ Dominates the trafficking of activated gd T lymphocytes
(Vg4 and Vg6).

GM-CSF Is crucial for LC maturation. aEb7(CD103) Contributes to the anchoring of DETCs.
IL-17A Induces and amplifies inflammation, induces the migration of

inflammatory cells.
AhR Maintains DETCs proliferative expansion and self-renewal.

IFN-g Facilitates anti-tumor and anti-infection response. IL-15Ra (CD215) Maintains the survival and proliferation of DETCs and
regulates the production of IGF-1 via binding with IL-15.

Chemokines Main function NCRs (NKG2D, TLR,
CD100, JAML)

Provides costimulatory signals and participates in antigen
recognition and inducing the release of cytokines.

CCL-3/CCL-4/
CCL-5

Induces the migration of inflammatory cells.

Mcp-1 Plays an important role in monocyte migration.
XCL1 Induces migration of lymphocytes via binding with XCR1.
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pathogens (127). In addition, some papers divide the ligands into
self ligands and non-self ligands (128).

Shortly after wounding or inflammation, damaged
keratinocytes closely adjacent to the lesion quickly and transiently
upregulate related stress antigen. The gdT cells of epidermis and
dermis get complete activation via recognizing the antigens byTCR
and co-stimulatory receptors. Activated epidermal gdT cells retract
their dendrites and round up within 24 h after wounding (129).
Within 48 h, epidermal gd T cells secrete cytokines and growth
factors to regulate inflammation and proliferation, such as KGF-1,
KGF-2, IL-13, IFN-g, TNF-a, IGF-1, IL-2, and IL-17 (Table 1),
epidermal gd T cells restore their dendritic morphology 5 days post
wounding (4, 129). For the Vg4 T cells, they are most commonly
found early post wounding, accounting for half of the IL-17A+ cells
on the third day (130), firstly, they get activated, proliferate and
secrete IL-17A, IFN-g, IL-17F, IL-22 andother cytokines to regulate
the inflammationpromptly. Secondly, the keratinocytes close to the
lesion upregulate the production of CCL20, which increases the
epidermal infiltration of dermal gd T cells by binding their CCR6
(130, 131), in the absenceofCCR6, fewer gdTcells is observed at the
wound site leading to 4-day delay in wound closure, this indicates a
key role for CCR6 in efficient wound repair (132). The CCL20–
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CCR6 axis of dermal T cell recruitment occurs similarly in the
human epidermis, resulting in Th17 cell infiltration (133). Thirdly,
the migration of resident gd T cells into the local draining lymph
nodes increases, the trafficmanner isCCR7-independent (105), and
Vg4+ cells homing from inflamed skin to sLNs during psoriasis
predominantly lack CCR6 expression (109). It likely occurs via
afferent lymph draining from dermis, but the definite pathway
involved is undetermined. Fourthly, the gd T cells specific
expressing Vg4Vd4 in lymph nodes selectively expand promptly
(105, 109), the reason leading to the selective expansion is
uncertain, cytokines may play a crucial role in this process. Lastly,
general gd T cells and expanded Vg4Vd4 gd T cells infiltrate back
into inflammatory skin via S1P1 and CCR2 (82, 134), however,
whetherCCR2up-regulation promotes the recruitment of thymus-
derived Vg4 T cells to inflamed tissue is unclear. Importantly, the
re-filtrated Vg4 Vd4 T cells persist for months and respond more
rapidly like thememory-like cells in the imiquimod (IMQ)-induced
micemodel (82). ActivatedVg6 T cells show very similar traits with
Vg4 T cells, CCR2 and CCR6 expressed on their surface are also
crucial for the migration in homeostasis and inflammation state
(73); however, it seems like their efficiency is lower than the Vg4
cells (135).
FIGURE 2 | gd T cells in maintaining skin homeostasis. DETCs in epidermis proliferate and maintain a homeostatic population by themselves, they secrete IL-13,
IGF-1 and GM-CSF to help keeping steady state of themselves and other cells. IL-7 and IL-15 secreted by epithelial cells contribute to the survival and proliferation
of DETCs, PALPs of the apically oriented dendrites contribute to the anchoring of DETCs to the keratinocyte junctions. Vg4 and Vg6 T subsets in the dermis traffic
between tissues and lymph nodes at a slow but steady rate, CCR6 expressed on their surface combining with the CCL20 expressed in mucocutaneous sites and
subcapsular region of primate LNs is an important pathway.
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Taken together, the antigens activating the gd T cells can be
divided into 4 categories: MHC-like recognition antigens, IG-like
recognition of antigen, phosphoantigen and B7 receptor family-
like proteins; they can also be categorized into DAMPs and
PAMPs. The binding of these antigens with the gd TCR and co-
stimulatory receptors helps in the complete activation of gd T
cells. Activated gd T cells secrete chemokines, cytokines and
growth factors to regulate inflammation and proliferation.
Activated Vg4 T cells migrate to epidermis via CCR6-CCL20
pathway, in addition, the traffic of Vg4 and Vg6 T subsets
between skin and lymph nodes increases, the traffic from skin
to lymph nodes is CCR6/CCR7-independent, while that from
lymph nodes to skin is CCR2-dependent (Figure 3).
gd T CELLS IN ACUTE WOUND HEALING

The skin, the largest organ by surface area is susceptible to injury
in shielding our internal tissues from microbial infection,
temperature variation, radiation and mechanical damage (136).
Recognizing the mechanism underlining the wound healing is
valuable for regulating the healing effectiveness. Theoretically,
both cells residing in skin and cells capable of trafficking to the
Frontiers in Immunology | www.frontiersin.org 774
skin as the keratinocytes, neutrophils, macrophages, T
lymphocytes, mast cells, dendritic cells, endothelial cells,
fibroblasts, myofibroblasts and epidermal stem cells, can
influence the healing result (137–139). To observe their
functions, a great number of surgically constructed models of
skin injury in rodents have been established. In particular,
murine models are used most often. It is well-established that
appropriate inflammation and vigorous re-epithelization are
crucial in wound healing, immune cells are essential in
constructing inflammatory microenvironment and regulating
re-epithelization (140). gdT cells as the major immune cells of
skin, we sought to discuss their significant functions, and the
related mechanism in wound healing below.

Recruitment of Inflammatory Cells
Efficient Infiltration of inflammatory cells including neutrophils
and macrophages are crucial for wound repair. Neutrophils are
usually recruited as “first responders” from the bone marrow in
response to “find me” signals on the day following injury, they
clean debris and bacteria to provide a good environment for
wound healing, as well as to modulate inflammation by
producing ROS, chemokines (CXCL2, CXCL8) and MCP-1
(monocyte chemoattractant protein 1), different cytokines
FIGURE 3 | gd T cells in acute wound healing. Upon activation, DETCs and Vg4 T cells secrete chemokines to recruit neutrophils and macrophages into lesion site.
Activated Vg4 T cells migrate to epidermis via CCR6-CCL20 pathway, in addition, the traffic of Vg4 and Vg6 T subsets between skin and lymph nodes increases, the
traffic from skin to lymph nodes is CCR6/CCR7-independent, while that from lymph nodes to skin is CCR2-dependent. Keratinocytes-derived IL-15 and DETCs-
derived IGF-1 forms a positive feedback loop and promotes re-epithelialization. The positive feedback loop between wound-derived IL-1b/IL-23 and Vg4-derived IL-
17 can amplify the local inflammation, the IL-1b/IL-23 suppresses IGF-1 production of DETCs.
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(IL-6, IL-1b, IL-10) (141). The accumulation of macrophages is
usually seen within the 24-48 h at the site of injury, and their
local accumulation actively participates in all stages of wound
healing, including facilitating phagocytosis of bacteria and
damage tissue, determining the duration of inflammation and
promoting keratinocyte migration and ECM synthesis (142).
Studies have confirmed that depletion, deletion, or excessive
infiltration of these cells can result in delayed wound healing,
keloids or hypertrophic scars (137, 143–146). gd T cells
participate in the recruitment of inflammatory cells in skin
wounding. gd TCR-deficient (dTCR-/-) C57 male mice exhibit
reduction in the cellular infiltration upon injury, including
macrophages, ab T lymphocytes, neutrophils (104, 147, 148).
Activated gd T cells, including DETCs and Vg4 T cells express
CCL-3 (MIP-1a), CCL-4 (MIP-1b), CCL5 (Rantes), MCP-1, and
XCL1 (lymphocyte chemokines), IL-17, which induce the
migration of inflammatory cells (19, 106, 149–152). In
addition, they indirectly affect cells infiltration via regulating
other cells, such as DETCs-induced hyaluronan production by
epithelial cells increases the migration of macrophages (153).

Wound-Derived IL-1b/IL-23 and
Vg4-Derived IL-17 Loop for
Inflammatory Responses
As the first line of defense, keratinocytes can recognize ligand by
pattern-recognition receptors (PRRs) (154), which lead to the
subsequent activation of distinct signaling pathways and the
production of different cytokines and chemokines (138). TLR
(Toll-like receptor) activation is a critical element in initiating
and amplifying inflammation after skin injury, including TLR-1,
-2, -3, -4, -5, -6, and -9, which are upregulated inwounds (155), The
activation of keratinocytes increases the production of IL-1b, IL-23,
IL-15, IL-1a, TNF-a, IL-8, CCL2 (156). Together with the IL-1b
produced by platelets, neutrophils and macrophages (157, 158), as
well as the IL-23 produced by LCs andDCs (159), the IL-23 and IL-
1b induce the resident and infiltrated Vg4 T cells secreting IL-17A
(160, 161), which can bind with the up-regulated IL-17RA
expressed on the keratinocytes. The binding enhances the
production of epidermal IL-1b and IL-23 (130). Thus, this
process creates a positive feedback that the IL-1b/IL-23-IL-17
loop amplifies local inflammation after skin injury. IL-17A,
mainly produced by the immune cells, including gdT cells and
Th17 cells, is required for efficient skin wound healing. IL-17a-/-

mice exhibit defects in wound repair (3); however, Rodero et al.
reported that blocking IL-17A with an IL-17A-neutralizing
antibody significantly promotes skin wound repair (162). To
reconcile this conflicting result, Li et al. confirmed that different
IL-17A levels play a distinct role in wound healing; both low and
excessive levels of IL-17A have a negative impact on skin wound
repair, while amoderate level of IL-17A is required for efficient skin
wound healing (130). They concluded that Vg4-derived IL-17A
indirectly delayed thewoundhealing throughupregulating of IL-1b
and IL-23 by keratinocytes, which inhibits IGF-1 production by
DETCs through NF-kB signal pathway (130). However, the
underlining reason of different levels of IL-17A leading to variant
effectiveness was not distinctly explicated in their study.
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As we all know, IL-17A participates in inflammation through
different pathways (163), we propose that the IL-17A—IL-1b/IL-
23—IGF pathway impedes wound healing; whereas the IL-17A
—b-defensin3/S100A8/Reg3g/AMP (3, 164) and other pathways
[through driving the production of VEGF by epithelial and
fibroblastic cells to stimulate angiogenesis (165, 166)] promote
wound healing. Under an excessive expression, the impeding
pathway is markedly activated; therefore, IL-17A hinders the
wound repair. Similarly, in the IL-17A-depleted mice, the
promoting pathway is severely retarded, thus the wound
healing is delayed. However, under a moderate expression, the
promoting pathway is noticeably activated, IL-17A hence
accelerates wound healing. It is worthy to explore these related
molecular mechanisms for the details.

Moreover, we deliberate that these dual roles coexist at the
same time, depending on the concentration gradient between the
central injury tissue and the surrounding wounding tissue,
reminiscent of the oxygen gradient in the wounding site (167).
Moderate accumulation of IL-17A in the peripheries is beneficial
for wound closure; while excessive accumulation of IL-17A at the
excessive level in the center of injury leads to delayed repair,
which leaves adequate time for inflammatory cells to create a
good repair microenvironment. This process confirms the
sequential order in repair, from the bottoms up and from the
peripheries to the center (168). Further research is needed to
justify this inference.

DETCs-Derived IGF-1 and KGF-1-2
for Re-Epithelialization
During homeostasis, DETCs constitutively generate IGF-1,
which binds to IGF-1R (IGF-1 receptor) expressed on
“keratinocytes and DETCs” and triggers phosphoinositide 3-
kinase and mitogen-activated protein kinase pathways to prevent
them from apoptosis (98, 169). Meanwhile, keratinocytes secrete
IL-15, which helps the survival and proliferation of DETCs (170).
Upon injury, the production of IL-15 is upregulated by activated
keratinocytes and Langerhans cells (170, 171), increased IL-15
enhances the IGF-1 production of DETCs through binding to
their IL-15R (IL-15 receptor). The up-regulated IGF-1 causes an
increase in phosphorylated IGF-1R levels at wound margins 24 h
after injury (98). This in addition protects keratinocytes from
apoptosis in damaged areas (98), also directly stimulates
keratinocytes to produce more IL-15, partly through the
mTOR-dependent pathway (172). This positive feedback loop
of keratinocytes-derived IL-15 and DETCs-derived IGF-1
contributes to the significant accumulation of IGF-1, which
exhibits a significant function in promoting re-epithelialization.
Impaired epidermal to DETCs signaling slows wound repair
(173), and it has been found that the insufficient activation of
DETCs upon injury leads to abnormal wound healing in diabetic
mice, the insufficient activation partly attributes to the impaired
production of IGF-1. Exogenous supplement of IL-15 can rescue
the defective IGF-1 expression (93). Whether there is another
feedback loop between DETCs and other cells such as LCs, or
other signaling deeply involved in the regulation of IL-15
expression is still unknown.
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In addition to IGF-1, activated DETCs aid in skin repair by
secreting KGF within 24 hours of injury, including KGF-1 and
KGF-2 (174). However, they don’t secrete KGFs under
homeostasis (129). When binding to the KGF receptor (KGFR)
expressed on keratinocytes, KGF accelerates the migration and
proliferation of keratinocytes by activating the downstream
signaling pathways, including mTOR, ERK-MAPK, P13K/Akt
(87, 96). KGF plays a commendable function in regulating
keratinocytes, but since DETCs do not express KGFR, no
positive feedback loop has been identified.

Taken together, upon activation, DETCs and Vg4 T cells
secrete chemokines to recruit neutrophils and macrophages into
lesion site. Keratinocytes-derived IL-15 and DETCs-derived
IGF-1 forms a positive feedback loop and promotes re-
epithelialization. The positive feedback loop between wound-
derived IL-1b/IL-23 and Vg4-derived IL-17 can amplify the local
inflammation, whereas the IL-1b/IL-23 suppresses IGF-1
production of DETCs (Figure 3).
gd T CELLS IN CHRONIC
WOUND HEALING

Common features of chronic non-healing wounds include
repeated infection, tissue necrosis, continuous exudation,
defective re-epithelization, reduced angiogenesis and
overproduction of ROS (175, 176). They are usually observed
in elderly people suffering from pathological conditions, like
obesity, diabetes mellitus and vascular disease (177). Chronic
wound healing is characterized by the prolonged presence of
myeloid cell populations, such as macrophages, neutrophils and
monocytes. In the late stage of inflammation (137), incessantly
activated gd T cells participate in the chronic wound healing
through inducing persistent inflammatory microenvironment
via the main pathways ment ioned above . For re-
epithelialization, the robust activation of EPSCs (Epidermal
stem cells) and efficient recruitment of their progeny towards
an epidermal lineage are crucial, a stage which facilitates the re-
establishment of an intact keratinocyte layer during wound
healing (178, 179). For this process, the balance of proliferation
of pluripotent EPSCs and their differentiation into terminally
differentiated cells are pivotal (Figure 4A) (168, 180). In chronic
or refractory wound, persistent inflammatory condition leads to
excessive proliferation and differentiation, with the sacrifice of
subsequent loss of the stem cell reservoir (181–183) and the
balance is broken (Figure 4B). Supplementing sufficient EPSCs
for restoring balance is the effective method to accelerate the
wound healing (184–186). Our previous study found that
DETCs-derived IGF-1 promotes the proliferation of EPSCs
(187), while the IGF-1 secretion is regulated by Vg4-derived
IL-17A (130). So, we therefore hypothesize that the gd T cells
participate in regulating the differentiation and proliferation
balance of EPSCs in refractory wound, the potential
mechanism seems to be the continuous secretion of IL-17A by
Vdifleads sustained inflammation which promotes the excessive
differentiation, while suppresses the level of IGF-1 produced by
Frontiers in Immunology | www.frontiersin.org 976
DETCs beneficial for the proliferation of EPSCs (Figure 4C).
Further research needs to be conducted in this regard.

Collectively, the differentiation and proliferation balance of
EPSCs is crucial in wound healing, disordered immune
microenvironment constructed by lymphcytes will break this
balance in chronic and refractory wound. Given that the isolation
and ex vivo expansion of various gd T cell subsets is feasible
(188), upon the molecular and cellular interations between gd T
cells and EPSCs being elucidated, precisely supplementing or
clearing certain gd T cell subsets, cytokines or chemokines in
local will be an effective method to restore balanced
microenvironment, which is expected to improve the
effectiveness of clinical treatments for refractory wounds.
ROLE OF gd T CELLS IN OTHER
SKIN DISEASES

Fibrosis is essential for wound healing and tissue repair, which is
characterized by the accumulation of extracellular matrix (ECM)
components mainly produced by myofibroblasts. T lymphocytes,
macrophages and other inflammation cells cooperatively
regulate fibrotic process (189).

Studies have found gd T cells play critical roles in fibrosis and
fibrotic diseases of many tissues, including hepatic, lung, kidney
and heart. IL-17/IL-22 producing gd T cells can protect the liver
from excessive fibrosis via inducing HSCs (hepatic stellate cells)
apoptosis (190). Besides, IFNg-producing gd T cells also show
protective effect in liver fibrosis, these cells have direct
cytotoxicity against activated HSCs (191). For lung, Vg6Vd1 gd
T cells protect it from pulmonary fibrosis by secreting IL-22
(192). However, some researches demonstrate gd T cells
accumulation tends to promote fibrosis, IL-17-producing gd T
cells induces myofibroblast activation and ECM deposition in
kidney injury model and myocardial infarction model of mice
(193, 194). So, it is more likely that their function in regulating
fibrosis is tissue-specific.

Up to now, researches related to the gd T cells in skin fibrosis
is inadequate, Ohtsuka found the human skin fibroblasts
stimulated by gd T cells supernatant showed elevated
proliferation and collagen synthesis (195), another study
demonstrated the activated gd T cells in systemic sclerosis
(SSc) play an important role on fibrosis (196). In addition,
Meyer demonstrated epidermal gd T cells induces profibrotic
response of fibroblasts via mice in chronic inflammation, this
phenotype of mice lacking fibroblast growth factor bears
continuous inflammatory response (197). Recently, Shook
(198) found CD301b-expressing macrophages activated the
proliferation of wound bed adipocyte precursors (APs) through
IGF-1, these Aps become fibrotic after injury. DETCs secreted
sufficient IGF-1 upon skin injury, whether they can play
equivalent effect deserves further study.

For immune-mediated skin diseases, psoriasis, atopic
dermatitis (AD) and contact dermatitis (CD) are all chronic
and prevalent (15). The prevalence of psoriasis is about 2% to 3%
(199), gd17 T cells have been proved to be critical in imiquimod-
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(IMQ) or IL-23-induced psoriasis of mice, both Vg6 and Vg4 are
clearly pathogenic in these models (131), memory-like dermal
Vg4 gd17 T cells accumulated in inflamed skin and peripheral
lymph nodes lead to faster and stronger responses upon
secondary challenge (82). STAT 3 and STAT 4 facilitate the
complete effector functions of gd17 T cells (200). PD-1 and
CD109 exert protective role in psoriasis (201, 202), while LAT1
and CD69 exert opposite function (203). In humans, patients
with psoriasis also display increased accumulation of gd T cells
(Vg9Vd2) in the skin, effective therapy can decrease the numbers,
indicating their role in the disease (204). AD is a T cell-mediated
chronic skin disease, affecting up to 20% of children worldwide,
its onset is associated with skin barrier dysfunction and immune
disorder (205), it is characterized by highly expanded dermal ab
T cells which produce IL-17 and IL-22 (206), patients suffered
from AD also present decreased proportion of gd T cells (207).
However, children with AD display higher frequency of Vg9Vd2
T cells (208). So the specific role and underlined mechanism of
gd T cells in AD is worthy to investigate. CD is the most frequent
immune-mediated skin disease, its prevalence is about 95%,
which is caused by chemical and allergens (209). The role of
DETCs in CD is controversial (15), IL-17 secreted by Vn CD is
Frontiers in Immunology | www.frontiersin.org 1077
controversialsed by chemicalproinflammatory role (106),
however, their respective role in CD needs to be evaluated
in depth.
DISCUSSION AND CONCLUSION

gd T cells are important components of the skin immune system
and DETCs(Vg5), Vg4 and Vg6 T cells are their major subsets.
DETCs are particularly generated in the embryonic thymus and
implanted in the epidermis where they maintain a homeostatic
population by themselves. Vg4 T cells appearing in the late fetal
stage can be generated in the adult thymus, and they possess the
recirculating characteristic which can be refilled by newly
generated Vg4 cells from thymus and pLN. Vg6 T cells are
generated solely in the thymic second wave around embryonic
day E14 (up to the birth), and they mainly display tissue
residency, but retain circulating capability, whether they can be
refilled by circulating cells is uncertain. The development and
differentiation of gd T cells are regulated by both TCRgd-
dependent and TCRgd-independent factor. The combined
effect of various factors leads to the differentiation of gd T cells.
FIGURE 4 | gd T cells in chronic wound healing. (A) The robust activation of EPSCs and efficient recruitment of their progeny towards an epidermal lineage are
crucial in the re-establishment of an intact keratinocyte layer during wound healing. The balance of proliferation of pluripotent EPSCs (maintaining healing potent) and
their differentiation into terminally differentiated cells (wound healing) are pivotal; (B) In chronic or refractory wound, persistent inflammatory condition leads to
excessive proliferation and differentiation, with the sacrifice of subsequent loss of the stem cell reservoir. (C) In chronic or refractory wound, continuous secretion of
IL-17A by Vg4 leads sustained inflammation which promotes the excessive differentiation, while suppresses the level of IGF-1 produced by DETCs beneficial for the
proliferation of EPSCs, this inference is worthy to be tested.
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Their functional development is accomplished step by step as
follows: T cell commitment–ab/gd lineage commitment–gd
subset commitment–effector commitment.

Under homeostasis, gdT cells participate in maintaining skin
integrity with the help of paracrine and autocrine factors,
traffiking between tissues and lymph nodes of Vg4 and Vg6 T
cells at a slow rate in the steady state which plays an important
role in immune surveillance. Besides, these cells are
radioresistant, for mice receiving lethal irradiation, 100% of
DETCs (V0%+) remained of host origin, while 90% of Vg5-gd
T cells in dermal remained host-derived (104). Upon injury or
inflammation, antigens including MHC-like recognition
antigens, IG-like recognition of antigen, Phosphoantigen or B7
receptor family-like proteins are upregulated. The binding of
these antigens with the gdTCR and co-stimulatory receptors
helps in the complete activation of gdT cells. Initially, activated
gdT cells secrete chemokines to recruit the inflammatory cells,
including neutrophils and macrophages etc. Subsequently, they
secrete IGF-1, KGF-1/KGF-2, IL-17 to regulate inflammation
and re-epithelialization. Injury provide an opportunity for
microorganisms to enter into the wound tissues, including
microorganisms constituting the skin microbiota and residing
in the environment.

It is noteworthy to mention that the positive feedback loop of
DETCs-derived IGF-1 and keratinocytes-derived IL-15 leads to
the accumulation of IGF-1 in wound bed, on one hand, it
protects keratinocytes and epidermal gd T cells from apoptosis,
on the other hand, it exhibits a significant function in promoting
re-epithelialization, gd T cells in the epidermal of both mice and
humans show equivalent function. In the dermal, the wound-
derived IL-1b/IL-23 and Vg4-derived IL-17 feedback loop can
amplify the local inflammation. IL-17A participates in regulating
wound healing by either promoting pathway (like the IL-17A—
IL-1b/IL-23—IGF pathway) or impeding pathway (like the IL-
17A—b-defensin3/S100A8/Reg3g/AMP pathway). Different
doses affect each pathway to different degrees, both low and
excessive levels of IL-17A have a negative impact on skin wound
repair, while a moderate level of IL-17A is required for efficient
skin wound healing, suggesting that IL-17A plays a varied role in
wound healing. For chronic and refractory wounds, they provide
a lot of opportunities for microorganisms to enter into the
wound tissues (210), including commensal microbiota residing
in the skin and microorganisms existed in the environment,
pathogenic interaction of microorganisms with the skin cells will
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induce pathogenic immune response (177, 211). In this process,
abnormal accumulated gd T cells or their disordered function
contribute to unbalanced immune microenvironment, which
breaks the differentiation and proliferation balance of EPSCs,
restoring balanced microenvironment is expected to improve the
effectiveness of clinical treatments for refractory wounds. Further
research needs to be conducted in this regard.

In addition, gd T cells play critical roles in fibrosis and fibrotic
diseases of many tissues, their protective or deleterious function
in fibrosis is more likely tissue-specific. Up to now, researches
related to the gd T cells in skin fibrosis is inadequate,
investigating their role in keloids and hypertrophic scars
forming is valuable. For immune-mediated skin diseases, both
Vg6 and Vg4 are clearly pathogenic in imiquimod-induced
psoriasis, their function in atopic dermatitis and contact
dermatitis needs to be evaluated in depth.
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gd T cells are one of only three immune cell types that express antigen receptors that
undergo somatic recombination, and they contribute to immune responses to infection,
cellular transformation, and tissue damage. As a “bridge” between the innate and adaptive
immune systems, gd T cells have been noted to be involved in various immune responses
during cancer progression. The purpose of our study was to review current published
information on gd T cells and investigate their functions in different types of malignancy
using bibliometric and bioinformatic methods. Our results indicated that studies on gd T
cells and cancer progression increased from 2014, and the number had peaked by 2021.
We discovered that there is international cooperation in the performance of studies among
26 countries, where China was identified as the most productive with the highest citations.
Using keyword co-occurrence analysis, we found that among all the cancer types
investigated, gastric and breast cancers were most closely related to gd T cells.
Furthermore, interleukin (IL)-17 and IL-2 were the most common cytokines linked to gd
T cells and our investigation of their potential involvement in the prognosis of gastric and
breast cancers, identified their different roles in various malignancies. Thus, we concluded
that gd T cells might influence the progression of different cancers in diverse ways.

Keywords: bibliometric analysis, gd T cells, cancer prognosis, immune regulators, IL-17, IL-2
INTRODUCTION

T lymphocytes play a critical role in the response and regulation of human immune functions (1).
Human T lymphocytes can be divided into ab (such as CD4 and CD8) and gd T cells according to
the T cell receptor (TCR) structures. In human peripheral blood lymphocytes, ab T cells are the
dominant cells, whereas gd T cells generally account for only 1% to 5% (2). The functions of these
two types of cells and their response mechanisms in the immune response are also different. For
example, the recognition of antigens by ab T but not gd cells depends on major histocompatibility
complex (MHC) molecules (3).

Human gd T cells have numerous unique biological functions. Based on their distribution and
ability to recognize antigens, this population of cells is considered a “bridge” between innate and
adaptive immunity (4). According to the structural differences between the g and d chains, gd T cells
can be divided into two main subgroups, namely Vd1 and Vd2, with distinct functions (5). For
org April 2022 | Volume 13 | Article 874640185
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example, the Vd2 cell subset inhibits bacterial infection and
tumor progression (6, 7). In human peripheral blood, 50–90% of
gd T cells express Vg9Vd2 receptors (8). An increasing number
of studies have shown that Vg9Vd2 T cells have a very important
inhibitory effect on the occurrence and development of tumors
by significantly inhibiting the growth of tumor cells (9).

However, a pro-tumor role for interleukin (IL)-17-producing
gd T cells has also been reported in human cancers. Specifically,
Vd1 T cells are the major source of the IL-17 involved in chronic
inflammation in colorectal cancer (10). These results indicate
that gd T cells might be a “double-edged sword” in cancer
treatment. In this study, we aimed to summarize the current
knowledge of gd T cell research and investigate their functions in
different subtypes of malignancy using bibliometrics and
bioinformatics methods.
METHODS

Scopus Search
Scopus (Elsevier, Amsterdam, The Netherlands) was chosen as
the main database for our literature search (11, 12). The
following search formulas were used in Scopus: TITLE-ABS-
KEY (“gdT cell” and “cancer”) AND PUBYEAR>1993 AND
PUBYEAR<2022. To avoid citation duplication, the literature
search and extraction were completed on a single day, January
10, 2022 and the result yielded 239 studies.

The titles, abstracts, and keywords of the 239 studies were
scanned and filtered manually. Full texts were further examined
where necessary. To achieve precise and non-duplicated results,
we set the inclusion criteria as (1) a clear correlation between gdT
cell and cancer; (2) human, mouse, or cell-based studies; and (3)
document type as “article”. Finally, 190 studies were included
and summarized in a csv file for the subsequent analysis.

Analysis Using VOSviewer
We uniformed “gdt cell, gdt cells, gdt-cell, gdt-cells, gdT cells,
gamma delta T cell, gamma delta T cells, and gamma delta T
lymphocyte” to “gd T cell”. In addition, “natural killer cell,
natural killer cells, nkt cell, and nkt cells” were uniformed to
“nk cells”. Then, the csv file was uploaded into VOSviewer to
conduct co-occurrence analysis of authors, countries, and
keywords. The minimum number of occurrences of each
keyword was set to five and the total intensity of co-occurrence
bonds to other keywords was also derived.

Overall Survival Estimation of gd T Cell in
Different Malignancies
The Kaplan–Meier plotter (13) is an online tool for assessing the
correlation between the expression of 30 k genes (mRNA,
miRNA, and protein) and survival in 25 k+ samples from 21
tumor types. We conducted a survival analysis of gdT cells with
different subtypes of cancer. Based on the median transcription
level of each target gene, patients were allocated to the high and
low expression groups, and Kaplan–Meier plots were generated
Frontiers in Immunology | www.frontiersin.org 286
accordingly. The hazard ratio (HR) with the 95% confidence
interval and log-rank p-values were also calculated. Statistical
significance was set at p < 0.05.
RESULTS

Our literature search identified 190 studies on the relationship
between gdT cells and cancer conducted from 1993 to 2021. The
results indicated that before 2006, there were few studies on gd T
cells and cancer progression annually, whereas the number
increased from 2014 and had peaked by 2021 (Figure 1A). There
was international cooperation in conducting studies among 26
countries, and China had the most publications as well as the
highest citations, followed by Japan and the US (Figure 1B). The
top-20 cited publications are listed in Table 1. The paper
“Enterococcus hirae and Barnesiella intestinihominis facilitate
cyclophosphamide-induced therapeutic immunomodulatory
Effects” by Daillère et al. (13) had the highest citations at 312
times. The publication “gdT17 cells promote the accumulation and
expansion of myeloid-derived suppressor cells in human colorectal
cancer” byWu et al. (10) had the second highest number of citations
at 301 times.

Furthermore, we also conducted the co-occurrences analysis
of keywords with the software VOSviewer, in order to figure out
the relationship between gdT cells and other important scientific
issues. The minimum number of occurrences of a keyword was
set to 5 and 14 were finally identified among all 564 keywords.
The hotspots in gdT cell functions are presented in the overlay
visualization map scaled by occurrences (Figure 2). Accordingly,
gdT cells were shown to be responsible for the immune response
and communicated with dendritic cells and NK cells. We also
found that among all the types of cancer, gastric and breast
cancer were most closely linked to gd T cells. Furthermore, IL-17
and IL-2 are the most common cytokines linked to gd T cells.

IL-17 production by certain gd T cell subsets has been
reported to recruit immunosuppressive cells such as myeloid-
derived suppressor cells (MDSCs) or small peritoneal
macrophages, which can promote angiogenesis, tumor cell
growth, and inducible regulatory T (Treg) cell differentiation
(7). IL-2 could augment the gdT-17 response in favor of short-
lived effectors with limited plasticity, particularly in the presence
of IL-1b and IL-23 (33). Taken together, these results led us to
conclude that gd T cells could have a role in cancer development
via IL-2 or IL-17. Consequently, we investigated the effects of IL-
17 and IL-2 on gastric and breast cancer, and identified their
distinct roles in different malignancies.

In breast cancer, high expression levels of IL-17 and IL-2
indicated a promising prognosis. The median survival of patients
with breast cancer with low and high expression levels of IL-2
was 43 months and 56 months, respectively (HR = 0.86, p =
0.0031, Figure 3A). Furthermore, the median survival of breast
cancer patients with low and high expression levels of IL-17 was
216.66 and 228.85 months, respectively (HR = 0.8, p < 0.001,
Figure 3B). However, IL-2 and IL-17 played a dinstinct role in
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gastric cancer prognosis. Our results also showed that the
median survival of patients with gastric cancer who had low
and high expression levels of IL-2 was 35.4 and 22 months,
respectively (HR = 1.58, p < 0.001, Figure 3C). In addition, for
patients with gastric cancer with low and high expression levels
of IL-17, the median survival was 34.7 and 19.5 months (HR =
1.6, p < 0.001, Figure 3D).

Furthermore, we conducted a subgroup analysis of these two
types of cancers. For breast cancer, we examined the status of the
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2). As shown in
Figure 4, the median survival of ER-negative (ER-) patients
Frontiers in Immunology | www.frontiersin.org 387
with low expression of IL-2 was 18 months, whereas that of
patients with high expression was 25 months (HR = 0.79, p = 0.015,
Figure 4B). For HER2- patients, the median survival of patients
with low expression of IL-2 was 50 months, whereas that of patients
with high expression was 61.92 months (HR = 0.86, p = 0.011,
Figure 4F). The expression of IL-2 did not influence survival in ER-
positive (ER+), HER2+, PR+, or PR- subgroups (Figures 4A, C–E).

As shown in Figure 5, for ER+ patients, high expression of IL-
17 was significantly correlated with a longer survival time (HR =
0.85, p = 0.0095, Figure 5A). For ER- patients, the median survival
of those with low and high expression of IL-17 was 18 and 28.75
months, respectively (HR = 0.73, p = 0.0009, Figure 5B). The
A

B

FIGURE 1 | Annual number of publications related to gd T cell and cancer increased from 2014 to 2021 and international cooperation in related research occurred
between different countries. (A) Before 2006, there were few studies on gd T cell and cancer progression, annually, but number of studies increased from 2014 and
peaked by 2021. (B) Numerous national connections were established in this field of study, with China, Japan, and the US emerging as the most productive countries.
April 2022 | Volume 13 | Article 874640

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 1 | Top 20 cited publications studying relationship between gd T cell and cancer.

Year Source title Cited
by

PubMed ID

ory Effects 2016 Immunity 312 27717798
(14)
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(10)

2016 Cell 168 27569912
(15)

2005 International Journal of Cancer 136 15756684
(16)

NK and 2002 Cancer Research 127 11956095
(17)

2009 Blood 120 19436053
(18)

us cell 2008 Clinical Cancer Research 105 18594005
(19)

ical study 2011 Journal of Immunotherapy 102 21304399
(20)

a 2013 Journal of translational medicine 97 23634660
(21)

2007 EMBO Journal 95 17304214
(22)

resentation 2018 Molecular Therapy 77 29310916
(23)

1995 Clinical and Experimental
Immunology

77 7554383
(24)

atients with 2014 International Journal of Cancer 69 23825037
(25)

2016 International Journal of Cancer 67 27062572
(26)

2015 Cellular and Molecular Immunology 64 25864915
(27)

2011 Blood 60 21566093
(28)

2020 Signal Transduction and Targeted
Therapy

55 32345959
(29)

ells 2014 Clinical Cancer Research 52 24893631
(30)

2007 Journal of Immunology 45 17982035
(31)

2017 OncoImmunology 43 28344891
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FIGURE 2 | Overlay visualization map of author keywords co-occurrence analysis. Map shows that gd T cells mediated immune responses. Of all investigated cancers,
gastric and breast cancers were most closely linked to gd T cells. Interleukin (IL)-17 and IL-2 were identified as the most common cytokines linked to gd T cells.
A B

DC

FIGURE 3 | Levels of interleukin (IL)-2 and IL-17 played different roles in breast and gastric cancer prognosis. High IL-17 and IL-2 expression indicated (A, B)
promising prognosis in breast cancer and (C, D) poor prognosis in gastric cancer.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 874640589

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. gdT Cells in Cancer Prognosis
A B D

E F

C

FIGURE 5 | In breast cancer patients, high expression of interleukin (IL)-17 only indicated better prognosis in estrogen receptor-positive (ER+), ER-negative (ER-), and
human epidermal growth factor receptor 2 negative (HER2-) subgroups. High expression of IL-17 indicated better prognosis in (A) ER+ (hazard ratio [HR] = 0.85, p <
0.001) and (B) ER- (HR = 0.73, p < 0.001) patients. (C, D) IL-17 expression did not significantly influence survival in progesterone-positive (PR+; HR = 0.84, p = 0.24) or
PR- (HR = 1.25, p = 0.063) subgroups. (E) High expression of IL-17 did not correlate with better prognosis in HER2+ patients (HR = 0.89, p = 0.3). (F) High expression
of IL-2 indicated better prognosis in HER2- patients (HR = 0.79, p < 0.001).
A B D

E F

C

FIGURE 4 | In patients with breast cancer, high interleukin (IL)-2 expression only indicated better prognosis in estrogen receptor-negative (ER-) and human
epidermal growth factor receptor 2 negative (HER2-) subgroups. (A) High expression of IL-2 (A) did not correlate with better prognosis in ER+ patients (hazard ratio
[HR] = 0.94, p = 0.29) and (B) indicated better prognosis in ER- patients (HR = 0.79, p = 0.015). (C, D). IL-2 expression did not significantly influence survival in
progesterone receptor-positive (PR+; HR = 0.99, p = 0.96) or PR- (HR = 1.11, p = 0.36) subgroups. High expression of IL-2 (E) did not correlate with better
prognosis in HER2+ patients (HR = 0.89, p = 0.3) and (F) indicated better prognosis in HER2- patients (HR = 0.86, p = 0.011).
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 874640690

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. gdT Cells in Cancer Prognosis
expression of IL-17 did not significantly influence the overall
survival, regardless of whether the patients were PR+ or PR-
(Figures 5C, D). As demonstrated in Figure 5E, high expression
of IL-17 did not correlate with better prognosis in HER2+ patients
(HR = 0.89, p = 0.3). For HER2- patients, high expression of IL-17
indicated a better prognosis than low expression did (HR = 0.79,
p < 0.001, Figure 5F).

For gastric cancer, we used the Lauren classification to divide
the cohort into three subgroups: intestinal, diffuse, and mixed. As
shown in Figure 6, the analysis of the expression of IL-2 in
different subtypes of gastric cancer showed that low expression of
IL-2 indicated a better prognosis in both intestinal and diffuse
patients than high expression levels did (Figures 6A, B).
However, the difference was not statistically significant in
patients with mixed conditions (Figure 6C). Moreover, the
median survival of intestinal patients with low expression of
IL-17 was 123.8 months, whereas that of patients with high
expression was only 23.4 months (HR = 2.02, p < 0.001,
Figure 6D), and the difference did not have statistical
significance in diffuse and mixed subgroups (Figures 6E, F).
Frontiers in Immunology | www.frontiersin.org 791
DISCUSSION

Our results showed that the number of studies on gd T cells has
increased since 2014, suggesting that most were likely novel. The
examination of the top-20 cited publications revealed that
numerous studies concentrated on the role of gd T cells in cancer
treatment. In addition, the co-occurrence analysis revealed that gd T
cells were more closely related to breast and gastric cancers than
they were to the other investigated malignancies. IL-2 and IL-17 are
the two most important cytokines related to gd T cells; therefore, we
investigated their influence on breast and gastric cancers.

The two cytokines, IL-2 and IL-17, which we focused on in
this study, play different roles in breast and gastric cancers, where
they promote the development of gastric cancer but inhibit the
progression of breast cancer. The results of the subgroup analysis
further clarified this finding. For intestinal gastric cancer, low
expression of IL-2 and IL-17 indicated a promising prognosis,
whereas for diffuse and mixed gastric cancers, the expression of
these cytokines did not significantly affect survival. The cases of
intestinal gastric cancer were deemed to be early stage and,
A B

D E F

C

FIGURE 6 | In gastric cancer patients, high expression of interleukin (IL)-2 indicated worse prognosis in patients with both intestinal and diffuse conditions and high
expression of IL-17 indicated worse prognosis only in patients with intestinal condition. (A, B) High expression of IL-2 indicated worse prognosis in patients with both
intestinal (hazard ratio [HR] = 1.51, p = 0.013) and diffuse (HR = 1.54, p = 0.3) conditions. (C) High expression of IL-2 did not significantly influence survival in mixed
patients (HR = 2.66, p = 0.18). (D) High expression of IL-17 indicated worse prognosis in patients with intestinal conditions (HR = 2.02, p < 0.001).
(E, F) High expression of IL-17 did not significantly influence survival in patients with diffuse (HR = 1.43, p = 0.057) and mixed (HR = 2.02, p = 0.35) conditions.
April 2022 | Volume 13 | Article 874640

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. gdT Cells in Cancer Prognosis
therefore, we speculated that gd T cells might affect the prognosis
of gastric cancer at the disease onset.

In breast cancer, ER, PR, and HER2 status have been verified
as important prognostic factors; therefore, based on these
different statuses, we also investigated how the expression of
IL-2 and IL-17 influenced patient survival. Our results showed
that regardless of ER status, high expression of IL-17 indicated a
longer survival time, but only a better prognosis in HER2-
patients than low expression did. In addition, high expression
of IL-2 indicated a better prognosis in patients with ER- or
HER2- breast cancer than low expression did. However,
regardless of whether PR was positive or negative, the
expression of IL-2 and IL-17 did not influence the survival of
patients with breast cancer in this subgroup analysis. Based on
these results, we hypothesized that HER2 might play an
important role in breast cancer treatment via gd T cells.

IL-2 and IL-17 have opposite roles in the development of breast
and gastric cancers and, therefore, we postulated that gd T cells have
distinct functions in different malignancies. Furthermore, we also
discovered that even in the samemalignancy, gd T cells might have
distinct functions in different forms, implying some underlying
mechanism may exist between gd T cells and cell receptors. The
abundant cytokine secretion and non-MHC-restricted antigen
recognition capacity of gd T cells has encouraged the investigation
of their application in cancer adoptive immunotherapy (34).
Currently, evidence has accumulated from studies in numerous
cancers, and the results demonstrate that gd T cells could be well
tolerated in the treatment of cancer (3, 34–36). Studies have also
revealed that gdT cells can exert anticancer activity through various
mechanisms, such as eliminating tumor cells via the perforin-
Frontiers in Immunology | www.frontiersin.org 892
granzyme pathway (37), binding to TNF-related apoptosis-
inducing ligand (TRAIL) and Fas ligand (FasL) (38), via antibody-
dependent cellular cytotoxicity (ADCC) (39), or by secreting
interferon (IFN)-g and tumor necrosis factor (TNF)-a (40, 41). In
addition to these direct antitumor effects, specific gd T cell subsets
also exert an indirect antitumor effect, which is complemented by
interactionswithother immune cells suchasB cells,DCs,abTcells,
andNKcells (42).However, recentstudies claimthatgdTcells could
stimulate cancer development (43–45) by impairing the antitumor
ability of immunocytes or enhancing the function of immuno
suppressive cells (10, 46, 47). For instance, gd T17 cells are a major
source of IL-17 in the cancer microenvironment (48), and IL-17
contributes to cancer development by supporting angiogenesis in
several malignancies, such as gallbladder cancer, gastric cancer and
non-small-cell lung cancer (26, 49, 50).

The limitation of the current study was that we only chose
Scopus as our database and did not use databases such as
Pubmed or Google Scholar. Besides, as we used the Kaplan
Meier plotter as our database to achieve survival data, this
database collected information from many independent
datasets, which might cause bias in our analysis.

In conclusion, using bibliometric analysis, we identified IL-17
and IL-2 as the most common cytokines linked to gd T cells.
Furthermore, based on our investigation of the role of IL-17 and
IL-2 in the prognosis of gastric and breast cancer, we discovered
that they play different roles in various malignancies. Moreover,
in the same malignancy, the expression levels of certain genes or
different variations could impact the function of gd T cells
(Figure 7). Finally, we concluded that gd T cells might
influence the progression of different cancers in diverse ways.
FIGURE 7 | An illustration of the main findings in our study. By bibliometric analysis, we identified IL-17 and IL-2 as the most common cytokines linked to gd T cells,
and these two cytokines influenced the prognosis in different manners in gastric cancer and breast cancer. In breast cancer, high expression of IL-2 and IL-17
indicated a better prognosis, especially in ER negative and HER2 negative patients. While in gastric cancer patients, high level of IL-2 indicated a worse prognosis in
intestinal and diffuse conditions, and high level of IL-17 was merely predictive of a poor prognosis in intestinal condition. Red arrow indicates a poor prognosis, blue
arrow indicates a good prognosis.
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Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy
for the treatment of malignant tumors. Among them, there is great interest in engineered gd
T cells for ACT. With both adaptive and innate immune characteristics, gd T cells can be
activated by gd TCRs to recognize antigens in a MHC-independent manner, or by NK
receptors to recognize stress-induced molecules. The dual recognition system enables gd
T cells with unique activation and cytotoxicity profiles, which should be considered for the
design of engineered gd T cells. However, the current designs of engineered gd T cells
mostly follow the strategies that used in ab T cells, but not making good use of the specific
characteristics of gd T cells. Therefore, it is no surprising that current engineered gd T cells
in preclinical or clinical trials have limited efficacy. In this review, we summarized the
patterns of antigen recognition of gd T cells and the features of signaling pathways for the
functions of gd T cells. This review will additionally discuss current progress in engineered
gd T cells and provide insights in the design of engineered gd T cells based on their
specific characteristics.

Keywords: gd T cells, engineering, stimulation, dual recognition, tumor
1 INTRODUCTION

Immunotherapy has become one of important pillars of cancer treatment, as it can trigger and
augment the power of patients’ immunity to attack malignant cells. Among immunotherapy strategies,
adoptive cell therapy (ACT) with engineered T cells, such as chimeric antigen receptor (CAR)-T and T
cell receptor (TCR)-T cells, has gained considerable attention (1, 2). A good example is that CAR-T
Abbreviations: ACT, Adoptive cell therapy; AMPK, AMP-activated protein kinase; BTN2A1, Butyrophilin 2A1; BTN3A1,
Butyrophilin 3A1; CAR, chimeric antigen receptor; CD3 CC, CD3 conformational change; DETCs, dendritic epidermal T cells;
EphA2, ephrin type-A receptor 2; FDA, Food and Drug Administration; FPPS, farnesyl-diphosphate-synthase; GD2,
disialoganglioside 2; GVHD, graft-versus-host disease; HVGA, host-versus-graft activities; iNKT, invariant natural killer T;
IPP, Isopentenyl pyrophosphate; Klrk1, killer cell lectin-like receptor K1; MART-1, melanoma antigen recognized by T cells 1;
MHC, major histocompatibility complex; MICA/B, MHC I chain-related molecules A and B; MR1, MHC-related protein 1;
MSCP, melanoma cell surface chondroitin sulfate proteoglycan; MUC1, Mucin 1; NCRs, NK cytotoxicity receptors; NKG2D,
Natural killer group 2D; NKG2DL, NKG2D ligand; NKRs, NK cell receptors; P-Ag, phosphoantigens; RAG, recombination
activating gene; PRS, proline-rich sequence; Rae1, retinoic acid early transcripts-1; RCC, renal cell carcinoma; scFv, single-
chain fragment variable; TAA, tumor associated antigen; TCR, T cell receptors; ULBP, UL16-binding protein;
ZOL, zoledronate.
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therapy has advanced the furthest in clinical development and
three CAR-T products (Kymriah, Yescarta, and Tecartus) have
gained commercial approval in the United States.

Over the past decades, a variety of researches of gd T cells have
added to the established understanding in highlighting conspicuous
roles of gd T cells in cancers. Although some researches point the
potential tumorigenic effector functions of gd T cells (3, 4),
increasing translational researches have shown great interest in
the therapeutic use of certain subsets of gd T cells, especially
engineered gd T cells. In fact, the momentum of engineered gd T
cell therapy may have been generated, as U.S. Food and Drug
Administration (FDA) has cleared investigational new drug
application for ADI-001 that comprises CD22-allogenic gd CAR-
T cell therapy in 2020.

Activation of gd T cells is in a TCR-dependent process as similar
as that of ab T cells, yet in independence of major
histocompatibility complex (MHC). In addition to gd TCR
signals, gd T cells mediate multiple responses via receptor-ligand
interaction of innate signals, similar to NK cells. They bear a variety
of NK cell receptors (NKRs) such as NKG2D and NK cytotoxicity
receptors (NCRs) including NKp30, NKp44, and NKp46 (5). These
receptors may fine-tune the gd T cell activation threshold, enhance
gd T cells to recognize tumor target, prompt gd T cells to mediate an
immediate immune reaction against tumor target, and release
cytotoxic granules such as perforin and granzyme B. In cancer,
the down-regulation of MHC-I may prompt ‘missing-self
recognition’, which unlock the binding between MHC-I and
inhibitory receptors on gd T cells, making gd T cells unhindered
to attack tumor cells in a NK-like manner (6). Dual recognition and
stimulation system endows gd T cells distinct anti-tumor effect.
However, current design of engineered gd T cells is a me-too
engineered ab T cells, such as using the same single-chain
fragment variable (scFv) and co-stimulation molecules which are
proved to help kill tumor cells effectively in ab T cells but not
completely confirmed in gd T cells. This kind of design may take
some advantages of gd T cells such as GVHD absence, however, this
raises the question that how to make the best use of dual recognition
and stimulation system of gd T cells to endow engineered gd T
maximum anti-tumor effect.

In this review, we provided a comprehensive and deep
summary of the unique patterns of gd T recognition and
signaling pathways. Based on these underlying mechanisms,
this review further discussed valuable insights in the design of
engineered gd T cells. It is promising that an intelligent design
that considers the specific characteristics of gd T cells will be
beneficial for the utility of engineered gd T cells.
2 gd TCR ANTIGEN RECOGNITION

Like ab T cells and B cells, gd T cells generate their specific T cell
receptors (TCRs) via recombination activating gene (RAG)-
mediated V(D)J recombination, which contributes to the high
diversity up to 1017 theoretically possible combinations of TCR
repertoires (7). Since gd T cells have been discovered in 1980s, what
antigens gd TCRs can recognize remains an outstanding question
Frontiers in Immunology | www.frontiersin.org 296
in this field. Nowadays, it has been known that gd TCRs antigen
recognition pattern is unrestricted by MHC. The ligands that they
can recognize include self-antigens, such as MHC-like molecules,
B7-like molecules, and foreign-antigens, such as haptens, virus
protein, phycobiliproteins (8–12). Recent researches have shown
that gd TCRs most likely take part in complicated mechanisms that
involves multiple ligands on the tumor cells, as well as the sensation
of spatial and conformational changes through the gd TCRs and
potentially associated molecules.

The comprehensive description of antigen recognition by gd
TCRs has already been summarized in published articles (13, 14).
Here, we only briefly review tumor-related antigens recognized
by gd TCRs, which are summarized in Figure 1.

Vg9Vd2 T cells recognize phosphoantigens (P-Ag) modified
Butyrophilin 2A1 (BTN2A1)-Butyrophilin 3A1 (BTN3A1)
complex in an MHC-independent, but TCR-dependent manner.
In tumor, the dysregulation of mevalonate pathway accounts for
the accumulation of phosphorylated mevalonate metabolites, such
as Isopentenyl pyrophosphate (IPP) that was identified as a kind of
P-Ag, and thus activate the Vg9Vd2 T cells (15–17). On the other
hand, zoledronate (ZOL) can inhibit IPP-metabolizing enzyme,
farnesyl-diphosphate-synthase (FPPS), and increase IPP level,
which contributes to an enhanced IPP-induced gd T cell
activation (16, 18). ZOL has been widely used in cancer
therapies such as renal cell carcinoma (RCC) and prostate
cancer (19, 20). Many clinical trials have found it significantly
inhibit the cancer progression and even completely cure cancers.

However, the defined molecular mechanisms of Vg9Vd2 T cell
activation by phosphoantigens still remains to be discovered. The
binding of P-Ags and the intracellular B30.2 domain of BTN3A1
leads to the conformational changes of the BTN3A1 extracellular
domain, which can take part in the activation of Vg9Vd2+ TCRs
(9, 21, 22). BTN2A1, a BTN molecule that is associated with
BTN3A1 in extracellular and intracellular domains, directly binds
to Vg9 domain of the TCRs, potentiating Vg9Vd2-mediated P-Ag
sensing. In addition, another Vg9Vd2 TCR direct interaction,
mediated by BTN3A1 or an unknown ligand, is also essential in
the response of Vg9Vd2 T cell to P-Ag (23, 24).

In addition to BTN3A molecules, the recognition of MHC or
MHC-like molecules by gd T cells has been intensively studied. gd
T cells can recognize molecules such as HLA-A24, HLA-B27 and
HLA-A2 and may specifically recognize certain MHC molecules
in tumor cells (13). For example, the engineered ab T cells, which
expressed Vg5Vd1+ TCRs, could be activated by HLA-A*24:02+

tumor cells and significantly decreased the tumor burden and
enhanced survival rate of HLA-A*24:02+ tumor-bearing mice (25).
On the other hand, some MHC-like molecules, such as MHC-
related protein 1 (MR1), CD1, has a preference to specifically bind
to Vd1 TCRs in most cases (8, 26–29). Interestingly, loading
different lipids may have different influences on the binding
affinity of CD1d/CD1c and gd TCRs, suggesting the loaded
lipids on CD1 molecule contribute to gd TCR antigen
recognition (8, 28). MR1, another MHC-like molecule can also
be recognized by gd TCRs. gd T cells co-cultured with MR1-
transduced cells, MR1-restrict gd TCRs transduced Jurkat-76 cell
lines, can be activated with up-regulating CD69 and ERK1/2
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phosphorylation (29). Although CD1/MR1-restricted NKT or ab
T cells were reported to induce specific tumor killing ability in
many kinds of tumor cells (30–32), there is no evidence that gd T
cells can also lead to antitumor activity by recognizing CD1 or
MR1 molecules. The role of CD1 or MR1-restricted gd T cells in
cancer immune surveillance still needs to be further studied.

