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Editorial on the Research Topic

Advanced Anomaly Detection Technologies and Applications in Energy Systems

Anomaly detection is an important topic that has been well-studied in diverse research areas and
application domains. It generally involves the detection of abnormal data, unhealthy statuses, and
fault diagnosis, and is helpful to guarantee industrial systems’ stability, security, and economy. With
the development of intelligent industries and sensor systems, large amounts of data become easily
available, but there are major challenges to industrial systems’ anomaly detection. One typical case is
the study on energy-related systems, like thermal energy, renewable energy (e.g., wind energy,
photovoltaic), electric vehicles, and so on. These systems involve various data formats and more
complex data structures making anomaly data detection a challenge. Currently, under the
development of deep learning and big data analytics, many promising results have been
achieved in energy systems’ anomaly data detection. However, many challenging problems
remain unsolved due to the complex nature of energy industries. New techniques and advanced
engineering applications of anomaly detection in energy systems still appeal to a wide range of
scholars and industries.

The objective of this Research Topic is to solicit papers on recent developments in anomaly
detection techniques and advances in applications of energy-related systems. The topic can cover
techniques related to anomaly detection algorithm development, such as machine learning, data
mining, deep learning, graph theory, big data, and so on. Various aspects of energy applications can
be addressed, like data cleaning, unhealthy evaluation of energy systems, condition monitoring, and
faults diagnosis in energy-related industries. Special attention could be paid to energy-related
systems, e.g., wind energy, photovoltaic, thermal energy, electric vehicle (EV) development, and
so on.

After paper Research Topic and rigorous review, 63 high-quality articles contributed by
327 authors were finally accepted for their contributions to the study of condition monitoring
and anomaly detection in power systems, renewable energy systems, and other industrial systems.

In the paper Series Arc Fault Diagnosis Based on Variational Mode Decomposition and Random
Forest, Zhao et al. proposed a method based on variational mode decomposition and energy entropy
to extract the characteristic quantity of series arc faults, and subsequently complete the fault
detection.

In the paper Sequential Detection of Microgrid Bad Data via a Data-Driven Approach Combining
Online Machine Learning with Statistical Analysis, Huang et al. proposed a sequential detection
method to detect bad data in Energy Management Systems (EMS).
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Abnormal detection data of fire accidents in power cable
tunnels was studied by Guo et al. in the paper Analysis of
Abnormal Detection Data of Fire Accident in Power Cable
Tunnel and Field Test Study on Characteristic Parameters of
Tunnel Fire.

In the paper Research on Fire Prediction Method of High-
Voltage Power Cable Tunnel Based on Abnormal Characteristic
Quantity Monitoring, Li et al. proposed a fire early warning
method for a high-voltage power cable tunnel based on
abnormal characteristic quantity monitoring.

In the paper Data-Driven Traction Substations’ Health
Condition Monitoring via Power Quality Analysis, Xie
proposed a data-driven approach for recognizing anormal
types of power quality problems, and developed a system with
intelligent governance strategies.

In the paper Monitoring and Identifying Wind Turbine
Generator Bearing Faults Using Deep Belief Network and
EWMA Control Charts, a data-driven approach for condition
monitoring of generator bearings using temporal temperature
data was presented by Li et al.

In the paper Invalid Data Rejection of Audible Noise on AC
Transmission Lines Based on Moving Window Kernel Principal
Component Analysis, Cheng et al. proposed to detect outliers by
using the moving window kernel principal component analysis
(MWKPCA).

In the paper Power Consumption Predicting and Anomaly
Detection Based on Transformer and K-Means, Zhang et al.
combined the widely used deep learning model Transformer
with the clustering approach K-means to estimate power
consumption over time and detect anomalies.

In the paper Heuristic Feature Selection for Wind Power
Anomaly Events Study, Yu and Lin took wind power ramp
events as typical harmful anomaly events in wind engineering
and detected them.

In the paper Robust Vehicle Dynamics Control for a Sharp
Curve with Uncertain Road Condition, Miao et al. presented a
robust control strategy for CAVs to preserve a precise tracking
performance and maintain the stability of lateral dynamics.

In the paper A Fault Signal Processing Method Based on An
Improved Prony Algorithm, Yang et al. proposed an improved
adaptive Prony algorithm to detect faults in power systems.

In the paper An Improved Solution to Generation Scheduling
Problem Using Slime Mold Algorithm, Zhu proposed a novel
mathematical formulation that employs changeable weights to
modify the sequence of both negative and positive propagation
waves during oscillation.

Considering bird nests on transmission line towers pose a
serious threat to the safe operation of power systems, in the paper
Recognition of Bird Nests on Power Transmission Lines in Aerial
Images Based on Improved YOLOv4, Zhang and He explored an
effective method to detect bird nests taken by drone inspection.

In the paper Research on STATCOM Mathematical Model of
Battery Storage in HVDC Transmission System, Xing et al.
proposed research to study the possible imbalance of battery
state of charge (SOC) in STATCOM/BESS.

In the paper Power Grid Material Demand Forecasting Based
on Pearson Feature Selection and Multi-Model Fusion, a power

grid material demand forecasting model based on feature
selection and multi-model fusion was proposed by Dai et al.
oriented to power grid analysis.

In the paper Power Quality Data Compression and
Disturbances Recognition Based on Deep CS-BiLSTM Algorithm
with Cloud-Edge Collaboration, Xia et al. proposed a hybrid
model based on distributed compressive sensing and a bi-
directional long-short memory network to classify power
quality disturbances data.

In the paperNumerical Analysis on the Sub-Span Oscillation of
Iced Eight-Bundle Conductors During Galloping, Yu et al.
implemented a numerical analysis method to analyze the sub-
span oscillation characteristics of the eight-bundle conductor
during galloping.

In the paper A New Grounding Resistance Reduction Method
for Wind Turbines by Grounding Grid Connection in Limited
Areas, a new grounding resistance reduction method is proposed
by Hu et al. and verified for wind turbines by connecting nearby
wind turbine grounding grids.

In the paper Acoustic-Electrical Joint Localization Method of
Partial Discharge in Power Transformer Considering Multi-Path
Propagation Impact, Jia et al. proposed an acoustic-electrical joint
method for partial discharge location in the power transformer
with the full consideration of the multi-path propagation impact.

In the paper Robust Unit Commitment for Minimizing Wind
Spillage and Load Shedding With Optimal DPFC, Zhu et al.
presented a novel two-stage robust model to optimize the
status of the generator and location-allocation of the
distributed power flow controller (DPFC).

In the paper Improved Electrogeometric Model of UHV
Transmission Line Based on Long Gap Discharge and Its
Application, an improved EGM model was developed by Hu
et al. and applied to evaluate the influence of tower type and slope
steepness on the shielding failure tripping rate of UHV
transmission lines.

In the paper Traction Network Protection Based on Similarity
of Transient Current Waveform, a protection scheme for the
traction network of the penetrating co-phase traction direct
power supply system based on the waveform similarity at both
ends of the line was proposed by Chen et al.

In the article Numerical Simulation of Galloping
Characteristics of Multi-Span Iced Eight-Bundle Conductors,
the numerical model of the multi-span iced eight-bundle
conductor is established by Shunli et al.

In the paper Research on Battery Energy Storage STATCOM
Suppressing HVDC Commutation Failure, a compensation
method using battery energy storage STATCOM (STATCOM/
BESS) to suppress commutation failure of the transmission
system is proposed by Xing et al.

In the paper Prediction of the 3D Distribution of NOx in a
Furnace via CFD Data Based on ELM, a novel method for the
prediction of the three-dimensional (3D) spatial
distribution of NOx in a furnace is proposed and
evaluated by Lv et al.

In the paper Accurate Modeling Simulation and Experimental
Study of Hybrid Multi-Terminal UHVDC Transmission System,
Xing et al. proposed a simulation model of the control system
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applicable to the hybrid multi-terminal UHVDC transmission
system.

In the paper Two-Stage Optimal Location Allocations of DPFC
Considering Wind and Load Uncertainty, Zhu et al. presented a
novel two-stage stochastic model for optimal location allocations
of the DPFC coupled with the interactions of DPFC to search for
the optimal solutions.

In the paper Simulation Study on Lightning Impulse
Characteristics of Flexible Graphite Composite Grounding
Materials Applied to Grounding Grid of Power System, Hu
et al. built a frequency domain electrical network model and
an equivalent radius iterative algorithm to analyze the impulse
characteristics of the graphite composite grounding electrode.

In the paper FuzzyWeighted Echo State Networks, a novel echo
state network (ESN) was proposed by Yao and Li, which uses the
structural information of data sets to improve the performance of
the classical ESN.

In the paper Mechanism of Power Quality Deteriorating
Caused by Multiple Load Converters for MVDC System, Huang
et al. discussed the mechanism of power quality deterioration
caused by interfacing multiple load converters as anomalies in the
MVDC system.

In the paper An intelligent governance system for traction
substations’ power quality problems, Xie proposed an advanced
approach for detecting power quality problems in electrified
railway traction substation systems.

In the paper Multiterminal Hybrid DC Line Protection Based
on Intrinsic Mode Energy Entropy, the boundary frequency
characteristics of the UHV multiterminal hybrid DC
transmission system were analyzed by Xing et al.

In the paper Energy-Efficiency-Oriented Vision Feedback
Control of QCSP Systems: Linear ADRC Approach, Li and
Feng proposed a lightweight object detection network and a
linear active disturbance rejection controller (LADRC) for the
quadrotor with the cable-suspended payload (QCSP) system.

For the optimal size of a hybrid renewable energy system to
meet the electrical load requirement of a specified distant location
in the Haryana state of India, two intelligence techniques were
proposed by Zhang in the paper Optimal Allocation Of Hybrid
Energy System For Competitive Electricity Market.

In the paper A Multi-Agent Game-Based Incremental
Distribution Network Source–Load–Storage Collaborative
Planning Method Considering Uncertainties, Yang et al.
proposed an incremental distribution network
source–load–storage collaborative planning method with a
multi-agent game.

In the paper Grey Wolf Optimization–Based Deep Echo State
Network for Time Series Prediction, Chen and Zhang proposed a
grey wolf optimization (GWO) algorithm introduced in this
study to achieve the lowest learning error.

In the paper A Study of Protection Method for Hybrid
Multiterminal UHVDC Lines Based on CEEMDAN–Teager
Energy Operator, a protection scheme for hybrid multiterminal
UHVDC lines based on the CEEMDAN and Teager energy
operator is proposed by Xing et al.

In the paper Study of Capacitive Coupling Sensor Fused with
High Voltage XLPE Cable Joint, Xia et al. proposed a capacitive

coupling sensor for partial discharge detection with the fusion of
high voltage XLPE cable joint.

In the paper Bone Age Assessment Based on Deep
Convolutional Features and Fast Extreme Learning Machine
Algorithm, Guo et al. proposed a new DL-based bone age
assessment method based on the Tanner-Whitehouse method.

In the paper Study on Dynamic Process Characteristics of CHP
Unit with Variable Load Based on Working Point Linearization
Modeling, a CHP unit model based on working point
linearization modeling was proposed by Huang et al. for the
optimization scenario of an integrated energy system.

In the paper Wind Power Prediction Based on a Hybrid
Granular Chaotic Time Series Model, Wang et al. proposed a
hybrid model considering physical features of data for high-
accuracy short-term wind power prediction.

In the paper Operation State Evaluation Method of Smart
Distribution Network Based on Free Probability Theory, a method
of operation state evaluation of smart distribution networks based
on free probability theory was proposed by Zhang et al.

In the paper Research on Dynamic Response of Slopes with
Weak Interlayers Under Mining Blasting Vibration, Zhang et al.
constructed a slope model with a weak interlayer to investigate
the influence of different factors of blasting on the internal
dynamic response.

In the paper Numerical Weather Prediction Correction
Strategy for Short-Term Wind Power Forecasting Based on
Bidirectional Gated Recurrent Unit and XGBoost, Li et al.
proposed a variational mode decomposition combined with
bidirectional gated recurrent unit (VMD-BGRU) method for
NWP wind speed correction and XGBoost forecasting model.

In the paper Research on the Unstable Branch Screening
Method for Power System With High-Proportion Wind Power,
Tang et al. proposed an unstable branch screening method for
power systems with high-proportion wind power.

In the paper Research on Conducted Disturbance to Secondary
Cable Caused by Disconnector Switching Operation, Chen et al.
proposed a broadband equivalent circuit model of the potential
transformer and the grounding grid based on the vector fitting
method and the impedance synthesis method.

In the paper The Influence of Humidity on Electron Transport
Parameters and Insulation Performance of Air, An et al. studied
the microscopic process of electron–molecule collision in the air
based on the Boltzmann equation.

In the paper Intelligent Filling Method of Power Grid Working
Ticket Based on Historical Ticket Knowledge Base, An et al.
proposed a method of intelligent filling in a power grid
working ticket based on a historical ticket knowledge base.

In the paper Lumped-Circuits Model of Lossless Transmission
Lines and Its Numerical Characteristics, aiming at the lumped-
circuits model of the lossless transmission line in the digital
simulation, Zhou et al. discussed and analyzed the unit step
response generation of the lumped-circuits model.

In the paper Tolerance of Electromagnetic Relay to Voltage Sags
and Short Interruptions, Zhang et al. studied the tolerance of
electromagnetic relay (EMR) under voltage sag and short
interruptions on the basis of response mechanism analysis and
extensive tests.
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In the paper Ultra-Short-Term Wind Power Prediction Based
on Bidirectional Gated Recurrent Unit and Transfer Learning, an
ultra-short-term prediction method based on multilayer
bidirectional gated recurrent unit (Bi-GRU) and fully
connected (FC) layer was proposed by Chen et al.

In the paper Research on Combined Electricity and Heating
System Scheduling Method Considering Multi-Source Ring
Heating Network, Ye et al. established an electrothermal
coupling scheduling model and proposed a method of
simplifying a multi-source cyclic heating network topology
approximation.

In the paper OC-SLAM: Steadily Tracking and Mapping in
Dynamic Environments, Wu et al. proposed an object detection
and clustering assisted SLAM algorithm (OC-SLAM) to solve
problems of SLAM systems.

In the paper Research on Leakage Current Waveform Spectrum
Characteristics of Artificial Pollution Porcelain Insulator, to
analyze the LC characteristics of porcelain insulators in the
process of pollution flashover, artificial pollution flashover
tests on porcelain insulators were conducted by Fang et al.

In the paper Green Building Energy Cost Optimization With
Deep Belief Network and Firefly Algorithm, Liao et al. proposed a
multi-objective optimization framework to minimize the energy
cost while maintaining indoor air quality.

In the paper Hosting Capacity Assessment in Distribution
Networks Considering Wind–Photovoltaic–Load Temporal
Characteristics, Du et al. proposed a probabilistic assessment
method of hosting capacity considering
wind–photovoltaic–load temporal characteristics in
distribution networks.

In the paper Equivalent Firm Capacity Assessment of HDR-PV
Hybrid Power System: A Distributionally Robust Approach, Si
et al. designed a flexible hot dry rock (HDR) hybrid power system
(HPS), making full use of the potential of HDR for energy storage
and power generation.

In the paper Modeling the Heat-Hydrogen Balance
Characteristic of Hydrogen Energy Storage and Cooperative
Dispatch of Wind-Hydrogen Hybrid System, Si et al. designed a
hydrogen energy storage system (HESS), including waste heat
utilization.

In the paperMapping Relation of Leakage Currents of Polluted
Insulators and Discharge Arc Area, Fang et al. carried out an
experimental study on artificial pollution discharge of insulators.

In the paper Short-Term Nacelle Orientation Forecasting Using
Bilinear Transformation and ICEEMDAN Framework, A tandem
hybrid approach to improve the prediction accuracy of the wind
direction data was developed by Li et al.

In the paper Edge Intelligent Perception Method for Power Grid
Icing Condition Based on Multi-Scale Feature Fusion Target
Detection and Model Quantization, Ma et al. proposed a
lightweight intelligent recognition method of insulator icing
thickness for front-end ice monitoring devices.

In the paper Intelligent Frequency Control Strategy Based on
Reinforcement Learning of Multi-Objective Collaborative Reward
Function, Zhang et al. constructed a multi-objective collaborative
reward function by introducing a collaborative evaluation
mechanism with multiple evaluation indexes.

In the paper Insulator Contamination Perception Based on
Feature Fusion of Infrared Image and Meteorological Parameters,
Wang et al. proposed a feature fusion model to perceive insulator
contamination in different weather conditions.

It is seen that these papers in our Research Topic mainly
involve anomaly detection in other industrial systems, as well as
some advanced algorithms development, e.g., machine learning
and data mining algorithms related to anomaly detection. From
all contributions to this Research Topic, we see that anomaly
detection in the energy system is meaningful and potential to be
further developed in future research.

Finally, the guest editors would like to thank all authors for
their interesting contributions and all the reviewers for their great
effort in reviews. Special thanks go to the Editor-in-Chief and
editorial members of the journal for their great support of this
Research Topic.
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Insulator Contamination Perception
Based on Feature Fusion of Infrared
Image andMeteorological Parameters
Hongxia Wang 1, Bo Wang 1*, Min Li 2, Peng Luo1, Hengrui Ma 3 and Fuqi Ma 1

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China, 2School of Computer and Artificial
Intelligence, Wuhan Textile University, Wuhan, China, 3New Energy (Photovoltaic) Industry Research Center, Qinghai University,
Xining, China

Polluted insulators seriously threaten the safe and stable operation of power grids, which
attaches great significance to insulator contamination perception. Among the present
methods, the non-contact approaches based on infrared images have gradually been
widely used, as they are much more safe and are of low cost. However, the thermal effect
of insulators is largely affected by meteorological conditions, which makes the infrared
image-based methods less accurate. To solve the above problem, we take infrared image
and meteorological parameters including humidity and temperature as input, and propose
a feature fusion model to perceive insulator contamination in different weather conditions.
Firstly, different feature extraction networks are used to perform feature extraction on the
two types of data; secondly, the two features are concatenated to fuse together; thirdly,
further feature extraction is performed and contamination is classified according to the
pollution severity. Case studies show that the proposed method can better explore the
relationship between humidity, temperature and pollution level of the insulators, thus can
better separate the contamination grades and outperform the conventional infrared image
based methods.

Keywords: insulator, contamination perception, feature fusion, infrared image, meteorological parameters

1 INTRODUCTION

Functioning as electrical insulation and mechanical support, outdoor insulators play an important
role in power systems (He et al., 2006). However, with the increasing pollution caused by gas
emissions from factories and cars, bad weather like fog-haze, rain and snow conditions, the insulators
are contaminated more severe and are more easily and frequently to flashover (Fofana et al., 2020; 3,
2020; Dong et al., 2014; Liu et al., 2020), which can seriously endanger the safe and stable operation of
power grids, and even cause huge economic losses. Therefore, it is necessary to perceive the pollution
level of insulators and take measures in time.

There are mainly two kinds of contamination perception methods for insulators: contact methods
and non-contact methods (Jin et al., 2017). The contact ones include leakage current (Banik et al.,
2016; Wang et al., 2019; Salem et al., 2020), surface conductivity (Wang et al., 2017; Zhong et al.,
2018), ESDD (Equivalent Salt Deposit Density) (Cao et al., 2019) and so on. Generally speaking, the
above approaches have clear physical meaning and are relatively accurate. However, they often
require online monitoring equipments with large quantity and high prices, what’s more, some of the
equipments need to be implemented in power off situation. Based on the acoustic, discharge and heat
phenomenon of polluted insulators in some cases, non-contact methods including infrared images
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(Zhao et al., 2017), ultraviolet images (Zhao et al., 2017) and (Liu
et al., 2021) photothermal radiometry are increasingly applied to
insulator contamination perception, because of their advantages
of safety and immunity to electromagnetic interference.

Among those non-contact approaches, the infrared image-
based ones are mostly used because of their low costs. From the
perspective of the elements they consider, these methods can be
divided into two kinds: 1) those based on infrared images only; 2)
those based on infrared images and meteorological parameters.

For contaminated insulators, the leakage current on their
surfaces will increase under wet conditions, and the more
severe the contamination, the greater the leakage current,
which can be detected through infrared images. As a result,
there are many methods perceiving insulator pollution based
on infrared images. In Zhao et al. (2017), the authors analyze
insulator contamination through the combination of infrared
images shot in different angles—to deal with the limitations
caused by angle diversification. In addition, to cope with the
limitation of manually-designed features, they use Deep
Convolutional Neural Networks (DCNNs) to automatically
extract features. Jiang and Xia (2010) study the influence of
contamination on deteriorated insulators, and conclude that
the infrared image based methods are capable of detecting
polluted deteriorated insulators in high-voltage. However,
these methods lack the consideration of meteorological
parameters, which can influence the temperature distribution
of the contaminated insulators, to be specific, the same polluted
insulator may behave differently in infrared images under
different humidity.

The temperature distribution of infrared images depends on
both contamination level and meteorological parameters, thus
the methods consider both these two factors can be more
generalized and accurate. Based on the color features extracted
from infrared images and relative humidity, He et al. (2019)
accomplish contamination level detection using Radial Basis
Function Neural Network (RBFNN); For a contaminated
insulator, its infrared images can give contamination
information when it in wet conditions, while the visible
images are valid to detect contamination level when it in dry
conditions. Therefore, Jin et al. (2018) fuse the infrared and
visible images to cope with the impact of humidity on non-
contact methods. However, the above two kinds are both based
on manually designed features, whose perception accuracy are
highly dependent on expert experience.

In this study, taking both infrared image and meteorological
conditions into consideration, we propose an end-to-end feature
fusion method to detect pollution level of insulators in an
automatic and accurate way, the contributions are as follows:

1. Considering the differences of infrared images under
different weather conditions, the insulator pollution perception
problem is mapped to a probability problem of pollution degree,
infrared image and meteorological conditions. And the way to
solve this problem is to calculate the conditional probability of
each pollution severity under the corresponding inputs.

2. The insulator contamination perception methods based on
infrared images largely depend on the meteorological conditions,
to cope with this problem, we take both infrared image and

meteorological parameters as input, and propose a feature fusion
method to fuse these two types of data, from which the
relationship between contamination grades, temperature and
humidity is explored, and the contamination perception in
different environmental conditions improves a lot.

3. Instead of manually designing features for inputs, the
feature fusion method proposed can automatically extract
features for the two kinds of data, which is more accurate and
can be trained and tested in an end-to-end way.

The rest of this paper is organized as follows: Section II gives
the basic principles of infrared image based contamination
perception methods, based on this, the influences of
meteorological parameters on infrared images are analyzed;
Section III proposes the feature fusion method, which includes
the feature extraction part, the feature fusion part and the
contamination classification part; Section IV describes the data
preparation, the model training and model testing process;
Section V verifies the effectiveness of the proposed method
from evaluation results and model comparison; and Section VI
concludes this paper.

2 BASIC THEORY

Infrared images manifest infrared energy radiated from objects
with temperature higher than absolute zero. Because of the
abnormal temperature distribution caused by anomaly or
faults of the objects, events can be detected through infrared
image analysis, which has been widely used in biomedicine
(Vainer, 2019), transportation control (Wang et al., 2020a),
quality inspection (Tumas and Serackis, 2017), power systems
(Wang et al., 2020b) and other fields.

For contaminated insulators in power systems, their pollution
degrees can be detected through infrared images. To be specific, the
infrared effect of a contaminated insulator is associated with the
heat produced by leakage current on its surface, which is affected
by the pollution on its surface andmeteorological parameters, such
as temperature and humidity. For example, even the same
contaminated insulator can show different temperature
distribution under different meteorological circumstances, which
indicates the necessity to consider both thermal effect on infrared
image and meteorological circumstance when analyzing the
contamination degree of insulators. The factors affecting
infrared effect are analyzed as follows:

2.1 Contamination Grade
In a humid atmosphere, the contamination grades of insulators
are positively correlated with the heat they produce: The pollution
on a polluted insulator absorbs moisture in the atmosphere,
which causes a decrease in the surface resistance, and an
increase in its conductivity. Therefore, the leakage current
through the surface is significantly increased and thus causes
thermal effect that can be detected by infrared images. In
addition, when under a certain humidity condition, the higher
the contamination grade, the larger the decrease of the surface
resistance, and the larger the leakage current. While for a clean
insulator without contamination, the leakage current is always
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small and there are no obvious heating phenomenon even with
very high humidity.

2.2 Humidity
A certain degree of humidity is necessary for contaminated
insulators to produce leakage current: When the humidity is
relatively small, both contaminated insulators and clean
insulators produce small or even no leakage current, thus
there are no clear differences between their corresponding
infrared images; When subjected to a wet condition with
relatively high humidity, however, the surfaces of the polluted
insulators will become conductive, and the thermal effect caused
by the leakage current will be reflected on the infrared images,
while for the clean insulators, the increase in humidity does not
affect their thermal effect. What’s more, for the same
contaminated insulator, it can present differently when in
different wet condition, to be more specific, the higher the
humidity value, the more heat it produces and the higher the
temperature in infrared image.

2.3 Temperature
The environmental temperature affects both the leakage current
and the infrared image: 1) The leakage current can be influenced
in two ways: on the one hand, the change of the environmental
temperature often yields change of the environmental humidity,
which will indirectly affect the leakage current produced; on the
other hand, it affects the evaporation rate of the contamination
layer, and may affect the pollution grade of the insulators in the
end. 2) The temperature distribution of infrared images can be
affected by environmental temperature (Zou et al., 2014), which
in turn can influence the contamination perception accuracy.

In short, there is a complicated nonlinear relationship between
leakage current and pollution level, temperature and humidity.
When using infrared images to perceive contamination grade,
environmental humidity and temperature are necessary to be
considered.

3 CONTAMINATION GRADE PERCEPTION
BASED ON FEATURE FUSION METHOD

We model the pollution degree perception problem of insulators
as a conditional probability function based on temperature,
humidity and infrared image characteristics. In this paper, we
divide the contamination degree into five classes according to the
pollution severity, then under the interaction of humidity,
temperature and the contamination on the insulator surface,
the probability of the contaminated insulator belonging to
each category can be characterized as

p(c � i | t, h, in) i � 1, 2, 3, 4, 5 (1)

where c represents the contamination class, h, t represents
humidity and temperature, respectively, and in is infrared
image shoot under this environmental circumstance.

Based on Eq. 1, we convert the contamination perception
problem into a conditional probability problem, and propose a

feature fusion method to tackle this. In the following parts of this
chapter, we firstly give the overall framework of the proposed
method, and then illustrate the details of feature extraction,
feature fusion and contamination perception.

3.1 Overall Framework
Figure 1 depicts the overall feature fusion framework consisting
of four parts: 1) the input part, which includes two kinds of
parameters—infrared image and meteorological parameters
including humidity and temperature. What’s more, the input
data aligns in time, which means that they are collected at the
same time; 2) the feature extraction part, where the two kinds of
data are fed into different feature extraction networks—the
meteorological parameters are extracted by an artificial neural
network (ANN), and the infrared image is extracted by a
convolutional neural network (CNN)—because of the
differences in data format and physical meaning; 3) the data
fusion part, where the two kinds of features are concatenated and
fed into two fully connected layers to extract features further; 4)
the output part, where and the contamination grade is outputted.

3.2 Meteorological Parameters Feature
Extraction Network
Artificial Neural Network (ANN) is a highly nonlinear dynamic
system with a directed graph as its topological structure. It learns
features and processes information by adjusting the
interconnection relationship between internal neurons, so it is
of strong self-learning, self-adaptation and high fault tolerance
(Kamesh and Rani, 2017; Hu et al., 2018; Bhatt and Gandhi, 2019;
Shen et al., 2021).

For a polluted insulator, humidity and temperature can
influence its infrared effect on infrared image, at the same
time, the two meteorological parameters also interact and
influence each other. Therefore, we take humidity and
temperature parameters as a whole, and feed them into an
ANN to extract the interaction between the two parameters,
and learn the features with regard to the contamination grade.
The reason we choose ANN to extract features of meteorological
parameters is that the input is relatively simple—with only two
parameters, in this way, we suppose that a rather simple network
is enough to extract the information needed. Besides, ANN has
been widely used in many scenes with meteorological parameters
as parts of the inputs (Matsumoto et al., 1993; Bhatt and Gandhi,
2019; Madhiarasan, 2020), and the satisfactory results has
provided intuitions to our problem.

The proposed feature extraction network is as shown in Figure 2,
which consists of 2 1 × 10 fully connected layers and 1 1 × 5 fully
connected layer (FC); and Relu is used to activate the fully connected
layers. After the feature extraction, we get a 1 × 5 sized feature.What
needs to be pointed out is that, we test the analysis results under
different number of hidden layers and the neurons in each layer, and
the structure of the proposed one can get relatively better
performance when it used to fuse the two kinds of data.

Before feeding into the ANN, we use Eq. 2 to normalize the two
parameters, to solve the problem caused by their different scales.
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xin � xin −min xi( )
max xi( ) −min xi( ) (2)

where xi represents the i − th parameter, i � 1, 2; xin is the n − th
parameter of xi, which corresponds to the infrared image at the
n − th sampling moment; min(xi) and max(xi) are the minim
and maxim of the two parameters.

3.3 Infrared Image Feature Extraction
Network
One of the most popular image classification approaches today
involves the convolutional neural network (CNN), which has
been widely used in classification (Simonyan and Zisserman,
2014; He et al., 2016), object detection (Ren et al., 2017),
segmentation (Long et al., 2015) and so on. Unlike traditional
hand-crafted features, CNN unifies the feature learning and
classification parts, and automatically and jointly solves the
two problems together, which in turn greatly improves the
accuracy of image classification (Hatami et al., 2017).

As is shown in Figure 3, in this paper, we take part of VGG-
16 as feature extraction network of infrared images, for it is one
of the classical classification networks with good results, and
meets the contamination classification goal of this paper. In
Figure 3, conv (64 × 3 × 3) × 2 represents the same 2
convolutional layers, and each of them has 64 filters sized 3
× 3, and the same to conv (128 × 3 × 3) × 2, conv (256 × 3 × 3) × 3
and so on. maxpooling (2 × 2) is the max pooling layer sized 2 ×
2. It can be seen that the convolutional layers are all sized 3 × 3,
and the pooling layers are all sized 2 × 2. In addition, all the
convolutional layers are activated by Relu.

We normalize the infrared images to 224 × 224 × 3 before
feeding them into the feature extraction network. During the
feature extraction process, the width and height of a image are
reduced to half of the original each time it passes through a
pooling layer, and the channel size doubles every time it goes

FIGURE 1 | The feature fusion based insulator contamination perception network.

FIGURE 2 | Feature extraction of meteorological parameters.
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through the convolutional layer blocks (the network between two
neighboring maxpooling represents a block). After the final
maxpooling layer, we get a 7 × 7 × 512 sized feature, then it is
fed into two fully connected layers activated by Relu function, to
further feature extracted. Finally, a feature sized 1 × 5 is outputted.

3.4 Feature Fusion and Classification
Network
As is shown in Figure 4, we fuse the two kinds of features by
concatenating them. And after that, we get a 1 × 10 sized feature.
To make the fusion effectively, it requires at least one nonlinear
stage to successfully capture feature from the fused feature
(Srivastava and Salakhutdinov, 2014; Ramachandram and

Taylor, 2017). Therefore, we use two fully connected layers
activated by Relu to further analyze the fused feature. Here, to
avoid overfitting of the network, we set the dropout ratio of the
FC layer followed by the concatenation layer to be 0.5.

To classify the contamination, we divide the polluted
insulators into five grades, and use softmax to calculate the
probability that the input belonging to each class, as is shown
in Eq. 3.

p(x) �
p(y � 1 | x)
p(y � 2 | x)

/
p(y � m | x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1

∑m
j�1e

xj

ex1

ex2

/
exm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where x � [x1, x2,/xm] is the input, which is determined by the
network before the softmax; p(x) represents the output of softmax,
which is the conditional probability of the input belonging to each
category; y is the label of the input; m represents the class number,
which is 5 in this paper (we category the contamination into 5 classes).
Finally, the grade with the biggest possibility is the class outputted.

4 EXPERIMENTAL SETUPS

As is shown in Figure 5, the implementation of the proposed
method includes three parts: data acquisition and labeling,
training phase and testing phase.

FIGURE 3 | Feature extraction of infrared image.

FIGURE 4 | Feature fusion and classification.
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4.1 Data Acquisition and Labeling
To collect polluted insulator image samples in different weather
conditions, we use amixture of NaCl and kaolin to contaminate the
XP-70 insulators, and then, in a fog chamber, we shot infrared
images in different humidity and temperature, where the relative
humidity ranges from 60 to 100% in step of 5% each; and the
temperature ranges from 0°C to 40°C in step of 5°C each. As is
illustrated in 2.2, a ceratin value of humidity is a must for the
polluted insulators to generate leakage current and radiate to show
thermal effect. Therefore, we don’t collect infrared images with the
humidity less than 60%, as in that circumstance, the insufficient
humidity will cause almost no leakage current generated by the
contaminated insulators, and the contamination degree can’t be
perceived by the infrared images.

We use the equivalent salt deposit density (ESDD) (mg/cm2)
to discriminate the insulator contamination severity. According
to Chinese national standard ‘GB/T 5582–1993’, the
contamination can be classified into 5 grades according to the
pollution content, as is shown in Table 1. In addition, we divide
the data into a training and testing set according to 5 : 1, which are
used to train the network and evaluate the performance of the
proposed method, respectively.

4.2 Training Phase
During the training phase, we employ transfer learning to make
the network converge faster and solve the problem of relatively
small samples, which consists of two stages: In the first stage, we
pretrain VGG-16 network based on the ILSVRC-2012 dataset,

which contains more than 1 million training samples, and then
the parameters of the network are saved. In the second stage,
based on the shared parameters of the pretrained VGG-16, we
retrain the feature fusion network taking both infrared and
meteorological parameters pairs as input. The idea here is
that, there are some similarities for the image classification
problems, for example, they all have to extract some profile
information based on the point and line characteristics, thus
they can share some of the parameters for the same network
regarding to different classification goals. Besides, the network
has been trained to some extent and the loss function has arrived
to a relatively small value, which leads to a relatively small
modification compared with training from a completely new
network. During the training process, we take the same training
strategies as that in VGG-16 (Simonyan and Zisserman, 2014),
and aim to make the loss function small enough, as is shown in
Eq. 4.

L � −∑n
i�1

ppi log pi( ) (4)

where L represents the loss; pi is the probability from softmax, ppi
represents the label of the input, which is the real class of the input
data; n is the number of samples.

4.3 Testing Phase
After training process, the structure and parameters of the
proposed network is frozen in the test stage. In this phase, we
take testing set as input, and perceive the contamination grades
of the polluted insulators, the evaluation indicators are as
follows:

As is shown in Eq. 5–8 — four indicators—including p
(precision), R (recall), AP (average precision), and AR
(average recall)— are used to evaluate the proposed approach.

P � TP
TP + FP

(5)

R � TP
TP + FN

(6)

AP � 1
k
∑m
i�1

Pi (7)

AR � 1
k
∑m
i�1

Ri (8)

The explanation of the parameters above are as follows:
TP (True Positive): the number of the positive samples

predicted as positive; FP (False Positive): the number of the
negative samples predicted as positive; TN (True Negative):

FIGURE 5 | Implementation of the proposed method.

TABLE 1 | Contamination classification.

Grade ESDD (mg/cm2)

1 < 0.03
2 0.03 ∼ 0.06
3 0.06 ∼ 0.1
4 0.1 ∼ 0.25
5 0.25 ∼ 0.35
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the number of negative samples predicted as negative; FN (False
Negative): the number of positive samples predicted as negative.

m represents the class number, which equals to 5 in this paper.

5 CASE STUDIES

To validate the effectiveness of the proposed method, two
insulator contamination perception methods are compared: 1)
VGG-16; 2) feature fusionmethod proposed in this paper. For the
two networks, we take the same training set to train them, and use
the same test set to evaluate them. The only difference is that only
infrared images are fed into VGG-16, while the data pairs
(infrared image and meteorological parameters) are taken as
input for the feature fusion network.

5.1 Evaluation Results
Table 2 tells the average results of the two methods, Figure 6 and
Figure 7 illustrate the performance between five classes, from

which we can see that, the fusion method proposed in this paper
effectively improves the precision and recall (increases by 7.97
and 12.46% respectively), in addition, it has better results between
different contamination classes.

To further analyze the necessity of considering meteorological
parameters in insulator pollution perception, we divide humidity
into four classes—60 ∼ 70%, 70 ∼ 80%, 80 ∼ 90%, 90 ∼ 100%—and
compare the AP of the twomethods, as is shown in Figure 8. And
we also divide the temperature into four ranges—0 ∼ 10°C, 11 ∼
20°C, 21 ∼ 30°C, 31 ∼ 40°C—and compare the AP of the two
methods, as is shown in Figure 9.

From Figure 8, we get two conclusions: 1) both two
methods perform better in high humidity. However, the
data pairs input model is more balanced in each humidity
range, while the infrared image input model is more
dependent on humidity—the variance of AP of the former
is 0.47%, while is 0.63% of the latter; 2) the method proposed
in this paper outperforms the single-input method in all
humidity levels.

From Figure 9, both two methods have relatively balanced
performances in each temperature range, while the method
proposed in this paper outperforms the single-input method
in all the temperature classes.

The above phenomenons can be explained as follows: 1)
Both humidity and temperature affect the leakage current of

TABLE 2 | Evaluation comparison between the two methods.

Input AP (%) AR (%)

Infrared images 68.96 71.08
Meteorological parameters and infrared images 78.75 83.54
Difference 9.79 12.46

FIGURE 6 | Precision comparison between classes.

FIGURE 7 | Recall comparison between classes.

FIGURE 8 | Comparison between different humidity classes.

FIGURE 9 | Comparison between different temperature classes.
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the contaminated insulators, thus further influence the
infrared image and the classification perception. When the
infrared image alone is used as input, the model cannot
explore the relationship between humidity, temperature
and the pollution level of the insulator, so it has relatively
low precision; While for the fusion method proposed in this
paper, it takes humidity, temperature and infrared image as
input, which can better explore the relationship between
weather conditions and thermal radiation, so it can better
judge the contamination level. 2) The temperature does not
affect the performance between different contamination
classes, as the two methods perform similar in the four
temperature ranges within their own (the precision change
for the two methods are within 5%). Still, it is still one of the
key factors influencing the classification performance, as our
method outperforms the single-input method in every
temperature level, which may be explained by the influence
of the temperature to the humidity.

5.2 Model Comparison
5.2.1 Class Separability Analysis
To reveal the ability of the proposed model to distinguish
different levels of pollution, latent discriminant analysis
(LDA) (Hussein Mouzannar and Awad, 2018) is performed
on testing set to examine the separability of the two methods
(the feature fusion model and VGG-16). We extract the features
before softmax, and plot the distribution of the data after
performing LDA, which reduces the dimensionality of the
data to 2. As is shown in Figure 10, compared with VGG-
16, the feature fusion method is more capable of distinguishing
different levels of pollution, which is the reason of better
classification ability.

5.2.2 Model Complexity Comparison
Compared with VGG-16, the feature fusion method is less
complicated: Although it has more parameters in the
meteorological parameters feature extraction part, the fused
feature extraction part of the proposed network has much less
parameters than VGG-16 — As the former has two 1 × 10 FC
layers, while the latter has two 1 × 4096 FC layers.

6 CONCLUSION

The accuracy of infrared image based insulator contamination
methods largely depend on weather conditions. In this paper, we
take the constructed meteorological parameters and the unstructured
infrared image as input, and propose a feature fusionmodel to classify
insulator contamination in different meteorological conditions.

The two types of data are different in data form and physical
meaning, whichmakes it difficult to fuse them. In this way, we extract
the features of the two types of data, and represent them with the
same data form, then two features are fused and further analyzed to
classify the contamination. To be specific, the ANN and VGG-16 are
used to extract features of meteorological parameters and infrared
image, respectively. Then two features are fused by concatenation and
further feature extracted by two nonlinear layers (Relu activated fully
connected layers). In the end, the contamination level perception is
performed by softmax, fromwhich we get the probability of the input
belonging to each contamination grade.

Compared with the infrared image input model, the method
proposed in this paper can better separate the contamination
classification, and perform better in different meteorological
conditions. Besides, it has less parameters and is less complicated.

The model in this paper only test samples under the condition
of humidity greater than 60%, while for those in the case of
humidity less than 60%, there may be no obvious differences
between the infrared images of each pollution level. In the future,
we will focus on finding more features to make the method more
applicable to different meteorological conditions.
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A Corrigendum on

Insulator Contamination Perception Based on Feature Fusion of Infrared Image and
Meteorological Parameters
byWang, H., Wang, B., Li M., Luo, P., Ma, H., andMa, F. (2021). Front. Energy Res. 9:746378. doi: 10.
3389/fenrg.2021.746378

In the original article, there was an error. In the description of Eq. 4, the last part of the sentence that reads
“which equals to 1,000 in the VGG-16 and 5 in the feature fusion network proposed.” should be removed.

In addition, there was also an error in section 4 Experimental Setups, 4.2 Training Phase. The final
sentence was incorrectly written as “where L represents the loss; pi is the probability from softmax,
ppi represents the label of the input, which is the real class of the input data; n is the number of
samples, which equals to 1,000 in the VGG-16 and 5 in the feature fusion network proposed.” The
sentence should read as follows: “where L represents the loss; pi is the probability from softmax, ppi
represents the label of the input, which is the real class of the input data; n is the number of samples.”

Finally, there was also an error in the Funding statement. The original statement was incorrectly
written as “This paper is supported by the National Natural Science Foundation of China (Grant
No.51777142,51907096)”. The statement should read as follows: “This paper is supported by the State
Grid Headquarters Technology Project (Grant No.5400-202119145A-0-0-00)”.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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Intelligent Frequency Control Strategy
Based on Reinforcement Learning of
Multi-Objective Collaborative Reward
Function
Lei Zhang, Yumiao Xie, Jing Ye*, Tianliang Xue, Jiangzhou Cheng, Zhenhua Li and Tao Zhang

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

Large scale wind power integration into the power grid will pose a serious threat to the
frequency control of power system. If only Control Performance Standard (CPS) index is
used as the evaluation standard of frequency quality, it will easily lead to short-term
centralized frequency crossing, which will affect the effect of intelligent Automatic
Generation Control (AGC) on frequency quality. In order to solve this problem, a multi-
objective collaborative reward function is constructed by introducing a collaborative
evaluation mechanism with multiple evaluation indexes. In addition, Negotiated
W-Learning strategy is proposed to globally optimize the solution of the objective
function from multi dimensions, it avoids the poor learning efficiency of the traditional
Greedy strategy. The AGC control model simulation of standard two area interconnected
power grid shows that the proposed intelligent strategy can effectively improve the
frequency control performance and improve the frequency quality of the system in the
whole-time scale.

Keywords: wind power grid-connected, intelligent frequency control strategy, multi-dimensional frequency control
performance standard, Negotiated W-Learning algorithm, global optimization

1 INTRODUCTION

Automatic Generation Control (AGC) is an important means to realize the balance of active power-
load supply and demand in the power system. Among them, the quality of frequency control strategy
is an important factor that affects the performance of AGC control (Alhelou et al., 2018; Shen et al.,
2021a; Shen and Raksincharoensak, 2021a). However, the control strategies applied in engineering,
such as the threshold zone AGC control strategy that takes into account the combined effects of the
proportional component, integral component and Control Performance Standard (CPS) control
component of the regional control deviation (Arya and Kumar, 2017; Shen et al., 2020a; Xi et al.,
2020; Shen and Raksincharoensak, 2021b), have been unable to adapt to the increasingly complex
frequency control of interconnected power grids (Shen et al., 2017; Zhang and Luo, 2018).

In recent years, the intelligent frequency control strategy of reinforcement learning has received
lots of attention (Yu et al., 2011; Abouheaf et al., 2019; Xi et al., 2019; Shen et al., 2020b; Liu et al.,
2020), because it does not rely on models and does not require precise training samples or system
prior knowledge (Watkins and Dayan, 1992; Yang et al., 2018; Li et al., 2020; Yang et al., 2021a; Shen
et al., 2021b).

However, most intelligent control strategies are built on the CPS frequency control performance
evaluation standard. The CPS index has low sensitivity for short-term inter-area power support
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evaluation, and cannot take into account the short-term benefits
of frequency control performance (Kumar and Singh, 2019; Yang
et al., 2019; Zhu et al., 2019). In a system with large-scale wind
power grid connection, the ability of each region to comply with
CPS indicators is limited. The intelligent AGC control strategy
that only considers the CPS control criteria can easily cause short-
term concentrated frequency crossings, which seriously affects
the control effect of the intelligent AGC control strategy (Wang
and James, 2013; Xie et al., 2017; Yang et al., 2021b).

In fact, with the development of grid-connected new energy
sources and smart grids, the grid frequency control evaluation
standard is transitioning from single-scale evaluation to multi-
time-scale and multi-dimensional evaluation. The North
American Electric Reliability Council (NERC) proposed a new
frequency evaluation performance index named Balancing
Authority ACE Limits (BAAL), which is used to ensure the
short-term frequency quality of the system by constraining the
mean value of the frequency difference fluctuates in any 30 min
not to exceed the limit. However, the intelligent AGC control
strategy under both BAAL and CPS indicators is a kind of multi-
objective control problem, and there is no relevant literature to
study it.

In response to the above problems, this paper proposes an
intelligent frequency control strategy for collaborative evaluation
of multi-dimensional control standards. This strategy constructs
and introduces a collaborative reward function that considers the
CPS index and the BAAL index in the multi-objective
reinforcement learning algorithm. Then, the Negotiated
W-Learning strategy is used to learn the action space of the
agent, which effectively solves the problem that the agent cannot
fully explore the action (Nathan and Ballard, 2003; Liu et al., 2018;
Wang et al., 2019). Simulation examples show that the proposed
intelligent control strategy can effectively improve the overall
frequency performance quality of the power system.

2 FREQUENCY CONTROL PERFORMANCE
EVALUATION STANDARD OF
INTERCONNECTED POWER GRID

2.1 CPS1 Frequency Control Performance
Evaluation Standard
NERC uses the BAL (BAL-001) disturbance control series of
indicators to evaluate the frequency control quality of the
interconnected power grid. Among them, the CPS1 (BAL-001-
2: R1) indicator is the most widely used in China, as shown in
Eq. 1:

AVG1,T
ACEm

1min

−10Bm
· ΔF1min( )[ ]≤ ε2 (1)

where ΔF1 min and ACEm
1 min are separately the average value of

the frequency deviation and power deviation in the control area
within 1 min, Bm is the frequency deviation coefficient of the area
m, and represents the frequency adjustment responsibility
assigned to area m. AVG1,T (·) means calculate the average

value for 12 months, ε is the upper limit of the area m in
controlling the frequency deviation.

Taking the situation that the actual frequency is higher than
the planned frequency as an example, expand Eq. 1 as follows:

1
T
∫T

0

ΔF
ε

p
ΔPtie

−10Bmε
+ ΔF

ε
[ ]dt≤ 1 (2)

where: T is the entire time period, ΔF/ε is the frequency deviation
contribution of the region itself, ΔPtie/− 10Bmε is the frequency
contribution of other regions to this region, and ΔPtie/− 10 Bmε +
ΔF/ε is the comprehensive frequency deviation contribution. For
the convenience of analysis, define ΔF/ε p[ΔPtie / − 10 Bmε +
ΔF/ε] as the comprehensive frequency deviation factor, and
denoted by ψ.

The CPS1 indicator statistically evaluates the rolling root
mean square of the frequency difference time series during
the T period in the evaluation area. When T is large enough,
the system frequency deviation qualification rate is greater
than 99.99%. Therefore, CPS1 is a long-term evaluation index
reflecting the frequency quality of interconnected
power grids.

2.2 BAAL Frequency Control Performance
Evaluation Standard
NERC proposed the BAAL (BAL-001-2: R2) evaluation index in
2013 and began to implement it in 2016, as shown in Eq. 3 ∼4:

T ACEm
1min ≥ − 10Bm

FFIL−high − Fs( )2
FA − FS( )1min

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤Tv (3)

T ACEm
1min ≤ 10Bm

FFIL−low − Fs( )2
FA − FS( )1min

[ ]≤Tv (4)

where FA is the actual frequency value; FS is the planned
frequency value; FFTL-high/FFTL-low is the high/low frequency
trigger limit; Tv is the specified allowable continuous time
limit. T [·] is the continuous over-limit time.

FIGURE 1 | The distribution curve of the integrated frequency deviation
factor over time.
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Taking the situation that the actual frequency is higher than
the planned frequency as an example, Eq. 3 can be transformed
into the following form in the same way:

T
1
Tn

∫T′+T′′

T′

ΔF
ε

p
ΔPtie

−10 Bmε
+ ΔF

ε
[ ]dt≥ 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦≤Tv (5)

2.3 Performance Analysis Under the Joint
Control of BAAL Standard and CPS1
Standard
In order to further study the feature of the two index, Figure 1
shows the change curve of the comprehensive frequency
deviation factor ψ, which considers different performance
indicators under the influence of the time dimension.

As shown in Figure 1, taking point A as the critical point of
frequency line crossing, when only CPS1 is considered, the system
frequency can still meet the requirements of control performance
index, but it will affect the safe operation of various equipment in
the system and cause the power quality reduced. If only the BAAL
indicator is considered, the system frequency may appear
“vertical dro” and “tip oscillatio,” as shown in point B in
Figure 1. At this time, the synchronous generator frequently
receives the opposite frequency deviation signal that occurs in a
short period of time. This situation will increase the wear of the
unit. When considering the effects of CPS1 and BAAL indicators
at the same time, the frequency will change into the reverse
process under the influence of BAAL performance after short-
term limit violation.

In summary, if CPS1 and BAAL indicators can be coordinated
to constrain the system frequency closely, it can guarantee not
only the long-term frequency quality but also the short-term
frequency safety.

3 INTELLIGENT AGC CONTROL STRATEGY
CONSIDERING COOPERATIVE
EVALUATION OF MULTI-DIMENSIONAL
CONTROL STANDARDS

Based on the analysis in Section 2.3, this paper constructs an
AGC control model based on a multi-objective collaborative
reward function reinforcement learning frequency control
strategy. As shown in Figure 2A, it mainly consists of the
following parts: system governor, equivalent module of the
generator, dynamic model of system’s frequency deviation, and
intelligent brain controller. Where R, Tg, Tt, M, D are separately
the equivalent unit adjustment coefficient, time constant of the
governor, equivalent generator time constant, equivalent inertia
coefficient and equivalent damping coefficient of the power
system in area m; ΔPtie is the exchange power deviation of the
tie line in area m, ΔXg, ΔPg, ΔPd are separately the change in the
position of the regulating valve, in generator output power and in
load disturbance, ΔPΣ is the total adjustment command of
the unit.

Frequency controller intelligent learning stage: This article
uses a multi-objective collaborative reward function
reinforcement learning strategy to learn and train the
intelligent frequency controller. This strategy mainly includes
two parts, namely CPS1 index and BAAL index cooperative
reward function and Negotiated W-Learning based intelligent
frequency control learning algorithm. First, use theMORL idea to
construct the instant reward function of CPS1 index and BAAL

FIGURE 2 | Intelligent AGC control strategy: (A) Intelligent AGC control
strategy for collaborative evaluation of multi-scale standards, (B) The
framework of Negotiated W-Learning.
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index, and use dynamic coordination factors to characterize the
impact of different indicators on environmental changes. Then,
the implementation rewards given under the MORL learning are
used to update the respective state action sets of the CPS1 index
and the BAAL index. Finally, Negotiated W-Learning conducts a
global search to get the final action, which will meet the CPS1 and
BAAL indicators and environmental feedback characteristic
information.

Frequency controller online deployment stage: The learned
and mature frequency controller receives the SCADA database
in the Energy Management System (EMS) in each AGC control
cycle to collect frequency deviation, ACE, CPS, BAAL, and
other data in real time, and make real-time frequency control
action.

3.1 Collaborative Reward Function of CPS1
Indicator and BAAL Indicator
This paper constructs a cooperative reward function based on the
CPS1 indicator and the BAAL indicator, which is expressed as
follows:

R1 s, s′, a( ) � −λ1(ACE − BAAL)2
R2 s, s′, a( ) � −λ2 CPS1* − CPS1( )2. (6)

Among them: Ri(s, s′, a) is the instant reward value obtained
when the ith goal is transferred from state s to state s′ through
action a; ACE (t) is the real-time value of the regional control
deviation at the current moment; s is the system state [ACE(t)] at
time t, s′ is the state [ACE (t + 1)] at time t + 1, a is the system
action (ΔPΣ(t)) when the system goes from s to state s′. BAAL(t)
is the instantaneous value of BAAL at time t, CPS1 (t) is the
instantaneous value of CPS1 at time t, CPS1* is the target value,
generally 200%.

λi is the dynamic coordination factor of the cooperative reward
function, that is, λi changes dynamically with each state transition
process. This paper adopts the method of comprehensive
weighting and multiplicative weighting, comprehensively
considers the preferences of decision makers and the inherent
statistical law between the index data to determine the value of the
dynamic coordination factor.

Firstly, Define parameter K as a parameter for evaluating the
importance of frequency performance evaluation indicators. Ki,j
represents the importance degree of the evaluation index relative
to another one in the frequency performance evaluation. When
there is an out-of-bounds situation such as ACE < BAAL or CPS1
> 200, the importance of the corresponding indicators will
increase accordingly. When the two indicators play equal or
unimportant roles in the frequency evaluation process, the
corresponding Ki,j/Kj,i values are all 4 or 0. The relative
importance of any index increases by one point, the
corresponding Ki,j/Kj,i value increases by 1, and the Kj,i/Ki,j
value decreases by 1. Then obtain the weighting factors of
each target in each action cycle:

wi � Kj,i

Kj,i +Ki,j
(i≠ j) (7)

In order to eliminate subjectivity, the entropy method is used
to calculate the coefficient of difference between the two
indicators βi:

βi �
1 + ln−1(N)∑K

y�1Py,i ln Py,i( )
∑N

i�1 1 + ln−1(N)∑K
y�1Py,i ln Py,i( )( ) (8)

Py,i � xy,i/∑K
y�1

xy,i (9)

Where: xy,i is the standardized index value of the ith frequency
control performance evaluation index at the yth time, K
represents the number of the ith frequency control
performance evaluation index from 0 to the current time t,
and N represents the target number. Py,i is the proportion of
xy,i to the total number of indicators from 0 to t.

At last, the final coordination factor is determined by
multiplication weighted method. Therefore, the coordination
factor can be obtained by combining 8 and 9:

λi �
����
wiβi

√
∑N

i�1
����
wiβi

√ (10)

3.2 Negotiated W-Learning Intelligent
Frequency Control Learning Algorithm
The update formula ofMORL is the same as the state-action value
function update of traditional Q learning, as shown in Eq. 11. In
order to facilitate the selection of the optimal action that satisfies
each of the following goals, this paper uses theMQ (s, a) vector to
represent the state-action value function Q value of the action a in
the state s for the N goals, as shown in Eq. 12, and the optimal
action strategy π*MQ for each target in the current state expressed
in Eq. 13:

Qi(s, a)←Qi(s, a) + α Ri s, s′, a( ) + cmax
a∈A

Qi s′, a( ) − Qi(s, a)( )
(11)

MQ(s, a) � Q1(s, a), Q2(s, a), . . . , QN(s, a)[ ] (12)

π*
MQ � argmax

a
max

i
MQ(s, a){ } (13)

In Eq. 11:α (0 < α < 1) is the learning rate, which is set to 0.01
in this article; c is the discount coefficient, which is set to 0.9 in
this article; Qi (s, a) represents the Q value of the ith target’s
choice of action a in state s.

However, the above-mentioned optimal action selection
strategy cannot guarantee that the agent fully explores the
entire state-action space. In this paper, Negotiated W-learning
strategy is used to optimize the MQ (s, a) vector space. This
strategy defines variable Wi as a leader parameter. The operation
steps are as follows, and Figure 2B is a reference flow chart:

Step 1: Choose an objective function in the MQ(s, a) vector
space as the guide objective function. Its investigation parameter
is expressed asWi. The first guide objective function is uniformly
set to Wcir � 0, and the guide action is obtained as follows:
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acir � argmaxQcir(s, a) (14)

Step 2: The remaining objective functions are calculated
according to the following methods, as shown in 15:

Wi � maxQi(s, a) − Qi s, acir( ) (15)

Step 3: Choose the maximum value of for other objective
functions except the guide objective function, and compare

it with Wcir. If Wi,max > Wcir, the objective function which
is corresponding to this maximum value of Wi should
be selected as the new guidance objective function,
the guidance value Wcir should be updated as the value of
Wi,max, the corresponding action a should be made to
be the new guidance action acir, and then go back to step
2 for repeated iterations until this condition is no
longer met.

FIGURE 3 | Simulation results: (A) Differential convergence result of Q function under CPS1 objective, (B) CPS1avg-10−min curve, (C) Self-contribution curve, (D)
Curve reflecting the change of CPS1 value, (E) The curve of CPS1.
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IfWi ≤Wcir is obtained, record the guidance action acir and the
guidance objective function at this time as the final value.

4 SIMULATION RESULTS

This paper builds a typical two-region interconnected power grid
AGC model for controlling load frequency. The parameter
settings of the two regions in the model system are the same,
and the system base capacity is 1000 MW.

Figure 3A,B shows the pre-learning process of single CPS1
target and NegotiatedW-Learning Algorithm. In the pre-learning
stage, a continuous sinusoidal load disturbance with a period of
1,200 s, an amplitude of 100 MW and a duration of 20,000 s is
applied to the A area, and a 2-norm Q function matrix
‖Qt(s, a) − Qt−1(s, a)‖2 ≤ ζ (ζ is a constant) is used as the
standard for pre-learning to achieve the optimal strategy
(Imthias Ahamed et al., 2002).

It can be seen from Figure 3A that after many iterations, the Q
function tends to stabilize, reaching the optimal strategy for the
CPS1 target. Figure 3B shows the average value of CPS1
(CPS1avg-10−min) in area A every 10 min during the pre-
learning process. It is found that the curve almost remains at
a stable and acceptable value in the later stage, which shows that
the Negotiated W-Learning algorithm has approached the
optimal CPS1 control strategy. At the same time, the Q matrix
corresponding to the target BAAL has also converged.

In addition, from the perspective of algorithm learning time, the
four algorithms have been simulated formany times, and the average
calculation time has been counted. SeeTable 1 for details. Due to the
difference in the number of optimization targets and the difficulty of
calculating the coordination factor, the calculation time of the single
target CPS1-MORL is the shortest. Since the CoordinateQ-MORL
algorithm cannot fully explore the action set, its calculation time is
the second. Compared with the global search algorithm Greedy-
MORL, Negotiated W-Learning has gone through more search
steps, so its time is the longest.

In order to further verify the adaptability of Negotiated
W-Learning in the constantly changing power grid
environment, this paper applies a random disturbance with a
period of 1,200 s and an amplitude of 100 MW in area A. Four
types of algorithms are set for comparison as follows.

Algorithm 1. Traditional single-objective reinforcement learning
algorithm for intelligent frequency control based on CPS1
frequency control performance evaluation index (CPS1-MORL).

Algorithm 2. Multi-objective reinforcement learning algorithm
for intelligent frequency control based on the traditional greedy
strategy of multi-dimensional frequency control performance
evaluation index and multi-objective Q function (Coordinate
Q-MORL).

Algorithm 3. Under the traditional greedy strategy, this
algorithm uses a cooperative reward function based on multi-
dimensional frequency control performance evaluation
indicators to achieve multi-objective reinforcement learning
and intelligent frequency control algorithm (Greedy-MORL).

Algorithm 4. The NegotiatedW-Learning algorithm proposed in
this paper is based on the collaborative reward letter under the
multi-dimensional frequency control performance evaluation
index for multi-objective reinforcement learning and
intelligent frequency control (Negotiated W-MORL).

4.1 Control Strategy Performance Analysis
Figure 3C shows the frequency deviation self-contribution degree
(Δf/ε) and CPS1 index change curve of Algorithm 1 and
Algorithm 4. In this paper, the threshold is used for
calculation, where E is 0.01. The frequency contribution
degree has the ability to reflect the frequency quality of
different algorithms. If the frequency contribution degree
exceeds ± 1, it means that the frequency at this time has
exceeded the prescribed limit 3ε. It can be seen that the
frequency contribution curve of Algorithm 1 exceeds the
short-term index frequency continuous limit time specified in
this article and has a steep drop in this interval, which will cause
greater influence on system operation safety. However, the
frequency contribution curve of Algorithm 4 stays within the
defined range. There are two main reasons for this phenomenon:
One is that Algorithm 4 controls the frequency by relaxing the
weights of the two indicators in real time. If frequency
fluctuations or “frequency drops” occur, the BAAL indicator
will be given greater weight. If the frequency continuously
exceeds the limit during the simulation period, CPS1 will be
given a larger weight for regulation. The second is thatAlgorithm
4 considers two indicators to participate in the evaluation of AGC
control at the same time, while Algorithm 1 only considers the
impact of CPS1. At the same time, the CPS1 curve ofAlgorithm 4
in Figure 3D fluctuates less throughout the simulation cycle,
while the fluctuation of Algorithm 1 is larger, which further
proves that Algorithm 4 is superior to Algorithm 1 in terms of
frequency control effect.

TABLE 1 | Simulation results under different algorithms.

Algorithms Calculating
time/s (pre-learning)

|Δf|/Hz CPS1% BAAL%

CPS1-MORL 12,031 0.0143 196 86.4

Coordinate Q-MORL 18,546 0.0132 197 96.2

Greedy-MORL 20,015 0.0129 199 97.2

Negotiated W-Learning 21,457 0.0064 200 98.5
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In summary, combining the BAAL and CPS1 indicators to
constrain the system frequency can effectively improve the
frequency quality of the system at the full time scale.

4.2 The Influence of Cooperative Reward
Function on Frequency Control
Performance
In order to verify the effectiveness of the collaborative reward
function proposed in this paper, the control performance
indicators of Algorithm 2 and Algorithm 3 can be compared.
It can be seen that the control performance indicators of
Algorithm 3 are better than those of Algorithm 2. This is
because the introduction of coordination factors between the
multi-objective state-action value function may cause the agent to
not fully explore the action set, leading to the omission of key
actions, and the use of collaborative reward functions can
effectively solve the above problems.

In summary, the introduction of a collaborative reward
function can effectively improve the system frequency quality
and various frequency performance indicators.

4.3 The Influence of Different Learning
Strategies on Control Performance
In order to verify the effectiveness of Algorithm 4 proposed in
this paper, Figure 3D shows the CPS1 curve of Algorithm 3 and
Algorithm 4. It can be seen from Figure 3E thatAlgorithm 4 has
a faster convergence rate and a more stable fluctuation situation
thanAlgorithm 3 after the occurrence of load disturbance. This is
because the Negotiated W-Learning strategy selects actions from
global considerations, which effectively improves the traditional
greedy strategy that is, easy to fall into the local optimal solution
problem.

In summary, the global search strategy Negotiated
W-Learning is more time-consuming than the local search
strategies Greedy and CoordinateQ, but the search quality is
higher.

5 CONCLUSION

This paper proposes a multi-intelligence frequency control
strategy based on multi-dimensional evaluation criteria and
cooperative reward function.

The simulation results show that: 1) Compared with the
general algorithm, the Negotiated W-Learning algorithm can
effectively improve the quality of the system frequency on the
full time scale, and better explore the global action. 2) The
collaborative reward function proposed in this paper can
improve the linear weight of the traditional multi-objective Q
function. In general, the intelligent AGC control strategy based
on the collaboration of CPS1 and BAAL learning criteria
proposed in this paper can effectively deal with the short-term
power disturbance problem caused by the grid connection of new
energy sources such as wind power, and improve the stability of
the system.
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Heuristic Feature Selection for Wind
Power Anomaly Events Study
Peiwen Yu1 and Anping Lin2*

1Maritime College, Guangdong Ocean University, Zhanjiang, China, 2School of Physics and Electronic Electrical Engineering,
Xiangnan University, Chenzhou, China

Wind power ramp events are typical harmful anomaly events in wind engineering, which
bring new threat to the safety operation of power systems. To in-depth understand ramps
and mitigate their harms, suitable ramp characteristics are crucial in many studies, e.g.,
ramp definition, classification, prediction and so on. However, due to ramps’ specificity on
event feature, more profound characteristics are needed besides basic ramp
morphological characteristics. In this paper, an approach for extracting and selecting
ramp characteristics is proposed for ramp study. First, according to ramps’ causation on
energy change, wavelet transformation is introduced to analyze ramp categories, and used
to extract ramp energy characteristics. Then, heuristic feature selection methods are
proposed to select ramp characteristics based on specific ramp application contexts. The
objective of feature selection is to remove redundant characteristics, and to improve ramp
studies’ performance. Finally, combining basic ramp characteristics and wavelet
characteristics, ramp studies on category classification and prediction of appointed
characteristics are implemented on industrial data. The computational results validate
the usefulness of wavelet characteristics, the feasibility of the proposed approach, and that
performance of ramp study could be improved by using ramp characteristics in this paper.

Keywords: wind power ramp events, wavelet transform, feature selection, anomaly detection, feature exaction

INTRODUCTION

The generation of energy from wind is growing across the world, especially in China where large-
scale and highly-concentrated wind projects prevail (Ouyang et al., 2017a). Due to the renewability
feature, wind energy offered lots of opportunities, e.g., proving clean energy and reducing
environment pollution. On the other hand, due to wind’s fluctuation and intermittent, serious
anomaly challenges threaten the safety and stability of power grid. For example, wind power ramp
events are typical anomaly events bringing one of the greatest threat, which is namely the large and
unexpected changes of wind power over a short time period (Wang et al., 2017). In 2008, a down-
ramp event was reported in the State of Texas causing serious economic loss to the grid operated by
Electric Reliability Council of Texas (ERCOT) (Francis, 2008). Therefore, it is significantly important
to study ramp events for mitigating their negative impacts.

Ramp study mainly involves definitions, detection, prediction and classification. Generally, ramp
definition and ramp detection are the basis of ramp study. While ramp events are usually detected by
combining ramp definitions and specific detection methods. For example, dynamic programming
recursion and the swinging door algorithm were proposed to detect ramp events from wind power
data in (Florita et al., 2013; Sevlian and Rajagopal, 2013; Ouyang et al., 2017b). In (Xiong et al., 2017),
a data mining method using affinity of weather data was also proposed for ramp detection. However,
the mainstream definitions up to now mainly focus on three characteristics (Zha et al., 2016) (e.g.,
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ramp amplitude, ramp duration, and ramp rate) which are
superficial characteristics from ramp events’ basic forms.
Copying with complex power system operations in the future,
more targeted and effective control strategies need to be made,
which are essentially based on study of more profound ramp
characteristics. On the other hand, ramp prediction and
classification are two major objectives of ramp study.
Generally, ramp prediction can be divided into event
prediction and ramp’s categories prediction which is actually
ramp classification. Nowadays, ramp classification has been
studied via many data mining algorithms, e.g., k-means,
support vector machine (SVM), extrema learning machine
(ELM), neural networks (NN) and so on (Couto et al., 2013;
Florita et al., 2013; Tang et al., 2020; Shen et al., 2021). Ramp
classification combined with weather regimes was also studied in
(Chen et al., 2018). No matter ramp prediction or classification,
proper input features are the premise of constructing high-
performance models. However, most of these studies are based
on superficial characteristics, no profound physical
characteristics are considered to improve ramp studies’
performance. Therefore, it is significant useful for studying
extraction and selection of ramp characteristics in wind power
ramp researches.

In modeling process, determination of input features is
primarily based on original data points. Sometimes feature
extraction, selection and transformation are involved according
to specific criterions. For example, principal component analysis
(PCA) is a commonly-used method to reduce dimension of
feature space, which was also used in feature analysis for wind
forecasting (He et al., 2013a). Other methods based on
mathematical transforms were also useful to extract
characteristics, e.g. wavelet-transform was utilized in wind
power forecasting (Singh and Tewari, 2015). Moreover,
Pearson correlation coefficient, Gini index, wavelet
transformation and other intelligent tools were also
applied to feature processing in engineering (Huang et al.,
2018). Nowadays, with more industrial signals are collected
from complicated systems and more un-researchable objects
are analyzed, these situations lead to the urgent requirement
of profound characteristics reflecting structural or physical
features in modeling. Study on wind power ramp events is a
representative problem among these issues. According to
ramps’ concept, ramp events involve a period of wind
power values and variance, and they don’t always have a
unified time duration (Tang et al., 2021). Based on the
traditional tools, basic characteristics (e.g., ramp
amplitude, duration and ramp rate) could be obtained
from wind power data. However, ramps’ harmful effect on
power grid is not just identified by ramp duration and
amplitude. The difference of ramp amplitude, ramp rate,
energy storage and other factors may also affect the
stability of power system at different degree. Therefore,
besides the basic ramp characteristics, how to acquire
more profound characteristics is an urgent topic in ramp
study, such as in ramp classification and prediction.

According to the outlined problems above, the objective of this
paper is to propose an approach to extract and select ramp

characteristics for wind power ramp study. Considering ramp
events involves the variance of time series and energy change
process of wind power, three basic ramp characteristics are
extracted based on definitions firstly. These characteristics are
able to distinguish ramps and non-ramp events. Then, a method
transforming time series into energy forms is proposed to
extract extra characteristics. Wavelet transformation has been
applied for feature expression in literatures due to its superior
description ability at both time and frequency domains. For
example, the wavelet transform was utilized to analyze the
features of ramp events in (Gallego et al., 2013). On the
other hand, wavelet decomposition has the property of
multiresolution which is helpful to study the allocation of
ramp event’s energy. Summarizing these two properties,
wavelet transformation is proposed to extract profound
characteristics for distinguishing refined ramp categories in
depth. Moreover, for reducing dimension, mitigating noise’s
influence, improving computation efficiency, a heuristic
intelligent algorithm is proposed in the feature selection.
Finally, based on the refined characteristic vector, ramp
studies (classification, prediction) on industrial datasets are
discussed, and validate the approach in extracting and
selecting ramp characteristics. The framework of the major
work in this paper is sketched in the following figure.

In Figure 1, the identification of historical ramp events is
implemented through ramp definitions and detection. Class
labels of ramp events are determined by a given classification
environment which could be based on weather sceneries, control
requirement and so on. The other characteristics are energy
characteristics extracted by wavelet transformation in this
paper, and fn represents the nth characteristic in the formed
characteristic vector in Figure 1. According to the above
description, we can conclude the novelties of this paper as
following three points:

FIGURE 1 | Framework of the study in this paper.
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i) This paper proposes to consider characteristics of ramp
events from multiple aspects, including the basic
morphological characteristics from time domain and
characteristics in frequency domain. Moreover, due to
ramp events’ specificity, characteristics are also extracted
in terms of energy. This is the first time to consider ramp
events’ energy characteristics.

ii) Wavelet transformation is proposed to extract ramp
characteristics. By utilizing the frequency and
multiresolution properties in wavelet decomposition, ramp
energy characteristics are expressed by energy at different
frequency spaces. Meanwhile, these energy characteristics are
selected and refined. Its purpose is to delete the energy of
noise which may affect ramp classification.

iii) Heuristic intelligent algorithms are tried in the selection
process, e.g., the sequential forward floating search (SFFS)
and sequential backward floating search (SBFS) methods.
The heuristic feature selection could refine the characteristic
vector in related studies more effectively than unsupervised
methods reducing dimension.

Besides the above introduction, rest of this paper is organized
as follows. Feature Extraction addresses the processes of
extracting ramp characteristics, including the basic ramp
characteristics based on ramp definitions, and ramp energy
characteristics based on wavelet transformation, for ramp
studies are also extracted. Feature Selection proposes the
feature selection approach which is based on dispersion matrix
and heuristic method. The detailed processes are also presented in
this section. Ramp Anomaly Analysis and Evaluation aims at
designing ramp studies, e.g., ramp classification and ramp
prediction. It also gives out some indicators for evaluating
ramp study. In Experiments and Discussion, industrial wind
power data is utilized in case study. Performance on ramp
classification and prediction are compared with models using
different feature sets and that using PCA for feature selection.
Computational results validate the feasibility of wavelet
characteristics and the proposed feature selection method.
Finally, Conclusion concludes this paper.

FEATURE EXTRACTION

Basic Characteristics of Ramp Events
Wind power ramp events bring great harm to system operation as
more and more wind power integrated into power grid. Copying
with these new events, a series of studies has been carried out,
such as ramp definition, ramp prediction and classification.
Currently, there are four mainstream definitions widely used
in ramp analysis (Zha et al., 2016). These definitions are defined
as follows.

Definition 1. When the change of wind power in time duration
Δt exceeds a given threshold Wpval, there is a ramp event
occurring, as expressed as below.

∣∣∣∣Wp(t + Δt) −Wp(t)∣∣∣∣≥Wpval (1)

where: Wp(t+Δt) and Wp(t) are wind power values at time t+Δt
and t, respectively; Wpval represents the threshold of ramp
amplitude. When the criterion in Eq. 1 meets under a given
time period, a ramp event is identified.

Definition 2. When the largest difference of wind power in time
duration Δt exceeds the given thresholdWpval, then a ramp event
is regarded as occurring.∣∣∣∣∣∣∣ max

i∈[t,t+Δt]
Wpi − min

i∈[t,t+Δt]
Wpi

∣∣∣∣∣∣∣≥Wpval (2)

where, max
i∈[t,t+Δt]Wpi

and min
i∈[t,t+Δt]Wpi

represent the maximum and

minimum value of wind power in a time duration Δt.

Definition 3.When the average change of wind power in a given
time duration Δt exceeds the given thresholdWpval, a ramp event
is identified.

⎛⎝∑h
i�1

∣∣∣∣Wp(t + Δt + i) −Wp(t + i)∣∣∣∣⎞⎠/h≥Wpval (3)

where, h is the time horizon in ramp identification.

Definition 4. When the ratio between the wind power change |
Wp(t+Δt)-Wp(t)| and time duration Δt exceeds a given threshold
Rval, then a ramp event is regarded as occurring.∣∣∣∣Wp(t + Δt) −Wp(t)∣∣∣∣/Δt>Rval (4)

where, this definition in Eq. 4 pays more attention on ramp
rate while that in Eq. 1 emphasizes only ramp amplitude.
Summarizing the above four definitions, we can see they
mainly focus on three major characteristics (Zha et al.,
2016), such as ramp amplitude Var, ramp duration T, and
ramp rate R. Based on these three characteristics, the
variance of wind power in a given period could be
determined as ramps or non-ramps. Therefore, they
consist of the initial characteristic vector in ramp study,
as Cv0 � [Var, T, R]. As we know, sometimes ramp direction
is also used in characteristic analysis. However, through
above numerical definitions, ramp direction is not
necessary, and could be expressed by sign of R when
needed. Considering that ramp analysis in some cases
needs the detailed information about power range rather
than only fluctuation amplitude, so we replace ramp
amplitude Var with maximum and minimum values.
Assuming there are N studied ramp events in dataset, the
initial characteristic matrix X0 is expressed as below.

X0 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Wp1,max Wp1,min T1 R1

Wp2,max Wp2,min T2 R1

« « « «
WpN,max WpN,min TN RN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where, Wpi,min and Wpi,max represent the minimum and
maximum value of wind power in the ith studied ramp event.
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Wavelet Transformation and
Characteristics Extraction
As the research on ramp events get more in depth, profound
characteristics are needed to describe ramps’ formation and
categories. For example, the initial characteristics in Eq. 4 is
used to identify the basic formation of ramps and non-ramps. The
detailed fluctuation inside ramps needs structural characteristics,
and the essence of ramps’ occurrence involves energy
characteristics. In order to extract more profound information
in ramp study, wavelet transformation is applied in this paper.
Wavelet transformation is an advanced mathematical technique
in signal analysis (Mohanty et al., 2015). It has advantages at
decomposing a signal into various time and frequency domains,
so it is useful to study the structural characteristics of ramps in
different domains. Wavelet transformation also has advantages at
detecting abrupt changed values (e.g., in edge detection) and
analyzing signal in a specific time window. While ramp events
certainly have large power charge in finite time durations, so it is
relatively suitable to utilize wavelet transformation in ramp
analysis (Escalante Soberanis and Mérida, 2015). On the other
hand, due to the multiresolution feature of wavelet
decomposition, energy of a given signal could be allocated into
different frequency spaces. In this way, we are inspired to extract
characteristics for expressing ramps’ energy characteristics. This
is also a key reason for considering wavelet transformation in
extracting ramp characteristics.

The theory of discretewavelet transformation is described as below.
Assuming a discrete signal (e.g., wind power time series of a ramp
event) is expressed as {x(t); t � 1,2,/, T}, it could be reconstructed by
elements of wavelet transformation, as expressed below.

x(t) �∑
j∈Z
∑
k∈Z

δj,k · ψj,k(t) (6)

where: x(t) is actually the signal of wind power; δj,k is the wavelet
coefficient; ψj,k is the child wavelet transformed from mother
wavelet, denoted as follows.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψj,k(t) � a−j/2ψ(a−j · t − kb)
δj,k �∑∞

−∞
ψj,k(t) · x(t)

a> 1, b> 0

(7)

where: j and k represent the scale and shift parameters of child
wavelet ψj,k; ψ(t) is the mother wavelet function; a and b are real
parameters. From Eqs 6, 7 it implies that the reproduction of
original signal could be realized by the weighted sum of wavelet
components at different scales.

To in-depth explain the meaning of each wavelet component in
Eq. 6, we could operate wavelet decompose step by step. Assuming
the original signal with finite energy is projected on a space L, x(t)
with one-level-decomposition could be expressed as below.

x(t) � x1(t) +∑
k

dk · ψk(x) (8)

where, x1(t) is the estimation of the original signal reflecting
variation in time domain; ∑

k
d(k) · ψk(x) are detailed signals

expressed by wavelet functions which contain frequency-
domain information. By estimating the approximate signal
iteratively, xj(t) at the jth decomposition level is expressed as
below.

xj(t) � xj+1(t) +∑
k

dj,k · ψj,k(t) (9)

Similarly, we could utilize a series of wavelet functions to describe
signal xj(t), as ∑

k
cj,kϕj,k(t). Combining these formulas,

transformation of the original signal in Eq. 6 could be
rewritten in details as below

x(t) �∑
k

cjn,kϕjn,k
(t) + ∑jn

j�j1
∑
k

dj,kψj,k(t) (10)

where, the auxiliary function ϕ is called father wavelet; cjn,k is the
coefficients of wavelets ϕjn,k(t); dj,k are the coefficients of wavelets
ψj,k(t). The formula in Eq. 10 is generally called as the multi-
resolution analysis of wavelet transformation (Doucoure et al.,
2016).

On the other hand, by corresponding each wavelet component
to a frequency space, we could also divide the space L to series of
energy subspaces. As shown in Figure 2, Vj0 represents the
original signal space L with a frequency band (0∼f). According
to Eq. 10, the frequency band is also divided step by step. For
example, Vj0 could be divided as orthogonal sum of a low-
frequency space Vj1 (0∼f/2) and a high-frequency space Wj1

(f/2∼f). The relationship reflecting the division of frequency
spaces in wavelet transformation is presented as below.

{Vj ⊕Wj � Vj−1
L � Wj1 ⊕Wj2 ⊕/⊕Wjn ⊕Vjn

(11)

where: ⊕ is a denoted operator calculating the orthogonal sum; n
is the number of wavelet decomposition.

Considering signal’s energy is generally expressed at frequency
subspaces, therefore we could utilize the multi-resolution of
wavelet decomposition to analyze the energy distribution of a
signal (Ashrafian et al., 2017), as described in the following
formula.

|P{x}|2 �∑
k

∣∣∣∣cjn,k∣∣∣∣2 +∑
j

∑
k

∣∣∣∣dj,k

∣∣∣∣2 (12)

where: |P{x}|
2 represent the energy of the given signal {x(t)};∑

k

∣∣∣∣cjn,k∣∣∣∣2 and ∑
k

∣∣∣∣dj,k∣∣∣∣2 represent the energy of different
subspaces. Since wind process generally involved atmosphere

FIGURE 2 | The orthogonal decomposition of the space L.
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movements (Mohanty et al., 2015), the occurrence of ramp events
could be comprehensibly regarded as the speedy energy release or
accumulation in atmosphere systems. Therefore, the energy
expressions based on wavelet transform could be utilized to
extract ramp energy characteristics which is meaningful in
studying ramp’s harms on power systems.

Moreover, when the number of decomposition levels is high
(e.g., jn→∞), the value of cjn,k is small, which implies the energy
of Vjn becoming small to be ignored. In that case, the energy
characteristics of Wj are mainly selected into the characteristic
vector for ramp study in this paper.

⎧⎪⎪⎨⎪⎪⎩
Pj �∑

k

∣∣∣∣dj,k

∣∣∣∣2;
Cv � [Wpmax,Wpmin, T, R, Pj];
j � 1, 2,/, jn;

(13)

where: Pj represents the jth energy characteristic and j is the
decomposition level. Cv is the characteristic vector
combining initial vector Cv0 and Pj. By utilizing this vector
including basic ramp characteristics and wavelet energy
characteristics as inputs, some advanced ramp study could
be implemented besides the identification of ramps and non-
ramps.

FEATURE SELECTION

According to the above wavelet decomposition, jn energy
characteristics are extracted. Generally, the more the number
of decomposition levels, the better the description ability of
wavelet characteristics. In Eq. 13, the energy in frequency
space Vjn is excluded since Vjn is the lowest frequency and its
cjn,k is very small. However, when more fine-sorted energy
characteristics Pj are generated, it is unavoidable to lead to
many superfluous characteristics in a specific study case.
Therefore, excluding basic ramp characteristics, feature
selection is also necessary in ramp study.

Feature selection could not only select optimal energy
characteristics for specific study, but also improve computing
performance by reducing data dimension. Generally, feature
selection methods are based on specific indicators or criterions
to rank all characteristics, then realize selection through ranking
scores. Most of these methods do not care about the application
context in ranking. The other commonly used methods on
dimension reducing is through feature transformation, such
as PCA, LDA. This type of methods weakens the physical
meaning of selected characteristics, and also ignore actual
context. Therefore, in this paper we propose to utilize
heuristic selection criterion which combining selection
indicators and the application context (e.g., specific ramp
study).

Dispersion Matrix
First, we propose to utilize dispersion matrix (Gu et al., 2017) to
create selection indicator. Dispersion matrix is a mathematic tool
based on feature distances of different classes, its elements are
denoted as below.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B � ∑G
g�1

ng(μg − μ0)T(μg − μ0)
W � ∑G

g�1
∑ng
k�1
(xg,k − μg)T(xg,k − μg)

(k � 1, 2,/, ng;g � 1, 2,/, G;

n1 + n2 +/ + ng � N)
(14)

where:W and B are the dispersion matrix representing intra-class
and inter-classes, respectively; xg,k is characteristic vector of the
kth ramp in the gth class; μg and μo represent the average vector of
the gth class and all classes, respectively; ng and N are the number
of ramps the gth class and all classes, respectively;G is the number
of classes. A Wilks criterion function λp could be selected as the
reference indicator in feature selection, it is defined as below.

λp � |W|/|T| (15)

where: T is total dispersion matrix, calculated as T = B + W; p is
the dimension of feature space. When the value of λp is small,
implying a small value of |W| and a large value of |T|, it illustrates
that the characteristic is effective to distinguish different classes of
samples. Generally, the statistical indicator λp is assumed to obey
the Wilks distribution. By deciding a testing level α and its
corresponding threshold λ(α), the hypothesis testing of λp
could be implemented. For the convenience of calculation, the
value of Wilks distribution function could be estimated by the
following two common distribution functions.

1) Bartlett approximation.

−(N − 1
2
(p − g) − 1) · ln λp ∼ χ2(p(g − 1)) (16)

2) Rao approximation.

N − (p − 1) − g

g − 1
· (λp−1

λp
− 1) ∼ F(g − 1, N − (p − 1) − g)

(17)

Through the above two approximation methods, the hypothesis
testing of Wilks distribution could be realized by formulas in Eqs
16, 17.

Heuristic Selection
Combining the selected Wilks indicator λp and ramps’ categories
information, a supervised heuristic method could realize high-
performance feature selection. In this paper, we propose to utilize
SFFS (sequential floating forward search) and SFBS (sequential
floating backward search) algorithms (Gan et al., 2014) which
retain the strengths and improve the weakness of SFS (sequential
forward selection) and SBS (sequential backward selection).

Considering the specificity of ramp studies, the basic
characteristic vector Cv0 contains basic ramp characteristics
identifying ramps and non-ramps, so it is necessary included
in the characteristic subset. Actually, the task of feature selection
is to select optimal newly-extracted characteristics in ramp study.

Therefore, in this paper the initial subset is X0, the
characteristics that need to be processed are wavelet energy
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characteristics Pi (i � 1,2,/, jn). Assuming after themth selection
step, the feature subset is denoted as Xm. If we consider to add a
new characteristic xr at the (m+1)th step by SFFS algorithm, the
updated dispersion matrix could be calculated as below.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W’ � (W11 W12

W21 W22
)

T’ � (T11 T12

T21 T22
) (18)

where, W11 and T11 are the intra-class and the total dispersion
matrix of Xm, respectively; The rest of sub-matrix are newly
introduced matrix related with xr, calculated as the following
formulas.

⎧⎪⎨⎪⎩
W12 � (w1r, w2r,/, wpr)T;W21 � WT

12;W22 � wrr;

T12 � (t1r, t2r,/, tpr)T;T21 � TT
12;T22 � trr;

(19)

Based on calculation of these sub-matrixes, the updated indicator
λm+1 could be calculated as below.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λm+1 � |W’|
|T’| �

|W11|
∣∣∣∣W22 −W21W

−1
11W12

∣∣∣∣
|T11|

∣∣∣∣T22 − T21T
−1
11T12

∣∣∣∣ � λm · Ar

Ar �
∣∣∣∣W22 −W21W

−1
11W12

∣∣∣∣∣∣∣∣T22 − T21T
−1
11T12

∣∣∣∣
(20)

By substituting Eqs 15–18, the expression λm/λm+1 − 1 could be
replaced by (1 − Ar)/Ar. Then, the estimated value of testing xr is
denoted as F1r, expressed as below

F1r � 1 − Ar

Ar
· N − pm − g

g − 1
∼ F(g − 1, N − pm − g) (21)

where: pm is the number of characteristics in set Xm. If F1r>Fα(g-1,
N-pm-g) at given testing level α, then the hypothesis is correct and
xr is added into characteristic vector.

Similarly, if we utilize the SFBS algorithm to delete a
characteristic xr form the set Xm, the final testing value is
defined as F2r, expressed as below

F2r � 1 − Ar

Ar
· N − (pm − 1) − g

g − 1
∼ F(g − 1, N − (pm − 1) − g)

(22)

If the formula F2r ≤ Fα(g-1, N-(pm-1)-g) is satisfied at a given level
α, then the variable xr is regarded as invalid and removed
from Xm.

RAMP ANOMALY ANALYSIS AND
EVALUATION

By taking the selected ramp characteristics as inputs and
different types of data as output, we could construct models
for different ramp study, e.g., ramp classification and ramp
prediction. In this paper, we only do some simple experiments
on these two studies for evaluating the selected ramp
characteristics.

Ramp Classification
In ramp classification study, class labels of historical ramp events are
taken as the output. The classificationmodel can be constructed by data
mining algorithms. To accurately classify ramp events, four datamining
algorithms are applied to train ramp classification model, including
support vectormachine (SVM), neural networks (NN), random forests
algorithm (RF) and boosted trees (BT) (Chen et al., 2017; Ouyang et al.,
2017c; He et al., 2017; Ouyang, 2021). The optimal classificationmodel
could be determined by the comparison of their performance.

To evaluate the classification performance, the confusion
matrix introduced from information retrieval (IR) field is
widely applied (He et al., 2013b). The detailed expression is
presented in the following table.

In Table 1, four types of events are defined, such as true
positive event (TP), false negative event (FN), false positive event
(FP) and true negative event (TN). Based on these events, several
indicators could be defined to evaluate classification performance.
Four representative indicators are defined as below.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rec � numTP/(numTP + numFN)
Pre � numTP/(numTP + numFP)
Acc � (numTP + numTN)/numAll

Err � 1 − Acc

(23)

where, numX represents the number of the specific event X; Pre
represents precision indicator implying the percentage of TP in
classified true events; Rec represents recall indicator implying the
percentage of TP in observed true events; Acc is the classification
accuracy, and Err is the classification error. By utilizing these four
indicators, we could complete selection of the optimal classification
model and the evaluation of classification performance.

Ramp Prediction
Ramp prediction is usually divided into two types: event prediction
and regression prediction. Event prediction includes ramp
detection and ramp classification study. Regression prediction
mainly focus on utilizing traditional regression models to
predict ramp characteristics, e.g., the ramp rate prediction in
(Zheng and Kusiak, 2009). In this paper, we consider predicting
two characteristics: ramp amplitude and ramp rate, which implies
values of these two characteristics are taken as the output in
modeling. Since the above study on ramp characteristics’
extraction and selection are based on historical ramp events
which randomly occur in wind power time series. Therefore, we
propose to utilize these characteristics extracted from wind power
in a given time window as inputs, then predict one appointed
characteristic in the predicted time window, e.g., to predict ramp
amplitude or ramp rate in the future 1-h horizon. Since this type of
prediction is still based on regression models, the performance
indicator could be decided by the commonly used root-mean-
square error (RMSE), which is defined as below.

RMSE �

�������������
∑K
k�1
(ŷk − yk)2/K

√√
(24)

where, yk and ŷkare the kth values predicted and observed of an
appointed ramp characteristic; K is the number of tested samples.
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EXPERIMENTS AND DISCUSSION

In this paper, the industrial wind power data from Bonneville
Power Administration (BPA) website (bpa.gov/transmission,
2013) is taken as the studied case. The data set spanning from
01/01/13 00:00 to 12/31/13 23:55 totally has 105,120 data points
with a sampling interval of 5 min. First, we need to detect
historical ramp events from wind power time series for the
following ramp characteristics study. According to the
definitions in Eqs 1–4, the forth definition can reflect three
basic ramp characteristics more conveniently, so that it is
selected to identify historical ramps in this paper. In (Tang
et al., 2021), the value of Rval was chosen as 50% of the
installed capacity within 4 h, so the value of Rval is computed
by considering the capacity of 4,500 MW in the studied case, as
below.

Rval � 50% · Ptotal

4hours
� 50%p4500MW

4h
� 562.5MW/h (25)

Considering ramps always have a duration larger than 0.5 h, so
we assume the minimum threshold as Δt � 0.5 h there are totally
526 ramp events are detected from data of former 6 months. One

part of ramp identification results is shown in Figure 3. The
subpicture 1) and 2) depict historical wind power and ramp
events, respectively. In Figure 3B, up-ramps and down-ramps are
expressed by lines above and below the X-axis, respectively, their
durations are reflected by values in Y-axis. It is seen than most of
ramps have duration around hours, some even reach 6 h.

Historical wind power and ramp events are depicted in
Figure 3A and Figure 3B, respectively. In Figure 3B, up-
ramps and down-ramps are expressed by lines above and
below the X-axis, respectively, their durations are reflected by
values in Y-axis.

Selection of Ramp Characteristics
Through analysis on ramp definitions, basic ramp characteristics
(amplitude, duration, and ramp rate) could be extracted, as (5).
These basic characteristics could be used to identify ramps and
non-ramps, as two typical signals in Figure 4. To identify more
detailed division of ramp categories, wavelet transformation is
proposed to extract profound characteristics.

In order to illustrate the feasibility of wavelet characteristics,
we firstly utilize wavelet coefficients as an index to qualitatively
analyze ramps and non-ramps.

TABLE 1 | Confusion matrix.

Observation Total

True False

Classification True TP FP True classification
False FN TN False classification

Total True observation False observation All

FIGURE 3 | Identification of (A) historical wind power (B) ramp events in May.
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In Figure 4, the two typical ramp and non-ramp events are
identified by characteristics in Eq. 5. The function applied here is
Haar wavelet which was validated useful in ramp analysis
(Gallego et al., 2013). It is seen from Figure 4 that wavelet
coefficients which reflect signal’s energy could obviously
distinguish ramps and non-ramps. For example, ramps have
larger coefficients than non-ramps. It verifies the validity of
wavelet transformation in ramp characteristics analysis,
therefore we could further extract more profound wavelet
characteristics for ramp recognition.

According to the heuristic methods in selecting characteristics,
the class labels are required. Therefore, we propose to construct
ramp classification according to a specific context. Considering
wind process are formed by different meteorological phenomena,
so the categories of ramp events are related to division wind
processes to some extent. In (Wang et al., 2013), five types of wind
process are discussed, namely small wind, small fluctuation wind,
large fluctuation wind, double peak wind and multi-peaks wind.
However, there are a few ramp events attributed to the small
wind. Double peaks wind can be regarded as a special type of
multi-peaks wind. Based on these assumptions, we can group
historical ramp events into the following category library L,
denoted as below.

L� {A, B, C}⎧⎪⎨⎪⎩
A � small wind, small fluctuation wind;
B � large fluctuation wind;
C � double peaks wind, multi − peaks wind;

(26)

Combing with the description of wind process in (Wang et al.,
2013) and the constructed library L, historical ramp events of
training set are classified into three classes, as presented below.

Table 2 shows the statistical results of ramp events belonging
to three categories in L, where number 1, 2 and 3 are defined as
the class labels of A, B, C. It is seen that most ramp events are
associated with the large fluctuation wind, a few of ramp events
associated with the small wind and multi-peak wind. These
results agree with the concept of ramp events involving a large
change of wind power. Therefore, the constructed application
context is reasonable for studying ramp characteristics. Based on
the constructed library of ramp categories, then the extraction
and selection of ramp characteristics could be implemented.

Assuming each signal is decomposed into five wavelet layers,
the energy of each wavelet layer is extracted as ramp
characteristics by Eq. 13, expressed as P � [P1,P2,P3,P4,P5].
Here, the number of decomposition layers is set as 5 since
ramp events have only three categories in this paper. In other
application context which requires more refined ramp
classification, the level of decomposition could be higher. As
the description in Feature Selection, the purpose of feature
selection is to delete redundant characteristics, reduce
dimension and computation cost. Combining ramp basic
characteristics and extracted wavelet energy characteristics, the
characteristic vector is expressed as Cv � [Wpmax,Wpmin, T, R, P1,
P2, P3, P4, P5]. For all historical ramp events, the feature set
constructed by Cv is denoted as Xp0. Then, according to the
selection algorithm in Feature Selection, the process is shown in
the following table.

At each step of Table 3, the value of λp is calculated for the rest
characteristics Pi first. Then the minimum one is applied for Fr
testing based on Eqs 15, 16. If the result is satisfied, adding the
corresponding characteristic into characteristic vector Cv. It is
seen from Table 3 that P3 and P4 is selected, so the final
characteristic is re-written as Cvp � [Wpmax, Wpmin, T, R, P3,
P4], and the final feature set for all ramp events as Xp.

Ramp Study and Discussion
By taking the feature set Xp as inputs and the class labels from
Table 2 as output, five data mining algorithms (SVM, NN, RF,

FIGURE 4 | Wavelet analysis of ramps and non-ramps; (A) non-ramp signal; (B) ramp signal.

TABLE 2 | Number of ramps in three categories.

Class label 1 2 3

Number 101 378 47

TABLE 3 | Process of featue selection.

P1 P2 P3 P4 P5 Selection

Step 1 0.3064 0.3032 0.2969 0.2996 0.3146 P3

Step 2 0.2963 0.2944 \ 0.2917 0.2960 P4

Step 3 0.2911 0.2901 \ \ 0.2900 None
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BT, ELM) are applied in ramp classification modeling. The
classification results of three categories of ramps are shown in
following figure.

For the convenience of presentation, Figure 5 utilizes two
characteristics (Wpmax×P3) to show ramp classification results, as
X-axis representing values of Wpmax and Y-axis representing
values of P3. Red, blue and green points represent ramps of
Class1, Class2 and Class3, respectively. Black points represent

ramp events classified into incorrect class. Based on these
classification results, the performance indicators defined in Eq.
23 could be calculated, as presented below.

Table 4 presents values of four performance indicators in
classification of three ramp categories. According to the
definitions of four matrixes, a classification system performs
well with large value of Pre, Rec, Acc, and small value of Err.
In Table 4, it is seen that NN, RF and ELM algorithms
outperform on three classes, respectively. However, it is
difficult to choose the best to classify all three ramp categories.
To determine the final optimal model in ramp classification, the
receiver operating characteristic curve (ROC) is introduced to
compare performance further. ROC space is constructed by
Recall (Rec) in the X-axis and false alarm (F) in the Y-axis.
The definition of F is also based on Table 1, as expressed below.

F � numFP/(numFP + numTN) (27)

where, F calculates the percentage of FP in observed false events.
According to these two indicators’ definitions, it is easily
comprehended that a classifier having a large Rec and a small
F performs better, which implies the upper-left corner of the ROC
space means the better performance. For a discrete classification
system, a classifier is usually represented by a point in ROC space.
Therefore, points representing all classifiers in Table 4 are shown
in the following figure.

FIGURE 5 | Ramp classification based on four data mining algorithms; (A) SVM; (B) NN; (C) RF; (D) BT; (E) ELM.

TABLE 4 | Performance of ramp classification.

Pre Rec Acc Err

Class 1 SVM 0.9000 0.9802 0.9753 0.0247
NN 1.0000 0.9714 0.9946 0.0054
RF 1.0000 0.9683 0.9944 0.0056
BT 1.0000 0.6126 0.9183 0.0817
ELM 0.9381 0.9010 0.9696 0.0304

Class 2 SVM 0.9688 0.9868 0.9677 0.0323
NN 0.9886 0.9886 0.9838 0.0162
RF 0.9961 0.9846 0.9859 0.0141
BT 0.8651 0.9729 0.8745 0.1255
ELM 0.9739 0.9868 0.9715 0.0285

Class 3 SVM 0.8065 0.5319 0.9468 0.0532
NN 0.8684 0.9167 0.9784 0.0216
RF 0.8333 0.9677 0.9802 0.0198
BT 0.7442 0.6957 0.9525 0.0475
ELM 0.9565 0.9362 0.9905 0.0095
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In Figure 6, three points having the same type present
classifiers of three classes by a same algorithm. The points
representing SVM and BT perform worse than the other three
algorithms again. By comparing the points of NN, RF and ELM, it
is seen that points of RF obviously are concentrated and closer to
the upper-left corner, implying their classifiers have a better
performance. Therefore, RF algorithm is finally chosen for
modeling ramp classification in this paper.

Then, taking these trained RF models as ramp classifiers, 100
ramp events are selected from July to December as testing
samples. To discuss the performance with and without wavelet
characteristics in ramp classification, three different input sets are
considered in the case study, such as initial feature set X0

consisting of vector Cv0, feature set Xp0 consisting of vector Cv

� [Cv0, P] which contains basic ramp characteristics and all
wavelet characteristics, refined feature set Xp consisting of Cvp

� [Cv0, P3, P4] which reduces dimension by feature selection.
Classification performance of testing data is presented in the
following table.

Table 5 shows values of four indicators at classification of
three ramp categories. Since three ramp categories have

imbalance distribution as Table 2II, so the classification
performance of Class 2 is the best. By comparing classification
performance of using three feature sets, it is seen that using Xp0

has better performance than using X0, having an average
improvement of 10.17% (8.14% on Pre, 14.77% on Rec, 1.80%
on Acc, 15.98% on Err). These results imply wavelet
characteristics are useful in ramp classification. Also, using Xp

improves a little again (with an average improvement of 6.05%)
than using Xp0, which implies that the proposed feature selection
approach is feasible and effectual in ramp classification. While,
for comparing with other feature selection methods, the
commonly used PCA is applied. After the analysis of PCA on
P � [P1, P2, P3, P4, P5], two principal components are selected to
keep a same dimension withXp, these two components contribute
84.00% explanation in classification, and consist of the feature set
Xpca. Table V also presents the performance of Xpca. By
comparing Xp and Xpca, it is seen that using Xp has an average
outperformance of 3.69% than using Xpca. Summarizing all these
results, the proposed approach on selecting wavelet
characteristics is validated to be feasible.

On the other hand, by utilizing these selected ramp
characteristics, we could do some try on the study of ramp
prediction. Since ramp classification has validated the
effectiveness on distinguishing different categories, so two
basic ramp characteristics are taken as target output in
prediction, such as ramp amplitude (Var) and ramp rate (R).
As the design of ramp prediction in Ramp Anomaly Analysis and
Evaluation, the historical feature extraction window and the
predicted time window are set as the same for convenience. In
this paper, ramp prediction is designed to predict two variables
(Var and R) within future horizon of 1, 2, /, 5 h, the prediction
performance is presented in the following table.

Table 6 shows the performance of ramp prediction by RMSE
of two ramp characteristics. In these two variables’ prediction, a
typical NN with three layers is used in modeling. For comparison
study, four feature sets discussed in Table 5 are also utilized as
inputs of prediction models. It is seen from results of Table 6 that
models using feature sets containing wavelet characteristics (e.g.,
Xp0, Xp, Xpca) outperforms than that only containing basic ramp
characteristics (e.g., X0). Through the proposed feature selection
in this paper, the model using Xp has an improvement of 5.97%
than using X0, 1.29% than using Xp0, and 2.70% than using Xpca

on prediction of Var. Similarly, using Xp has an improvement of
16.30% than using X0, 8.24% than using Xp0, and 13.07% than
using Xpca on prediction of R. Through the discussion on results

FIGURE 6 | Four data mining models in ROC space.

TABLE 5 | Classification performance of different feature sets.

Pre Rec Acc Err

Class1 X0 0.6111 1.0000 0.9157 0.0843
Xp0 0.6804 1.0000 0.9357 0.0643
Xp 0.6875 1.0000 0.9378 0.0622
Xpca 0.6735 1.0000 0.9398 0.0602

Class2 X0 0.9621 0.8945 0.9016 0.0984
Xp0 0.9914 0.8934 0.9157 0.0843
Xp 1.0000 0.8958 0.9137 0.0863
Xpca 0.9940 0.9089 0.8916 0.1084

Class3 X0 0.2813 0.1875 0.8574 0.1426
Xp0 0.3095 0.2708 0.8715 0.1285
Xp 0.3231 0.4375 0.8755 0.1245
Xpca 0.3088 0.4375 0.8514 0.1486

TABLE 6 | Performance of ramp prediction.

1 h 2 h 3 h 4 h 5 h

Var X0 21.94 40.80 79.49 120.42 156.71
Xp0 19.02 38.05 81.63 115.94 151.46
Xp 18.68 35.31 86.21 113.93 149.46
Xpca 20.27 35.63 79.12 122.02 160.87

R X0 1.8635 1.9418 2.4102 2.5717 2.6601
Xp0 1.7527 1.6638 2.0607 2.5032 2.4825
Xp 1.4786 1.4928 1.9097 2.3972 2.3897
Xpca 1.8355 1.8644 2.2158 2.5242 2.5728
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of Table VI, it is concluded that the proposed approach on
extracting and selecting ramp characteristics is also useful for
constructing inputs of ramp prediction, and acquires good
prediction performance.

CONCLUSION

The study in this paper focus on extracting and selecting
profound ramp characteristics for in-depth ramp researches.
First, based on wavelet transformation’s properties on time-
frequency domains and multiresolution, wavelet
decomposition is validated useful in analyzing ramps and non-
ramps, also different categories of ramps. Then, ramp
characteristics are extracted based on the energy
decomposition at different wavelet layers. Combining with
given ramp categories from wind process, heuristic feature
selection methods (e.g., SFFS, SFBS) are applied to select valid
characteristics, to remove redundant characteristics and reduce
feature dimension. Based on basic ramp characteristics and
selected wavelet characteristics, ramp studies on classification
and prediction acquire better performance than that without
wavelet characteristics and that using PCA in feature selection.
Therefore, the conclusion could be summarized in this paper that
wavelet transformation is useful to extract profound ramp
characteristics, and that selecting ramp characteristics by the
proposed approach is feasible to improve performance of
ramp studies.

However, besides the above conclusions, there is also a
number of conceptual alternatives worth discussing and
pursuing: 1) ramp categories in this paper are determined by
wind process. Therefore, the selected wavelet characteristics are

not completely applicable to other ramp contexts. The approach
involving feature extraction and selection in this paper could be
still referential. 2) Ramp events generally involve complicated
weather movement, it is reasonable that considering
meteorological variables in ramp studies could improve the
performance. While, for the limitation of data sources in this
paper, we only consider ramp characteristics from wind power
data. More work on exogenous variables will be studied in
future. 3) Based on the selected ramp characteristics and
results of some ramp studies, power system’s operation
associated with ramp events could be studied further. Besides
these points, more studies are needed to in-depth understand
ramp events.
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Multi-Scale Feature Fusion Target
Detection and Model Quantization
Fuqi Ma1, Bo Wang1*, Min Li2, Xuzhu Dong1, Yifan Mao3, Yinyu Zhou4,1 and Hengrui Ma5

1School of Electrical and Automation, Wuhan University, Wuhan, China, 2School of Computer and Artificial Intelligence, Wuhan
Textile University, Wuhan, China, 3State Grid Shaanxi Electric Power Company, State Grid Xi’an Power Supply Company, Xi’an,
China, 4Guangdong Power Grid Corp, Huizhou Power Supply Bureau Co., Ltd., Huizhou, China, 5Tus-Institute for Renewable
Energy, Qinghai University, Xining, China

Insulator is an important equipment of power transmission line. Insulator icing can seriously
affect the stable operation of power transmission line. So insulator icing condition
monitoring has great significance of the safety and stability of power system.
Therefore, this paper proposes a lightweight intelligent recognition method of insulator
icing thickness for front-end ice monitoring device. In this method, the residual network
(ResNet) and feature pyramid network (FPN) are fused to construct a multi-scale feature
extraction network framework, so that the shallow features and deep features are fused to
reduce the information loss and improve the target detection accuracy. Then, the full
convolution neural network (FCN) is used to classify and regress the iced insulator, so as to
realize the high-precision identification of icing thickness. Finally, the proposed method is
compressed by model quantization to reduce the size and parameters of the model for
adapting the icing monitoring terminal with limited computing resources, and the
performance of the method is verified and compared with other classical method on
the edge intelligent chip.

Keywords: intelligent perception, transmission line, icing monitoring, power depth vision, edge computing, model
quantification, power grid safety

INTRODUCTION

The importance of safe and stable operation of power grid to the development of the national
economy is self-evident. With the deepening of power grid interconnection and the gradual
implementation of power market, the operation environment of power grid is more complex,
which puts forward higher requirements for the stability and reliability of power grid (Ruszczak and
Tomaszewski, 2015; Liu et al., 2020; Wang et al., 2020). Due to the vast territory, diverse climate,
complex terrain and other factors, power grids in China are often damaged by various natural
disasters, resulting in large-scale power outages. As an important equipment of transmission lines
and substations, insulators have the functions of electrical insulation and mechanical fixation (Liu
et al., 2017; Yang et al., 2019). Due to ice and snow condition, the external insulation performance of
insulators will be significantly reduced. Severe icing may lead to the distortion of insulator potential
distribution, flashover of insulator, line trip and outage, which brings great challenges to the safe and
stable operation of power grid. In 2008, the south of China suffered extremely serious ice disaster,
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which led to a large area of ice flashover of insulators in many
transmission lines and substations, resulting in a series of serious
accidents such as tripping and equipment damage (Tiannan and
Dongxiao, 2016; Wang et al., 2021). Since then, although the
degree of icing disaster is less than that in 2008, the destructive
impact of ice disaster weather on insulators and even power grid
has always existed. Therefore, it is urgent to carry out insulator
icing perception research to guide the production, operation and
maintenance, find and eliminate hidden dangers in time, so as to
improve the safety and stability of the power grid operation (Wei
and Caifei, 2019; Li et al., 2021).

At present, monitoring and restraining methods are mainly
used for insulator icing control and management (Jiang et al.,
2014; Li et al., 2019). The monitoring method can realize online
monitoring of insulator icing state by installing sensors and
cameras on electrical equipment, or find hidden dangers in
key line inspection by manual inspection. Based on the
monitoring results, various ice melting technologies have been
adopted to eliminate the icing of insulators, mainly including
mechanical de icing, laser de icing and manual de icing (Zhang
et al., 2020a). The research on insulator icing monitoring and
recognition mainly focuses on cloud centric computing mode,
including environmental parameter monitoring (Junhua et al.,
2018; Xingliang et al., 2018; Zhu et al., 2020) and image
monitoring (Yan et al., 2013; Jingjing et al., 2017; Shen and
Raksincharoensak, 2021a). The method based on environmental
parameters is mainly fonded on experimental analysis, and the
change of insulator icing thickness is often obtained through
the change of environmental parameters and physical analysis.
The limitation of insulator icing thickness calculate method based
on environmental parameter monitoring is that all kinds of
sensors installed on transmission lines will be affected by bad
weather and complex electromagnetic interference, which may
lead to large errors in icing monitoring results. In the image
monitoring method, the video monitoring terminal installed on
the transmission line tower to collect the insulator icing image
regularly, and transmit the icing image to the monitoring center.
Then use the rich computing resources and advanced images
processing methods of the monitoring center to calculate the
insulator icing thickness (Dongxiao et al., 2017; Yongsai et al.,
2017). For the collected insulator icing image, the traditional
image processing methods are mainly used for icing perception,
such as image segmentation or edge detection to realize icing
thickness level recognition (Yanpeng et al., 2017; Qiangliang
et al., 2018). The processing mode and effect of traditional
image methods are seriously affected by the quality and
location of icing images. Different types of icing images
usually need to be determined manually to select the best
processing method, which shows the problems of insufficient
generalization ability and low efficiency.

With the development of Graphics Processing Unit (GPU)
and artificial intelligence (AI) technology, image processing
method based on deep learning (Shen et al., 2020a; Shen et al.,
2021a) is gradually applied to insulator icing monitoring
(Zhuangli et al., 2018; Shen and Raksincharoensak, 2021b;
Nan et al., 2018). Wang et al. (Gang et al., 2018) proposed a
method of insulator icing thickness identification based on

convolution neural network. Using the abundant computing
resources of cloud computing center, a complex convolution
neural network recognition model is established to identify the
ice thickness level, which has strong generalization ability. Yang
et al. (2021a); Yang et al. (2021b) first study SCUC problems and
proposed an expanded sequence-to-sequence (E-Seq2Seq) based
data-driven SCUC expert system for dynamic multiple-sequence
mapping samples, it can accommodate the mapping samples of
SCUC, and consider the various input factors that affect SCUC
decision-making, possessing strong generality, high solution
accuracy, and efficiency over traditional methods. However,
the cloud computing model can not guarantee the reliable
transmission, real-time analysis and recognition of insulator
icing monitoring image in bad weather. But with the
development of power Internet of things and the
transformation of energy digitization (Shen et al., 2017;
Haoyong et al., 2019), millions of power edge intelligent
devices such as power sensors, state sensors and intelligent
video monitoring system are connected to the power Internet
of things, resulting in massive heterogeneous data (Zhang and
Luo, 2018; Shen et al., 2020b; Nie et al., 2020; Ying et al., 2020).
The traditional centralized data processing mode centered on
cloud computing shows the problem of insufficient real-time,
especially for the ice monitoring system with poor transmission
conditions, the edge intelligent technology with edge computing
as the core has been widely concerned. Therefore, the research on
the intelligent identification method of front-end edge intelligent
icing monitoring equipment has become the inevitable
development trend of online icing monitoring (Chen et al.,
2019; Zhou et al., 2019).

Ma et al. (2021) utilized the edge computing mode to identify
icing thickness of transmission line in front-end monitoring
equipment. Considering that the established ice thickness
identification model is too complex to be suitable for the
front-end ice monitoring device with limited computational
resources, they use network channel pruning method for model
lightweight compression. However, network channel pruning
method requires a lot of manpower and computing power. In
order to improve the engineering applicability of the edge
intelligent icing thickness identification, this paper proposes a
model quantization method for lightweight compression of
icing thickness identification model, so as to realize the
front-end localized identification of icing thickness in the
icing monitoring device. And the ResNet network and FPN
network are used to constructs a multi-scale feature extraction
and fusion network framework to improve the detection
accuracy of insulators. The main contributions of this paper
are summarized as follows.