Recently, more novel tumor-associated molecules that can be
recognized by gd TCRs have been revealed, including annexin A2
(33), EPCR (an MHC-like molecule) (34, 35), and ephrin type-A
receptor 2 (EphA2) (36, 37). The expression of EphA2 is up-
regulated in cervical cancer and colon cancer cells, which is
mediated by the metabolic changes (AMP-activated protein
kinase (AMPK)–dependent metabolic reprogramming) in
tumor cells. gd T cells play increasing tumor-killing ability by
recognizing EphA2. This ability can be reduced by blocking
EphA2 in endometrial carcinoma cells or knockout of EPHA2
gene in renal and colon tumor cells, which indicates the
interaction of EphA2 and gd T cells play an important role in
enhancing the susceptibility of gd T cytotoxic reactivity (36, 37).
3 THE CHARACTERISTICS OF gd TCR AND
THE RELATED CO-STIMULATION
SIGNALS IN gd T CELLS

3.1 gd TCR Signal
Since gd T cells eliminate tumor cells via recognizing a variety of
tumor-associated antigens, gd TCR signals play a key role in
Frontiers in Immunology | www.frontiersin.org 397
regulating gd T cell activation. Like conventional abTCR, gd
TCR is a complex of a clonotypic heterodimer TCRd/TCRg, two
CD3 dimers (CD3dϵ or/and CD3gϵ), and a zz dimer (38). The
CD3ϵ-deficient patients had complete deficiencies in peripheral
T cells, suggesting that the ϵ subunit plays a pivotal role in the ab
T cell development (39). However, some CD3 molecules may
play different roles in the functions of gd T cells. For example,
CD3d-/- mice have normal numbers of gd T cells (40, 41). In
addition, mouse gd TCRs, which are naturally CD3d-deficient,
can induces calcium mobilization and ERK activation (42). On
the contrary, if CD3d is deficient in human or mice, the
development of ab T cells are failed (40, 41), and did not
induce signaling events by the engagement of CD3d-deficient
ab TCRs (43). Another important CD3 molecule, CD3g, only
blocks, but not significantly impairs the development of gd T cells
in human, as CD3d gene may rescue the gd T cell development
(44). Current researches reported the function of TCR/CD3
complex components in signaling transmitting in ab T cells,
which was applied in engineered ab T cells and engineered gd T
cells. For example, CD3z chain was determined to transmit
signals in the absence of CD3 g, d, and ϵ in ab T cells (45),
which was widely used to deliver a major activation signal in both
ab T cell and CAR-T cells. In addition, in absence of CD3z
chain, the CD3 gϵ/dϵ, or CD3ϵ alone were also able to
independently activate ab T cells (46, 47). However, the
specific signaling function of TCR/CD3 complex components
have not been precisely reported in gd T cells, which needs to be
explored in the future. As a whole, signals transmitted by TCR in
ab T cells and gd T cells are not always the same. A clinical test of
FIGURE 1 | Recognition of tumor-associated antigens (TAAs) by different subsets of gd T cells. Vd2 T cells recognize phosphoantigens (P-Ag) modified Butyrophilin
2A1 (BTN2A1)-Butyrophilin 3A1 (BTN3A1) complex. Non-Vd2 TCRs recognize CD1 family members and MR1 in either antigen dependent or independent manner.
Besides, NK receptors (NKG2D, NKp30, DNAM-1) in gd T cells recognize MICA/B, ULBP and B7-H6, Nectin-like-5 respectively.
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60 samples from hospitalized and healthy individuals
demonstrated that human gd T cells constitutively expressed
higher density of TCR/CD3 complex (2.12 ± 0.33 fold) than that
in ab T cells (48). Furthermore, by analyzing the ability to induce
calcium mobilization, ERK activation, and cellular proliferation
in mouse gd T cells, it revealed a superior effect on gd T cells in
the aspect of signal transduction than that in ab T cells with the
same stimulation using immobilized anti-CD3 monoclonal
antibody (mAb), which revealed that gd T cells have a better
signal-transducing complex than ab T cells (42). Interestingly, in
steady state, compared with ab T cells, mouse gd T cells have
higher phosphorylation levels of ERK1/2 and stronger
proliferation ability. Therefore, it suggested that gd T cells
possess a more “primed for action” status at baseline even in
the absence of any external stimulation (49).

TCR conformation also influences the signal. CD3
conformational change (CD3 CC), which takes advantage of
the increased accessibility of a proline-rich sequence (PRS) in the
CD3ϵ cytoplasmic tail, was required for T cell activation (50, 51).
In ab T cells, cholesterol bound to the transmembrane region of
TCRb keeps the TCR in a resting and inactive conformation that
cannot be phosphorylated by active kinases. Only ab TCRs that
spontaneously detached from cholesterol could switch to the
active conformation (termed primed TCRs) and then be
phosphorylated (52). Moreover, ab TCR signaling could be
inhibited by cholesterol sulfate, suggesting an important role of
cholesterol in the conformation of ab TCR (53). But gd TCRs
does not bind to cholesterol, accounting for a higher percentage
of gd TCRs in the active conformation compared to ab TCRs
(52). In addition, the CD3 CC in Vg9Vd2 T cells induced by anti-
CD3ϵ mAb stimulation, which dramatically enhanced target cell
lysis of the pancreatic tumor cell line Panc89 (54). The better
reactivity of gd T cells provides a better application of engineered
gd T cell therapy.

3.2 Co-Stimulation Molecules
Apart from TCR-dependent stimulation, the co-stimulation
signals are also important and widely applied into the 2nd

generation of CAR-T therapy. To date, almost all engineered
gd T cells follow the co-stimulation design in ab T. However,
whether these co-stimulation signals are applicable to engineered
gd T cells requires further investigation. The comparison of co-
stimulatory molecules and their induced effector functions
between ab T cells and gd T cells is summarized in Figure 2.

3.2.1 CD28
Almost all engineered gd T cell, especially CAR-gd T cell, utilize
CD28 as a co-stimulation molecule. CD28 is an important co-
stimulation molecule that express on most CD4+ and half of
CD8+ ab T cells. It has been widely accepted that CD28 mediates
costimulatory signal to amplify signaling generated by TCRs
ligation, promoting proliferation, survival and cytokine
production of ab T cells (55). Thus, CD28 has been widely
applied in CAR-ab T cells to help exert better effect. However,
co-stimulatory function of CD28 in gd T cells is still under
debate. Some studies indicated that CD28 functioned as a
costimulatory molecule in gd T cells. CD28+ gd T cells have
Frontiers in Immunology | www.frontiersin.org 498
the better activation, proliferation, survival and production of IL-
2 when they were stimulated with anti-CD28 mAb (56–58). It
also showed that almost no gd T cells, especially CD69+ gd T
cells, could expand in CD28-deficient malaria mouse model.
Along this line, CD28-/- gd T cells failed to produce cytokines,
such as IFNg and IL-17. In human, the blockage of CD28 ligand
led to the impairment in gd T cell proliferation and survival (56).
However, since CD28 signal is extremely important for ab T
cells, including CD4+ T help cells, neither the CD28-/- mice
infection model nor the CD28 ligand blockade experiment can
exclude the possibility that blocking CD28 signal reduced the
function of CD4+ T help cells, thereby affecting gd T cells
indirectly. On the contrary, some studies disagreed with the
co-stimulatory function of CD28 in gd T cells. Some researchers
found that CD28 was not expressed in resting mouse splenic,
intestinal intraepithelial, and vaginal gd T cells, revealing the
dispensable role of CD28 in mouse (57, 59, 60). In addition, the
proliferation of gd T was unchanged when they were stimulated
with anti-CD3 mAb with or without anti-CD28 mAb (42).
Consistently, CD28+/+ and CD28-/- mice were revealed to have
equivalent increases in the percentage and quantity of the gd T
cells and IL-17A+/IFNg+ gd T cells in a listeria model of Infection
(61). In human, although 40-60% freshly isolated human gd T
cells expressed CD28, this subset was diminished to 10% during
in vitro culture, and even disappeared in long-term culture (62,
63). Moreover, human Vg9Vd2 T cells produced TNFa via direct
TCR-induced p38 kinase and MEK/ERK activation pathway, but
irrelative with CD28 (63). As is discussed above, since the co-
stimulatory function of CD28 remains controversial in different
stimulating conditions or infection models, it is still unclear
whether gd T cell function requires transient or continuous
CD28 signals. Comprehensive studies to investigate the role of
CD28 signals in gd T cells are required, which will benefit for the
better design of engineered gd T cells.

3.2.2 4-1BB
4-1BB, also known as CD137, is an inducible T cell costimulatory
molecule. It can be detected after stimulation and reaches the
peak of expression at 48h in human ab T cells, and functions as a
conventional co-stimulatory molecule (64). 4-1BB has been
widely applied in engineered ab T cells, but not in gd T cells
currently. Many researches pointed that 4-1BB preferred to help
expand memory CTLs, up-regulated NKG2D expression and
rendered enhanced cytolysis. More importantly, the 4-1BB
provided a stronger cytotoxicity than CD28 in some
experiments (65). However, no research has specifically
evaluated the advantages and disadvantages of 4-1BB in
engineered gd T cells, which raises the question of whether 4-
1BB can exert as an efficient co-stimulator in engineered gd T
cells. Existing researches have revealed the co-stimulation
function of 4-1BB in gd T cell in different disease models. For
example, 20% 4-1BB+ Vg9Vd2 T cells were observed in influenza
virus infection model, and most importantly, such cell subset
showed an enhanced ex vivo effector function such as more
intensive granule release, more cytokine production (e.g. IFNg),
and superior cytotoxic activity towards virus-infected cells
comparing to the 4-1BB- counterparts. Furthermore, the
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co-stimulation effect of 4-1BB was determined to induce better
proliferation and enhance the survival of Vg9Vd2 T cells (66).
On the other hand, in influenza virus infection mouse model, the
transfer of 4-1BB+ gd T cells was beneficial to maintain the body
weight, enhance the survival rate, and reduce virus titers. With
the co-stimulated of 4-1BB, only gd T cells, but not other subsets
of PBMCs, had improved therapeutic outcome in this disease
model (66). In addition to influenza infection model, Listeria
Monocytogenes infected mouse model indicated that compared
to gd T cells without 4-1BB stimulation, gd T cells with 4-1BB
stimulation showed the decreased bacterial load in vivo and
enhanced survival. To be more specific, anti-4-1BB treatment in
adoptive gd T cell treatment, rather than adoptive ab T cell
treatment, significantly increased the cytokine production such
as IFNg and TNFa, and the augmented number of gd T cells (67).

3.2.3 CD27
CD27 is also a stimulatory molecule in ab T cells, which interacts
with CD70 and induces the activation, proliferation, and survival
of ab T cells (68). It has been applied in CAR-ab T which can
promote the proliferation, anti-tumor effect, and survival both in
vitro and in vivo (69). However, it has not been applied in
engineered gd T cells. CD27 has been found to be widely
Frontiers in Immunology | www.frontiersin.org 599
expressed in gd T cells. It is expressed in 70-90% of gd T cells
in mouse spleen and lymph nodes (70), 81% of activated Vg9+ T
cells, and even some Vd1+ T cells in peripheral blood in human
(71). Many researches have showed its co-stimulation function
as it can promote proliferation, survival and cytokine production
in gd T cells (56, 71). Interestingly, CD27 was used to distinguish
mouse gd T cells with different cytokine production. In this case,
CD27- gd T cells produce IL-17, whereas CD27+ gd T cells
produce IFNg. In addition, 90% IFNg and 70% TNFa-producing
cells were CD27+ gd T cells in naïve and malaria-infected mice
(70). Apart from these in vitro researches, gd T cells failed to
expand in CD27 deficient mice when infected with MuHV-4,
compared to that in WT mice. Moreover, the deficiency of CD27
related to the anergy of IFNg production (72). In human,
comparing to CD27- gd T cells, CD27+ Vg9Vd2 T cells showed
higher level of proliferation and up-regulation of BCL2A1 gene
after being cultured with HDMAPP. Vg9Vd2 T cells had a
stronger ability of proliferation and IFNg, LT-a secretion
under sCD70 stimulation, and CD70 blockade prevented
efficient expansion of Vg9Vd2 T cells and reduced production
of TNFa and LT-a (71). As summarized, CD27 may be a
potential co-simulation molecule that can be applied in
engineered gd T cells.
FIGURE 2 | The comparison of co-stimulatory molecules and their induced effector functions between ab T cells and gd T cells. Co-stimulatory molecules induce the
effector functions of ab T cells and gd T cells, by engaging respective ligands and counter-receptors on APCs. The specific functions of some molecules are
commonly well-understood in ab T cells, whereas they are controversial in gd T cells.
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3.2.4 Potential Co-Stimulation Molecules
Recent researches have revealed some other potential co-
stimulation molecules. For example, CD6 (ligands to CD166
and CD318), a costimulatory receptor, is expressed on virtually
all T cells, especially activated human gd T cells (73–75). After
stimulated by CD166, human Vd2+ T cells showed increased
proliferative capability and IFNg production. In addition, both
CD6 and CD166 were observed to locate at center of synapses in
activation process (75). In ab T cells, a CAR with CD6 showed
increased release of IFNg and enhanced anti-tumor effect when
compared with the CAR without CD6 (76). However, CD6 has
not been applied in engineered gd T cell therapy. In addition to
CD6, CD2 and LFA1, as adhesion molecules, also have
costimulatory function in activated ab T cells (77, 78).
Ligation of CD2 and its ligand was applied in first-generation
CD19-specific CAR to drives IL-2 production (79).There are
several researches about its costimulatory function in gd T cells.
The stimulation by anti-CD2 mAb promotes IL-2 secretion and/
or proliferation of gd T cells (80). Correspondingly, the blockage
of CD2 or LFA1 inhibited the effector function, especially
reduced TNFa production, of Vd2− T cells (34). However,
LFA1 and CD2 signals affected the function of Vg9Vd2 T cells
differently. CD2 blockade strongly inhibited proliferation of gd T
cells and release of TNFa/IL-2, but had no effect on the lytic
activity of gd T cells, whereas LFA-1 blockade had no effect on
cell proliferation and cytokine production, but could effectively
inhibited target cell lysis (81). Consequently, CD2/LFA1 co-
stimulation may differently influence the effector function of
engineered gd T cells.
4 THE CHARACTERISTICS OF NK CELL
RECEPTOR SIGNALS IN gd T CELLS

The expression of a variety of NK cell receptors, including NKRs
and NCRs, is an important feature of gd T cells, which endows gd
T cells innate immune characteristics like NK cells. Also, the two
kinds of lymphocytes share similar characteristics in the
perspective of immune responses. Compared to ab T cells,
involvement in innate immune reaction is beneficial for gd T
cells to recognize a more extended spectrum of antigens on tumor
cells, reduce the risk of tumor immune escape by losing single
tumor-associated antigen, and provide available chances for novel
immunotherapies for cancers that lack tumor specific antigens.

4.1 Natural Killer Group 2D (NKG2D)
As one of the most important receptors, NKG2D is a C-type,
lectic-like, type II transmembrane glycoprotein, which is
expressed on NK cells, gd T cells and some narrowed subsets
of ab T cells (82, 83). In human peripheral blood, almost all gd T
cells expressed NKG2D, but compared with NK cells, the
expression level of NKG2D is about 10-times lower (82). In
addition, the intestinal intraepithelial gd T cells originally express
relatively low level of NKG2D. Interestingly, the expression of
NKG2D can be upregulated in response to IL-15 stimulation or
4-1BB signals (84).
Frontiers in Immunology | www.frontiersin.org 6100
4.1.1 NKG2D Recognition
Like NK cells, NKG2D on gd T cells can also recognize ligands
including MHC class I-like molecules [e.g. MHC I chain-related
molecules A and B (MICA/B) and UL16-binding protein (ULBP1-
6)] in human, and retinoic acid early transcripts (Rae1) a-ϵ,
murine UL16-binding protein-like transcript 1 MULT1, H60a,
H60b, and H60c in mouse. These ligands can be induced in
infected and oncogenic transformed cells (85, 86). Therefore,
NKG2D is frequently involved in the tumor cell recognition,
induces cytokine release, and triggers degranulation. NKG2D is
reported to trigger cytotoxicity of gd T cells against tumor cells and
bacterial or virus-infected cells in a NK-like and TCR-independent
manner (87–91). Stimulated by anti-NKG2D mAb or NKG2D
ligand protein (NKG2DL), human Vg9Vd2 T cells and mouse
dendritic epidermal T cells (DETCs) released cytotoxic granules
and cytokines such as TNFa. The blockade of NKG2D completely
abolished such cytotoxicity to tumor cells induced by Vg9Vd2 T
cells (83, 87, 91).

4.1.2 NKG2D Signal
The pivotal role of NKG2D in gd T cells has attracted researchers
to explore the underlying signaling molecules and specific
signaling pathways. The NKG2D signals are much similar
between gd T cells and NK cells. In NK cells, NKG2D is
associated with adapter molecules DAP10 to transmit signals in
PI3K or Vav/SOS signaling pathway to trigger cytotoxicity, but
without IFNg production. Alternatively, NKG2D connects to
DAP12 to recruit Syk and ZAP70 to downstream signaling
events to trigger cytotoxicity, along with the secretion of IFNg in
mice (92–96). In gd T cells, NKG2D has been observed to act in a
PI3K-dependent signaling pathway that responds to target cells in
a TCR-independent manner (88, 91, 97). DAP10, rather than
DAP12, was reported to strongly express in resting and activated
human Vg9Vd2 T cells (82, 96), while DAP10/DAP12
constitutively expressed in mouse DETCs (83). Human Vg9Vd2
T cells stimulated by ULBP proteins could produce IFNg, TNFa,
and released cytolytic granules usually accompanying PKB (a
PI3K kinase substrate) phosphorylation (88, 97). The
knockdown of either DAP10 or NKG2D in Vg9Vd2 T cells
showed the similar impaired anti-bacterial effect, when
cocultured with infected macrophages. This indicated that
DAP10 is involved in NKG2D signaling during bacterial
infection (88). In mouse DETCs, NKG2D could trigger a PI3K-
dependent signaling pathway by DAP10 to increase
phosphorylation of Akt, trigger degranulation and induce
cytotoxicity, which could be completely inhibited by PI3K
inhibitor. In addition, in the absence of both NKG2D-S-DAP12
(a shorter protein isoform that is produced by alternative splicing
of killer cell lectin-like receptor K1(Klrk1)) and TCR signals, only
NKG2D/DAP10 signals through the PI3K/Grb2/Vav1 pathway is
sufficient to trigger cytotoxicity of DETCs against target cells (91).
Of note, although gd T cells could produce IFNg and were
cytotoxic under the stimulation of anti-NKG2D mAb (83), these
cells failed to produce IFNg, TNFa, IL-13 and induced Syk/ZAP70
activation when stimulated by recombinant NKG2DL protein. It
indicated that NKG2DLs may not be able to engage enough
activation of NKG2D/DAP12 signaling, which might be weaker
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than NKG2D/DAP10 on DETCs in the aspects of triggering Syk/
ZAP70 signaling (91).

4.1.3 Signal Difference Between NKG2D and TCR
in gd T Cells
Apart from the signaling mechanism, another interesting question
is the different activation level through NKG2D and TCR in
activating gd T cells. Some experiments compared effector
function in cytokine production, degranulation, killing ability
induced by gd T cells with specific TCR stimulation to that with
NKG2D stimulation. For example, comparison of cytokines
production in different stimulation groups, Vg9Vd2 T cells
induced the similar level of TNFa when stimulated by anti-
NKG2D mAb or recombinant MICA-Fc or Daudi cells plus
IPP, although which is weaker than that of stimulation with
anti-CD3ϵ mAb (87). Furthermore, by stimulating NKG2D or
TCRs pathways with antibodies or cell lines respectively, Vg9Vd2
T cells showed the similar level of degranulation, IFNg production
and cytotoxicity (87). In the real situation, tumor cells can express
ligands that could bind both NKG2D and gd TCRs. Therefore,
researchers conducted inhibition experiment to compare the
contribution of NKG2D and TCR to the cytotoxicity of gd T
cells. The inhibitory effect of TCR signal blocking on Vg9Vd2 T
cell cytotoxicity was much stronger than that of NKG2D signal
blocking (87, 97). However, TCR signal or NKG2D signal
blockade had similar inhibitory effects on cytotoxicity of DETCs,
indicating that the signaling pathways in human and mouse gd T
cells are different (91). Interestingly, some ligands that can be
recognized by both gd TCRs and NKG2D, such as ULBP4, can be
killed by Vg9Vd2 T cells in both TCRs-based and NKG2D-based
activation pathways. Blocking one of these pathways could only
induce minor inhibitory effect on degranulation of Vg9Vd2 T cells
and cytotoxicity to EL4-ULBP4+ cells, but almost completely
inhibited IFNg production by Vg9Vd2 T cells. However,
blocking both of these pathways could significantly reduce the
cytotoxicity of Vg9Vd2 T cells (97). In addition, NKG2D signal in
gd T cells could enhance TCR-dependent signals, which increased
cytokine production and cytotoxicity of gd T cells, and extended
survival of gd T cells (98–101). For calcium response, compared
with ab T cells and iNKT cells, which showed a strong and rapid
TCR-induced Ca2+ response, Vg9Vd2 T cells showed a delayed
and sustained Ca2+ response. However, when NKG2D signal was
simultaneously activated, Ca2+ responses in gd T cells induced by
TCR signal could be accelerated. Besides, NKG2D signal alone
could not induce significant Ca2+ activation signals, indicating
NKG2D signal could enhance TCR signal in gd T cells.
Furthermore, PKCq were found to play an important role in the
NKG2D mediated costimulatory function. Vg9Vd2 T cells have
significantly improved cytolytic ability to tumor cells with NKG2D
signal, which could be blocked by PKCq inhibitor. It is worth
noting that PKCq inhibitor could inhibit the acceleration of Ca2+

response induced by NKG2D, indicating that NKG2D signal could
shape Ca2+ response and potentiate antitumor CTL activity of
Vg9Vd2 T cells in a PKCq-dependent manner (99). Taken
together, regulation of NKG2D on DAP10 and/or DAP12
signals alone or together with TCR signals should be carefully
Frontiers in Immunology | www.frontiersin.org 7101
designed for the application of engineered gd T cell therapies,
especially for the characteristic of cytotoxicity, proliferation,
exhaustion, memory and cytokines production of engineered gd
T cells.

4.2 Natural Cytotoxicity Receptors (NCRs)
Like NKRs, NCRs are mostly detected on Vd1 population, and
can activate gd T cells by recognizing ligands on tumor cells
(102–104). They exert potent anti-tumor activities in a TCR-
independent way (103–105), and sometimes enhance effector
function of gd T cells (106). Similar to NKG2D, NCRs ligated
with adaptor proteins, such as CD3z, FcRg and DAP12, to
transmit intracellular activating signaling in NK cells. Similarly,
NKp44 is detected to couple with DAP12 in stimulated human
gd T cells (106). But the specific function of these adapters
associating with NCRs in gd T cells remains unclear and needs
further exploration.

The comparison of NKG2D and NCR signaling pathways
between gd T cells and NK cells is summarized in Figure 3.
5 OTHER RECEPTORS DELIVERING
SIGNALS IN gd T CELLS

gd T cells also express cytokine receptors, like IL-2Rbg, IL-18R, IL-
7Ra, IL23R (107–111), which can deliver activated signals by
binding to interleukins. Stimulation of these cytokine receptors
can not only enhance the effect function of gd T cells, but also
directly trigger the activation of gd T cells even in the absence of
TCR signal. For example, after initial stimulation by P-Ag or gd
TCR antibody, IL-15, IL-12, IL-2, IL-18, IL-33 and IL-7 could
additionally enhance the proliferation, cytokine production,
cytotoxic effect of gd T cells (112–118). Furthermore, some
cytokines alone or combination, such as IL-15, IL-2, IL-12, IL-18,
IL-7, IL-1 and IL-23, were found to induce proliferation, cytokine
production and killing ability in the absence of TCR signal (107,
110, 111, 115). Besides, gd T-induced effector molecules were
impacted by cytokines. IL-2, IL-12, IL-18, IL-15 and IL-21 were
found to promote IFN-g-production of gd T cell (113, 115, 119,
120), whereas IL-17-production of gd T cell was driven by IL-1, IL-
23 and IL-7 (111, 118, 121). Interestingly, IL-18 could replace IL-1b
and cooperate with IL-23 to induce IL-17 production in gd T cells
(108). In addition, toll-like receptors (TLRs) were also reported to
deliver activated signals in gd T cells. The simultaneous stimulation
of TLRs (e.g. TLR1/2/6, 3, and 5) and TCR significantly enhanced
the activation and effect function of gd T cells. Furthermore, gd T
cells can also directly respond to TLR2 ligands to act effect function
in a TCR-independent manner (122).
6 APPLICATION OF gd T CELLS IN
ENGINEERED T CELL THERAPIES

Although gd T cells have limited ability to expand and proliferate
in vivo, which may affect the antitumor efficacy of gd T cells, gd T
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cells remain good candidates for engineered therapies with many
advantages. Firstly, since engineered gd T cells can exploit the
endogenous receptors (TCRs and innate immune receptors) and
engineered receptors, the current CAR-gd T therapies induce a
significantly stronger potential to kill targeted cells and cytokine
production, which contributes to more significant reductions of
tumor burden and suppression of tumor growth compared with
gd T cells (123–126). These endogenous receptors enable gd T
cells not only to recognize a myriad of tumor-specific or
associated ligands as described above, but also to prevent
tumor escape caused by antigen loss or downregulation (127).
In this scenario, the downregulation of MHC-I in tumors helps
tumor cells to escape surveillance of ab T cells, but it does not
inhibit non-MHC-restrict gd T cell activation and even enhances
the consecutive gd T cell activation (128). Indeed, compared with
CAR-ab T cells, CAR-gd T cells targeting CD19 or melanoma
cell surface chondroitin sulfate proteoglycan (MSCP) showed a
significantly higher cytotoxicity against tumor associated antigen
(TAA) negative target cells, or b2-microglobuline-deficient
Daudi cells that lacks the expression of MHC-I (125, 129).
Secondly, activated human Vd2+ T cells can present the
characteristics of professional antigen-presenting cells like
dendritic cells, which can take up, process, and present soluble
antigens to ab T cells. HLA-A0201+V2d+GD2-CAR-gd T cells
can present the epitopes of melanoma antigen recognized by T
cells 1 (MART-1) to ab T cells to promote expansion and
Frontiers in Immunology | www.frontiersin.org 8102
cytotoxicity (130). Thirdly, since allogeneic ab T cell therapies
have side-effects of host-versus-graft activities (HVGA) and
graft-versus-host disease (GVHD), current engineered ab T
cell products are individualized and have many limitations,
such as high cost, time consuming, and unstable quality or
quantity of T cells (131). However, engineered gd T cells with
MHC-unrestricted recognition pattern can avoid of GVHD,
which makes it possible for engineered gd T cells to become
universal cell products to circumvent many disadvantages of
above-mentioned individualized CAR-T cell products. Many
clinical cases and trials were trying to assess the safety of
allogeneic gd-TCR T cell therapies to confirm the absence of
GVHD by gd T cells. For example, after receiving allogeneic gd T
cell immunotherapy, a patient with cholangiocarcinoma had
improved peripheral immune function, reduced tumor activity,
and prolonged life span, and more importantly, without side-
effects (132), indicating the safety of gd T cells and its potential to
be universal. Besides, 3 clinical trials (NCT04107142,
NCT04735471, NCT04911478) were conducted to evaluate the
safety and tolerability of allogeneic CAR-gd T cells targeting
NKG2D ligand (NKG2DL) and CD20. However, HVGA and the
persistence remained to be the challenge for engineered gd T cell
products. Taken together, engineered gd T cells take advantage of
recognizing antigens by endogenous receptors as well as
engineered receptors, processing and presenting antigens to
activate ab T cells and avoiding GVHD. To sum, gd T cells
FIGURE 3 | The comparison of NKG2D and NCR signaling pathways between gd T cells and NK cells. NKG2D in NK cells associates with adapter DAP10 (PI3K
and Grb2-Vav1 signaling) or DAP12 (Syk/ZAP70 signaling) to directly induce cytotoxicity and/or cytokine release. NKG2D in gd T cells not only directly triggers
cytotoxicity via PI3K-dependent pathway by coupling with DAP10, but also enhances the effector function in a TCR-independent way via PKCq. However, the impact
of NKG2D-DAP12 complex on the function on gd T cells remain elusive. NCRs in NK cells and gd T cells can induce cytotoxicity activity. However, signaling pathways
of NCRs-ligands in NK cells are well-understood, which in gd T cells remain unclear.
May 2022 | Volume 13 | Article 889051

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dong et al. Engineering gd T Cells
can be a more efficient and wider-applied antitumor candidate to
produce engineered products.
6.1 CAR TRANSFER TO gd T CELLS

CAR-ab T therapy has shown unprecedented success in
hematologic malignancies, but poor efficacy in solid tumors.
Many studies found higher infiltration of gd T cells in solid
tumors than that of ab T cells, and the frequency of infiltrated gd
T cells in solid tumors positively correlated with prognosis (133–
135), indicating a promising application of CAR-gd T cells in
solid tumors. Thus, CAR-gd T cells have been designed to target
many solid tumor antigens, such as disialoganglioside 2 (GD2)
on neuroblastoma and Ewing sarcoma (136), melanoma
chondroitin sulfate proteoglycan (MCSP) on melanoma lesions
(137), original or glycosylated Mucin 1 (MUC1) on breast
cancer, head and neck squamous cell carcinoma (138, 139).
Current ongoing clinical trials involving engineered gd T
products are summarized in Table 1.

However, current CAR-gd T cells fails to show better efficacy
of tumor immunotherapy than CAR-ab T cells. One of reasons
is the design of intracellular signaling domain of CAR-gd T cells
is less optimized. The intracellular signaling domains applied in
CAR-gd T cells are almost as same as what used in CAR-ab T
cells. Indeed, CAR-gd T cells are reported to have a significant
effector function against tumor cells. But it is controversial in
different studies comparing CAR-gd T cells with CAR-ab T cells,
particularly in solid and hematologic tumors. Meir Rozenbaum
et al. pointed the superiority of CAR-ab T cells in leukemia in
vivo. To be more specific, treatment with CAR-gd T or CAR-ab
T cells led to a respective 5% and 0.1% tumor cell residue in the
bone marrow of mice, demonstrating the higher load of leukemia
cells in recipients of CAR-gd T cells compared to the CAR-ab T
treated mice (125). This phenomenon suggested that CAR-gd T
cells with suboptimal design have lower efficiency to eliminate
tumor cells than that by CAR-ab T cells. Furthermore, recent
study reported the persistence of CAR-Vg9Vd2 T cells was worse
than that of CAR-ab T cells. While CAR-ab T cells still
effectively eliminate all the tumor cells in the fourth round of
tumor stimulation, CAR-Vg9Vd2 T cells almost lost their
cytotoxicity. Fortunately, the cytotoxicity of gd T cells can be
restored by the addition of IL-2 (126). Although compared with
CAR-ab T cells, CAR-Vd1 and Vd2 T cells secreted higher levels
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of granzyme B and cytokines, and exhibited similar or stronger
cytotoxicity against some kind of solid tumors in vitro (126), the
specific effector function against solid tumor in vivo should be
comprehensively investigated in the future. Therefore, it is
extremely important to investigate the optimal use of
activation signals for CAR-gd T cells. Recent studies have
made some modifications to simultaneously take advantage of
the natural endogenous signal properties of gd T cells. For
example, DAP10 was used in engineered gd T cells and
engaged in the antitumor response. Except for the signal
induced by TCRs, GD2-DAP10 CAR transferred gd T cells
used the solitary endodomain derived from the NKG2D
adaptor DAP10 to mimic NKG2D co-stimulation, which
induced significant cytokine production and equivalent killing
as CD28-CD3z-CAR-gd T cells against GD2+ Neuroblastoma
and Ewing Sarcoma (140). Interestingly, this example also
promoted the utilize of “AND gate” system in engineered gd T
cells to minimize on-target off-tumor toxicity. It was only
activated in presence of antigen through gd TCR and GD2,
whereas only GD2 could activate CD28-CD3z-CAR-gd T
cells (140).

6.2 ab TCR Transfer to gd T Cells
Engineered gd T cells not only included CAR-gd T cells, but also
TCR-gd T cells. For example, ab TCRs were reported to be
transferred to gd T cells, making ab TCR-gd T cells sensitive to
tumor cells with antigen-negative or tumor escape variants with
MHC-downregulating. gd T cells which expressed an HLA-
A*0101 restricted ab TCR targeting the adenovirus hexon
protein of HAdV-species C, released more IFNg and TNFa
than CD8+ ab T cells with the same ab TCR, and had
comparable cytotoxicity against adenovirus-infected dendritic
cells (141). Interestingly, while most gd T cells lack the
expression of the co-receptors CD4 or CD8, some researches
transferred the co-receptors along with ab TCRs to gd T cells and
found the enhanced specific functional activity. Comparing to
HA-2-TCR-gd T cells without the additional transfer of CD8, co-
transferring of CD8 and HA-2-TCR to gd T cells significantly
increased IFN-g and IL-4 production and exerted more efficient
cytotoxicity against the HA-2-expressing CML and AML cells
(142). In addition, transferring ab TCRs that recognized the
same antigen as endogenous gd TCRs could improve TCR-gd T
cell antigen recognition and cytotoxicity efficiency. For example,
transferring ab TCRs derived from invariant natural killer T
TABLE 1 | Current ongoing clinical trials of engineered gd T products.

Clinical
Trials/Netherlands
Trials Identifier

Phase Disease Interventions Source gd T subset

NCT04735471 I B Cell Malignancies CD20-CAR expressed on gd T cells allogeneic Vd1 gd T-cell
NCT04107142 I solid tumor. NKG2D-CAR expressed on gd T cells haploidentical/allogeneic unmentioned
NCT04702841 I T cell-derived malignant tumors CD7-CAR expressed on gd T cells unknown unmentioned
NCT03885076 unknown AML CD33-CAR expressed on gd T cells autogenetic Vd2 gd T-cell
NCT04796441 Not Applicable AML CD19-CAR expressed on gd T cells allogeneic unmentioned
NCT02656147 I Leukemia Lymphoma CD19-CAR expressed on gd T cells allogeneic unmentioned
NL6357 I r/r AML, high-risk MDS or MM a defined gd T cell receptor expressed on ab T cells autologous /
M
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(iNKT) cells, which recognized glycolipid antigens presented by
CD1d, the TCR-gd T cells were found to respond to CD1d via
both endogenous gd TCRs and transferred ab TCRs, and had
increasing antitumor effect against the CD1d positive leukemia
cell line K562 (143). Of note, the transfer of ab TCRs to gd T cells
did not show any mispairing of endogenous and transgenic
TCRs (144), which significantly avoided autoimmunity (145,
146). Along this line, in order to obtain better anti-tumor
efficacy, CAR-gd T cells or TCR-gd T cells can be designed so
that endogenous gd TCR and engineered CAR/TCR can
recognize the same antigen, such as CAR-gd T cell targeting
NKG2DL or BTN3A, TCR-gd T cell targeting HLA-A24, HLA-
B27 and HLA-A2, all of which can be investigated in the future.

6.3 gd TCRs Transfer to ab T Cells
gd TCRs transferred ab T cells was also used to overcome the
deficiency of cytotoxicity of particular types of HLA-restricted ab T
cells. This design has several advantages. Firstly, the gd TCRs could
target a broad range of solid and hematological tumors in MHC-
independent manner. Secondly, compared with gd T cells, the
mechanism of effects and memory functions of CD4+ and CD8+

ab T cells are better understood in vivo (7). Thirdly, this strategy
can avoid the activity of inhibitory receptors like KIRs on gd T cells.
Indeed, ab T cells expressing the Vg9Vd2 TCR clone G115
displayed a gd T cell-like effector function, such as cytotoxicity
against the Daudi cell line, cytokine release, enhanced cytotoxicity
using amino-bisphosphonates, and the ability to induce dendritic
cell maturation. Surprisingly, endogenous ab TCRs were down-
regulated after the transduction of gd TCRs, leading to a lack of allo-
reactive response (147). Besides, several types of tumor specific
CDR3d-grafted gd TCRs were also used to modify ab T cells and
exhibited significant antitumor effects (148, 149). Moreover, a novel
antibody-TCR (Ab-TCR) modified ab T cells, combining Fab-
based antigen recognition with gd TCR signaling, showed a similar
cytotoxicity and a less cytokine release comparing with CD28/CD3z
CAR-T cells (150). Recently, TEG001, an engineered ab T products
expressing a defined gd TCR, was proved to be safe and efficient
against tumor models in vivo (151), and currently was applied in a
first-in-human clinical study (NL6357).
Frontiers in Immunology | www.frontiersin.org 10104
7 CONCLUSION

Currently, increasing studies have confirmed the anti-tumor
activities of gd T cells in targeting various malignancies with
their innate and adaptive immunities, which brings hopes to the
engineered gd T cells in cancer treatment. However, current
engineered gd T products almost copy the structure of
engineered ab T cells, owing to the ignore of the specific
activating mechanism of gd T cells. As discussed above, we
detailed the activating and stimulating modes of gd T cells via
TCR signal, some important costimulatory signals, and innate
signals from NK receptors, which were summarized in Figure 1.
Furthermore, current engineered gd T products and their
characteristics are also depicted. Taken the basics of gd T cells
in previous sections together, this review will shed light on the
optimal design of engineered gd T cell to improve its efficacy.
However, there are still numerous problems to be solved. More
studies are supposed to be conducted to describe the specific
activating mechanism of gd T cells, which can be applied in
engineered gd T products.
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Gamma-delta (gd) T cells recognize antigens in a major histocompatibility complex (MHC)
independent and have cytotoxic capability. Human immunodeficiency virus (HIV) infection
reduces the proportion of the Vd2 cell subset compared to the Vd1 cell subset of gd T cells
in the blood in most infected individuals, except for elite controllers. The capacity of Vd2 T
cells to kill HIV-infected targets has been demonstrated in vitro, albeit in vivo confirmatory
studies are lacking. Here, we provide the first characterization of gd T cell-HIV interactions
in bone marrow-l iver-thymus (BLT) humanized mice and examined the
immunotherapeutic potential of Vd2 T cells in controlling HIV replication in vivo. We
demonstrate a reduced proportion of Vd2 T cells and an increased proportion of Vd1 T
cells in HIV-infected BLT humanized mice, like in HIV-positive individuals. HIV infection in
BLT humanized mice also impaired the ex vivo expansion of Vd2 T cells, like in HIV-positive
individuals. Adoptive transfer of activated Vd2 T cells did not control HIV replication during
cell-associated HIV transmission in BLT humanized mice but instead exacerbated viremia,
suggesting that Vd2 T cells may serve as early targets for HIV replication. Our findings
demonstrate that BLT humanized mice can model gd T cell-HIV interactions in vivo.

Keywords: BLT mice, humanized mice, gamma delta T cells, HIV infection, HIV immunopathogenesis
INTRODUCTION

Human gamma-delta (gd) T cells are widely distributed throughout barrier tissues and mediate
potent antiviral effects by targeting stressed cells in an MHC-independent manner (1–3). Although
human gd T cells typically makeup <10% of the total T cell population, recognize nonpeptide
microbial antigens and play an essential role in controlling various diseases, particularly malaria (4),
contributing to both innate and adaptive immune responses (5). While CD4+ T cells are known to
be targeted and depleted during the course of HIV infection, there is also a dramatic and immediate
impact on gd T cells, where the normal proportions of the two major subsets of gd T cells
(designated Vd1 and Vd2) become inverted due to a selective depletion of Vd2 T cells expressing the
phosphoantigen-responsive Vg9 chain (Vg9Vd2 T cells) (6). Natural history studies of HIV
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infection demonstrate an inverse correlation between Vd2 T cell
frequency and HIV viral titers (7), and earlier clinical reports
indicated that, unlike most HIV-positive individuals, Vd2 T cells
are maintained at a normal frequency in elite controllers (7). The
hypothesis for these observations is that gd T cells may provide
protective immunity against HIV infection by secreting
chemokines that compete for HIV entry coreceptors or by
promoting the effector activity and recruitment of other
immune cells to eliminate infected targets. A few in vitro
studies demonstrated the direct cytotoxic capacity of Vd2 T
cells against HIV-infected targets (8, 9), but the in vivo function
and therapeutic potential of Vd2 T cells against HIV has yet to be
fully elucidated.

Non-human primate models of the simian immunodeficiency
virus (SIV) dominate the current in vivo approaches to
understanding the relationship between HIV viremia and gd T
cells. However, SIV contains only about 50 percent of the genetic
code of HIV, and there are substantial differences in gd subset
composition and phenotype in monkeys and humans (10). The
information we can extrapolate from non-human primate
models of SIV becomes limited by the unaltered peripheral
Vd1/Vd2 T cell ratio in SIV-infected macaques (11) and the
genetic differences between SIV and HIV (10). Therefore, an
alternate approach is needed to understand the in vivo dynamics
of gd T cells in HIV infection. Among the widely used in vivo
platforms for investigating HIV pathogenesis and therapeutics is
the mouse model utilizing bone marrow-liver-thymus (BLT)
humanized mice (huMice). Generated via peripheral injection
of CD34+ hematopoietic stem cells (HSCs) and autologous
transplantation of fetal liver and thymic explants into
immunodeficient mice, BLT huMice provide both the
peripheral immune circulation and human lymphoid
microenvironment to study HIV in blood and human
lymphoid tissues. Previously it has been shown that human
CD4+/CD8+ T cell ratios before and after HIV infection of
BLT huMice are comparable to clinical values seen in natural
human infection (12). While in humans Vd2 T cells become
depleted during the early stages of natural HIV infection, often
before the CD4+/CD8+ T cell ratio inverts, the impact of HIV
infection on gd T cells has yet to be fully characterized in the BLT
huMouse model.

In the present study, we provide the first reported phenotypic
and functional characterization of human gd T cells in BLT
huMice and evaluate how they are impacted by HIV infection in
vivo, and we assess their therapeutic potential following adoptive
cell transfer. We demonstrate that the BLT huMouse model
recapitulates the clinical changes in Vd1 and Vd2 T cell
frequencies in the peripheral blood reported during natural
HIV infection in humans, providing for the first time an in
vivo model relevant for studying human gd T cell biology and gd
T cell-HIV interactions. We used this in vivo model to examine
the therapeutic impact of adoptively transferred human Vd2 T
cells on cell-associated HIV transmission and replication (13,
14). Surprisingly, the adoptive transfer of allogenic Vd2 T cells
into BLT huMice enhanced, rather than controlled, HIV
replication following cell-associated HIV transmission. This
Frontiers in Immunology | www.frontiersin.org 2111
escalation in viral production was accompanied by a marked
increase in HIV p24-positive Vd2 T cells in the blood of BLT
huMice, suggesting that the Vd2 T cells may serve as early targets
for HIV infection and replication.
MATERIALS AND METHODS

Construction of BLT HuMice
Non-Obese Diabetic. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice
were obtained from the Jackson Laboratory and bred in the
Division of Laboratory Animal Resources facility at the
University of Pittsburgh. The mice were bred and housed
under biosafety level 1, pathogen-free conditions according to
the guidelines approved by the Institutional Animal Care and
Use Committee and were fed irradiated chow (Prolab Isopro
RMH 3000 Irradiated, catalog 5P75-RHI-W 22, PMI Nutrition
International) and autoclaved water. Human fetal tissues were
obtained from the Health Sciences Tissue Bank at the University
of Pittsburgh and Advanced Bioscience Resources Inc and
processed under biosafety level 2 conditions. Within 12 hours
of receiving fetal human liver and thymus, CD34+ hematopoietic
stem cells (HSCs) were isolated from the fetal liver as previously
described (15) and cryopreserved at -170°C until transplantation.
Portions of the fetal liver and thymus tissues were cut into small
pieces (<3mm^3) and cryopreserved in Serum-Free Freezing
Media (ATCC 30-2600) at -170 C until transplantation. 8 to 10-
week-old NSG mice received a radiation dose of 1.50 Gray before
transplantation to myoablate the animals and were immediately
transferred to biosafety level 2+ animal housing. On the day of
operation, the cryopreserved CD34+ HSCs and tissues from two
different fetal donors were thawed in a warmed culture medium
supplemented with 10% fetal bovine serum. The tissues were
minced into ~1-mm3 fragments, and the irradiated mice were
anesthetized using 1.5-3% isoflurane. Autologous human fetal
thymus and liver tissue sections were implanted under the
kidney capsule, and 150,000 CD34+ HSCs were engrafted via
retroorbital injection in a volume of 100 uL. Immediately
following the procedure, the mice received 150uL injections of
carprofen (1 mg/mL) and ceftiofur (1 mg/mL) as an analgesic
and antibiotic, respectively. These injections continued once a
day for two days for three sets of injections. Successful
engraftment was determined by flow cytometric analysis of
human CD45 expression on blood cells of mice, now termed
BLT huMice. Mice harboring >30% of human CD45+ cells were
randomly assigned to groups in further experiments.

Study Participants
Specimens obtained from participants of the Multicenter AIDS
Cohort Study (MACS), now the MACS/WIHS Combined Cohort
Study (MWCCS), were used in this study. The contents of this
publication are solely the responsibility of the authors and do not
represent the official views of the funding sources. The authors
express their sincerest gratitude to MWCCS Principal
Investigators Dr. Charles R. Rinaldo and Dr. Jeremy Martinson
(U01-HL146208), William G. Buchanan, and the participants of
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the Pittsburgh site of the MWCCS. These participants were HIV-
1 infected men who were on ART for a median duration of 12.08
years, who had a median CD4+ T cell count of 620 cell/ml and a
viral load of <50 copies/ml. Wherever mentioned, blood products
from age-matched HIV-negative individuals were used in the
study. Whole blood products from HIV-1-seronegative blood
donors were purchased from the Central Blood Bank of
Pittsburgh. Written informed consent was obtained from
participants before inclusion in the study, which was approved
by The University of Pittsburgh Institutional Review Board.

Isolation of Monocytes and Peripheral
Blood Lymphocytes
Peripheral blood mononuclear cells (PBMC) were obtained from
a buffy coat, or whole blood was isolated by standard density
gradient separation using Lymphocyte Separation Medium
(Corning). Monocytes were isolated from PBMC by positive
magnetic bead selection (Miltenyi Biotec), and CD4+ T cells and
gd T cell subsets (refers to Vd1 and Vd2 T cells) were isolated by
negative selection (EasySep CD4 T cell, Cat #-17952 and gd T cell
isolation kit, Cat #- 19255) according to the manufacturer’s
specifications, and the differentially isolated cells were cultured
or cryopreserved until use

Flow Cytometry
50-100ul of blood was obtained from the submandibular vein of
BLT huMice to check for reconstitution and intermediate
infection time points. At 4-6 weeks post-HIV/mock infection,
BLT huMice were sacrificed, and the entire blood volume was
collected via orbital bleed. The murine spleen and the
transplanted human spleen and thymus were dissected. Excised
tissues were homogenized via mechanical dissociation, and
single-cell suspensions were retrieved after tissue samples were
passed through a 100um filter. Red blood cells were lysed and
removed from both blood and spleen samples using ACK lysing
buffer (Thermo Fisher) as described by the manufacturer before
using samples for flow cytometry. Single-cell suspensions
prepared from peripheral blood, splenocytes, and thymocytes
from each BLT huMouse were stained with a live/dead fixable
aqua dead cell stain kit (Thermo Fisher Scientific). For surface
staining, cells were preincubated with 1× PBS labeling buffer
containing 2% BSA, 0.1% NaN3, and unfractionated murine IgG
(1.0 mg/mL; Sigma-Aldrich Cat# 15381-1MG) to block Fc-
receptor binding. Then stained the cells with fluorochrome-
conjugated antibodies [anti-human CD45, anti-human CD4,
anti-human Vd2, (BioLegend); anti-human CD8, CD3, PD1,
HLA-DR, CD25, CD69, CD45RA, and CD27 (Becton
Dickenson); and anti-human Vd1, (Thermo Fisher Scientific)]
and intracellular staining with HIV-p24 (KC57, Beckman
Coulter). Cells were fixed using 2% paraformaldehyde, and
data were acquired using an LSR Fortessa flow cytometer (BD
Biosciences) and analyzed using FlowJo software. Gating was
done based on Fluorescence minus one (FMO).

Immunohistochemistry
Paraffin-embedded fixed sections were stained with indicated
anti-human antibodies (Anti-human TCR d monoclonal IgG1 k
Frontiers in Immunology | www.frontiersin.org 3112
antibody, Clone H-41, catalog number sc-100289, Santa Cruz
Biotechnology; Ultra-LEAF™ Purified Mouse IgG1, k Isotype
Control Antibody, catalog number: 401404, Biolegend).
Immunoreactivity of indicated antibodies was determined by
incubation with DAB substrate (MACH 2 Detection Kit, Biocare
Medical) and counterstained with hematoxylin.

In Vitro Expansion of gd T Cells
BLT huMice were sacrificed at 4-6 weeks post HIV/mock
infection, and fully developed lymphoid tissues were collected,
and single cells were isolated following mechanical dissociation.
Homogenized spleen and thymus tissues were passed through a
100um filter to obtain single-cell suspensions. Red blood cells
were lysed and removed from spleen samples using ACK Lysing
Buffer (ThermoFisher) as described by the manufacturer. Cells
isolated from the BLT huMice splenocytes were cocultured with
allogeneic monocytes (4:1 ratio) from HIV-seronegative human
blood bank donors in the presence of nitrogen-containing
bisphosphonate zoledronate (ZOL, 5uM) (Zoledronic Acid,
Selleckchem, S1314) and recombinant human (rh)IL-2
(Proleukin, 100 IU/mL; Prometheus Laboratories) for ten days
as previously described (16). rhIL-2 (100 IU/ml) was
subsequently added every three days. The ten-day-cultured gd
T cells were characterized by flow cytometry analysis.

HIV Infection of BLT HuMice
X4-tropic HIV lab strain NL4-3 (17, 18) was generated by
transfection of 293T cells (ATCC; ATCC CRL-3216) with a
plasmid containing a full-length HIV genome and collecting the
HIV containing culture supernatant. The viral titer was
determined by HIV-1 p24 AlphaLISA Assay (PerkinElmer, cat.
No. AL291F) as described in the manufacturer’s protocol (19).
Supernatant from uninfected 293T cells was used as a mock
control. BLT huMice were anesthetized at 20-22 weeks post-
transplantation and inoculated with mock control supernatant or
HIV-1 (~1 × 105 infectious units) by i.v. Injection via
retroorbital delivery.

HIV-1 Genomic RNA Detection
Total RNA was purified from plasma using RNA-Bee (AMSBIO).
The RNA was then reverse-transcribed using TaqMan Reverse
Transcription Reagents (Invitrogen) and quantitatively detected
by real-time PCR using the TaqMan Universal PCR Master Mix
(Invitrogen) with primers (forward primer, 5′ - CCCATGTTTT
CAGCATTATCAGAA - 3′, and reverse primer, 5′ - CCACTGT
GTTTAGCATGGTGTTTAA - 3′) and detection probe targeting
HIV Gag gene (5′ - AGCCACCCCACAAGA - 3′) (20). The assay
sensitivity/cutoff was ten copies/ml.

Adoptive Transfer of T Cells to
BLT HuMice
PBMC derived CD4+ T cells were isolated from HIV-positive
individuals using EasySep Human CD4+ T Cell Isolation Kit and
activated overnight with Human T-Activator CD3/CD28
Dynabeads (Life Technologies). The next day Dynabeads were
separated from the CD4+ T cells by manual dissociation followed
by magnet isolation. The activated CD4+ T cells were, washed,
May 2022 | Volume 13 | Article 881607
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resuspended in PBS, and adoptively transferred into BLT huMice
via intraperitoneal injection (5 million cells/100ml/mouse).
PBMC from the allogenic HIV non-infected donor were
cultured in the presence of ZOL and rhIL-2 for ten days to
expand the Vd2 cells. Activated and expanded Vd2 cells were
enriched using gamma delta T cells EasySep negative selection kit
(Catalog-19255). This pure gamma delta T cells were adoptively
transferred to BLT huMice via intraperitoneal injection (10
million/100ml/mouse) at the same time point when CD4+ T
cells were injected. The BLT huMice were divided into two
treatment cohorts; one that received only activated CD4+ T
cells from HIV-infected donor, and the other that received the
activated HIV-infected CD4+ T cells as well as in vitro expanded
allogenic Vd2 cells.

Statistics
Differences between HIV-infected/uninfected humans and BLT
huMice were compared using the two-tailed unpaired Student t-
test. Differences among the human or BLT huMice groups were
compared using the two-tailed paired students t-test. The
normality of the samples was tested using the Shapiro-Wilk
normality test. Statistical analyses were performed using the
Prism8 (GraphPad Software), and p values <0.05 were
considered statistically significant. The sample numbers and
statistical analyses used are specified in each figure legend.

Use of Human Fetal Tissue and
Biological Agents
We described the approval of the use of human fetal tissue and
biological agents in the previous study (21). Briefly, human fetal
liver and thymus (gestational age of 18–20 weeks) were obtained
from medically, or elective indicated termination of pregnancy
through Magee-Women’s Hospital of UPMC via the University
of Pittsburgh, Health Sciences Tissue Bank, or Advance
Bioscience Resources Inc. Written, informed consent of the
maternal donors was obtained in all cases, under IRB of the
University of Pittsburgh guidelines and federal/state regulations.
See details in the “Human Ethical Approval and Informed
Consent” section.

Approval for Using Animals and Biological
Agents for In Vivo Experiments
The use of biological agents (e.g., HIV), recombinant DNA, and
transgenic animals was reviewed and approved by the
Institutional Biosafety Committee (IBC) at the University of
Pittsburgh. All animal studies were approved by the IACUC at
the University of Pittsburgh and were conducted following the
NIH guidelines for housing and care of laboratory animals as
well as the ARRIVE guidelines 2.0 for reporting of in vivo
experiments involving animal research (22).

Human Ethical Approval and
Informed Consent
The study was performed following the guidelines of “Ethical
Principles for Medical Research Involving Human Subjects”
provided by the World Medical Association Declaration of
Helsinki (1964) and its subsequent amendments (23). Written
Frontiers in Immunology | www.frontiersin.org 4113
informed consents were obtained from the human study
participants from the Pittsburgh Men’s Study, Multicenter
AIDS Cohort Study (PMS-MACS) and the maternal donors of
fetal tissues used in the study following the University of
Pittsburgh IRB guidelines as well as federal/state regulations.
The ethical use of human fetal organs/cells to perform the studies
was reviewed before study initiation by the University of
Pittsburgh IRB, which determined that the submitted study
does not constitute human subject research as defined under
federal regulations [45 CFR 46.102 (d or f) and 21 CFR 56.102(c),
(e), and (l)]. The ethical use of human hematopoietic stem cells
was reviewed and approved by the University of Pittsburgh
Human Stem Cell Research Oversight (hSCRO) committee.
RESULTS

Reconstitution of Human gd and ab T Cells
in BLT HuMice
We first examined the reconstitution of human ab and gd T cells
in huMice using multicolor flow cytometry (Figure 1).
Importantly, when denoting gd T cells in our study, we are
referring only to the Vd1 and Vd2 T cell subtypes, which together
account for ~98% of the total gd T cell population in human
blood (24, 25). We validated the flow cytometry assay for
detecting human gd T cells by demonstrating the presence of
A

B

D EC

FIGURE 1 | Human ab and gd T cell development in the peripheral blood of
BLT huMice. (A, B) Representative flow cytometry analysis of human immune
cell (hCD45+) reconstitution along with lymphocytes subsets, including ab T
cells (CD3+), (CD4+), (CD8+), and gd T cells (Vd1 and Vd2 T cell subsets) in
PBMC of BLT huMice (A) at ten weeks after transplantation and uninfected
human (B). (C–E) Quantification of human CD45+ lymphocytes (C), human
ab (D), and gd (E) T cell subsets in PBMCs of BLT huMice and healthy
humans (n = 4 biological replicates each).
May 2022 | Volume 13 | Article 881607

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Biradar et al. gd T Cells in BLT Mice
gd+ cells in the CD3+ population and the absence of gd+ cells in
the CD3- population of human CD45+ cells from human
peripheral blood (Supplementary Figures S1A–D). The gating
scheme is shown for a representative sample of PBMC derived
from a BLT huMouse (Figure 1A). We compared these results to
PBMC samples fromHIV seronegative humans, with data from a
representative donor is shown in Figure 1B. We observed a high
level of reconstitution of human CD45+ cells (~90%) in the
peripheral blood of BLT huMice (Figure 1C). Approximately
90% of these human CD45+ cells were CD3+ T cells, of which, on
average, were comprised of 80% CD4+ T cells and 15% CD8+ T
cells (Figure 1D). This CD4/CD8 ratio was slightly higher than
what is typically seen in humans, as shown with the four donors
we tested that displayed a mean of 70% CD4+ T cells and 30%
CD8+ T cells (Figure 1D). We also analyzed the gd T cell subsets
present in the peripheral blood of BLT huMice and determined a
mean of 0.3% and 0.7% of total CD3+ T cells being comprised of
Vd1 T cells and Vd2 T cells respectively (Figure 1E). The relative
frequencies of these two subsets are comparable to, albeit lower
than, the gd lymphocyte populations found in the peripheral
blood of healthy humans represented in our analysis showing 1%
and 1.6% of total CD3+ T cells being Vd1 and Vd2 T cells,
respectively (Figure 1E). To our knowledge, this is the first
report to describe the reconstitution of human gd T cells in BLT
huMice. We also examined human immune cell populations
Frontiers in Immunology | www.frontiersin.org 5114
reconstituted in the engrafted human thymus and murine spleen
of each BLT huMouse (Figure 2). The gating scheme is shown
for a representative sample of immune cells isolated from the
human thymus (Figure 2A) and murine spleen (Figure 2D). Of
the human CD3+ T cells isolated from the thymic tissue, an
average of 22% were CD4+ T cells, 16% were CD8+ T cells, and
60% had an immature T cell phenotype being positive for both
CD4 and CD8 (CD4+/CD8+, double-positive) (Figure 2B). In
the murine splenic tissue, on average, the total T cell population
comprised 80% CD4+ T cells and 16% CD8+ T cells (Figure 2E).
Human gd T cell subsets (Vd1 and Vd2) were also detected in
these lymphoid tissues. From the human thymus, an average of
1.5% of the T cells had a Vd1 cell phenotype, and 0.2% were Vd2
T cells (Figure 2C). We observed a slightly higher prevalence of
gd T cell subsets isolated from murine spleen tissue, with a mean
of 2.2% and 0.9% of the total T cell fraction consisting of Vd1
T cells and Vd2 T cells respectively (Figure 2F). We observed
that Vd2 T cells were predominantly present in the peripheral
blood of BLT huMice (Figure 1E), while Vd1 T cells were
present primarily in the lymphoid tissues of BLT huMice
(Figures 2C, F). The murine spleen of the BLT huMouse
(hereafter referred to as the “humanized spleen”) had an
approximate 2-fold higher reconstitution of gd T cells than
what was found in the thymus. This overall distribution of gd
T cell subsets (Vd1 and Vd2) in BLT huMice is comparable to
A

B

D

E

C

F

FIGURE 2 | Human ab and gd T cell development in lymphoid tissues of a BLT huMouse model. (A, D) Representative flow cytometry analysis of human immune
cell (hCD45+) reconstitution along with lymphocytes subsets including ab T cells (CD3+), (CD4+), (CD8+) and gd T cells (Vd1 and Vd2 T cell subsets) in lymphoid
tissue [thymus (A) and murine spleen (D)] of BLT huMice (A) at 22 weeks post-transplantation. Quantification of human ab and gd T cells in the engrafted human
thymus (B, C) and murine spleen tissue (E, F) of BLT huMice at 22 weeks post-transplantation (n = 4 biological replicates).
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those in human peripheral blood and tissue (26, 27). Lastly, we
validated the flow cytometry-based detection of human gd T cells
in the lymphoid tissues in the BLT huMouse model via in-situ
detection using immunohistochemistry (Supplementary Figure
S2). In summary, these findings demonstrated that BLT huMice
sustains physiologically relevant proportions of human ab and
gd T cells in the periphery, engrafted human thymus, and
(humanized) murine spleen.

HIV Infection Alters gd T Cell Populations
in BLT HuMice and Humans
To investigate the impact of HIV infection on gd (referring to
Vd1 and Vd2 T cell subsets) and ab T cell populations, we
infected BLT huMice with a laboratory strain of HIV-1NL4-3.
Consistent with the previous studies, HIV RNA copies were
detected in the peripheral blood of the HIV-infected BLT huMice
as early as two weeks post-infection (Figure 3A) (12, 21, 28).
PBMC from mock-inoculated and HIV-infected BLT huMice
were collected before and after HIV infection for further viral
load analysis, and these mice were sacrificed for tissue collection
four weeks after infection. We first determined the proportion of
gd T cells present in PBMC of HIV-infected and mock-infected
BLT huMice before and after HIV infection. Representative flow
cytometry analysis plots displaying the percentage of gd T cells
present at pre-and post-infection time points are shown in
Figure 3B. The total proportion of gd T cells increases in both
mock-infected [p=0.009] and HIV-infected BLT huMice
(p=0.001) compared to pre-infection levels, but HIV-infected
BLT huMice exhibited 2.3-fold higher levels of total gd T cells
when compared to mock-infected BLT huMice (p=0.009)
Frontiers in Immunology | www.frontiersin.org 6115
(Figure 3C). We further examined gd T cell subsets and found
that Vd2 T cell proportions were higher before infection and
lowered following infection in BLT huMice (Figure 3D). The
altered proportion of gd T cell subsets may be at least partially
explained by the depletion of Vd2 T cells in HIV-infected BLT
huMice, though our values did not reach statistical significance
(p=0.25) (Figure 3E). Contrary to HIV-infected BLT huMice,
mock-inoculated BLT huMice exhibited an increase in Vd2 T cell
levels in the blood (Figure 3E), which suggests that Vd2 cells are
depleted in HIV infection. Furthermore, depletion of peripheral
blood CD4+ T cells in HIV-infected BLT huMice significantly
decreases the CD4+/CD8+ T cell ratio (p =0.049) (Figure 3F).
These results are consistent with what has been previously
reported in human gd T cell studies (29, 30). We observed
similar gd T cell trends in PBMCs isolated from healthy and
ART treated HIV-positive individuals; wherein HIV-positive
donors with ART had higher Vd1 T cell levels and slightly
lower Vd2 T cell levels than healthy donors (Figure 3G).

In HIV-positive humans, lymphoid tissues are known to be
sanctuaries for the latent HIV reservoir during ART (31).
Therefore, we assessed the impact of HIV infection on the
lymphocytes derived from lymphoid tissues of BLT huMice by
flow cytometry analysis. A representative gating strategy used for
this analysis is shown in Figure 2. Although not statistically
significant, we observed an approximately 3-fold increase in the
frequency of Vd1 T cells in the human thymus (p = 0.058), and an
approximately 2-fold increase in the humanized spleen of HIV-
infected BLT huMice (p = 0.065) when compared to respective
tissues from mock-infected BLT huMice (Figures 4A, B,
Supplementary Figures S3A, B). This suggests that the
A B

D E F G

C

FIGURE 3 | Peripheral blood gd T cell number is altered in HIV-infected BLT huMice and humans. (A) HIV-1 replication (HIV RNA genome copies per ml) in the
blood following HIVNL4-3 inoculation at 1X 105 IU per mouse measured by qPCR (n = 3 biological replicates per group). (B) Representative flow plot showing the
change in frequency of peripheral blood gd T cell subsets before and after HIV infection. (C) Frequency of total gd T cells before and after HIV infection in mock and
HIV-infected BLT huMice analyzed by flow cytometry (n = 3 biological replicates per group). (D) Graphical representation of the change in frequencies of Vd1 and
Vd2 cells within gd population before and two weeks after infection. (E) Quantitation of changes in Vd2 T cell frequency before and two weeks after infection in
peripheral blood of HIV-infected and non-infected BLT huMice. (F) Comparison of changes in CD4+/CD8+ T cell ratio in peripheral blood of HIV-infected and non-
infected BLT huMice analyzed by flow cytometry. (G) The frequency of Vd1 and Vd2 T cell subsets in the peripheral blood of ART-treated HIV-positive and HIV-
negative individuals were analyzed by flow cytometry. Data are presented as a mean value ± SEM. P values <0.05 were considered statistically significant. P values
were determined using paired 2-tailed Student’s t-test for comparing changes in gd T cells population within the same cohort at two different time points, whereas an
unpaired, 2-tailed Student’s t-test was used to compare differences between 2 groups.
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frequency of Vd1 T cells is increased in the lymphoid tissue of
BLT huMice during HIV infection. We did not find a significant
difference between the Vd2 T cell population frequencies derived
from the lymphoid tissues of HIV-infected or mock-infected BLT
huMice. Besides gd T cells, we found approximately a 2-fold
increase in the proportion of CD8+ T cells derived from thymus
and humanized spleen tissue of HIV-infected BLT huMice as
compared to the mock-inoculated mice, suggesting a rapid
proliferation of cytotoxic T cells in response to HIV infection
(Figures 4A, B, Supplementary Figures S3C, D).

HIV Infection in BLT HuMice and Humans
Impairs Vd2 T Cells Responsiveness
to Stimuli
To demonstrate the ex vivo responsiveness of Vd2 T cells to
activation factors and their potential for therapeutic evaluation,
we cultured leukocytes derived from splenocytes of BLT huMice
(n = 6), peripheral blood of ART-suppressed HIV-positive (n =
5), and age-matched HIV-negative individuals (n = 4) and
stimulated them with the combination of ZOL and
recombinant human Interleukin-2 (rhIL-2). The basal
percentage of Vd2 cells within the CD3+ population of
lymphocytes was analyzed by flow cytometry, which revealed a
range of inter-individual differences among HIV-negative
donors (1.2% - 2.2%), ART-suppressed HIV-positive
individuals (0.5% - 1.2%), and BLT huMice (0.2% - 1%).
Initially, when we cultured Vd2 T cells from the peripheral
blood or the lymphoid tissues of BLT huMice in the presence of
ZOL and rhIL-2, we observed modest expansion of Vd2 T cells,
but it was not optimal. Next, we supplemented the cultures with
allogenic monocytes from healthy individuals and obtained
higher expansion of Vd2 T cells. Our results show that Vd2 T
cell expansion from splenocytes of mock-inoculated BLT huMice
after ten days was approximately 4-fold higher than HIV-
infected BLT huMice (p=0.013) (Figures 5A, B). Similarly, we
expanded Vd2 T cells from HIV-positive and HIV-negative
individuals and found that Vd2 T cell expansion was
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approximately 3-fold higher in HIV-negative individuals than
HIV-positive individuals (p=0.001) (Figures 5C, D). These
results suggest that HIV infection not only reduces the
frequency of Vd2 T cells in vivo but it also adversely impacts
the ability of these cells to expand in response to stimuli.

The Phenotype of Ex-Vivo Expanded
Vd2 T Cells
The phenotype of expanded Vd2 cells after ten days of exposure
to ZOL and rhIL-2 was analyzed in a subgroup of HIV-positive/
HIV-negative individuals and HIV-infected/uninfected BLT
huMice by measuring the expression of markers of activation
and differentiation by flow cytometry (Figure 6A). Surface
expression of the inhibitory receptor PD-1 was observed in a
mean of 78% and 45% on the cultured Vd2 cells derived from
HIV-infected and uninfected BLT huMice, respectively (p=0.04)
(Figure 6B). Similarly, the mean percentage of Vd2 cells
expressing PD-1 from HIV-positive and HIV-negative human
donors was respectively 40% and 20% (p=0.001) (Figure 6B).
The activation markers CD69 and CD25 were co-expressed on a
mean of 80% and 65% of the Vd2 cells cultured from HIV-
infected and uninfected BLT huMice, respectively. Similarly,
CD69 and CD25 co-expression was observed in a mean of 50%
and 25% of the Vd2 T cells from HIV-positive and HIV-negative
human donors, respectively (Figure 6C). Together, these
findings suggest that the expression of activation markers on
Vd2 cells expanded in vitro are slightly higher in those derived
from HIV-positive humans and BLT huMice than from their
HIV-negative counterparts. We also evaluated the differentiation
status of the cultured Vd2 cells based on memory cell phenotypes
defined as follows: (CM) central memory (CD45RA–CD27+),
(TDM) terminally differentiated (CD45RA+CD27–) and (EM)
effector memory (CD45RA–CD27–). Although not statistically
significant, we noted an increase in the TDM phenotype and a
decrease in the CM and EM phenotypes in the in vitro expanded
Vd2 T cells derived from HIV-infected BLT huMice compared to
the Vd2 cells cultured from uninfected BLT huMice (Figure 6D).
A

B

FIGURE 4 | T cell number is altered in lymphoid tissue of HIV-infected BLT huMice. (A, B) Quantification of human T cell subsets, gd T cells and ab T cells in human
thymus and humanized spleen tissue of HIV-infected (n = 3 biological replicates) and non-infected (n = 4 biological replicates) BLT huMice at 4-6 weeks post-infection.
Data are presented as mean values ± SEM. P values <0.05 were considered statistically significant as determined using an unpaired, 2-tailed Student’s t-test.
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However, in humans, we found an approximately equal
distribution (20-30%) of EM, CM, TDM phenotypes between
HIV-positive and HIV-negative individuals (Figure 6E).

Adoptive Transfer of Vd2 T Cells Did Not
Control Cell-Associated HIV Transmission
and Replication in BLT HuMice
Many in vitro studies have demonstrated a protective role of gd T
cells against HIV infection (8, 9, 32). Therefore, we tested the
impact of adoptively transferred allogeneic Vd2 cells in an in vivo
model of cell-associated HIV transmission and replication using
BLT huMice, which is physiologically relevant to HIV
transmission in humans. As discussed above, in vitro
expansion of Vd2 T cells from HIV-infected individuals was
not optimal. We overcame this limitation in our adoptive
transfer experiment by utilizing Vd2 T cells expanded from
allogeneic non-infected individuals. A similar strategy was
previously demonstrated to be safe and effective in humans
(33). Moreover, it is therapeutically relevant because Vd2 T
cells lack functional MHC restriction and pose a minimal risk
for developing graft-versus-host complications (34). However,
they may serve as targets for an allogeneic response by the
engrafted immune cells, albeit graft versus host disease (i.e.,
alopecia) was not observed during the short duration of
this experiment.

BLT huMice were grouped into two different cohorts: one
cohort received only activated CD4+ T cells from an HIV-
infected human donor (CD4-only cohort) to mimic cell-
associated HIV transmission (13, 14), while the other cohort
received simultaneous injections of activated CD4+ T cells from
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an HIV-infected human donor and cultured activated allogenic
Vd2 cells from an uninfected human donor (CD4+Vd2 cohort).
Before the adoptive transfer of CD4 and Vd2 T cells, we assessed
the human immune cell reconstitution in all the BLT huMice,
and we observed approximately similar levels of huCD45+ cells
and huCD4+ T cells in all the BLT huMice (Supplementary
Figure S4). Reconstitution of human Vd2 and CD4+ T cells in
the peripheral blood of BLT huMice was examined via flow
cytometry two weeks after the adoptive transfer procedure. We
found that a mean of 50% of all CD3+ T cells was Vd2 T cells in
the peripheral blood of CD4+Vd2 cohort, whereas less than 1%
of all CD3+ T cells were Vd2 T cells in CD4-only cohort (p=0.03)
(Figure 7A), which indicated successful engraftment of human
Vd2 T cells in the BLT huMice. Next, we confirmed HIV
replication in the plasma of BLT huMice by qPCR two weeks
after adoptive transfer. Surprisingly, we observed a viral load in
the CD4+Vd2 cohort was approximately 2-fold higher than the
CD4-only cohort (Figure 7B) (p=0.042). Hypothesizing that this
increase in viral load could be due to HIV-infection of the
adoptively transferred Vd2 T cells, we decided to analyze the
CD4+ T cells and Vd2 T cell subsets in the peripheral blood of
both cohorts at two weeks post-adoptive transfer. Representative
flow cytometric plots of HIV p24 levels in total CD4+ T cells and
Vd2 T cells from both cohorts are shown in Figure 7C. We
observed a slightly higher presence of HIV p24 in total CD4+ T
cells (p=0.025) and Vd2 T cells (p=0.10) in the CD4+Vd2 cohort
of BLT huMice compared to the reference CD4-only cohort
(Figure 7D). Therefore, the adoptive transfer of Vd2 T cells
appears to exacerbate HIV replication in BLT huMice
(Supplementary Figure S5). Moreover, in vitro co-culture of
A B

DC

FIGURE 5 | HIV infection impairs the ex vivo expansion of Vd2 T cells. (A, B) BLT huMice were sacrificed at 4-6 weeks post-HIV/mock infection, and splenocytes
isolated from the humanized spleen of BLT huMice were cultured in the presence of zoledronate IL-2, and uninfected allogenic monocytes (n = three mice per
group). (C, D) Flow plots represent in vitro expansion of Vd2 cells from HIV-infected and non-infected individuals in the presence of zoledronate and IL-2. Expansion
of Vd2 cell frequency was significantly higher in HIV-negative donors (n = 4) compared to HIV-positive donors (n = 5 biological replicates). Data are presented as
mean values ± SEM. P values <0.05 were considered statistically significant as determined using a 2-way ANOVA test.
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HIV-infected CD4+ T cells with Vd2 T cells also suggests that in
the presence of Vd2 T cells, HIV infection increased, and they
failed to limit the viral replication (Supplementary Figure S5).
Additionally, we analyzed the blood and lymphoid tissue
associated viral load at four weeks post-adoptive transfer and
found no significant difference in the viral levels, which suggests
that viral replication plateaued at this time point in BLT huMice
of both the cohorts (Supplementary Figure S6).

Despite the low or lack of CD4 receptor expression on Vd2 T
cells, our in vivo data suggest that these cells can be targets of
HIV infection. This is in accordance with a previous study from
Sarabia et al., which reported that resting Vd2 cells act as
reservoirs for latent HIV infection (35). We posited that HIV
infection could impact the phenotype of Vd2 T cells to make
them more susceptible to direct infection. Since Vd2 T cells
already express high levels of the CCR5 co-receptor, we
examined whether the expression of the CD4 receptor on Vd2
T cells was induced on this cell type during HIV infection. Before
adoptive transfer, less than 5% of endogenous (Figure 8A and in-
vitro cultured Vd2 T cells (Supplementary Figure S7) expressed
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the CD4 receptor, but at two weeks after adoptive transfer, we
indeed detected a mean of 30% of Vd2 T cells expressing the CD4
receptor in both the cohorts (Figures 8A, B). Contrary to the
previous reports (9, 36) highlighting the protective function of
Vd2 T cells in controlling HIV infection in vitro, our result
suggests that HIV infection can drive CD4 expression on Vd2 T
cells in vivo, priming them to become targets for HIV infection
and contributors to viral dissemination.
DISCUSSION

gd T cells are the first line of defense against many pathogens, but
their frequency and functions are severely altered in the setting of
many infectious diseases, including HIV (7). Despite long-term
ART and viral control, gd T cells do not reconstitute HIV-
infected individuals to their levels set before infection (30).
However, in HIV elite controllers, Vd2 T cell numbers are
maintained at normal levels throughout infection, implying
A B

D

C

FIGURE 7 | Adoptive transfer of Vd2 T cells increases HIV replication in cell-
associated HIV transmission in BLT huMice. (A) Vd2 cell number significantly
increased 2-weeks post-adoptive transfer in peripheral blood of BLT huMice (n
= 3 biological replicates per group); analyzed by flow cytometry. (B) HIV viral
load increased significantly in plasma of Vd2+CD4-engrafted BLT huMice
compared to CD4-engrafted BLT huMice; measured via qPCR at two weeks
post-adoptive transfer (n = 3 biological replicates per group). (C) Representative
flow cytometry histogram plots of peripheral blood total CD4+ T cells and Vd2
cells expressing HIV p24 respectively. (D) HIV p24 is slightly higher in peripheral
blood total CD4+ T cells and Vd2 T cells of BLT huMice that received CD4+Vd2
treatment compared to the BLT huMice that received only CD4+ T cells
treatment respectively (n = 3 biological replicates per group). Data are presented
as mean values ± SEM. P values were determined using a two-tailed paired t-
test within the treatment groups.
A

B

D E

C

FIGURE 6 | Phenotypic characterization of cultured Vd2 cells. The phenotype
of Vd2 cells from 6 BLT huMice and 6 HIV-positive/negative individuals after the
expansion was analyzed by flow cytometry. (A) Representative flow cytometry
analysis of expanded Vd2 cells from splenocytes of humanized mice expressing
activation, inhibitory, and differentiation markers. (B) Expression of the
checkpoint inhibitory marker PD-1 on Vd2 cells expanded from HIV-infected and
non-infected BLT huMice and humans. (C) Dual expression of activation
markers CD69 and CD25 on Vd2 cells expanded from HIV-infected and non-
infected BLT huMice and humans. (D) Percentage of Vd2 cells defined as
central memory (CM) (CD45RA–CD27+), terminally differentiated (TDM)
(CD45RA+ CD27–), and effector memory (EM) (CD45RA–CD27–) derived from
HIV-infected and non-infected BLT huMice. (E) Percentage of Vd2 cells derived
from HIV-positive and HIV-negative individuals defined as having EM, CM, TDM
phenotypes. Data are presented as mean values ± SEM. P values were
determined using two-tailed unpaired t-tests between the two groups.
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that Vd2 T cells play an essential role in HIV infection and
control. Thus, a better understanding of Vd2 T cells during HIV
infection will be necessary to be effectively utilized or targeted for
therapeutic benefit. While prior studies have demonstrated the
protective effect of gd T cells against HIV infection in vitro (8, 9,
32), there is a lack of information available and a gap in
knowledge regarding their therapeutic potential in vivo.

In this study, we offer the first evidence that clinical trends of
gd T cell subpopulations (Vd1 and Vd2) before and after HIV
infection can be modeled in BLT huMice. Immunodeficient NSG
mice exhibited robust reconstitution of human immune cells,
including gd T cells, by 12 weeks post-engraftment of CD34+

human fetal liver cells and thymic tissues. Flow cytometric
analysis of human T cell subsets revealed that CD4+, CD8+,
Vd1, and Vd2 T cell levels in both the blood and lymphoid tissues
of healthy BLT huMice were comparable to those seen in healthy
humans. Furthermore, we observed high levels of viremia two
weeks following HIV infection, an associated depletion of Vd2 T
cells, and an expansion of Vd1 T cells in the peripheral blood of
BLT huMice. These features have been previously reported in
several clinical studies (37–39). Thus, BLT huMice may
overcome some of the translational limitations in non-human
primate SIV models, which include unremarkable changes in
Vd1/Vd2 T cell ratios, otherwise common in HIV infection in
humans. Our study demonstrating the in vivo reconstitution of
Vd2 T cells in the BLT huMouse model also provides a proof-of-
concept and basis for the design of future in vivo studies that
further evaluate the role of human gd T cells in the setting of HIV
infection as well as other chronic diseases such as cancer.

Current HIV cure strategies utilize the effector functions of
conventional CD8+ cytotoxic T cell lymphocytes (CTL) to kill the
HIV-infected cellular reservoir following the induction of latency
reversal (40). Unfortunately, the need to specifically stimulate or
target the activation of autologous HIV-antigen specific
autologous CD8+ T cells ex vivo or in vitro on an individual
MHC/peptide-specific level and the existence of HIV CTL escape
variants within the latent reservoir has challenged the progress of
this approach (41, 42). gd T cells offer an attractive alternative to
CTL as a potential therapeutic tool to mediate anti-HIV effector
functions. Their lack of MHC restriction may provide added
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benefits by raising the threshold for HIV to achieve immune
escape. Moreover, since they pose a reduced risk of inducing
allogeneic graft rejection, they may be considered for application
in allogeneic immunotherapy settings. A previous study has
shown that gd T cells mediate inhibition of HIV replication (2),
but the natural scarcity of gd T cells in tissues and circulation
indicates that these cells would likely need to be expanded ex-vivo
for them to have the intended therapeutic effect. Although there
are numerous in vitro protocols for expanding gd T cells from bulk
PBMC, two major approaches can be considered for targeting gd
T cells for clinical translation. First, both Zoledronic Acid (ZOL)
and rhIL-2 can be administered to directly increase the
proliferation of endogenous Vd2 T cells (43). The other
approach would be ex-vivo activation and expansion of Vd2 T
cells for adoptive therapy. In the HIV setting, this approach is
limited by the substantial loss of Vd2 T cells during the early
stages of the infection cycle, which fail to fully recover after ART
initiation. An alternative would be to harvest Vd2 T cells from
healthy donors and expand them in vitro using ZOL and rhIL-2
for allogeneic delivery, as has been previously reported in human
cancer clinical trials (33, 44) and non-human primate models
(45). One of these cancer trials demonstrated that the adoptive
transfer of haploidentical expanded Vd2 T cells from relatives of
cancer patients was safe and effective for achieving meaningful
responses (33). We attempted to culture and expand Vd2 T cells
derived from PBMC and lymphoid tissue of BLT huMice using
ZOL and rhIL-2. Unfortunately, while we could expand these BLT
huMice derived cells in vitro, we could not collect and generate an
adequate number to carry out in vivo studies using this method.
However, when we supplemented the cultures with allogeneic
monocytes from healthy individuals to enhance ZOL-induced
phosphoantigen presentation, we achieved a 20-fold increase in
Vd2 T cell expansion. Importantly, this was the first reported
evidence that Vd2 T cells derived from the splenocytes of BLT
huMice can indeed be expanded in vitro.

Our pilot study examined the therapeutic potential of
adoptively transferred Vd2 T cells in HIV infection of BLT
huMice during cell-associated HIV transmission using CD4+
T cells isolated from ART-treated HIV-positive individuals.
Cell-associated HIV transmission is a widely reported means
A B

FIGURE 8 | Induction of CD4 expression on Vd2 T cells in vivo during HIV infection. CD4+ T cells from an HIV-positive individuals were administered to BLT huMice
with or without co-transfer of in vitro activated Vd2 T cells. (A) Representative flow cytometry analysis of CD4 expression on Vd2 T cells before and after cell
transplant. (B) CD4 expression on human Vd2 T cells from the BLT huMice was measured by flow cytometry analysis pre-and post- (2 weeks) cell transplant. Data
are presented as mean values ± SEM. P values were determined using a two-tailed paired t-test within the treatment groups.
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of HIV infection (13, 14). Furthermore, laboratory-derived
molecular clones of HIV infection can exhibit different
characteristics compared to naturally derived HIV strains (46).
Although previous in vitro studies described the protective effect
of gd T cells against HIV infection (8, 9, 32), we did not see a
therapeutic benefit, namely suppression of viremia, with the
delivery of Vd2 T cells in BLT huMice. Treatment with the
activated Vd2 cells resulted in higher viremia at two weeks post-
infection as compared to the HIV-infected BLT huMice that
were not co-engrafted with the Vd2 T cells. Our findings were
limited by the study’s sample size and low gd T cell yield from the
blood of BLT huMice, but future experiments will focus on the
mechanisms of interactions between HIV and Vd2 T cells. The
ability to expand Vd2 T cells from the murine spleen of BLT
huMice provides an additional reservoir of cells for
understanding HIV-associated activation or dysregulation of
this cell type. Our adoptive transfer experimental data suggest
that during the early stages of HIV infection, Vd2 T cells can
transiently upregulate the surface expression of CD4. This is in
accordance with a previous study showing that the long-term
culture of Vd2 T cells in the presence of IL2 resulted in CD4
expression in vitro (35). Though we see a modest trend in our in
vitro culture of Vd2 T cells before the adoptive transfer, CD4
expression in Vd2 T cells was unexpectedly more pronounced
two weeks after transplantation into BLT huMice. While the
mechanisms involved remain the subject of future studies, we
speculate that this induction of CD4 expression on Vd2 T cells
may be a general inflammatory event in the host, triggered
during some viral infections, a phenomenon which has also
been noted to occur during COVID-19 infection (47). Moreover,
expanded Vg9Vd2 T cells can produce pro-inflammatory
cytokines that can potentially activate HIV replication.
However, we cannot rule out the possibility that allogenic
responses induced in the BLT huMice post-adoptive transfer
may contribute to the increased HIV viremia associated with the
delivery of Vd2 T cells. Future methods may include introducing
fluorescent tags to Vd2 T cells and fetal HSCs before engraftment
for tracking the proliferation, trafficking, or death of Vd2 T cells
during infection. Nevertheless, these findings raise more
questions about the role of gd T cells in the initial sequelae of
HIV infection and their potential contribution to the HIV
cellular reservoir, as has been previously reported (35).

To our knowledge, this is the first report demonstrating that
functional human gd T cells can be robustly reconstituted in a
BLT huMice model. This small animal model provides a
platform for future mechanistic studies to explore interactions
between HIV and T cell subsets and, more broadly, for in vivo
evaluation of gd T cells and gd T cell-based therapies in the
setting of various human diseases.
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gd T cells are a distinct subset of T cells expressing gd T cell receptor (TCR) rather than
abTCR. Since their discovery, the critical roles of gd T cells in multiple physiological
systems and diseases have been investigated. gd T cells are preferentially located at
mucosal surfaces, such as the gut, although a small subset of gd T cells can circulate the
blood. Additionally, a subset of gd T cells reside in the meninges in the central nervous
system. Recent findings suggest gd T cells in the meninges have critical roles in brain
function and homeostasis. In addition, several lines of evidence have shown gd T cells can
infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases,
including neurodegenerative diseases. Although the importance of gd T cells in the brain is
well established, their roles are still incompletely understood due to the complexity of their
biology. Because gd T cells rapidly respond to changes in brain status and regulate
disease progression, understanding the role of gd T cells in the brain will provide critical
information that is essential for interpreting neuroimmune modulation. In this review, we
summarize the complex role of gd T cells in the brain and discuss future directions
for research.

Keywords: gd T cell, central nervous system, brain, neuroimmunology, brain diseases
INTRODUCTION

gd T cells are a subset of T cells expressing gd T cell receptor (TCR) rather than abTCR. gd T cell was
named after discovery of the g gene in 1984 (1, 2). Initially, gd T cells were understudied because
they constitute a very minor portion of immune cells and are heterogenous. However, recent studies
have emphasized the importance of gd T cells in a number of diseases. Despite some exceptions, gd T
cells are unrestricted to major histocompatibility complex (MHC) and considered innate immune
cells (3). In general, the fate of gd T cells is already programmed from the thymus, and they do not
require complex activation mechanisms (3, 4). Therefore, gd T cells are rapidly recruited and
respond to inflammatory cues. Moreover, gd T cells regulate adaptive immune responses (5),
indicating they are an important bridge connecting innate and adaptive immunity.

gd T cells are found predominantly at mucosal surfaces rather than lymphoid organs (6). Under
steady states, they regulate homeostasis and maintain barrier integrity. Upon infection, they are
rapidly activated and regulate immune responses. Vg5+ dendritic epidermis T cells [DETCs;
Tonegawa nomenclature (7)] reside in the skin, Vg7+ cells reside in the gut and form
org May 2022 | Volume 13 | Article 8863971123
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intraepithelial cells (IELs), and Vg6+ cells are found in the
dermis, vagina, and meninges. Vg4+ T cells have also been
observed in the dermis and lung. On the other hand, Vg1+ and
Vg4+ T cells, which develop after birth, circulate in the blood or
lymphatic fluid (6). In humans, Vd1+ cells usually reside in the
mucosal area and Vd2+ T cells are circulating cells, although
there are tissue-resident Vd2+ T cells and circulating Vd1+ T cells
(8, 9). Although gd T cells are generally similar across species,
murine and human gd T cells have notable differences (10). Due
to the complexity and differences between mouse and human gd
T cells, their investigation is very difficult. For example,
classification of murine gd T cells is dependent on g chains,
whereas human gd T cells are classified by d chains (8). In
addition, homologous cells for murine Vg5+ DETCs have not
been detected in humans (11). Therefore, many aspects of gd T
cell biology remain unclear and further studies are urgently
needed to understand their role in immune system function.

Although most mucosal barriers are in contact with the outside
andexposed topotential pathogens,meninges are sterile because they
encounter the inner side of the central nervous system (CNS) (12).
Classically, the CNS has been regarded as an immune privileged
organ.A study showed allografts in theCNSwere not rejected, unlike
allografts in the skin (13). Though circulating immune cells are
strongly restricted to enter parenchyma, recent studies re-discovered
meningeal lymphatics that drain waste, including CNS antigens (14,
15). Interestingly, antigen presentation in the meningeal spaces and
CNS-draining lymph nodes occurs actively (16). Thus, our immune
system actually surveils the CNS. However, there are many things
concerning the role of the immune system in the CNS that remain
elusive. Surprisingly, current data have shown that various immune
cells reside or circulate in the meninges (17). Meningeal cytokines
interact with parenchymal neurons, astrocytes, or microglia, though
the exact mechanisms underlying these interacts are incompletely
understood. Meninges-parenchyma interactions regulate multiple
neurological functions under homeostasis (18). In addition,
meningeal lymphatics and immune system rapidly respond to CNS
status and regulate pathology of neurodegenerative diseases and
neuroinflammation. gd T cells are among the multiple immune
cells that reside in meninges (19). Recent studies showed meningeal
gd T cells regulate memory formation and behaviors via cytokine
release (19, 20). Furthermore, parenchymal infiltration and the
immunological role of gd T cells in multiple CNS diseases,
including experimental autoimmune encephalomyelitis (EAE),
CNS tumors, and infections, have been discovered (8, 21). Because
gdT cells serve as a “safeguard” for themucosal barrier, gdT cells are
expected to have an indispensable role in themeninges.However, the
exact mechanisms concerning how gd T cells act is lacking. To help
identifydirections for future studies,wediscuss the roleof gdTcells in
homeostasis and disease, with a specific focus on the brain.
gd T CELLS

T cells are adaptive immune cells that are restricted to MHC-
mediated antigen presentation. T cells typically exit from the
thymus as naïve cells. Antigen presentation accompanied with
multiple inflammatory cues activates T cells and trigger immune
Frontiers in Immunology | www.frontiersin.org 2124
reactions (22). However, there are innate-like T cells that have
invariant TCRs, such as gd T cells, natural killer (NK) T cells, and
mucosal associated invariant (MAI) T cells (23). gd T cells are
known to be usually independent on MHC-mediated antigen
presentation and recognize stress-related molecules, microbial
molecules, or phosphoantigens through gdTCR and/or NK
receptors, such as NK group 2D (NKG2D) (24). gd T cells are
highly heterogenous and various subsets have been identified.
Though some gdTCR ligands have been identified, a
comprehensive identification of all ligands is lacking. Functional
similarities are shared among multiple gd T cell subsets and there
are two functional subsets. The first functional subset is interferon
(IFN)-g-producing and T helper (Th) 1-like subset and the second
functional subset is interleukin (IL)-17-producing and Th17-like
subset (Figure 1A). The expected roles of gd T cells are similar to
CD4 T cells. IFN-g-producing gd T cells are usually antiviral and
antitumoral cells, whereas IL-17-producing gd T cells are antifungal
or related to autoimmune diseases such as EAE (8). The detailed
functions of gd T cell subsets are more classified by their circulating
capacity. In general, gd T cells are tissue-resident cells in the mucosal
tissues, Vg5+ cells are DETCs in the skin, Vg4+ cells are dermis- or
lung-resident cells, Vg6+ cells are residing in vagina, meninges, and
dermis, and Vg7+ cells are gut-resident IELs. On the other hand,
Vg4+ and Vg1+ cells generated postnatally are circulating cells (6). In
humans, Vg9Vd2 T cells are predominant circulating gd T cells,
whereas Vd1+ cells and fetal gd T cells are commonly tissue-resident
cells (8, 9). gd T cells are usually rapidly reacting innate cells that
connect innate immune responses to adaptive immune cells and
function as a “safeguard”. In addition to their ability to release
cytokines, subsets of gd cells possess NK-like cytotoxicity via NK
receptors, such as NKG2D (25). However, studying gd T cells has
been technically difficult because of the low number and
heterogeneity. Following the recent development of high-
throughput analytic tools, such as single cell RNA sequencing, gd
T cell study has progressed tremendously. A number of recent
studies have demonstrated the indispensable role of gd T cells in
multiple contexts. Recently, meningeal gd T cells were identified as a
main source of IL-17A in the CNS under homeostasis (19, 20).
Currently, cytokines are regarded as neuromodulators because of
their ability to directly interact with neurons (18). In addition, IL-
17A is one of the most important cytokines for the neurological
system and Vg6+ cells, which reside in meninges, produce IL-17A
(19). On the other hand, other gd T cells can invade into the
parenchyma under disease conditions and regulate multiple
immune responses. For example, circulating gd T cells can invade
into glioblastoma multiforme (GBM) tissues, leading to antitumor
responses (26). Although gd T cells seem to be critical immune cells
in the CNS, many aspects of their biology remained unclear.
DEVELOPMENT AND MAINTENANCE OF
gd T CELLS

gd T Cell Development
Similar to other T cells, gd T cells are generated from the
thymus (23). Common lymphoid progenitor cells from the
May 2022 | Volume 13 | Article 886397
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FIGURE 1 | Characteristics and development of gd T cells. (A) gd T cell subsets are heterogenous. Functionally, gd T cells can be divided into two groups: one is IL-17-
producing cells and the other is IFN-g-producing cells. IL-17-producing cells are commonly antifungal cells or promoting autoimmune diseases and inflammation. IFN-g-
producing cells are usually antiviral or anti-tumoral cells. Both subsets can be further divided by circulation ability. Although the majority of gd T cells are tissue-resident
cells in the mucosal barriers, some gd T cells can circulate body. (B) T cell development occurs in the thymus. T cell development can be divided by expression of CD44
and CD25 (DN1: CD44+CD25-; DN2: CD44+CD25+; DN3: CD44-CD25+; DN4: CD44-CD25-). Although DN2 or DN3 cells can be gd T cells, commitment usually occurs
after DN3 stage. Strong TCR signal enhances gd T cell fate. DN4 ab T cells become CD4+CD8+ DP cells. By their interaction with MHC class I or MHC class II, DP cells
become a CD8 T cells or CD4 T cells, respectively. gd T cells can be IFN-g-producing cells by strong TCR signal. On the other hand, weak TCR signaling induces IL-17-
producing cells. (C) Different gd T cell subsets can be generated in the fetal thymus. At embryonic (E) 14, Vg5+ dendritic epidermal T cells (DETCs) are generated and
migrate into the skin epidermis. SKINT1 is important for Vg5+ DETC development and selection. At E16.5, Vg6+ cells can be developed. These cells migrate into the
multiple organs such as uterine, vagina, testis, lung, or meninges. They become a tissue-resident cells in those tissues. Cognate ligand for their TCR is not identified. At
E17.5, IL-17-producing Vg1/4+ cells are made. They can migrate into the skin dermis, lung, or liver. They are also tissue-resident cells. Although several factors have been
known for their development, cognate TCR ligand is not identified. After E18, Vg7+ intraepithelial cells (IELs) are generated. They migrate into the gut and become gut-
resident cells. BTNL proteins are critical for development and maintenance of Vg7+ IELs. After birth, Vg1/4+ cells are further generated. They can circulate and are
observed in the blood or lymphoid organs.
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bone marrow enter the thymus and become CD4-CD8- double
negative (DN) T cells. DN T cells are subdivided into four
differentiation stages (DN1: CD44+CD25-; DN2: CD44+CD25+;
DN3: CD44-CD25+; DN4: CD44-CD25-) (Figure 1B). During
the DN stage, pre-TCR are formed when pre-TCRa and TCRb
rearrangement induces progression into the CD4+CD8+ double
positive (DP) stage. Then, DP T cells interact with cortical
epithelial cells expressing MHC molecules with self-antigens,
which leads to a selection process where too weak signaling
induces DP cell apoptosis. Moderately reactive DP T cells
become single positive (SP) T cells. Thymocytes that interact
with MHC class I become CD8 T cells and cells what interact
with MHC class II become CD4 T cells or initial signaling
strength determines fates of T cells (27, 28). SP T cells are
further selected by negative selection by medullary epithelial
cells. Other unconventional T cells, such as NKT cells and
MAIT cells, are generated from the DP stages. Uniquely, gd T
cells develop from the DN stages (23). gd T cell fate is
commonly determined at the DN3 stage. However, some gd T
cell subsets are derived from the DN1 or DN2 stages. In mice,
gd T cell development begins in the fetal thymus and gd T cells
constitute the major T cell subset at this early stage due to a lack
of ab T cell development (29). Initial mouse gd T cell
development occurs in the fetal thymus, generating DETCs
expressing Vg5 (Figure 1C). At embryonic (E) 14, DETCs are
produced and preferentially migrate into the epidermis (30).
Interestingly, a study revealed DETCs do not originate from
hematopoiesis in bone marrow. However, DETC progenitors
were derived from yolk sac like Langerhans cells (31). Vg6+ cells
are a type of intraepithelial lymphocytes (IELs) of reproductive
organs and meninges. Vg6+ cells usually express IL-17A and
develop at E16.5. Vg4+ and Vg1+ IL-17A-producing cells
develop at E17.5 (32). Development of gut-homing Vg7+ IELs
begins at E18 and continues postnatally (30). Some intestinal
IELs are thought to be developed extrathymically (33). Some
IFN-g-producing liver-resident gd T cells are extrathymically
developed from Lin-Sca-1+Mac1+ hematopoietic stem cells and
progenitor cells in the liver (34). Similarly, human gd T cells
arise from the fetal liver (35). Vg9Vd2 T cells can be observed at
the fetal liver at 5-7 weeks gestation, whereas thymic Vg9Vd2 T
cells are detected at 8 weeks gestation (36). Fetal Vg9Vd2 T cells
are relatively invariant and have public clones. Postnatally,
Vg9Vd2 T cells are rarely generated, whereas Vd1+ and Vd3+

T cells are preferentially generated. TCR repertoire of Vd1+ and
Vd3+ T cells is largely dependent on microbial exposure (37).
Although fetal Vg9Vd2 T cells slowly turn over and have self-
renewal capacity, adult-derived Vg9Vd2 T cells can also be
generated and be a major source human gd T cells in the blood
(38). Recent observation showed the fetal thymus produces
hybrid T cells that expressing both abTCR and gdTCR (39).
These hybrid cells, which can produce IFN-g, IL-17A, and
granulocyte-macrophage colony-stimulating factor, are
hyperactive. The hybrid cells underwent positive ab-selection.

After birth, the majority of newly generated gd T cells are
Vg4+ and Vg1+ cells. Although both cells can produce IL-17 and/
or IFN-g, Vg1+ cells are usually association with IFN-g
Frontiers in Immunology | www.frontiersin.org 4126
production and Vg4+ cells are commonly associated with IL-
17A production (6). Their fate is determined during thymic
development. CD27+CD44int cells actively secrete IFN-g,
whereas CD27-CD44hi cells produce IL-17A (8). As this
process is not well understood, identifying factors that
determine gd T cell fate has been of great interest. Although
various factors can be involved, TCR strength may be the most
important factor for determining gd T cell fate. Before gd T cell
commitment, TCR strength is important for gd T cell identity. If
gdTCR is weak, cells tend to preferentially differentiate into ab T
cells (40). These commitments are known to occur after TCR
expression. It was dependent on extracellular signal-regulated
kinases (ERKs)-mediated early growth response activation (41).
Overexpression of friend leukemia integration 1 (Fli1) prevents
progression of DN T cells into DP T cells (42). As a result, Fli1
overexpression may create a preferential environment for gd T
cell development, which was mediated by strong TCR mimicry.
Strong TCR activation results in CD73 expression. Although
CD73- gd T cells retain the potential develop into ab T cells,
CD73+ cells commonly become gd T cells (43). After gd T cell
commitment, TCR strength may determine whether the gd T
cells become IL-17-producers or IFN-g-producers. Usually, a
strong TCR signal tends to make gd T cells become a
CD44+CD45RB+T-bet+ IFN-g-producing cells. On the other
hand, a weak TCR signal induces CD44hiRORgt+ IL-17A-
producing gd T cells (44). This mechanism was dependent on
the ERK pathway. Mechanistic target of rapamycin (mTOR)
complex 1 (mTORC1) and Notch signaling also determine ab/gd
fate via metabolism (45). Likewise, metabolic pathways are also
important for gd T cell fate. IFN-g-producing cells are dependent
on glycolysis and IL-17A-producing cells are dependent on
oxidative phosphorylation. These dependencies are imprinted
from thymic development to peripheral maintenance (46).
Environmental cytokines also regulate the function of gd T
cells. For example, IL-1b and IL-23 induce extrathymic
commitment of CD27+CD122- Vg4+ cells to become an IL-
17A-producer (47). Vg4+ T cells that have never made IL-17A
can produce IL-17A de novo by IL-1b and IL-23 (48). In parallel,
IFN-g-producing cells can be generated by IL-12 and IL-18 (49).
Transcription factors are also important regulators of gd T cell
fate. Fetal-derived gd T cells may be marked by promyelocytic
leukemia zinc finger protein (PLZF) (50, 51). IFN-g+ gd T cells
need T-bet, but not Eomes. On the other hand, IL-17A+ gd T cells
need RORgt, but not RORa and BATF (52). Co-stimulatory
molecules, such as CD27 or ICOS, also support gd T cell fate
determination (53, 54).

Ligands for gdTCR
As mentioned above, TCR signaling is important for gd T cell
development and maintenance. Thus, identifying gdTCR ligands
and their roles is indispensable to further understand gd T cell
biology. Though major subsets of gd T cells are not dependent on
MHC-mediated antigen presentation, gd T cells are dependent
on MHC-like molecules, stress-induced molecules, and
phosphoantigens (24). The most well-known gdTCR ligands
are selection and upkeep of intraepithelial T cells protein 1
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(SKINT1) and butyrophilin-like proteins (BTNL) molecules
(Figure 1C). Vg5+ DETCs are dependent on SKINT1 (55).
SKINT1 expression is restricted to the thymus and skin
keratinocytes. SKINT1-mediated TCR signaling is not only
important for development of DETCs, but also epidermal
maintenance (56). Likewise, BTNL molecules are important for
Vg7+ IELs. BTNL1 and BTNL6 are necessary for murine Vg7+

IELs and BTNL3 and BTNL8 are needed for human intestinal
Vg4+ T cells (57). T10/22, a MHC class Ib molecule, is also
important for gd T cell development (58). The most well-known
gdTCR ligands in humans are BTN3A1 and BTN2A1.
Phosphoantigens induce a conformational change in BTN3A1-
BTN2A1 dimers, which binds to Vg9Vd2 TCR (59). Endothelial
protein C receptor (EPCR)-Vg4Vd5 TCR (60), Annexin A2-Vd2
TCR (61), tRNA synthetases-Vg3Vd2 TCR (62), ephrin type-A
receptor 2 (EphA2)-Vg9Vd1 TCR (63), and R-phycoerythrin-
Vd1 TCR (64), CD1c/d-Vd1 TCR have been reported (65, 66).
Contrary to a number of reports that argued fetal thymus-
derived gd T cells are invariant, adult-derived gd T cells have
relatively variant TCR chains (67). Likewise, there are some gd T
cell subsets that are dependent on MHC-mediated antigen
presentation (68). Thus, studying gd T cells and their ligands is
complex. In some cases, gd T cells can be activated without TCR
signaling, but activated by stress-induced molecules, such as
MHC class I chain-related protein A/B (MICA/B) or retinoic
acid early inducible 1 (Rae-1), via NKG2D receptor (8, 69). In
conclusion, TCR ligands should be considered in the context-
dependent manner to understand the role of gdTCR. A study
showed murine gdTCR depletion antibodies could not remove gd
T cells, but made the cells undetectable via intracellular uptake of
gdTCR (70). Because this system depletes functional gdTCR from
cellular surfaces, gdTCR depletion antibodies could be used to
investigating the role of gdTCR. Unfortunately, ligands for Vg6+

cells have not been identified. However, administration of anti-
gdTCR inhibits meningeal gd T cell functions (19). Thus, TCR-
mediated signal is required for cytokine secretion in the
meninges. Identifying the ligand(s) that regulate meningeal gd
T cell homeostasis and activation is critical to understand the
role of gd T cells in brain physiology.
gd T CELLS IN BRAIN HOMEOSTASIS

Maintenance and Recruitment of
Brain gd T Cells
Vg6+ cells, which are enriched in the meninges, reproductive
organs, and dermis, are the major gd T cell subset in these organs
(6). In addition, they are a major source of IL-17A; however, they
do not express IFN-g. Although a study claimed ZAP70-deficient
mice had less IL-17A-producing gd T cells, including Vg6+ cells,
compared to wild type (WT) mice (71), previous study has
proposed that weak TCR signaling is important for
development of IL-17A-producing gd T cells, including Vg6+

cells (44). It is important to note that the dispensable role of TCR
signaling in thymic development of gd T cells does not mean that
it is also dispensable for peripheral maintenance and cytokine
Frontiers in Immunology | www.frontiersin.org 5127
secretion. A series of studies have emphasized that tonic TCR
signal from tissue-specific niches is important for maintaining
tissue-resident gd T cells (72, 73). Vg6+ cells gd T cells being
developing at E.17.5 (23). Furthermore, experiments using bone
marrow chimeras demonstrated that adult thymus could not
produce IL-17A-producing gd T cells, suggesting Vg6+ cells may
be fetal-derived, self-renewing, and long-lived cells (32).
However, it remains unclear how Vg6+ cells are recruited into
the meninges and maintained. In the uterus, Vg6+ cells are the
dominant gd T cells in homeostasis (74). However, pregnancy
induces recruitment of Vg4+ cells into the placenta (75).
Although the relation of Vg4+, Vg6+ cells, or IL-17A to
outcomes of pregnancy is controversial, allogenic pregnancy
experiments revealed that recruitment of gd T cells in the
uterus is dependent on allotype (75, 76). In parallel, certain
inflammatory cues can recruit different gd T cell subsets in the
meninges or brain parenchyma (21, 77). It has shown that brain
injury or inflammation can recruit Vg1+, 4+, 6+ cells in the
parenchyma (78–80). CCR6 is important for migration of IL-17-
producing gd T cells (81), and a study showed most meningeal gd
T cells expressed CCR6 (20). However, another study showed
meningeal gd T cells expressed large amounts of Cxcr6 and Ccr2.
In addition, Cxcr6-deficient mice showed gd T cell reduction in
the meninges (19) and their functions may be dependent on
gdTCR, but not cytokines, such as IL-1b or IL-23 under
homeostasis (19, 20). However, other factors affecting
meningeal gd T cells should be further addressed. Taken
together, meningeal gd T cells have crucial roles maintaining
brain homeostasis and behaviors of animals. However, further
study is needed to uncover the exact mechanisms governing how
they are recruited, activated, and maintained.

The Role of Meningeal gd T Cells in the
Homeostatic Brain
Decades ago, heat shock protein 70 (HSP70) was the most well-
known ligand for human multiple sclerosis (MS) gd T cells (82).
Interestingly, a study observed that oligodendrocytes,
postischemic neurons, and microglia express HSP70 under
heat exposure (83). This study suggested gd T cells may be
cytotoxic to brain cells. Also, this study revealed that different
types of gdTCRs are expressed in the cortex, hypothalamus, and
medulla of postmortem samples. Another study showed that
normal CNS tissue contains gd T cells (84). Although this study
may have technical limitations, the gd T cells from normal CNS
tissue expressed low CD45RB levels, which may suggest these
cells are meningeal IL-17A-producing cells. Currently, many
people agree that gd T cells do not exist in the normal CNS
parenchyma. However, a large amount of gd T cells are present in
the meninges (Figure 2A) (19). Furthermore, these cells are IL-
17A-producing cells, but not IFN-g-producing or IL-22-
producing. Also, these cells are rarely observed in the
arachnoid and choroid plexus. This study also showed that
meningeal gd T cells are present three days after the postnatal
period (P3). They showed tissue-resident phenotypes that were
not derived from circulation. Adult meningeal gd T cells were not
Ki67+ and showed poor incorporation of BrdU, indicating they
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FIGURE 2 | The role of gd T cells in brain immunology. (A) Upon brain parenchyma, multiple layers surround brain. Under skull, dura mater (periosteal layer, meningeal
layer) is situated. Under meningeal layer, arachnoid and subarachnoid space exist. In the meninges, Vg6+ cells are populated. They seem to be affected by commensal
microbiota. Under steady state, Vg6+ cells produce IL-17A. IL-17A from meninges can be delivered into the parenchyma. Direct signal from IL-17A into neurons can
regulate anxiety-like behavior. On the other hand, IL-17A can regulate short-term memory via glial BDNF. (B) gd T cells are related to progression and severity of brain
autoimmune diseases. Mouse Vg4/6+ cells or human Vd1/2+ cells are known to be related to these diseases. Usually, IL-17A from gd T cells initiate or further promote
diseases. (C) gd T cells are involved in injury-induced inflammation in the brain. Vg4/6+ cells usually produce IL-17A which recruits neutrophils. They are known to be
regulated by commensal microbiota. As an early inducer, gd T cells further promote inflammations. (D) gd T cells are also related to neurodegenerative diseases. IL-17A
may be strongly associated with development of diseases such as Alzheimer’s disease. (E) gd T cells can infiltrate into the infected brains. Multiple pathogens can infect
into the brain. Usually, IFN-g-producing gd T cells resolve viral infections. However, TNF or IL-17A is associated with infection-induced inflammation.
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are not proliferative and self-renewal. They produce IL-17 under
steady states, which may be dependent on TCR signaling.
Commensal-derived signaling also contributes to gd T cell IL-
17A production. However, the number of meningeal gd T cells
was not dependent on bacterial signals. This study also revealed
that meningeal gd T cell-derived IL-17A regulates anxiety-like
behaviors of mice. Although how meninges-derived cytokines
arrive at parenchyma is unclear, IL-17A can directly affect
excitatory glutamatergic neurons in the medial prefrontal
cortex (mPFC). Notably, IL-17 receptor A (IL-17Ra) is
expressed by multiple brain regions. A direct IL-17A signal
may promote neurotransmitter release from excitatory
presynaptic terminals of mPFC neurons to induce anxiety-like
behaviors. However, IL-17A did not affect intrinsic neuronal
excitation. This finding may explain how animals can rapidly
respond to environmental stresses. On the other hand, Tcrd-
deficiency did not affect spatial memory task performance, social
preference, or foraging behavior. According to an interesting
study by the Ribot group, Tcrd-deficient mice did not show
deficits in exploratory behavior, motor function, and anxiety
(20). However, these animals showed impaired short-term
spatial working memory, but not long-term memory
formation. Critically, these findings were dependent on IL-17A.
IL-17A directly signals to glial cells inducing production of
brain-derived neurotrophic factor (BDNF) in glial culture
system. However, because these phenotypes were not repeated
under microglia- or astrocyte-specific deletion of IL-17R, direct
evidence linking IL-17A and memory formation is still lacking
and should be further addressed. Nonetheless, IL-17A-mediated
BDNF seems to be involved in long-term potentiation of neurons
during short-term memory formation. Taken together, gd T cells,
as main source of IL-17A, regulate multiple functions of the
brain under steady states.