1) A edge intelligent perception method for power grid icing
condition based on multi-scale feature fusion target detection
and model quantization is proposed, so as to implement the
front-end localization intelligent identification of insulator
icing thickness.

2) The residual network ResNet and feature pyramid network
(FPN) are fused to construct a multi-scale feature extraction
network framework, so that the shallow features and deep
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features are fused to reduce the information loss and improve
the target detection accuracy.

3) The proposed method is compressed by model quantization,
so as to reduce the size and parameters of the model to adapt
to the icing monitoring terminal with limited computing
resources.

The rest of the paper is organized as follows: Section II
introduces the lightweight intelligent recognition method of
icing thickness proposed in this paper for icing monitoring
terminal, which is based on residual network ResNet, feature
pyramid network (FPN), full convolutional network (FCN) and
model quantification. In Section IV, the experiment results are
presented to verify the proposed method, followed by
conclusions.

PROPOSED METHOD

Considering that the actual transmission line icing usually faces
various bad weather conditions, and different transmission line
terrain and environment will lead to a variety of scene changes,
such as strong wind, heavy rain and other scenes, the icing images
collected by the actual icing monitoring system show the
characteristics of complex background, low resolution and
polymorphism. So the icing thickness identification model
established in this paper is a combination of ResNet (Zhang
et al., 2020b), FPN (Feature pyramid networks) (Zhao et al., 2019)
and FCN (Full convolutional network) (Long et al., 2015). The
residual network ResNet and feature pyramid network (FPN) are
fused to construct a multi-scale feature extraction network
framework to extract more icing image information. And full
convolution network is used for insulator icing grading and
position regression. The proposed method solves the multi-
scale problem in target detection to a certain extent, and
improves the detection accuracy of targets with different sizes.
Especially, the shallow image features are introduced into the
FPN network, which improves the detection sensitivity of small
targets such as a small proportion of insulators. FCN network
adopts the anchor frame generation mechanism to generate
candidate regions with fixed size ratio and quantity, which is

similar to YOLOv3model. In this way, the speed of insulator icing
detection is improved.

System Architecture
The network structure of ice thickness identification method
proposed in this paper is mainly composed of feature
extraction network, feature pyramid network (FPN network)
and classification regression network (FCN sub network). In
order to improve the recognition speed of insulator icing, its
feature extraction network uses the ResNet-34 network with
fewer layers than Faster RCNN to extract feature maps with
different resolutions from the input image. Its target classification
regression network uses the same candidate box generation
mechanism as YOLOv3, the system architecture of our
method is shown in Figure 1.

For the input insulator icing image, the high-level and low-
level feature maps of the image are obtained under different
resolutions by using the resnet-34 feature extraction network
firstly. Then, the FPN network is used to connect the high-level
and low-level features horizontally for feature fusion, and
candidate boxes are generated on feature maps with different
scales. Finally, the position information and icing thickness level
information of the predicted insulator target frame are output by
the classification regression sub network of FCN. The detailed
process of intelligent recognition of insulator icing thickness as
shown in Figure 2.

Multi-Scale Feature Extraction of Icing
Image
The structure of multi-scale feature extraction network based on
residual network ResNet-34 in this paper is shown in Table 1.
When he sliding step of convolution kernel is set to 2, the feature
map will shrink gradually in the form of two times. With the
deepening of feature extraction network, the semantic
information of insulator icing image is gradually enhanced
(Shen et al., 2021b), but the location information is gradually
blurred.

The feedforward calculation of ResNet-34 network is the
bottom-up feature extraction process corresponding to the
feature pyramid, which uses the feature activation of the last

FIGURE 1 | Framework of insulator icing thickness identification method.
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residual structure in each stage as the output. In this paper, the
output of these residual modules is expressed as follows:
{C2,C3,C4,C5}. Corresponding to the activation value of the
last module of conv2, conv3, conv4 and conv5 in Table 2, the size
dimensions of feature map are 56×56×64, 2,828,××128,
1,414,××256 and 7×7×512 respectively.

Multi Scale Feature Fusion
The semantic information of high-level feature map obtained by
residual feature extraction network ResNet-34 is generally strong,

FIGURE 2 | Specific process of intelligent recognition of insulator icing thickness.

TABLE 1 | Feature extraction network architecture of ResNet-34.

Layer Feature map size Network structure

conv1 112 × 112 7 × 7, 64, Stride size: 2
conv2 56 × 56 3 × 3 max pool, Stride Size: 2

[ 3 × 3, 64
3 × 3, 64]×3

conv3 28 × 28 [ 3 × 3, 128
3 × 3, 128]×4

conv4 14 × 14 [ 3 × 3, 256
3 × 3, 256]×6

conv5 7 × 7 [ 3 × 3, 512
3 × 3, 512

]×3

TABLE 2 | The size and dimension of each feature in feature pyramid network.

Feature Network Size Dimension

C2 ResNet-34 56 × 56 64
C3 ResNet-34 28 × 28 128
C4 ResNet-34 14 × 14 256
C5 ResNet-34 7 × 7 512
M2 FPN 56 × 56 256
M3 FPN 28 × 28 256
M4 FPN 14 × 14 256
M5 FPN 7 × 7 256
P2 FPN 56 × 56 256
P3 FPN 28 × 28 256
P4 FPN 14 × 14 256
P5 FPN 7 × 7 256

FIGURE 3 | Detailed structure of multiscale feature fusion network.
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but the location information is fuzzy. The location information of
low-level feature map is generally clear, but the semantic
information is weak. Moreover, the top-down hierarchical
structure of FPN network with horizontal connection helps to
fuse the high-level strong semantic features of ResNet-34 network
output with the low-level clear location features, so that the
features of different scales have strong semantic information.
The detailed structure of multi-scale feature fusion network is
shown in Figure 3.

As shown in Figure 3, the output C5 of ResNet-34 changes to
feature map M5 with 7×7×256 dimension size after a convolution
1×1×256. Then, a convolution operation with dimension 3×3×256
will be added to each feature map M to eliminate the aliasing effect
between feature layers of different scales. For the construction of P4
in FPN network, the feature map of M5 is up sampled twice by
nearest neighbor upsampling method, so as to double the size of the
feature map. In this way, the feature mapM5 becomes the same size
dimension as M4 namedM5’. And the feature map C4 becomes the
same size dimension asM4 namedC4′ after a convolution 1×1×256.
Finally, the feature mapM4 can be obtained by addingM5′ and C4’.
Similarly, we can get the feature map M3, M2, M1, P3 and P2. The
size and dimension of each feature map are shown in Table 2.

Classification of Icing Thickness and
Location Regression
The target classification network of ice thickness recognition
model is divided into two sub networks: target classification
sub network and prediction box position regression sub
network. The network structure of class sub network and box
sub network used in feature map at different stages is related to
the size of feature map, as shown in Figure 4.

In Figure 4, the sizes ofW and H are the same as those feature
maps (P2, P3, P4, P5) output by FPN. K represents the total
number of categories to be predicted, and A represents the number
of candidate boxes or anchors. In this paper, the idea of object
classification regression of YOLOv3 is used to divide each feature
map output by FPN into grids corresponding to the length and
width of the feature map. For example, the feature map P5 with 7 ×

7 size is divided into 7 × 7 grids. Then, three groups candidate
frames are established from each grid center, the length width ratio
of each group of candidate boxes is 1:1, 1:2 and 2:1 respectively. The
ratio of the three groups of candidate boxes is 20:21/3:22/3. So the
feature map P5 will be divided into 7 × 7×9 � 441 candidate boxes,
as shown in Figure 5 (in the figure, only one group candidate boxes
are drawn in the center of the grid, and two groups with different
proportions are not presented).

Class sub network uses 4-time 256 channel convolution and 1-
time num_priors×num_classes convolution for feature extraction,
num_priors refers to the number of candidate boxes owned by the
feature layer. num_classes refers to how many kinds of targets are
detected by the network. 4-times of 256 channel convolution and 1-
time num_priors×4 convolution are used in box sub network.
Where, four refers to the adjustment of the coordinates of the
upper left corner and the lower right corner of the candidate box.
Class sub network and box sub network can be used to modify the
target category and location information of the initial candidate
box. Finally, the confidence scores of candidate frames are sorted
and the Non-maximum value is suppressed. The candidate frames
with low scores are removed, and the candidate frames with more
overlaps are combined to realize the classification of insulator icing
level and position coordinate regression.

Model Compression Method Based on
Quantization
The implementation of Quantization Compression for the model
needs to convert the common operations (such as convolution,
matrix multiplication, activation function, pooling, splicing, etc.)
into the equivalent operation of the faster 8-bit integer (int8)
version, and then add quantization and inverse quantization
operations before and after the convolution operation.
Quantization operation is convert input from high-precision
floating-point operation (generally 32-bit floating-point or 16
bit floating-point) to low precision integer operation (generally 8-

FIGURE 4 | FCN network structure diagram.

FIGURE 5 | Schematic diagramof grid and candidate box of featuremapP5.
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bit integer), while the inverse quantization operation is to transfer
output from low-precision operation to high-precision operation.
Taking the Relu activation function as an example, the relu
operation before quantization is shown in Figure 6, and the
relu operation after network quantization is shown in Figure 7.

For the quantization operation of converting floating numbers
into 8-bit integers (0–255) in Figure 7, the core to find out the
minimum value (Min) and maximum value (Max) of input data,
and then the quantization value q of each input data can be
obtained by using the following formula.

q � x −min
max −min

· 255 (1)

On the contrary, the inverse quantization value x can also be
obtained by using the following formula.

x � q · (max −min )
255

+min (2)

The quantization error after quantization is R.

R � max −min
255

(3)

Using the quantitative operation technology of neural network
can reduce the memory occupation, the amount of calculation and
the power consumption of the ice thickness identification model,
which is not only conducive to the deployment of the established ice
thickness identification model to the intelligent embedded system,
but also can improve the operation efficiency of proposed model.

Structure Composition of Edge Intelligent
Icing Monitoring Device
In order to realize the front-end localization identification of icing
thickness, this paper designs an edge intelligent icing monitoring
device based on edge artificial intelligent (AI) chip. The device

FIGURE 6 | Relu operation before quantization.

FIGURE 7 | Relu operation after quantization.

FIGURE 8 | Structure of the icing monitoring device.

FIGURE 9 | Physical structure diagram of icing monitoring device.
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mainly includes six parts: data acquisition module, calculation
control module, wireless communication module, storage
module, power management module and I/O communication
interface. The specific structural diagram of the device is shown in
Figure 8, and the physical structure diagram of icing monitoring
is shown in Figure 9. The icing monitoring with AI chip can be
deployed to the transmission line tower for online monitoring of
insulator icing thickness.

1) Data acquisition module. It is used to connect camera and
other monitoring equipment or video monitoring system for
data acquisition and coding processing of insulator icing
image. Due to the slow change of insulator icing thickness,
the device collects an icing image every 15 min.

2) Calculation control module. Huawei atlas 200 chip is used as
the intelligent processing chip in the edge ice monitoring
device, which can analyze and calculate the collected
structured data such as insulator icing image and video,
identify the icing thickness level of insulator, and control
and coordinate the operation of each module.

3) Wireless communication module. Communication modes
include 4G and WiFi, which can upload the identification
results of insulator icing thickness to the cloud or server, so as
to assist in transmission line maintenance and management.

4) Storagemodule. This module is used to store the operation system
of the device, lightweight model of insulator thickness grade
identification and other supporting software and algorithms.

5) Power management module. The icing monitoring device is
powered by external photovoltaic panel and battery. Dual
charging solar controller is used in icing monitoring device for
power charging management and control.

6) I/O communication interface. Provide communication
interface between modules.

EXPERIMENT RESULTS

This section introduces the experimental details and compares
the performance of the proposed method for icing thickness

recognition with other methods. In order to verify the
performance of the lightweight icing intelligent recognition
method proposed in this paper, under the same experimental
conditions, classical single-stage method YOLOv3 and classical
two stage method Faster RCNN are selected and quantized as the
control group, and the detection accuracy and recognition speed
are compared on the same experiment set. For the three methods,
compare the performance of the methods on the server side
firstly, and then compare the performance on the edge side
through the model compression method. The model with
suffix -FP32 indicates that the model uses 32-bit floating-point
full precision, It is experitmented on the server side. The model
with suffix -int8 indicates that the 8-bit integer precision is used
after quantization and compression of the model, and it is
experitmented on the edge intelligent ice monitoring device.

Construction of Image Sample Library for
Insulator Icing Monitoring
The sample library constructed in this paper contains more than
4,000 insulator icing monitoring image. This paper divides the
icing level based on icing and snow conditions of insulators and
transmission lines, combined with the actual inspection
experience and application requirements. The icing thickness
of insulators is divided into five icing levels, including level_ 1,
level_ 2, level_ 3, level_ four and level_ 5 (Ma et al., 2021). Each
icing level represents a different insulator icing thickness range, as
shown in Table 3.

Experiment Environment and Parameter
Setting
In order to ensure that the performance indexes before and after
model compression are compared under the same computing power
as much as possible, the main configuration of the server side is 8-
core CPU, 32 GB memory and an NVIDIA Tesla P4 graphics card
with 8 GB video memory, its power consumption is 70W. Huawei
atlas 200 DK chip is used as the intelligent processing chip in the
edge ice monitoring device, which is shown in Figure 10. The
experimental environment is deep learning framework Caffe under
Ubantu system, and the power consumption is edge intelligence chip
is 20W. The 8-bit integer peak computing power of Tesla P4
graphics card and Atlas 200 DK chip is 22tops (trillion
operations/s). To ensure the performance of the model under the
same training and test conditions, the three methods use the same
training set (including the verification set) in the cloud training. The
number of iterations is 100, and the learning strategy is to

FIGURE 10 | The diagram of edge intelligent analysis module.

TABLE 3 | Classification of insulator icing thickness.

Icing level Thickness Describe

level_1 0 mm No snow and ice
level_2 0∼3 mm Slight snow cover, no ice
level_3 3∼6 mm Snow is thick and slightly ice
level_4 6–10 mm Heavy snow, moderate ice
level_5 >10 mm Heavy snow cover, severe ice
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automatically adjust the learning rate according to the verification
accuracy, and the same test images in the insulator icing picture
library are used for test comparison.

To ensure the sample balance of the test set, 135 images of each
icing level are randomly selected from the insulator icing image
library to form the test set. The number of images in the training
set and the test set was 2,700 and 675, respectively, and the ratio is
8:2. The image distribution of training set on icing level of various
insulator is shown in Figure 11, it can be seen that there is no
sample imbalance in all kinds of icing levels of insulators in the
images of training set and test set.

Comparative Analysis of Icing Identification
Accuracy
This paper compares the models of Faster RCNN, YOLOv3 and
our icing identification method before and after quantification
compression, also compares them with the same test images.
Firstly, the average precision (AP) is used to measure the
performance of these methods. Average precision is achieved
by averaging the precision at different recall points, which is
generally calculated by the 11 point method. By setting a set of

thresholds containing 11 recall points [0, 01, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]. Each recall point corresponds to a maximum
Precision. The average of these precision is the AP, and which can
be obtained by the following equation.

AP � 1
11

∑
R∈{0,0.1,......,1}

maxP(R) (4)

Taking insulator icing level_1 as an example, the maximum
accuracy and average precision of different recall thresholds
are given, as shown in Table 4.

From Table 4, it can be seen that the Faster RCNN of the two-
stage method has higher identification accuracy for icing thickness,
which indicates that the RPN network of Faster RCNNmodel of can
improve the detection accuracy. However, the detection accuracy of
YOLOv3 based on integrated convolutional neural network is lower
than that based on RPN, as there is nomechanism to generate target
candidate domain. Besides, the accuracy of the proposed method is
higher than that of the Faster RCNN model, which shows that the
FPN network used in the proposedmethod is helpful to improve the
accuracy of ice thickness identification. In addition, after the model
compression, the Average precision (AP) of Faster RCNN, YOLOv3
and the method proposed in this paper presents a downward trend,
which indicates that the identification accuracy for ice thickness will
be reduced by the quantization compression.

Threfore, compared with the typical target detection methods,
the multi-scale target detection method proposed in this paper
has higher ice thickness identification accuracy for insulator icing
level_1 under the server environment. But the accuracy of our
method by model quantification is slightly lower than that of
Faster RCNN under the edge intelligent equipment environment.
In order to further measure the performance of those methods,
we compare the model size, mean average precision (mAP).
calculation speed and other indicators of those methods.

Average Precision Comparison and
Performance Analysis
After calculating the average precision (AP) of YOLOv3, Fast
RCNN and our method before and after compression for each

FIGURE 11 | Label and image distribution of various insulator icing
levels in the training set.

TABLE 4 | The detection accuracy of different method for insulator icing level_1 before and after compression.

Recall The maximum precision of different models corresponding to different recall thresholds

YOLOv3-FP32 YOLOv3-int8 Faster RCNN-FP32 Faster RCNN-int8 Our method-FP32 Our method-int8

0 1.000 1.000 1.000 1.000 1.000 1.000
0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.960 0.956 1.000 0.968 0.978 0.892
0.3 0.960 0.956 0.967 0.956 0.978 0.892
0.4 0.960 0.930 0.967 0.956 0.978 0.892
0.5 0.944 0.930 0.944 0.937 0.978 0.892
0.6 0.944 0.927 0.878 0.872 0.978 0.892
0.7 0.932 0.869 0.855 0.843 0.978 0.892
0.8 0.730 0.550 0.855 0.835 0.964 0.892
0.9 0.365 0.275 0.822 0.807 0.964 0.892
1 0.000 0.000 0.000 0.000 0.000 0.000
AP 0.800 0.763 0.844 0.834 0.891 0.831
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insulator icing level, the mean average precision (mAP) of each
method can be calculated, as shown in Table 5. The mean average
precision (mAP) reflects the comprehensive detection accuracy
performance of the target detection method for the insulators
detection with different icing levels. It can be seen from Table 5
that the mAP of our method is the highest on both the server side
and the edge side. It shows that the comprehensive performance
of the proposed method before and after quantization
compression is better than that of YOLOv3 and Fast RCNN
method.

In addition, for the icing online monitoring device with poor
transmission conditions, it requires not only higher
comprehensive detection accuracy performance, but also faster
detection speed, whichs meet the real-time and reliability
requirements of power grid condition monitoring. Therefore,
this paper compares the changes of mAP, detection speed and
model size of the three models before and after quantization
compression, as shown in Tab 6.

It can be seen from Table 6, after quantization compression,
the size andmAP of YOLOv3, Faster RCNN and our method are
reduced, and the recognition speed of Faster RCNN model and
our method also shows a downward trend, while the recognition
speed of YOLOv3 is greatly improved. Besides, the sigle-stage
method has the lowest mAP index for the method before and
after the quantization compression. The mAP of our method
combining the advantages of the single-stage method and the
two-stage method is the highest, and the mAP of the Fast RCNN
of the two-stage method is the middle. In addition, for the
detection speed indicators before and after the quantization
compression, the single-stage method YOLOv3 recognition
speed is the fastest, the two-stage method Faster RCNN
recognition speed is the slowest, and the ice recognition

method proposed in this paper speed combining the
advantages of the two methods is in the middle. At the same
time, after the compression conversion and deployment to the
edge, the recognition speed of YOLOv3 has been improved,
while the speed of Faster RCNN to recognize a single image has
reached 1 s, which can not meet the real-time requirements of
power scene. Based on the above analysis, YOLOv3, Faster
RCNN and our method all maintain a high mAP after
quantitative compression. Although our method is slower
than the single order Yolo V3 method, our method has the
highest recognition accuracy in edge icing monitoring device.
The speed of our method in the edge sideis up to 170 ms/pic,
which can meet the actual needs of icing on-line monitoring.
For the scene of insulator icing edge recognition in this paper,
our method considering both detection accuracy and
recognition speed can better meet the practical application
requirements.

CONCLUSION

To implement the front-end high-precision identification of
insulator icing thickness, a lightweight icing thickness
identification method based on multi-scale feature fusion and
model quantization is proposed in this paper, and the advantages
of the proposed method are verified by experiments. Compared
with other traditional image processing methods, our method can
realize front-end intelligent recognition of icing thickness without
manual adjustment and setting, which can avoid the long-
distance transmission of icing image and show stronger
generalization ability and higher efficiency for thickness
monitoring. The specific conclusions are as follows.

TABLE 5 | The mean accuracy of different method before and after quantify compression.

Icing level The average precision (AP) of different method each icing levels before and after quantify compression

YOLOv3-FP32 YOLOv3-int8 Faster RCNN-FP32 Faster RCNN-int8 Our method-FP32 Our method-int8

level_1 0.800 0.763 0.844 0.834 0.891 0.831
level_2 0.623 0.585 0.861 0.801 0.871 0.867
level_3 0.614 0.538 0.761 0.746 0.875 0.821
level_4 0.724 0.638 0.786 0.707 0.888 0.826
level_5 0.810 0.780 0.800 0.787 0.885 0.882
mAP 0.714 0.661 0.811 0.775 0.882 0.845

TABLE 6 | Performance comparison of model before and after quantization compression.

Method Model size
(MB)

Size change
before and

after compression

mAP Map changes
before and

after compression

speed (ms/pic) The change
of recognition
speed before
and after

compression

YOLOV3-FP32 235.97 −46.63% 0.714 −7.44% 50 64.40%
YOLOV3-int8 125.93 0.661 17.8
FasterRCNN-FP32 445.24 −44.59% 0.811 −4.38% 180 −433.33%
FasterRCNN-int8 246.72 0.775 960
Our method-FP32 139.67 −11.24% 0.882 −4.15% 112 −51.79%
Our method-int8 123.97 0.845 170
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1) Through multi-scale feature fusion of shallow and deep
features of icing image, the accuracy of ice thickness
identification can be effectively improved.

2) The quantification of the model will reduce the accuracy of the
icing identification method. Under the condition of the same
computational power, the mAP of our method proposed in
this paper and classical target detection methods is only about
4–7% lower.

3) Compared to the classical methods YOLOv3 and Faster
RCNN, the proposed method has higher recognition
accuracy before and after model quantization compression.

However, due to the limitation that the icing image can only
reflect two-dimensional information, our method can not realize the
three-dimensional measurement of icing thickness. To impelment
the comprehensive perception of insulator icing thickness, the ice
thickness identification method based on multi-source data fusion,
including image, mechanical sensor, space distance sensor and so on
will be the focus of the next research.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because the requirements of the foundations. Requests to access
the datasets should be directed to FM, whumfq@whu.edu.cn.

AUTHOR CONTRIBUTIONS

FM Drafting the manuscript, experimental analysis BW: Review
and Supervision ML: Methodology and Formal analysis XD:
Conceptualization and Revised YM: Data Curation and
Resources YZ: Software HM: Resources.

FUNDING

This work was supported in part by the Guizhou Province Science
and technology plan project (Gan ke he zhi cheng G.20202039).

REFERENCES

Chen, S., Wen, H., Wu, J., Lei, W., Hou, W., Liu, W., et al. (2019). Internet of
Things Based Smart Grids Supported by Intelligent Edge Computing. IEEE
Access 7, 74089–74102. doi:10.1109/ACCESS.2019.2920488

Dongxiao, N., Haichao, W., and Hanyu, C., (2017). The General Regression Neural
Network Based on the Fruit Fly Optimization Algorithm and the Data
Inconsistency Rate for Transmission Line Icing Prediction”. Energies 10
(12), 1–20. doi:10.3390/en10122066

Gang, L., Bo,W., Hui, P., Siyuan, C., Biwu, P., and Yong, S., (2018). Identification of
Icing Thickness of Transmission Line Based on Strongly Generalized
Convolutional Neural Network”. Proc. CSEE 38 (11), 3393–3401.
doi:10.13334/j.0258-8013.pcsee.171057

Haoyong, C., Xiaojuan, W., and Zhihao, L., (2019). Distributed Sensing and
Cooperative Estimation/detection of Ubiquitous Power Internet of Things.
Prot. Control. Mod. Power Syst. 4, 2151–2158. doi:10.1186/s41601-019-0128-2

Jiang, X., Xiang, Z., Zhang, Z., Hu, J., Hu, Q., and Shu, L. (2014). Predictive Model
for Equivalent Ice Thickness Load on Overhead Transmission Lines Based on
Measured Insulator String Deviations. IEEE Trans. Power Deliv. 29 (4),
1659–1665. doi:10.1109/TPWRD.2014.2305980

Jingjing, W., Junhua, W., and Jianwei, S. (2017). Image Recognition of Icing
Thickness on Power Transmission Lines Based on a Least Squares Hough
Transform”. Energies 10 (415), 1–15. doi:10.3390/en10040415

Junhua, W., Shiqi, L., and Jianwei, S. (2018). Study on Dual Pre-warning of
Transmission Line Icing Based on Improved Residual MGM-Markov Theory”.
IEEJ Trans. Electr. Electron. Eng. 13 (4), 561–569. doi:10.1002/tee.22601

Li, H., Chen, Y., Zhang, G., Li, J., Zhang, N., Du, B., et al. (2019). Transmission Line
Ice Coating Prediction Model Based on EEMD Feature Extraction. IEEE Access
7, 40695–40706. doi:10.1109/ACCESS.2019.2907635

Li, Z., Jiang, W., Abu-Siada, A., Li, Z., Xu, Y., and Liu, S. (2021). Research on a
Composite Voltage and Current Measurement Device for HVDC Networks.
IEEE Trans. Ind. Electron. 68 (9), 8930–8941. doi:10.1109/tie.2020.3013772

Liu, Y., Pei, S., Fu, W., Zhang, K., Ji, X., and Yin, Z. (2017). The Discrimination
Method as Applied to a Deteriorated Porcelain Insulator Used in Transmission
Lines on the Basis of a Convolution Neural Network. IEEE Trans. Dielect. Electr.
Insul. 24 (6), 3559–3566. doi:10.1109/TDEI.2017.006840

Liu, Y., Yang, N., Dong, B., Wu, L., Yan, J., Shen, X., et al. (2020). Multi-Lateral
Participants Decision-Making: A Distribution System Planning Approach with
Incomplete Information Game. IEEE Access 8, 88933–88950. doi:10.1109/
access.2020.2991181

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully Convolutional Networks for
Semantic Segmentation[C],” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Boston, MA, June 7–12, 2015, 3431–3440.
doi:10.1109/CVPR.2015.7298965

Ma, F., Wang, B., and Dong, X., (2021). Receptive Field Vision Edge Intelligent
Recognition for Ice Thickness Identification of Transmission Line. Power Syst.
Technol. 45 (06), 2161–2169. 10.13335j.1000-3673.pst.2019.2382

Nan, Y., Di, Y., Zheng, Z., Jiazhan, C., Daojun, C., and Xiaoming, W. (2018).
Research onModelling and Solution of Stochastic SCUC under AC Power Flow
Constraints. IET Generation, Transm. Distribution 12 (15), 3618–3625.
doi:10.1049/iet-gtd.2017.1845

Nie, Z., Zhang, J., and Fu, H. (2020). Key Technologies and Application Scenario
Design for Making Distribution Transformer Terminal Unit Being a
Containerized Edge Node [J]. Automation Electric Power Syst. 44 (3),
154–161. doi:10.7500/AEPS20190524005

Qiangliang, G., Jin, X., and Xiaoguang, H. (2018). New Keypoint Matching Method
Using Local Convolutional Features for Power Transmission Line Icing
Monitoring”. Sensors 18 (698), 1–15. doi:10.3390/s18030698

Ruszczak, B., and Tomaszewski, M. (2015). Extreme Value Analysis of Wet Snow
Loads on Power Lines. IEEE Trans. Power Syst. 30 (1), 457–462. doi:10.1109/
tpwrs.2014.2321008

Shen, X., Ouyang, T., and Li, Y. (2021a). Chanyut Khajorntraidet, “Mixture Density
Networks-Based Knock Simulator”. IEEE/ASME Trans. Mechatronics, Early
Access. doi:10.1109/TMECH.2021.3059775

Shen, X., Ouyang, T., Yang, N., and Zhuang, J. (2021b). Sample-based Neural
Approximation Approach for Probabilistic Constrained Programs. IEEE Trans.
Neural Netw. Learn. Syst., 1–8. doi:10.1109/TNNLS.2021.3102323

Shen, X., and Raksincharoensak, P. (2021a). Pedestrian-Aware Statistical Risk
Assessment. IEEE Trans. Intell. Transport. Syst., 1–9. doi:10.1109/
TITS.2021.3074522

Shen, X., and Raksincharoensak, P. (2021b). Statistical Models of Near-Accident
Event and Pedestrian Behavior at Non-signalized Intersections. J. Appl. Stat.
Early Access, 1–21. doi:10.1080/02664763.2021.1962263

Shen, X., Zhang, X., Ouyang, T., Li, Y., and Raksincharoensak, P. (2020).
Cooperative Comfortable-Driving at Signalized Intersections for Connected
and Automated Vehicles. IEEE Robot. Autom. Lett. 5 (4), 6247–6254.
doi:10.1109/LRA.2020.3014010

Shen, X., Zhang, Y., Sata, K., and Shen, T. (2020). Gaussian Mixture Model
Clustering-Based Knock Threshold Learning in Automotive Engines. Ieee/asme
Trans. Mechatron. 25 (6), 2981–2991. doi:10.1109/TMECH.2020.3000732

Shen, X., Zhang, Y., Shen, T., and Khajorntraidet, C. (2017). Spark advance Self-
Optimization with Knock Probability Threshold for Lean-Burn Operation
Mode of SI Engine. Energy 122, 1–10. doi:10.1016/j.energy.2017.01.065

Tiannan, M., and Dongxiao, N. (2016). Icing Forecasting of High Voltage Trans-
mission Line Using Weighted Least Square Support Vector Machine with

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 75433510

Ma et al. Insulator Icing Thickness Identification Method

52

https://doi.org/10.1109/ACCESS.2019.2920488
https://doi.org/10.3390/en10122066
https://doi.org/10.13334/j.0258-8013.pcsee.171057
https://doi.org/10.1186/s41601-019-0128-2
https://doi.org/10.1109/TPWRD.2014.2305980
https://doi.org/10.3390/en10040415
https://doi.org/10.1002/tee.22601
https://doi.org/10.1109/ACCESS.2019.2907635
https://doi.org/10.1109/tie.2020.3013772
https://doi.org/10.1109/TDEI.2017.006840
https://doi.org/10.1109/access.2020.2991181
https://doi.org/10.1109/access.2020.2991181
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1049/iet-gtd.2017.1845
https://doi.org/10.7500/AEPS20190524005
https://doi.org/10.3390/s18030698
https://doi.org/10.1109/tpwrs.2014.2321008
https://doi.org/10.1109/tpwrs.2014.2321008
https://doi.org/10.1109/TMECH.2021.3059775
https://doi.org/10.1109/TNNLS.2021.3102323
https://doi.org/10.1109/TITS.2021.3074522
https://doi.org/10.1109/TITS.2021.3074522
https://doi.org/10.1080/02664763.2021.1962263
https://doi.org/10.1109/LRA.2020.3014010
https://doi.org/10.1109/TMECH.2020.3000732
https://doi.org/10.1016/j.energy.2017.01.065
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Fireworks Algorithm for Feature Selection”. Applied Sci. Basel 6 (12), 1–19.
doi:10.3390/app6120438

Wang, B., Ma, F., Ge, L., Ma, H., Wang, H., and Mohamed, M. A. (2021). Icing-
EdgeNet: A Pruning Lightweight Edge Intelligent Method of Discriminative
Driving Channel for Ice Thickness of Transmission Lines. IEEE Trans. Instrum.
Meas. 70, 1–12. Art no. 2501412. doi:10.1109/TIM.2020.3018831

Wang, Y., Zhao, W., and Zhang, J. (2020). Inheritance and Expansion Analysis of
Research Topics between Energy Internet and Smart Grid. Automation Electric
Power Syst. 44 (4), 1–7. doi:10.7500/AEPS20190710007

Wei, S., and Caifei, W. (2019). Staged Icing Forecasting of Power Transmission
Lines Based on Icing Cycle and Improved Extreme LearningMachine”. J. Clean.
Prod. 208, 1384–1392. doi:10.1016/j.jclepro.2018.10.197

Xingliang, J., Xingbo, H., and Yuyao, H. (2018). Model for Ice Wet Growth
on Composite Insulator and its Experimental Validation”. IET
Generation Transmission Distribution 12 (3), 556–563. doi:10.1049/iet-
gtd.2017.0227

Yan, B., Chen, K., Guo, Y., Liang, M., and Yuan, Q. (2013). Numerical
Simulation Study on Jump Height of Iced Transmission Lines after Ice
Shedding. IEEE Trans. Power Deliv. 28 (1), 216–225. doi:10.1109/
TPWRD.2012.2219324

Yang, N., Huang, Y., Hou, D., Liu, S., Ye, D., Dong, B., et al. (2019). Adaptive
Nonparametric Kernel Density Estimation Approach for Joint Probability
Density Function Modeling of Multiple Wind Farms. Energies 12, 1356.
doi:10.3390/en12071356

Yang, N., Liu, S., Deng, Y., and Xing, C. (2021). An Improved Robust SCUC
Approach Considering Multiple Uncertainty and Correlation. IEEJ Trans. Elec
Electron. Eng. 16, 21–34. doi:10.1002/tee.23265

Yang, N., Yang, C., Wu, L., Shen, X., Jia, J., Li, Z., et al. (2021). Intelligent Data-
Driven Decision-Making Method for Dynamic Multi-Sequence: An E-Seq2Seq
Based SCUC Expert System. IEEE Trans. Ind. Inf., 1. doi:10.1109/
TII.2021.3107406

Yanpeng, H., Xiaolan, J., and Lin, Y. (2017). Evaluation of Natural Icing Condition
for In-Service Insulators Based on Image Segmentation. High Voltage Eng. 43
(1), 285–292. doi:10.13336/j.1003-6520.hve.20161227037

Ying, J., Cai, Y., and Liu, M. (2020). Adaptive Access Method of Low Voltage
Intelligent Terminal for Distribution Internet of Things”. Automation Electric
Power Syst. 44 (2), 22–27. doi:10.7500/AEPS20190827004

Yongsai, Z., Guangyuan, W., and Hong, Y. (2017). “Research on the Application of
the Edge Detection Method for the UAVs Icing Monitoring of Transmis- Sion
Lines”,” in IEEE International Conference on Mechatronics and Automation
(ICMA), Takamatsu, August 6–9, 2017, 1110–1114. doi:10.1109/
ICMA.2017.8015972

Zhang, L., and Luo, Y. (2018). Combined Heat and Power Scheduling: Utilizing
Building-Level thermal Inertia for Short-Term thermal Energy Storage in

District Heat System. IEEJ Trans. Elec Electron. Eng. 13 (6), 804–814.
doi:10.1002/tee.22633

Zhang, M., Pang, K., Gao, C., and Xin, M. (2020). Multi-Scale Aerial Target
Detection Based on Densely Connected Inception ResNet. IEEE Access 8,
84867–84878. doi:10.1109/access.2020.2992647

Zhang, Y., Huang, X., Jia, J., Zhu, Y., Zhao, L., and Zhang, X. (2020). Detection and
Condition Assessment of Icicle Bridging for Suspension Glass Insulator by
Image Analysis. IEEE Trans. Instrum. Meas. 69 (10), 7458–7471. doi:10.1109/
TIM.2020.2984965

Zhao, Y., Han, R., and Rao, Y. (2019). “ANew Feature Pyramid Network for Object
Detection,” in International Conference on Virtual Reality and Intelligent
Systems (ICVRIS), Jishou, September 14–15, 2019IEEE, 428–431.
doi:10.1109/ICVRIS.2019.00110

Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., and Zhang, J. (2019). Edge Intelligence:
Paving the Last Mile of Artificial Intelligence with Edge Computing. Proc. IEEE
107 (8), 1738–1762. doi:10.1109/JPROC.2019.2918951

Zhu, B., Ding, F., and Vilathgamuwa, D. M. (2020). Coat Circuits for DC-DC
Converters to Improve Voltage Conversion Ratio. IEEE Trans. Power Electron.
35 (4), 3679–3687. doi:10.1109/tpel.2019.2934726

Zhuangli, H., Tong, H., and Yihui, Z. (2018). Fast Image Recognition of
Transmission tower Based on Big Data. Prot. Control. Mod. Power Syst. 3
(2), 149–158. doi:10.1186/s41601-018-0088-y

Conflict of Interest: Authors YM and YZ were employed by State Grid Shaanxi
Electric Power Company, State Grid Xi’an Power Supply Company and
Guangdong Power Grid Corp, Huizhou Power Supply Bureau Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ma, Wang, Li, Dong, Mao, Zhou and Ma. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org October 2021 | Volume 9 | Article 75433511

Ma et al. Insulator Icing Thickness Identification Method

53

https://doi.org/10.3390/app6120438
https://doi.org/10.1109/TIM.2020.3018831
https://doi.org/10.7500/AEPS20190710007
https://doi.org/10.1016/j.jclepro.2018.10.197
https://doi.org/10.1049/iet-gtd.2017.0227
https://doi.org/10.1049/iet-gtd.2017.0227
https://doi.org/10.1109/TPWRD.2012.2219324
https://doi.org/10.1109/TPWRD.2012.2219324
https://doi.org/10.3390/en12071356
https://doi.org/10.1002/tee.23265
https://doi.org/10.1109/TII.2021.3107406
https://doi.org/10.1109/TII.2021.3107406
https://doi.org/10.13336/j.1003-6520.hve.20161227037
https://doi.org/10.7500/AEPS20190827004
https://doi.org/10.1109/ICMA.2017.8015972
https://doi.org/10.1109/ICMA.2017.8015972
https://doi.org/10.1002/tee.22633
https://doi.org/10.1109/access.2020.2992647
https://doi.org/10.1109/TIM.2020.2984965
https://doi.org/10.1109/TIM.2020.2984965
https://doi.org/10.1109/ICVRIS.2019.00110
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/tpel.2019.2934726
https://doi.org/10.1186/s41601-018-0088-y
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Robust Vehicle Dynamics Control for a
Sharp Curve With Uncertain Road
Condition
Jing Miao1,2,3*, Yifan Dai2, Ou Xie1, Hao Chen1, Fuzhou Niu1, Yehu Shen1, Yong Zhi Wu1,
Hui Sun2, Xuemei Niu1, Qixin Zhu1 and Wenjiang Shen3

1School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China, 2Suzhou Automotive
Research Institute, Tsinghua University, Suzhou, China, 3Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese
Academy of Sciences (CAS), Suzhou, China

Recently, more and more research has been conducted to develop Connected
Autonomous Vehicles (CAVs) applications that ensures the safety driving of CAVs
under some extreme situations. This brief presents a robust control strategy for CAVs
to preserve a precise tracking performance and maintain the stability of lateral dynamics
when passing a sharp curve with uncertain road friction coefficient changes. In the
proposed robust lateral dynamics control, robust optimization-based lateral dynamics
controller is designed to achieve the stability of the lateral dynamics with the consideration
of the road friction coefficient uncertainty. Simulation validations are carried out to evaluate
the proposed control strategy. The results show that the robust optimization-based lateral
dynamics can improve the robustness even with the uncertainty of the road friction
coefficient.

Keywords: model predictive conrol, robust optimisation, vehicle dynamic, uncertainty, stability

1 INTRODUCTION

Autonomous vehicles will meet more emergency scenarios when leaving the research laboratory and
entering public roads (Kritayakirana and Gerdes, 2012; Shen and Raksincharoensak, 2021). Vehicle
stabilization under uncertain scenarios is one of the most important issues in the control of
autonomous vehicles (Yue et al., 2019; Shen et al., 2020a; Guo et al., 2020). Recently, Model Predictive
Control (MPC) has been used to improve the vehicle dynamics stability (Yuan et al., 2019). In
(Taghavifar, 2019), neural network autoregressive with exogenous input system has been applied to
obtain an accurate and explicit model in order to contribute to the control of the system over the
prediction horizon. (Weiskircher et al., 2017). proposed a MPC-based predictive trajectory guidance
and tracking control framework for autonomous and semiautonomous vehicles in dynamic public
traffic. Moreover, a data-driven predictive control is proposed in (Li and Schutter, 2021) which is
model-free predictive control method.

However, the normal MPCwithout considering the uncertainty is not able to address the problem
caused by environment uncertainty. The state space model-based prediction has large variance and
even mean bias if there are any uncertainties in disturbance or the system parameters (Shen et al.,
2020b). If there is uncertain road friction changes when passing a sharp curve and the model used in
MPC cannot reflect the uncertainty, MPC will lose some precise on the lateral dynamics control. To
improve the robustness against uncertainty, it is necessary to design a robust controller. In
(Heshmati-Alamdari et al., 2020), a robust predictive controller is designed for underwater
robotic vehicles which forms a high robust closed-loop system against parameter uncertainties.
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Besides, (Gao et al., 2021), proposed a robust lateral trajectory
following control for autonomous vehicles. Robust model
predictive control is a potential solution to the issue caused by
uncertain road friction in this research. In the problem
formulation of robust model predictive control, the road
friction is regarded as a uncertain variable. For all possible
realizations of uncertain variable, a fixed control law has a
cost. We focused on finding a control law that minimize the
upper bound of the cost for all possible realizations of uncertain
variable. In this way, the robustness of the control strategy is able
to be attained. To achieve robust model predictive controller, it is
essentially to solve a robust optimization problem or a chance
constrained optimization problem in every time step (Nemirovski
and Shapiro, 2006; Shen et al., 2019). Although it is NP-hard to
solve a robust optimization problem or a chance constrained
optimization problem (Hong et al., 2011; Geletu et al., 2017;
Pena-Ordieres et al., 2020), the approximate solution can be
obtained by formulating a solvable approximate problem of the
original one (Luedtke and Ahmed, 2008; Shen et al., 2021; Campi
and Garatti, 2019, 2011). Robust model predictive control was
widely applied in water qulity management (Takyi and Lence,
1999) and other process control applications (Henrion and
Moller, 2003). Recently, robust model predictive control has
been applied to the automotive powertrain control to optimize
the fuel efficiency with stochastic constraint on the knock (Shen
et al., 2017; Shen and Shen, 2017) and the energy management
system in hybrid electric vehicle (Shen et al., 2016). Robust model
predictive control can also be applied to ensure the robustness for
an autonomous vehicle when it passes a sharp curve with
uncertain road condition.

This paper presents a novel robust model predictive control
strategy for automated vehicles to preserve a precise tracking
performance and maintain the stability of lateral dynamics. The
optimal feedback control input is obtained in every step by
solving a robust optimization problem. The robust
optimization problem is solved by scenario approach
introduced in (Calariore and Campi, 2006). Simulation

validations are carried out to evaluate the proposed control
strategy.

2 PROPOSED METHOD

2.1 Background and Problem Description
In Figure 1, the vehicle passed a sharp curve with water-covered
surface. The water-covered surface is the area with orange color.
The single track model of vehicle dynamics can be described by
the following equations:

_yc � _yc, (1)

€yc � −2 Cf + Cr( )
mV

_yc +
2 Cf + Cr( )

m
ϕ + 2 lrCr − lfCf( )

mV
_ϕ

+ 2Cf

m
δf, (2)

_ϕ � _ϕ, (3)

€ϕ � 2 lrCr − lfCf( )
IzV

_yc +
2 lfCf − lrCr( )

IzV
ϕ − 2 l2fCf + l2rCr( )

IzV
_ϕ.

(4)

Here, yc is the lateral distance. _ϕ is the yaw rate. m is the mass
of the vehicle. δf is the steer angle. V is the vehicle speed.

In order to apply MPC, the vehicle lateral dynamics model is
transformed to the lateral deviation from the reference model.
The used linear model is as

_ycr

€ycr
_ϕcr
€ϕcr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � A

ycr

_ycr

ϕcr·ϕcr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + Bδf + C

1
R

(5)

Where

A �

0 1 0 0

0 −2 Cf + Cr( )
mV

2 Cf + Cr( )
m

2 lrCr − lfCf( )
mV

0 0 0 1

0
2 lrCr − lfCf( )

IzV

2 lfCf − lrCr( )
IzV

−2 l2fCf + l2rCr( )
IzV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

B �

0
2Cf

m
0

2lfCf

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

C �

0

−V2 + 2lrCr − 2lfCf

m
0

−2l
2
fCf + 2l2rCr

Iz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (8)

FIGURE 1 | Passing a sharp curve with water-covered surface.
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Here, ycr is the lateral deviation from the reference
trajectory. _ϕcr is the yaw rate. R is the radius of the curve.
m is the mass of the vehicle. δf is the steer angle. V is the
vehicle speed.

Notice that Cf and Cr are both decided by the road friction
coefficient. Since the road friction coefficient is uncertain, Cf and
Cr are both uncertain variable as well.

Equation 5 is a continuous differential equation and can be
transformed to a discrete state-space model by Euler method.
Since at every time step, the state variable is decided by the
input δf and the state variable in the previous step. The state
variable at k + 1 can be expressed by the previous input
sequence δf (0), . . ., δf(k) and the state variable at the initial
step. Since the objective is to minimize the difference between

the actual trajectory and the reference one, the cost function
is a function of the input sequence and known state variable
at initial step. To obtain the optimal input, a robust
optimization problem should be solved. The problem can
be formulated generally by

min
u∈U⊂Rnu

J(u)
s.t. h(u, δ)≤ 0, δ ∈ Δ ⊂ Rnδ .

(9)

Here, u � [δf(0), . . . , δf(K − 1), E]T if we consider
K steps forward. δ is the uncertain variable. In our
problem, it includes Cf and Cr. J(u) � E and h (u, δ) is
defined as

∑K
k�1

ycr(k) − E. (10)

2.2 Scenario Approach
In scenario approach, independent samples δ(i), i � 1, . . . , N is
identically extracted from Δ randomly, a deterministic convex
optimization problem can be formed as (Calariore, 2017; Campi
et al., 2018; Campi and Garatti, 2018)

min
u∈U⊂Rnu

J(u)
s.t. h u, δ(i)( )≤ 0, i � 1, . . . , N

(11)

which is a standard finitely constrained optimization
problem. The optimal solution ûN of the program Eq. 11
is called as the scenario solution for program Eq. 9 generally.
Moreover, since the extractions δ(i), i � 1, . . . , N is randomly
chosen, the optimal solution ûN is random variable. If ûN is
expected to satisfy

PrN δ(1), . . . δ(N) ∈ ΔN: V ûN( )≤ α({ }≥ 1 − β, β ∈ (0, 1), (12)

FIGURE 2 | Implementation of robust MPC.

FIGURE 3 | Validation result.
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then, N should have a lower limitation Nl

N≥
2
α
ln
1
β
+ 2nu + 2nu

α
ln
2
α
. (13)

Note that β is an important factor and choosing β � 0
makes Nl �∞. Namely, if the number of chosen samples gets
larger, the probability of satisfying the original probabilistic
constraints approaches 1. Actually, when number of chosen
samples becomes infinity, the samples cover the whole sample
space. The feasible area determined by probabilistic
constraints is only a subset of whole sample space. Then,
it becomes a problem which requires total robustness.
Therefore, the scenario approach conducts to a solution
with total robustness which is more conservative than the
probabilistic constraints require.

2.3 Implementation of Robust Model
Predictive Control
The implementation of robust MPC is shown in Figure 2. At
time step k + 1, it uses the first element of u calculated in time
step k as the input. Namely, δf(k) � u (1). x(k) denotes the
state variable vector at time step k. Moreover, since the LMPC
controller takes relative variable calculation as feedback,
there will be a relative variable calculation. In the relative
variable calculation, the relative variable is calculated based
on the feedback state variable from plant model or real
vehicle and the information of curve, for example, radius
value R.

3 VALIDATION RESULTS AND
CONCLUSTION

The validation is implemented by simulation. Since the real
vehicle is not available, a plant model is established and used

instead of the real vehicle. The plant model adopts the single track
nonlinear model described by

_vx − vy _ϕ � 1
m

FxT
f cos δf + FxT

r − FyT
f sin δf( ), (14)

_vy + vx _ϕ � 1
m

FyT
f cos δf + FyT

r + FxT
f sin δf( ), (15)

Izz€ϕ � lfF
yT
f cos δf − lrF

yT
r + lfF

xT
f sin δf, (16)

_px
_py

[ ] � R(ϕ) vx
vy

[ ]. (17)

The magic formula is used to model the friction forces which
refers to (Yuan et al., 2019).

For the simulation conditions, the radius has six options:
100, 110, 120, 130, 140, and 150 m. For each R, three
coefficients of friction for the wet road is randomly
generated from (0.4,0.6). For each pair of a value of R and
a value of coefficients of friction, the following longitudinal
velocity values have be tested:

[0.4, 0.42, . . . , 0.92] ×
������
Rμwetg

√
. (18)

Figure 3 shows one example of the validation results. The
friction coefficient of dry road is μdry � 0.8 which the one of wet
road is μwet � 0.5. The radius of the curve is 100 m. The middle
part of the road is wet. The longitudinal velocity for passing the
curve is V � 65 km/h. If MPC is used by setting Cr and Cf

according to μdry � 0.8, the tracking error increases during the wet
road. However, by considering μ ∈ [0.4, 0.9], the robust MPC
keeps the tracking performance stable during the wet road.

Figure 4 shows a comprehensive statistical validation results
of all cases. Obviously, the robust MPC succeeded to decrease the
maximal deviation into the error bound. However, the normal
MPC failed in most cases since the model has a very large bias
compared to the real dynamics due to the uncertain friction
coefficient.

FIGURE 4 | Validation result.
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Power Consumption Predicting and
Anomaly Detection Based on
Transformer and K-Means
Junfeng Zhang1, Hui Zhang2, Song Ding3* and Xiaoxiong Zhang2

1Data Mining Laboratory, College of Mathematics and Information Technology, Hebei University, Baoding, China, 2The Sixty-
Third Research Institute, National University of Defense Technology, Nanjing, China, 3School of Economics, Zhejiang University of
Finance and Economics, Hangzhou, China

With the advancement of technology and science, the power system is getting more
intelligent and flexible, and the way people use electric energy in their daily lives is changing.
Monitoring the condition of electrical energy loads, particularly in the early detection of
aberrant loads and behaviors, is critical for power grid maintenance and power theft
detection. In this paper, we combine the widely used deep learning model Transformer
with the clustering approach K-means to estimate power consumption over time and
detect anomalies. The Transformer model is used to forecast the following hour’s power
usage, and the K-means clustering method is utilized to optimize the prediction results,
finally, the anomalies is detected by comparing the predicted value and the test value. On
real hourly electric energy consumption data, we test the proposed model, and the results
show that our method outperforms the most commonly used LSTM time series model.

Keywords: power consumption prediction, anomaly detection, transformer, K-means, LSTM

1 INTRODUCTION

Modern power systems are evolving in a more sustainable path. The load demand for domestic electrical
energy is gradually increasing as the number of household appliances and electric cars increases. Statistics
show that residences and commercial buildings account for three-fifths of global electricity use (Desai,
2017). The power system has grown in complexity and intelligence, and more modern information
transmission technology has been implemented, making grid processing more convenient and secure
(Bayindir et al., 2016).Moreover, electric energy consumption in everyday living is also difficult and variable.
Electric energy usage, for example, may vary significantly depending on the season, and consumption on
working days andworking dayswill fluctuate. At the same time, therewill be anomalies in the electrical load,
such as forgetting to turn off electrical appliances, failure of electrical appliances and even the theft of
electricity, and so on, resulting in amuch larger electrical demand than typical. As a result, detecting unusual
consumption data is critical.

Abnormal detection can enhance abnormal electric energy consumption to achieve energy
savings, remind users to discover malfunctioning electrical appliances or modify bad electricity
usage patterns, lower users’ energy consumption expenses, and promote electricity consumption
safety awareness. The most crucial factor is that you can locate the source of the power theft
(McLaughlin et al., 2009). According to the survey, power theft accounts for about half of the energy
lost in some developing countries (Antmann,2009), and anomaly detection technologies can
successfully combat this scenario.

Anomaly detection, as the name suggests, is the method of recognizing data that differs from the
usual. Anomalies in data are situations that do not follow the specified usual behavior pattern
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(Chandola et al., 2009). Anomalies are classified into three types:
point anomalies, aggregate anomalies, and context anomalies. A
point anomaly occurs when one point in the data is excessively
high or too low in comparison to other points. The anomalous
phenomena of a group of data compared to the full data set is
referred to as a collection anomaly, and it only happens in the
data set with the correlation between the data. Contextual
abnormality refers to the abnormality when the data is
combined with the context in the data set (Chandola et al.,
2009). In this paper, abnormal power consumption means that
if the difference between the power consumption predicted by the
model and the real power consumption in a certain hour is
greater than the threshold we set through the experiment, the
current hour power consumption is considered abnormal, so the
main task of this paper is to detect point anomalies.

Because the characteristics of variables are various, traditional
models primarily focus on univariate prediction and anomaly
detection (Hu et al., 2018). Univariate models are typically
utilized in cases where there are too many other features or
when vectorization is difficult, such as stock prediction (Hsieh
et al., 2011). Various industries, such as speech recognition (Graves
et al., 2013) and NLP (Natural Language Processing) (Nadkarni
et al., 2011), have adopted deep learning technology and achieved
remarkable success as a result of the rapid development of the field
of deep learning. Time series analysis (Kuremoto et al., 2014), of
course, has also a significant advancement. Traditional statistical
methods such as ARIMA (Auto-Regressive Integrated Moving
Average) (Yuan et al., 2016) and SARIMA (Seasonal ARIMA)
(Ahn et al., 2015) were defeated by the proposed LSTM (Long and
Short-Term Memory network) (Hochreiter and
Schmidhuber,1997). For energy consumption prediction and
anomaly detection, a lot of work on LSTM has been done.

However, with the introduction of Google’s Transformer model
(Vaswani et al., 2017), this model was first successfully used to the
field of machine translation, and then it spread to other significant
fields such as speech recognition (Wang et al., 2020), and so on. Since
machine translation technology involves the processing of time
series, we seem to be able to use the Transformer model for time
series forecasting tasks. Transformer uses self-attention and multi-
head self-attention for semantic extraction. When it comes to the
long-distance dependence of features in time series, self-attention
can naturally solve this problem, because there are connections
between all features of time series when integrating features, and the
relative position information between the input time series features is
preserved through sinusoidal position encoding. It is not like RNN
(Recurrent Neural Network) that needs to be gradually passed to the
back through hidden layer node sequences, nor is it like CNN
(Convolutional Neural Networks) that needs to be captured long
distance features by increasing the network depth, Transformer has
some advantages in processing time series features.

As a result, in this paper, we propose a new power
consumption prediction and anomaly detection model that
combines deep learning and clustering methods. The following
are the contributions:

1) For time series prediction of power consumption, we merged
the current popular Transformer deep learning model with

K-means clustering. We reasoned that the historical time data
contributes differentially to the expected value due to the
regular behavior of household users. The K-means method
can be used to locate data clusters that contribute more to the
projected value, allowing the Transformer model prediction
value to be optimized further.

2) In the experiment, we employed multi-dimensional data. The
data dimension also incorporates auxiliary information data
such as voltage, current, and the power consumption of
various household appliances, in addition to the
fundamental power consumption.

3) We compared the proposed method to the LSTM and only
Transformer model’s prediction performance. Experiments
have revealed that the proposed combination method’s error
between predicted and true values is lower than those of
LSTM and single Transformer.

4) To demonstrate the proposed method’s superior performance
in anomaly detection, we manually added anomalous data
into the test data and treated it as a true anomaly.

The following is how we organize this paper. We introduce
relevant research on power consumption and anomaly detection
in Section 2. The data set used in the experiment, as well as the
data set’s preparation approach, are shown in Section 3. We
describe our model’s implementation approach and procedure in
detail in Section 4. We compare the performance of model
prediction and anomaly detection with different models in
Section 5. This paper was summarized in the last section.

2 RELATED WORKS

Researchers have done a lot of research since power consumption
prediction and anomaly detection are so crucial in the power
energy system. Box et al. (2015) developed time series forecasting
approaches like as Auto-Regressive (AR), ARIMA (Auto-
Regressive Integrated Moving Average), and SARIMA
(Seasonal ARIMA) in the economic sphere, and they had good
results. To predict the value at a specific moment in the time
series, the AR model primarily uses the weighting of all values
preceding that time. ARIMA primarily employs the point before
to the time to add a random vector in order to forecast the value at
that time. SARIMA is mostly used for time series data with
obvious seasonal differences. Ouyang et al. (2019b) improved the
performance of wind power ramp prediction by combining the
advantages of ARmodels andMarkov chain. To detect anomalies,
Yan et al. (2014) integrated the AR approach with SVM (Support
Vector Machine) Ma and Guo (2014). ARIMA was used by
Ediger and Akar (2007) to forecast fuel energy use in Turkey.
The time series of ARIMA power consumption was utilized by
Alberg and Last (2018) to estimate future power consumption,
and Krishna et al. (2015) employed ARIMA for half-hour
granular power consumption data. SARIMA was applied by
Ahn et al. (2015) for long-term and mid-term load
forecasting. The unsupervised K-means approach Münz et al.
(2007) groups the data to identify anomalies that are outside of
the cluster. Simultaneously, the autoencoder model has been a
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huge success. The data is analyzed using unsupervised methods.
The difference between input and output is utilized to detect
whether the data is aberrant, from compression and abstraction
to recovery and rebuilding. For anomaly detection, Al-Abassi
et al. (2020) presented unsupervised stacked autoencoders for
smart cyber-physical grids. Deb et al. (2015) developed an
artificial neural network for predicting building energy usage
in Singapore, and it was shown to be accurate.

The advancement of deep learning has improved the accuracy
and performance of large data processing and prediction. Deep
learning was used extensively in wind speed prediction (Khodayar
et al., 2017), stock prediction (Rather et al., 2015), automated
Vehicles (Shen et al., 2020) and other researches, and power grid
technology has also incorporated the nerve of deep learning. The
network is used to forecast and detect how much energy the user
consumes. Ouyang et al. (2019a) proposed the use of Deep Belief
Network (DBN) to predict hourly power load. According to Shi et al.
(2017), predicting the electricity usage of a single customer in Ireland
is the same as using a deep recursive network. For time series, LSTM
can forecast and detect anomalies (Malhotra et al., 2016; Siami-
Namini et al., 2018). Wang et al. (2019) proposed combining
seasonal features with LSTM for power load forecasting and
anomaly detection. However, because ARIMA requires time series
data to be stationary and it can only capture linear relationships, but
not non-linear relationships. For the LSTM model, its output at the
current time requires not only the input at the current time, but also
the output at the previous time. This makes the LSTMmodel unable
to parallelize operations, resulting in too long training time when
processing time series features. On the other hand, the Transformer
model has had a lot of success in the field of speech recognition and
natural language processing since it was introduced. As a result, we
propose in this paper that we utilize the transformer model to
estimate electric energy load, then apply the k-means approach to
further improve the prediction results, and then compare the
prediction results to the test data to look for anomalies.

3 DATASETS

For the experiment, we used hour-level electricity load data from a
French family for 1,440 days (2006-12-17 to 2010-11-25).We selected
3 h of data for display, as shown in Table 1, except for
“global_active_power” represents the total active power consumed
by the household, and other data includes “global_reactive_power”
representing the total reactive power consumed by the household,
“voltage” representing the average voltage per hour, “global_intensity”

representing the average current intensity, “sub_metering_1”
representing the active electrical energy of the kitchen,
“sub_metering_2” representing the active energy of the laundry,
“sub_metering_3” representing the active energy of the climate
control system, “sub_metering_4” representing other active energy.
The hourly power load change diagram for 3 days which are all
weekdays is shown in Figure 1. It can be seen that power
consumption has increased significantly in the morning, noon and
evening, and electricity consumption conforms to the law of electricity
consumption in French households during workdays. To make the
data more stable, we apply the Min-Max Normalization procedure.
This will make the model’s training easier and its convergence faster.
We designed the model supervision task to estimate the following
hour’s electric energy usage based onmultivariate data collected every
23 h, and we implemented it by using a 23-hour sliding window.

4 METHODOLOGY

We partitioned the data into 24-hour groups using a sliding
window, then trained k-means clustering for the first 23 h of each
group of real test data into k clusters, while also used the 23-hour
real load data training Transformer model predicts the next
hour’s load data, then through the trained K-means to get the
appropriate centroid as the final prediction result. Figure 2
depicts the framework of our model.

4.1 Transformer Model
Initial and foremost, Positional Encoding is the first phase in the
Transformer model utilized in this essay. Because Transformer
does not have a cyclic structure like LSTM, it presents a new
positional encoding strategy to capture the input time series
information, as indicated in Eqs 1, 2. The basic idea is to add
sine and cosine functions of various frequencies as position codes
to the normalized input sequence, allowing the Transformer
model’s multi-head attention mechanism to fully capture time
series data with more dimensions.

PE(pos,2i) � sin(pos/100002i/dmodel ) (1)

PE(pos,2i+1) � cos(pos/100002i/dmodel ), i ∈ [0, . . . , dmodel/2) (2)

where pos is the vector position of each time. For example, in the
time series data in this paper, the pos of the first hour of each
group is 0, and the pos of the second hour is 1, 2i and 2i + 1
respectively represent the even position and the odd position.

TABLE 1 | Sample display of the data set used in this paper.

Datetime Global_active_power (kW) Global_reactive_power (kW) Voltage (V) Global_intensity (A)

2006-12-17 00:00:00 112.95 6.14 240.96 487.60
2006-12-17 01:00:00 200.96 8.22 240.45 854.80
2006-12-17 02:00:00 95.24 4.69 245.82 412.20

Sub_metering_1 (Wh) Sub_metering_2 (Wh) Sub_metering_3 (W)h Sub_metering_4 (Wh)

0.0 28.0 0.0 1854.47
0.0 1,514.0 0.0 1835.40
0.0 34.0 0.0 1,553.27
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dmodel represents the length of the feature vector per hour. Next,
we use X � [x1, x2, . . ., xn] to represent the input sequence
combined with position encoding, and pass the multi-head self-
attention of the Transformer model:

MultiHead(Q,K,V) � Concat(head1, . . . , headi)Wo (3)

headi � Attention(QWQ
i , KWK

i , VW
V
i ) (4)

In the above formula, Q � q1wq1 , K � k1wk1 , V � v1wv1 , q1 �
k1 � v1 � X. In the Transformer model, the Attention module first
undergoes a linear transformation of Q (Query), K (Key), and V

(Value). Each time Q, K, and V perform the linear
transformation, the parameter W is different, and then input
to Scaling dot product attention, the formula is as (5), note that it
is necessary to do i times here, in fact, it is the so-called multi-
head, and each time counts as one head. Then concatenate the
attention results of the i times of scaling dot product, and then
perform a linear transformation to obtain the value as the result of
the multi-head attention. The advantage of this is that it allows
the model to learn relevant information in different
representation subspaces. The calculation of the Attention
module uses Scaled Dot-product:

FIGURE 1 | Hourly household electric energy consumption change diagram for 3 consecutive days.

FIGURE 2 | The main framework of our model.
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Attention(Q,K, V) � softmax
QKT��
dk

√( )V (5)

where dk is the last dimension of the shape of Q, K, V, divided by��
dk

√
to prevent dk from being too large and the softmax function’s

gradient becoming too tiny when QKT is too large. The residual
connection structure is then used to narrow the network’s
attention to solely the differences. In multi-layer network
structures, it is frequently used:

L � LayerNorm(X +MultiHead(Q,K,V)) (6)

where LayerNorm is Layer Normalization, which normalizes
each neuron and adjusts the mean and variance of the input
data to be the same, which will speed up the convergence.
Then input L into the FeedForward layer, which is composed
of two fully connected layers, the first layer uses the Relu
activation function, and the second layer does not use the
activation function:

s � max(0, LW1 + b1)W2 + b2 (7)

Similarly, use residual connection and Layer Normalization
again to get the output SE:

SE � LayerNorm(L + s) (8)

Our experiment uses a 2-layer Transformer multi-head
attention module, which means that the output SE needs to be
re-input to the structure output SE2 described above. Finally, the
output will be decoded and dimensionality reduction operations
through the fully connected layer:

K � W3SE2 (9)

4.2 K-Means Clustering Method
Clustering is the division of a sample set into several disjoint
subsets (sample clusters), which is a typical unsupervised
machine learning algorithm. When using clustering to
classify samples, Euclidean Distance is used as the

measurement criterion of sample similarity. The higher the
similarity, the smaller the Euclidean Distance of the sample.
K-means clustering is a well-known algorithm among clustering
algorithms. It needs to determine the number of clusters k first
when clustering, and k is given by the user. Each cluster passes
through its centroid (the mean value of all elements in the
cluster). The workflow of k-means is also very simple. First,
randomly select k initial points as the initial centroids of each
cluster, and then assign each point in the data set to the cluster
closest to it. The distance calculation uses the Euclidean
Distance mentioned above. The algorithm of k-means is
shown in Algorithm 1:

Algorithm 1. K-means algorithm.

4.3 Model Development
First, we divide the data set into a training set and a test set. Since
the data set contains a total of 1,440 days of hourly data, we
choose 1,240 days of data as the training set and 200 days of data
as the test set. For the Transformer model, we choose two
consecutive layers of multi-head self-attention modules, and
each multi-head attention is set to 4 attention heads. The
input data shape is 23 time steps and 8 features. For K-means
clustering, we experimented with k � 2, 5, 8, 10, 11, and 15
respectively, and finally selected the cluster with k � 10. We
choose the mean-square error of the predicted data and the
original data, that is, MSE (Mean-Square Error) as the loss
function, and Adam as the optimizer of the model. And set
the epoch of the training model to 300, and the batch size to 200.

4.4 Model Prediction and Evaluation
We believed that the nearest neighbor of the real training data has the
most impact on the forecast value, thus in the first 23 h of each group,
we trained k-means clustering, partitioned the data into k categories,
and provided the load K predicted by the Transformer model for the
next hour as the final prediction output, then found the centroid in the
trained K-means cluster. We analyzed the model’s prediction ability
by fitting the predicted value to the test value and calculating the
RMSE (Root Mean Squard Error) of the forecasted value and the test
value to measure the prediction’s accuracy, and we compared it to the
commonly used LSTM model.

4.5 Anomaly Detection
Because the model calculates the anticipated value based on a huge
quantity of historical data, the forecasted values will generally follow
the data’s trend. If the test value differs significantly from the projected
value, it indicates that the test value has deviated too far from the data
trend and may be abnormal. The score between the predicted value

FIGURE 3 | Train and test loss over the 300 epochs of our model.
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and the test value obtained after the Transformer model and k-means
clustering is calculated in this research. The formula can be found in
Eq. 10. In order to better analyze the difference, we normalized the
score, the formula is as Eq. 11. The value of score collected from
several experiments was used to determine a threshold. When the
score between the predicted value and the test value exceeds the
threshold, the test value is considered abnormal. The experiment can
also evaluate whether the user is prone to having electricity theft by
setting a time series window and a threshold for the number of
anomalies. If the number of abnormalities in the time series data in a
window is greater than the threshold, itmeans that the time series data
are abnormal, and the user may have the suspicion of steal electricity.
To better compare the accuracy of anomaly detection, we manually
insert abnormal data points in the test data and compare our model
with K-means and LSTM.

scoret � |predictedt − testt|
avgi∈T(|predictedi − testi|) (10)

~scoret � scoret −min(score)
max(score) −min(score) (11)

5 EXPERIMENT RESULTS

5.1 Consumption Prediction
We opted to compare the model against the most popular LSTM
model for time series data prediction in order to test its
performance. The LSTM is a variant of the recurrent neural
network RNN. It is a unique RNN that incorporates three
different types of gating to address the problem of gradient
disappearance and explosion during lengthy sequence training.
Simply put, LSTM outperforms standard RNNs in longer
sequences, making it ideal for time series forecasting jobs.

Figure 3 shows how the training and test loss of the Transform
model used in this paper changes at 300 epoch. It can be observed
that the model converges quickly, and the figure shows that there
is no overfitting in the model. All of this is achievable because of
the Transformer model’s benefits in time series processing.

FIGURE 4 | Comparison of our model and LSTM predicted value fitting real data.

FIGURE 5 | Scores and anomalies exceeding the threshold for 2,500 h.

TABLE 2 | Comparison with some methods.

Method Accurary Precision Recall F1 RMSE(prediction)

K-means 0.96 0.82 0.28 0.42 —

LSTM 0.97 0.74 0.60 0.66 0.91
Our method 0.97 0.80 0.66 0.72 0.74
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Figure 4 depicts the test set’s real-time power consumption
data over 3 days, as well as a comparison of our model’s and the
LSTM model’s prediction results on the test set. The blue line
represents the actual data, the red line represents our model’s
predicted value, the green line represents the LSTM model’s
predicted value, and the purple line indicates the lone
Transformer’s predicted value. Our model’s forecast data is
more in accordance with the real test data, as can be shown.
The RMSE of the model, on the other hand, are used to assess
the model’s fit. Our model has an RMSE of 0.73, the
Transformer has an RMSE of 0.77, and the LSTM has an
RMSE of 0.86. In terms of prediction accuracy, our model
outperforms LSTM by 15%, while Transformer outperforms
LSTM by just 10%. After our analysis, because the
dimensionality of the feature vector of each time series in
our time series data is too small, which leads to the failure of
the full performance of the Transformer model.

5.2 Anomaly Detection
After a lot of testing and tweaking, we ultimately settled on
0.45 as the threshold. This means that any point with a score
higher than 0.45 will be considered anomalous. The change in
score data over 2,500 h is presented in Figure 5, with the red
dashed line representing the threshold and the purple point
representing the abnormal point. The data scores are primarily
focused between 0 and 0.3, and there are relatively few aberrant
spots, as can be shown. In practical applications, we can adjust
the threshold size based on the scene being used, and lower or
increase the threshold size based on the strictness of anomaly
detection, a lower threshold is more stringent, allowing for the
detection of more anomalies, on the other hand, a higher
threshold is more tolerant, allowing for the detection of fewer
anomalies.

We utilized the strategy of randomly inserting abnormal
points in the test data to better compare and assess the
model’s anomaly detection capabilities because this
experimental data set does not mark aberrant time points. In
the 200 days (4,800 h) of the test set, we randomly selected a value
every day and double it, and assume it is an outlier, so there are
200 outliers in the 4,800 data in the test set. For comparison, we
separately used the clustering method K-means and the most
popular depth method LSTM to detect abnormal points. Using
the K-means approach, we discovered a total of 68 abnormal
points, of which only 56 were the abnormal points we manually
inserted into the data set. Using the LSTM model, we retrieved a
total of 162 anomalies, 120 of which were the anomaly points we
manually inserted into the data set. Our combined Transformer
and K-means model found 165 anomalies, 132 of which were the
abnormal points wemanually added to the data set. The accuracy,

precision, recall, and F1 of the three models are shown in Table 2.
The predicted RMSE of LSTM and our model are also shown in
the table.

6 CONCLUSION

The prediction of electric energy consumption and the identification
of anomalies are critical in the functioning of the power grid, and the
processing of multi-variable time series is a difficult challenge. We
present a model that combines Transformer and K-means
approaches in this article. Every 23 h of training data is separated
into k clusters using K-means clustering. At the same time, this
training data are used to train the Transformer model to predict the
following hour’s power usage, with the predicted value being placed
into the trained K-means cluster and the cluster’s centroid serving as
the final predicted value. Finally, look for anomalies by comparing
the anticipated value to the actual test results. The experimental
results prove that the model achieves prediction accuracy with less
error and high anomaly detection performance. In the future, we’ll
strive to improve prediction and anomaly detection accuracy, as well
as study the differences between power consumption prediction and
anomaly detection in different seasons, environments, and other
scenarios, and other issues that need to be addressed.
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Short-Term Nacelle Orientation
Forecasting Using Bilinear
Transformation and ICEEMDAN
Framework
Huajin Li 1,2, Jiahao Deng3*, Peng Feng1, Chuanhao Pu2, Dimuthu D. K. Arachchige3 and
Qian Cheng4

1School of Architecture and Civil Engineering, Chengdu University, Chengdu, China, 2State Key Laboratory of Geo-hazard
Prevention and Geo-environment Protection, Chengdu University of Technology, Chengdu, China, 3College of Computing and
Digital Media, DePaul University, Chicago, IL, United States, 4College of Civil Engineering, Sichuan University of Science and
Engineering, Zigong, China

To maximize energy extraction, the nacelle of a wind turbine follows the wind direction.
Accurate prediction of wind direction is vital for yaw control. A tandem hybrid approach to
improve the prediction accuracy of the wind direction data is developed. The proposed
approach in this paper includes the bilinear transformation, effective data decomposition
techniques, long-short-term-memory recurrent neural networks (LSTM-RNNs), and error
decomposition correction methods. In the proposed approach, the angular wind direction
data is firstly transformed into time-series to accommodate the full range of yaw motion.
Then, the continuous transformed series are decomposed into a group of subseries using
a novel decomposition technique. Next, for each subseries, the wind directions are
predicted using LSTM-RNNs. In the final step, it decomposed the errors for each
predicted subseries to correct the predicted wind direction and then perform inverse
bilinear transformation to obtain the final wind direction forecasting. The robustness and
effectiveness of the proposed approach are verified using data collected from a wind farm
located in Huitengxile, Inner Mongolia, China. Computational results indicate that the
proposed hybrid approach outperforms the other single approaches tested to predict the
nacelle direction over short-time horizons. The proposed approach can be useful for
practical wind farm operations.

Keywords: wind direction, bilinear transformation, ICEEMDAN, LSTM-RNN, error correction

INTRODUCTION

Wind energy generation is expanding with about 12% of world’s electricity to be supplied by 2020
(Kodama and Burls 2019). Compared with the traditional form of power generation, wind energy has
the advantages of zero pollution and low operation cost. Hence, it has become one of the fastest
growing renewable energy power supplies globally (Duan et al., 2021).

Although it has obvious advantages over others, wind energy still faces technical challenges due to
the characteristics of chaos, randomness, and intermittence which make the wind data complex. The
wind direction is one of the most complex aspect of the wind data due to its high dynamics in both
spatial and temporal domains. To follow the wind direction, the nacelle of a wind turbine orientes the
controlling of yaw and maximizes the energy output. For most efficient energy extraction, the nacelle
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orientation of a wind turbine needs to agree with wind direction
which calls for accurate and prediction of the wind direction (Hu
et al., 2016).

According to literature review, statistical approaches based on
meteorological and geographic information are widely applied to
forecast wind direction (Mcwilliams and Sprevak 1982; Castino
et al., 1998; Erdem and Shi 2011). Liu et al. (2010) applied a neural
Kriging method to spacially estimate the distribubiton of wind
directions. Erdem and Shi (2011) developed autoregressive
moving average (ARMA) model to forecast the short-term
wind directions. Masseran et al. (2013) used a mixture of Von
Mises models to fit the wind direction series.

Therefore, machine learning adoptions for wind direction
forecasting have evolved from the classic approach to deep
learning, which is then improved in this study (Mohandes
et al., 2004; Bilgili et al., 2007). In the wind direction
forecasting sector, Zhou et al. (2011) selected least-square
support vector machines (LS-SVM) to predict the wind
directions. Tagliaferri et al. (2015) developed artificial neural
networks to forecast the short-term wind directions. Khosravi
et al. (2018) developed an adaptive neuro-fuzzy inference system
to predict the wind directions. Amin et al. (2018) improved the
wind direction forecasting using the echo state network (ESN)
which is a deep-learning algorithm. Tang et al. (2021) integrated
the ESN network with IFPA optimization algorithm and
developed a two-step deep-learning wind direction framework.

Considering the complexity and high dynamics of the wind
direction series, additional measures are essential to study in the
pattern inside. Even though deep learning algorithms have
achieved promising results in the field of time-series
prediction, it is still challenging for a single deep-learning
approach to adapt all wind direction patterns. To further
improve the prediction performance, hybrid prediction models
are considered to be the mainstream since last year. The signal
decomposition is one of the most popular components within the
hybrid models published. It contains wavelet decomposition (Liu
et al., 2014), empirical mode decomposition (EMD) (Santhosh
et al., 2018), complete ensemble empirical model decomposition
(CEEMD) (Zhang et al., 2017), complete EEMD with adaptive
noise (CEEMDAN) (Yang and Wang 2018), and the improved
CEEMDAN (ICEEMDAN) (Rong et al., 2019). In particular, the
ICEEMDAN has demonstrated its superior performance in
decomposing a complex signal into a finite number of
intrinsic mode functions with transient frequencies. The
decomposed subseries contains the detailed characteristics of
the signal and can essentially reflect the spatial and temporal
patterns of the wind direction series (Kou et al., 2020).

Based on the above considerations, in this research, we
propose a new hybrid approach combining ICEEMDAN and
error correction methods for short-term wind direction
forecasting. First, the angular wind direction data has been
transformed via bilinear transformation. Then, the
transformed wind direction series are decomposed into a
series of relatively simple subseries by the ICEEMDAN
modules. Next, the LSTM-RNN is established as the prediction
module to predict each sub-series. After that, the prediction
errors are obtained and decomposed by ICEEMDAN modules.

The statistical ARIMA model is used to predict the error
subsequence and compute the prediction error. In the last
step, the final prediction of the wind direction is made by
summing all predicted subseries together with current
predicted error and then transformed into angular data by
inverse bilinear transformation.

The major contribution of this research can be summarized as
follows: First, the wind direction forecasting system based on
ICEEMDAN decomposition, LSTM-RNN and error correction
has been proposed; Second, the comparative analysis is
performed against other benchmarking deep-learning
algorithm; Third, the experiments were performed in different
seasons to explore seasonal patterns of wind directions.

The remainder of the manuscript is configured as follows. In
Section “dataset description and transformation”, it summarizes
the data collection process and patterns inside the wind direction
dataset. In Section “methodologies”, it introduces the
ICEEMDAN decomposition, LSTM-RNN, error correction,
benchmarking deep-learning algorithms, and error correction
procedures. The experimental results are provided in Section
“experimental results” and the Conclusion is made in Section
“conclusions” respectively.

DATASET DESCRIPTION AND
TRANSFORMATION

Data Analysis
In this study, the data has been collected during the year of 2020
from a wind farm namely Huitengxile wind power plant in Inner
Mongolia, Northern China. It is one of the largest wind farms in
Asian and it’s located in the suburbs between Chaha’er youyi
zhongqi and Ulanqab city. The whole wind farm has multiple
wind turbines that are distributed in an open flat grassland which
provides rich wind resources. The prevailing wind directions are
northwest and southeast which are very stable in recent years. The
location and the annual wind rose diagrams has been illustrated
in Figure 1 below.

According to Figure 1B, the two prevailing wind directions,
around 180° and 315° are visible. The geographic center
coordinate is 112°40′E and 41°05′N. It’s annual average wind
speed at 10 m height is 7.2 m/s and its annual average wind speed
at 40 m height is 8.8 m/s. In the wind farm, the annual average air
density is 1.07 kg/m and it contains an effective wind speed of
5–25 m/s with strong stability and high quality.

The data used in this research has been collected by the
supervisory control and data acquisition (SCADA) system.
Usually, data on more than 100 parameters at 10 s intervals is
collected and stored in a SCADA system. The SCADA collected
data of individual wind turbines is streamed to a central computer
for condition monitoring, performance evaluation, and other
forms of analysis.

In this research, the SCADA data collected at 20 wind turbines
over the period of 2020 has been analyzed. According to
Figure 1B, there are two annual prevailing wind directions
and it can be partitioned into four seasons independently as
illustrated with the wind roses in Figure 2. In the fall and spring,
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two prevailing wind directions around 150° and 315°are observed.
In the winter and summer, one prevailing wind direction is noted.
Since the wind direction data is captured as a discrete angular
variable, it needs to be transformed for modeling. A bilinear
transformation of the angular wind direction is applied in the
next section.

Bilinear Transformation of Angular Data
The value of wind direction ranges from 0° to 360°. It is likely that
the wind direction may change from the interval, i.e (0°, 10°) to
(350°, 360°). Practice shows that bilinear transformation is a better
way for transforming discrete wind direction data to continuous
data than the sine and cosine transformation (Peng et al., 2020).
Geometrically, the two intervals are close to each other and
therefore this change would lead to a large prediction error
(Bilgili et al., 2007). To avoid such error, transformation of the

discrete angular variable into a standardized continuous variable
is essential. One option is to use a sine and cosine transformation
which is not the best approach due to two variables needed for
prediction which enlarges the prediction errors. A better option is
to apply a bilinear transformation (Jury 1973).

The bilinear transformation maps the analog plane (s-plane)
into the digital plane (z-plane) (Groutage et al., 2003) (see
Figure 3). The transformation function, the ratio of two
polynomials (Davies 1974), is expressed in Eq. 1.

H(s)Z � 1 + T
2 s

1 − T
2 s

(1)

where: s is the original value of angular variable in s-plane; T is the
time interval of the transformation. The bilinear transformation
expressed the angular variable between 0° and 360° as continuous

FIGURE 1 | Location of the Huitengxile wind farm.
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FIGURE 2 | Wind rose diagrams for four seasons.

FIGURE 3 | Illustration of the bilinear transformation.
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and normalized. The inverse bilinear transformation is expressed
in Eq. 2.

s � 1
T

2 − 2H(s)Z−1
2 + 2H(s)Z−1 (2)

where: s is the inversed value of angular variable in s-plane; and
H(s)z is the transformed angular variable.

Since the wind direction data is noisy, a bilinear
transformation function acting as a low-pass filter in the
continuous-time domain reduces the noise (Davies 1974). A
prediction model developed with the transformed data is more
accurate than the model based on the discrete time-series
angular data.

METHODOLOGIES

The use of deep learning algorithms in regression, multi-class
classification, collaborative filtering, and graphic learning is
growing (Lecun et al., 2015). The concept of deep learning
originates from research in neural networks and it avoids the
local optima dilemma. However, any single deep learning
algorithms can offer limited extraction of patterns inside
the dataset. Hybrid frameworks containing multiple deep
learning algorithm is becoming the new mainstream in
academia.

ICEEMDAN

In this research, the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) is
served as the major module in the hybrid forecasting
framework. It is considered as an improvement on empirical
mode decomposition (EMD) which decomposes the wind
directions in the temporal domain (Colominas et al., 2014).

The time-series of wind direction can be expressed as the sum
of multiple IMFs and the residual after the ICEEMDAN
decomposition which can be expressed in Eq. 3 as follows:

H(t) � ∑n
j�1

IMFj(t) + r(t) (3)

The amplitude energy E1, E2, . . ., En of the IMFs is calculated
as Eq. 4:

Ej � ∑N
k�1

∣∣∣∣IMFj(k)
∣∣∣∣2 (4)

where N denotes the total number of sampling points of the jth
IMF. Assuming that the energy carried by r(t) can be ignored, the
total energy of the transformed direction series can be expressed
as Eq. 5 as follows:

E � ∑n

j�1 ∑N

k�1
∣∣∣∣IMFj(k)

∣∣∣∣2 (5)

To remain the data in the same magnitude, the amplitude of
the IMFs is normalized to facilitate the subsequent calculations
and the impact of singular data has been reduced. Hence, the
energy entropy of the ICEEMDAN framework can be expressed
as Eq. 6 below:

E � −∑n
i�1

pj lnpj (6)

Compared with other decomposition methods, the
ICEEMDAN can not only reduce the noise in the original
time-series data but also reduce the residual spurious pattern
problems based by signal overlap. Thus, the decomposed
subseries gains more orthogonality among each other and it
can provide more accurate reconstruction of the original series.

Short-Term Wind Direction Forecasting
Using ICEEMDAN
To integrate the wind direction series with the ICEEMDAN
modules, the implementations are introduced as follows (Duan
et al., 2021):

Step 1: Compute the local means of realizations using the
EMD algorithm described in Eq. 7:

xi � x + β0E1(wi) (7)

where β0 � ε0σ(x)/σ(E1(wi) ); σ() compute the standard
deviation; and ε0 is the reciprocal of the desired signal-to-
noise ratio between the first added noise and the analyzed signal.

Step 2: Compute residual term R1 in the first component using
Eq. 8:

R1 � M(xi) (8)

Step 3: Compute the first mode at the first stage (k � 1) using
Eq. 9:

d1 � x − R1 (9)

Step 4: Estimate the second residue as the average of local
means of the realizations R1 + β1E2(wi) and then define the
second mode using Eq. 10 as follows:

d2 � R1 −M(R1 + β1E2(wi)) (10)

Step 5: For the other terms (k � 3, . . . ,K) of residuals, they can
be computed by Eq. 11:

Rk � M(Rk−1 + βk−1Ek(wi)) (11)

Step 6: Compute the other terms (k � 3, . . . ,K) of the mode by
Eq. 12:

dk � Rk−1 − Rk (12)

Step 7: Implement step 4 for the next iteration.
For the transformed wind direction series, the IMF

components are obtained via the above steps which can be
illustrated by the diagram presented in Figure 4.
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FIGURE 4 | Diagrams of ICEEMDAN modules.

FIGURE 5 | Autocorrelation analysis of time-series wind direction data.
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Long-Short-Term Memory Recurrent
Neural Network
A major drawback of the classical deep neural networks is that
they do not have memory of the past periods. The time series
information such as the past clusters of seasonal patterns and
seasonal trend may not be reflected (Lee et al. 1993). Introduced
by Hochreiter and Schmidhuber (1997) and Gers et al. (2003), the
long-short-term memory recurrent neural network (LSTM-
RNN) matches the needs and it is used in this paper to
predict wind direction.

The long-short-term memory recurrent neural network
(LSTM-RNN) contains units called memory blocks composed
of memory cells with self-connections storing temporal states.
Each memory block includes an input and output gate. The input
gate controls the flow of input data into the cell. The output gate
controls the output data flow into the rest of the network (Sak
et al. 2014). In addition, the LSTM-RNN has peephole
connections (Gers et al. 2003) from its internal cells to the
gates in the same cell to learn precise timing of the output.
The architecture of LSTM-RNN is illustrated in Figure 5.

With a long-short-term memory recurrent neural network
(LSTM-RNN) architecture, the mapping from an input to an
output layer is iteratively computed from Eqs 13–18 (Gers et al.
2003).

it � sig(W ixxt +W immt−1 +W icct−1 + bi) (13)

f t � sig(Wfxxt +Wfmmt−1 +W icct−1 + bf) (14)

ct � f t+ct−1 + it+g(Wcxxt +Wcmmt−1 + bc) (15)

ot � sig(Woxxt +Wommt−1 +Wocct + bo) (16)

mt � ot+h(ct) (17)

yt � ϕ(Wymmt + by) (18)

where: W are the weight matrices (i.e., Wix is the weight matrix
from the input to the input layer; Wic, Wfc, Woc are diagonal
weight matrices of the peephole connections (Gers et al., 2003));
bi,bf,bo, and bc are the bias vectors; m is the cell output activation
vector; sig () is the sigmoid function; i, f, o, and c are the input
gate, forget gate, output gate, and cell activation vectors,
respectively, with all having the same size as the cell output
activation vector m; + is the element-wise product of the vectors;
and g () and h () are the cell input and cell output activation
functions, respectively.

Benchmarking Machine Learning
Algorithms
Comparative analysis is performed in this research against the
other benchmarking popular deep learning algorithms. All
algorithms tested here are using the same ICEEMDAN
framework as described in Section “Short-term Wind
Direction Forecasting using ICEEMDAN”. The benchmarking
deep learning algorithms compared includes deep neural network
(DNN) (Xu et al., 2018; Sun et al., 2020; Yi and Xu, 2020), deep
belief network (DBN) (Ouyang et al., 2019; Li et al., 2020), kernel-
based extreme learning machine (KELM) (Li et al., 2018; Ouyang

et al., 2018), and gated recurrent unit network (GRU) (Pan et al.,
2019; Tang and Zhang, 2019).

The DNN is a fully connected feedforward network that
consists of a cascade of multiple layers and hidden units. It’s
structure with multiple processing layers enables it to handle
highly nonlinear patterns inside the dataset. The deep temporal
representations in the temporal domain can be effectively
extracted by DNN.

Similar to DNN, the DBN consists of multiple layers of
restricted Boltzmann machines (RBMs). It also contains a
supervised regression layer stacked on the top of all RMBs for
classification or regression tasks. Inside each RBM, it contains an
input layer and a hidden layer with hidden-to-all-visible
connections.

The ELM is a single hidden layer feedforward network. Instead
of conventional back-propagation, it uses Penn-Moore pseudo-
inverse to compute the wights between the hidden layer and
output layer. The KELM is the improvement of vanilla ELM
which uses the kernel matrix to replace the randomly initialized
weights between the input layer and output layer. The most
popular applied kernel functions include RBF, linear function,
and polynomial function.

The GRU is another type of recurrent neural network other
than LSTM-RNN proposed by Cho et al. (2014). In a typical GRU
unit, it has one less gate than the LSTM unit and consists of two
gates: the reset gate and the update gate. Hence, the GRU is also
popular in modeling time-series dataset.

Measurement Matrices
To assess prediction accuracy of the proposed deep learning
model, four metrics are computed: the MAE [Mean absolute
error (Eq. 19)], the MAPE [Mean absolute percentage error (Eq.
20)], the MSE [Mean square error (Eq. 21)], and the RMSE [Root
mean square error (Eq. 22)].

MAE � 1
N

∑N
i�1

∣∣∣∣oj − tj
∣∣∣∣ (19)

MAPE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣oj − tj
tj

∣∣∣∣∣∣∣∣ (20)

MSE � 1
N

∑N

j�1 oj − t2j (21)

RMSE �
������������
1
N

∑N

j�1 oj − t2j

√
(22)

where: oj is the jth predicted wind direction; tj is the jth measured
wind direction; and N denotes total number of samples.

Error Correction
To improve the forecasting accuracy, the error correction is
implemented in this research. First, after the forecasting
outcome produced by each LSTM-RNN, the error series E(t)
of the training dataset can be computed by comparing the original
transformed wind direction series. The step can be expressed in
Eq. 23 as follows:

E(t) � WLSTM(t) −WActual(t) (23)
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where WLSTM(t) is the final forecasted transformed series in the
first module; and WActual(t) is the actual transformed wind
direction series after bilinear transformation.

The forecasted errors of wind direction series E(t) are
oscillatory in the time-series domain (Wasynczuk et al., 1981).
The relationship between oscillatory and decaying property of the
wind direction errors can be represented by an ARIMA model
which predicts the errors. In detail, the ARIMA can be
constructed by computing autocorrelation expressed with the
autocorrelation factor (ACF) (See. Eq. 24) and the partial
autocorrelation factor (PACF)) (See. Eq. 25). Here, Cov()
denotes the covariance; Var() denotes the variance; and Corr
() denotes the Pearson’s correlation coefficient.

ρk �
Cov(E(t), E(t − k))

Var(E(t)) (24)

ρk � Corr(E(t), E(t − k)|E(t − 1), . . . , E(t − k + 1)) (25)

For each IMF, an ARIMA model is developed and then all
outcomes of each ARIMA are integrated to obtain the final error
series. Last, as illustrated in Figure 4, the final prediction is
achieved by Eq. 26 as follows:

ŴFinal(t) � ̂WLSTM(t) + ^E(t) (26)

where ̂WLSTM(t) denotes the forecasting results from the LSTMs;
^E(t) denotes the errors forecasted by ARIMA models; and̂WFinal(t) is the final forecasting outcomes.

FIGURE 6 | Performance of all measurement metrices with various prediction horizons in four seasons.
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EXPERIMENTAL RESULTS

Training Strategies
In this section, computational experience with models predicting
wind direction is presented. Wind data from four seasons, spring,

summer, fall, and winter are used. Prediction of wind direction is
conducted using dataset at 10, 20, and 30 s resolution. The
prediction horizons are 2, 5, 10 min, and 1 h. The prediction
model is expressed in Eqs 27–29.

Y � f(D) (27)

TABLE 1 | Mape of the five algorithms for 2020 before error correction.

Season Resolution (s) Algorithm Prediction horizon Season Resolution (s) Algorithm Prediction horizon

2 min 5 min 10 min 1 h 2 min 5 min 10 min 1 h

Spring 10 DNN 0.082 0.106 0.133 0.211 Summer 10 DNN 0.047 0.057 0.092 0.181
DBN 0.072 0.09 0.121 0.207 DBN 0.056 0.064 0.097 0.182
KELM 0.081 0.098 0.137 0.224 KELM 0.062 0.074 0.106 0.186
GRU 0.077 0.095 0.125 0.211 GRU 0.059 0.07 0.095 0.181
LSTM-RNN 0.072 0.091 0.108 0.195 LSTM-RNN 0.047 0.056 0.084 0.171

20 DNN 0.088 0.112 0.139 0.269 20 DNN 0.049 0.061 0.099 0.221
DBN 0.077 0.093 0.127 0.252 DBN 0.056 0.065 0.105 0.227
KELM 0.085 0.102 0.141 0.273 KELM 0.065 0.077 0.113 0.228
GRU 0.082 0.101 0.131 0.264 GRU 0.064 0.073 0.104 0.227
LSTM-RNN 0.076 0.094 0.117 0.231 LSTM-RNN 0.049 0.058 0.096 0.214

30 DNN 0.096 0.114 0.15 0.33 30 DNN 0.052 0.066 0.112 0.278
DBN 0.082 0.099 0.139 0.316 DBN 0.058 0.072 0.116 0.277
KELM 0.089 0.109 0.153 0.328 KELM 0.068 0.083 0.125 0.29
GRU 0.087 0.105 0.142 0.311 GRU 0.063 0.078 0.116 0.286
LSTM-RNN 0.081 0.096 0.128 0.305 LSTM-RNN 0.051 0.063 0.108 0.261

Fall 10 DNN 0.094 0.112 0.154 0.239 Winter 10 DNN 0.049 0.069 0.125 0.212
DBN 0.079 0.095 0.145 0.226 DBN 0.06 0.078 0.134 0.213
KELM 0.14 0.163 0.232 0.302 KELM 0.077 0.091 0.125 0.213
GRU 0.109 0.128 0.153 0.232 GRU 0.055 0.073 0.12 0.209
LSTM-RNN 0.075 0.092 0.133 0.211 LSTM-RNN 0.035 0.053 0.097 0.183

20 DNN 0.098 0.116 0.156 0.285 20 DNN 0.053 0.072 0.127 0.247
DBN 0.082 0.101 0.147 0.279 DBN 0.064 0.084 0.136 0.264
KELM 0.145 0.167 0.224 0.365 KELM 0.08 0.094 0.131 0.256
GRU 0.113 0.131 0.158 0.285 GRU 0.059 0.077 0.124 0.243
LSTM-RNN 0.079 0.095 0.137 0.266 LSTM-RNN 0.041 0.057 0.102 0.234

30 DNN 0.102 0.124 0.168 0.364 30 DNN 0.058 0.084 0.14 0.314
DBN 0.086 0.11 0.16 0.353 DBN 0.069 0.095 0.149 0.33
KELM 0.149 0.179 0.237 0.459 KELM 0.083 0.101 0.142 0.313
GRU 0.117 0.138 0.169 0.357 GRU 0.064 0.087 0.136 0.321
LSTM-RNN 0.083 0.104 0.149 0.332 LSTM-RNN 0.046 0.066 0.114 0.276

Bold only shows the optimal solution results.

FIGURE 7 | Actual error versus forecasted error by ARIMA models.
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D � [Dt−1,Dt−2,Dt−3,Dt−4,Dt−5,Dt−6] (28)

Dt−i � (xt−i, . . . , xt−i−359) (29)

where: f(D) represents the whole framework illustrated in
Figure 4; Dt-i is the ith lagged vector containing 1 hour of the
historical wind direction data; and xt−i denotes the ith lagged
transformed wind direction series.

The wind speed and wind direction are 10 s data. One hour of
data (360 data points) is used as the input vector. The six-time
lagged vectors containing 1 hour of the historical wind direction
data are selected as the input vectors. The wind direction of the 2,
5, 10 min, and 1 h horizon is predicted. The input vector is
normalized beforehand and the predicted values are inverse-
normalized.

Short-Term Predictions
Based on the training strategy stated in Section “Training
Strategies”, experiments with the five selected algorithms have
been performed. In all experiments, the wind direction has been
predicted for the next 2, 5, 10 min, and 1 h. Experiments have
been conducted in each of the four seasons of 2020.

The prediction accuracy results in Figure 6 demonstrate that
the long-short-term memory recurrent neural network (LSTM-
RNN) performs better over short-term horizons than the other

algorithms. Since the LSTM-RNN contains long/short term
memory, it produces smaller prediction errors than the DNN,
DBN, KELM, and GRU. For the short-term horizons (i.e., 2 and
5 min), prediction accuracy of all five algorithms is similar.
However, the LSTM-RNN provides more promising results for
longer-term predictions (i.e., 10 min and 1 h) of wind direction.

The prediction accuracy in four seasons varies. In the fall and
spring season, the prediction errors are larger than the errors in
the summer and winter season. This is due to a larger variability
of the wind direction over short-term horizons. Hence, training
specific prediction models in different seasons is necessary.

Table 1 provide the MAPE for different resolution data
(i.e., 10, 20, 30 s) and different prediction horizons (i.e., 2, 5,
10 min, and 1 h) before the error correction. Obviously, the
MAPE errors are smaller for the 10 s data than for 20 and
30 s. With the increase of the prediction horizon, the MAPEs
increase. The LSTM-RNN algorithm has the smallest MAPE at all
resolutions and all prediction horizons. Therefore, it is an
effective algorithm for wind direction prediction at short-term
horizons.

Error Correction
To correct the errors made by the ICEEMDAN modules, the
ARIMA model has been developed to forecast the errors. In the

TABLE 2 | Mape of the five algorithms for 2020 after error correction.

Season Resolution (s) Algorithm Prediction horizon Season Resolution (s) Algorithm Prediction horizon

2 min 5 min 10 min 1 h 2 min 5 min 10 min 1 h

Spring 10 DNN 0.082 0.106 0.133 0.211 Summer 10 DNN 0.047 0.057 0.092 0.181
DBN 0.072 0.094 0.121 0.207 DBN 0.056 0.064 0.097 0.182
KELM 0.081 0.098 0.137 0.224 KELM 0.062 0.074 0.106 0.186
GRU 0.077 0.095 0.125 0.211 GRU 0.059 0.077 0.095 0.181
LSTM-RNN 0.072 0.091 0.108 0.195 LSTM-RNN 0.047 0.056 0.084 0.171

20 DNN 0.088 0.117 0.139 0.269 20 DNN 0.049 0.061 0.099 0.221
DBN 0.077 0.093 0.127 0.252 DBN 0.056 0.065 0.105 0.227
KELM 0.085 0.102 0.141 0.273 KELM 0.065 0.077 0.113 0.228
GRU 0.082 0.146 0.131 0.264 GRU 0.064 0.073 0.104 0.227
LSTM-RNN 0.076 0.094 0.117 0.231 LSTM-RNN 0.049 0.058 0.096 0.214

30 DNN 0.096 0.114 0.154 0.332 30 DNN 0.052 0.066 0.112 0.278
DBN 0.082 0.099 0.139 0.316 DBN 0.058 0.072 0.116 0.277
KELM 0.089 0.109 0.153 0.328 KELM 0.068 0.083 0.125 0.294
GRU 0.087 0.105 0.142 0.311 GRU 0.063 0.078 0.116 0.286
LSTM-RNN 0.081 0.096 0.128 0.305 LSTM-RNN 0.051 0.063 0.108 0.261

Fall 10 DNN 0.071 0.096 0.117 0.204 Winter 10 DNN 0.036 0.056 0.092 0.181
DBN 0.06 0.083 0.113 0.214 DBN 0.044 0.065 0.098 0.182
KELM 0.107 0.142 0.176 0.254 KELM 0.056 0.076 0.092 0.179
GRU 0.083 0.115 0.116 0.202 GRU 0.041 0.061 0.088 0.179
LSTM-RNN 0.057 0.079 0.101 0.185 LSTM-RNN 0.026 0.044 0.071 0.161

20 DNN 0.074 0.121 0.124 0.255 20 DNN 0.039 0.06 0.099 0.221
DBN 0.062 0.086 0.117 0.243 DBN 0.047 0.071 0.106 0.234
KELM 0.117 0.144 0.175 0.319 KELM 0.059 0.079 0.101 0.215
GRU 0.086 0.114 0.125 0.239 GRU 0.044 0.064 0.097 0.212
LSTM-RNN 0.061 0.083 0.109 0.228 LSTM-RNN 0.03 0.048 0.081 0.205

30 DNN 0.077 0.107 0.135 0.305 30 DNN 0.043 0.074 0.111 0.275
DBN 0.065 0.095 0.129 0.291 DBN 0.051 0.079 0.118 0.277
KELM 0.113 0.155 0.187 0.387 KELM 0.061 0.084 0.113 0.285
GRU 0.089 0.119 0.136 0.314 GRU 0.047 0.072 0.108 0.274
LSTM-RNN 0.063 0.089 0.122 0.282 LSTM-RNN 0.034 0.055 0.092 0.242

Bold only shows the optimal solution results.
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second part of Figure 4, To illustrate this step, the forecasted
errors using ARIMA versus the actual errors produced by LSTM-
RNNs are visualized in Figure 7. It is obvious that the aggregated
results from ARIMAs can represent the temporal trend of the
forecasted errors produced from the first component of the
proposed framework.

Table 2 provides the MAPE for different resolution data
(i.e., 10, 20, 30 s) and different prediction horizons (i.e., 2, 5,
10 min, and 1 h) after the error correction. There exists significant
performance for all algorithms tested with respect to the MAPE
computed before and after error correction. It validates the
effectiveness of implementing error correction in improving
the forecasting accuracy of time-series dataset. Meanwhile, the
LSTM produces the smallest errors which also demonstrates its
superior performance in forecasting wind directions.

Error Analysis
The experiments reported in Section “Short-term Predictions”
have been conducted using the transformed wind direction data
from four seasons. An inverse bilinear transformation, expressed
in Eq. 2, is applied to transform the predicted transformed wind
direction into the original angular range [0°, 360°]. The actual
angular values versus the forecasted angular values by the
proposed framework using ICEEMDAN and LSTM-RNN are
presented in Figure 8. It can be seen that the majority of the
forecasted values fall within a relatively small range with respect

FIGURE 8 | Actual angular values versus forecasting angular values.

TABLE 3 | Angular prediction error at four seasons.

Season Fall Winter Spring Summer

MAE (2 min) 1.88° 1.67° 1.92° 1.65°

MAPE (2 min) 0.86% 0.79% 0.95% 0.74%

MAE (5 min) 5.18° 5.01° 5.57° 4.93°

MAPE (5 min) 2.37% 2.28% 2.75% 2.21%

MAE (10 min) 6.53° 6.25° 6.97° 6.10°

MAPE (10 min) 3.18% 3.01% 3.36% 2.96%

MAE (1 h) 10.64° 9.05° 10.58° 9.34°

MAPE (1 h) 5.62% 4.39% 5.29% 4.71%
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to the actual values. It demonstrates the proposed framework can
sufficiently provide accurate forecasting performances.

In this section, performance of the ICEEMDAN framework
integrated with the long-short-term memory recurrent neural
network (LSTM-RNN) for prediction of wind direction at four
seasons is discussed. The prediction error of the inverse

transformed wind direction at 2, 5, 10 min, and 1 h horizons
are presented in Table 3. The mean absolute error (MAE) and
mean absolute percentage error (MAPE) of wind direction are
smaller in the summer and winter.

The wind direction error shows less variability over short
horizons. The changes of a nacelle position are usually made
within 5 min and the prediction error should be under 3%
(Ouyang et al., 2017). A control chart is applied to monitor
the prediction error and facilitate changing the nacelle position. A
control chart with lower and upper limits enables monitoring the
yaw error. Any prediction error that exceeds the bound (i.e., 3%)
may trigger a change of the nacelle position. The final forecasting
errors in the angular perspectives are illustrated in Figure 9.

Validation
The long-short-term memory recurrent neural network (LSTM-
RNN) has been demonstrated to perform better than other
algorithms. To validate the effectiveness and robustness of the
LSTM-RNN, the data collected from another wind farm located

FIGURE 9 | Wind rose of the prediction errors for the four seasons of interest in 2020.

TABLE 4 | Angular prediction error at four seasons.

Season Fall Winter Spring Summer

MAE (2 min) 1.61° 1.63° 1.62° 1.59°

MAPE (2 min) 0.79% 0.78% 0.80% 0.76%

MAE (5 min) 4.94° 4.41° 5.19° 4.51°

MAPE (5 min) 2.08% 1.93% 2.58% 1.97%

MAE (10 min) 5.92° 5.86° 6.18° 5.94°

MAPE (10 min) 2.79% 2.78% 2.81% 2.71%

MAE (1 h) 9.81° 9.02° 9.75° 9.32°

MAPE (1 h) 4.77% 4.37% 4.92% 4.74%
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in Shandong Province in the year 2020 has been used. The
experiments are conducted following the similar training
strategies as described in Section “Data Analysis”. The
computational results are presented in Table 4.

The prediction error (see Table 4) in winter and summer
seasons of 2020 from the wind farm in Shandong Province
produced by the LSTM-RNN is similar to the one based on
the 2020 data (see Table 3) in the wind farm in Inner Mongolia.
More accurate performance has been observed in the fall and
spring seasons with two prevailing wind directions. The favorable
prediction error validates the effectiveness and robustness of the
LSTM-RNN to predict the nacelle orientation.

CONCLUSION

A hybrid short-term forecasting framework to orient nacelle
based on the predicted wind direction was presented.
Industrial data collected from a wind farm in Inner Mongolia,
China was utilized to train and validate the prediction models. A
bilinear transformation was applied to transform the wind
direction data from an angular variable into a continuous
time-series. The forecasting framework was developed using
ICEEMDAN integrated with LSTM-RNN. Also, the error
corrections are implemented to improve the forecasting
accuracy. The wind direction was predicted at short-term
horizons, i.e., 2, 5, 10min, and 1 h. Five algorithms, the deep
neural network, deep belief network, kernel-based extreme
learning machine, gated recurrent unit network, and long-short-
term memory recurrent neural network were applied to predict
wind direction at short-term horizons. The results of performance
analysis of the five algorithms at four seasons were reported.

It was demonstrated that the long-short-term memory
recurrent neural network outperformed the other four
algorithms tested to predict wind direction. The results

presented are of paramount importance in yaw control and
can improve the efficiency of energy extraction process.
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Invalid Data Rejection of Audible Noise
on AC Transmission Lines Based on
Moving Window Kernel Principal
Component Analysis
Ziyi Cheng1,2, Zhenhua Li1*, Yuehua Huang1, Weifang Yao3 and Huichun Xie4

1Electrical Engineering and New Energy, China Three Gorges University, Yichang, China, 2State Grid Chongqing Electric Power
Company Construction Branch, Chongqing, China, 3State Grid Anhui Electric Power Corporation Research Institute, Hefei,
China, 4China Electric Power Research Institute Co., Ltd. Wuhan Branch, Wuhan, China

The statistical characteristics of the nighttime noise data of 1000 kV AC transmission lines
were investigated, the noise data of the Huainan-Shanghai 1000 kV AC transmission line
collected at night (0:00 to 6:00) from September 25, 2015, to February 16, 2016, were
statistically analyzed using the nonparametric statistical K-S test, and the outliers were
detected using the moving window kernel principal component analysis (MWKPCA). The
results show that after the ineffective data are removed by MWKPCA, the 5, 50, and 95%
values of the data are basically unchanged. To a certain extent, the method proposed in
this paper can remove the invalid audible noise (AN) data of 1000 kV AC transmission lines
without affecting the subsequent study of AN, we use various machine learning algorithms
to predict the A weight sound level (Awsl) before and after the invalid data rejection, and the
results show that the invalid data rejection has contributed to the improvement of the
transmission line AN Awsl prediction accuracy.

Keywords: effective data, AC, UHV transmission lines, audible noise, MWKPCA

INTRODUCTION

Audible noise (AN) of transmission lines, as one of the design criteria of transmission lines, affects
the conductor selection, corridor width, insulator string length, and conductor arrangement.
However, in the process of collecting the transmission lines AN, there is a large amount of
ambient noise, and the data collection is easily disturbed by the ambient noises. If the
transmission lines AN is smaller than the ambient noises, then the ambient noises will probably
become invalid data in the data set, and the invalid data will have an impact on the transmission line
evaluation.

Previous research on transmission lines AN contains empirical formulas for transmission lines
AN in various countries (Juette and Zaffanella, 1970; Trinh and Maruvada, 1977; Perry et al., 1979;
Chartier and Stearns, 2007; Tang et al., 2010; Chen et al., 2012), analysis of transmission lines AN
domain characteristics and frequency domain characteristics (Liu et al., 2018; Cheng et al., 2019), and
transmission line design parameters, meteorological factors, environmental factors on transmission
lines AN, and so on (Li et al., 2016; Guo et al., 2019; Zao et al., 2021; Xie et al., 2016; Du et al., 2016;
Xie et al., 2017; Yang et al., 2016; Li et al., 2018; Pengfei et al., 2019). However, in order to solve the
influence of ambient noises on data acquisition, Yuanqing Liu et al. studied the frequency spectrum
of corona AN and ambient noises of positive and negative conductors of DC transmission lines at
different voltages through corona cage test and studied the conversion relationship between
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A-weighted sound level (Awsl) and 8 kHz component of DC
transmission lines AN, so as to avoid the interference of ambient
noises (Liu et al., 2014a). Yingyi Liu et al. studied the relationship
between corona current and AN on transmission lines and
summarized the empirical formula for calculating the
A-weighted sound pressure level (Awsl) by corona current, so
as to indirectly get the effective data of AN evading the ambient
noises interference (Liu et al., 2019). Li Xebao et al. showed that,
to accurately study the time-domain characteristics of the AN
generated by single corona discharge, the ambient noise was
removed by correlation analysis and impulse characteristics (Li
et al., 2015). Liu Yuanqing et al. used a finite impulse response
filter to reject the invalid data of AN on DC transmission lines.
The above-mentioned research on the effective data of the AN of
transmission lines is divided into two types: indirect acquisition
of effective data and rejection of invalid data. The research on the
rejection of invalid data uses methods for single-dimensional
data, which directly process the original data of the sound signal
or the Awsl, ignoring the connection between the individual
octave components of the sound signal (Liu et al., 2014b). The
above-mentioned studies on the effective data of AN on
transmission lines are divided into two types: indirect
acquisition of effective data and rejection of invalid data. The
studies on the rejection of invalid data use methods for single-
dimensional data, which directly process the original data of the
sound signal and repair the sound pressure data disturbed by
ambient noise, ignoring the connection between the individual
octave band components of the sound signal. Therefore, this
paper introduces a data-driven approach based on the
determination of multidimensional data, and the data
disturbed by environmental noise are directly eliminated.

Data-driven-based methods have more applications in power
system stability, energy optimization and dispatch, voltage and
current monitoring, transportation, etc. (Zhang and Luo, 2018;
Zhu et al., 2019; Li et al., 2020; Yang et al., 2020; Shen and
Raksincharoensak, 2021). In this paper, data consisting of 10
components of AN octave band from 16 Hz octave band to 8 kHz
octave band and Awsl which are determined with moving
window kernel principal component analysis (MWKPCA) by
establishing the SPE statistic in the residual subspace of the
principal component analysis with the T2 statistic in the
principal component subspace are used to evaluate AN invalid
data, and the data that exceed the threshold of SPE statistic or T2

statistic are excluded, so that the AN invalid data in the dataset
are removed.

AN DISTRIBUTION CHARACTERISTICS

Noise data for a total of 69 days of the Huainan-Shanghai AC
transmission line were collected at night (0:00 to 6:00) from
September 25, 2015, to February 16, 2016. The conductor adopts
8×LGJ-630/45. Subconductor diameter is 33.6 mm.
Subconductor spacing is 400 mm and the operating voltage is
1050 kV. The surface gradient of phase A, phase B, and phase C is
14.44, 14.82, and 14.73 kV/cm, respectively. The distribution
characteristics of each octave band of AN and Awsl were

analyzed using the K-S test (Kolmogorov-Smirnov test) one
after another. The following hypothesis is made for the sample
data H0: the overall sample data is conformed to the normal
distribution, and the alternative hypothesis H1: the overall sample
data from which the sample comes does not conform to normal
distribution. The test statistic is defined as

D � max(∣∣∣∣f(x) − g(x)∣∣∣∣) (1)

where f(x) is the cumulative probability of the sample value in
the normal distribution and g(x) is the actual cumulative
probability.