Maternal IL-17A is also important for progeny behavior. Poly
I:C-induced maternal immune activation (MIA) mimicking
infections showed autism-like behavior of progenies (85).
Because Il17a expression was not detected in fetal brain at
E14.5, IL-17A may be derived from the mother under MIA.
MIA resulted in impaired cortex development of offspring. Given
the authors showed conditional deletion of Rorc using CD4-Cre
mice, they concluded CD4 T cells are responsible for IL-17A
production. This data excluded participation of gd T cells,
lymphoid tissue inducer cells, and innate lymphoid cell type
3s. In addition, intestinal dendritic cells stimulate CD4 T cells via
IL-1b, IL-23, and IL-6, which leads to IL-17A production in a
maternal microbiota-dependent manner (86). Although they
clearly showed CD4 T cells are critical, the contribution of
uterine gd T cells or fetal gd T cells to behavioral impairment
in offspring would be an interesting study to explore. Moreover,
dietary salt also induces CD4 T cells to produce IL-17A via
serum/glucocorticoid regulated kinase 1 (SGK1) (87). Similarly,
IL-17A-inhibiting Lactobacillus murinus was reversed by salt-
uptake, resulting in elevated IL-17A (88). Maternal salt uptake
also induces abnormal behaviors of offspring (89, 90). Dietary
salt has been shown to induce cognitive dysfunction by gut-
initiated Th17 responses (91). Taken together, maternal CD4 T
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cell-derived IL-17A affects offspring cognitive functions and
behaviors. In addition, the role of gd T cells in MIA-induced
autism-like behaviors and cognitive dysfunction under salt
uptake or other environmental changes should also be
addressed. On the other hand, intrauterine inflammation
without systemic inflammation induces neutrophil infiltration
into the decidua. In parallel, neutrophils and macrophages were
increased in the fetal liver. In the fetal brain, granulocytes and
activated microglia were increased. Among immune cells, Gr1+

gd T cells were the most rapidly responding cells, which produce
IFN-g rather than IL-17A (92). Thus, other kinds of MIA rather
than systemic poly I:C should be also considered.
THE ROLE OF gd T CELLS IN
BRAIN DISEASES

Autoimmune Diseases in CNS
In 1991, it was revealed that human peripheral blood-derived gd
T cells can kill fresh human brain-derived oligodendrocytes ex
vivo (93). Furthermore, gd T cells were observable in the plaques
and cerebrospinal fluid (CSF) of MS patients. This study
suggested the possibility of gd T cell participation in MS
progression. Although CD4 T cells are important for chronic
MS, gd T cells were the most activated cells in recent onset MS
patients (94), and the activated gd T cells were oligoclonal. This
study suggested gd T cells can be expanded by MS antigens and
are the initiating cells in MS pathology (Figure 2B).
Demonstrated with a murine EAE model, administration of
anti-gdTCR (UC7-13D5) worsened EAE pathology (95). These
data suggested the regulatory role of gd T cells in disease
progression. As mentioned above, anti-gdTCR administration
does not deplete gd T cells, rather it inhibits TCR signaling (70).
Thus, this finding showed TCR-reactive gd T cells have
regulatory role in the EAE. Another study using a murine EAE
model revealed gd T cells are associated with IFN-g levels (96).
On the other hand, early IL-17A production from gd T cells
promotes later activation of Th17 cells (97), indicating
heterogenous gd T cells participate in MS or EAE. In human
samples, Vd1+ cells were largely observed in the blood and CSF
of MS patients. On the other hand, Vd2+ T cells have strong
cytotoxicity against oligodendrocytes (98). Under MS, long-term
treatment of IFN-b expands Vd1-Vd2-Vg9- gd T cells, which
were related to better outcome of MS patients (99). Taken
together, human data also suggested a heterogenous role of gd
T cells in the MS progression. In the murine EAE model, gd T
cells infiltrate into the brain parenchyma using integrin beta 2
family, and its expression was rapidly reduced after infiltration
(100). Another study showed that gut L. acidipiscis reduces Vg4+

cells while Vg1+ cells were increased. Because gut L. acidipiscis
was related to better EAE outcomes, Vg4+ and Vg1+ cells may
have opposing roles (101). IFN-g-producing and IL-17A-
producing gd T cells have been shown to have opposing roles
as IFN-g- or IFN-gR-deficient mice have enhanced EAE (102,
103). It would be interesting to investigate the contribution of
meninges-derived IL-17A or Vg6+ cells using an EAE murine
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model. gd T cells are also related to Rasmussen’s encephalitis
(RE) pathology. Although CD8 T cell response is critical for RE
inflammation, more innate cell types could be associated with
disease initiation (104). This study revealed Vd1+ cell clonal
expansion in the parenchyma of RE patients. Because microglial
activation via TLRs can enhance IL-17A-producing gd T cells
through IL-1 and IL-23, microglial inflammation can be a trigger
for multiple CNS inflammations (105).

gd T Cells in Brain Injury
Infiltration of gd T cells in the brain parenchyma is also
observable following ischemic injury (106). While CD4 T cells
induce tumor necrosis factor (TNF) production by macrophages
via IFN-g, gd T cells promote neutrophil infiltration through IL-
17A (Figure 2C). IL-17A and TNF synergistically induce CXCL1
expression by astrocytes, which further promotes neutrophil
infiltration (107). Another interesting study showed intestinal
microbiota regulates outcomes of ischemic stroke via gd T cells.
Intestinal microbiota regulates dendritic cells, which promotes gd
T cell activation. IL-17A produced from gd T cells enhances
stroke pathology. On the other hand, antibiotics uptake increases
Tregs and reduces gd T cells resulting in better outcomes for
stroke mice (77). Taken together, IL-17A from gd T cells is a
critical cytokine that promotes inflammation after brain injury.
Two studies showed IL-17A is predominantly expressed by
infiltrating Vg4+ or Vg6+ cells (79, 108), and CCR6 seems to be
important for Vg4+ or Vg6+ cell migration. Furthermore, the
regulatory role of gd T cells was demonstrated using a NaIO3-
mediated retinal pigment epithelium injury model. gd T cells
produce IL-4 and IL-10 to reduce injury in an aryl hydrocarbon
receptor (AhR)-dependent manner (109). In the case of perinatal
brain injury, injury delays neurophysiological maturation. This
was related to gut microbiota, Klebsiella, which has been
associated with an increase in gd T cells expressing IL-17A and
VEGF-A (110). On the other hand, both the Kipnis group and
Colonna group showed that skull bone marrow provides myeloid
cells and B cells to the meninges and parenchyma (111, 112).
Direct production of immune cells via skull bone marrow might
be involved in brain injury progression. However, these two
studies suggested T cells are derived from the peripheral blood,
not the skull bone marrow. It may be due to T cell maturation
occurs at the thymus. However, de novo development of gd T
cells in the skull bone marrow or meninges should be
experimentally tested to clarify this. Also, gd T cells promote
bone regeneration after injury via IL-17 (113). Thus, meningeal
gd T cell-derived IL-17 may be able to regulate skull regeneration
resulting in recovery after brain injury.

Neurodegenerative Diseases
A number of studies have shown that inflammation is associated
with severity of neurodegenerative diseases, including dementia,
Parkinson’s diseases, and Huntington’s diseases (114). Clonal
expansion and antigen reactivity of T cells have been observed
in multiple neurodegenerative diseases (115–117). Because
microglial-intrinsic inflammatory gene regulation can induce T
cell infiltration in the parenchyma and neuroinflammation (118),
immune reaction may be associated with initiation and
Frontiers in Immunology | www.frontiersin.org 8130
development of multiple neurodegenerative diseases. During the
initial stage of MS, pioneer cells enter the CNS and initiate further
inflammation without pathologies (119). On the other hand, gd T
cell activation, rather than ab T cells, has been observed in CNS
inflammation in early onset MS (94, 106). Thus, gd T cells may
regulate the first wave of neuroinflammation in neurodegenerative
diseases, though there is no direct evidence conclusively
demonstrating this. TRG genes can be detected in both the
human brain and blood. The brain has less TRGV9 clones than
the blood. However, the brain contains more TRGV2, 4, and 8
genes. In this study, it was shown that aging is known to reduce the
TRG repertoire. In addition, an Alzheimer’s disease (AD)-
associated TRG pattern was observed among AD patients (120).
This study has technical limitations because tissues were not
perfused and TRG transcript could be expressed by non-T cell
lineages (121). Nonetheless, these data suggest a possible
relationship between gd T cells and AD. Consistently, IL-17-
producing cells, including gd T cells, accumulate in the brain
and meninges of the 3xTg-AD mouse model (122). This study
demonstrated IL-17 triggers AD onset independent of amyloid b
and tau pathology (Figure 2D). Thus, gd T cells may be a “pioneer
cells” of neurodegenerative diseases. Likewise, gd T cells were
increased in the blood and CSF from Parkinson’s disease (PD)
patients compared to other neurological diseases (123). In
summary, gd T cells can contribute to progression and initiation
of multiple neurodegenerative diseases. Despite the lack of a direct
connection, gd T cells may be related to early trigger of diseases.
The diverse roles and mechanisms of gd T cells in multiple
neurodegenerative diseases should be further addressed.

Brain Infections
Microbe infections can also induce neuroinflammation and
neurological symptoms. For example, toxoplasma infection can
induce toxoplasmic encephalitis. A study showed IL-6 deficiency
was associated with more cyst and necrosis of the brain. IL-6
knock out mice have more CD8 T cells and less CD4 T cells and
gd T cells compared to WT mice (124). This suggested gd T cells
may be related to inflammation in toxoplasmic encephalitis.
Malaria infection can also induce brain inflammation.
Infection by Plasmodium yoelii induces brain inflammation of
BALB/c mice. However, DBA/2 mice are resistant to infection.
IL-2-mediated gd T cell infiltration in the brain was critical for
susceptibility to Plasmodium yoelii infection (125). Another
study also showed gd T cell deficiency reduced intracranial
mesocestoides corti-mediated neurocysticercosis pathology
(126). Thus, gd T cells contribute to infection-induced brain
inflammation (Figure 2E).

gd T cell infiltration was observed following West Nile virus
(WNV) infection. The majority of infiltrating gd T cells were
Vg1+ and Vg4+ cells that produce IFN-g and TNF, respectively
(127). IFN-g has antiviral functions, whereas TNF was associated
with worse symptoms. This study also showed aging increases
Vg4+ cells but reduces Vg1+ cells. Vg4+ cells also produce IL-17A
following WNV infection (128). According to this study, Vg4+

cells also inhibited the Vg1+ cell response and associated IL-10
production. Regarding oral herpes simplex virus type 1 (HSV-1)
infection, C57BL/6 mice are resistant to infection while BALB/c
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mice are susceptible. In C57BL/6 mice, HSV-1 replication is
limited to the brain stem. However, HSV-1 replication was
observed throughout the whole CNS in BALB/c mice.
Although CD8 T cells, NK cells, and NKT cells were crucial
for limiting viral infection in the CNS, gd T cells were important
for inhibiting viral spreading in the trigeminal ganglia (129).
Epstein-Barr virus (EBV) is one of the most important CNS
viruses because it is largely related to MS progression and onset.
Longitudinal analysis showed that high prevalence of EBV is
related to MS (130). Consistently, a study showed antibodies
derived from clonally expanded B cells in MS can bind to EBV
Epstein-Barr nuclear antigen 1 (EBNA1) and CNS-derived
GlialCAM protein. Furthermore, the presence of EBNA1/
GlialCAM antibodies was associated with severe MS (131). A
study showed EBV reactivation after hematopoietic stem cell
transfer was negatively correlated with Vd2+ T cells (132). This
study showed gd T cells exhibit cytotoxicity against EBV-infected
cells in vitro. Thus, gd T cells may have role in EBV-mediated
MS. Likewise, gd T cells are highly associated with
cytomegalovirus (CMV) infection (133). Because herpesviruses
such as human CMV or HSV seem to be related to multiple
neurodegenerative diseases (134–136), gd T cells may have
critical role preventing CNS viral infection-mediated
neurological disorders.
Frontiers in Immunology | www.frontiersin.org 9131
Brain Tumors
Recently, the role of gd T cells in multiple tumors has been
emphasized. A study showed gd T cell were mostly correlated to
better prognosis among multiple tumor-infiltrating immune cells
(137). Different subsets of gd T cells can be identified in the tumor
microenvironment (Figure 3). Functionally, gd T cells can be
subdivided into IL-17A-producing cells and IFN-g-producing cells
(8). IFN-g-producing cells tend to be cytotoxic cells, with some
exceptions. A recent study showed IL-17A-producing gd T cells
are protumor cells and IFN-g-producing cells are antitumor cells
using subcutaneous murine tumor models (46). This tendency was
conserved across multiple tumors (8). Also, our group showed gd
T cells are associated with longer survival of brain tumor patients
(138). However, ab T cells showed the opposite tendency.
Meanwhile, using a murine high-grade glioma (HGG) model,
we showed depletion of NK cells, gd T cells, CD8 T cells, or CD4 T
cells did not affect survival of HGG-bearing mice. We discovered
that hypoxia was positively related to increased glioma grade and
negatively related to gd T cell infiltration. Although further
examination should follow, we have concluded gd T cells are the
most HGG-reactive cells, and are suppressed by tumor hypoxia. If
we used metformin to block tumor cell respiration, hypoxia-
induced suppression of gd T cells was reduced, which resulted in
a recovery of their antitumor functions. Though IL-17A and
FIGURE 3 | gd T cells in the brain tumor microenvironment. High-grade brain tumors such as glioblastoma multiforme (GBM) are known to be immunosuppressive
“cold tumors”. Due to strong immunosuppression mechanisms, conventional T cells are malfunctional. However, gd T cells are known to be potent strong anti-brain
tumor immune cells. Human Vg9Vd2 T cells or murine CD27+ gd T cells are known to infiltrate the tumor microenvironment. They may fight with tumor cells through
both of gdTCR and NK receptors, including NKG2D. However, gd T cell reactivity is suppressed in the brain tumor microenvironment via severe hypoxia. Additionally,
other mechanisms such as chemotherapy-induced cell death can be involved in suppression of gd T cell reactivity. Thus, gene-editing to generate resistant gd T cells
or developing combination therapies can enhance gd T cell immunity in the brain tumor microenvironment.
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IL-17F were not related to survival of HGG mice, NKG2D
expression of IFN-g-producing gd T cells was critical for anti-
HGG immunity. Due to high NKG2D-ligand expression of tumor
cells, NKG2D-expressing gd T cells were the most critical immune
cells in the HGG microenvironment. In this study, anti-gdTCR
antibody administration also abrogated gd T cell-mediated
antitumor functions. This finding suggested that gdTCR also
participates in anti-HGG immunity. Despite lack of a direct
connection, this study suggested dual ligation of gdTCR and
NKG2D is needed, which could be the reason why other
NKG2D-expressing cells, such as NK cells, did not respond to
metformin treatment.

gd T cells have been considered a good target for next-generation
anti-brain tumor therapy (139). Among malignant brain tumors,
GBM is the most frequent and aggressive tumor type (140). Despite
traditional therapies, including surgery, radiotherapy, and
chemotherapy, overall survival of GBM patients is around 1-2
years (141). Despite the recent development of immunotherapy,
such as anti-PD-1 therapy, clinical trials of immunotherapy to treat
GBM showed disappointed results (142). Although it is too early to
definitively conclude, these negative results may be due to the poor
immune profile of GBM microenvironment. GBM is classified as a
“cold tumor,” which showing less neoantigen and immune cell
infiltration compared to “hot tumors” (143). Thus, modulation of
existing immune cells could have limitations. According to our
results, gd T cells could be a better alternative target for anti-GBM
therapy (138). In addition, preferential infiltration of Vg9Vd2 T cells
in the GBM patient tissues was also observed (26). Because pre-
existing T cells are not sufficient to eradicate tumors, interest in
adoptive cell therapy has gained traction (144). However, adoptive
therapy using in vitro expanded conventional T cells has shown low
effectiveness (145). It may be that expanded conventional T cells are
derived from low mutational and neoantigen burden in
combination with downregulated antigen processing which
resulting in GBM immune evasion despite controversies (146–
148). In vitro studies have shown gd T cells have cytotoxicity
against multiple GBM cells, but not normal brain cells (149).
Vg9Vd2 T cells were also able to target glioma stem cells (GSCs).
Stereotaxic administration of Vg9Vd2 T cells with TCR stimulation
by bromohydrin pyrophosphate or zoledronate efficiently
controlled GSC-derived brain tumors in animal models (150).
However, splenocyte-derived gd T cell injection did not increase
survival period of immunocompetent GL261-bearing mice.
Consistently, gd T cell deficiency did not affect survival of mice
(151). The authors of this study suggested that gd T cells are highly
apoptotic in the GBM microenvironment. Consistently, our group
has proposed that tumor hypoxia may contribute to gd T cell
apoptosis in the GBM microenvironment (138). Thus, gd T cell
therapy combined with anti-hypoxia strategy could have a beneficial
effect. Our study also showed gd T cell therapy in combination with
metformin or pretreatment of HIF1A inhibitor dramatically
increased survival of tumor-bearing mice. In addition,
chemotherapy-mediated cell death could be another detrimental
factor for gd T cell activity. Thus, engineered gd T cells which are
resistant to chemo/radiotherapy may be an alternative approach
(152). Allogenic gd T cell therapy has a distinct advantage because
Frontiers in Immunology | www.frontiersin.org 10132
gd T cells are not dependent on MHC-mediated antigen
presentation. Thus, gd T cell therapy for tumors, including GBM,
is expected to be a “game changer”. Because the beneficial effect of
gd T cells in low-grade glioma (LGG) was clearer than HGG (138),
gd T cells may also have antitumor effects against other brain
tumors, such as meningioma. Further studies should address the
origins of gd T cells (e.g. meninges, circulation), which ligands gd T
cells recognize, and mechanisms of gd T cell infiltration (e.g. directly
derived from peritumoral blood vessels, leptomeninges,
choroid plexus).

CONCLUSION

Several lines of evidence have demonstrated the contribution of
gd T cells to CNS inflammation, antitumor immunity, and
maintenance of CNS homeostasis. Under homeostasis, IL-17A-
producing gd T cells are located in the meninges. IL-17A derived
from gd T cells regulates multiple brain functions, including
memory formation and behaviors. Brain inflammation also
induces parenchymal infiltration of multiple subsets of gd T
cells. Although it is difficult to completely understand due to the
complexity of gd T cell biology, it is clear that gd T cells play a
critical role in a number of brain diseases. Multiple studies have
suggested IL-17A-producing gd T cells are associated with
inflammation initiation. On the other hand, IFN-g-producing
gd T cells are beneficial for removing tumors and pathogens.
Furthermore, gd T cells tend to be associated with early onset of
diseases rather than late stages. Thus, gd T cells can be considered
as an early sensor for inflammation and may act as a connecting
bridge with further inflammation. Because gd T cells actively
surveil and rapidly respond to brain diseases, understanding
their role is important for neuroimmunology research. Further
study investigating different gd T cell subsets in different contexts
and at different time points will give critical insights into
mechanisms regulating neuro-immune interactions.
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Circulating immune cell compartments have been extensively studied for decades, but
limited access to peripheral tissue and cell yield have hampered our understanding of
tissue-based immunity, especially in gd T cells. gd T cells are a unique subset of T cells that
are rare in secondary lymphoid organs, but enriched in many peripheral tissues including
the skin, uterus, and other epithelial tissues. In addition to immune surveillance activities,
recent reports have revealed exciting new roles for gd T cells in homeostatic tissue
physiology in mice and humans. It is therefore important to investigate to what extent the
developmental rules described using mouse models transfer to human gd T cells. Besides,
it will be necessary to understand the differences in the development and biogenesis of
human and mouse gd T cells; to understand how gd T cells are maintained in physiological
and pathological circumstances within different tissues, as well as characterize the
progenitors of different tissue-resident gd T cells. Here, we summarize current
knowledge of the gd T phenotype in various tissues in mice and humans, describing the
similarities and differences of tissue-resident gd T cells in mice and humans.

Keywords: gd T cells, tissue-resident gd T cells, human gd T cells, mouse gd T cells, gd T cells development
1 FUNDAMENTAL CHARACTERISTICS OF gd T CELLS

Gamma delta (gd) T cells are a small subset of CD3-positive T cells in the peripheral blood but occur
at increased frequency in mucosal tissues in mice and humans (1). Murine and human gd T cells
make up a minor part (1–5%) of the circulating T cell compartment found in the blood and
secondary lymphoid organs. However, certain subsets of gd T cells are present in much higher
proportions (10–100%) in epithelial tissues, such as the reproductive tract, skin epidermis, and
gastrointestinal tract (2). The mouse gd T cell subsets are distinguished by different T cell receptor
(TCR) Vg chains, whereas human gd T cell subsets are often distinguished by Vg chain usage (2).
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Heilig and Tonegawa’s nomenclature proposed in 1986
segregated mouse gd T cells into six distinct subsets: Vg1, Vg2,
Vg4, Vg5, Vg6, and Vg7 (3). Meanwhile, the human g chain locus
consists of four subgroups; VgI includes Vg2, 3, 4, 5, and 8.
Among the three other Vg subgroups, only Vg9 (from the VgII
group) is functional when using the nomenclature of Lefranc and
Rabbitts (4). Besides, gd T cells are reported to bridge the gap
between innate and adaptive immune responses in mice and
humans. Although gd bearing cells were shown to constitute a
minor proportion of peripheral T lymphocytes, their co-
evolution with ab T cells and B lymphocytes revealed non-
redundant functions.

gd T cells mostly reside within tissues, particularly in epithelial
layers, where they might play tissue-protective or inflammatory
roles (5). Experiments in mice have demonstrated that gd T cells
are predominantly tissue-resident immune cells (6, 7). From
further mouse studies, it is nonetheless becoming increasingly
clearer that the gd T pool residing in a given tissue is the result of
the wave of development from fetal to adult life, referred to as
layered ontogeny (8). Nevertheless, how the ontogeny of gd T cells
differs between tissues remains obscure. Although the origin of
tissue-resident gd T cells in humans is technically challenging to
address, there is evidence that the local gd T cells pool can
partially be replenished by infiltration and in situ differentiation
of circulating naïve gd T cells (9).

Reflecting their tissue residency and the impact of the
microenvironment on gd T cell function, recent studies have
revealed profound tissue-specific transcriptional signatures for
human (9) and mouse gd T cells (10). Accumulating evidence
suggests that gd T cells are shaped by the microenvironment and
exert tissue-specific functions depending on the signals they
receive. This review summarizes recent studies on the tissue-
specific features of gd T cells across organs in mice and humans.
We discuss the phenotypic differences that contribute to distinct
gd T cell profiles in different tissues, highlighting the similarities
and differences between mice and humans. Understanding how
various tissue microenvironments impact gdT cells is important
for improving therapeutic strategies in pathologies that affect
specific tissues.
Frontiers in Immunology | www.frontiersin.org 2139
2 gd T CELLS DEVELOPMENT IN MICE

ab T cells and gd T cells arise from a common progenitor known
as a double-negative cell (DN; lacking CD4 and CD8 expression)
in the thymus (11). gd T cells that develop without pre-
programming in the thymus and receive the TCR signal in the
periphery develop as adaptive types, whereas gd T subsets that
receive the signal in the thymus are innate types, and those which
receive the TCR signal in the periphery but during an early phase
of life get converted into innate-like gd T cells (12).

During the development of mouse gd T cells, gd T cells are the
first T cells to develop in the mouse embryonic thymus and
appear as early as embryonic day 15 of gestation. These cells
express a monoclonal Vg5Vd1 T cell receptor (TCR) and are
always located in the skin epidermis. A few days later, by an
oligoclonal Vg6Vd1 TCR-expressing population, entered
multiple peripheral locations, including the tongue, dermis,
uterus, testis, abdominal cavity, adipose tissue, and meninges.
Semi-invariant Vg4+ gd T cells also develop within this time
range, and these cells are associated with Vg6+ cells that have the
same functional characteristics. Such Vg4+ gd T cells are home to
the lungs, the dermis of the skin, and lymph nodes. Subsequent
perinatal Vg7+ gd T cell waves enter the intestine, followed by
polyclonal Vg1+ and Vg4+ gd T cell populations, which are more
systematically distributed, including peripheral lymphoid
organs, where they exhibit adaptive behavior when activated
(revised Figure 1A).

On the other hand, mouse gd T cells can commit to effector
cytokine production during thymic development; two main
functional subsets have been extensively described: IFN-g-
producing gd T cells and IL-17-producing gd T cells. (i) IFN-g-
producing gd T cells express surface markers, such as CD45RB
and CD27. Subpopulations include the fetal and perinatally
derived Vg5+ dendritic epidermal T cells (which is called
DETC), which are home to the skin, and the postnatally
generated cells that express more polyclonal gd T cell receptor
(TCRs) (mostly Vg1+ or Vg4+) and localize to lymphoid tissues.
(ii) IL-17-producing gd T cells lack CD27 expression and include
the fetal derived monoclonal and/or oligoclonal Vg6+ T cells that
A B

FIGURE 1 | Thymic developmental waves and tissue homing of human and mouse gd T cell subsets. (A) Different waves of gd T cell progenitor subsets are
produced in specific developmental windows in the thymus and selectively home to different organs. (B) Schematic depiction of human Vg9Vd2+ T cell generation
and selection throughout life.
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are home to the tongue, dermis, uterus, testis, adipose tissue, and
brain meninges, and the Vg4+ IL-17-producing gd T cells that
express multiple semi-invariant TCRs and are home to the lung,
dermis, and lymph nodes.

The development of mouse gd T cells and their subsets
depends critically on IL-7 and IL-15 (5). The growth of dermal
gd T cells preferentially requires IL-7, whereas IL-15 is
mandatory for the generation of gd TCR-expressing intra-
epithelial lymphocytes (IELs) (13). IL-7 signaling promotes the
development of IL-17-producing gd T cells, whereas IL-15 and
IL-2 induce IFN-g secretion. Besides, various cytokines have been
reported to affect the differentiation of effector gd T cells. IL-12
and IL-18 promote IFN-g production, while IL-1b and IL-23
drive them towards IL-17-producing cells (14).

In summary, these very curious ‘waves’ of mouse gd T cell
development ensure that most peripheral tissues are effectively
colonized by long-lived gd T cells (Revised Figure 1A) that are
ideally placed to play important roles in situ.
3 gd T CELLS DEVELOPMENT IN HUMANS

Unlike murine gd T cells, human gd T cells are usually sub-divided
based on the use of one of two variable regions of TCR-d chains,
which is Vd1 or Vd2. The Vg9 and Vd2 variable (V) gene segments
are the first g/d chains to undergo rearrangement in development,
detected in the fetal liver from as early as at weeks 5~6 of gestation
(15) and in the fetal thymus after 8 weeks of gestation (16). By mid-
gestation (20~30 weeks), Vg9Vd2+ T cells dominate the gd
repertoire (Revised Figure 1B). Vd2 is the largest subset of
circulating human gd T cells in the blood, which gets rapidly
recruited to the mucosal surface to participate in the clearance of
localized infection (17). Functionally, Vd2+ T cells exist as naive
(CD45RA+CD27+), central memory (CD45RA− CD27+), effector
memory (CD45RA− CD27−), and terminally differentiated
(CD45RA+CD27−) populations (18). By contrast, human Vd1+

subsets are the major gd T cells population in the intestine and skin,
whereas Vd3+ subsets are enriched in the liver and gut.

Several features of the Vg9Vd2+ compartment suggest
similarities to mouse gd T-cell subsets (19). First, the early fetal
wave of Vg9Vd2+ production, with the semi-invariant Vg9Vd2+

TCR repertoire, mirrors early waves of semi-invariant mouse gd
T cells. Second, the semi-invariant mouse population expresses
Vg4 sequences of restricted length and diversity, analogous to
public human Vg9 sequences (20, 21). Third, consistent with
related immunobiology, butyrophilins (BTN3A1 and BTN3A2/
3) are important for Vg9Vd2+ T cell recognition (22). However,
while some semi-invariant mouse gd T cell populations can
become hyporesponsive to TCR triggering following initial
strong TCR signaling during development (23), apparently,
this does not apply to human Vg9Vd2+ T cells. Notably,
Vg9Vd2+ T cells remain responsive to both pyrophosphate
antigens (pAg) and anti-CD3 stimulation, a feature that
underlies their potential use in several cancer immunotherapy
applications (24), and they also exhibit the potential for further
TCR-mediated plasticity (25).
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In summary, gd T cells comprise distinct functional
subpopulations. Current views in the field suggest that the
functional potential of mouse gd T cells is related to the use of
Vg, while the functional potential of humans is related to the use
of Vd (26). When assembling TCRs, human gd T cells express
seven bona fide Vg genes but only three Vd genes (27).
4 COMPARISON OF THE MODE OF
ACTION OF gd T CELLS IN DIFFERENT
ANATOMICAL LOCATIONS IN
MICE AND HUMANS

4.1 gd T Cells in the Skin
gd T cells localized to the skin are mainly involved in maintaining
tissue homeostasis and epithelial repair, maintaining epithelial
barriers, and contributing to innate immunity. However, the gd T
subsets in mouse and human skin differ.

4.1.1 gd T Cells in Mouse Skin
The skin is composed of two major compartments, the epidermis
and the dermis, that are populated in the steady-state by distinct
gd T cell subsets. Intraepithelial Vg5+ and Vg6+ gd T cells are
present in the dermis (28). In wild-type mice, the epidermal T
cell compartment is dominated by a highly specialized gd T cell
subset termed dendritic epidermal T cells (DETCs) (29). DETC
precursors that express a canonical Vg3Vg1 TCR are the first T
cells to develop in the mouse thymus. Vg3+ thymocytes are
generated only during the early fetal stages of thymic
development from E13 to E18 and migrate to the epidermis,
where a defined homeostatic density is maintained throughout
life by self-renewal (30). Moreover, SKINT1 was shown to couple
thymic selections of DETC precursors to their functional
programming as IFN-g producers (31). SKINT1, a mouse-
specific member of the butyrophilins (BTNs) family that is
exclusively expressed in the thymic epithelium and the
epidermis, was shown to be essential for thymic selection and
skin-specific homing of Vg5Vg1 T cell (32).

When the skin is damaged or infected, the gd T cells that
function in the epidermis of mouse skin are the epidermis-
localized Vg5+ DETCs whose dendritic morphology enables
them to contact several adjacent cells simultaneously, such as
keratinocytes, Langerhans cells and melanocytes, which increase
their own susceptibility to tissue stress and pathology (33). The
maintenance of steady-state numbers of DETC is dependent on
epithelial cell-derived IL-15, insulin-like growth factor I (IGF1)
produced by DETC itself, and through the transcription factor
aryl hydrocarbon receptor (AHR) ligand (2). Wendy and
colleagues have found that the lack of DETCs in Tcrg-/- (which
means the mice lack all gd T cell subsets) mice also results in
increased keratinocyte apoptosis due to a deficiency of insulin-
like growth factor 1 (IGF1) (34). Although DETCs are thymically
programmed to produce IFN-g rather than IL-17 in wild-type
mice, DETCs on a skint-1-deficient background are primarily
committed toward an IL-17 effector phenotype (35, 36). IL-17
release by DETCs can promote DNA repair following exposure
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to UV radiation and protect the skin against potential
opportunistic infections by releasing keratinocyte-derived
antimicrobial peptides (37, 38). However, in the models of
psoriasis and dermatitis, IL-17 is detrimental and is produced
by dermal Vg4+ and Vg6+ gd T cells rather than by DETCs.
Paradoxically, another study showed that IL-17-producing gd
(gd17) T cells have a beneficial role in steady-state skin
physiology, and gd17 T cells are also necessary for skin
homeostasis (Revised Figure 2).

4.1.2 gd T Cells in Human Skin
The composition of T cell subsets in the skin differs between mice
and humans. There is no direct equivalent of DETCs in human
skin as the immune cell composition of the epidermis is subject
to species-specific differences (2). In human skin, gd T cells
dominate in both the dermis and the epidermis, but gd T cells are
present in both compartments (2).

In humans, the subset of gd T cells localized in human skin is
Vd1+ gd T cells, which express oligoclonal clonal sequences
distinct from circulating gd T cells (39). Unlike mouse skin
epidermal T cells that only contain DETCs, the human
epidermis contains both ab T cells and gd T cells, and Vd1+ gd
T cells are localized in both the epidermis and dermis (40). Similar
to DETCs, human epidermal T cells produce keratinocyte growth
factor (KGF) and insulin-like growth factor 1 (IGF1) and promote
wound healing upon activation. It can be seen that DETCs can be
regarded as a conserved expression in mouse and human skin and
have similar functions, but there are differences in the subgroups
of gd in different species. First, the human gd T cells subsets rarely
secrete IL-17, which was quite different from the mouse gd T cells
subset in the skin. Second, the human gd T cells subset in the skin
is Vg1 gd T cells verse DETCs in the mouse skin. Third, the
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mechanism of how human gd T cell protects from infection is also
different from that of the mouse gd T cells.

In summary, although the role of DETCs in wound healing in
mice has been demonstrated, the functions and roles of human
epidermal gd T cells are just beginning to be elucidated (33)
(Revised Figure 2). There is an urgent need to explore human gd
T cell functions in future work.

4.2 gd T Cells in the Lungs
4.2.1 gd T Cells in Mouse Lungs
Considerable numbers of Vg4+ and Vg6+ gd T cells are present in
mouse lungs, but their effect on lung tissue physiology is unclear
(28). When lung infection occurs, Vg1+, Vg4+, and Vg6+ T cells
proliferate in the lung, and Vg4+ gd T cells secrete CXC chemokine
ligand 2 (CXCL2; also known as MIP2) and TNF to promote
neutrophil recruitment (41). The secretion of IL-17 by gd T cells
may be the main mechanism involved in lung immunity. Studies
have shown that infected dendritic cells, through IL-23, can
increase the production of IL-17 by Vg4+ and Vg6+ T cells and
promote granuloma formation. IL-17 production by lung-resident
Vg4+ T cells can also be increased upon secondary attack (42).

4.2.2 gd T Cells in Human Lungs
In the human lung, both Vd1+ gdT cells and Vd2+ gdT cells play
vital roles. However, the mechanisms of these two subsets in
specific diseases and the comparison of the immune effect need
further research. During lung infection, Vg9Vd2 gd T cells are
aggregated to produce IL-17 and IFN-g, the former being the
most important cytokine in TB protection (43). Vg9Vd2 gd T
cells specifically recognize the phosphoantigen (E)-4-hydroxy-3-
methylbutylpyrophosphate (HMB-PP), which is abundantly
produced by Mycobacterium tuberculosis, and this selective
FIGURE 2 | Tissue-resident gd T cell subsets, comparing humans and mice.
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immunity elicits rapid and long-lasting memory, rapidly
producing more IL-17 and IFN-g upon pathogen-specific re-
challenge, enhancing bacterial clearance (44). In advanced non-
small cell lung cancer, Vd1 gd T cells and Vd1-Vd2-gd T cells are
the main subpopulations of gd T cells in the lung, and higher
levels of intratumoral Vd1 gd T cells is a poor prognosis factor
(45). Due to the lack of methods to expand Vd1 gd T cells in lung
cancer in vitro, we have not been able to clarify the role of Vd1 gd
T cells in the lung (46) (Revised Figure 2).

4.3 gd T Cells in the Uterus
4.3.1 gd T Cells in Mouse Uterus
Mouse Vg6/Vd1 cells are closely associated with the epithelial
tissue of the female reproductive tract and account for a major
proportion of gd T cells in uterine tissue (47). Unlike other
subpopulations, Vg6/Vd1 cells contain a typical Vg6 TCR amino
acid junction. A recent study has reported that the percentages of
gd T cells were significantly higher in the uterus than in
peripheral blood, and most gd T cells in mouse uterus were
distributed in the endometrium (48). Further studies indicated
that the majority of gd T cells in the uterus were memory cells
with higher expression of CD44 and CD27 but lower expression
of CD62L and CCR7 compared to those in the blood (48). In
addition, mouse gd T cells in the uterus were tissue-resident
memory gd T cells expressing CD69 and expressed high levels of
CCR6, GranzymeB, and CD107a. Moreover, gd T cells in the
uterus were activated and fully expressed transcription factor
Frontiers in Immunology | www.frontiersin.org 5142
RORgt. After a short time of activation, mouse gd T cells in the
uterus significantly expressed high levels of IL-17 but not IFN-g,
promoting the invasion of murine trophocytes.

4.3.2 gd T Cells in the Human Uterus
In healthy pregnant women, there was an accumulation of Vd1+

circulating cells, in contrast to women with recurrent abortions
where the Vd2+ circulating cells dominated (47). The ratio of
activated gd TCR+ cells was significantly increased in normal
pregnancies compared to that of recurrent abortions (48). A bias
towards circulating Vd1+gdT cells seemed to be required for a
successful normal pregnancy. However, the precise role of
circulating gd T cells in pregnancy is not yet completely
established. Although convenient to study the gd T cells
subsets during pregnancy in the peripheral blood, it hardly to
study that how the circulating Vd1+ cells might simply be a
spilling over from the fetus-maternal interface.
5 CONCLUDING REMARKS

Recent reports have undoubtedly revealed significant tissue-specific
functions of gd T cells. We highlight the distribution, features, and
specific markers of distinct subsets of murine and human gd T cells
(RevisedTable 1). In humans, gd T cells in blood display a quiescent
state and migratory behavior reminiscent of naiüve T cells. By
contrast, gd T cells in peripheral organs make up a spectrum of
TABLE 1 | Distribution, features and specific markers of distinct subsets of murine and human gd T cells.

Structural
subset

Distribution Features (mainly cytokines) specific marker

Murine gdT Cells
Vg1 Lymphoid tissue,

liver
IFN-g, TNFa, IL-4 and IL-17 CD27, CD45RB,

CD44, CD122
Vg4 Lymphoid tissue,

lung, liver, dermis
IL-17, IFN-g CD44, CCR6

Vg5
- DETC

Epidermis IFN-g
- Sensing skin keratinocyte damage
- Producing KGF and IGF1 to improve wound healing efficiency and participate in the maintenance of

epidermal homeostasis
- Secreting IL-2, IL-3, granulocyte-macrophage colony-stimulating factor, lymphatic chemokine, etc. to

regulate the activation and function of DETCs themselves and keratinocytes and other neighboring cell

CD27, CD44,
CD45RB, CD122,

Vg6 Uterus, Lung,
tongue, liver etc.

IL-17, IL-22, IFN-g CD44, CCR6

Vg7 Intestinal mucosa IFN-g CD27, CD45RB,
CD122, CD8a

Human gdT Cells
Vd1 PBMCs, skin, gut,

spleen, liver
In epithelium, some functions are similar to DETCs; produce IL-10, a small amount of IL-2, IL-4 and IFN-g;
exhibit cytotoxicity through FasL, perforin, granzyme, etc.
- Subset gdTreg Mainly secreting IFN-g and granulocyte-macrophage colony-stimulating factor. Regulating

innate and adaptive immune responses to play an important anti-infective role.
- Subset Tgd17 Expressing granzyme B, FasL, and CD161, but does not produce IL-22 and IFN-g; in terms

of antigen activation, Tgd17 cells rapidly induce IL-8-mediated migration and phagocytosis of neutrophils,
and are IL-dependent -17 Produces beta defensins

NKR,
Toll-Like Receptor,
CD8

Vd2 PBMCs - Unique Feature:Activated Vd2gd T cells acquire APC properties (such as antigen presentation, co-
stimulation and expression of adhesion molecules MHC-II, CD80 and CD86)

- As circulating gd T cells, it also possesses cytotoxicity, cytokine and chemokine production and modulation
capabilities against infected or tumor cells

NKG2D,
Toll-Like Receptor,
CD45

Vd3 PBMCs(very few),
Liver

Increasing CD1d recognition and kill CD 1d target cells, releasing Th1, Th2 and Th17 cytokines, and inducing
dendritic cells to become APCs, when stimulated by mitogens and IL-2.

CD56, CD161,
HLA-DR, NKG2D
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activation states that differ depending on the organ. Although
human gd T cells deserve more research, mouse gd T cells display
tissue-specific degrees of IFN-g and IL-17A production that appear
to be regulated by factors present in the tissues, such as cytokines. gd
T cells subsets in different organs show variable means of sensing
the microenvironment, particularly regarding cytokines. Finally, the
tissue-specific functions of gdT cells, in terms of tissue retention and
response to chemokines/cytokines, are not only related to the organ
but also to species. Further elucidation of gd T cell-mediated tissue
immunity, particularly in humans, will be necessary to improve the
development of tissue-specific immunomodulatory drugs to be
used, for example, in inflammatory conditions and cancer.
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The potent cytotoxic property of Vg2Vd2 T cells makes them attractive for adoptive T cell
transfer therapy. The transfusing of the expanded Vg2Vd2 T cells into cancer patients
shows well-tolerated, but the clinical response rates are required to be improved, implying
that there is still an unmet efficacy with low toxicity for this novel anti-tumor therapy. In this
study, we test the anti-tumor efficacy of a Y-body-based bispecific antibody (bsAb) Vg2 x
PD-L1 that preferentially redirects Vg2Vd2 T cells to combat PD-L1 positive tumor cells.
With nanomolar affinity levels to Vg2Vd2 T cells and PD-L1+ tumor cells, Vg2 x PD-L1
bridges a Vg2Vd2 T cell with a SKOV3 tumor cell to form a cell-to-cell conjugation. In a PD-
L1-dependent manner, the bsAb elicits effective activation (CD25+CD69+), IFNg
releasing, degranulation (CD107a+), and cytokine production (IFNg+ and TNFa+) of
expanded Vg2Vd2 T cells. The activations of the Vg2Vd2 T cells eliminate PD-L1-
expressing human cancer cell lines, including H1975, SKOV3, A375, H1299, and
H2228 cells, but not PD-L1 negative cells including HEK-293 (293) cells and healthy
PBMCs. Finally, we show that combining Vg2 x PD-L1 with adoptively transferring Vg2Vd2
T cells inhibits the growth of existing tumor xenografts and increases the number of
Vg2Vd2 T cells into the tumor bed. Vg2 x PD-L1 represents a promising reagent for
increasing the efficacy of adoptively transferred Vg2Vd2 T cells in the treatment of PD-L1
positive malignant tumors.

Keywords: [Vg2 x PD-L1], Vg2Vd2 T cell, PD-L1, adoptive transfer, immunotherapy
INTRODUCTION

Vg2Vd2 T cells, a unique fast-acting subset of innate gd T cells found exclusively in primates (1),
have been widely employed for adoptive cell immunotherapy in clinical studies for treating
malignancies in past years (2). These cells have NK and cytotoxic T cell features, as well as
potential and intrinsic rapid anti-tumor effector capabilities (3, 4), and appear to be a more
promising candidate for allogeneic T cell therapy than ab T cell-based CAR-T cells by
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participating in immune surveillance and killing a broad
spectrum of cancer cells through a major histocompatibility
complex (MHC)-independent activation mechanism (5).
Recently, the adoptive transfer of Vg2Vd2 T cells to cancer
patients has recently been shown to extend the survivals of late-
stage liver cancers (23.1 vs 8.1 months) and lung cancers (19.1
vs 9.1 months) (6), and well tolerated as well (7). Yet, this
therapy provided moderate clinical benefits with stable disease
being the mostly outcome for patients who respond to this
therapy (7).One of the reasons for this suboptimal effectiveness
is the hostile tumor microenvironment that negatively regulates
the anti-tumor functional characteristics of Vg2Vd2 T cells by
the engagement between the programmed death-ligand 1 (PD-
L1) expressed on the tumor cells and PD-1 expressed on the
Vg2Vd2 T cells (8). Several groups proposed a combination
approach of the Vg2Vd2 T cell-based adoptive immunotherapy
with a PD-1 checkpoint blockade for the immunity against
leukemia (9), follicular lymphoma (10), and prostate cancer
(11). Likely, the anti-PD-L1 mAb enhances the cytotoxicity of
Vg2Vd2 T cells against PD-L1high cancer cells by adding ADCC
activity (12).

After the success of targeting PD-1/PD-L1 axes, extensive
efforts were directed to explore bsAb-based strategies to increase
the anti-tumor activity of the adoptively transferred Vg2Vd2 T
cells (13, 14). As a result, two representative series of Vg2Vd2 T
cell-targeting bsAbs were constructed, one targeting to Vg2-TCR
and the other targeting to Vd2-TCR. BsAb [(Her-2)2 × Vg2]
increased the cytotoxicity of Vg2Vd2 T cell against Her2-
overexpressing pancreatic, ovarian and breast cancer cells
showed by in vitro assay and in a PDAC grafted mouse model
(15, 16). Similarly, Vg2 x CD123 was created to treat acute
myeloid leukemia (17). Lately, Vd2 x EGFR elicits Vg2Vd2 T
cell-mediated killing of colon cancer cell line SW480 both in vitro
and in vivo (18), Vd2 x CD1d for chronic lymphocytic leukemia
(19), and Vd2 x CD40 for b-cell malignancies (20). Moreover,
these Vg2Vd2 T cell-specific targeting strategies were thought to
overcome T cell over-activation induced by current CD3-
targeting bsAbs, which could lead to cytokine storm syndrome,
a severe side effect due to Treg stimulation. For example, the
FDA-approved CD3 x CD19 bsAb, blinatumomab, could
increase the numbers of Treg cells, which were correlated with
non-responsiveness to blinatumomab in ALL patients (21) and
further led to abnormal macrophage activation-dependent
cytokine storm syndrome (22). Taken together, T cell engagers
designed to activate Vg2Vd2 T cells exclusively might represent a
feasible approach balanced between efficacy and safety.

Here, we describe the preclinical evaluation of Vg2 x PD-L1.
Our findings reveal that Vg2 x PD-L1 activates selectively the
fresh and expanded Vg2Vd2 T cells to kill tumor cells in vitro,
enhances the migration of the transfused Vg2Vd2 T cells into
tumor sites, and inhibits the growth of the existing tumors in
nude mice. These data suggest that Vg2 x PD-L1 plus adoptively
transferred Vg2Vd2 T cells is potential to treat PD-L1 positive
solid malignancies.
Frontiers in Immunology | www.frontiersin.org 2146
MATERIALS AND METHODS

Generation of the Recombinant Antibodies
The bsAbs, including Vg2 x PD-L1 and Vg2 x Null, were generated
similarly to Y111 described previously by Yang et al. (23). Briefly,
the expression plasmids for Vg2 x PD-L1 and Vg2 x Null were
synthesized and verified by sequencing in AuGCT Biotech
(Wuhan, China). Then these expression vectors were transfected
into cGMP banked CHO-S cells (Invitrogen, Carlsbad, USA)
using the Fecto PRO Reagent (Ployplus, New York, USA)
according to the manufacturer’s protocol, respectively. After a
week, the cell culture supernatant was collected and serially
purified by Sepharose Fast Flow protein A affinity
chromatography column (GE, Milwaukee, USA), Fab Affinity
KBP Agarose High Flow Resin (ACROBio systems, Newark,
USA), and SP cation exchanged chromatography column (GE,
Milwaukee, USA). Finally, the purified proteins were analyzed by
SDS-PAGE and size-exclusion chromatograms. The Vg2 x Null
served as the control molecule for Vg2 x PD-L1, with both
molecules sharing the same backbone and Vg2-targeting scFv
part. Similarly, its two parental monoclonal antibodies (Vg2 mAb
(Clone 7A5) and PD-L1 mAb (23)) were produced.

Tumor Cell Lines Culture
Tumor cell lines, including NCI-H1975 (human adenocarcinoma
epithelial cell line, CRL-5908), SKOV3 (human ovarian
adenocarcinoma cell line, HTB-77), A375 (human malignant
melanoma cell line, CRL-1619), NCI-H1299 (human NSCLC
metastatic cell line, CRL-5803), NCI-H2228 (human NSCLC
adenocarcinoma cell line, CRL-5935), and nonmalignant kidney
cell line HEK-293 were purchased from ATCC (Manassas, USA)
and used as target cells. These cell lines were first transduced with
firefly luciferase gene-containing pseudo-typed lentiviral particles
purchased from GeneCopoeia (Shanghai, China), and the stable
luciferase-expression cells were then selected under pressure of
puromycin (Gibco, New York, USA). CHO-PD-L1 was generated
from the parental CHO-K1 cell line (CCL-61, ATCC) through over-
expressing human PD-L1. Tumor cells were cultured in RPMI 1640
(Biosharp, Hefei, China), DMEM or F-12K medium (purchased
from Hyclone, New York, USA) supplemented with 10% FBS
(Excell, Clearwater, USA) and penicillin/streptomycin (Gibco,
New York, USA) and maintained in a humidified incubator with
5% CO2 at 37 °C. All cell lines in use were routinely tested for
Mycoplasma infection using a commercial PCR kit (Vazyme,
Nanjing, China), and new cultures were established monthly from
frozen stocks as described previously (24).

Expansion of Vg2Vd2 T Cells
The sampling protocols for human blood and in vitro
experimental procedures were evaluated and approved by the
institutional review boards for human subjects’ research and
institutional biosafety committees at Hubei Province Food and
Drug Safety Evaluation Center (Wuhan, China). All subjects are
volunteer adults who signed on the informed consent.
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Frozen or fresh human peripheral blood mononuclear cells
(PBMCs) were obtained from LeiDeBio (Guangzhou, China) or
Milestone (Shanghai, China). The ex vivo expansion protocol
was described previously (23, 25). Briefly, PBMCs were cultured
in RPMI 1640 medium (Gibco, New York, USA) supplemented
with 10% FBS (Excell, Clearwater, USA), at 2×106 cells/mL with
the stimulation of 2.5 mM Zoledronic Acid (Sigma Aldrich,
Darmstadt, Germany) and 1000 IU/mL IL2 (Sihuan Pharma,
Beijing, China) for 10-14 days. The expanded Vg2Vd2 T cells
were negatively enriched from the cultures by a TCR g/d + T Cell
Isolation Kit (Miltenyi Biotech, Teterow, Germany). The purity
and quality of the isolated cells were assessed by surface staining
Vg2/Vd2 and CD86/CD69/HLA-DR as described previously (
(23)). Then, the purified Vg2Vd2 T cells were maintained in
RPMI 1640 medium supplemented with 10% FBS overnight for
rest before use. In this study, effector Vg2Vd2 T cells were
expanded and purified from a total of eight healthy individuals
for in vitro functional analysis and two healthy donors for in vivo
anti-tumor evaluations.

Binding Ability of Antibodies to Cells
A flow cytometry-based method was used to determine the
affinities of Vg2 x PD-L1 of its anti-Vg2 arm to Vg2Vd2 T cells
and its anti-PD-L1 arm to PD-L1 positive tumor cells. The sorted
Vg2Vd2 T cells or tumor cells were incubated with serially
diluted antibodies (Vg2 x PD-L1, Vg2 x Null, Vg2 mAb, and
PD-L1 mAb) for one hour at 4°C. After wash, the cells were
stained for 30 minutes at room temperature with APC or PE-
conjugated mouse-anti-human IgG Fc antibody (HP6017,
Biolegend, San Diego, USA) diluted in 1:100. The cells were
then resuspended in 200 mL FACS buffer (PBS with 2% FBS) and
analyzed by a BD FACSelesta flow cytometer. For tumor cells,
the cell-bound antibodies were quantified by the median
fluorescence intensity (MFI) values, and the MFI were plotted
against antibody concentrations to obtain the EC50. For Vg2Vd2
T cells, APC positive populations were used to determine the
specific binding%.

The formation of an in-tans bridge between T cells and
tumors cells was accessed by a flow cytometry method. Briefly,
SKOV3 cells were stained with 50 nM CFSE, and the PBMC
cultures (treated by Zol+IL2 for 10-14 days) were labeled by
PKH26 according to the manufacturer’s protocol. Then, the
CFSE-stained SKOV3 cells were co-cultured with PKH26-
labelled PBMC cultures at a ratio of 1:1 with 1 ug/mL of Vg2 x
PD-L1 or Vg2 x Null at an incubator for 0.5 hours. After
washing, the cells were recorded on the FACSelesta (BD, San
Jose, USA). The percentages of the CFSE+PKH26+ double-
positive cells among the total cells have represented the ratios
of cells engaged in cell-to-cell association.

PD-L1 Blockade Reporter Assay
The assay was carried out following the manufacturer’s
instructions (Promega, Cat#J1250). Briefly, PD-L1 aAPC/
CHO-K1 cells were seeded at 4 × 104 cells/well at 100 mL in
white 96-well plates followed by a cultured overnight in an
incubator at 37 °C with 5% CO2. The next day, the
supernatant was discarded and the PD-L1 aAPC/CHO-K1 cells
Frontiers in Immunology | www.frontiersin.org 3147
were incubated with serially diluted antibodies and PD-1 effector
cells (5 × 104/well) for 6 h. Then the relative luminescence units
(RLU) of each well were determined using a Bio-Luc kit from
Vazyme (Nanjing, China).

PD-L1 Expression Scores Determination
Tumor cell lines were incubated with 40 mg/mL Vg2 X PD-L1
(Target) or Vg2 X Null (Null) for 1 hour at 4°C, then stained with
APC-conjugated mouse-anti-human IgG Fc antibody (HP6017,
Biolegend, San Diego, USA) for 30 minutes at room temperature.
The APC positive populations and MFI of the APC channel were
determined by flow cytometry. The expression scores were
defined by [log10 (Target APC positive populations - Null APC positive

populations) + log10 (Target APC MFI/Null APC MFI)]/2.

Evaluate T Cell Activation by Surface
Staining and Intracellular
Cytokine Staining
Flow cytometry was performed to evaluate T-cell activation as
described in the other reports (26, 27). Expanded Vg2Vd2 T cells
were enriched from PBMCs cultures (Zol+IL2 for 10-14 days),
and cultured overnight. In parallel, 0.2 million H1975 or SKOV3
cells were plated in a 24-well-plate overnight. For activation
assay, 0.2 million expanded and negatively enriched Vg2Vd2 T
cells were added into either the tumor cell wells or empty wells
with 1 mg/mL of Vg2 X PD-L1 or Vg2 X Null for 24 hours. Then,
the cells were collected for staining FITC-anti-Vd2 (B6,
Biolegend, San Diego, USA), APC-anti-CD25 (M-A251, BD,
San Jose, USA), and PE-anti-CD69 (FN50, BD, San Jose, USA)
for 20 min at room temperature in dark. After wash, these cells
were analyzed using flow cytometry. For intracellular cytokine
staining, 0.2 million of the expanded and negatively enriched
Vg2Vd2 T cells were added into the tumor cell wells or empty
wells with 1 mg/mL of Vg2 X PD-L1 or Vg2 X Null plus a master
mix containing BV510-anti-CD107a (H4A3, Biolegend) and
BFA (Golgi Plug, BD, San Jose, USA) for 4 hours at 37 °C in
5% CO2. Then the cells were stained with Zombie Fixable
Viability Kit (Biolegend), incubated with APC-anti-CD3
(SP34-2, BD, San Jose, USA), PE-anti-Vd2 (B6, Biolegend, San
Diego, USA) for 20 min at room temperature in dark. After
incubation, cells were washed twice in FACS buffer and
permeabilized for 20 min at 4°C (Cytofix/Cytoperm, BD, San
Jose, USA). Then, cells were incubated with BV650-anti-IFNg
(4S.B3, Biolegend, San Diego, USA), BV421-anti-TNFa (Mab11,
Biolegend, San Diego, USA) in Perm/Wash buffer for 30 min at
room temperature in dark. These cells were washed twice with
Perm/Wash buffer and collected by a BD FACSelesta flow
cytometry. Flow data were analyzed by FlowJo (BD, San
Jose, USA).

Antibodies Mediated Cytotoxicity In Vitro
Two in vitro methods including luciferase-activity based assays
and CFSE-PI staining-based assay were developed to access the
killing ability of Vg2Vd2 T cells mediated by antibodies.

Luciferase-activity based assays: 2 x 104 firefly luciferase-
expressing tumor cells (Target: T) were co-incubated with
June 2022 | Volume 13 | Article 923969
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expanded Vg2Vd2 T cells (Effector: E) at an E:T ratio of 0.5:1 (or
other indicated E: T ratios), or fresh enriched gd T cells (Effector)
at an E:T ratio of 5:1, in the presence of a serial of diluted
antibodies for 12 hours in a white 96-well-flat bottom plate. A
Bio-Luc kit from Vazyme (Nanjing, China) was used to measure
luciferase activity. Then the “Specific lysis” was calculated as
follows: % Specific lysis = [1 – (RLU Ab-treated wells)/(RLU Target-

only wells)] × 100.
CFSE-PI staining-based assay: Unrelated healthy PBMCs

were stained with CFSE according to the manufacturer’s
protocol. Then these cells were co-cultured with Vg2Vd2 T
cells at a 1:1 E: T ratio in the presence of various doses of
indicated antibodies for 12 hours. Then 1mg/mL of PI (Sigma)
was added to the wells. The percentages of CFSE+PI+ cells among
the total of target cells (CFSE+) were defined as “Specific
Cytotoxicity%” values.