Since the actual f(x) and g(x) are discrete values, Equation 1
is modified to

Dm � max
i
(∣∣∣∣f(xi−1) − g(xi−1)

∣∣∣∣, ∣∣∣∣f(xi) − g(xi)
∣∣∣∣) × �

n
√

(2)

where n is the sample size. When the data size is large and the
original hypothesis holds, DM approximately conforms to the
Kolmogorov distribution, and the distribution function is
expressed as

Z(x) �
⎧⎪⎨⎪⎩

0 x< 0
∑+∞

j�−∞
(−1)j exp(−2j2x2) x≥ 0 (3)

Taking the significance level α as 0.05, calculate the test
statistic Z values and the corresponding probability p values. If
p is less than the significance level, then the original hypothesis
H0 is rejected and the distribution of the sample from the total is
considered to be significantly different from the normal
distribution. If p is greater than the significance level α, then
the original hypothesis H0 should not be rejected and the
distribution of the total from which the sample comes is not
significantly different from the normal distribution.

Normal distribution analysis in days for a total of 69 days of
data: 16 Hz octave band of AN has the highest number of days
conforming to the normal distribution with 46 days, the lowest
octave band of AN has only 23 days conforming to the normal
distribution, average 33 days conforming to the normal
distribution. A test of 44 days in which the data size exceeded
the average group size of 110 groups: 16 Hz octave band of AN
has the highest number of days conforming to the normal
distribution with 29 days, and the lowest octave band of AN
has only 9 days conforming to the normal distribution, average
17.8 days conforming to the normal distribution.

AN INVALID DATA DETERMINATION

Correlation Analysis of Each Octave Band
Component
When the electric field strength on the surface of AC transmission
lines exceeds the critical strength, due to a large number of
ionization effects, ionization zone will appear around the
conductor, under the action of the electric field, positive ions
in the positive zone and negative ions in negative zone are moved
the radially outward movement, respectively. In the role of the
alternating electric field around the conductor charged ions along
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the conductor to do round-trip movement to produce
“humming” sound, this noise is “pure tone,” and its frequency
is a multiple of the frequency of 50 Hz. At the same time, the rapid
movement of these ions will produce corona current pulses
around the conductor, while a large number of ions in the
direction away from the conductor and air molecules collide
to produce sound pressure pulses. The AN generated by the
sound pressure pulses and corona current pulses together in the
broadband noise belongs to the medium and high-frequency AN
(Fa Yuan et al., 2016; Zelong et al., 2012; Cheng, 2020).

Both “pure tone” and broadband noise are periodic outward
propagation of sound waves due to the pressure exerted on the air
layer by ion motion under the effect of alternating electric fields
(Di et al., 2012). There are many sound sources that produce
various ambient noises during the acquisition of transmission
lines AN. The frequency spectrum of different types of sound
sources is not the same (Lu et al., 2010; Liu et al., 2018), and the
final collected sound signal is the result of the joint action of the
noise components belonging to different octave band. Therefore,
it is necessary to consider the noise component data belonging to
different octave band center frequency as a whole and to
determine the invalid data for the data set composed of them.
Eqs 4, 5 were used to calculate Pearson’s correlation coefficient
and gray correlation coefficient between each octave band
component, respectively.

ρX,Y � E((Xi − μ)(Yi − ]))�������������∑(Xi−μ)
N

∑ (Yi−])
N

√ (4)

where xi and yi are the sample observations of variable X and
variable Y, respectively; μ and ] are the mean values of variables X
and Y, respectively; N is the total number of samples.

ζ i(k) �
max

i
max

k
Δi(k) + ρ ·max

i
max

k
Δi(k)

Δi(k) + ρ ·max
i

max
k

Δi(k) (5)

where Δi(k) is the absolute value of the difference between the
variable y(k) and the corresponding element of the variable xi(k)
and ρ is the resolution factor; usually ρ is 0.5.

A total of 55 pairs of correlation coefficients were obtained
after calculating the Pearson correlation coefficients between each
AN component by Equation 4, of which 33 groups had
correlation coefficients less than 0.5 and 28 groups had
correlation coefficients less than 0.4. A total of 55 pairs of
gray correlation coefficients obtained after calculating the
nonlinear relationship between the AN components by
Equation 5 are all greater than 0.7. It can be found that there
is a strong nonlinear relationship between each octave band
component, so it is necessary to consider each octave band
component as a whole composed of multidimensional data. It
has been proved that the data do not satisfy the normal
distribution in most cases, the time span of the transmission
line AN collection is long, and the meteorological factors change a
lot during the data collection process, so MWKPCA is used to
determine the invalid data day by day to reduce the influence of
the change of meteorological factors on the determination results.

Algorithm Principle of MWKPCA
KPCA can be viewed as a principal component analysis in high-
dimensional feature space (Li et al., 2018; Zhang and Luo, 2018;
Zhu et al., 2021); compared with traditional PCA, it needs to
project the dataset X � [x1, x2/, xN] into the high-dimensional
feature space Γ through a nonlinear mapping b to obtain a new
dataset:

ϕ(X) � [ϕ(x1), ϕ(x2)/ϕ(xN)] (6)

where X is a matrix of N rows andM columns, ϕ(x) is a matrix of
D rows and M columns, and D>N.

Then the covariance matrix in the higher dimensional space
is CΓ:

CΓ �� 1
N

∑N
i�1

ϕ(xi)ϕ(xi)T (7)

The kernel matrix KϵϕN×N is usually obtained in the high-
dimensional feature space using the kernel function instead of the
mapping function, followed by the calculation of the kernel
matrix K̃ after centering.

K � K − K·1N − 1N·K + 1N·K·1N (8)

where k is a kernel matrix and 1N is anN ×Nmatrix where each
element is 1

N.
The eigenvectors (P1, P2,/, P3) and the corresponding

eigenvalues (λ1, λ2,/, λA) are obtained by the singular value
decomposition of the covariance matrix R of the matrix K̃, where
A (A<N) is the number of principal elements obtained by the
cumulative variance contribution, and the covariance matrix of
the matrix K̃ is shown in the following equation:

R � KTK/(N − 1) � [PPe]Λ[PP]T (9)

where P is the principal component load matrix and Pe is the
residual load matrix.

By building a good KPCA model, the T2 statistic is used to
determine the information of K̃ projection into the principal
component subspace, as the following equation:

T2 � KTPΛ−1PTX

� ∑m

i�1
t2i
λi
∼
p(n2 − 1)
n(n − p) F(n, n − p) (10)

where Λ � diag(λ1, λ2,/λm) is the principal variance matrix, n
is the number of samples, m is the number of principals,
F(n, n − p) is the F distribution with degrees of freedom n and
n-p. Let the confidence coefficient be α; then the control threshold
of the T2 statistic is T2

UCL.

T2
UCL �

α(n2 − 1)
n − α

Fα(α, n − α) (11)

The SPE statistics in the residual subspace are used to
determine data anomalies. The SPE statistic is given in the
following Eq. 12:

SPE � (XPeP
T
e )(XPeP

T
e )T � XPeP

T
e X

T ≤ SPEUCL (12)
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The control threshold SPEUCL is given in the following
Equation 13:

SPEUCL � θ1
⎡⎢⎢⎢⎢⎢⎢⎣Cα

�����
2θ2h20

√
θ1

+ 1 + θ2h0(h0 − 1)
θ21

⎤⎥⎥⎥⎥⎥⎥⎦
1
h0

(13)

where α is the confidence level, C is the critical value of the normal
distribution at the detection level of α,h0 � 1 − 2θ1θ3/3θ

2
2, and

θi � ∑m
j�A+1, i � 1, 2, 3.

MWKPCA introduces the moving window function on the
basis of KPCA, and for such cases as this paper where the time
span is up to 6 months, the invalid data is determined in days, and
the training data and test data are continuously updated with
SPEUCL and T2

UCL, so as to reduce the negative impact of changes
in meteorological factors on the results of invalid data
determination.

The flow of MWKPCA calculation is shown in Figure 1.

Multidimensional Invalid Data
Determination
The 484 sets of data for each octave band component which are
close to the average value of that component are selected as the
initial training data, and the training data are updated in the
process of determining invalid data day by day, adding the data
judged as normal on that day to the training data, and eliminating
the corresponding number of data from the previous training
data, so as to detect abnormal data for 7,658 sets of test data day
by day. The computed significance level of the initial training
modelα � 0.85, kernel width gamma � 16 for the radial basis
function, corresponding to the control threshold SPEUCL for the
SPE statistic and the control threshold T2

UCL for the T2 statistic,

and the corresponding number of principal elements is 9. The
final outlier determination results are shown in Figure 2: the total
number of groups that exceeded the threshold of SPE statistics or
T2 statistics was 1,013, the total number of groups that exceeded
the threshold of T2 statistics was 703, and the final rejected data
were 1,475.

PREDICTION OF AWSL EFFECTIVE DATA

Percentile Comparison
Table 1 shows the percentile of each octave band component of
AN in the two stages of original data and after MWKPCA (Ln in
the table indicates the values ranked in the top n% positions by
arranging the data in descending order), and it can be found that
most of the octave band components L5, L50, L95 do not change
much after the removing of invalid data screening, so the
elimination of invalid data using the method of this paper
basically does not affect the study of AN data (Liu et al., 2014a).

Prediction Result Comparison
Direct collection of Awsl of transmission line AN is susceptible
to ambient noises interference, while in the octave band 8 kHz
component of sound ambient noises and AC transmission line
AN, values differ significantly (IEEE Std 656-2018 Standard for
the Measurement of Audible Noise from Overhead
Transmission Lines., 2018; Lu et al., 2010); the collection of
AN 8 kHz component is subject to less interference, while the
collection of meteorological data is less subject to strong
interference similar to that of ambient noises for AC
transmission line AN. Therefore, this paper trains the
algorithm model to predict the effective data of
transmission line Awsl by the three features of octave band
8 kHz component, temperature, and visible range, so as to
indirectly obtain the AC transmission line Aswl which is
relatively less disturbed by ambient noises.

The three features of octave band 8 kHz component,
temperature, and visible range are normalized by Equation 14,
and the values are converted to between 0 and 1 to avoid the effect
of the difference in magnitude between different features on the
prediction accuracy.

S � s − smin

smax − smin
(14)

where S is the normalized result of each feature; s is the original
data of each feature; Smaxand Smin are the maximum and
minimum values of each feature.

In order to prevent the influence of chance on the
prediction results due to the random combination of data
when dividing the train sets and test sets, this paper divides
the data sets into 10 copies by 10-fold cross validation, taking
one of them as the train sets and the remaining nine as the test
sets, and quantifies the error of the model prediction results
by root mean square error (RMSE), mean absolute error
(MAE), Mean Absolute Percentage Error (MAPE), and
Symmetric Mean Absolute Percentage Error (SMAPE) (as
shown in Eqs. 15–18, the smaller the error, the better the

FIGURE 1 | Moving window kernel principal component analysis
(MWKPCA) calculation process.
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prediction result, and the final result is taken as the average of
10 predictions).

RMSE �
������������
1
n
∑n
i�1
(yi − ŷi)2

√
(15)

MAE � 1
n
∑n
i�1

∣∣∣∣yi − ŷi

∣∣∣∣ (16)

MAPE � 100%
n

∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣
yi

(17)

SMAPE � 100%
n

∑n
i�1

∣∣∣∣ŷi − yi

∣∣∣∣
(∣∣∣∣ŷi

∣∣∣∣ + ∣∣∣∣yi

∣∣∣∣)/2 (18)

where yi and ŷi represent the true and predicted values; n
represents the number of predicted versus true values.

In order to better reflect the improvement of the prediction
accuracy by the outlier rejection algorithm, this paper uses
LightGBM and XGBoost based on Boosting model, SVR based
on hyperplane, KNN based on distance, and elastic network
and linear regression to predict the Awsl, and the mean value
of the final Awsl prediction result is shown in Table 2:
predictions were made using the data sets before and after
invalid data rejection in this paper, respectively. The mean
error of the prediction results after invalid data rejection
using MWKPA is lower than that of the original data, and the
invalid data rejection has contributed to the improvement of
the prediction accuracy.

Using the above six algorithms to predict the effective Awsl
data after eliminating invalid data by IF, DBSCAN, LOF, KPCA,
and MWKPCA, the comparison of the mean error values of the
prediction results is shown in Table 2; the mean error values after
eliminating invalid data by using MWKPCA are significantly
lower than those of the other four methods.

CONCLUSION

A method is proposed to reject the invalid data of AN on
transmission lines using MWKPCA. After using this method
to reject the invalid transmission line AN data, there is no impact
on the subsequent study of AN.

FIGURE 2 | Determination results based on MWKPCA.

TABLE 1 | Statistical values of audible noise (AN) in each frequency band before and after data processing.

L95 L50 L59

Original MWKPCA Original MWKPCA Original MWKPCA

16 Hz 36.08 36.26 42.49 42.38 56.74 54.77
31.5 Hz 35.76 36.04 42.77 42.60 57.46 56.02
63 Hz 33.45 33.81 42.01 41.78 52.46 50.89
125 Hz 23.70 23.85 34.13 33.92 55.23 54.75
250 Hz 21.79 22.02 30.34 30.08 54.07 52.28
500 Hz 18.69 19.13 27.85 27.37 47.06 45.07
1000 Hz 17.08 17.59 27.86 26.99 45.97 44.77
2000 Hz 13.48 14.52 25.76 25.35 43.75 42.43
4000 Hz 14.59 15.20 27.74 27.33 41.99 41.20
8000 Hz 11.79 11.92 19.20 19.49 37.29 35.69
Awsl 27.75 28.01 37.41 37.15 53.75 52.75

TABLE 2 | Prediction errors.

RMSE MAE MAPE SMAPE

Original 6.60 4.97 12.95 12.78
MWKPCA 5.73 4.37 11.46 11.41
KPCA 6.10 4.42 11.97 11.71
IF 6.48 4.92 12.86 12.73
LOF 5.87 4.52 11.90 11.81
DBSCAN 6.02 4.54 11.93 11.83
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The multidimensional invalid data determination method
MWKPCA proposed in this paper can improve the prediction
accuracy of transmission lines AN Awsl to some extent, and the
improvement of Awsl prediction accuracy on real data set is
higher than IF, DBSCAN, and LOF.
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MappingRelation of LeakageCurrents
of Polluted Insulators and Discharge
Arc Area
Chunhua Fang1, Yuning Tao1*, Jianguo Wang2, Can Ding1, Li Huang1, Mi Zhou2, Yi Gu3 and
Yali Wang3

1College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China, 2School of Electrical
Engineering, Wuhan University, Wuhan, China, 3Department of Development and Planning, State Grid Corporation of China,
Beijing, China

A fundamental parameter of polluted insulator online monitoring is the leakage current,
which has already been shown to be well-related to the pollution discharge of insulators. In
this article, in an effort to quantitatively reflect the discharge intensity and the discharge
status by the leakage current, we carried out an experimental study on artificial pollution
discharge of insulators. A high-speed photographic apparatus was utilized to capture the
entire process of local arcs on a porcelain insulator surface, including the arc generation,
the arc development, and the flashover, for which the associated leakage current of
insulators was synchronously digitized. A comparative analysis of the relation between the
two-dimensional discharge image and the leakage current waveform in the process of arc
generation and development shows that if the arc area on the insulator surface is relatively
small and the leakage current passes through zero, the arc might completely become
extinct, whereas this phenomena will not occur if the arc area is larger. In addition, the
amplitude of the discharge arc area is found to be roughly proportional to the square of
leakage current over the range of leakage current amplitude from 0 to 150mA. Our results
can provide an important guidance for judgment of the discharge status and the discharge
intensity on insulator surfaces using the leakage current of insulators.

Keywords: discharge arc, leakage current, mapping relation, polluted insulator, online monitoring

INTRODUCTION

Transmission line insulators are exposed to the natural environment during their long operation
period, and the pollutants floating in the air are easily deposited on insulator surfaces under the
influence of various external forces, leading to pollution of the insulators (Liu et al., 2020; Shen et al.,
2020; Yang et al., 2021; Shen et al., 2021; Shen et al., 2021). Under severe weather conditions, such as
fog, dew, and drizzle, the flashover might occur even at normal operating voltage, resulting in serious
threats to the safe and stable operation of the power system (Yang et al., 2019; Yang et al., 2020; Shen
and Raksincharoensak, 2021). Generally, the pollution flashover will experience four stages: the
pollution deposition, the wetting, the dry band formation, and the local arc generation and flashover
development. A discharge arc will be generated before flashover (Yang et al., 2019; Shen et al., 2020;
Zhu et al., 2020; Noman et al., 2021; Shen and Pongsathorn, 2021). Meanwhile, the leakage current is
associated with the whole operation process of insulators and is able to reflect the generation,
development, extinction of the arc and, if possible, the full flashover. The leakage current, whose
amplitude is affected by the pollution level, the humidity, the discharge strength, etc., may also be
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used to reflect the insulator surface condition, the climatic
condition, and the applied voltage condition. In recent years,
many efforts have been devoted to determining the discharge
status using the leakage current (Yang and Di, 2018; Zhang and
Luo, 2018; Bakeer Abualkasim et al., 2021; Li et al., 2021; Nayak
et al., 2021).

There is a belief that the leakage current waveform of
insulators can be well-related to the arc condition
(Gencoglu and Cebeci, 2009; Du et al., 2012; Cong and Li,
2014). The leakage current can be used to distinguish three
different discharge statuses of insulators, namely, no
discharge, arc discharge, and continuous arc discharge
(Ahmadi–Joneidi et al., 2013). If the discharge is weak and
invisible, the amplitude of leakage current, in a form of sine
wave, is relatively small. When a filamentous discharge occurs,
the leakage current is featured with small pulses with a
triangular shape; furthermore, if there exists a small amount
of weak arcs, a distorted triangular waveform will be presented.
However, if the discharge becomes intense, the leakage current
pulse will be larger in amplitude and will occur more
frequently, the waveform being distorted as well, with a
shape of an inhomogeneous sine wave (Kumagai and
Yoshimura, 2004; Pylarinos et al., 2012; Moula et al., 2013).
The length and strength of the resultant discharge arc will also
periodically change along with the variation of the alternating
leakage current flowing through the equipment surface, and
hence, whether the arc quenches or reignites can be
determined through the observation of the leakage current
waveform (Claverie and Porcheron, 2007).

Although many studies have been carried out to correlate
the discharge status of insulators with the leakage current,
due in part to the complex relationship between each, this
issue has not been fully solved. To our knowledge, until now,
the discharge status of insulators is still in the stage of
qualitative description, and the relations between the
pollution discharge status, the discharge strength of the
insulator, and the leakage current are not clear. Therefore,
it is urgent to build a quantitative relation between the
discharge strength and the leakage current.

In the present work, an experimental study on artificial
pollution discharge is conducted in an artificial fog room. A
high-speed photographic apparatus was utilized to capture the
entire process of local arcs on a porcelain insulator surface,
including the arc generation, the arc development, and the
flashover, for which the associated leakage current of
insulators was synchronously digitized. We discuss the
relationship between the leakage current and the arc area.

TEST LAYOUT AND TEST METHOD

The structure and parameters of the test XP-70 insulator are
presented in Table 1. The schematic diagram of the artificial
pollution test is shown in Figure 1. The test is conducted in a
pollution chamber with a width of 2 m, a length of 2 m, and a
height of 4 m. The power supply of the test object, seven pieces of
XP-70 insulators in this article, is supplied by a transformer
cascade. The system frequency is 50 Hz. The transformer cascade,
with a maximum output voltage and rated capacity of 500 kV and
1 MVA, respectively, is equipped with two test transformers of
divided high voltage winding, and its primary voltage is adjusted
by a regulating transformer. The voltage is applied to the test
object via the bushings of the pollution chamber. For the
measurement of the applied high voltage, a capacitive voltage
divider, with a ratio of 1:1920, is used. Voltage and leakage
current signals are simultaneously digitized in a leakage
current measurement system, with a sampling rate of 100 kHz.

The predeposit method is adopted as the pollution procedure,
as recommended in IEC 60507-2013 (IEC, 1991; IEC, 2004). This
method is based on coating the test object with a conductive
suspension of diatomite in water. The conductivity of the
suspension is adjusted by salt (NaCl). Depending on the
pollution class, the artificial pollution test is performed with
different intensities of pollution. The pollution content
required in each string of the test object was calculated
according to the salt deposit density and the non-soluble
deposit density required by the test object and surface area of
the insulator. The test insulators were cleaned by washing with
tap water and then the coating of the test insulators was made by
flow coating. They were dried for 24 h to ensure a thermal
equilibrium with the ambient conditions in the pollution
chamber. Based on the IEC60507-1987 standard, equivalent
salt deposit density (ESDD) � 0.3 mg/cm2 is applied to the
experiment, and the non-soluble deposit density (NSDD) is set
to 1.0 mg/cm2.

The test object was hanged in the center of the pollution
chamber, which was closed during the test. Two pieces of
diagonally arranged steam-fog equipment, of which the
delivered fog amount can be adjusted, were used to produce
cold fog to humidify the pollutants on the insulator surface.
However, fog supply should be terminated when the water
droplets appear on the insulator surface.

The relation between the leakage current flowing through the
insulator surface and the discharge arc is investigated in this
study. The discharge development process with the uniform step-
up method is relatively faster than that with subsequent
applications of the test voltage, which is held constant, and
helpful for the synchronous monitoring of the leakage current
and discharge phenomenon (Lambeth, 1988). As a result, the
uniform step-up method was adopted in the test. Thus, the
voltage was applied at uniform speed after the pollutants on
the insulator surface were totally wetted until the full flashover
occurred.

In the test, the self-developed leakage current measurement
system was adopted to perform acquisition of the leakage current,
with a sampling rate of 100 kS/s. High-speed video frames

TABLE 1 | Structure figure and parameters of the XP-70 insulator.

Type XP-70

Configuration height (mm) 146
Disc diameter (mm) 255
Leakage distance (mm) 295
Surface area (cm2) 1,591
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showing the development of the arc were recorded using a
Photron SA1.1 high-speed camera operating at a framing rate
of 1 kfps (kiloframes per second), with 640 pixels × 640 pixels.
The high-speed camera was positioned approximately 1 m from
the test object. Both the data acquisition card for measurement of
the leakage current and the high-speed camera had external
triggered function. In order to obtain synchronous recorded
data, the synchronized trigger technology of the switch was used.

DISCHARGE ARC IMAGE PROCESSING
AND AREA CALCULATION

The white part of the discharge arc image is arc, and its size
changes with discharge strength. According to the
aforementioned characteristics, image processing
technology is utilized to quantify the discharge arc, and
the image processing block diagram is shown in Figure 2.
The arc image of the whole insulator surface collected by the
high-speed camera is the RGB image. First, the RGB image is
converted into a gray image and noise processing is
performed on it. Second, arc information is enhanced with
the image enhancement technique, and the image is
converted into a binary image with threshold
segmentation, thus extracting the arc area and segment arc
from the image. As the edge of the segmented photo is not
smooth, the edge detection operator is used to detect the arc

edge. Finally, a filling algorithm is applied to fill the arc edge
image to get the arc area (Chaou et al., 2015; Zhang et al.,
2021).

The image through the foregoing processing is the binary
image. It consists of 1 and 0, where 1 stands for the discharge arc
and 0 for the background. The arc area can be obtained by
calculating the number of points whose pixel is 1 in a 2D image.
The mathematical expression of pixel point number calculation is
as follows:

N � ∑m
i�1

∑n
j�1

f}(i, j), (1)

where, f}(i, j) stands for the object with the value of 1 (Wang
et al., 2014).

The area of the discharge arc is the number of pixel point, so
the unit of area defined in this article is pixel (Chaou et al., 2015).
In the formula, i and j represent the position coordinates of the
pixel in the image.

A discharge RGB color image in Figure 3A is transformed to a
gray image in Figure 3B; the discharge region is brighter than the
background image. Next, noise processing and image
enhancement technique are performed on it; the enhanced
image is shown in Figure 3C. Then, the threshold
segmentation algorithm is used to convert the gray image into
a binary image, when the threshold value is set to 190; the binary
image is shown in Figure 3D. The edge of the image is the place
where the pixel gray scale changes, carrying a wealth of arc image
information, in order to accurately depict the outline of the arc
image. In order to accurately depict the contour of the arc image,
the edge must be extracted accurately. A Canny operator is a
multistage optimization operator with filtering, enhancement,
and detection (Mason et al., 1975; Lambeth, 1988; Zhang et al.,
2021). The Canny operator uses the Gaussian filter to smooth the
arc image to reduce the influence of noise on the arc edge
detection. In order to find the gradient magnitude maximum
and suppress the non-maximum value, the finite difference of the
first-order partial derivative is used to calculate the amplitude and
direction of the gray gradient of the pixel point. The results of the
edge detection using the Canny operator is shown in Figure 3E,
which is filled with a connected region seed-filling algorithm for

FIGURE 1 | Schematic diagram of the artificial pollution test.

FIGURE 2 | Block diagram of image processing.
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FIGURE 3 | Image after digital processing.

FIGURE 4 | Leakage current and the discharge area.
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the closed bounded arc image. Starting from any pixel of the
polymorphic interior, we judge the adjacent pixels from left to
right and from top to bottom. If it is not the boundary pixel point

and not been filled, it is filled up and its gray value is changed to 1.
Then, the previous process is repeated until all pixels arc circle
regions are filled. The filled image is shown in Figure 3F.

FIGURE 5 | Leakage current waveform and the arc area.
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RESULTS AND ANALYSIS

Figure 4 shows the time-synchronized waveform of current and
arc area variation for an entire arc discharge process, from the arc
generation to the full flashover. During 0–0.447 s, 0.520–1.193 s,
1.39–1.974 s, 2.337–2.467 s, and 2.859–3.059 s, the amplitudes of
leakage current were evenly above 50 mA, and the local arc,
although relatively weak in luminosity, appeared on the insulator
surface. During 3.809–4.334 s, the amplitude of the leakage
current was averaged at 100 mA, with a maximum value of
150 mA, and the arc area increased accordingly. During
4.554–7.005 s, the amplitude of leakage current was suddenly
increased, and the arc area was also featured with a sudden
increase along with the leakage current. In other time however,
the amplitudes of leakage current were generally small, and the
insulator surface was not featured with any arc discharges. To the
naked eye, it seems that there exists a good relationship between
the leakage current and the associated arc area.

The leakage current waveforms and the corresponding arc
discharge area variation at different times of the developing
process of discharge were chosen to conduct a further analysis.
To compare the arc area and current data with the same temporal
resolution, the current record was preprocessed by a subsection

average procedure, with a 1 ms window width. The
corresponding current value with a temporal resolution of
1 ms was calculated by averaging 100 original current data.

The discharge arcs in Figures 5A,B sporadically disperse on
the insulator surface. The amplitudes of the resultant leakage
current were about 50 mA, with very slight variations in the first
and second half waves in one period. The “zero-crossing”
phenomenon is relatively weak, similar to the triangular
waveform for which the two-side part is relatively large and
the middle part is relatively small. The corresponding arc area
also presents a feature of being relatively large in the two-side part
and relatively small in the middle part. Compared with Figures
5A,B, the discharge strength in Figure 5C increases and the
leakage current amplitudes are mostly above 50 mA. Accordingly,
the arc area, to a certain degree, also increases. The “zero-
crossing” phenomenon is quite weak for the leakage currents
shown in Figures 5A–C, in which when the electrical degree is
about 60°, a phenomenon of faint current flicker occurs, and the
corresponding arc area decreases abruptly and then increases
abruptly.

The discharge spark in Figure 5D becomes intense and bright
in luminosity. For the second piece of the insulator, the arcs on its
upper surface and those on the lower one have a tendency to

FIGURE 6 | Relation between leakage current and the arc area.
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connect with each other. Meanwhile, the leakage current
amplitude is mostly larger than 50 mA. The discharge spark in
Figure 5E is larger in area, and the arcs in the upper surface and
those in the lower one of the second piece of the insulator have
been already connected. The discharges on the surface of several
insulators between the top and bottom of the insulator are also
obviously strengthened. In addition, the amplitudes of the first
and second half waves in one period are featured with large
variations, the maximum amplitude being about 100 mA.
Waveforms in Figures 5D,E have severe distortion with the
distinct “zero-crossing” phenomenon, and the discharge is
quite weak when this current “zero-crossing” phenomenon
occurs, the arc area being quite small.

A more intense discharge spark on the insulator surface is
shown in Figure 5F. The amplitude of the corresponding leakage
current is quite large, about 150 mA, and the amplitudes of the
first and second half waves in one period are featured with large
variations, with a trend of abrupt increase or of abrupt decrease.
Compared with the last stage, the “zero-crossing” phenomenon is
relatively weaker. However, the current flicker phenomenon is
still obvious.

Comparing with Figures 5A–F, a sudden increase in the arc
area can be found in Figures 5G,H. The arcs on most of the
insulators in Figure 5G are connected, and those in Figure 5H are
completely connected in two terminals. In this case, the leakage

current rapidly increases, amplitudes being larger than 250 mA.
The leakage current, with a waveform similar to the sine wave, has
very slight variations in amplitudes of the first and second half
parts in one period. In this case, the current “zero-crossing”
phenomenon disappears, and the current flicker becomes
weaker. The arc area also features with the sinusoidal variation
trend, although the arc area variations do not pass zero. As is
evident from the previous analyses, although the leakage current
wave shapes for various discharge processes are different, a strong
correlation can be found between the leakage current and the
corresponding arc area. For example, when the leakage current
reaches its positive or negative peak, the corresponding arc area will
reach its maximum value, and when the leakage current passes
through zero, the corresponding arc area will reach its minimum
value. Moreover, it should be noted that the arc extinction occurs
per half wave in one period in stage 1 (indicated in Figure 4). This
can be probably interpreted as the fact that the smaller arc on the
insulator surface, together with the smaller leakage current,
corresponds to less stored energy and also shorter time required
for the completion of deionization (Yang et al., 2014; Albano et al.,
2016). In stage 2 (also indicated in Figure 4), possibly due to the
fact that larger leakage current corresponds to more input energy
and longer time required for deionization (Wang et al., 2014;
Chaou et al., 2015), when the leakage current passes through zero,
no arc extinctions will occur.

FIGURE 7 | Relation between leakage current squared and the arc area.
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In the following analyses, the two simplest relationships, a
linear correlation for the leakage current versus the arc area and
for the leakage current squared versus the arc area, will be
compared for the entire discharge process shown in Figure 5.
Figure 6 presents the scatterplots of the current versus the arc
area for six discharge processes given in Figure 5. We first use the
simplest linear model to correlate the leakage current and light
intensity, as directly shown in Figure 6. The correlation
coefficients for five cases, shown in Figures 6A,C–H, are
larger than 0.9, and only one case, shown in Figure 6B, is
lower than 0.9. Moreover, the slopes of the regression lines in
Figure 6 vary in a wide range, from 39.94 to 165.55. Furthermore,
the intercepts of the regression lines also vary considerably.
Figure 7 shows the scatterplots of the instantaneous value of
leakage current squared versus the arc area shown in Figures
5A–H. Note that the regression lines in Figure 7 are constrained
to pass through the origin. Although the resulting correlation
coefficients in Figure 7 are, to a certain degree, larger than those
in Figure 6, we cannot tell which relationship is more compelling
only by comparing the correlation coefficients. The slopes of the
regression lines in Figures 7A–F with current amplitudes below
150 mA are however found to be more or less constant (around
0.8) for different discharge processes. If we combine the results
from Figures 7A–H, it appears that when the leakage current is
smaller than 150 mA, a rough linear relationship exists between
the leakage current squared and the arc area. When the leakage
current is larger than 150 mA, the relation between the arc area
and leakage current becomes complicated. We choose to leave
that analysis for a later study.

CONCLUSION

1) When the leakage current reaches its positive or negative
peak, the corresponding arc area will reach to its maximum

value, and when the leakage current passes through zero,
the corresponding arc area will reach to its minimum value.
A strong correlation can be found between the leakage
current and the corresponding arc area.

2) In the case that the arc on the insulator surface is relatively
small, if the leakage current passes through zero, complete
arc extinction may occur. In the case when the arc is
relatively larger, even if the leakage current passes
through zero, complete arc extinction will not occur.

3) A rough linear relationship exists between the leakage current
squared and the arc area if the leakage current is smaller than
150 mA. This conclusion can be used as a proxy for judging
the discharge strength using the leakage currents of insulators.
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Wind turbines are widely installed as the new source of cleaner energy production.
Dynamic and random stress imposed on the generator bearing of a wind turbine may
lead to overheating and failure. In this paper, a data-driven approach for condition
monitoring of generator bearings using temporal temperature data is presented. Four
algorithms, the support vector regression machine, neural network, extreme learning
machine, and the deep belief network are applied to model the bearing behavior.
Comparative analysis of the models has demonstrated that the deep belief network is
most accurate. It has been observed that the bearing failure is preceded by a change in the
prediction error of bearing temperature. An exponentially-weighted moving average
(EWMA) control chart is deployed to trend the error. Then a binary vector containing
the abnormal errors and the normal residuals are generated for classifying failures. LS-SVM
based classification models are developed to classify the fault bearings and the normal
ones. The proposed approach has been validated with the data collected from 11 wind
turbines.

Keywords: bearing failure, condition monitoring, deep belief network, EWMA control chart, SCADA data analysis

1 INTRODUCTION

Wind energy is the fastest growing form of renewable energy. Continuous operations in all
environmental conditions contribute to failures of wind turbine components, assemblies, and
systems. The generator of a wind turbine is one of the most failure-prone assemblies due to the
variable loads (Kusiak and Verma, 2012). Bearing failures account for more than 40% of the overall
wind turbine generator failures leading to unexpected energy losses (Tavner et al., 2012). Hence, a
solution for effective condition monitoring of generator bearings and early identification of failure
symptoms is needed.

Deteriorating performance of a generator bearing manifests itself on abnormal changes of the
vibration signal, torque, and bearing temperature (Yang et al., 2017; Feng et al., 2020). Vibration
analysis and data-driven approaches have been applied for condition monitoring of generator
bearings (Yang et al., 2018). The frequently used classical vibration analysis approaches include
Fourier transformation (Klein et al., 2001), wavelet transform (Yan et al., 2014), Hilbert-Huang
transform (Peng et al., 2005; Huang and Wu 2008), and empirical model decomposition (EMD)
(Huang et al., 2008). Other models have been developed. Teng et al. (2016) utilized a complex
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Gaussian wavelet to obtain the multi-scale enveloping
spectrogram for extracting weak features. Lei et al. (2013)
applied an ant colony algorithm to form adaptive stochastic
resonance method for failure detection. Peeters et al. (2018)
integrated automated spectrum editing procedure, band-pass
filtering and envelop analysis to detect bearing failures based
on the vibration signal. Vibration analysis approaches are
valuable in monitoring and diagnosis of generator bearing
failures. However, high frequency data from multiple
vibration sensors is needed to perform such analysis.
However, at present high frequency data is not available
from industrial turbines due to the excessive cost and data
sharing practices.

Most commercial wind turbines are equipped with the
supervisory control and data acquisition (SCADA) systems
collecting data that can be used to model behavior of
generator bearings. Kusiak and Verma. (2012) applied a
neural network to model bearing temperature for failure
prediction and identification. Guo. (2012) introduced
nonlinear state estimate technique (NSET) for temperature-
based failure detection. Yang et al. (2013) applied correlation
analysis and quantitative assessment based on the SCADA
data. The published literature indicates that the data-driven
methods provide robust bearing monitoring solutions for
wind turbines.

Deep learning is a recent addition to the modeling suite
with promising applications in multiple domains (Ouyang
et al., 2017; Sun et al., 2020a; Sun et al., 2020b; Shen et al.,
2021a; He et al., 2018; Li et al., 2018). The deep learning
algorithms are capable of extracting in-depth features and
patterns within the training dataset (Gritsenko et al., 2017;
Ouyang et al., 2019; Li et al., 2020; Shen et al., 2021b; Shen and
Raksincharoensak 2021). Within the wind energy sector, it
has been applied in the prediction tasks of wind speed (Hu
et al., 2016), wind power (Wang et al., 2017), and wind
direction (Wang et al., 2016a; Li et al., 2021a). Extensive
research has also been published using the deep-learning
approaches: Wang et al. (2016b) developed deep auto-
encoders to compress the time-series SCADA dataset and
the blade breakages are extracted from the deep-learned
features. Yang et al. (2018) applied stacked Restricted
Boltzmann Machines (RBMs) to capture the system-wide
patterns and then performed condition monitoring with
promising results. Bach-Andersen et al. (2018) selected 1-
dimensional convolutional neural networks (CNN) to extract
temporal features to classify failures of gearbox bearings.
Overall, deep-learning algorithms support development of
higher complexity models.

In this research, a deep-learning approach is explored to
monitor generator bearings. A deep belief network (DBN)
integrated with back-propagation (B-P) fine-tuning and layer-
wise training is developed to model normal generator bearing
temperature using SCADA data. Four data-driven models
predicting normal bearing temperature are constructed.
Their performance is assessed with the absolute percentage
error (APE), the mean absolute percentage error (MAPE) and
the root mean square error (RMSE). The analysis of industrial

SCADA data indicates that that bearing failure is preceded by
the error shift. The exponentially weighted moving average
(EWMA) control chart is applied to monitor the error shift. A
temporal binary vector is generated in real-time, and a final
failure classification model is developed. The benefits of the
proposed approach are demonstrated with computational
experiments.

2 RESEARCH METHODOLOGY

The use of deep-learning algorithms in prediction and
condition monitoring is growing (LeCun et al., 2015). Deep
learning originates from the research in neural networks.
Deep-learning algorithms avoid the local optima dilemma
and contains superior power in extracting globally robust
features from the dataset (Deng and Yu 2013; Qiu et al., 2017).

2.1 Deep Belief Network
In this research, a deep belief network (DBN) is applied to model
the generator bearing temperature. Proposed by Hinton et al.
(2006), the classical DBN algorithm multilayers of restricted
Boltzmann machines (RBMs) and a logistic regression layer
(Wang et al., 2016c).

The restricted Boltzmannmachine (RBM) is a commonly used
generative stochastic neural network (Hinton et al., 2006). It
includes a visible layer of binary-valued neurons and a hidden
layer of Boolean neurons (see Figure 1). The connection between
the hidden layer and the visible layer is bidirectional and
symmetrical. There are no inter-connections between neurons
in the same layer.

Training a single restricted Boltzmann machine (RBM)
involves the weight matrix between the two layers. The
configuration of weight matrix is based on the energy function
expressed in Eq. 1 (Wang et al., 2016c). The joint distribution of a
visible layer vector and the hidden layer vector is expressed in Eq.
2 (Hinton et al., 2006). The activation functions of neurons in the
visible and hidden layer are presented in Eqs 3, 4 (Hinton et al.,
2006

E(v, h) � −∑nv
i�1

aivi −∑nh
j�1

bjhj −∑nv
i�1

∑nh
j�1

hjwj,ivi, (1)

FIGURE 1 | The restricted Boltzmann machine.
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P(v, h) � e−E(v,h)

∑
v
∑
h
e−E(v,h)

, (2)

P(vi � 1|h) � sig⎛⎝αi +∑nh
j�1

wj,ihj⎞⎠, (3)

P(hi � 1|v) � sig⎛⎝bj +∑nv
i�1

wj,ivi⎞⎠, (4)

where: vi is the number of neurons in the visible layer; hi is the
number of Boolean neurons within the hidden layer; wj,i is the
weight matrix between the visible layer and hidden layer; ai and bi
are the biases of the two layers; and sig() denotes the logistic
sigmoid function. Hence, the weight matrix and the layer biases
are obtained in a layer-wise unsupervised pre-training described
in the Section 2.2.

2.2 Layer-wise Pre-training
A deep belief network (DBN) includes multiple layers of
restricted Boltzmann machines (RBMs) (Ouyang et al., 2019).
Figure 2 shows the architecture of the proposed DBN. The first
RBM of the DBNmodel consisting of a visible and a hidden layer
(hidden layer 1) is pre-trained as an independent RBM. Then,
the weight matrix of the first RBM is computed. The output of
the first RBM becomes the input to the second RBM that
includes two layers. The first layer (hidden layer 1) is treated
as a visible layer of the second RBM while the second
layer (hidden layer 2) is treated as the hidden layer. The
weight matrix of the second RBM is computed. Hence, the
weight matrices between the remaining hidden layers are
obtained iteratively.

Training each restricted Boltzmann machine (RBM) is
accomplished with a stochastic gradient descent method
(Hinton et al., 2006). Based on vector Eq. 2 of the joint
distribution function between the visible and hidden layer, the
objective function of the stochastic gradient descend method is
expressed in Eq. 5 (Wang et al., 2016c).

L(a, b, w) � ∑ logP(v, h), (5)

where: a is the bias vector of the visible layer; b is the bias vector of
the hidden layer; and w is the weight matrix between the two
layers. The parameters of the objective function (a, b, w) are
updated based on the gradients of the function expressed in Eqs
6–8. The updating rules are formulated in Eqs 9–11 (Hinton
et al., 2006).

zlogP(v, h)
zwj,i

� 〈vihi〉P(h|v) − 〈vihi〉recon, (6)

zlogP(v, h)
zai

� 〈vi〉P(h|v) − 〈vi〉recon, (7)

zlogP(v, h)
zbj

� 〈hi〉P(h|v) − 〈hi〉recon (8)

wi+1 � wi + η(〈vihi〉P(h|v) − 〈vihi〉recon), (9)

bi+1 � bi + η(〈vi〉P(h|v) − 〈vi〉recon), (10)

ai+1 � ai + η(〈hi〉P(h|v) − 〈hi〉recon), (11)

where: η is the learning rate; 〈〉P(h|v)is the expectation of the
conditional distribution with respect to the original input data;
〈〉recon is the i-step reconstructed distribution obtained by the
alternating Gibbs sampling scheme. The expectation of the
reconstructed distribution is computed following the rules of
contrastive divergence (Hinton, 2002).

2.3 Data-Driven Algorithms
Performance of the deep belief network (DBN) is compared
with three algorithms, support vector regression machine
(SVR), neural network (NN), and extreme learning
machine (ELM).

The support vector regression machine (SVR) is considered in
this study includes a Gaussian kernel function (Drucker et al.,
1997). The values of the model parameters (c and γ) are selected
based on the 10-fold cross-validation. The neural network (NN)
contains two hidden layers. By testing on a small portion of the
training data, the sigmoid activation function is selected based on
the satisfactory performance. The extreme learning machine
(ELM) algorithm (Liang et al., 2006) is utilized to model the
normal bearing temperature. As a single-hidden layer feed-
forward network, the ELM learning model is expressed in Eqs
12, 13 (Liang et al., 2006).

fL(xj) � oj,∀j, (12)

∑L
i�1

βiG(ai, bi, xj) � tj, j � 1, 2, ..., N, (13)

where: xj represents the input parameters; oj represents the
predicted output values; fL() is the non-linear function
representing the ELM algorithm; ai is the weight vector
connecting the ith hidden node and the input nodes; bi is the
threshold of the ith hidden node; βi is the weight vector
connecting the ith hidden node and the output nodes; and tj is
the actual output value.

FIGURE 2 | Architecture of the deep belief network.
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2.4 Performance Evaluation Metrics
To assess prediction accuracy of the deep belief network, three
performance evaluation metrics are computed: the absolute
percentage error (APE) Eq. 14, the mean absolute percentage
error (MAPE) Eq. 15, and the root mean square error (RMSE)
Eq. 16.

APE �
∣∣∣∣∣∣∣∣oj − tj

tj

∣∣∣∣∣∣∣∣ p 100%, (14)

MAPE � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣oj − tj
tj

∣∣∣∣∣∣∣∣, (15)

RMSE �

1
N
∑N
j�1

����oj − tj
����2

√√
, (16)

where: oj is the j
th predicted generator bearing temperature; tj is

the jth actual generator bearing temperature; N denotes the
number of data points.

2.5 Exponentially Weighted Moving Average
Control Chart
The increasing value of the prediction bearing temperature error
of a data-driven model reflects deterioration of the generator
bearing conditions. In this research, an exponentially weighted
moving average (EWMA) (Jones et al., 2001) control chart is
applied to monitor the error. The weighted average of the past
bearing temperatures reduces the noise and allows detecting small
process shifts.

To compute the upper and lower confidence limits of the
EWMA control chart, the EWMAt is obtained from Eq. 17
(Wang et al., 2016b). The upper and lower confidence limits
can be computed from Eqs 18, 19 (Horng Shiau and Ya-Chen
2005).

EWMAt � λ pAPEt + (1 − λ) pEWMAt−1, (17)

UCL(t) � μAPE + L p σAPE


λ[1 − (1 − λ)2t]

(2 − λ)N

√
, (18)

LCL(t) � μAPE − L p σAPE


λ[1 − (1 − λ)2t]

(2 − λ)N

√
, (19)

where: µAPE is the mean of absolute percentage error (APE); σAPE
is the standard deviation of APE; N denotes number of samples.
According to Horng Shiau and Ya-Chen. (2005), the value of the
parameter L is commonly set to 3 and λ is usually set to 0.2.

2.6 Binary Vectors Generated by Control
Chart
The EWMA control charts used statistical thresholds to label the
prediction error (residuals) as normal and abnormal. The normal
residual usually denotes the bearing temperature is within the
normal range and the wind turbine is at healthy status. On the
other hand, the abnormal values often indicate abnormal bearing
temperature change and it can be the warning signal for bearing
failures. Hence, in this research, the normal and abnormal
residuals identified by the EWMA control charts are
transformed into binary vectors as described in Figure 3 as
follows.

According to Figure 3, the statistical thresholds classified the
residuals into normal and abnormal ones. Each data point can be
simply labeled as 0 (normal) and 1 (abnormal). Hence, the binary
vectors can be generated in real-time and be utilized as the
inputs for the final classification models introduced in the
Section 2.7.

2.7 Classification Models
Using the real-time vectors generated by the EWMA control
charts, the final failure classification models are constructed in
this research. Here, the dimension of the input vector is
determined as 20 which represents all normal/abnormal
prediction residuals of bearing temperatures. In total of four
state-of-art machine learning algorithms including support
vector machine (SVM), least-square support vector machine
(LS-SVM), extreme learning machine (ELM), and kernel-based
extreme learning machine (KELM) are selected to classify the
vectors representing generator bearing failures and vectors from
normal bearing behaviors.

The SVM is the state-of-art supervised learning algorithm
used for classification and function approximation (Cherkassky
and Ma, 2004). It is based on kernel functions and it avoids the
difficulty of using linear functions in the high dimensional
parameter space, and the optimization problem is transformed
into a dual convex quadratic programming problem.

The LS-SVM is developed based on statistical theory and
considered as the improved version of SVM (Zhu et al., 2018).
Compared with the vanilla SVM, the LS-SVM modifies the
inequality constraint in the SVM to the equality constraint.
Meanwhile, the training error square is used to replace the
slack variable in order to transform quadratic programming
problem into the linear equation problem for greatly
improving the speed and accuracy of model parameters. The

FIGURE 3 | Vectorization of residuals using EWMA control charts.
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LS-SVM has the unique superiority in dealing with the small-
sample learning problem.

The ELM is a feedforward neural network which contains the
input layer, the output layer and one single hidden layer.
Compared with other computationally expensive and time-
consuming neural networks, the ELM adopts Penn Moore
pseudo inverse to determine the weights and biases between
the hidden layer and output layer (Li et al., 2021b). This
method enables ELM to learn faster and attain higher
generalization capability compared with other neural networks.

The KELM uses the kernel method over the vanilla ELM and it
solves the problem of random initialization of ELM and has high
classification accuracy (Pandey et al., 2018; Ouyang 2021), good
generalization ability and high degree of robustness. The
Gaussian kernel function is the most frequently used kernel
function and thus is selected in this study.

3 COMPUTATIONAL ANALYSIS

The data used in this research has been collected from SCADA
systems of a large wind farm. The data 10 min resolution data
from 11 wind turbines is used to investigate failure of a generator
bearing. Two bearing failure instances have been reported during
the period covered by the dataset.

3.1 Dataset Description and Preprocessing
The ranges of the generator bearing temperature of the 11
turbines are provided in Table 1. The bearing failure incidents
are also included in Table 1. Based on the maintenance records,
Turbine B, H, I, and K have been affected by bearing failures and
are not considered for modeling normal bearing behavior
discussed in the Section 3.2. Rather they are selected to test
abnormal behavior of the bearing temperature.

3.2 Parameter Selection
To capture the normal behavior of a generator bearing, 33
parameters relevant to the bearing temperature have been
initially considered. Using domain expertise, the number of
parameters of interest was reduced to 12. Next, three
algorithms (i.e., the wrapper with genetic search (WGS)

(Kohavi and John, 1997), boosting-tree algorithm (BTA)
(Sbihi, 2007), and the relief algorithm (RA) (Liu et al., 2018)
were applied to select the most relevant parameters for predicting
the generator bearing temperature. The wrapper approach uses
supervised learning to perform 10-fold cross validation in
selecting relevant parameters. The boosting-tree algorithm
evaluates the importance of parameters by constructing a
sequence of decision trees and computing the prediction
residuals. The relief algorithm selects the parameter set by
detecting conditional dependence between the parameters. The
eight most important parameters selected by the three data-
mining algorithms are listed in Table 2.

3.3 Modeling Bearing Behavior
Data from three wind turbines (i.e., Turbine C, Turbine D,
Turbine E) have been merged to train the neural network,
support vector regression machine, the extreme-learning
machine presented in Section 2.2, and the proposed deep
belief network (DBN). Data collected from Turbine A, B, F
and G are used as validation dataset to validate prediction
performance of the proposed DBN algorithm. Data from
Turbine G, J, I and K are used as testing dataset respectively.
To design the DBN, the number of hidden neurons in each layer
is set at 10% of the training data (Mitchell, 1999). The data from
the remaining 2 healthy turbines (i.e., Turbine 9 and 11) are
designated as test datasets to evaluate performance of the four
algorithms.

Table 3 presents prediction results produced by the four
algorithms based for the test and validation datasets. The
mean absolute percentage error (MAPE) and the root mean
square errors (RMSE) produced by the DBN algorithm are the
smallest which confirms the accuracy of the DBN model. This
superior performance may be attributed to the layer-wise pre-
training.

Figure 4 illustrates prediction error from testing and
validation produced by the deep belief network (DBN). The
APEs of healthy wind turbines and turbines with bearing
failures demonstrate different behaviors. Hence, the
emerging bearing failure is indicated by the APE of the
DBN model.

3.4 Condition Monitoring
In this section, behavior of the prediction error associated with
the bearing failure is discussed. The APE was monitored for

TABLE 1 | Dataset description.

Turbine id. Bearing temperature Bearing failure Failure times

Min (°C) Max (°C)

A 14 68 No
B 11 87 Yes 8
C 0 63 No
D 3 68 No
E 13 71 No
F 13 69 No
G 0 73 No
H 6 90 Yes 2
I 9 86 Yes 5
J 14 71 No
K 7 85 Yes 7

TABLE 2 | Dataset description.

Parameter BTA WGS RFA

Generator phase-1 winding temperature 100 10 0.1
Generator phase-2 winding temperature 98 10 0.1
Generator air temperature 97 10 0.09
Generator rear temperature 96 9 0.09
Generator phase-3 winding temperature 96 9 0.1
Water cooler temperature 91 8 0.11
Phase compensation panel temperature 78 7 0.07
Nacelle temperature 78 6 0.05
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1 week prior to the bearing failure. The upper confidence
limit (UCL) and the lower confidence limit (LCL) of the
exponentially-weighted moving average (EWMA) control
chart are computed from Eqs 18, 19 of Section 2.4.
The monitored examples of healthy turbines and the
turbines with emerging bearing failures are illustrated in
Figures 5, 6.

Figure 5 illustrates the EWMA charts of healthy
turbines (Turbine G and J) while Figure 6 shows the wind
turbines (Turbine I and K) with problematic generator
bearings of the same wind farm. In Figure 5, all statistics
fall within the control limits which indicates normal bearing
behavior. Meanwhile, outliers in Figure 6 begin to emerge

1 week prior to the bearing failure and an early alarm is
issued. According to the results presented in Figure 6,
bearing failures are visible several days ahead of
the occurrence. The proposed approach provides
sufficient time to react and thus minimize power loss and
downtime.

The outcomes of the EWMAs are transformed into the real-
time binary vectors and then the bearing failure classification
models are developed to classify the actual failures. However,
in the temporal domain, the optimal size of the EWMA
vectors are uncertain. Hence, this research performed several
experiments by trying difference size of the EWMA vectors
(i.e., K � 10, 20, 30, 40). All algorithms introduced in the Section

TABLE 3 | Performance evaluation of four algorithms.

Algorithm Validation Testing

Turbine B, H Turbine A, F Turbine G, J Turbine I, K

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

SVR 1.27 0.93 0.96 0.56 4.95 4.27 4.46 3.98
NN 0.65 0.41 0.42 0.34 2.57 2.12 2.29 2.04
ELM 0.94 0.52 0.92 0.51 3.55 2.86 4.81 4.22
DBN 0.63 0.49 0.33 0.23 2.38 1.80 2.23 2.01

FIGURE 4 | The absolute percentage error produced by the deep belief network.
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2.7 are tested and the computational results are illustrated in
Figure 7 below. The AUC is selected as the measurement It is
obvious that all algorithms reached their peak classification

performance when K � 20 and thus it is selected as the
optimal setting for the dimension of the input EWMA vector
in our study.

FIGURE 5 | The EWMA control charts of two healthy turbines.

FIGURE 6 | The EWMA control charts of two turbines with bearing failures.

FIGURE 7 | The AUCs of all classification algorithms under different dimensions of EWMA vectors.
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As illustrated in Figure 8 below, the ROC curves for the four
state-of-art algorithms are obtained with respect to the testing
dataset. Among them, the LS-SVM achieves the highest area
under the ROC curve (AUC) as 0.88 which demonstrates its
superior performance in classifying bearing failures from the
binary vector mixed with normal and abnormal prediction
residuals. Meanwhile, the other performance metrics including
accuracy, sensitivity and specificity along with the 95%
confidence intervals are also provided in Table 4. The LS-
SVM still performs best among all algorithms tested according
to all evaluation metrics. Hence, using the vectors generated from
the DBN and EWMA control charts, the LS-SVM is capable of
classify the majority of the bearing failures in the temporal
domain.

4 DISCUSSION

The condition-monitoring framework proposed in this study has
provided promising results using field SCADA data. Overall, the
advantages of the proposed framework can be summarized into
the following three points: First, it uses deep belief network as the
backbone regressor. It has shown superior power in extracting
temporal abnormal features from the dataset. Second, the
framework is designed to be implemented on SCADA data
which is the standard data collection system for almost all
wind farms across the globe. Hence, it can be widely
implemented on practice. Third, the classification part can
save a lor of labor and time. Conventional control chart-based
identification of mechanical failures requires humans to detect

the statistical outliers. Instead, in this research, the machine-
learning classifiers enables the automation of this process. In sum,
it can be widely applied in wind farms for condition
monitoring tasks.

On the other hand, there are also few shortcomings at
current stage. For example, the sensor errors can be a
misleading factor that cause false classification of mechanical
failures. The reliability of the SCADA sensors is not considered in
this framework. This can be a future direction of our current
research.

5 CONCLUSION

In this research, a deep-learning based condition-monitoring
framework to identify bearing failures was presented in this
study. Historical data collected from healthy wind turbines
was utilized to develop a model predicting bearing
temperature with a deep belief network. Data from both
healthy wind turbines and turbines to the bearing failures are
served as the testing dataset. Comparative analysis demonstrated
that the deep belief network model was more accurate in
predicting generator bearing failures. An exponentially-
weighted moving-average control chart was applied to capture
shifts in prediction error. The control charts generated binary
vectors lead to identification of the emerging bearing failure in
real-time in the temporal domain.

Computational results reported in the paper validated
accuracy of the deep-learning framework in condition
monitoring of wind turbine generator bearings. In the future

FIGURE 8 | ROC curves of the bearing failure classification outcome.

TABLE 4 | Summary of bearing fault classification results.

Classifier Accuracy Sensitivity Specificity AUC

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.

SVM 0.74 (0.71–0.77) 0.64 (0.58–0.70) 0.87 (0.80–0.94) 0.76 (0.72–0.80)
LSSVM 0.83 (0.78–0.88) 0.77 (0.72–0.83) 0.94 (0.91–0.97) 0.88 (0.81–0.95)
ELM 0.71 (0.65–0.77) 0.64 (0.61–0.67) 0.79 (0.72–0.86) 0.69 (0.60–0.78)
KELM 0.76 (0.72–0.80) 0.71 (0.65–0.77) 0.82 (0.78–0.86) 0.75 (0.70–0.80)
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research, analysis of high frequency vibration data may be
coupled with the bearing temperature data for multi-scale
condition monitoring.
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Modeling the Heat-Hydrogen Balance
Characteristic of Hydrogen Energy
Storage and Cooperative Dispatch of
Wind-Hydrogen Hybrid System
Yang Si1,2*, Laijun Chen1*, Linrui Ma1, Mengyu Gao1, Hengrui Ma1 and Shengwei Mei1,2

1Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center), Qinghai University,
Xining, China, 2State Key Lab of Control and Simulation of Power Systems and Generation Equipment (Tsinghua University),
Beijing, China

The heat and hydrogen balance of the hydrogen energy storage system’s intermittent
operation becomes a key factor affecting the performance of the wind-hydrogen
hybrid system (W-HHS). This work designed a hydrogen energy storage system
(HESS), including waste heat utilization. Then, a dual state of charge (SOC) model is
established, in which hydrogen and heat storage is considered. Furthermore, based
on the distributionally robust method, an optimal dispatch method of W-HHS is
proposed to reduce the operation cost of conventional units in the grid and
increase the revenue of the W-HHS. The previously proposed dual SOC model of
heat-hydrogen balance is regarded as a constraint in this cooperative dispatch. The
effectiveness and efficiency of the dual SOC model were verified on the IEEE 30-bus
system with an actual wind plant data set. The results show that the hydrogen-heat
dual SOC model can fully reflect the influence of heat and hydrogen balance on the
operation of the W-HHS. The cooperative dispatch method improves the reliability of
the W-HHS operation under the premise of ensuring the heat-hydrogen balance.
When the constraints of hydrogen balance SOC and heat balance SOC are met
simultaneously, the available power of the wind plant is 6–8% lower than the ideal
situation. Parameter analysis indicates that reducing the heat dissipation coefficient
can reduce the influence of the SOC constraint of heat balance on the dispatch
strategy and increase the power output of the wind plant. When the heat dissipation
coefficient is less than 1/1,200, the heat balance SOC constraint fails.

Keywords: hydrogen energy storage, hybrid system, cooperative dispatch, distributionally robust method, heat
balance, hydrogen balance

INTRODUCTION

With the change of energy structure, a new power system with a high proportion of renewable energy
will become the mainstream for the development of energy system transformation in the future
(Zhang and Chen, 2020). Wind and solar have become the primary power sources (Jiayu et al., 2021).
However, the wide application of renewable energy raises many problems. The ensuing stability and
security issues have become a critical bottleneck restricting the development of a high-proportion
renewable power grid (Impram et al., 2020).
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Wind power is one of the primary forms of renewable energy, and
its participation in the power system dispatch has received extensive
attention. Some researchers use stochastic optimization (Zhu et al.,
2020), robust optimization (Yu et al., 2020), distributionally robust
optimization (Guo et al., 2020), and other optimization methods to
try to describe the existing uncertainties in the cooperative dispatch
integrated with wind power. Among them, the distributionally robust
method is a data-driven optimization method, which constructs the
ambiguity set of uncertain parameter probability by using the
information implicit in the actual data. Significantly, the
distributionally robust method based on waister distribution has
been developed rapidly. Ref. (Guo et al., 2020) compared and
analyzed the adaptability of distributionally robust optimization
methods based on Wasserstein divergence distribution. (Esfahani
and Kuhn, 2018) demonstrated thismethod’s performance guarantee
and ease of treatment in detail. At the same time, it should also be
pointed out that according to lemma 8 (HOTA et al., 2019), the
premise of transforming the distributionally robust model of
uncertainty into a set of CVar constraints is that the optimization
problem studied is convex, which limits the application of this
method to a certain extent. In (Yang et al., 2020), a
distributionally robust chance constraint (DRCC) model is
proposed for the optimal power gas flow (OPGF) problem with
uncertain wind power. The DRCC-OPGFmodel is reformulated as a
treatable mixed-integer convex programming problem.

Besides, some works focus on the different forms of hybrid
systems with a wind plant. Different types of energy storage were
considered to suppress the wind fluctuation, such as batteries (Xu
et al., 2020), compressed air energy storage (Alirahmi et al., 2021), hot
dry rock geothermal energy (Si et al., 2021), and hydrogen energy
storage system (HESS) (Xiao et al., 2020), etc. constitute the optimal
dispatch of the hybrid system. The cooperative dispatch strategy of
these different hybrid systems was also well studied.

At present, the hybrid system formed by wind plants and
energy storage has become an important form to realize the stable
operation with a high proportion of wind power. On this basis,
the research about reducing the operating costs of conventional
units, increasing the power output of wind plants, and raising the
operating efficiency of energy storage systems has become more
and more popular. HESS has the advantages of fast response
speed, large energy storage capacity, and cross-season energy
storage. Also, it can adapt to the operating environment of cold
climates and significant temperature differences between day and
night (Petkov and Gabrielli, 2020). The application of HESS on
the wind-storage hybrid system has attracted scholars’ attention
in recent years (Li et al., 2020).

In the existing works, some aim to suppress the uncertainty of
wind power and improve the system economy. Ref. (Zhang and
Wan, 2014) established a hydrogen energy storage model to
reduce power curtailment and gave a scheme for wind/
hydrogen production through water electrolysis. Ref. (Qiu
et al., 2020) proposed a two-stage robust optimization method
with stability constraints considering the HESS’s safety and small
disturbance stability and dynamic response characteristics. The
power output range of the HESS was then determined. Ref. (Xu
et al., 2020) further proposed a distributionally robust chance-
constrained (DRCC) dispatch method for W-HHS in the day-

ahead power market and transformed it into a standard second-
order cone programming problem for a solution.

Other scholars regard the electrolyzer as an adjustable load and
research from the perspective of demand response. Ref. (Mirzaei et al.,
2018) proposed a safety constrained unit commitment model with
high-proportion wind power in coordination with demand response.
The HESS was used in this work to reduce energy consumption and
improve system reliability. Ref. (Mansour-Saatloo et al., 2020) used
the HESS in the energy hub to construct a robust dispatch method,
which considered the demand response of the HESS and the
characteristics of cogeneration.

The existing research shows that in the operation of the HESS,
cogeneration can happen both in the hydrogen production and
fuel cell generation stages. Its thermal characteristics have an
important influence on the reliable and efficient operation of the
HESS. On this basis, some work studied the future development
of hybrid systems with ultra-high penetration of renewable
energy. A thermoelectric hydrogen model with startup/
shutdown constraints and a new seasonal hydrogen energy
storage model was proposed (Wen et al., 2020). Ref. (Pan
et al., 2020) studied the influence of heat load increase on the
operation cost of the hybrid system and proposed a day-ahead
dispatch scheme for the power system with high-proportion wind
power andHESS. Ref. (Wei et al., 2021) further established a heat-
hydrogen efficiency model for the intermittent operation of the
electrolyzer by describing the heat exchange process in detail. Ref.
(Kovač et al., 2021) carried out research on the thermal management
of distributed photovoltaic-hydrogenation stations, put forward the
optimized thermal management strategy, and improved the energy
utilization efficiency. In order to ensure the energy efficiency of the
renewable hydrogen energy system, the thermal management of the
metal hydride tank is studied (Endo et al., 2021). Research shows that
heat management can improve energy efficiency by 50%.

It can be seen that in the grid-connected operation of the
hybrid system with renewable energy, the HESS can use the
electrolyzer to transform the excess wind power into hydrogen to
provide a down-reserves. At the same time. The fuel cell equipped
in the HESS can consume hydrogen to generate power to provide
an up-reserves for the hybrid system. The electrolyzer and the fuel
cell work alternately and intermittently to suppress the power
fluctuation. Notice that the electrolyzer and fuel cell’s operation
efficiency and response speed are closely related to their operating
temperature. Therefore, the ability of HESS to respond to wind
power fluctuations quickly, long-term, and efficiently is restricted
by the following two factors. First, the balance between hydrogen
production in the electrolyzer and the hydrogen consumption of
the fuel cell should always be satisfied. Second, the balance
between heat production under operation conditions and heat
consumption under reserve mode should be held as well. Thus,
the operation of W-HHS should meet both heat and hydrogen
production-consumption balance simultaneously when it is
connected to the grid.

Existing works have neglected the heat balance between
electrolyzers and fuel cells in the reserve mode and the
inherent relationship between hydrogen and heat balance.
While maintaining heat balance and hydrogen balance is the
key to ensuring the economic operation of the hybrid power
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equipped with HESS. Therefore, based on the operating
characteristics of the HESS, this paper first designs a brand
new structure of the HESS, including the waste heat utilization
system, and gives the heat-hydrogen state of charge (SOC)
models. Furthermore, the distributionally robust optimization
approach is used to model the uncertainty of wind plant power
output. Then, an optimal dispatch method for the W-HHS
considering the heat and hydrogen balance is proposed. The
models andmethod are verified with the IEEE 30-bus system. The
actual data set of a wind plant in Qinghai Province is used in this
simulation. Finally, the key parameters are analyzed, and their
impacts on system performance are well studied.

The rest of this article is organized as follows. Mathematical
Model of HESSWithWaste Heat Utilization System elaborates the
overall design scheme and mathematical model of the HESS with
waste heat utilization system. Mathematical Models of the Wind
Plant introduces the mathematical models of wind plants. The
cooperative dispatch method of W-HHS considering dual SOC
constraints is proposed in Cooperative Dispatch Method of
W-HHS Considering Dual SOC Constraints. Case Study verifies
the effectiveness of the proposed method through a case
consisting of actual data, followed by the disscusions in
Discussions.

MATHEMATICAL MODEL OF HESS WITH
WASTE HEAT UTILIZATION SYSTEM

Structure of HESS With Waste Heat
Utilization System
The structure of a HESS with the waste heat utilization system is
shown in Figure 1. The whole system consists of an electrolyzer,
fuel cell, hydrogen storage system, and waste heat utilization
system. This HESS adopts the alkaline electrolyzer as the water
electrolysis device due to its mature technology and fast response
speed. The electrolyzer is used to absorb the excess wind power to
produce hydrogen. As for the fuel cell, the proton-exchange
membrane fuel cell (PEMFC) is chosen to consume hydrogen
and generate electricity considering the requirement of the
operating temperature match.

The hydrogen storage system includes a hydrogen tank, an air/
oxygen system, and a water supply cycle. The waste heat utilization
system consists of a thermal tank, a heat storage exchanger, and a heat
cycle system. The heat cycle system builds a heating/cooling cycle
between the electrolyzer, PEMFC,water supply tank, and heat storage
tank to stabilize the system temperature. Themathematical models of
the various components of the HESS are given in the following
sections.

Model of HESS With Waste Heat Utilization
System
Model of Alkaline Electrolyzer and PEMFC
The alkaline electrolyzer has the advantages of short response
time and mature technology. It is very suitable to be used in a
HESS with wind plants. Its simplified model (Clua et al., 2018;
Xiong et al., 2021) can be expressed as:

⎧⎪⎪⎨⎪⎪⎩
Pt
ele � _ntH2HHV + Qt

ele

ηele �
_ntH2HHV

Pt
ele

, (1)

where Pt
ele and Qt

ele, respectively, represent the electricity
consumed and the heat produced by the electrolyzer at time t.
_ntH2 represents the rate of hydrogen production, and HHV

represents the higher heating value of hydrogen. ηele
represents the efficiency of the electrolyzer.

The operating temperature of the PEMFC should match that
of the alkaline electrolyzer to facilitate the recovery and utilization
of the waste heat of the HESS. Its model can be expressed as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
_mt
H2HHV � Pt

fuel + Qt
fuel

ηfuel �
Pt
fuel

_mt
H2HHV

, (2)

where Pt
fuel and Qt

fuel represent the electricity and heat produced by
the fuel cell at time t, respectively. _mt

H2 represents the hydrogen
consumption rate of PEMFC. ηfuel represents the efficiency of PEMFC.

Dual SOC Model for Hydrogen and Heat Balance
The HESS stores the hydrogen produced by the electrolyzer in the
hydrogen tank and supplies the hydrogen and oxygen to the
PEMFC when electricity is needed. At the same time, water is
supplied to the electrolyzer, and the electricity generation
products of the PEMFC are collected through the water supply
cycle. Taking the total energy stored in the hydrogen tank as the
parameter to describe the hydrogen energy storage state, we
establish SOC model of the hydrogen balance as:

SOCt
H2 � SOCt−1

H2 +
1

Smax
H2

(ηelePt
ele − Pt

fuel/ηfuel)Δτ, (3)

where SOCt
H2 represents the SOC of hydrogen energy stored

in the tank at time t. Smax
H2 represents the maximum capacity of

the hydrogen tank, and Δτ represents the time interval.
The waste heat utilization system provides thermal energy

for each link and collects waste heat. On the one hand, the

FIGURE 1 | Diagram of the wind-hydrogen hybrid system.
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waste heat is used to preheat the water entering the
electrolyzer, and on the other hand, it is used to maintain
the rated temperature of the PEMFC in reserve mode. Also,
when the PEMFC is in operation mode, the waste heat needs
to provide heat to the electrolyzer and recover the heat
generated from the PEMFC. After meeting the heat balance
requirements of the electrolyzer and PEMFC, the waste heat
utilization system can also use the remaining thermal energy
to provide heat for extra heat loads in the hybrid system. The
SOC model of heat balance is:

SOCt
th � SOCt−1

th + 1
Smax
th

[ηex(Qt
ele + Qt

fuel − Qt
sys) − Qt

load]Δτ,
(4)

where SOCt
th represents the SOC of thermal energy stored in the

thermal tank at time t. Smax
th represents the maximum thermal energy

storage capacity of the thermal tank.Qt
ele andQ

t
fuel represent the heat

generated by the electrolyzer and the PEMFC, respectively. Qt
sys and

Qt
load represent the heat consumed by the HESS and the heat

provided for the extra heat loads, respectively. ηex represents the
efficiency of the heat exchanger.

In Eq. 4, Qt
sys is composed of three losses: the heat dissipation of

the electrolyzer, the heat dissipation of the fuel cell, and the preheating
of the water supply cycle. Thus, Qt

sys can be expressed as:

Qt
sys � (Tt

ele − Tt
atm)λelePele + (Tt

ele − Tt
atm)λfuelPfuel + _ntwcp(Tt

ele − Tt
w),
(5)

where Tt
ele and Tt

fuel represent the operating temperature of the
electrolyzer and PEMFC. Tt

atm represent the ambient
temperature. Pele and Pfuel are the installed capacity of
electrolyzer and PEMFC. _ntw, cp, and Tt

w represent the molar
mass flow rate, specific heat capacity and temperature of the water
entering the electrolyzer. λele and λfuel represent the heat
dissipation coefficient of the unit capacity electrolyzer and
PEMFC (Hwang, 2005), which are defined as the heat
dissipation area per unit capacity Aele/Afuel to unit area
thermal resistance Rele/Rfuel. λele and λfuel can be expressed as:

λele � Aele

Rele
; λfuel � Afuel

Rfuel
. (6)

MATHEMATICAL MODELS OF THE WIND
PLANT

Models of Wind Plant Output Power
The power output of a wind plant can be modeled with wind
speed and installed power (Guo et al., 2020). By further
equating the wind speed change as a power output impact
factor λtW, a simplified model of the wind plant output can be
expressed as

~P
t

W � λtWPW· (7)

where PW represents the installed power of the wind plant. ~P
t
W

represents the actual power output of the wind plant.

While, in an actual situation, the system operator usually uses
the predicted wind plant output to determine the dispatch
decisions and the dispatchable power. The predicted power
output and dispatchable power can be expressed as:

P̂
t

W � λ̂
t

WPW, (8)

Pt
W � δP̂

t

W, (9)

where λ̂
t

W represents the predicted power output impact factor.
P̂
t
W and Pt

W represent the predicted output and dispatchable
power of the wind plant. λ̂

t

W reflects the availability of power grid
dispatch with wind power forecasting. Pt

W represents the
dispatchable power, forming the dispatching curve of the wind
plant, which is the grid-connected power guaranteed by the wind
plant. δ means availability factor of wind plant. Based on this, we
can further define the dispatch tracking deviation index of the
wind plant (Guo et al., 2020), which is:

ΔW � ⎛⎝∑T
t�1

~P
t

W −∑T
t�1

Pt
W
⎞⎠/∑T

t�1
~P
t

W, (10)

where ΔW represents the total power deviation in the whole
period of dispatch.

A Distributionally Robust Model of Wind
Plant Output Uncertainty
Distributionally robust optimization is a data-driven analysis
approach and has been widely studied and applied. This
method does not require an accurate probability distribution
to characterize the uncertainties. Its conservativeness lies between
robust optimization and stochastic optimization. Therefore, the
distributionally robust optimization approach is applied in this
work. In this method, we adopt the Wasserstein divergence (Guo
et al., 2020) as the ambiguous set to measure the uncertainties of
wind power output. Hence, we have:

Mε � {P ∈ M(Ξ): dW(P, P̂)≤ ε}, (11)

where P represents the probability distribution of the actual
power output of the wind plant. P̂ represents the empirical
distribution of the power output. M(Ξ) represents the set
formed by all possible distributions satisfying Wasserstein
divergence dw, where ε is the radius of the ambiguous set. The
calculation method of the parameters mentioned above can be
found in (Esfahani and Kuhn, 2018).

COOPERATIVE DISPATCH METHOD OF
W-HHS CONSIDERING DUAL SOC
CONSTRAINTS
The optimal dispatch of the W-HHS should reduce the operation
costs of conventional units in the grid as much as possible and
then increase the grid-connected power generated by wind plants
to make full use of clean energy and reduce carbon emissions.
Hence, we try to optimize the dispatch strategy of the HESS to
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ensure that the power output of the W-HHS can track the
dispatchable power accurately, thereby reducing the impact of
wind power fluctuation on the power grid.

Objective Function
In the cooperative dispatch, historical wind power data is commonly
used to predict the wind plant output. The model that we establish
combines the dispatchable power of wind plants with the availability
coefficients to optimize the output of conventional units and increase
the grid-connected output of wind plants. The operation cost of
conventional units and carbon emissions can also be reduced.
Therefore, the goal of the W-HHS’s optimal dispatch is:

F � max
~P
t
W

min
Pt,i
gen,δ

∑T
t�1

∑N
i�1
[ai(Pt,i

gen)2 + biP
t,i
gen + ci] − ceδP̂

t,i

W

+ cpΔWP(~Pt

W) ∈ M(Ξ), t ∈ T, i ∈ N, (12)

where P(~Pt
W) represents the probability distribution of the actual

wind plant output. ce represents the on-grid power tariff. cp
represents the penalty coefficient. Pt,i

gen represents the power
output of the units. ai, bi, and ci represent the operation cost
coefficients of the conventional unit. i represents the bus index.N
represents the set of all buses.

Constrains
Dual SOC Constrains
In order to ensure that the HESS can dispatch the electrolyzer and
PEMFC to provide reserves for the hybrid system, the optimal
dispatch strategy must meet the balance of the hydrogen
production (generated by electrolyzer) and the hydrogen
consumption (consumed by the PEMFC). Also, the strategy should
hold the heat balance between heat production and consumption.

The hydrogen balance requires that the system does not need
to supplement hydrogen from outside during the operation, and
the hydrogen in the storage tank will never be lower than the
lower bound of the rated value after operating for a period T.
Thus, we have the hydrogen balance SOC constraint is:

{ SOCt
H2 ≥ 0

SOCini
H2 ≤ SOC

T+1
H2

, (13)

where SOCini
H2 is the initial value of the hydrogen tank.

Similarly, the heat balance requires that the waste heat
utilization system supports the W-HHS to operate
continuously and efficiently within the specified operation
period without the input of external thermal energy. Its SOC
constraint can be expressed as:

{ SOCt
th ≥ 0

SOCini
th ≤ SOCT+1

th

, (14)

where SOCini
th is the initial value of the thermal tank.

Besides of heat SOC constraint, heat balance also includes heat
power balance constraint in operation.

Qt
ele + Qt

fuel � Qt
sys + (Qt

load + Qt
storage)/ηex (15)

where Qt
storage represents the heat stored in the thermal tank.

Constraints for Grid
The constraints of power grid dispatch include power flow
constraints, line capacity constraints, and power balance
constraints. In this section, the linear AC power flow
model is adopted. Then, we have the power flow
constraints as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pt
l � gl

Vt
i − Vt

j

2
− bl(θti − θtj) + Pt

Ll

Qt
l � −bl

Vt
i − Vt

j

2
− gl(θti − θtj) + Qt

Ll

, (16)

where Pt
l and Qt

l represent the active and reactive power flow on
line l at time t. Vt

i and θti represent the voltage magnitude and
phase angle of bus i. Pt

Ll and Qt
Ll represent the active and reactive

power flow errors on line l (Guo et al., 2020).
The constraint of line capacity is:

(Pt
l)2 + (Qt

l)2 ≤ (Stl)2, (17)

where Stl represents the capacity of line l. Eq. 17 can be linearized
by the outer approximation approach as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Stl ≤Pt

l ≤ Stl
−Stl ≤Qt

l ≤ S
t
l

− �
2

√
Stl ≤P

t
l + Qt

l ≤
�
2

√
Stl

− �
2

√
Stl ≤P

t
l − Qt

l ≤
�
2

√
Stl

, (18)

The power balance constraint is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pt
i � ∑

l

Pt
l + Vt

i ∑
N

j�1
Gij � Pt,i

W + Pt,i
gen − Pt,i

ld

Qt
i � ∑

l

Qt
l − Vt

i ∑
N

j�1
Bij � Qt,i

gen − Qt,i
ld

, (19)

where Pt
i andQ

t
i represent the active and reactive power injected into

bus i, that is, the power generated by the generator connected to the
bus minus the active/reactive load Pt,i

ld/Q
t,i
ld on the same bus. Gij and

Bij are the real and imaginary parts of elements in the network
admittance matrix.

Model Solution
The problem established in Eqs. 12–19 is a max-min
optimization problem. The actual power output of the wind
plant is modeled by the uncertain ambiguous set given in Eq.
11, which cannot be solved directly. To this end, we adopt the
method proposed in (Guo et al., 2020) to transform the set into a
set of linear chance constraints, which are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε(1 − ΔW) + 1
K

∑K
k�1

ski − ciα≤ 0

ski ≥ (1 − ΔW)∑T
t�1

~P
k,t

Wi −∑T
t�1

Pk,t,i
W + ci

ski ≥ 0

, (20)

where K is the number of data samples. α is the confidence level.
~P
k,t
Wi and Pk,t

Wi are the actual wind plant output and dispatchable
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grid-connected power represented by samples. sti and ci are
corresponding dual variables.

At this time, since we use samples to describe the uncertainties
of the wind plants outputs, the power balance constraint of each
line in Eq. 19 can be rewritten as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pk,t
i � ∑

l

Pk,t
l + Vk,t

i ∑N
j�1

Gij � Pk,t,i
W + Pt,i

gen + Pk,t,i
fuel − Pk,t,i

ele − Pt,i
load

Qk,t
i � ∑

l

Qk,t
l − Vk,t

i ∑N
j�1

Bij � Qt,i
gen − Qt,i

load

, (21)

The lower and upper bounds of each variable restricted by
the limitations of technology and environment are all
considered in modeling, which is not listed due to the space
limitation. Besides, we notice that product terms of two
decision variables exist in Eq. 5, making the model
nonlinear. This term can be piecewise linearized by the
Boolean expansion method (Pereira et al., 2005).

So far, the W-HHS proposed cooperative dispatch method is
transformed into a mixed-integer linear program, which can be
solved with matlab 2016b and Cplex12.6.

CASE STUDY

System Parameters
In this section, we test our models and method on the IEEE 30-
bus testbed. The actual historical data obtained from the Qinghai
Province’s 90 MWwind plant is used as samples. The parameters
of the system are shown in Table 1. The W-HHS is integrated on
bus #12, which is also given in Figure 2. The capacity of HESS is
selected according to the local energy storage configuration
policy, equal to 10% of the wind plant capacity. The specific
historical data is selected as the predicted value of the wind plant
output. 20% prediction error is set according to the current wind
power prediction level.

The Latin hypercube method generates 100 samples (Shu et al.,
2014) to construct the proposed distributionally robust
optimization model. The upper and lower bounds of predicted
output, available power, and uncertainties of wind plants are
shown in Figure 3.

TABLE 1 | System parameters.

Parameters Value

Wind power installed capacityPW MW 90
PEMFC installed capacity Pfuel MW 9
Electrolyzer installed capacity Pele MW 9
Volume of hydrogen storage tank VH2 m3 6.41
Pressure of hydrogen storage tank pH2MPa 10
Efficiency of PEMFC ηfuel % 60
Efficiency of electrolyzer ηele % 60
PEMFC operating temperature Tt

fuel
°C 80

Electrolyzer operating temperature Tt
ele

°C 80
Heat exchanger efficiency ηex% 80
Ambient temperature Tt

am
°C 20

Higher heating value of hydrogen HHV kJ/mol 282
Heat dissipation coefficient of PEMFC λfuel °C

−1 1/800
Heat dissipation coefficient of electrolyzer λele°C

−1 1/800
Water specific heat capacity cpkJ/(kg·°C) 4.2
Availability coefficient δ 0.8–1
Confidence level α 0.05

FIGURE 2 | Diagram of the IEEE 30 power system.
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Cooperative Dispatch Results of W-HHS
To analyze the influence of heat balance and hydrogen balance on
the dispatch strategy of HPS, we study four different
scenarios, which are listed as follows. The results are shown in
Table 2.

Case 1: Heat and hydrogen balance constraints are not
considered;

Case 2: Only heat balance constraints are considered;
Case 3: Only hydrogen balance constraints are considered;
Case 4: Both hydrogen and heat balance constraints are

considered.
It can be seen from Table 2 that where the hydrogen and heat

balance constraints are ignored (Case 1), the dispatchable power
of the wind plant is equal to the predicted value, and the operation
cost of conventional units is the lowest. However, 25.04 kg extra
hydrogen is needed to support the 24-h operation of the hybrid
system. As constraints are added into the model, the availability
coefficient of the wind plant decreases to meet hydrogen and heat
balance requirements, and the cost of conventional units
increases. Compared with Case 1, the wind plant availability
coefficient in Case 4 has dropped by 6.33%, and the cost of
conventional units has increased by 3.4%. The results of

conventional unit dispatch in the four scenarios are shown in
Figure 4.

According to the results in Case 2 and 3, we can figure out
that the dispatch strategy that only satisfies the hydrogen
balance or the heat balance requires the extra hydrogen or
thermal supplement. It can be seen that when the system has
sufficient day-ahead initial hydrogen storage or thermal
storage, the corresponding dispatch strategy can also be
adapted to increase the grid-connected power output of
wind plants. When the initial hydrogen energy storage and
the thermal storage are insufficient, the wind plant availability
coefficient can only be reduced, and the dispatch strategy in
Case 4 is adopted to maintain this efficient and economical
operation of the HESS. Figure 5 shows the operation of the
HESS in the four Cases.

It can be seen from Figure 5 that the PEMFC in Case 2
consumes extra hydrogen to provide an up-reserve for the hybrid
system, improving the availability coefficient of wind power and
meeting the heat balance constraints. In Case 3, the availability
coefficient of the wind plant decreases. We can see that the
probability of wind power curtailment increases while the
probability of load curtailment decreases. The W-HHS calls
the electrolyzer to increase hydrogen production, and the
PEMFC is controlled to consume less hydrogen, thereby
satisfying the hydrogen balance constraint. The SOC changes
of hydrogen balance and heat balance are shown in Figure 6.

Figure 6 shows that only the dispatch strategy adopted in Case
4 can simultaneously satisfy the heat and hydrogen balance
constraints. In this case, the hydrogen tank will have the
remaining hydrogen. The remaining hydrogen can be used in
the subsequent optimal dispatch to increase the grid-connected
output of the wind plant, reflecting the character of hydrogen
energy storage’s cross-cycle energy storage. When the heat
balance SOC shown in Figure 6 is less than 0, it indicates that
the hydrogen energy storage system must rely on additional
supplementary heat energy to maintain the regular operation.
This working condition means that the hydrogen energy storage
system’s thermal energy generated and stored is not enough to
maintain the heat balance of intermittent work. In practice, the
system’s hydrogen production and power generation efficiency
will decline to generate sufficient thermal energy.

Compared with Case 3, the optimal strategy in Case 4 further
reduces the wind plant’s available power and grid-connected
power to satisfy the heat balance. It can be seen that the heat
balance constraint reduces the profits of the hybrid system. Thus,
the factors that affect the heat balance constraint should be

FIGURE 3 | Power chart of the wind plant.

TABLE 2 | Cooperative dispatch results.

Scenarios Operation cost
of units
($×106)

Wind plant
profits ($×106)

Residual hydrogen
(kg)

Residual thermal
energy (kW·h)

Wind plant
availability coefficient

Case 1 0.14223 0.21934 −25.04 — 1
Case 2 0.14645 0.20951 −19.86 126.44 0.9552
Case 3 0.14564 0.20575 22.58 −489.15 0.9381
Case 4 0.14696 0.20546 22.50 135.95 0.9364
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FIGURE 4 | Dispatch results of conventional units.

FIGURE 5 | Operation of hydrogen energy storage system.
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further analyzed to reduce the impact of heat balance on the
operation of HESS.

Analysis of Impact Factors on Heat Balance
From the results in Figures 5, 6, we can easily find out that
when the W-HHS is in operation, the electrolyzer and PEMFC
run intermittently. The electrolyzer cannot run at full power,
and the PEMFC is always in reserve mode for a long time in an
operation cycle. According to the heat balance model given in
Eq. 5, 15, whether the heat produced can meet the heat lost by
the system mainly depends on the heat dissipation coefficient
of the electrolyzer and PEMFC. Therefore, the influence of the
heat dissipation coefficient on the heat balance SOC constraint
should be analyzed. Thus, we take the heat dissipation
coefficient in a range of [1/900, 1/1,500] to study the
performance of the waste heat utilization system. The
results are shown in Table 3.

Table 3 shows that as the heat dissipation coefficient
decreases, the operation is less influenced by the heat balance
constraints. The high availability coefficient of the wind plant
results in a decreased operation probability of the electrolyzer and
an increased working time of the PEMFC. Hydrogen storage

drops accordingly. Also, due to the decrease of heat dissipation,
the thermal energy stored in the thermal tank gradually increases.

When the heat dissipation coefficient is less than 1/1,200, Case
4 is equivalent to Case 3. The hybrid system is no longer affected
by heat balance constraints. Thus, we can conclude that
improving the heat insulation performance and reducing the
heat dissipation power will help raise the system’s operating
efficiency. Meanwhile, the available grid-connected power of
the wind plant increased, and the profit of theW-HHS improved.

DISCUSSION

According to the W-HHS energy storage system’s electricity,
hydrogen, and heat characteristics, this work designs a HESS with
a waste heat utilization system. Then, the hydrogen and heat dual
SOC constraints are established to describe the operation of the
electrolyzer and PEMFC in the HESS. On this basis, a cooperative
dispatch method for the W-HHS is proposed, aiming to reduce
the operation cost of conventional units in the grid and increase
wind plants’ profit. The distributionally robust optimization
approach models the uncertainties in the system. Then, the
formulated model is transformed into a set of chance
constraints and can be solved with an offline solver. Finally,
we test our model with the IEEE 30-bus system, and actual wind
power data from a Qinghai province wind plant is used.

The results show that without considering the hydrogen
balance, the system has a significant wind power availability
factor, which can improve the grid-connected power of the
wind plant, but in practice, it needs to consume additional
hydrogen to ensure fuel cell power generation. It can be seen
that considering the hydrogen balance and heat balance
will reduce the grid connection availability factor of the
wind plant to generate enough hydrogen and thermal
energy. In the operation of W-HHS, the available power of
the wind plant is 6–8% lower than the ideal situation to
meet the SOC constraints of hydrogen and heat balance.
The heat dissipation coefficient of HESS has a significant
influence on the SOC constraint of heat balance. When the
heat dissipation coefficient is small enough, the SOC
constraint of heat balance becomes invalid, and the SOC
constraints of hydrogen balance only restrict the system
operation strategy.

In addition, it should also be seen that after 24 h of continuous
operation of the case4 in this paper, both hydrogen storage tank
and heat storage tank have residual energy. This shows that in

FIGURE 6 | SOC change of hydrogen energy storage system.

TABLE 3 | Influence of heat dissipation coefficient.

Heat dissipation coefficient
(°C−1)

Wind plant availability
coefficient

Residual hydrogen (kg) Residual thermal energy
(kW·h)

1/900 0.9241 27.96 61.5
1/1,000 0.9346 22.5 135.95
1/1,100 0.9379 17.9 812.5
1/1,200 0.9431 13.98 996.9
1/1,300 0.9446 12.79 1,187.7
1/1,400 0.9446 12.79 1,365.8
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multi-day dispatching scene when there is hydrogen and heat
energy in the hydrogen storage tank and heat storage tank, the
system dispatching can also adopt an optimistic availability factor
to use the remaining hydrogen and heat energy to improve the
grid-connected power of wind plant and reduce the generation
cost of conventional units. This problem needs further research in
the future.
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NOMENCLATURE

DRCC Distributionally robust chance-constrained

HESS Hydrogen energy storage system

PEMFC Proton-exchange membrane fuel cell

SOC State of charge

W-HHS Wind-hydrogen hybrid system

Variables
Aele electrolyzer heat dissipation area per unit capacity

Afuel PEMFC heat dissipation area per unit capacity

ai,bi,ci operation cost coefficients of the conventional unit i

Bij imaginary parts of elements in network admittance matrix

ce on-grid power tariff

cp penalty coefficient

dw Wasserstein divergence

Gij real parts of elements in network admittance matrix

HHV higher heating value of hydrogen

K number of data samples

_mt
H2 hydrogen consumption rate of PEMFC

M(Γ) set formed by all possible distributions

_ntH2 rate of hydrogen production at time t

P probability distribution of the actual wind plant output

P̂ empirical distribution of the wind plant output

Pt
ele electricity consumed by the electrolyzer at time t

Pt
fuel electricity consumed by the fuel cell at time t

Pt,i
gen power output of the units i at time t

Pt
i active power injected into bus i

Pt
l active power flow on line l at time t

Pt
Ll active power flow errors on line l

Pt,i
ld active load into bus i

PW installed power of the wind plant

Pt
W dispatchable power of the wind plant at time t

P̂
t
W predicted output power of the wind plant at time t

~P
t
W actual power output of the wind plant at time t

P(~Pt
W) probability distribution of the actual wind plant output

Qt
ele heat produced by the electrolyzer at time t

Qt
fuel heat produced by the fuel cell at time t

Qt
i reactive power injected into bus i

Qt
l reactive power flow on line l at time t

Qt
Ll reactive power flow errors on line l

Qt,i
ld reactive load into bus i

Qt
load heat provided for extra heat loads

Qt
sys heat consumed by the HESS

Rele unit area thermal resistance of electrolyzer

Rfuel unit area thermal resistance of PEMFC

Smax
H2 maximum capacity of the hydrogen tank

Stl capacity of line l

Smax
th maximum capacity of the thermal tank

SOCt
H2 SOC of hydrogen energy stored in the tank at time t

SOCt
th SOC of thermal energy stored in the tank at time t

Tt
atm ambient temperature

Tt
ele operating temperature of the electrolyzer

Tt
fuel operating temperature of the PEMFC

Tt
w temperature of the water entering the electrolyzer

Vt
i voltage magnitude of bus i.

α confidence level

ηele efficiency of the electrolyzer

ηex efficiency of the heat exchanger

ηfuel efficiency of PEMFC

θti Phase angle of bus i

λele heat dissipation coefficient of unit capacity electrolyzer

λfuel heat dissipation coefficient of unit capacity PEMFC

λtW power output impact factor of wind plant

λ̂
t

W predicted power output impact factor of wind plant

ci,s
t
i dual variables

δ availability factor of wind plant

ε radius of the ambiguous set

ΔW total power deviation in the whole period of dispatch

Δτ time interval

Frontiers in Energy Research | www.frontiersin.org November 2021 | Volume 9 | Article 79182912

Si et al. Dual-SOC Model of Wind-Hydrogen System

118

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Equivalent Firm Capacity Assessment
of HDR-PV Hybrid Power System: A
Distributionally Robust Approach
Yang Si1,2, Linrui Ma1, Laijun Chen1*, Hengrui Ma1 and Shengwei Mei1,2

1New Energy Photovoltaic Industry Research Center, Qinghai University, Xining, China, 2State Key Lab of Control and Simulation
of Power Systems and Generation Equipment (Tsinghua University), Beijing, China

Aiming at the reliable grid connection of photovoltaic (PV) systems in frigid plateau regions,
this work first designs a flexible hot dry rock (HDR) hybrid power system (HPS), making full
use of the potential of HDR for energy storage and power generation. Based on the
operation of HPS, a comprehensive energy system credible capacity assessment method
considering the overall economy of the system and the reliability of the grid is established.
In this method, the power allowable fluctuation rate of the grid as the equivalent firm
capacity (EFC) constraint is considered. Then, the constraint is converted into a set of linear
chance conditions through the distributionally robust method so that the capacity
assessment of the HDR-PV HPS can be converted into a mixed-integer linear
optimization problem for a solution. The proposed assessment method is verified by
real HDR-PV HPS in the Gonghe Basin of Qinghai Province. The results show that the
flexible HDR plant increases the credible capacity of the HPS by 113.38%. The profit of the
flexible HDR plant was increased by 3.02% at the same time. The parameter analysis
shows that the HDR-PV HPS obtains the most profit when the allowable fluctuation rate is
7%, but 10% can fully utilize the geothermal. The assessment method can effectively
assess the credible capacity of the system under the premise of ensuring the overall
economy of the HPS, thereby guiding power grid dispatching.

Keywords: hot dry rock, equivalent firm capacity, credible capacity assessment, distributionally robust method,
hybrid power system

INTRODUCTION

As the concept of clean energy has reached a consensus worldwide, clean energy, such as
photovoltaics (PV), has developed rapidly (Singh, 2013). The proportion of PV installed
capacity in the power system is increasing year by year. At the same time, the proportion of
conventional thermal power stations is decreasing year by year due to the requirements of
environmental protection and carbon emission reduction. It can be seen that integrating PV
plants into the grid reliably has become an urgent problem to be solved.
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The assessment of the credible capacity of grid-connected PV
plants has attracted widespread attention worldwide (Islam et al.,
2014). Some researchers have studied the optimal grid-connected
capacity of different scales and multiple types of energy resources
from the perspective of passive consumption by the grid (Injeti
and Kumar, 2003) and modeled the uncertainties of renewable
sources by robust optimization, stochastic optimization, and
distributionally robust optimization (Guo et al., 2020). Ref
(Yuan et al., 2012) studied the optimal capacity assessment of
grid-connected PV plants by using the bus voltage threshold of
the low-voltage side of the distribution transformer. Ref (Wang
et al., 2019) put forward a method for calculating the credible
capacity of PV plants in rural power systems considering the risk
of overload. The distributionally robust method can balance
conservatism and computational efficiency, which has attracted
extensive attention in recent years. A method to transform the
ambiguous set composed of Wasserstein divergence into chance
constraints was addressed (Esfahani and Kuhn, 2018). Ref (Hota
et al., 2019) further proved the performance of the
distributionally robust method based on Wasserstein divergence.

Other researchers use existing PV plants and energy storage
systems (ESSs) to form a hybrid power system (HPS) to improve
the power quality with PV integration. From the perspective of
power scheduling, different indicators, such as effective load-
carrying capability (ELCC), equivalent firm capacity (EFC), loss
of probability (LOP), are proposed to represent the credible
capacity of the HPS in the sense of dispatchable grid. By
optimizing the dispatch of ESSs, the HPS as a whole is
equivalent to a dispatchable power source so that the overall
power generation can meet the power fluctuation requirements
(Zhang L. et al., 2014; Dent et al., 2014; Sulaeman et al., 2016).
Further, the reliability of HPS is improved, and the cost is reduced
at the same time (Esmaili and Nasiri, 2009; Tapetado and Usaola,
2019). Ref (Song et al., 2012) improved the dispatchable power
through the coordinated operation of the PV plant and the
electrochemical energy storage device, thereby increasing the
credible capacity of the HPS. Ref (He et al., 2013) proposed a
Markov-decision-process-based control strategy to evaluate the
credible capacity of PV plants in an HPS. The results showed that
ESSs could improve the PV system’s reliability in weak solar
irradiance and a high proportion of renewable energy. It can be
seen that ESS plays a vital role in the stable operation of the power
grid. Ref (Zhang et al., 2017) further used the EFC theory to
optimize the configuration of a distributed HPS equipping with
wind, solar, and storage, reducing the system investment cost. A
method using EFC to estimate the equivalent energy storage
capacity of grid-connected parking lots is proposed for the
capacity assessment of electric vehicle urban virtual energy
storage systems (Zeng et al., 2020). Moreover, EFC can also be
used as the contribution index of electric field capacity to power
supply security, and a market capacity value method for large-
scale investment dispatching is proposed (Peter and Wagner,
2021).

For the grid, the grid dispatcher will make a dispatching plan
according to the generation capacity of the connected plants to
ensure a safe, stable, and economical operation. However, due to
the uncertainty of the output power of renewable plants in HPS,

the grid will not optimize the dispatching according to HPS’s
installed capacity. The grid must assess credible capacity to plan
the dispatching curves. For HPS, accurate assessment of credible
capacity is helpful to track the dispatching curves in actual
operation, reduce the impact on the power grid, increase the
grid-connected power and reduce the penalty. To sum up, the
credible capacity assessment of HPS can provide an essential
reference for the actual system operation. It can effectively reduce
the cost of grid dispatching and improve system performance.
Nowadays, the existing research mainly focuses on the HPS with
electrochemical ESS and PV plants. When electrochemical ESSs
are applied in plateau and frigid environments, they will face the
problem of low cycle life and high self-consumption. These
disadvantages limit the use of electrochemical ESSs on a large
scale. Hence, insufficient energy storage makes some high-
altitude areas equipped with high-proportion renewable
sources lack dispatchable power sources. In this dilemma, new
techniques are urgently needed to solve the reliable connection of
large-scale PV plants in these frigid plateau regions.

The geothermal energy of hot dry rock (HDR) has the
advantages of stable power generation, simple operation and
maintenance, and complete cleanliness (Yan et al., 2019). It
can replace electrochemical energy storage to build an HPS in
frigid plateau regions. It has excellent potential for increasing the
dispatchable capacity of the grid and improving reliability.
Nevertheless, because of the geographical location restriction
of resources, the long dynamic response time (Brown, 2009),
and the high investment cost (Zhang Y.-J. et al., 2014), the
existing HDR system can only be used as a base power source
without participating in auxiliary services of the grid. Many
studies have been proposed to improve the thermal process of
the HDR geothermal power system and promote the
comprehensive utilization of HDR geothermal energy. Ref
(Zare, 2016) proposed an HDR-HPS that can realize a supply
of cold, heat, and electricity to utilize the heating and cooling
potential of HDR geothermal energy comprehensively. In order
to improve the flexibility of the HDR system, Ref (Si et al., 2020).
proposed a multi-energy HPS for HDR, wind, solar, and other
renewable sources that were considered to meet the needs of
cooling, heating, and electrical loads of independent microgrids.
Further, a hybrid power system composed of an HDR plant heat
storage plant was proposed and addressed the cooperative game
dispatching model (Si et al., 2021).

The existing research has not paid attention to the influence of
HDR geothermal energy on the credible capacity of the HPS. The
HDR power system has its unique characteristics, and the
operation mode of the HPS integrated with HDR is different
from other systems. In the research on HDR power systems, the
operation strategy of HDR is rarely considered to stabilize the
fluctuation of the integrated PV plant, increase the credible
capacity, and improve the system’s reliability. To solve these
problems, we first introduce the thermal storage generation cycle
(TSGC) to improve the operational flexibility of the HDR power
system. Then, the potential of HDR geothermal energy is
explored, and a flexibly dispatchable HDR-PV HPS is
designed. Moreover, the operation of this complex system is
carefully studied.
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Furthermore, combined with the EFC theory, taking power
fluctuation requirements of the HPS’s output as the EFC
constraint, a credible capacity assessment method of the HDR-
PV HPS considering the overall economy is established. The
uncertainty of EFC constraints is modeled, and the corresponding
solution method is given. The proposed model and method are
verified with the actual weather and HDR resource data
composition in the Gonghe Basin of Qinghai Province. The
simulation results indicate the effectiveness and the efficiency
of the proposed method.

The rest of this article is organized as follows.HDR–PVHybrid
Power System Architecture elaborates the overall design scheme of
the flexible HDR system and the HDR-PV hybrid power system
structure. Mathematical Models of the HDR-PV HPS introduces
the mathematical models of the HDR-PV hybrid power system.
The credible capacity assessment method for HDR-PV hybrid
power system is proposed in Credible Capacity Assessment
Method Bbased on Distributionally Robust. Case Study verifies
the effectiveness of the proposed method through a case
consisting of actual data of the Gonghe Basin, followed by the
discussions in Discussion.

HDR–PV HYBRID POWER SYSTEM
ARCHITECTURE

Flexible HDR System
The conventional HDR power system is not flexible enough to
provide sufficient reserve for the HPS. Therefore, based on the
conventional enhanced geothermal system (EGS), we design an
HDR power system with flexible operation capabilities, a flexible
HDR system. The composition of the flexible HDR system is
shown in Figure 1.

The system consists of EGS and TSGC. In the system, EGS is
composed of an HDR geothermal mining cycle (GMC) and
organic Rankine cycle (ORC) power generation system.
Geothermal working fluid distributor, ORC generator I,
geothermal working fluid mixer, and reinjection pump are
included, realizing geothermal energy for extraction,
distribution, conversion, and reinjection. Brine often acts as a
geothermal working fluid, forming the outer circle in Figure 1.

The TSGC consists of a heat exchange/storage system and an
ORC power generation system, as shown in the inner circle of
Figure 1. A heat storage/exchanger, a thermal storage tank, and
an ORC generator II are included in the TSGC. The heat transfer
oil (HTO) is always used as the heat storage medium to realize the
time-sharing storage and utilization of continuous geothermal
energy.

The performance of the ORC generator both in EGS and
TSGC directly affects the operating characteristics of a flexible
HDR plant. According to our previous work (Zhang et al., 2020),
the subcritical ORC structure with dry steam can better adapt to
the geothermal utilization scenario in the temperature zone of
180–200°C. Therefore, the results in (Zhang et al., 2020) are used
in this paper, and butane is used as the organic working fluid for
both ORC generator I and ORC generator II.

Structure of HDR-PV HPS
The HDR-PV HPS is formed with multiple PV plants and an
HDR power system that serves as a storage to balance the energy
exchange and eliminate the volatilities. The basic structure of
HDR-PV HPS is shown in Figure 2.

In actual cases, due to the limitation of HDR resources and
GMC capacity, the ability of the HDR power system to provide
reserve is restricted. Also, the weather forecast accuracy cannot be
guaranteed due to the uncertainties induced by different weather

FIGURE 1 | Composition diagram of flexible HDR system.
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factors (Nespoli et al., 2019). Therefore, the credible capacity of
HDR-PVHPS will also be affected by weather factors, and there is
uncertainty in the assessment process of the credible capacity.

The HDR-PV HPS designed in this work uses an HDR power
system as the ESS to provide energy reserves to the PV generation,
increasing the overall credible capacity and improving system
reliability while meeting economic efficiency. The key to realizing
this target is establishing an operating model that considers the
day-ahead forecast of PV generation and the HDR power system.
Then, we can evaluate the maximum credible capacity of the
system with EFC constraints. The assessment results lay the
foundation for subsequently coordinated scheduling. Thus, the
following work will focus on the operation and the credible
capacity assessment of the HDR-PV HPS.

MATHEMATICAL MODELS OF THE
HDR-PV HPS

Models of Flexible HDR System
As shown in Figure 1, the flexible HDR system consists of EGS
and TSGC. EGS can be modeled through the GMC and the ORC
power generation (Yao et al., 2018). The geothermal working
fluid distributor realizes the flexible brine distribution between
the ORC generator I and the heat exchanger. The ESG model can
be expressed as follows:

mt
α +mt

β � mt
r, (1)

where mt
r represents the mass flow rate of brine in the GMC; mt

α

and mt
β represent the brine mass flow rate for ORC generator I

power generation and for heat exchange in the heat storage/
exchanger, respectively.

The output Pt
Iof ORC generator I can be modeled as

Pt
I � ηPm

t
αcpr(Tr − Tα), (2)

where ηP represents the power generation efficiency of the ORC
generator; cpr represents the specific heat capacity of the brine; Tr

represents the initial temperature of the brine in the production
well; Tα represents the residual heat temperature of the brine after
passing through the power generation system. Tr and Tα can be
considered as a fixed value during regular operation (Kaplanis
and Kaplani, 2007).

The geothermal working fluid mixer model is as follows:

mt
αTα +mt

βTβ � mt
tT

t
W, (3)

where Tβ represents the residual heat temperature of the brine
after exchanging heat through the heat storage/exchange system;
Tt
W represents the reinjection temperature of the heat extraction

cycle. Due to the long response time of the HDRGMC,mt
r and Tr

can be regarded as constants.
In TSGC, the heat storage/exchange system transfers the heat

from the brine to the HTO through the heat storage/exchanger
and stores the energy in the high-temperature tank. When power
generation is needed, the system inputs high-temperature
HTO into the ORC generator II to generate electricity, and

FIGURE 2 | Structure of HDR-PV HPS.
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the cooled-down HTO after power generation flows back to the
low-temperature tank.

The heat storage/exchanger model in the system can be
expressed as

Qt
β � mt

βcpr(Tr − Tβ), (4a)

Qt
c � mt

ccpo(Tc − Tl), (4b)

Qt
c � ηexQ

t
β, (4c)

where Qt
β is the thermal power input from the geothermal

working fluid distributor; Qt
c is the heat charge power from

the heat exchanger; ηex is the efficiency of the heat exchanger;
mt

c is the mass flow of the HTO during heat storage; Tc is the
temperature of the HTO after heat exchange; Tl is the initial
temperature of the HTO; cpo is the specific heat capacity of
the HTO.

TSGC uses ORC generator II to output electricity, and its
model is

Pt
II � ηPQ

t
dc, (5)

where Pt
II is the electric power output of the ORC generator II;

Qt
dc is the thermal power consumed by the ORC generator II

when generating electricity, that is, the heat discharge power of
the high-temperature tank.

The process of heat storage and heat power output of high-
temperature tanks can be expressed as follows:

St+1h � ηhS
t
h+(Qt

c − Qt
dc/ηdc)Δτ, (6a)

Qt
dc � mt

dccpo(Tc − Tl), (6b)

where Sth is the heat charged at the time t; ηh is the insulation
coefficient; ηdc is the heat discharge efficiency; mt

dc is the mass
flow of the HTO when the high-temperature tank generates heat;
and Δτ is the time interval of heat storage/heat release process.

In the heat charging and discharging process, the HTO is
continuously exchanged between the high-temperature and the
low-temperature tanks. Its quality state models are

Mt+1
h � Mt

h +mt
cΔτ −mt

dcΔτ, (7a)

Mt+1
l � Mt

l −mt
cΔτ +mt

dcΔτ, (7b)

where Mt
h and Mt

l denote the mass of HTO in the high-
temperature tank and the low-temperature tank, respectively.

Considering that energy storage in TSGC can smooth power
fluctuation, the HDR power system can set the operation
interval in advance according to the power output
prediction of the PV plant and provide reserves. The
models for the reserve are

Rt � Rt
I + Rt

II, (8a)

Rt
I � u+

I (Pmax
I − Pt

I) + u−
I (Pt

I − Pmin
I ), (8b)

Rt
II � u+

II(Pmax
II − Pt

II) + u−
II(Pt

II − Pmin
II ), (8c)

u+
I + u−

I ≤ 1, u+
II + u−

II ≤ 1, (8d)

where Rtrepresents the total reserve; Rt
I and Rt

II represent the
reserve provided by ORC generators I and II respectively; Pmax

I/II
and Pmin

I/II are the power output’s upper and lower bounds of ORC

generators respectively; u+/−I/II is a binary variable to ensure that the
positive and negative reserves are not called at the same time.

Models of PV Plant
According to (Duan et al., 2018), the power output of a PV plant
considering solar irradiance can be modeled as

Pt
PV � λtPPV, (9a)

ξ̂
t

PV � λtξPPV, (9b)

where λt is the PV power output coefficient according to the
predicted value of solar irradiance; λtξ is the actual PV power
output coefficient; PPV is the credible capacity of the PV plant in
the HPS; Pt

PV is the predicted value of the power output of the PV
plant related to the trusted capacity PPV of the PV plant and the
predicted value of solar irradiance λt; ξ̂

t

PV is the actual power
output corresponding to the credible capacity of the PV plant.

CREDIBLE CAPACITY ASSESSMENT
METHOD BASED ON DISTRIBUTIONALLY
ROBUST
The Formulation of the Assessment Method
The purpose of the credible capacity assessment of HDR-PV HPS
is to determine the maximum credible capacity that meets the
power grid’s requirements for power volatilities. Sufficient
credible capacity can enable the HPS to provide reserves by
dispatching the HDR power system to deal with the
uncertainty of the PV plant, thereby indirectly ensuring the
reliable operation of the power grid. It can be seen that the
credible capacity assessment of the HPS can be modeled as an
optimization problem, including dispatchable power sources.
This problem aims to maximize the system’s generation profit
and give full play to the regulating role of the HDR power system.
The assessment model can be formed as:

max f(x) � ∑T
t�1

Vt
HDR + Vt

PV

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gt
r(x, Rt)≤ 0

∀Rt:

gt
g(x, Rt, ξ̂

t

PV)≤ 0
∀ξ̂

t

PV:

P(ξ̂tPV) ∈ M(Ξ)
t ∈ T

, (10)

where x represents the decision variable, including the credible
capacity PPV of the PV plant, the brine mass flowmt

α of the ORC
generator I, the HTOmass flowmt

c of the heat storage/exchanger,
and the HTO mass flow mt

dc of ORC generator II; Vt
HDR

represents the profit of the flexible HDR system; Vt
PV

represents the profit of the PV plant; gt
r(x, Rt)≤ 0 represents

the operating constraint of the HDR power system;
gt
g(x, Rt, ξ̂

t

PV)≤ 0 represents the EFC constraint satisfying
requirements of power fluctuation; P(ξ̂tPV) represents the
probability distribution of the PV power uncertainty, and
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M(Ξ) represents the ambiguous set of the probability of the
photovoltaic power output.

Vt
HDR � cte(Pt

I + Pt
II) − cQQ

t
cur, (11)

where cte represents the time-of-use electricity price, cQ represents
the penalty coefficient for abandonment of heat, and Qt

cur
represents the abandonment power that cannot be stored after
heat exchange when taking the minimum reinjection temperature
as a reference.

The profit of the PV plant can be modeled as

Vt
PV � cte(Pt

PV − Pt
PVcur) − pcteP

t
PVal, (12)

where Pt
PVcur and Pt

PVal represent the PV and load curtailment of
the PV plant’s credible capacity; p is the penalty coefficient of load
curtailment. For Pt

PVcur and Pt
PVal, they can be expressed as

Pt
PVcur � max {ξ̂k,tPV − Pt

PV, 0}, (13)

Pt
PVal � max{Pt

PV − ξ̂
t

PV, 0}, (14)

Distributionally Robust EFC Constrains
The HDR-PV HPS provides a reserve for the PV plant through
the HDR power system. The whole HPS is equivalent to a
dispatchable power source to meet the requirements of power
fluctuation. Taking the predicted power output of the PV plant as
the dispatchable power curve, we have the EFC constraint as
follows:

(1 − σ)Pt
PV ≤ ξ̂

t

PV + Rt ≤ (1 + σ)Pt
PV, (15)

where represents the power fluctuation rate allowed by the grid.
Eq. 15 restricts the range of the sum of the PV plant’s actual
power output and the reserve provided by the HDR power system
at any time. In such a case, the PV plant is equivalent to a
dispatchable power source, thereby obtaining the credible
capacity as

Psys � PI + PII + PPV, (16)

where Psys represents the credible capacity of the HPS; PI and PII

represent the capacity of ORC power generation system I and II,
respectively.

Due to the PV plant’s power uncertainty, we adopt the
distributionally robust method to model these uncertainties
(Duan et al., 2018). The distributionally robust method uses
the data-driven method to construct the uncertain probability
distribution based on stochastic optimization. The method can
ensure the robustness of the system under the worst probability
distribution strategy within the confidence interval. It can be seen
that the conservatism of the worst operation scenario described
by the distributionally robust method is between robust
optimization and stochastic optimization, which makes the
system capacity assessment not only achieve the robustness
within the full confidence interval but also reduce the system
redundancy capacity to deal with extreme scenarios. The
ambiguous set using Wasserstein divergence is used to
measure the uncertainty measure and is given as follows:

Mε � {P ∈ M(Ξ): dW(P, P̂)≤ ε}, (17)

where Prepresents the probability distribution of the actual power
output of the PV plant; P̂ represents the empirical distribution of the
power output;M(Ξ)represents the space consisting of all probability
distributions with the Wasserstein divergence; εis the radius of the
ambiguous set, which can be referred to as (Esfahani and Kuhn,
2018); and dwrepresents Wasserstein divergence (Hota et al., 2019).

Then, we reformulate Eq. 15 and consider the probability
distribution of the power output in the worst case. The
distribution should satisfy:

inf
P∈Mε

P{∣∣∣∣ξ̂tPV + Rt − Pt
PV

∣∣∣∣≤ σPt
PV }≥ 1 − α, (18)

where α represents the confidence level, that is, the minimum
probability that the derivation between ξ̂

t

PV + Rt (satisfying
M(Ξ)) and Pt

PV does not exceed σ is greater than 1 − α.
Reformulate Eq. 18, and we have:

sup
P∈Mε

Pr{∣∣∣∣ξ̂tPV + Rt − Pt
PV

∣∣∣∣ − σPt
PV ≥ 0}≤ α. (19)

According to (Rockafellar and Uryasev, 2000). Eq. 19 can be
equivalent to the following risk condition constraint

sup
P∈Mε

i

CVaRP
1−α(L(ξ̂tPV, Rt))≤ 0, (20a)

L(ξ̂tPV, Rt) � |ξ̂tPV + Rt − Pt
PV| − σPt

PV, (20b)

In this work, we use the method proposed in (Fiaschi et al.,
2017) to transform Eq. 19 into a set of linear constraints, which is
listed as follows:

εHL + 1
K

∑K
k�1

sk,t − ctα≤ 0, (21a)

sk,t ≥ ξk,tPV + Rk,t − (1 + σ)Pt
PV + ct, (21b)

sk,t ≥ − ξk,tPV − Rk.t + (1 − σ)Pt
PV + ct, (21c)

sk,s ≥ 0,∀k ∈ K, t ∈ T, (21d)

where ξk,tPV represents the kth sample of PV power output ξ̂
t

PV,
i.e., ξk,tPV � λk,tξ PPV; K represents the number of samples, and T
represents the whole scheduling period. Eq. 21 requires
L(ξ̂tPV, Rt) to satisfy Lipschitz continuity while HL represents
the measure of Lipschitz continuity.

According to the actual operating conditions of the PV station,
when the power output equals 0, the dispatched reserves should
be equal to the dispatch value. Thus, there is Rt � Pt

PV when
ξ̂
t

PV � 0. Then we have:

L(0, Rt) � −σPt
PV, (22)

L(ξ̂tPV, Rt) − L(0, Rt) � |ξ̂tPV + Rt − Pt
PV|, (23)

Since the actual power output of the PV plant is not less than
the lower bound of the predicted value, ξ̂

t

PV ≥ (1 − ϕ)Pt
PV satisfies

ϕ represents the prediction error. Combining Eqs 18d–d21d, we
can obtain
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||L(ξ̂tPV, Rt) − L(0, Rt)||≤ σ

1 − ϕ
ξ̂
t

PV. (24)

Eq. 24 is used to prove that L(ξ̂tPV, Rt) satisfies Lipschitz
continuity. To prove that, we can take HL � σ/(1 − ϕ). On this
basis, Eqs 21a–d gives the EFC constraint for the PV plant with
dispatchable reserves.

Operation Constraints
Considering the current technical conditions of HDR resources,
the stable operation of the flexible HDR system should also meet
the following upper and lower bounds:

Pmin
r ≤Pt

I/II ≤P
max
r , (25a)

0≤mt
c ≤m

max
c , (25b)

0≤mt
dc ≤mmax

dc , (25c)

Smin
h ≤ Sth ≤ S

max
h , (25d)

where Eq. 25a is the capacity constraints of ORC generators I and
II restricted by the GMC. Eqs 25b, 25c are the constraints on the
mass flow of HTO in the process of heat exchange. Eq. 25d is the
constraint of heat storage. To satisfy the minimum power
operation requirements of ORC generator II, the heat storage
capacity of the high-temperature tank should be greater than Smin

h .
The operation of HDR power system should also meet the

following reliability and system safe operation constraints

mmin
α ≤mt

α ≤m
t
r, (26a)

Tmin
W ≤Tt

W, (26b)

Mt
l +Mt

h � Mall, (26c)

−(1 − ut)M≤Rt
I ≤ u

tM, (26d)

−(1 − ut)M≤Rt
II ≤ u

tM, (26e)

where Eq. 26a indicates that the brine used for ORC generator I is
not less than the minimum value that guarantees the reliability of
plant power. Eq. 26b restricts the reinjection temperature to
ensure the stability of the underground thermal reservoir. Eq. 26c
is the mass balance constraint of the thermal storage tank to
ensure the safe operation of the high/low-temperature thermal
storage tanks. Eqs 26d,26e are the constraints to ensure that the
reserve dispatch of the two ORC power generation systems will
not interfere with each other. Mis a sufficiently large positive
number.

In addition, the product of variablesmt
β and Tβ exists in Eqs 3,

4, making the entire model non-linear. To simplify the model, the
curtailed heat power Qt

cur is used to represent this product term.
At this time, the nonlinear model is transformed into a linear
form. Eqs 3, 4a can be rewritten as

mt
αTα + Qt

cur/cpr � mt
rTW, (27)

Qt
β � mt

βcpr(Tr − Tmin
W ) + Qt

cur, (28a)

0≤Qt
cur. (28b)

HDR-PV HPS’s credible capacity assessment problem is
transformed into a mixed-integer optimization problem
(MILP) through the above reformulation, which can be
directly solved with Matlab 2016b and CPLEX12.8.

CASE STUDY

System Parameters
The studied case is constructed based on the actual data of HDR
and PV resources in the Gonghe Basin of Qinghai Province. The
time-of-use (TOU) electricity price is adopted. Both solar
irradiance data and time-of-use electricity prices are taken
from local historical data, as shown in Figure 3.

In this case, the capacity of the PV plant is selected according
to the local typical power station of 300 MWp. The operating
parameters of the flexible HDR system are selected based on the
local resources (Si et al., 2020). The capacity of the generator is
selected based on the GMC parameters and the current status of
geothermal development technology. The detailed parameters of
the system are shown in Table 1.

FIGURE 3 | Curve of solar irradiance and time-of-use power price.

TABLE 1 | The rated parameters of the HDR-PV hybrid power system.

Parameters Value

Capacity of PV system PPV MW 300
Brine temperature in production well Tr °C 200
Mass flow of brine in production wells mt

r kg/s 75
Minimum brine reinjection temperature Tmin

W
°C 40

Initial temperature of heat transfer oil Tl °C 25
Insulation coefficient ηh% 15
Specific heat capacity of heat transfer oil cpo kJ/(kg°C) 1.938
Specific heat capacity of brine cpr kJ/(kg°C) 4.2
Efficiency of ORC generator ηP% 13.2(Fallah et al., 2016)

Efficiency of heat exchanger ηex% 90
Prediction error of PV power output φ% 20
Allowable power fluctuation rate of the grid σ % ≤10
Penalty for load curtailment p 3
Confidence level α 0.05
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Simulation Results
We set up the following three cases to compare and analyze the
capacity assessment results.

Case 1: Only the EGS with the HDR power system provides
reserves for the PV plant; the TSGC is not used; Case 2: Based on
the settings of scenario 1, the TSGC of the HDR power system is
further configured to recover waste heat energy for power
generation, but the TSGC provides no reserve; Case 3: Based
on the settings of scenario 2, both EGS and TSGC provide
reserves.

First, we set the allowable power fluctuation as 0% for the
following analysis. The parameters of solar irradiance and TOU
electricity price are the same in all scenarios.

The results in Table 2 show that, with a 0% allowable power
fluctuation, only using EGS to provide the reserve for the PV
plant will generate a large amount of waste heat. The comparisons
show that the HPS equipped with EGS realizes the dispatch ability
of the PV plant by curtailing heat. To better illustrate the results,
we give the power output of each part in Case 1 in Figure 4.

Due to the high investment cost of EGS (Zhang L. et al., 2014),
the operation mode in case 1 is challenging to meet the financial
requirements in practice. TSGC can store the curtailed heat well
and then convert it back into electricity, improving the overall

economic benefits and maintaining the credible capacity of the
PV plant.

Figure 5 shows the power output of each part in case 2. The
results show that TSGC plays a vital role in waste heat recovery.
When the time-of-use electricity price is applied, the TSGC can
store geothermal energy during the low electricity price from 00:
00 to 7:00 and generate electricity during the high electricity price,
thereby achieving peak shaving. This has increased the profit of
the flexible HDR system by 36.78%.

In case 3, when TSGC also participates in providing reserves,
the credible capacity of the HPS is nearly doubled. Although the
overall profit of the flexible HDR system decreased by 2.97%, the
overall profit of the HPS increased due to the increased credible
capacity. At the same time, it is also noticed that the thermal
energy stored by TSGC was not fully utilized. After 24 h of
operation, the remaining thermal energy in the thermal
storage tank is 45.64 MWh, increasing 192.75% compared to
case 2. In this case, geothermal energy is not fully utilized, so it is
necessary to analyze the key parameters further. The operation
curve of the HDR power system in the HPS is shown in Figure 6.

Figure 6 that, first of all, the flexible HDR system adopts the
minimum power generation strategy during the low electricity
price period (0:00–7:00) and in the high electricity price period (8:

TABLE 2 | Assessment results of each case.

Cases EFC of
PV (MW)

EFC of
HDR (MW)

Mass
of HTO
(ton)

EGS profits
($/day)

TSGC
profits
($/day)

PV profits
($/day)

Abandon
heat

(MWh/
day)

Residual
heat

(MWh/
day)

Case 1 52.95 6.6 — 13,338 — 64,127 78.844 —

Case 2 52.95 13.2 2,747 10,384 8,205 64,127 — 6.86
Case 3 77.44 13.2 2,937 10,150 7,541 65,828 — 45.64

FIGURE 4 | System operation in case 1.
FIGURE 5 | System operation in case 2.
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00–12:00, 18:00–22:00) adopt maximum power generation
strategy to maximize profit. Secondly, during the PV plant
power generation period (8:00–19:00), the output power of the
HDR power system will be adjusted with the fluctuation of the
actual PV power output according to EFC constraints. Especially
during the period from 10:00 to 18:00, thanks to dispatchable
reserves provided by the HDR power system, the PV plant’s
power output can meet the grid’s dispatching requirements,
thereby improving the reliability of HPS. Figure 7 exhibits the
reserve dispatch under a specific actual operation condition. It
can be seen from the results that EGS mainly provides negative
reserve, while TSGC mainly provides positive reserve. This is to
minimize heat exchange and storage losses and maximize profit.

Finally, the thermal energy stored in the high-temperature
thermal storage tank will be converted into electrical energy
by the ORC generator II during the high electricity price
period from 20:00 to 22:00.

In the thermal storage tank, the mass of the HTO also changes
with the power output fluctuation. Figure 8 shows the mass
change of the HTO between the high-temperature and the low-
temperature tank in case 3. In the figure, the mass of the HTO in
the high-temperature tank increases from 0: 00 to 7: 00, indicating
that the geothermal energy is heated by the heat storage/
exchanger and stored in the high-temperature tank. During
the high electricity price period from 8:00 to 12:00, TSGC
converts heat into electricity, and the mass of HTO in the
high-temperature tank decreases. During the power generation
period of the PV plant from 10:00 to 18:00, the HDR power
system dispatches reserves to ensure that the system’s output can
meet the requirements of grid operation. In the same period, the
mass of the HTO in the heat storage system fluctuates
accordingly. After the PV plant power generation cycle ends,
the heat stored in the storage will be converted into electricity
during the high electricity price period from 20:00 to 22:00 to
increase economic benefits.

Impact of Allowable Fluctuation rate on the Credible Capacity
of the HPS.

With the parameter setting of case 3, we further study the
influence of the allowable fluctuation rate of grid power on the
credible capacity of the HPS. Take the allowable fluctuation rate
as 3, 5, 7, and 10% for simulation, respectively. The comparison
results are shown in Table 3.

The results in Table 3 indicate that, as the grid’s ability to
withstand power fluctuation increases, the credible capacity of the
HPS increases accordingly. Compared with the case with a 0%
allowable fluctuation rate, the credible capacity of the PV plant is
increased by 113% when the allowable fluctuation rate is equal to
10%. To increase the credible capacity of the HPS, the profit of the

FIGURE 6 | Operation curves of HDR power system in case 3.

FIGURE 7 | Dispatching of reserve in case 3.

FIGURE 8 | Mass change of heat transfer oil in case 3.
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flexible HDR system increased by 5.03%. This is because the
geothermal energy stored in the thermal storage tank is fully
utilized, which is reduced from 45.64 MWh to 0 MWh.Since the
total geothermal energy obtained by the HDR geothermal
extraction cycle remains stable quickly, the mass of the total
HTO required from 3 to 10% is not much different. The
relationship between the profit of the HDR power system, the
PV plant’s credible capacity, and the power fluctuation is shown
in Figure 9.

As we can see, the PV plant’s credible capacity increases
monotonically with the increase in power fluctuation rate, and
the profit of the flexible HDR system has a local maximum when
the fluctuation rate is 7%. However, we obtain the minor
remaining thermal energy of the thermal storage tank in
Table 3, which shows that the geothermal energy is fully
utilized with a 10% allowable fluctuation rate.

Influence of Uncertainty Modeling Method
on Capacity Assessment
The distributionally robust method based on Wasserstein
divergence is an optimization method driven by actual

historical data. It can make full use of the implicit information
of PV generation data and obtain a moderately conservative EFC
assessment. Taking allowable fluctuation rate as 0%, 3 ,5, 7, and
10%, the credible capacity of the hybrid system is assessed by
robust optimization, stochastic optimization to compare with the
distributionally robust method, respectively. The EFC
assessments of the PV plant are shown in Figure 10.

It can be seen from Figure 10 that the credible capacity of
PV plant obtained by stochastic optimization is the largest,
followed by distributionally robust method, and the result
obtained by robust optimization is the smallest. This further
shows that the results obtained by stochastic optimization are
too optimistic; The results obtained by the robust optimization
are too conservative. In order to deal with the worst scenarios,
its credible capacity is only 69.48–50.96% of the former
compared with the stochastic optimization, and its
conservatism becomes more and more evident with the
increase of allowable fluctuation; The EFC assessment using
the distributionally robust method proposed in this paper is
between the results of stochastic optimization and robust
optimization, which can ensure the robustness of the system
in the sense of confidence.

TABLE 3 | Impact of allowable fluctuation rate on the credible capacity of HPS.

σ EFC of
PV (MW)

EFC of
HDR (MW)

Capacity
ratio

Mass
of HTO
(ton)

EGS
profits
($/day)

TSGC
profits
($/day)

PV profits
($/day)

Residual
heat

(MWh/
day)

3% 93.96 13.2 7.12 2,747 10,459 8,053 65,990 6.1
5% 107.12 13.2 8.12 2,746 10,629 8,027 66,099 1.12
7% 124.56 13.2 9.44 2,746 10,737 7,968 66,291 0.62
10% 164.83 13.2 12.49 2,766 10,870 7,711 66,686 0

FIGURE 9 | Relationship of PV’s credible capacity, HDR’s profit, and
allowable fluctuation rate. FIGURE 10 | Credible capacity assessment of PV plant based on

different optimization methods.
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DISCUSSION

To solve the problem of grid connection of large-scale PV plants in
extreme-cold and high-altitude areas, we design a flexible HDR
system consisting of an enhanced geothermal system and a thermal
storage generation cycle. Then, a model of HDR-PV HPS is
constructed with the HDR power system and PV plant. On this
basis, a credible capacity assessment method of the proposed HPS
with EFC constraint is proposed. This method can be transformed
into a scheduling optimization problem of HPS to maximize profit.
The EFC constraints are reformulated as a set of value-at-risk
constraints by applying the distributionally robust method.

At last, the credible capacity assessmentmethod is represented as a
MILPwith risk constraints for the solution. To verify the effectiveness
of our work, we take the actual system in the Gonghe Basin of
Qinghai Province as an example. The results show that the credible
capacity assessment method can effectively assess the maximum
credible capacity of the proposed HDR-PV HPS. Also, the HDR
power system can enhance the reliability of connection between PV
station and grid while increasing the overall profit of the HPS.
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Hosting Capacity Assessment in
Distribution Networks Considering
Wind–Photovoltaic–Load Temporal
Characteristics
Nianchun Du1, Fei Tang1*, Qingfen Liao1, Chenxu Wang2, Xin Gao1, Jiarui Xie1, Jian Zhang3

and Runzhao Lu3

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China, 2Electric Power Research Institute, State
Grid Zhejiang Electric Power Co., Ltd., Hangzhou, China, 3China Electric Power Research Institute, Beijing, China

Under the background of clean and low-carbon energy transformation, renewable
distributed generation is connected to the distribution system on a large scale. This
study proposes a probabilistic assessment method of hosting capacity considering
wind–photovoltaic–load temporal characteristics in distribution networks. First, based
on time series of wind, photovoltaic, and load demands, a discretization–aggregation
technique is introduced to generate and filter extreme combinations. The method can
effectively reduce the scenarios that need to be evaluated. Then a holomorphic embedding
method considering generation and load scaling directions is proposed. The holomorphic
function of voltage about an embedding variable is established, and it is analytically
expanded in the form of series. The hosting capacity restrained by the voltage violation
problem is calculated quickly and accurately. Finally, the proposed stochastic framework is
implemented to evaluate hosting capacity involving renewable energy types, penetration
levels, and locations. The hosting capacity of single energy and hybrid wind–solar
renewable energy systems is evaluated from the perspective of probability analysis.
The results verify the outstanding performance of the hybrid wind–solar energy system
in improving the hosting capacity.

Keywords: distributed renewable energy, hosting capacity, holomorphic embedding method, time series, voltage
violation

INTRODUCTION

In response to climatic deterioration and energy shortage, all countries are accelerating the process of
new energy. Distributed renewable energy sources have become the mainstay to promote the
development of new energy with the advantages of being clean, green, flexible, and efficient (IEA,
2019). Wind energy and solar energy are the most promising renewable energy sources. However,
their access to the distribution network also brings uncertainty and intermittence. The booming
development of distributed generation (DG) may lead to the violation of system operation
constraints such as overvoltage (Ismael et al., 2019; Zhu et al., 2020), overloading of
transformers and feeders (Shen et al., 2021), conductor thermal capacity (Zhang and Luo, 2018),
and protection failure (Singh, 2017; Zobaa et al., 2020). In order to overcome the challenges of
renewable energy source integration, it is of significant importance to evaluate the number of DGs
that can be integrated into a given distribution network without violating the operating standards.
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The concept of hosting capacity (HC) was first proposed by
André Even in the context of distributed generation and
improved by Bollen and Hassan (2011). The hosting capacity
is defined as the maximum capacity of DGs that can be integrated
into the distribution system, above which the performance of the
system becomes unacceptable. Recently, many scholars have
studied hosting capacity assessment in distribution networks.
There are four main methods: the deterministic method, the
stochastic method (Yang et al., 2019), the optimization-based
method (Shen et al., 2017; Injeti and Thunuguntla, 2020), and the
time series method (Abideen et al., 2020; Mulenga et al., 2020).

In earlier studies, the analysis methods were often used to
calculate the HC at a specific DG access location by deriving the
performance index of the system. In the study of Fan et al. (2017)
and Li et al. (2021), the formula of voltage difference values at
continuous buses of three-phase feeders is derived, and the
maximum number of DGs at a specific bus is calculated.
Ampofo et al. (2017) studied the impact of voltage rise and
thermal loading on HC considering DG access to the end of
feeders or the load center. HC is calculated in different scenarios
by iteratively increasing the number/capacity of wind generation
units and continuously calculating the power flow (PF) until one
of the performance standards is violated (Papaioannou and
Purvins, 2014; Gonzaga et al., 2019). It is evident that the
deterministic method cannot consider the uncertainty of
modern power systems, and its application range is limited.

When DGs with high uncertainty characteristics are
connected to the distribution network, there are many
unknown variables in the calculation of HC. Thus, the
randomness of these variables needs to be considered; Monte
Carlo simulation (MCS) is often used to generate different
scenarios. Zio et al. (2015) proposed a probabilistic power flow
method and simulated the variability of customer demand based
on MCS but did not consider the variability of DG. The
randomness of both DG access locations and load demand are
considered (Kolenc et al., 2015; Shen and Raksincharoensak,
2021). In Al-Saffar et al. (2019), the probabilistic power flow is
implemented under the scenarios with different photovoltaic
(PV) penetration levels, and the HC of three real regions is
determined, respectively. Mulenga et al. (2021) classify two
types of uncertainties, namely, aleatory uncertainties and
epistemic uncertainties. The HC is estimated by applying the
transfer impedance matrix and the superposition principle to
determine the voltage rise due to PV. In addition, using spatial
and temporal uncertainties associated with PV, a new
spatiotemporal probabilistic voltage sensitivity is proposed. It
can calculate the probability distribution of voltage change at a
specific bus, due to random change of PV power in the random
position of the network (Munikoti et al., 2022).

The optimization-basedmethod is also a common approach to
determine the HC. The objective is to maximize the DG injection
while constraints are met. In the study of Zou et al. (2016), Alturki
et al. (2018), and Shen et al. (2020), based on deterministic
optimization algorithms, the best access location is regarded as
the main solution. But in fact, the inherent uncertainty of
DG needs to be considered. Therefore, the trend is combining
the stochastic method and the optimization-based method

(Shen et al., 2021). A stochastic multi-objective optimization
model was proposed in the study by Rabiee et al. (2017),
which aims to maximize the HC for wind power and minimize
the energy procurement costs, and then it is solved with the NSGA-
II algorithm. Otherwise, the chance-constrained method was
adopted, and the probabilistic power flow method was used to
deal with the randomness problem (Sun et al., 2018; Wu et al.,
2019). However, the optimization-based model is generally highly
complex and non-linear, and for actual networks, the existing
methods may not produce global optimal solutions.

Besides, in some studies (Khoshkbar-Sadigh et al., 2015; Fan
et al., 2016; Shen and Raksincharoensak, 2021), the historical data
of both demand and renewable production are used as the input,
and it can provide a more realistic distribution network. Chen
et al. (2018) considered temporal characteristics of wind power,
PV, and load; the joint probability distribution method and the
scene reduction technique were used to solve the DG capacity.
Mulenga et al. (2021) studied the influence of time of day on the
HC calculation results. However, the time series method
considering time-varying renewables and demands are highly
dependent on data, and a large amount of data enlarge the
computing scale, which tends to be laborious or intractable.
Some scholars study the security-constrained unit
commitment (SCUC) (Yang et al., 2018; Liu et al., 2020; Yang
et al., 2021). Yang et al., 2021 is a pioneer study for SCUC
problems that proposes an expanded sequence-to-sequence
(E-Seq2Seq)–based data-driven SCUC expert system. It can
accommodate the mapping samples of SCUC and consider the
various input factors that affect SCUC decision-making,
possessing strong generality, high solution accuracy, and
efficiency over traditional methods. To mitigate the excessive
computational burden, Ochoa et al. (2010) proposed a processing
technique for long-term time data, namely, the
discretization–aggregation method. It can generate and screen
out the reasonable combinations of renewables and demand to
simplify data.

When excessive DG penetrates in the distribution network, the
radial distribution system with the single power becomes a
complex system with multiple power supplies. Then there are
reverse power flows, which may lead to voltage rise (Mulenga
et al., 2020; Shen et al., 2020; Wang et al., 2021). The studies have
shown that the voltage rise is the main restriction considered in
the research of HC (Torquato et al., 2018; Dong et al., 2019).

In this study, a stochastic framework of hosting
capacity assessment is proposed considering the uncertainty
of DG penetration levels, locations, and types, and
extreme combinations are introduced to process
wind–photovoltaic–load time series data. This effectively
reduces the number of scenarios to be evaluated. Moreover,
traditional methods of hosting capacity assessment are
scenario-based and complex as they rely on the iterative PF
algorithm. To avoid a large number of PF calculations, a novel
holomorphic embedding method (HEM) based on the recursive
algorithm is used to obtain the equivalent analytical formula of
voltage (Trias. 2012). The HC corresponding to voltage violation
can be directly solved without checking a large number of
scenarios, which further significantly reduces the
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computational burden. In the simulation analysis, hosting
capacity assessments of both single resource and hybrid cases
are performed, and the results provide planners with a better
understanding of the energy integration.

The rest of this article is organized as follows: Processing of
Renewables and Demand Data discusses the processing
technology of time series data of renewables and demand.
Holomorphic Embedding Method introduces the holomorphic
embedding method. Then the stochastic framework of the
hosting capacity assessment is illustrated in Framework for
Hosting Capacity Assessment. Numerical Results presents the
results and discussions to evaluate the hosting capacity of
single and hybrid cases on the IEEE 33-bus system. Finally,
Conclusion summarizes the main conclusions.

PROCESSING OF RENEWABLES AND
DEMAND DATA

Discretization–Aggregation Method
Due to the uncertainty and volatility of renewable generation and
load, the temporal characteristics of both generation and load
demand need to be considered in the hosting capacity assessment.
However, long time series will bring a significant number of
calculations. Therefore, the discretization–aggregation method is
introduced to reduce the computational burden. The technology
was first proposed by Ochoa et al. (2010), which only considers
wind and load. Furthermore, if we consider the correlation
between wind power, PV power, load demand, and time, each

data point needs a multidimensional representation. The method
has the potential to deal with the problems of
multidimensionality.

The method mainly includes two steps: 1) in the discretization
process, the historical data of renewables and demand are
allocated into a series of bins covering the range between zero
and the peak value; and 2) in the aggregation process, the bins of
renewables and load demand are grouped into multiple
combinations. To illustrate the approach, Figure 1 presents
the discretization–aggregation process with only two
dimensions in the following example. Figure 1A shows a 5-
day historical data sample of wind power and load with an
interval of 15 min, and their values are normalized against
respective peak values. Figure 1B shows the discrete time
series. When the width of bins is set to 0.1 p.u, six load
demand ranges (e.g., [0.4, 0.5], (0.5, 0.6], . . .) and nine
generation ranges (e.g., [0, 0.1], (0.1, 0.2], . . .) are used. Then
the time-varying data are allocated to a series of bins. Figure 1C
presents the distribution with combinations of wind power and
load. The combines of “similar” characteristics are aggregated
into the same bin. For instance, the yellow block indicates the data
where demand is 0.6 and wind is 0.2.

Extreme Combinations
The discretization–aggregation method allocates time series data
into a finite number of combinations, which reduces the number
of combinations to be evaluated, and retains the relevance
between renewables and demand. Importantly, it does retain
extreme characteristics. The “coincidence” between maximum

FIGURE 1 | Procedure of discretization and aggregation of time series data.
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generation and minimum demand is normally regarded as the
extreme combination for voltage violation and the main
constraint of the hosting capacity assessment.

The discretization–aggregation process goes through each
possible combination and sums the occurrence periods, which
captures the full range of generation and load. Figure 2
presents all combinations of data above and their
occurrence periods. The combinations labeled with red
represent the extreme conditions of maximum power
generation and minimum load demand. If the voltage

constraint is not violated in these combinations, it is
unlikely to be violated in other combinations.

It is obvious that different combinations will be obtained by
selecting different widths. The smaller the width, the more
detailed the bins to be evaluated. Figure 3 shows the
combinations of wind and load when the width is set to 0.05
p.u. The total number of combinations increases significantly,
and the number of extreme combinations has only increased by
one compared with the results in Figure 2. Therefore, the
selection of bin width may affect the scale and accuracy of the

FIGURE 2 | (A) Occurrence periods for all combinations when the bin width is 0.1 p.u; (B) visualization of all wind–load aggregated combinations.

FIGURE 3 | (A) Occurrence periods for all combinations when the bin width is 0.05 p.u; (B) Visualization of all wind–load aggregated combinations.
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hosting capacity assessment. Moreover, when an additional PV
power is added, the discretization–aggregation process remains
unchanged, but the dimension is increased.

HOLOMORPHIC EMBEDDING METHOD

The holomorphic embedding method was applied to the PF
problem by Dr. Antonio Trias for the first time (Trias, 2012),
to avoid the non-convergence problem of the traditional iterative
PF methods. In this study, the conventional HEM is improved
considering the direction of generation and load change. The
equivalent analytical formulations of voltage can be obtained by
only one PF calculation. It can establish the dependence between
the embedding parameter and the actual operation level.

Direction-of-Change Scaling Holomorphic
Embedding Model
Consider an N-bus system, the power balance equation (PBE) can
be expressed as follows:

∑N
k�1

Yik
_Vk �

_Spi
_Vp
i

, (1)

where Yik is the (i, k) element of the bus admittance matrix, _Si and
_Vi are the complex power injection and voltage at bus i,
respectively.

The non-holomorphic PBE is converted into holomorphic
functions by embedding a complex parameter _s. Considering
different types of buses, the improved holomorphic embedding
formulas are given, where Eq. 2 represents the voltage magnitude
constraint for slack bus, Eq. 3 represents the PBE for the PQ
buses, Eq. 4 represents the PBE for the PV buses, and Eq. 5
represents the voltage magnitude constraint for the PV buses. The
formulas allow the load at all buses and the real power generation
at the PV buses to be scaled directionally.

_Vi( _s) � Vsp
i , i ∈ Nslack , (2)

∑N
k�1

Yik
_Vk( _s) �

_Spi0 + _sΔ _Si
_Vp
i ( _sp)

, i ∈ NPQ, (3)

∑N
k�1

Yik
_Vk( _s) � (Pi0 + jQLi0) + _s(ΔPi + jΔQL) − jQGi( _s)

_Vp
i ( _sp)

, i ∈ NPV,

(4)

_Vi( _s) _Vp
i ( _sp) �

∣∣∣∣Vsp
i

∣∣∣∣2, i ∈ NPV, (5)

where Pi0, ΔSi_, ΔPi, ΔQi are given as follows:

Pi0 � PGi0 − PLi0, (6)

Δ _Si � kLi _Spi0, (7)

ΔPi � kGiPGi0 − kLiPLi0, (8)

ΔQLi � kLiQLi0, (9)

where Vsp
i is the reference voltage amplitude; PGi0 and QGi0

represent the active injection power and active load of bus i

under the initial loading level, respectively; QLi0 is the
reactive load of bus i under the initial loading level; and
kGi and kLi are generation growth coefficient and load growth
coefficient, respectively, which can represent the change
direction of generation and load. Nslack, NPQ, and NPV

represent the sets of slack bus, PQ buses, and PV buses,
respectively.

Since _Vi( _s) and QGi( _s) are holomorphic functions of the
parameter _s, they can be expanded in the following Maclaurin
series form:

_Vi( _s) � ∑∞
n�0

_Vi[n]( _s)n, (10)

QGi( _s) � ∑∞
n�0

QGi[n]( _s)n, (11)

where the voltage sequence coefficients _Vi[n] are complex
numbers, and the power sequence coefficient Qgi[n] are real
numbers.

The Maclaurin series for _Vp
i ( _sp) is given as follows:

_Vp
i ( _sp) � ∑∞

n�0
_Vp
i [n]( _s)n. (12)

Additionally, let W(s) represent the inverse of the voltage
function V(s), defined as follows:

_W( _s) � 1
_V( _s) �

_W[0] + _W[1] _s +/ + _W[n] _sn. (13)

The relationship between _Wi( _s) and _Vi( _s) is shown as
follows:

_Wi( _s) _Vi( _s) � ( _Wi[0] + _Wi[1] _s +/ + _Wi[n] _sn)•( _Vi[0]
+ _Vi[1] _s +/ + _Vi[n] _sn) � 1.

(14)

The relationship between _Wi[n] and _Vi[n] is obtained as given
in Eq. 15 by equating the coefficients of the same order of s on
both sides of Eq. 14.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

_W[0] � 1
_V[0],  n � 0(a)

_W[n] � −∑n−1
τ�0 _W[τ] _V[n − τ]

_V[0] , n≥ 1(b)
, (15)

where Eq. 15b can also be formulated as follows:

_V[0] _W[n] + _W[0] _V[n] � −∑n−1
τ�1

_W[τ] _V[n − τ], n≥ 1. (16)

By substituting Eqs 10–13 into Eqs 2–5, we obtain the
following:

_Vi[n] � 0 n≥ 1, i ∈ Nslack , (17)

∑N
k�1

Yik
_Vk[n] − _Spi _Wp

i [n] � Δ _Spi _Wp
i [n − 1], i ∈ NPQ, (18)
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∑N
k�1

Yik
_Vk[n] − (Pi0 + jQLi0) _Wp

i [n] + jQGi[n] _Wp
i [0]

+ jQGi[0] _Wp
i [n]

� (ΔPi + jΔQLi) _Wp
i [n − 1]−

j⎛⎝∑n−1
τ�1

QGi[τ] _Wp
i [n − τ]⎞⎠, i ∈ NPV, (19)

_Vi[0] _Vp
i [n] + _Vi[n] _Vp

i [0] � −∑n−1
τ�1

_Vi[τ] _Vp
i [n − τ] n≥ 1, i ∈ NPV.

(20)

Thus, we establish the recursion relationship from the
aforementioned holomorphic embedding formulas to obtain
the equations. Then _Wi[n] and _Vi[n] are divided into real
parts and imaginary parts for calculation, respectively, and the
voltage sequence is solved. Finally, the equivalent analytical
expression of voltage can be obtained.

Reference State Calculation
To solve the system of equations above, the reference state at s � 0
is given as follows:

_Vi[0] � Vsp
i , i ∈ Nslack, (22)

∑N
k�1

Yik
_Vk[0] �

_Spi0
_Vp
i [0]

 , i ∈ NPQ, (23)

∑N
k�1

Yik
_Vk[0] � (Pi0 + jQLi0) − jQGi[0]

_Vp
i [0]

 , i ∈ NPV, (24)

_V[0] · _Vp
i [0] �

∣∣∣∣Vsp
i

∣∣∣∣2, i ∈ NPV. (25)

Notice that the meaning of the reference solution of the
improved HEM is different from that of the conventional
HEM (Rao et al., 2016). The reference solution of the
conventional HEM represents the power system with no load
and no generator, while the reference solution of the improved
HEM represents the voltage and reactive power injections at the
buses for the power system under the initial loading level. The
solution process is as follows:

_Vi[0] andQGi[0] are expressed as the holomorphic function, so a
complex parameter _σ is embedded in Eqs 22–25, and we obtain:

_Vi 0( _σ) � 1 + _σ(Vsp
i − 1), i ∈ Nslack , (26)

∑N
k�1

Ytr
ik
_Vk 0( _σ) � _σ _Spi0

_Vp
i 0( _σp)

− _σYsh
i
_Vi 0( _σ) , i ∈ NPQ, (27)

∑N
k�1

Ytr
ik
_Vk 0( _σ) � _σ(Pi0 + jQLi0) − jQGi 0( _σ)

_Vp
i 0( _σp)

− _σYsh
i
_Vi 0( _σ), i ∈ NPV, (28)

_Vi 0( _σ) _Vp
i 0( _σp) � 1 + _σ(∣∣∣∣Vsp

i

∣∣∣∣2 − 1), i ∈ NPV, (29)

whereYsh
i corresponds to the shunt part of the admittance matrix,

Ytr
ik corresponds to the “non–shunt-branch” part of the

admittance matrix, and Ytr
ik � Yik − Ysh

i .

To establish the recursive relationship of variables, a new
variable δni is defined as follows:

δni � { 1, n � i
0, else

. (30)

For the slack bus, the power series coefficient expression is
written as follows:

_V
re

i 0[n] � δno + δn1(Vsp
i − 1), i ∈ Nslack. (31)

The voltage power series coefficients of PQ bus and PV bus are
solved, we can obtain the following equations:

∑N
k�1

Ytr
ik
_Vk 0[n] � −Ysh

i
_Vi 0[n − 1], i ∈ NPQ, (32)

∑N
k�1

Ytr
ik
_Vk[n] + jQGi 0[0] � −j⎛⎝∑n−1

τ�1
QG i[τ] _W

p

i 0[n − τ]⎞⎠
− Ysh

i
_Vi 0[n − 1], i ∈ NPV, (33)

_V
re

i 0[n] � δno + δn1
(Vsp

i )2 − 1
2

−1
2
⎛⎝∑n−1

τ�1
_Vi 0[τ] _Vp

i 0[n − τ]⎞⎠, i ∈ NPV, (34)

where _V
re
i 0[n] is the real part of _Vi 0[0].

According to the recursive relationship of Eqs 31–34, let
_σ � 1. _Vi[0] and QGi[0] can be solved. Obviously, the process
of solving the reference solution of the improved HEM is the
same as that of the conventional HEM when the embedded
variable is 1, which is actually the voltage solution of the
traditional power flow equation (Eq. (1)). Therefore, the
Newton–Raphson method can also be used to solve the PF at
the initial loading level to obtain the reference solution.

Calculation Process
The process of using improved HEM to solve a PF problem and
voltage violation is as follows:

1) The PBEs are embedded with the parameter _s, the voltage and
the active power injections become the holomorphic function
of _s, and the holomorphic embedding models are established.

2) Taking the direction of generation and load change into
account, the growth coefficients kGi and kLi are defined,
and then ΔṠi, ΔPi, and ΔQi are calculated.

3) The function _Vi( _s) and _Qgi( _s) are represented in Maclaurin
series with coefficients to be solved.

4) Calculate the reference state _Vi[0] and Qgi[0] when _s � 0.
5) Solve the recursive equations and calculate the coefficients of

the series _Vi[n] and Qgi[n].
6) Let _s � 1, the solution of PF is obtained under the initial

loading level. Then judge whether the PF mismatch power
error is less than the set tolerance, if so, continue the following
step, otherwise return to step (4).

7) The voltage sequence coefficients and the voltage function
_V( _s) can be obtained. Then solve the value of _s , which is only
a real number when _V( _s) � 1.05 and s has a corresponding
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relationship with the hosting capacity when the voltages
exceed the restriction.

FRAMEWORK FOR HOSTING CAPACITY
ASSESSMENT

Considering the temporal characteristics of renewable energy
generation and load demand, this study proposes a
framework for evaluating the hosing capacity in
distribution networks with DGs. The framework consists
of three modules, as shown in Figure 4.

1) Module 1: Deployment schemes of DGs.

This module generates multiple potential DG deployment
schemes. The variables include DG location penetration, the
locations of DGs, and the types of DGs. The steps are as
follows:

Step 1: Identify the location penetration Loci. DG location
penetration is defined as the ratio of the number of selected DG
locations to the number of all potential locations. The location
penetration is increased by a fixed step (e.g., 10%) from 0 to 100%.
Let Loci ∈ 10%, 20%, . . . , i × 10%, 100%}{ , (i � 1, 2, . . ., 10).

FIGURE 4 | Stochastic framework for the hosting capacity assessment.

FIGURE 5 | Time series data.
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Step 2: Generate DG locations. For each location
penetration level Loci, MCS is performed to generate k DG
deployment schemes. Then the deployment scheme is
represented as Dij (j � 1, . . ., k).

Step 3: Set the types and shares of DGs. For example, 50%wind
and 50% PV.

Step 4: Determine a base DG capacity (e.g., 1 MW). For each
deployment scheme, the initial rated power of DGs is allocated
based on the corresponding peak load.

2) Module 2: Calculation method of the hosting capacity. This
module studies the calculation method of the hosting capacity
based on the improved HEM, considering temporal
characteristics of DGs and load demand. The steps are as follows:

Step 1: Process the historical data of wind, PV, and load. By the
discretization–aggregation method, select the proper bin width
and obtain m extreme combinations Sn (n � 1, . . ., m).

Step 2: For a specific deployment scheme Dij, perform HEM
calculation on different extreme combinations, respectively. Then
obtain the equivalent analytical functionVi( _s) of all buses on each
combination.

Step 3: If none of the bus voltages exceed 1.05 p.u, let |Vi( _s) | �
1.05, and calculate the value of _s.

Step 4: Compare the minimum value of _s on each extreme
combination Sn, that is, _s min corresponds to the maximum
hosting capacity under deployment scheme Dij.

3) Module 3: Analysis of hosting capacity results. Repeat steps in
Module 2 to obtain the hosting capacity results for each
deployment scheme Dij, and obtain the hosting capacity
results HC � {HC1, . . . , HCk}. Then perform statistical
analysis for the obtained hosting capacity results. The steps
are as follows:
1) Histogram of HC is obtained based on the results HC �

{HC1, . . . , HCk}, and the probability density function
(PDF) based on Kernel density estimation is helpful to
understand the probabilistic HC at a specific
penetration level.

FIGURE 6 | Visualization of aggregated combinations: (A) wind power–load; (B) PV–load; (C) PV–wind power.

TABLE 1 | Results of extreme combinations.

Renewables and load Extreme combinations {(renewables],
(load]}(p.u)

Wind and load {(0.65 0.70], (0.45 0.50]}, {(0.75 0.80], (0.50 0.55]}
{(0.80 0.85], (0.55 0.60]

PV and load {(0.05 0.10], (0.45 0.50]}, {(0.50 0.55], (0.50 0.55]}
{(0.55 0.60], (0.55 0.60]}, {(0.80 0.85], (0.60 0.65]}
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2) Cumulative distribution function (CDF) curve of HC is
helpful for planners to estimate the probability that the HC
does not exceed a specific value.

3) Histogram of total delivered generation. The total delivered
generation of DG is a valuable quantitative indicator of the use
of renewable energy (Bawazir and Cetin, 2020). Therefore,
some statistical data of total delivered generation in a year can
provide the energy utilization of different types of renewable
energy.

NUMERICAL RESULTS

The simulations are carried out on the IEEE 33-bus distribution
system. The detailed parameters of the test system are available in

Baran andWu. (1989). Bus 1 is set as the slack bus and the voltage
is set to 1.0 p.u. Other nodes are PQ buses. The reference voltage
is 12.66 kV and the reference capacity is 10 MV A. The upper
voltage limit of each bus is set to 1.05 p.u. Nodes 2–33 are
candidate buses accessible to DG.

In this section, initially, the historical data of wind, PV,
and load demand are processed by the
discretization–aggregation method, and the extreme
combinations are filtered. Then the proposed HEM is used
to solve the voltage violation problem on extreme
combinations. For a specific deployment scheme, the
hosting capacity results with different bin widths are
discussed. Finally, detailed hosting capacity assessments of
both single resource and hybrid cases are performed.

Renewables and Demand Data
The simulations use the historical data of wind speed, solar
irradiation, and load demand from a typical distribution
system. The data of one year have a total of 35,040 data
points with 15-min temporal resolution. The levels of load
demand, wind, and PV output are normalized against peak
values, as shown in Figure 5. It can be seen that load demand
and PV have both obvious seasonal characteristics. The load in
summer is relatively lower than that in winter, and the PV
generation in summer is significantly higher than that in
winter, but for wind power, the feature is not so obvious. It
should be noted that different buses are close geographically in
the test system, and the potential of renewable energy power
generation is similar to a certain extent. So it is assumed that DGs
follow the same time series curves.

The combinations of wind, PV, and load demand are obtained
by the discretization–aggregation technology in Introduction.
Figure 6 shows the combinations and occurrence periods of
renewable generation and load when the bin width is 0.05 p.u.

For the wind–load case, there are a total of 400 combinations,
but only 175 contain non-zero occurrence periods. Similarly, for

TABLE 2 | Hosting capacity results with different bin widths.

Bin width Number of
extreme combinations

HC results
(MW)

Error (%) Computational burden
(s) (HEM)

Computational burden
(s) (NR)

0.1 2 9.464 12.97 0.1107 0.6981
0.05 3 10.224 5.98 0.1362 0.8766
0.01 10 10.768 0.92 0.4082 1.5878
0.001 26 10.86 0.09 1.0365 2.7859

FIGURE 7 | Voltage violation scenarios.

TABLE 3 | Statistical results of HC with different penetration levels.

DG location penetration (%) HC results of wind power (MW) HC results of PV (MW)

Mean value Standard deviation Mean value Standard deviation

30 7.086 3.987 7.381 4.203
50 7.671 1.925 7.979 1.974
70 7.775 0.794 8.104 0.860
90 7.843 0.247 8.160 0.276
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the PV–load case, the occurrence periods of only 133
combinations are non-zero. For renewable energy, wind power
and PV are negatively correlated. PV generation mainly depends
on solar radiation, and solar energy at night can be ignored. In
contrast, the wind power during the day is usually less than that at
night. Therefore, there is a certain complementarity between
wind power and PV (Miglietta et al., 2017; Guozden et al., 2020).

The extreme cases of maximum generation and minimum
demand are critical on the hosting capacity assessment restrained

by voltage rise. The results of extreme combinations are given in
Table 1. For thewind–load case and the PV–load case, only three and
four extreme combinations need to be considered, respectively. For
the wind–PV–load case, there are 2,567 combinations. It is difficult to
show them in visual graphics, but 394 extreme combinations can be
screened by the discretization–aggregation technique. Compared
with the use of original historical data, the introduction of
extreme combinations can significantly shrink the calculation scale
of multidimensional problems.

FIGURE 8 | PDF under 50% penetration level.

FIGURE 9 | CDF under 50% penetration level.

TABLE 4 | Statistical results of total delivered generation with different penetration levels.

DG location penetration (%) Mean value of
total delivered generation

of wind power
(MW·h/year)

Mean value of
total delivered generation

of PV (MW·h/year)

30 16,034.368 7,667.258
50 17,329.495 8,288.603
70 17,593.677 8,418.886
90 17,746.554 8,476.710
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Hosting Capacity Assessment
Hosting Capacity Calculation of a DG-Specific
Deployment Scheme
Taking a specific DG deployment scheme as an example, the
influence of bin width is discussed. And the rapidity and
effectiveness of the hosting capacity calculation method based
on HEM are verified. Wind power is connected at Bus 2, 7, 24,
and 33. Four widths are considered, namely, 0.1 p.u, 0.05 p.u,
0.01 p.u, and 0.001 p.u. The hosting capacity is calculated
according to Module 2 in Framework for Hosting Capacity
Assessment. For comparison, the Newton–Raphson power
flow method is used to calculate the hosting capacity on
each extreme combination, by increasing the total DG
capacity until the upper voltage is violated. The hosting
capacity result is 10.872 MW from all historical data, which
is regarded as the accurate value. Using the calculation
method based on HEM in this study, the results of extreme
combinations and the hosting capacity with different bin
widths are shown in Table 2.

The results in Table 2 show that the method proposed in this
study can greatly shorten the calculation time and improve the
calculation efficiency. When the bin width is set to 0.1 p.u, the
result is 12.97% smaller than the accurate value. Therefore, larger
width may underestimate the hosting capacity and lead to
conservative results. On the contrary, when the width is less
than or equal to 0.01 p.u, the relative error is less than 1%.We can
conclude that when the appropriate bin width is selected, the
calculation scale can be simplified by using the proposed extreme
combinations. More importantly, the hosting capacity calculation
method based on HEM can further shorten the calculation time.

Figure 7 shows that the voltage violation occurs when the
width is 0.01 p.u. Under the deployment scheme, when the

extreme scenarios are {(0.81, 0.82], (0.59, 0.60]}, Bus 24 first
exceeds the upper voltage limit.

Probability Assessment of the Hosting Capacity
In the test system, the number of DG candidate buses is 32. When
the location penetration level is 50%, the total possible number of
DG deployment schemes is more than 6 × 108. A large number of
potential DG deployment schemes bring a significant
computational burden. Therefore, MCS is used to simulate
relatively few scenarios to obtain approximate results. In this
context, we adopt the variance coefficient β (Prusty and Jena,
2017; Shen et al., 2020). β ≤ 0.5% is set as the stopping criterion of
MCS, and the results of MCS are considered to be accurate.

We performed the stochastic framework to access the hosting
capacity of a single DG case in Framework for Hosting Capacity
Assessment. The bin width is set as 0.01 p.u, and the location
penetration level is increased from 10 to 100% by a fixed step of
10%. Table 3 shows the statistical results of the wind system and
PV system at location penetration levels of 30, 50, 70, and 90%.

The mean values of the hosting capacity increase with higher
location penetration levels, while the standard deviations show
the opposite trend. The reasons are as follows: first, with the
increase of the location penetration level, DG locations increase
and the capacity allocated to each location decreases, so the total
hosting capacity of the system increases. Second, the higher
penetration level reduces the uncertainty of DG locations, so
the results of different deployment schemes are more
concentrated.

Figure 8 shows the probability density distribution of the
hosting capacity at 50% location penetration level. For the hosting
capacity of the wind system, the minimum and maximum values
are 3.995 and 14.224 MW, respectively. For the hosting capacity
of the PV system, the results of the hosting capacity are 4.236 and
14.472 MW, respectively. The difference between extreme values
is due to the location distribution of DGs.

Figure 9 shows the cumulative probability distribution of the
hosting capacity, which can provide planners with the probability
that the hosting capacity in distribution networks is lower than a
specific value. For example, the probability of the hosting
capacity, which is no more than 10 MW in the wind system, is
0.9359, while in the PV case, the result is 0.9097.

The total delivered generation can realistically reflect the
energy utilization. Therefore, when planning the distributed
system, not only the maximum hosting capacity of the system
but also the total delivered generation is needed to be considered.
The comparison of the mean values of total delivered generation
of the wind system and the PV system is presented in Table 4.
Although the hosting capacity of the PV system is slightly higher
than that of the wind system, the total delivered generation of PV

FIGURE 10 | PDF of the hosting capacity with different shares of wind
and PV.

TABLE 5 | Mean values of the hosting capacity and delivered generation.

Mean value of
the hybrid system

Mean value of wind
power

Mean value of PV

HC results (MW) 9.396 7.040 2.356
Total delivered generation (MW·h/year) 17,999.262 15,617.893 2,381.369
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is less than 50% of that of the wind system. The main reason for
the difference is the higher correlation and capacity coefficient
between wind resource and load demand.

There is complementarity between wind energy and photovoltaic
energy, and their joint action may affect the hosting capacity of the
system. However, the existing literature rarely discusses the hosting
capacity of hybrid wind–PV energy systems. The proposed stochastic
framework is used to analyze whether hybrid renewable energy helps
improve the available hosting capacity.

A variety of deployment schemes are generated by MCS.
Figure 10 shows the probability distribution of HC results
obtained with different shares of wind and PV at the 50%
penetration level. It can be seen that the PDF curve of the single
energy power generation hosting capacity is on the left side of the
PDF curve of the hybrid energy hosting capacity.With the increase of
wind power share, the PDF curve of the hosting capacitymoves to the
right until the share of wind power generation reaches 75%, and then
the PDF curve of the hosting capacity moves to the left. It indicates
that hybrid power generation has advantages in improving the level of
the hosting capacity.

According to the results, when the wind power share reaches 75%,
the hosting capacity of the hybrid wind–PV system reaches the
maximum. Table 5 shows the mean values of hosting capacity and
delivered generation. The mean value of the total hosting capacity is
9.396MW, while the mean values of wind and PV hosting capacity
are 7.040 and 2.356MW, respectively. Compared with the results of
the single wind case and PV case, the hosting capacity increases by
about 1.22 times and 1.18 times, respectively. Meanwhile, the mean
value of total annual delivered generation is 17,999.262MWh, of
which wind power generation accounts for about 87% and PV
accounts for about 13%. Compared with the single wind case and
PV case, the total delivered generation increases by about 1.04 times
and 2.17 times, respectively.

Wind power plays a leading role in hybrid wind–PV systems. PV
accounts for a relatively small proportion, but as a supplement to
energy, it is also essential to increase the total hosting capacity and
total delivered generation. The results show that the complementarity
between wind power and PV is conducive to distribution networks to
accommodate more distributed renewable resources. It can leverage
more renewable generation capacity to be utilized, thereby promoting
higher energy export.

CONCLUSION

Due to the inherent uncertainty of renewable energy resources,
the hosting capacity in distributed networks is not an immutable
value. Meanwhile, it is important to consider the uncertainties of
penetration levels, locations of DGs, and shares of wind and PV.
Thus, HC needs to be expressed in some statistical ways. In this
study, based on the wind–photovoltaic–load temporal
characteristic, a stochastic framework for the hosting capacity
is proposed. The main conclusions are as follows:

1) The uncertainty of wind power, PV, and load demand is
considered through time series data. The
discretization–aggregation method is introduced to process

time series data and generate extreme combinations. It
reduces the number of scenarios to be evaluated and
significantly mitigates computational complexity.

2) The holomorphic embedding model is proposed considering
the direction of generation and load change. The equivalent
analytical formula of voltage establishes the corresponding
relationship between the actual operation level and the
embedding parameter. The improved HEM can improve
the efficiency of the hosting capacity assessment.

3) Hosting capacity of the wind system, PV system, and hybrid
wind–PV system is studied from a probabilistic view.
Compared with the single resource case, the hybrid case has
the advantage in power generation. Due to the
complementarity between wind power and PV, the hybrid
wind–PV system has the potential to increase the hosting
capacity and energy production in distributed networks. The
performance in promoting energy integration and improving
utilization varies according to different shares of wind and PV.

From the development trend of the low-carbon goal, a large
amount of distributed renewable energy will inevitably lead to more
significant changes in distribution networks. This study proposes a
method to quantify the hosting capacity in distribution networks with
DGs based on the holomorphic embedding method. It offers
assistance in understanding the level of renewable energy
generation, making better use of the available renewable resources,
and promoting the application of distributed hybrid power
generation in the power grid. Furthermore, we will combine the
optimization algorithm to plan the optimal access scheme of
distributed generation with the method proposed in this study.
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NOMENCLATURE
DG distributed generation

HC hosting capacity

HEM holomorphic embedding method

PDF probability density function

CDF cumulative distribution function

MCS Monte Carlo simulation

PV photovoltaic
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Green Building Energy Cost
Optimization With Deep Belief
Network and Firefly Algorithm
Yan Liao1, Yong Liu1*, Chaoyu Chen2 and Lili Zhang3

1Zunyi Vocational and Technical College, Zunyi, China, 2College of Engineering, Zunyi Normal University, Zunyi, China, 3College of
Foreign Languages, Zunyi Normal University, Zunyi, China

In this research, we propose a multi-objective optimization framework to minimize the
energy cost while maintain the indoor air quality. The proposed framework is consisted
with two stages: predictive modeling stage and multi-objective optimization stage. In the
first stage, artificial neural networks are applied to predict the energy utility in real-time. In
the second stage, an optimization algorithm namely firefly algorithm is utilized to reduce the
energy cost while maintaining the required IAQ conditions. Industrial data collected from a
commercial building in central business district in Chengdu, China is utilized in this study.
The results produced by the optimization framework show that this strategy reduces
energy cost by optimizing operations within the HAVC system.

Keywords: green building, HVAC, feature selection, deep learning, multi-objective optimization

INTRODUCTION

The building industry is one of the largest sectors in creating jobs and has made great impact on
the economy. Meanwhile, the buildings consume large amounts of natural resources such as
water and electricity and its adverse environmental impacts are widely concerned. According to
the World Business Council for Sustainable Development, buildings has contributed to more
than 40% of total energy consumption (Mull, 1998) and 30% of greenhouse has emission (Payne
et al., 2012). As a result, the high energy cost and environmental impacts from the buildings are
becoming a major issue (Li et al., 2021a).

The new concept Green Building (GB) is conceived as an opportunity to reduce adverse impacts
of buildings on the environment and energy cost. GB has been defined as a term that is
interchangeable with buildings that has efficient energy utility and high sustainability. An
increasing number of studies have been conducted on GB in the past decade and one major
research direction is the reduction of the energy cost. Heating, ventilation, and air-conditioning
(HVAC) systems are the major source of energy consumption in commercial buildings, and they
account for more than 60% of annual total energy utility.

Previous literature has invested significant research efforts related to the modeling and
optimization of the HVAC systems. They can be classified into two types of approaches: the
physics-based approaches and the data-driven approaches. Physics-based approaches are
generally developed over mathematical equations to depict the HVAC system modules and
have been extensively utilized in HVAC related research. Sakulpipatsin et al. (2010) proposed
extended physics-based models of HVAC systems and used TRNSYS software to perform the
simulation for optimization studies. Zhang et al. (2013) introduced a novel physics-based model
to study the HVAC energy consumption mechanism and a new model parameter namely
entrants is included in the model. Teodosiu et al. (2003) developed an analytical model to
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evaluate thermal comfort by considering indoor air moisture
and its transport by the airflow. Nassif et al. (2004) proposed a
supervisory control strategy to optimize set points of
controllers used in a multi-zone HVAC system.

The physics-based approaches are usually computationally
complex and can be only applied under certain conditions. In
comparison, data-driven approaches have reflected effectiveness
in modeling complex, dynamic, and non-linear systems in many
domains (He et al., 2017; He and Kusiak, 2017; Ouyang et al.,
2017; Li et al., 2018; Ouyang et al., 2018; Li et al., 2020). Kusiak
et al. (2011a) proposed a data-mining approach for the
optimization of the HVAC units. Chang et al. (2009)
constructed a Hopfield neural network to model the chilled
water supply temperatures in chillers. Fong et al. (2006) used
TRNSYS software to construct a data-driven model to optimize
the settings of chilled water and supply air temperature. Lv et al.
(2018) discussed various low carbon technologies and strategies
to optimize the green building HVAC energy consumption.
Kontes et al. (2013) proposed a stochastic optimization
algorithm to maximize the utility of renewable energy
proportion within the HVAC system. Lachheb et al. (2020)
studied parametric models to investigate the impact of HVAC
utility on the glazing size in various regions. Promising results
from the data-driven approaches have demonstrated the
effectiveness and robustness in modeling and optimizing the
HVAC systems.

Inspired by the recent advent of deep learning algorithms, in
this research, we would like to advocate a novel data-driven
framework to modeling and optimizing the energy cost. In this

modeling stage, the artificial neural network is constructed and
trained on the HVAC energy consumption dataset to study the
non-linear mapping between input features and energy cost. The
algorithm with the top performance is selected as the benchmark
for the following stage. In stage II, a firefly algorithm is utilized as
the optimizer to reduce the total energy consumption while
maintaining the air quality at an acceptable level.

HAVC SYSTEM AND PROBLEM
FORMULATION

HVAC System
HAVC systems are widely installed in the commercial buildings
located in the central business district (CBD). A schematic
diagram of a typical HVAC system installed in the
commercial buildings is illustrated in Figure 1. A typical
HVAC system consists an air handling unit (AHU) and
multiple thermal zones. For each thermal zone, a VAV
(variable air volume) box is connected to the air handling unit
to maintain the comfort temperature of the thermal zone.

The total energy utility by the HVAC system is consisted of the
utility from the AHU and VAV. Three major resources including
heat energy, fan energy, and pump energy, account for all energy
consumptions in the AHU. For the VAV, the reheat load
accounts for the maximum consumed energy (Kusiak et al.,
2011b). The VAV box basically supplied the conditioned air
for a specific thermal zone in order to satisfy the comfort
temperature of the zone envelope. By tuning the dampers in
the VAV box, the hot water flows through the coils adjusting to
the actual requirements of the zone comfort.

Data Collection
The HVAC system discussed in this research as our case study is
operated by a commercial building located in the central business
district in Chengdu, China. This building has 33 floors and many
big companies set their regional headquarter offices inside this
building.

The dataset provided contains the hourly data of the HVAC
system in the underlying building during the whole year of 2019.
Multiple features that are relevant to our study is provided
including total energy consumption, supply air temperature set
point, supply air duct static pressure set point, system load, supply
air humidity, barometric pressure, and outside air temperature.
The in-detail description of the features utilized in this study has
been summarized in Table 1 as follows.

FIGURE 1 | Schematic diagram of an HVAC system.

TABLE 1 | Introduction of the related features collected in the dataset.

Feature Description Unit

ETotal Total energy consumption KJ
xSAT Supply air temperature set point °F
xSATPS Supply air static pressure set point kPa
xLoad System load Discrete
xSAH Supply air humidity %
xBP Barometric pressure kPa
xOAT Outside air temperature °F
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Problem Formulation
In this research, the main goal is to develop a data-driven
framework to minimize the total energy cost which ensuring
the indoor air quality is maintained at a desirable level. The
setting of the two controllable parameters namely the supply air
temperature set point and the supply air static pressure set point
play the essential role in impacting the total energy consumption
of the HVAC system.

The total energy utility of an HVAC system comes from the
AHU and VAV and it can be expressed in eq. 1 as follows:

ETotal � EAHU + EAVA (1)

Based on prior domain knowledge, the input features are
associated with the AHU and VAV and we may re-formulate
the problem as a regression problem as expressed in eq. 2:

ETotal � f(xSAT, xSATPS, xLoad, xSAH, xBP, xOAT) (2)

Among them, the xSAT and the xSATPS are controllable features
and the rest are uncontrollable features.

In this research, the goal is to reduce the energy consumption
while maintaining the indoor air quality. Hence, according to
literature review (Kusial et al., 2011; Li et al., 2021b), we set the
following constrains to our optimization model: the supply air
temperature (xSAT) should be between 50°F and 65°F; the supply
air duct static pressure (xSATPS) must be between 0.2 and 0.5 kPa;
and the supply air humidity (xSAH) should be controlled below
25%. Consequently, it can be formulated in the following non-
linear optimization problem with the underlying constraints in
eq. 3 as follows:

minf(xSAT, xSATPS, xLoad, xSAH, xBP, xOAT) (3)

subject to:

50≤xSAT ≤ 65
0.2≤xSATPS ≤ 0.5

xSAH ≤ 25%

METHODOLOGY

Deep Belief Network
The number of applications of deep learning architecture in
regression, multi-class classification, collaborative filtering,
and graphic learning tasks has experienced rapid growing in
the recent decade (LeCun et al., 2015). In this section, a deep-
learning based framework is presented to predict wind
direction. The concept of deep learning originates from
research on artificial neural networks and it alleviates the
local optima problem in the non-convex objective function
of a neural network (Ouyang et al., 2020). The success of deep
learning architectures is contributed by three characteristics: a
large number of hidden neurons, better learning algorithms,
and better parameter initialization techniques (Deng and Yu,
2013).

In this paper, a widely utilized deep-learning algorithm
namely deep belief network (DBN) is selected to construct the

regression models to predict total energy consumption of the
HVAC system. Originally proposed by Hinton et al. (2006), a
typical DBN contains multiple restricted Boltzmann machines
(RBMs) which are stacked in a hierarchically manner. Each RBM
includes a visible layer and a hidden layer both are composed of
Boolean neurons (see Figure 2). The connection between the
hidden layer and the visible layer is bidirectional and symmetrical
without any inter-connections between neurons in the same layer
exists.

The optimization of the weight matrix between the two layers
is the main target in the training process in order to construct a
robust mapping. The configuration of weight matrix is based on the
energy function expressed in eq. 4 (Hinton et al., 2006). The joint
distribution of a visible layer vector and the hidden layer vector is
expressed in eq. 5. The activation functions of neurons in the visible
and hidden layer are presented in eqs. 6, 7 (Hinton et al., 2006):

E(v, h) � −∑nv

i�1 aivi −∑nh

j�1 bjhj −∑nv

i�1 ∑nh

j�1 hjwj,ivi (4)

P(v, h) � e−E(v,h)

∑v∑he
−E(v,h) (5)

P(vi � 1|h) � sig(αi +∑nh

j�1wj,ihj) (6)

P(hi � 1|v) � sig⎛⎝bj +∑nv

i�1 wj,ivi⎞⎠ (7)

Layer-wise Training
Multiple layers of restricted Boltzmann machines (RBMs) are
hierarchically stacked within the DBN algorithm. The first
RBM is pre-trained as an independent RBM and the weight
matrix of the first RBM is computed. The output of the first
RBM is treated as the input to the second RBM. By training the
RBMs iteratively following the above strategy, the DBN is
trained and the weight matrices between the remaining hidden
layers are obtained.

During the training process of RBMs, the optimization problem
is formulated using a stochastic gradient ascent approach (SGA)
(Hinton et al., 2006). Based on vector (5) of the joint distribution
function between the visible and hidden layer, the objective function
of the stochastic gradient ascend method is expressed in eq. 8:

L(a, b, w) � ∑ logP(v, h) (8)

FIGURE 2 | Restricted Boltzmann Machine (RBM).
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Benchmarking Algorithms
Three benchmarking algorithms including support vector
regression machine (SVR), neural network (NN), and extreme
learning machine (ELM).

The support vector regression machine (SVR) is a supervised
classification/regression algorithm that includes a Gaussian
kernel function (Drucker et al., 1996). The neural network
(NN) is a machine-learning algorithm which contains the
input layer, hidden layer and the output layer. The extreme
learning machine (ELM) algorithm (Liang et al., 2006) is a
single hidden layer feedforward network. The ELM learning
model is expressed in eqs. 9, 10 (He and Kusiak 2017; Li
et al., 2018; Ouyang et al., 2019; Li et al., 2021c).

fL(xj) � oj,∀j (9)

∑L

i�1 βiG(ai, bi, xj) � tj, j � 1, 2, . . . , N (10)

Firefly Algorithm
The Firefly Algorithm (FA) (Bacanin et al., 2021) is a new swarm
intelligence algorithm that simulates the social behavior of
fireflies. In the nature, fireflies use flashing to attract mating
partners and the movement of the fireflies is determined by the
resulting attraction which is related to the intensity of the emitted
light. Similar to the particle swarm optimization (PSO) algorithm,
the FA algorithm is a population-based stochastic search
algorithm. Each firefly member in the population represents a
candidate solution in the search space. Fireflies move toward
other directions and search potential candidate solutions. Overall,
the attractiveness is determined by the intensity of the emitted
light that is measured by the fitness value (Wang et al., 2017).

In detail, the attractiveness between the two fireflies Xi and Xj

can be computed in eqs. 11, 12 as follows:

β(rij) � β0e
−cr2ij (11)

rij �
����Xi −Xj

���� �

∑D

d�1 (xid − xjd)2
√

(12)

where d � 1,2,3, . . . ,D and D is the problem dimension; rij is the
distance between Xi and Xj; xid and xjd are the dimension ofXi and
Xj respectively. Each firefly Xi is compared with all other fireflies
Xj, where j � 1,2, . . . ,N and j ≠ i. If Xj is brighter than Xi, the Xi

will be attracted by Xj and move towards Xj. The movement of Xi

can be computed by eq. 13 as follows:

xid(t + 1) � xid(t) + β0e
−cr2ij(xid(t) − xid(t)) + S∈i (13)

Therefore, the FA algorithm can be summarized into the
following three steps as follows:

• Step 1: Initialization. Randomly generate N solutions as an
initial population accordingly. Each individual solution
(firefly) is Xi.

• Step 2: Movement (attraction). For each solution Xi, we
compare with all other solutionsXj. IfXj is greater thanXi,

Xi moves towards Xj and changes its position according to
eq. 13.

• Step 3: Stopping. If the stopping criteria has been satisfied,
we can stop the algorithm.

Measurement Metrices
In this research, the prediction output is the energy consumption
and hence we may formulate this as a regression problem. Two
widely utilized metrics namely mean absolute percentage error
(MAPE) and root mean square error (RMSE) are selected in this
study to measure the performance of different DBN architectures
(Li et la. 2021b). TheMAPE and RMSE are expressed in eq. 8, 9 as
follows:

MAPE �
∑N

i�1

∣∣∣∣∣∣∣ŷi−yiyi

∣∣∣∣∣∣∣
N

(8)

RMSE �


∑N

i�1
∣∣∣∣∣∣ŷi − yi

∣∣∣∣∣∣
√

N
(9)

EXPERIMENTAL RESULTS

Feature Analysis
In this research, the HAVC energy consumption dataset includes
six predictor variables (features) and the energy utility is the
dependent variable as indicated in Section “Data Collection”. All
features are continuous numerical features and the feature
preliminary analysis with min-max scaling and histogram are
performed in this section.

As illustrated in Figure 4, the histograms of the energy
consumption are presented. In order to investigate the energy
consuming behavior of the underlying commercial building in
different seasons, the hourly energy consumption in summer
season (Jun-Aug) and winter season (Dec-Feb) has been
randomly sampled and plotted in Figure 3. It is obvious that
the two energy distributions are right-skewed and are non-
Gaussian distributed.

Meanwhile, the histograms of the input predictor features are
also illustrated in Figure 4 as follows. From Figure 4, almost all
predictors follow a Gaussian-type of distribution and are
symmetric in their empirical PDFs. The only exception is
SAPTS which is left-skewed which indicate it may follow a
non-Gaussian distribution. A log-transformation will be
applied to further transform the distribution into a Gaussian
shape distribution.

Predictive Modeling of Energy Cost
After data-preprocessing, the predictive modeling of energy
consumption using DBN is provided in this section. The two
hyper-parameters, the number of RBMs and the number of
neurons within each RBM, directly impact the predicting
performance of the energy prediction model. Hence, it is
essential to tune the hyper-parameters to ensure the optimal
setting of the DBN algorithm.
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In this research, a cross-validation based tuning process is
implemented. As illustrated in Figure 5, we performed a series of
experiments testing the average RMSE of various hidden layers as
well as various hidden neurons in each hidden layer using an
incremental manner. The dataset for such experiment are
randomly sampled from the original dataset which contains a
whole month hourly energy consumption records. It is obvious
that the optimal number of RMBs within the DBN is 2 and the
optimal number of hidden neurons in each RMB is 15.

Using the constructed optimal DBN algorithm, we performed
training and testing experiments on two seasons: summer and
winter. In each experiment, a whole month dataset has been used
as the training dataset and the following weekly data has been

used as the validation dataset. The prediction performance has
been illustrated in Figure 7 respectively. The prediction results of
the testing dataset contain the actual energy consumption (blue)
and the predicted energy consumption (red) of the two seasons.
In summer, the RMSE is 5.51, and theMAPE is 11.77%. In winter,
the RMSE is 5.25 and the MAPE is 10.81%. The prediction
performance of the trained DBNs as well as the benchmarking
machine learning algorithms on the testing dataset is presented in
Table 2 and Figure 6 respectively.

In this section, the optimization of controllable features
namely the supply air temperature set point (SAT) and the
supply air static pressure set point (SATPS) in the temporal
domain has been optimized by using the constructed DBN

FIGURE 3 | Histogram of energy consumption in summer and winter.

FIGURE 4 | Histogram of predictor variables.
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prediction models. The goal of the optimization is to reduce the
energy consumption while maintaining the indoor quality. The
formulation is expressed in eq. 3 and the constrains for all
predictor features are listed to ensure the indoor air quality.
The firefly algorithm (FA) has been implemented in this section
to reduce the energy consumption and the optimization
experiments is illustrated in Figure 7 as follows.

As illustrated in Figure 7, the fitness value of the FA algorithm
has been plotted along with the iteration of the experiments. For
the summer predictionmodel, the fitness value converges to near-
zero zone after 20 epochs indicating the optimal solution has been
numerically approached. For the winter prediction model, the
fitness value converges to near-zero region after 30 epochs as it
achieved its optimal solution. As it takes more epochs to approach

the optimal solution, it indicates more complexity in the winter
prediction model due to the challenges within the dataset
provided.

Hence, using the feature settings computed by the FA algorithm,
the two optimized feature outcomes are selected as new inputs in the
pre-trained energy prediction models as discussed in Section
“Predictive modeling of energy cost”. The simulation results are
presented in Figure 8 that contains the actual energy consumption
(blue), predicted energy consumption (red), and optimized energy
consumption (purple) computed from the simulation outcome. For
the summer season, the simulation results indicate the optimized
energy consumption is 17% less than the predicted energy utility. For
the winter season, the optimized energy is 14% less than the
predicted energy utility.

FIGURE 5 | Hyper-parameter tuning process.

TABLE 2 | Prediction performance of all algorithms tested.

Algorithm MAPE (Summer) R (%)MSE (Summer) MAPE (Winter) R (%)MSE (Winter)

SVR 13.37 6.02 14.42 6.92
NN 12.44 5.76 12.23 6.35
ELM 12.63 5.87 11.17 5.94
DBN 11.77 5.51 10.81 5.25

Optimization of controllable features.

FIGURE 6 | Prediction performance of the testing dataset in Summer and Winter.
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Based on the simulation results, we have achieved an
optimized energy utility in our testing dataset. Considering the
local electricity price, and total area within our underlying
building, we have achieved a cost saving of 12.90 RMB/m2 for
our case study building in summer and 11.18 RMB/m2 in winter
from an economic perspective. If we incorporate this into the
estimation of the total energy cost of the whole building, it would
approximately achieve 16.6% of reduction in the total cost
considering the savings in both winter and summer.
Therefore, it achieved the standard Green Building concept
and can be utilized as a sample for other local commercial
buildings for larger scale energy saving projects.

CONCLUSION

The best performing neural network structure has been selected via
cross-validation and gird-based search. In addition, an energy
optimization problem has been formulated by incorporating the
predictive neural network model and HVAC operational
constraints. The formulated optimization problem has been
successfully solved by the firefly algorithm. The optimal setting of

the two controllable features including the supply air temperature set
point and the supply air static pressure set point in the temporal
domain has been computed. Computational results demonstrated
that it can achieve the reduction of total energy cost by a significant
portion. (Wang et al., 2016).
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FIGURE 7 | Optimization experiment of firefly algorithm.

FIGURE 8 | Simulated energy consumption using the optimized controllable feature setting.
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GLOSSARY

ETotal Total energy consumption

EAHU Energy utility from the AHU

EVAV Energy utility from the VAV

xSAT Supply air temperature set point

xSATPS Supply air duct static pressure

xLoad System load

xSAH Supply air humidity

xBP Barometric pressure

xOAT Outside air temperature.

vi Number of neurons in the visible layer

hi Number of Boolean neurons within the hidden layer

wj,I Weight matrix between the visible layer and hidden layer

ai Weight vector connecting the ith hidden node and the input nodes

bi Threshold of the ith hidden node

sig() Logistic sigmoid function

a Bias vector of the visible layer

b Bias vector of the hidden layer

xj Input parameters

oj Output values

fL() Non-linear function representing the ELM algorithm

βi Weight vector connecting the ith hidden node and the output nodes

tj Actual output value

ϵi Random value uniformly distributed between [-0.5, 0.5]

s Step-factor between [0, 1]

ŷi Predicted value

yi Actual value

N Total number of predicted values in the testing dataset
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Research on Leakage Current
Waveform Spectrum Characteristics
of Artificial Pollution Porcelain
Insulator
Chunhua Fang1, Yuning Tao1*, Jianguo Wang2, Haixin You1, Yan Cui1 and Mi Zhou2

1College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China, 2School of Electrical
Engineering, Wuhan University, Wuhan, China

The surface discharge development processes of polluted porcelain insulators for power
transmission lines are tightly related with the development of leakage current (LC), the
characteristics of LC, the insulating condition, and discharge intensity of the insulator
surface have an important significance for revealing the contamination discharge state of
insulators. In order to analyze the LC characteristics of porcelain insulators in the process
of pollution flashover, artificial pollution flashover tests on porcelain insulators were
conducted in the artificial fog cabinet, and the characteristics of LC waveforms in time-
domain and frequency-domain were simultaneously measured and analyzed during the
tests. The results indicated that the amplitude of LC, fundamental harmonic, the third
harmonic, and fifth harmonic had a strong correlation, the maximum of LC(Im), the rate of
total harmonics (THD), and the phase difference of fundamental harmonic (θ) were used for
the representation of the characteristics of the LC waveform. The LC has the
characteristics of high amplitude, low proportion harmonic, and small phase difference
between the fundamental harmonic and voltage before the flashover occurrence. The test
results provide effective reference for porcelain insulators in pollution flashover forecasting.

Keywords: leakage current, insulator, pollution flashover, flashover voltage, transmission line

INTRODUCTION

Outdoor insulators have been exposed in severe environment since the birth of the power system
(Yang et al., 2019; Liu et al., 2020; Shen and Raksincharoensak, 2021a; Shen and Raksincharoensak,
2021b). The airborne particles are deposited on the insulator surface and the pollution builds up
gradually, which causes insulator flashover during wet weather conditions (Yang et al., 2019; Shen
et al., 2021; Yang et al., 2021). So conditions monitoring of the insulator are important to know about
insulator status of the insulator. The analysis of surface LC is necessary to know about the insulator
condition (Miyake et al., 2010; Shen et al., 2020; Yang et al., 2020; Zhu et al., 2020; Noman et al.,
2021).

A large number of research studies have dealt with LC, including the maximum value of the LC
pulse under the operating voltage, the amplitude of the LC before the occurrence of flashover and the
LC root-mean-square values (Li et al., 2010; Jiang et al., 2010). Besides, the number of the highest
peak power-spectrum is also used as methods for pollution monitoring (Chandrasekar et al., 2009;
Pylarinos et al., 2011; Pylarinos et al., 2012). Literature (Chaou et al., 2015) reported that the main
frequency of the porcelain insulator LC waveform is 50, 150, and 250 Hz and the LC waveform is
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divided into six categories. Papers (Suda T, 2001; Bashir and
Ahmad, 2010; Douar et al., 2010; Dhahbi-Megriche and Beroual,
2016) introduced the analysis of the variation characteristics of
the LC in the frequency domain power spectrum during the entire
process of the contamination flashover. But all these studies listed
have not yet reached consensus on which spectrum parameters
can represent contamination insulator surface state.

In this paper, while measuring polluted porcelain insulator LC
data and shooting discharge pictures, the frequency spectrum
characteristics of LC waveform is extracted during loading
voltage process, analyzing the variation of LC characteristics
carefully under various salt density, as well as the correlation
between each feature quantity.

EXPERIMENTAL EQUIPMENT AND
METHOD

Experimental Equipment
According to IEC60507 standard (IEC 60507, 1991), the solid
layer method experiments are carried out in an artificial fog
chamber. The schematic diagram of the test device is shown in
Figure 1. The artificial fog chamber’s dimensions are 5 × 5 × 5 m.
The power supply includes a shifting coil voltage regulator
(150 kV/4A) and test transformer (1000 kV/2250 kVA). The
high voltage supply is connected to the artificial fog chamber
through a 220 kV wall bushing. The fog is generated by the
automatic steam generator. Steam output remains at a fixed rate.
The data acquisition systemmonitors and records LC and voltage
waveforms using a LABVIEW program on the personal
computer. The leakage current sensor is connected to the low-
voltage circuit, the leakage current signal is obtained and the
voltage signal is obtained through the capacitive voltage divider,
which are then connected to the leakage current and voltage
measurement system through the double-layer shielded coaxial
cable, the sampling rate is 125kS/s, and then connected to the
computer, the software of the leakage current measurement
system finally completes the measurement of the leakage
current and the pollution flashover voltage in the artificial
pollution flashover test of the insulator.

Insulator Sample
The XP-70 porcelain insulator is used to measure the LC in the
test. A sample insulator string includes seven pieces of porcelain
insulator that are used for the experiments. The details of the
dimensions of the porcelain insulator are in Table 1.

Test Methods
The solid layer method as described in IEC60507 is used in the
test (IEC, 1991). NaCl is used as soluble salt. Kaolin powder is
used as non-soluble salt. First, NaCl is mixed with Kaolin powder
in a certain proportion in distilled water. Then the mixture is
coated on the clean porcelain insulator surface. Finally, the pre-
contaminated samples are hung in the laboratory until they
naturally dry for more than 24 h before the experiment. Based
on the IEC60507 standard, four levels of equivalent salt deposit
density (ESDD) are applied to the experiment, respectively, 0, 0.1,
0.2, and 0.4 mg/cm2. And the non-soluble deposit density
(NSDD) is set to 1.0 mg/cm2. The commonly used methods of
artificial pollution test include constant pressure lifting method.
During the test, when the wetness of the umbrella skirt surface
reaches a fully saturated state, the pressure is immediately
increased to flashover. The speed of the increase is not
specified before 40% of the expected flashover voltage. Then
the voltage is increased to flashover at a rate of 10–20% of the
expected flashover voltage per second.

RESULTS AND DISCUSSION

Discharge Image and LC Waveforms and
Frequency Spectrum
As shown in Figure 2, at the first stage of discharge, the weak
filamentary discharge can be seen on the surface of the porcelain
insulator. With the increase of voltage, the “squeak” sound can
be heard.

Contaminant forms a layer on the surface of the insulator in
combination with water, which causes the formation of
conducting films, and that causes to flow the LC through the
insulator surface under wet conditions. Evaporation of water
layers in these areas forms dry bands. The appearance of dry
bands on the insulator surface causes arcs. Such arcs may elongate
until they bridge the two metal electrodes of the insulator, and
total flashover occurs.

With the increase of voltage, partial arcs will enter into a stage
of stability. Blue-violet partial arcs will appear on the surface of
the porcelain insulator. For the whole insulator string, the
development of partial arcs of each piece of porcelain
insulator is relatively independent.

FIGURE 1 | Schematic diagram of the test device.

TABLE 1 | Dimensions of test porcelain insulator.

Parameters Dimensions in mm

Maximum diameter 255
Creepage distance 295
Axial height 146

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7980482

Fang et al. Leakage Current Waveform Spectrum Characteristics

156

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Bright blue-violet arcs are changed into light yellow, while the
bright arcs are rotated around the axis of the porcelain insulator.
A large number of small arcs get together to form the main arc

and develop along the surface of the insulator. As voltage
continues to increase, the partial arcs have a tendency to
through the surface of an insulator, when they cross 70%

FIGURE 2 | The process of contamination discharge of insulators.
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creepage distance of the insulator, porcelain insulator string
flashover.

Figure 3A shows a typical waveform of LC obtained at the
test. Figures 3B–D show the frequency spectrum of Figure 3A.
The frequency components of LC were studied within 0–100 Hz,
1–4, and 4–44 kHz. With the increase of frequency, the
amplitude of LC decreases gradually. The maximum value of
LC at 1 kHz is only 0.04 mA, which is more than that at 1.5 kHz.
The amplitude of LC is less than 0.005 mA. It is only 0.1% of the
fundamental harmonic. In Figure 3A, it is obvious that there is
the third, fifth, and seventh harmonics, especially the third and
fifth harmonics, expect the amplitude of the fundamental
harmonic at 50 Hz.

A typical LC waveform and corresponding spectrum graph are
shown in Figure 4. When the porcelain insulator surface is dry or
extremely low contamination degree, there is LC waveform in
Figure 4A. The waveform is a sine wave, but the phase difference
is larger between the voltage and the fundamental harmonic,
some even meet to 90°. When the insulator surface appears weak
discharge current slowly, the LC waveform begins to distortion
into symmetrical triangle waveform (Figure 4B), the odd
harmonic increases sharply; when the discharge becomes more
obvious and intense, the triangle wave will significantly increase,
the peak of the LC waveform becomes more prominent, an
asymmetric waveform is formed (Figure 4C); the strong arcs
almost across insulator string before flashover occurs. The
characteristics of LC are mainly decided by the nature of the
arcs, a long arc represents resistance. As shown in Figure 4D,
resistive current will appear again, but the amplitude of LC will
increase tens to hundreds of mA.

LC Characteristic
The change curves of applied voltage and LC of porcelain
insulator under different salt density are shown in Figure 5.
With the increase of voltage, LC increases linearly, when the
voltage rises to a certain value, the amplitude of LC begins to

fluctuate, the value of salt density is higher, the discharge becomes
more powerful and intense. The amplitude of LC increases
sharply before the flashover is coming.

THD Variation Law of Polluted Insulators Under Wet
Conditions
THD is the total harmonic distortion of LC (Khodsuz and Mizaie,
2015). The change curve of THD during loading voltage process is
shown in Figure 6. The curve of THD of a clean insulator is
shown in Figure 6A, the initial applied voltage is small, the LC of
a clean insulator is also small, the interfering signals cause higher
distortion. With the increase of voltage, the LC increases, the
value of THD decreases gradually; a small number of arcs appear
on the surface of the porcelain insulator. THD increases suddenly
before the flashover is coming. As shown in Figures 6B,C, when
the salt density is 0.1, and 0.2 mg/cm2, THD changes greatly after
the pressure for more than 20 s. With the salt density increased to
0.4 mg/cm2, THD changes more intensely.

Phase Angel θ of Polluted Insulators LC Variation Law
Under Wet Conditions
The θ is the phase difference between the applied voltage and LC.
Change curves of phase difference under different salt densities
are shown in Figure 7. The LC phase of clean porcelain insulators
decreased gradually with the voltage increased, which decreased
from 75 to 20°. The phase difference was mutated into a negative
value before flashover occurs, which shows that there is a big arc,
and following with insulator flashover.

LC contains resistive current and capacitive current, the
proportion of resistive current is different from capacitive
current, so the phase difference fluctuates between the positive
and negative. With the increase of voltage, the porcelain insulator
surface does not appear to discharge, the phase difference
gradually decreases to negative, then the insulator begins to
violently discharge and the phase difference begins to flounce
between positive and negative.

FIGURE 3 | The LC waveform and its Fourier transform.
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FIGURE 4 | LC waveforms and frequency spectrum of different discharging strength.

FIGURE 5 | Curves of LC with the increasing voltage.
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The Relationship LC Characteristics
LC fundamental harmonic, the third harmonic, the fifth
harmonic, and the rate of total harmonic and the phase
difference of the fundamental harmonic has carried on the
correlation analysis.

From Table 2 to Table 3, the correlation coefficient between
the amplitude of LC and fundamental harmonic, the third
harmonic, and the fifth harmonic is more than 0.800. The
amplitude of the LC can be used to represent the fundamental
wave, third, and fifth harmonic; current amplitude has a low

FIGURE 6 | Curves of THD of insulators under different pollution conditions.

FIGURE 7 | Curves of θ of LC under different ESDD.

TABLE 2 | The coefficient of LC eigenvalues on clean insulator.

Im I1m I3m I5m θ THD

Im 1.000 0.908 0.998 0.998 −0.229 0.418
I1m 0.908 1.000 0.928 0.886 −0.461 0.285
I3m 0.998 0.928 1.000 0.994 −0.252 0.431
I5m 0.998 0.886 0.994 1.000 −0.197 0.425
θ −0.229 −0.461 −0.252 −0.197 1.000 0.249
THD 0.418 0.285 0.431 0.425 0.249 1.000

TABLE 3 | The coefficient of LC eigenvalues (ESDD� 0.1 mg/cm2).

Im I1m I3m I5m θ THD

Im 1.000 0.971 0.865 0.917 −0.491 −0.061
I1m 0.977 1.000 0.802 0.881 −0.402 −0.162
I3m 0.865 0.804 1.000 0.958 −0.597 −0.021
I5m 0.917 0.887 0.957 1.000 −0.565 −0.072
θ −0.494 −0.407 −0.594 −0.564 1.000 0.094
THD −0.061 −0.162 −0.022 −0.075 0.094 1.000
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correlation with θ, the maximum value is only −0.620 under four
pollution levels, and all are negative. It is indicated that the value
of LC is bigger. That θ is smaller; the correlation of THD and
current amplitude is less than 0.44. Distortion degree of LC
waveform and the value of LC lack of a strong linear
relationship; there is no significant correlation between THD
and θ.

Themaximum value of LC is affected by the degree of pollution.
The THD represents the degree of distortion of the LC waveform;
the phase difference can distinguish effectively capacitive current
and resistive current. Three characteristics describe the situation of
LC of porcelain insulator surface from different aspects. The
waveform of LC can be characterized by three features that are
current amplitude, THD, and phase difference.

The LC Characteristics Before Flash
As shown in Figure 8, when the flashover occurs on the surface of
the porcelain insulator, the voltage drops to zero rapidly. Before
the flashover, the LC did not increase sharply, arcs almost
throughout the whole string of the insulator, which lasted for
a long time. The waveform of LC and applied voltage is shown in
Figure 9, NSDD is 1.0 mg/cm2, ESDD is 0.1, 0.2, 0.4 mg/cm2, the
amplitude of LC reachedmore than 700 mA before flashover. The

total harmonic and phase differences are small, and the LC
mainly is resistive current.

CONCLUSION

1) The correlation coefficient between the amplitude of LC and
fundamental harmonic, the third harmonic, and the fifth
harmonic is more than 0.800; the amplitude of the LC can
be used to represent the fundamental waveform, the third
harmonic, and the fifth harmonic; the correlation of THD and
maximum value of LC is less than 0.44; the distortion degree
of the LC waveform and the value of LC lack of a strong linear
relationship; there is no significant correlation between THD
and θ.

2) The maximum value of LC is affected by the degree of
pollution. The THD represents the degree of distortion of
LC waveform; the phase difference can distinguish effectively
capacitive current and resistive current. Three characteristics
describe the situation of LC of porcelain insulator surface
from different aspects. The waveform of LC can be
characterized by three features that are current amplitude,
THD, and phase difference.

3) Test results can be used as an effective reference for porcelain
insulators in pollution flashover forecasting.

TABLE 4 | The coefficient of LC eigenvalues (ESDD � 0.2 mg/cm2).

Im I1m I3m I5m Θ THD

Im 1.000 0.969 0.861 0.934 −0.620 0.121
I1m 0.969 1.000 0.823 0.924 −0.490 0.042
I3m 0.861 0.823 1.000 0.938 −0.701 0.158*
I5m 0.934 0.924 0.938 1.000 −0.655 0.135
θ −0.620 −0.490 −0.701 −0.655 1.000 0.012
THD 0.121 0.042 0.158* 0.135 0.012 1.000

TABLE 5 | The coefficient of LC eigenvalues (ESDD � 0.4 mg/cm2).

Im I1m I3m I5m θ THD

Im 1.000 0.919 0.901 0.845 −0.368 −0.173*
I1m 0.919 1.000 0.823 0.887 −0.204 −0.240
I3m 0.901 0.823 1.000 0.965 −0.430 −0.155
I5m 0.845 0.887 0.965 1.000 −0.444 −0.101
θ −0.368 −0.204 −0.430 −0.444 1.000 −0.383
THD −0.173* −0.240 −0.155 −0.101 −0.383 1.000

FIGURE 8 | The voltage and current waveform of flashover.

FIGURE 9 | The voltage and current waveform of pre-flashover.
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OC-SLAM: Steadily Tracking and
Mapping in Dynamic Environments
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Visual Simultaneous Localization and Mapping (SLAM) system is mainly used in real-time
localization andmapping tasks of robots in various complex environments, while traditional
monocular vision algorithms are struggling to cope with weak texture and dynamic scenes.
To solve these problems, this work presents an object detection and clustering assisted
SLAM algorithm (OC-SLAM), which adopts a faster object detection algorithm to add
semantic information to the image and conducts geometrical constraint on the dynamic
keypoints in the prediction box to optimize the camera pose. It also uses RGB-D camera to
perform dense point cloud reconstruction with the dynamic objects rejected, and facilitates
European clustering of dense point clouds to jointly eliminate dynamic features combining
with object detection algorithm. Experiments in the TUM dataset indicate that OC-SLAM
enhances the localization accuracy of the SLAM system in the dynamic environments
compared with original algorithm and it has shown impressive performance in the
localizition and can build a more precise dense point cloud map in dynamic scenes.

Keywords: SLAM, dynamic environment, object detection, dense point cloud reconstruction, point cloud clustering

1 INTRODUCTION

The indoor mobile robot is a robot system composed of multi-sensor fusion perception, autonomous
decision making, mission planning, and control, etc. And from the perspective of the global mobile
robot consumer market, its market scale is expanding, and various smart factories have great
industrial demand for robots to complete various production tasks. For complex working
environments, the first problem in autonomous mobile robots is the accuracy of localization and
environmental map construction (Huang et al., 2019; Shen et al., 2020a). There has been a lot of
outstanding work on SLAM research (Mur-Artal and Tardós, 2017; Engel et al., 2014; Qin et al.,
2018), so we can build on these foundational frameworks to deal with tough issues.

In dynamic scenes, if the SLAM system fails to complete loop closure detection, the accuracy of pose
estimation is seriously affected by dynamic features because the algorithm builds a map of the moving
keypoints, resulting in poor system robustness and easily losing the tracking of camera pose. On the one
hand, to solve these problems, some algorithms incorporate semantic segmentation or instance
segmentation at the front-end of the visual odometry to obtain accurate edge information of
moving objects, avoiding the influence of moving points from the feature extraction (Bescos et al.,
2018; Kaneko et al., 2018; Runz et al., 2018; Yu et al., 2018; Zhong et al., 2018). Bescos et al. present a
dynamic SLAM system based on ORBSLAM2 (Mur-Artal and Tardós, 2017) with Mask-RCNN
semantic segmentation (Bescos et al., 2018), which contains monocular, binocular, and RGB-D inputs,
and the extracted dynamic ORB features are rejected by invoking the Mask-RCNN model, but this
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system is mainly time-consuming in the semantic segmentation
algorithm and cannot achieve real-time pose estimation. Kaneko
et al. present a monocular vision SLAMwith a deep learning-based
semantic segmentation method, using DeepLab v2 semantic
segmentation of the mask to reject dynamic points and using
CARLA simulator to provide new datasets for testing (Kaneko
et al., 2018), but also faces the challenge of real-time. Runz et al.
present RGBD-SLAM based on the aforementioned semantic
segmentation and geometric segmentation, which can track
dynamic objects and build corresponding 3D models that can
be applied in AR (Runz et al., 2018). Yu et al. present a five threads
dynamic SLAM system based on ORBSLAM2, adding a SegNet
semantic segmentation thread and a semantic map thread to the
original ORBSLAM2, and running in real-time with P4000 GPU
(Yu et al., 2018). Doherty et al. build an IMU sensor based,
semantic segmentation SLAM system which introduces data
association into the SLAM system optimization process and
performs land marker optimization, camera pose estimation
and semantic information association simultaneously
(Doherty et al., 2020). However, their approaches are fail to
meet the demand for real-time operation and the single
semantic segmentation algorithm does not guarantee the
robustness of the SLAM system in the complex operating
environment of the robot.

On the other hand, some notable results use the optical flow
method for dynamic/static segmentation to highlight the
dynamic semantics in the RGB images and provide the precise
camera pose estimation and background reconstruction for
robots (Alcantarilla et al., 2012; Jaimez et al., 2017; Zhang
et al., 2020; Yu et al., 2021). Alcantara et al. present dense
scene flow into visual SLAM, which performs scene flow
calculation on images, and detects moving objects in the
environment by comparing the scene flow changes of features
(Alcantarilla et al., 2012), but the shortcomings of their method
have been clearly recognized that time consumption severely
affects the optical flow method, which is also restricted by the
constant luminosity hypothesis. In addition to the
aforementioned improvements to the front-end visual
odometry, Henein et al. present a factor graph based back-end
optimization method that incorporates moving point factors for
dynamic objects to form constraints on feature observations,
camera poses and dynamic object movement by semantic
segmentation algorithms (Henein et al., 2020). Recently, some
notable works focus their research on data association for dealing
with the connection between semantic objects and RGB images in
dynamic environments (Bowman et al., 2017; Doherty et al.,
2019; Yu and Lee, 2018; Ran et al., 2021), and allow for better
application of semantic techniques in SLAM algorithms.
Furthermore, to deal with the uncertainty of environment, a
potential approach is to improve SLAM algorithm by combining
with various optimization-based algorithms (Wu and Shen, 2018;
Shen et al., 2021; Shen et al., 2020b; Le et al., 2021;Wu et al., 2021;
Toyoda and Wu, 2021) for scholastic systems.

Inspired by recent researches based on the semantic algorithm,
we investigate the problem of real-time localization and dense
map construction for the indoor mobile robots and propose a
novel RGB-D SLAM framework which leverages a faster object

detection method to obtain semantic information from RGB
image and perform a dense map constuction with dynamic
objects rejected.

Specifically, the main contributions of the SLAM framework
presented in this paper are shown below:

• We design a real-time combined mismatch rejection
algorithm based on the lightweight YOLO-Fastest object
detection algorithm and Euclidean clustering method (OC-
SLAM) where a robot can detect bad keypoints from
dynamic objects through semantic information and point
cloud clustering information. Especially, OC-SLAM is
robust and computationally efficient in dynamic scenes.

• We present a dense point cloud reconstruction with
dynamic objects rejected in OC-SLAM which leverages
depth camera to directly obtain the depth image of
scenes and remove dynamic objects in complex
environments with Kd tree in order to create highly-
precise dense maps.

• We evaluate OC-SLAM on a RGB-D benchmark dataset
with the other state-of-the-art SLAM methods, and the
proposed method achieves improved accuracy and
robustness in dynamic scenes.

In the following section of this paper, we provide the
framework of the proposed method OC-SLAM with the
modules in the semantic object detection thread and dense
mapping thread. Then Section 3 includes experimental
comparison with the original ORB-SLAM2 algorithm on TUM
RGB-D dataset (Sturm et al., 2012). Ultimately, Section 4
contains a brief discussion of the conclusions and results.

2 SYSTEM OVERVIEW

The dynamic objects in the robot operating environment will
seriously affect the estimation of camera poses and mapping
accuracy of the algorithm. Similarly, SLAM systems with
monocular vision cameras cannot obtain real metric scale
information in real complex environments. To accurately
detect the dynamic features in the image, an improved
algorithm is presented in this paper, whose overall framework
is shown in Figure 1. Based on the original ORBSLAM2 (Mur-
Artal and Tardós, 2017), a dense map reconstruction thread and
an object detection thread are added in the system, and the
identification of dynamic objects and the dense point cloud map
reconstruction with dynamic objects removed is implemented by
these two threads.

2.1 Dynamic Object Detection
You only look once (YOLO-Fastest) algorithm is now known to
be the fastest and lightest improved version of the open-source
YOLO universal object detection algorithm (Qiuqiu, 2021),
which can run in real-time on the low-cost devices and
consists of the convolutional neural network (CNN) (Long
et al., 2015), so this paper utilizes the YOLO-Fastest detection
algorithm and combines the geometric epipolar constraint
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method for feature mismatch rejection, and further improves the
original ORBSLAM2 system with three threads by adding the
object detection thread for classification and localization of the
original RGB image.

After the initialization of the SLAM system, the depth image is
pre-processed to convert the depth map into real-scale depth
data. As shown in Figure 2, The former thread is proposed to get
the semantic information of the image and outputs the prediction
box with confidence while the latter thread is improved to
perform dynamic features rejection. The image is input to the
YOLO algorithm for image detection after starting the object
detection thread. While entering the main tracking thread, the
extraction of image ORB features and the calculation of
corresponding descriptors are started to complete the update
of map points, and then the initial value of the camera pose is
determined based on the working mode in which the main
tracking thread is located, and the map points are reprojected
andmatched by the initial camera pose. Thematching association
between the map points and the current frame’s features is
discovered. When the system finishes feature matching, it exits
the main tracking thread and waits for the YOLO object
identification algorithm’s detection result. Simultaneously, the
prediction bounding box and confidence data are output by the
object detection thread, where the results indicate the coordinates
of the center point of a single prediction box, the width and height
of the prediction box and the prediction confidence, and finally
filter the information of the prediction boxes with confidence
below 80, as shown in Figure 3, to obtain the prediction boxes of
each target in the image.

2.2 Dynamic Geometrical Constraint
Therefore, when the object detection thread completes the image
detection task, the matching feature pairs of the current frame are
traversed within the main thread, and if the pixel coordinates of
the features are within the prediction frame, the matching
features outside the prediction frame are used to calculate the
fundamental matrix F of the current frame and the previous

FIGURE 1 | The framework of the combined mismatch rejection algorithm, among which the tracking thread is as same as the original algorithm and the other two
presented threads are added in the system.

FIGURE 2 | The flowchart of the improved object detection thread and
tracking thread in the proposed algorithm.
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images, and the distance from the reprojected epipolar lines to the
corresponding matching features of the two adjacent frames is
calculated by the method of geometric constraints (Andrew,
2001). If a point’s distance error exceeds a threshold value set
in a particular mode, the keypoint is considered an outlier, the
corresponding map point matching association will be deleted.
After the image feature extraction and matching process is
completed, the camera pose estimation, local map
establishment, and loop closure optimization process start
implementation. As shown in Figure 4, p1 and p2 are the
projection points of point P on the two camera images I1 and
I2, respectively, the point p1 should be in the projection of the
epipolar lines l1 under ideal circumstances. As shown in Eq. 1, the

calculation of the fundamental matrix F between the current
frame and the previous image can be defined as follows.

pT
2Fp1 � 0, F � K−Tt × RK−1, (1)

where K is the intrinsic matrix, t and R are the translation and
rotation matrix, respectively. As a result, the distance between the
keypoint and the reprojection line may be computed using the
fundamental matrix, as shown in Eq. 2:

d � pT
2Fp1�����������

A2 + B2 + C2
√ , (2)

where d denotes the distance between points to lines, A, B and
C denote the epipole line parameters. The minimum distance
threshold is set based on the SLAM system’s different modes
(the distance threshold for the constant velocity motion
model mode is smaller than the distance threshold for the
keyframe mode), and if calculated distance exceeds threshold,
the dynamic feature mismatch rejection is performed.
Especially, the rejection of dynamic feature mismatch is
not done when the SLAM system enters the relocalization
mode because additional feature matching relationships are
required for the initialization of the camera posture when the
system enters the localization mode. Mismatch rejection is
disabled in order to prevent the SLAM system from failing to
initialize with insufficient features matching, which results in
the loss of camera tracking. As shown in Figure 5, it depicts
the result of dynamic feature rejection in the current frame

FIGURE 3 | The demonstration of YOLO-Fastest algorithm object detection for TUM dataset.

FIGURE 4 | The demonstration of epipolar geometry constraint.

FIGURE 5 | Improved algorithm for current frame window with sparse point cloud map.
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window with red dots indicating dynamic points and green
dots indicating normal features, demonstrating that the
enhanced method completes dynamic feature rejection
properly. Moreover, the sparse point cloud generated from
the features removes the map points from moving objects
similarly in second image.

2.3 Dense Point Cloud Map Construction
Only sparse point cloud maps of features are built in the
visualization thread of ORBSLAM2 system, which discards a
large portion of the available map information. For this reason,
sparse maps can not intuitively represent map information and
are not available for other mission planning works such as
navigation and obstacle avoidance by mobile robots that dense
point cloud reconstruction is required. In this literature we
introduce a new dense mapping thread to the ORBSLAM2
system, as shown in Figure 6, which is primarily utilized for
dense point cloud reconstruction of the color and depth images
Fernández-Madrigal (2012). If the coordinates of the picture
sequence’s points under the pixel coordinate (·)P are [u,v,1]T,
then the coordinate values [x,y,z]T corresponding to those under
the camera coordinate system (·)C can be determined using Eq. 3:

z � d

s

x � (u − cx) · z

fx

y � (v − cy) · z

fy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (3)

where d is the depth value of the image and s is the depth metric
scale of the camera. When the SLAM system inputs the depth
map, its depth needs to be transformed to the real scale before it
can be calculated. cx, cy, fx and fy are the camera intrinsic
parameters. With the help of the camera extrinsic matrix, the
pixel points can be converted from the coordinate system (·)C to
the real coordinates in the world coordinate system (·)W as
follows:

X
Y
Z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � (T
x
y
z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦)1: 3 � R
x
y
z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + t, (4)

where the coordinates [X,Y,Z]T represent the coordinate in the
coordinate system (·)W, then the correspondence of points
between the pixel coordinate and the world coordinate is

FIGURE 6 | The illustration of dense point cloud reconstruction thread in OC-SLAM system which is designed to perform the construction and clustering of dense
point clouds without moving objects.

FIGURE 7 | Examples of Euclidean segmentation in TUM dataset, (A) is the point cloud segmentation with human bodies in the sitting posture, (B) are the clusters
of the human body in the sitting and standing posture.
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obtained, and the RGB value acquired from color image is set for
each point cloud in the dense mapping thread, so that the basic
dense point cloud is successfully constructed. However, in some
practical applications, the pixel size of an image is usually 640 ×
480, and the number of basic dense point clouds can be up to
300,000, so the point cloud voxel filtering and point cloud fusion
are also needed for the basic point cloud.

2.4 Point Cloud Clustering Method
In this paper, the Euclidean Clustering method (Xiangyang et al.,
2017) will be utilized to accomplish the point cloud segmentation
task with the help of the YOLO-Fastest algorithm, which
segments the point cloud data of the dense map into diverse
single independent point cloud clusters. Figure 7 illustrates the
figures of two frames for 3D point cloud Euclidean clustering
segmentation, when we input the depth image data from the
dataset into the algorithm, a more accurate point cloud Euclidean
segmentation result can be obtained with the assistance of
semantic information from object detection method. Two
point cloud clusters of human body in a sitting position with
a well-defined point cloud profile extracted from the first image
and the right corner of the table failed to remove through the filter
since the human body is too close to the corner of table in
Euclidean distance. In the second frame, a cluster of the human
point cloud in sitting posture and a cluster of the human point
cloud in standing posture are extracted, and the point cloud
segmentation effect is better with no wrong clustering occurs.

2.5 Combined Mismatch Rejection
Algorithm
The specified point cloud clusters in a frame are effectively
separated after finishing the misson of Euclidean segmentation

clustering of dense point cloud data. With this in mind, this
paper presents a new mismatch rejection strategy algorithm for
SLAM systems based on the Euclidean clustering method in
OC-SLAM, which will be combined with an improved method
based on the YOLO-Fastest object detection algorithm for
jointly rejection of features of dynamic objects and ORB
feature extraction in color image is carried out regularly on
the main tracking thread, as shown in Figure 8. Moreover,
feature matching is performed using different approaches
depending on the incoming tracking mode and waits for the
Euclidean clustering segmentation results in place once feature
matching is accomplished. Accordingly, the dense mapping
thread generates a sequence of independent point cloud
clustering results by the use of the Euclidean clustering
method, which includes point cloud dense reconstruction,
voxel filtering and planar model segmentation. Afterwards,
SLAM system set the dense build thread to idle. The tracking
thread continues to implement after receiving the point cloud
data from dense mapping thread, projecting each point cloud
cluster into the pixel coordinate (·)P using the equation:

u � fx · x + cx
v � fy · y + cy

{ · (5)

The reprojection distance is calculated for the feature pairs
contained in each point cloud according to the mismatching
judgment method with respect to the epipolar constraint.
Afterward, if more than half of the feature pairs fail to pass
the geometrical constraint detection, the point cloud cluster is
judged to be extracted from a moving object, and the features in
the whole point cloud cluster and prediction box generated from
the YOLO-Fastest algorithm are eliminated to perform the
processing of moving objects removal in dynamic scenes.

2.6 Dynamic Object Rejection
Based on the previous work, the dense point cloud map is refined
further and the clustered point cloud clusters of moving object in
the base dense point cloud map are eliminated by constructing a
Kd-Tree based on the results of point cloud Euclidean clustering,
resulting in an environment map devoid of dynamic objects. As
shown in Figure 9, two sets of color maps and depth images are
input for dense construction: Figure 9A is the original color
image, Figure 9B is the result of dense point cloud reconstruction
and Figure 9C is the dense point cloud map with dynamic objects
removed in which the point cloud clusters belonging to moving
objects are essentially removed using the Euclidean clustering
algorithm.

3 EXPERIMENTALS AND RESULTS

In this section, the improved algorithm is tested and validated on
the TUMdataset from the Technical University ofMunich, which
collects image data in different experimental environments using
Microsoft’s Kinect camera and provides camera trajectory
groundtruth for each dataset to evaluate the accuracy of the
SLAM algorithm. In this research, dynamic and static

FIGURE 8 | The process of the rejection of dynamic objects. The
presented mapping thread is illustrated in the yellow border which contains
special operations on point clouds while the tracking thread is illustrated in the
blue border which was improved to perform the task of dynamic
keypoints rejection.
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environment data are utilized to test the enhanced algorithm’s
accuracy of camera pose estimation and dense map construction
performance.

3.1 Trajectory Estimation Experiments
In order to verify the robustness and accuracy of the improved
algorithm’s pose estimation, experiments under different
complex environments are designed in this paper. The Root
Mean Squared Error (RMSE) is used as the evaluation
criterion for the absolute camera trajectory error (Sturm et al.,
2012), and the RMSE of the estimated poses at all moments is
calculated as follows:

RMSE(E) � 1
n
∑n
t�1

‖trans(Et)‖2, (6)

where error Et denotes the absolute trajectory estimation error (ATE)
of the SLAM system at moment t, which is obtained by the
calculation of the difference between the estimated trajectory of
the camera pose and the groundtruth of the dataset. trans(·)
indicates the translation of absolute trajectory estimation error Et
and the enhancement effect in the experiment is calculated as the
relative enhancement rate of the combined improved algorithm
trajectory error with respect to the original algorithm. As shown
in Figure 10, Figure 10A is the absolute trajectory error graph of the

FIGURE 9 | (A) are the raw images, (B) are the point cloud dense reconstruction, (C) are the dense reconstruction with dynamic object rejection from which it can
be seen that the clusters of moving human body in the dataset are removed by the improved algorithm.

FIGURE 10 | (A) is the absolute trajectory error distribution of the combined improved algorithm, (B) is the absolute trajectory error distribution of the ORBSLAM2.
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original algorithm without Loop closure and Figure 10B is the error
evaluation graph of the combined algorithm, it can be seen that the
majority of the time the error is below 0.01m in the improved
algorithm except for some extreme cases. Notably, at the moment of
object detection algorithm failure, the Euclidean clustering module
can continue to carry out the rejection of mismatch, which
complements the object detection module to increase the
robustness of the system and reduces the overall trajectory
absolute error. Likewise, indicators of the median and mean
trajectory error have significantly improved. Further, the error
comparison between the improved algorithm and the original
algorithm is shown in Table 1. And the evaluation indexes of the
improved algorithm in the dynamic data sequences walking_static,
walking_xyz, walking_half without loop closure are better than the
original algorithm while the accuracy improvement effect is up to
97.8%, In spite of this, the accuracy in the image sequences in the
static environment is approximately equal to that of the original

algorithm in the static environment, indicating that the improvement
modules in the algorithm do not lose too much algorithm
performance. Importantly, the processing time per frame is only
97ms on a low-performance processor, while the DynaSLAM
(Bescos et al., 2018) algorithm takes 195ms for the Mask R-CNN
module alone using theNvidia TeslaM40GPU. Therefore, compared
with the improved method using Mask R-CNN, the improved
algorithm in this paper greatly improves the operation speed of
the algorithm without excessive loss of accuracy.

3.2 Dense Reconstruction Experiment
Based on the successful detection and recognition of dynamic point
cloud clusters, this paper performs point cloud dense building
experiments on the improved algorithm, inputting normal image
sequences in TUM dataset and image sequences in dynamic scenes
to compare the dense building performance of the improved algorithm
in two different dataset environments. As shown in Figure 11, in the

TABLE 1 | The comparison of absolute trajectory error of pose estimation in TUM dataset.