Measuring Vg2Vd2 T Cell Releasing IFNg
The supernatant was collected from T cell and tumor cell co-
culture wells and stored at -80°C until measurement. Human
IFNg were quantified with the ELISA kits from Proteintech
(KE00063, Wuhan, China).

Mouse Tumor Model
Female nude mice were obtained from the VITALSTAR
(Beijing, China) at age of 6-8 weeks and were used in this
study under a protocol approved by the Animal Care and Use
Committee from Hubei Province Food and Drug Safety
Evaluation Center (#202110191).

Firstly, 5 million SKOV3 cells were subcutaneously
inoculated into the right dorsal flank of nude mice on Day 0.
After one week, tumor volumes had reached around 200 mm3,
these mice were randomly divided into three groups receiving
PBS, 2 million purified Vg2Vd2 T cells i.v. through lateral tail
vein plus 8 mg/kg Vg2 X Null i.p. or 8 mg/kg Vg2 X PD-L1 i.p. on
Days 7,11,14, and 18 (Q2W, two weeks, four times). After
treatment, tumor volumes and mice body weights were
measured three times a week. The tumor volume was
calculated using the formula: Tumor Volume (mm3) = (a x
b2)/2, where a is the longitudinal length and b is the transverse
width. On day 34, these mice were sacrificed and tumor
xenografts were excised for tumor weighting and IHC staining.

IHC Analysis
The tumor tissues were cut into small pieces embedded in 4%
paraformaldehyde for fixation. Then these tumor pieces were
sectioned and examined by IHC staining using a rabbit-anti-
human CD3 antibody (Clone SP7). Tissue sections were then
counter-stained with hematoxylin. Positive cells were counted in
five randomly selected microscopic fields (magnification 20X)
and supplied for further quantification analysis.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism 6.0 (La
Jolla, USA). Before performing nonlinear regression analysis for
in vitro assays (cell binding and killing), the antibody
concentrations (on the x-axis) were transformed in a log scale.
Frontiers in Immunology | www.frontiersin.org 4148
Then, the “log (agonist) vs. response- Variable slope (four
parameters)” method was applied to calculate EC50. P values
were assessed by one-way or two-way ANOVA, followed by
Dunnett test or Tukey multiple comparisons as appropriate. P
values <0.05 were considered to be significant. P values were
reported in Supplementary Table 1
RESULTS

Design, Generation, and Characterization
of Vg2 x PD-L1
We initially designed and constructed four recombinant
antibodies, i.e. Vg2 x PD-L1, Vg2 x Null, PD-L1 mAb and Vg2
mAb to test their activities. The structural properties of these
generated antibodies were summarized in Figure 1A. Firstly, the
molecular weights of these recombinant proteins were confirmed
through SDS-PAGE under both reducing and non-reducing
conditions (Supplementary Figure 1A). Then, the SEC results
indicated that the purities of the prepared antibodies were more
than 95% (Supplementary Figure 1B). Next, we used three PD-
L1 expression cell lines (CHO-PD-L1, SKOV3, and H1975) to
compare antibody binding ability to the cells between Vg2 x PD-
L1 and PD-L1 mAb. The mean EC50 values for Vg2 x PD-L1
binding to CHO-PD-L1, SKOV3, and H1975 were 1.444 nM,
0.594 nM, and 1.687 nM, respectively (Figure 1B, Figure 2).
Both Vg2 x PD-L1 bsAb and PD-L1 mAb had a similar affinity to
the cellular surface PD-L1 (Figure 1B), due to these two
antibodies having the same variable regions for PD-L1 binding
(23). Furthermore, we determined the PD-L1 expression scores
for a series of target tumor cells using Vg2 x PD-L1 bsAb, which
confirmed that Vg2 x PD-L1 exhibited potent affinity toward
tumor cel ls with variable PD-L1 expression levels
(Supplementary Figure 2). In addition, the binding affinity to
the expanded Vg2Vd2 T cells of Vg2 x PD-L1 was about 60-folds
weaker than that of the parental Vg2 mAb, as the mean EC50

values for Vg2 x PD-L1 and Vg2 mAb were 12.39 nM and 0.21
nM, respectively (Figures 1C, 2). Moreover, Vg2 x PD-L1
retained the blocking ability as PD-L1 mAb, which was
demonstrated in the PD1/PD-L1 cell-based reporter assay
(Figure 1D). In summary, Vg2 x PD-L1 bound with
nanomolar affinity to the sorted and expanded Vg2Vd2 T cells
and PD-L1 expressing tumor cells.

Vg2 x PD-L1 Efficiently Bridges Vg2Vd2 T
Cells to PD-L1 Positive Tumor Cells
Subsequently, we checked whether the Vg2 x PD-L1 prompted
the formation of the biphasic cell-to-cell conjugates between
Vg2Vd2 T cells and PD-L1 expressing tumor cells. For this
purpose, Vg2Vd2 T cells stained with CFSE were co-cultured
with PKH26-labelled SKOV3 cells for 30 minutes at 37°C with
Vg2 x PD-L1 or Vg2 x Null, then the percentages of double-
positive cells among total cells were measured to represent the
bridging ability. In the presence of Vg2 x Null at 1 mg/mL, the
double-positive cell population (Q2) was 2.21%, while this
population was increased up to 20.1% by Vg2 x PD-L1
June 2022 | Volume 13 | Article 923969
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(Supplementary Figure 3). In contrast, Vg2 x PD-L1 failed to
prompt the co-binding of Vg2Vd2 T cells and HEK-293 cells.
(Supplementary Figure 3)

Vg2 x PD-L1 Selectively Activates Vg2Vd2 T
Cells Exposed to PD-L1 Expressing Tumor
Cell Lines
Next, we investigated whether the activation of Vg2Vd2 T cells
mediated by Vg2 x PD-L1 was dependent on the presence of PD-
L1+ tumor cells. Vg2Vd2 T cells were co-cultured with H1975 and
SKOV3 cells, the two cell lines that expressed high levels of PD-L1
(Supplementary Figure 2A). Vg2Vd2 T cells secreted little amount
of IFNg and did not exhibit activation phenotype (measured by
CD25+CD69+) in response to the bsAbs treatment alone
(Figures 3A, B, Figure 4). Of note, in the presence of H1975 and
SKOV3 cells, Vg2 x PD-L1, but not Vg2 x Null, triggered
significantly the release of IFNg and active phenotype of Vg2Vd2
T cells (Figures 3A, B, 4). Accordingly, Vg2 x PD-L1 further
Frontiers in Immunology | www.frontiersin.org 5149
enhanced significantly both the IFNg and TNFa productions and
degranulation levels of Vg2Vd2 T cells only in the presence of PD-
L1 positive SKOV3 and H1975 cells (Figures 3C-F, 4). Moreover,
these Vg2Vd2 T cells activated jointly by Vg2 x PD-L1 and PD-L1
tumor cells displayed multifunctional effector phenotypes, which
co-expressed IFNg, TNFa, and CD107a (Figures 3D, F, Figure 4).
In contrast, Vg2 x Null did not exert agonistic effects on Vg2Vd2 T
cells even when co-cultured with PD-L1 expressing target cells in
the above conditions (Figures 3C-F, 4). Together, these data
demonstrated that Vg2 x PD-L1 revoked robust effector functions
of Vg2Vd2 T cells, including activation, degranulation, and
cytokines secretion, in dependent on the engagement of target
tumor cells.

Vg2 x PD-L1 Induces PD-L1+ Tumor Cell
Lysis at a Lower E: T Ratio
Then, we assessed whether Vg2 x PD-L1 could lysis of tumor
cells with variable PD-L1 expressing levels. To this end,
B

C D

A

FIGURE 1 | PD-L1 x Vg2 interacts Vg2Vd2 T cells and PD-L1 expressing tumor cells, and blocks the PD1/PD-L1 interaction. (A) Structural diagrams of bispecific
antibodies, including PD-L1 x Vg2, Null x Vg2, Vg2 mAb, and PD-L1 mAb. A “Knob-into-hole” in Fc region was introduced into the bsAbs (6, 28). Besides, these four
antibodies contained a modified silent Fc fragment to abolish Fc-mediated effector functions (6, 28). Please noted that Vg2 mAb and PD-L1 mAb, targeting Vg2-TCR
and PD-L1, respectively, are parental monoclonal antibodies; Vg2 x Null, targeting Vg2 and fluorescein (29), and Vg2 x PD-L1, targeting Vg2-TCR and PD-L1. The
purity of these prepared antibodies was shown in Supplementary Figure 1. (B) Binding affinity to PD-L1 positive cell lines. CHO-PD-L1, SKOV3, and H1975 cells
were incubated with serially diluted antibodies, followed by PE-labelled mouse-anti-human Fc secondary antibody. Mean fluorescence intensity (MFI) of the PE
channel of each sample was measured to determine specific binding ability (EC50). These three cell lines were PD-L1 positive shown in Supplementary Figure 2A.
(C) Antibody binding affinity to Vg2Vd2 T cells. Vg2Vd2 T cells were negatively enriched from PBMC cultures treated by Zol+IL2 for 14 days. Then, cells were
incubated with serial dilutions of indicated antibodies, followed by APC-conjugated mouse-anti-human Fc secondary antibody. APC positive populations were
measured to demonstrate specific binding (EC50). The representative flow cytometry plots related (B, C) were shown in Figure 2. (D) The ability of PD-L1 x Vg2 to
block PD1/PD-L1 signaling (EC50) was similar to that of the parental PD-L1 mAb using a cell-based reporter assay. Data were presented as Mean ± SD from n = 3
independent experiments (B, D), pooled from n=1 biological replicate for Vg2 mAb, n=6 biological replicates for Vg2 x Null and Vg2 x PD-L1 (C). Reported EC50

values were calculated from non-linear best fits (B–D).
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Vg2Vd2 T cells were co-cultured with SKOV3, H2228, and
H1299 cell lines in E:T ratios ranging from 5:1 to 0.3125:1 for
12 hours. We selected SKOV3, H2228 for this test as these two
cell lines expressed PD-L1 at high or low levels as determined
using Vg2 x PD-L1 staining (Supplementary Figure 2B).
Vg2Vd2 T cells alone showed E: T ratio-dependent
cytotoxicity for SKOV3 and H2228 (Figures 5A, B). The
addition of Vg2 x PD-L1, but not Vg2 x Null, significantly
enhanced tumor cell death even at the lowest E: T ratio
(0.3125:1) for the both cell lines (Figures 5A, B). Furthermore,
the larger amount of IFNg was only detected in the Vg2 x PD-L1
treated cultures, demonstrating that Vg2 x PD-L1 elicited PD-L1-
specific IFNg production from Vg2Vd2 T cells (Figures 5C, D).
We then evaluated whether Vg2 x PD-L1 could enhance
cytotoxicity towards tumor cells that were resistant and
refractory to Vg2Vd2 T cells’ killing. Indeed, Vg2Vd2 T cell
alone lysed less than 20% of H1299 cells even at a 5:1 ratio
(Figure 5E). However, Vg2 x PD-L1 strongly increased the lysis of
H1299 with the increased IFNg production by Vg2Vd2 T cells
(Figures 5E, F). Importantly, Vg2 x PD-L1 induced efficient
tumor cell lysis, and IFNg secretion was observed at an E: T
ratio as low as 0.3125:1 for these three cell lines (Figure 5).
Frontiers in Immunology | www.frontiersin.org 6150
Vg2 x PD-L1 Potency in Killing PD-L1
Positive Tumor Cell Lines Is Mediated by
Both Fresh and Expanded Vg2Vd2 T Cell
To confirm whether Vg2 x PD-L1 could redirect Vg2Vd2 T cells
to kill a broad spectrum of tumor cells, we took 5 different
human solid tumor cell lines expressing PD-L1 for the test. For
these PD-L1 expressing tumor cells, Vg2Vd2 T cells alone did not
exert an appreciable killing effect, nor did the PD-L1 mAb
(Figure 6A). However, a dose-dependent effective killing
mediated by Vg2Vd2 T cells was observed with the addition of
Vg2 x PD-L1 irrespective of tumor cells’ origin, but not for Vg2 x
Null (Figure 6A). As expected, Vg2Vd2 T cells exhibited a dose-
dependent IFNg secretion treated with Vg2 x PD-L1, compared
with no such effect with control Abs (Figure 6B). We further
observed that the Vg2 x PD-L1-induced Vg2Vd2 T cells’
cytotoxicity (killing EC50) towards tumor cells was correlated
significantly with these tumor cells’ PD-L1 expression scores,
while the release IFNg EC50 showed a negative trend with the
PD-L1 expression scores (Figure 6C). Moreover, the viability of
PD-L1neg HEK-293 cells remained unaffected in all tested
concentrations in the presence of Vg2 x PD-L1 (Figure 6D).
In addition, allogeneic PBMCs were used as target cells to check
FIGURE 2 | Representative flow cytometry plots showed MFI differences along with doses of Vg2 x PD-L1 for CHO-PD-L1, SKOV3, and H1975 cells. For sorted gd
T cells, the double-headed arrow indicated the APC positive population.
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if the killing activity of Vg2 x PD-L1 was specific to tumor cells.
The Vg2Vd2 T cell-mediated killing percentages of allogeneic
PBMCs were low even in the presence of Vg2 x PD-L1, indicating
the Vg2 x PD-L1 activated Vg2Vd2 T cells’ killing activity was
indeed restricted to tumor cells (Figure 6E). Moreover, fresh
Vg2Vd2 T cells enriched from healthy donors also exerted
concentration-dependent killing of SKOV3 cells mediated by
Vg2 x PD-L1, but not by Vg2 x Null or PD-L1 mAb (Figure 6F).
Taken together, these results demonstrated that Vg2 x PD-L1
could redirect Vg2Vd2 T cells to kill PD-L1+ tumor cell lines
with IFNg secretion, but to leave PD-L1 negative tumor cells and
healthy cells un-attacked.

Vg2 x PD-L1 Enhances the Efficacy of
Adoptively Transferred Vg2Vd2 T Cells
In Vivo
We further studied the effect of Vg2 x PD-L1 on the outgrowth of
established PD-L1 expressing tumors. SKOV3 cells were injected
into nude mice, and the tumor cells were allowed to grow out and
engraft for one week before the mice received twice-weekly i.v.
injections with human Vg2Vd2 T cells, followed by twice-weekly
i.p. injections with either 8 mg/kg Vg2 x PD-L1 or Vg2 x Null, or
Frontiers in Immunology | www.frontiersin.org 7151
PBS. The mice were sacrificed at the time of severe disease
symptoms (Figure 7A). The Vg2Vd2 T cells alone, or Vg2Vd2 T
cells plus Vg2 x Null did not control the tumor growth
(Figures 7B, C). In contrast, the combo treatment with Vg2 x
PD-L1 and Vg2Vd2 T cells significantly delayed the tumor
growth, with lower tumor weights at the end of the study
(Figures 7B-D) than those of the control groups. After 16 days
of treatment, Vg2Vd2 T cell counts were significantly higher in
the Vg2 x PD-L1+Vg2Vd2 T cells group, compared with the Vg2
x Null+ Vg2Vd2 T cells group or Vg2Vd2 T cells group
(Figures 7E, F).
DISCUSSION

The clinical investigations of PD-1/PD-L1 inhibitors have
resulted in a paradigm shift in the treatment of advanced
cancer patients, as well as longer overall survival time (30).
However, due to the limited efficacy (only 20 to 30% objected
response) and resistance to PD-1/PD-L1, there is still an unmet
medical need for exploring novel agents to improve PD-L1
targeting therapeutic effectiveness (31). The inadequate
B
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FIGURE 3 | Vg2 x PD-L1 revoked specifically activation, of the expanded Vg2Vd2 T cells in the presence of PD-L1+ tumor cell lines. (A) Vg2 x PD-L1 increased
significantly the IFNg secretion and (B) prompted activation of the expanded Vg2Vd2 T cells in a PD-L1-dependent fashion. Vg2Vd2 T cells were co-cultured with
indicated tumor cell lines (SKOV3 or H1975) in the absence or presence of Vg2 x PD-L1 or Vg2 x Null (1 mg/mL of each, about 8 nM) at a ratio of 1:1 for 24 hours.
Then the supernatant was harvested for measuring the concentration of IFNg by ELISA (A), and cells were collected for staining CD25+CD69+ double-positive
populations (B). (C–F) Vg2 x PD-L1 activated specifically Vg2Vd2 T cells to produce IFNg and TNFa, and degranulate in the presence of PD-L1+ tumor cell lines.
Vg2Vd2 T cells were stimulated by Vg2 x PD-L1 or Vg2 x Null (1 mg/mLof each) in the presence/absence of H1975 (C, D) or SKOV3 (E, F) cells in a 1:1 ratio for 4
hours. The percentages of T cells positive for CD107a, TNFa, and IFNg measured by ICS were represented in (C, E) and the percentages of multi-functional effector
subsets of Vg2Vd2 T cells were shown in (D, F) Data were presented as Mean ± SD pooled from n=8 biological replicates of three independent experiments. ****p<
0.0001 (Two-way ANOVA, Tukey’s multiple comparisons test for (A, B, C, E) Dunnett’s multiple comparisons test for (D, F).
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FIGURE 4 | Representative flow cytometry plots. The plots were showed for the activation (A), TNFa and IFNg production (B, C), and CD107a upregulation (D) of
Vg2Vd2 T cells as under the indicated conditions.
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FIGURE 5 | Vg2 X PD-L1 prompts significantly Vg2Vd2 T cell-mediated PD-L1+ tumor cell killing through releasing IFNg. (A–F) Vg2Vd2 T cells enriched negatively from Zol
+IL2 cultures were co-cultured with tumor targets (luciferase-expressing SKOV3, H2228, and H1299 cells) for 12 hours in the presence of 1 ug/mL (8 nM) Vg2 X PD-L1 or Vg2
X Null with serial E:T ratios, ranging from 5:1 to 0.3125:1. The tumor cell killing was measured by recording the RLU of each treated well (A, C, E), and the releasing amounts
of IFNg were determined by ELISA (B, D, F). Data were presented as Mean ±SD pooled from n=4 biological replicates of two independent experiments. ****p<0.0001 (Two-
way ANOVA, Dunnett’s multiple comparisons test). ***p<0.001.
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infiltration of T lymphocytes into the cold tumor is one of the
reasons for this therapeutic resistance (32). Several clinical
studies showed that transferred Vg2Vd2 T cells migrated into
the tumor bed, leading to encouraging clinical responses and
tumor reduction in treated patients (33). Here, the bispecific
antibody and Vg2Vd2 T cells transfer combination approach
provided a potential strategy to circumvent the PD-L1 blockade
therapy limitations. The approach for targeting potent
cytotoxicity Vg2Vd2 T cells by constructing Vg2 x PD-L1 on
the Y-body platform, based-on which two novel candidate
medications are currently on clinical trials, noted as M701
(NCT04501744) and M802 (NCT04501770) (34). Vg2 x PD-L1
preserved high affinity to PD-L1 as well as the PD1/PD-L1
blocking activity. However, consistent with other reports, the
PD-1/PD-L1 blocking activity did not contribute to the killing
ability of Vg2Vd2 T cells (12), possibly because the PD-L1 mAb
used in our study contained silent Fc without ADCC capability.
Vg2 x PD-L1 had a slower affinity for the Vg2 TCR than Vg2
mAb, which was desired for clinical use to prevent cytokine
release storm (35). Additionally, Vg2 TCR-targeting Y-body
platform allowed for the simple replacement of the PD-L1 Fab
to create a sequence of Vg2 x TAAs, which enabled Vg2Vd2 T
cells to target a broader spectrum of tumor types and helping a
larger population of cancer patients.

In vitro, Vg2 x PD-L1-activated Vg2Vd2 T cells were able to
selectively kill tumor cells selectively without killing PD-L1 negative
non-malignant cells or normal cells. In fact, the activation,
Frontiers in Immunology | www.frontiersin.org 9153
degranulation, and subsequent tumor cell killing mediated by Vg2
x PD-L1 were all dependent on simultaneous binding to Vg2Vd2 T
cell and PD-L1 expressing tumor cells, demonstrating the safety of
our strategy in comparison to PD-L1 chimeric antigen receptor NK
cells (36). In line with these in vitro observations, Vg2 x PD-L1 was
found to improve Vg2Vd2 T cell mediated tumor growth inhibition
in vivo. Mechanically, Vg2 x PD-L1 generated a greater Vg2Vd2 T
cell infiltration.

Meanwhile, there are several limitations in this study. First,
because Vg2Vd2 T cells are species specific, we employed an
immunodeficiency mouse model to investigate the efficacy of
Vg2 x PD-L1 plus Vg2Vd2 T cells, without examining whether
this combination therapy could change or reshape the
suppressive tumor microenvironment, or the in vivo toxicity of
combo usage. Second, this combo treatment was not fully
curative because tumor volumes did not reach to near zero by
the end of treatment. As a small amount of Vg2Vd2 T cells and a
fixed bsAb dose were used in the current treatment protocol, we
intended to improve the present therapy approach involving a
modest number of Vg2Vd2 T cells and bsAb dosage. Third, we
were unable to determine the TCR sequence of tumor bed
infiltrating Vg2Vd2 T cells, which would provide valuable
information for further TCR-T design.

In conclusion, we developed a novel and potential therapeutic
T cell engager bispecific antibody Vg2 x PD-L1, which caused
Vg2Vd2 T cells to destroy PD-L1 expressing tumor cells
efficiently and selectively. Vg2 x PD-L1 offers promising
B
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A

FIGURE 6 | Vg2 x PD-L1 redirects Vg2Vd2 T cells to kill efficiently various PD-L1 positive cancer cell lines in vitro, but spared this effect on PD-L1 negative
expressing HEK-293 cells or unrelated healthy PBMCs. (A) Expanded Vg2Vd2 T cells derived from healthy donors’ PBMCs (n=3) were incubated with various
luciferase-expressing tumor cell lines at a 0.5:1 ratio under the stimulation of serial concentrations of antibodies, including Vg2 x PD-L1, Vg2 x Null or PD-L1
mAb, for 12 hours. (B) Increased IFNg secretion in the above co-cultures. (C) The cytotoxicity and IFNg induction of Vg2Vd2 T cells revoked by Vg2 x PD-L1
correlated with the PD-L1 expression score. The spearman’s r and two-tailed p values were calculated by GraphPad Prism 6. (D, E) The expanded Vg2Vd2 T
cells derived from healthy donors’ PBMCs (n=3) were incubated with CFSE-labelled PD-L1neg HEK-293 (D) or allogeneic PBMCs (E) at 1:1 ratio as indicated in
(A). A CFSE/PI staining-based flow cytometry method to determine the killed target cell percentages. (F) Fresh Vg2Vd2 T cells enriched from healthy donors
(n=2) were incubated with SKOV3-Luc at 5:1 ratio under the stimulation of serial concentrations of antibodies, including Vg2 x PD-L1, Vg2 x Null or PD-L1 mAb,
for 12 hours.
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therapy options for solid tumors, including ovarian cancer (28,
37, 38), melanoma (38, 39), and non-small cell lung cancer
(NSCLC) (38). The infiltrating Vg2Vd2 T cells in tumor acted as
protective anti-tumor effector population and were linked with
positive outcomes. As PD-L1 is a clinically well-established
tumor target, its widespread expression pattern suggested that
our combination approach might be beneficial for the PD-L1
positive cancer patients who had refractory or relapsed for PD-
L1 inhibitor treatment.
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FIGURE 7 | Vg2 X PD-L1 prompted the survival of inoculated Vg2Vd2 T cells in nude mice. (A) Experimental schema of evaluating the anti-tumor therapeutic efficacy of Vg2 X
PD-L1. Nude mice were s.c. inoculated with 5 million SKOV3 cells on Day 0. After 15 days, mice were treated with i.v. Vg2Vd2 T cells plus 8 mg/kg Vg2 X Null or Vg2 X PD-
L1. These treatments were repeated twice a week (Q2W) for 3 weeks. Mice treated PBS only were used as control. (B, C) Pooled or individual tumor growth curves. The
black arrows indicated the treatment time point. Data are mean ± SD with 5 mice per group, ****p< 0.0001 (Two-way ANOVA, Dunnett’s test), which was determined based
on the tumor volumes at the end of the study. (D) Tumor weights at the end of the study. Data were mean ± SD with 5 mice per group, ***p<0.001, *p<0.05 (ANOVA,
Dunnett’s test). (E, F) Infiltrated and accumulated T-cell counts at the tumor site. Representative IHC figures for the treated group (E) and pooled T cell counts (F) were
presented as mean ± SD, ****p<0.0001, (ANOVA, Dunnett’s test). Data shown was one of two independent experiments.
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Young Talent Schema of Wuhan East Lake High-tech
Development Zone.
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Supplementary Figure 1 | Biochemical analysis of generated Vg2Vd2 T cell-
targeting bsAbs. (A) SDS-PAGE analysis of purified antibodies under non-reducing (left)
and reducing (right) conditions. Molecular weight (MW) was indicated in kDa for protein
marker. There were 3 and 2 bands for bsAb and mAb, respectively, under reducing
conditions as expected. (B)Size exclusion chromatograms of test antibodies (upper, Vg2
X PD-L1, bottom, Vg2 X Null). The antibodies were purified by Protein-A and ion-
exchange chromatography. The purity of prepared bsAb was more than 95%.

Supplementary Figure 2 | PD-L1 expression scores of various tumor cell lines
tested in this study. (A) Representative histogram of PD-L1 expression on CHO-PD-L1,
H1975, and SKOV3 cells. Vg2 X PD-L1 (blizzard blue shade), Vg2 X Null (pink shade) of
two experiments. (B) PD-L1 expression scores of firefly luciferase-transduced tumor
cells. The CHO-PD-L1 cells were used as positive control, and HEK-293-Luc cells were
Frontiers in Immunology | www.frontiersin.org 11155
displayed null expression of PD-L1 serving as negative control. Various tumor cell lines
were incubated with 40 mg/mL Vg2 X PD-L1 (Target) or Vg2 X Null (Null) for 1 hour at 4
degree, then stained with APC-hFc for 30 minutes at room temperature. The APC
positive populations and MFI of APC channel were determined by flow cytometry. The
expression scores were calculated by [log10 (Target APC positive populations - Null APC positive

populations) + log10 (Target APC MFI/Null APC MFI)]/2. Data were derived from one
representative experiment of three independent experiments.

Supplementary Figure 3 | Vg2 x PD-L1 recruited Vg2Vd2 T cells to form cell-to-
cell conjugates with SKOV3 cells, but not with 293T cells. 0.1 M CFSE-labelled
Vg2Vd2 T cells were incubated with 0.1 M PKH26-stained SKOV3 cells in the
presence of 1 mg/mL (8 nM) Vg2 x Null (Left) or Vg2 x PD-L1 (Right) for 30 minutes,
then the percentages of CFSE and PKH26 double positive cells (Q2) were depicted
as cell-to-cell conjugates. Representative flow cytometric dot plots from three
independent experiments (for SKOV3) and three wells (for HEK-293) were shown.
Please noted that the upper panel used Vg2Vd2 T cells negatively enriched from
fresh PBMC cultures treated with Zol+IL2 for 14 days, the bottom panel used
Vg2Vd2 T cells enriched from cryopreserved PBMC cultures treated with Zol+IL2 for
14 days; and Vg2Vd2 T cells were expanded from different donors for SKOV3 and
HEK-293.
Supplementary Table 1 | Summary p values for Figures 2, 3, 5.
REFERENCES
1. Shen L, Huang D, Qaqish A, Frencher J, Yang R, Shen H, et al. Fast-Acting

Gammadelta T-Cell Subpopulation and Protective Immunity Against
Infections. Immunol Rev (2020) 298(1):254–63. doi: 10.1111/imr.12927

2. Sebestyen Z, Prinz I, Dechanet-Merville J, Silva-Santos B, Kuball J.
Translating Gammadelta (Gammadelta) T Cells and Their Receptors Into
Cancer Cell Therapies. Nat Rev Drug Discov (2020) 19(3):169–84.
doi: 10.1038/s41573-019-0038-z

3. Bonneville M, O'Brien RL, Born WK. Gammadelta T Cell Effector Functions:
A Blend of Innate Programming and Acquired Plasticity. Nat Rev Immunol
(2010) 10(7):467–78. doi: 10.1038/nri2781

4. Pont F, Familiades J, Dejean S, Fruchon S, Cendron D, Poupot M, et al. The
Gene Expression Profile of Phosphoantigen-Specific Human Gammadelta T
Lymphocytes is a Blend of Alphabeta T-Cell and NK-Cell Signatures. Eur J
Immunol (2012) 42(1):228–40. doi: 10.1002/eji.201141870

5. Alnaggar M, Xu Y, Li J, He J, Chen J, Li M, et al. Allogenic Vgamma9Vdelta2
T Cell as New Potential Immunotherapy Drug for Solid Tumor: A Case Study
for Cholangiocarcinoma. J Immunother Cancer (2019) 7(1):36. doi: 10.1186/
s40425-019-0501-8

6. Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, et al. Allogeneic
Vgamma9Vdelta2 T-Cell Immunotherapy Exhibits Promising Clinical
Safety and Prolongs the Survival of Patients With Late-Stage Lung or
Liver Cancer. Cell Mol Immunol (2021) 18(2):427–39. doi: 10.1038/s41423-
020-0515-7

7. Yazdanifar M, Barbarito G, Bertaina A, Airoldi I. Gammadelta T Cells: The
Ideal Tool for Cancer Immunotherapy. Cells (2020) 9(5):1305. doi: 10.3390/
cells9051305

8. Tanaka Y. Cancer Immunotherapy Harnessing Gammadelta T Cells and
Programmed Death-1. Immunol Rev (2020) 298(1):237–53. doi: 10.1111/
imr.12917

9. Hoeres T, Holzmann E, Smetak M, Birkmann J, Wilhelm M. PD-1 Signaling
Modulates Interferon-Gamma Production by Gamma Delta (Gammadelta)
T-Cells in Response to Leukemia. Oncoimmunology (2019) 8(3):1550618.
doi: 10.1080/2162402X.2018.1550618

10. Rossi C, Gravelle P, Decaup E, Bordenave J, Poupot M, Tosolini M, et al.
Boosting Gammadelta T Cell-Mediated Antibody-Dependent Cellular
Cytotoxicity by PD-1 Blockade in Follicular Lymphoma. Oncoimmunology
(2019) 8(3):1554175. doi: 10.1080/2162402X.2018.1554175

11. Nada MH, Wang H, Hussein AJ, Tanaka Y, Morita CT. PD-1 Checkpoint
Blockade Enhances Adoptive Immunotherapy by Human Vgamma2Vdelta2
T Cells Against Human Prostate Cancer. Oncoimmunology (2021) 10
(1):1989789. doi: 10.1080/2162402X.2021.1989789

12. Tomogane M, Sano Y, Shimizu D, Shimizu T, Miyashita M, Toda Y, et al.
Human Vgamma9Vdelta2 T Cells Exert Anti-Tumor Activity Independently
of PD-L1 Expression in Tumor Cells. Biochem Biophys Res Commun (2021)
573:132–9. doi: 10.1016/j.bbrc.2021.08.005

13. Lo Presti E, Dieli F, Meraviglia S. Tumor-Infiltrating Gammadelta T
Lymphocytes: Pathogenic Role, Clinical Significance, and Differential
Programing in the Tumor Microenvironment. Front Immunol (2014) 5:607.
doi: 10.3389/fimmu.2014.00607

14. Wesch D, Kabelitz D, Oberg HH. Tumor Resistance Mechanisms and Their
Consequences on Gammadelta T Cell Activation. Immunol Rev (2020) 298
(1):84–98. doi: 10.1111/imr.12925

15. Oberg HH, Kellner C, Gonnermann D, Peipp M, Peters C, Sebens S, et al.
Gammadelta T Cell Activation by Bispecific Antibodies. Cell Immunol (2015)
296(1):41–9. doi: 10.1016/j.cellimm.2015.04.009

16. Oberg HH, Peipp M, Kellner C, Sebens S, Krause S, Petrick D, et al. Novel
Bispecific Antibodies Increase Gammadelta T-Cell Cytotoxicity Against
Pancreatic Cancer Cells. Cancer Res (2014) 74(5):1349–60. doi: 10.1158/
0008-5472.CAN-13-0675

17. Ganesan R, Chennupati V, Ramachandran B, Hansen MR, Singh S, Grewal IS.
Selective Recruitment of Gammadelta T Cells by a Bispecific Antibody for the
Treatment of Acute Myeloid Leukemia. Leukemia (2021) 35(8):2274–84.
doi: 10.1038/s41375-021-01122-7

18. de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S,
Lameris R, et al. A Bispecific Nanobody Approach to Leverage the Potent and
Widely Applicable Tumor Cytolytic Capacity of Vgamma9Vdelta2-T Cells.
Oncoimmunology (2017) 7(1):e1375641. doi: 10.1080/2162402X.2017.1375641

19. deWeerdt I, Lameris R, Ruben JM, de Boer R, Kloosterman J, King LA, et al. A
Bispecific Single-Domain Antibody Boosts Autologous Vgamma9Vdelta2-T
Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia. Clin Cancer
Res (2021) 27(6):1744–55. doi: 10.1158/1078-0432.CCR-20-4576

20. de Weerdt I, Lameris R, Scheffer GL, Vree J, de Boer R, Stam AG, et al. A
Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes
Vgamma9Vdelta2 T Cell-Mediated Antitumor Responses in Human B-Cell
Malignancies. Cancer Immunol Res (2021) 9(1):50–61. doi: 10.1158/2326-
6066.CIR-20-0138

21. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al.
Frequency of Regulatory T Cells Determines the Outcome of the T-Cell-
Engaging Antibody Blinatumomab in Patients With B-Precursor ALL.
Leukemia (2017) 31(10):2181–90. doi: 10.1038/leu.2017.41
June 2022 | Volume 13 | Article 923969

https://www.frontiersin.org/articles/10.3389/fimmu.2022.923969/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.923969/full#supplementary-material
https://doi.org/10.1111/imr.12927
https://doi.org/10.1038/s41573-019-0038-z
https://doi.org/10.1038/nri2781
https://doi.org/10.1002/eji.201141870
https://doi.org/10.1186/s40425-019-0501-8
https://doi.org/10.1186/s40425-019-0501-8
https://doi.org/10.1038/s41423-020-0515-7
https://doi.org/10.1038/s41423-020-0515-7
https://doi.org/10.3390/cells9051305
https://doi.org/10.3390/cells9051305
https://doi.org/10.1111/imr.12917
https://doi.org/10.1111/imr.12917
https://doi.org/10.1080/2162402X.2018.1550618
https://doi.org/10.1080/2162402X.2018.1554175
https://doi.org/10.1080/2162402X.2021.1989789
https://doi.org/10.1016/j.bbrc.2021.08.005
https://doi.org/10.3389/fimmu.2014.00607
https://doi.org/10.1111/imr.12925
https://doi.org/10.1016/j.cellimm.2015.04.009
https://doi.org/10.1158/0008-5472.CAN-13-0675
https://doi.org/10.1158/0008-5472.CAN-13-0675
https://doi.org/10.1038/s41375-021-01122-7
https://doi.org/10.1080/2162402X.2017.1375641
https://doi.org/10.1158/1078-0432.CCR-20-4576
https://doi.org/10.1158/2326-6066.CIR-20-0138
https://doi.org/10.1158/2326-6066.CIR-20-0138
https://doi.org/10.1038/leu.2017.41
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. BsAb Targeting Vg2 and PD-L1
22. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, et al.
Cytokine Release Syndrome After Blinatumomab Treatment Related to
Abnormal Macrophage Activation and Ameliorated With Cytokine-
Directed Therapy. Blood (2013) 121(26):5154–7. doi: 10.1182/blood-2013-
02-485623

23. Yang R, Shen S, Gong C, Wang X, Luo F, Luo F, et al. Bispecific Antibody PD-
L1 X CD3 Boosts the Anti-Tumor Potency of the Expanded Vgamma2Vdelta2
T Cells. Front Immunol (2021) 12:654080. doi: 10.3389/fimmu.2021.654080

24. Yang R, Yang E, Shen L, Modlin RL, Shen H, Chen ZW. IL-12+IL-18
Cosignaling in Human Macrophages and Lung Epithelial Cells Activates
Cathelicidin and Autophagy, Inhibiting Intracellular Mycobacterial Growth.
J Immunol (2018) 200(7):2405–17. doi: 10.4049/jimmunol.1701073

25. Yang R, Yao L, Shen L, Sha W, Modlin RL, Shen H, et al. IL-12 Expands and
Differentiates Human Vgamma2Vdelta2 T Effector Cells Producing
Antimicrobial Cytokines and Inhibiting Intracellular Mycobacterial Growth.
Front Immunol (2019) 10:913. doi: 10.3389/fimmu.2019.00913

26. Yang E, Yang R, Guo M, Huang D, Wang W, Zhang Z, et al. Multidrug-
Resistant Tuberculosis (MDR-TB) Strain Infection in Macaques Results in High
Bacilli Burdens in Airways, Driving Broad Innate/Adaptive Immune Responses.
Emerg Microbes Infect (2018) 7(1):207. doi: 10.1038/s41426-018-0213-z

27. Fan L, Shen H, Huang H, Yang R, Yao L. Impairment of Wnt/beta-Catenin
Signaling in Blood Cells of Patients With Severe Cavitary Pulmonary Tuberculosis.
PloS One (2017) 12(3):e0172549. doi: 10.1371/journal.pone.0172549

28. Raspollini MR, Castiglione F, Rossi Degl'innocenti D, Amunni G, Villanucci
A, Garbini F, et al. Tumour-Infiltrating Gamma/Delta T-Lymphocytes are
Correlated With a Brief Disease-Free Interval in Advanced Ovarian Serous
Carcinoma. Ann Oncol (2005) 16(4):590–6. doi: 10.1093/annonc/mdi112

29. Kranz DM, Voss EWJr. Partial Elucidation of an Anti-Hapten Repertoire in
BALB/c Mice: Comparative Characterization of Several Monoclonal Anti-
Fluorescyl Antibodies. Mol Immunol (1981) 18(10):889–98. doi: 10.1016/
0161-5890(81)90012-2

30. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al.
Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC.
N Engl J Med (2018) 378(24):2288–301. doi: 10.1056/NEJMoa1716948

31. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and
Acquired Resistance to Cancer Immunotherapy. Cell (2017) 168(4):707–23.
doi: 10.1016/j.cell.2017.01.017

32. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of Resistance to PD-1 and
PD-L1 Blockade. Cancer J (2018) 24(1):47–53. doi: 10.1097/PPO.000000
0000000303

33. Silva-Santos B, Mensurado S, Coffelt SB. Gammadelta T Cells: Pleiotropic
Immune Effectors With Therapeutic Potential in Cancer. Nat Rev Cancer
(2019) 19(7):392–404. doi: 10.1038/s41568-019-0153-5
Frontiers in Immunology | www.frontiersin.org 12156
34. Zhang J, Yi J, Zhou P. Development of Bispecific Antibodies in China:
Overview and Prospects. Antib Ther (2020) 3(2):126–45. doi: 10.1093/abt/
tbaa011

35. Labrijn AF, Janmaat ML, Reichert JM, Parren P. Bispecific Antibodies: A
Mechanistic Review of the Pipeline. Nat Rev Drug Discov (2019) 18(8):585–
608. doi: 10.1038/s41573-019-0028-1

36. Bajor M, Graczyk-Jarzynka A, Marhelava K, Burdzinska A, Muchowicz A,
Goral A, et al. PD-L1 CAR Effector Cells Induce Self-Amplifying Cytotoxic
Effects Against Target Cells. J Immunother Cancer (2022) 10(1):e002500.
doi: 10.1136/jitc-2021-002500

37. Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of
Ascites- and Tumor-Infiltrating Gammadelta T Cells Reveals Distinct
Repertoires and a Beneficial Role in Ovarian Cancer. Sci Transl Med (2021)
13(577):eabb0192. doi: 10.1126/scitranslmed.abb0192

38. Tosolini M, Pont F, Poupot M, Vergez F, Nicolau-Travers ML, Vermijlen D,
et al. Assessment of Tumor-Infiltrating TCRVgamma9Vdelta2 Gammadelta
Lymphocyte Abundance by Deconvolution of Human Cancers Microarrays.
Oncoimmunology (2017) 6(3):e1284723. doi: 10.1080/2162402X.2017.
1284723

39. Cordova A, Toia F, La Mendola C, Orlando V, Meraviglia S, Rinaldi G, et al.
Characterization of Human Gammadelta T Lymphocytes Infiltrating Primary
Malignant Melanomas. PLos One (2012) 7(11):e49878. doi: 10.1371/
journal.pone.0049878
Conflict of Interest: The authors are employees of Wuhan YZY Biopharma Co.,
Ltd that develops and commercializes antibody therapeutics including bispecific
antibodies.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, He, Zhou, Gong, Wang, Song, Luo, Lei, Ni, Wang, Xu, Xue,
Zhang, Wen, Fang, Zeng, Yan, Shi, Zhang, Yi and Zhou. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that
the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.
June 2022 | Volume 13 | Article 923969

https://doi.org/10.1182/blood-2013-02-485623
https://doi.org/10.1182/blood-2013-02-485623
https://doi.org/10.3389/fimmu.2021.654080
https://doi.org/10.4049/jimmunol.1701073
https://doi.org/10.3389/fimmu.2019.00913
https://doi.org/10.1038/s41426-018-0213-z
https://doi.org/10.1371/journal.pone.0172549
https://doi.org/10.1093/annonc/mdi112
https://doi.org/10.1016/0161-5890(81)90012-2
https://doi.org/10.1016/0161-5890(81)90012-2
https://doi.org/10.1056/NEJMoa1716948
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.1097/PPO.0000000000000303
https://doi.org/10.1097/PPO.0000000000000303
https://doi.org/10.1038/s41568-019-0153-5
https://doi.org/10.1093/abt/tbaa011
https://doi.org/10.1093/abt/tbaa011
https://doi.org/10.1038/s41573-019-0028-1
https://doi.org/10.1136/jitc-2021-002500
https://doi.org/10.1126/scitranslmed.abb0192
https://doi.org/10.1080/2162402X.2017.1284723
https://doi.org/10.1080/2162402X.2017.1284723
https://doi.org/10.1371/journal.pone.0049878
https://doi.org/10.1371/journal.pone.0049878
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Guangchao Cao,

Jinan University, China

Reviewed by:
Mary A. Markiewicz,

University of Kansas Medical Center,
United States

Cristiana Cairo,
University of Maryland, Baltimore,

United States

*Correspondence:
Daniel Olive

daniel.olive@inserm.fr

Specialty section:
This article was submitted to

T Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 07 April 2022
Accepted: 30 May 2022
Published: 27 June 2022

Citation:
Gay L, Mezouar S, Cano C, Foucher E,
Gabriac M, Fullana M, Madakamutil L,

Mège J-L and Olive D (2022)
BTN3A Targeting Vg9Vd2 T Cells

Antimicrobial Activity Against Coxiella
burnetii-Infected Cells.

Front. Immunol. 13:915244.
doi: 10.3389/fimmu.2022.915244

ORIGINAL RESEARCH
published: 27 June 2022

doi: 10.3389/fimmu.2022.915244
BTN3A Targeting Vg9Vd2 T Cells
Antimicrobial Activity Against
Coxiella burnetii-Infected Cells
Laetitia Gay1,2,3, Soraya Mezouar1,2, Carla Cano3, Etienne Foucher3, Mélanie Gabriac3,
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Vg9Vd2 T cells have been reported to participate to the immune response against
infectious diseases such as the Q fever caused by Coxiella burnetii infection. Indeed,
the number and proportion of Vg9Vd2 T cells are increased during the acute phase of Q
fever. Human Vg9Vd2 T cell responses are triggered by phosphoantigens (pAgs)
produced by pathogens and malignant cells, that are sensed via the membrane
receptors butyrophilin-3A1 (BTN3A1) and -2A1 (BTN2A1). Here, by using CRISPR-
Cas9 inactivation in THP-1 cells, we show that BTN3A and BTN2A are required to
Vg9Vd2 T cell response to C. burnetii infection, though not directly involved in the infection
process. Furthermore, C. burnetii-infected monocytes display increased BTN3A and
BTN2A expression and induce Vg9Vd2 T cell activation that can be inhibited by specific
antagonist mAb. More importantly, we show that the antimicrobial functions of Vg9Vd2 T
cells towards C. burnetii are enhanced in the presence of an BTN3A activating antibody.
This supports the role of Vg9Vd2 T cells in the control of C. burnetii infection and argues in
favor of targeting these cells as an alternative treatment strategy for infectious diseases
caused by intracellular bacteria.

Keywords: Coxiella burnetii, Vg9Vd2 T cells, butyrophilin, antimicrobial immunity, therapeutic approaches
INTRODUCTION

The role of Vg9Vd2 T cells in the host immune response to bacterial infection is now well-
documented (1). Human Vg9Vd2 T cells, which normally represent 2-5% of peripheral blood T
cells, are expanded in infected patients to reach up to ≥50% of the circulating T cells (2, 3), as
reported for patients undergoing mycobacterial disease, listeriosis, salmonellosis, brucellosis,
tularemia, legionellosis and Q fever (4–10). Furthermore, local expansion of Vg9Vd2 T cells have
also been reported in the bronchoalveolar lavage fluids from patients with active pulmonary
tuberculosis and in cerebral spinal fluids from patients with bacterial meningitis (11–13). Two direct
antimicrobial actions of Vg9Vd2 T cells against various viruses, protozoa and bacteria were
reported, including cytotoxic activity to pathogen-infected cells and a cell-mediated non-cytolytic
activity based on cytokine production (1, 14–16). In vitro studies have shown that Vg9Vd2 T cells
org June 2022 | Volume 13 | Article 9152441157
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are able to effectively kill intracellular pathogens such as M.
tuberculosis, L. monocytogenes, and Brucella suis (17–21).

The butyrophilin 3A1 (BTN3A1) cell surface molecule is
involved in cell recognition and the human Vg9Vd2 T cells
activation (22, 23). Vg9Vd2 T cells are activated by small,
phosphorylated nonpeptide antigens, called phosphoantigens
(pAgs) (14). The production of these metabolites is increased
in tumor or stressed eukaryotic cells, and can be naturally
produced by several pathogens (11, 24, 25). Among the
BTN3A isoforms (BTN3A1, BTN3A2, BTN3A3), BTN3A1 is
unique in that its intracellular B30.2 domain binds to pAgs
(26, 27), while its juxtamembrane domain performs a critical
function in homodimerization and heterodimerization of
BTN3A (28). Conformational changes in the juxta-membrane
domain, induced by the binding of pAgs to the B30.2 domain, are
involved in Vg9Vd2 T cell activation (29). More recently,
BTN2A1 has been identified as a novel actor in pAg sensing
by Vg9Vd2 T cells (30–32). BTN2A1 is a direct ligand for the Vg9
TCR interacting with BTN3A1 to trigger Vg9Vd2 TCR
activation (30).

Several evidences highlight the key role of Vg9Vd2 T cells in
Q fever, an infectious disease caused by the intracellular
bacterium Coxiella burnetii. (1) During the acute phase of the
disease, the numbers and proportion of Vg9Vd2 T cells were
found increased (2) with a significant increase of the expression
of HLA-DR, but not CD25 (10). In this study, we investigated the
functional role of Vg9Vd2 T cells and the involvement of BTN3A
and BTN2A in host defense against C. burnetii. Here, we
observed that C. burnetii infection of healthy monocytes lead
to the increase of the expression of these two BTNs. Using a
CRISPR-Cas9 knockout model in the THP-1 cell line, we
observed that BTN3A and BTN2A are not directly involved in
the infection process by C. burnetii but play a role in the host
immune response to infection. We reported that infected
monocytes induced Vg9Vd2 T cell activation in a BTN3A and
BTN2A dependent manner. Finally, the use of a BTN3A
activating antibody enhances the antimicrobial functions of
Vg9Vd2 T cells against C. burnetii infected cells through the
production of cytotoxic molecules and large amounts of IFN-g
and TFN-a. Our results highlight the role of Vg9Vd2 T cells in
the control of C. burnetii infection and the therapeutic potential
of BTN3A activating antibody in infections.
MATERIALS AND METHODS

Cell Isolation
Blood samples (leucopacks) were obtained from the local French
Blood Establishment (Etablissement franc ̧ais du sang, EFS),
which carries out donor inclusions, informed consent, and
sample collection. Through a convention established between
our laboratory and the EFS (N°7828), buffy coats were obtained
and peripheral blood mononuclear cells (PBMCs) were isolated
as previously described (33). Monocytes were purified from
PBMCs using anti-CD14-conjugated magnetic beads (Miltenyi
Biotec, Bergisch Glabach, Germany) and cultured in Roswell
Frontiers in Immunology | www.frontiersin.org 2158
Park Memorial Institute-1640 medium (RPMI, Life
Technologies, Carlsbad, CA, USA) containing 10% fetal bovine
serum (FBS, Gibco, Life technologies), 2 mM L-glutamine, 100
U/mL penicillin and 50 µg/mL streptomycin (Life Technologies).

Vg9Vd2 T cells were expanded from fresh PBMCs as previously
described (34, 35). Briefly, PBMCs were cultured in RPMI-1640
medium supplemented with 10% FBS, interleukin-2 (IL-2, 200 UI/
ml) and Zoledronic acid monohydrate (to a final concentration of 1
µM). IL-2 was added every 2 days beginning on day 5 for 12 days
and the purity of the Vg9Vd2 T cells was assessed by flow cytometry
analysis (>85%) and then frozen at -80°C in 10% dimethyl sulfoxide
(Sigma-Aldrich, Saint-Quentin-Fallavier, France) and 90% FBS.

Lentiviral Transduction and CRISPR-Cas9-
Mediated BTN3A or BTN2A Knockout
For all transductions, THP-1 cells were seeded in 12-wells plates
(2.5x105 cells/well), and 25 mL of concentrated lentiviral particles
were added to the culture. After 24 hours, cells were washed
twice in complete medium, and cultured in their regular culture
medium for 48 hours. Optimized CRISPR target sequences
targeting the three BTN3A gene isoforms and for BTN2A gene
inactivation, targeting both BTN2A gene isoforms (sequence
available upon request) were cloned into the lentiCRISPR-v2
vector (Addgene #52961). For selection of THP-1 transductants,
1 mg/mL puromycin was added to the culture medium
(Supplementary Figure 1).

Bacterial Production
Coxiella burnetii phase I (Nine Mile (NM) strain, RSA493 and
Guiana strain, MST17) were cultured in L929 cells for 10 days, as
previously described (36). Briefly, infected cells were sonicated
and centrifuged at 10,000g for 10 minutes, then washed and
stored at -80°C. Bacterial titers were determined using Gimenez
staining, and bacterial viability was assessed using the Live/Dead
BacLight bacterial viability kit (Molecular Probes, Eugene,
OR, USA).

Mycobacterium tuberculosis (H37Rv strain) was cultured in
Middelbrook 7H10 (Becton Dickinson, Le Pont de Claix, France)
supplemented with 10% oleic acid-albumin-dextrosecatalase
(OADC, Becton Dickinson), as previously described (37). Prior
to infection, the colonies were resuspended in phosphate
buffered saline (PBS, Life Technologies), vigorously vortexed
for 10 min using 3 mm sterile glass beads (Sigma-Aldrich) and
passed 10 times through a 25 G needle to disperse clustered cells.
Calibration was performed at OD 580 nm and confirmed by
counting mycobacteria after Ziehl-Neelsen staining.

Cell Infection
Monocytes isolated from healthy donors were infected with C.
burnetii strains (50 MOI) or with M. tuberculosis (5 MOI). After
24 hours of infection, the expression of BTN3A and BTN2A were
investigated by qRT-PCR and flow cytometry. For co-cultures
experiments, monocytes isolated from healthy donors previously
infected 24 hours with C. burnetii strains or withM. tuberculosis
were co-cultured with autologous Vg9Vd2 T cells (E:T ratio of
1:1). After 4 hours of co-culture, Vg9Vd2 T cell degranulation
and cytotoxicity was assessed by flow cytometry and the bacterial
June 2022 | Volume 13 | Article 915244
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load was measured by flow cytometry and qPCR. Finally, the
supernatants of the co-cultures were analyzed for the presence of
cytokines and cytotoxic molecules by ELISA assay.

Bacterial Detection
DNA was extracted from C. burnetii infected cells using a DNA
Mini Kit (Qiagen, Courtaboeuf, France). Bacterial load was
quantified using real time quantitative PCR (qPCR) performed
with specific primers F (5 ’-GCACTATTTTTAGCCG-
GAACCTT-3’) and R (5’-TTGAGGAGAAAAACTGGATTG
AGA-3’) targeting the C. burnetii COM-1 gene, as previously
described (36).

The presence of C. burnetii within cells was also assessed by
flow cytometry. Briefly, infected cells were fixed with 4%
paraformaldehyde and permeabilized with 0.1% Triton X-100
(Sigma-Aldrich). After washing, cells were incubated with a
rabbit antibody directed against C. burnetii for 30 min and
then with an Alexa 647 anti-rabbit antibody (Invitrogen). Data
were collected on a BD Canto II instrument (BD Biosciences, Le
Pont-de-Claix, France) and analyzed with FlowJo software
(FlowJo v10.6.2, Ashland, OR).

For M. tuberculosis infected cells, DNA was extracted from
infected cells as follows: aliquots of 150 mL were incubated
overnight at 56°C with 150 mL of G2 buffer mixed with 15 mL
proteinase K (20 mg/mL). After two cycles of mechanical lysis
(45 s), the total DNA was extracted using the EZ1 DNA Tissue
Kit (Qiagen). M. tuberculosis DNA detection was performed
targeting the M. tuberculosis internal transcribed spacer (ITS)
(Table 1), as previously described (37).

RNA Isolation and q-RTPCR
Total RNA was extracted from infected cells (2x106 cells/well)
using the RNeasy Mini Kit (Qiagen) with DNAse I treatment as
Frontiers in Immunology | www.frontiersin.org 3159
previously described (38). RNAs quality and quantity were
evaluated using a NanoDrop spectrophotometer (Nanodrop
Technologies, Wilmington, USA). Reverse transcription was
performed using M-MLV Reverse Transcriptase kit (Life
Technologies) and oligo(dT) primers. The expression of genes
characteristics of M1/M2 macrophage phenotypes, as well as
BTN3A isoform genes, was evaluated using real time qPCR,
Smart SYBR Green fast Master kit (Roche Diagnostics, Meylan,
France) and specific primers (Table 1). BTN2A levels expression
was evaluated using real time qPCR, TaqMan® Fast Advanced
Master Mix (Applied Biosystems, Life Technologies) and specific
probes (Table 1). All qPCRs were performed using a CFX Touch
Real-Time PCR Detection System (Bio-Rad, Marnes-la-
Coquette, France). Results were normalized by the expression
of ACTB or GAPDH housekeeping gene and are expressed as
relative expression of investigated genes with 2-DCt where DCt =
Cttarget – Cthousekeeping gene as previously described (36).

BTN3A and BTN2A Surface Expression
Cells were suspended in PBS (Life Technologies) containing 1%
FBS and 2 mM EDTA (Sigma-Aldrich). Cells were labeled with
viability dye (Live/Dead Near IR, Invitrogen), mouse anti-
BTN3A (clone 103.2) or anti-BTN2A (clone 7.48) Abs or with
the appropriate isotype control (Miltenyi Biotech). After 30 min
incubation, primary antibody binding was detected with
secondary PE anti-mouse antibody (Invitrogen) and data were
collected on a Navios instrument (Beckman Coulter) and
analyzed with FlowJo software (FlowJo v10.6.2).