Image
sequence

ORB-SLAM2(m) Proposed(m) Improvements(%)

RMSE Mean Media RMSE Mean Media RMSE Mean Media

walking_static 0.325 0.284 0.213 0.007 0.006 0.006 97.8 97.8 97,1
walking_xyz 0.756 0.655 0.653 0.129 0.119 0.118 84.1 81.7 81.9
walking_half 0.426 0.433 0.414 0.083 0.085 0.080 80.4 80.3 80.6
sitting_static 0.008 0.008 0.007 0.008 0.008 0.007 −1.1 −3.7 2.6

FIGURE 11 | The illustration of presented algorithm for dense point cloud map construction performance in the normal dataset, (A) is the sparse map, (B) is the
dense point cloud map construction result, (C) is the dense map with moving body rejected.

FIGURE 12 | The illustration of presented algorithm for dense point cloud map construction performance in the dynamic dataset, (A) is the sparse map, (B) is the
dense point cloud map construction result.
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dense reconstruction experiment under the normal environment
dataset, Figure 11A shows the sparse point cloud map established
by the original system where the red points represent the map points
successfully observed and the black points represent the map points
observed in the current frame. Since the algorithm only calculates map
points from the extracted features and performs fusion operation for
redundant map points, only the sparse point cloud map is established.
Figures 11B,C show the dense point cloudmap built by the improved
algorithm, which completely recovers the point cloud data in the
dataset and further extracts more image information from the image
sequence, making the mapping performance of the SLAM system
more intuitive and the normal line of themap can be further calculated
subsequently, thus reconstructing the network from the point cloud
and converting the point cloud into a grid map. By contrast, as shown
in Figure 12, in the dense reconstruction experiments under dynamic
scene datasets, Figure 12A shows the sparse point cloud map built by
the original system, which is built with low accuracy and fluctuating
map updating with wrong map points due to the influence brought by
fast-moving dynamic objects, thus leading to poor back-end nonlinear
optimization of camera poses and map points. With this in mind,
Figure 12B shows the dense point cloud map built by the improved
algorithm, which not only recovers the specific scenes in the dataset
completely but also uses the YOLO-Fastest object detection algorithm
and the Euclidean clustering algorithm to eliminate the dynamic
objects clusters in the dynamic scenes and retains the information
of static objects in the point cloudmap, which improves the robustness
and accuracy of the dense point cloud mapping.

4 CONCLUSION

In this paper, we present an improved semantic SLAM algorithm
(OC-SLAM) based on YOLO-Fastest object detection and Euclidean
clustering method to reduce the impact of dynamic features on the
accuracy of camera trajectory calculation by special processing of
tricky issues in dynamic scenes to solve the problem of pose
estimation and dense map construction. In comparison to Mask
R-CNN and other semantic segmentation recognition methods, the
proposed algorithm in this paper can greatly accelerate computation
speed by leveraging the characteristics of the YOLO-Fastest algorithm
to meet the algorithm’s real-time requirements without sacrificing
pose estimation accuracy. The absolute trajectory error(ATE)
experiments in the TUM dataset indicate that this approach can

increase accuracy on a low-performance embedded devices and build
a dense point cloud map in the complex environment with dynamic
objects eliminated.
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Research on Combined Electricity and
Heating System Scheduling Method
Considering Multi-Source Ring
Heating Network
Jing Ye, Danyang Zhao, Lei Zhang*, Zhenghua Li and Tao Zhang

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

Heating network constraint is one of the important factors that affect the scale of electro-
thermal coupling scheduling. This paper first establishes an electrothermal coupling
scheduling model considering the multi-source ring heating network pipe structure and
then proposes a method of simplifying a multi-source cyclic heating network topology
approximation. Second, the electrothermal coupling scheduling system is coordinated
and solved. Finally, Through the simulation example results, the annular heating network
topological approximate equivalent can simplify the model complexity of the original
heating network while also retaining the thermal dynamic characteristics of the initial
multi-source ring heating network. This study will greatly improve the efficiency of solving
the electrothermal coupling system.

Keywords: combined electric and thermal dispatch system, multi-source combined heating ring network, model
simplification, topological equivalent method, combined heat and power scheduling

INTRODUCTION

The Combined Electricity and Heating System can realize the cascade utilization of different energy
efficiency, which is an important way for the low-carbon economic operation of the power
generation link. Considering the heat storage characteristics of the District Heating Network
(DHN) can bring coordination and flexibility to the entire coupled electricity–heat energy
system. In recent years, many scholars have studied the heat storage characteristics of heat
network pipes (Li et al., 2021; Tang et al., 2021). The node method is effective to describe the
temperature dynamic model of DHN (Li et al., 2017; Zheng et al., 2018; Wang et al., 2019; Yu et al.,
2019; Shen et al., 2020; Shen et al., 2021; Shen and Raksincharoensak, 2021). The above study only
considers the supply pipe network as a tree heating network structure which is harmful to the
solution of the electrothermal coupling scheduling model. However, it does not match the structure
of the multi-heat source combined with the multi-heat source, which will directly affect the
applicability of the model.

Further, compared with the conventional tree heating network structure, the different heat
sources of the multi-source cyclic heating network structure can be spared to each other, and the
mutual coordination provides heat (Tian et al., 2017; Yang et al., 2019a; Shi et al., 2020; Yang, 2020).
The heating network structure has been applied in some cities in the Nordics and China (Wu et al.,
2019). Therefore, it is possible to further improve the flexibility between the electrothermal coupling
system in the electrothermal coupling schedule. The scale and laying area of the actual heating pipe
network are very huge, and it has brought difficulties to the solution of the model. In recent years,
scholars have conducted research on reducing the complexity of scheduling models (Jiang et al.,
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2019; Lu et al., 2019). Document (Larsen et al., 2002) is subtracted
into a conventional tree heating network, but the actual multi-
heat source combined heating network is more complex. The
traditional simplification method cannot be applied to the actual
operation of the current large-scale multi-heat source ring
network.

In response to the questions raised above, this paper proposes
a combined heat and power scheduling method based on ring
heating network topological approximate equivalent. For the
complex topology of the ring heating network, topology
equivalent transformation and pipeline node aggregation are
carried out on ring heating pipeline under the condition of
ensuring accuracy, and the electric-thermal joint scheduling
model is solved. There are many ways to solve the model
(Yang et al., 2019b; Yang et al., 2021a; Yang et al., 2021b;
Zhang et al., 2021). Finally, the effectiveness and accuracy of
the method mentioned in this study is verified by example
analysis.

TOPOLOGICAL EQUIVALENT METHOD OF
LOOP REMOVAL FOR MULTI-HEAT
SOURCE RING HEAT GRID

Topological Approximate Equivalent
Method
In the actual multi-heat source heating ring network, due to the
joint heating of multiple heat sources, the heat flow direction
flowing through the same ring can be divided into the same
direction and different direction, as shown in Figure 1A. On the
basis of retaining most dynamic characteristics of the original
pipe, this section will be used to topologically approximate the
annular pipe network of the condition that satisfies the same flow

direction and polymerizes the topology of the relatively simple
tree network then use the node method to model the temperature
dynamic model of DHN after the simplification. For heating
networks and their models, the physical parameters of the pipe
and the state variables of heat transfer process are very important.
Its physical parameters are heating network topologies and
pipeline parameters such as pipe mass flow m, pipe cross-
sectional area S, pipe length L, pipe heat transfer coefficient u,
etc. The state variable parameters are each load node temperature
Ti, each node temperature Tx passed during water flow transfer,
and the heat source to the time delay τ of each load node.

For the ring-shaped heating pipe network with the same heat
flow (marked in green in Figure 1A), it can be equivalently
simplified into a polymerization pipe. In order to ensure that the
dynamic characteristics of heat transfer after the topological
transformation of the heating network are equivalent, the
heating network state variable needs to meet the following
thermal equivalent conditions:

Assumption Condition 1: The total volume of water in the
pipeline before and after the simplification of the model structure
remains unchanged.

∑
x∈V+

Vx′ �∑
x∈V+

Vx (1)

In Formula (1), x represents any pipe, and Vx represents the
water volume of the conduit x. V+ represents a collection of all
pipes in the heating network, the tag ′ represents the
corresponding parameters after the heating network topology
is equivalent.

Assumption Condition 2: The mass flow of each sub-branch
flow into and out of each node remains unchanged.

mx′ � mx (2)

FIGURE 1 | (A) Two-heat source heating pipe network diagram under actual conditions. (B) Simplification process of general ring heating pipe network.
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In Formula (2), mx represents the mass flow of water in
the pipe.

Assumption Condition 3: The temperature of the node before
and after polymerization does not change.

Tx′ � Tx (3)

In Formula (3), Tx represents the temperature of any node
before and after polymerization.

When the above three thermal equivalent conditions are met,
the operating time of heating water in the pipe can be expressed as

τ � V · ρ
m

(4)

On the basis of preserving the thermal dynamic characteristics
of the original pipe, the process of loop removal is essentially a
topological approximate equivalent method which changes the
original pipeline parameters to a tree-shaped heating pipe
network, as shown in Figure 1B. Before the ring network is
removed, this paper takes the starting point of the ring network
shunting as the initial point and defines the ring heating network
after shunting as the main line and secondary line. According to
Formula (4), the heat flow is obtained by the starting point to
flow through the time required for each node, and the time delay
flowing through the respective nodes on the main/secondary line
is ηn/εn, where n represents the time set that flows through the
main/secondary trunk nodes. The resulting time is arranged in
size to obtain the time set sequence φ. φ is a time series consisting
of ε and η. The nodes that have not alternated in the collection φ
are considered a redundant node, such as εi−1, εi in
εn−3, ηi−2, εi−1, εi, ηi+1, εi+2, where i represents any node on the
pipe. The redundant node is removed by conventional tree
heating network simplification (Wu et al., 2019). After the
redundant node is removed, the new φ is obtained as an
alternating time sequence that occurs by ε and η.

φ: {τη0, τε1, τη1, τε2, τη2,/, τηε−1, τηn−1, τηn} (5)

The secondary trunk is aggregated to the main line. The mass
flow of each pipeline after polymerization is

mεi
′ � mεi +mηi (6)

mηi
′ � mεi+1 +mηi (7)

In the above Formulas (6) and (7), mηi and mεi represent the
mass flow of the main trunk and the secondary trunk
polymerization.

The weighting average of the mass flow of each conduit on the
secondary trunk and the weight of the mass flow corresponding
to the main line can delay the flow of water flow through the new
polymerization node time delay as follows:

τεi′ �
mηi

mηi +mεi

∑i

θ�1τηθ +
mεi

mηi +mεi

∑i

θ�1τεθ (8)

τηi′ �
mηi

mηi +mεi+1
∑i

θ�1τηθ +
mεi

mηi +mεi+1
∑i

θ�1τεθ (9)

The equivalent water volume of each pipeline is obtained by
Formulas (4), (8), and (9).

Vεi
′ � 1

ρ
(mεi +mηi)( mηi

mηi +mεi

∑i

θ�1τηθ +
mεi

mηi +mεi

∑i

θ�1τηθ)
(10)

Vηi
′ � 1

ρ
(mεi+1 +mηi)( mηi

mηi +mεi+1
∑i

θ�1τηθ +
mεi

mηi +mεi+1
∑i

θ�1τεθ)
(11)

The current flow rate of the original carrier in the main trunk
line is the initial flow rate. By changing the volume of the pipeline
before and after polymerization, the flow rate of the heating
carrier in the pipeline polymerization is kept constant, then the
tube length is determined based on the piping of the heat flow
through the polymerization in the conduit and the ratio of the
predecessor travel time during the pipeline. The equivalent length
L of each pipe obtained by Formula (8) can be obtained.

Lεi
′ � (∑i

θ�1τεθ/∑i

θ�1τηθ) Lηi (12)

Lηi
′ � Lηi − Lεi

′ (13)

where ∑
θ�1

τεθ , ∑
θ�1

τηθ respectively represent the sum of the time it

takes for the heat flow of all nodes in the secondary trunk line and
the main trunk line to flow through the pipe 1 to pipe i.

Bring Eqs (10)–(13) to volume formula equivalent cross-
sectional area:

Sεi′ �
(mεi +mηi)∑i

θ�1τηθ
ρLηi∑i

θ�1τηθ
( mηi

mηi +mεi

∑i

θ�1τηθ +
mεi

mηi +mεi+1
∑i

θ�1τεθ)
(14)

Sηi′ �
(mεi+1 +mηi)
ρ(Lηi−Lεi

′) ( mηi

mηi +mεi+1
∑i

θ�1τηθ +
mεi

mηi +mεi+1
∑i

θ�1τεθ)
(15)

Thus, the equivalent model heat transfer coefficient u should
be adjusted as follows:

μεi′ �
c ·mi′

π · di′ · L′2
i

· ln Ti,in − TU

Ti,out′ − TU
(16)

μηi
′ � c ·mi′

π · di′ · L′2
i

· ln Ti,in − TU

Ti,out′ − TU
(17)

As can be seen from Formula (3), the temperature of the node
before and after the polymerization does not change. Ti,out′ is the
temperature of the terminal outlet after the tube i polymerization;
Ti,in is the temperature of the exit before the piping i is
polymerized, where c is a specific heat capacity of the heating
flow, di′ is a polymerized pipeline radius, and TU is a natural
ambient temperature.

After the above simplification, in the case of retaining most of
the thermal dynamic characteristics, the multi-source annular
DHN model completes the ring removal processing, which
reduces the complexity of the original pipeline.
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Multi-Source Ring Network Regional
Heating System Model
1) CHP unit heating output

hi,t � c ·mHS
j · (Ts

n,t − Tr
n,t),∀i ∈ ICHP, j ∈ IHS, n � NHS

j , t ∈ T

(18)

Ts
n ≤T

s
n,t ≤ �T

s
n (19)

where mHS
j is the mass flow of the heating first station j; hi,t is

the output of heat unit. NHS
j is a node connected to the

heating head j. Ts
n, �T

s
n is the upper and lower range limit for

supplying pipe node temperatures. ICHP, IHS, and NHS
j are

connected to the CHP unit, and the tube collection of the
heating first station and the collection of nodes belong to the
heating.

2) Temperature station model:

In order to realize the exchange of heat load in the heating
system, the heat transfer station model is constructed.

cw ·mHES
l · (Ts

n,t − τrn,t) � HHES
l,t , ∀l ∈ IHES, n � NHES

l , t ∈ Td

(20)

Tr
n ≤ τrn,t ≤ �T

r
n (21)

wheremHES
l is the mass flow of the heat exchange station (HES) l,

mHES
l,t is the heat load Tr

n of the switch l at the period t, and �T
r
n is

the upper and lower range limit of the returns of the pipe node
temperature.

3) Temperature mixing: Mass flowing into the same node is
mixed, and the temperature of the mixed mass as a result of
energy conservation is as follows:

∑
b∈V−

(Ts,out
b,t ms

b) � TS
i,t ∑
b∈ΩV−

ms
b, t ∈ Td (22)

∑
b∈V+

(Tr,out
b,t mr

b) � Tr
i,t ∑
b∈ΩV+

mr
b, t ∈ Td (23)

whereV− indicates a set of pipelines at the end of the node V, and
V+ means a set of pipes that start with node V.

4) Temperature network pipeline dynamic model based on node
method

It can be seen from Formula (2) that the mass flow
does not change, and the amount of water flowing and
flowing out does not change. The historical inlet
temperature is used to estimate the outlet temperature
without heat loss as follows:

T′x,out
b,t � (1 − kb)Tx,in

b,t−cb−1 + kbT
x,in
b,t−cb , ∀b ∈ Ipipe, x ∈ {s, r}, t ∈ Td

(24)

Tx,out
b,t � Tam

t + Jb,t(T′x,out
b,t − TG,t),∀b ∈ Ipipe, x ∈ {s, r}, t ∈ Td

(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cb � minn∈N{n: s.t. nμbΔt≥ ρAbLb}
Rb � cbμbΔt

kb � (Rb − ρAbLb)/μbΔt
Jb � exp[ − hbΔt

cwρwAb
(cb + 1

2
− kb)]

(26)

Among them, T′xb,t represents the mass flow temperature of
the pipe b at the t hour. The superscript out and in respectively
indicate the inflow end and outflow end of the pipe. Ipipe

indicates a collection of heating networks. Td represents the
time collection of the scheduling cycle. Tx

b,t represents the
mass flow temperature flowing out of the t hour after the heat
loss. TG,t represents the ambient temperature of the T
moment. cw indicates a specific heat capacity of water in
the water flow in the pipeline.

MODELING AND SOLUTION OF
ELECTROTHERMAL COUPLING SYSTEM

Objective Function

min(CNC + CW + CCHP) (27)

CNC denotes the operation cost of non-CHP thermal units, CW

denotes the penalty cost of wind power spillage, and CCHP

denotes the operation cost of CHP units. I represents a
collection of units.

1) The operation cost of a non-CHP thermal unit is defined as a
quadratic function of the generation dispatch

CNC � ∑T

t�1 ∑
i∈INC

(aiP2
i,t + biPi,t + ci) (28)

ai, bi, and ci are the cost factors of the conventional unit; T is the
scheduling period; INC is a collection of conventional units; Pi,t is
the electric power output of the unit i at time t.

2) Wind abandonment cost of wind farm

CW � ∑T

t�1 ∑
i∈IW

σ i·(�Pw
i,t − pi,t) (29)

σ i is the penalty factor for abandonment of wind farm i; �Pw
i,t is

forecasted output for wind farm i at time period t; IW is the set for
wind farms.

3) Operation cost of CHP unit

CCHP � ∑T

t�1 ∑
i∈ICHP

(c1P2
i,t + c2Pi,t + c3h

2
i,j + c4hi,t + c5Pi,thi,t + c6)

(30)

c1, c2, c3,c4, c5, c6 is the cost coefficient of i CHP unit. iCHP is the
set for CHP; hi,t is the thermal power output of unit i at time t.
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Constraint Condition
1) Power balance constraints:

∑
i∈INC

Pi,t + ∑
i∈ICHP

Pi,t + ∑
i∈IW

PW
i,t � Lt (31)

Lt is the electric load at time t.

2) Generation output constraints for non-CHP units:

P�i≤Pi,t ≤ �Pi, ∀i ∈ INC (32)

P�i and �Pi represent the minimum and maximum output power of
unit i.

3) Spinning reserve constraint for non-CHP units:

0≤ rui,t ≤RAMPup
i (33)

0≤ rdi,t ≤RAMPdown
i , rdi,t ≤ pi,t − P�i (34)

rui,t and rdi,t are reserved for the up/down rotation of the unit
at time; RAMPup

i is upward ramping capability of generation
unit i. RAMPdown

i Downward ramping capability of
generation unit i.

4) Operation constraints of wind power plant:

0≤pw
i,t ≤ �pw

i,t (35)

pw
i,t is wind farm output; �pw

i,t is predicted available wind energy of
wind farm i at period t.

5) Ramping constraints:

−RAMPdown
i ≤Pi,t − Pi,t−1 ≤RAMPup

i , ∀i ∈ INC ∪ ICHP, t ∈ T

(36)

6) Feasible region constraint of CHP unit:

Pi,t ≥ rihi,t, i ∈ ICHP (37)

Fi,min ≤ ρ
p
i Pi,t + ρqi hi,t ≤Fi,max (38)

0≤ hi,t ≤ hi,max (39)

ri is CHP unit electrothermal coupling coefficient, Fi,min/ Fi,max is
minimum/maximum fuel consumption, ρpi is fuel consumption
rate of electricity output, ρqi is fuel consumption rate of heat
output, and hi,max is the maximum heat output of the CHP unit.

7) CHP unit constraints: Defined in Eqs (18) and (19)
8) HES constraints: Defined in Eqs (20) and (21)
9) Temperature mixing constraints: Defined in Eqs (22)

and (23)
10) Temperature dynamics constraints: Defined in Eqs (24)

and (26)

SIMULATION RESULTS

The structure of this calculation example adopts the combined
heat and power system shown in Figure 2. The power supply type
and unit parameters of the system are shown in Supplementary
Appendix Tables A1–A3. The calculation example is day-ahead
scheduling, and its scheduling period is 24 h which takes 1 h as
the scheduling unit. The time resolution of the heat network
model is 5 min. The electrical load of the system, the total heat

FIGURE 2 | Example model of combined electric heating system.
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load of the district heating system, and the predicted maximum
output of wind power are shown in Supplementary Appendix
Tables B1–B3, and the heating network pipeline parameters are
shown in Supplementary Appendix Table 1.

Precision Analysis of the RingNetwork After
Loop Removal
To verify the accuracy of the proposed strategy, four different
control modes are compared in the paper:

TABLE 1 | The pipeline simplification result of the model.

Model Number of pipes/root Degree of simplification (%) Total length of pipe (m) Time delay (h) Total heat loss coefficient/H = h × L

1 35 0 20,917 6.576 8,573.42
2 32 91.42 18,992.556 6.544 8,573.42
3 29 82.85 16,348.762 6.625 8,573.42
4 12 34.29 8,374.645 6.637 8,573.42

FIGURE 3 | (A) Temperature comparison curve after ring. (B) Each unit output dispatch plan.
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Model 1: The initial model of the original 35-pipe multi-source
ring heating network.
Model 2: After the first loop removal, model 1 is equivalent to
an approximate equivalent model of 32 heating network pipes.
Model 3: After the second loop removal, model 2 is equivalent
to the approximate equivalentmodel of 29 heating network pipes.
Model 4: Model 3 is further resolved into a topological
equivalent heating network model of 12 heating pipes.

The pipe simplification results of the model are shown in
Table 1, model 2, and model 3; the loop removal operation is
carried out for the multi-source annular heating network model
1. After the loop removal, the total length of model 1 is reduced to
a certain extent, and the loop structure is removed, which greatly
reduces the complexity of the entire network. On the basis of
model 3, model 4 further simplifies the model after loop removal
and equivalence (using reference 14, traditional tree-shaped
heating pipe simplification method), reducing the total
number of pipes to 34.29% of the original network. The error
of the time delay may be due to the loop structure of the heating
pipeline; at least one node will have two different time delays
when the loop is removed. This article only uses the weighted
average of its time delay to calculate, which will cause a certain
error. After the above steps, the topological de-ring of the multi-
source ring heating network is approximately equivalent while
ensuring that the total heat loss remains unchanged.

In addition to the above, we also need to consider the accuracy
of different models after simplification. The initial water supply
temperature is set in this paper. the return temperature and
pipeline supply temperature curves of model 1 were compared
with those of models 2, 3, and 4, respectively. The temperature of
each model before and after simplification is compared and
analyzed to verify whether the temperature is roughly the
same before and after simplification.

For model 2 and model 3, the initial supply temperature and
return temperature of the initial node and end point of loop
removal were selected to compare with the temperature of the
node before loop removal. It can be seen from Figure 3(A1, A2)
that the supply temperature curve remains basically unchanged
before and after the pipeline is simplified, and the return
temperature is the same in Figure 3(A3, A4). The blue line
in Figure 3(A3, A4) shows no significant change in
temperature; because there is a time delay in the heat
transfer process of the heating pipeline, the load node that is
close to the heat source first feeds back the change of
temperature, but the mass flow of a single load is limited, so
the previous change is not obvious.

After removing the loop first and simplifying it later, the loop
heating network of multi-heat source combined heating is
gradually simplified, which reduces the complexity of the
current multi-source loop heating pipeline model. Using the
equivalent simplification method of multi-source heating
network to get rid of loops, model 4 is obtained, and model 1
is equivalently simplified to 12 pipes. Compared with the initial
loop heating network of 35 pipes, the heating network is
simplified by 65.717%, and the heating network pipe
constraints are reduced by 65.717% in the scheduling model,

which greatly reduces the complexity of the model′s topology and
the difficulty of solution. Figure 3(5) shows the accuracy
comparison of the final pipeline simplification.

Analysis of the Result of Combined Electric
and Heating Dispatching for Loop Heating
Network
In order to verify the accuracy and validity of the combined
electric heating dispatching results based on the approximate
equivalent model of heat network after loop removal, in this
section, the electrothermal scheduling results of model 1 and
model 4 are compared. Figures 3(B1, B2) show the optimal
electric output of units of the two models, where Figures
3(B1, B2) are the thermal output of CHP unit; Figure 3B
shows the unit power output scheduling plan, where
Figure 3(B3) is the output of wind farm. Figures 3(B4, B5,
B6) are the output of three thermal power units, respectively,
and Figures 3(B7, B8) are the thermal output of CHP units. It
can be seen that the electrical and thermal outputs of the two
models are basically the same, except that there is a large error
between the thermal and electrical outputs of CHP unit 1 at
the initial stage (1, 2 h).

The experimental results show that the scheduling costs of
model 1 and model 4 are respectively 1,193,400 yuan and
1,190,300 yuan, indicating that the simplification of the model
does not affect the scheduling costs. Moreover, the computation
time of simplified model 4 is reduced by 60.11% compared with
the scheduling time of model 1.

CONCLUSION

This paper proposes a method of simplifying amulti-source cyclic
heating network topology approximation. The simulation results
show that the multi-heat source ring heating network was first
removed and then simplified. On the premise of ensuring
accuracy, the topology complexity of the ring heating pipeline
model was reduced by 65.717%, the complexity of calculation was
reduced, and the solving time in the scheduling process was
further reduced.
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Ultra-Short-Term Wind Power
Prediction Based on Bidirectional
Gated Recurrent Unit and Transfer
Learning
Wenjin Chen1, Weiwen Qi2, Yu Li3*, Jun Zhang1, Feng Zhu2, Dong Xie2, Wei Ru2, Gang Luo2,
Meiya Song2 and Fei Tang3

1State Grid Zhejiang Electric Power Company, Ltd., Hangzhou, China, 2State Grid Shaoxing Power Supply Company, Shaoxing,
China, 3School of Electrical and Automation, Wuhan University, Wuhan, China

Wind power forecasting (WPF) is imperative to the control and dispatch of the power grid.
Firstly, an ultra-short-term prediction method based on multilayer bidirectional gated recurrent
unit (Bi-GRU) and fully connected (FC) layer is proposed. The layers of Bi-GRU extract the
temporal feature information of wind power and meteorological data, and the FC layer predicts
wind power by changing dimensions to match the output vector. Furthermore, a transfer
learning (TL) strategy is utilized to establish the predictionmodel of a target wind farmwith fewer
data and less training time based on the source wind farm. The proposed method is validated
on two wind farms located in China and the results prove its superior prediction performance
compared with other approaches.

Keywords: bidirectional gated recurrent unit, transfer learning, target domain, wind power, wind power forecasting

INTRODUCTION

The renewable energy problem is the focus of the 21st century (Zheng et al., 2017; Li et al., 2016). The
transformation of the power grid is the key to solving this problem. The new form of the power grid with
renewable energy as the main bulk is the ruling development trend of the future power grid (Li et al., 2021;
Shen et al., 2021a). The Global Wind Energy Development Report 2019 shows that the newly installed
capacity of global wind turbines in 2019 is 60.4 GW (Chen et al., 2021). However, the uncertainty existing
in new energy, such as wind power, is not conducive to the safe and stable operation of the power grid.
Therefore, accurate WPF is beneficial for enhancing system reliability (Shi et al., 2014).

There are three types of WPF methods including the physical method, statistical method, and
artificial intelligence method. The first establishes a physical model that reflects the relationship
between the wind power and numerical weather forecast (NWP) (Zhao et al., 2018), which is difficult
to model and calculate. Yang proposes an expanded sequence-to-sequence (E-Seq2Seq) based data-
driven SCUC expert system for dynamic multiple-sequence mapping samples, which is a pioneer
study for SCUC problems (Yang et al., 2021a). The second (statistical method) is suitable for wind
farms that have been built for a long time because it needs enough historical data. The representative
algorithms of this method are Auto-Regression (AR) (Wu et al., 2014; Shen et al., 2021), Bayesian
approach (Wang et al., 2019a), and Kalman filter (Yang et al., 2019). The final, AI method, such as
support vector machine (Deo et al., 2016), artificial neural network (Wang et al., 2019b), extreme
learning machine (Ali and Prasad, 2019), can deal with the complex nonlinear relationship
between input and output and extract the deep features of input information, which has been
widely used in recent years.
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The ultra-short-term prediction of wind power is essentially a
multi-variable time series prediction problem. In recent years,
recurrent neural network (RNN) has developed rapidly. As the
improved versions of RNN, long short-term memory (LSTM)
network and gated recurrent unit (GRU) (Lin and Liu, 2020; Yang
et al., 2021b) can efficiently extract the temporal correlation
characteristics of wind power, and also mine the relationship
between power and weather, which improves the performance of
WPF. But there is a timing delay in actual prediction.

In addition, all deep learning approaches rely on a sufficient
sample of data. However, newly built wind farmsmay not provide
enough data, which makes WPF difficult. However, TL is a new
method that breaks through traditional machine learning and is
widely used in computer vision, text classification, and other
fields (Wang et al., 2020; Shen and Raksincharoensak, 2021a;
Yang et al., 2021; Yang et al., 2019; Shen et al., 2021b). It can finish
pre-training of a model in the source domain with sufficient data
and then transfer the pre-training model to the target domain
after fine-tuning. On the one hand, TL can overcome the problem
of few data, on the other hand, it can reduce the training time
(Zhuang et al., 2020; Zhang et al., 2021). At present, there are few
studies on the applications of TL in WPF.

In order to improve the prediction performance of RNN, the Bi-
GRU method is proposed in this paper to enhance the and capacity
and forecasting accuracy of the model by bidirectionality of the
structure. The Bi-GRU enables the GRU to process the data in two
directions including forward (future) and backward (past).Moreover,
the TL strategy is used to forecast the wind power of newly built wind
farms with few training data. The TL combined with Bi-GRU is used
to ensure the power prediction accuracy and reduce the training time,
which can guarantee model performance and reduce computational
costs at the same time.

The rest of this paper is organized as follows. In The Proposed BI-
GRU Model and Transfer Learning Method, the Bi-GRU model and
transfer learning method are explained. Case studies and discussion
are shown in Case Studies. Conclusion concludes this study by
summarizing the key findings and contributions of this paper.

THE PROPOSED BI-GRU MODEL AND
TRANSFER LEARNING METHOD

The Bi-GRU Prediction Model
RNN is widely used in time series prediction, but it has problems
of gradients vanishing and exploding, and its memory ability for
long series is limited (Liu et al., 2021). As the improved version of
RNN, LSTM, and GRU effectively solve these problems and
determine the sequential information to be forgotten and
remembered through the gating mechanism. The gating
mechanism of GRU is simpler than that of LSTM because it
combines the forget gate and input gate of LSTM and reduces the
computation while ensuring the prediction ability of the neural
network. In addition, Bi-GRU is able to extract long-term
dependencies before and after the current state, which means
that Bi-GRU can extract more temporal features from sequential
data, so Bi-GRU performs better than GRU. The structure
diagram of Bi-GRU is shown in Figure 1.

The GRU cell has only two gates (an update gate zt and a reset
gate rt). The update gate controls the extent to which the state
information at the previous moment is retained into the current
state, and the reset gate determines the extent to which the
current state is combined with the previous information. The
information flow is shown as follows in a GRU cell.

zt � σ(Wzxt + Uzht−1 + bz) (1)

rt � σ(Wrxt + Urht−1 + br) (2)

~ht � tanh(Wxt + U(rtȯht−1)) (3)

ht � ztȯ~ht + (1 − zt)ȯht−1 (4)

Where xt, ht are the input data and current state (also used as the
output of a cell) at time t, respectively. ht-1 is the previous state.
~ht is the candidate state. Wr, Ur, Wz, Uz, W, U, and br, bz
represent weights and bias parameters, respectively. σ, tanh are
activation functions and ȯ denotes an element-wise product. But
in Bi-GRU, the output ht is concatenated by the outputs in two
directions.

�ht � GRU( �ht−1, xt) (5)

h
←
t � GRU(h←t−1, xt) (6)

ht � Wt
�ht + Uth

←
t + bt (7)

Where, �ht, h
←
t represent the outputs in two directions, Wt, Ut,

and bt represent weights and bias parameters, respectively. In
addition, FC neural network is used after Bi-GRU to fit the
learned features to labels, which means achieving prediction by
matching dimensions between inputs and outputs. The Rectified

FIGURE 1 | The frame of Bi-GRU forecasting model based on TL.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8081162

Chen et al. Ultra-Short-Term Wind Power Prediction

182

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Linear Unit (ReLU) activation function is utilized in the
FC layer.

The Transfer Learning Method
The TL method is a machine learning concept that TL is used to
improve the performance of target tasks on target domains by
transferring the knowledge contained in different but similar
source domains (Qureshi et al., 2017). Usually, the model is pre-
trained in the source domain with sufficient data. Then the pre-
trained model is fine-tuned in the target domain with small data,
which makes full use of the source domain data to improve the
performance of the model on the target domain data. TL
methods can be divided into instance-based approach,
feature-based approach, and parameter-based approach. The
historical data of wind farms with short construction time or
imperfect detection devices may not be enough to support the
training of prediction models. In this paper, the parameter-
based TL approach is used. The pre-training model trained by
wind farms with sufficient data is fine-tuned by the target
domain with insufficient data to accomplish the target tasks
more efficiently. The basic idea of transfer learning can be
expressed as follows.

DSs � {Fs, Ls} (8)

DSt � {Ft, Lt} (9)

Where DSs, DSt represent the data space of the source domain and
target domain, respectively. Fs, Ls are the features of the source
domain and target domain data spaces, respectively. Ft, Lt are the
labels of the source domain and target domain data spaces,
respectively. The tasks of the source domain and target domain
are to find the optimal parameters Ws and Wt, to make that the
predicted values Ps and Pt are as close as possible to the labels Ls and
Lt. TL is to fine-tune the source domainmodel parameterWs tomake
the target domain parameter as close as possible to the optimal target
domain parameter Wt.

Ps � fs(Fs,Ws) (10)

Pt � ft(Ft,Wt) (11)

The prediction framework diagram of the method proposed in
this paper is shown in Figure 1, and the processing flowchart is
shown in Figure 2. The prediction process is mainly divided into two
parts. In the first part, the wind farm power prediction model in the
source domain is established. In the data pre-processing stage, the
original data in the source domain are normalized to eliminate the
scale difference of features and facilitate the use of gradient descent of
loss function. First, the pre-processed data is fed into the three-layer
Bi-GRU neural network. Then the FC layer matches the output
dimension to achieve WPF to get the source-domain prediction
results. The second part is to build the wind farm power prediction
model in the target domain, and the data pre-processing is the same
as the first part. The pre-trained source domain model is loaded and
the parameters in the pre-trained model are transferred to the target
domain as the initial parameters. Using a small amount of target-
domain data to train the network, a fine-tuned target domain
prediction model is obtained.

CASE STUDIES

In order to verify the effectiveness and superiority of the proposed
prediction model and TL method, the experiment is divided into
two parts. The first part compares the Bi-GRU with the AR,
LSTM, and GRU. The second part uses the Bi-GRU prediction
model and TL method to predict the power of wind farms in the
target domain. The programming language used is Python3.8.
The deep learning framework is PyTorch1.8.1.

Data Description
Two wind farms from Zhejiang Province in China are named
ZJFD01 and ZJFD02 respectively. Each wind farm contains
measured active power and meteorological data. The
meteorological data contains wind speed, direction measured
(sine and cosine of wind direction) at the hub, and air density.
The time interval is 15 min. Since the running time of the two
wind farms is different, the amount of historical data recorded is
different. The wind farm ZJFD01 has recorded a large amount of
data (including July 1, 2019–August 30, 2021) with an installed
capacity of 90 MW, which is taken as the source-domain wind
farm. The wind farm ZJFD02 (including January 1, 2021–August

FIGURE 2 | The folw chart of propesed WPF.
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25, 2021) has recorded a small amount of data with an installed
capacity of 200 MW, which is taken as the target-domain wind
farm. The relationship between input and output of samples in
the target domain and source domain in these datasets is similar
because the relationship of wind power and meteorological
variables in different wind farms is semblable. Therefore, data
domains can be positively transferred.

Evaluation Metrics
In order to evaluate the prediction performance of the prediction
model, the root mean square error (RMSE), mean absolute error
(MAE), and accuracy (Cr) are taken as evaluation metrics according
to international standards. They are defined as follows. In addition,
training time is introduced as a new evaluation index in the
experiment of the target-domain wind farm.

RMSE � 1�
n

√

�����������������
∑n
i�1
(Preal,i − Ppred,i

Ci
)2

√√
× 100% (12)

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣Preal,i − Ppred,i

Ci

∣∣∣∣∣∣∣ × 100% (13)

Cr � 1 − RMSE (14)

Where Preal,i, Ppred,i, and Ci are real output power, predicted
output power, and capability of wind farm respectively. n is the
total number of predicted samples.

The Experiment of Source-Domain Wind
Farm
The source-domain prediction model, the Bi-GRU method, is
established for the ZJFD01 wind farm. In the data pre-processing
stage, the supervised learning dataset is constructed. The output
power of the current time step yt is selected as the label. The
previous four timesteps (xt-1,xt-2, . . . , xt-4) are selected as features.

A total of 70% of the dataset was used as the training set and the
last 30% as the verification set.

For hyperparameters, set input size to 4, hidden size to 8, and the
number of layers to 3. Then, the FC layer is connected to tag
dimension matching, and the number of neuron nodes in the
input layer is 64 (since the output of Bi-GRU is flattened), the
hidden layer is 32, and the output layer is 1. In the model training
stage, mean-squared loss is used as the loss function to measure the
error between predicted power and actual output power, and theAdam
optimization algorithm is used as the optimizer. In order to evaluate the
superiority of the proposed method in wind farm prediction in the
source domain, RMSE, MAE, and Cr are used as evaluation metrics.

The 400 sampling points of the test dataset are taken to verify the
prediction effects of various methods. The power prediction results are
shown in Figure 3. Compared with other methods, the power
prediction curve of Bi-GRU is closer to the actual power output
curve trend. As can be seen from Figure 3, the RMSE and MAE of
the proposed method are significantly lower than those of other
methods, and the accuracy is improved. Compared with LSTM and
GRU,RMSEandMAEare reduced by 4.73 and 3.17% respectively. The
prediction effect of GRU is better than that of LSTM because the same
iteration times are set, but GRU has a simpler structure and fewer
parameters to be optimized, so it has higher accuracy. There are two
reasons why the proposed method is superior: 1) The Bi-GRU can
excavate the relationship between historical meteorological data and
current power data layer by layer through various gating mechanisms,
and can also excavate the local and long-term correlation before and
after the power data series; 2) The characteristics of both the forward
and reverse time sequence of power and meteorological data are taken
into account by the bidirectional mechanism, so it can effectively
improve the accuracy of prediction. As seen from the local
amplification figure, the forecasting curve trend of all methods is
close to the actual power curve, but there are different levels of
phase difference. However, the bidirectional mechanism of Bi-GRU
solved this problem, making the prediction curve more closely fit the

FIGURE 3 | The forecasting results of source-domain wind farm:(A) Foreacsting results; (B) Forecasting error.
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actual power curve, which is the important reason for its better
prediction performance.

The Experiment of Target-Domain Wind
Farm
In order to ensure the prediction accuracy and reduce the training
time, the power prediction of the ZJFD02 wind farm in the target
domain is based on transfer learning. The parameters and structure
of the pre-trained model from ZJFD01 are migrated to the ZJFD02.
The preprocessingmethod of the dataset is the same as that of source
wind farm. In order to explore and verify the advantages of using
transfer learning to predict power, the following cases are compared:

a) The pre-trained model in the source domain is directly
loaded, and denoted as NO_fine-tunning (NO_FT);

b) The pre-trained model in the source domain is loaded and the
parameters in Bi-GRU layers are frozen and the parameters of
the FC layer are fine-tuned with target-domain data, which is
named Fixed_Bi-GRU;

c) The pre-trained model in the source domain is loaded and the
parameters in the FC layer are frozen and the parameters of Bi-
GRU layers are fine-tuned with target-domain data, which is
named Fixed_FC;

d) Redefine a predictionmodel whose structure is the same as that of
the source-domainmodel but whose parameters are not trained at
all. Then train it with target-domain data, which is namedNO_TL.

In addition to RMSE and MAE, training time is added to the
evaluation metrics to measure the improvement of computing
speed caused by TL. Except for case (a), the number of iterations
in other cases is set to 200.

By taking 400 sampling points, the prediction results and
performance of the above cases can be compared, as shown in
Figure 4. From the perspective of prediction accuracy, the
prediction accuracy of case (a) and case (b) is lower than that
of case (c) and case (d). RMSE and MAE of case (c) are 4.705 and
4.607%, respectively, lower than that of case (a), because there are
still differences in the dataset of the source domain and target
domain. If there is no parameter fine-tuning, it will cause a large
prediction error. Case (b) and (c) fixed different parameters of the

network layer, RMSE, andMAEwere reduced by 1.533 and 1.404%
respectively compared with case (b), because the number of three-
layer network parameters of Bi-GRU was much more than that of
FC layer. After fine-tuning in the target domain, case (b) changed
the parameters of themodel to a greater extent than case (b), so it is
closer to the optimal target domain model; the prediction accuracy
of case (c) and case (d) was similar, RMSE is 2.397 and 2.484%,
MAE is 1.295%, and 1.298%, respectively. From the perspective of
time-consuming, cases (b), (c), and (d) are compared. it is obvious
that the training time of case (b) is less than that of (c). Most
parameters of this prediction model are still Bi-GRU layers, so it
saves training time to fine-tune FC layer parameters. The accuracy
of (c) is similar to that of (d), but the training time of (c) is 9.9%
shorter than that of (d). Therefore, using the transfer learning fine-
tuning the pre-trained model can guarantee the prediction
accuracy and save the training time to a certain extent
compared with the training model starting from the beginning.

CONCLUSION

In this paper, a Bi-GRU prediction model based on the transfer
learning method is presented for the ultra-short-term of wind
power. According to the results of case studies, some conclusions
are summedup as follows.Onone hand, the Bi-GRUpredictionmodel
can extract the temporal features of wind power sequential data in two
directions, which learns deeper historical information and realize
higher accuracy of WPF than GRU and LSTM. On the other hand,
the prediction model combined with the TL method saves training
time and reduces the requirement for abundant data. In the future,
more detailed research about how to balance training time and
accuracy of prediction using TL will be completed. Moreover, more
comprehensive evaluation metrics aimed at evaluating the TL method
in WPF will be established (Shen and Raksincharoensak, 2021b).
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Tolerance of Electromagnetic Relay to
Voltage Sags and Short Interruptions
Huaying Zhang*, Qing Wang and Yihong You

New Smart City High-Quality Power Supply Joint Laboratory, China Southern Power Grid, Shenzhen, China

This paper studies the tolerance of electromagnetic relay (EMR) under voltage sag and
short interruptions on the basis of response mechanism analysis and the extensive tests.
First, it introduces the structure of EMR and proposes response mechanism of EMR under
voltage sag. Then, a detailed test plan is presented, including the information of test
platform, testing condition, EMRs used in test, list of test, test procedure, and the
measured waveforms. Magnitude and duration of the sags are not only the
characteristics to be considered to investigate EMR’s tolerance. The other factors,
which may have significance influence on tolerance of EMR, are considered here,
including point-on-wave (POW), phase angle jump (PAJ), harmonic, magnitude
variation in pre- and post-sag segments, two-stage sag, and slow recovery sag.
Extensive tests results are presented in the form of voltage-tolerance curves (VTCs).
Besides magnitude and duration, POW, PAJ, and two-stage sag have a significant
influence on the tolerance of EMR. Other factors only have a tiny impact on the
tolerance of EMR. The results show that the magnitude tolerance of EMR is 48–74%
of Unom, and duration tolerance is 5–28ms; they are useful for the technical assessment of
EMR’s tolerance to voltage sags and short interruptions, and for the economic
assessment of the industry process trip due to its disengagement. Test results also
benefit for choosing proper EMR and mitigation device in the complicated operating
environment.

Keywords: electromagnetic relay, power quality, short interruption, voltage sag, voltage-tolerance curve

1 INTRODUCTION

Electromagnetic relay (EMR) is widely applied in industrial control system and communication
as a kind of basic electric component, also playing a role in switching circuits, transferring
signals, and eliminating interference. However, when a short-circuit fault occurs in the power
system, it causes power quality issues, such as voltage sag and short interruption (Nagata et al.,
2018; Wang et al., 2019; Ye et al., 2019), which affect the normal operation of EMR. Voltage sag
even causes the malfunction and damage of EMR in severe cases (Wu and Fan, 2015; Jianbo and
Qi, 2018), then leading to the failure of the whole industrial process and resulting in the huge
economic losses (Mohammadi et al., 2017; De Santis et al., 2018; Gambôa et al., 2019). For
example, (Bollen, 2000) records that the tripping of EMR under one voltage sag event “cause the
shutdown of a large chemical plant, leading to perhaps $100,000 in lost production.” However,
the tolerance of EMR under voltage sag presented in Bollen (2000) is from IEEE Std. 1346 (IEEE,
1998) which published the sensitivity of EMR 20 years ago. The data in IEEE Std. 1346 may be
not suited for the industry today, because of the improvement of the technique of EMR and the
updating industry processes. It is important to understand the tolerance of EMR under voltage
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sag nowadays to provide the voltage sag mitigation scheme and
the EMR purchase plan for the industry users.

EMR is known as the sensitive equipment under voltage sag
because of industrial users’ complain (IEEE, 1998; Bollen, 2000;
Zhai and Yang, 2008). IEEE Std. 1346 (IEEE, 1998) pays close
attention to it and present that tolerance of EMR is 60–75% of
rated voltage of magnitude, and is 10–30 ms of duration;
however, this standard states that the presented tolerance
“should not be considered typical for these types of devices
but only a samples of what is available.” It is difficult to
provide the detailed guide for the users. The simulation was
done to investigate the dynamic characteristics of EMR interfered
by voltage sags and short interruptions to offer the qualitative
understanding of the sensitivity of EMR (Zhai and Yang, 2008). It
is a necessary way to get the tolerance information of sensitive
equipment than conducting the extensive tests on equipment.
The tolerance of other sensitive equipment is also obtained
through test, for example, the tests on adjustable speed drive
(ASD) (Xu et al., 2019a), programmable logic controller (PLC)
(Xu et al., 2019b), AC coil contactor (ACC) (Djokic et al., 2004;
Hardi et al., 2010; Weldemariam et al., 2016), and so on (Ouyang
et al., 2015; Ouyang and Liu, 2017).

The different single-event characteristics of voltage sag is
considered in the test. Magnitude and duration are the
essential characteristics which should be included in the test.
Furthermore, other characteristics should be included, such as
point-on-wave (Alvaro et al., 2019; Wang et al., 2020) and phase
angle jump (PAJ) (Wang et al., 2015). The former is also called
phase angle, and the latter is called phase shift in IEC 61000-4-30
(IEC, 2021). POW is the phase angle of the fundamental voltage
waveform at which the voltage sag occurs; PAJ is the change of
phase angle during the voltage sag (Djoki et al., 2007; Wang et al.,
2015; IEEE, 2017; Alvaro et al., 2019; Wang et al., 2020; Ren et al.,
2021). There are two views about considering the other
characteristics. For one thing, IEEE Std. 1346 recommends
that “phase shift and point of initiation not be considered,”
since these “characteristics are not typically available in the sag
environment data.”However, for the improvement of the voltage
sag generator and the monitor technical, the problem of “sag
environment data” has not been the barrier of the testing.
Another opinion is that POW and PAJ have significant
impacts on electromagnetic equipment (Djoki et al., 2007;
Wang et al., 2015; Alvaro et al., 2019; Wang et al., 2020; Ren
et al., 2021); similar thinking is also recommended in the
standards. IEC 61000-4-30 (IEC, 2021) states that for some
equipment “drop-outs, the phase angle at which a voltage dip
begins is an important characteristic”; IEEE Std. 1668-2017
(IEEE, 2017), which is the newest standard related to testing
on the sensitive equipment under voltage sag, suggests that
“. . .characteristics such as phase-shift, point-on-wave of
initiation, and recovery of the instantaneous voltage waveform
during the sag may have an effect on equipment performance as
well.” Thus, the various single-event characteristics of voltage sag
are included in this paper to test the sensitivity of EMR.

This paper proposes a general test procedure and has done
extensive tests to investigate the tolerance of EMR to get the
quantitative results and support the voltage sag mitigation for

EMR. The rest of this paper is organized as follows. Section 2
describes the structure and response mechanism of EMR.
Detailed test plan is elaborated in Section 3, including test
principle, test procedure, equipment under test (EUT), and
voltage sag generator. Test results are presented in the form of
voltage tolerance curves in Section 4. Section 5 discusses the
potential application, and Section 6 makes a conclusion of the
test results.

2 STRUCTURE AND RESPONSE
MECHANISM

2.1 Structure of Electromagnetic Relay
The structure sketch of EMR is shown in Figure 1 (Fan and Wu,
2014). It is mainly composed by an iron core, AC coils, an
armature, return springs, and contact system, similar to the
structure of ACC. Contact system contains three types of
contacts: a normally open contact (NO), a normally closed
contact (NC), and a common contact (CO); their positions are
also shown in Figure 1.

When a certain voltage is supplied to the coil, an
electromagnetic force (Fmag) is generated. Then, the armature
is attracted toward to iron core as Fmag is greater than the force of
spring (Fs). Then, the circuit is turned on. On the other hand,
when the coil is de-energized, Fmag disappears but the Fs still
exists. Then, armature returns to its original position, causing the
circuit turned off. The whole working process is shown in
Figure 2. Once a voltage sag occurs in the process, it causes
EMR to work unnormal.

EMR and ACC are both basic electromagnetic equipment in
the control systems, and their structures are similar. However,
EMR is generally used for the control loop, whose operating
current is small, only a few Amps; ACC is often used for main
circuit control, commonly being used to control the start and
stop of the motor, etc., and its rated current is greater, even up
to several thousand Amps, so an arc extinguishing device is
needed for ACC. The behaviors of EMR and ACC under

FIGURE 1 | The structure of EMR.
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voltage sag are different due to the arc extinguishing device, coil
turn number, and so on. The research results on behavior of
ACC under voltage sag cannot be used as the result of study on
EMR, and the knowledge of behavior of EMR under voltage sag
is limited.

2.2 Response Mechanism of
Electromagnetic Relay to Voltage Sag
When the sinusoidal AC power is supplied, the main flux of the ac
coil changes sinusoidally with time:

Φ � Φm sinωt (1)

The Fmag can be calculated by Maxwell’s electromagnetic force
formula:

Fmag � Φ2

2μ0S
(2)

where S is magnetic attraction area at air gap, μ0 is vacuum
permeability.

Thus, according to Eqs 1, 2, Fmag can be written as

Fmag � Φ2
m sin2 ωt

2μ0S
� Φ2

m

4μ0S
− Φ2

m cos 2ωt
4μ0S

(3)

Therefore, the Fmag is proportional to the square of the main
flux. The Fmag changes versus time at twice voltage frequency.

Figure 3 shows the waveform of Fmag in blue and Fs in red
during a voltage sag. In this case, the operation of EMR is
influenced by the sag. Before sag starts, Fmag is greater than Fs,
and EMR operates normally. When a sag occurs at time t1, Fmag is
gradually reduced; however, Fmag is still greater than Fs until time
t2, and EMR operates normally from t1 to t2. Fmag is less than Fs
from t2, and EMR is disengaged from t2 to t3. The sag ends at t3,
and EMR recovers to operate normally.

FIGURE 2 | Working principle of EMR. (A) EMR is not energized. (B) EMR is energized. (C) EMR is de-energized.

FIGURE 3 | The curves of the electromagnetic Force (Fmag) and the force
of spring (Fs).

FIGURE 4 | Test circuit. (A) The connection of the test for EMR. (B) Test
platform (1. console, 2. programmable power supply (MX45), 3. data
acquisition device DEWE-510 and its Display, 4. EMR, 5. DC supply source, 6.
lamp load).
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It indicates that when the sag duration is too long, causing Fmag

less than Fs, EMR trips (Wu and Fan, 2015). Of course, when
voltage sag magnitude is above a certain level, Fmag keeps higher
than Fs no matter how long the sag lasts, and the EMR can work
steadily (Zhai and Yang, 2008). In other words, to ensure that the
EMR works normally when powered, Fmag should be greater than
Fs. Thus, it is necessary to know and quantify the EMR’s tolerance
to voltage sag.

Moreover, different POW and PAJ influence EMR’s main flux,
thereby affecting the change of Fmag. It means that POW and PAJ
may influence EMR’s tolerance, so this paper considers these
characteristics in the test. According to Eq. 3, Fmag is related to
voltage frequency, so harmonic and frequency fluctuation are also
in consideration. In Section 3, a detailed schedule is presented to
investigate the EMR’s tolerance to various conditions.

3 TEST PLAN

3.1 Test Platform
Based on EMR’s structure and its response mechanism, the test
circuit is connected as shown in Figure 4. The test platform
consisted of the console, voltage sag generator (programmable
power supply MX45), the data acquisition device (DEWE-510),
EUT, DC supply source, and the lamp load.

Programmable power supply MX45 (AMETEK, 2017), whose
brand is AMETAK, is used as the sag generator here. The voltage
output range is 0∼400 V, and the maximum output power is
45 kVA; single and three phase mode are available. It meets the
voltage sag generator requirements in IEEE 1668-2017 (IEEE,
2017), and MX45 can generate any voltage sag waveform
designed by setting. In the test, the voltage waveform from
MX45 is measured by the acquisition device. The measured
single-event characteristics of the generated voltage sag are
consistent with the setting value on the voltage sag generator.

The EUT is EMR, which is energized from one of the phases of
MX45 (phase-A), since it is single-phase equipment. Thus, the
test platform is a single-phase system.

3.2 Testing Condition and Equipment Under
Test
The sensitivity is determined by two major factors: the design of
the equipment and the physical characteristics of the voltage sag
(IEEE, 2017). It suggests that different brands of the same

equipment, and even different models of the same brand,
often have different sensitivity to voltage sag. Eight EMRs
from seven different manufactures are selected as EUT in the
tests, in order to ensure a high degree of reliability and quantify
the tolerance to voltage sag in the general way. The list of EUT is
given in Table 1, with the information of EMR’s nominal voltage
(Unom) and nominal current (Inom).

EMRs are connected with a load circuit as a switch. A resistive
lamp is used as the load here, supplied by a DC supply source
(24 V). In all tests, EMR is supplied by MX45, 100% of Unom is
supplied to EMR during the pre-and post-sag segments, and a
voltage sag is supplied to EMR during the sag segment. DEWE-
510 was used to monitor the voltage on the lamp load. When a
voltage sag causes EMR tripping, the voltage is about 0 V. The
voltage indicates the behavior of EMR under voltage sag.

3.3 List of Test
The effect by rectangular and non-rectangular voltage sags is
investigated.

EMRs are first tested against simple rectangular voltage sags,
which are with different POW or PAJ, supplied from an ideal
voltage source.

Then, another complicated voltage wave-forms, supplied from
a non-ideal voltage source, is tested. These voltage sags include
sags with a frequency variation up to ±2%, sags with a harmonic
content (THD up to 12%), and sags with the magnitude variation
up to ±10% in pre- and post-sag segments.

Lastly, the influence of various two-stage voltage sags, as well
as the slow recovery sags, is investigated. Table 2 summarizes the
influence factor of this test.

3.4 Test Procedure
In order to get the accurate test results, the test is done according
to the test procedure. The following procedure is used in tests
with rectangular voltage sags, and it is presented as the general
test procedure for the sensitive equipment under voltage sag.

3.4.1 Set the Influence Factors and the Ranges of
Them for the Test
There are three main factors for EMR, including magnitude,
duration, and POW; the non-main factors are PAJ, frequency
variation, harmonic distortion, and magnitude variation. It is
planned that the maximum and minimum magnitudes of
voltage sag for testing are 90 and 0%; the two values are
decided according to the definition of voltage sag. The
maximum and minimum durations for testing are 2 and
0 ms, respectively; the tolerance of duration of all EUT in the
current research is less than 2 s; thus, 2 s is as the maximum
duration. The test step sizes are 2% and 2 ms for magnitude and
duration, respectively. The step sizes for other influence factors
are in Table 2.

The main and non-main factors for the different EUT can be
different; it depends on the response characteristics of the
different EUT under voltage sag. The factors in Table 2 are
suitable for most single-phase equipment; however, the type of
voltage sag, which is not mentioned in Table 2, should be the
important factor in the test for three-phase equipment.

TABLE 1 | The main parameters of EUT.

EUT Unom (V) Inom (A) Manufacturer

R1 220 5 OMRON
R2 220 5 OMRON
R3 230 5 ABB
R4 230 5 Schneider
R5 220 5 IDEC
R6 220 10 IDEC
R7 220 5 Chint
R8 220 5 DELIXI
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3.4.2 Generate Voltage Sag and Test
The generated voltage sag is with the different single-event
characteristics, as shown in Figure 5; the three main factors
keep constant when changing the non-main factor. Take PAJ
setting as example, when setting magnitude � 50%, duration �
100 ms, POW � 45°, the step is to set PAJ equals 0°, 30°, 60°, 90° in
order, and record the test result. Then, change POW to 63°

(magnitude and duration remain unchanged), and then test the
EUT under the voltage sag with PAJ equals 0°, 30°, 60°, 90°,
respectively. After finishing the test with considering the effect by
PAJ, then do the tests considering the effect by the other non-

TABLE 2 | Factors considered in the tests.

Test condition Sag characteristics setting
detailed

Rectangular voltage sag Sag with POW (0° POW, 27° POW, 45° POW, 63° POW, 90° POW)
Sag with PAJ (0° PAJ, 30° PAJ, 60° PAJ, 90° PAJ)
Sag with a frequency variation up to ±2%
Sag with a harmonic content (THD up to 12%)
Sag with the magnitude variation in pre- and post-sag segments (up to ±10%)

Non-rectangular voltage sag Two-stage voltage sags
The slow recovery sags (voltage recovery gradient: 10, 20, 30, 40, 50 V/s)

FIGURE 5 | The steps of the test.

FIGURE 6 | The measured time-varying wave-forms. (A) EMR don’t trip,
(B) EMR trip.
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main factors. Considering all the factors in four loops in Figure 5,
test the behavior of the EUT under the voltage sag with the
different factors.

3.4.3 Tripping Criterion
The voltage sag generator generates voltage sag to supply EUT,
and the states of EUT and the lamp load are recorded as the
tripping criterion for EUT. The tripping criterion can be different
for different EUT, for example, the dc voltage, current, or rotor
speed can be options for tripping criterion of ASD. VTC can be
drawn after all the tests were done.

The detailed test procedure may be different for the different
EUT. The non-main factors are not necessary for all the EUT. It
depends on the different structure and working condition.

3.5 The Measured Waveforms
The measured time-varying waveforms are shown in Figure 6 as
an example. The top panels of Figures 6A,B are the generated
voltage sag waveforms; the bottoms are the voltage of the tested
lamp. There is a voltage sag generated by MX45; the single-event
characteristics of it are 20% of Unom magnitude, 20 ms duration,
30° POW, and 30° PAJ; the voltage versus time is shown in the top
of Figure 6A. The supplied voltage of lamp is recorded by the
oscilloscope, which is about 24 V, shown in the bottom panel in
Figure 6A; the lamp keeps working normally. EMR can tolerate
this voltage sag. However, when the duration extends to 60 ms
(shown in the top panel in Figure 6B), the other single-event
characteristics of the voltage sag in Figure 6B are the same as the
voltage sag in Figure 6A; the EMR fails in Figure 6B. EMR can
tolerate about 20–25 ms, and then it fails; the load cannot keep
working since the supply voltage of the load decrease to 0 V.

The two examples in Figure 6 are the typical waveforms of the
tests. The extensive tests show that the longer the duration or the
lower magnitude of voltage sag, the greater probability of EMR
tripping. The detailed results of the test are shown in Section 4.

4 TEST RESULTS

4.1 Testing of Electromagnetic Relay to
Rectangular Voltage Sags
4.1.1 Quarter-Cycle Symmetry Respect to
Point-on-Wave
The results of test are presented graphically by VTCs. The
detailed test results for R1 are shown in Figure 7. VTCs of 0°

POW, 180° POW, and 360° POW are quite close. VTCs of 90°

POW and 270° POW are nearly the same. Furthermore, though
there is a slight difference in VTCs of 45°, 135°, 225°, and 315°

POW, they are almost coincident of the shape. It describes EMR’s
quarter-cycle symmetry. Thus, the sensitivity of EMRs is
illustrated only for POW between 0° and 90° (0° POW, 27°

POW, 45° POW, 63° POW, 90° POW are tested in this paper).

4.1.2 Sensitivity to Point-on-Wave
The sensitivity of EMR to POW is tested and shown in Figure 8.
POW has a greater influence on the sensitivity of EMR.

It is obvious that the less POW, the stronger voltage sag
tolerance of EMR, when the voltage sag is deep drop. Take R1
as example, when a short interruption occurs, the tolerance
durations are 22 ms for 0° POW, 20 ms for 27° POW, 19 ms
for 45° POW, 16 ms for 63° POW, and 3 ms for 90° POW,
respectively. However, the greater POW, the stronger tolerance
of EMR under voltage sag, when the voltage sag is shallow. R1 can
tolerate 10 ms when 90° POW, but 5 ms when 0° POW, when the
magnitude is 40%.

VTCs of 0° and 90° POW for all tested EMRs are shown in
Figure 8. Overall, the shape of VTCs for the eight EMRs are
similar; however, VTCs of different EMRs are with different
“knee” parameter, due to the different type and different
manufacturer. For example, R1 and R2 are two devices with
the similar parameter (not the same model) from the same
manufacturer; the results in Figure 8 show that the VTCs of
the two devices are different.

The sensitivity of the “flat” part for different POW is illustrated
in Figure 9; “voltage threshold” means the maximum magnitude
can be tolerated of a certain POW. In Figure 9, the larger POW, the
smaller voltage threshold. Moreover, the variation of this threshold
is between 2 and 10% of Unom depending on the type of the EMR.
For example, R5 will trip when the voltage drops below 54–62% of
Unom, depending on the POW, for voltage sags lasting more than
30ms. This represents that the upper and lower limits of voltage
magnitude threshold for the EMRs are tested.

4.1.3 Sensitivity to Phase Angle Jump
The test results of PAJ are showed in Figure 10. The tests of
different PAJ are divided into two groups: one for 0° POW and
another for 90° POW. The test of each group considers four PAJs,
including 0° PAJ, 30° PAJ, 60° PAJ, and 90° PAJ.

From Figure 10, the tolerance of the complicated part (t <
30 ms) of VTCs is clear. When voltage sag is starting at 0° POW,
the larger PAJ, the stronger EMR’s tolerance. For example, the
duration is 24 ms of 90° PAJ when the voltage magnitude is 50%
of Unom, while the duration is only 8 ms of 0° PAJ under the same

FIGURE 7 | Illustration of quarter-cycle symmetry (R1, 0° PAJ).
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condition. Instead, the larger PAJ, the weaker EMR’s tolerance
when the sag is starting at 90° POW.

For the two groups VTCs, the less PAJ, the stronger tolerance
to the sags with shorter duration, which is with the obvious trend
in the “vertical” part (t < 15–30 ms). In the “flat” part (t >
15–30 ms) of the VTCs, the less PAJ is also with the stronger

tolerance; however, the trend is not as obvious as in the “vertical”
part. Generally, PAJ effects on the tolerance of EMR, when a PAJ
occurs, the tolerance of EMR is weaker.

4.1.4 Sensitivity to Frequency Variation
Test the tolerance of EMR to the sags with a frequency variation
up to ±2%. The sags at 49, 50, and 51 Hz are considered.
Frequency variation of ±2% of nominal frequency does not
influence the sensitivity of the tested EMRs, since the VTCs at
the three frequencies are almost coincident in Figure 11A.

4.1.5 Sensitivity to Harmonic Distortion
Test the tolerance of EMR to the sags with a harmonic content
(THD up to 12%). It demonstrates that harmonic distortions of
up to 12% of THD have only a slight influence on both EMR’
sensitivity and the shape of VTCs, shown in Figure 11B. Test
results show that the tolerance of EMR is slightly higher when the
supply voltage contains harmonics.

4.1.6 Sensitivity to the Magnitude Variation in Pre- and
Post-Sag Segments
The tolerance test results to the sags with variation in pre-
and post-sag voltage magnitude (up to ±10%) is in

FIGURE 8 | Test results considering the different POW (0° PAJ). (A) Results for R1. (B) Results for R2. (C) Results for R7.

FIGURE 9 | Voltage threshold of different VTCs under different POW
(0° PAJ).

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7664727

Zhang et al. Tolerance of Electromagnetic Relay

193

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Figure 11C. It demonstrates that when the pre- and post-sag
magnitude is 110% of Unom (242 V), EMR’s tolerance
increases slightly. It can conclude that the slightly higher
of the magnitude in pre- and post-sag segments, the stronger
tolerance of EMR.

4.1.7 General Voltage-Tolerance Curves
Based on the test results obtained, the general VTC of all the
tested EMR is shown in Figure 12. EMR can tolerate a voltage sag
with the magnitude more than 74% of Unom. When the sag
magnitude is less than 48% of Unom, EMR will trip when the
sag duration exceeds 28 ms.

4.2 Testing of Electromagnetic Relay With
Non-Rectangular Voltage Sags
4.2.1 Sensitivity to the Two-Stage Voltage Sags
In order to ensure the accuracy of the test results, the total
duration of the two stages (Figure 13) must be less than the
maximum tolerance duration (0% of Unom) for a certain EUT.
For example, the maximum tolerance duration of R4 is 24 ms
when 0% ofUnom, 10% ofUnom, or 30% ofUnom; total duration of
the two stage sags in this test for R4 should be less than 24 ms.

All the tests to two-stage voltage sags are under the same
conditions, both with the same total duration (20 ms), 0°

POW and 0° PAJ.
The results of three groups tests are listed in Table 3. The tests

of No. 1 group are to prove the tolerance of R4. R4 is exposed to a
short interruption (0% of Unom), a voltage sag (10% of Unom), and
a voltage sag (30% of Unom); it remains engaged. It means R4 can
operate normally to a sag or short interruption when the duration
is less than 24 ms.

The tests of No. 2 group show that EMR is sensitive to the two-
stage voltage sag. R4 is exposed to a combined two-stage voltage
sag, different in respective sag duration, while both the states of
R4 are disengaged. The sag in No. 1 is worse than the sag in No. 2;
“two-stage” makes R4 disengaged.

The tests of No. 3 group show that EMR is sensitive to the
order of the two-stage. R4 is exposed to two different sequential
two-stage voltage sags. It works normally to the sag with first stage
of 0% and second stage of 30%, and is disengaged to the sag with
first stage of 30% and second stage of 0%.

4.2.2 Sensitivity to the Slow Recovery Voltage Sag
The slow recovery voltage sag is due to the starting of large
motors or transformer energizing. In the tests, the voltage sag is

FIGURE 10 | Test results considering the different PAJ (0° POW and 90° POW). (A) Results for R2. (B) Results for R5. (C) Results for R8.

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 7664728

Zhang et al. Tolerance of Electromagnetic Relay

194

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


set as recovering progressively to the nominal voltage. Five
voltage recovery gradient and two different POW are
considered here.

Table 4 shows the duration of sag, which causes the
disengagement of R4. From the test results, it can conclude
that the disengagement time is increasing with the increasing

FIGURE 11 | Test results for R1 (0° PAJ). (A) Considering the frequency fluctuation. (B) Considering the harmonic distortion. (C) Considering the magnitude
variation in pre- and post-sag segment.

FIGURE 12 | Generic VTCs for EMR.

FIGURE 13 | An example of the two-stage voltage sag.
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recovery gradient, for the shallower initial drop, while the
opposite results would obtain for a deeper initial drop.
Overall, difference of disengaged time is small of different
recovery gradient if initial drop is a constant.

5 COMPARISON

This study proposes a general test procedure to improve the test
effective and the accuracy. The comparisons of the effectiveness
and the accuracy between the proposed test procedure and the
test method proposed by IEEE standard (IEEE, 2017) are listed in
Table 5.

The results in Table 5 are the test results for R2, when 0°

POW and 0° PAJ. The “real” critical points of the tolerance
under the voltage sags with the different residual voltage are
testing results by the traditional method, which is called “step by
step” method. The step size is 1 ms; the small step size ensures
the testing accuracy but with the heavy testing work. The real
tolerances are 19, 19, 19, 6, 5, 6, and 14 ms when magnitudes are
0, 10, 20, 30, 40, 50, and 60%, respectively. However, the

traditional method costs the extensive work, for example, it
has to do 1,000 tests, when the critical point is 1,000 ms for a
certain residual voltage.

IEEE test method (IEEE, 2017) is the fixed step test method.
For example, the first step to the seventh step is testing the
tolerance of EUT when duration is 0, 10, 20, 50, 100, 200, and
500 ms, respectively. The greater test step sizes result in the
greater test errors. The example in Table 5 is not with the
great errors, because of the critical points are less than 20 ms,
the step size in this range is small by IEEE method. The worse
situation is that when the critical point is 300 or 400 ms, the test
result should be 500 ms, leading the larger error.

The proposed method can decide the next test point
automatically according to the test results of the two
previous test points, can quickly approach the critical point.
The errors of the testing results for R2 are less than 1 ms
compared with the real tolerances. The test work is 8 times
for a certain residual voltage, which is quite less than the test
work by “step by step” method, whose testing works are 19, 19,
19, 6, 5, 6, and 14 times for the different residual voltage for R2.
The proposed method is with the high efficiency and test
accuracy.

6 APPLICATION OF THE TEST RESULTS

First, through numerous tests, it finds that POW and PAJ are the
major affected factors, as well the two-stage sag. For the reason
that, it can carry out a subset tests described in this paper to
analyze the voltage tolerance of EMR, only considering
magnitude, duration, POW, PAJ, and the two-stage sag.

Secondly, based on the test results got, the general VTC of
EMR are obtained as shown in Figure 12. The general VTC is
helpful for industry consumer to choose the proper EMR
considering their own operating environment. Moreover, it is
useful for the manufacturer to design the EMR with higher
voltage tolerance for specific consumer. For example, EMR can
work steadily in a longer duration environment.

Third, EMR can tolerate a voltage sag with the magnitude
more than 74% of Unom no matter how long the sag lasts from
the general VTC in Figure 12. The result is profitable for
providing appropriate sag countermeasures. For example, the
voltage is only compensated to 74% of Unom to ensure the EMR
operate properly, and the entire industry process would not be

TABLE 3 | Test conditions and results to two-stage voltage sags for R4.

No First stage Second stage State of R4

Magnitude (%) Duration (ms) Magnitude (V%) Duration (ms)

1 0 20 — — Engaged
10 20 — — Engaged
30 20 — — Engaged

2 0 14 10 6 Disengaged
10 6 0 14 Disengaged

3 0 14 30 6 Engaged
30 6 0 14 Disengaged

TABLE 4 | Duration (ms) of the slow recovery voltage sag to disengage for R4 as a
function of initial voltage drop and the voltage recovery gradient.

Initial drop to Voltage recovery gradient

10V/s 20V/s 30V/s 40V/s 50V/s

(a) 0° POW (0° PAJ)

0% 25 24 23 22 21
10% 25 24 24 23 21
20% 25 24 24 24 22
30% 25 24 24 24 22
40% 25 25 24 24 22
50% 7 7 7 8 10
60% 8 9 9 9 10
70% — — — — —

(b)90° POW (0° PAJ)

0% 5 5 4 4 4
10% 5 5 5 5 5
20% 6 6 6 5 5
30% 6 6 6 6 6
40% 10 10 10 9 9
50% 10 10 10 10 10
60% 12 12 12 13 14
70% — — — — —
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interrupted, accordingly. It means that industrial users can
choose a voltage-compensating device with a smaller capacity
to maintain the whole process and save money, more
importantly.

7 CONCLUSION

This paper has performed a large number of tolerance tests on
eight different EMRs, and the test results are presented
graphically as VTCs. The tolerance to rectangular and non-
rectangular voltage sag is investigated in the tests; the
influence factors considered here include POW, PAJ,
frequency variation, harmonic, magnitude variation in pre-
and post-sag segments, two-stage sag, and slow recovery sag.

The obtained VTCs clearly show that the response of EMRs to
voltage sag or short interruption can be rather complex. The
magnitude and duration of sag are not the only parameters which
influence EMR’s sensitivity; POW and PAJ also have an
important influence on the EMR’s tolerance.

The following specific conclusions can be drawn from the tests
performed.

1) From the tolerance test under rectangular voltage sag, the
tolerance capability of EMR is obtained. Although the EMR’s
VTC is different depending on its type, the shapes of VTCs of
all tested EMRs are basically similar. Through more than
10,000 tests on each EMR, EMR can tolerate a voltage sag with
the magnitude more than 74% of Unom. When the sag
magnitude is less than 48% of Unom, EMR will trip when
the sag duration exceeds 28 ms.

2) A quarter-cycle symmetry of VTCs with respect to POW is
proved. The POW has a significant influence on the behavior
of EMRs. VTCs have different shapes for 0° and 90° POW. The
tolerance of EMR is stronger at 0° POW than 90° POW, generally.

3) PAJ effects on the tolerance of EMR, when a PAJ occurs, the
tolerance of EMR is weaker.

4) Two-stage voltage sags can decrease EMR’s tolerance, making
EMR easier to disengage. The sequence of the two-stage also
has a significant influence on EMR’s tolerance.

5) Other factors of frequency variation up to ±2%, harmonic
(THD up to 12%), and the slow recovery voltage sag only have
a not-noticeable impact on the tolerance of EMR. EMR can
tolerate the slow recovery voltage sag with the magnitude
more than 60–70% of Unom.

The test results are useful to choose proper EMR with higher
tolerance and to use subset tests to quantitatively analyze
sensitivity of a new EMR. It is profitable to apply a voltage
compensating device with a smaller capacity to keep the process
unaffected using the general VTC.
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Lumped-Circuits Model of Lossless
Transmission Lines and Its Numerical
Characteristics
Huiyi Zhou, Tianlin Lu*, Shuting Zhang and Xin Zhang

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

Aiming at the lumped-circuits model of the lossless transmission line in the digital
simulation, the article discusses and analyzes the unit step response generation of the
lumped-circuits model by comparing the numerical simulation results of the implicit
trapezoidal method, the implicit Euler method, and a multi-step formula. The root
cause of numerical oscillations pointed out that using the L-stable numerical algorithm
to indirectly simulate the dynamic response of the lumped-circuits model is a numerical
method that does not truly reflect the original model, but it can directly reflect the true
dynamic response of the lossless transmission line. In this study, a method for determining
the chained number in the digital simulation of a lumped-circuits model is given. The
simulation results prove the effectiveness of the method.

Keywords: lumped-circuits, digital simulation, lossless transmission line, numerical method, chained number

INTRODUCTION

In the digital simulation model of lossless transmission lines, the model using the circuit equivalent
model to study the physical characteristics of transmission lines is called the lumped-circuits model,
which is different from the classical finite-difference time-domain algorithm model. As the name
suggests, the lumped-circuits is different from the distributed parameter circuit, which uses a partial
differential equation to describe the voltage fluctuation process. The former uses lumped inductance
and capacitance to approximate the physical characteristics of lossless transmission lines with
distributed parameter characteristics. Cui (2018) pointed out that there are fundamental differences
between the two, and they cannot be completely equivalent in physical characteristics. Therefore,
only appropriate approximation methods (Shen et al., 2020; Shen et al., 2021; Shen and
Raksincharoensak, 2021) can be found to ensure that the lumped-circuits of the transmission
line can be approximately equivalent to the distributed parameter circuit.

The modeling of the transmission line transient response needs to select an appropriate physical
model according to the frequency of the system research signal. The lumped-circuits model is a
commonly used approximate model for physical simulation and digital simulation of transmission
lines, but its significant problem in digital simulation is numerical oscillation (Ye et al., 2021). In
order to solve this problem, various numerical algorithms are used to solve the transient response of
transmission lines, but there are different defects in dealing with numerical oscillation. Root-
matching techniques (Watson and Irwin, 1998) solve this problemwell and are themain algorithm to
solve the problem of numerical oscillation at present. Song et al. (2020) proposed an efficient
electromagnetic transient simulationmethod based on the discrete similarity principle, which further
expanded the application scope of root-matching techniques. Although the root-matching
techniques can better solve the numerical oscillation problem, in a strict sense, these discrete
calculation principles cannot ensure that the physical characteristics of the transmission line do not
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change. Therefore, the research on the numerical algorithm that
can keep the physical structure of the transmission line from
distortion has become a very important research subject.

In addition, the number of the chained circuits is a key
parameter for the lumped-circuits of lossless transmission lines
in physical analogy. Cui (2017) gives an estimation formula for
determining the chained number of the lumped-circuits in the
physical analogy of lossless transmission lines. This formula is also
useful for the estimation (Yang et al., 2019a; Yang et al., 2019b;
Yang et al., 2021a; Zhang et al., 2021) of the chained number in the
digital simulation, but it can not be directly applied. The influence
of the approximation error (Yang et al., 2018; Yang et al., 2021b) of
the numerical algorithm needs to be considered.

For a long time, the lumped-circuits model of lossless
transmission lines was often used as the electromagnetic
simulation model of transmission lines (Paul, 1994; Min and
Mao, 2007), but little is known about the numerical
characteristics of the model. Starting from the characteristics
of three lumped-circuits, the numerical characteristics of the
lumped-circuits model, including its unit step response and
sine excitation response, are studied in detail. The relevant

conclusions can provide reference for the application range
and method of the lumped-circuits model of lossless
transmission lines. In addition, this study pointed out that the
numerical algorithm of symplectic conservation can accurately
simulate the physical characteristics of lossless transmission lines.

LUMPED-CIRCUITS MODEL OF LOSSLESS
TRANSMISSION LINES

Basic Lumped-Circuits Model
Usually, the state space model is used to solve the dynamic
response of lossless transmission lines. First, the lossless
transmission lines need to be discretized in space to obtain
blocks of T-type circuits, Γ-type or inverse Γ- type circuits, and
Π-type circuits. As shown in Figure 1, it is a schematic diagram of a
lossless transmission line, with an inductance per unit length of L0
and a capacitance per unit length of C0, and the total length of the
line is recorded as l. If the transmission line is evenly divided into
M segments, the inductance parameter of a single circuit segment
is L � L0l∕M and the capacitance parameter is C � C0l∕M.

FIGURE 1 | Lossless transmission line and its three equivalent lumped-circuits. (A) Lossless transmission line. (B) Lumped-circuits consisted of M Π-type circuits.
(C) Lumped-circuits consisted of M inverse Γ-type circuits. (D) Lumped-circuits consisted of M T-type circuits.
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According to the topological characteristics of the above
lumped-circuits, it is not difficult to see that the lumped-
circuits consisting of chained inverse Γ-type circuits is suitable
for the situation where the ideal power supply is a unit step signal
and the load is a pure capacitive load. The lumped-circuits
composed of chained Π- type circuits are more suitable for the
case that the power supply is a non-ideal power supply, that is, the
power supply with internal impedance, and the load is pure
capacitive load. However, for ideal power supply, such as the unit
step signal, in order to facilitate the application of boundary
conditions at the head end during simulation, a small resistance
can be artificially inserted in series in the ideal power circuit, so
that the step response characteristics of the circuit can be
simulated. The lumped-circuit composed of chained T-type
circuits is more suitable for ideal or non-ideal power supply,
and the load is the pure inductance or resistance inductance series
branch. It is worth noting that the above discussion is only based
on not adding more system state variables. Without this
limitation, the above three lumped-circuits are applicable to
any form of load combination.

Dynamic Response of the Lumped-Circuits
Model
When the lossless transmission line shown in Figure 1A is
connected with the characteristic impedance Zc, at this time,
the head end voltage source ues is transmitted to the terminal at
the traveling wave velocity v � ( ����

L0C0
√ )−1, and there is no reverse

traveling wave of the voltage, that is, the ending voltage amplitude
has no attenuation, but the phase lags behind the head-end
voltage wave by a delay time tL � l∕ v. In this case, through the
Fourier analysis of the ending voltage, it is obtained that the
frequency response characteristic of the ending voltage transfer
function when the terminal is matching is as follows:

H(l, jω) � e−jωtL (1)

The amplitude-frequency characteristics and phase-frequency
characteristics of Eq. 1 are as follows:∣∣∣∣H(l, jω)∣∣∣∣ � 1 (2)

φ(l, jω) � −ωtL (3)

where ω is the angle frequency. Eqs. 4, 5 are the necessary
conditions for digital simulation of the lossless transmission
line and are also the key evaluation indexes to test the quality
of the numerical algorithm.

For the lumped-circuits shown in Figures 1B,D, when the
terminal is matched, the frequency response characteristic of the
ending voltage transfer function is as follows (Cui, 2017; Cui, 2018):

∣∣∣∣HM(jωtl)∣∣∣∣ � { 1, ωtl ≤ 2rad
(ωtl)−2M, ωtl > 2rad

(4)

φM(jωtl) �
⎧⎪⎨⎪⎩

−2Marscin(ωtl
2
), ωtl ≤ 2rad

0, ωtl > 2rad
(5)

where tl represents the propagation time of the forward voltage
traveling wave along the transmission line with length l/M.

As shown in Figure 2A, the amplitude-frequency response
curve of the lumped-circuits when M is different is given. It can
be seen that whenM is greater than or equal to 5, the amplitude-
frequency response characteristics of the lumped-circuits show
the characteristics of an ideal low-pass filter, and the cut-off
frequency is ωc � 2∕ tl. In other words, if the frequency of the
excitation source is greater than ωc, the voltage signal transmitted
to the transmission line terminal will be seriously distorted. In
addition, in order to ensure that the phase error of the ending
voltage signal is small, ω≤ 1∕ tl must be made. Therefore, when
using the numerical method to analyze the lumped-circuits
model of lossless transmission lines in the time domain, the
frequency of the excitation source ω≤ωc must be met to ensure
that the amplitude-frequency response is constant 1, ω≤ωc ∕ 2 as
far as possible to ensure a small phase error, so as to ensure the
integrity of the signal in the transmission process.

Although it is theoretically possible to meet the property that
the amplitude-frequency response of the lossless transmission
line is always 1 and the phase relative error is 4.72% by physically
controlling the frequency of the excitation source, it is inevitable
to introduce numerical errors when using the numerical
integration algorithm to solve the state space equation of the
lumped-circuits (Lei et al., 2009). Therefore, reducing and

FIGURE 2 | Frequency response curve. (A) Amplitude-frequency response curve whenM takes different values. (B) Phase-frequency response curve whenM � 2.
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avoiding the amplitude and phase errors caused by numerical
calculation is the problem to be solved in this study.

Numerical Characteristics of the
Lumped-Circuits Model
Figure 3A shows an example of a double conductor lossless
transmission line. The wave impedance of the lossless
transmission line is Z0, the wave velocity is c, the total length of
the line is l, the ideal voltage source ues at the head end of the
transmission line is a 100-V step signal with time delay, and the load
end is connected with a capacitor CL of 1,000 pF. The lumped-
circuits models shown in Figures 1B,D are used for numerical
modeling, and the implicit trapezoidal integral formula, the implicit
Eulermethod, and a linearmulti-stepmethod in the study by (Wang
et al., 2019) are used for numerical simulation, and the respective
characteristics of the model and the algorithm are compared and
analyzed. The calculation formats of the three numerical algorithms
are introduced as follows.

For the Following Initial Value Problems

{ _x � f(x, t)
x(t � 0) � x0

The approximate formula of the implicit trapezoidal integral
formula (TR) for approximately solving the state variable x(t) is
as follows:

xj+1 � xj + h

2
[f(xj+1, tj+1) + f(xj, tj)]

where xj+1 ≈ x(tj+1), tj+1 � tj + h, and h is the space between
adjacent time grid points.

Similarly, the calculation format of the implicit Euler method
(IE) is as follows:

xj+1 � xj + hf(xj+1, tj+1)
The calculation format of the four-step method (FM) is as

follows:

20 − 8
�
2

√
11

hf(xj+4, tj+4) � 1
11

xj + 4
�
2

√ − 8
11

xj+1 + 4
11

xj+2

− 4
�
2

√ + 8
11

xj+3 + xj+4

Table 1 shows the comparison of the three numerical
algorithms. It can be seen that the properties of the three
algorithms are different, and the solution effect of the actual
problem is also different. The time domain response results of a
single lossless transmission line will be analyzed in detail below.

Taking the lumped model in Figure 1B as an example, a set of
linear differential equations can be obtained according to the
circuit law as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
dik(t)
dt

� uk(t) − uk+1(t) − rik(t), k ∈ (1,M)

C
duk(t)
dt

� ik−1(t) − ik(t), k ∈ (1,M + 1)
(6)

[ L 0
0 C

][ _I
_U
] � [−R P

Q 0
][ I

U
] + [ μ1(t)

μ2(t)] (7)

In Eq. 7, I � [i1(t), i2(t),/, iM(t)]T, U � [u1(t), u2(t),/,
uM+1(t)]T, R � diag(r, r,/, r), C � diag(C, C,/, C),
L � diag(L, L,/, L), μ1(t) � [0, 0,/, 0]T, μ2(t) � [i0, 0,/, 0]T.

P �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

−1
1 −1

1
−1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M×(M+1)

Q �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1 −1

1 1
1

−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×M

Applying constraints to Eq. 7, we get the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i0 � ues − u1

rs

(C
2
+ CL)duM+1

dt
� iM

(8)

In the simulation, the resistance in the ideal voltage source is
rs � 0.000001Ω, the chained number of the lumped-circuits
model is M � 100, and the simulation step size is
h � 1.0 × 10−7s. The lumped-circuits consisted of chained
Π-type circuits digitally simulated by using the implicit
trapezoidal integral formula, the implicit Euler method, and
the four-step method in the study by (Wang et al., 2019), as
shown in Figures 3B,D. Since the four-step method cannot start
the calculation by itself, the explicit Euler method needs to be
used to calculate the header.

It can be seen from Figures 3B,D that under the Π-type
lumped-circuits model, when the lossless transmission line is
terminated with a capacitor, the ending voltage calculated using
the three numerical algorithms with different properties has a
certain time delay relative to the head-end voltage (Zhan et al.,
2017). According to the research by (Cui, 2017; Cui, 2018), the
calculation formula of the delay time is as follows:

tM � M

ω
arccos

2 − ω2t2l
2

(9)

Therefore, the relative phase error of the algorithm is defined
as follows:

εφM � [ tphase
tM − 1

] × 100% (10)

where tphase represents the time delay of the ending voltage
waveform calculated using the numerical algorithm.

The reason for the signal transmission delay under the
lumped-circuits model is due to the charge discharge process
of capacitance and inductance and the dissipative process of load
energy in the lumped-circuits, which is obviously different from
the wave process of lossless transmission lines.

In addition, the ending voltage calculated using the implicit
trapezoidal method has obvious numerical oscillation. In order
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to further study the physical mechanism of numerical
oscillation, this study uses the implicit trapezoidal method to
solve the ending voltage response of different chained numbers
M in the T-type lumped-circuits with the unit step signal
connected at the head end without delay and characteristic
impedance of the lossless transmission line at the end load. The
simulation results are shown in Figure 3E, with the increase in
the chained number M; the greater the step response overshoot
of the ending voltage, the higher the frequency of voltage
oscillation, the faster the attenuation of amplitude, the
shorter the voltage rise time and dynamic time, and the

overall waveform of the ending voltage is closer to the unit
step voltage waveform in addition to the overshoot. This
conclusion has the same physical characteristics as the step

FIGURE 3 | Example analysis. (A) Step response model of the lossless transmission line. (B) Calculation results of the implicit Euler method. (C) Calculation results
of the implicit trapezoidal method. (D) Calculation results of the four-step method. (E) Unit step response of the T-type lumped-circuits.

TABLE 1 | Comparison of three numerical algorithms.

Algorithm Principal coefficient of truncation error Order Stability

TR −0.0833 2 A-stable
IE −0.5 1 L-stable
FM −0.1248 1 L-stable
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response of the lumped-circuits derived by inverse Fourier
transform in the study by (Cui, 2018).

The above shows that the implicit trapezoidal integration
method retains the dynamic response characteristics of the
step response of the lumped-circuits because it does not have
numerical L-stable (Noda et al., 2014; Chakraborty and
Ramanujam, 2018), which just reflects the real numerical
characteristics of the lumped-circuits. On the contrary, because
of the L-stable of the implicit Euler method and the four-step
method in the study by (Wang et al., 2019), the overshoot and
oscillation characteristics of the unit step voltage waveform are

suppressed and the details of the dynamic response process of the
lumped-circuits are obliterated, so they are impossible for truly
simulating the physical process (Wang and Yang, 2016).

The above conclusions show that whether the selection of
the numerical algorithm is appropriate is very important to
reflect the real dynamic response process of the lumped-
circuits. Of course, this numerical oscillation is false for the
lossless transmission line itself, which also shows that the
lumped-circuits can not be completely equivalent to the
lossless transmission line model. Therefore, the lumped-
circuits is only a numerical approximation of the lossless

FIGURE 4 | Chained number and numerical algorithm analysis of lumped-circuits numerical simulation. (A)M � 4 (the terminal resistance is 30 Ω). (B)M � 12 (the
terminal resistance is 30 Ω). (C)M � 12 (the terminal resistance is 29.65 Ω). (D) Amplitude-frequency response error curve of the TR algorithm. (E) Amplitude-frequency
response error curve of algorithm IE. (F) Amplitude-frequency response error curve of algorithms TR and IE.
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transmission line model. In order to truly reflect the numerical
characteristics of the lossless transmission line model, it is
suggested that the numerical algorithm with L-stable be used
to simulate the lumped-circuits. Although the L-stable
numerical algorithm dampens the overshoot and oscillation
characteristics of the real waveform of the lumped circuit (Gao
et al., 2021), it positively reflects the numerical characteristics
of the lossless transmission line model.

SINE EXCITATION RESPONSE OF THE
LUMPED-CIRCUITS MODEL

Different numerical algorithms have great differences in the
numerical simulation results of the lumped-circuits, but this
difference is not very obvious for the sine excitation response
without the disturbance term. In addition, although the larger the
chained number M is selected, the closer the ending voltage
waveform is to the unit step voltage waveform as a whole, from
the perspective of numerical calculation efficiency; how to select
the appropriate chained number M directly determines the
efficiency and accuracy of simulation. Besides, the simulation
step size is limited by the accuracy of the numerical algorithm.
Therefore, the efficiency of the lumped-circuits simulation
depends on the chained number M and the accuracy and
stability of the numerical algorithm adopted.

For the lossless transmission line shown in Figure 3A,
according to the previous analysis, considering that the ending
voltage phase delay is in the linear interval. Assuming that the
angular frequency of the sinusoidal excitation source meets ωtl ≤ 1,
the ending voltage phase delay approximately meets the following:

φM(jω) ≈ − ωMtl, ω � 2πf (11)

According to Eq. 11, in order to reduce the phase transmission
error of the lumped-circuits model and ensure that the
amplitude-frequency response characteristic is constant 1, the
chained number M should meet the following:

M≥[2πfmaxl

v
] (12)

where the square brackets indicate rounding up. fmax represents
the maximum frequency of the excitation signal of the lossless
transmission line during numerical simulation. l is the total
length of the transmission line.

In order to verify the correctness of the above conclusions, the
T-type lumped-circuits model of the lossless transmission line is
considered. The simulation step size shall be less than or equal to
the optimal step size as follows:

h< l

Mv
(13)

Using the numerical example shown in Figures 3A, a sine
voltage excitation source with a frequency of 10 kHz is
considered, which has a delay of 0.1ms and a peak value of
10 kV. The terminal load is the characteristic resistance of the
equivalent lumped-circuits. According to Eq. 12, the

transmission line is divided into 4 equal parts. The implicit
trapezoidal method is used to solve the model. According to
the research by (Cui, 2017), the characteristic impedance of the
T-type equivalent lumped-circuits is as follows:

ZT
c � z0

���������
1 − (1

2
ωtl)

√
, tl � l

Mv
(14)

As can be seen from Figure 4, whenM � 4, there is an obvious
difference in the amplitude of the head and end voltage
waveform, which does not meet the characteristics of the
transmission line. After increasing to M � 12, except for the
obvious overshoot of the first wave peak, the subsequent
amplitude error is basically stable. This shows that in the
actual simulation, the value of N needs to be flexibly selected
accordingly. Through a large number of simulations, it is found
that M can be 2–3 times the calculated value of Eq. 12. In
addition, the characteristics of the numerical algorithm are also
one of the factors affecting the amplitude-frequency
characteristics of the lumped-circuits model. How to choose
an appropriate numerical algorithm is also a direction worthy
of further research. Symplectic algorithms (Xing and Yang, 2007;
Ye et al.) may be a better choice to accurately simulate the
physical characteristics of lossless transmission lines. The
amplitude frequency response error curve (absolute value of
absolute error) of the commonly used TR and IE algorithms
when N � 12 is calculated below, considering the sinusoidal
voltage excitation source with frequency f, the excitation
source has no delay and the end load is matched. The optimal
time domain simulation step is taken according to Eq. 13.

As can be seen from Figures 4D,E, when the system frequency
is small, that is, when ωtl is close to 0, the amplitude frequency
response error of algorithms TR and IE is also small. However, it
can be seen from Figure 4F that the amplitude frequency response
error of algorithms TR and IE increases sharply with the increase in
system frequency. According to Figure 2, the error amplitude
frequency response error caused by the model is almost 0, so the
error at this time is mainly caused by the numerical algorithm,
which also fully shows that it is very necessary to study the
application of symplectic algorithms in the high-precision time-
domain response simulation of lossless transmission lines.

CONCLUSION

Starting from the equivalent lumped-circuits model of lossless
transmission lines, this article mainly studies the boundary
condition application methods of three equivalent lumped-
circuits models. Users can flexibly choose the type of the
equivalent lumped-circuits model according to the type of
excitation source and load. The causes of numerical oscillation
in digital simulation of the equivalent lumped-circuits model are
explained theoretically, and the L-stable numerical algorithm is
proposed to avoid this situation. A determination method of
chained number of the equivalent lumped-circuits model is
studied, and a specific application example is given. In
conclusion, the method proposed in this study can provide the
basis for the selection of model and numerical algorithm for the

Frontiers in Energy Research | www.frontiersin.org December 2021 | Volume 9 | Article 8094347

Zhou et al. Lumped-Circuits Model Numerical Characteristics

205

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


equivalent lumped-circuits model of lossless transmission lines in
digital simulation.
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Intelligent Filling Method of Power
Grid Working Ticket Based on
Historical Ticket Knowledge Base
Zhiguo An1, Mancheng Yi1, Jing Liu1, Ying Li 1, Zheng Peng1, Sifan Yu1, Jianxin Liu1,
Weirong Huang1 and Chunhua Fang2*

1Guangzhou Power Supply Bureau, Guangzhou, China, 2College of Electrical Engineering and New Energy, Three Gorges
University, Yichang, China

The traditional power grid ticket filling method has a large workload, low efficiency, and
cannot achieve comprehensive and effective reference of historical tickets. This paper
proposes a method of intelligent filling in a power grid working ticket based on a historical
ticket knowledge base. Firstly, the historical ticket data are preprocessed, then the
historical ticket information is mined by the association rule algorithm, and the method
of establishing the historical ticket knowledge base is proposed. Based on the improved
word bag model, an intelligent grid work ticket filling model is established based on the
historical ticket knowledge base, and the correctness of the method is verified by an
example. The results show that the accuracy of the proposed method is at least 18%
higher than that of the traditional model, and the matching efficiency is 50% higher than the
evaluation results of the three models based on semantic expressions. The method
enables the identification and extraction of similar and associated work tickets, improves
the efficiency of filling work tickets for power grids, and promotes the intelligence of the
safety procedures for power grid operations.

Keywords: work ticket, intelligent filling, the knowledge base, historical ticket, data mining

1 INTRODUCTION

The historical work ticket of a power grid contains a lot of valuable information. The retrieval and
utilization of the historical work ticket can effectively assist the filling of the power grid work ticket.
The traditional power grid work ticket is mainly filled in by staff according to their tasks, who
compare the grid wiring diagram, reference the maintenance equipment historical tickets, and
combined them with their own experience. Among them, the retrieval process of historical tickets
includes obtaining historical tickets with similar names by inputting the name of the maintenance
equipment, and then the employees screen some work tickets based on their experience for reference.
This retrieval method has a large workload, poor reliability, and low automation level. Therefore, it is
of great significance to study the intelligent filling method of power grid work tickets (Liu et al., 2020;
Gui et al., 2021).

Text mining, as a branch of data mining (Wang et al., 2016; Lin et al., 2017; Gao et al., 2019), can
fully exploit the potential value of information and has been gradually applied to the field of electric
power in recent years. An earlier study (Jiang et al., 2019) mined transformer operation and
maintenance texts based on deep semantic learning, achieved text classification through text mining,
and considered semantic factors in the text vectorization process to improve classification accuracy
and achieve the assessment of transformer operation status. Other studies (Cao et al., 2017; Pang
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et al., 2017) established a semantic framework-based text mining
model to achieve classification and statistics of grid defect text.
The study by Lynnette and David (2015) proposed a bag-of-
words model based on FCM clustering to identify aerial targets,
which improved the original “either/or” hard classification
feature. The paper by Yuan and Zhou (2018) proposed a
supervised bag-of-words model for multimedia information of
different objects, and the text vector and retrieval results obtained
by tagging the training samples were highly accurate compared
with the traditional bag-of-words model. In this paper, according
to the characteristics of the working ticket text, the original bag-
of-words model was improved for problems such as multiple
meanings of words and reversed order of words caused by
irregular expressions, and an improved bag-of-words model
containing both main words and auxiliary words was proposed.

Therefore, a method of intelligent filling of grid work tickets
based on text mining of the historical ticket knowledge base is
proposed. By analyzing the preliminary processing of historical
ticket data and the establishment of a knowledge base, an
improved two-layer bag-of-words model for intelligent filling
of grid work tickets is constructed. The method uses Term
Frequency-Inverse Document Frequency (TF-IDF) for feature
extraction, and then uses cosine similarity to achieve multivariate
matching between work tickets, after which the results are sorted
in descending order, and finally the proposed method is proved to
be more suitable for historical work tickets than other methods
based on practical cases. The proposed method is finally proved
to be more suitable for historical work ticket mining and work
ticket filling than other methods. Therefore, the historical work

tickets that have been stored in the long-term operation of the
power grid can be fully utilized to effectively reduce the error rate
of power system work and enhance the efficiency of filling work
tickets in the power grid.

2 BIG DATA ANALYSIS OF WORK TICKETS

2.1 Data Sources of Work Tickets
Work ticket big data are mainly distributed in three information
systems, including an Equipment Asset Management System,
Production Scheduling and Managing System, and Distribution
Automation System. Finally, the data are extracted and
summarized in the intelligent verification system of the work
ticket. When acquiring the working data, the historical data are
firstly extracted from the Equipment Asset Management System,
and then uploaded to the intelligent verification system of the
working ticket. The data tables in the historical database are
sorted out, the analysis objectives are clarified, and the
corresponding data files are finally selected according to the
objectives (Wu and Yu, 2021).

2.2 Work Ticket Data Preprocessing
In the data mining of a work ticket, the data sample of the work
ticket should be preprocessed first. The workflow of
preprocessing is shown in Figure 1, including data cleaning,
data merging, comprehensive evaluation modeling data
processing, and sequence mining models data processing.

2.2.1 Data cleaning
Work ticket data generally come from different information
systems, so there are many differences in the integrity and
format of data (Wu et al., 2015). To comprehensively
investigate the basic situation of data, data cleaning occurs
from the following four aspects:

2.2.1.1 Name normalization
The format of the work ticket type and the company field is
unified. The format of “affiliated company” is “**power supply
company”. For example, after the format of the first kind of work
ticket of B power supply company is unified, the fields are “B
power supply company of the first kind of work ticket” and “B
power supply company”, respectively.

2.2.1.2 Time field specification and logical judgment
The time format is unified into “year/month/day hour/minute”.
Work ticket data contain the start time and end time. Generally,
the end time is later than the start time, but the end time of some
data is earlier than the start time, resulting in logical errors (Li,
2021). For this part of the data, the end time and start time are
exchanged. If the system data only contain “operation time”, the
field is changed to “start time” and the “end time” is added.

2.2.1.3 Type and quantity of violation
Data processing is classified according to the type of violation and
the name of the company, and each type of violation contains
statistical quantity. Therefore, it is necessary to input all kinds of

FIGURE 1 | Work ticket data preprocessing process.
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violation types into the system in a unified format to achieve
accurate and rapid data classification.

2.2.1.4 Null data processing method
Because some important fields of data are null values, such as
equipment name, line name, and sampling value, these null values
will make it difficult for the system to carry out subsequent data
mining, so these kinds of data will be screened out.

2.2.2 Data merging
After data cleaning, the data are combined to make data mining
more convenient. Firstly, the fields of work ticket type, power
supply company name, and planned time are extracted from the
data (Zhu et al., 2003), then the fields of violation type and
operating equipment are added, and the data are further divided.
After data merging, the new data table contains the following five
fields: work ticket type, name of power supply company,
operating equipment, scheduled time, and violation type.

2.2.3 Comprehensive evaluation modeling data
processing
Before the comprehensive evaluation of the data, the data need to
be processed. The processing process includes: data statistics
stage, data normalization, and data characterization.

2.2.3.1 Data statistics stage
In the map stage, we first define the input key value pair as < name,
type >, and the intermediate key value pair generated after the map

processing task as < (power supply company, violation type),
quantity >, such as < [B, b] 2 >, indicating that there are two
pieces of data for the violation type b of power supply company B.
In the reduce phase, all key value pairs containing the same key are
sent to the same reduce phase, and then the values corresponding
to the same key are added to generate new key value pairs. Finally,
the results are written into HDFS. The data statistics process based
on MapReduce is shown in Figure 2. A, B, and C represent three
different power supply companies, respectively, and A, B, and C
represent different data indicators, respectively.

2.2.3.2 Data characterization
Due to the complexity of violation types of the work ticket, when
evaluating the work ticket data, if the data preprocessing is carried
out in a simple statistical detail way, it is easy to ignore the objective
differences existing in the work ticket, which will affect the final
evaluation results (Wang et al., 2016). Therefore, it is necessary to
preprocess the data according to the characteristics of different data.

2.2.3.3 Data normalization
In order to avoid the impact of data-level differences on
evaluation results, Eq. 1 is used to normalize the data.

yi � xi − xmin

xmax − xmin
(1)

In this formula, yi is the normalized data; xi is an attribute
value of the original data; and xmin and xmax represent the
minimum and maximum values for this property.

FIGURE 2 | MapReduce data statistics process diagram.
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2.2.3.4 Sequence mining models data processing
In sequence mining, the corresponding transaction database
should be established first. Then we use MapReduce to set up
the transaction database. The setup steps are as follows:

1) Map input definition key value pair < name, type >, map
function output key value pair < line, (begintime , name) >,
the specific format is < name of power supply company,
(operation equipment, violation type) >.

2) The reduce phase obtains key value pairs with the same key
from the map task, and sorts the corresponding values in
chronological order. For example, < Line1, list < (begintime1,
Name2), (begintime2, name3), (begintime3, name1) >.

3) We use the map function to input key � name of power supply
company, value � list, and output key � name of power supply
company, value � violation type. Finally, we store the results.
The above examples are: < Line1, (name2, name3, name, 1) >.
The final sequence transaction database is shown in Table 1.

3 INTELLIGENT FILLING MODEL OF WORK
TICKETS
3.1 The Establishment of the Historical
Ticket Knowledge Base
The establishment of the historical ticket knowledge base includes
extracting historical ticket processing and interpretation
information such as work ticket data, processing parameters,
and interpretation templates from the knowledge source,
converting them into specific computer code, and finally
obtaining the preferred parameters for work ticket processing
and interpretation (Jiang et al., 2019). Knowledge acquisition
includes passive and active methods: 1) Active knowledge
acquisition automatically obtains historical ticket processing
interpretation rules based on accumulated ticket processing
interpretation information and stores them in the knowledge
base. For example, data fitting is carried out on the parameter
frequency of the ticket, and the confidence interval method is
used to statistically analyze the fitting results. 2) Passive
knowledge acquisition uses the information base editor to
store the logic rules of historical tickets in the knowledge base.
When the working ticket processing and interpretation
parameters are the knowledge source, the work ticket
knowledge base conducts statistical analysis and classification
of the parameters, and integrates the priority of the parameters.
When the work ticket data are the knowledge source, the work

ticket fitting model is established according to the work ticket
data, and the classical formula parameters are obtained by using
the work ticket data.

The establishment process of the knowledge base is shown in
Figure 3. After preprocessing the knowledge source data, the data
items are composed of a set I � (I1, I2, . . . In). The logical rules of
the data can be expressed as follows:

{ A≥B
A ⊂ I, B ⊂ I, A ∩ B � Φ (2)

In this formula, A is the antecedent of the logical rule, B is the
consequent of the logical rule, and V is an empty set.

Support S is used to measure the applicability of logical rules,
and reliability C is used to measure the accuracy of logical rules. P
is the probability of logical rules, then:

{ S(A≥B) � P(A ∪ B)
C(A≥B) � P(A ∪ B)/P(A) � P(B|A) (3)

A frequent set is a set of items whose specified threshold is less
than the support count. The information acquisition of the
historical ticket includes two steps: 1) Finding all frequent sets
of history tickets whose frequency is greater than or equal to the
minimum support threshold. 2) The corresponding history ticket
knowledge is generated by using frequent sets, and this

TABLE 1 | Serial transaction database.

Affair Sequence

S1 [(a, c), b, e, f]
S2 (g, a, e)
S3 (g, a, b, f)
S4 (d, a)
S5 (a, b)

FIGURE 3 | Knowledge base establishment process.
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knowledge must meet the minimum trust threshold. The
parameter model of the work ticket knowledge base is
established by using the association rule algorithm, and the
frequent set is calculated. For instance, in the process of
obtaining information on historical tickets, the Archie formula
can be chosen when the frequent set is less than 20%. Each item of
the frequent set must be arranged according to the generated time
order, and the specified time interval must be greater than the
generated time difference (Zhu et al., 2003). In addition,
minimum trust and minimum support must be set. Setting the
minimum trust Cmin to 70% and the minimum support Smin to
35%, the association rules of the model must meet the above
conditions. If the logical association rule obtained during mining
meets the following constraints, the association rule is acceptable.

{ S(Vsh < 20%, Archie)≥ 35%
C(Vsh < 20%, Archie)≥ 70% (4)

The significance of S in Eq. 4 is that at least 35% of all model
preferences exhibit behavior where both the frequent set of less
than 20% and the Archie formula are used together, and the
significance of C in this example is that at least 70% of the
frequent set of less than 20% model preferences use the Archie
formula together. Therefore, if there is a preference for an
explanatory parameter with a frequency set of less than 20%,
the knowledge base will be able to recommend that the user
prefers the Archie formula.

3.2 Establishment of Intelligent FillingModel
Matching between texts is performed by relying on the similarity
calculation of text features. Text vector feature extraction using
the TF-IDF method, which has a wide range of applications in
finding text, text classification, and other similar fields, has been
called the most meaningful creation in information retrieval. In
this paper, the multivariate similarity calculation between the
feature vectors of query text and historical text is performed using
the cosine function after deactivating words, splitting words,
vectorization, and feature extraction of historical text and
query text (Shang et al., 2015). The n-dimensional vector
cosine similarity calculation formula is shown in Eq. 5.

Scos(a, b) � ab

|a||b| �
∑n
i�1
aibi����

∑n
i�1
a2i

√ ����
∑n
i�1
b2i

√ (5)

a � (a1 a2 . . . an), b � (b1 b2 . . . bn) are the query text and historical
text vectors, respectively, and ai, bi are the TF-IDF values
corresponding to the i-th phrase in the text. The larger Cosθ
is, the higher the similarity is. Since each variable in the vector is
positive, the similarity takes values between 0 and 1.

In order to allow the computer to process text information,
each word of the text is mapped into a number set. A word bag
model is a common method of text processing. Firstly, the
document set S is merged by Eq. 6 to generate word bag T0;
then, the text vocabulary in the document is counted to obtain the
text vector DV composed of a number.

T0 � [t01 t02 t03 · · · t0n] (6)

In this formula, t01, t02 . . . t0n are the words in D, respectively.
In the process of filling in work tickets, word order is often

confused due to non-standard filling, which leads to the decrease
of similarity (Han et al., 2016; Du et al., 2018). Therefore, this
paper improves the original word bag model T0 and adds a
vocabulary relation expansion table on the basis of the original
word bag model. The text is divided into a subject core layer and
auxiliary non-core layer, and the vocabulary matrix T is
expressed as:

T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t01 t02 . . . t0n
t11 t12 . . . t1n
. . . . . . . . . . . .
tm1 tm2 . . . tmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

In this formula, the first line is the core layer of the subject, and
the second line to the m line is the non-core layer of the
auxiliary word.

In addition, on the basis of the original bag model, each text in
S is successively mapped to n-dimensional vectors, as shown in
Eq. 8:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

DV1 � [d11d12 . . . d1j . . . d1n]
DV2 � [d21d22 . . . d2j . . . d2n]
. . .
DVi � [di1di2 . . . dij . . . din]
. . .
DVk � [dk1dk2 . . . dkj . . . dkn]

(8)

In this formula, k is the number of power grid safety
specification texts in the historical ticket knowledge base; dij is

FIGURE 4 | Schematic diagram of improved word bag model.
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the word frequency of the j-th word in the word bag model i;
when the text contains an auxiliary word, we put the
corresponding word frequency of the auxiliary word into the
position of the subject word frequency, and add the word
frequency. The working principle diagram is shown in Figure 4.

In order to improve the efficiency of power grid work ticket
filling and promote the intelligent development of the power grid,
an intelligent power grid work ticket filling model based on the
historical ticket knowledge base is built on the basis of the
improved word bag model. The process of the model is as
follows:1) Analyze and obtain the text features of the work
ticket, and mine the potential power grid security measures; 2)
preprocess the unstructured text and segment the text according
to the knowledge of the power field; 3) the improved model is
applied to the vectorization of words after word segmentation; 4)
extract the features of the text vector; and 5) cosine similarity is
used to realize variable matching and descending arrangement of
text. Employees can refer to the historical work ticket text at the
top of the order. The intelligent filling model of the power grid
work ticket is shown in Figure 5.

4 CASE ANALYSIS

4.1 Case Analysis 1
In order to demonstrate the accuracy of the proposed method
for filling grid work tickets intelligently based on text mining of
the historical ticket knowledge base. Taking the historical
working tickets of power transmission and transformation
equipment maintenance of a Power Supply Bureau in 2020
as an example, the work tickets are 2,542 in total. We take the
key information of the equipment to be repaired as the query
content, such as: “CT current rise of G02 cabinet of group
junction no. 1 outdoor switch station of 10 kVA line, voltage
withstand test of cable from group junction no. 1 outdoor
switch station to no. 10 European style box transformer”. After
being segmented, it can be expressed as “10 kVA line, group
junction, no. 1 outdoor switch station, G02 cabinet, CT upflow,
group junction, no. 1 outdoor switch station, no. 10 European
style box transformer, cable, voltage withstand test”. The
combination of historical ticket keyword association and

plant station topology is used for analysis, the optimal
parameters are obtained and returned to the work ticket
application. The features of each text are extracted through
the text similarity TF-IDF model, and the work ticket
knowledge base is called to calculate the text similarity of
the work task. The descending order of historical text
similarity is obtained through intelligent matching, the top
six texts are shown in the following table.