Degranulation Assay
Monocytes were co-cultured with Vg9Vd2 T cells at effector-to-
target (E:T) ratio of 1:1 in presence of mouse anti-BTN2A mAb
(clone 7.48) or mouse anti-BTN3A mAb (clones 20.1 or 103.2)
TABLE 1 | Primers used for the response to infection.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

ACTB GGAAATCGTGCGTGACATTA AGGAGGAAGGCTGGAAGAG
GAPDH Hs02786624_g1

M1 genes
TNF AGGAGAAGAGGCTGAGGAACAAG GAGGGAGAGAAGCAACTACAGACC
IL1B CAGCACCTCTCAAGCAGAAAAC GTTGGGCATTGGTGTAGACAAC
IL6 CCAGGAGAAGATTCCAAAGATG GGAAGGTTCAGGTTGTTTTCTG
IFNG GTTTTGGGTTCTCTTGGCTGTTA ACACTCTTTTGGATGCTCTGGTC
CXCL10 TCCCATCTTCCAAGGGTACTAA GGTAGCCACTGAAAGAATTTGG
M2 genes
IL10 GGGGGTTGAGGTATCAGAGGTAA GCTCCAAGAGAAAGGCATCTACA
TGFB GACATCAAAAGATAACCACTC TCTATGACAAGTTCAAGCAGA
IL1RA TCTATCACCAGACTTGACACA CCTAATCACTCTCCTCCTCTTCC
CD163 CGGTCTCTGTGATTTGTAACCAG TACTATGCTTTCCCCATCCATC
BTN isoform genes
BTN3A1 TTCCAGGTCATAGTGTCTGC TGAGCAGCTGAGCAAAAGG
BTN3A2 TGGGAATACCAAGGGA AGTGAGCAGCTGGACCAAGA
BTN3A3 GAGGGAATACTAAGAAATGGT GAAGAGGGAGACATGAAAGT
BTN2A1 Hs00924832_m1

BTN2A2 Hs00950165_g1

C. burnetii gene
CB COM-1 GCACTATTTTTAGCCG-GAACCTT TTGAGGAGAAAAACTGGATTGAGA
MTB ITS CAAGGCATCCACCATGCGC GGGTGGGGTGTGGTGTTTGA
June 2022 | Volume 1
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and fluorochrome-labeled CD107a and CD107b (BD
Biosciences). Phorbol 12-myristate 13-acetate (PMA, 20 ng/
mL) with ionomycine (1 µg/mL) were used as positive control
for Vg9Vd2 T cell activation. After 4 hours, cells were harvested
and stained with fluorochrome-labeled TCR-specific mAbs
(Miltenyi Biotec) and a viability marker (Live/Dead Near IR,
Invitrogen). The degranulation was evaluated by flow cytometry
as the percentage CD107a/b+ cells in the gd T cell population
(Supplementary Figure 2). Data were collected on a Navios
instrument (Beckman Coulter) and analyzed with FlowJo
software (FlowJo v10.6.2).

Cytotoxicity Assay
Monocytes were labeled with 10 µM Cell Proliferation Dye
eFluor® 670 (Invitrogen) and then co-cultured with Vg9Vd2 T
cells at E:T ratio of 1:1 in presence of mouse anti-BTN3A mAb
(clone 20.1) at the indicated concentrations. After 4 hours, cells
were stained with CellEvent Caspase-3/7 Green (Invitrogen) to
identify dead cells. The cytotoxicity was assessed by flow
cytometry as the percentage of Caspase 3/7+ cells in the target
cell population (Supplementary Figure 2). Data were collected
on a BD Canto II instrument (BD Biosciences) and analyzed with
FlowJo software (FlowJo v10.6.2).

Immunoassays
Tumor necrosis factor-alpha (TNFa), interferon-gamma (IFNg),
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
(R&D Systems), granzyme B, perforin, and granulysin (Abcam)
levels were quantified in the supernatants of monocyte/Vg9Vd2
T cells co-cultures using specific immunoassay kits. TNFa, IFNg,
interleukin (IL)-1b, IL-6, IL-10 and transforming growth factor
beta (TGF-b) (R&D Systems) levels were quantified in the
supernatants of BTNs KO cells following C. burnetii infection.
The sensitivity of assays was 6.2 pg/mL for TNFa, 5.7 pg/mL for
IFNg, 1.0 pg/mL for IL-1b, 0.7 pg/mL for IL-6, 3.9 pg/mL for IL-
10, 15.4 pg/mL for TGF-b, 3.0 pg/mL for GM-CSF, 20 pg/mL for
granzyme B, 40 pg/mL for perforin and 10 pg/mL for granulysin.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism (8.0, La
Jolla, CA). After analysis of the distribution of the data with a
normality test, the Mann-Whitney U test was used as a non-
parametric test and the t test as a parametric test. Hierarchical
clustering of gene expression was analyzed using the ClustVis
webtool (39). The limit of significance was set up at p<0.05.
RESULTS

C. burnetii Infection Enhances Expression
of BTN3A and BTN2A
To assess whether C. burnetii infection affected the expression of
BTNs, monocytes from healthy donors were isolated and
infected with the reference strain NM1 or with the Guiana
strain, described to be more virulent (40, 41). After 24 hours of
incubation with active or heat-inactivated C. burnetii NM1
Frontiers in Immunology | www.frontiersin.org 4160
strain, increases of transcript expression of both BTN3A1 and
BTN3A2 isoforms, but not of BTN3A3 were found. Guiana strain
infection enhanced the expression of all three isoforms, similar to
M. tuberculosis infection used as control (Figure 1A) (23).
Interestingly, significant differences of BTN3A1 expression
were observed between cells infected with active or heat-
inactivated C. burnetii NM1 (p=0.0374), suggesting that
virulence affected BTN3A1 expression. Indeed, inactivated
form of C. burnetii are reported to induce a weaker
modulation of the expression of the A1 isoform, the essential
form for pAg-mediated activation of Vg9Vd2 T cells (23).
Significant increase of BTN3A protein expression was found
for monocytes infected with C. burnetii NM1 and Guiana strains
(p=0.0021 and p=0.0096, respectively) (Figure 1B).

As BTN2A is involved in Vg9Vd2 T-cell activation (31), we
also investigated whether C. burnetii infection affected its
expression. After 24 hours of infection, BTN2A transcriptional
expression for both isoforms (BTN2A1 and BTN2A2) was
significantly increased after C. burnetii NM1 and Guiana
infection (BTN2A1 p=0.0170 and p=0.0021, respectively; and
BTN2A2 p=0.0054 and p=0.0463, respectively) compared to
uninfected cells and without significant modulation compared
to the heat-inactivated form (Figure 1C). Regarding BTN2A
protein expression, a significant increase was observed for C.
burnetii infected monocytes (NM1 strain, p=0.0160; and Guiana
strain, p=0.0018) compared to uninfected cells, as observed for
M. tuberculosis infection as control (Figure 1D).

Altogether, likeM. tuberculosis infection, C. burnetii infection
leads to increased expression of BTN3A and BTN2A in
infected cells.

Involvement of BTN3A and BTN2A in C.
burnetii Infection
Next, we investigated whether BTNs could be involved in the
uptake or replication of C. burnetii. For this purpose, we
performed a CRISPR-Cas9 knockout of the three BTN3A genes
or the two BTN2A genes in the THP-1 cell line. Cells were
transduced with a guide targeting either BTN2A1 and 2A2
(BTN2AKO) or BTN3A1, 3A2 and 3A3 (BTN3AKO) isoforms
or with an irrelevant CRISPR guide (mock). BTN3AKO,
BTN2AKO and mock cells were infected with C. burnetii
NM1, and the bacterial load was assessed by qPCR. No
differences were observed concerning the bacterial load
(Figure 2A) and replication overtime (Figure 2B) between
BTN3AKO, BTN2AKO and mock cells, suggesting that
BTN3A and BTN2A are not directly involved in the process of
C. burnetii infection.
Involvement of BTN3A and BTN2A in the
Inflammatory Response to C. burnetii
Infection
We then investigated the involvement of BTNs in the host
immune response following C. burnetii infection in THP-1
cells. As observed in the Figure 3, C. burnetii infection results
in modulation of genes characteristics of both pro-inflammatory
June 2022 | Volume 13 | Article 915244
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(TNF, IFNG, IL6, CXCL10, IL1RA and IL1B) and anti-
inflammatory (IL10, TGFVBand CD163) responses in THP-1
cells. Upon infection with C. burnetii, the hierarchical clustering
based on the expression of the above mentioned genes revealed
that BTNs expression correlated with the transcriptional
response to infection, as depicted by a separate clustering of
BTN3AKO/BTN2AKO cells and mock cells (Figure 3A). Indeed,
BTN3AKO and BTN2AKO cells displayed significantly
decreased expression of inflammatory genes following C.
burnetii infection, in particular that of TNF and IL1B
(Figure 3B). Also, IL6 transcriptional expression appear to be
Frontiers in Immunology | www.frontiersin.org 5161
affected by the BTN3A KO (p=0.0862) but not by the BTN2A
KO. Furthermore, the expression of IL10 transcript was
significantly decreased compared to mock cells (p=0.0435)
(Figure 3B). Consistently, BTN3AKO and BTN2AKO cells
presented a significant decrease in TNF and IL-1b release
following C. burnetii infection compared to mock cells
(Figure 3C). No significant difference in the levels of anti-
inflammatory cytokines such as IL-10 and TGF-b was observed.

Taken together, these data reported that both BTN3A and
BTN2A are involved in the inflammatory response to C.
burnetii infection.
B

C

D

A

FIGURE 1 | Bacterial infections modulate BTN3A and BTN2A expression. Monocytes isolated from healthy donors (n = 4) were infected with C. burnetii strains (50
MOI) or with M. tuberculosis (5 MOI) for 24 hours. (A) The relative gene expression of BTN3A isoforms (A1, A2, A3) and (B) the BTN3A protein expression were
investigated by qRT-PCR and flow cytometry, respectively. (C) The relative gene expression of BTN2A isoforms (A1, A2) and (D) the BTN2A protein expression were
investigated by qRT-PCR and flow cytometry, respectively. Data were analyzed using a normality test and a parametric t test. Values represent mean ± standard
deviation. *p < 0.05, **p < 0.01, and ****p < 0.0001.
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C. burnetii Infection Leads to Vg9Vd2 Cells
Activation in a BTN3A and BTN2-
Dependent Manner
Since BTNs appeared to be over-expressed in monocytes
following C. burnetii infection, we hypothesized that it could
enhance the Vg9Vd2 T cell activation. After 4 hours of co-culture
with C. burnetii infected monocytes, Vg9Vd2 T cell displayed
enhanced degranulation as depicted by increased membrane
expression of CD107, which also increased with the titer of
bacteria used for monocytes infection (Figure 4A). We then
investigated whether Vg9Vd2 T cell activation by C. burnetii-
infected cells was dependent on BTNs by using anti-BTN3A
antagonist (clone 103.2) (26) and anti-BTN2A antagonist (clone
7.48) (30) antibodies. Both antibodies led to significant inhibition
of Vg9Vd2 T cell degranulation against cells infected with C.
burnetii NMI or Guiana strains, or M. tuberculosis as positive
control, suggesting that both BTNs are involved in Vg9Vd T cell
activation in an infectious context (Figures 4B, C) as it was
previously shown for malignant cells (30). Taken together, C.
burnetii infection leads to Vg9Vd2 T cell activation in a BTN3A
and BTN2A dependent manner.

We next hypothesized that Vg9Vd2 T cell activation towards
C. burnetii-infected cells could be enhanced by an humanized
BTN3A agonist antibody (clone 20.1) (26) that activates Vg9Vd2
T cells. As illustrated in the Figure 4D, we observed that the
BTN3A activating antibody leads to increased expression of
Frontiers in Immunology | www.frontiersin.org 6162
CD107 (Figure 4D) and the cytotoxic activity (Figure 4E) of
Vg9Vd2 T cells towards C. burnetii infected monocytes as
observed for M. tuberculosis after 4 hours of co-culture. A
similar effect was observed for all C. burnetii strains, to the
same extent as M. tuberculosis, suggesting that the 20.1 antibody
can induce Vg9Vd2 T cell activation even towards virulent
bacteria. These data show that targeting Vg9Vd2 T cells with
the 20.1 antibody leads to the activation of their cytotoxicity
against C. burnetii-infected cells.
Anti-BTN3A Agonist Antibody Increases
Antimicrobial Activity of Vg9Vd2 T Cells
Since the anti-BTN3A agonist antibody (clone 20.1) increases
Vg9Vd2 T cell activation, we wondered whether it was able to
boost their antimicrobial activity. For this purpose, monocytes
were infected with C. burnetii NM1 for 24 hours and then co-
cultured with Vg9Vd2 T cells for 4 hours in presence of 20.1
antibody (0, 0.1, 1 or 10 µg/ml) and the bacterial load was
measured by flow cytometry and qRT-PCR. First, Vg9Vd2 T cells
lead to a significant reduction of C. burnetii load from 5.107 to
6.106 in monocytes in the presence of Vg9Vd2 T lymphocytes
(p=0.0021) (Figures 5A, B), as observed for M. tuberculosis
infection (Supplementary Figure 3). BTN3A activating antibody
resulted in a dose-dependent decrease in C. burnetii load in
monocytes, reaching from 6.106 to 4.2.106 (0 vs. 10 µg/ml,
B

A

FIGURE 2 | Involvement of BTN3A and BTN2A in C. burnetii infection. CRISPR-Cas9-mediated inactivation of BTN3A or BTN2A was performed in THP-1 cell line.
THP-1 cells transduced with a guide targeting all BTN3A isoforms (BTN3KO) or all BTN2A isoforms (BTN2AKO) or with an irrelevant CRISPR guide (mock) for control
cells were infected with C. burnetii NM1 (50 MOI) (n = 3). (A) After 4 and 24 hours of infection, the number of bacterial DNA copies within THP-1 cells was assessed
by qPCR. (B) THP-1 cells were incubated with C. burnetii for 4 h (day 0), then washed to eliminate free bacteria and incubated for 4 days. Each day, the number of
bacterial DNA copies was evaluated by qPCR. Values represent mean ± standard deviation.
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p=0.0501) (Figures 5A, B). This effect is similar to that observed
in the case ofM. tuberculosis, where the 20.1 antibody resulted in
a decrease in the bacterial load in monocytes (0 vs. 10 µg/ml,
p=0.0158) (Supplementary Figure 3). Altogether, BTN3A
activating antibody increases the antimicrobial activity of
Vg9Vd2 T lymphocytes against monocytes infected with
C. burnetii.
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Anti-BTN3A Agonist Antibody Increases
the Secretion of Cytokines and Cytotoxic
Molecules by Vg9Vd2 T Cells
Since treatment with the anti-BTN3A agonist antibody leads to
bacterial load reduction, we investigated whether this could be
related to the secretion of cytokines and cytotoxic molecules, which
are strongly produced by activated Vg9Vd2 T cells (17–21). Indeed,
B

C

A

FIGURE 3 | Involvement of BTN3A and BTN2A in the inflammatory response to C. burnetii infection. THP-1 cells transduced with an irrelevant CRISPR guide (mock) or
a guide targeting all BTN2A isoforms (BTN2AKO) or all BTN3A isoforms (BTN3AKO) were infected with C. burnetii NM1 (100 MOI) (n = 3). After 24 hours infection, the
expression of genes involved in the inflammatory (TNF, IL1B, IL6, IFNG, CXCL10) or immunoregulatory (IL10, TGFB1, IL1RA, CD163) response was investigated by
quantitative reverse-transcription polymerase chain reaction after normalization with housekeeping actin gene as endogenous control. Data are illustrated as (A)
hierarchical clustering obtained using ClustVis webtool or (B) relative quantity of investigated genes. (C) After 24 hours infection, TNF-a, IL-1b, IFN-g, IL-6, IL-10, and
TGF-b release were evaluated in the culture supernatants by ELISA assay. Data were analyzed using a normality test and a parametric t test. Values represent mean ±
standard error. *p < 0.05 and **p < 0.01.
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treatment of Vg9Vd2 T cell/C. burnetii-infected monocyte co-
cultures with the 20.1 mAb increased TFN-a, IFN-g and GM-
CSF secretion in a dose-dependent manner (Figure 6A, left panel).
Moreover, a significant difference was observed between the 0.1 and
10 µg/ml doses for IFN-g, TFN-a and GM-CSF secretion
(p=0.0260, p=0.0443 and p=0.0265, respectively), in the case of
infection with C. burnetii Guiana. Regarding cytotoxic molecules,
granzyme B and perforin secretion were significantly increased in
presence of 10 µg/ml of 20.1 mAb in the case of monocytes infected
with C. burnetii NM1 and Guiana, M. tuberculosis and uninfected
monocytes (Figure 6B, right panel). On the other hand, the 20.1
mAb showed a less pronounced effect on granulysin secretion, with
a significant difference only in the case of M. tuberculosis infection
(0 vs. 10 µg/ml, p=0.0488). It can also be noted that the levels of
granulysin appeared to be higher in the case of M. tuberculosis
infection than with C. burnetii. Overall, the presence of the BTN3A
Frontiers in Immunology | www.frontiersin.org 8164
activating antibody increases the secretion of cytokines and
cytotoxic molecules, both produced by the activated Vg9Vd2 T cells.
DISCUSSION

An alteration of circulating Vg9Vd2 T cells has been observed in
Q fever patients (10). During acute phase of the disease, the
proportion of Vg9Vd2 T cells is significantly increased in
patients (16% vs. 4% in healthy donors) (10), indicating the
involvement of these cells in the acute immune response to C.
burnetii. Since human Vg9Vd2 T cell responses are triggered via
an interaction with the BTN2A1/BTN3A1 complex, we first
assessed whether their expression was modulated following C.
burnetii infection. We found that in vitro infection of monocytes
with C. burnetii induced a significant increase in the
B C

D E

A

FIGURE 4 | Infection with C. burnetii leads BTN3A and BTN2-dependent activation of Vg9Vd2 T lymphocytes. (A) Monocytes isolated from healthy donors (n = 3)
previously infected 24 hours with C. burnetii NM1 (50 or 100 MOI) or with M. tuberculosis (1, 5 or 10 MOI) were co-cultured with autologous Vg9Vd2 T cells (E:T ratio
of 1:1). Vg9Vd2 T cell degranulation (%CD107ab+ cells) was assessed after 4 hours of co-culture by flow cytometry. (B–D) Monocytes isolated from healthy donors
(n = 4) previously infected 24 hours with (C) burnetii strains (50 MOI) or with M. tuberculosis (5 MOI) were co-cultured with Vg9Vd2 T cells expanded from healthy
donor (E:T ratio of 1:1) in the presence of (B) anti-BTN2A (clone 7.48), (C) anti-BTN3A (clone 103.2) or (D) anti-BTN3A (clone 20.1) antibodies (10µg/ml). Vg9Vd2 T
cell degranulation (%CD107ab+ cells) was assessed after 4 hours of co-culture by flow cytometry. (E) The cytotoxicity was assessed by flow cytometry as the
percentage of Caspase 3/7+ cells in the target cell population after 4 hours of co-culture in presence of anti-BTN3A antibody (clone 20.1) (10µg/ml). Data were
analyzed using a normality test and a parametric t test. Values represent mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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transcriptomic and plasma membrane expression of these two
BTNs. This increase is similar to that observed with M.
tuberculosis and between C. burnetii strains, suggesting that the
aggressiveness of the bacteria appears to have limited impact on
BTN expression. Similarly, increased expression of these two
BTNs has recently been described in red blood cells infected by
Plasmodium falciparum (42). Our team has recently shown
higher expression of BTN3A, but not BTN2A, following SARS-
CoV-2 infection of myeloid cells and lung cell lines (submitted
manuscript). This may suggest different mechanisms depending
on the pathogen.

Using CRISPR-Cas9 gene inactivation in the THP-1 cell line,
we found that BTN3A and BTN2A are not directly involved in
the infection process of cells by C. burnetii but play a role in the
cellular immune response to infection. Indeed, THP-1 cells
inactivated for BTN3A or BTN2A show a repressed
inflammatory response following C. burnetii infection, with a
significant decrease in TNF and IL1B gene expression. These
results suggest that higher expression of these two molecules on
monocytes could favor responses to C. burnetii infection.

The fact that both BTN3A and BTN2A, essential for Vg9Vd2
T cell activation, are more expressed following C. burnetii
infection could enhance their activation and antibacterial
activity. Using a Vg9Vd2 T cell/infected monocyte co-culture
Frontiers in Immunology | www.frontiersin.org 9165
model, we observed that monocytes infected with C. burnetii
strains of different aggressiveness resulted in similar
degranulation of Vg9Vd2 T cells. Several studies have
confirmed that the activation of Vg9Vd2 T cells is dependent
on BTN3A during infections. Indeed, the anti-BTN3A
antagonist antibody 103.2 was able to inhibit the degranulation
of Vg9Vd2 T cells when they were co-cultured with cells infected
with M. bovis (BCG), L. monocytogenes, P. falciparum or
Epstein-Barr virus (23, 42–44). In our study, similar results are
obtained with the 103.2 antibody but are also observed with an
anti-BTN2A antagonist antibody (clone 7.48), underlining the
importance of these two BTNs in the activation of Vg9Vd2
T cells.

Next, we evaluated the effect of BTN3A on antibacterial
activity. For this purpose, we used the anti-BTN3A agonist
antibody 20.1 to treat Vg9Vd2 T cell/C. burnetii-infected
monocyte co-cultures. Our results show that the 20.1 mAb
increases the antibacterial activity of Vg9Vd2 T cells leading to
a decreased intracellular load of C. burnetii. In our study,
Vg9Vd2 T cells, whose cytotoxic activity is enhanced by the
20.1 mAb, were both able to kill C. burnetii-infected monocytes
through the production of lytic granules (granulysin, perforin,
granzymes) and at the same time produce large amounts of IFN-
g and TFN-a. These cytokines play an essential role in protection
B

A

FIGURE 5 | Anti-BTN3A agonist antibody increases antimicrobial activity of Vg9Vd2 T cells towards C. burnetii infected monocytes. (A, B) Monocytes isolated from
healthy donors (n = 4) previously infected 24 hours with C. burnetii NM1 (50 MOI) were co-cultured with autologous Vg9Vd2 T cells (E:T ratio of 1:1) in the presence
of anti-BTN3A antibody (clone 20.1) (0-10 µg/ml). After 4 hours of co-culture, C. burnetii load was measured by (A) flow cytometry and (B) qPCR. Data were
analyzed using a normality test and a parametric t test. Values represent mean ± standard deviation. *p < 0.05, **p < 0.01.
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against intracellular bacteria by activating the antimicrobial
machinery of phagocytes. Indeed, IFN-g induces C. burnetii
killing by promoting apoptosis of infected monocytes (36, 45),
and TNF-a shows an essential role in the control of C. burnetii
infection like for other pathogens including M. tuberculosis or L.
monocytogenes (46, 47). These data extend previous studies as
human Vg9Vd2 T cells have already been shown to effectively kill
intracellular pathogens, such as M. tuberculosis , L.
monocytogenes and B. suis, through the secretion of IFN-g,
TNF-a and cytotoxic molecules such as granzymes, perforin
and granulysin (17–21, 48). Some studies have also reported that
NKG2D contributed to the anti-infective activity of Vg9Vd2 T
cells against Brucella sp. andM. tuberculosis (49, 50). In contrast,
in other studies onM. tuberculosis or L. monocytogenes, NKG2D
was not involved (20, 43). These discrepancies may be due to the
different expression of NKG2D ligands between infections and
between cell populations. Diverse functions of NKG2D ligands
could have an impact on the anti-infective activity of Vg9Vd2
T cells.

Our data suggest that targeting Vg9Vd2 T cells to activate
their cytotoxic functions may be considered a promising strategy
Frontiers in Immunology | www.frontiersin.org 10166
for the treatment wide range of pathogens like for C. burnetii.
Indeed, alterations in the phenotype and/or functions of Vg9Vd2
T cells have been reported in several infections usually caused by
intracellular pathogens. For example, in patients with active
tuberculosis, a progressive loss of effector function of
circulating Vg9Vd2 T cells has been reported, leading to
decreased IFN-g production and granulysin expression (51,
52). This alteration was correlated with disease progression
(53, 54), suggesting that a high level of bacteria can lead to
chronic stimulation of Vg9Vd2 T cells that would result in their
apoptosis and/or senescence. Targeting Vg9Vd2 T cells in the
context of persistent infections could therefore be an attractive
strategy. Future phenotypic and functional analyses of Vg9Vd2 T
cells from patients with Q fever will allow to determine whether
their capacity is altered.

Recently, a novel approach has been developed to expand and
activate Vg9Vd2 T cells besides pAgs. This strategy is based on
the development of a new class of molecules called
immunoantibiotics, in particular the inhibitor IspH (55). IspH,
an enzyme of the isoprenoid synthesis pathway, is essential for
the survival of most Gram-negative bacteria and the absence of
BA

FIGURE 6 | Anti-BTN3A agonist antibody increases the secretion of cytokines and cytotoxic molecules in Vg9Vd2 T cell/infected-monocyte co-cultures. Monocytes
isolated from healthy donors (n = 4) previously infected 24 hours with C. burnetii NM1 (50 MOI) or with M. tuberculosis (5 MOI) were co-cultured with autologous
Vg9Vd2 T cells (E:T ratio of 1:1) in the presence of anti-BTN3A antibody (clone 20.1) (0-10 µg/ml). After 4 hours of co-culture, the culture supernatants were analyzed
for the presence of cytokines (A, left panel) and cytotoxic molecules (B, right panel) by ELISA assay. Data were analyzed using a normality test and a parametric t
test. Values represent mean ± standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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IspH causes an accumulation of its substrate HMBPP, which in
turn activates Vg9Vd2 T cells. Another approach would be to
target specifically the ligands expressed on the surface of stressed
infected cells, such as BTN3A, which will vehicle activation and
cytotoxicity of Vg9Vd2 T cells (56). This is the case in a trial in
cancer patients where the approach is to activate Vg9Vd2 T cells
by targeting BTN3A (NCT04243499, ImCheck Therapeutics,
Marseille, France) (57, 58).

In addition, we have also explored the effect of the 20.1 mAb
in the case of SARS-CoV-2 infection. By activating the Vg9Vd2 T
cells, 20.1 mAb may affect intracellular SARS-CoV-2 replication
in vitro in infected cells (submitted manuscript). Future studies
should be conducted to elucidate the detailed mechanisms of
protective Vg9Vd2 T cell activation and how precisely BTN3A is
involved in infections. These results highlight that the BTN3A
agonist antibody could represent powerful therapeutic tool in
infections to overcome the imbalances in immune responses
observed in some patients and open new perspectives in Vg9Vd2
T-cell-based immunotherapies in infectious diseases.

In summary, this study provided further insight into the role
of Vg9Vd2 T cells in infections with intracellular bacteria. We
demonstrated that C. burnetii infection results in modulation of
BTN3A and BTN2A co-receptor expression, allowing activation
of Vg9Vd2 T cells. We report for the first time the role of a
BTN3A agonist antibody in the control of intracellular bacterial
infection. The latter boosts the cytotoxic functions of Vg9Vd2 T
cells in vitro such as their degranulation, the production of TNF-
a and IFN-g, and killing activity leading to a better clearance of
C. burnetii load of infected target cells. These results may
facilitate new approaches to the treatment of persistent
bacterial infections by enhancing Vg9Vd2 T cell responses in
presence of infected cells.
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and the Etablissement Français du Sang (Marseille, France). The
Frontiers in Immunology | www.frontiersin.org 11167
patients/participants provided their written informed consent to
participate in this study.
AUTHOR CONTRIBUTIONS

LG, MG, and MF performed the experiments and analyzed the
data. SM, CC, EF, L.M, J-LM and DO supervised the work. LG,
SM, J-LM, and DO participated in the writing of the paper. All
the authors read and approved the final manuscript.

FUNDING

LGwas supported by aCifre fellowship from ImCheckTherapeutics.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
915244/full#supplementary-material

Supplementary Figure 1. | Phenotype confirming gene invalidation in THP-1 cell
line. CRISPR-Cas9-mediated inactivation of BTN3A1/3A2/3A3 or BTN2A1/2A2
isoforms was performed in THP-1 cell lines. (A) The expression level of BTN3A was
assessed by flow cytometry. Data were collected on a BD Canto II instrument (BD
Biosciences). (B) The expression level of BTN2A was assessed by flow cytometry.
Data were collected on a CytoFLEX S instrument (Beckman Coulter). All data were
analyzed with FlowJo software (FlowJo v10.6.2).

Supplementary Figure 2. | Manual gating for Vg9Vd2 T cell functional assays. (A)
Monocytes were co-cultured with Vg9Vd2 T cells at effector-to-target (E:T) ratio of
1:1 and fluorochrome-labeled CD107a and CD107b. Phorbol 12-myristate 13-
acetate (PMA, 20 ng/mL) with ionomycine (1 µg/mL) were used as positive control
for Vg9Vd2 T cell activation. After 4 hours, cells were harvested and stained with
fluorochrome-labeled TCR-specific mAbs and a viability marker. The degranulation
was evaluated by flow cytometry as the percentage CD107a/b+ cells in the gd T cell
population. (B) Monocytes were labeled with 10 µM Cell Proliferation Dye eFluor®
670 and then co-cultured with Vg9Vd2 T cells at E:T ratio of 1:1. After 4 hours, cells
were stained with CellEvent Caspase-3/7 Green to identify dead cells. The
cytotoxicity was assessed by flow cytometry as the percentage of Caspase 3/7+
cells in the target cell population.

Supplementary Figure 3. | Anti-BTN3A agonist antibody increases antimicrobial
activity of Vg9Vd2 T cells towards M. tuberculosis infected monocytes. Monocytes
isolated from healthy donors (n=4) previously infected 24 hours with M. tuberculosis
(5 MOI) were co-cultured with autologous Vg9Vd2 T cells (E:T ratio of 1:1) in the
presence of anti-BTN3A antibody (clone 20.1) (0-10 µg/ml). After 4 hours of co-
culture, M. tuberculosis load was measured by qPCR. Data were analyzed using a
normality test and a Mann-Whitney U test. Values represent mean ± standard
deviation. *p < 0.05, **p < 0.01 and ***p < 0.001.
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Strip and Kill Tumor Cells Simultaneously. Immunol Lett (2007) 110(1):42–
53. doi: 10.1016/j.imlet.2007.03.002

35. Benyamine A, Loncle C, Foucher E, Blazquez J-L, Castanier C, Chrétien A-S,
et al. BTN3A is a Prognosis Marker and a Promising Target for Vg9vd2 T
Cells Based-Immunotherapy in Pancreatic Ductal Adenocarcinoma (PDAC).
On c o Immu n o l o g y ( 2 0 1 8 ) 7 ( 1 ) : e 1 3 7 2 0 8 0 . d o i : 1 0 . 1 0 8 0 /
2162402X.2017.1372080

36. Mezouar S, Benammar I, Boumaza A, Diallo AB, Chartier C, Buffat C, et al.
Full-Term Human Placental Macrophages Eliminate Coxiella Burnetii
Through an IFN-g Autocrine Loop. Front Microbiol (2019) 10:2434. doi:
10.3389/fmicb.2019.02434

37. Fellag M, Loukil A, Saad J, Lepidi H, Bouzid F, Brégeon F, et al. Translocation
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Coronary atherosclerotic heart disease (CAD) is a chronic inflammatory cardiovascular
disease with high morbidity and mortality. Growing data indicate that many immune cells
are involved in the development of atherosclerosis. However, the immunological roles of gd T
cells in the initiation and progression of CAD are not fully understood. Here, we used flow
cytometry to determine phenotypical changes of gd T cells and their subpopulations in
peripheral blood samples collected from 37 CAD patients. The Pearson correlation coefficient
was used to analyze the relationship between the clinical parameter (serum LDL-C level) and
the changes of immunophenotypes of gd T cells. Our results demonstrated that the
frequencies and absolute numbers of total gd T cells and Vd2+ T cells were significantly
decreased in CAD patients when compared to healthy individuals. However, the proportion of
Vd1+ T cells was much lower in CAD patients than that of healthy individuals. Most
importantly, a significant alteration of the Vd1/Vd2 ratio was found in CAD patients. In
addition, a series of surface markers that are associated with costimulatory signals (CD28,
CD40L, CD80, CD86), activation levels (CD69, CD25, HLA-DR), activating NK cell receptors
(NKp30, NKp46, NKG2D) and inhibitory receptors (PD-1, CTLA-4, PD-1, Tim-3) were
determined and then analyzed in the total gd T cells, Vd2+T cells and Vd2-T cells of CAD
patients and healthy individuals. The data demonstrated that immunological activities of total
gd T cells, Vd2+T cells, and Vd2-T cells of CAD patients were much lower than those in healthy
individuals. Moreover, we found that there were positive correlations between the serum LDL-
C levels and frequencies of CD3+gd+ T cells, CD69+Vd2+T cells, NKG2D+Vd2+T cells, and
NKp46+Vd2+T cells. By contrast, there was an inverse correlation between the levels of serum
org July 2022 | Volume 13 | Article 9003341170
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LDL-C and the frequencies of CD69+Vd2-T cells and NKp46+Vd2-T cells. Accordingly, these
findings could help us to better understand the roles of gd T cells in the CAD, and shed light on
the development of novel diagnostic techniques and therapeutic strategies by targeting gd T
cells for CAD patients.
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INTRODUCTION

Cardiovascular diseases (CVDs) continue to increase in
prevalence and deaths worldwide, and remain the leading
cause of severe disease burden and death in the world (1).
Coronary atherosclerotic heart disease (CAD) is one of the
most common cardiovascular diseases as well as the one of the
leading causes of death in middle-aged and elderly people (2).
The main pathophysiological change of CAD is coronary artery
atherosclerosis (AS), which is a chronic inflammatory disease
involved with many large and medium-sized arteries. Severe
coronary stenosis and/or unstable atherosclerotic plaque rupture
can lead to vascular embolism, myocardial ischemia, angina
pectoris, myocardial infarction, arrhythmia, and even sudden
death, which seriously threatens human life and health. The
occurrence and development of atherosclerotic heart disease are
related to a variety of risk factors, and metabolic factors, such as
hypertension and hyperlipidemia (1). In order to reduce the
occurrence of various complications, premature death and
disability caused by coronary artery disease, more studies are
required to investigate the underlying mechanisms of occurrence
and development of CAD and coronary atherosclerosis and this
will help us to explore new strategies for prevention of
atherosclerosis and CAD.

The formation of atherosclerosis is complex and multifactorial,
in which immunological dysregulation and serious inflammatory
response are suggested to be the critical keys to its occurrence and
progression. The various immune cells, such as monocytes,
macrophages, dendritic cells, NK cells of the innate immune
system as well as T cells and B cells of the adaptive immune
system, are supposed to be involved in all processes of formation
and development of atherosclerosis and rupture of vulnerable
plaques. Some immune cells that infiltrate into the atherosclerotic
plaque and the interactions of cells induce the secretion of pro-
inflammatory cytokines which maintain the atherosclerotic plaque
in an inflammatory microenvironment (3). The immunological
roles of monocytes, macrophages and CD4+T cells, which are the
most common T cells in plaques and atherosclerotic lesions, have
been extensively studied. However, the immunological functions of
some other immune cells in atherosclerosis are still unclear, such as
gd T cells (4). gd T cells are innate-like T cells that carry TCR g and d
chains. Unlike abT cells, gd T cells only account for 1-10% of T cells
in human peripheral blood but are abundant in mucosal tissues
such as skin, intestine, and lung (5). gd T can recognize, in a major
histocompatibility complex (MHC) non-restricted (6) manner,
endogenous and exogenous phosphorylated antigens (pAgs) such
as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP)
and isopentenyl pyrophosphate (IPP) (7) and respond rapidly as
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the first line of immune defense. gd T cells can also be activated
through their surface-expressed TCRs and natural killer cell
receptors, such as NKp30, NKp44, and natural-killer group 2
member D (NKG2D) (6). Activated gd T cells can exhibit
multiple immunological functions by expressing and producing
cytotoxins such as TRAIL, Fas/Fas-L, granzyme B and perforin. In
addition, gd T cells can also produce large amounts of cytokines,
such as IFN-g, TNF-a, and IL-17. Human gdT cells can generally be
divided into two major subpopulations based on the expression of
the TCR Vd chain in the peripheral blood: Vd2+T cells and Vd2-T
cells (8). Accordingly, 65~90% of gd T cells in adult peripheral blood
are Vd2+T cells, which are almost always paired with Vg9+, thus
these cells are often referred to as Vg9+Vd2+T cells (9). Vg9+Vd2+T
cells usually display a cytotoxic phenotype and secrete excessive
amounts of IFN-g and TNF-a, which have the potent killing effects
against many hematological tumors and solid tissue tumors (10).
While Vd2-T cells are mainly Vd1+T cells, with fewer Vd3+T and
Vd5+T cells (9). Unlike Vg9+Vd2+T cells, this Vd2-T cell
subpopulation mainly exists in mucosal tissues, and only a small
part (less than 30%) exists in peripheral blood. In addition, Vd1+ T
cells mainly play an immunosuppressive role. Previous studies
reported that Vd1+ T cells can induce FoxP3 expression in the
presence of TGF-b and IL-2/IL-15, and their immunomodulatory
effects are similar to those of Treg cells (11, 12). A large body of
evidence indicates that gd T cells are regarded as a bridge between
innate and adaptive immune responses, which play an important
role in the human immune response (13).

The presence of gd T cells in human atherosclerotic plaques
was first reported in 1993 (14). However, there are still only a few
studies to mention the immunological functions of gd T cells in
atherosclerosis. The evidence which was collected from an
experimental model of atherosclerosis demonstrated that lack
of gd T cells decreased plasma total cholesterol levels and reduced
atherosclerosis in the aortic sinus of ApoE-/- TCRd-/- mice,
although these differences did not reach statistical significance
(15). Additionally, a significant increase in gd T cells, which
produce IL-17 but not IFN-g, was also found in the aortic root
and arch of ApoE KO mice, and depletion of these cells reduced
the size of early atherosclerotic lesions at this site in mice (16).
However, another TCRd-/-ApoE-/- mouse study found no critical
role for gd T cells in the development of early atherosclerosis in
the total aorta of mice after 10 weeks of high-fat diet feeding (17).
These studies suggest a pathogenic role for gd T cells in early
atherosclerosis in mice and their effects may be site-specific.
Recent studies demonstrated that IL-23R+gd T cells are
frequently found in the aortic root of Ldlr-/-Il23rgfp/+ mice.
Moreover, the absence of this subset of gd T cells reduces reduced
the formation of AS lesions in the aortic root. And the gd T cells
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were confirmed by scRNAseq to be the predominant cells
expressing IL-23R and IL-17A in the aorta (18). This suggested
that the pathogenic role of gd T cells in early mouse AS may be
related to IL-17A- and IL-23R-mediated immune response.
Although some progress has been made with gd T cells in
experimental mouse models, the specific pathogenic
mechanisms of gd T cells in early atherosclerotic lesions and
how they change with disease progression have not been fully
elucidated, and it is even more challenging to translate these
findings in animal models to human disease. At present, the roles
of gd T cells in the development of human atherosclerotic disease
are less studied and remain largely unknown. A Multi-Ethnic
Study of Atherosclerosis (MESA) cohort study showed that a
higher proportion of gd T cells in older adults was associated with
poorer cardiac function in a subclinical state with cardiovascular
risk factors but without heart failure (19). Analysis of high-
throughput gene expression datasets revealed that the proportion
of infiltrating gd T cells in human AS plaques was decreased and
significantly negatively correlated with inflammation-related
pathways such as the IL-23 signaling pathway and NOTCH2
signaling pathway (3). This study found that gd T cells from
patients with acute myocardial infarction (AMI) had restricted
expression of gd rearrangement of TCR and higher expression of
IL-17A, suggesting that gd T cells may play an important role in
the pathological progression of AMI (20). These results
suggested that gd T cell-mediated inflammatory responses may
play an important role in the formation and development of
human coronary atherosclerotic heart disease; however, the
immunological functions of gd T cells in advanced
atherosclerosis has not been elucidated.

Therefore, based on the pathogenic role of gd T cells in early
atherosclerosis in mice, our study intends to analyze and
compare the changes in the absolute number and
immunophenotypes of gd T cells and their subpopulations in
the peripheral blood of CAD patients and healthy individuals, as
well as the analysis of the correlation between clinically relevant
indices and the immunophenotypes in the peripheral blood of
CAD patients. In this study, we demonstrated that
immunological characteristics of total gd T cells, Vd2+T cells,
and Vd2-T cells exhibited significant alteration in CAD patients
when compared with the healthy individuals. Most interestingly,
our data found that serum LDL-C level had a diametrically
opposite correlation with the frequencies of subpopulation cells
in Vd2+T cells and Vd2-T cells, particularly the cells that
expressed CD69. These results could provide us with more
clues and hints to reveal the potential functions of gd T cells in
the progression of CAD.
MATERIALS AND METHODS

Patients and Samples
Including 24 male cases and 13 female cases, 37 CAD patients
with 37~82 years old were enrolled who have been diagnosed
with coronary angiography in the Department of Cardiology,
Nanfang Hospital of Southern Medical University from April to
Frontiers in Immunology | www.frontiersin.org 3172
June 2021. To assess the phenotypes of peripheral immune cells,
10 mL of heparinized anticoagulant was collected before
coronary stenting in CAD patients. The clinical and
demographic characteristics of CAD patients were described in
Table 1. At the same time, 84 healthy individuals aged 40 to 66
years were recruited for this study, including 47 males and 37
females. The exclusion criteria of the healthy individuals
included (1) a history of cardiovascular system diseases such as
myocardial infarction, heart failure, angina pectoris, and/or
cerebrovascular disease (2); hypertension, diabetes, and obesity;
(3) severe liver damage, severe infectious diseases, hematological
or autoimmune diseases. Similarly, 10 mL of peripheral blood
was collected for subsequent immunological assays. Ethical
approval was obtained from the Medical Ethics Committee of
Nanfang Hospital of Southern Medical University.

Peripheral Immune Cell Phenotype
Analyzing by Flow Cytometry
To determine the phenotypic surface markers of gd T cells and
their subpopulations, collected peripheral blood samples were
analyzed by flow cytometry. After the collected heparinized
anticoagulant whole blood (1 mL) was directly lysed twice with
red blood cell lysis solution, the whole blood leukocytes were
isolated, and then stained with mouse anti-human fluorescein-
conjugated monoclonal antibodies against different markers
(Supplementary Table 1). After incubation in the dark for 15
mins, the cells were washed twice with PBS. Subsequently, the
cells were resuspended in 200 uL PBS, and then added 5 uL of
CountBright™ Absolute Counting Beads (Thermo Fisher
Scientific). Finally, samples were collected using the instrument
FACSVerse (BD biosciences) and data were analyzed using
FlowJo 10.5.3 (FlowJo LLC).

Statistical Analysis
Data were processed and analyzed using Microsoft Excel 2019
and Graphpad Prism 8.0.1. Unpaired t-test was used for
statistical comparison of immune indexes between CAD
patients and healthy individuals, and the Pearson correlation
coefficient was used to calculate the correlation between two
continuous variables of clinical related indexes of CAD patients
and immune indexes in their peripheral blood. Statistical graphs
were drawn by Graphpad Prism 8.0.1, all tests were set as two-
TABLE 1 | Clinical and demographic characteristics of CAD patients.

CAD (n=37)

Age (years) 64.70 ± 9.1
Sex (male/female) 24/13
Smoking 15 (40.5%)
Hypertension 20 (54.1%)
Diabetes 8 (21.6%)
Gensini 39.88 ± 36.89
LDL-C (mmol/L) 2.79 ± 0.93
HDL-C (mmol/L) 1.14 ± 0.28
TG (mmol/L) 1.66 ± 0.83
July 2022 | Volume 13 |
LDL-C, Low-density lipoprotein cholesterol; HDL-C, High-density lipoprotein cholesterol;
TG, Triglyceride.
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tailed, P<0.05 was considered to be significantly different, and the
results in the figure were expressed as Mean with SD.
RESULTS

Changes in the Proportion of gd T Cells
and Their Subsets in Peripheral Blood of
CAD Patients
To investigate whether the immunological features of gd T cells
and their subsets were altered in CAD patients. The percentages
and absolute numbers of gd T cells and their subsets in the
peripheral blood of CAD patients and healthy individuals were
analyzed, respectively. The gating strategy identifying gd T cells,
Vd1+ and Vd2+ gd T cell subsets were shown in Supplementary
Figure 1A, and the results indicated that the percentages of
CD3+T cells (Figure 1A), gd T cells in CD3+ T cells (Figure 1B),
Vd2+T cells in gd T cells (Figure 1C) in the CAD patients were
significantly decreased when compared to that in healthy
individuals. However, the CAD patients had a higher
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frequency of Vd1+T cells in gd T cells than that in healthy
individuals (Figure 1D). When further analyzing the absolute
number of CD3+T cells (Figure 1E), gd T cells in CD3+ T cells
(Figure 1F), the data indicated that Vd2+T cells in gd T cells
(Figure 1G) were higher in CAD patients than those in healthy
individuals. By contrast, there was no significant difference in the
absolute number of Vd1+T cells in gd T cells between CAD
patients and healthy individuals (Figure 1H). Moreover, the
Vd1/Vd2 ratio in CAD patients was elevated (2.326 ± 4.448),
when compared to that in healthy individuals (0.411 ±
0.944) (Figure 1I).

The Activation Levels of gd T Cells in the
CAD Patients Are Altered
gd T cells can exhibit multiple immunological functions because
this population of cells can express CD28, CD80/CD86, and
CD40L. In addition, CD80/CD86-CD28 and CD40-CD40L
signaling are involved in regulating different functions of gd T
cells and their subsets. To investigate the functional status of gd T
cells during CAD, we next compared the frequencies of CD28,
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FIGURE 1 | Statistical comparison of the percentages and absolute numbers of gd T cell and its subsets Vd1+T cells, Vd2+T cells, and Vd1/Vd2 ratios in the
peripheral blood between healthy individuals (HC) and CAD patients. (A) CD3+T cells, (B) gd T cells, (C) Vd2+T and (D) Vd1+T cells frequencies as percentages of
lymphocytes, CD3+T cells, and total gd T cells respectively, absolute numbers of (E) CD3+T cells, (F) gd T cells, (G) Vd2+T and (H) Vd1+T cells and (I) Vd1/Vd2 ratios
of healthy individuals versus CAD patients. *P < 0.05, ***P < 0.001, and ****P < 0.0001; ns, no significance.
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CD80, CD86, and CD40L positive cells in total gd T cells, and
Vd2+T cells between CAD patients and healthy individuals. The
gating strategy for the identification of gd T cells, Vd2+T cells,
and Vd2-T cells, and their surface immunophenotypes were
presented in Supplementary Figure 1B. Analysis of gd+

CD28+ T cells (Figure 2A), gd+ CD80+ T cells (Figure 2B),
and gd+ CD40L+T cells (Figure 2D) frequencies demonstrated
that there were no significant differences between CAD patients
and healthy individuals. However, the frequency of gd+ CD86+ T
cells in total gd T cells is much higher in healthy individuals
compared to CAD patients (Figure 2C). In the Vd2+T cells, the
percentage of CD28+ T cells, CD80+ T cells, CD86+ T cells, and
CD40L+ T cells were found no significant differences between
healthy individuals and CAD patients (Figures 2E–H).

To investigate the changes in the activation status of gd T cells
and their subsets in CAD, the activation markers of gd T cells and
their subsets were also determined for evaluating their potential
immunological roles. Activated gd T cells can express several
classical markers, including CD69, CD25, and HLA-DR.
Additionally, in human peripheral gd T cells, the majority
subset of gd T cells is Vd2+T cells, whereas gd T cells
expressing other Vd elements (Vd2-T cells) are rare in the
blood but they still display some functions. Therefore, the
CD69+, CD25+ and HLA-DR+ cells in total gd T cells, Vd2+T
cells, and Vd2-T cells were compared between healthy
individuals and CAD patients. Our results indicated that the
proportions of total gd T cells, Vd2+T cells, and Vd2-T cells that
were CD69+ were significantly lower in CAD patients compared
to healthy individuals (Figures 3A, D, G). In addition, no
significant differences were found in the percentages of CD25+

cells in the total gd T cells and Vd2+T cells between healthy
individuals and CAD patients (Figures 3B, E). But in the Vd2-T
Frontiers in Immunology | www.frontiersin.org 5174
cells, the frequency of CD25+ cells were lower in CAD patients
than that in healthy individuals (Figure 3H). Furthermore, the
frequencies of HLA-DR+ cells in total gd T cells and Vd2+T cells
were lower in CAD patients compared to healthy individuals
(Figures 3C, F). And there was no significant difference in the
percentage of HLA-DR+ cells in Vd2-T cells between healthy
individuals and CAD patients (Figure 3I).

According to previous studies, the activating NK cell
receptors, such as NKp30, NKp46, and NKG2D, play critical
roles in modulating multiple functions of gd T cells. To
determine the phenotypic changes of activating NK cell
receptors in gd T cells and their subsets in CAD, the surface
levels of NKp30, NKp46, and NKG2D in total gd T cells, Vd2+T
cells, and Vd2-T cells were compared between healthy
individuals and CAD patients. The percentages of NKp30+

(Figures 4A, D, G), NKp46+(Figures 4B, E, H), and NKG2D+

cells (Figures 4C, F, I) in total gd T cells, Vd2+T cells, and Vd2-T
cells were significantly lower in CAD patients compared to
healthy individuals.

Changes in the Expression of
Immunosuppressive Molecules on the
Surface of gd T Cells in Peripheral Blood of
CAD Patients
Although CAD was previously known as a lipid accumulation-
mediated disease, it has now been considered a chronic
inflammatory disease. The multiple inhibitory receptors
(including PD-1, CTLA-4, PD-1, and Tim-3) are involved in
regulating the functions of gd T cells in the inflammatory
response. To better understand the roles of inhibitory signals in
gd T cells during the onset of CAD, the proportions of NKG2A+,
Tim-3+, PD-1+, and CTLA-4+cells among total gd T cells, Vd2+T
A B D
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FIGURE 2 | Expression of co-stimulatory molecules on the surface of gd T cell and its subsets in peripheral blood of healthy individuals (HC) and CAD patients (A, E)
CD28, (B, F) CD80, (C, G) CD86, and (D, H) CD40L frequencies as percentages of total gd T cells, and Vd2+T cells respectively, of healthy individuals versus CAD
patients. ****P < 0.0001; ns, no significance.
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cells, and Vd2-T cells were determined. Our results indicated that
the frequencies of NKG2A+, CTLA-4+, and PD-1+ cells in the total
gd T cells were significantly lower in CAD patients (Figures 5A, C,
D), but the frequencies of Tim-3+ cells in the total gd T cells were
significantly higher in CAD patients compared to healthy
individuals (Figure 5B). In the Vd2+T cells, the frequencies of
PD-1+, and CTLA-4+ cells are much lower in CAD patients than
that in healthy individuals (Figures 5G, H). And no significant
differences in the percentages of NKG2A+, Tim-3+ cells between
healthy individuals and CAD patients (Figures 5E, F). By contrast,
there were no significant differences in the percentages of NKG2A+

and Tim-3+ cells in Vd2-T cells between healthy individuals and
CAD patients (Figures 5I, J). However, the frequencies of PD-1+

Vd2-T cells (Figure 5K) and CTLA-4+ Vd2-T cells (Figure 5L) were
significantly lower in CAD patients than that in healthy individuals

Correlation of Serum LDL-C With the
Immunophenotype of gd T Cells in
CAD Patients
It is well known that elevated low-density lipoprotein cholesterol
(LDL-C) level is a major risk factor for CAD. Therefore, we next to
Frontiers in Immunology | www.frontiersin.org 6175
further evaluate the correlation of immunological features of gd T
cells and their subsets with the levels of serum LDL-C, which will
help us to use these immunological factors as indicators to predict
the development of CAD. The results indicated that the level of
serum LDL-C in CAD patients was significantly positively
correlated with the percentage of gd T cells in total CD3+ cells
(r=0.3994, P= 0.0158) (Figure 6A), However, the level of serum
LDL-C was significantly negatively correlated with the expression
of CD69 (r=-0.4073, P=0.0137) on the surface of gd T cells in
peripheral blood (Figure 6B). In addition, the level of serum LDL-
C in CAD patients was significantly positively correlated with the
proportions of CD69+ cells (r=0.3368, P=0.0446), NKG2D+ cells
(r=0.5131, P=0.0014), and NKp46+ cells (r=0.3384, P=0.0435);
r=0.3368) in Vd2+T cells (Figures 6C–E). By contrast, there was
an inverse correlation between the serum levels of LDL-C and the
frequencies of CD69+Vd2-T cells (r=-0.4357, P=0.0079) and
NKp46+Vd2-T cells (r=-0.4028, P=0.0149) (Figures 6F–H).
Taken together, our data suggested that activation levels of
Vd2+T cells and Vd2-T cells might be associated with the
development of CAD and these two populations of cells may
exhibit different potential functions in CAD.
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FIGURE 3 | Expression of activation marker on the surface of gd T cell and its subsets in peripheral blood of healthy individuals (HC) and CAD patients. (A, D, G)
CD69, (B, E, H) CD25, and (C, F, I) HLA-DR frequencies as percentages of total gd T cells, Vd2+T, and Vd2-T cells respectively, of healthy individuals versus CAD
patients. **P < 0.01 and ****P < 0.0001; ns, no significance.
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DISCUSSION

The pieces of evidence collected from the animal models suggest
that gd T cells display a critical pathogenic role in the early stage of
atherosclerosis. However, whether human gd T cells display similar
roles in CAD remains unclear. Here, this study aims to preliminarily
explore the changes in immunophenotypes of gd T cells in human
coronary atherosclerotic heart disease. In this study, we included 37
patients with a clinical diagnosis of CAD and severe stenosis with
greater than 80% arterial vascular involvement as the study group
and recruited 84 healthy individuals as controls. Flow cytometry
was used to analyze the alterations in the absolute numbers and
immunophenotypic changes of gd T cells and their subsets in
peripheral blood between the two groups. Furthermore, we also
analyzed the correlation between clinically relevant indicators and
the immune cell phenotype in CAD patients. We found that the
absolute number of circulating gd T cells in the peripheral blood of
CAD patients was significantly lower than that of healthy
individuals, which may be due to the significantly lower
percentage of naïve gd T cells and the marked significantly
Frontiers in Immunology | www.frontiersin.org 7176
increase of Fas, which is a molecule that mediates apoptosis on
the surface of gd T cells in the peripheral blood of CAD patients
(Supplementary Figure 2). The proportion of gd T cell subsets,
such as the Vd2+T cells and Vd1+T cells, in the peripheral blood of
CAD patients, is unbalanced, which leads to an alteration in the
ratio of Vd1/Vd2 in CAD patients. Compared with healthy
individuals, the expression of activation markers on the surface of
gd T cells and their subsets in the peripheral blood of CAD patients
were significantly lower than those of healthy individuals. In
addition, the levels of surface immunosuppressive molecules PD-1
and CTLA-4 on the surface of gd T cells and their subsets in the
peripheral blood of CAD patients were also significantly decreased,
but the expression of the inhibitory marker Tim-3 on the surface of
gd T cells was significantly increased. We also observed that the
serum LDL-C level of CAD patients was significantly positively
correlated with the percentage of gd T cells and was also different
significant correlations with the immunophenotypes of different
subsets. These results suggest that under the continuous stimulation
of the chronic inflammatory environment in CAD and the
functions of gd T cells may be progressively exhausted in a state
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FIGURE 4 | Expression of NK cell-activating receptors on the surface of gd T cell and its subsets in peripheral blood of healthy individuals (HC) and CAD patients.
(A, D, G) NKp30, (B, E, H) NKp46, and (C, F, I) NKG2D frequencies as percentages of total gd T cells, Vd2+T, and Vd2-T cells respectively, of healthy individuals
versus CAD patients. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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of low activation and high inhibition, suggesting an important
association of gd T cells and their subpopulations with the
pathophysiological processes of human CAD.

Roman Kleindienst et al. were the first time to report that gd T
cells existed in human atherosclerotic plaques, and the number
Frontiers in Immunology | www.frontiersin.org 8177
of gd T cells was the highest in the early atherosclerotic lesions
when there were relatively few CD3+T cells, and its proportion
was 9.7% in the transition zone between normal vascular intima
and lipid streaks, and then gradually decreased to 6.6% and 4.3%
in fat streak and atherosclerotic plaque (14). Using high-
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FIGURE 5 | Expression of immunosuppressive molecules on the surface of gd T cell and its subsets in peripheral blood of healthy individuals (HC) and CAD patients.
(A, E, I) NKG2A, (B, F, J) Tim-3, (C, G, K) PD-1, and (D, H, L) CTLA-4 frequencies as percentages of total gd T cells, Vd2+T, and Vd2-T cells respectively, of healthy
individuals versus CAD patients. **P < 0.01, ***P < 0.001, and ****P < 0.0001; ns, no significance.
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FIGURE 6 | The Pearson correlation between serum LDL-C level in CAD patients and immune cell phenotypes of gd T cell and its subsets in peripheral blood of
CAD patients. (A) gd T cells, (B) gd+CD69+T cells, (C) Vd2+CD69+T cells, (D) Vd2+NKG2D+T cells, (E) Vd2+NKp46+T cells, (F) Vd2-NKp46+T cells and (G, H) Vd2-

CD69+T cells.
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throughput analysis technology to analyze three gene expression
databases related to CAD, a recent study demonstrated that the
number of gd T cells infiltrating human atherosclerotic plaques
was lower than that in control groups. Meanwhile, the expression
levels of immunological function-related genes including the
chemokines (CCL5, CX3CL1, CXCL10) in CAD plaques were
higher than those in the control group (3). Previous studies have
shown that the phenotypic distribution of immune cells differs
between carotid atherosclerotic plaques and blood, and the
frequencies of CD4-CD8-T cells were more abundant in
plaques than that in blood. Furthermore, T cells in the blood
were mostly quiescent, whereas the coexistence of activated, pro-
inflammatory and exhausted T cells in the same plaque suggested
a progressive loss of T cell function during chronic and
prolonged inflammatory responses (21). Thus, these findings
will extend our understanding of the interconnectedness of
migration, heterogeneity, and functional alterations of immune
cells between atherosclerotic plaques and peripheral blood. Our
results demonstrated that the proportion of gd T cells in the
peripheral blood of CAD patients was also significantly lower
than that of healthy individuals. We also found that the absolute
number of subset Vd2+T cells in the peripheral blood of CAD
patients was significantly decreased compared with it in the
healthy individuals, and the number of Vd1+T cells was
significantly increased, resulting in an increased Vd1/Vd2 ratio.
Generally, since Vd2+T cells in peripheral blood are the
predominant gd T cells, the Vd1/Vd2 ratio in peripheral blood
is less than 1. But, the phenotypes of gd T cell subsets in CAD
patients and healthy individuals are so different, indicating that
the balance between Vd1+T cells and Vd2+T cells is very
important for the maintenance of immune function in CAD
patients. However, whether the different functions of these two
subpopulations of gd T cells lead to such opposite phenotypes in
CAD patients remains to be further investigated.

The functional responses of T cells require the co-existence of
antigen-stimulatory signals and co-stimulatory signals, and the
integration and transmission of these signals require the
participation of activating or inhibitory molecules expressed on
the surface of T cells. The immunoglobulin-like CD28 family and
the tumor necrosis factor receptor superfamily are the important
co-stimulatory molecules on the surface of T cells. And the
interaction of CD28 on the surface of T cells and CD80/CD86 on
the surface of antigen-presenting cells (APCs) is the critical
costimulatory signal for activating T cells. According to the
previous studies, the data have shown that the CD28/CTLA-4-
CD80/CD86 pathway plays an important role in accelerating the
development of atherosclerotic lesions, and was considered as an
important potential target in immune regulation of
atherosclerosis. For example, the absence of CD80/86
costimulation significantly reduced the development of early
hyper-cholesterol-induced atherosclerotic lesions in Ldlr-/-

mice. This data suggested that CD80 and CD86 molecules are
involved in the regulation of the occurrence of atherosclerotic
lesions and the initiation of antigen-specific T cell responses in
atherosclerotic lesions (22, 23). In addition, the CD80/CD86
pathway is also a promising biomarker of atherosclerotic plaque
Frontiers in Immunology | www.frontiersin.org 9178
vulnerability. Analysis of atherosclerotic plaques from human
carotid endarterectomy revealed that the expression levels of
costimulatory molecules CD80 and CD86 were closely related to
plaque vulnerability (24). In CTLA-4-transgenic/Apoe-/- mice,
overexpression of CTLA-4 can significantly reduce the formation
of atherosclerotic lesions and significantly inhibit the
accumulation of macrophages and CD4+T cells in the plaque,
and then regulate atherosclerosis by down-regulating the
expression of costimulatory molecules CD80, CD86, and CD28
(25). PD-1 is another regulatory molecule induced and expressed
upon T-cell activation that plays an important role in
modulating immune responses and autoimmunity by binding
to its ligand PD-L1/2. Some studies have shown that deficiency of
PD-1/PD-L1 could accelerate the development of atherosclerosis
(26, 27). Our results showed that the expression levels of CD86,
PD-1, and CTLA-4 in the peripheral blood of CAD patients were
significantly lower than those of healthy individuals, indicating
that the co-stimulatory signal required for activation of gd T cells
in CAD patients may be down-regulated in the chronic
inflammation environment which established in the CAD
patients. These findings suggested that abnormalities in CD28/
CTLA-4-CD80/CD86 and PD-1-mediated signaling pathways
may be involved in the pathogenic mechanism of gd T cells in
the progression of CAD. Previous studies have shown that Tim-3
is highly expressed on the surface of circulating NK cells in
patients with atherosclerosis, suggesting that Tim-3 is involved
in the occurrence of atherosclerosis and may be associated with
the microenvironmental inflammation of atherosclerosis.
Furthermore, treatment of statins can reduce the expression
proportion of Tim-3 on NK cells in patients with
atherosclerosis (28, 29). The treatment of anti-Tim-3
monoclonal antibody in LDLr-/- mice exhibited therapeutic
effects in the acceleration of atherosclerotic plaque formation
accompanied by an increase in the number of monocytes/
macrophages and CD4+T cells and a decrease in the number of
regulatory T cells and regulatory B cells (30). Tim-3 is also
significantly increased in non-classical immune cells human
artery vascular smooth muscle cells (HASMCs) and can inhibit
platelet-derived growth factor-BB (PDGF-BB)-induced
inflammatory response by inhibiting the activation of NF-kB,
and limiting the expression levels of inflammatory cytokines IL-6
and TNF-a, suggesting that Tim-3 as a potential target for
controlling atherosclerotic (31). In our study, our results
indicated that Tim-3 on the surface of gd T cells in the
peripheral blood of CAD patients is significantly higher than
that of healthy individuals, suggesting that the Tim-3+gd T cells
might be involved in the formation of atherosclerosis, and may
be an alternative therapeutic target. Another study found that
expression levels of Tim-3 in CD8+T cells in patients with
atherosclerosis were significantly up-regulated than those in
healthy individuals. Furthermore, the blockade of Tim-3 could
lead to a down-regulation in the production of anti-
atherosclerotic cytokines, while an increase in the production
of pro-atherosclerotic cytokines TNF-a and IFN-g, which could
promote the development of atherosclerotic lesions (32). This
evidence reported that expression patterns of CD86, PD-1, and
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Tim-3 were altered in the development of CAD, suggesting that
these molecules exhibited critical roles in this disease.
Accordingly, our results showed that similar patterns were
found in the CD86, PD-1, and Tim-3 expressions in gd T cells
of CAD patients. These data will extend our understanding that
not only NK cells and CD8+T cells are the effector immune cells
but also the putative role of gd T cells in the pathogenic
mechanism in the CAD.

A recent study reported that there was a significant
downregulation of CD69 mRNA level in peripheral blood
leukocytes in the pat ient with the progress ion of
atherosclerosis. Thus, CD69 expression was considered as an
independent predictor of subclinical atherosclerosis (33). In our
study, the expression levels of CD69 on the surface ofgd T cells
Vd2+T cells, and Vd2-T cells in the peripheral blood of CAD
patients were significantly lower than those of healthy
individuals. Moreover, the expression of HLA-DR, which is a
marker to indicate a late stage of T cell activation, on the surface
of gd T cells and Vd2+T cells in CAD patients was lower than that
of healthy individuals. Additionally, the expression of CD25,
which plays an important role in the formation of high-affinity
IL-2 receptors and promotes the proliferation of T cells, on the
surface of Vd2-T cells is lower in CAD patients compared with
healthy individuals. Finally, our data showed the expression
levels of NKG2D, NKp30, and NKp46 on the surface of gd T
cells and their subsets in the peripheral blood of CAD patients
were significantly lower than those of healthy individuals. Similar
to our findings, a previous study demonstrated that LDL
inhibited the activation and functions of human Vd2+T cells,
in terms of down-regulation of activation markers, such as
NKG2D expression (34). Together, these results suggest that
the activation levels of gd T cells and their subpopulations in
peripheral blood of CAD patients are significantly reduced in the
severe CAD, which may impair the immune function of gd T
cells in atherosclerosis.

Serum LDL-C level is an important risk factor for CAD, and it
can be oxidized and modified to ox-LDL in vivo. And this
reactivity can promote a series of complex pathophysiological
processes in vivo and plays an important role in the occurrence
and development of atherosclerosis. Our results indicated that
the level of serum LDL-C in CAD patients was significantly
positively correlated with the percentage of gd T cells in
peripheral blood. A previous study demonstrated that
cholesterol levels in gd T cells were much higher than that in
abT cells. And highly activated cholesterol metabolism can
regulate immunological activities of gd T cells, indicating that
gd T cells can quickly reach the cholesterol checkpoint, which did
a contribution to the hyper-activated phenotype of gd T cells
(35). Moreover, a previous study also found that human Vd2+T
cells expressed LDL receptor post activation and treatment of
LDL-C resulted in inhibition of functions of Vd2+T cells, which
in turn down-regulated the CD69 expression and IFN-g
production (34). In contrast, we found that levels of serum
LDL-C were significantly positively correlated with the
percentage of gd T cells in the peripheral blood of CAD
patients. In addition, the level of serum LDL-C in CAD
Frontiers in Immunology | www.frontiersin.org 10179
patients was also significantly positively correlated with the
expression levels of NKp46, NKG2D, and CD69 on the surface
of Vd2+T cells. Therefore, these data indicate that there is still
controversy about the link between the cholesterol metabolism
and immune functions of gd T cells, especially in the Vd2+T cells.
Meanwhile, our analysis demonstrated that there was
significantly negatively correlated with the expression of CD69
on the surface of gd T cells and Vd2-T cells and the expression of
NKp46 on the surface of Vd2-T cells. Here, in line with our
findings, one previous study showed that CD69 as an ox-LDL
receptor in T cells and CD69 expression in circulating T cells
correlate inversely with subclinical atherosclerosis in the patients
(33). Accordingly, the evidence collected from CAD patients will
help us to completely understand how functions of gd T cell and
its subpopulations are differently modulated by cholesterol
metabolism. Most importantly, our in vivo data further implies
a potential role by which cholesterol differentially regulates the
pathogenic mechanisms of gd T cell subsets in the progression
of CAD.

However, the limitation of this study could not be neglected.
First, further large sample size study is warranted to validate
these findings. And the effects of age, sexual and other factors in
impacting the immunological features of gd T cell should be
further evaluated in CAD. Second, in this study, we only
determined the phenotypic changes of gd T cell subsets in the
peripheral blood of patients. The immunological features of gd T
cell and its subpopulations are rarely investigated in CAD and
should be determined in future studies by using the samples
collected from blood and atherosclerotic plaque of CAD patients.
Third, we found the phenotypic changes of gd T cell subsets by
comparing the data collected from CAD patients and healthy
individuals. In the future study, using samples from each CAD
patient at different time points in disease progression will further
help us to clarify the clinical significance of phenotypic
alterations of gd T cell subsets.

Taken together, our findings show that immunophenotypes
of gd T cell and its subsets are significantly changed in the CAD
patients. In addition, the expression levels of some markers,
especially the CD69, in Vd2+T cells and Vd2-T cells exhibit
different association patterns with the serum LDL level. These
data indicate that gd T cell subsets play an important role in the
progression of CAD. And Vd2+T cells and Vd2-T cells may
display different functions involved in the development of CAD.
Therefore, prospective research is needed to confirm the
functional diversity of gd T cell subsets in CAD. We propose
that future studies should investigate the link between cholesterol
metabolism and pathogenic roles of gd T cell subsets in the heart
diseases, thus evaluating the therapeutic potential and clinical
significance of gd T cells in the clinic.
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The T cell receptor Vg9Vd2 T cells bridge innate and adaptive antimicrobial

immunity in primates. These Vg9Vd2 T cells respond to phosphoantigens (pAgs)

present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and

butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid

expansion of circulating Vg9Vd2 T lymphocytes during several infections as

well as their localization at the site of active disease demonstrates their

important role in the immune response to infection. However, Vg9Vd2 T cell

deficiencies have been observed in some infectious diseases such as active

tuberculosis and chronic viral infections. In this review, we are providing an

overview of the mechanisms of Vg9Vd2 T cell-mediated antimicrobial

immunity. These cells kill infected cells mainly by releasing lytic mediators

and pro-inflammatory cytokines and inducing target cell apoptosis. In addition,

the release of chemokines and cytokines allows the recruitment and activation

of immune cells, promoting the initiation of the adaptive immune response.

Finaly, we also describe potential new therapeutic tools of Vg9Vd2 T cell-based

immunotherapy that could be applied to emerging infections.
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Introduction

Gamma-delta (gd) T cells are « unconventional » T lymphocytes that do not require

major histocompatibility complex (MHC) presentation of antigen (1). Human gd T cells

are classified into two main subsets according to the expression of T cell receptor (TCR) d
chain (2). Vd1 T cells are more common in mucosal tissues and are involved in the first

line of the immune defense against solid tumors and infections. The Vd2 T cells, that is a

subset uniquely associated with Vg9 chain (called Vg9Vd2), are abundant in the

peripheral blood and play a role of immune effector in tumor surveillance and also in
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antimicrobial defense (2). Indeed, Vg9Vd2 T cells can directly

kill infected cells through different mechanisms, and also prime

and modulate functions of other innate and adaptive immune

cells via cytokines, antigen presentation and cell contact to

develop antimicrobial immunity (3).
Human Vg9Vd2 T cells, typically represent 2 to 5% of

peripheral blood T cells, are expanded following infection with

a wide range of microbial agents and can represent up to 50% of

the peripheral T cell pool (3, 4). This subset of T cells is enriched

in the circulation of patients with bacterial infections, including

mycobacterial diseases, listeriosis, salmonellosis, brucellosis,

tularemia, legionellosis and Q fever (5–11), and with protozoal

parasite infections such as malaria, toxoplasmosis and

leishmaniasis (12–14). Vg9Vd2 T cells are also increased in the

bronchoalveolar lavage fluid of patients with active pulmonary

tuberculosis or psittacosis (15), and in cerebral spinal fluid from

patients with bacterial meningitis (M. tuberculosis,H. influenzae,

S. pneumoniae, andN. meningitidis); such pattern is corrected by

successful antibacterial therapy (16, 17). Bacterial vaginosis is

also associated with an increase of Vg9Vd2 T cells in the female

reproductive tract in women (18, 19). Furthermore, in patients

with P. falciparum malaria, an increase in Vg9Vd2 T

lymphocytes in human spleens during infection has also been

observed (20). Globally, the rapid expansion of circulating

Vg9Vd2 T lymphocytes during acute infections as well as their

localization at the site of active disease indicate that Vg9Vd2 T

cells may play an important role in the immune response

to infection.
In contrast, it seems that the number of Vg9Vd2 T cells in

the blood is reduced in patients with a viral infection (21–24). In

patients with chronic hepatitis B, the frequency of peripheral and

hepatic Vg9Vd2 T cells decreases with disease progression.

Similarly, the frequency of Vg9Vd2 T cells is markedly

reduced in the blood and the mucosal tissues of HIV patients,

and interestingly is restored with highly active antiretroviral

therapy (HAART) (25–27). These observations indicate that

Vg9Vd2 T cells are activated early after infection but are lost if

infection is not controlled. Recently, a decrease in the number of

circulating Vg9Vd2 T cells has been reported in patients with

coronavirus, especially SARS-CoV-2, which was followed by a

return to normal levels in recovered patients (22, 23). The aim is

to review the mechanisms of Vg9Vd2 T cell-mediated

antimicrobial immunity and to report the potential therapeutic

appl i ca t ion of Vg9Vd2 T ce l l immunotherapy to

infectious diseases.

Vg9vd2 T cell recruitment to the site
of inflammation and their
implication in tissue repair

The traffic of leukocytes to tissues is an essential step for the

development of an immune response that is mainly controlled
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by the interactions between chemokines and their specific

receptors (28). During infection the onset of local

inflammation is associated with an increased chemokine

production that plays a role in transendothelial migration of

Vg9Vd2 T cells into the tissues. The majority of circulating

Vg9Vd2 T cells have the potential to be rapidly recruited in

tissues during the course of infection, due to their expression of

inflammatory homing chemokine receptor CCR5 and CXCR3

(Figure 1) (28, 29). Indeed, CCR5 expressed on activated

Vg9Vd2 T cells mediates their migration to influenza virus-

infected sites (30). Similarly, high levels of CCR5 and CXCR3

receptors on Vg9Vd2 T cells are responsible of transendothelial

migration of cells to the lungs in monkeys infected with M.

tuberculosis or Bacille Calmette-Guerin (BCG) (31). A macaque

model showed that Vg9Vd2 T cells exhibit trans-endothelial

migration, interstitial localization, and granuloma infiltration in

response to M. tuberculosis infections (32).

In addition to be anti-microbial effectors, Vg9Vd2 T cells,

once activated locally or recruited to tissue compartments, might

also participate to tissue repair or wound healing after post-

infectious tissue damage. In acute bacterial peritonitis, Vg9Vd2
T cells accumulate rapidly at the site of infection and likely

contribute to scarring in the peritoneal cavity, both directly via

the local release of IFN-g, and indirectly via induction of IL-6

production by mesothelial cells and peritoneal fibroblasts (33,

34). In addition, migrating Vg9Vd2 T cells can locally produce

fibroblast growth factor-7 (FGF-7), a homeostatic mediator

against tissue damages induced by bacterial infections (35). In

a macaque model, induced expansion of Vg9Vd2 T cells by

treatment with 4-hydroxy-3-methyl-but-2-enyl pyrophosphate

(HMBPP) and IL-2 led to the apparent attenuation of plague

lesions in lungs (35). These Vg9Vd2 T cells may therefore

contribute to immune responses or tissue homeostasis against

bacterial infections.
Recognition of infected cells by
Vg9vd2 T cells

Recognition by phosphoantigens

In humans, Vg9Vd2 T cells recognise small pyrophosphate-

containing molecules called phosphoantigens (pAgs) present in

the malignant target cell or in the infected cells (Figure 1) (29).

These small molecules are isopentenyl pyrophosphate (IPP)

produced by infected cells or HMBPP produced by certain

bacteria (Mycobacterium tuberculosis, Listeria monocytogenes)

and parasites (Plasmodium falciparum, Toxoplasma gondii). It is

important to note that the naturally occurring pAg HMBPP

stimulates Vg9Vd2 T cells about 10,000-fold more efficiently

than IPP (15, 36, 37), this recognition provides a formal basis for

the role of Vg9Vd2 T cells in anti-infective immunity (38–40). A
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recent study showed that Vg9Vd2 T cell activation can occur

independently of HMBPP produced by the bacteria but via the

regulation of host cholesterol biosynthesis (41). Indeed, infection

of human dendritic cells (DCs) with HMBPP-negative L.

monocytogenes results in an upregulation of cholesterol

metabolism in these cells, leading to increased intracellular IPP

levels and direct activation of Vg9Vd2 T cells. On the other

hand, Vg9Vd2 T cells can recognize a mycobacterial glycolipid

component, 6-O-methylglucose lipopolysaccharide, which

promotes TCR-dependent effector functions of Vg9Vd2 T cells

against M. tuberculosis in vitro (42).

The recognition mechanisms of pAgs by Vg9Vd2 T cells

involve the butyrophilin (BTN) protein family. The butyrophilin

3A1 (BTN3A1, CD277), expressed by both immune cells and

somatic cells (43), directly binds pAg intracellularly through its

B30.2 cytoplasmic domain leading to a conformational change

in its ectodomain that is sensed by Vg9Vd2 T cells (44–46).

BTN3A1 interacts at the plasma membrane with another

member of the BTN family, BTN2A1 which is a direct ligand

for the Vg9 TCR chain, thus ensuring the synapse between

Vg9Vd2 T cells and target cells (47–49). Several studies have

confirmed that Vg9Vd2 T cell activation is dependent on

BTN3A during infections. Indeed, the BTN3A blocking

antibody (103.2 mAb) was able to inhibit the degranulation of

Vg9Vd2 T cells when they were co-cultured with cells infected

withM. tuberculosis, L. monocytogenes, P. falciparum or Epstein-

Barr virus (38, 41, 42, 44, 50).

The expression of these butyrophilins can be modulated by

infection in some cases. Indeed, the plasma membrane expression

of BTN3A and BTN2A was induced on P. falciparum infected red

blood cells (iRBCs) (38). In addition, we recently showed that

intracellular bacteria, M. tuberculosis and C. burnetii increased

BTN3A and BTN2A expression on monocytes, concomitantly to

Vg9Vd2 T cell activation (manuscript submitted). In contrast,

human immunodeficiency virus (HIV) infection did not appear to

enhance BTN3A expression on DCs (51), indicating that basal

BTN3A expression maybe sufficient for translating pAgs signal in

HIV-infected cells.
Recognition via Nkg2d (natural killer
group 2 member D) receptor

Other transmembrane activatory receptors, notably the

NKG2D receptor, have been implicated in the effective

triggering of antimicrobial responses by Vg9Vd2 T cells.

Indeed, NKG2D can bind to its ligands including MICA/B

(MHC class I-related chain proteins A and B) and UL16-

binding proteins (ULBP1-4). Besides their expression on

tumor cells, these ligands are upregulated on cells infected by

Zika virus and EBV (52–55). This is also the case during

infection with intracellular bacteria, for instance MICA is

upregulated by DCs infected with M. tuberculosis (56) and
Frontiers in Immunology 03
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ULBP1 by macrophages infected with M. tuberculosis and

Brucella (57, 58).
Recognition via toll-like receptors

Human gdTcells also recognise danger signals frompathogens

via TLRs. Vg9Vd2 T cells can be activated by TLR3 and TLR4

ligands and exhibit enhanced antibacterial responses (59). On the

other hand, TLR8 ligands were shown to inhibit the expansion of

Vg9Vd2 T cells in vitro, while these can be potent co-stimuli for

Vg9Vd2 T cell activation in a monocyte-dependent manner (60).

Hence,Vg9Vd2T cellsmay recognize infected cells through several

different receptors involved in innate immune responses.
Antimicrobial responses of vg9vd2
T cells

Vg9vd2 T cells Kill infected cells in an
innate immune manner

Human Vg9Vd2 T cells exert both a direct cytotoxic activity

against pathogen-infected cells as well as a cell-mediated non-

cytolytic activity based on cytokine production (Figure 1) (Table 1).

Regarding direct cytotoxicity, Vg9Vd2 T cells have been shown to

kill cells infected by M. tuberculosis, Brucella suis, Listeria

monocytogenes, P. falciparum and influenza virus in vitro,

through the secretion of cytolytic molecules such granzymes,

granulysin and perforin (64–66, 68, 71, 74, 75), similar to their

responses to malignat cells. In addition, apoptosis triggered by

death inducible receptors, including Fas and tumor necrosis factor-

related apoptosis-inducing ligand receptors (TRAIL), is a major

mechanism of Vg9Vd2 T cells involved in the elimination of cells

infected by Epstein-Barr and influenza virus (78, 79, 84, 93).

Furthermore, engagement of NKG2D is sufficient to induce

cytokine production and release of lytic granules; it increases

TCR-dependent effector functions of Vg9Vd2 T cells in M.

tuberculosis and Brucella infections (56, 58). In contrast, in other

studies on M. tuberculosis or L. monocytogenes, NKG2D was not

involved (41, 94). These discrepancies may be due to the different

expression of NKG2D ligands between infections and between cell

populations. On the other hand, NKG2D activation is required for

Vg9Vd2 T cell cytotoxicity in viral infections with Epstein-Barr,

influenza and Zika viruses (82).

Vg9Vd2 T cells have also been shown to be able of antibody

dependent cell-mediated cytotoxicity (ADCC). Indeed, upon

stimulation by pAgs, Vg9Vd2 T cells express CD16 (FcgRIIIa),
an activatory Fcg receptor that is constitutively expressed on NK

cells and mediates ADCC (95, 96). Although total numbers of

Vg9Vd2 T cells are decreased during HIV infection, resilient

activated CD16+ Vg9Vd2 T cells were shown to retain the ability

to induce ADCC and exert their antiviral functions in HIV
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disease (89). Moreover, Vg9Vd2 T cell expression of CD16 is

increased in children in malaria-endemic regions, suggesting a

potential role for Vg9Vd2 T cells in inciting antibody-mediated

parasite killing (97). Besides ADCC, a recent study showed that

Vg9Vd2 T cells destroy P. falciparum infected red blood cells

(iRBCs) by a CD16-dependent phagocytosis mechanism (38). As

a matter of fact, there are data suggesting that Vg9Vd2 T cells can

phagocytose particles and act as professional antigen-presenting

cells (pAPCs). In response to E. coli, peripheral human Vg9Vd2
T cells transitioned from cytokine-producing bacterial effectors

to professional phagocytic killers in a CD16-dependent manner

(98, 99). A recent study also showed that Vg9Vd2 T cells

suppress P. falciparum by direct killing and phagocytosis (38).

Regarding cell-mediated non-cytolytic activity, there are

abundant data documenting the pivotal role of IFN-g and TNF-a
secretion on Vg9Vd2 T cell responses during infection. In Vg9Vd2
T cell-depleted humanized mice, decreased resistance to acute

lethal infections with Staphylococcus aureus, Escherichia coli, and

Morganella morganii correlated with decreased serum IFN-g titers,
a cytokine known to control numerous bacterial infections (100).

The release of IFN-g is part of the effectormechanismsofVg9Vd2T
cells inM. tuberculosis, B. suis and P. falciparum infection (64, 71,

101), and also inhibits influenza virus, HCV and SARS-CoV-1

replication (21, 30, 88, 102). Early in HSV-induced inflammation,
Frontiers in Immunology 04
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activated Vg9Vd2 T cells secrete IFN-g and TNF-a, and
chemokines, that may affect the course of inflammation (19).

Finally, the production of chemokines MIP-1a, MIP-1b and

RANTES by Vg9Vd2 T cells has also been shown to block HIV

replication in vitro by inhibiting the CCR5 co-receptor that is

required for HIV entry (90).
Vg9vd2 T cells cooperation with
immune cells

Vg9Vd2 T cells contribute to responses against pathogen

infection by modulating indirectly the function of other immune

cells. Activated Vg9Vd2 T cells can induce recruitment of

immune cells by secreting chemokines and stimulating

monocytes, neutrophils, DCs, B lymphocytes, and different

subtypes of T cells through cytokine secretion, notably IFN-g
(Figure 1) (103–106). In patients with acute bacterial peritonitis,

Vg9Vd2 T cells that accumulate at the site of infection favor the

recruitment of monocytes, neutrophils, and lymphocytes and

produce inflammatory cytokines that are controlled by BTN3A,

as demonstrated by the inhibitory effect of BTN3A antagonist

mAb 103.2 in this process (33). Vg9Vd2 T cells may impact DC

function during infection. Indeed, Vg9Vd2 T cells may enhance
FIGURE 1

Schematic representation of effector mechanisms of Vg9Vd2 T cells in response to infection Vg9Vd2 T cells can distinguish between infected
cells and normal cells using T cell receptor (TCR) and other cellular receptors especially natural killer group 2 member D receptor the (NKG2D)
to sense isopentenyl pyrophosphate (IPP) levels and stress signals (such as MICA/B, ULBPs) displayed on target cells. The butyrophilin receptors
BTN3A1 and BTN2A1 on target cells act to detect (pAgs) such as HMBPP and as a direct ligand for the Vg9Vd2 T cell receptor. Human Vg9Vd2 T
cells can also recognize danger signals directly from pathogens through Toll-like receptors (TLRs). Following activation, Vg9Vd2 T cells kill
infected cells by releasing lytic mediators (perforin, granzyme B), and pro-inflammatory cytokines, inducing target cell apoptosis via Fas/FasL,
TNF-related apoptosis-inducing ligand (TRAIL) and TNF-a pathways, and antibody-dependent cell-mediated cytotoxicity (ADCC) through CD16
expression. In a CD16-dependent manner, Vg9Vd2 T cells may also have phagocytic functions. The chemokine receptors, including CCR5,
control the ability of Vg9Vd2 T cell to migrate to the site of infection. The release of chemokines and cytokines allows recruitment of immune
cells, enhance antigen priming of dendritic cells (DCs) and maturation of B cells. Vg9Vd2 T cells can display an APC-like phenotype and are able
to present Ags and provide costimulatory signals sufficient for strong induction of ab T cells, promoting the initiation of the adaptive immune
response. The survival and proliferation of Vg9Vd2 T cells are mostly modulated by different cytokines, such as IL-2.
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DC activation through IFN-g secretion and CD4+ cell responses

to S. aureus (106). Several intracellular bacterial pathogens

including M. tuberculosis, B. suis, C. burnetii, interfere with

DC maturation, which results in poor priming of the adaptive

immune response (107, 108). Brucella-infected DCs trigger

Vg9Vd2 T cells activation that required cell-to-cell contact. In

turn, co-culture with activated Vg9Vd2 T cells resulted in

maturation of Brucella-infected DCs with increased expression

of co-stimulatory CD80 and CD86, and enhanced IFN-g and IL-

12 secretion (72). In ten HIV patients naive of antiretroviral

therapy, treatment with zoledronate and recombinant IL-2

achieved not only Vg9Vd2 T cells expansion and activation

but also DC maturation and HIV-specific CD8+ T cell responses,

although the eventual interaction between these immune

compartments was not explored in the study (91).

Vg9Vd2 T cells were shown to induce differentiation and

migration of neutrophils through the production of IL-17 during

M. tuberculosis, L. monocytogenes infections and in bacterial

meningitis (17, 109). Moreover, Vg9Vd2 T cells respond rapidly

to neutrophils after phagocytosis of a broad range of bacteria at

the site of infection, and in turn mediate the local differentiation

of neighbouring neutrophils into APCs for both CD4+ and CD8+

T cells in vitro (110).
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Vg9Vd2 T cells can also promote adaptive-like responses by

sharing functions with APCs (111). Indeed, Vg9Vd2 T cells

promote efficient adaptive immunity through processing and

presenting influenza virus-derived peptides to CD4+ and CD8+ T

cells (80, 81). In malaria patients, Vg9Vd2 T cells presented

increased plasma membrane expression of APC markers HLA-

DR and CD86. Similarly, in response to infected red blood cells in

vitro, Vg9Vd2 T cells show an APC-like phenotype and are able of

Ag presentation and abT cell activation in vitro (112). Vg9Vd2 T
cells may therefore promote the initiation of the adaptive response

despite a possible impairmentof conventionalAPCs. In response to

E. coli and L. monocytogenes, human Vg9Vd2 T cells also display

APC functions (99, 113). Futhermore, phosphoantigen-activated

Vg9Vd2 T cells can inhibit IL-2-induced expansion of Tregs and

reverse subsequent suppression of mycobacterium-specific T-cell

immune responses (114).

Finally, it is well known that gd T cells have a strong impact on

humoral immunity. A subset of human Vg9Vd2 T cells isolated

fromperipheral blood expresses the CXC chemokine receptor type

5 (CXCR5) like T follicular helper cells, and, upon antigen

stimulation, they are able to express the costimulatory molecules

ICOS and CD40L, to produce cytokines such as IL-2, IL-4, and IL-

10, and tohelpB cells for antibodyproduction (Figure1) (115, 116).
TABLE 1 Summary table of the main involvement of Vg9Vd2 T cells in infectious diseases.

Infections Human Vg9Vd2 T cells Mechanisms of antimicrobial
immunity

Vg9Vd2 T cell “memory”
responses

Bacteria M.
tuberculosis

↑ in blood, bronchoalveolar lavage fluid and
cerebral spinal fluid (5, 15, 16)
↓ loss of cytotoxic activity (61–63)

- IFN-g, TNF-a, perforin, granzymes, and
granulysin release (64–66)
- NKG2D activation (58)

BCG vaccination:
recall expansion in humans and in
macaques (67)

L.
monocytogenes

↑ in blood (6) - IFN-g, TNF-a, IL-4, IL-17, and perforin
release (68)

L. monocytogenes secondary infection:
recall expansion in macaques and in mice
(69, 70)

Brucella spp. ↑ in blood (8) - IFN-g and perforin release (71)
- Fas-mediated signals (71)
- NKG2D activation (58)

Restore the full functional capacity of
Brucella-infected DCs (72)

Parasite P. falciparum ↑ in blood and spleens (20)
↓ loss of cytotoxic activity (12, 73)

- IFN-g, granzymes and granulysin release (74,
75)
- phagocytosis (38)

P. falciparum sporozoite vaccine:
recall expansion associated with
protection in humans (76, 77)

Virus Influenza Not known - IFN-g, perforin and granzymes release (78,
79)
- TRAIL and Fas-mediated signals (78, 79)
- NKG2D activation (78, 79)

- Help to produce influenza virus-specific
Ab (80, 81)
- Influenza vaccination: memory
responses (82, 83)

SARS-CoV ↑ in blood after clearing
SARS-CoV-1 and SARS-CoV-2 infections (21–
23)

- IFN-g release (21) Correlation with higher anti-SARS-CoV-1
specific IgG titers (21)

Epstein-Barr ↑ in blood (50) - TRAIL and Fas mediated signals (84)
- NKG2D activation (50, 84)

Not known

HBV/HCV ↓ in blood in chronic hepatitis (24)
inability of cytotoxic activity (85–87)

- IFN-g release (88) Not known

HIV ↓ in blood and mucosal tissues
inability of cytotoxic activity (25–27, 61)

- ADCC mediated cytotoxicity (89)
- production of antiviral factors that block
HIV replication in vitro (90)

- DC maturation and HIV-specific CD8+

T cell responses (91)
- HIV Env-specific Ab titers during
chronic SHIV (92)
The arrow ↑ represents an increase and the arrow ↓ indicates a decrease in the number of Vg9Vd2 T cells.
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In addition, Vg9Vd2 T cells activated with the phosphoantigen

HMBPPand inpresence of IL-21 can also influence the localization

of B cell inside the germinal center, positioning them into the light

zone thanks to the production of CXC motif chemokine 13

(CXCL13) (116). Surprisingly, during chronic Simian-Human

Immunodeficiency Virus (SHIV) infection, Vg9Vd2 T cell

activation boosted HIV Env-specific Ab titres (92). It has also

been reported that human Vg9Vd2 T cells facilitated H9N2

influenza virus specific IgG production (81), and that the higher

number of circulating Vg9Vd2 T cells was associated with higher

anti-SARS-CoV-1 specific IgG titers (21).
Vg9vd2 T cell “memory” responses

The Vg9Vd2 T cells may acquire a memory effector

phenotype (TEM cells) following several infections, as shown

by the expression of the memory and activation markers CD27

and CD45RA. This phenotype has been reported in bacterial

(31), parasitic (76), and viral infections (21, 22, 117).

In macaques, a clear memory-type response of Vg9Vd2 T

cells was detected as early as four days after BCG re-infection

and the magnitude of this expansion was 2-9-fold greater than

that seen during primary BCG infection (67). A recall expansion

of Vg9Vd2 T cells was also observed in macaques infected with

L. monocytogenes or challenged with Salmonella and smallpox

vaccines (69, 70, 118). In addition, studies in cattle and pigs

showed similar responses to those found in macaques with a

rapid gd T cell proliferation after BCG vaccination (119–123).

These observations demonstrate the essential role of gd T cells in

developing a long-term immunity against pathogens.

It is difficult to determine in humans whether a Vg9Vd2 T cell

expansion observed during an infection represents a primary or

recall response. Interestingly, Vg9Vd2 T cells induced by BCG or

influenza vaccination develop memory responses (83, 124), and

the numbers of memory Vg9Vd2 T cells correlates with protection

in an P. falciparum sporozoite vaccine trial in a malaria endemic

region (77). These data suggest that immunotherapy based on

Vg9Vd2 T cells, which contribute to adaptive immunity,

represents a great potential for the treatment of infections.

Overall, Vg9Vd2 T cells may act as an antimicrobial defense

through different molecular mechanisms and also constitute a

memory cell population that provides protection against

subsequent infection. Hence, human Vg9Vd2 T cells may

affect the progression and outcome of infectious diseases.
Vg9vd2 T cell deficiencies in
infectious disease

Alterations of Vg9Vd2 T cell phenotype and/or functions have

been reported in several infections usually due to intracellular
Frontiers in Immunology 06
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pathogens. Hence, a loss of CD27 expression on circulating

Vg9Vd2 T cells was reported in patients with active tuberculosis,

suggesting an impairment of effector functions (61, 62). Indeed,

Vg9Vd2 T cell expansion was accompanied by the dramatic

reduction of the Vg9Vd2 T cells effectors (TEM and TEMRA cells),

with decreased IFN-g production and granulysin expression. This

deficiency was restored by successful antimycobacterial therapy. A

loss of cytotoxic activity is also observed in lung Vg9Vd2 T cells

(63). These results suggest that a high bacterial burden leads to

chronic stimulation of effector Vg9Vd2 T cells that may result in

their loss or exhaustion. As a matter of fact, The progressive loss of

reactive Vg9Vd2 T cells from the blood and bronchoalveolar fluid in

pulmonary tuberculosis patients paralleles upregulation of FasL

expression on Vg9Vd2 T cells resulting in fratricidal killing (1, 125).

A progressive attenuation of the Vg9Vd2 response was also

observed in children with high parasitaemia in malaria (73).

Similarly, prophylaxis with antimalarial drug dihydroartemisinin-

piperaquine (DHA-P) during early childhood prevents the

development of dysfunctional Vg9Vd2 T cells (12, 73).

Patients with chronic HBV infection are usually

characterized by a population of exhausted T cells, similarly

the ability of Vg9Vd2 T cells to proliferate and to respond to a

chemotactic signal is diminished, which may explain the reduced

frequency of Vg9Vd2 T cells in the liver of these patients (85). In

HIV and chronic HCV patients, peripheral Vg9Vd2 T cells are

unable to proliferate and specifically to expand the cytotoxic

subset (27, 61, 86, 87). In addition, it has been demonstrated

that, during HIV infection, myeloid-derived suppressor cells

(MDSC) are expanded and their frequency is inversely

correlated with the capacity of Vg9Vd2 T cells to produce

IFN-g. However, in vitro MDSC depletion did not completely

restore IFN-g production by Vg9Vd2 T cells from HIV patients

(126), suggesting that during HIV infection MDSC are not the

unique player in dampening Vg9Vd2 T cell response. Finally, in

chronic HCV infection and in HIV/HCV co-infection, direct

acting antivirals (DAA) fail to restore Vg9Vd2-induced IFN-g
production. In contrast to other T cell subsets, Vg9Vd2 T cell

dysfunction may persist in liver despite a successful HCV

treatment for a reason that remains to be elucidated (87).

Overall, these data support a crucial role for Vg2Vd2 T cells

in infectious diseases, since functional alterations of these cells

can have a significant impact on the outcome of the

infectious pathology.
Vg9vd2 T cell-based emerging
therapeutic approaches

Overall, the data summarized above indicate that triggering

Vg9Vd2 T cell cytotoxicity may be a promising strategy for the

treatment of infectious diseases caused by intracellular

pathogens. Specifically, proliferative, cytotoxic, and cytokine
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responses of human Vg9Vd2 T cell subset are induced by

bisphosphonates, such as pamidronate (PAM) and zoledronic

acid (Zol), through the intracellular accumulation of IPP and its

metabolites. The administration of PAM, a common treatment

for osteoporosis and Paget’s disease, to humanized mice

decreases the disease severity and mortality caused by human

influenza virus infection and EBV-induced lymphoproliferative

disease by enhancing Vg9Vd2 T cells immunity (84, 93). On the

other hand, Zol, a treatment for bone disease, is broadly used in

vitro and ex vivo to stimulate effector Vg9Vd2 T cells (127).

Zoledronate affects HCV, HCMV and West Nile virus

replication by expanding IFN-g-producing Vg9Vd2 T cells (88,

128, 129). As mentioned previously, low-dose IL-2 synergizes

with bisphosphonates and hence, is an effective method to

activate and expand Vg9Vd2 T cells both in vitro and in vivo.

In HIV patients, Zol along with IL-2 allowed the rapid expansion

of CD16-expressing T Vg9Vd2 cells in vitro, associated with

enhanced ADCC cytotoxicity (130). In macaques, HMBPP/IL-2

administration induced remarkable Vg9Vd2 T cell expansion

and resulted in apparent attenuation of plague lesions in lung

tissues caused by Yersinia pestis infection (35). Similarly,

Picostim (similar to HMBPP except one carbon difference)/IL-

2 administration induced activation and expansion of effector

Vg9Vd2 T cells during both the acute and chronic phases of

SHIV infection and also increased resistance to tuberculosis in

macaques (131), supporting a rationale to explore Vg9Vd2 T

cell-targeting as treatment of drug-resistant tuberculosis or HIV-

associated tuberculosis. Furthermore, IL-12 and also IL-15

enhance the proliferation and expansion of HMBPP-activated

Vg9Vd2 T cells with effector functions capable of inhibiting

intracellular mycobacterial growth (108, 132). On the other

hand, IL-18 enhances the proliferative, cytotoxic and recall

response of Vg9Vd2 T cells from HIV-1-infected individuals

(133). In HIV seropositive individuals, where Vg9Vd2 T cells are

typically reduced even after effective antiretroviral therapy and

CD4 T-cell reconstitution, therapies directed at restoring the

antiviral activity of Vg9Vd2 T cells represent an appealing

potential treatment. This raises questions about the therapeutic

use of these cells, including the minimal requirement for eliciting

a response and the cytokines required for the boost of immune

response. A new strategy for treating influenza virus infection

has been suggested using the combination of PAM and CD137

agonist. Indeed, activation of the CD137/CD137L pathway could

maintain the survival of Vg9Vd2 T cells, this may provide a new

solution to avoid Vg9Vd2 T cell exhaustion and to increase the

efficacy of gd T cell-based immunotherapy (134). However, the

clinical use of bisphosphonates as an anti-infective agent has

certain limitations. Indeed, it has been reported that repeated

pAg treatment may lead effector cells to a senescent or exhausted

phenotype, and even lead to their death (135). Better antigens

should be sought to help stimulating Vg9Vd2 T cells in vitro.

Besides pAg-induced activation of Vg9Vd2 T cells, a recently

novel approach involved the development of a new class of
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molecules called immunoantibiotics, notably the IspH inhibitor,

has been described as also inducing the expansion and activation

of human Vg9Vd2 T cells (136). IspH, an enzyme in the

isoprenoid synthesis pathway, is essential for the survival of

most Gram-negative bacteria and the lack of IspH causes an

accumulation of its substrate HMBPP, thus allowing the activation

of cytotoxic Vg9Vd2 T cells. In a humanized mice model of E. coli

infection, these prodrugs resulted in Vg9Vd2 T cell expansion and

a lower bacterial load in the tissues (136). This strategy synergises

direct antibiotic action with rapid immune response. In addition,

these prodrugs allow the targeting of existing multi-resistant

microbes (136), as well as decrease the chances of resistance

emerging. Unlike antibiotics derived from natural sources, no

IspH inhibitors have been discovered in microorganisms, which

justify their therapeutical use (137).

Another approach would be to target specifically the ligands

expressed on the plasma membrane of stressed cells, such as

BTN3A, which are responsible for activation and effector

functions of Vg9Vd2 T cells. Indeed, an important tool

generated in BTN3A research are activating mAbs including

the anti-BTN3A agonist 20.1, that mimics the pAg-induced

Vg9Vd2 T cell activation (43, 138, 139). After successfully

showing proof-of-concept of preclinical efficacy (140), another

BTN3A agonist mAb, ICT01, is currently under evaluation in

the EVICTION phase I/II clinical trial (NCT04243499)

sponsored by ImCheck Therapeutics in patients with solid

tumors and hematological malignancies (141, 142).

The activating anti-BTN3A mAb could represent important

therapeutic tools in infections to overcome the imbalances in

immune responses observed in some patients. In this context, we

are currently testing the ability of the agonist anti-BTN3A 20.1

to modulate viral/bacterial replication in vitro in co-cultures of

infected cells with Vg9Vd2 T cells (143). By enhancing Vg9Vd2
T cell cytotoxicity against infected cells, anti-BTN3A agonist

antibodies could offer an alternative treatment strategy for

infectious diseases. Combinations of newly emerging therapy

with established treatments could minimize the potential side

effects of immune reconstitution in the future.
Conclusion and perspectives

The unique features of Vg9Vd2 T cells make these cells ideal

candidates that could be targeted to induce protective and

durable immunity in the context of infectious diseases.

Therapies must be developed to enhance the effector functions

of these cells at the site of infection, which would be relevant

especially in chronic infections such as HIV infection or

tuberculosis where the effector Vg9Vd2 T cells are impaired.

For the preparation of large number of cells for adoptive cell

transfer, it is necessary to identify and develop better antigens,

which stimulate the Vg9Vd2 T cells expansion in vitro. Targeting

key receptors such as the BTN3A and BTN2A involved in
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activation and recognition of Vg9Vd2 T cells emerge as potential

therapeutic strategies in infectious diseases. Therefore, further

research might shed more light on the in-depth understanding

of the underlying mechanisms of the antigen recognition and

key factors influencing the Vg9Vd2 T cell activation during

infectious diseases, which will be pivotal for developping

e ff e c t i v e V g9Vd2 T ce l l - ba s ed the r ap i e s aga in s t

pathogen infections.
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Systematic pattern analyses of
Vd2+ TCRs reveal that shared
“public” Vd2+ gd T cell clones
are a consequence of
rearrangement bias and a higher
expansion status

Lihua Deng1, Anna Harms2, Sarina Ravens2, Immo Prinz1,2*†

and Likai Tan1*†

1Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf,
Hamburg, Germany, 2Institute of Immunology, Hannover Medical School, Hannover, Germany
Background: Vg9Vd2+ T cells are a major innate T cell subset in human

peripheral blood. Their Vd2+ VDJ-rearrangements are short and simple in the

fetal thymus and gradually increase in diversity and CDR3 length along with

development. So-called “public” versions of Vd2+ TCRs are shared among

individuals of all ages. However, it is unclear whether such frequently occurring

“public” Vg9Vd2+ T cell clones are derived from the fetal thymus and whether

they are fitter to proliferate and persist than infrequent “private” clones.

Methods: Shared “public” Vd2+ TCRs were identified from Vd2+ TCR-

repertoires collected from 89 individuals, including newborns (cord blood),

infants, and adults (peripheral blood). Distance matrices of Vd2+ CDR3 were

generated by TCRdist3 and then embedded into a UMAP for visualizing the

heterogeneity of Vd2+ TCRs.

Results: Vd2+ CDR3 distance matrix embedded by UMAP revealed that the

heterogeneity of Vd2+ TCRs is primarily determined by the J-usage and

CDR3aa length, while age or publicity-specific motifs were not found. The

most prevalent public Vd2+ TCRs showed germline-like rearrangement with

low N-insertions. Age-related features were also identified. Public Vd2+ TRDJ1

TCRs from cord blood showed higher N-insertions and longer CDR3 lengths.

Synonymous codons resulting from VDJ rearrangement also contribute to the

generation of public Vd2+ TCRs. Each public TCR was always produced by

multiple different transcripts, even with different D gene usage, and the

publicity of Vd2+ TCRs was positively associated with expansion status.

Conclusion: To conclude, the heterogeneity of Vd2+ TCRs is mainly

determined by TRDJ-usage and the length of CDR3aa sequences. Public
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Vd2+ TCRs result from germline-like rearrangement and synonymous codons,

associated with a higher expansion status.
KEYWORDS

gd TCR, Vg9Vd2+ T cells, TCR distance, TCR sequencing, TRD rearrangement
Introduction

gd T cells are unconventional T cells which have T cell

receptors (TCR) consisting of both rearranged g (TRG gene)

and d (TRD gene) chains. Like ab T cells, gd T cells use the

recombination of variable, diversity, and joining gene segments (V

(D)J recombination) to generate the complementarity-

determining region 3 (CDR3) of the TRG and TRD. The

diversity of these CDR3 regions is further amplified by the

insertion of palindromic sequences (P nucleotides) and

additional non-templated nucleotides (N-insertions) introduced

by terminal deoxynucleotidyl transferase (TdT) (1, 2).

However, in contrast to conventional ab T cells, which use

numerous V segments almost randomly, human gd T cells

exclusively use Vd1, Vd2, and to a lesser extent also Vd3
segments to generate delta chains. Further restrictions on

diversity are imposed due to Vd2+ chains mostly pairing with

Vg9-JP chains (2). The resulting Vg9Vd2+ T cells are regarded as

innate gd effectors that are quickly activated in anti-tumor,

infection, and inflammation within diseases (3). Committed

Vg9Vd2+ T effector cells are enriched in fetal thymus and

blood, where they then persist into adulthood (4–6). The

Vg9Vd2+ TCRs uniformly recognize phosphoantigens like

microbial-derived (E)-4-hydroxy-3-methyl-but-2-enyl

pyrophosphate (HMB-PP) and host-derived Isopentenyl

pyrophosphate (IPP) in a pMHC-unrestricted manner (7–10),

leading to fast TCR expansion and cytokine release of Vg9Vd2+

gd T cells (3). The Vg9Vd2+ TCRs are featured as “semi-

invariant” TCRs whereby the Vg9 chains always have a

TRGV9-TRGJP rearrangement. Fetal-derived Vg9JP chains

often express the germline-encoded CDR3 sequence

CALWEVQELGKKIKVF due to the lack of TdT in the fetal

thymus (5, 6). The Vd2+ repertoire, on the other hand, that

evolves during human development remains both highly diverse

and individual (4, 5). In the early stages of life, the TRDV2 gene

segments preferentially rearrange with TRDJ3 and TRDJ2, and

gradually switch to TRDJ1 after birth (11). Meanwhile, more N-

insertions and longer CDR3 length are introduced into Vd2+

TCRs after birth due to the increasing activity of the TdT (6).

Public Vd2+ TCRs are frequent among Vd2+ repertoires from
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both the fetus and cord blood (6, 12–14). Public Vd2+ TCRs have
a higher overall diversity than the public Vg9-JP; they occupy a
substantial portion of Vd2+ repertoires from adult peripheral

blood (4). However, the properties and ontogeny of public

Vg9Vd2+ TCRs are not completely solved. It is also unclear

whether public Vg9Vd2+ TCRs have any advantage in target

recognition, amplification over private TCRs or whether the

thymus after birth still preserves the ability to produce public

Vd2+ TCRs.

TCR-sequencing data is high-dimensional data. The CDR3

sequences are typically composed of 10-30 diverse amino acids

and factors such as V(D)J recombination, frequency, and MHC

restriction need to be considered in the analysis of this. Recently,

different computational tools were developed to discover TCR

clusters based on the sequence patterns (15–17). For example,

TCRdist3 is an open-source python package which transforms

TCR repertoires into biochemically informed distance metrics

based on the similarity of the TCR amino acid sequences,

especially on the CDR3 sequence regions. The calculated

distance metrics enabled clustering or meta-clonotype analysis

to be carried out on the TCR sequences (18, 19). However, MHC

restriction of ab TCRs and lack of HLA genotyping data for most

of the available data impeded these tools from being applied to

public TCR datasets on a larger scale. In contrast, the MHC-

unrestricted nature of gd TCRmakes it possible to apply TCRdist3

on gd TCR repertoires across a large number of individuals.

To investigate the heterogeneity and ontogeny of public

Vd2+ TCRs, we determined the publicity of TCRs from Vd2+

TCR repertoires of 89 individuals from cord blood (CB), infant

peripheral blood, and adult peripheral blood. Vd2+ CDR3

amino acid (CDR3aa) sequences were embedded into the

distance matrix by TCRdist3 and visualized by Uniform

Manifold Approximation and Projection (UMAP). We found

that both the J-usage and length together defined the

heterogeneity of Vd2+ CDR3aa sequences. Both germline-

encoded and age-dependent features were preserved among

public Vd2+ TCRs, indicating that they are produced in the

fetal and adult thymus. Interestingly, we additionally revealed a

higher expansion status of public Vd2+ TCRs than private

Vd2+ TCRs.
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Results

Public Vd2+ clones prevail in all age
groups

To investigate the occurrence of public Vd2+ clones, we

collected TCR repertoires containing 213,391 Vd2+ CDR3aa

sequences from 11 cord blood (CB), 55 infant peripheral blood,

and 23 adult peripheral blood samples. Eighty-one samples were

collected from our published studies (4, 13, 20, 21), and eight of

these samples (five CB and three adult) were included from an

unpublished databank to increase further the sample size

(Figure 1A and Table S1). The lengths of CDR3s ranged from 4

to 39 amino acids with a median of 18 amino acids (Figure S1A).

The TRDJ3 segment dominated in CB samples and rapidly

decreased after birth. Similarly, 15.9% of the TRDV2 rearranged

with TRDJ2 in CB, but this number decreased to around 2.1% in

adults. In contrast, the TRDJ1 segment increased to a large

majority in adult samples compared to the small frequency that

was found in CB. The proportions of the TRDJ4 segment were

marginal in all three groups (Figure S1B). “Public” Vd2+ TCR

clones were defined by the proportion of individuals sharing the

same CDR3aa sequence Private TCR CD3R regions were found
Frontiers in Immunology 03
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in only one individual. As well as this low and high TCR’s

appeared in less than or equal to 10% of individuals respectively.

In CB samples, 26.8% of TCR sequences were low public and

15.1% were high. Interestingly, although the publicity of adult

Vd2+ TCRs significantly decreased,14.5% of low public and 4.6%

of high public TCRs were still found on average (Figure S1C).

Before applying the TCRdist3 tool to Vd2+ TCR repertoires,

data pre-processing and down-sampling were performed

(Figure 1A). To reduce the noise caused by rare sequences, we

only selected CDR3aa sequences with a length between 14 to 22

amino acids, and all TRDJ4 rearrangements were also excluded

(Figures S1A, 1B, C). Subsequently, this led to 52,199 CDR3aa

sequences being obtained after down-sampling. This data

cleansing and down-sampling method did not significantly

affect the J-usage and publicity of post-procession TCRs in this

study (Figures 1C, D).