In Table 2, the text with serial number 36 has the highest
similarity, and the corresponding historical text is “voltage
withstand test for cable from outdoor switch station no. 1 to
switch room no. 14 of 10 kVA line ". The historical text of serial
number 53 is “replace the transformer of no. 6 complex room of
10 kVA line”, it is the same as the power failure line in the query
content, so the power failure scope, power failure layout, and
power failure time can be used as reference information to form a
certain rule. The text no. 18 is “cable head made for cabinet G02
of Outdoor Switch Station no. 1 of 10 kVA Line Cluster”. “Power
cut line”, “switch cabinet”, and “power cut equipment” are similar
to the query content, so the reference content can be filled in the
corresponding column of the work ticket. The text of no. 79
corresponds to “voltage withstand test of newly laid cable from
G02 cabinet in no. 2 switch room of 10 kVA line to newly
installed G13 cabinet in this room”. The work content in the
historical text is also the cable withstand voltage test, which is
similar to the work content in the text, and can be used as a
reference when the staff arranges safety measures and
precautions, and can be combined with the text no. 18
content, making the work ticket content more manageable.
The text of no. 3 corresponds to “CT current rise test of G04

FIGURE 5 | The intelligent filling model of power grid work tickets.

TABLE 2 | Top six historical texts in similarity ranking.

Text serial number Similarity Similarity ordering

36 0.956 1
53 0.901 2
18 0.874 3
79 0.793 4
3 0.705 5
48 0.608 6
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standby cabinet in 10 kV 5 switchgear room”, content similarity is
“switchgear related tests”, and the precautions for power failure
can be used as an appropriate reference. The text of serial no. 48 is
“switch room no. 11 of 10 kVA line is newly installed with 5 M
busbar and four sides of newly installed open pressure cabinets
(cabinets G11 to G14)", which has low similarity with the query
content and is of no value.

According to the historical work ticket data of transmission
and substation equipment maintenance in a Power Supply
Bureau in 2020, 2,542 tickets were issued. Using the model
proposed in the previous paper, the similarity comparison
graph shown in Figure 6 is drawn; the red curve is the
similarity size under the improved model and the black curve
is the similarity size under the traditional model. The similarity
between the first four texts and the query text under the improved
model is high and has a certain degree of connectivity; the
similarity of the fifth text decreases sharply and continues to
decrease in the latter. The similarity of the first two texts under
the traditional model is higher.

It can be seen that the results under the traditional model have
no obvious transition phase and are less accurate, while the text
similarity results under the improved model have distinct
boundaries. Dispatchers have clear targets when extracting
work tickets, the similarity size is generally higher than the

traditional model, and the accuracy is at least 18% higher than
the traditional model.

4.2 Case Analysis 2
To prove that the proposed intelligent filling method of power
grid work tickets based on historical ticket knowledge base text
mining can improve the filling efficiency, the historical work
tickets of transmission and substation equipment overhaul in a
Power Supply Bureau in 2020 are analyzed as an example, with a
total of 2,542 work tickets. The key information of five groups of
overhaul equipment is selected as query items, where the
average length of query items is 10 and the average length of
documents is 500. Each query item will index the top five texts
with similarity ranking, and after that, MAP (Mean Average
Precision) and NDCG (Normalized Discounted cumulative
gain), which are commonly used in the field of information
retrieval, are used to match the text with the similarity ranking.
Cumulative gain indexes commonly used in the field of
information retrieval are used to evaluate the matching
results, and the average of the five evaluation results is used
as the final evaluation index, expressed as η. Where, the larger

the average value, the more accurate the matching result is
(Wang et al., 2014; Umagandhi and Senthil Kumar, 2015).

The proposed model is compared with the traditional BM25
model, Deep Semantic Structured Model (DSSM) based on
single-semantic text representation, and Convolutional Deep
Semantic Structured Model (CDSSM). The Multi View-Long
Short Term Memory (MV-LSTM) model based on multi-
semantic representation is compared. The results of the
evaluation metrics are shown in Table 3.

From Table 3, the MAP and NDCG index values of the model
in this article are the largest among the average of the five
evaluation results, the matching results are the best, and the
effectiveness is the highest; the evaluation results of the three
models based on semantic expression are very low, among which
the MV-LSTM model has better evaluation results. Both MAP
andNDCG values are lower than 50% of themodels mentioned in
the article.

5 CONCLUSION

By analyzing the preprocessing of work ticket data and the
establishment of a knowledge base, this paper constructs an
intelligent filling model of power grid work tickets based on

FIGURE 6 | Comparison of similarity between different models in the
same text.

TABLE 3 | Results of the model in the matching of similar and correlated work tickets.

Category Models η (MAP) η (NDCG)

Traditional features BM25 model 0.23 0.4
Based on single semantics DSMM model 0.08 0.2
Text expression CDSSM model 0.06 0.14
Multi-semantic text-based representation MV-LSTM model 0.12 0.18
Improving traditional features The model proposed in the paper 0.28 0.47
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the historical ticket knowledge base, and verifies the
specificity and effectiveness of the proposed method
combined with an actual power grid case. The main
conclusions are as follows:

1) Using the association rule algorithm to mine historical ticket
knowledge, we can obtain the key words of historical ticket
information effectively, and then assist the staff to carry out
comprehensive referencing.

2) According to the non-standard expression of the work ticket
text, the original word bag model is improved to reduce the
similarity error caused by environmental noise and improve
the matching accuracy.

3) The case study shows that the accuracy of the proposed model
in the paper is at least 18% higher than that of the traditional
model, and the matching efficiency is 50% higher than that of
the evaluation results of the three models based on semantic
expressions. Therefore, the work ticket management

application module can be automated, saving time for
filling and verifying tickets and improving work efficiency.
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The Influence of Humidity on Electron
Transport Parameters and Insulation
Performance of Air
Yunzhu An1,2, Menghan Su1, Yuanchao Hu1*, Shangmao Hu3, Tao Huang4, Baina He1,2*,
Minghao Yang1, Kaiqiang Yin1 and Yitong Lin1

1School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China, 2Key Laboratory of Special
Machine and High Voltage Apparatus, Shenyang University of Technology, Shenyang, China, 3Electric Power Research Institute,
China Southern Power Grid, Guangzhou, China, 4State Grid Jiangsu Power Engineering Consulting Limited Company, Nanjing,
China

The environmental conditions affect the external insulation performance of power
equipment. In order to study the physical characteristics of air discharge, the
microscopic process of electron–molecule collision in the air based on the Boltzmann
equation has been studied in this paper. The influence of humidity on the air gap insulation
performance was also analyzed. The calculation results show that with the temperature
300 K and the pressure 1.0 atm, the electron energy distribution function and electron
transport parameters varied with the air relative humidity. As the air relative humidity is
increased by each 30%, the average electron energy decreases by about 0.2 eV, the
reduced electron mobility decreases by about 0.25 × 1023 [1/(V·m·s)], the reduced electron
diffusion coefficient decreases by about 0.2 × 1024 [1/(m s)], and the effective ionization
coefficient decreases by about 4 × 10−24 m2. As the air relative humidity increases from 0%
to 60%, the critical breakdown electric field increases by 1.22 kV/cm.

Keywords: humidity, electronic energy distribution function, Boltzmann equation, critical breakdown field strength,
electron transport parameters

1 INTRODUCTION

In order to transmit a large-capacity power supply by long transmission distance, a UHV power grid
has been constructed and developed rapidly in China (Zhao et al., 2015; Xun et al., 2020a; Xun et al.,
2021a). For high voltage level and large span of UHV transmission line, it inevitably leads to power
loss, and noise pollution and equipment corrosion (Zhenya, 2005a; Zhenya, 2005b; Muniappan,
2021). The terrain conditions, altitude, and meteorological conditions along UHV transmission lines
are complex and changeable, which may affect the external insulation characteristics (Xun et al.,
2017; Xun et al., 2020b; Weichen et al., 2021). The characteristics of air discharge can be significantly
affected by air humidity (Wenliang et al., 2007; Yang et al., 2021a; Yang et al., 2021b), which has
become one of the focuses in the field of power system external insulation.

At present, most researches are committed to the development process of air discharge (Prasad
and Craggs, 1960; Abdel-Salam, 1985; Xun et al., 2021b; Xun and Pongsathorn, 2021). Bian
Xingming and other scholars (Xingming et al., 2010) studied the physical characteristics of
negative DC corona in a rod-plate electrode. They applied the charge simulation method and
surface photoelectron calculation method to achieve the inception voltage of negative DC corona,
and to study the influence of humidity. Cai Xinjing and other scholars (Xinjing et al., 2015) used fluid
model to simulate the propagation process of bi-directional streamer in air gaps with different water

Edited by:
Xun Shen,

Tokyo Institute of Technology, Japan

Reviewed by:
Jingshan Wang,

Shandong University, China
Shanpeng Zhao,

Lanzhou Jiaotong University, China

*Correspondence:
Yuanchao Hu

huyuanchao3211@126.com
Baina He

114311366@qq.com

Specialty section:
This article was submitted to

Wind Energy,
a section of the journal

Frontiers in Energy Research

Received: 01 November 2021
Accepted: 22 November 2021
Published: 05 January 2022

Citation:
An Y, Su M, Hu Y, Hu S, Huang T,

He B, Yang M, Yin K and Lin Y (2022)
The Influence of Humidity on Electron
Transport Parameters and Insulation

Performance of Air.
Front. Energy Res. 9:806595.

doi: 10.3389/fenrg.2021.806595

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8065951

BRIEF RESEARCH REPORT
published: 05 January 2022

doi: 10.3389/fenrg.2021.806595

215

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2021.806595&domain=pdf&date_stamp=2022-01-05
https://www.frontiersin.org/articles/10.3389/fenrg.2021.806595/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.806595/full
https://www.frontiersin.org/articles/10.3389/fenrg.2021.806595/full
http://creativecommons.org/licenses/by/4.0/
mailto:huyuanchao3211@126.com
mailto:114311366@qq.com
https://doi.org/10.3389/fenrg.2021.806595
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2021.806595


vapor. It was concluded that humidity had little effect on the
propagation characteristics of a streamer under the same
background electric field, but the influence of air humidity on
the inception characteristics of a streamer was not studied. To
design the structure of EHV transmission lines in high altitude
areas, Liu Youwei and other scholars (Liu et al., 1990) analyzed
the characteristics of corona around the conductor with different
humidity in detail. Their experimental results showed that
humidity had a significant impact on the corona inception
electrical field of the conductor. Li Kelin (Kelin, 2019) built
the corresponding discharge chamber to simulate different
climate conditions. The change of negative DC corona
discharge mode under different humidity conditions was
analyzed in detail, and the influence mechanism was analyzed
combined with the simulation results. Yuke, (2017) used the self-
designed experimental platform that can adjust humidity to study
the influence of different air humidity on corona discharge with
the internal electrode of converter valve as an example. The above
studies were mostly focused on the influence of humidity on
corona inception electric field and corona discharge process, and
rarely considered the influence of humidity on electron transport
parameters. The electron transport parameters are not only the
basis for the plasma hydrodynamics model of air discharge but
also can reflect the insulation performance of air gaps (Wen et al.,
2016; Roostaee et al., 2017; Xinyu et al., 2018; Xun and
Raksincharoensak, 2021; Yuanchao et al., 2021). The external
insulation of power equipment exposed to air will be affected by
air humidity. The variation of air humidity will affect the
electronic transport parameters during air discharge that lead
to different insulation performance of air gaps and may threaten
the operation characteristics of external insulation of power
equipment.

In this paper, the motion collision processes between electrons
and molecules in air under different humidity are simulated in
detail. The Boltzmann two approximationmethod is used to solve
the electron transport parameters of air. The air electron
transport parameters under different reduced electric fields are
calculated and analyzed. The calculation results are compared
with the results of Morrow (Morrow and Lowke, 1997) and
Nikonov (Nikonov et al., 2001) to verify the model
reasonability in this paper. The effect of humidity on electron
energy distribution function (EEDF), reduced electron mobility
(μ/N), reduced electron diffusion coefficient (D/N), and critical
breakdown electric field are simulated and analyzed.

2 CALCULATION METHOD OF ELECTRON
TRANSPORT PARAMETERS

2.1 Binomial Approximation Expansion
Electron energy distribution function is calculated by Boltzmann
binomial approximation. The electron collision process plays a
major role during the air discharge. In the numerical simulation
of fluid dynamics of gas discharge, the accuracy of electron
collision section data is the key to accurately solve the
transport parameters using Boltzmann equation. In order to
simplify the calculation, only four types of collision sections

are considered in this paper, including elasticity, ionization,
adhesion, and excitation (Su et al., 2019).

During air discharge, the electron distribution function can be
described by Boltzmann Eq. 1:

zf

zt
+ v→.∇f − e

m
(E→.∇ v→.f) � C[f] (1)

where f is the distribution function of electrons in the six-
dimensional phase space; e is the amount of electron charge; v
is an electron velocity vector; E is the field strength, V m−1; ∇ is a
velocity gradient operator; m is electronic quality; and C is a
collision term, which represents the variation rate of distribution
function.

Since it is very difficult to solve the Boltzmann equation
directly, the equation can be expanded into spherical
coordinates as Eq. 2.

zf

zt
+ v cos θ

zf

zz
− e

m
E(cos θ zf

zv
+ sin2 θ

v

zf

z cos θ
) � C[f] (2)

Based on the uniform spatial electric field, elastic collision
plays a major role when the electric field intensity is not high
(generally less than 1000Td). The binomial approximation
method can be used to reduce the complexity. Here, f is
expanded as Eq. 3.

f(v, t, z, cos θ) ≈ f0(v, t, z) + f1(v, t, z) cos θ (3)

where θ is the angle between the electron velocity vector and the
direction of the electric field, and f0 and f1 correspond to the
respective homogeneity and heterogeneity of the electron energy
distribution function, respectively.

Take Eq. 3 into Eq. 2, and the Legendre polynomial expansion
is performed. Then the following two equations are obtained by
integrating θ:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zf0

zt
+ c

3
ε
1
2
zf1

zt
− c

3
ε
1
2
z

zε
εEf1 � C0

zf1

zt
+ cε

1
2
zf0

zt
− Ecε

1
2
zf0

zε
� −Nσmcε

1
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xkσk, c � (2e/m)0.5, ε � (v/c)2
(4)

Here,C0 is the variation of f0 caused by collision; σm and σk are the
total collision cross section and the collision cross section of
reaction k, where reaction k represents any collision reaction, m2.

According to the separation variable method, Eq. 4 can be
combined as Eq. 5:
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(5)

In Eq. 5, N denotes the number density of neutral gas molecules,
m−3; T represents temperature, K; kb represents Boltzmann
constant; M represents particle mass; σε is the effective cross
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section of the total elastic collision; k � in represents all inelastic
collision reactions, S represents loss term for inelastic collisions.

The electron energy distribution function can be obtained by
solving f0 and f1, which provides the basis data for the subsequent
solution of various electron transport parameters.

2.2 Calculation of Electronic Collapse
Parameters
The electron energy distribution function in charged air is
determined by the Boltzmann equation. According to its
EEDF, the reduced ionization coefficient (α/N), reduced
attachment coefficient (η/N), and effective ionization
coefficient[(α-η)/N] in air can be calculated. The reduced
ionization coefficient and reduced attachment coefficient
(Morrow and Lowke, 1997) are obtained by Eq. 6.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α

N
�

��
2e
m

√
1
V

∫
∞

εi

εQi(ε)F0(ε)dε

η

N
�

��
2e
m

√
1
V

∫
∞

εa

εQa(ε)F0(ε)dε
(6)

where, F0 represents the stable energy distribution function by
applying Boltzmann binomial approximation method to f; V
represents the electron drift velocity; Qi and εi represent the
effective cross section and critical energy of ionization reaction,
respectively; Qa and εa represent the effective cross section and
critical energy of the adhesion reaction, respectively; and ε is the
electron energy, J.

2.3 Applied Reactions and Cross-Sectional
Data
In order to simplify the calculation, air components are
considered as 80% nitrogen and 20% oxygen, and H2O is
considered to study the effect of humidity on air gap discharge
processes. The applied electron collision reactions are shown in
Table 1. Their cross-sectional data are from the LAXCAT
database. The parameters set in this paper are as follows:

standard atmospheric pressure, background temperature
300 K, and reduced electric field 50Td–300Td (1Td � 10−21 Vm2).

3 ANALYSIS OF ELECTRON TRANSPORT
PARAMETERS AND INSULATION
PERFORMANCE OF AIR

3.1 Verification of Simulation Model in
Dry Air
In this section, the dry air pressure is the standard atmospheric
pressure, the relative humidity is 0%, and the air temperature is
300 K. The collision reactions include reactions 1–43 in Table 1.

3.1.1 Electron Energy Distribution Function
Distribution
The calculated electron energy distribution is shown in Figure 1.
The number of low-energy electrons is much higher than that of

TABLE 1 | Applied electron collision reactions.

Number Specific reaction Reaction type

1 e + N2 � > e + N2 Elasticity
2–23 e + N2 � > e + N2 Excitation
24 e + N2 � > e + N + N Excitation
25 e + N2 � > e + e + N2 + Ionization
26–27 e + O2 � > O2- Attachment
28 e + O2 � > e + O2 Elasticity
29–42 e + O2 � > e + O2 Excitation
43 e + O2 � > e + e + O2 + Ionization
44 e + H2O � > H2 + O Attachment
45 e + H2O � > OH + H- Attachment
46 e + H2O � > e + H2O Elasticity
47–50 e + H2O � > e + H2O Excitation
51 e + H2O � > e + e + H2O+ Ionization

FIGURE 1 | Electron energy distribution function (EEDF) distribution of
dry air.

FIGURE 2 | The variation of ionization coefficient and attachment
coefficient with reduced electric field.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8065953

An et al. Humidity-Air-Discharge Characteristics

217

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


high-energy electrons under the same electric field; the number of
low-energy electrons decreases with reduced electric field while
the number of high-energy electrons increases. When the electron
energy is 0–3 eV, the average electron energy decreases with the
reduced electric field; when the electron energy is greater than
3 eV, the average electron energy increases with the reduced
electric field. The increase of electric field increases the electrons
speed and their kinetic energy. Electrons are more likely to collide
and ionize with molecules in the air.

3.1.2 Electron Transport Parameters Calculation
The reduced ionization coefficient and reduced adhesion
coefficient calculated according to Eq. 6 are shown in
Figure 2. As shown in Figure 2, as the reduced electric field
exceeds 100 Td, the reduced ionization coefficient increases
exponentially with the reduced electric field, which has the
same tendency with results by Morrow and Nikonov. The
variation of ionization coefficient is mainly caused by the high
electric field. The high electric field can greatly increase the
number of high energy electrons in air that leads to the
increasing number of collision ionization between electrons
and molecules.

The reduced adhesion coefficient increases first and then
decreases with the reduced electric field. As the reduced
electric field is below 150 Td, the variation curve of
attachment coefficient with reduced electric field calculated is
between those obtained by Morrow and Nikonov. When the
reduced electric field is below 200 Td, the adhesion coefficient
increases with the reduced electric field. Hence, under the low
reduced electric field, the energy of electrons is low, and the
adhesion process is easy to occur. When the reduced electric field
exceeds 200 Td, the adhesion coefficient decreases with the
reduced electric field. The electrons are accelerated by
obtaining more energy at such high electric field that make
them difficult to be attached.

3.2 The Effect of Humidity on Electron
Transport Parameters and Insulation
Performance of Air
To study the effect of humidity on electron transport parameters
and insulation performance of air, the relative humidity in the air
is set as 0%, 30%, and 60%, respectively.

3.2.1 Effect of Humidity on Electron Transport
Parameters
The reduced electron mobility (μ/N) and reduced electron
diffusion coefficient (D/N) are important parameters during
air discharges, which can be obtained from the electron
energy distribution. Figure 3 shows the variation of the
approximate electron mobility and approximate electron
diffusion coefficient with the approximate electric field
under different relative humidity conditions calculated based
on Boltzmann’s equation.

As shown in Figure 3, μ/N decreases with the reduced electric
field, and the reduction rate is faster with lower electric field. The
increasing electric field can increase the kinetic energy of

electrons, which accelerates the irregular movement of
electrons and inhibits the directional migration of electrons.
Thus, the reduced electron mobility decreases. Under the same
reduced electric field, the reduced electron mobility decreases
with the air humidity. For every 30% increase in relative
humidity, the reduced electron mobility decreases by about
0.25 × 1023 [1/(V·m·s)] indicating that the presence of water
molecules hinders the electron mobility. The influence of
humidity on D/N is similar, the electron diffusion coefficient
increases with the reduced electric field. Under the same reduced
electric field, the reduced electron diffusion coefficient decreases
with the air relative humidity. For every 30% increase in air
humidity, the reduced electron diffusion coefficient decreases by
about 0.2 × 1024 [1/(m.s)] showing that water molecules can
weaken the diffusion of electrons.

3.2.2 Effect of Humidity on Effective Ionization
Coefficient and Insulation Performance of Air
In the Thomson discharge theory, the ionization coefficient or the
attachment coefficient is defined as the average number of
ionizations or attachments per unit length of electrons moving
along the electric field. It is used to characterize the collision
ionization and electron adsorption ability of particles and
electrons (Prasad, 1959; Chen, 2016). During air discharges,
the Thomson ionization coefficient is mainly affected by the
collision ionization between electrons and nitrogen molecules,
and oxygen molecules and water molecules. The Thomson
attachment coefficient is affected by the adhesion between
electrons and molecules. Since the adsorption coefficient of N2

approximately is equal to 0, the adsorption reaction here mainly
considers the adsorption of electrons and O2 molecules
(Xingliang et al., 2009; Xiaobo et al., 2010).

Considering the effect of water molecules, the calculation
of ionization coefficient and adhesion coefficient should
be modified accordingly. The reduced ionization coefficient
and adhesion coefficient in wet air can be calculated by
Eq. 7.

FIGURE 3 | The variation of electron transport parameters with reduced
field strength under different humidity.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8065954

An et al. Humidity-Air-Discharge Characteristics

218

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α �HPw(0.001(EP)
2

−0.06(E
P
)+1.0)+Pd(4.7786e−211P/E)

η �H
Pw

P
ηs +Pd(0.01298− 0.54×10−3(E

P
)+ 0.87×10−5(E

P
)2)
(7)

Here, H represents the relative humidity in the air. Pd is dry air
partial pressure, Pw is saturated vapor partial pressure, and unit is
Torr. ηs is the adhesion coefficient of water vapor, in m

2. When E/
p ≤ 37.6 V/(cm.Torr), ηs/p � 3.67 × 10−5 (E/P)2 + 0.026 (E/
P)−0.273. When E/p ≥ 37.6 V/(cm.Torr), ηs/p � −2.5 × 10−5 (E/P)
2–2.5 × 10−4 (E/P) + 0.23. E is the electric field intensity, and the
unit is V/cm.

According to the above formulas, the reduced ionization
coefficient and the reduced attachment coefficient are mainly
affected by the electric field, and the relative humidity has little
effect on them. The density of water molecules in the air increases
accordingly with the relative humidity. Collision ionization
between electrons and water molecules in the air increases
with humidity, resulting in an increasing reduced ionization
coefficient. However, for the low electric field and low electron
energy, the effect of humidity on ionization is not obvious. The
water molecules adsorb electrons to form negative ions, which
plays a leading role in the total collision process. The increase in
relative humidity increases the density of water molecules in the
air, and the adhesion will be more obvious. Therefore, the
adhesion coefficient increases with the humidity.

Due to the adsorption effect of air, the ionization coefficient
will be weakened in collision ionization process. The effective
ionization coefficient is applied for the difference between the
reduced ionization coefficient and the reduced attachment
coefficient. Figure 4 shows the effective ionization coefficient
variation under different air relative humidity conditions. The
effective ionization coefficient first decreases and then increases
with the reduced electric field. The effective ionization coefficient

decreases slightly with the relative humidity. Under the same
reduced electric field, the effective ionization coefficient decreases
about 4 × 10−24 m2 for each 30% increase of air relative humidity.

As shown in Table 2, the critical breakdown electric field
increases with the air relative humidity. This is caused by the
increasing electron attachment velocity and the decreasing
collision ionization velocity. More water molecules capturing
free electrons in the air become negative ions, inhibiting the
occurrence of collision ionization. Therefore, the increasing
relative humidity of the air will increase the critical breakdown
electric field and improve the air insulation performance.

4 CONCLUSION

According to the collision cross-section data of different electron
collision reactions, the reduced ionization coefficient, reduced
attachment coefficient, and effective ionization coefficient under
different humidity are studied with Boltzmann equation.
Conclusions are as follows:

1) The electron energy distribution is mainly affected by the
reduced electric field. With the increasing reduced electric
field, the proportion of low-energy electrons decreases, and
the proportion of high-energy electrons increases, while the
reduced ionization coefficient increases, and the reduced
adhesion coefficient increases first and then decreases.

2) When the reduced electric field remains unchanged, the
electron transport parameters are affected by the relative
humidity of the air. As the air relative humidity is
increased from 0% to 60%, the reduced electron mobility
decreases by about 0.5 × 1023 [1/(V·m·s)], the reduced electron
diffusion coefficient decreases by about 0.4 × 1024 [1/(m·s)],
and the effective ionization coefficient decreases by about 8 ×
10−24 m2.

3) With the increasing relative humidity, the number of low-energy
electrons increases and the number of high-energy electrons
decreases, resulting in the increasing critical breakdown electric
field of the air gap. The simulation results show that when the
temperature is 300 K, the pressure is 1.0 atm, the relative
humidity increases from 0% to 60%, and the critical
breakdown electric field increases by 4%.
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FIGURE 4 | Variation of effective ionization coefficient with reduced
electric field under different humidity.

TABLE 2 | Critical breakdown electric field under different humidity.

Relative humidity (%) Critical breakdown electric
field (V/cm)

0 29,889
30 30,375
60 31,104
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Research on Conducted Disturbance
to Secondary Cable Caused by
Disconnector Switching Operation
Xiaoyue Chen1*, Zeyu He2, Yanze Zhang1, Junjie Si 1, Shuang Wang1, Baoquan Wan3 and
Jianben Liu3

1School of Electrical Engineering and Automation, Wuhan University, Wuhan, China, 2State Grid Shaoxing Power Supply
Company, Shaoxing, China, 3State Key Laboratory of Power Grid Environmental Protection, Wuhan, China

The disconnector switching operation in GIS not only generates very fast transient
overvoltage (VFTO) in primary equipment, but also couples to the secondary system,
which affects normal operation of the secondary equipment. In this study, aiming at the
conducted disturbance caused by the disconnector switching operation of the 1,000-kV
UHV GIS test circuit on the secondary cable, a broadband equivalent circuit model of the
potential transformer and the grounding grid is proposed based on the vector fitting
method and the impedance synthesis method, and the accuracy of themodel is tested. On
the basis of this model, the conducted disturbance voltage of the secondary cable core is
obtained by combining the measured typical disturbance source waveform. The research
results of the influencing factors of conducted disturbance show that the amplitude of the
disturbance voltage generated by the capacitive conduction is higher than that generated
by the resistive conduction, but the main frequency of the resistive conducted disturbance
voltage is higher. The amplitude of the conducted disturbance voltage will decrease with
the increase of the length of the cable and the length of the grounding wire. The single-
ended grounding of the secondary cable shield at the GIS side will cause serious
disturbance voltage. The research results of this study will be beneficial to the
protection of secondary cable electromagnetic disturbance in the intelligent substation
and have reference significance for the implementation of secondary equipment protection
measures in the intelligent substation.

Keywords: disconnector switching operation, broadband equivalent circuit model, finite integral method, overall
electromagnetic disturbance, suppression measures

INTRODUCTION

Gas insulated switchgear (GIS) is widely used in substations due to its high reliability and small
footprint. However, very fast transient overvoltage (VFTO) and transient enclosure voltage (TEV)
appear when switching in GIS. Simulation and experiment show that the rise time of VFTO is only
nanosecond grade, the frequency range mainly includes several to dozens of MHz, up to 100 MHz,
and the amplitude range is generally between 1.5 p.u. and 2.8 p.u. The peak value of TEV can reach
tens of kV, and it has higher frequency components than VFTO. In the development of a smart grid,
there are new requirements for power system protection and control (Bo et al., 2016; Zhang et al.,
2016). At present, intelligent equipment is widely used in the power system, especially in relay
protection (Nan et al., 2018; Yang et al., 2021). The intelligent equipment on the secondary side is
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vulnerable to electromagnetic disturbance, and the cable is the
key to the transmission of electromagnetic disturbance to the
intelligent equipment.

High-frequency and high-amplitude VFTO and TEV not only
pose a threat to the insulation of GIS and winding equipment
such as transformers and reactors connected to it, but also
interfere with the normal operation of secondary equipment in
a substation (D’Souza et al., 2020; Moreira et al., 2020). The
VFTO and TEV transmitted in the primary equipment will be
coupled to the secondary circuit through conduction and
radiation. The disturbance voltage is generated on the
secondary cable core, which will interfere with the sensitive
secondary equipment of the cable terminal and may cause its
misoperation. However, since the conducted disturbance in a
substation is far more significant than the radiated disturbance,
the radiated disturbance can be ignored when calculating the
disturbance voltage of the secondary cable (Mahmood et al.,
2015).

Some scholars have carried out corresponding research on the
problem of electromagnetic disturbance source disturbing
secondary equipment when operating a disconnector. The
research methods mainly include field test, laboratory test, and
numerical calculation (Cai et al., 2018). At the beginning of the
21st century, China has built a large number of GIS substations.
In order to explain the mechanism and influencing factors of
electromagnetic disturbance caused by disconnector switching
operation, the China Electric Power Research Institute has
combined several universities to build two disconnector test
platforms with different operating speeds at the UHV AC test
base of State Grid Corporation in Wuhan. The electromagnetic
disturbance caused by the disconnector switching operation in
GIS was systematically studied, and a large number of
experimental measurement data were obtained (Chen et al.,
2011; Zhang et al., 2013; Zhang et al., 2014; Hu et al., 2015;
Ma et al., 2017).

Due to the complexity of field measurement and laboratory
test method, the numerical calculation method has been widely
used. In 1988, CIGRE Working Group 33/13.09 proposed in
detail the equivalent circuit models of the main components of
GIS equipment such as GIS bus, disconnector, circuit breaker,
insulator, and bushing, but these models are only applicable to the
calculation of internal transient field at low frequency, without
considering the high-frequency response of components (CIGRE
Working Group 33/13.09, 1988). Jiao et al. (2016) decomposed
the specific structure of bushing into multiple parts, extracted and
combined the parameters of different parts, and established the
broadband equivalent circuit model of high voltage bushing. The
model was in good agreement with the full-wave simulation
results. Feng et al. (2014) modeled the specific structure of
each component by HFSS (High Frequency Structure
Simulator), obtained the parasitic parameters, and constructed
the calculation model of conducted disturbance in the GIS
substation. The simulation results are consistent with the
experimental data. Hu (2016) uses the “black box method” to
establish the high-frequency transmission function model of each
component and establishes the broadband equivalent circuit
model of grounding grid and grounding pillar by vector fitting

method and impedance synthesis method, and embeds the data
into EMTP to realize the calculation. In Wang and Yang (2016),
the high-order Radau method is proposed to simulate the
electromagnetic transient (EMT) of the power system. The
corresponding high-dimensional linear algebraic equations are
decoupled into blocks in time domain, and a multi-stage block
recursive method is formed. This method avoids the numerical
oscillation in calculation and has achieved good results in VFTO
calculation of the 550-kV GIS system.

In summary, a large number of simulation studies have been
carried out on the electromagnetic disturbance of the secondary
cable caused by disconnector switching operation. However, most
of the simulation uses a single numerical lumped parameter to
model the components, which cannot reflect the broadband
response characteristics of the components. In view of the
above problems, this study deeply studies the establishment
method of the broadband equivalent circuit model of each
component in the simulation analysis of electromagnetic
disturbance. The level and influencing factors of conducted
disturbance voltage produced by the disconnector switching
operation of the secondary cable are analyzed by simulation
analysis, and the electromagnetic disturbance suppression
measures of secondary cable are proposed. The research
results of this study will be beneficial to the reasonable
arrangement of secondary cables in the intelligent substation
and have reference significance for the implementation of
secondary equipment protection measures in the intelligent
substation.

COUPLING MECHANISM OF CONDUCTED
DISTURBANCE

In terms of the disturbance path, the electromagnetic disturbance
caused by GIS disconnector switching operation to the secondary
cable is mainly divided into conducted disturbance and radiated
disturbance. However, usually the conducted disturbance in a
substation far exceeds the radiated disturbance, so the radiated
disturbance is often ignored when calculating the disturbance
voltage of the secondary cable. The secondary equipment in a
substation has low sensitivity to power frequency disturbance, but
it has high sensitivity to high-frequency disturbance component,
so it is prone to failure or damage under the high-frequency
electromagnetic disturbance generated by disconnector switching
operation.

Conducted disturbance refers to that in two circuits with
electrical connection; the electrical signal (disturbance voltage
or current) of one circuit is transmitted to another circuit through
the common circuit, which is mainly divided into capacitive
conduction and resistive conduction.

Capacitive conduction refers to the electromagnetic transient
process in which the VFTO generated by the disconnector
switching operation in the GIS bus is directly coupled to the
core of secondary cable through stray capacitance between
primary winding and secondary winding of a potential
transformer. Due to the different response characteristics of
the transformer port in case of high frequency, the modeling
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method using a single numerical lumped element to describe the
transformer will inevitably cause errors, so it is necessary to
establish the broadband equivalent circuit model of the
transformer.

Resistive conduction means that TEV generated by
disconnector switching operation propagates along the
enclosure in the form of a voltage wave. When it propagates
to the grounding point of GIS enclosure, part of the voltage wave
will couple to the grounding wire, and flow into the grounding
grid along the grounding wire, causing the grounding grid
potential to rise. Generally, the shield layer of the secondary
cable is grounded at both ends. Therefore, under the effect of
TEV, the potential of the shield layer of the secondary cable
increases and the shielding effect decreases, and the voltage will
be generated between the two grounding points, which will
generate transient current on the shield layer of the secondary
cable, and then couple to the core wire to generate disturbance
voltage.

To sum up, capacitive conduction and resistive conduction are
closely related to the potential transformer and grounding grid.
The simple lumped element modeling cannot reflect its response
characteristics in high frequency, and it will cause considerable
errors under the excitation of VFTO and TEV disturbance
sources with complex frequency components. Therefore, in
order to ensure the accuracy of calculation, the broadband
equivalent circuit model of the potential transformer and
grounding grid should be established in the simulation of
conducted disturbance caused by disconnector switching
operation.

ESTABLISHMENT OF BROADBAND
EQUIVALENT CIRCUIT MODEL

The Method of Modeling
The establishment of an equivalent circuit model can be generally
divided into two methods: traditional equivalent circuit model
and black box model. The traditional equivalent circuit model
uses analytical formulas or simulation software to solve complex
electromagnetic field problems based on physical factors such as
the concrete structure and material of components. Every
equivalent circuit element obtained by this method has actual
physical meaning. The model meaning is intuitive, but it is
necessary to know the detailed physical structure of each
component, and the modeling and solving are more complex.

The black boxmodel does not focus on the specific structure of
the component to be tested, but obtains the frequency response of
the component through actual measurement or simulation, and
then determines the circuit expression of the element according
to the numerical fitting method. The disadvantage of this method
is that each component in the circuit model has no specific
significance, but it avoids the complex electromagnetic field
problem when using the traditional equivalent circuit model,
and does not need to know the specific structure of each
component.

In this study, the black box model is used to establish the
broadband equivalent circuit model of the potential transformer

and grounding grid. The specific method is used to obtain the
broadband response characteristics of the potential transformer
and grounding grid. Then, the stable and effective vector fitting
method is used to fit the broadband response characteristics and
the rational function expressions of the broadband response
characteristics of the potential transformer and grounding grid
are obtained. Finally, based on the analysis of the relationship
between the time domain model and the complex frequency
domain function, the broadband equivalent circuit model of the
transformer and grounding grid is obtained.

Method of Establishing Broadband
Equivalent Circuit
Based on the broadband response characteristics of the
component, it can be assumed that its rational function
expression is of the form of Eq. 1 (Gustavsen and Semlyen,
1998; Deschrijver et al., 2008):

f(S) � ∑N
n−1

cn
s − an

+ d + sh (1)

Where n is the order of the pole, and an, cn, d, and h are the
unknowns in the expression, which are the poles, residue,
constant term, and coefficient of first order term, respectively.
These unknowns can be fitted by vector fitting method.

It is assumed that there are K pairs of conjugate complex poles
after rational fitting of broadband response by vector fitting method,
and the nth pair of conjugate complex poles is expressed as:

a2n−1 � −prn + jpin

a2n � −prn − jpin
(2)

FIGURE 1 | Circuit forms of expression.
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Where n � 1,2,. . .,k, and prn is the real part of the conjugate
complex poles, and prn >0. It is assumed that the residue
corresponding to the pair of complex poles:

c2n−1 � −crn + jcin
c2n � −crn − jcin

(3)

Combining Eq. 2 and Eq. 3, Eq. 1 can be divided into the
following three parts:

f1n � 2crns + 2crnprn − 2pincin
s2 + 2prns + p2

rn + p2
in

f2n(s) � cn
s − an

f3(s) � d + sh

(4)

If f(s) is the expression of impedance, the above three parts can
be represented by the circuit form in Figure 1.

The elements in the circuit are obtained according to the
following formula:

R1n
2(crnprn − cinpin)

p2
rn + p2

in

, G2n � 2p2
rn

crnprn + pincin

L1n � crnprn − pincin(p2
rn + p2

in)prn
, L2n � crnprn + pincin(p2

rn + p2
in)prn

C1n � prn

crnprn − pincin
, C2n � prn

crnprn + pincin

(5)

The final broadband equivalent circuit model can be
established by connecting the above three parts in series.

If f(s) is the expression of admittance, the corresponding
broadband equivalent circuit can be established by parallel
connection in the same way.

Broadband Equivalent Circuit of Grounding
Grid
This study takes the grounding grid of GIS test circuit at the UHV
AC test base in Wuhan as the research object. The cable layout is
shown in Figure 2, and the actual geometry of the ground grid is

shown in Figure 3. The size of each grid is 0.8 m × 0.8 m, and the
size of the small grid is 0.4 m × 0.4 m. It is assumed that the two
conductors of the vertical grounding grid are the two grounding
wires of the secondary cable shield layer. The grounding grid is set
up with steel material, and the relative resistivity ρr is 10, relative
permeability μr is 626 (relative to copper), the buried depth of
ground grid is 0.8 m, and the conductor radius is 8 mm. Soil
modeling is divided into two layers: the top soil resistivity is
28.43Ωm and the thickness is 39.94 m; the bottom soil resistivity
is 240,302Ωm and the thickness is infinite.

By injecting current of different frequencies into the
grounding point and measuring the response of each
grounding point, the T-shaped two port equivalent circuit of
the whole grounding grid can be established, as shown in
Figure 4A.

Through the comparison of fitting effects of different pole
orders, ZA, Z, and ZB are fitted with 4, 6, and 4 poles, respectively,
and the fitting results are shown in Figure 5.

It can be seen from Figure 5 that the error of the amplitude-
frequency and phase-frequency errors of the results fitted by
vector fitting method is less than 5%, which can meet the needs of
calculation accuracy. The results of vector fitting are implemented
in the circuit in Figure 1, and the overall broadband equivalent
circuit model of the grounding grid can be established. The circuit
model of the grounding grid is shown in Figure 4B.

Broadband Equivalent Circuit of a Potential
Transformer
In this study, the simulation model of a potential transformer is
established by using the measured S parameter matrix of
broadband response of the potential transformer in Wang
(2010). The measured S parameter matrix is converted into an
admittance matrix, and the two-port equivalent π-shaped
network of the potential transformer is shown in Figure 4C.

The broadband characteristics of each admittance in the
circuit can be rationally fitted by the same method. According
to the rational function, the broadband equivalent circuit model
of the potential transformer can be established by the same
method, as shown in Figure 4D.

FIGURE 2 | The cable layout.

FIGURE 3 | Grounding grid structure.
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SIMULATION OF CONDUCTED
DISTURBANCE CAUSED BY
DISCONNECTOR SWITCHING OPERATION
Research Objects
In this study, the GIS test circuit of the UHV AC test base
(hereinafter referred to as the test circuit) shown in Figure 6 is
taken as the research object. The thickened real line represents the
GIS bus, and the virtual line represents the secondary cable. DS
and ES represent the disconnector and grounding switch in GIS,
respectively.

The research team led by the China Electric Power
Research Institute has conducted thousands of closing and
opening tests of disconnectors in the test circuit, and obtained
a large number of VFTO, TEV, and space electromagnetic

field test data. Therefore, this study considers using the
measured data of the test as the excitation to join the
simulation model to calculate the disturbance voltage. The
typical measurement waveforms of VFTO, TEV, and spatial
electromagnetic field provided by the above research team in
Chen et al. (2011) and Hu et al. (2015) are selected as the
excitation sources of this study, and the waveform of the
disturbance source is shown in Figure 7.

Simulation of Conducted Disturbance
KVVP2-22 quad cable is selected as the research object. In the
modeling process, the J.Marti model suitable for the frequency
conversion problem is used, and the corresponding simulation
model is established combined with the geometric structure of the
secondary cable.

FIGURE 4 | Two port equivalent circuit. (A) T-shaped two port equivalent circuit; (B) The broadband equivalent circuit model of grounding grid; (C) π-shaped
network of potential transformer. (D) The broadband equivalent circuit model of potential transformer.
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The simulationmodel of conducted disturbance can be built in
EMTP/ATP electromagnetic transient simulation software, as
shown in Figure 8. Because the secondary cable shield layer is
connected with the GIS enclosure in the GIS test circuit, the
disturbance source TEV is directly loaded on the grounding point
at the side of the GIS test circuit in the resistive conducted
disturbance. In Figure 8, ZL1 and ZL2 represent the impedance
of the grounding wire of the secondary cable shield layer. The
terminal impedance R of core wire is 50Ω.

The cable length is set to 20 m, the shield layer is grounded at
both ends, the simulation step length is set to 0.5 ns, and the total
calculation time is 0.6 μs. In 0.6 µs, the maximum amplitude of the
disturbance source has passed, and the waveform has begun to
decay, so it canmeet themost serious conducted disturbance level in
the whole disturbance process. Bymeasuring the potential difference
between the two ends of the load, the conducted disturbance voltage
level under the action of typical disturbance sources can be obtained.
The disturbance voltage level of the secondary cable core under the
excitation of typical disturbance source is shown in Figure 9.

The calculation results show that under the excitation of typical
disturbance source, the overall conducted disturbance voltage
amplitude of the test circuit is about 2.5 kV, in which the
capacitive conducted disturbance amplitude is about 1.5 kV, and

the resistive conducted disturbance voltage amplitude is about 1.0 kV.
From the perspective of frequency characteristics, themain frequency
of the overall disturbance voltage is 6.7MHz and below 5MHz, and
the main frequency of resistive conducted disturbance is higher than
that of capacitive conducted disturbance. It can be seen that the
capacitive transmission accounts for the main component in the
conducted disturbance, accounting for 64% (Proportion of each
disturbance voltage � Voltage area corresponding to each
disturbance path/Total disturbance voltage area × 100%).

ANALYSIS OF FACTORS AFFECTING
CONDUCTED DISTURBANCE

Cable Length
The disturbance voltage of the secondary cable also has high-
frequency characteristics, so the propagation in the secondary
cable needs to be considered by traveling wave. When the
disturbance voltage wave propagates to both ends of the cable, the
refraction and reflection will occur. The superposition of traveling
waves may produce higher amplitude overvoltage, and the cable
length directly affects the times of refraction and reflection in the
whole transient process. In order to study the influence of cable length
on the conducted disturbance voltage, the length L of cable is changed
to 10, 20, 30, and 50m, respectively. The time-domain waveform and
frequency spectrum of terminal disturbance voltage under different
cable lengths are calculated, as shown in Figure 10.

Figure 10 shows that with the increase of cable length, the
disturbance voltage amplitude of the secondary cable core shows a
downward trend. This is because when the cable length is short, the
voltage wave will undergo multiple refraction and reflection in the
propagation process. The continuous superposition of the incident
wave and the reflected wave increases the disturbance voltage and has
more high-frequency components. However, when the cable length is
long, the number of refraction and reflection of voltage wave
decreases significantly and attenuates continuously in the

FIGURE 5 | Fitting results of grounding grid model. (A) Fitting results of ZA. (B) Fitting results of Z. (C) Fitting results of ZB.

FIGURE 6 | UHV GIS test circuit.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8190216

Chen et al. Conducted Disturbance to Secondary Cable

227

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


propagation process, so the amplitude decreases and the high-
frequency component decreases significantly.

Grounding Mode of Shield Layer
At present, it is generally recognized that shielded cables are used
in GIS substations in the world. However, there are different
opinions on the grounding mode of the secondary cable shield

layer. IEEE believes that shielded cables should be grounded at
one end (IEEE Std 1143™-2012, 2012), while IEC and State Grid
believe that shielded cables should be grounded at both ends (IEC
61000, 1997). Therefore, this section studies the influence of three
different grounding modes on conducted disturbance, including
two-end grounding of the shield layer, single-end grounding of
the GIS side, and single-end grounding of the control cabinet side.
The calculation results are shown in Figure 11.

The calculation results show that the shield layer grounding
mode has a great influence on the conducted disturbance,
especially for the resistive conduction component. When the
secondary cable shield layer is only grounded at the GIS side, the
disturbance voltage is the most serious, and the amplitude is
nearly 8 kV, which will seriously endanger the normal operation
of the secondary equipment. When the shield layer is only
grounded at the single end of the control cabinet side, the
disturbance voltage level is the lowest, and the amplitude is
only 1.3 kV. The reason is that TEV will lead to the increase
of grounding grid potential. When the shield layer is grounded at
the single end of the control cabinet, the grounding potential is
low due to the distance from the GIS grounding wire, so it plays a
good shielding effect on the core wire, and the resistive
conduction component is in a very small value. When the
shield layer is grounded at the single end of the GIS, due to
the point close to the GIS grounding wire, the TEV will flow into
the grid, and have a high potential. At this time, the whole shield
layer will be in a high potential state, resulting in poor shielding
effect of the cable and serious disturbance voltage on the core line.

Length of Grounding Wire
The grounding wire of secondary cable is usually inductive, and the
voltage drop cannot be ignored when the high-frequency current

FIGURE 7 | Typical measured disturbance source waveform. (A) VFTO. (B) TEV.

FIGURE 8 | Simulation diagram of conducted disturbance. (A)
Calculation model of capacitive conducted disturbance voltage. (B)
Calculation model of resistive conducted disturbance voltage.
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flows. Table 1 shows the level of conducted disturbance voltage
when the grounding wire length is 1, 1.5, 2, and 2.5 m, respectively.

The calculation results show that the disturbance voltage
level on the secondary cable will decrease with the increase of
the length of the grounding wire. The reason is that the
impedance of the grounding wire increases with the
increase of the length of the grounding wire. When the
resistive conduction source TEV is constant, the increase of
the length of the grounding down lead will increase ZL1 and
ZL2 in Figure 8B. Therefore, the partial voltage on the cable
shielding layer decreases, the shunt of the grounding grid
increases, the transient current on the shielding layer
decreases, and the conducted disturbance voltage decreases.

Figure 12 shows the relationship between the voltage
difference at the grounding point of the secondary cable shield
layer and the transient current amplitude of the shield layer
flowing through the grounding line length, which also proves the
analysis in this study.

Terminal Impedance of Secondary
Equipment
The terminal impedance of secondary equipment is usually 50Ω
or 100Ω. The calculation results of the terminal impedance of
50Ω are given in the preceding section, and the calculation results
of the terminal impedance of 100Ω are shown in Figure 13.

The calculation results show that the amplitude of conducted
disturbance voltage increases with the increase of terminal
impedance. The reason for the analysis is that when the
terminal impedance amplitude increases, the difference
between the wave impedance of the secondary cable and the
terminal impedance is more significant, resulting in a more
intense wave refraction and reflection process. In addition, the
increase of terminal impedance has a more significant impact on
capacitive conducted disturbance. When the terminal impedance
increases from 50 to 100Ω, the amplitude of capacitive conducted
disturbance voltage increases by 0.3 kV, while the amplitude of
resistive conducted disturbance voltage increases only by 0.1 kV.

FIGURE 9 | Conducted disturbance voltage of secondary cable. (A)
Time domain waveform. (B) Spectrogram.

FIGURE 10 | Conducted disturbance voltage of secondary cable. (A)
Time domain waveform. (B) Spectrogram.
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In Zhang et al. (2013), based on the 1000-kV GIS test circuit
simulated in this study, UHV VFTO has measured the
disturbance voltage of the secondary cable, and compared the
disturbance voltage on the secondary cable core under three
different grounding modes: grounding at both ends of the

FIGURE 11 | Conducted disturbance voltage of secondary cable. (A)
Two ends grounding. (B) Grounding of GIS side. (C) Grounding of control
cabinet side.

TABLE 1 | Influence of grounding wire length on disturbance voltage.

Length/m Capacitive
conduction

Resistive
conduction

Amplitude/V
proportion/%

Amplitude/V
proportion/%

1 1,441 64 916 36
1.5 1,214 56 692 44
2 1,039 61 536 39
2.5 901 64 424 36

FIGURE 12 | Voltage and shield current of shield layer. (A) Voltage of
shield layer. (B) Shield current of shield layer.
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secondary cable shield, single-end grounding at the side of the
control cabinet, and single-end grounding at the side of the switch
station, which are 395, 295, and 4557 V respectively. The
following data are obtained during the simulation of the
overall disturbance in this study: for the three different
grounding methods of the two ends of the secondary cable
shielding layer, the single-ended grounding on the control
cabinet side, and the single-ended grounding on the switch
station side, the overall disturbance voltages are 2.7, 1.5, and
8.0 kV respectively. Comparing the measurement results of the
literature with the simulation results of this study, the following
two points of analysis can be obtained:

1) Regardless of the measured voltage or the conducted
disturbance voltage obtained by simulation in this paper,
the disturbance voltage at the end of the secondary cable core
is the highest when the shielding layer on the switchyard side

is grounded at a single end, and the disturbance voltage is
significantly lower than that on the switchyard side under the
two methods of grounding at both ends and single-end
grounding on the centralized control cabinet side.

2) The simulation results do not correspond to the measured
results in the literature. The reasons are as follows: (a) The
measured disturbance voltage includes conduction
disturbance and radiation disturbance, and the simulation
results in this paper only include conduction disturbance. (b)
The simulation conditions in this paper are different from the
measured conditions in the literature. In this paper, when
analyzing the influence of different grounding modes on the
conducted disturbance voltage of secondary cable, the cable
length is 20 m, while the measured cable length in the
literature is 100 m. Theoretically, the disturbance voltage
measured at the end of the core wire will decrease with the
increase of the cable length. (c) In the calculation, VFTO and
TEV as excitation sources are the measured values under the
most serious condition of the test circuit, so the simulation
results are strictly considered.

Through the above analysis, it can be seen that although
this study has some limitations in the verification of the
secondary cable disturbance voltage value, the reasons for
the difference between the measured value in the existing
literature and the simulation value can be analyzed to verify
the correctness of the simulation model establishment method
in this study.

CONCLUSION

In this study, the electromagnetic disturbance to secondary cable
caused by the disconnector switching operation in GIS is taken as
the research object, and the conducted disturbance in the
electromagnetic disturbance is mainly studied. The main
research results are as follows:

1) The establishment method of the broadband equivalent
circuit model based on the vector fitting method is
proposed. The error of amplitude-frequency characteristics
and phase-frequency characteristics is not more than 5%,
which can meet the needs of calculation accuracy.

2) Under the calculation conditions in this study, the amplitude
of conducted disturbance voltage is about 2.5 kV when the
shield layer of the secondary cable is grounded at both ends.
The amplitude of the capacitive component is higher than
that of the resistive component, and the main frequency of
the resistive component is higher than that of the capacitive
component.

3) The research results of influencing factors of conducted
disturbance show that with the increase of cable length,
the amplitude of disturbance voltage will gradually
decrease, and the high-frequency component will
significantly decrease. The grounding mode of the cable
shield layer has an obvious influence on conducted

FIGURE 13 | Conducted disturbance voltage of secondary cable at
different terminal impedance. (A) Capacitive conducted disturbance. (B)
Resistive conducted disturbance.
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disturbance, and it has a good shielding effect by way of
single-end grounding on the side of the control cabinet or
two-end grounding. With the increase of grounding wire
length, the potential difference between the grounding
point of the secondary cable shield layer and the
transient current flowing through the shield layer
gradually decreases, and the amplitude of conducted
disturbance voltage also decreases.
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Research on the Unstable Branch
Screening Method for Power System
With High-Proportion Wind Power
Fei Tang, Xiaoqing Wei*, Yuhan Guo, Junfeng Qi, Jiarui Xie and Xinang Li

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

The sooner the system instability is predicted and the unstable branches are screened, the
timelier emergency control can be implemented for a wind power system. In this paper,
aiming at the problem that the existing unstable branch screening methods are lack
prejudgment, an unstable branch screening method for power system with high-
proportion wind power is proposed. Firstly, the equivalent external characteristics
model of the wind farm was deduced. And based on this, the out-of-step oscillation
characteristics of the power system with high proportion wind power was analyzed.
Secondly, based on the oscillation characteristics, line weak-connection index (LWcI) was
proposed to quantify the stability margin of a branch. Then an instability prediction method
and an unstable branch screening method were proposed based on LWcI and voltage
phase angle difference. Finally, the rapidity and effectiveness of the proposed method are
verified through the simulation analysis of IEEE-118 system.

Keywords: unstable branch, transient stability, line weak-connection index, wind power, out-of-step oscillation

1 INTRODUCTION

With the proposal of “carbon peaks” and “carbon neutralization” goals, the penetration of renewable
energy is increasing rapidly. However, different from synchronous generator, wind power and other
renewable energy units have the disadvantages of low inertia and weak poor disturbance immunity,
which have a profound impact on the stability of the grid (Liu et al., 2019; Shen and
Raksincharoensak, 2021a). Power outage accidents (Nagpal et al., 2018; Alhelou et al., 2019; Liu,
2019; Yang et al., 2021c) in recent years indicate that due to the replacement of synchronous
machines by renewable energy sources, the risk of power angle instability is greatly increased, and the
development rate of chain fault is greatly accelerated. Therefore, how to prejudge the instability of the
system and screen unstable branches as early as possible, so as to reserve more time to guarantee the
implementation of emergency control, has become a research hotspot.

Currently, research results about instability criteria are mainly from traditional power systems.
For example, Yang (Yang et al., 2006) proposed to use the extended equal area criterion (EEAC) to
analyze the transient stability. Yan (Yan et al., 2011) used the maximal Lyapunov exponent (MLE) to
prejudge the rotor angle stability. Saunders (Saunders et al., 2014) analyzed transient stability by
constructing transient potential energy functions. Yang (Yang et al., 2021b) adopted data-driven
method to study power system security and stability problem. This paper was the first study for
SCUC problems, it can accommodate the mapping samples of SCUC, and consider the various input
factors that affect SCUC decision-making, possessing strong generality, high solution accuracy, and
efficiency over traditional methods. The above methods can prejudge the transient stability of the
grid quickly using generator information such as rotor angle, but the further application in the
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FIGURE 1 | Out-of-step oscillation characteristics of wind power system (A) is the control strategy of DFIG (B) is the equivalent two-machine system with DFIG
integrated (C) is the distribution law ofUm in δ-λ space (D) is the variation law betweenUm and λ (E) is the variation law betweenUm and δ (F) is the distribution law of θm in
δ-λ space (G) is the variation law of θmwith δ at different position (H) is the variation law between Δθm and δ of different branches (I) is the variation law betweenUm at point
n4 and δ when wind farm output changes (J) is the variation law between Δθm of B5-6 and δ when wind farm output changes.
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emergency control such as the splitting control is limited because
the splitting section cannot be determined directly. Therefore,
some scholars designed some new instability criterion using the
branch response information, such as ucosφ criterion (Yang et al.,
2013; Zhang et al., 2021), phase angle criterion (Regulski et al.,
2018; Shen et al., 2021a), bus voltage frequency criterion (Zhang
et al., 2019; Yang et al., 2022), apparent impedance differential
method (Sreenivasachar, 2021; Shen and Raksincharoensak,
2021b) and so on. Compared with methods using generator
response information, these methods can not only prejudge
the unstable state of the system, but also accurately capture
the unstable branches and the splitting section. However, the
disadvantage is that these methods do not start until the
instability accident has occurred (or approach to instability),
thus it is difficult to reserve sufficient time for emergency control.

Research on the instability criterion of the high proportion
renewable energy power system is still in the preliminary stage,
and relevant work is mainly focused on the influence of wind
power integration on transient stability (Ma et al., 2017; Liu et al.,
2017; Zheng et al., 2019; Shen et al., 2021b). As for the research on
the instability criterion, Wei (Wei et al., 2021; Yang et al., 2021a)
and Qin (Li et al., 2021; Qin et al., 2021) respectively analyzed the
influence of wind and photovoltaic power integration on
oscillation center migration, but failed to propose oscillation
center identification method and instability criterion. Chen
(Chen et al., 2020; Li et al., 2021) proposed a new transient
stability prediction method by defining a new stability index, but
still failed to capture the unstable branch. Liu (Liu et al., 2020)
proposed to use the slow coherency theory to study the coherency
group of wind power system, but the impact of actual faults
cannot be fully considered.

Therefore, aiming at the problem that the existing instability
criterion lacks prejudgment, a system instability prediction
method and an unstable branches screening method are
proposed in this paper. which can predict power angle
instability earlier and screen unstable branches accurately.

The rest of this paper is organized as follows. In Section 2, the
out-of-step oscillation characteristics of the high proportion wind
power system is analyzed. In Section 3, the line weak-connection
index (LWcI) is proposed to quantify the stability margin, and the
unstable branches screening method is proposed. Case study and
discussion are shown in Section 4. Section 5 concludes this study
by summarizing key findings and contributions of this paper.

2 OUT-OF-STEP OSCILLATION
CHARACTERISTICS OF WIND POWER
SYSTEM
2.1 Equivalent External Characteristic
Model of Wind Farm
Taking doubly-fed induction generator (DFIG) as an example,
the control strategy is shown in Figure 1A (Wang et al., 2015). In
steady state, DFIG adopts Maximum Power Point Tracking
(MPPT) control strategy. When the system is disturbed, DFIG
limits the active power output under the fault ride-through

control, and outputs reactive power to support the grid. After
the fault is cleared, DFIG switches back to MPPT control.

Obviously, without additional control, DFIG cannot actively
respond to the disturbance of the system. When the system is
disturbed, the output power of DFIG do not oscillate like a
synchronous generator, but quickly return to the original state.
Therefore, there is no power angle swing between DFIG and
synchronous generator in electromechanical time scale. Thus,
DFIG can be regarded as a power source without inertia, and its
equivalent external characteristics can be equivalent to negative
resistance and negative reactance in parallel:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r � − u2
s

Pgen

x � − u2
s

Qgen

(1)

Where the negative sign indicates the power injected into the bus.
In addition, if the system is still transient stable after the fault is

cleared, DFIG can quickly recover to the pre-fault state and the
output power also quickly resumes stability. So the equivalent
impedance can be considered constant. If the system is already
unstable, the output power of DFIG will oscillate due to the
oscillation of the grid voltage. And the equivalent impedance also
oscillates. Considering that there is a certain inertia in the system,
it takes a certain amount of time from fault removal to complete
instability, during which the output power of DFIG does not
change dramatically, so it can be simply considered that the
equivalent impedance during this period is constant.

2.2 Out-of-step Oscillation Characteristics
of Wind Power System
Taking an equivalent two-machine system with a DFIG-based
wind farm integrated as an example to analyze the out-of-step
oscillation characteristics of wind power system. As shown in
Figure 1B, bus O is the common coupling point of the wind farm,
and the voltage vector can be expressed as Uo∠θo. r and x are
equivalent resistance and reactance of the wind farm respectively.
E1 and E2 are the equivalent potentials of generator G1 and G2

respectively, and δ is the rotor angle difference. X1 and X2 are
equivalent resistance between G1 and bus O, bus O and G2,
respectively. For convenience analysis, the X2 is divided into 10
equivalents by points n1∼n11, and each branch section is
represented by B1-2∼B10-11. The voltage vector of any point M
between the bus O and G2 is expressed asUm∠θm, and its position
function is λ � Xm/X2, λ∈[0,1].

Based on the node voltage method, the voltage vector of bus O
can be expressed as:

_Uo � ZΣ

jX1
E1e

jδ + ZΣ

jX2
E2 (2)

Where ZΣ � 1
G+ 1

jX1
+ 1
jX2

, G � 1
r + 1

jx.

Considering that the active power output of DFIG is limited
under low voltage ride-through (LVRT) control, so the 1

r is very
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small, and the real part ofZΣ can be ignored. Thus, the expression
of the voltage vector at bus O can be rewritten as:

_Uo � |ZΣ|(E1e
jδ

X1
+ E2

X2
) (3)

As shown in Eq. 3, the integration of wind farm changes the
amplitude of ZΣ, thereby changing the voltage amplitude of the
common coupling point. The larger the wind farm output power,
the greater the ZΣ, the greater the voltage amplitude of the
common coupling point.

In addition, according to Yang (Yang et al., 2013), the unequal
voltage on both sides of the branch is one of the reasons for the
migration of out-of-step center. When the voltage amplitude on both
sides of the branch is unequal, the out-of-step center migrates to the
side where the voltage amplitude is smaller. Therefore, the integration
of wind power increases the voltage amplitude of the common
coupling point, resulting in the unequal voltage amplitude on both
sides of the branch, which in turn leads to the migration of the out-of-
step center to the side where the voltage amplitude is smaller.

Then, according to Ohm’s law, the following equation exists:

_Uo − E2

jX2
� _Uo − _Um

jXm

(4)

Therefore, based on Equation 2 and Equation 4, the voltage
vector of point M can be expressed as:

_Um � ZΣ

jX1
(1 − λ)E1e

jδ + E2[λ + ZΣ

jX2
(1 − λ)] (5)

Ignoring the real part of ZΣ, the expression of voltage
amplitude and phase angle at point M can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Um �























































(ZΣ(1 − λ)

Z1
E1 cos δ + E2[λ + ZΣ(1 − λ)

Z2
])2

+ (ZΣ(1 − λ)
Z1

E1 sin δ)
2

√

θm � arctan

ZΣ

Z1
(1 − λ)E1 sin δ

ZΣ

Z1
(1 − λ)E1 cos δ + E2[λ + ZΣ

Z2
(1 − λ)]

(6)

According to Eq. 6, the Um and θm are related to the position
function λ, the output power of wind farm, the power angle
difference and so on. Thus, assuming that E1 � E2 � 1.0, X2 � 3X1

� 0.3, and the output power of the wind farm under LVRT control
is 0.1 + j0.5, the temporal and spatial distribution law of voltage
amplitude Um and θm are shown in Figures 1C–H.

Figures 1C–E show that with the increase of δ, the voltage Um

at any position on the branch decreases and then increases,
getting the minimum value when δ � 180°. Meanwhile, the
variation amplitude of Um varies from location to location, so
there is always a point where the variation is the most drastic,
called the out-of-step center. According to Figure 1E, the out-of-
step center is located between n4 and n5.

According to Figures 1F–H, when δ increases from 0° to 180°,
for the node between the out-of-step center and G1, θm changes

monotonically in (0°, 180°). While for the node between the out-
of-step center and G2, θm firstly increases and then decreases, and
the maximum value is no more than 90°. Therefore, only for the
branch where the out-of-step center is located, the voltage phase
difference Δθm variation rule is consistent with the power angle
difference δ.

According to Figures 1I,J, as the output power of wind farm
increases, theUm at point n4 increases, and the maximum value of
Δθm at B5-6 increases until the Δθm changes monotonically
between (0°, 180°), indicating that the out-of-step center
migrates from point n4 to point n5, until it completely enters
into B5-6.

In summary, the output power of wind farm changes the flow
distribution and voltage level of the system, ultimately affecting
the system transient stability and the out-of-step center position.
However, the phenomenon that voltage amplitude drops sharply,
and the voltage phase angle difference of the branch where the
out-of-step center located increases monotonously are still exist,
which can be used to predict the transient stability of the system
and capture the unstable branch.

3 INSTABILITY PREJUDGMENT CRITERIA
AND UNSTABLE BRANCH SCREENING
METHOD
3.1 Line Weak-Connection Index (LWcI)
According to the conclusion in Section 2, when the out-of-step
oscillation occurs, one or more branches loses stability, resulting
in a sharp drop of voltage at each point of the branches.
Considering that the voltage reduction at the oscillation
center is the most severe (Yang et al., 2013), so the voltage
of the oscillation center can be used to measure the stability
margin of a branch. However, if the oscillation center is not on
the branch due to the oscillation center migration, the voltage
at one end of the branch is the minimum voltage, which is
much greater than the oscillation center voltage. And the result
can be conservative and misjudgment can occur. Therefore, in
order to prevent misjudgment as the oscillation center
migrates outside the branch, the terminal voltage can be
used to correct the out-of-step center voltage. Thus, Line
weak-connection Index (LWcI) is defined to reflect the
stability margin of a branch:

LWcI �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

UAUB| sinΔθ|





















U2

A + U2
B − 2UAUB cosΔθ

√ , UAB >UhA and UAB >UhB

min {UA,UB}, UAB <UhA or UAB <UhB

(7)

WhereUA andUB are terminal voltage amplitude of a branch, Δθ
is the voltage angle difference on both sides of a branch, all of
which can be obtained through the WAMS system.
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According to Eq. 7, there is a negative correlation between
LWCI and Δθ. The larger the Δθ, the smaller the branch stability
margin, the smaller the LWcI. Therefore, LWcI can be used to
prejudge the transient stability of the wind power system.

Further, according to Section 2.2, only the Δθ of the unstable
branch varies monotonously in (−180°, 180°). Thus, there are
significant differences in the trajectories between the unstable
branches and others in the plane with Δθ as the horizontal axis
and LWcI as the vertical axis.

Taking the wind power system in Figure 1B as an example, the
trajectory of each branch in LWcI-Δθ plane when the system is
stable and unstable is shown in Figure 2.

As shown in Figures 2A,B, the Δθ of all branches constantly
oscillate and decays when the power angle is stable. Taking one
period as an example, during t1∼t2, the Δθ increases, and the
stability margin of all branches decreases, so the trajectories in
LWcI-Δθ plane shows a monotonically decreasing trend, that is:

{ LWcI(ti) − LWcI(ti−1)< 0
Δθ(ti) − Δθ(ti−1)> 0 (8)

During t2∼t3, the Δθ of each branch decreases and the stability
margin increases, as shown in Eq. 9. Therefore, an “upward
inflection point” appears on the trajectory in LWcI-Δθ plane,
indicating that there is no risk of instability in this cycle.

{ LWcI(ti) − LWcI(ti−1)> 0
Δθ(ti) − Δθ(ti−1)< 0 (9)

As shown in Figure 2C, only the Δθ of B5-7 exceeds 180°,
which is the unstable branch. Corresponding to Figure 2D, only
the trajectory of B5-7 monotonically decreases, satisfying Eq. 8.
While for a branch which is still stable, because the extreme value
of Δθ exists, a “downward inflection point” appears. After
crossing the “downward inflection point”, as the system is
already unstable, the voltage of each node is still decreasing, so
the LWcI and Δθ both decrease, as shown in.

{ LWcI(ti) − LWcI(ti−1)< 0
Δθ(ti) − Δθ(ti−1)< 0 (10)

Therefore, the “unstable branch capture area”, which is shown in
Figure 2D, can be used to prejudge the system instability and screen
the unstable branch. If the trajectory of a branch always satisfies Eq.
8 and enters into the “unstable branch capture area”, which can be
expressed as in Eq. 11, the stability margin of the branch is
significantly reduced and the system is at risk of instability.

{ LWcI < LWcI(ti)< LWcI
Δθ <Δθ(ti)<Δθ (11)

Where LWcI and LWcI represent the lower and upper limits of
LWCI, respectively. Δθ and Δθ represent the lower and upper
limits of Δθ, respectively.

3.2 Unstable Branch Screening Process
The system instability prediction and unstable branch screening
process proposed in this paper is shown in Figure 3. After the

FIGURE 2 | Analysis of branch trajectory characteristics (A) is the Δθ-t curve of different branches when the system is stable (B) is the LWcI-Δθ curve of different branches
when the system is stable (C) is the Δθ-t curve of different branches when the system is unstable (D) is the LWcI-Δθ curve of different branches when the system is unstable.
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FIGURE 3 | Process of instability prediction and unstable branch screening.
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fault is cleared, the voltage phase angle difference of each branch is
firstly calculated. As shown in Eq. 12, if it is greater than the
threshold, the stability margin of the branch needs further analysis.

Δθi >Δθth (12)

Secondly, calculate LWcI of the branch which satisfies Eq. 12.
If the value is lower than the threshold as shown in Eq. 13, the
stability margin is already small, and it is necessary to monitor the
trajectory in the LWcI-Δθ plane.

LWcIi ≤ LWcIth (13)

Thirdly, if the trajectory of the branch satisfying Equation 12
and Equation 13 in the LWcI-Δθ plane always satisfies Eq. 8, the
stability margin of the branch keeps decreasing and the risk of

instability keeps increasing. When the trajectory satisfies Eq. 11,
that is, it enters into the “unstable branch capture area”, the
branch can be considered as an unstable branch.

Finally, traverse all branches in turn, and then repeat the steps
above based on the data at the next sampling moment until all
unstable branches constitute a splitting section.

4 CASE STUDY

In order to verify the effectiveness of the method proposed in this
paper, the IEEE-118 system with wind farm integrated is built on
the PSS/E platform. As shown in Figure 4A, the synchronous
generators on the bus 89, 100 and 103 are replaced by wind farms,

FIGURE 4 | The transient response of the IEEE-118 wind power system (A) is the diagram of IEEE-118 system with wind farms (B) is power angle curves of
generators (C) is the voltage phase angle difference of branches (D) is the LWcI-t curve of different branches (E) is the LWcI-Δθ curve of different branches during the
period of 0.39 and 0.51 s.
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the capacity of which is 450, 300 and 300 MVA, respectively.
Meanwhile, another wind farm with capacity of 75MVA is
integrated at the bus 25. Assume that the output power of
wind farms equals to the rated power, and the load power is
4252 MW, so the penetration rate of wind power is 26.46%.

According to Eq. 7, when the voltage on both sides is equal and
the Δθ is equal to 130°, LWcI � 0.41. Considering that the system
is still stable at that time, so set LWcIth � 0.4,θth � 20°. According
to the variation rule of Δθ of an unstable branch, set LWcI � 0,
and LWcI � 0.2, Δθ � 80° and Δθ � 180°. It is worth mentioning
that the setting parameters of the “unstable branch capture area”
can be adjusted. The larger the Δθm and the smaller the LWcI, the
stronger the reliability of the criterion but the worse the speed.

Assume that a three-phase short circuit failure occurs on branch
8–30 at 0.1 s, and lasts 0.2 s. The transient response of the system is
shown in Figures 4B–E. Considering that there are too many
branches, only the branches whose voltage phase angle difference is
greater than 20° are displayed. According to Figures 4B,C, the
power angle of G10 and G12 increases rapidly after the fault is
cleared, and the voltage phase angle difference of branch 8–30
13–15 14–15 and 16–17 continues to increase, indicating that G10

and G12 lose stability compared with other generators, and the out-
of-step center is located on branch 8–30 13–15 14–15 and 16–17.

As shown in Figure 4D, the LWcI of each branch is monotonically
decreasing when the fault is removed, indicating that the stability
margin of each branch declines continuously. Around 0.39s, the LWcI
of branch 8–30 firstly decreases to 0.4, satisfying Eq. 13. And the
program begins to monitor the trajectory of each branch in the LWcI-
Δθ plane to screen the unstable branches. Corresponding to Figure 4E,
the trajectories of the branch 8–30 13–15 14–15 and 16–17 in the
LWcI-Δθ plane are always monotonously decreasing, and enter into
the " unstable branch capture area” at 0.45, 0.47, 0.48 and 0.49 s
respectively. It indicates that the above branches are all unstable and
constitute a splitting section, as shown by the red dashed line in
Figure 4A. By contrast, at 0.49 s, the trajectories of the branch 9–8,
10–9, 11–13 are located at points B, C and D respectively. Obviously,
there have been inflection points in the trajectories of branch 9–8 and
10–9, indicating that there is no out-of-step center on branch 9–8 and
10–9. For branch 11–13, the trajectory still drops monotonically, so it
still needs to be monitored. But according to “upward inflection point”
in the trajectory during the period of 0.49–0.51 s, it can be judged that
branch 11–13 are not unstable branch, either.

In summary, the unstable status of the system can be
prejudged and all unstable branches can be accurately
screened at 0.49 s using the method in this paper. If the
traditional method (Tang et al., 2015) is adopted, the complete
splitting section cannot be obtained until the system is already
unstable at 0.57 s. Therefore, compared with other methods, the

method proposed in this paper can prejudge unstable status of the
system and screen all the unstable branches earlier under the
premise of ensuring correctness, and thus reserve more time for
emergency control such as splitting control.

5 CONCLUSION

An instability prediction method and an unstable branch
screening method are proposed in this paper. Some
conclusions are summed up as follows. Firstly, when the wind
power system loses stability, the bus voltage amplitude drops, and
the voltage phase angle difference of the unstable branch
increases, which are the key response information mapped on
the branch. Secondly, according to the response information, an
indicator called line weak-connection index (LWcI) is built to
assess the stability margin of a branch. The smaller the LWcI, the
smaller the stability margin of the branch. Thirdly, the trajectories
of different branches are different in the plane composed of LWcI
and voltage phase angle difference. Only the trajectory of the
unstable branch shows a monotonically decreasing trend, while
there are “upward inflection points” or “downward inflection
points” in the trajectories of other branches. Depending on the
difference of trajectory characteristics, the unstable branch can be
accurately screened.
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Numerical Weather Prediction
Correction Strategy for Short-Term
Wind Power Forecasting Based on
Bidirectional Gated Recurrent Unit
and XGBoost
Yu Li, Fei Tang*, Xin Gao, Tongyan Zhang, Junfeng Qi, Jiarui Xie, Xinang Li and Yuhan Guo

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

Accurate short-term wind power forecasting (WPF) plays a crucial role in grid scheduling
and wind power accommodation. Numerical weather prediction (NWP) wind speed is the
fundamental data for short-term WPF. At present, reducing NWP wind speed forecast
errors contributes to improving the accuracy ofWPF from the perspective of data quality. In
this article, a variational mode decomposition combined with bidirectional gated recurrent
unit (VMD-BGRU) method for NWP wind speed correction and XGBoost forecasting
model are proposed. First, several NWP wind speed sub-series are divided by VMD to
obtain more abundant multidimensional timing features. BGRU is applied to establish the
potential relation between decomposed NWP wind speed sub-series and measured wind
speed and get the proposed wind speed correction model. Then, a more clear regression
forecasting model is trained based on XGBoost using historical measured wind speed and
power. The corrected NWP wind speed is used to forecast wind power by XGBoost.
Finally, the superiority of the proposedmethod is validated on a wind farm located in China.
The results show that the proposed correction model and forecasting model outperform
other compared models.

Keywords: short-termwind power forecasting, wind speed correction, bidirectional gated recurrent unit, variational
mode decomposition, ensemble learning

INTRODUCTION

Low-carbon economy is a worldwide problem of facilitating sustainable development (Li et al., 2021).
In the past, coal, oil, and natural gas were the main primary energy, resulting in the rapid rise of
carbon emissions, and global warming posed a threat to humans, directly or indirectly (Wang et al.,
2019). Electrical energy is a vital form of energy. Constructing a new power system with a high
penetration rate of new energy in the direction of low carbon is an effective way to reduce carbon
emissions. In recent years, new energy power generation based on wind and solar energy has
developed rapidly. According to the data released by Global Wind Report 2021, the global wind
power installed capacity has reached 743 GW in 2020, of which 93 GW is newly installed (Global
Wind Energy Council, 2021). It is widely recognized that wind power generation is one of the most
potential and environmental energy resources (Okumus and Dinler, 2016). However, large-scale
integration of wind power disrupts the balance of supply and demand in the power grid and brings
huge challenges to safe and economic operation of the power grid (Zhang et al., 2021). Therefore,
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accurate and reliable wind power forecasting (WPF) is an
important segment for improving energy efficiency and
ensuring safe operation of future power systems (Zhang et al.,
2020; Zheng et al., 2017).

There are many kinds of classification methods. According to
the timescales, very-short-term (Zhao et al., 2019), short-term
(Yang et al., 2019), medium, and long-term prediction (Liu and
Chen, 2019) are included. In general, there is no strict timescale.
Ultrashort-term (from minutes to hours) prediction is used to
balance load and control wind turbine in real-time; short-term
(from hours to days) forecasting is utilized to formulate power
generation plans and arrange reserve capacity; medium- and
long-term prediction (from weeks to years) is vital for
planning of windmills and site selection (Chen et al., 2017).
Four types of modeling theory are grouped: physical method,
traditional statistical method, artificial intelligence (AI) method,
and hybrid method. The physical method requires detailed wind
farm background data and numerical weather prediction (NWP),
which shows better performance in medium- and long-term
prediction with high-quality NWP (Hu et al., 2020). The
traditional statistical method is represented by autoregressive
integrated moving average (ARIMA) (Singh et al., 2021),
seasonal autoregressive integrated moving average (SARIMA)
(Liu et al., 2021), multilayer perceptron (MLP) (Deo et al., 2018;
Shen et al., 2021b), and extreme learning machine (ELM) (Li
et al., 2016), showing great accuracy in very-short-term
prediction. And, many clustering methods are used (Shen
et al., 2020). The AI method is popular for WPF under high-
dimensional and big data conditions. (Shen and
Raksincharoensak., 2021b). For example, an artificial neural
network (ANN) (Song et al., 2018) such as back propagation
neural network (BPNN), wavelet neural networkWNN, and deep
neural network (DNN) (Shen et al., 2021a), such as long short-
term memory (LSTM) (Liu et al., 2018), gated recurrent unit
(GRU) (Niu et al., 2020), and deep belief network (DBN) (Wang
et al., 2018). The hybrid method can integrate the advantages of
multiple methods, including a combination of the
hyperparameter optimization algorithm and forecasting
model (Khalid and Javaid, 2020; Zhu et al., 2020; Shen et al.,
2017; Shen and Raksincharoensak., 2021a), weighted
combination of prediction results of multiple models (Wu
and Xiao, 2019; Yang et al., 2018), and stacked combination
of multiple models (Liu et al., 2021, Yan et al., 2018). In recent
years, cutting-edge AI technologies represented by ensemble
methods have emerged, among which extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016; Yang et al.,
2021a) is the most typical. There are many applications in
forecasting. Zheng and Wu, (2019) use the XGBoost model
with weather similarity analysis and feature engineering to
predict wind power. Liao et al., 2019 use XGBoost to
evaluate similarity between the forecasting and historical days
for load forecasting. Choi and Hur, (2020) use random forest
(RF), XGBoost, and LightGBMs as ensemble models to forecast
photovoltaic power. Besides, the forecasting objective can be
grouped to wind turbine, single wind farm, and regional wind
farm. This article concentrates on the short-term WPF for a
single wind farm.

At present, lots of studies focus on optimization and
refinement of the prediction model. However, the
improvement of WPF accuracy depends more on data quality.
NWP data, measured wind data and power data, are used for
WPF. In general, measured data are more consistent with
physical phenomena than historical forecast data, and it is
important for very-short-term WPF to make full use of its
time-series autocorrelation. NWP is the indispensable data
source for short-term WPF since the time series recursion
method causes error accumulation based on measured data.
However, the resolution and accuracy of NWP are limited,
and technical breakthroughs cannot occur in the short term.
How to improve the power prediction accuracy under the current
NWP accuracy level is a problem that needs to be studied. NWP
wind speed correction is an effective way to improve the WPF
accuracy from the perspective of the data, not the prediction
model. Dong et al. (2013) use a linear correction model based on
wavelet transform to correct the low-frequency stationary
component of NWP wind speed, but it ignores the
information on other frequencies. Zhang et al. (2019) propose
a bias-correction method using an average, variance trend to
correct the simulated wind speed based on historical data. Hu
et al. (2021) propose a hybrid NWP wind speed correction model
based on principal component analysis and improved deep belief
network. Wang et al. (2019) propose a sequence transfer
correction algorithm to correct the NWP wind speed and to
obtain the correction results under different time steps, which is
suitable for very-short-term WPF. Zhao et al. (2017) divide wind
speed forecasting series into segments and combine the Cuckoo
search optimized fuzzy clustering and a priori algorithm to
correct weather research and forecasting (WRF) wind speed.
Yang et al. (2021b) propose an expanded sequence-to-
sequence (E-Seq2Seq)–based data-driven SCUC expert system
for dynamic multiple-sequence mapping samples, which can
accommodate the mapping samples of SCUC and consider the
various input factors that affect SCUC decision-making as the
first study about SCUC problems (Yang et al., 2021c; Yang et al.,
2019). It has strong generality, high solution accuracy, and
efficiency over traditional methods. Therefore, how to make
full use of the potential relationship between NWP wind speed
and historical measured wind speed and propose a method for
short-term forecasting of wind speed correction are still worth
studying.

This article proposes a variational mode decomposition and
bidirectional GRU (VMD-BGRU) correction strategy for NWP
wind speed and applies the optimized NWP wind speed to
forecast wind power using the ensemble learning method
XGBoost. First, in order to enrich the features of the input
data, the VMD algorithm is used to decompose the NWP
wind speed. The BGRU is used to correct the NWP wind
speed based on the potential correlation between the multiple
decomposed NWP wind speed sub-series and the measured wind
speed. Then, the XGBoost algorithm is utilized to build the
forecasting model according to the regression relationship
between the measured wind speed and power, and the
corrected NWP wind speed is input into the prediction model
to obtain the short-term prediction results of wind power. Finally,
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the evaluation metrics is used to assess the performance of NWP
wind speed correction and wind power forecasting.

The remainder of this article is organized as follows. In Section
2, the whole flowchart is simply generalized, and the basic theory
of VMD, BGRU, and XGBoost is explained. Case study and
discussion about the proposed method are shown in Case Study.
Conclusion concludes this article.

METHODS

The framework of the proposed NWP wind speed correction
strategy for short-term wind power forecasting is shown in
Figure 1. First, the original NWP wind speed series is
enriched by the VMD algorithm. The NWP wind speed is
corrected with the measured wind speed as the target by the
BGRU correction model. Then, the forecasting model based on
XGBoost is trained with measured wind speed and power. Finally,
improved forecasted wind power is obtained using corrected
NWP wind speed as input.

The NWP Wind Speed Correction Strategy
In the wind farm operation, the measured data mainly include
wind speed, wind direction, air pressure, humidity, and
temperature from the wind tower and the active output
power of the wind farm from the SCADA. NWP is a
method used to predict the state of atmospheric movement
and weather phenomena by solving the operating equations of
atmospheric movement by means of large computers under
given initial and boundary conditions of the atmosphere (Al-
Yahyai et al., 2011). However, the NWP applied to wind power
forecasting is provided by meteorological products purchased
by third-party forecasting platforms, which contain
meteorological information, such as wind speed and
direction, at different heights in a specific area
(Heppelmann et al., 2017; Shen et al., 2020). In this article,

only the measured wind speed at the hub and the NWP wind
speed at 70 m are considered.

As we all know, the atmosphere is full of chaos, and there is no
absolutely accurate forecast of wind speed. The difficulty of wind
power forecasting caused by the inaccuracy of wind speed forecast
is mainly reflected in the regression characteristics of wind speed
and power. Generally speaking, the power of wind turbines is
proportional to the third power of wind speed (Xu et al., 2021).
The power curve of the wind farm is slightly fuzzy compared with
that of the wind turbine, as shown in Figure 2. However, if the
measured wind speed is replaced by NWP wind speed, as shown
in Figure 3, the regression characteristics will be seriously lost.
Moreover, NWP wind speed is generally less than the measured
wind speed. For example, the range of NWP wind speed is
concentrated in 0–8 m/s, while the measured wind speed is
concentrated in 3–12 m/s. Obviously, the measured wind
speed cannot be predicted in advance, which will bring
difficulties to the WPF. Therefore, it is necessary to correct
NWP wind speed.

First, the VMD algorithm is used to enrich the original NWP
wind speed series by decomposing it to several sub-series. Then,
the correction model is established by BGRU based on
decomposed NWP wind speed and measured wind speed. The
VMD algorithm and BGRU are explained as 2.2.1 and 2.2.2,
respectively.

The VMD Algorithm
VMD is a new signal decomposition estimation method proposed
in 2014 (Konstantin and Dominique, 2014) which aims to
decompose the original complex signal into K sub-series with
different central frequencies. The VMD method uses non-
recursive and variational modal decomposition to process the
original signal, which has better robustness to the
measurement noise.

It is assumed that f is the original NWP wind speed series.
{uk(t)}, k � 1, 2, . . . , K is the decomposed intrinsic modal

FIGURE 1 | Frame of short-term wind power forecasting.
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function (IMF) with finite bandwidth. First, for each IMF, the
corresponding analytic signal is calculated by Hilbert
transformation, so its unilateral spectrum is shown in Eq. 1.
Then, the analytical signals of each IMF are mixed with the

estimated central frequency e−jωkt, and the spectrum of each
IMF is modulated to the corresponding baseband, as shown in
Eq. 2. Finally, the Gaussian smoothing method of
demodulated signals is used to estimate the bandwidth of

FIGURE 3 | Relation between NWP wind speed and wind power.

FIGURE 2 | Relation between measured wind speed and wind power.
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each IMF and solve the variational problem with constraints.
The optimization problem can be described preliminarily as
Eq. 3 shows.

[δ(t) + j

πt
] p uk(t), (1)

[(δ(t) + j

πt
) p uk(t)]e−jωkt, (2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{uk},{ωk}
⎧⎨⎩∑

k

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣zt[(δ(t) +

j

πt
) p uk(t)]e−jωkt

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2⎫⎬⎭

s.t.∑
k

uk � f

(3)

where {uk} � {u1, u2, . . . , uK}; {ωk} � {ω1, ω2, . . . ,ωK}. In
order to solve this variational problem, there are two
steps. First, the constrained variational problem is
transformed into a non-constrained variational problem
by introducing the quadratic penalty factor α and the
Lagrange multiplication operator λ(t), in which the
quadratic penalty factor can guarantee the signal
reconstruction accuracy in the presence of Gaussian noise,
and the Lagrange operator keeps the constraint conditions
strict. Then, the alternating direction method of multipliers
is adopted to search the “saddle point” of the extended
Lagrange expression by alternately updating
un+1k ,ωn+1

k , and λn+1. The detailed derivation is available in

FIGURE 4 | Results of VMD.

FIGURE 5 | (A) Structure of the GRU cell. (B) Structure of GRU.
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the study by Konstantin and Dominique (2014). Finally, the
solution ûn+1k (ω), central frequency ωn+1

k , and λn+1 are written
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûn+1
k (ω) �

f̂(ω) −∑
i≠k
ûi(ω) + λ̂(ω)

2
1 + 2α(ω − ωk)2

ωn+1
k �

∫ ∞

0
ω|ûk(ω)|2dω

∫ ∞

0
|ûk(ω)|2dω

λ̂
n+1(ω) � λ̂

n(ω) + τ⎡⎣f̂(ω) −∑
k

ûn+1
k (ω)⎤⎦

(4)

In brief, the steps of the VMD algorithm are summarized as
follows.

Step 1: Initializing {û1k}, {ω1
k}, {λ1k}, and n and determining the

number of IMF K.
Step 2: Updating uk, ωk, and λ according to Eq. 4.
Step 3: Stopping the iteration if given error e> ∑

k
||ûn+1k −

ûn2k ||/ûnk||; otherwise, returning to step 2.

Take the NWP wind speed series at 2000 sampling points
for example. As Figure 4 shows, IMF 1 to IMF 9 are the
decomposed sub-series. There is no mode aliasing existed in all
the IMFs. Therefore, VMD shows perfect performance in
decomposing the non-stationary NWP wind speed signal.
The selection of parameters, such as K and α, is discussed
in the case study.

The BGRU Network
In this section, the correction model comprising BGRU is
proposed. The basic building block GRU cell and its working
scheme are presented at first. Then, BGRU is obtained by
connecting two unidirectional GRUs.

The structure of a GRU cell and unidirectional GRU’s
working scheme are shown in Figure 5. An update gate zt
and a reset gate rt contribute the basic function of the GRU
cell. They are computed as Eq. 5 shows. The GRU updates the
hidden state ht by calculating the hidden state ht−1 of the
previous moment and the external input xt of the current
moment as Eq. 6 shows. GRU has the ability of long-term
memory of useful information because of the flexible control
and coordination of these gates.

[ zt
rt
] � σ[Wz Uz

Wr Ur
][ xt

ht−1
] + [ bz

br
] , (5)

h̃ t � tanh(W ~ht
xt + U ~ht

(rt ⊙ ht−1) + b~ht
), (6)

ht � zt ⊙ h̃ t + (1 − zt) ⊙ ht−1, (7)

where Wz, Wr, W ~ht
, Uz, U r, and U ~ht

denote weight matrixes,
respectively, bz, br, b~ht

denote bias, respectively, ~ht is the
intermediate variable, σ denotes the activation function, and ⊙
denotes the Hadamard operation.

For the abovementioned GRU, variables are updated from
the past to the future, so there is monodirectional dependence
between the hidden states. Specifically, as shown in Figure 5, ht
is related to all inputs (xt−h+1, xt−h+2, . . . , xt), while the hidden
state at the last time ht−1 has nothing to do with xt. Therefore,
only the final hidden state can fully utilize all input
information, while the hidden state at other times does not
consider the subsequent inputs for monodirectional GRU. To
overcome this disadvantage, BGRU uses both forward and
reverse GRUs with chronological relationship to make full use
of all input information. Figure 6 shows the structure of
BGRU. The hidden state of BGRU ht,BGRU is calculated as
Eq. 8.

ht,BGRU � [ �ht ⊕ h
←
t] , (8)

where �ht and h
←
t represent the hidden state of forward and reverse

GRU, respectively, and ⊕ denotes the sum of the corresponding
elements.

The Ensemble Forecasting Method
The forecasting model is described in this section. XGBoost is
a boosting ensemble learning algorithm which iteratively
generates new trees by continuously fitting the residuals of
the previous tree and constructs the tree model into a classifier
with higher accuracy and stronger generalization ability
(Chen and Guestrin, 2016), which is widely used in lots of
Kaggle competitions and has achieved good results in recent
years. Compared with GBDT, the XGBoost has the following
advantages. The XGBoost algorithm uses Hessian matrix to
expand the loss function Taylor to the second order,
transforms the original optimization problem into convex
function to obtain the optimal solution, and solves the
distributed computing problem which is difficult to
implement in the GBDT algorithm. In addition to this,
XGBoost regularizes the complexity of the tree and reduces
the possibility of overfitting the model. Therefore, wind and

FIGURE 6 | Structure of BGRU.
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power data can be better fitted by the XGBoost algorithm, and
forecasting error is reduced, and higher prediction accuracy is
achieved.

For the dataset G � (xi, yi) with n samples and m features,
where |G| � n, xi ∈ Rm, andyi ∈ R, the predicted value of the
model is obtained from Eq. 9,

ŷi � ∅(xi) � ∑Z
z�1

fz(xi) , (9)

where fz(x) � wq(x), wq(x) is the score of x, ŷi is the sum of all
the scores. q is the structure of each tree, and Z is the number of
the trees. Each fz corresponds to an independent tree structure q
and leaf weight w; the newly generated tree fits the residual of the
last prediction. The iteration process is shown as follows.

⎧⎪⎨⎪⎩
ŷ(0)
i � 0

ŷ(1)
i � f1(xi) � ŷ(0)

i + f1(xi)
ŷ(z)
i � ŷ(z−1)

i + fz(xi)
, (10)

where ŷ(z)
i is the forecasted value after z iterations of the ith

sample, and ŷ(0)
i is the initial value of the ith sample. The

objective function that needs to be minimized is shown as follows.

Lobj � ∑n
i�1
l(ŷi, yi) +∑Z

z�1
Ω(fz) , (11)

Ω(fz) � γT + 1
2
λ||w||2 , (12)

where l(ŷi, yi) is a differentiable convex loss function between the
prediction and target. Ω(fz) is a regularization term, representing the
complexity of the tree. The smaller the function value is, the stronger the
generalizationability of the tree is.T is thenumberofmiddlenodesof the
tree; w is leaf node fraction; γ is the penalty coefficient of the number of
leaf nodes; and λ is the penalty coefficient of the L2 regularization term,
which smoothen the learning weights of leaf nodes to avoid overfitting.

The iterative function based on additive training can be written
as Eq. 13. Then, the second-order Taylor approximation of the
original objective function is written as Eq. 14.

L(z)
obj � ∑n

i�1
l(ŷi, ŷ(z−1)

i + fz(xi)) + Ω(fz) , (13)

L(z)
obj ≈ ⎛⎝∑n

i�1
l(ŷi, ŷ(z−1)

i ) + gifz(xi) + 1
2
hif

2
z(xi)⎞⎠

+⎛⎝γT + λ

2
j � 1∑T

j�1
w2

j + C⎞⎠,

(14)

where gi � zl(yi, ŷ(z−1)
i )/zŷ(z−1)

i and hi � z2l(yi, ŷ(z−1)
i )/z

(ŷ(z−1)
i )2. After removing all the constant terms, the objective

function is rewritten as a function about the leaf node fraction as
follows.

L(z)
obj ≈ ∑T

j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij

gi
⎞⎠wj + 1

2
⎛⎝∑

i∈Ij

hi + λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + γT, (15)

where j is the traversal on the leaf node; wj is the score of the jth
leaf node; and Ij � {i|q(xi) � j} represents the samples on the jth

leaf node. Finally, the optimal solution of the objective function is
written as Eq. 16, where Gj � ∑i∈Ij gi and Hj � ∑i∈Ij hi. The
minimum of Eq. 15 is rewritten as Eq. 17.

wp
j � − Gj

Hj + λ , (16)

L(z)
obj optim � −1

2
∑T
j�1

G2
j

Hj + λ
+ γT . (17)

Here, L(z)obj optim represents the maximum gain loss when
selecting a tree structure. The smaller the value is, the better
the model is. During training, XGBoost greedily uses error
functions to continuously improve the current model.

CASE STUDY

In this section, the actual wind farm data are utilized to support
two experiments which are designed to verify the proposed NWP
wind speed correction strategy and wind power forecasting
method. The wind farm data include measured wind speed,
measured wind direction, output wind power, and NWP from
January to December 2019, which are sampled at a period of
15 min. However, only wind speed and power are used in this
study since the relation between wind speed and wind power is
mainly focused. This wind farm is located in eastern China,
whose installed capacity is 85 MW.

The following experiments are implemented on a Windows
10 PC with AMD Ryzen 5 3550H, 2.1 GHz CPU, 16 GB of RAM
and Python 3.8 with PyTorch 1.8.1.

The case study is divided into two parts, NWP wind speed
correction and power forecasting. First, the NWP wind speed is
corrected according to the measured wind speed by the VMD-
BGRU correction strategy, which is to validate the effectiveness of
the proposed wind speed correction strategy. And then, the
forecasting model is trained by measured wind speed and
wind power using the XGBoost algorithm since the measured
data have clearer mapping. Finally, the corrected NWP wind
speed is input to forecast wind power.

Performance Criterion
For the purpose of evaluating the correction and forecasting
performance of the proposed strategy, the root mean square
error (RMSE) and mean absolute error (MAE) are used as the
performance criterions. In addition, the evaluation metrics of
wind speed correction and WPF are a little bit different.
Obviously, the smaller the value, the better the
performance of the proposed model. These equations are
defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSEp �

"""""""""""""
1
N

∑N
i�1
(Pi − P̂i

C
)2

√√
× 100%

MAEp � 1
N

∑N
i�1

∣∣∣∣Pi − P̂i

∣∣∣∣
(18)
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FIGURE 7 | Results of NWP wind speed correction. (A) Result for the first week of March. (B) Result for the first week of June.

TABLE 1 | Evaluation results of corrected wind speed.

NWP BGRU corrected VMD-BGRU corrected

RMSEv (m/s) MAEv (m/s) RMSEv (m/s) MAEv (m/s) RMSEv (m/s) MAEv (m/s)

March Day 1 1.351 1.014 1.791 1.461 1.788 1.408
Day 2 1.851 1.547 1.265 0.956 1.193 0.944
Day 3 1.748 1.408 1.181 0.92 1.089 0.882
Day 4 1.415 1.186 1.308 1.128 1.16 0.964
Day 5 1.939 1.666 1.582 1.278 1.313 1.07
Day 6 1.37 1.153 1.021 0.828 0.912 0.743
Day 7 0.997 0.771 0.963 0.721 0.948 0.677

June Day 1 1.963 1.726 1.202 0.93 1.057 0.818
Day 2 2.129 1.872 1.528 1.307 0.799 0.674
Day 3 1.167 0.878 1.602 1.307 1.501 1.145
Day 4 1.522 1.277 1.087 0.857 1.063 0.887
Day 5 1.47 1.2 1.089 0.88 0.761 0.589
Day 6 1.85 1.583 0.939 0.752 0.604 0.504
Day 7 1.523 1.21 1.477 1.151 0.985 0.785
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RMSEv �

"""""""""""""
1
N

∑N
i�1
(Vi − V̂i)2

√√

MAEv � 1
N

∑N
i�1

∣∣∣∣Vi − V̂i

∣∣∣∣
, (19)

where Pi, P̂i are ith actual wind power and forecasting power, Vi,
V̂i are ith measured wind speed and corrected wind speed, C is the
installed capacity of the wind farm, RMSEv, MAEv, and RMSEp,
MAEp are the evaluation criterions of wind speed correction and
wind power forecasting, respectively, and N is the total number of
test samples.

Data Processing
For one thing, the wind farm data have some abnormal data
caused by wind curtailment, power cuts, failure of measuring
device, and so on, which should be deleted. For another,
normalization is required to eliminate the different data
ranges between wind speed and wind power to better meet
the requirement of model training, which is expressed as
follows:

xi′ � xi − xmin

xmax − xmin
, (20)

where xi′ is the ith normalized value, xi is the ith real value before
normalization, and xmax and xmin are the maximum and
minimum value in the dataset, respectively. The real value is
also obtained by Eq. 20 to calculate the evaluation metrics.

The Results of NWPWind Speed Correction
In this section, the accuracy of NWP wind speed is improved
through the VMD-BGRU correction strategy. To verify the
superiority of the proposed correction strategy, the original
NWP wind speed and corrected wind speed by BGRU is
compared with VMD-BGRU. The result of the first week (a
total of 672 sample points) in March and June is taken as a test
dataset. Accordingly, the training dataset is the previous
3 months (a total of 8640 sample points). Besides, RMSEv and
MAEv are used as evaluation metrics, whose units are m/s.

The number of IMF K is determined by observing central
frequency. If the IMFs with close center frequency appear, it is
considered to be over-decomposed. There are 8640 NWP wind
speed samples that need to be decomposed in the testing set. TheK
is chosen as 6 by the traversal method. α is the default value 2000. τ
is 1e-6 to ensure the fidelity of the actual signal decomposition. The

number of BGRU layers is set to 2. The sub-series decomposed
from NWP wind speed is fed into the BGRU network which
extracts complex relation between multi-frequency domain signal
and measured wind speed. Besides, a fully connected layer is used
to transform the flattened vector to one dimension. The learning
rate and epochs are set to 5e-3 and 300, respectively. Adam
optimizer and MSELoss are used for model training.

The discussion about the experiment is described below. Figure 7
shows the performance of the proposed correction strategy in the
first 7 days in March and June. Obviously, the measured wind speed
is higher thanNWPwind speedmost of the time. The average NWP
wind speed and measured wind speed were 5.271 and 6.532 m/s in
2019, respectively. In addition, the fluctuation of measured wind
speed is more severe than that of NWP wind speed. The 7 days’
evaluation result is summarized in Table 1. Here are some findings
summed from these statistical data.

(1) The proposed correction method performs better than NWP
wind speed forecasting. Take these data for example. In
March, the RMSEv and MAEv of VMD-BGRU corrected
wind speed are smaller than that of NWP wind speed in
test days except day 1. The NWPwind speed forecasting is not
always inaccurate, and the correction model tends to raise it.
Thus, a small amount of negative correction is inevitable, but it
is beneficial to improve the accuracy of the forecast wind speed
on the whole. The average RMSEv and MAEv of the VMD-
BGRU model are 1.200 and 0.955 m/s in March, respectively,
which reduced to 0.324 and 0.294 m/s compared with NWP
wind speed, respectively. Moreover, the average RMSEv and
MAEv of the proposed model are 0.967 and 0.780 m/s in June,
respectively, which reduced to 0.693 and 0.612 m/s compared
with NWP wind speed, respectively. Overall, the result
confirms the efficiency of the proposed strategy.

(2) The VMD-BGRU also show a little advantage than BGRU.
For instance, the average RMSEv and MAEv of the BGRU
correction model are 1.302 and 1.042 m/s, respectively, while
the average RMSEv and MAEv of the proposed model are
0.101 and 0.086 m/s less, respectively, inMarch. And, in June,
the average RMSEv andMAEv of the BGRU correction model
are 1.275 and 1.026 m/s, respectively, while the average
RMSEv and MAEv of the proposed model are 0.308 and
0.246 m/s less, respectively. The result indicates that VMD
can enrich the information of NWP wind speed signal by
decomposing it to several sub-series in different frequencies.
From this result, it is clear that the VMD-BGRU correction
strategy shows better performance than compared strategies.

However, some limitations are found in this case. First, NWP
wind speed is difficult to capture the abundant small-scale
fluctuation information of measured wind speed, which is widely
accepted. Even after the proposed wind speed correction, the
measured wind speed fluctuation information is still hard to be
described perfectly. In addition to this, the proposed wind speed
correction does not always correct NWP wind speed positively. The
complicated topography brings many uncertain factors to wind
speed prediction, but there are always a few periods of accurate
NWP forecasting. Inevitably, there will be negative corrections, for

TABLE 2 | Hyper-parameter selection of XGBoost.

Hyper-parameter Searching result Search
range and step

Number of estimators 15 {1,200,1}
Eta 0.35 {0.01,0.9,0.05}
Max depth 5 {1,10,1}
Min child weight 1 {1,10,1}
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example, NWP wind speed in day 3 of June and day 1 of March is
incorrected. Despite the very low probability of negative correction,
NWP wind speed can be effectively corrected most of the time.

The Results of WPF
In this section, the abovementioned NWP wind speed correction
strategy is applied to WPF to further validate its advantage. First

FIGURE 8 | Results of WPF. (A) Result for the first week of March. (B) Result for the first week of June. (C) Result for the first week of September. (D) Result for the
first week of December.
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of all, the power forecasting model is established according to the
measured wind speed and power. Then, the different forecasting
wind speed corrected by BGRU and VMD-BGU is utilized to
forecast power. Also, the original NWP wind speed is used as a
benchmark. Therefore, results are obtained to compare the
differences between these forecasting power and analyze the
reason. The design of the training set and testing set is the
same as The Results of NWP Wind Speed Correction. More
data are validated to enhance the wide availability in WPF. To
be specific, the first 7 days of September and December are added
for testing. Besides, RMSEp and MAEp are used as the evaluation
metrics. Additionally, the proposed XGBoost method is
compared with the traditional machine learning methods, such
as support vector regression (SVR) and MLP.

The hyper-parameter of XGBoost is important to the
performance of the forecasting model. Therefore, selecting the
appropriate hyper-parameters is the key to optimize the mode.
There are three types of hyper-parameters, including general
parameters, booster parameters, and task parameters. In this task,
some key hyper-parameters are tuned by grid searching, whose
detail is shown in Table 2.

The experiment is discussed below. There are four pictures in
different periods which are shown in Figure 8. For the sake of
description, prediction result under NWP wind speed, BGRU
corrected wind speed, and VMD-BGRU corrected wind speed are
renamed asMethod 1, Method 2, andMethod 3, respectively. The
daily forecast statistical results are shown inTable 3 and Table 4.
Here is the detailed discussion about these statistical data.

Method 3 outperforms well than other methods. For example, in
the first week of March, the average RMSEp and MAEp of Method 3
are 9.476% and 5.873MW, respectively, which reduced to 4.797% and
2.420MW than Method 1, respectively, and reduced to 2.217% and
1.138MW than Method 2, respectively. In the first week of June, the
average RMSEp and MAEp of Method 3 are 8.748% and 5.784MW,
respectively, which reduced to 6.899% and 3.712MW thanMethod 1,
respectively, and reduced to 3.880% and 2.150MW than Method 2,
respectively. Also, the similar result can be obtained from September
and December. It is worth noting that the forecasting performance is
less effective than Method 1 in day 3 of June and day 1 of March,
which corresponds to the negative wind speed correction. But, on the
whole, the experiment indicates that the proposed NWP wind speed
correction method is effective in improving the accuracy of WPF.

TABLE 3 | Evaluation results of the corrected wind speed in March and June.

Method 1 Method 2 Method 3

RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW)

March Day 1 11.164 5.543 14.586 8.673 10.685 6.669
Day 2 16.529 9.023 12.412 7.169 8.326 5.055
Day 3 16.392 8.455 10.882 6.023 8.723 5.134
Day 4 18.835 10.871 14.221 8.289 11.53 7.456
Day 5 22.791 15.86 15.714 10.841 13.585 9.357
Day 6 6.073 4.145 6.025 4.034 5.615 3.564
Day 7 8.126 4.157 8.013 4.049 7.87 3.878

June Day 1 14.486 8.533 9.391 6.346 6.68 4.458
Day 2 20.908 13.628 14.881 9.26 8.151 5.292
Day 3 10.572 5.728 13.734 8.522 9.233 5.874
Day 4 14.653 8.627 14.085 8.248 11.48 7.802
Day 5 18.385 11.797 12.278 8.293 9.542 6.999
Day 6 16.432 10.775 9.985 7.512 7.826 5.676
Day 7 14.089 7.425 14.045 7.359 8.322 4.39

TABLE 4 | Evaluation results of the corrected wind speed in September and December.

Method 1 Method 2 Method 3

RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW) RMSEp (%) MAEp (MW)

September Day 1 11.966 5.965 11.511 7.46 8.906 5.931
Day 2 17.618 10.113 11.989 7.455 11.135 7.378
Day 3 10.335 6.058 8.403 4.68 7.632 4.119
Day 4 12.037 7.621 11.461 7.434 10.25 6.72
Day 5 28.484 20.935 17.206 12.193 15.56 12.95
Day 6 15.868 10.273 9.172 5.773 8.935 5.839
Day 7 15.027 9.438 7.577 4.957 6.537 5.906

December Day 1 16.085 9.217 12.439 6.309 9.207 5.388
Day 2 13.558 7.313 13.442 7.124 13.228 7.017
Day 3 7.818 4.534 7.747 4.239 7.063 4.001
Day 4 6.939 4.039 5.075 3.231 5.062 3.109
Day 5 23.333 16.491 12.901 8.627 12.664 8.561
Day 6 8.26 4.954 7.795 4.715 7.116 4.61
Day 7 7.54 4.566 4.36 2.475 4.354 2.354
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In order to verify the XGBoost forecasting method, MLP and
SVR models, as the traditional machine learning methods, are
compared with it. Figure 9 shows the forecasted result. The
RMSEp of the XGBoost is 7.532%, while that of SVR andMLP are
8.522 and 10.95%, respectively, which shows the superiority of the
proposed prediction model.

CONCLUSION

This article proposes the VMD-BGRU method for the NWP
wind speed correction and XGBoost forecasting model. First,
the VMD algorithm is used to decompose the NWP wind speed
to get abundant input features. The BGRU is used to correct
the NWP wind speed based on decomposed NWP wind speed
sub-series and the measured wind speed. Then, the XGBoost
algorithm is utilized to establish the forecasting model using
measured wind speed and power. Finally, the corrected NWP
wind speed is input into the forecasting model to obtain the
short-term prediction results of wind power. From the
experimental results, some conclusions are drawn as
follows. For NWP wind speed correction, the proposed
method decreases the RMSEv and MAEv by 0.324 and
0.294 m/s in the first week of March, respectively, and 0.639
and 0.612 m/s in the first week of June, respectively, compared
with NWP. For WPF, using corrected NWP wind speed as
input decreases the RMSEp and MAEp by 3.54–6.89% and
2.29–3.71 MW on testing data, compared with NWP as input,

respectively. Moreover, the XGBoost forecasting model
outperforms than MLP and SVR. The results verify the
effectiveness of the proposed wind speed correction method
and WPF model.
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Research on Dynamic Response of
Slopes With Weak Interlayers Under
Mining Blasting Vibration
Xiaochao Zhang, Qingwen Yang*, Xiangjun Pei and Ruifeng Du

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu,
China

As blasting technology starts to be used in a wide range of areas, blast loading has led to
an increasing number of geological disasters such as slope deformation, collapses, and
soil slippage. Slopes with weak interlayers are more likely to be deformed and damaged
under the influence of blast loading. It is of great importance to study the evolution for the
deformation of slopes with weak interlayers during blasting excavation. This study
constructed a slope model with a weak interlayer to investigate the influence of
different factors of blasting, including explosive charge, blast radius, blast origin, and
multi-hole blasting, on the internal dynamic response. The deformation mechanism of
slopes with weak interlayers under the influence of blast loading was analyzed. Test results
show that each layer of the model had a different displacement response (uncoordinated
dynamic response) to blasting with various factors. Explosive energy and the pattern of
dynamic response of each layer varied depending on different settings of blasting factors
such as explosive charge, blast radius, blast origin, and detonation initiationmethod.When
the explosive energy produced under the influence of various factors was small, the
change in the uncoordinated dynamic response between layers was significant, and the
change gradually became less significant as the explosive energy increased. Therefore,
this study has proposed the concept of critical explosive energy, and it is speculated that
when the explosive energy produced with various factors is less than critical explosive
energy, the dynamic response is mainly affected by the internal structure of the slope
(property difference induced geologic layers). In other words, the uncoordinated motion of
material’s particles in each layer is caused by different limitations and the degree of
movement of the particles, which leads to the uncoordinated dynamic response and
uncoordinated deformation of each layer. If the explosive energy is greater than the critical
value, the dynamic response of each layer is mainly affected by the explosive energy. The
differences in the internal structure of the slope are negligible, and the incoordination of
dynamic responses between layers gradually weakens and tends to synchronize.

Keywords: factors of blasting, dynamic response, uncoordinated dynamics, uncoordinated deformation, mining
blasting vibration
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HIGHLIGHTS

1) Blasting engineering often induces instability of surrounding
slopes, especially slopes with weak interlayers.

2) Under the action of blasting vibration, the layers of slopes with
weak interlayers presented uncoordinated dynamic response.

3) Uncoordinated dynamic response leads to uncoordinated
deformation.

4) When the blasting energy is larger than the critical blasting
energy, the uncoordinated dynamic response tends to be
synchronized.

INTRODUCTION

In recent decades, as infrastructure and mine excavations
continue to develop rapidly, blasting technology has been used
in different types of large-scale engineering projects and mining
engineering. While blasting technology brings great benefits to
project construction, it also gives rise to an increasing number of
issues in slope stability. Up to 25 landslides were induced by
blasting in the Daye iron mine in Hubei province, China (Liu,
2009). Many landslides were caused by blasting excavation in a
limestone mining area in Mount Emei in Sichuan province (Bai
et al., 1995). At Pasir mine in Kalimantan, several slope failure
accidents were caused by blasting in layered deposits with a high
dip angle, resulting in considerable production interruption and
economic losses (Deb et al., 2011). Some other slope failure
accidents caused by blasting in different open-pit mines in
China can also be found in the literature reports (Li et al.,
2001; Luo et al., 2015; Song et al., 2017; Deng et al., 2018; He
et al., 2021). Blasting-generated seismic waves were the main
cause of disturbance to the overlaying open-pit slopes in
triggering instability of slopes (Dvořák, 1977; Singh and Singh,
1995; Jiang et al., 2018; Adushkin, 2019; Hempen, 2019).
Investigations into the effect of mine blast vibrations on the
surrounding slopes are the key point to assess the effect of blasting
on the stability of the nearby slopes. One of the most important
studies is to obtain the propagation and attenuation of the blast
vibration data in the rock slope by in situ monitoring of ground
vibration (Ozcelik, 1998; Kesimal et al., 2008; Lu et al., 2015; Fan
and Ge, 2020; Lu et al., 2020). Wang et al. (2007) studied the
dynamic responses of continuous rockmasses under blast loading
and found blast tensile damage induced by wave propagation. It
has been promoted that the level of rock fragmentation by
blasting was largely affected by the distribution of structural
planes (Ozcelik, 1998). Blasting acceleration was the main
cause of plane shear failure inside the slope (Kesimal et al.,
2008; Wang et al., 2019). Chang et al. (2007) conducted the
study of numerical modeling of blast wave propagation through
rock mass and effects of water and joints. With the development
of computer technology, codes, such as DDA, FLAC3D, ANSYS/
LS-DYNA, and GEO-SLOPE et al. are frequently adopted to
study the influence of blast on rock slopes.

Excepting blasting, although many factors such as rainfall,
geological conditions, and groundwater induce the loss of the
slope stabilities, control over blasting in quarry should be more

important since the geology of a pit cannot be changed. The
adverse effects of blasting operations can be controlled by
conducting optimization of the blast design. Blasting pattern,
such as hole depth and diameter, explosive charge, bench
geometry, blast timing, and position, is the key parameter
within the control of the blasting risk. Besides the different
blasting patterns having different influence on the dynamic
response of slopes with weak interlayers, more complicated
methods may be used for blasting, such as multi-hole blasting
and blasting from different angles. Peak particle velocity,
acceleration, and displacement are considered to be the
reliable vibration monitoring parameters (Hakan et al., 2009;
Li et al., 2021a; Li et al., 2021b).

The previous studies are mainly based on numerical or
physical simulations of the patterns of dynamic responses of
relatively homogeneous rock slopes under the influence of
blasting. Some scholars point out that the vibration intensity
caused by blasting is closely related to the lithology and structural
characteristics of rock mass (Görgülü et al., 2013; González-
Nicieza et al., 2014; Benchelha et al., 2017; Mohamad et al.,
2018). Therefore, compared with normal rock slopes, the
dynamic response of slopes with weak interlayers under blast
loading is different from that of normal rock slopes because of
their special geological structures. Under the influence of blasting
vibration, slopes with weak interlayers are more prone to
deformation and failure, and they can eventually cause
geological disasters such as landslides. However, there are few
research studies on the dynamic response of weak intercalated
slopes under different blasting patterns.

The purpose of this study is to better study the patterns of
dynamic response of slopes with weak interlayers in an actual
blasting process and provide a reference for engineering practice.
A typical blasting cracked slope in the Lingshi County of Shanxi
province of China was chosen as the case, and physical model
simulations of blast loading were constructed. Based on the
proto-model, we investigated the dynamic response patterns of
acceleration and strain of each layer of slope with a weak
interlayer under the influence of blasting factors such as
explosive charge, blast radius, blast directions, and multi-hole
blasting. In addition, the study has analyzed the deformation
mechanism of the slope with a weak interlayer under the effect of
blasting, which provides a theoretical basis for studying the
deformation and failure of slopes under blast loading.

PLANS OF BLASTING PHYSICAL
SIMULATION TESTS

Model Design
The study area is located in Lingshi County, Shanxi Province,
China. The area has rich mines in resources and has a long
history of mining, especially in recent years where coal mining
has become the main local industry. The unstable slope was
selected as the research object, which is located in Beizhuang
village, Lingshi County. The elevation of the rear edge of the
slope is about 1,005 m, and the elevation of the leading edge is
about 900 m. There is a slightly thick Quaternary mid-late
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Pleistocene loess on the top of the slope, bedrock exposed in the
middle and upper slope, and an overburden composed of
residual and slope sediments in the middle and lower part of
the slope. The slope is composed of a soft- and hard-
interbedded structure of sandstone and mudstone. Three
groups of joints are developed: the first group is a rock layer
(Sun et al., 2008; Wang, 2017), whose occurrence is 330–350° ∠
5–10° (dip direction ∠ dip angle); the second group is a steeply
inclined fissure J1, which is 330–340° ∠ 80–85°; and the third
group is a steeply inclined fissure J2, whose occurrence is
50–55° ∠ 75–80°. There are 20 mining points within 1 km of
the slope. The slope showed no signs of deformation before
2013. The closest to the slope is the ZL coalmine. In 2014, the
coalmine was mined, and cracks appeared on the rear edge of
the slope in June 2015. In 2016, the number of cracks increased
to 12, and rift troughs appeared on the left and right sides of the
slope. In 2017, 5 local rock avalanches occurred. By 2019, 18
cracks have been developed; the longest crack is about 35 m,
and the widest crack is about 1 m. According to Google Earth
images and a detailed visit to the study area, it was found that
there was no deformation before mining in 2014. Therefore, we
think that the effect of blasting vibration during the mining in
the mining area may be the main reason for the deformation
and damage of the slope.

The similarity between the test model and the prototype
(Table 1), and physical and mechanical parameters (Table 2)
were established based on the second theorem of similarity.
The hard rock was semiarid by materials composed of quartz

sand and barite powder. Gypsum and glycerin were used as the
cementing agent for hard rock. Regarding soft rock similar
materials, quartz sand and clay were used as aggregates for the
simulation of soft rock. Gypsum and paraffin were chosen to
cement other materials. Specific ratios and properties are listed
in Table 3. The test model was designed as shown in Figures 1,
2. It can be seen that the model consists of two parts. The
bottom part was the base of the mode, which was made of
cement mortar, and the upper part made of our similar
materials for the soft layer and hard layer was the
studied slope.

Blasting Equipment
The physical model test adopted the method of “explosive
blasting energy approximation”, and the test approximately
meets the explosion dynamic criterion. Due to the lack of site
blasting data, the explosive selected in this test is emulsion
explosive to provide a certain equivalent blasting load for a
similar model. This study aims to study the dynamic response
of the slope model under different weights of explosive
conditions. In addition, a plastic detonator with high safety
performance is selected, as shown in Figure 3. The parameters
of emulsion explosives are as follows: densityρc � 1.32 g/cm3,
detonation velocity Dv � 3,350 m/s, heat of explosion Qv � 4200 k
J/kg, and intensity △h � 11.5 mm. The specific amount of
explosive charge is listed in Table 4. The method of
decoupling charging was used for our tests. The upper part of
the blast hole was filled with bentonite, and the soil bags were

TABLE 1 | Similarity system for blasting physical model test.

Physical quantity Similarity Similarity coefficient (*controlled quantity)

Rock Weak interlayer

Density ρ Cρ 1.2 1.2
Elastic modulus E CE 30* 30*
Poisson ratio μ Cμ 1 1
Cohesion c Cc � CE 30 30
Internal friction angle Φ CΦ 1 1
Stress σ Cσ � CE Cε 30 30
Strain ε Cε � CρCg Cl CE

−1 8 8
Length l Cl 200* 200
Displacement u Cu � Cl Cε 200 200
Time t Ct � Cρ

0.5 CE
0.5 Cl 80 80

Frequency f Cf � Ct−1 0.0125 0.0125
Speed v Cv � Cρ

0.5 CE
0.5 6 6

Acceleration a Ca � Cρ
−1 Cl

−1 CE 0.125 0.125
Acceleration of gravity g Cg 1 1

TABLE 2 | Physical and mechanical parameters of blasting physical model and photo model.

Lithology Density ρ

(t/m3)
Elastic modulus

E (MPa)
Poisson ratio

μ

Compressive strength
σ c

(MPa)

Cohesion C
(kPa)

Angle of
internal friction

φ (°)

Sandstone Protomodel 2.57 12,000 0.28 58 2,200 45.8
Theoretical value of the model 2.20 400 0.28 1.95 73 45.30

Mudstone Protomodel 2.43 2,400 0.31 18.9 1,050 35.5
Theoretical value of the model 2.02 80 0.31 0.63 35 35.5
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prepared and covered the hole. After that, the plastic detonator
was detonated by using the high voltage spark.

Design of Testing
The factors of explosive charge, blasting radios, blasting
directions, and multi-hole blasting were considered in our

tests. The factor value shown in Tables 4, 5 was set according
to the “approximate blasting energy of explosives” (Yuan, 2016).
The value of 5, 7, and 10 g were used for the explosive charge
factor. There were 14 blasting holes used in our tests; 1–9 blasting
holes were used for the cases of explosive charge and blasting
radius. The cases for blasting directions were involved with the 9

TABLE 3 | Proportion of similar materials and related properties.

Similar
materials

Ingredients (%) Other
ingredients (%)

Compressive
strength

Elastic
modulus

Density

Barite powder
(clay)

Quartz
sand (40
mesh)

Gypsum Glycerin (liquid
paraffin)

Mixing water MPa MPa g/cm3

Hard layer 34.4 51.6 10.0 4.0 14.0 1.90 380.55 2.13
Soft layer 50.0 47.0 1.0 2.0 16.02 0.65 76.7 2.02

FIGURE 1 | Plan figure of the test model.

FIGURE 2 | Sectional view of the test model.
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and 12 blasting holes. There were three cases involving 1–3, 4–6,
and 10–14 blasting holes, respectively, for studying the effect of
multi-hole blasting. These values were also used for the multi-
hole blasting cases (Table 4). The blast radius of 100, 120, and
140 mm was used in our tests (Table 5).

RESULTS

Analysis of Acceleration Response
Characteristics
The time-series data of accelerations in the horizontal (X) and
vertical (Z) directions measured in the upper hard layer, soft
layer, and lower hard layer are shown in Supplementary Figure
S1. The acceleration time-history curves showed an asymmetrical
spindle shape. The blasting vibration was characterized by an
instantaneous feature. The duration of acceleration violent
fluctuations was very short. The main blasting vibration was
concentrated in a limited period of time in all our cases of test,
such as the duration of 0.013–0.03 s, in Supplementary Figure
S1A. The curve of the main blasting vibration is enlarged and
shown in Supplementary Figure S1B.

1) Analysis of acceleration characteristics of each layer with
different explosive charges

This section analyzes the data obtained from the blasting holes
1, 2, and 3 in the first plan (Table 4). Supplementary Figures 2–4
show the horizontal (X) acceleration characteristic curves of the
upper and lower hard and soft layers with explosive charges of 5,
7, and 10 g, respectively.

It can be seen from the figures that when the amount of
explosive charge was small (5 g), the difference in acceleration
response of different layers was large. The acceleration response
of the lower hard layer was the largest, that of the soft layer was
second and the upper hard layer, the third. The peak acceleration
of the three layers from the largest to the smallest was lower hard
layer > soft layer > upper hard layer. The peak and minimum
values of the accelerations for each layer were different, and there
was a clear displacement. With the increase of the explosive
charge (such as 7 and 10 g), the acceleration difference between
each layer gradually decreased, and at the same time, the

FIGURE 3 | Materials for blasting physical simulation test.

TABLE 4 | Design of blasting plans.

Plan Factors of blasting Blast holes Charge (g/hole) Detonation initiation method

1 Explosive charge 1, 2, and 3 7, 5, and 10 Single-hole blasting
4, 5, and 6 7, 5, and 10 Single-hole blasting
7, 8, and 9 7, 5, and 10 Single-hole blasting

2 Blast radius 2, 5, and 8 5 Single-hole blasting
1, 4, and 7 7 Single-hole blasting
3, 6, and 9 10 Single-hole blasting

3 Blast origin 9, 12 10 Single-hole blasting

4 Multi-hole blasting 1, 2, and 3 5 Simultaneous blasting
4, 5, and 6 7 Simultaneous blasting

10, 11, 12, 13, and 14 10 Simultaneous blasting

TABLE 5 | Blast radius for each group of blast holes.

Blast holes in groups Blast radius (cm)

① ② ③

1 2 3 140
4 5 6 120
7 8 9 100
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displacement in peaks and valleys of each layer gradually
disappeared and tended to synchronize. It can be seen that
when the amount of the explosive charge was small, the
explosive energy was small and the acceleration response
between each layer was mainly affected by the material
medium, which shows an uncoordinated dynamic variation,
i.e., the lower hard layer > soft layer > upper hard layer. As
the amount of explosive charge increased, it resulted in the
increase of the explosive energy. The acceleration response due
to the influence of the material medium in each layer decreased
gradually, while the influence of the explosive energy on the
acceleration response increases. It can be predicted that there
might be a critical value of blasting energy. When the explosive
charge reaches a certain critical value and the explosive energy
reaches the critical explosive energy, the acceleration response
will be mainly affected by the explosive energy. The
uncoordinated dynamic response of different layers will also
be disappeared and tend to change synchronously. The
horizontal (X) acceleration characteristic curves between layers
show similar response characteristics in the cases of blast holes 4,
5, 6, 7, 8, and 9.

Based on the analysis of the vertical (Z) acceleration
characteristic curves (Supplementary Figures S5–S7), it can
be seen that the response characteristics are slightly different
from that of the horizontal (X) acceleration curves. Overall, the
acceleration response characteristics in the vertical (Z) direction
of each layer are as follows: lower hard layer > soft layer > upper
hard layer. At the same time, the peaks and valleys in the
acceleration trace for each layer still have displacement.
However, the acceleration response of the soft layer in the
vertical direction was more violent than that of the horizontal.
The amplitude of the acceleration in the soft layer was even close
to or exceeded that in the lower hard layer at a certain time. The
displacement in the peaks and valleys of the acceleration trace of
the soft layer and the lower hard layer at the same time was
relatively small, but at the same time, the values at the peaks and
valleys of acceleration were much larger than that of the upper
hard layer. However, with the increase in the amount of the
explosive charge, the displacement in the peaks and valleys for
each layer gradually became more and more synchronized.

According to the horizontal (X) acceleration response
characteristics of each layer, it can be seen that when the
explosive charge was small, the movement of the medium
particles of each layer was slightly limited in the horizontal
direction, and the nature of the restricted motion of the
medium particles of each layer was basically the same.
Therefore, the acceleration response characteristics (lower hard
layer > soft layer > upper hard layer) were more prominent, and
the anomalies were not prominent. However, by analyzing the
acceleration response characteristics in the vertical (Z) direction,
it can be speculated that when the amount of the explosive charge
was small, there were obvious differences in the limitation of the
movement of the medium particles in different layers in the
vertical direction.

Given different material properties in each layer, the particle
density is different. The movement space of the media particles in
each layer is then different. In addition, during blasting vibration,

the density of the material medium increases with the depth.
Considering all the above, the motion of the medium particles in
the lower hard layer is more restricted in the vertical direction
than in the soft layer. Therefore, the acceleration of the soft layer
in the vertical direction responded more violently, and its
variation even approached or exceeded that of the lower hard
layer at a certain time. Theoretically, the motion limit of the
medium particles in the upper hard layer is smaller than that of
the lower hard layer, and its vertical acceleration response should
be greater than that of the lower hard layer. However, in reality,
the reflection or superposition cancellation occurred when the
blasting wave reached the soft layer in the process of bottom-up
propagation, leading to the weakest vertical acceleration response
in the upper hard layer. It should be mentioned that when the
amount of the explosive charge is sufficient and can generate
energy more than the critical explosive energy, regardless of the
horizontal or vertical acceleration of layers, the variation in the
response will tend to synchronize. In other words, the
uncoordinated dynamic variation of the dynamic response of
different layers will be gradually weakened. In this regard, the
dynamic response is mainly affected by the blasting energy and is
little affected by the material medium.

2) Analysis of acceleration characteristics of each layer with
different blast radii

Based on the analysis of the test data of the second group of
blast holes (2, 5, and 8), the trend curve of the peak acceleration of
each layer with the distance to the center of the blast was
obtained, as shown in Supplementary Figures S8, S9. The
influence of blast radius on the acceleration response
characteristics of each layer can be summarized as follows:

① The acceleration response of each layer tended to decay
with the increase in the blast radius. Specifically, at the same
measurement point, the farther the distance to the explosion
source, the smaller the acceleration. The peak acceleration
value appeared to decline as the blast radius increased.
② Different levels of acceleration have different attenuation
trends. The attenuation trend of the acceleration of the lower
hard layer was the most significant, and the attenuation of the
acceleration response of the soft layer and the upper hard layer
was relatively slow.
③ Horizontal and vertical acceleration attenuation rates were
different. The horizontal acceleration decay rate in the lower
hard layer was less than the vertical acceleration decay rate; the
horizontal acceleration decay rates in the soft layer and the
upper hard layer were slightly greater than the vertical
acceleration decay rates;
④ It can be predicted that when the blast radius is small and
reaches a certain limit value and the explosive energy reaches
the critical explosive energy, the acceleration response
attenuation rate of each layer will tend to be consistent.
Data analysis results of the first and third groups of blast
hole tests were similar.

3) Analysis of acceleration characteristics of layers in different
blast directions
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Based on the analysis of the test data of hole 12 at the bottom
of the slope model and hole 9 at the leading edge of the slope, their
characteristic acceleration curves are shown in Supplementary
Figures S10–15. Specifically, Supplementary Figures S10–12 are
the horizontal acceleration characteristic curves in the lower
hard layer, soft layer, and upper hard layer, respectively.
Supplementary Figures S13–15 are the vertical acceleration
characteristic curves. Overall, the acceleration response of each
layer is different in different blast directions. Specifically:

① The acceleration response of each layer during blasting at the
bottom was stronger than that of the leading edge. As shown in
Supplementary Figures S10–12, during blasting at the bottom
of the slope, the maximum values of the peak horizontal
acceleration in the lower hard layer, soft layer, and upper
hard layer could reach 48.75332, 50, and 39.851071,
respectively. During blasting at the leading edge of the slope,
the maximum values of the peak horizontal acceleration in the
above layers were 30.822168, 29.33868, and 17.92352,
respectively. This pattern was more significant in the vertical
acceleration response (Supplementary Figures S13–15).
② The vertical acceleration response of the same layer was
more sensitive to blast directions than the horizontal
acceleration. As shown in Table 6, when the location of the
explosion source was different, the mean differences of the peak
horizontal acceleration of the lower hard layer, soft layer, and
upper hard layer were 18.3376, 21.8050, and 18.1285, respectively.
The mean differences of the peak vertical acceleration of the
above layers were 27.1788, 28.0374, and 30.9529, respectively. It is
clear that when the blast directions were different, the vertical
acceleration response of each layer was stronger.
③ Regarding the soft layer and the upper hard layer, the use of
bottom blasting had a stronger effect on the acceleration than
the leading edge blasting, mainly due to the different
propagation methods of the blast wave.

(4) Analysis of acceleration characteristics of each layer during
multi-hole blasting

Supplementary Figures S16, 17 show the time-history curves
of horizontal and vertical acceleration of each layer when holes 1,
2, and 3 were simultaneously detonated. Unlike single-hole
blasting, the acceleration response of each layer during multi-
hole blasting exhibits two instantaneous violent fluctuations,
which have been amplified separately in characteristic
acceleration curves I and II (Supplementary Figures S18–21),
respectively.

Based on the analysis of characteristic acceleration curves Ⅰ and
Ⅱ, it can be known that the acceleration response characteristics of
each layer during multi-hole blasting were still lower hard layer >

soft layer > upper hard layer. At the same time, the peaks and
valleys in the acceleration trace for each layer were different, and a
clear displacement was observed. This result indicates that the
acceleration response of each layer is in an uncoordinated
dynamic change, indicating that there is an uncoordinated
deformation characteristic between each layer. This pattern is
more prominent in the vertical acceleration characteristic curve,
but it gradually weakens in the horizontal acceleration
characteristic curve. It is mainly related to the difference in
the restricted nature of the movement of the medium particles
in different directions in each layer and the reflection or
superimposed cancellation of the blast wave from the bottom
to the top. The principle is the same as explained before.

It is worth noting that even if the explosive charge, blast radius,
and blast origin were the same, the explosive energy produced by
multi-hole blasting was much larger than that produced by
single-hole blasting. Therefore, during multi-hole blasting, the
uncoordinated dynamics of the acceleration response between
layers in the slope with weak interlayers is relatively weak.

Analysis of Strain Response Characteristics
In order to obtain effective strain wave waveforms and strain
wave parameters (i.e., strain wave peak value and time) of each
layer in the model, the data collection frequency was adjusted
appropriately, and the clutter was filtered out to process the
recorded signal in order to obtain strain time-history curves that
can truly reflect the deformation characteristics of each layer in
the model (Supplementary Figures S22, S23). A strain time-
history curve is roughly divided into three parts: front, middle,
and tail. The strain fluctuations in the front part were small,
indicating that there was no major deformation in each layer. The
severe strain fluctuations in the middle part indicate that the
media in each layer were subjected to tensile or stamping under
the action of stress waves, and tensile or compressive strains
began to occur inside with large strain fluctuations. The strain
fluctuation of the tail part was relatively stable, indicating that a
certain degree of plastic creep appeared in each layer as the stress
wave gradually disappeared. The middle and tail parts of the
strain time-history curves were selected for analyzing the strain
response characteristics of layers. The middle and tail parts of the
strain time-history curves are referred to as the strain
characteristic curve Ⅰ and the strain characteristic curve Ⅱ
(Supplementary Figures S24–S27).

1) Analysis of strain response characteristics of each layer with
different explosive charges

Supplementary Figures S22–S27 are the strain time-history
curves and corresponding strain characteristic curves of each

TABLE 6 | Mean differences of the peak horizontal and vertical acceleration of each layer in different blast directions.

Mean difference of peak acceleration
in different directions

Lower hard layer Soft layer Upper hard layer

Mean difference of peak horizontal acceleration 18.3376 21.8050 18.1285
Mean difference of peak vertical acceleration 27.1788 28.0374 30.9529
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layer during the single-hole blasting of holes 2 and 3 when the
charges were 5 and 10 g, respectively.

Compared with the strain characteristic curve I, it can be seen
that when the explosive charge was small (e.g., 5 g), the
fluctuation of the strain response of each layer was violent and
complex, and the duration was longer (about 0.2 s); the strain
fluctuation of the soft layer was much greater than that of the
upper and lower hard layers. The strain fluctuations of the upper
and lower hard layers were basically synchronized. When the
explosive charge was large (e.g., 10 g), the strain response
fluctuations of each layer were gentle and simple, and the
duration was short (only 0.007 s); the strain fluctuation of the
soft layer was greater than that of the upper and lower hard layers.
Similarly, the strain fluctuations of the upper and lower hard
layers were basically synchronized. The above results suggest that
when the explosive charge is small, the stress provided by the
generated explosive energy is close to the yield strength of the soft
layer and is far less than that of the upper and lower hard layers,
resulting in severe yield deformation of the soft layer and further
causing complex strain fluctuations in the upper and lower hard
layers. When the explosive charge is large, the generated explosive
energy can overcome the yield strength of each layer of the
material medium, causing direct plastic deformation of each layer
and regular strain fluctuations as the blasting vibration continues.

Based on the analysis of the strain characteristic curve II, it can
be known that a certain plastic creep has occurred in each layer
after blasting, and the creep continued to occur as the stress wave
gradually disappeared. The difference between the two curves is
that when the amount of the explosive charge was small, the plastic
creep of the soft layer was the largest, followed by the lower hard
layer and the upper hard layer, both of which were tensile strains.
When the explosive charge was large, the plastic creep of the lower
hard layer was the largest, followed by the upper hard layer and the
soft layer, both of whichwere tensile strains, and the plastic creep of
each layer presented a similar pattern of fluctuations. Following the
same logic as before, when the amount of explosive charge is small,
the soft layer has severe yield deformation, resulting in tensile
fracture of the internal structure, and then large creep fluctuations
occur. In addition, due to the severe yield deformation of the soft
layer, small tensile deformation occurs inside the upper and lower
hard layers, which leads to smaller creep fluctuations in the later
period. When the explosive charge is large, each layer has direct
plastic deformation. The upper and lower layers have brittle
fractures, given the features of the material, while the soft layer
has elastoplastic damage. Although the three layers have shown
similar patterns of fluctuations, the strain values differed greatly in
the tail section of the fluctuation, and the plastic deformation of the
soft layer recovered to a certain extent. Therefore, the strain value
of the soft layer was smaller than that of the upper hard layer and
then the lower hard layer.

It should be noted that uncoordinated deformation
characteristics of layers were observed regardless of the
amount of explosive charge. In addition, the strain time-
history curve and the strain characteristic curve obtained after
the blasting of hole 1 with 7 g charge was similar to the curves
obtained after the blasting of hole 3 with 10 g charge.

The vertical and radial strains of different layers have shown
similar characteristics, but there were slight differences. This is
mainly related to the limited nature of the movement of the
medium particles, so it will not be further explained here.

2) Analysis of strain response characteristics of each layer with
different blast radii

Supplementary Figures S28. S29 are the trend lines of the
variation of the peak horizontal strain of each layer with the
distance to the center of the blast during the single-hole blasting
of holes 1, 4, and 7 (with 7 g charge) and holes 3, 6, and 9 (with
10 g charge). It can be seen from the figures that ①The strain
response of each layer decreased with the increase of the blast
radius; ②The peak strain of different layers shows a different
degree of attenuation trend with the increase of the blast radius;
the soft layer has the largest attenuation rate, followed by the
lower hard layer and the upper hard layer;③ It can be predicted
that as the blast radius increases indefinitely, the peak strain
attenuation rates of layers will tend to be consistent.

The pattern of variation of the peak vertical strain with the
distance to the center of the blast is similar to that of the
horizontal strain.

3) Analysis of the strain response characteristics of each layer in
different blast directions

Based on the analysis of data about blasting holes 9 and 12
(with 10 g charge), the horizontal and vertical strain time-history
curves of each layer during blasting from different origins are
shown in Supplementary Figures S30. It is evident that the
patterns of the strain response of each layer are different in
different blast directions. Overall, the strain response of each layer
was faster during blasting at the bottom of the slope model, and
each layer had a certain plastic creep. The radial residual creep
strain was larger than the vertical residual creep strain. However,
during the blasting of the leading edge of the slope, the strain
response of each layer was relatively slow, and the strong response
occurred between 2 and 3 s without a large residual creep strain.

In the comparison of radial and vertical strains, the reason why
the radial residual creep strain was greater than the vertical
residual creep strain is mainly related to the limited nature of
the motion of medium particles. The principle is the same as
before, so it will not be analyzed again here.

It is worth noting that blast holes 9 and 12 have a small distance
to the center of the blast and large charges, so the blasting of these
holes can generate large blast energy. Therefore, the trend of the
strain response of each layer was close to the same (Supplementary
Figures S31, S32), but uncoordinated deformation could still be
observed, which is consistent with the previous analysis. When the
explosive energy reaches the limiting value, the dynamic response
of each layer is mainly affected by the explosive energy, and the
material medium has little effect on the response.

4) Analysis of response characteristics of each layer strain during
multi-hole blasting
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As analyzed before, the acceleration response of each layer
during multi-hole blasting fluctuated violently twice.
Correspondingly, each layer also had two violent strain responses
during multi-hole blasting. Figures 4, 5 are the radials and vertical
strain time-history curves of each layer when the blast holes 1, 2, and
3 were simultaneously detonated (with 5 g charge). In a similar way
as before, the two strain fluctuations in the acceleration time-history
curve for multi-hole blasting were amplified and presented in strain
characteristic curves I and II (Figures 6–9).

It can be seen from the figure: ① During multi-hole blasting,
the strain response of each layer showed two violent fluctuations,
of which the first fluctuation was greater than the second
fluctuation; ② The overall strain response characteristics
appear to follow the pattern of soft layer > lower hard layer >
upper hard layer; ③ The patterns of strain response of different
layers were approximately synchronous, but uncoordinated
deformation still occurred, which was more obvious in the
vertical strain characteristic curve. It can be seen that when
the explosive charge, blast radius, and blast direction were the
same, the explosive energy produced by multi-hole blasting was
greater than that of single-hole blasting; each layer was more
affected by the explosive energy, and the material medium has
little effect on the response.

ANALYSIS OF THE UNCOORDINATED
DEFORMATION MECHANISM

Based on the above test results, it can be known that under the
influence of blasting, there is certain incoordination in the
dynamic response of each layer of the slope with weak
interlayers. Specifically ① The incoordination of the particle
movement of the material in each layer is reflected by the
uncoordinated dynamics of the acceleration response of the
layers; ② Due to the uncoordinated movements of particles, it
will inevitably lead to the uncoordinated deformation inside the
medium, which can be seen from the uncoordinated pattern of
strain characteristics of different layers.

According to the test results, with large explosive charge, small
blast radius, bottom blasting, and multi-hole blasting, the

dynamic responses of different layers appeared to be
synchronized, and the incoordination gradually weakened.
From another perspective, this result suggests that when the
explosive energy is small (less than the critical explosive
energy), the dynamic response of each layer of the slope is

FIGURE 4 | Time-history curve of the radial strain of each layer during simultaneous blasting of Nos 1, 2, and 3.

FIGURE 5 | Time-history curve of the vertical strain of each layer during
simultaneous blasting of Nos 1, 2, and 3.

FIGURE 6 | Radial strain characteristic curve Ⅰ of each layer during
simultaneous blasting of Nos 1, 2, and 3.
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mainly affected by the internal structure of each layer under the
effect of blasting. In reality, the surrounding slopes are often
within the influence range of small explosive energy. Therefore,
the deformation of the slope is mainly affected by the internal
structure of each layer, which requires special attention.

Uncoordinated Particle Motion
Based on the analysis of the acceleration response characteristics,
it can be known that there is an uncoordinated dynamic variation
in the acceleration responses of different layers, and such
variation is more significant between the horizontal and
vertical directions. This may be related to the uncoordinated
movement of medium particles in each layer during the blasting
process.

In the blasting test, the acceleration sensor can be seen as a
particle, and the vibration of the stress wave can be regarded as
the movement of the particle. In each layer in a slope with a weak
interlayer, the particle motion is not only affected by the stress
wave but also by the size of the space it is located.

① Due to the different dielectric materials of the upper and
lower hard layers and the soft layer, the density of the media in
each layer and the movement space of the media particles are

different. In addition, the stress wave is reflected,
superimposed, and destructed during the propagation
process from bottom to top, so the movement of the
medium particles in each layer is different, presenting
uncoordinated dynamic movements;
② As blasting vibration progresses, the density of the slope
media particles increases with depth, which results in the
vertical motion of the media particles in each layer being
more restricted than the horizontal direction. Therefore, the
vertical (Z) acceleration characteristic curve is slightly different
from the horizontal (X) acceleration characteristic curve, but
both of them have shown uncoordinated dynamic responses.

Uncoordinated Deformation
Considering the uncoordinated movements of medium particles
in each layer and different yield strengths and ultimate strengths
of the material, it will inevitably lead to uncoordinated
deformation of the layers, which is mainly reflected by the
difference in the plastic creep of the layers. When the
explosive energy is small, the difference is particularly
significant, indicating that the slope deformation is mainly
affected by the internal structure of each layer. For example,
when the explosive charge was small (5 g), the radial strain
characteristic curve I of each layer under blasting of hole 2 shows
that the strain fluctuation of the soft layer was much larger than
that of the upper and lower hard layers, while the strain
fluctuations of the upper and lower hard layers basically
synchronized. This result suggests that when the explosive
charge is small, the stress provided by the generated
explosive energy is close to the yield strength of the soft layer
and is far less than the yield strength of the upper and lower hard
layers, resulting in severe yield deformation of the soft layer and
further causing complex strain fluctuations in the upper and
lower hard layers.

Since blasting vibration and seismic vibration have certain
similarities to the deformation and destruction of engineering
buildings, it can be inferred that during seismic vibration, there
may be uncoordinated deformation characteristics of the layers of
slopes with weak interlayers. This inference can be supported by a
previous study (Cui et al., 2019; Cui 2017; Cui, et al., 2021).

FIGURE 9 | Vertical strain characteristic curve Ⅱ during simultaneous
blasting of Nos 1, 2, and 3.

FIGURE 7 | Radial strain characteristic curve Ⅱ of each layer during
simultaneous blasting of Nos 1, 2, and 3.

FIGURE 8 | Vertical strain characteristic curve Ⅰ during simultaneous
blasting of Nos 1, 2, and 3.

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 81249210

Zhang et al. Slope Mining Blasting Vibration

265

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


SUMMARY

Based on blasting physical simulations, this study has investigated
the influence of explosive charge, blast radius, blast directions,
and multi-hole blasting on the dynamic response of a slope with a
weak interlayer. The conclusions are as follows:

1) With a certain amount of the explosive charge, the acceleration
response of each layer of the model showed a sharp fluctuation
during single-hole blasting, and the overall performance of the
three layers is as follows: lower hard layer > soft layer > upper
hard layer. The peak and valley values of the acceleration curves
of different layers appeared to be displaced, indicating that the
dynamic responses of different layers were inconsistent, and
their performance was slightly different in the vertical and
horizontal directions. In addition, the smaller the explosive
charge (such as 5 g), the more obvious the displacement of the
peak and valley values of the acceleration curve and the more
significant the uncoordinated dynamic responses. As the
explosive charge increased (i.e., 7g, 10 g), the displacement
of peak and valley values of the acceleration curve gradually
decreased, and the incoordination of the dynamic responses of
different layers gradually weakened and tended to synchronize.
During multi-hole blasting, similar characteristics were
observed as the above, but the acceleration response showed
two sharp fluctuations, and the uncoordinated dynamic
response gradually weakened.

2) The acceleration response of each layer decayed with the
increase of the blast radius, and the acceleration response
decay rate was different for different layers in different
directions. As the blast radius further increased, the
acceleration response decay rate of each layer gradually
synchronized.

3) The acceleration response of each layer was different in
different blast directions, and the acceleration response of
each layer was more violent during bottom blasting than
leading-edge blasting.

4) Under the effect of blasting, the strain waveform of each
layer changed in three phases: front, middle, and tail. The
strain curve of the middle phase fluctuated violently. The
strain fluctuation of the tail phase was relatively stable but
showed a certain degree of plastic creep. The uncoordinated
deformation of each layer was obvious in the middle and
tail phases. The uncoordinated deformation trend of
different layers changed in varying degrees depending on
the variation of blasting factors such as explosive charge,
blast radius, blast direction, and blasting method.

5) The uncoordinated dynamic response of each layer has caused
uncoordinated deformation. The uncoordinated dynamic
change in the response was particularly significant when
the explosive energy was less than the critical explosive
energy, indicating that the change was mainly affected by
the internal structure of the slope, i.e., the uncoordinated
movement of medium particles. Furthermore, it is closely
related to the strength of the material, propagation path of the
blast wave, refraction, and the degree of superposition
cancellation. When the explosive energy is large and

exceeds the critical explosive energy, it can be speculated
that the uncoordinated dynamic response of different layers
would gradually weaken and tend to synchronize.

The physical model applied in this study is generalized from
the geological prototype based on the similarity principle.
Although our results were based on the scale test, the dynamic
responses and basic laws of the slope model under blasting
loading were effective. The blasting vibration in the mining
area is very complex. It is difficult to fully meet the similarity.
The obtaining of on-site blasting data is also difficult. In this
study, the engineering analogy method was used to select blasting
parameters. We argue that the test results can show the influence
of the blasting dynamic load on the slope.

However, in actual working conditions, the surrounding
slopes are mostly within the influence range of the smaller
explosive energy. Our explosions are very close to the
measurement points. It would be better to vary the physical
model with blasts at distances farther away from those carried
out. The deformation of the slope far away from the blasting
position is mostly affected by the internal structure of the slopes.
It is advised to pay special attention to this kind of situation and
deploy appropriate measures to monitor any deformation. The
critical explosive energy needs to be further studied, and it should
be noted that the critical explosive energy varies with different
lithology. Research is still required on how to establish the
relationship between critical explosive energy and factors of
blasting, such as the explosive charge and blast radius. In
addition, the laws of motion for particles of different materials
under blasting vibration still need to be explored to confirm the
speculations in this study. It should be noted that more examples
are needed to verify these results. Its validity for real cases should
be supported by more research.
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Operation State Evaluation Method of
Smart Distribution Network Based on
Free Probability Theory
Jiaxin Zhang1, Bo Wang1*, Hongxia Wang1, Hengrui Ma2, Fuqi Ma1, Yifan Li1 and
Yingchen Zhang1

1School of Electrical Engineering and Automation,Wuhan University, Wuhan, China, 2Tus-Institute for Renewable Energy, Qinghai
University, Qinghai, China

In view of the current situation that the new generation of smart grids with “double high”
characteristics is in urgent need of effective state evaluation methods due to the
characteristics of strong volatility and diverse demands, a method of operation state
evaluation of smart distribution networks based on free probability theory is proposed,
which is combined with high-order moment indexes to describe the operation trajectory of
distribution networks from a data-driven perspective. First, the state assessment problem
of smart distribution networks is modeled as a binary hypothesis testing problem, and the
asymptotic free equation is established based on free probability theory to provide a
framework for state assessment of distribution networks. Then, a high-order moment
evaluation index is proposed, combined with the sliding time window processing, and the
high-order moment sequence was obtained based on the high-dimensional data of the
distribution network, which is used to describe the state evolution of the distribution
network. Finally, this method is applied to a certain 110-kV distribution network. The
analysis of an example shows that the proposed evaluation framework and indicators can
effectively reflect the data changes in the distribution network and support the state
assessment and evolution analysis of the distribution network.

Keywords: free probability theory, asymptotic spectral distribution, free convolution operation, distribution network
status assessment, moments

INTRODUCTION

As China proposes “to achieve carbon peak before 2030 and achieve carbon neutrality before 2060,”
improving overall energy utilization efficiency and focusing on developing renewable energy has
become an inevitable choice. The power system is closely related to the production, transportation,
and consumption of renewable energy, which also plays a key role in promoting energy
transformation (Zhou et al., 2018). Moreover, the new generation smart grid has the
characteristics of “double high”: the high proportion of renewable energy and the high
proportion of power electronic equipment. Distributed power supply, charging pile/station, and
controllable load, along with other devices, are developing rapidly, and their large-scale access to the
distribution network has brought strong uncertainties to the distribution network due to their
characteristics of strong intermittent and diverse demands, making the operation mode of the
distribution network increasingly complex and changeable.

As a pivotal link of energy, an intelligent distribution network is the key to the smooth operation
of “the production-supply-marketing” of electric energy. The ultimate goal of the intelligent
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distribution network is to build and form a panoramic real-time
system covering the distribution network. The basis of supporting
the panoramic real-time system of the distribution network is the
collection, transmission, and storage of panoramic real-time data
of the distribution network and the effective technology for rapid
analysis of massive multi-source data (Liu, 2010; Yang et al., 2019;
Shen and Raksincharoensak, 2021a; Yang et al., 2021a; Shen and
Raksincharoensak, 2021b; Yang et al., 2021b; Zhang et al., 2021).
The application of cloud computing, big data, Internet of Things,
5G information communication technology, and artificial
intelligence in the power system provides a data basis for the
realization of real-time state estimation and situation awareness
of the smart distribution network (Yang et al., 2018; Shen et al.,
2020a; Ma et al., 2020; Wang et al., 2020). However, the existing
distribution network state estimation and situation awareness
methods find it difficult to meet the requirements in many aspects
of calculation accuracy, calculation speed, and visualization.
Thus, it has become a hot topic for experts, scholars, and
engineers at home and abroad to construct an effective state
estimation and situation awareness system for the intelligent
distribution network to support comprehensive, accurate, and
real-time control of the operation situation of the distribution
network.

In the field of power system state assessment, apart from the
specific model method, classical research methods also include
the analytic hierarchy process (AHP), the fuzzy comprehensive
evaluation method, and principal component analysis (PCA).
The literature (Cao et al., 2007) has proposed a comprehensive
evaluation method for a new rural low-voltage distribution
network based on the AHP and realized practical application.
However, this method mainly solved the problems of distribution
network construction planning and transformation in the near
future and could not evaluate the real-time status. The literature
(Sun et al., 2017) combined PCA and system clustering analysis to
establish a comprehensive evaluation system of county power
grids, which could evaluate the power grid from five aspects of
security, economy, reliability, adaptability, and quality, but also
could not evaluate the real-time state.

In recent years, data-driven state assessment has also been
applied in the power field. The literature (Xu et al., 2016)
proposed a correlation analysis method based on random
matrix theory (RMT). Combining real-time separation window
technology with RMT, the mean spectrum radius (MSR) index was
used to evaluate the correlation of distribution network data. In the
literature (Xu et al., 2018), the evaluation indexes of the hit ratio
and the false alarm rate were proposed, and the vulnerability of the
distribution network was evaluated based on RMT. The literature
(He et al., 2017a) used the basic breakthrough of high-dimensional
statistics in recent years to put forward the research framework of
space-time big data of the distribution network based on the
random matrix. For power system fault identification, the
literature (Xu et al., 2019) proposed a feature self-learning
method based on deep learning for high-dimensional space-
time fault samples, which had fast calculation speed and strong
robustness. However, the method itself had high requirements on
source data but low comprehensibility. The literature (Wei et al.,
2016) proposed a high-dimensional power data fusion method

based on correlation mining in order to solve the key problem of
online stability analysis of large power grids. This method mainly
solved the problem of data fusion and did not directly evaluate the
status of the large power grid.

The key of power system state evaluation based on high-
dimensional big data should be the construction of an evaluation
framework and an evaluation index system and identification of a
power grid or equipment evolution situation. In this study, the
free probability theory (FPT) is introduced into the electric power
field for the first time in China, providing a complete and clear
evaluation framework for the operation status of the smart
distribution network, combining with sliding time window
processing to solve the high-dimensional source data to obtain
the time series of the index. In this study, the high-order moment
index is also proposed to analyze the distribution network from
the perspective of the state assessment and evolution trend and is
applied to the state assessment of the 110-kV distribution
network to verify the effectiveness of the proposed method.

FREE PROBABILITY THEORY AND BIG
DATA PROCESSING METHODS

Introduction to Free Probability Theory
A random matrix is a matrix whose elements are random
variables. Through the high-dimensional statistical analysis,
important information can be extracted from massive
disordered data in a random matrix.

Free probability theory can provide an effective analysis
framework for the asymptotic spectrum distribution of high-
dimensional random matrices. In the 1980s, Voiculescu proposed
FPT to deal with abstract “non-commutative space,” and the random
matrix is a special case of “non-commutative space” (Dan, 1986;
Voiculescu, 1987). The purpose of FPT is to introduce a concept
similar to “independence” in classical probability theory, namely,
“freedom,” and make it applicable to non-commutative random
variables such as random matrices and extend it to the case of large
dimensions, namely, “asymptotic freedom.”

Different from traditional mathematical theory, FPT defines
some new operators, including additive-free convolution ⊞ and
its inverse operation additive-free deconvolution ⊟,
multiplicative-free convolution ⊠ and its inverse operation
multiplicative-free deconvolution ⊡, similar to the addition,
subtraction, multiplication, and division operations in classical
mathematics. Based on the asymptotic spectrum theory of RMT,
combining the concept of asymptotic freedomwith the above new
operators, some difficult problems in classical mathematics can
be solved. In traditional mathematics, if and only if two matrices
are commutative, the eigenvalues of their sum matrix or product
matrix can be obtained from their respective eigenvalues. In FPT,
if two random matrices are asymptotically free and their
respective asymptotic spectral distributions are known, the
asymptotic spectral distributions of their sum matrix or
product matrix can be obtained and vice versa. It is worth
mentioning that in FPT, the semicircular law is similar to the
classical Gaussian distribution, that is, the normalization of the
free random matrix (given spectral distribution) and the spectral
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distribution of matrix converge to the semicircular law; the
Marchenk–Pastur law (M-P law) is similar to the classical
Poisson distribution, that is, the normalization of those single-
rank free random matrices and the spectral distribution of
matrices converge to the M–P law (Tulino and Verdu, 2004).

FPT has become a powerful tool to describe the
characteristics of wireless communication systems.
Spectrum sensing algorithms based on FPT have fast
convergence, which are also suitable for the limited number
of samples, and have high sensing performance in the case of
low signal-to-noise ratio (Tulino and Verdu, 2004). Domestic
and foreign scholars have made great academic achievements
in this field. This study is the first attempt to apply the FPT to
the electric power field, which selects the operation of the
smart distribution network as the application scenario and
evaluates the operation status of the distribution network
based on FPT, providing real-time and efficient support for
intelligent operation and maintenance.

Free Probability Theory

Definition. 1 (Dan, 1986) The empirical spectrum distribution of
an N ×N random matrix BN is defined as follows:

μBN
(x) � 1

N
∑N
i�1
I(λi(BN)≤x), (1)

where λi(BN), i � 1, 2, . . . , N are the eigenvalues of BN, I(·) is the
indicator function.

In RMT, the asymptotic spectral distribution (ASD) is the
empirical spectral distribution of BN when N → ∞, which is
represented by the symbol μB, and can be expressed uniquely by
the following moment:

mk � lim
N→∞

1
N

E{tr(Bk
N)} � ∫xkdμB(x), (2)

where tr(·) represents the rank of the matrix and k represents the
order of moments. In mathematics and statistics, moments can
represent the distribution and morphological characteristics of
variables. The specific moment algorithm of the method
proposed in this study will be introduced in detail in
Calculation of High-Order Moment Index section.

As mentioned above, Voiculescu proposed FPT in order to
introduce the concept of “freedom” and summarize the law
applicable to non-commutative variables such as random
matrices, which is similar to the law in classical probability
theory.

Random matrices are just one kind of non-commutative
variable, and non-commutative variables are all elements of
“non-commutative probability space.” The concept of a non-
commutative probability space is as follows.

Definition. 2 (Couillet and Debbah, 2011) Let B be a non-
commutative algebraic system with unit element I; if ϕ is a
linear function on B and meet ϕ(I) � 1, then the order pair
(B, ϕ) is called a non-commutative probability space.

For random matrices, the identity element I is the identity
matrix IN, and ϕ is defined as follows:

ϕ(C) � 1
N

∑N
i�1
E{Cii} � 1

N
E{tr(C)}, (3)

where C ∈ B, Cii represents the ith row and the ith column
element of C. It can be seen from Eq. 3 that ϕ is the function of
solving the moment. This kind of non-commutative probability
space meets trace lemma, that is, ϕ(ab) � ϕ(ba).

Definition. 3 (Couillet and Debbah, 2011) Let (B, ϕ) be a non-
commutative probability space, and for all n-dimensional
sequences (b1b2 . . . bn), if ϕ(b1b2 . . . bn) � 0 satisfies the
following conditions:

1) bj ∈ Bij, where ij ≤K
2) i1≠i2,i2≠i3, . . . ,in-1≠in
3) for all j ∈ {1, . . . n}, ϕ(bj) � 0

Then, a family of the subalgebra systems of B {B1, . . . , BK}
is free.

Obviously, if {{b1}, . . . , {bn}} is free (each subalgebra system
consists of only one of their elements), then random variables
{b1, . . . , bn} are free.

Furthermore, let us extend the concept of “freedom” to
“asymptotic freedom.”

Definition. 4 (Couillet and Debbah, 2011) If the following two
conditions are met

1) for all k∈{1,. . .,K}, XN,K has an asymptotic spectral
distribution;

2) for all {i1,. . .in} ⊂ {1,. . .,K}, i1≠i2,i2≠i3, . . . ,in-1≠in and family of
unary polynomials {P1,. . .,Pn},

lim
N→∞

ϕ{Pj(XN,ij)} � 0, j ∈ {1, ..., n} (4)

and

lim
N→∞

ϕ
⎧⎨⎩∏n

j�1
Pj(XN,ij)⎫⎬⎭ � 0. (5)

Then the N ×N random matrix family {XN,1, . . . , XN,K} of
non-commutative probability spaces (BN, ϕ) is
asymptotically free.

Based on the above definition of asymptotic freedom,
combined with new operators such as additive-free
convolution, the following illustration is made. If two random
matrices AN∈ C

N × N and BN∈ C
N × N are asymptotically free,

with their asymptotic spectral distributions denoted as μA and μB,
respectively, and AN + BN is known to have asymptotic spectral
distribution μA+B, then

μA+B � μA ⊞ μB, (6)

where ⊞ is called additive-free convolution, namely, μA+B is the
additive-free convolution of μA and μB.
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Furthermore, ⊟ is defined as additive-free deconvolution, that
is, if μC � μA ⊞ μB, then μA � μC ⊟ μB, and μB � μC ⊟ μA. So
additive-free convolution and additive-free deconvolution are
inverse operations of each other.

Similarly, if ANBN has an asymptotic spectral distribution μAB,
then

μAB � μA ⊠ μB, (7)

where ⊠ is called multiplicative-free convolution, namely, μAB is
the multiplicative-free convolution of μA and μB.

Furthermore, ⊡ is defined as additive-free deconvolution, that
is, if μC � μA ⊠ μB, then μA � μC ⊡ μB, and μB � μC ⊡ μA. So
multiplicative-free convolution and multiplicative-free
deconvolution are inverse operations of each other. Both
additive- and multiplicative-free convolution are commutative,
namely, μA ⊞ μB � μB ⊞ μA, μA ⊠ μB � μB ⊠ μA. In this way, non-
commutative variables (such as random matrices) can be
exchanged in the operation.

DISTRIBUTION NETWORK STATE
ESTIMATION METHOD BASED ON FPT

Data Pre-Processing
Supervisory Control and Data Acquisition (SCADA) is widely
applied in the power system and collects the branch power,
branch current amplitude, and node voltage amplitude in the
system with high maturity, mainly through the remote terminal
unit (RTU) and the feeder terminal unit (FTU) (Yang et al.,
2020a; Shen et al., 2020b; Zhu et al., 2020; Li et al., 2021a; Shen
et al., 2021a; Shen et al., 2021b; Qi et al., 2021; Xiang et al., 2021).
The data collected by SCADA has the characteristics of mass and
high dimension, so a high-dimension random matrix can be
constructed according to the collected data. Combined with the
sliding time window processing, the data characteristics of
the distribution network can be analyzed based on FPT, and
the distribution network state before and after can be compared
in time to further realize the evolution of the distribution network
operation state.

Assume that i nodes in the distribution network are equipped
with measuring devices, and the sampling interval is 0.01 s. At the
sampling time tn, i nodes each generate a state data (which can be
voltage, current, and power angle), and the state data of all nodes
at this time constitute a column vector x (tn), as shown in the
following formula:

x(tn) � [x1tn, x2tn, ..., xitn]T. (8)

When there are a total of j sampling moments, the j column
vectors are arranged to form a high-dimensional random matrix
Xi×j, as shown below:

Xi×j �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x11 x12 ... x1j

x21 x22 ... x2j

..

.
... ... ...

xi1 xi2 ... xij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (9)

In the above formula, each row of Xi×j is the state data of the
same node at different times, and each column is the state data of
different nodes at the same time.

The normalization process is carried out according to Eq. 10
below, and the normalized matrix ~X with mean value E � 0 and
variance σ2 � 1 is obtained as follows:

~Xl � (Xl − E(Xl))/σ2(Xl), l � 1, 2, ..., i, (10)

where Xl is the lth row of X.
In statistical analysis of high-dimensional data, when the

amount of data is large enough, the data as a whole will show
certain random statistical characteristics after corresponding
processing, such as the single ring theorem and the M–P law
(Ling et al., 2018; Jain et al., 2019; Deepa et al., 2020; Xiong
et al., 2020; Yang et al., 2020b; Li et al., 2021b; Li et al., 2021c;
Yang et al., 2021c; Li et al., 2021d; Ye et al., 2021; Dong and Li,
2021; Liu et al., 2021; Mousavizadeh et al., 2021; Ouyang and
Xu, 2021; Zhu et al., 2021). In the statistical analysis of high-
dimensional power data, the corresponding linear eigenvalue
statistics (LES) are constructed, such as MSR, high-order
moment, etc., which can effectively represent the state of the
distribution network. When there are only random
fluctuations and measurement errors in the measured data,
the data present a random statistical characteristic as a whole.
If abnormal events occur in the power system, the original
stable operation state of the system will be broken, and the
measured data will change accordingly.

State Assessment Model Construction
The problem of distribution network operation state assessment
is understood as a binary hypothesis testing problem, as follows:

y(n) � { v(n), H0

x(n) + v(n), H1
, (11)

where y(n) represents the received sampled signal, x(n)
represents the event signal component, and v(n) represents
the noise component.

The above binary hypothesis testing problem is further
explained. H0 means that no abnormal events occur, and the
received sampled signal only has randomly distributed noise
components. H1 indicates that abnormal events occur, event
signals exist in the sampled signals, and the original stable
operation state of the system is broken.

In this study, the basic idea of the distribution network state
estimation method based on FPT is to estimate the asymptotic
spectrum distribution of the event signal component x(n) by
establishing and solving the asymptotic free equation and then
calculate the high-order moment index mi (i � 1, 2, . . . , n) of the
event signal component x(n). Thus, the high-order moment is
the detection statistic of the algorithm.

Assuming that N received sampled signals y (1), y (2), . . ., y(N)
are used for distribution network state estimation and each
sampled signal is composed of M signal components, the
sample covariance matrix of received sampled signals is as
follows:
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∑̂
y
� 1
N

∑N
n�1

y(n)y(n)H. (12)

The sample covariance matrix of signal component x(n) is as
follows:

∑∧
x

� 1
N

∑N
n�1

x(n)x(n)H. (13)

In FPT, for the signal–noise model, the asymptotic spectral
distributions of the above two sample covariance matrices Σ̂y and
Σ̂x satisfy the following asymptotic free equation (Ryan and
Debbah, 2007):

μ∑̂
y
⊡ μc � ⎛⎝μ∑̂

x
⊡ μc⎞⎠ ⊞ μσ2I, (14)

where c � M/N, and μσ
2
I represents a probability distribution that

has value only at point σ2.
After rigorous mathematical derivation, the spectral

distribution between the sample covariance matrix and the
statistical covariance matrix of the event signal components
can be obtained to satisfy the following relation:

μ∑̂
x
� μ∑

x
⊠ μM

N
. (15)

Substituted into Eq. 10, the asymptotic free equation becomes
the following:

μ∑̂
y
⊡ μc � (μ∑

x
⊠ μM

N
⊡ μc) ⊞ μσ2I. (16)

The asymptotic spectrum distribution of event signal
component x(n) can be obtained by solving the asymptotic
free equation as follows:

μ∑̂
x
� ⎡⎢⎢⎣⎛⎝μ∑̂

y
⊡ μM

N

⎞⎠ ⊟ μσ2I
⎤⎥⎥⎦ ⊠ μc ⊡ μM

N
. (17)

Based on the established asymptotic free equation and the
sliding time windowmethod, the high-order moment index of the
continuous time windowmatrix is obtained to observe the state of
the distribution network.

The state assessment process of the distribution network is
shown in Figure 1 below.

Calculation of High-Order Moment Index
From the above analysis, it can be seen that the calculation
process of solving the high-order moment index is based on
the asymptotic free equation, which involves new operators
defined by FPT, namely, additive-free convolution and its
inverse operation and multiplicative-free convolution and its
inverse operation. It is a relatively simple calculation method
to calculate additive-free convolution through the moment-
cumulant formula (Ryan and Debbah, 2007).

1) Additive-free convolution

The moment-cumulant formula describes the relationship
between the moments of a certain measure and the related R
transformation. The R transformation of a probability
distribution μ is defined as follows:

Rμ � ∑
n

αμnz
n, (18)

where αμn is the nth order cumulant of μ. Based on R
transformation, additive-free convolution can be realized, as
shown in the following formula:

RμA⊞μB � RμA(z) + RμB(z), (19)

which is equivalent to that the cumulative measure has additivity
under additive-free convolution. That is,

αμA⊞μB
n � αμA

n + αμA
n . (20)

The moment-cumulant of the distribution μ is given as
follows:

mμ
k � ∑

n≤ k

αμ
ncoef k−n((1 +mμ

1z +mμ
2z

2 + ...)n), (21)

where coefn(·) is the coefficient of zn.

FIGURE 1 | Distribution network status evaluation process based
on FPT.
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The bidirectional conversion between the cumulant sequence
and the moment sequence can be completed by using the above
formula, that is, the first n-order cumulants can be obtained from
the first n-order moments and vice versa.

This article gives a brief description of the use of the moment-
cumulant formula in free convolution calculation, and the specific
process is described as follows:

1) Taking the sequence of moments as input, vector
f�(1,m1,. . .,mn) with length n+1 is formed, where m1 is the
first-order moment, andmn is the nth-order moment. Then n
vectors are obtained by convolution calculation according to
the following formula:

F1 � f, F2 � fpf, ..., Fn � pnf,

where * stands for the convolution operation, and *n stands for
n-fold classical convolution with itself. With the accumulation
of the convolution operation, the length of vector F increases
gradually. Since only the first n+1 elements of M1,. . .,Mn are
used in subsequent operations, the length of vector F is
uniformly trimmed to n+1 after the convolution operation
in order to simplify calculation and reduce the storage space of
the operation.

2) Calculate each cumulant iteratively. After the cumulants α1,
. . ., αn-1 are obtained by solving the moment-cumulant
formula shown in Eq. 21 for n-1 times, αn can be obtained
by solving the equation for the nth time. It should be added
that the relation between each F vector in Step 1) and Eq. 21
can be expressed by the following:

coef n−k((1 + μ1z + μ2z
2 + ...)k) � Fk(n − k). (22)

This equation can also be understood as writing the
coefficients in the moment-cumulant formula as k-fold
convolution. Based on this formula, it can be known that the
kth cumulant is equivalent to the following expression:

αk � M1(n + 1) − ∑1≤ r≤ k−1αrMr(k − r)
Mk(0) . (23)

Thus, the additive-free convolution and additive-free
deconvolution can be easily calculated by means of the
moment-cumulant formula.

2) Multiplicative-free convolution

Computation involving multiplicative-free convolution and its
inverse operation requires the transformation of boxed
convolution, denoted as ⧆. Boxed convolution can be
understood as a convolution operation acting on a power
series polynomial, which involves the concept of non-cross
partition not being repeated. Among the various forms of
power series, the commonly used power series is Zeta-series,
defined as Zeta(z) � ∑

i
zi. The sequence of moments under the

deterministic measure is defined as M(μ)(z) � ∑∞
k�1mkzk. The

literature has proven that the above R transformation is
equivalent to the following equation:

M(μ) � R(μ)⧆Zeta. (24)

It can be proven that the boxed convolution acting on the
power series polynomial is the combination of multiplicative-free
convolution on each measure, where the boxed convolution of
power series cn−1Zeta represents the convolution of measure μc,
as shown in the following formula:

Mμ⊠μc � Mμ⧆(cn−1Zeta) (25)

also written as follows:

cMμ⊠μc � (cMμ)⧆Zeta. (26)

It can be found that, in fact, the above equation is the
moment-cumulant formula, which is equivalent to Eq. 21.
Thus, in the calculation process, the cumulant is replaced by
the coefficient of cMμ, and the moment is replaced by cMμ×μc.
It is concluded that the calculation process of additive-free
convolution is also applicable to multiplicative-free
convolution operation.

CASE STUDIES

Data Sources
Based on Matlab, this study uses the voltage data of 40 buses
under the maximum operation mode of the 110-kV distribution
network in a certain province in the summer of 2020 to conduct
simulation verification. The total duration of voltage data is 5s,
the number of each sampled signal components is M � 40, and
the sampling interval is Δt � 0.01s, so the high-dimensional
random matrix X40×500 of source data can be obtained. The
specific case description is shown in Table 1. In the following
two cases, the high-order moments of the event signal component
are obtained based on FPT, and the operation status of the
distribution network is analyzed and compared with the
classical PCA method (Rong et al., 2019) and the MSR
indicator (Zheng et al., 2020) in the commonly used random
matrix theory to further verify the effectiveness of the indicators
proposed in this study.

Analysis of Cases
In this study, the high-dimensional random matrix of source
data isX40×500, that is,M � 40 and N � 500, and the sliding time
window size is set as 40 × 60, that is, p � 40, n � 60, so
c � p/n ∈ (0, 1). The index selected in the method based on
FPT is the third-order moment m3 of the event signal
component x(n). The classical PCA assessment indexes for
abnormal state detection are T2 statistics and SPE statistics.
The control limit of T2 statistics is Tα, and T2 <Tα should be
satisfied if the system runs normally; otherwise, it can be
considered abnormal. The control limit of SPE statistics is
Qα. If the system is running properly, it should meet the
SPE<Qα requirement; otherwise, it can be considered
abnormal. In the evaluation of the MSR index based on
RMT, and the calculated inner ring radius is 0.52. If MSR
falls below the threshold of the inner ring radius, it indicates
the occurrence of abnormal events. As the width of the sliding
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time window is 60, all moments and MSR indicators in the
following figures are 0 before the 60th sampling moment, as
hereby stated.

In addition, in the power system, the voltage of each user
must be kept at the rated value or within the allowable range of
voltage offset. Currently, the percentage of voltage offset at the
power supply end of 35 kV and above is defined as ±5% in
China.

1) Case 1

By observing the voltage fluctuation of the 40 buses in Figure 2
below, it can be seen intuitively that the voltage unit values of the
40 buses are initially distributed between (0.955,0.995), which are
in a normal level, and obvious drops occur at about the 100th
sampling time point, that is, the bus voltage drops at about 1s.
Subsequently, the buses’ voltage stops falling around the 300th

TABLE 1 | Case scenario description.

The serial
number

Specific case description

Case 1 0–1 s: normal load
1–3 s: all loads are increased by 5%
3–5 s: the load of the whole network is maintained at 105%

Case 2 0–1 s: normal load
1–3 s: a certain line is set to continuously increase the impact
load
3–5 s: maintain 3 times the original load

FIGURE 2 | Original voltage data of 40 buses in case 1.

FIGURE 3 | T2 and SPE indices of case 1.

FIGURE 4 | MSR index of case 1.

FIGURE 5 | Moments of the signal component in case 1.
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sampling time point, that is, the bus voltage gradually stabilized
after 3s and successfully reached a new stable state.

In Figure 3, the red dotted lines are control limits Tα and Qα,
which is the same in Figure 7. Observing various indicators in the
figures of case 1 (i.e. Figures 3, 4, Figure 5), the T2 index in the
PCA method changes dramatically at the 101th sampling point
and exceeds Tα, indicating abnormal status. It climbs to the 300th
sampling point and then begins to fall but fails to return to the

control limit level, indicating that the power grid tried to re-
establish a new balance after the third second, but it does not
return to the normal state (not in line with the actual situation).
Here, the SPE indicator is similar to the T2 indicator. The MSR
index begins to fall significantly at the 100th sampling point and
falls below the inner ring radius at the 150th sampling point,
indicating that the power grid is in an abnormal state (also not in
line with the actual situation) and then gradually recovers to

FIGURE 6 | Original voltage data of 40 buses in case 2.

FIGURE 7 | T2 and SPE indices of case 2.

FIGURE 8 | MSR index of case 2.
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above the inner ring radius at the 200th sampling point. In the
moment index of each order, obviously, the first-order moment
and the second-order moment are not sensitive to voltage changes,
while the third-order moment is more sensitive to power grid
fluctuations. Therefore, the third-order moment is selected as the
final index in case 1, and the case of case 2 is the same as that of case
1. The third-order moment m3 changes around the value of 1.5
under normal circumstances and changes dramatically at the 100th
sampling point, almost climbing in a straight line. The value ofm3

reaches at 1900, whichmeans that the event signal shows up during
1–1.5 s; soH1 is true. After the 150th sampling point,m3 begins to
decline and shows a downward trend, indicating that the power
grid tried to establish a new equilibrium state in this period. Then
m3 fluctuates at the 300th sampling point and recovers to the
normal level after the 400th sampling point, representing that the
power grid successfully establishes a new stable state, which means
thatH0 is true. Based on the above analysis, in this case, the third-
order moment index m3 can reflect the original data more truly.

2) Case 2

By observing the voltage fluctuation of the 40 buses in Figure 6, it
can be seen intuitively that the voltage unit values of the 40 buses are
initially distributed between (0.95,1), which are in a normal level.
After the 100th sampling point, as the impact load continues to
increase, the voltage level drops sharply, and the minimum voltage
unit value is as low as 0.82, which is at the abnormal operation level.
After the 300th sampling point, the load level remains 3 times that of
the original load, and the power grid tries to re-establish a stable
state. It can be speculated that due to the limited capacity of the
system, the new equilibrium state is not reached, and the voltage level
is in continuous oscillation during 3–5 s.

By observing various indicators in the figures of case 2 (i.e.
Figures 7, 8, 9), the T2 index in PCA begins to climb gradually at
the 101th sampling point, exceeding Tα and indicating abnormal
status. The violent fluctuation occurs at the 280th sampling point,

showing that the power grid is in an extremely unstable state.
Then the T2 index begins to fall and enters an oscillation state
without returning to the control limit level, representing that the
power grid tried to re-establish a new balance at about 3 s but
failed to restore the normal state. Here, the trend of the SPE index
and T2 index is slightly different after the 280th sampling point,
but generally consistent, indicating that the power grid fails to
return to the normal level and is in oscillation. The MSR index
begins to decline at the 100th sampling point and then falls below
the inner ring radius and remains below the threshold of the inner
ring radius, failing to return to normal. The third-order moment
m3 changes dramatically at the 100th sampling point and remains
at a high level, which means H0 is true, and fluctuates near the
300th sampling point and then remains at a high level at about
4,000, indicating that the power grid tried to establish a new
equilibrium in this period but failed, that is, H1 is true.

Through the analysis of the above two cases, it can be found
that the performance of the third-order moment index is better
than that of the T2 index, SPE index, and MSR index in the small
disturbance monitoring of the power grid. When detecting
abnormal events, all four indexes can reflect the operation
state of the power grid effectively.

CONCLUSION

This study proposes a state evaluation method based on FPT,
aiming to evaluate the operation of the distribution network
according to high-order moment indexes. Through simulation
cases, the following conclusions are obtained:

1) Based on the high-dimensional measurement data of the
distribution network, the relevant asymptotic free equation
is established, and the high-order moment index is proposed
to evaluate the distribution network state, which verifies the
feasibility of the proposed evaluation framework based on
FPT, applied to the distribution network state analysis.

2) The free probability theory itself tends to be abstract. When
calculating the high-ordermoment index, themoment-cumulant
formula can effectively simplify the calculation process of the
high-ordermoment. In addition, the evaluation index is the high-
order moment. Theoretically, the index system can be extended
to N-order moments, and the selection of specific indicators
should be determined based on the actual application scenarios.

3) The proposed high-order moment index is compared with the
classical T2 index, SPE index, and the commonly used MSR
index. The simulation results show that the above indexes can
accurately detect the occurrence of abnormal events in the
distribution network, and the high-order moment index
performs better than other indexes mentioned in this article
when only a small disturbance occurs in the distribution network.

In this study, the free probability theory is applied to the
electric power field for the first time, and the proposed evaluation
framework can be extended to high-dimensional electric power
data processing, such as power dispatching, operation and
maintenance control, new energy consumption, reliability

FIGURE 9 | Moments of the signal component in case 2.
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evaluation, and other scenarios to provide decision support.
Based on the above analysis, the follow-up work of this study
will focus on three aspects: the application of multiple power
scenarios, internal performance comparison of high-order
moment indicators, and further expansion as well as
optimization of the evaluation index system (Xue and Lai,
2016, He et al., 2016, Liu et al., 2016, Wang et al., 2019, Chen
et al., 2017, He et al., 2017b, Zhang et al., 2018, Xue, 2015).
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A Fault Signal Processing Method
Based on An Improved Prony
Algorithm
Nan Yang1, Yanming Lu1, Jianmei Zhang2, Zhenzhen Zhang2, Li Ding1, Cong Yang1,
Zhengqiang Dong1, Songkai Liu1*, Wei Xiong3, Binxin Zhu1, Lei Zhang1, Yuehua Huang1 and
Xin Zhang4

1Hubei Provincial Engineering Research Center of Intelligent Energy Technology, China Three Gorges University, Yichang, China,
2State Grid Gansu Electric Power Research Institution, Lanzhou, China, 3State Grid Yichang Power Supply Company, Yichang,
China, 4CSG Power Generation Co., Ltd., Guangzhou, China

The fault of power systems introduces a severe challenge in terms of fault recording
analysis, and the traditional Prony method cannot perform satisfactorily in the process of
signal recordings fitting caused by faults. Therefore, an improved adaptive Prony algorithm
is proposed in this article to study the characteristics of fault recordings. Specifically, the
search step size is taken as an adaptive variable, and the mean square relative fitting error
(MSRFE) is set as the criterion. Then, a large step is employed to rapidly determine an
approximate segmentation point in the initial stage of the searching process, and its
horizon is gradually reduced to establish an accurate subsegment point. Finally, the Prony
algorithm is deployed to analyze the subsegment fitting original signal. The proposed
approach has been simulated on an assumed fault signal, and the results validate the
accuracy and efficiency of the method.

Keywords: power systems, fault recording, Prony algorithm, improved adaptive, signal fitting

INTRODUCTION

An accurate assessment plays an indispensable role in the safety active control systems (Shen et al.,
2021a; Shen and Raksincharoensak, 2021a; Shen and Raksincharoensak, 2021b). Similarly, it is
significant to study an effective fault signal analysis method for safe and stable operation in power
systems (WangJin et al., 2019; Yang et al., 2019; Yang et al., 2021a; Zhang et al., 2021). Although the
technology of fault analysis has already been developed in the existing literature, there are still
obstacles to fault identification using the electrical parameters of recording signals. In practice, the
state of power systems is monitored using intelligent monitoring terminals in real time. In this way,
the fault recording accuracy of the system can be guaranteed, but producing redundant data increases
the difficulty of data storage. On the other hand, if only targeted data sampling is carried out for the
power grid in case of fault, despite data redundancy can be cut down, it may lead to a lack of
recording data and a decrease in recording accuracy. Therefore, the research on fault recording
algorithms of power systems has theoretical and practical significance.

For research of signal recordings, it can be analyzed based on steady state and transient (Sajadi
et al., 2019). However, the steady-state efficiency of fault identification is bounded. The main reason
is that renewable energy to access power systems is becoming increasingly complicated in recent
years, and fault analysis has to accord with the requirements of sensitivity, fast, and accurate at the
same time (Liao et al., 2018; Zhu et al., 2019; Liu et al., 2020a; Zhu et al., 2020; Wang et al., 2021).
These problems have been solved based on transient analysis, showing practical application (Saleh
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et al., 2015; Yu et al., 2020). In addition, the demand for data is
urgent with the rapid development of deep learning technology in
power systems (Yang et al., 2018; Yang et al., 2021b). In this
context, one of the most critical points is how to extract the
characteristic information of transient electrical signals such as
voltage, current, and frequency in the research of fault recording.
For one thing, the random noise can lightly bury the transient
with low energy and small amplitude due to the hybrid of
transient and steady state. For another, although the extracted
transient characteristics are directly applied in the fault research
because the extracted data are massive and irregular (Xu et al.,
2017; Shen et al., 2020a; Desai and Makwana, 2021), they still fail
to achieve the goal of identifying specific faults. Therefore, the
effective extraction of its feature information is crucial to the fault
identification problem, which is directly related to the
effectiveness and accuracy of fault identification and location.

Numerous works have studied methods to ensure the safety of
power grids (Shen et al., 2017; Liu et al., 2020b; Shen et al., 2020b;
Li et al., 2021a; Shen et al., 2021b; Hosseini et al., 2021). In the
study of Li et al. (2021a), a combined high voltage direct current
measurement method is present to improve the extraction
accuracy of the measured signal. Besides, some traditional
methods such as Hilbert–Huang transform, wavelet transform,
and Fourier transform are used in signal processing (Borghetti
et al., 2008; Satpathi et al., 2018; Li et al., 2021b). However, the
previous methods only separate fault recordings and cannot
realize the direct extraction of fault feature information. Its
characteristics are obtained directly through the Prony
algorithm. In Tawfik and Morcos. (2005), a fault location
method integrating the Prony method and artificial neural
networks is presented, and the modified scheme provided
good accuracy. Yet, when the amplitude of the high-frequency
component of the signal is small, the estimation is prone to errors
in practice. In Ando. (2020), the difference algorithm is
introduced to improve the characteristics of high-frequency
components of signals, but its inherent defect has not been
tackled. Later, a segmented Prony method is proposed (Jansen
and Garoosi, 2000), which divides the signal into different
subsegments to ensure good continuity and minor variation in
each subsegment, improving the impact on signal characteristics.
Nevertheless, the segmented method rarely focused on how to
segment to obtain the best analysis results. Based on this, an
adaptive Prony method is presented, taking MSRFE as the
criterion to realize the adaptive segmentation of the fault
signal (Bracale et al., 2007). However, the algorithm searches
the subsegment boundary point by enumeration search with a
fixed step, resulting in low efficiency. These methods also have the
inadequacies of fault signal recognition accuracy for certain
signals overall.

In this article, when a power system fault materializes, an
improved adaptive Prony method is proposed to describe the
accurate variation of electrical parameters. The point of the
subsegment is searched by variable step-size strategy, and
MSRFE is considered the criterion. The proposed approach
has been simulated on an assumed fault signal, and results
show that the improved Prony algorithm has higher accuracy
and efficiency than the traditional method.

PRONY METHOD MODEL

The Prony method is formulated as a linear combination of
exponential functions to describe the mathematical model of
equal distance sampling data and linearized approximate
solution. The amplitude, phase, frequency, and attenuation
factor of the corresponding signal can be obtained directly by
this method. The general solution procedure of the Prony
algorithm is as follows.

The continuous signal x(t) is equidistantly sampled according
to the sampling frequency. There are N sampling data obtained
and stated as x(0), x(1), . . . , x(N − 1), and xn can be stated in
Eqs 1, 2.

xn � ∑p
i�1
biz

n
i , n � 0, 1, . . . , N − 1 (1)

{ bi � Aie
jθi

zi � e(ai+j2πfi)Ts
i � 1, 2,/, p, (2)

where Ai, θi, αi, and fi denote the amplitude, initial phase angle,
attenuation factor, and frequency of the ith complex exponential
function, respectively; N and p are the number of sampling
points and the order, respectively; and Ts is the sampling period.

Then, obtain αi and zi by constructing the difference equation
and its characteristic equation. The singular value decomposition
and the least square method should be used to solve αi, thereby
improving the calculation accuracy (Liu et al., 2008).

Finally, the required parameter can be obtained from previous
equations, respectively, as shown in Eq.3.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ai � |bi|,
θi � arctan(Im(bi)/Re(bi)),
αi � ln(zi)/Ts,
fi � arctan(Im(zi)/Re(zi))/2πTs,

(3)

IMPROVED PRONY ALGORITHM
STRATEGY

The traditional Prony method has some practical limitations,
which may lead to inaccurate fitting results of some specific
signals under certain conditions, such as mutation signals when a
fault occurs in power systems. Specifically, on the one hand, the
search step size of the traditional Prony algorithm is performed
with a fixed step. On the other hand, the accuracy of the fitting
depends on the selected order. The order is selected artificially by
using the traditional method. Although there will be an order to
make the fitting accurate, it will take more time for an operation.
At the same time, it will also bring extra components. Thus, the
method proposed in this article is an improvement in these
aspects. The steps involving the parameters of the analysis
algorithm are explained as follows.

Step 1: Initialize the original data and parameters, including
the signal information, search step k, minimum length of
subsegment Lmin, sampling frequency, a maximum value of
MSRFE Em, and some remaining parameters.
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Step 2: Compare the number of sampling points and
the sequence number at the end of the subsegment. When
the number of sampling points is greater than the end
sequence of the subsegment, the Prony algorithm is
directly applied in the subsegment. Otherwise, proceed to
step 3.

Step 3: Using the Prony algorithm for subsegments and
calculating MSRFE ef. According to MSRFE obtained from
the subsegment, whether its value is lower than the maximum
value assumed. If MSRFE is lower than its maximum value,
proceed to step 4. Otherwise, proceed to step 5.

Step 4: Judge whether the step is equal to 0. If its value is 0,
reset the step to 1. Otherwise, judge whether the step was
changed, if not changed, then make it set the maximum
search step Km.

Step 5: Check the step was changed, and update the
corresponding parameters, where I45 means rounding.

Step 6: Until the condition of step 2 is met, output the
characteristic parameter of signal information.

The detailed procedure is shown in Figure 1, and the
expression of MSRFE is shown in Eq. 4.

MSREF � 1
n0

∑ne
n�ns,xn ≠ 0

[x1(n) − x(n)]2
x(n)2 , (4)

where x(n) is the real value, x1(n) is the estimated value, n0 is the
total number of non-zero values in the subsegment, and ns and ne
are the start sequence number and end sequence number,
respectively.

To better evaluate the accuracy of fitting and real value, the
root-mean-square error (RMSE) is introduced in this article,
which is defined as Eq. 5.

RMSE �

																	
1
L
∑N
n�1

[x1(n) − x(n)]2
√√

, (5)

where L is the length of the signal.

CASE STUDY

Instance and Setup
In this article, two types of original voltage signals mimic
recordings. The signals under the normal operation and fault
are simulated by a smooth and a signal of mutational processes,
respectively. The mathematical expression of the smooth voltage
signal is shown in Eq. 6, and its parameters are shown in Table 1.

x(t) � x1(t) + x2(t) + x3(t) + x4(t)
� 110e−2.0t cos(2π × 50t + π/3)
+220e−2.0t cos(2π × 50t + π/6)
+220e−1.0t cos(2π × 80t + π/6)
+330e−0.5t cos(2π × 60t + π/6),

(6)

Process Simulation Verification
The total number of sampling points, the sampling period, and
the sampling frequency are set 1,000, 0.025 s, and 4 kHz in the

FIGURE 1 | Flowchart of the proposed, improved adaptive Prony method.
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simulation, and the start sequence point and the end sequence
point are defined as 1 and 20, respectively. The minimum length
of the subsegment is 20, and the maximum search step is 20.
Figure 2A is plotted to depict the fitting under the normal
condition provided by known parameters. We can observe
that the simulation results show an excellent agreement is
consistent, the order is 230, and the RMSE is so tiny that it
can be ignored.

Comparative Simulation Verification
In this case, based on the assumption of the smooth signal,
x1(1: 200) � 0, x2(100: 500) � 0, x3(200: 500) � 0, and
x4(400: 700) � 0 is set in the program to simulate the signal
with sudden operation change, and the meaning of x1 from 0 to
0.05 s, x2 from 0.025 to 0.125 s, x3 from 0.05 to 0.125 s, and x4

from 0.1 to 0.175 s all failing to react. The traditional Prony
method is used for the fault recording, and the comparison
between fitting and the original signal is given in Figure 2B.
We can see that the trend of the two signals is deviated.

Furthermore, Figure 2C shows the maximum RMSE of both
is around 4.5%, and the traditional method is intractable for
fitting the signal. The reason for such a difference may be that the
traditional method makes decisions by considering the original
signal is always continuous and smooth without mutation, and it
results in mutagenicity when a fault occurs. It is bound to skip
some vital parts while fitting by this method, resulting in some
information being ignored. Moreover, the order is often set in
advance in the fitting process, and it takes a longer time to
manually and continuously adjust the order to fit the original
signal.

The previously assumed fault recording signal is analyzed by
using the proposed method in this article, and the corresponding
result is shown in Figure 2D. We can see that the performance of
the proposed method is satisfying, overlapping with the original
signal. The reason is that the search step, as a variable, will be
segmented when encountering sudden change points in the
search stage, avoiding some information being ignored at the
critical moment of analysis. On the other hand, the time of fitting

TABLE 1 | Specific parameters of the smooth signal.

Component Frequency (Hz) Amplitude (V) Initial phase angle Attenuation factor

1 50 110 60 -2.0
2 50 220 30 -2.0
3 80 220 30 -1.0
4 60 330 30 -0.5

FIGURE 2 | Simulation results: (A) Smooth signal simulation based on the traditional Prony method. (B) Mutation signal simulation based on the traditional Prony
method. (C) RMSE of the original and fitting signals based on the traditional Prony method. (D)Mutation signal simulation based on the proposed method in this article.
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is decreased shorter than the traditional Prony method because
the order of this method does not need to rule in advance.
Meanwhile, to further illustrate the effectiveness of the
proposed method, fitting dates are further analyzed. The signal
is divided into eight subsegments in total, taking the first two
segments of the total date as an example for analysis, as given in
Table 2.

Table 2 indicates that the signal with a component frequency of
50 Hz and an amplitude of 110 V is not present in subsegment 1, so
the corresponding data are missing, and the information of other
components is accurately extracted. Similarly, the subsegment
signal is not affected by components 1 and 2, so there is only
relevant information of components 3 and 4 in the subsegment.
More specifically, some data obtained through an attenuation
process, such as amplitude and initial phase angle, do not get in
line with Table 1. By taking the first line of subsegment 2 as an
example, the sequence point of subsegment 2 ranges from 100
to 199. After 0.025 s, the accuracy of amplitude becomes
330 × e−0.5p0.025 � 325.91, and the initial phase angle transforms
from 30 to arg[30 + (2pπ × 60 × 0.025 × 180)/π] � −150.0.

CONCLUSION

The traditional Prony algorithm is improved in this article. First,
the basic model of the Prony algorithm is constructed. On this
basis, the mean square relative fitting error is set as the criterion,
and the variable step method is used to search the subsegment
boundary points. Finally, a fault recording signal processing with
an improved adaptive Prony algorithm is proposed. The
conclusions based on simulation analysis are as follows.

The improved adaptive Prony algorithm proposed in this
article can not only fit the signal under normal conditions but
also obtain higher accuracy after the signal characteristics change
under abnormal conditions.

In the fault recording signal fitting, the proposed method does
not need to set the order in advance. Compared with the
traditional Prony algorithm, it can greatly reduce the fitting
time and improve the calculation efficiency.
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Research on Fire PredictionMethod of
High-Voltage Power Cable Tunnel
Based on Abnormal Characteristic
Quantity Monitoring
Chenying Li1, Jie Chen1, Ziheng Pu2*, Fengbo Tao1, Jianjun Liu1, Xiao Tan1, Libin Hu1 and
Jingxing Cao1

1Electric Power Research Institute of State Grid Jiangsu Electric Power Co., Ltd., Jiangsu Nanjing, China, 2College of Electrical
Engineering and New Energy, China Three Gorges University, Hubei Yichang, China

The proportion of cable lines in the urban distribution network is increasing. The fire hazard
of important cable channels is prominent, which has a serious effect on the safety and
stable operation of the power system. In recent years, intelligent mobile inspection and fire
extinguishing devices have been applied in tunnels. The determination of firepower and
location is conducive to the rapid and effective fire suppression of intelligent devices.
Therefore, this study proposes a fire early warning method of a high-voltage power cable
tunnel based on abnormal characteristic quantity monitoring. Based on the modified
model of complex pyrolysis and combustion chemical reaction, the fire development of
different fire source powers and fire locations is simulated. The temperature distribution
and characteristic gas concentration under different simulation conditions are analyzed.
The results show that the monitoring data of temperature, flue gas concentration, and CO
and CO2 concentration need comprehensive analysis to effectively reflect different fire
conditions. The characteristic data set is selected and processed to form a total sample.
The fire prediction model is trained and tested. The accuracy of the proposed prediction
model is 92%.

Keywords: power cable tunnel, combustion simulation, complex pyrolysis, characteristic gas data, anomaly
detection, fire early warning

INTRODUCTION

With the growth of power demand, more andmore power cables are laid intensively in cable tunnels.
The cable insulation is aging with the increase of operation time, which may lead to insulation
breakdown and further fire. Power cable tunnel is located underground, with a long and narrow
structure, complex environment, and inconvenient communication. In case of fire, a large amount of
toxic smoke accumulates in the tunnel, making it difficult for personnel to enter and extinguish the
fire through the outside. The existing high-voltage cable tunnel monitoring system is imperfect, and
the information means are insufficient. Monitoring alarm and fire extinguishing devices are only set
in key areas such as intermediate joints of power cable, which is still impossible to fully monitor the
situation of the whole tunnel (Fang et al., 2019; An et al., 2020b; Wu et al., 2020). With the
development of artificial intelligence and information communication technology, intelligent mobile
monitoring and fire extinguishing devices are developed and applied in tunnels. However, in
practical application, due to the failure to accurately judge the fire source, the patrol fire extinguishing
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device did not arrive at the fire point in time. The fire source is too
large, and the fire develops rapidly. It did not extinguish the fire
and caused damage to the intelligent patrol inspection and fire
extinguishing device. It is necessary to predict the fire location
and fire source power in combination with the monitored
abnormal data.

In order to predict the fire situation combined with the
monitoring data, it is necessary to analyze the development
characteristics of a cable tunnel fire. Fire test is destructive and
dangerous and has the disadvantages of high cost and being
uncontrollable. In recent years, fire simulation research has
developed rapidly, and a variety of fire conditions have been
simulated and analyzed. Song et al. (2020) simulated the
combustion of horizontal and triangular cables in the tunnel,
respectively. The results show that the cable layout has little effect
on the smoke concentration distribution and diffusion in a tunnel
fire. However, horizontal cables can reduce the content of CO.
Niu and Li (2012) simulated the fire process of the cable tunnel
and obtained the smoke spread and section temperature change.
The best fire extinguishing time is put forward, which provides a
reference for formulating fire extinguishing measures and
selecting a fire extinguishing system. An et al. (2020a)
analyzed the influence of cable layout on fire through a cable
combustion test. It shows that the fire risk and flame
characteristics of the cable tunnel are affected by the distance
between layers of cable support and the distance between cables
on the same layer. The greater the distance between layers, the
higher the flame height. The flame width decreases with
increasing the distance between cables on the same layer. The
influence of fire separation on the fire development of a power
cable tunnel is simulated and analyzed in Zhang et al. (2018).
When there is no fire separation, the smoke spreads rapidly, and
the temperature of the whole tunnel increases significantly. The
fire separation can effectively limit the fire smoke in the fire
compartment. Different combination modes of the ventilation
system, fire door, and sprinkler are compared in Mi et al. (2020).
The optimal mode can effectively control the smoke propagation
in the tunnel. The above studies aim mainly at medium- and low-
voltage cables, and simple pyrolysis is mostly used in the
simulation. A high-voltage power cable has a multi-layer
structure, and its combustion effect is quite different.
Appropriate simulation methods need to be proposed.

In order to deal with the fire hazards during cable tunnel
operation and maintenance, a tunnel fire monitoring system is
developed based on Internet of things technology (Wang et al.,
2021). The test shows that the system can realize the automatic
fire alarm of the power cable tunnel. Jing et al. (2019) proposed a
multi-sensor network cable tunnel monitoring system, which
integrates temperature, environment, security, and video
monitoring. The system realizes information sharing and
equipment intelligent linkage by considering the abnormal
operation and maintenance requirements of a power cable
tunnel. A fire early warning method based on camera
monitoring image recognition is proposed by Li et al. (2021).
This method first detects the flame and then analyzes the flame
image based on the depth neural network of the convolutional
neural network. In order to monitor the temperature state of

cables in the whole tunnel, an intelligent inspection robot was
developed by Qiu et al. (2018). The intelligent inspection robot
can be linked with the fire-fighting equipment to improve the
intelligent prevention and control level of the whole cable tunnel.
The research of the cable tunnel monitoring systems continues to
make breakthroughs and still has great development potential.
Therefore, the key to the problem lies in how to make full use of
the characteristic information contained in the monitoring data
and use mathematical models and intelligent algorithms to
analyze the relationship between various parameters (Shen
et al., 2020; Shen et al., 2021; Shen and Raksincharoensak,
2021), through the information obtained to monitor and
locate the fire in the cable tunnel, confirm the fire source
information, and provide relevant information for the
emergency dispatch of electric power (Yang et al., 2021a), to
improve the level of fire prevention and control in cable tunnels.
Emerging technologies such as artificial intelligence algorithms,
especially deep learning, computer vision, and other related
technologies, have developed rapidly (Yang et al., 2021b; Yang
et al., 2021c; Yang et al., 2022). The above research mostly
depends on image recognition. The intelligent inspection
device may be far away from the fire source. Data such as
temperature and flue gas are monitored first. It is necessary to
analyze these data for prediction.

In this article, considering the complex structure of the high-
voltage power cable, the cable combustion simulation method is
proposed based on the definition of complex pyrolysis and
combustion chemical reaction. According to the typical 110 kV
cable tunnel structure, cable layout, and material properties, the
fire development is simulated under different fire locations and
fire source power. The data of temperature distribution, flue gas
concentration, and generated gas content under different
simulation conditions are obtained. Then, a variety of data in
case of fire are analyzed based on the simulation results, and the
characteristic data set is selected. The multi-dimensional
nonlinear relationship between the size of the fire source, the
location of the fire point, and the collected characteristic data set
is analyzed. Finally, the fire early warningmodel based on support
vector machine (SVM) is established. The data sets obtained
under different simulation conditions are selected as the total
samples. Some of them are used as training samples to train the
early warning model and then use the test samples to test and
verify the accuracy of the early warning model.

ANALYSIS ON FIRE DEVELOPMENT LAW
OF CABLE TUNNEL

Simulation Method of Power Cable
Combustion
The structure of a 110 kV high-voltage XLPE cable is quite
different from that of the ordinary low-voltage communication
cable. It mainly includes conductor, inner semi-conductive
shielding layer, insulating layer, outer semi-conductive
shielding layer, metal shielding, metal armor, outer sheath,
and filler in relevant layers. The outer sheath is generally
flame retardant, but it will still burn under open fire. The
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insulating material XLPE is flammable and easy to melt and drip,
which is easy to cause fire spread. High-voltage cable tunnel fire is
generally caused by insulation breakdown and short circuits. In
this case, both the internal insulating material and the outer
sheath will be ignited by the arc. Studying the simulation method
of different materials burning together in a cable multi-layer
structure is necessary.

Cable combustion simulation is mainly divided into two
processes: solid-phase reaction and gas-phase reaction. Firstly,
the solid surface of the material is thermally pyrolyzed and
gasified. Then, the pyrolyzed and gasified material reacts with
oxygen to form combustion and release heat, which will further
promote pyrolysis and ignition. The gas-phase reaction interacts
with the solid-phase reaction. The pyrolysis reaction of each layer
of the high-voltage XLPE cable is also different due to different
materials of the multi-layer structure. If only simple pyrolysis is set,
it does not involve the internal pyrolysis process of the solid, which
may cause large errors. Herein, the complex pyrolysis method is
used to simulate the combustion spread of the multi-layer cable
structure. Set the pyrolysis kinetic parameters of the material and
calculate the reaction rate using the following formula:

Wi � Ai(ρi(x, t)
ρo

)N

exp( − Ei

RTS(x, t))X
n02,n
O2

(1)
,

where Wi is the ith pyrolysis reaction rate; Ai is the ith pre-
exponential factor; Ei is the activation energy of the ith reaction; R
is the general gas constant, with a value of 8.314 kJ/kmol•K; Ts is
the reaction temperature (K); N is the reaction order; ρi is the
mass concentration of the current solid-phase type; ρo is the initial
density of the solid surface at the boundary; and XO2 is a
simulated reaction rate, which is affected by local oxygen
concentration.

The pyrolysis of power cables produces a variety of
combustible gases, which undergo multiple chemical reactions
with oxygen. If each gas reaction is simulated, the amount of
calculation will be greatly increased. It will lead to non-
convergence in the case of turbulent combustion. Therefore,
the final material generated is considered in the simulation.
The main material of the outer sheath is C2H3Cl. According
to the corresponding generated substances measured by the
combustion test, determine the substances and coefficients of
the chemical reaction equation, as shown in formula (2). The
insulating layer material is cross-linked polyethylene (XLPE), and
the corresponding chemical equation is shown in formula (3).
During the combustion process of the power cable, the
combustion of the outer sheath and insulating layer needs to
be determined according to the test. Combined with the
combustion calorific value of solid materials obtained from the
test, the mass of gas fuel required for the corresponding gas-phase
reaction is converted. In other words, the dynamic process of
pyrolysis gas is balanced by adjusting the generation rate of final
gas fuel mass so that the combustion simulated by the gas-phase
reaction is closer to the actual test value. According to the ratio of
the outer sheath and insulating layer, the molecular formula of
gas-phase fuel burned by the power cable is C2H3.6Cl0.4, and the
gas-phase reaction equation is shown in formula (4):

C2H3Cl + 1.53O2 → 0.96CO2 + 0.14CO + 0.9C +H2O +HCl

(2)
C2H4 + 3O2 → 2CO2 + 2H2O (3)

C2H3.6Cl0.4 + 2.39O2 → 1.42CO2 + 0.34CO + 1.6H2O + 0.4HCI

+ 0.24C

(4)
In order to verify the effectiveness of the improved simulation

model, a comparative analysis is carried out combined with the
combustion test of the high-voltage cable. Generally, CH4 is used
to simulate the gas-phase reaction. Pyrolysis reaction can be
divided into simple pyrolysis and complex pyrolysis. The three
combined simulation conditions are as follows: chemical reaction
correction and complex pyrolysis, CH4 gas-phase reaction and
simple pyrolysis, and CH4 gas-phase reaction and complex
pyrolysis. The test measurement data are total combustion
power. The comparison between simulation results and test
data is shown in Figure 1. The results show that CH4 in the
gas-phase reaction will increase the total combustion power by
about 50%. The rising rate of total combustion power of simple
pyrolysis is slower than that of complex pyrolysis. It will also lead
to the difference between the simulation results and the test data.
The simulation results of the improved model proposed in this
study are closest to the experimental results. The simulation is
close to the rising stage of the test, and the error is about 2.3%. In
the attenuation stage, the error between simulated combustion
power and test power increases, and the maximum error is about
14%. The effectiveness of the improved model is verified.

Simulation Parameter Setting
The simulation model is established according to the typical
110 kV power cable tunnel layout. The length of each ventilation
zone in the tunnel is 100 m. Three layers of 110 kV cables are
arranged on the cable brackets. The height between layers is

FIGURE 1 | The comparison between simulation results and test data of
total combustion power.
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60 cm, and the spacing between three cables on each layer is
10 cm. A cable tunnel model is established with a length of 100 m
and a cross section of 2.3 × 2.3 m, as shown in Figure 2. The
calculation boundary is set to concrete properties. Probes of
temperature, smoke concentration, and characteristic gas are
set every 0.1 m at different model heights. Because the copper
conductor cannot burn, the cable body is equivalent to the
internal insulating layer and the external outer sheath. The
insulating layer material is XLPE. The outer sheath material is
PVC. The thermal performance parameters of the material are
listed in Table 1.

The thermogravimetric analysis of PVC outer sheath material
is carried out. The change law of temperature and weight of PVC
during heating is obtained through the test. The research shows
that a small amount of organic gas is produced when the cable is
heated to 240°C. HCl gas begins to precipitate at 328°C. The
reaction becomes an exothermic reaction at 385°C, and carbon
oxides begin to precipitate in addition to HCl gas. The cable
ignition temperature is set to the temperature at which the
exothermic reaction occurs. The pyrolysis combustion
parameters of corresponding cables are listed in Table 2.

The power of the fire source causing cable combustion needs
to be analyzed and set in combination with the actual situation.
When the outer sheath of the cable is damaged, the induced
potential on the armor and metal shield can be grounded through
the damaged point to form a circulating current. At this time, the
current is small and the heating power is small. However, it will

last for a long time to form smoldering. When the insulation layer
of the power cable is aged and broken down, a short-circuit fault
is formed. According to the capacity of the power cable system,
there will be different short-circuit currents. The short-circuit
current value is large, and the heating power is large, which can
quickly ignite the cable insulation layer and outer protective layer.
When the system suffers from overvoltage breakdown due to
large short-time energy, the most serious joint explosion and fire
may occur. At present, there is no clear fire classification of the
power cable tunnel. Combined with the division regulations of
urban fire alarm, the fire conditions are divided into smoldering
fire, developing fire, and open fire. The fire caused by cable fire in
different layers is different, so it is necessary to set simulation
conditions for simulation research. Nine different simulation
conditions are set in Table 3.

Analysis of Simulation Results
Analysis of Temperature Distribution in Cable Tunnel
The simulation results show that when the fire source power is
150 kW, it is difficult to spread the fire due to the small power.
Combustion occurs only near the ground point where the outer
sheath is damaged. When the fire source power is 600 and
1200 kW, the fire will spread along the cable. After the cable
body is completely burned, the overall fire develops rapidly. For
instance, the temperature distribution in the tunnel under the
development fire of 600 kW is analyzed, as shown in Figure 3. In
the process of cable combustion, the heat diffuses around with the
flue gas flow, and the high-temperature airflow mainly spreads to
the upper layer. Under the action of continuous high
temperature, the cable material is rapidly pyrolyzed and then
burned, and the upper cable is ignited. It shows that the high-
temperature area in the early stage of development is mainly
above the fire source. AS high-temperature gas accumulates in the
upper cable and tunnel ceiling, the upper layer is easier to burn
and develop. With the increase in combustion time, the upper
cable gradually spreads and expands the combustion area. When
the fire source is in the middle cable, it can still ignite the upper
cable upward to achieve a certain combustion spread effect.
When the fire source is located in the lower layer or middle
layer, the tunnel temperature can reach 1000°C. When the fire
source is located in the upper layer, as the temperature is mainly
concentrated in the tunnel ceiling, the temperature rise on both

FIGURE 2 | The whole simulation model.

TABLE 1 | Thermal performance parameters of cable materials.

Density g/cm3 Thermal conductivity W/(m•K) Specific heat kJ/(kg•K) Thickness mm

Outer sheath 1.38 0.14 1.2 10
Insulating layer 0.92 0.4 2 20

TABLE 2 | Pyrolytic combustion parameters of cable materials.

Pre-exponential
factor A 1/s

Activation
energy E kJ/kmol

Heat of combustion △Hc

kJ/kg

Outer sheath 6.61×108 161,000 16,400
Insulating layer 6.5×1012 218,000 43,600
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TABLE 3 | Fire simulation conditions of power cable tunnel.

Simulation conditions Risk level Fire source type Fire
source power (kW)

Fire source location

No. 1 Warning Smoldering fire 150 Upper layer
No. 2 Middle layer
No. 3 Lower layer
No. 4 Alarm Developing fire 600 Upper layer
No. 5 Middle layer
No. 6 Lower layer
No. 7 Critical alarm Open fire 1200 Upper layer
No. 8 Middle layer
No. 9 Lower layer

FIGURE 3 | Temperature distribution of cable tunnel when the ignition point is located in different layers. (A) At the lower layer. (B) At the middle layer. (C) At the
upper layer.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8365885

Li et al. Cable Tunnel Fire Prediction Method

290

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


sides of the fire source of the cable body is not obvious, and the
combustion is not easy to spread. The maximum temperature in
the tunnel is about 420°C.

Analysis of Fire Smoke Spread
When the fire source power is 150 kW, the combustion range is
small and the amount of smoke is less. When the fire source
power is 600 kW, it can ignite the upper cable and spread
continuously. With the expansion of the combustion spread
range, the flue gas concentration increases gradually, as shown
in Figure 4. With the expansion of the combustion spread range,
the flue gas concentration increases gradually. The flue gas first
reaches the top and then gradually diffuses to both sides. At 300 s,
the flue gas has not completely diffused to the other end. At
1200 s, the flue gas has completely diffused to both sides and has
sufficient concentration. When the ignition point of the cable is at
the lowest layer, the total firepower is the largest. When the fire
source power is 600 kW, the maximum total combustion power
of the cable is about 5700 kW. When the fire source power is
1200 kW, the maximum total combustion power of the cable can
exceed 16 MW. When the ignition point of the cable is at the
lowest layer, it is easier to ignite the upper cable and is conducive
to the flame extension of the middle layer cable. The overall
combustion area is the largest, and the fire development is the
most serious, as shown in Figure 5. When the flame develops
close to the tunnel roof, the gas heat flow accumulates above.
After reaching a certain degree, a fire flashover will occur. The
cables on the top layer spread rapidly, and the burning rate is
much higher than that of the lower two layers. When the ignition
point of the cable is in the upper layer, the total firepower is the
smallest. Because it cannot be fully ignited in this case, the total
combustion power is much less than that in the lower two layers.

Characteristic Gas Analysis of Power Cable
Combustion
Different fire source powers or locations will lead to the difference in
combustion characteristic gas.Whether the combustion is sufficient
directly affects the proportion of CO2 and CO produced. Taking the
fire source power of 600 kW for instance, the measured
concentrations of CO2 and CO with time and fire point distance

are shown in Figures 6, 7. The concentration distribution trend of
the two gases in the tunnel is approximately the same. The
concentration of CO2 produced by fire is much higher than that
of CO. At the beginning of the fire, the characteristic gas produced
by combustion first accumulates and settles at the top.When the fire
source is at the lower layer, the combustion rate is the highest. The
concentrations of CO and CO2 in the tunnel are generally high. The
maximum concentration within 20 m from the fire source is 190
and 1050 ppm, respectively. When the fire source is located at the
upper layer, the heat generated by combustion is mainly
concentrated at the top of the tunnel. The cable body cannot be
ignited, and the combustion is not easy to form and diffuse. The
overall characteristic gas concentration in the tunnel is at a very
low value.

CHARACTERISTIC DATA ANALYSIS AND
EARLY WARNING METHOD OF CABLE
TUNNEL FIRE

Basic Principle of Early Warning Method
Based on Feature Anomaly Monitoring
The early warning of cable tunnel fire is based on real-time
monitoring data such as temperature, smoke concentration, CO,
and CO2. However, considering the cost of installation, operation,
and maintenance, it is impossible to arrange a variety of existing
monitoring sensors in the whole line of the power cable. There is a
blind area in themonitoring of tunnel fire. However, it is impossible
to judge the power and relative position of the fire source. The
simulation results show some differences in temperature change,
smoke, and characteristic gas propagation of fires with different fire
source sizes and relative positions. In case of a smoldering fire, the
fire point temperature is low, the flue gas is large, and the
characteristic gas concentration is easier to be monitored first. In
case of insulation breakdown, short circuit, or even intermediate
joint explosion, a large amount of heat will be generated rapidly, and
high-temperature gas may spread faster. It is necessary to analyze a
variety of abnormal monitoring data in case of fire in the cable

FIGURE 4 | Fire smoke spread at different ignition positions (fire source
power 600 kW, t = 600 s).

FIGURE 5 | Fire smoke spread at different ignition positions (fire source
power 1200 kW, t = 600 s).
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tunnel. The fire source level and relative position are predicted
through the characteristic analysis of the collected data set.

The distance between the cable ignition point and the
monitoring device is different, and the various characteristics of
the combustion heat, smoke, and characteristic gas transmitted to
the monitoring device are also different. It is necessary to select
reasonable characteristic data for comparative analysis. Whether it
is a fixed monitoring device or a mobile intelligent monitoring
device, the measurement sensor has a minimum measurement

threshold. When the threshold is triggered, the subsequent
measured values can be continuously collected as a data set. The
relationship between the size and relative position of the ignition
source and the collected characteristic data set is a multi-
dimensional nonlinear relationship. This multi-dimensional
nonlinear relationship needs many data sets to be analyzed. Due
to the high cost, low efficiency, and difficulty in controlling the
actual tunnel test, it is not feasible to obtain a large amount of data
through the test. The characteristic data can be obtained by

FIGURE 6 | Variation curve of CO2 concentration (fire source power 600 kW).

FIGURE 7 | Variation curve of CO concentration (fire source power 600 kW).
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simulating a variety of different situations. Under each condition,
the amount of feature data is limited, and an appropriate intelligent
algorithm needs to be used for prediction. It is difficult to directly
predict the power value and accurate position of the fire source. In
this article, the classification of fire source power and relative
position is transformed into a classification problem. The SVM
algorithmhas certain advantages in solving small sample, nonlinear,
and high-dimensional pattern classification problems. The kernel
function is an important part of the support vector machine.
Herein, the radial basis function kernel function is selected as
follows:

K(xi, yi) � exp( − γ || xi − yi | |2),
where γ is the kernel function parameters. The penalty coefficient
C and kernel function parameters γ in SVM determine its
recognition performance. The above parameters are optimized

based on the genetic algorithm, which can avoid falling into a
local minimum in the process of parameter optimization and
quickly locate near the optimal solution.

Analysis and Selection of Fire Characteristic
Parameters of Cable Tunnel
The temperature, flue gas concentration, and CO2 and CO
content under different fire source powers and fire locations
are simulated. The intelligent mobile monitoring and fire
extinguishing device is installed on the track in the middle of
the top of the tunnel. The installation height of various sampling
sensors is about 1.9 m. In order to simulate the actual sampling
situation, the simulated sampling data points are also selected at
the middle height of 1.9 m at the top of the tunnel. The data sets of
characteristic parameters at monitoring points at different
locations from the fire source are simulated and obtained.

FIGURE 8 | The variation and comparison of sampling parameters. (A) Temperature, (B) smoke concentration, (C) CO, (D) CO2.
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When the power is 150, 300, and 600 kW, the variation and
comparison of sampling parameters at different ignition positions
are shown in Figure 8. Figure 8A shows a little difference in
change trend and amplitude between the temperature curve of
150 KW ignition point at the lower layer and that of the 300 kW
ignition point at the middle layer. A similar situation exists in the
comparison curve of flue gas concentration, CO, and CO2. It
shows that it is difficult to distinguish fire source power and fire
location only by a single acquisition parameter.

Figures 8B,D show obvious differences in the changes of flue
gas concentration and CO2 content in the lower layer of 150 KW
and the middle layer of 300 kW. Figure 8B shows that when the
power is 300 kW and the ignition position is in the lower layer,
the change law of flue gas is basically the same as that when the
power is 600 kW and the ignition position is in the middle layer.
However, the temperature curves in these two conditions are
significantly different, as shown in Figure 8A. The above analysis
shows that different fire source power and fire location can be
distinguished using various characteristic parameters. Regardless
of the distance from the ignition point, the same fire source power
and ignition position have a similar change trend. Therefore, the
data set of the above characteristic parameters can be used as the
input sample for fire determination.

Prediction Method and Test Results of Fire
Classification
For instance, when the power is 300 kWand the ignition position is
in the lower layer, some sampling data sets are shown in Table 4.
There are two main problems in using these sampling data sets
directly as a sample unit. The numerical amplitudes of different
physical quantities vary greatly, so the data need to be normalized
first. Another problem is too much sampling data in the data set. If
all of them are used for model training, there will be too many
sample dimensions. It may lead to overfitting of the model and
reduce the prediction accuracy. In order to simplify the
redundancy of samples and reduce the data dimension, the
sampling points in the stationary section are reduced in each
physical quantity series in each group of samples. At the same time,

the range, modulus, maximum value, and average value of each
sequence value are added to ensure the overall characteristics.

If the regression prediction is carried out directly, it is difficult to
predict the power value accurately. The classification prediction is
carried out according to the fire grade. The fire source power is
divided into five values on the basis of Table 3 by classification: 150,
300, 600, 900, and 1200 kW. It is respectively set in three different
layers of cables under different fire source powers. Fire sources are
divided into 15 classifications according to the fire source power and
fire location. In each classification, the monitoring sensors with
different distances from the fire source are simulated to obtain data.
Analog sampling of monitoring points is set every 2m as a group of
sample data, and a total of 40 groups of sample data are selected. A
total of 600 samples were obtained. For each classification, 35 groups
were randomly selected as training samples and the other five groups
as test samples. A total of 525 groups of training samples and 75
groups of test samples were obtained. The training samples are used
to train the fire classification and prediction model based on SVM,
and then the test samples are input for prediction. The prediction
accuracy of test samples is 92% (69/75), which verifies the
effectiveness of the proposed detection method. The analysis of
the samples with wrong prediction is mainly because the flue gas
concentration, temperature, and CO and CO2 concentration
collected by some analog sensors at different distances in the two
classification situations are relatively close. The samples with
prediction errors are analyzed. This is mainly because after
reducing the sampling data points for dimensionality reduction,
the flue gas concentration, temperature, and CO and CO2

concentration collected by some analog sensors with different
distances in the two classification cases are relatively close. It is
necessary to further analyze the correlation between characteristic
parameters and study more appropriate dimensionality reduction
methods to improve the accuracy of prediction.

CONCLUSION

This study presents an improved combustion model according to
the structural characteristics of the high-voltage cable. The

TABLE 4 | Partial sampling data (300 kW, lower layer).

Sampling point Temperature (°C) Smoke concentration (%/m) CO concentration (PPM) CO2 concentration (PPM)

1 32.91 72.70 243.12 1281.28
2 37.93 87.02 250.42 1303.27
3 38.89 87.81 228.15 1227.62
4 40.91 89.32 300.80 1630.79
5 42.20 92.64 355.00 1915.65
6 43.09 93.27 352.18 1904.47
7 43.35 93.38 380.16 2034.05
8 44.25 94.88 379.97 2015.69
9 44.25 94.57 380.88 2073.22
10 45.47 95.03 382.68 2133.56
11 45.39 94.72 375.01 1993.64
12 45.52 94.71 376.35 2018.54
13 45.86 95.07 383.83 2096.53
14 45.95 95.36 357.25 1988.37
15 46.06 95.57 420.28 2298.63
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variation characteristics of characteristic data in a cable tunnel
under different fire conditions are analyzed, and a fire prediction
model is proposed. The main conclusions are set as follows:

1) Through the comparison between simulation and
experimental data, the cable model is established by
defining chemical reactions and setting up complex
pyrolysis. The total firepower obtained can be well
consistent with the actual combustion.

2) The fire development under different fire source powers and
fire locations is simulated. The results show that it is difficult
to distinguish fire source power and fire location only by a
single acquisition parameter. The different fire source powers
and fire locations can be distinguished using a variety of
characteristic parameters.

3) The accuracy of the fire classification and prediction model
based on SVM is 92%. The effectiveness of the prediction
model is verified. Fire can be put out more pertinently

according to the prediction results of fire source power and
fire location.
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Wind Power Prediction Based on a
Hybrid Granular Chaotic Time Series
Model
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For realizing high-accuracy short-term wind power prediction, a hybrid model considering
physical features of data is proposed in this paper, with consideration of chaotic analysis
and granular computing. First, considering the chaotic features of wind power time series
physically, data reconstruction in chaotic phase space is studied to provide a low-
dimensional input with more information in modeling. Second, considering that
meteorological scenarios of wind development are various, complicated, and
uncertain, typical chaotic time series prediction models and wind scenarios are
analyzed correspondingly via granular computing (GrC). Finally, through granular rule-
based modeling, a hybrid model combining reconstructed wind power data and different
models is constructed for short-term wind power prediction. Data from real wind farms is
taken for experiments, validating the feasibility and effectiveness of the proposed wind
power prediction model.

Keywords: wind power prediction, hybrid model, time series, chaotic analysis, granular computing

INTRODUCTION

To mitigate the influence of global warming and energy crisis concerns, wind energy has been
developed as one of the most potential energies around the world (Brouwer et al., 2016). Especially in
areas with a large amount of wind sources (Li et al., 2017), e.g., Northwest of China, United States,
and Europe, large-scale wind farms are being developed to provide more clear power to electricity
industries. As more wind power is integrated into power systems with high concentration, the power
grid also faces some great challenges caused by wind power generation. For example, the
intermittency and variability of wind cause the uncertainty of wind power supply (Doostizadeh
et al., 2017), which also causes the difficulties in scheduling wind power and threatens the security of
the power grid. Therefore, an accurate wind power prediction system is eagerly required and
improved by system operators to mitigate the harmful effects.

Currently, wind power prediction methods are mainly grouped into two categories: physics-based
models and data-driven models (Yan et al., 2015). Physics-based models usually make use of
meteorological data and physical laws to estimate wind speed, then wind speed is transformed into
wind power, e.g. NWPs (Liu et al., 2012). Data-drivenmodels, also called statistical models, utilize big
data sets and artificial intelligence (AI) algorithms to train a mathematical model which could
express the relationship between inputs and prediction output, e.g., auto-regressive and moving
average models (ARMA), neural networks (NN), support vector machines (SVM), and so on (Liu
et al., 2016; Shao et al., 2018). Generally, these data-driven models can achieve relatively satisfactory
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performance on industrial data of wind farms in short-term
forecasting. To further improve short-term wind power
forecasting performance, hybrid models combining the
advantages of several models are also proposed in literature.
For example, in Ouyang et al. (2016), a hybrid model via
switching models was proposed to obtain the optimal wind
power prediction result, and the Markov chain was introduced
as the switching regime. Moreover, many hybrid models usually
utilize decomposed signals for prediction then combine these
sub-predictions at last. For example, a hybrid model based on
wind power time series decomposition was proposed for wind
direction forecasting (Tang et al., 2020; Tang et al., 2021).
Comparing these models, physical models usually explain the
trend of the wind process meaningfully, because they govern the
atmospheric behaviors in physics (Xiong et al., 2017). However,
their precision in short-term prediction is generally low. On the
other hand, those models involving data-driven algorithms may
face two problems: one involves the subjective selection of AI
algorithms; the other involves overfitting and under-fitting in
many models, so the reliability and persuadability of these
prediction models require more extra explanation.