Highly diverse Vd2+ TCRs cluster
according to CDR3aa length and TRDJ
segment usage

The distance between every two TCRs was calculated based

on CDR3aa sequences by the TCRdist3 which generated a
B C D

A

FIGURE 1

Experimental design and data pre-processing. (A) Illustration of the data analysis workflow. Our datasets were collected from 11 CB, 55 infants, 23
adults; among them, datasets from five CB and three adults were unpublished data. (B) Sequence length distribution of 52,199 CDR3aa sequences
from CB, infant, and adult groups after down-sampling and pre-processing. The numbers indicate the number of CDR3aa sequences after down-
sampling. Dashed lines indicate the median value of CDR3 length. (C) J gene usage among different age groups. (D) CDR3aa publicity composition
among age groups. The publicity of a CDR3aa sequence is defined by the proportion of individuals that share this sequence.
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distance matrix (18, 19) Following this a UMAP was generated

to allow data embedding and visualization (Figures 1A, 2A). At

first sight, Vd2+ TCRs were clearly stratified on the UMAP by

both the J-usage and CDR3aa length (Figures S2A, B). The J-

usage skewed from TRDJ3- and TRDJ2-dominant in the CB

group to TRDJ1-dominant in the adult group (Figures 2B, S2C).

Longer CDR3s on the other hand were more frequently found in

TRDJ1 and TRDJ2 adult group. The CDR3aa length

distribution between the age groups did however remain

similar (Figures 2B, S2C, D). Infant-derived Vd2+ TCRs

showed intermediate features between CB and adult TCRs in

terms of both J-usage and CDR3aa length (Figures 2B, S2C, D).

Adjacent to this, in order to test if other factors contributed

to the heterogeneity of Vd2+ TCRs, we selected the TCRs with

the most prevalent lengths for the TRDJ1 (length 17aa) and

TRDJ3 (length 19aa) regions for a more in-depth re-analysis.

This showed that publicity (Figure 2C) and age groups

(Figure 2D) were not distinguishable on the re-analyzed

UMAP. More evidently, after restricting to the same J-usage

and length, the CDR3aa sequence logomap showed almost

identical motifs between the different publicity and age groups

(Figures S2E, F). This suggests that the heterogeneity of Vd2+

TCRs is primarily determined by a combination of TRDJ usage

and CDR3aa length.
Public Vd2+ repertoire preservers both
germline and age-related characteristics

In previous studies by Ravens et al. and Papadopoulou et al.,

public Vd2+ TCRs were described as germline-encoded CDR3

with either no or few N-insertions and short CDR3 lengths (12,

13). In our dataset, publicity was also reversely associated with

the number of N-insertions and length of CDR3aa (Figures S3A,

B). Interestingly, public Vd2+ TCRs previously have shown age-

dependent wave-like dynamics: enriching in fetal blood, then

decreasing in cord blood before rising again in 5 to10-week-old

infants and then finally dropping in adulthood (12, 13). This

then therefore led us to determine whether or not the public

clones generated in different time windows would also show

similar age-dependent features. Indeed, although public

Vd2+ TCRs were enriched in TCR clusters with shorter

lengths, they still demonstrated to preserve the J-usage and

length-determined heterogeneity as private Vd2+ TCRs also

displayed (Figures 2E, F).

Following this, to investigate how public Vd2+ TCRs’

features changed during development, we took advantage of

the whole dataset before down-sampling. Overlapping of all

unique public CDR3aa clones for different age groups showed

that only a minor portion of clones were shared between the CB

and adult groups (CB&AD shared) (1,175 out of 4,641 in CB and

1,175 out of 5,262 in adult). In contrast, both CB and adult

groups largely shared their public Vd2+ repertoire with the
Frontiers in Immunology 04
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infant group (4,428 out of 4,641 in CB and 4,258 out of 5,262

in adult) (Figure S3C). From combining the transitional features

of infant TCRs in the J-usage and length, we considered that age-

related differences of public Vd2+ TCRs mainly exist between CB

and adult groups (Figure 3A), while a transitional infant group

shared the commonalities from both sides. As TdT activity

increases along with human development, we hypothesized

that adult-derived TCRs would have more N-insertions than

CB-derived ones. Indeed, the private Vd2+ TCRs from the adult

group had the most N-insertions and longest CDR3aa length,

whereas the CB&AD shared group Vd2+ TCRs had the fewest N-
insertions (Figures 3B, S3D). The N-insertions of adult-derived

TRDJ2 and TRDJ3 public Vd2+ TCRs were slightly more than

that of CB-derived public TCRs (Figure 3B). Intriguingly, for

TRDJ1, we observed more TCRs with higher N-insertions in the

CB public group than in the adult public group (Figure 3B). Here

25.0% of CB-derived public Vd2+ TRDJ1 TCRs had more than

10 N-insertions. Whereas for adult-derived and CB&AD shared

public clones, the number was merely 5.91% and 2.91%,

respectively (Figure 3C). Finally, although the CB-derived

public Vd2+ TRDJ1 TCRs had more residues in the high-

variable region, the motifs of the three groups were similar, i.e.

polar amino acids were mainly used (Figure 3D).
Synonymous codons in CDR3 nucleotide
sequences result from different TRDD-
gene usages and N-insertions that
contribute to the generation of public
Vd2+ CDR3

Since the generation of public Vd2+ clones did not entirely

result from simple germline rearrangements without N-

insertions (Figures 3B, C), we explored in more detail how the

public CDR3aa sequences were rearranged. The publicity of

CDR3aa sequence positively correlated with the number of its

corresponding unique encoding transcripts (Figure 4A). The

same CDR3aa sequences could be generated by the exceedingly

high numbers of different CDR3 nucleotide (CDR3nt)

sequences. For example, the public CDR3aa sequence

‘CACDTLGDTDKLIF’ (2) was detected in 76 different

individuals as well as also being transcribed from 80 different

transcripts (Figure 4A). Additionally, public Vd2+ CDR3aa

sequences were more likely to have a variable TRDD-segment

usage. 31.3% and 10.6% of ‘high public’ and ‘low public’ CDR3’s,

respectively, could be rearranged from more than one TRDD-

segment, whereas a much lower frequency of only 0.16% was

observed in private CDR3’s (Figure 4B). More surprisingly,

public CDR3aa sequences could be generated from multiple

CDR3nt sequences even within one individual. For example, in

donor SA62, the public CDR3 “CACDTLGDTDKLIF” could be

produced by eight different CDR3nt transcripts, either

rearranged with TRDD3 and 0 – 1 N-insertion, TRDD2 with 2
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B
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E F

A

FIGURE 2

The heterogeneity of Vd2 TCRs is determined by CDR3 lengths and TRDJ segments. (A) Each point stands for a Vd2+ CDR3aa sequence. UMAP
for 52,199 Vd2+ CDR3 (same data as in Figure 1B) colored by the combination of J gene usage and CDR3aa length. (B) CDR3aa length
distribution with different J segments and age groups. The dashed line indicates the median length. (C) UMAP of length = 17 TRDJ1 Vd2+

CDR3aa sequences (left), UMAP of length = 19 TRDJ3 Vd2+ CDR3aa sequences (right) colored by sequence publicity. (D) The same UMAPs in
(C) are colored by age group. (E) Same UMAP in (A) colored by the publicity label of the sequence. (F) UMAP in (A) after filtering out private
TCRs, colored by age group.
Frontiers in Immunology frontiersin.org05
197

https://doi.org/10.3389/fimmu.2022.960920
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2022.960920
N-insertions, or 9 N-insertions without TRDD segment

(Table 1). 19.8% (median value, ranging from 4% to 62.6%) of

high public Vd2+ CDR3 in each individual were generated by at

least five unique transcripts. In contrast, the number of private

CDR3s was much lower at 1.28% (median value, ranging from

0.26% to 5.56%) (Figure 4C).
The publicity of Vd2+ clones positively
associated with expansion status

To determine whether the publicity of Vd2+ TCRs correlated
to the expansion ability, we assigned the top 25% of most

expanded TCRs in each sample as high frequency (high-freq)

TCRs and then labelled the remaining as low frequency (low-

freq) TCR’s (Figure S4A). The high-freq and low-freq TCRs
Frontiers in Immunology 06
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were not distinguishable on the UMAP (Figure 5A). In order to

understand which groups of Vd2+ TCRs are more likely to be

high-freq TCR’s, we calculated the “expansion status score”

based on high-freq to low-freq TCRs (Methods section). For a

group of TCRs in one individual, the expansion status is

calculated by dividing the number of high-freq TCRs in the

group by the number of low-freq TCRs followed by a log-

transformation. Hence, the higher the expansion status score,

the more high-freq TCR’s in that group. An expansion status

score of > 0 means the group has more high-freq TCRs than low-

freq ones. Interestingly, the median expansion status score of

“high public” TCRs was 0.37, and that of the “low public” TCR’s

remained significantly higher than the private TCR values (-0.50

vs -1.28, median value) (Figure 5B). We further examined the

expansion status score for TCRs with different J-usages, and

similar results were observed (Figure S4B). Given that the
B

C D

A

FIGURE 3

Patterns of public clones alter between age groups. (A) Venn plots show the overlap of public Vd2+ clones between CB and adult groups. The
sizes of ellipses correlate to number of unique clones. (B) N-insertion of Vd2+ TCRs in corresponding groups. Each point stands for a CDR3
nucleotide sequence. The distribution is summarized by box plot; the three horizontal lines of the box-whisker plot represent the higher
quartile, median, and lower quartile, respectively. Games-Howell test was used for P-value calculation. Vd2+ TCRs were grouped by J-usage
and the publicity between CB and adult. (C) barplot shows the ratio of sequences with N insertions ≥ 10 in publicity groups with TRDJ1 gene
usage. (D) Logomap for sequences with public TRDJ1 gene usage.
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TABLE 1 CDR3aa “CACDTLGDTDKLIF” corresponding CDR3nt sequences for individual SA62.

CDR3nt sequence TRDD TRDJ N-insertion

TGTGCCTGTGACACCCTAGGAGACACCGATAAACTCATCTTT TRDD2 TRDJ1 2

TGTGCCTGTGACACCCTGGGGGATACCGATAAACTCATCTTT TRDD3 TRDJ1 0

TGTGCCTGTGACACACTGGGGGATACCGATAAACTCATCTTT TRDD3 TRDJ1 0

TGTGCCTGTGACACGCTGGGGGATACCGATAAACTCATCTTT TRDD3 TRDJ1 1

TGTGCCTGTGACACTCTGGGGGATACCGATAAACTCATCTTT TRDD3 TRDJ1 1

TGTGCCTGTGACACTCTGGGGGATACTGATAAACTCATCTTT TRDD3 TRDJ1 1

TGTGCCTGTGACACACTGGGGGACACCGATAAACTCATCTTT TRDD3 TRDJ1 0

TGTGCCTGTGACACCCTAGGCGATACCGATAAACTCATCTTT . TRDJ1 9
Frontiers in Immunology 07
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Under scores indicate variable nucleotide residues.
B C

A

FIGURE 4

Public CDR3aa clones have more corresponding CDR3nt transcripts. (A) Scatter plot of the publicity of CDR3aa (number of individuals sharing
the CDR3aa) vs the number of corresponding CDR3nt sequences. Each point indicates one unique CDR3aa sequence colored by the CDR3aa
length. The most public CDR3aa sequence are indicated on the plot. (B) TRDD-segment usage of CDR3 sequences in different publicity groups.
(C) Box plot shows the ratio of CDR3aa sequences translated from 5 or more different nucleotide transcripts in each individual. Games-Howell
Post-Hoc Test was used to test the mean difference between groups. Adjusted P-values are shown between groups.
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publicity is reversely associated with CDR3 length (Figure 4A),

expansion status could also be associated with CDR3 length.

However, CDR3aa lengths only demonstrated to have a minimal

impact on expansion status, and the median expansion status scores

of all lengths and TRDJs remained below 0 (Figures S4C, D).
Discussion

In this study, we applied TCRdist3 to systematically

investigate the Vd2+ TCR repertoire and revealed that Vd2+

TCRs retain a high heterogeneity that is primarily determined by

the J-usage and CDR3aa length. It was observed that public Vd2+

TCRs were as diverse as private TCRs. In previous studies, TCR’s

with high publicity or shared between cord blood (CB) and adult

age groups were characterized to show only a few or no N-

insertions and shorter CDR3length (6, 13). Unexpectedly, our

study also demonstrated that the TRDJ1 of public (but not of

private) gd TCRs in CB displayed a relatively high number of N-

insertions and longer CDR3 lengths. Moreover, it was

additionally revealed that, compared to private Vd2+ CDR3aa

sequences, the public Vd2+ CDR3aa sequences were prone to be
generated from multiple CDR3nt transcripts even within one

individual. Thus, it could be concluded that germline-like

rearrangement and synonymous codons used by CDR3nt

sequences contribute to the generation of public CDR3aa.

Finally, public Vd2+ TCRs displayed a higher expansion status

than private Vd2+ TCRs.

By using TCRdist3 and various other tools for investigating

CDR3 motif or amino acid properties ‘clustering’ of TCR’s can

be carried out. This strategy was particularly useful in linking ab
TCR sequences to antigen-specificity based on similarity (18,

22–24). In contrast to highly rearranged ab TCRs, which have

the ability to recognize any possible antigen, most of the

rearranged Vg9Vd2+ TCRs are instead generated from
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relatively fixed options and are thought to uniformly recognize

phosphoantigens (2, 7). Complex TCR repertoire data can be

extracted to generate a single UMAP by applying the TCRdist3

method to conveniently analyze the heterogeneity of gd TCR’s.

Hence, it is useful when investigating the shift of the Vd2+ TCR
repertoire under different physiological and pathological

conditions. For example, in our study, the repertoire shift

from CB-derived to adult-derived repertoire was notably

highlighted. Moreover, from this, it would be interesting to see

if TCRdist3 could be applied to the more adaptive Vd1+ or Vd3+

gd TCRs to possibly determine their function and

antigen-specificity.

Vd2+ TCRs derived after birth displayed more N-insertions

and longer CDR3 length than those from CB, considering the

increasing TdT activity. However, in contrast to this, the public

clones among CB-derived TRDJ1 Vd2+ TCRs showed more N-

insertions and longer CDR3 than their adult public TCR

counterparts. This property was not seen among public Vd2+

TCRs with other J-usage meaning it is difficult to fully explain

and understand this complex feature as yet. One possibility for

this could be that it may associate with the intrathymic

differentiation of Vg9Vd2+ T effectors. Mouse and human

innate gd T effectors are committed in waves within the fetal

thymus, and have shown to acquire phenotypes that are closely

related with certain TCR usages (3, 4, 6, 25). While the

development of human gd T cells is not fully elucidated, it

could be hypothesized that a number of underappreciated

Vg9Vd2+ T effectors develop later in the fetus when the TdT

becomes much more active. These specialized effector cells do

not remain in peripheral blood after birth. By comparing

specific gd T cells from mice relevant information can be

obtained. Mouse Vg6+ and Vg4+ IL-17-producing gd T cells

are a rare population of cells which reside in mucosal tissues

like the skin or lungs (26, 27). These specialized cells

exclusively develop at embryonic days of E15 to E18 after
BA

FIGURE 5

Public clones have a greater expansion status compared to private clones. (A) UMAP of Vd2+ TCR colored by high-freq/low-freq category.
(B) Expansion status score for each publicity group. Games-Howell Post-Hoc Test was used to test the mean difference between groups.
Adjusted P-values are shown between groups.
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gestation in the fetal thymus where they will then home to

specific tissues (28). Thus, there is only a narrow window in

which these cells can easily be observed whilst they travel

within the circulation. This therefore means that the existence

of previously unknown tissue-resident gd T cell populations

which are generated shortly after birth cannot be excluded.

We demonstrated that the publicity of Vd2+ TCRs positively
associates with a higher expansion status. This remains in line

with previous studies which also suggest that higher abundance

was found on high public clones (12, 13). One of the most

debatable questions regarding public Vd2+ TCRs continues to

determine if the generation and expansion of public Vd2+ TCRs
are driven by interactions with BTN2A1 and BTN3A1

butyrophilin molecules. It is also yet to be discovered if the

recognition of specific antigens may additionally alter

the expansion process within these Vd2+ TCRs. Although the

CDR3 is essential for recognition, previous studies failed to find

evidence that the CDR3 of Vd9Vd2+ TCRs specifically recognize
phosphoantigens (7–10). We cannot exclude the possibility that

even the family of Vg9Vd2+ TCRs recognizes antigens in an

“adaptive-like” way via the CDR3 until a complete structure of

interacting Vg9Vd2+ TCR, phosphoantigen, and butyrophilins

BTN2A1 and BTN3A1 is revealed. However, based on the

current understanding of Vg9Vd2+ T cells, it is unlikely that

public or expanded Vd2+ TCR clones result from antigen-specific

clonal expansion. First of all, previous ex vivo experiments

suggested that phosphoantigen stimulation induced both

polyclonal and unbiased expansion of Vd9Vd2+ T cells (6, 20).

Moreover, in our study, by calculating the geometric distance

between Vd2+ CDR3 based on sequence patterns, it was found

that there is no significant difference between public and private

Vd2+ CDR3 patterns or between high-freq and low-freq Vd2+

CDR3s. The results suggest that the binding between Vd2+ CDR3
and phosphoantigen-activated butyrophilins BTN2A1 and

BTN3A1 does not favor specific CDR3 variants or motifs.

Taking this all into account it can be determined why public

Vd2+ TCRs appear to have a survival advantage? Based on the

rearrangement bias and development ontogeny, various

speculations can be made as follows: 1). There is a rearrangement

bias. where the publicity of Vd2+ TCR CDR3aa positively associates

with the number of corresponding CDR3nt sequences. Therefore,

the gd T cells with a public Vd2+ TCR may have multiple sources

from different TCR rearrangements, resulting in a higher copy

number. 2). Most public Vd2+ TCRs, especially those shared

between many individuals, are rearranged early in life and persist

into adulthood (4, 12–14). They may simply have more time to

accumulate. A similar situation was observed in human ab T cells,

where it was found that T cells carrying public ab TCRs were

generated before birth and then continued to maintain high

abundances for a long time throughout adulthood (29).

One of the major limitations to this current study was that it

was only viable to investigate the Vd2+ chains, meaning

information on the corresponding pairing of Vg9 chains was
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lost. Within our study it was also difficult to prove or disapprove

the possibility that public Vg9Vd2+ TCRs may interact with

antigens in a different way compared to antigen interaction by

private TCRs. However, recent advancements in single-cell TCR

sequencing do make it possible to sequence paired gd TCR and

relate it to phenotypes of other cells (4). From this it can be

expected that more such data will soon become available.

Another limitation to this study was the fact that

undersampling could possibly impair accuracy. As the library

protocol only enabled a survey of up to tens of thousands of gd T
cells from a portion of a PBMC sample, this underrepresented

the huge vast number of gd T cells that are actually living within

our body. This undersampling may make it difficult to accurately

identify moderately expanded clones. However, considering the

relatively low diversity of Vd2+ TCRs, undersampling may

compromise some details, but the major findings are unlikely

to be greatly affected.

The TCRdist3 method has proven to be a very useful tool for

analyzing human ab T cells, and the software is able to support

gd TCR analysis (19). However, as mentioned above, the ab
TCRs have a much higher heterogeneity than Vd2+ TCRs

provided by the V(D)J rearrangement. Thus, detecting the

different patterns between ab TCRs is considerably easier. In

our case, the TCRdist3 detected the heterogeneity of Vd2+ TCRs
generated by length and J-usage, but not by publicity or age. Our

sequence pattern analysis also failed to find heterogeneity

between public and private TCRs. Furthermore, the existing

possibility that more subtle and essential substitutions hiding in

public Vd2+ TCRs cannot be excluded. Currently, methods for

TCR clustering are all based on the CDR3aa sequences, which is

sufficient to study antigen-specificity. However, the ontogeny of

TCRs can be better determined if CDR3nt sequences are

included to provide crucial information about VDJ

rearrangement and N-insertions.

Our study established that TCR sequence analysis tools such

as the TCRdist3 are very useful for investigating the gd TCR

repertoire. By using TCRdist3 and downstream analysis, it could

be demonstrated that public Vd2+ TCRs are a heterogeneous

population with both germline and age-related features that

confer expansion advantages over private TCRs. Given that

expressing gd TCRs on ab T cells is a promising

immunotherapy strategy against tumors (30, 31), those “more

successful” public Vg9Vd2 TCR might improve the performance

of immunotherapy using Vg9Vd2+ T cell clones or engineered

ab T cells carrying Vg9Vd2 TCR.
Materials and methods

Human sample isolation and preparation

Data from 8 healthy donors in this study were newly

generated. Blood samples from adult donors (n = 3) and cord
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blood (CB) donors (n = 5) were collected at Hannover Medical

School (Hannover, Germany) after written informed consent.

This study was performed in accordance with the Declaration of

Helsinki and approved by the institutional ethics review board at

Hannover Medical School under study numbers 1303-2012 (CB

individuals) and 7901-2018 (healthy adult individuals). PBMCs

and CBMCs were purified from the blood samples by Ficoll-

Paque density gradient media separation. These cells were then

stored at -80°C in 90% fetal bovine serum and 10% DMSO

freezing medium before use.
Vg9Vd2+ T cells sorting

Fluorescence-activated cell sorting (FACS) was performed

using the FACS Aria Fusion flow cytometer (BD, USA). PBMC

and CBMC were incubated with 5% Fc-receptor block before

staining. The following antibodies were used: anti-CD3 (clone

REA613; Miltenyi Biotec), anti-CD3 (clone SK7; BD Bioscience),

anti-gd TCR (clone 11F2, BD Bioscience or Miltenyi Biotec),

anti-Vg9 (clone IMMU 360; Beckman Coulter), anti-Vd2 (clone
123R3; Miltenyi Biotec).
Vd2+ TCR library construction
and sequencing

All thenewlygenerateddatawas sequencedandpre-processed in

the samewayas other publisheddata used in this study (4, 13, 20, 21).

Briefly, RNA was extracted from sorted DAPI─CD3+gd+Vg9+Vd2+

cells from PBMC or CMBC by an RNAeasy Micro Kit (Qiagen).

Reverse transcription was carried out with Superscript III reverse

transcriptase (Invitrogen) and oligo(dT) primers. As previously

described (21), d chains was amplified via TRDV2 specific primers

hTRDV2: ATTGCAAAGAACCTGGCTGT and hTRDC:

GACAAAAACGGATGGTTTGG. The PCR program was set as

follows: 1). 95°C for 3min; 2). 95°C, 63°C, and72°C for 30s each, for5

cycles; 3). 95°C for 30s, 72°C for 35s, for 20–25 cycles; 4). 72°C

for 4 min.

The amplified cDNA library with Illumina P5 and P7

adaptor was sequenced by Illumina Miseq using 500 cycles of

paired-end sequencing.
Raw sequencing data alignment
and annotation

Raw reads alignment annotation was performed with

MiXCR software v.2.1.12 to international immunogenetics

information system (IMGT) reference (32). Unproductive

TCRs were filtered out. Annotated TCRs were further counted

and summarized by VDJtools (33).
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Data integration and processing

VDJtools output files from all the 89 individuals from the

published and newly generated datasets were merged together.

Since some datasets comprised entire TCRd repertoires (13, 21),
non-Vd2 TCRs were filtered out. Numbers of N-insertions were

calculated via VDJtools output as following: For TCRs

rearranged with a TRDD segment: N-insertion = (Jstart –

Dend – 1) + (Dstart – Vend - 1); For TCRs without D-usage:

N-insertion = Jstart – Vend – 1.

Vend, Dstart, Dend, Jstart are the start/end position of V, D,

J segments on CDR3nt sequence.

Publicity of TCRs were defined based on the CDR3aa

sequence by whether a sequence is shared among a certain

percentage of the population. “private” CDR3aa is defined as

CDR3aa that only appears in only one individual, “high public”

TCRs are shared among at least 10% of the population, i.e.

shared among 9 or more individuals in our study, the remaining

TCRs are defined as “low public”, i.e. shared by at least 2

individuals to 10% of the population.
TCR distance calculation and
UMAP embedding

Vd2+ CDR3aa sequences with a length from 14 to 22 aa were

preselected and downsampled for TCR distance calculation.

CDR3s rearranged with TRDJ4 segment were excluded. For

each age group, the numbers of CDR3s were randomly down-

sampled to 17,398 - 17,401 sequences. TCR distances were

computed according to the protocol of TCRdist3 (34). Briefly,

CDR3aa sequence, V-usage, and J-usage were then included as

input for the TCRdist3 in the Python 3.8 environment. CDR1,

CDR2, and CDR2.5 sequences were reconstructed from the V-

usage. After alignment, penalties were given to each mismatch

between two TCRs according to the BLOSUM62 substitution

matrix. Finally, distance was calculated as the weighted sum of

penalties across all CDRs. The TCR distance matrix was further

embedded into latent spaces by UMAP.
Calculation of expansion potential

In each individual, CDR3aa sequences were ranked by the

frequencies from high to low. The top 25% of CDR3s were

assigned as “high frequency” TCRs, and the rest were labelled as

“low frequency” TCRs. (Figure S4A). The expansion status score

is calculated for a pre-defined group of TCRs within an

individual (i.e. the high public TRDJ1 Vd2+ TCR in the donor

CB2) as follows:

Expansion status score = ln (
nhighfreq +1

nlowfreq+1
Þ
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nhighfreq and nlowfreq are the number of high-freq and low-freq

CDR3aa sequences in the group.
Sequence alignment and logomap

Sequences of selected groups were aligned using Clustal

Omega (35–37), logomap was generated from the aligned

sequences using Logomaker (38).
Statistics

Statistical analyses were performed under R v4.1.2. The

statistical methods are described in the figure legends, in all

cases, considering the sample size, variance and number of

comparisons. Either a one-way ANOVA or a Tukey’s HSD

test after a one-way ANOVA or Games-Howell Post-Hoc Test

was used and P-values were then calculated.
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SUPPLEMENTARY FIGURE 1

CDR3 delta chain sequence distribution among different age groups. (A)
Sequence length distribution of 213,391 CDR3aa sequences from 89

individuals, including 11 CB, 55 infants, and 23 adults. The numbers on
the plot indicate the number of CDR3s in each group. Black dashed lines

indicate the median value of CDR3 length. Grey dash lines indicate the
range of length of CDR3aa sequences that are used for TCRdist3

computation. (B) J gene composition among different age groups. (C)
CDR3 publicity composition among age groups. The publicity of a
CDR3aa sequence is defined by the proportion of individuals that share

this sequence.
SUPPLEMENTARY FIGURE 2

The heterogeneity of Vd2 TCRs is determined by CDR3 lengths and TRDJ
segments. UMAP in colored by (A) J-usage and (B) CDR3aa length. (C)
Contour plot visualization on the density distribution of TCRs on the

UMAP, split by age groups. (D) Boxplot of CDR3aa sequence length for
different age groups by different J gene usage. Adjusted P-values

calculated from Tukey’s HSD test after one-way ANOVA are shown
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between groups. (E,F) Logomap for length = 17 TRDJ1 (left) length = 19
TRDJ3 (right) Vd2+ TCRs in (E) different age groups and (F) different

publicity groups.
SUPPLEMENTARY FIGURE 3

Sequence length and N insertion exploration for CDR3 sequences in
different publicity groups. (A) N-insertion of Vd2+ TCRs. Each point stands

for a CDR3 nucleotide sequence. The distribution is summarized by a box
plot. (B) CDR3 aa length of Vd2+ TCRs with different J gene usages and

different publicity groups. (A,B) P-values calculated from one-way ANOVA

are shown. (C) Venn plots show the overlap of public Vd2+ clones
between CB, infant, and adult groups. The sizes of ellipses correlate to

the number of unique clones. (D) CDR3 aa length of Vd2+ TCRs from CB
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and adults with different J gene usages and publicity sharing groups. Each
point stands for a CDR3aa sequence.

SUPPLEMENTARY FIGURE 4

Public clones have greater expansion status compared to private clones.
(A) The frequency distribution for the CDR3aa sequences in different

individuals, from left to right, shows three representative individuals. The
low/high frequency label was defined within each individual using the

corresponding 75th percentile number of the frequency as a threshold.

(B) Expansion potential for each publicity group according to different J
gene usage. Games-Howell Post-Hoc Test was used to test the mean

difference between groups. Adjusted P-values are shown between
groups. (C) Expansion potential for TRDJ1 sequences with different

length. (D) Expansion potential for TRDJ3 sequences with different length.
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Recherche Médicale
(INSERM), France
Carolina Jancic,
Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas
(CONICET), Argentina

*CORRESPONDENCE

Zhinan Yin
tzhinan@jnu.edu.cn
Zheng Xiang
zener80@connect.hku.hk
Chengfang Xu
xuchengf@sysu.edu.cn
Yan Xu
sau_xuyan@163.com

†These authors share the first
authorship

‡These authors co-supervised the
work

SPECIALTY SECTION

This article was submitted to
T Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 20 March 2022

ACCEPTED 30 August 2022
PUBLISHED 12 October 2022

CITATION

Wang L, Li J, Jiang S, Li Y, Guo R,
Chen Y, Chen Y, Yu H, Qiao Q,
Zhan M, Yin Z, Xiang Z, Xu C and Xu Y
(2022) COVID-19 vaccination
influences subtypes of gd-T cells
during pregnancy.
Front. Immunol. 13:900556.
doi: 10.3389/fimmu.2022.900556

TYPE Original Research
PUBLISHED 12 October 2022

DOI 10.3389/fimmu.2022.900556
COVID-19 vaccination
influences subtypes of gd-T cells
during pregnancy

Li Wang1,2†, Jiawei Li1,3†, Silin Jiang4†, Yan Li4†, Rong Guo5,6†,
Yuyuan Chen1,7, Yan Chen1,7, Hang Yu1,7, Qingqing Qiao1,7,
Mingjie Zhan1,7, Zhinan Yin1,7*‡, Zheng Xiang1,7*‡,
Chengfang Xu2*‡ and Yan Xu1,7*‡

1The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University,
Guangzhou, China, 2Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun
Yat-Sen University, Guangzhou, China, 3Guangzhou Purui Biotechnology Co., Ltd., Guangzhou,
China, 4National Center for International Research of Bio-targeting Theranostics, Guangxi Key
Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor
Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical
University, Nanning, China, 5Department of Obstetrics and Gynecology, The Second Affiliated
Hospital of Soochow University, Suzhou, China, 6Department of Obstetrics and Gynecology, The
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Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational
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Up to now, there has been insufficient clinical data to support the safety and

effects of vaccination on pregnancy post COVID-19 vaccination. The gd-T cells

are considered an important component in the immune system to fight against

viral infection and exhibit critical roles throughout the pregnancy period.

However, the immunological roles of gd-T cells in pregnant women with the

COVID-19 vaccination remain unclear. Therefore, the objective of this study is

to investigate the alteration of frequency and expression pattern of activation

receptors and inhibitory receptors in gd-T cell and its subsets in peripheral

blood samples collected from non-pregnant vaccinated women, vaccinated

pregnant women, and unvaccinated pregnant women. Our findings indicated

that the frequency of CD3+gd-T+ cells is lower in vaccinated pregnant women

than in unvaccinated pregnant women. But no significant difference was found

in the frequency of CD3+gd-T+ cells between non-pregnant vaccinated

women and vaccinated pregnant women. In addition, there were no

significant differences in the frequencies of CD3+gd-T+Vd1+T cells, CD3+gd-
T+Vd2+T cells, CD3+gd-T+Vd1-Vd2-T cells, and Vd1+T cell/Vd2+T cell ratio

between the pregnant women with or without COVID-19 vaccination. Similar

results were found after comparing non-pregnant and pregnant women who

received the COVID-19 vaccine. However, there was a significant difference in

the fraction of Vd1-Vd2-T cells in CD3+gd-T+ cells between non-pregnant

vaccinated women and vaccinated pregnant women. The frequency of

NKG2D+ cells in Vd2+T cells was not significantly different in the vaccinated

pregnant women when compared to that in unvaccinated pregnant women or

non-pregnant vaccinated women. But the percentage of NKG2D+ cells in

Vd1+T cells was the lowest in pregnant women after COVID-19 vaccination.

Furthermore, down-regulation of NKP46 and NKP30 were found in Vd2+T and
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Vd1+T cells in the vaccinated pregnant women, respectively. After the

vaccination, up-regulation of PD-1 expression in Vd1+T cells and Vd2+T cells

indicated gd-T cells could respond to COVID-19 vaccination and display an

exhausted phenotype following activation. In conclusion, COVID-19

vaccination influences subtypes of gd-T cells during pregnancy, but the side

effects might be limited. The phenotypical changes of Vd1+T cells and Vd2+T
cells will be a promising predictor for evaluating the clinical outcome of the

COVID-19 vaccine.
KEYWORDS

COVID-19, vaccination, pregnancy, gd-T cells, Vd1+ T cells, Vd2+ T cells
Introduction

Due to a lack of clinical and scientific knowledge, the

challenge of the Coronavirus Disease 2019 (COVID-19)

pandemic has exposed the limitations of our understanding

about severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) as well as the immune response during viral infection

and vaccination (1). Pregnant women especially are at increased

risk of severe illness from COVID-19. There have been a few

studies that demonstrated the efficacy and safety of COVID-19

vaccines in pregnant women, who have been excluded from the

clinical trials because of the ethical issues (2). However, we still

struggle with a complete understanding about whether

vaccination could modulate the immune response of pregnant

women (3). During normal human pregnancy, gd-T cells have

been reported to play a role in this process (4).

Human gd T cells can be divided into three subgroups, Vd1,
Vd2 and Vd3, according to the structural differences of g and d
chains. Although gd-T cells represent only a small fraction of T

lymphocytes (1-10%) (5), they have a variety of immune

functions, such as resistance to virus infection (6),

inflammatory regulation, tissue homeostasis (6), helping B

cells to produce antibodies (7), and even maintenance of

successful pregnancy (6). Some studies reported that, during

normal human pregnancy, gd-T cells secrete some anti-

inflammatory cytokines to reduce nature killer activity (8,

9).Indeed, gd-T cells regulate the release of inflammatory

factors such as IFN-g,TNF-a, granzyme A/B, and perforin by

regulating the expression of surface-activated receptors such as

NKG2D, NKp30, NKP46, and the inhibitory receptor PD-1 to

regulate their cytotoxic functions (10–13). In addition, low

cytotoxic activity of gd-T cells is necessary during normal

pregnancy (14). Most importantly, the imbalance between

Vd1+ T cells and Vd2+ T cells was observed in adverse

pregnancy (15).
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Therefore, in this study, we aimed to interrogate the

alternation of subtypes of gd-T cells in pregnant women after

COVID-19 vaccination, which could provide a better

understanding of the role of gd-T cells in pregnant women

after COVID-19 vaccination, and in turn can further help us to

monitor and evaluate the safety and efficacy of COVID-19

vaccines during the pregnancy period.
Materials and methods

Study population

The research objects were selected from pregnant women

vaccinated against COVID-19 who went to Tianhe Campus of

the Third Affiliated Hospital of Sun Yat-sen University in

Guangzhou, China from August 2021 to February 2022. These

women did not confirm their pregnancies until after they had

received the COVID-19 vaccine. The inclusion criteria included:

(1) age of 18-35 years; (2) singleton pregnancy; (3) the onset of

pregnancy as calculated by crown-rump length (CRL) on NT

ultrasound, with at least one dose of vaccine after pregnancy; and

(4) signing an informed consent form, providing vaccination

information and confirming their participation in the study. The

exclusion criteria included: (1) the gestational age of the

documented prenatal examination is not 11-13+6 weeks; (2)

other vaccines have been received within 1 year, such as HPV

vaccine and hepatitis B vaccine; or (3) complications with basic

diseases, requiring long-term medication. The peripheral blood

of the patients enrolled in this study was collected to perform

immunological assays. The study included 27 vaccinated

pregnant women, 11 unvaccinated pregnant women, and 20

non-pregnant vaccinated women. The clinical and demographic

characteristics and vaccination scheme of pregnant women were

described in Tables 1, 2, respectively. This study was approved
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by the Ethics Committee of the Third Affiliated Hospital of Sun

Yat-sen University in Guangzhou.
Immune cell phenotype analyzing by
flow cytometry

Collected peripheral blood samples were analyzed using flow

cytometry. Peripheral blood mononuclear cells (PBMCs) were

isolated using Ficoll-Paque centrifugation, then stained by the

following antibodies: anti-human CD3-APC-H7 (BD biosciences,

clone: SK7), anti-human TCR gd-BV421 (BD biosciences, clone:

11F2), anti-human PD-1-BB515 (BD biosciences, clone: EH12.1),

anti-human NKP46-BV510 (BD biosciences, clone: 9E2/NKP46),

anti-human NKP30-Alexa Fluor®647 (BD biosciences, clone: P30-

15), anti-human NKG2D-PE-Cy™7 (BD biosciences, clone: 1D11),

anti-human TCR Vd2-PE (BD biosciences, clone: B6), and anti-

human TCR Vd1-PerCP-Vio700 (Miltenyi Biotec, clone: REA173).

Data was analyzed using FlowJo 10.1 software (Tree Star Inc.,

Ashland, OR, USA).
Statistical analysis

Statistical analyses were performed using GraphPad Prism

(GraphPad Software, Inc.). All results are expressed as the mean

± SEM (standard error of the mean). To analyze the difference

in gd T cells and its subsets between vaccinated women and

unvaccinated women, Mann-Whitney U tests were performed.
Results

The frequencies of gd T cell and its
subsets in pregnant women after
COVID-19 vaccination

The aim of this study was to investigate whether COVID-19

vaccination influences the distribution of total gd T cells, Vd1+T
cells, Vd2+T cells, and Vd1-Vd2-T cells in the peripheral blood
Frontiers in Immunology 03
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samples of 58 individuals enrolled in this study. Total gd T cell was

identified among CD3+ lymphocytes using flow cytometry

(Figures 1A, B). The results indicated that frequency of total gd T

cells was markedly higher in unvaccinated pregnant women

compared to vaccinated pregnant women, but there was no

significant difference between non-pregnant vaccinated women

and vaccinated pregnant women. Furthermore, to investigate the

impact of COVID-19 vaccination on frequencies of gd T cells

subsets, we next compared Vd2+T cells, Vd1+T cells, and Vd1-Vd2-

T cells’ frequencies as well as Vd1/Vd2 ratio in non-pregnant

vaccinated women, vaccinated pregnant women, and

unvaccinated pregnant women. The results indicated that there

were no significant differences in frequencies of Vd1+T, Vd2+T cells,

and Vd1-Vd2- T cells in CD3+gd+ T cells between vaccinated

pregnant women and unvaccinated pregnant women (Figures 1C,

E). However, compared with non-pregnant vaccinated women, the

proportion of Vd1-Vd2- T cells in CD3+gd+ T was significantly

reduced in vaccinated pregnant women (Figure 1D). Additionally,

Vd1/Vd2 ratio was similar in these women with or without

vaccination (Figure 1D).
Phenotypical changes of Vd2+T cells in
vaccinated pregnant women

It is well known that the activating and inhibitory receptors

define the degree of immune cell maturation and responsiveness

to stimuli, so we next investigated the frequencies of NKG2D+,

NKp30+, NKp46+, and PD-1+ cells in Vd2+T cells. We found no

significant difference in the proportions of NKG2D+ Vd2+T cells

among these three groups (Figure 2A). gd T cell subsets usually

express activating natural killer (NK) receptors, such as NKp30

and NKp46, which are involved in regulating immunological

functions of gd T cell and its subsets. There was no significant

difference in percentage of NKp30+Vd2+T cells between

vaccinated pregnant women and unvaccinated pregnant

women (Figure 2B). In addition, a similar result was found in

comparison of vaccinated pregnant women and non-pregnant

vaccinated women (Figure 2B). By contrast, there was no
TABLE 1 Basic characteristics of vaccinated and unvaccinated pregnant women.

Groups Non-pregnant vaccinated group Un-vaccinated group Vaccinated group

Included 20 11 27

Age (median and range) 24 (23-35) 29 (26-33) 29 (28-32)

Previous history of SARS-CoV-2 infection No No No

Hypertension No No No

Diabetes No No No

Gestational age of laboratory tests (weeks, median and range) No 12.4 (12.3-12.7) 12.9 (12.6-13.3)

NT (mm, mean and standard deviation) No 1.4 (0.4) 1.4 (0.4)

Gestational age of laboratory tests (weeks, median and range) No 12.4 (12.3-12.7) 12.9 (12.6-13.3)
Gestational age is equal to the number of gestational days divided by 7.
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TABLE 2 Scheme of vaccination of vaccinated pregnant women.

Vaccinated pregnant women Pregnancy time Date of laboratory tests Scheme of vaccination

Date of 1st dose Date of 2nd dose

Vg-1 2021/05/30 2021/08/27 2021/07/27 –

Vg-2 2021/06/03 2021/08/27 2021/06/12 –

Vg-3 2021/05/31 2021/08/27 2021/05/22 2021/06/29

Vg-4 2021/05/25 2021/08/30 2021/05/23 2021/06/22

Vg-5 2021/06/08 2021/08/30 2021/06/13 2021/04/30

Vg-6 2021/05/30 2021/08/30 2021/06/10 2021/07/13

Vg-7 2021/05/29 2021/08/30 2021/06/23 –

Vg-8 2021/05/29 2021/08/30 2021/06/02 2021/05/04

Vg-9 2021/06/04 2021/09/01 2021/07/01 –

Vg-10 2021/05/31 2021/09/01 2021/04/14 2021/06/07

Vg-11 2021/06/04 2021/09/02 2021/05/29 2021/06/26

Vg-12 2021/06/06 2021/09/06 2021/05/10 2021/06/09

Vg-13 2021/06/13 2021/09/10 2021/05/06 2021/06/16

Vg-14 2021/06/06 2021/09/10 2021/05/09 2021/06/12

Vg-15 2021/06/16 2021/09/15 2021/07/16 –

Vg-16 2021/06/25 2021/09/18 2021/05/29 2021/06/25

Vg-17 2021/06/26 2021/09/22 2021/04/22 2021/07/08

Vg-18 2021/06/28 2021/09/26 2021/06/23 2021/07/19

Vg-19 2021/06/26 2021/09/27 2021/06/28 2021/07/20

Vg-20 2021/06/26 2021/09/27 2021/05/30 2021/06/26

Vg-21 2021/06/24 2021/09/27 2021/05/29 2021/06/29

Vg-22 2021/07/15 2021/10/12 2021/07/11 2021/08/07

Vg-23 2021/07/24 2021/10/12 2021/07/25 2021/08/24

Vg-24 2021/07/06 2021/10/11 2021/07/19 –

Vg-25 2021/07/23 2021/10/14 2021/06/29 2021/07/21

Vg-26 2021/07/20 2021/10/15 2021/06/20 2021/07/28

Vg-27 2021/07/17 2021/10/19 2021/07/20 –

Np-1 – – 2021/04/22 2021/05/27

Np-2 – – 2021/04/22 2021/05/25

Np-3 – – 2021/04/01 2021/05/25

Np-4 – – 2021/04/08 2021/05/07

Np-5 – – 2021/04/24 2021/05/11

Np-6 – – 2021/04/02 2021/05/31

Np-7 – – 2021/04/02 2021/04/30

Np-8 – – 2021/04/02 2021/04/30

Np-9 – – 2021/04/02 2021/04/30

Np-10 – – 2021/04/02 2021/04/30

Np-11 – – 2021/04/02 2021/04/30

Np-12 – – 2021/04/02 2021/04/30

Np-13 – – 2021/04/02 2021/04/30

Np-14 – – 2021/04/02 2021/04/30

Np-15 – – 2021/04/02 2021/04/30

Np-16 – – 2021/03/11 2021/04/12

Np-17 – – 2021/03/11 2021/04/12

Np-18 – – 2021/03/11 2021/04/12

Np-19 – – 2021/03/11 2021/04/12

Np-20 – – 2021/03/11 2021/04/12
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significant difference in the percentage of NKp46+Vd2+T cells

between vaccinated pregnant women and unvaccinated

pregnant women. But compared with non-pregnant vaccinated

women, the percentage of NKp46+Vd2+T cells was significantly

decreased in vaccinated pregnant women (Figure 2C).

Furthermore, we supposed that gd T cell would exhibit the

exhausted phenotype after vaccination. Actually, the frequency

of PD-1+ Vd2+T cells was significantly elevated in vaccinated

pregnant women compared to unvaccinated pregnant women.

However, there was no difference between non-pregnant

vaccinated women and vaccinated pregnant women (Figure 2D).
Phenotypical changes of Vd1+T cells in
vaccinated pregnant women

To investigate the alteration of expression pattern of

activating and inhibitory receptors in Vd1+T cells after COVID-
Frontiers in Immunology 05
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19 vaccination in the pregnant women, the frequencies of

NKG2D+, NKp30+, NKp46+, and PD-1+ cells in Vd2+T cells

were determined. Unsimilar to Vd2+T cells, the frequencies of

NKG2D+ and NKp30+ cells in Vd1+ cells were much lower in

vaccinated pregnant women than that in unvaccinated pregnant

women (Figures 3A, B). In addition, a significant difference in the

frequency of NKG2D+Vd1+ cells was found between non-

pregnant vaccinated women and vaccinated pregnant women.

Similar to Vd2+T cells, the frequency of NKP46+ cells were no

different in all three groups (Figure 3C). Finally, PD-1+ Vd1+T
cells were significantly increased in the pregnant women after

vaccination (Figure 3D).
Discussion

Our study demonstrated that frequencies of total gd T cell

(CD3+gd+ T cells) was significantly decreased in the pregnant
A B

D

E

C

FIGURE 1

Peripheral gd T cells and their subsets in non-pregnant vaccinated women, vaccinated, and unvaccinated pregnant women. Statistical comparison of
gd T cell proportions in CD3+ T cells (A, B) Typical flow cytometry plots and gating for a CD3+TCR gd+;Vd1+, Vd2+, and Vd1-Vd2- subsets in gd T cells
(C, D), and the Vd1+/Vd2+ ratio between the vaccinated and unvaccinated pregnant women. (E) Gate from TCR gd+ cells,Vd1+, Vd2+, and Vd1-Vd2-

subsets are shown as representative flow cytometry plots. ns, no significance; **P < 0.01. ***P < 0.001. (NP vaccinated, non-pregnant vaccinated).
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women with COVID-19 vaccination compared to that in the

pregnant women without COVID-19 vaccination. Furthermore,

analysis of the frequencies of Vd1+T cells and Vd2+T cells in

total gd T cells indicated that there were no significant

differences between vaccinated pregnant women and

unvaccinated pregnant women. Importantly, no significant

difference was found on the Vd1/Vd2 ratio between these two

groups of women who were with or without COVID-19

vaccination. For evaluation of activated and exhausted

phenotypes in of Vd1+T cells and Vd2+T cells after COVID-19

vaccination in the pregnant women, the frequencies of NKG2D+,
Frontiers in Immunology 06
211
NKp30+, NKp46+, and PD-1+ cells in these two subsets were

analyzed. Our findings suggested that Vd1+T cells and Vd2+T
cells developed an exhausted phenotype post COVID-19

vaccination. These results demonstrate that COVID-19

vaccination exhibits a certain degree of influence on the

frequency of total gd T cell and alteration of phenotype of

Vd1+T cells and Vd2+T cells. However, the Vd1/Vd2 ratio is

similar between vaccinated pregnant women and unvaccinated

pregnant women, which indicates that vaccination did not break

the important balance between these two main subsets of

peripheral gd T cells. Taken together, the results suggest
A B

DC

FIGURE 3

Expressions of crucial molecular of Vd1+ gd T cells in non-pregnant vaccinated women, vaccinated, and unvaccinated pregnant women.
Comparable analysis of expressions of NKG2D (A), NKP30 (B),NKP4 6 (C), and PD-1 (D) receptors of Vd1+ gd T cells acquired by flow cytometry.
ns, no significance; *P < 0.01; ****P < 0.001.
A B

DC

FIGURE 2

Expressions of crucial molecular of Vd2+ gd T cells in non-pregnant vaccinated women, vaccinated, and unvaccinated pregnant women.
Comparable analysis of expressions of NKG2D (A), NKP30 (B),NKP46 (C) and PD-1 (D) receptors of Vd2+ gd T cells acquired by flow cytometry.
ns, no significance; *P < 0.05, **P < 0.01.
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COVID-19 vaccination influences subtypes of gd-T cells without

effects on pregnancy.

In this study, we found that the frequency of total gd-T cells

was similar between the pregnant women and non-pregnant

women after COVID-19 vaccination (Figure 1A). In addition,

there were no significant differences in frequencies of Vd1+T
cells and Vd2+T cells between these two groups of individuals.

A similar result was also found in the Vd1+T/Vd2+T
ratio (Figure 1C). However, the frequency of Vd1-Vd2- T

cells was much higher in the non-pregnant vaccinated women

compared with that in vaccinated pregnant women (Figure 1D).

Furthermore, our data indicated that the proportions of

NKP46+Vd2+T cells and NKG2D+Vd1+T cells were lower in

the vaccinated pregnant women than that in non-pregnant

vaccinated women (Figures 2C, 3A). By contrast, no

significant differences were found in the percentages of

NKG2D+, NKP30+, and PD-1+ cells in Vd2+T cells and

NKP30+ and NKP46+ cells in Vd1+T cells between the non-

pregnant vaccinated women and vaccinated pregnant women

(Figures 2A, B, D; Figures 3B-D). These data further

demonstrated that pregnancy is not a potential influencing

factor for our findings, and this will help us to achieve more

confident conclusions.

In humans, Vd1+T cells and Vd2+T cells are the two major

subsets of gd T cells which are identified by the Vd chains. Vd1+T
cells constitute the majority of T cells in the thymus and mucosal

tissues, and Vd2+T cells are predominant in the peripheral blood

(16). As the main gd T cell subsets, Vd1+T cells and Vd2+T cells

exhibit different immunological functions. Vd1+T cells display

regulatory and effector features, and Vd2+T cells exert a

cytotoxic activity targeting pathogenic characteristics.

According to previous studies, the frequency of peripheral gd
T cells is higher in women with a successful pregnancy

compared to women with pregnancy failure (9). In addition,

one study suggested that Vd1+T cells could produce IL-10 to

down-regulate the cytotoxic NK cells during pregnancy. In

healthy pregnant women, the predominant subpopulation of

peripheral gd T cells is Vd1+T cells, whereas Vd2+T cells is the

most frequent subset in women with recurrent miscarriage (16).

Therefore, this evidence demonstrated that an imbalance of

Vd1/Vd2 ratio leads to adverse pregnancy outcome (15, 16). It

has been reported that gd T cells (mostly expressing Vd2) are
able to destruct influenza A virus-infected cells as efficient as

CD8+ T cells or NK cells in a polycytotoxic manner and by

releasing IFN-g against infected cells in vitro (17). In several

contexts, including infection with Mtb, malaria, influenza, and

HIV and vaccination with BCG and live attenuated influenza,

there are clear patterns of gd T-cell expansion, particularly of the
Vd2+ subset, in response to both infection and vaccination (18).

However, there is no literature report on the effect of other

vaccines after pregnancy on gd T cells’ function. In the future, we

could detect the difference in gd T cells’ function between other

vaccines and the COVID-19 vaccine during pregnancy, so as to
Frontiers in Immunology 07
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explore whether this result is specific to the COVID-19 vaccine.

In our study, COVID-19 vaccination did not change Vd1/Vd2
ratio in the pregnant women, which indicates the impact of

vaccination might not cause an adverse outcome.

NK cell activating receptors, such as NKG2D, NKp30, and

NKp46, are widely involved in regulating NK functions during

pregnancy (19). Additionally, one recent study suggested that

the frequency of NKG2D+Vd2+T cells was negatively correlated

with a successful clinical pregnancy (8). Our data demonstrate

that no significant difference was found on the percentages of

NKG2D+ cells in Vd1+T cells and Vd2+T cells, which suggest

that COVID-19 vaccination did not induce the highly activated

peripheral gd T cells in the pregnant women. Because of the

activated gd T cells, a high level of inflammation is considered as

the major cause of abortion (15). Additionally, frequencies of

NKp30+ and NKp46+ cells in Vd1+T and Vd2+T were largely

similar between vaccinated pregnant women and unvaccinated

pregnant women. In summary, these data suggested that the

immunological functions of gd T cells were not altered after

COVID-19 vaccination in the pregnant women.

Accordingly, many previous studies suggested that

exhaustion of gd T cells is accompanied by a decrease in the

frequency of cells in different types of disease. For instance, in

acute myeloid leukemia (AML), the data demonstrated that the

proportion of total gd T cells was decreased in AML patients

(20). Subsequently, in these gd T cells, the authors observed

increased PD-1 expression and decreased NKG2D expression,

indicating highly activated or even exhausted states in the gd T

cells at diagnosis of AML (20). Additionally, in the acute viral

infection, a lower frequency of Vd2+T cells was also observed

(21). Moreover, these Vd2+T cells highly expressed CD95, which

in turn could lead to cell apoptosis that induces the loss of cells

(21). Interestingly, this work demonstrated that the expression

level of CTLA-4 exhaustion marker was elevated during acute

viral infection. In line with these previous results, we also found

that stimulation of COVID-19 vaccine induces the exhaustion

status within the loss of gd T cells in pregnant women, suggesting

the involvement of gd T cells in the complex network of

protective response induced by COVID-19 vaccination. PD-1

expression is induced on activated T cells and is correlated to

exhaustion status in anti-infection and anti-tumor responses

(22, 23). In our study, we found that the frequency of PD-1+ cells

in Vd1+T and Vd2+T were much higher in vaccinated pregnant

women compared to unvaccinated pregnant women. We suspect

that gd T cells developed an exhausted phenotype following

activation by COVID-19 vaccination. This switch from

activation and exhaustion might be the reason why the

frequency of gd T cells was decreased in the pregnant women

with COVID-19 vaccination. Since the objective of this study is

to investigate whether COVID-19 vaccination influences

subtypes of gd-T cells during pregnancy, the changes of

frequency and immunological phenotypes of gd-T cells were

determined in this study. gd-T cells are well known as having
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multiple functions in innate immune cells, suggesting they play

important roles in anti-viral infection and immune response to

vaccination. The results of our study could be considered as the

clues to address the questions about the potential immunological

functions of gd-T cell and its subsets involved in the immune

activity associated with COVID-19 vaccination. This deserves

further study in the future.

Despite the positives provided by this study, there are still

some limitations. First, a further larger sample size study is

warranted to validate these findings. And the effects of age,

vaccination scheme, vaccine types, and other factors in

impacting the immunological features of gd T cell should be

further evaluated in pregnant women after COVID-19

vaccination. Second, in this study, we only determined the

phenotypic changes of gd T cell subsets in the peripheral blood

of individuals. The functional capacity of gd T cell and its

subpopulations are rarely investigated in COVID-19

vaccination and should be determined in the future. Third, we

found the phenotypic changes of gd T cell subsets by comparing

the data collected in the pregnant women with or without

COVID-19 vaccination. In the future, using samples from each

vaccinated individual at different time points in the vaccination

scheme will further help us to clarify the significance of

functional alterations of gd T cell and its subsets in

establishing protective immunity against COVID-19 infection

after vaccination.

Taken together, our study suggests that gd T cell and its

subsets could respond to COVID-19 vaccination and display an

exhausted phenotype following activation. In addition, COVID-

19 vaccination influences subtypes of gd-T cells during

pregnancy, but the side effects are limited. Last but not least,

the contribution of gd T cell and its subsets to the immunology of

COVID-19 vaccination needs to be further investigated.
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