Aiming at the mentioned problems above, this paper targets to
propose a high-accuracy wind power prediction model
combining the advantages of physical and data-driven models.
First, as we know, the wind process is formed by atmospheric
movement from the perspective of physics, namely, via the
chaotic analysis of time series data (Lange and Focken, 2006;
Lei et al., 2007). Based on chaotic analysis, the wind power time
series could be reconstructed in a new phase space which could
reflect both physical factors and statistical results of historical
data. Second, if we analyze the wind process from a physical
perspective, we would see that the pattern behind wind is variable,
diversified, complicated, and uncertain. This is the reason why
hybrid models with a switching regime and mode decomposition
could succeed. Therefore, a hybrid prediction model considering
wind patterns would also persuasively improve wind power
prediction performance. Based on the above factors, the
proposed method makes use of chaotic analysis and granular
computing in wind power prediction and aims at realizing two
contributions: 1) making use of chaotic analysis to reconstruct
data, and to realize high effectiveness and efficiency with the
reconstructed data in modeling; 2) considering the complexity
and uncertainty of wind patterns, a hybrid model based on
granular computing is proposed to reflect both physical and
statistical factors. By taking industrial data from a wind farm
as a studied case, the proposed approach is applied. Experiments
and evaluation are discussed to validate the feasibility of the
proposed wind power prediction model.

TIME SERIES RECONSTRUCTION

According to the above description, time series reconstruction is
to extract effective inputs for modeling. Considering the wind
speed time series is physically chaotic (Lei et al., 2007), it could be
reconstructed based on physical features in a new space where
large information is represented by refined features. Assuming a

time series as {x} = {x1, x2,/, xN},N is the length of the given data
set, and it could be reconstructed into a new phase space
according to the Takens embedding theory (Rand and Young,
1988). The reconstruction formula is expressed as below:

x(i) � (xi, xi+τ ,/xi+(m−1)τ) ∈ Rm, i � 1, 2/, N0 � N − (m − 1)τ
(1)

where {x} is the wind power time series in this paper; x is the
reconstructed data belonging to a space Rm; and τ and m are the
delay time and embedding dimension parameters in
reconstruction. In this way, the reconstructed data could
provide as much possible information with a limited number
of dimensionalities, namely, improving effectiveness and
efficiency in time series modeling (Tang et al., 2020). These
two parameters can be calculated by the mutual information
(MI) method (Fraser and Swinney, 1986) and false nearest
neighbors (FNN) method (Abarbanel and Kennel, 1993),
respectively. Through the selection of optimal delay time τ
and embedded dimension m, a one-dimension time series
could be reconstructed as Rm data by Eq. 1. In this way, the
most relevant features could be included in the new data for
modeling (Tang et al., 2020).

To judge if the reconstructed phase space is a chaotic system,
some criteria are required. The Lyapunov exponent (Packard
et al., 1980) was a useful metric to test a system’s characteristic, as
expressed in Eq. 2. If the value of Lyapunov exponent is positive,
the given system could be considered as a chaotic system.When it
equals 0, the system is considered as having bifurcation points or
periodic solutions. When its value is negative, the system has
stable and fixed solutions. To calculate the value of the Lyapunov
exponent, firstly, choosing a start point in the reconstructed space
and its nearest neighbor, their distance is defined as L0. After the
evolution of a given time T, two new points are obtained, and
their new distance is defined as L′0. Then, new data and new
distance pair (L1, L′1) are calculated as the same principle. When
the last point in the phase space is calculated, we could calculate
the Lyapunov exponent as below:

λ � 1
MT

∑M
i�0
ln

L′
i

Li
(2)

whereM is the number of distance pairs. Through the calculation
of the Lyapunov exponent in Eq. 2, we could judge if the
reconstructed phase space and the original time series have
chaotic features according to the above criterion.

WIND POWER PREDICTION MODEL BY
GRANULAR COMPUTING

For chaotic time series, several prediction models are studied in
the literature, e.g., local prediction models, global prediction
methods, prediction methods based on the Lyapunov
exponent, Volterra prediction models, and so on (Zhang and
Liang, 2012). For wind power prediction, the meteorological
regimes behind the wind process are various, so these models
may just be suitable at specific time intervals. According to this
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idea, the hybrid model with a regime switching the optimal
models would achieve better performance. However,
considering the uncertainty of wind development, the accuracy
of meteorological regimes at a given period is complicated and
uncertain. Therefore, a hybrid model considering more
prediction models and uncertainty is a better choice to
improve performance. This is also the reason for proposing a
hybrid prediction model via granular computing.

Granular Computing for Dividing Scenarios
Granular computing (GrC) is actually a process of grouping
objects which have the same or similar information (Ouyang
et al., 2021) (e.g. shapes, sizes, or other features) and use
information granules (IGs) to analyze the abstract objects in
real world. Based on these ideas, we proposed to construct
information granules of different wind development processes
and utilized these granules to guide prediction.

Generally, IGs are constructed by two factors: prototype and
granule size. To partition an original data set into different
categories, the Fuzzy C-Means (FCM) is widely applied
(Chuang et al., 2006). Assuming the set {x} having N data
points with c clusters, the membership matrix of each data
point based on FCM could be calculated by the following
expression:

uik � 1

∑c
j�1
(‖xk−vi‖‖xk−vj‖)

2/(m−1) (3)

where, xk∈{x}; uik is the membership to the ith cluster center, and
m is a fuzzification coefficient and usually m = 2. Then, cluster
centers could be selected as prototypes of granules, as below.

vi � ∑N
k�1

um
ikxk/∑N

k�1
um
ik, i � 1, 2,/, c (4)

After the decision of these prototypes, a blueprint of IGs could
be created. By concentrating on a prototype vi, a group of points
could form a granule IGiwhich could also be wind scenario in our
study. Besides the position information, the sizes of IGs are also
important in evaluating their description performance. Generally,
coverage and specificity are two important metrics (Ouyang et al.,
2019). Assuming a granule is constructed as a hypersphere
granule via Euclidean distance, the coverage and specificity
can be calculated as below:

cov(ρ) � 1
N

∑
xk :‖xk−vj‖2 ≤ ρ2
xk∈Ω

uik (5)

sp(ρ) � 1 − ρ (6)
where ρ is the size of granule, satisfying ρ ∈ [0, 1]. Ideally
speaking, these two metrics are expected to maximum. For
example, when dividing wind scenarios, a granule needs to
cover as many similar scenarios as possible; meanwhile, it
needs to reduce the overlap with other granules. However, it is
seen from (Eqs. 5–6) that they are in conflict, namely, higher
coverage will lead to lower specificity. To optimize the mentioned

objective, a function cov(ρ)sp(ρ) is proposed to be maximized.
Finally, an optimal value of ρ, say ρopt, is returned. After the
optimization of all granule sizes, the original data could be
described by several constructed information granules, namely,
scenarios.

Wind Power Prediction Modeling
According to the process of granular computing, data sets could
be divided into several granules based on similarity. For
reconstructed wind power data, to analyze the meteorological
scenarios to which each data point belongs, we could also
construct scenario granules based on reconstructed wind
power data {x}. While considering to utilize results of granular
computing to improve the performance of wind power
prediction, we propose to add the prediction errors into inputs
in granular computing, defined as below:

input � [x, e1, e2, e3] (7)
where x is the reconstructed chaotic data and e1, e2, and e3 are
prediction errors of three models (Local linear model, Lyapunov
model, Volterra model) forecasting wind power independently.
By using these inputs in granular computing, three information
granules IGi (i = 1,2,3) reflecting the relationship of wind
scenarios and prediction models could be constructed. Then,
three fuzzy rules for determining a given data point’s scenario
could be given as below:

Rulei: IF input belongs to IGi, THEN xt is in the i
th

wind scenario; (i � 1, 2, 3) (8)
While the granular computing is based on fuzzy analysis, the

uncertainty of the wind process is also considered. According to
the above rules, for the current data point xt, its belonging degree
to each wind scenarios could be calculated by Eq. 3. Considering
the uncertainty of xt belonging to wind scenarios, we propose to
utilize the weighted hybrid model as the final prediction model, as
below:

xt+1 � ∑c
i�1
uitxt (9)

where the prediction model is regarded as a weighted model using
fuzzy memberships as weights; c = 3 in this paper because only
three chaotic time series models are considered.

EXPERIMENTS AND DISCUSSION

According to the above description, we could complete the
chaotic analysis and prediction modeling of wind power data.
In this paper, we take the industrial data from wind farms as
studied cases. The collected data is from a wind farm of
northwestern China, which has a sampling interval of 15 min.
The objective of this research is to predict the wind power output
from the studied wind farm that has a totally installed capacity of
603 MW. The data set has 34,080 data points, among of which
70% is taken as training set and the rest are for testing. Moreover,
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raw wind data often contains random noise and abnormal values;
therefore, suitable data pre-processing is required before
modeling, for example, wind power denoising and abnormality
cleaning.

Wind Power Data Reconstruction
According to the above description, the proposed prediction
model is based on chaotic analysis. Therefore, reconstruction
of wind power data and verification of the chaotic system is the
first step. As the processes are described in Section 2, we need to
select the optimal delay time and embedded dimension for phase
space reconstruction via the mutual information method and
FNN method. Results are shown in Figure 1.

Figure 1A depicts the curve representing values of mutual
information when the delay time τ increases. It is seen that the
relevance becomes weak when delay time becomes large.
Generally, the final delay time τ is decided when the value of
mutual information reaches the first local minimum value.
Therefore, the delay time of wind power is selected as τ = 9. It
means that the closet nine points, e.g. x(t), x (t-1), . . ., x (t-8) have
similar information, namely, dependent relation. In order to
provide more information with lower dimensionality in
modeling, two independent variables should be taken, such as
x(t) and x (t-9). Figure 1B depicts the curve representing the
number of false neighbor points when calculating the embedded
dimension. When the value of the threshold is selected as ath =
10%, the percentage of false neighbors is 0% with reconstruction
parameters m = 7. Combining with τ = 9, it implies that the
correlation will be ended at the 7*9 = 63 step, but the new phase
space can be considered for the reconstruction of the most
important seven points. Then, according to the calculation of
the Lyapunov exponent in Eq. 2, the solution of the Lyapunov
exponent is calculated as λ = 0.00059. It illustrates that wind
power data belongs to a chaotic system (λ > 0) according to the
above description of the Lyapunov exponent. Then, the
prediction models based on chaotic time series are feasible in
wind power prediction.

Wind Power Prediction
By taking 70% of the given data set as the training data, the
remaining data is used for validation and testing. First, by

applying the reconstruction parameters calculated above, the
phase space of wind power data is reconstructed based on Eq.
1. Since the reconstructed wind power time series is verified to be
chaotic, it is used to train and predict wind power based on three
given chaotic models in Section 3, namely, the local linear model,
Lyapunov prediction model, and Volterra prediction model,
labeled as S1, S2, and S3 respectively. Considering that each
model has its best prediction performance at different time,
we could consist of the reconstructed data and prediction
errors of three models as inputs; three wind scenarios are
analyzed by granular computing.

Figure 2 shows the division of three wind scenarios through
granular computing. For convenience of presentation, only two
elements [error3, x (t-6τ)] are used in plot. It is seen from Figure 2
that different scenarios for three chaotic time series models have
clear division. Then, based on this division, fuzzy rules could be
formed and the final hybrid model could be constructed by
granular computing (Eq. 9). The performance of wind power
prediction is expressed by four error metrics (Wu et al., 2014),
namely, mean absolute error (MAE), root mean squared error

FIGURE 1 | Calculation of the delay time (A), the minimum embedded dimension (B), and the Lyapunov exponent (C).

FIGURE 2 | Division of wind scenarios.
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(RMSE), standard deviation of absolute error (SDofAE), and
correlation coefficients (CC), as presented in Table 1.

S1, S2, and S3 represent three prediction models, respectively,
and the proposed model is also compared. It is seen that the
difference between the former three models is not large, and that
S1 has the worst prediction performance and S3 has the best
prediction performance according to the values of error metrics.
In comparison, the performance of the proposed method is
presented and improved greatly.

Comparison and Discussion
Moreover, based on the error metrics, some improvement
coefficients were defined in (Wu et al., 2014), which are
validated to be useful for studying performance improvement,
as shown in Eq. 10.

IEM � EMref − EM

EMref
· 100% (10)

where, IEM is the improvement coefficient and EM represents a
given error metric (e.g. MAE, RMSE, etc.). When the value of IEM
is larger than 0, it means the given model improves the
performance w.r.t. the reference.

Table 2 shows the improvement coefficients of the proposed
method by taking S1, S2, and S3 as the reference models. The
coefficient of determination R2 is also proposed for analysis in
Table 2. R2 is actually the improvement coefficient of the mean
square error (MSE) defined in Eq. 11.

MSE � 1
N

∑N
i�1
(xi − x̂i)2 (11)

It is seen that the proposed model has an improvement on
longitudinal errors by an average of 21.18% on MAE, 39% on
RMSE, and 21.14% on SDofAE, which means the proposed
method can improve the prediction performance greatly. On
the other hand, the value of ICC is improved by an average of
4.07% since the value of CC is good.

Moreover, to compare the performance of other data-drivenwind
power prediction models, such as neural networks (NN), support
vector machine (SVM), random forests (RF), boosting trees (BT), the

MSAR model, and the generic linear combined model of S1, S2, and
S3, Table 3 presents the improvement coefficients of the proposed
method compared with these six models, as presented below.

It is seen that the proposed method still improves the prediction
performance greatly, compared with traditional methods. By
comparing with traditional AI algorithms, the improvements on
errors have an average of 11.91%onMAE, 35.38% onRMSE, 10.62%
on SDofAE, and 5.76% on CC. By comparing with two advanced
hybrid models, the improvements are 4.4% on MAE, 12.93% on
RMSE, 7.92% on SDofAE, and 1.3% on CC. It is seen that hybrid
models have better performance than traditional AImodels. Since all
the values are positive, these results verify that the proposed model
has indeed improved the wind power prediction performance when
compared with both traditional models and hybrid models.

CONCLUSION

To improve the performance of short-termwindpower prediction, this
paper proposed a new hybridmodel based on granular computing and
chaotic data reconstruction. By reconstructing the wind power time
series into chaotic phase space, more information could be provided
with a low dimensionality for modeling. Then, considering the
uncertainty and diversity of wind development scenarios, three
chaotic models are constructed and their corresponding scenarios
are constructed as information granules by granular computing.
Finally, the proposed model is realized by granular computing and
chaotic time series prediction models. Experiments on wind power
prediction verify the superiority of the proposed model. Through the
improvement coefficient shown in Tables 2–3, it is validated that the
proposed method improves the accuracy of wind power prediction
than most traditional models. Therefore, it is concluded that the
proposed method is feasible and effective. It will be helpful for
directing wind power scheduling and planning in the future.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

YW put forward the main research points; WX completed the
manuscript writing and revision; ES and QL completed the

TABLE 1 | Four error metrics of different prediction methods

MAE(MW) RMSE(MW) SDofAE CC

S1 20.578 28.477 19.694 0.9470
S2 22.460 32.230 23.128 0.9354
S3 17.907 21.556 18.431 0.9838
Proposed model 15.874 16.261 15.955 0.9938

TABLE 2 | Improvement coefficients of the proposed method vs. S1, S2, and S3

IMAE (%) IRMSE (%) ISDofAE (%) ICC (%) R2 (%)

Proposed vs. S1 22.86 42.90 18.99 4.94 67.39
Proposed vs. S2 29.32 49.55 31.01 6.24 74.54
Proposed vs. S3 11.35 24.56 13.43 1.02 43.09

TABLE 3 | Improvement coefficients of traditional prediction models

IMAE (%) IRMSE (%) ISDofAE (%) ICC (%) R2 (%)

NN 3.20 27.86 3.06 5.16 47.96
SVM 14.70 39.30 17.29 7.14 63.15
RF 19.22 41.69 19.41 6.19 65.99
BT 10.52 32.68 2.73 4.54 54.68
MSAR 4.72 16.77 5.20 0.85 30.73
Generic hybrid 4.07 9.09 10.64 1.74 17.35

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 8237865

Wang et al. Model of Wind Power Prediction

300

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


simulation research; NY and PF collected relevant background
information; KG and YH revised grammar and expression. All

authors contributed to manuscript revision and read and
approved the submitted version.

REFERENCES

Abarbanel, H. D. I., and Kennel, M. B. (1993). Local False Nearest Neighbors and
Dynamical Dimensions from Observed Chaotic Data. Phys. Rev. E 47 (5),
3057–3068. doi:10.1103/physreve.47.3057

Brouwer, A. S., Van den Broek, M., Özdemir, Ö., Koutstaal, P., and Faaij, A. (2016).
Business Case Uncertainty of Power Plants in Future Energy Systems with
Wind Power. Energy Policy 89, 237–256. doi:10.1016/j.enpol.2015.11.022

Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., and Chen, T.-J. (2006). Fuzzy
C-Means Clustering with Spatial Information for Image Segmentation.
computerized Med. Imaging graphics 30 (1), 9–15. doi:10.1016/j.
compmedimag.2005.10.001

Doostizadeh, M., Aminifar, F., and Lesani, H. (2017). Coordinated Multi-Area
Energy and Regulation Joint Dispatch under Wind Power Uncertainty.
J. Renew. Sustain. Energ. 9 (2), 023303. doi:10.1063/1.4978305

Fraser, A. M., and Swinney, H. L. (1986). Independent Coordinates for Strange
Attractors from Mutual Information. Phys. Rev. A. 33 (2), 1134–1140. doi:10.
1103/physreva.33.1134

Lange, M., and Focken, U. (2006). Physical Approach to Short-Term Wind Power
Prediction. Berlin: Springer, 1–208.

Lei, D., Lijie, W., Shi, H., Shuang, G., and Xiaozhong, L. (2007). “Prediction of
Wind Power Generation Based on Chaotic Phase Space Reconstruction
Models,” in Power Electronics and Drive Systems, 2007. PEDS’07. 7th
International Conference on (IEEE), 744–748. doi:10.1109/peds.2007.4487786

Li, L., Teng, Y., andWang, X. (2017). Dynamic Equivalent Modeling ofWind Farm
Considering the Uncertainty of Wind Power Prediction and a Case Study.
J. Renew. Sustain. Energ. 9 (1), 013301. doi:10.1063/1.4973445

Liu, K., Zhang, Y., and Qin, L. (2016). A Novel Combined Forecasting Model for
Short-Term Wind Power Based on Ensemble Empirical Mode Decomposition
and Optimal Virtual Prediction. J. Renew. Sustain. Energ. 8 (1), 013104. doi:10.
1063/1.4939543

Liu, Y., Shi, J., Yang, Y., and Lee, W.-J. (2012). Short-TermWind-Power Prediction
Based on Wavelet Transform-Support Vector Machine and Statistic-
Characteristics Analysis. IEEE Trans. Ind. Applicat. 48 (4), 1136–1141.
doi:10.1109/tia.2012.2199449

Ouyang, T., Pedrycz, W., and Pizzi, N. J. (2019). Record Linkage Based on a Three-
Way Decision with the Use of Granular Descriptors. Expert Syst. Appl. 122,
16–26. doi:10.1016/j.eswa.2018.12.038

Ouyang, T., Pedrycz, W., Reyes-Galaviz, O. F., and Pizzi, N. J. (2021). Granular
Description of Data Structures: A Two-phase Design. IEEE Trans. Cybern. 51
(4), 1902–1912. doi:10.1109/tcyb.2018.2887115

Ouyang, T., Zha, X., Qin, L., Xiong, Y., and Xia, T. (2016). Wind Power Prediction
Method Based on Regime of Switching Kernel Functions. J. Wind Eng. Ind.
Aerodynamics 153, 26–33. doi:10.1016/j.jweia.2016.03.005

Packard, N. H., Farmer, J. P. J. D., Shaw, R. S., Farmer, J. D., and Shaw, R. S. (1980).
Geometry from a Time Series. Phys. Rev. Lett. 45 (9), 712–716. doi:10.1103/
physrevlett.45.712

Rand, D., and Young, L. S. (1988). Dynamical Systems and Turbulence. lecture
Notes Math. 366381.

Shao, H., Deng, X., and Jiang, Y. (2018). A Novel Deep Learning Approach for
Short-Term Wind Power Forecasting Based on Infinite Feature Selection and
Recurrent Neural Network. J. Renew. Sustain. Energ. 10 (4), 043303. doi:10.
1063/1.5024297

Tang, Z., Zhao, G., and Ouyang, T. (2021). Two-phase Deep Learning Model for
Short-Term Wind Direction Forecasting. Renew. Energ. 173, 1005–1016.
doi:10.1016/j.renene.2021.04.041

Tang, Z., Zhao, G., Wang, G., and Ouyang, T. (2020). Hybrid Ensemble Framework
for Short-Term Wind Speed Forecasting. IEEE Access 8, 45271–45291. doi:10.
1109/access.2020.2978169

Wu, B., Song, M., Chen, K., He, Z., and Zhang, X. (2014). Wind Power Prediction
System for Wind Farm Based on Auto Regressive Statistical Model and
Physical Model. J. Renew. Sustain. Energ. 6 (1), 013101. doi:10.1063/1.
4861063

Xiong, Y., Zha, X., Qin, L., Ouyang, T., and Xia, T. (2017). Research on Wind
Power Ramp Events Prediction Based on Strongly Convective Weather
Classification. IET Renew. Power Generation 11 (8), 1278–1285. doi:10.
1049/iet-rpg.2016.0516

Yan, J., Gao, X., Liu, Y., Han, S., Li, L., Ma, X., et al. (2015). Adaptabilities of Three
Mainstream Short-Term Wind Power Forecasting Methods. J. Renew. Sustain.
Energ. 7 (5), 053101. doi:10.1063/1.4929957

Zhang, X., and Liang, J. (2012). Chaotic Characteristics Analysis and Prediction
Model Study onWind Power Time Series.Acta Phys. Sin. 61 (19), 70–81. doi:10.
7498/aps.61.190507

Conflict of Interest: SE is employed by State Grid Hubei Electric Power Co. LTD.
YW, WX, QL, PF, KG, and YH is employed by State Grid Yichang Power Supply
Company.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022Wang, Xiong, E., Liu, Yang, Fu, Gong and Huang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 9 | Article 8237866

Wang et al. Model of Wind Power Prediction

301

https://doi.org/10.1103/physreve.47.3057
https://doi.org/10.1016/j.enpol.2015.11.022
https://doi.org/10.1016/j.compmedimag.2005.10.001
https://doi.org/10.1016/j.compmedimag.2005.10.001
https://doi.org/10.1063/1.4978305
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1103/physreva.33.1134
https://doi.org/10.1109/peds.2007.4487786
https://doi.org/10.1063/1.4973445
https://doi.org/10.1063/1.4939543
https://doi.org/10.1063/1.4939543
https://doi.org/10.1109/tia.2012.2199449
https://doi.org/10.1016/j.eswa.2018.12.038
https://doi.org/10.1109/tcyb.2018.2887115
https://doi.org/10.1016/j.jweia.2016.03.005
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1063/1.5024297
https://doi.org/10.1063/1.5024297
https://doi.org/10.1016/j.renene.2021.04.041
https://doi.org/10.1109/access.2020.2978169
https://doi.org/10.1109/access.2020.2978169
https://doi.org/10.1063/1.4861063
https://doi.org/10.1063/1.4861063
https://doi.org/10.1049/iet-rpg.2016.0516
https://doi.org/10.1049/iet-rpg.2016.0516
https://doi.org/10.1063/1.4929957
https://doi.org/10.7498/aps.61.190507
https://doi.org/10.7498/aps.61.190507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Study on Dynamic Process
Characteristics of CHP Unit With
Variable Load Based on Working Point
Linearization Modeling
Yuehua Huang, Qing Chen*, Jing Ye and Tianlin Lu

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

In view of the difficulty of applying the refine modeling of combined heat and power (CHP)
units to the optimization scenario of integrated energy system, a CHP unit model based on
working point linearization modeling is proposed, and its variable load characteristics are
analyzed. Firstly, the dynamic coupling relationship of CHP unit is analyzed, and the
nonlinear dynamic model of the unit is constructed. Then, under the pure condensation
and heating conditions, the linearized Laplace transform model of the working point is
established, and the variable load capacity under the independent action of control
variables is analyzed to test the availability of the Laplace model. On this basis, the
dynamic adaptive particle swarm optimization algorithm is used for multivariable
cooperative control to test the open-loop characteristics of the variable load capacity
of the unit. At the same time, the control strategy of electrothermal cooperation and safety
self-test is designed to adjust the control variables, and test the closed-loop characteristics
of the unit’s regulation ability. Finally, a 300-MW steam extraction CHP unit is taken as an
example to verify the applicability of the unit model and the effectiveness of the control
strategy.

Keywords: working point linearization, unit variable load, multivariable cooperative control, dynamic adaptive
particle swarm optimization, dynamic regulation characteristics

INTRODUCTION

Clean, low-carbon, and efficient energy use plays an important role in realizing the strategic goal of
“double carbon.” Combined heat and power (CHP) plant is becoming the main energy supply source
of the electrothermal integrated energy system (IES) with its superior comprehensive energy supply
efficiency (Sun et al., 2021). The modeling of the CHP unit variable load capacity is very important
for the optimal calculation of power dispatching, frequency regulation, and other scenarios of the IES
(Ye et al., 2012; Zhang et al., 2021). However, its refinedmodelingmechanism is complicated, and the
fast dynamic regulation characteristics after optimization control transformation are complex (Shen
et al., 2017; Shen et al., 2020a), which makes it difficult to accurately describe the variable load
capacity of the unit. Therefore, the research on the description method of the dynamic regulation
characteristics of the CHP unit during the variable load process is of great significance to support the
application of the CHP unit in the scenario of the IES.

The dynamic characteristics of the CHP unit are not only affected by its internal physical structure
attributes but also related to the operation mode, the working condition, the external environment,
and other factors (Wang, 2013). At present, it is difficult to obtain an accurate description of the
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dynamic characteristics of the unit. A mathematical model that
meets certain accuracy requirements and reflects the main
dynamic characteristics of the unit is often established by
reasonable simplification and approximation, combined with
mechanism analysis and experimental modeling (Yang et al.,
2018; Yang et al., 2019; Zhu et al., 2020; Li et al., 2021). Algebraic
equations are usually used to describe the feasible region,
climbing, and standby capacity of the CHP unit model (Liu
et al., 2021). This model is mostly used in the calculation
scenario of the unit participating in system long-time scale
optimal dispatching (Zhang et al., 2018). The algebraic
equation linearization model often ignores the continuous
time variation characteristics of the unit output, and there is
the assumption that the unit output power can change
instantaneously. The model undoubtedly expands the rapid
load changing capacity of the unit, which is easy to cause the
possibility that the dispatching plan cannot be accurately realized,
that is, there is the problem of energy nondeliverability (Gao and
Yan, 2017). The mathematical description considering the
internal characteristics of the unit is in the form of differential
algebraic equations, which adopts the optimal control method to
improve the short-term rapid regulation ability of the unit and
participates in the system frequency modulation calculation scene
(Wang et al., 2018; Yang et al., 2021). The constraints of
differential algebraic equations will make the optimization
problem a highly nonlinear dynamic optimization problem.
This kind of an optimization problem is difficult to solve
directly. Approximating differential variables through a
discrete method will lead to the solution of large-scale
optimization problems being easy to fall into a dimensional
disaster (Wang, 2012), long solution time, and poor accuracy
(Shen et al., 2021a; Shen and Raksincharoensak, 2021a), and
cannot be solved online and in real time (Shen et al., 2020b; Shen

et al., 2021b; Shen and Raksincharoensak, 2021b). The modeling
of the dynamic characteristics of the unit variable load process
faces the challenge of meeting the calculation accuracy and
solution speed while taking into account the accurate
description of unit dynamic characteristics.

Laplace-transform a real variable function and perform
various operations in the complex number field, and then
perform the inverse Laplace transform to obtain the
corresponding results in the real number field, which is often
much easier to calculate than directly obtaining the same results
in the real number field (Beerends et al., 2003). Yang et al. (2020)
proposed a generalized circuit modeling method based on
Laplace transform, which transforms the complex transmission
characteristics of multi-energy networks in the time domain into
a simple algebraic problem in the Laplace domain. Laplace
transform is particularly effective for simplifying differential
equations, which can be transformed into easily solved
algebraic equations (Hooman and Randolph, 2020), so as to
simplify the calculation. The analysis and synthesis of the
control system are based on Laplace transform. Gao and Tian
(2020) linearized the nonlinear dynamic model of the heating
unit with small deviation, obtained the transfer function matrix
model, analyzed the coupling relationship of the unit, and studied
the thermal power load decoupling control method of the unit.
Liu et al. (2005) linearized the nonlinear model at different load/
pressure operating points and studied the load pressure nonlinear
characteristics of the 660-MW unit. After linearizing the small
deviation of the dynamic model of the heating unit (Deng et al.,
2017), the transfer function matrix model including the
characteristics of the heating side is obtained, the
thermoelectric coupling characteristics are analyzed, and the
decoupler is designed. By introducing Laplace transform into
linearization at different working points and using a transfer

FIGURE 1 | Structure diagram of the CHP unit.
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function instead of a differential equation to describe the
characteristics of the system, the whole characteristics of the
control system can be determined intuitively and simply, the
motion process of the control system can be analyzed, and the
adjustment strategy of the control system can be provided. For
the linearization of the CHP unit at the working point, it is rare to
use Laplace transform modeling to make the model suitable for
the flexible demand of the variable load capacity of the IES.

To solve the above problems, firstly, a simplified nonlinear
dynamic model of the CHP unit is constructed. Then, the
linearized Laplace transform model of the working point
under pure condensation and heating conditions is
established to analyze the variable load capacity of the unit
when each control variable acts alone and cooperatively.
Furthermore, the control strategy of electrothermal
cooperation safety self-test is used to test the dynamic
regulation ability of the unit in the variable load process.
Finally, taking the 300-MW steam extraction CHP unit as an
example, the dynamic characteristics of the variable load
process of multivariable collaborative control are tested to
verify the effectiveness of open-loop and closed-loop control
strategies.

COMBINED HEAT AND POWER UNIT
MODEL
Dynamic Relationship of Combined Heat
and Power Unit
As shown in Figure 1, the fuel volume VB of the unit directly
controls the boiler combustion to produce high-temperature
steam. The high-pressure regulating valve VT of the steam
turbine is connected with the high-pressure (HP) cylinder
and the boiler, and the steam extraction regulating butterfly
valve VH is installed in the connecting pipe between the
intermediate-pressure (IP) cylinder and the low-pressure
(LP) cylinder. The steam exhaust of the IP cylinder of the
steam turbine is divided into two parts. One part enters the
LP cylinder of the steam turbine through the regulating
butterfly valve to continue to work, and the other part
enters the heat supply network heater to provide the heat
source. After cooling, it is sent to the deaerator through the
heat supply network drain pump. When the heating load is
increased under the heating state, the VH opening of the
regulating butterfly valve will be reduced, and the exhaust
pressure of the IP cylinder of the steam turbine will increase,
so more steam will enter the heat network heater, the
saturation temperature in the heat network heater will
increase, and the outlet temperature of heating water will
increase. If the system needs to reduce the heat supply, the
operation is the opposite of the above steps. When the heating
is stopped, the regulating butterfly valve VH is fully opened
and the heat supply shut-off valve is closed. At this time, the
steam turbine works in the pure condensation state. By
changing VT and VH , the proportion of heating and
generating power of the unit is adjusted to provide heat
source and power supply.

During the operation of the extraction type CHP unit, the
electric power and thermal power are comprehensively
determined by the fuel flow, main steam pressure, extraction
steam flow, temperature, and other variables controlled by its
valve. The load-pressure simplified nonlinear dynamic model of
the pure condensing unit (Liu et al., 2014) is combined with the
model in the study by Tian (2005), and the differential equation
mathematical model of the dynamic coupling relationship
between the electric power, thermal power, and control valve
of the CHP unit is obtained. The simplified nonlinear dynamic
model of the CHP unit is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm � VB(t − τ)
Tf

drB
dt

� −rB + rm

Cb
dpd

dt
� −K3ptVT −K1rB

pt � pd − K2(K1rB)ε

Tt
dNE

dt
� −NE +K4K3ptVT +K5pZVH

Ch
dpZ

dt
� −K6qx(96pz − ti + 103) +K3ptVT(1 −K4) −K5pZVH

qH � K7K6qx(96pZ − ti + 103)
p1 � 0.01ptVT

(1)
where VB is the coal supply mass flow of the unit; VT is the
opening of the steam inlet regulating valve of the HP cylinder
of the steam turbine; VH is the opening of the
extraction regulating butterfly valve; qx is the mass flow
of circulating water; ti is the return water temperature of
circulating water, NE is the generating power of the unit; pd

is the drum pressure; pt is the front pressure of the steam
turbine; pz is the exhaust pressure of the
intermediate pressure cylinder; p1 is the first stage
pressure of the steam turbine; qH is the heating extraction
steam flow; rm is the actual amount of coal entering the
pulverizer; rB refers to the boiler combustion rate; K1,K2, K3,
K4, K5, K6, and K7 are the static parameters; τ is the delay
time constant of the milling process; ε is constant-coefficient;
Tf is the milling time constant of inertia; Tt is the inertia
time constant of the steam turbine; Cb is the boiler heat
storage coefficient; and Ch is the heat storage coefficient of
the unit heater.

Linearization Model of Operating Point of
Combined Heat and Power Unit
The nonlinear model is linearized at a certain working
point, and the linearized model can accurately reflect the
dynamic and static characteristics of each link of the system
near the working point. The model described in Eq. 1 is
linearized to measure the action relationship between
various inputs and outputs in the model and the
influence of system nonlinearity on the controlled object.
Firstly, write Eq. 1 in incremental form. The linear model
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near the equilibrium point is obtained by small deviation
linearization:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm � ΔVB(t − τ)
Tf

dΔrB
dt

� −ΔrB + Δrm

Cb
dΔpd

dt
� −K3ptΔVT −K3ΔptVT − K1ΔrB

Δpt � Δpd − K1K2

�������
K1rBΔrB

√
Tt
dΔNE

dt
� −ΔNE +K4K3ptΔVT + K4K3ΔptVT + K5pzΔVH + K5ΔpzVH

Ch
dΔpz

dt
�−K6Δqx(96pz − ti + 103)−K6qx(96Δpz − Δti)+ K3ΔptVT(1 − K4)
+ K3ptΔVT(1 − K4) − K5ΔpzVH − K5pzΔVH

ΔqH � K7K6Δqx(96pz − ti + 103) +K7K6qx(96Δpz − Δti)
Δp1 � 0.01ptΔVT + 0.01ΔptVT

(2)

Secondly, the Laplace transform of the incremental equation is
obtained. Assuming that the initial condition is zero, the Laplace
transform is taken for the linear differentialEq. 2 of the system, and
the incremental symbol is omitted, the following can be obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm(s) � e−τsVB(s)
TfsrB(s) � −rB(s) + rm(s)
Cbspd(s) � −K3ptVT(s) −K3pt(s)VT −K1rB(s)
pt(s) � pd(s) − K1K2

������
K1rBrB

√ (s)
TtsNE(s) � −NE(s) +K4K3ptVT(s) +K4K3pt(s)VT +K5pzVH(s) +K5pz(s)VH

Chspz(s) � −K6qx(s)(96pz − ti + 103) −K6qx(96pz(s) − ti(s)) +K3pt(s)VT(1 −K4)
+K3ptVT(s)(1 − K4) −K5pz(s)VH −K5pzVH(s)
qH(s) � K7K6qx(s)(96pz − ti + 103) +K7K6qx(96pz(s) − ti(s))
p1(s) � 0.01ptVT(s) + 0.01pt(s)VT

(3)

Then, the linear model is appropriately simplified and
equivalent to obtain a set of linear equations describing the
dynamic characteristics of the unit transfer process, and the
system thermoelectric coupling relationship model after
linearization of the working point can be obtained, which is
expressed in the form of the transfer function matrix as follows:

⎡⎢⎢⎢⎢⎢⎣ pt(s)
pz(s)
NE(s)

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)
G31(s) G32(s) G33(s)

⎤⎥⎥⎥⎥⎥⎦ · ⎡⎢⎢⎢⎢⎢⎣ VT(s)
VB(s)
VH(s)

⎤⎥⎥⎥⎥⎥⎦ (4)

The elements of the thermoelectric coupling relationshipmatrix are

G11(s) � − M2

1 +M1s
(5)

G12(s) �
K1

K3VT
(1 −M3s)

(1 + Tfs)(1 +M1s)
e−τs (6)

G13(s) � 0 (7)

G21(s) �
1−K4
M4

M2Cbs

(1 +M1s)(1 + Ch
M4

s) (8)

G22(s) �
K1(1−K4)

M4
(1 −M3s)

(1 + Tfs)(1 +M1s)(1 + Ch
M4

s)e−τs (9)

G23(s) � −
M6

(M4)2

1 + Ch
M4

s
(10)

G31(s) �
M2Cbs

M5
M4

(1 + K4Ch
M5

s)
(1 + Tfs)(1 +M1s)(1 + Ch

M4
s) (11)

G32(s) �
K1M5
M4

(1 −M3s)(1 + K4Ch
M5

s)
(1 + Tfs)(1 +M1s)(1 + Tts)(1 + Ch

M4
s)e−τs (12)

G33(s) �
96K6qxM6

(M4)2 (1 + Ch
96K6qx

s)
(1 + Tts)(1 + Ch

M4
s) (13)

where M1 � Cb/(K3VT), M2 � K1VB/(K3V2
T),

M3 � 1.5K2Cb
�����
K1VB

√
, M4 � 96K6qx +K5VH,

M5 � 96K4K6qx +K5VH, M6 � K5[K6qxti − 103K6qx +
K1VB(1 −K4)].

Under different input operating points, the transfer function of the
CHP unit will be different. This nonlinearity only changes the model
parameters, and the model structure is unchanged. The Laplace
transform model with a linearized working point takes into
account the advantages of simplicity, being in real time, and high
precision. In this paper, the variable load characteristics of the CHP
unit under pure condensation and heating conditions will be studied.

ANALYSIS METHOD OF VARIABLE LOAD
CHARACTERISTICS OF COMBINED HEAT
AND POWER UNIT

Open-Loop Variable Load Characteristic
Test and Multicontrol Variable Synergy
Method
Variable Load Characteristic Test With Independent
Action of Control Variables
The functional relationship between control variables and output
variables is shown in Figure 2. The pure condensation condition

FIGURE 2 | Linearization function diagram of the CHP unit.
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and heating condition are modeled in Simulink to test and
analyze the input–output relationship between variable load
process variables. See Supplementary Appendix SB for the
parameters of the working condition model. The dynamic
characteristics of the boiler steam turbine heating system and
the variable load capacity are obtained by analyzing the output
change when the control variables act alone. Under the heating
condition, apply step changes of 10 t/h, 10, and 10% on VB, VT ,

and VH commands, respectively, and under the pure
condensation condition, apply step changes of -10 t/h, −10%,
and −10%, respectively. The response curves of electric power,
main steam pressure, and extraction pressure under different
working conditions are shown in Figures 3, 4.

Figure 3 shows the change of the object output under the step
disturbance of boiler fuel VB, turbine high regulating valve VT

opening, and heating extraction regulating butterfly valve VH

opening. When VB increases, the front pressure of the unit, the
electric power of the unit, and the exhaust pressure of the IP
cylinder (heating extraction flow) all rise. When VT opening
increases, the pressure in front of the unit decreases, the boiler
releases heat storage, the electric power of the unit first increases
and then returns to the original level, and the exhaust pressure
(heating extraction flow) of the IP cylinder first increases and
then returns to the original level. When VH increases, the
pressure in front of the turbine will remain unchanged, the
electric power of the unit will increase due to the increase in
the work share of some steam in the LP cylinder, the IP exhaust
pressure will decrease, and the heating extraction flow will
decrease due to the decrease in steam extraction from the turbine.

Figure 4 shows the object output changes under the step
disturbance of boiler fuel volume VB, turbine high regulating
valve VT opening, and heating extraction regulating butterfly
valve VH opening. When VB is lowered, the pressure of the front
engine, the power of the generating unit, and the exhaust pressure

of the IP cylinder are all decreased. Because VH is fully opened,
the extraction flow of heating is zero and remains unchanged,
which is no different from the traditional pure condensing unit.
When VT opening decreases, the pressure in front of the unit
increases, the boiler releases heat storage, and the electric power
of the unit decreases first and then returns to the original level.
The variation law of the exhaust pressure of the IP cylinder is
similar to that of the electric power. Because VH is fully open, the
heating extraction flow is zero and remains unchanged.WhenVH

opening decreases, because the heating state of the unit is not
actually turned on, the electric power of the unit remains
unchanged, the exhaust pressure of the IP cylinder increases,
and the heating extraction flow is zero.

The dynamic characteristics of the linearized model after
univariate action are basically consistent with the original
model (Wang, 2013). Therefore, it can be considered that the
linearized model has good reproducibility. It is feasible to analyze
and study the dynamic regulation characteristics of the variable
load process according to the linearized model.

The independent action test of control variables under the two
working conditions shows that the control variable regulation has
different effects on the load change of the CHP unit. VB has
obvious effect on the change of electric power, VT has a great
impact on the change of main steam pressure, and VH mainly
affects the change of extraction pressure. Although the control
variables acting alone have a certain variable load capacity, the
regulation time is long and the regulation is differential. The
actual system is controlled by pressure, temperature, flow, and
other factors, and the final control effect is the superposition of
many influencing factors. The control effects of the reverse
superposition of influencing factors offset each other, while the
control effects of the positive superposition strengthen each
other. The multicontrol variable synergy effect of the work
point linearization model needs to be further tested and verified.

FIGURE 3 | Effect of independent action of control variables under the
heating condition.

FIGURE 4 | Effect of control variables acting alone under the pure
condensation condition.
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Multicontrol Variable Synergy Method
In this paper, the optimization algorithm is used to determine the
three control variables ofVT,VB, andVH to analyze the change of
the system output when the three control variables work together.
Compared with other optimization algorithms, dynamic adaptive
particle swarm optimization (DAPSO) has relatively excellent
convergence ability and solution accuracy (Fu et al., 2017), which
is suitable for the variable optimization problem of the control
system in this paper. Its mathematical description is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt+1id � ωt

i v
t
i + ρ1r1(Pt

i − xt
i) + ρ2r2(Gt

i − xt
i)

xt+1
i � xt

i + xt+1
i , i � 1, 2, . . . , n

ωt
i � { βs2, s2 > a and s2 < b

1 − γhti + βs1, other

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hti � 1 −
∣∣∣∣∣∣∣∣min(F(Pt−1

i ), F(Pt
i))

max(F(Pt−1
i ), F(Pt

i))
∣∣∣∣∣∣∣∣

s1 �
∣∣∣∣∣∣∣∣min(Ft, �Ft)
max(Ft, �Ft)

∣∣∣∣∣∣∣∣

s2 � 1 − 1
NL

∑N
i�1

������������
∑D
d�1

(pid − �pd)2
√√

(15)

where vti is the velocity of the i-th particle in the t-th iteration; x
t
i is

the position of the i-th particle in the t-th iteration, and ρ1 and ρ2
are the acceleration coefficients; generally, ρ1 � ρ2 � 2. r1 and r2
are two random numbers varying in [0,1]. Pt

i is the best location
for the i-th particle to be searched in t iterations; Gt

i is the best
location for the whole population to search in t iterations;ωt

i is the
inertial weight of the i-th particle in the t-th iteration; γ and β are
selected in [0,1]; generally, γ � β � 0.5. a and b are the thresholds
for controlling the aggregation factor; generally, a � 0.9 and
b � 0.5; hti is the rate factor of evolution; s1 is the fitness
aggregation factor; s2 is the spatial aggregation factor. F(Pt

i ) is
the fitness value of Pt

i ; Ft is the best fit in the t-th iteration; �Ft is
the average fitness value in the t-th iteration; N is the population
size; L is the longest radius of the search space;D is the dimension
of the solution space; pid is the d-dimensional coordinate of the
i-th particle; �pd is the average of the d-dimensional coordinates of
all particles.

Given the electric power variable load demand, the
optimization algorithm flow of the synergy of the three
control variables is shown in Figure 5. The connection
between DAPSO and the Simulink model is through the
particle (i.e., control variables VT, VB, and VH) and the
corresponding fitness value of the particle (i.e., the
performance index of the matching degree between the output
value and the expected value). The optimization process is as
follows: DAPSO generates particle swarm optimization (initial
particle swarm optimization or updated particle swarm
optimization), assigns the particles in the particle swarm to
the model parameters VT, VB, and VH in turn, and then runs
the Simulink model under a certain working condition of the unit
to obtain the performance index corresponding to the group of
parameters, which is transmitted to DAPSO as the fitness value of
the particle. Finally, judge whether the algorithm can be exited.

Thermal System Constraints
CHP unit control shall be able to realize accurate variable load
tracking, reliable heat supply, and safe pressure fluctuation.
Heating and power generation are affected by boiler fuel
volume VB, turbine high regulating valve VT opening, and
heating extraction regulating butterfly valve VH opening.
Based on the PID optimization control method, three control
variables are matched, and the PID controllers of VT(t), VB(t),
and VH(t) are designed, respectively (Chen et al., 2014):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VT(t) � KPTET(t) + KIT∫
t

0

ET(t)dt +KDT
dET(t)
dt

VB(t) � KPBEB(t) +KIB∫
t

0

EB(t)dt +KDB
dEB(t)
dt

VH(t) � KPHEH(t) + KIH∫
t

0

EH(t)dt + KDH
dEH(t)

dt

(16)

Control scheme I:

⎧⎪⎨⎪⎩
ET(t) � psp

t (t) − pt(t)
EB(t) � psp

z (t) − Pz(t)
EH(t) � Nsp

E (t) −NE(t)
(17)

whereKPT, KIT, KDT, KPB, KIB, KDB, KPH, KIH, andKDH are
parameters of variables associated with the PID. In the control
optimization cycle, psp

t , Nsp
E , and psp

z are the set values for the
main steam pressure, the electric power of the unit, and the IP
extraction pressure, respectively. PID parameter commissioning
method is determined by engineering experience method, as
shown in Supplementary Table S3.

In order to ensure the safe and stable operation of the unit, the
influence of output variable fluctuation shall be considered in the
regulation process, and the control system path constraint (Tian
et al., 2017) shall be met, as shown in Eq. 18a. The steady-state
value of each output variable shall not exceed the allowable error
range, and the system final value constraint shall also be satisfied
(Tian et al., 2015), as shown in Eq. 18b.

⎧⎪⎨⎪⎩
∣∣∣∣psp

t − pt(t)
∣∣∣∣≤Mpt∣∣∣∣Nsp

E −NE(t)
∣∣∣∣≤MNE∣∣∣∣psp

z − pz(t)
∣∣∣∣≤Mpz

(18a)

⎧⎪⎨⎪⎩
∣∣∣∣pt(te) − psp

t

∣∣∣∣≤mpt∣∣∣∣NE(te) −Nsp
E

∣∣∣∣≤mNE∣∣∣∣pz(te) − psp
z

∣∣∣∣≤mpz

(18b)

where mpt, mNE, and mpz are the error range of the main steam
pressure, electric power, and IP extraction pressure, respectively;
Mpt, MNE, and Mpz are the fluctuation range of the main steam
pressure, electric power, and IP extraction pressure, respectively.

According to the above control process requirements and the
optimization control strategy proposed in the study by Wang
et al. (2019), the control concepts of disturbance compensation
and multivariable coordination are further adopted. Through the
design of three key control modules: electrothermal coordination,
thermal state reconstruction, and accurate energy balance, and
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considering the main influencing factors of main steam
fluctuation, a new electrothermal power coordinated
distribution and pressure safety self-test control strategy is
proposed. The parameters of the control system are manually
set by an empirical method to realize the three key functions of
the CHP unit control system: accurate electric power tracking,
rapid thermal power recovery, and safe and stable operation of
the system. The structure of the control system is shown in
Figure 6.

Control scheme II:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ET(t) � psp
t − K1e

−t/T1

T1
pt(t)

EB(t) � (Nsp
E − psp

z ) − [NE(t) − K2e
−t/T2

T2
pz(t)]

EH(t) � Nsp
E −NE(t)

(19)

Among them, K1, T1, K2, and T2 are the parameters of the
pressure safety self-test and electrothermal power coordinated
distribution control strategy, as shown in Supplementary
Table S3.

The variable load regulation process of the CHP unit will lead
to large changes in the heating capacity of the unit in a short time,
and the heat transfer is delayed. The increase or decrease in long-
term accumulated heat will lead to the change of the ambient
temperature of the heat load, thus affecting the comfort of users.

Therefore, after the step signal of variable load disturbance is
given for the dynamic model of the CHP unit, it is necessary not
only to test the changes of main steam pressure and electric power
but also to further analyze the change process of extraction steam
flow in the optimal control cycle. The influence of heat change
caused by extraction steam flow fluctuation on heat load demand

FIGURE 5 | Structure diagram of the control variable optimization algorithm.

FIGURE 6 | Structure diagram of the CHP unit control system.
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is quantitatively analyzed, and calculate it according to the
following method (Wang et al., 2019) (Supplementary Table S2):

qH(t) � K7K6qx(96pz(t) − ti + 103) (20)

qH,equ �
∫te

t0
qH(t)dt
te − t0

(21)
QH,equ � qH,equ · Δh (22)

whereQH,equ is the thermal power of the equivalent CHP unit, Δh
is the enthalpy drop of heating extraction (Δh � 2.3637 × 103),
qH,equ is the average equivalent flow of the regulation process, and
t0 and te are the starting and ending points of optimal control of
the CHP unit, respectively.

The CHP unit model has obvious system nonlinearity. The
object transfer function parameters contain the input variable
information that determines the operating point, so the transfer
function has different nonlinear characteristics at different
operating points. By using the same PID controller setting
parameters to test the control quality of the unit system under
different working conditions of heating and pure condensation,
how strong the nonlinearity of the CHP unit is measured.
Through the analysis of simulation results to determine the
method that setting controller parameters can ensure the
system control quality under common working conditions,
guide the coordinated control system structure or controller
parameters to make some adjustment, so as to adapt to the
changes of controlled object parameters.

EXAMPLE ANALYSIS

In order to verify the effectiveness of the models and methods
proposed in this paper, a 300-MW steam extraction heating unit
is used to build a model on a MATLAB/Simulink platform for
simulation. The variable load open-loop characteristics of the unit
are tested by controlling variable disturbance, and the variable
load closed-loop dynamic characteristics of the unit are tested by

designing control strategy. The response curves of each output are
simulated to verify the reproducibility of the linearized model,
and the effectiveness of the control method and strategy is
analyzed. Relevant parameters of the unit and operating point
parameters under pure condensation and heating conditions are
shown in Supplementary Appendix SA, SB.

Open-Loop Characteristic Analysis
Under the heating condition, when the electric load is given a step
signal of 25 MW, the regulation index performance of the system
and the optimization process of three control variables are shown
in Figure 7. After setting 20 populations of parameters and 20
iterations, the optimization algorithm can stably calculate three
control variables after 30 simulation calculations, and the
performance fitness value of the regulation index of the system
can stably converge to less than 0.2. The VT regulation range is
[2.5,7]%; the VB regulation range is [5.0,13.0]t/h, and they act in
the same direction. The VH regulation range is widely distributed
and opposite to the former two.

When the step signal of -25 MW is given for the electric load
under the pure condensation condition, the regulation index
performance of the system and the optimization process of
three control variables are shown in Figure 8. With the same
algorithm parameter setting as the heating condition, the
adjustment index performance fitness value of the system can
stably converge to less than 0.5. The VT regulation range is
[5.0,6.0]%, the VB regulation range is [10.5,10.6]t/h, and the VH

regulation range is widely distributed and inversely correlated
with the fitness value.

Under the heating condition and the pure condensation
condition, the output changes of the system under the
synergistic action of control variables are shown in Figures 9,
10. Under the heating condition, given the step signal and
adjusting the control variables (5.52%, 10.15 t/h, 14.39%), after
about 1,500 s, the output power of the system accurately meets the
25 MW required for the variable load, the main steam pressure is
adjusted back to −0.04 MPa, and the extraction pressure is

FIGURE 7 | Convergence of DAPSO and optimization results of control
variables under the heating condition.

FIGURE 8 | Convergence of DAPSO and optimization results of control
variables under the pure condensation condition.
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stabilized to −0.01 MPa. Under the pure condensation
condition, given the step signal and the regulated control
variable (−5.59%, −10.58 t/h, −8.54%), after about 1,500 s, the
system output power accurately reaches −25 MW required by
the variable load, the main steam pressure is adjusted back to
0.0007 MPa, and the extraction pressure is stabilized to
0.0015 MPa.

The open-loop regulation eliminates the complex PID setting
work and can accurately complete the electric power regulation.
However, there is a difference between the safe main steam
pressure involved in the variable load process and the
extraction pressure of heating, and the calculation time of

one-time optimization is about 5 min, which is a long
adjustment time.

Closed-Loop Characteristic Analysis
Based on the established s-domain system simulation model of
the CHP unit, the step signals of the electric load are given as 5,
15, and 25 MW, respectively. The closed-loop control simulation
analysis is carried out by using control scheme I and control
scheme II. The changes of electric power, main steam pressure,
and extraction pressure of the CHP unit are shown in Figure 11.

Under the two control schemes, the electric power of the unit
increases rapidly. In the three variable load scenarios, it takes 10,
35, and 80 s, respectively, to accurately reach the step expected
steady-state value. The stronger the variable load, the longer the
regulation time. Specifically, the response speed and climbing rate
of scheme II are slightly better than scheme I in the first 30 s of
regulation.

The dynamic fluctuation of the main steam pressure
regulation process is directly related to the safe and stable
operation of the unit. It can be seen from the figure that the
larger the variable load, the more intense the main steam pressure
fluctuation. Scheme II improved by the pressure safety self-test
control strategy effectively reduces the pressure fluctuation in the
control process. Compared with scheme I, the peak value of
pressure fluctuation in scheme II is reduced by about 50%, and all
indexes of the control system can return to the steady-state value
within 350 s.

In control scheme I, the extraction pressure cannot be adjusted
back to the steady-state value (0 MPa, which does not affect
heating), and the stronger the variable load capacity, the greater
the steady-state deviation of the extraction pressure (the greater
the impact on heating). Scheme II improved by the
electrothermal cooperative control strategy can realize the
rapid recovery function of heating. It can be seen from the

FIGURE 9 | Synergistic regulation effect of three control variables under
the heating condition.

FIGURE 10 |Synergistic regulation effect of three control variables under
the pure condensation condition.

FIGURE 11 |Control effect diagram of scheme I and scheme II under the
heating condition.
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figure that scheme II can recover the extraction steam pressure
closer to the steady-state value after 100-s dynamic adjustment.
The influence of steam extraction pressure change on heating in
the two schemes (compared with rated heating conditions
pz � 0.35, qh � 400, Qh � 262.63) can be calculated by Eqs
20–22.

The data in Table 1 shows that, compared with scheme I, the
control strategy of scheme II has less impact on the heating power
output of the unit, and the heat change in the optimization cycle is
reduced by about 60% (reference value: 0 kJ), which can ensure
the stability of the thermal output of the unit when the electric
power changes to load.

The working point linearization model is established under
the pure condensation condition, and the same PID
parameters as the control strategy of scheme I of the
heating condition are used to analyze the robustness of the
control system and the universality of PID parameters. As
shown in Figure 12, the control quality of the pure
condensation condition is acceptable as a whole, which
shows that although the object has system nonlinearity, the
robustness of the existing conventional controller is strong
enough to overcome the impact caused by this nonlinearity. It
also shows that the controller parameters set at any working
point of the unit can adapt to the normal load variation range

of the unit. However, there are still problems similar to those
under rated heating conditions. The control effect of the main
steam pressure and the extraction pressure is slightly
insufficient. The main steam pressure regulation process
fluctuates, and the extraction pressure cannot be adjusted
without error. In the simulation test, the control strategy of
scheme II cannot be applied to the pure condensation
condition, and the safety self-test and electrothermal
coordination parameters need to be reset.

CONCLUSION

In this paper, the dynamic characteristic simulation model of
the CHP unit based on working point linearization is
established, and the open-loop characteristics of the variable
load process are analyzed by using the cooperation of improved
particle swarm optimization control variables. Through the
control strategy based on electrothermal cooperation and
safety self-test, the closed-loop characteristics of unit
dynamic regulation are studied, and the following
conclusions are obtained:

1) When the control variable acts alone, VB has an obvious effect
on the change of electric power, VT has a great effect on the
change of main steam pressure, and VH mainly affects the
change of extraction steam pressure. When the three control
variables work together, the electric power can be adjusted
accurately, but the safe main steam pressure involved in the
variable load process and the extraction steam pressure of
heating are adjusted with difference, and the adjustment time
is long.

2) The closed-loop characteristic simulation of the control
strategy based on electrothermal coordination and safety
self-test shows that the electric power response speed and
climbing rate are better, the peak value of pressure fluctuation
is reduced by about 50%, and the recovery of extraction
pressure closer to the steady-state value has less impact on
heating.

3) Experiments on pure condensing and heating conditions
with the same PID parameter show that the robustness of the
conventional controller is strong enough to overcome the
influence of modeling nonlinearity at different working
points and adapt to the normal load variation range of
the unit.

TABLE 1 | Influence of steam extraction pressure variation of different heating schemes on heating.

Variable load (MW) Scheme Average value within 600 s 600 s heat change/kJ

Δpz,equ Δqh,equ ΔQh,equ

5 I 0.0121 6.94 4.56 2,734.82
II −0.0044 −2.54 −1.67 −1,001.28

15 I 0.0334 19.25 12.64 7,582.85
II −0.0157 −9.01 −5.92 −3,550.21

25 I 0.0541 31.17 20.47 12,279.48
II −0.0205 −11.79 −7.74 −4,643.11

FIGURE 12 | Control effect diagram of scheme I with the same PID
parameters under the pure condensation condition.
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Study of Capacitive Coupling Sensor
Fused With High Voltage XLPE Cable
Joint
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A capacitive coupling sensor for partial discharge detection with the fusion of high voltage
XLPE cable joint is designed in this paper. The sensor is to address partial discharge
signals leading to transmission attenuation and external interference causing poor field
detection sensitivity. First, a coaxial waveguide transmission model was established of
high-frequency electrical signals in the body and joint. The result showed that the signal
transmission attenuation was minimized while the sensor electrodes were closely attached
to the outer semi-conductive layer of the body. Second, the equivalent circuit model was
constructed of the capacitive coupling sensor fused with the 110 kV straight passing joint.
The specific installation location, main structure size, detection bandwidth, and sensitivity
of the sensor in the joint area were determined, which was to maximize the coupling output
signal amplitude and transfer function amplitude. Finally, a lightning surge voltage test was
carried out with the integration of the fusion of the joint voltage thermal cycling. Simulation
andmeasurement show the following: while the sensor is installed in the cable metal sleeve
break and the electrodes are closed to the overall semi-conductive layer, there is excellent
performance for partial discharge detection in the frequency range of 1–300MHz, with a
sensitivity of 5 pC.

Keywords: partial discharge detection, capacitive coupling, fusion, sensitivity, frequency band range

INTRODUCTION

The power grid may have abnormal operating events including insulation breakdown and line
shutdown if the high voltage cable insulation defects cannot be detected in time (Zhou et al., 2014;
Fang, 2018). Of the operational faults of high-voltage cable lines, 70% are caused by the joint
according to statistics (Luo et al., 2003; Li et al., 2004; Jiang, 2007). Partial discharge is one of the main
factors causing insulation deterioration and triggering joint faults. Therefore, partial discharge
detection is an important technical means to discover potential insulation defects of high voltage
XLPE cable joint in an efficient manner.

Researchers had developed various principles of partial discharge detection methods for a
series of physicochemical phenomena accompanying the partial discharge (Liang, 2019). There
are mainly electromagnetic coupled, capacitance coupling, ultrasonic, and UHF methods
(Meng et al., 2015; Wang, 2017; Shu et al., 2018; He J. et al., 2020). Meanwhile, many
achievements have been made in cables and accessories in the transmission law of PD
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(partial discharge) signals, signals spectrum identification,
and PD source location (Chen, 2017; Shen, 2018; Wang
et al., 2019; Wu et al., 2020). However, PD detection still
faces the problems of weak signals, complex and variable
waveforms, and susceptibility to external electromagnetic
interference (Zhao, 2018; Xie et al., 2019). These problems
hamper the accurate sensing and effective identification of PD
signals.

Many efforts have been made to solve the problem of
significant attenuation of PD signals in transmission. A
capacitive coupling sensor with a response band of
500 MHz built into the body was developed (Tang et al.,
2008). A simulated field defect PD test using a patch type
partial discharge sensor built into both sides of the joint shield
was conducted (Luo et al., 2018). The experiments could
obtain a good PD detection effect and better shield the
external interference. A built-in partial discharge detection
system based on a differential capacitance sensor was
designed in reference (He N. et al., 2020). The detection
system had a good detection effect on the three types of
defect models constructed (Yang et al., 2021a; Yang et al.,
2021b). The built-in PD sensor is designed and optimized by
using the integrated model of the built-in sensor in the cable
intermediate joint (Ge, 2016). Several built-in sensor
capacitance coupling charged correction technologies were
studied and found that based on the equivalent circuit
simulation of built-in cable capacitance coupling sensor of
charged highest accuracy calibration method (Wang et al.,
2017).

The sensor needs to be close to the outer semi-conducting
layer of the cable to get a better coupling effect because the
semi-conductive layer of the cable will accelerate the
attenuation of PD signals. Therefore, this study designs a
capacitive coupling sensor fused with high voltage XLPE cable
joint, based on the principle of capacitive coupling, and
combining with the characteristics of high partial discharge
at the joint. The corresponding relationship was analyzed
between the circuit components and the physical structure by
establishing the equivalent circuit model of the built-in
coupling sensor. The influence of the circuit component
parameters on the detection performance and frequency
response characteristics of the sensor was calculated. The
ring electrode width and the insulating pad thickness were
determined by combining the numerical calculation and
experimental test results. The installation position and

structural dimensions of the sensor were optimized.
Experiments were conducted to verify the performance of
the fused sensor in terms of safety and partial discharge
detection.

HIGH VOLTAGE XLPE CABLE JOINT
PARTIAL DISCHARGESIGNALS COUPLING
METHOD AND SENSOR DESIGN
Design of Partial Discharge Signal Coupling
The internal structure of the cable joint is much more complex
than that of the cable body, therefore, taking the cable model
YJLW03-Z 64/110 1 × 800 as an example, high frequency partial
discharge signal is analyzed with distance transmission in the
cable body. Its structure is shown in Figure 1.

The high frequency electrical signals in high voltage XLPE
cable can be considered as a coaxial waveguide in the form of a
uniform transmission line. Its equivalent model is shown in
Figure 1.

The series impedance in Figure 2 can be expressed as:

Z(ω) � 1
2πr1

����
jωμ0
σ1

√
+ jω

μ0
2π

ln(r6
r1
) + 1

2πr6

����
jωμ0
σ6

√
(1)

where r1 is the radius of the first layer structure (conductor) of
the cable body from inside out, r6 is the inner radius of the
sixth layer structure (metal sleeve), σ1 is the conductivity of
copper, σ6 is the conductivity of aluminum, and μ0 is the
permeability in vacuum.

The cable parallel admittance consists of insulating layer and
semi-conductive layer, which can be expressed as:

Y(ω) � 1/∑5
2

1
Yi(ω) (2)

Yi(ω) � jω
2πε0εpi

ln(ri/ri−1) (3)

where

FIGURE 1 | Schematic cross-sectional structure of the body of the
110 kV cable.

FIGURE 2 | 110 kV cable uniform transmission line model.
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ε0 is the vacuum dielectric constant with a value of 8.85 ×
10−12 F/m,

εpi � ε’i − jε}i is the relative complex dielectric coefficient of the
structural material of layer i,

Yi(ω) is the parallel admittance of the structure of layer i.
The value of Yi(ω) is related to the relative complex dielectric

constant of the structural material of the layer and the internal
and external radii of the structural layer.

The propagation coefficient of the uniform transmission line
model for high voltage XLPE cable can be deduced from the series
impedance and parallel admittance expressions as:

γ(ω) � ����������
Z(ω) · Y(ω)√ � α(ω) + jβ(ω) (4)

where
α is the attenuation coefficient, and β is the phase constant.

ATP-EMTP software was used to establish a uniform
transmission model of high voltage XLPE cable, which was to
investigate the influences of the inner and outer semi-conductive
layer on the transmission characteristics of high frequency signals.
Sine wavesU

•
i were injected from the beginning of the model (x = 0)

with the same amplitude and frequencies of 10, 50, and 100MHz.
The variation of the U

•
i amplitude attenuation values was calculated

and analyzed with axial distance transmission in the model with or
without the inner and outer semi-conducting structural layers. The
result is shown in Figure 3.

Signal amplitude decays faster than low frequency signals with
the increase in transmission distance for high frequency signals,
which can be seen from Figure 3. The signal amplitude decay is
faster than the case without considering the influence of the semi-
conductive layer while the influence of the semi-conductive layer
is considered. The higher the frequency, the greater the influence
of the semi-conductive layer on the signal decay.

The coupling of the PD signals is achieved by the sensor
through the principle of capacitive voltage division. The
equivalent circuit is shown in Figure 4.

FIGURE 3 | Variation of transmission attenuation of signal amplitude at
different frequencies with axial distance of high-voltage cable. (A) Without
semi-conductive layer. (B) With semi-conductive layer.

FIGURE 4 | Schematic of the capacitive coupling principle of the local
amplifier signal in the connector.

FIGURE 5 | Average values of coupling signals for different installation
positions of sensors in the long end zone of the protection tail pipe.
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where Z0 is the cable characteristic impedance, C1 is the
coupling capacitance between the cable core and the metal
enclosure of the sensor, C2 is the stray capacitance between
the metal electrode of the sensor and the metal enclosure, R is
the cable insulation resistance of the joint area, Ls is the stray
inductance on the coaxial signal cable, and RS is the coupling
output resistance.

Selection of Sensor Location
A 110-kV combined prefabricated straight passing joint is used as
the research object. The protection tail pipe of high voltage XLPE
cable joint is divided into a long end and a short end. The sensor
can only be installed on the break side of the metal enclosure due
to the short end area has limited space.

To determine the appropriate installation position of the
sensor in the long end area of the protection liner, the
following numerical calculation model was established: The
joint center to the long end of 515 mm was taken as the
origin. From the origin, the sensor was moved with a step of
10 mm from the origin. The excitation source was injected at the
short end of the joint with the amplitude of 1 A and the
frequencies of 37, 105, and 148 MHz, respectively. The average
value of the voltage coupled to the sensor under the action of the
three frequency excitation sources at the same installation
position is shown in Figure 5.

The amplitude of the coupling signal is not monotonically
decaying with increasing distance which can be seen from
Figure 5. The sensors in both long end and short end areas
are chosen to be installed at the metal enclosure break of the body
considering the factors of sensor coupling signal amplitude
attenuation, installation convenience, and fusion reliability at
various locations.

Design of Sensor Structure
The transfer function of the sensor in the frequency domain is
given by:

H(ω) � Ui(ω)
U0(ω)

� jωRRs(C1 + C2) − ω2LsR(C1 + C2) + jωLs + R + Rs

jωC1RRs + Rs

(5)
As can be seen from Equation 5, while frequency is low, R and

RS mainly affect the power frequency voltage division. So, the
power frequency high voltage is mainly in R, and the detection
system only has a small voltage drop. The main influence on the
transfer function is determined by the ratio of C1 and C2 for the
high frequency PD signal. C1 and C2 are correlated with the
sensor structure parameters, electrode width, and insulation pad
thickness. The relationship can be expressed as:

C1 � 2πε0εrW
ln(D1/D0) (6)

C2 � 2πε0εr2 ·W
ln((r4 + d1 + d)/(r4 + d1)) (7)

where
ε0 is the vacuum dielectric constant, εr1 is the relative dielectric

constant of the insulation material, being 2.3 for XLPE, D1 is the
overall diameter of the cable insulation layer, D2 is the inner
diameter of the cable insulation layer, W is the sensor electrode
width, εr2 is the relative dielectric constant of the insulation pad
layer, and the insulation pad layer uses silicone rubber material
with relative dielectric constant 2.6,

d is the thickness of the insulation pad layer,
d1 is the sensor electrode thickness with a value of 1 mm, r4 is

the overall diameter of the semi-conducting layer.
Equations 6 and 7 are taken into Equation 5. The stray

inductance Ls takes the value of 10 mH, and the frequency is
taken as the center frequency of the designed detection band. The
above parameters are taken into the transfer function to obtain

FIGURE 6 | Variation curve of transfer function amplitude with electrode
width and insulation pad thickness.

FIGURE 7 | Variation curve of transfer function amplitude with
electrode width.
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the relationship between amplitude change, sensor electrode
width, and insulation layer thickness, as shown in Figure 6.

The greater the thickness of the sensor insulation pad layer
and the transfer function amplitude, the better the detection
performance, which can be seen from Figure 5. While the
thickness of the insulation pad layer is less than 4 mm, the
sensor electrode width has less influence on the transfer
function amplitude. While the insulation pad layer thickness is
greater than 4 mm, the sensor electrode width gradually increases
the influence on the transfer function amplitude. The sensor shell
is designed to be at the same level as the cable metal sleeve and the

thickness of the insulation pad layer is 6 mm, which is to ensure
the installation reliability and is for facilitating its lap with the
cable metal sleeve and achieving equipotential to shield and
protect the sensor.

The transfer function amplitude and sensor electrode width
are obtained while the thickness of the sensor insulation pad layer
is 6 mm, as shown in Figure 7. The transfer function amplitude
remains relatively high while the sensor electrode width is
between 40 and 80 mm.

The sensor was designed with electrode widths of 40, 50,
60, and 80 mm to further determine the optimal width of the
circular electrode of the capacitive coupling sensor. The same
square wave signal was injected at one end of the cable to
simulate the partial discharge source. The response signals of
the sensor were tested under four different electrode widths,
with the results shown in Figure 8. The signal works best
while the electrode width is 50 mm. So, the sensor electrode
width is designed to be 50 mm.

STUDY OF SENSOR KEY PERFORMANCE

Setting of Sensor Bandwidth
Ansoft HFSS software was used to analyze the electric field
component distribution of electromagnetic waves with
frequency of 100, 200, 300, and 400 MHz in the joint,
which was to determine the design range of the sensor
detection band.

The higher the signal frequency, the faster the signal decays
with transmission distance increasing as can be seen from
Figure 9. While the frequency reaches 400 MHz and the
distance from the signal source is above 600 mm, the signal
will decay to less than 10% of the initial value. Therefore, the
sensor bandwidth is set to (1–300) MHz to strike a balance
between the signal amplitude and the detection bandwidth.

FIGURE 8 | Impulse response curves of electrode sensors with different
widths.

FIGURE 9 | Four kinds of frequency variable electromagnetic field in the
joint electric field component with distance transmission attenuation
change curve.

FIGURE 10 | Frequency response characteristic curve of the sensor with
different coupling capacitance.
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Analysis of Sensor Frequency Response
Characteristics
The values of C2, RS, and Ls in the circuit were set to 10, 50, and
10. Respectively, C1 is increased from 10 to 30. Calculate the
frequency response characteristic curve of the built-in capacitive
coupling sensor under different coupling capacitances, as shown
in Figure 10.

C1 has a relatively significant impact on the sensor frequency
response. While C1 increases, the sensor frequency response gain
also increases. But the increase will be reduced. While the
frequency is less than 100 MHz, the effect of C1 on the
frequency response of the sensor decreases as the frequency
increases while the frequency is greater than 100 MHz.
Therefore, C1 should be kept within an appropriate range.

C2 was increased from 5 to 100 pF and other conditions
remained the same. The frequency response characteristic
curves of the built-in capacitively coupled sensor with different
stray capacitance is calculated, as shown in Figure 11.

The stray capacitance C2 has negligible effect on the sensor
frequency response gain while the frequency is less than
300 kHz. However, as the frequency increases, while the
frequency is more than 1 MHz, the increase of C2 will
greatly reduce the frequency response gain, which will
weaken the sensor detection effect.

The stray inductance LS was set to 0, 10, 20, and 50 nH,
respectively, and kept other conditions constant. The frequency
response characteristics of the built-in capacitively coupled
sensor are shown in Figure 12.

FIGURE 11 | Frequency response with different stray capacitance.

FIGURE 12 | Frequency response with different stray inductance.

FIGURE 13 | Effect of C1 on sensor detection performance.

FIGURE 14 | Effect of C2 on sensor detection performance.
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The effect of stray inductance LS on the frequency response
gain of the sensor is small, with the increase of frequency, the
influence gradually increases, while the frequency is less than
20 MHz. The increase of Ls significantly reduces the frequency
response gain, further weakening the detection ability while the
frequency is more than 100 MHz.

Analysis of Sensor Signal Coupling
Characteristics
The influence of C1, C2, and Ls circuit parameters on sensor
detection effect was analyzed by observing the change of sensor
output waveform.

The C1 was gradually increased from 10 to 30 pF, and the
values of other parameters remained unchanged. The output
waveform corresponding to each capacitance value is shown in
Figure 13. The amplitude of the waveform detected by the
capacitance sensor increases significantly and the rise time of
the waveform increases.

The C2 was gradually increased from 1 to 50 pF with the
values of other parameters unchanged. The detected
waveform of the capacitive sensor is shown in Figure 14.
As can be seen, the increase in C2 results in a significant
decrease in the amplitude of the waveform and an increase in
the rise time of the waveform.

The value of Ls was gradually increased from 5 to 50 nH with
the values of other parameters unchanged. The detected
waveform of the capacitive sensor is shown in Figure 15.

The value of Ls has a smaller effect on the waveform
amplitude detected by the capacitive sensor, after
comparing to C2. But as the value of stray inductance
increases, the rise time increases and oscillations occur in
the wave tail, which can have an impact on the detection
accuracy of the sensor.

ELECTRICAL PERFORMANCE TEST OF
HIGH-VOLTAGE CABLE JOINTS
INCORPORATING CAPACITIVELY
COUPLED SENSORS

Analysis of Sensor Signal Coupling
Characteristics
The frequency sweep test of a 110-kV combined prefabricated
straight passing joint with capacitive coupling sensor was carried
out to analyze the frequency response characteristics of the
sensor. The swept-frequency signal was injected from one end
of the cable between the conductor and the metal shield, and the
frequency range of the swept signal was set to 1 GHz. The
spectrum analysis of the sensor-coupled swept signals was
performed by Anglient9320B spectrum analyzer. The
frequency response of the sensor is better within 300 MHz.

High frequency pulse signal injection tests were performed on
the sensor under laboratory conditions to determine the ability of
the sensor to couple signals. The sensor was mounted on the
connector, and the signal generator output a square wave signal
with a rising edge of 5 ns. A 10-pF capacitor was connected in
series at the output, and a charge of 5 pC was injected into the
cable end while the amplitude of the pulse square wave was
500 mV, the sensor can effectively couple the analog discharge
pulse of 5 pC in the cable by comparing the amplitude of the
signal and the baseband.

Thermal Cycling Voltage Test
The cable specimen consisted of a 6-m 110 kV cable with a
prefabricated straight passing joint containing a capacitive
coupling sensor. One segment of the specimen was bent into a
U shape with a diameter of less than 25 (d + D) × 1.05. Heat the
specimen by conductor current for at least 8 h and ensure that the
conductor temperature exceeded the maximum temperature for
normal cable operation for at least 2 h during each heating cycle
(the actual temperature was maintained at 95–98°C). Next, the
specimen was naturally cooled for at least 16 h until the
conductor temperature was cooled to less than 30°C or cooled
to within 15 K above ambient temperature, taking the higher of
the two, but not higher than 45°C (the actual temperature was
controlled at 22–32°C). The above experiments were referred to
12.4.6 in GB/T 18,890.1.

• Heating and cooling cycles 20 times
• Voltage applied to cable specimen 2U0

• The upper limit of AC voltage output 600 kV
• The upper limit of current output 20 A
• The upper limit of analog load current output in FKGB
thermal cycle intelligent control system 5000 A

• Analog load current output step ±5 A
• Conductor temperature measurement accuracy ±0.5°C

The cable joint had good electrical performance while fused with
the capacitive coupling sensor, and the joint and sensor had stable
performance throughout the test, without breakdown phenomenon.

FIGURE 15 | Effect of Ls on sensor detection performance.
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Lightning Surge Voltage Test
CDYH-4800 kV/960 kJ lightning surge voltage tested system; the
purpose is to verify the sensor safety detection performance.

• The upper limit of lightning impulse voltage output
±4800 kV

• The upper limit of lightning impulse power 960 kJ

The shock voltages of positive and negative polarity are
applied to the specimen during the test. The lightning surge
voltage amplitude was 550 kV, with a wavefront time of 5 μs and a
half-wave peak time of 54 µs. No damage was found to the
connector or the sensor during or after the test.

CONCLUSION

1) The sensor is installed at the break in the metal sleeve of the
cable and the electrode close to the outer semi-conductive
layer because the overall semi-conductive layer of the cable
can cause severe attenuation to high frequency signal
transmission.

2) The frequency band of the sensor is designed at (1–300) MHz,
while the frequency of the electromagnetic wave exceeds
300 MHz, the signal in the joint decays rapidly with the
propagation distance.

3) The sensor electrode width is designed to be 50 mm, and the
insulation layer thickness of 6 mm is achieved by the reliable
installation of the sensor, which obtains a good signal coupling
effect.

4) The sensor has a good response in the (1–300) MHz band
range, and the local discharge signal detection sensitivity

reaches 5 pC in the design of the sensor band response and
sensitivity tests.

5) The joint and the sensor are unaffected by frequency voltage
and lightning shock, and no damage is found in the connector
body and the sensor after the field lightning shock tests.
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A Study of Protection Method for
Hybrid Multiterminal UHVDC Lines
Based on CEEMDAN–Teager Energy
Operator
Chao Xing1,2, Long Wang2,3, Guihong Bi3, Shilong Chen3, Jingye Gao2,3 and Yanbo Che1*

1Key Laboratory of Smart Grid of Education Ministry, Tianjin University, Tianjin, China, 2Electric Power Research Institute of
Yunnan Power Grid Co., Ltd., Kunming, China, 3College of Electric Power Engineering, Kunming University of Science and
Technology, Kunming, China

In the research, a protection scheme for hybrid multiterminal UHVDC lines based on the
CEEMDAN and Teager energy operator is proposed. The fault direction criterion is
proposed according to the polarity difference of the sudden variable of the mode
component of the current line on both sides of the T-zone after the fault of the EHV
multiterminal hybrid DC system. When the fault is located on the left or right side of the
T-zone, CEEMDAN is used to decompose the mode component of the fault transient
current and obtain the intrinsic mode function (IMF component) at different local
characteristic time scales. Then, the Teager energy operator is used to calculate the
instantaneous energy of the current high-frequency IMF1 component. Finally, the faults
inside and outside the line are judged by comparing the maximum value of current high-
frequency IMF1 instantaneous energy with the setting value. When the fault is located in the
T-zone, it is determined as a fault outside the line zone. The protection scheme of hybrid
multiterminal UHVDC lines is given. The simulation model of the Kunliulong hybrid
multiterminal UHVDC line system is built in a PSCAD/EMTDC simulation platform, and
the proposed protection method is verified. A large number of simulation results show that
the protection scheme has certain anti-transition resistance ability and high reliability.

Keywords: hybrid multiterminal UHVDC system, line protection, CEEMDAN, Teager energy operator, PSCAD/
EMTDC simulation

INTRODUCTION

The hybrid multiterminal UHVDC system integrates the traditional grid commutated
converter–based high voltage direct current (LCC-HVDC) and modular multilevel flexible DC
transmission system (MMC-HVDC) with the advantages of large transmission capacity, low
transmission losses, and low cost; the receiving end can supply weak AC systems and passive
systems, and there is no phase change failure, flexible operation, etc. The long-distance, large-
capacity transmission has a wide range of application prospects (Zheng et al., 2016; Tian et al., 2021;
Chen et al., 2019).

The development of a hybrid multiterminal UHVDC system faces many technical challenges, and
DC line protection is one of the important technical challenges (Li et al., 2019). At present, traditional
DC transmission line main protection generally uses traveling wave protection, under voltage
sensing protection, etc. The traveling wave protection has fast action speed but poor transition
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resistance and anti-interference ability, and it is easy to refuse to
move in case of high-resistance ground fault (Boussaadia, 2019; Li
et al., 2016). There is an adaptability problem when applying the
traditional DC line protection to the hybrid multiterminal
UHVDC line protection. For the line protection of hybrid
multiterminal UHVDC systems, domestic and foreign experts
have conducted relevant studies. Gao et al. (2021) studied the
T-zone protection of multiterminal hybrid DC transmission lines
and constructed the T-zone protection criterion using the mode
mutation of the current line and Hausdorff distance algorithm on
both sides of the T-zone; Wang et al. (2019) calculated the
analysis of traveling wave protection for flexible DC networks,
but the analysis method is very computationally intensive; Lin
et al. (2020) constructed the fault direction criterion based on the
difference between the amplitude of the forward and reverse
traveling waves at the near ends of the converter station on both
sides. However, this method requires accurate detection of the
first wave head of the traveling wave, and the transition resistance
needs to be improved; Li Haifeng et al. (2019) used the
attenuation of the low-frequency component of the fault
transient current in the T-zone to construct a directional
criterion for fault area discrimination in parallel-type
multiterminal hybrid DC lines and discriminate the fault
location, but in the wavelet transform, the decomposition
gradient of the signal sampling frequency needs to be set in
advance before the analysis so that it cannot fully reflect the
information of the signal itself followed by the pre-selection of the
wavelet change basis function, so the resulting error directly
affects the correct analysis of the signal itself (Toyoda and
Wu, 2021).

The CEEMDAN algorithm is a complete ensemble empirical
mode decomposition with the adaptive noise algorithm, which is
widely used in the field of mechanical fault diagnosis, and the
algorithm achieves complete decomposition of the signal by
adding zero-mean Gaussian white noise to the original signal;
Wang and Shao (2020) and Vanra et al. (2017) used complete
ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) to extract the fault characteristic signal of faulty
rotating machinery; the decomposition method has better
decomposition effect than the traditional method, does not need
to select the basis function, and is subject to less interference; domestic
experts have combined the CEEMDAN algorithm with other
algorithms to apply in the fields of harmonic detection, ultrashort-
term load prediction, etc. Ren et al. (2017) used the CEEMDAN
algorithm and Teager energy operator for harmonic signal detection;
Li and Li, (2015) combined the CEEMDAN algorithm, alignment
entropy, and leakage integral echo state network (LIESN)method for
load prediction; Gao et al. (2020) used the Teager energy operator to
calculate the transient energy magnitude of transient voltage of DC
lines to construct the longitudinal protection criterion to improve the
reliability and quick action of the protection, (He et al., 2020) but the
method directly uses the value of the outer voltage of the flat-wave
reactor, and the protection may be misactivated when there is an
error in the measurement.

This study combines two algorithms, the CEEMDAN
algorithm and the Teager energy operator, for DC line fault
diagnosis. The protection principle is simple and is constructed

using the attenuation characteristics of boundary elements to
high-frequency quantities of faults. Compared to the time
domain–type protection, the method is a frequency
domain–type protection, which improves the quick-action and
high reliability of the UHV multiterminal hybrid DC line
protection. The method uses CEEMDAN to completely
decompose the fault transient current signal, accurately extract
the high-frequency component of the fault current, calculate the
fault high-frequency component amplitude using the simplicity
and speed of the Teager energy operator algorithm, and thus
determine the fault location.

In this study, we propose a protection scheme based on the
CEEMDAN–Teager energy operator for hybrid multi–terminal
UHVDC lines. There is an analysis of the attenuation
characteristics of fault transient current signals at the rectifier
side boundary and the inverter side boundary at the end of the
line for ultrahigh voltage multiterminal hybrid DC transmission;
the fault direction is discerned according to the polarity of the
sudden change in the mode component of the fault current line
on both sides of the T-zone; the maximum value of the
instantaneous energy of the high-frequency component of the
fault transient current is used to construct the in-zone and out-
zone criterion to discern the fault inside and outside its zone.
Finally, the PSCAD/EMTDC simulation platform is used to build
the UHV multiterminal hybrid DC transmission model, and
MATLAB is used to write the protection algorithm for
verification. The extensive simulation results show that the
proposed protection method has good reliability.

INTRODUCTION TO THE TOPOLOGY OF
THE HYBRID MULTITERMINAL UHVDC
SYSTEM
The topology of the Kunliulong hybrid multiterminal UHVDC
system is analyzed, which adopts the traditional type line-
commutation converter (LCC) and full half-bridge modular
multilevel converter (FHMMC) for the converter station
(FHMMC) (Le et al., 2021; Zhu et al., 2020), where the
sending end of the converter station uses the LCC-type
converter, the receiving end used the FHMMC-type converter,
the system’s transmission lines are overhead lines, its voltage level
of the system is ±800 kV, and line 1 length and line 2 length are
marked according to the actual and the system’s topology and
fault location, respectively, as shown in Figure 1.

ANALYSIS OF BOUNDARY FREQUENCY
CHARACTERISTICS OF THE HYBRID
MULTITERMINAL UHVDC SYSTEM
The boundary of the conventional DC transmission system and
flexible DC transmission system is symmetrical structure. The
boundary of the rectifier side and the boundary of the inverter
side at the end of the line of the Kunliulong hybrid multiterminal
UHVDC system are asymmetrical, so the frequency
characteristics of the boundary of the rectifier side and the
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frequency characteristics of the boundary of the inverter side at
the end of the line need to be analyzed separately.

Frequency Characteristics of the Boundary
of the Rectifier Side
The rectifier-side line boundary of the Kunliulong hybrid
multiterminal UHVDC system comprises both the DC filter
and smoothing reactor, and the rectifier-side line boundary of
this system is shown in Figure 2 (Chen et al., 2013; Yang et al.,
2018; Yang et al., 2019; Yang et al., 2021b).

The rectifier-side line transfer function of the Kunliulong hybrid
multiterminal UHVDC system is defined as G1(jω); from the
circuit theory, it can be introduced that G1(jω) is as follows:

G1(jω) � I2(jω)
I1(jω) �

Z1(jω) + Z2(jω)
2Z1(jω) + Z2(jω). (1)

The Z1(jω) in the formula is the impedance of the DC filter;
Z2(jω) is the impedance of the smoothing reactor. Smoothing
reactor parameters: L0 � 300mH; DC filter parameters:C1 � 2μF;
L1 � 11.773mH; L2 � 10.266mH; C2 � 3.415μF; L3 � 4.77mH;
and C3 � 11.773μF; when they are brought into Eq. 1, we can
get the amplitude frequency characteristics of transfer function of
the rectifier side of the boundary shown in Figure 3.

As can be seen from Figure 3, when
0Hz<f< 100Hz, |G1(jω)|≈ 1; when 100Hz<f< 192Hz,
|G1(jω)|> 1; when f � 102Hz, 、 f � 673Hz, and f � 854Hz,
|G1(jω)| takes a great value; and when the frequency f> 1000Hz,
|G1(jω)|≈ 0.5. It can be seen that the rectifier side of the boundary

FIGURE 1 | Topology diagram of the Kunliulong hybrid multiterminal UHVDC system.

FIGURE 2 | Rectifier-side boundary elements.

FIGURE 3 | Frequency characteristics of transfer function of the rectifier
side of the boundary.
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has a significant attenuation characteristic on the high-
frequency components of the fault transient fault current
signal. When a fault occurs on the outside of the rectifier
side, the high-frequency component of the fault current signal
needs to go through the dual attenuation of the rectifier side of
the boundary and line 1 to reach the installation protection A1.
Therefore, the high-frequency component of the fault signal
detected by protection A1 has small amplitude; when the fault
occurs in line 1, the fault current signal high-frequency
components only need to go through the attenuation of line
1 to reach the installation protection A1, so protection A1
detects a larger high-frequency component energy of the
transient fault current. Therefore, based on the size of the
high-frequency component energy of the fault current signal
detected by protection A1, we can discriminate faults inside
and outside on the left side of the T-zone.

Inverter-Side Boundary Frequency
Characteristics at the End of the Line
The Kunliulong UHV multi-end hybrid DC transmission system
is equipped with a smoothing reactor at the end of the
transmission line, and there is ground capacitance to the
ground, so it is proposed to use a section of overhead line
ground capacitance and smoothing reactor at the end of the
line to form the inverter side boundary at the end of the line, and
the boundary components are shown in Figure 4.

The transfer function of the inverter side boundary at the end
of the line is defined as G2, which can be introduced by the circuit
theory as follows (Song et al., 2020; Yang et al., 2022; Yang et al.,
2021c; Yang et al., 2021a):

G2(jω) � I2(jω)
I1(jω) �

Z1(jω) + Z2(jω)
2Z1(jω) + Z2(jω). (2)

Z1(jω) is a section of overhead line impedance to the ground,
Z1(jω) � 1

jωCL
, CL is a section of the overhead line to ground

capacitance, Z2(jω) is the impedance of the smoothing reactor
Ld2, and Z2(jω) � jωLd2; substituting CL � 0.1μF, Ld2 �
150mH into Eq. 2 yields the amplitude–frequency
characteristics of the inverter-side boundary transfer function
at the end of the line as shown in Figure 5.

From Figure 5, the transitory current transfer function
|G2(jω)| at the inverter side boundary at the end of the line
has high resistance to the high-frequency component of the fault
transient current; when in the DC and low-frequency band
0Hz<f< 400Hz, |G2(jω)| ≈ 1; when 400 Hz < f < 1050 Hz,
|G2(jω)|≥ 1; and when f> 3kHz, |G2(jω)|≈ 0.45. It can be
seen that the inverter side of the boundary of the line end
on the fault current high-frequency signal has a strong
attenuation characteristics. When the fault occurs outside
the inverter side area of the line section, the fault current
signal high-frequency component after double attenuation of
the line end inverter-side boundary and line 2 reaches the
installation protection A2, and the high-frequency component
energy of the fault current signal detected by protection A2 is
less; when the fault occurs in line 2, fault current high-
frequency signal only after the attenuation of line 2 can
reach the installation protection A2, and the high-frequency
component energy of the fault current signal detected by
protection A2 is less. Based on the size of the high-
frequency component energy of the fault current detected
by protection A2, the fault can be discerned inside and
outside the right side of the T-zone.

PRINCIPLE OF THE CEEMDAN–TEAGER
ENERGY OPERATOR ALGORITHM

Basic Principle of the CEEMDAN Algorithm
The CEEMDAN algorithm is improved on the basis of EEMD,
which effectively solves the modal mixing phenomenon of EMD
and also avoids the problem of unequal number of IMFs after
each EMD decomposition in EEMD and CEEMD so that the
reconstructed signal is almost identical to the original signal. The
algorithm, compared with wavelet decomposition, does not
require the selection of basic functions and can achieve

FIGURE 4 | Inverter-side boundary at the end of the line.

FIGURE 5 | Amplitude–frequency characteristics of the inverter-side
boundary transfer function at the end of the line.
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complete decomposition of the signal, which is suitable for the
processing of nonlinear and nonstationary signals. The specific
steps of the algorithm are as follows (Colominas et al., 2013; Wu
et al., 2021; Zhang et al., 2021).

(1) εi−1 is defined as the adaptive coefficient in solving IMF,
wi(n) as the ith addition of zero-mean white noise, and Ek(·)
and IMFk as the kth modal component obtained by the
decomposition of EMD and CEEMDAN algorithms,
respectively. The noise component ε0wi(n) is added to the
original signal x(n) and then the EMD decomposition is
performed, and the first IMF component IMF1(n) is
decomposed by adding noise for the ith time:

IMF1(n) � 1
I
∑I

i�1IMF1i(n). (3)

(2) The first-order residuals of CEEMDAN are calculated:

r1(n) � x(n) − IMF1(n). (4)

(3) After adding adaptive white noise ε1E1(wi(n)) to the
residual r1(n) shown in Eq. 3, EMD decomposition is
performed to obtain the second-order IMF component
IMF2(n):

IMF2(n) � 1
I
∑I

i�1E1(r1(n) + ε1E1(wi(n))). (5)

(4) Steps (2) and (3) are repeated to obtain the kth residual signal
rk(n) and (k+1)st order IMF components IMFk + 1(n) as
shown in Eqs 6, 7.

rk(n) � rk−1(n) − IMFk(n). (6)
IMFk + 1(n) � 1

I
∑I

i�1E1(rk(n) + εkEk(wi(n))). (7)

(5) Step (4) is repeated until the end of the residual signal rk(n) is
not available for EMD decomposition.

The CEEMDAN algorithm finally decomposes the k IMF
components with a final residual of R(n):

R(n) � x(n) −∑k

k�1IMFk(n). (8)
The original signal x(n) is as follows:

x(n) � ∑k

k�1IMFk(n) + R(n). (9)
From Eq. 9, the CEEMDAN algorithm decomposes the

original signal into a series of IMF components with
instantaneous frequencies ranging from high to low and one
residual to achieve complete decomposition of the signal by
adding zero-mean white noise.

Teager Energy Operator
The Teager energy operator is a nonlinear difference operator,
and compared with the traditional energy operator,

instantaneous energy of the Teager energy operator is
related to both amplitude and frequency, with obvious local
characteristics, which can quickly perform DC line fault
analysis.

The Teager energy operator for the nonlinear signal α(t) is
defined as in the study by Karimian and Hosseinian, (2020):

ψ[α(t)] � α
• 2(t) − α(t)α••(t), (10)

whereα
•(t) and α

••(t) are the first-order derivative function and the
second-order derivative function of the signal α(t), respectively.

When the signal is discrete, the Teager energy operator is
defined as

ψd[α(i)] � α2(i) − α(i − 1)α(i + 1). (11)
The relationship between ψ and ψd is as follows:

ψ[α(t)] � ψd[α(i − 1)]
T2

, (12)

where T is the sampling period.

Extraction of High-Frequency Transient
Energy of Fault Current Based on the
CEEMDAN–Teager Energy Operator
The CEEMDAN algorithm can achieve complete decomposition
of the fault current signal, and the IMF components are arranged
in the order from highest to lowest frequency band, that is, 2 has
the highest frequency band. When the frequency of IMF1(n) is
greater than the attenuation frequency of the boundary, the
occurrence of out-of-zone fault, the IMF1 component through
the double attenuation of the line boundary and the line to reach
the protection device installation, and the protection device to
detect the fault transient current IMF1 component of the energy
is smaller; on the contrary, the discovery of the in-zone fault, the
component only through the line attenuation to reach the
protection installation, and the energy of the high-frequency
component IMF1 of the fault transient current detected by the
protection device is larger.

Therefore, the DC transmission line protection can be
constructed based on the energy magnitude of the high-
frequency IMF1(n) component of the fault transient current.

The steps to extract the high-frequency transient energy of the
fault transient current based on the CEEMDAN-Teager energy
operator are as follows:

(1) The fault current signal is obtained and decoupled using
phase mode transformation, and the fault current line mode
component is obtained.

(2) The mode components of the fault current line obtained in
step (1) are decomposed using CEEMDAN to obtain the kth
IMF components.

(3) The instantaneous energy of the high-frequency IMF1(n)
component of the fault transient current is calculated using
the Teager energy operator.

(4) The rectified value and maximum value of the instantaneous
energy of the high-frequency IMF1(n) component of the
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fault transient current are compared to discriminate the fault
location.When the maximum value of the transient energy of
the high-frequency IMF1(n) component of the fault
transient current is greater than the value of the
rectification, the fault is judged to be within the zone;
conversely, the fault is judged to be outside the zone.

HYBRID MULTITERMINAL UHVDC LINE
PROTECTION SCHEME

Protection Triggering Criterion
When the DC line fault occurs, the voltage amplitude of the line
on both sides of the T-zone changes (Li et al., 2021), the
amplitude of the transient voltage can be used as the
triggering criterion; in order to improve the protection
sensitivity, the side of line with large voltage fluctuation on
both sides of the T-zone is selected as the triggering criterion;
the triggering criterion is as follows:

max(|Δu1|, |Δu2|)>KΔu, (13)
where Δu1, Δu2 represent line voltage change line 1 and line 2,

respectively; a KΔu � 0.2Uref； Uref for line mode voltage of
normal operation is required in order to prevent frequent false
starts of protection; when max(|Δu1|, |Δu2|) for three
consecutive points is greater than the start value, protection is
triggered.

Protection Direction Criterion
When a fault occurs in the DC line, it is necessary to judge the
direction of the fault, and the DC current has definite size and
direction (Liu et al., 2020; Muniappan, 2021). For the Kunliulong
hybrid multiterminal UHVDC system, under working condition,
DC current always flows from Kunbei converter station to Liubei
converter station and Longmen converter station, and the
specified current reference direction is the bus pointing to the
line, as shown in Figure 1.

When the fault occurs on the left side of the T area, the
Kunbei-side LCC converter station, the Liubei-side converter
station MMC1, and the Longmen-side converter station
MMC2 all inject short-circuit current into the short-circuit
point; at this time, for protection A1, fault current direction is
positive, and protection A1 detects the current increase; for
protection A2, the fault current is opposite to the reference
direction, so the fault current direction detected by protection
A2 is negative, and the current detected by protection A2
becomes smaller; Similarly, when the fault occurs in the right
side of the T-zone, protection A1 detects a decrease in current
and protection A2 detects an increase in current; when the
fault occurs in the T-zone, both protection A1 and protection
A2 detect a decrease in current. When the fault occurs in the
T-zone, both protection A1 and protection A2 detect a
decrease in current.

Analysis of the fault occurred at simulation finI2, finII2, and
fout2, respectively, that is, simulation of the fault occurred at the
left side of the T-zone, the right side of the T-zone, and within the

T-zone; mode component mutation amount of the fault current
line detected by protection A1 and protection A2 is shown in
Figure 6.

As can be seen in Figure 6, when the left side of the T-zone
is fault, protection A1 detects the mode component mutation
Δi1.1 of the fault current line in line 1 and is positive,
protection A2 detects the mode component mutation Δi2.1
of the fault current line in line 2 and is negative; when the
right side of the T-zone is fault, protection A1 detects the
mode component mutation Δi1.1 of the fault current line in
line 1 and is negative, protection A2 detects the mode
component mutation Δi2.1 of the fault current line in line 2
and is positive; when the T-zone is fault, protection A1 detects
the mode component mutation Δi1.1 of fault current line in
line 1 and is negative, protection A2 detects the mode
component mutation amount Δi2.1 of fault current line in
line 2 and is negative; Therefore, the construction fault
direction criterion is as follows:

FIGURE 6 | Mode component mutation of the fault current line.
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⎧⎪⎨⎪⎩
K1 > 0, K2 < 0 T − zone left side failures
K1 < 0, K2 > 0 T − zone right side failures
K1 < 0, K2 < 0 failures in T − zone

, (14)

where K1 indicates the integral of the change in the mode
component of the current line at the end of line 1 calculated
by protection A1 over the time window.

K2 denotes the integral over the time window of the change in
the mode component of the current line at the first end of line 2
calculated by protection A2. The calculation formula of k1 and k2
is as follows:

Kx � ∑t0+kΔt
t0

Δix.1(t0 + nΔt), (15)

where “x” is taken as 1 or 2, Δi1.1, Δi2.1 are mode change
amount of the current line at the end of line 1 and the first end
of line 2, t0 is the initial moment of the fault, Δt is the
sampling interval, and nΔt indicates the length of the time
data window.

In- and Out-of-Zone Fault Criterion
After achieving fault direction discrimination, it is also necessary
to determine whether the fault occurs in the protection range.
When the fault is located in the left side of the T-zone, protection
A1 is required to determine the location of the fault; if the fault is
located in line 1, protection A1 acts. If the fault is located outside
the rectifier side area, protection A1 does not act; when
discriminating the fault located in the right side of the T-zone,
protection A2 is required to determine the location of the fault,
when the fault is located in line 2, protection A2 acts; when the
fault is located outside the inverter side area at the end of the line,
protection A2 does not act; when the fault is located in the
T-zone, this type of fault belongs to the line outside the fault area;
hence, protection A1 and protection A2 do not act.

In- and Out-of-Zone Fault Criterion for the Left Side of
the T-Zone
Section 2.1 analysis results show that the rectifier side boundary
has strong attenuation characteristics for the high-frequency
component of the fault current. When the fault is located in
the left side of the T-zone, the rectifier-side boundary is used to
discern the fault location for the attenuation characteristics of the
high-frequency component of the fault transient current. When
the fault is located in line 1, the high-frequency signal of the fault
current only needs to go through the line attenuation, so the high-
frequency component transient energy of the fault current signal
is larger; when the fault is located outside the rectifier-side zone,
the high-frequency signal of the fault current needs to go through
the double attenuation of the rectifier-side boundary and line 1,
and the high-frequency component transient energy of the fault
current signal is smaller. In order to improve the sensitivity of the
protection, themaximum value of the high-frequency component
transient energy of the fault current signal is extracted to
construct the protection criterion, so the construction of the
left side of the T-zone inside and outside the zone fault criterion is
as follows:

{ T1 >Tset1 Fault inside the left the T − zone
T1 ≤Tset1 Fault outside the left the T − zone

, (16)

where T1 is the maximum value of the instantaneous energy of
the high-frequency component of the fault current calculated by
protection A1, and Tset1 is the rectification value of protection A1.
In order to reliably distinguish between the left side of the T-zone
inside and outside the zone fault, the value should be selected in
accordance with the most serious fault situation X. The principle
of the rectification is that high-resistance ground fault occurs at
the head-end of line 1 to avoid metallic ground fault outside the
rectifier side area. Therefore Tset1 is as follows:

Tset1 � Krel × Tmax out1, (17)
where Krel is a reliable coefficient, Krel take 1.5, and Tmax out1 is
the maximum value of the instantaneous energy of the high-
frequency component of the fault current when a metal ground
fault occurs on the outside of the rectifier-side smoothing reactor.
Through simulation experiments, it is calculated that Tset1 is
1.82 × 103. When the fault is located in the left side of the T-zone,
using Eq. 16 can accurately discern the fault in the left side of the
T-zone; when the fault is located outside the left side of the
T-zone, protection A1 does not act; and when the fault is located
in the left side of the T-zone, protection A1 acts.

Internal and External Faults in the Right-Hand Area of
the T-Zone
Section 2.2 analysis results show that the inverter side boundary
at the end of the line also has a strong attenuation effect on the
high-frequency signal of the fault current. Similarly, the
attenuation characteristics of the high-frequency component of
the fault current from the inverter side boundary at the end of the
line are used to discriminate between internal and external faults
in the right-hand side of the T-zone. Fault judgment inside and
outside the right side of the T-zone is as follows:

FIGURE 7 | Protection flow chart.
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{ T2 >Tset2 Fault inside the right the T − zone
T2 ≤Tset2 Fault outside the right the T − zone

, (18)

where T2 is the maximum value of the transient energy of the
high-frequency component IMF1(n) of fault transient current
calculated by protection A2, and Tset2 is the rectification value of
the protection A2. In order to reliably distinguish between the
right side of the T-zone inside and outside the zone fault, Tset2

should be selected in accordance with the most serious fault
situation. The principle of the rectification is that high-resistance
ground fault occurs at the head-end of line 1 to avoid metallic

TABLE 1 | Main parameters of the simulation system.

Converter station Kunbei converter station Liubei converter station Longmen converter station

Rated power 8,000 MW 3,000 MW 5,000 MW
Rated voltage 800 kV 800 kV 800 kV
Rated current 5 kA 1.875 kA 3.125 kA
Flat-wave reactor 300 mH 150 mH 150 mH

FIGURE 8 | Voltage of DC lines.

FIGURE 9 | Suddenchangeamount of the fault current linemodecomponent.

FIGURE 10 | Decomposition results of CEEMDAN.

FIGURE 11 | Frequency spectrum of CEEMDAN modal components.
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ground fault outside the rectifier side area. Therefore Tset2 is
calculated as follows:

Tset2 � Krel × Tmax out3, (19)
where Krel is the reliability factor, taken as 1.5; and Tmax out3 is the
maximum value of the instantaneous energy of the high-frequency
component of the fault when a metal ground fault occurs on the
outside of the inverter-side flat-wave reactor. Through simulation
experiments, it is calculated that Tset2 is 9.834 × 103. When the fault
is located in the right side of the T-zone, Eq. 18 can be used to
discern the fault in the right side of the T-zone. When the position is
located within the right side of the T-zone, protectionA2 is operated,
and when the fault is located outside the right side of the T-zone,
protection A2 is not operated.

Criterion of Fault Pole Selection
When judging the fault within the left side of the T-zone or within
the right side of the T-zone, in order to make the protection act
accurately on the fault pole and ensure normal operation of the
non-fault pole, the fault pole discrimination is required, and the
fault pole criterion is defined as follows:

⎧⎪⎨⎪⎩
P≥ 1.5 positive pole fault

0.8<P< 1.5 double pole fault
P≤ 0.8 negtive pole fault

. (20)

P is the pole selection factor, and the calculation formula is as
follows:

P � ∑Ns
i�1|ΔiP(i)|∑Ns
i�1|ΔiN(i)|

, (21)

where ΔiP(i) and ΔiN(i) are the positive and negative current
change, respectively; and Ns is the number of current sampling
within 4 ms; when the fault initiating element is activated, the
sampling starts.

Protection Flow
The protection device starts when the start-up criterion of any of the
protection installations on both sides of the T-zone is satisfied. The
current data of the 2-ms time window of the line on both sides of the
T-zone are taken and decoupled after phase mode transformation
and then polarity of themode component change of the fault current
line is calculated, and fault direction discrimination is carried out.
When discriminated as the left side of the T-zone fault, protectionA1
calculates the maximum value of the instantaneous energy of the
high-frequency component of the current linemode at the end of the
fault line 1 and judges the fault inside and outside the left side of the
T-zone; when discriminated as the right side of the T-zone fault,
protection A2 calculates the maximum value of the instantaneous
energy of the high-frequency component of the fault current line
mode at the first end of the line 2 and discriminates the fault inside
and outside the right side of the T-zone; when discerning a fault
within the T-zone, A1 and A2 judge the fault to be outside the line
zone, where protection A1 and protection A2 are not operating. The
current data of fault line 4 ms for fault pole judgment are calculated,
the final fault pole protection device action. The protection flow is
shown in Figure 7.

SIMULATION VERIFICATION

On the PSCAD/EMTDC simulation platform, the Kunliulong
hybrid multiterminal UHVDC system model shown in Figure 1
is built. The Kun-North side adopts the traditional grid
phase–shifting type converter with constant DC current and
minimum trigger angle control; the Liu-North converter station
adopts a hybrid full-bridge and half-bridge modular multiterminal
flat converter with constant active power and reactive power control.
Longmen converter station uses a full-bridge and half-bridge hybrid
modular multiterminal flat converter. Control mode uses fixed DC
voltage and reactive power control. Line 1 and line 2 are overhead
lines, line model using Frequency Dependent (Phase) Model
Options model, the length of 908 km and 542 km, respectively.
System parameters are shown in Table 1. The main parameters of
the system are shown in Table 1.

In Figure 1, fout1, fout4 are the faults occurring on the outside
of the positive and negative Kun-north side of the flat-wave
reactor, respectively, which is outside the left zone of the line
T-zone; finl1 ~ finl3 are first end, midpoint, and end fault of
positive line 1; finl4 ~ finl6 are the first end, midpoint, and end
failure of negative line 1. Line 1 faults are intrazone faults on the
left side of the T-zone; finlI1 ~ finlI3 are first end, midpoint, and
end failure of positive line 2, finlI4 ~ finlI6 are the first end,
midpoint, and end fault of negative line 2; line 2 fault is an
intrazone fault on the right side of the T-zone; fout2, fout5,
respectively, for the positive and negative Longmen side of the
flat-wave reactor outside the fault, the fault for the right side of the
T-zone outside the fault; fout3, fout6 are faults occurring on the
outside of the positive and negative Longmen-side flat-wave
reactors respectively, which are faults outside the right side of
the T-zone; fout2, fout5 are faults occurring on the outside of the
positive and negative Liubei-side flat-wave reactors, respectively,
which are faults within the T-zone.

FIGURE 12 | IMF1 component energy spectrum.
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TABLE 2 | Simulation of the positive fault.

Location
of the
fault

Transition
resistance
value/Ω

K1 K2 Direction
of failure

T1 T2 P Judgment
results
of A1

Judgment
results
of A2

fout1 0 67 −52 Left side of the
T-zone

1.647*103 — 1.6624 Outside the left side of the positive
T-zone

—

100 49 −37 Left side of the
T-zone

7.12*102 — 1.6949 Outside the left side of the positive
T-zone

—

200 37 −27 Left side of the
T-zone

3.10*102 — 1.7224 Outside the left side of the positive
T-zone

—

300 30 −21 Left side of the
T-zone

1.95*102 — 1.7481 Outside the left side of the positive
T-zone

—

500 21 −14 Left side of the
T-zone

1.52*102 — 1.799 Outside the left side of the positive
T-zone

—

finI1 0 256 −187 Left side of the
T-zone

2.42*105 — 1.7315 Inside the left side of the positive
T-zone

—

100 121 −89 Left side of the
T-zone

4.12*104 — 1.6946 Inside the left side of the positive
T-zone

—

200 78 −57 Left side of the
T-zone

1.34*104 — 1.69 Inside the left side of the positive
T-zone

—

300 58 −42 Left side of the
T-zone

5.88*103 — 1.6917 Inside the left side of the positive
T-zone

—

500 37 −26 Left side of the
T-zone

2.27*103 — 1.6923 Inside the left side of the positive
T-zone

—

finI2 0 459 −236 Left side of the
T-zone

3.15*105 — 3.2431 Inside the left side of the positive
T-zone

—

100 308 −159 Left side of the
T-zone

1.31*105 — 3.2563 Inside the left side of the positive
T-zone

—

200 232 −119 Left side of the
T-zone

6.98*104 — 3.2548 Inside the left side of the positive
T-zone

—

300 186 −95 Left side of the
T-zone

4.45*104 — 3.2468 Inside the left side of the positive
T-zone

—

500 133 −67 Left side of the
T-zone

2.11*104 — 3.2305 Inside the left side of the positive
T-zone

—

finI3 0 1,591 −671 Left side of the
T-zone

9.07*105 — 4.7264 Inside the left side of the positive
T-zone

—

100 810 −316 Left side of the
T-zone

3.84*105 — 4.6185 Inside the left side of the positive
T-zone

—

200 539 −202 Left side of the
T-zone

2.1*105 — 4.651 Inside the left side of the positive
T-zone

—

300 402 −147 Left side of the
T-zone

1.32*105 — 4.6757 Inside the left side of the positive
T-zone

—

500 266 −94 Left side of the
T-zone

6.68*104 — 4.75 Inside the left side of the positive
T-zone

—

finII1 0 −796 1751 Right side of the
T-zone

— 9.8*105 4.7264 — Inside the right side of the positive
T-zone

100 −391 885 Right side of the
T-zone

— 4.06*105 4.6185 — Inside the left side of the positive
T-zone

200 −256 593 Right side of the
T-zone

— 2.22*105 4.6504 — Inside the left side of the positive
T-zone

300 −190 445 Right side of the
T-zone

— 1.36*105 4.6757 — Inside the left side of the positive
T-zone

500 −125 297 Right side of the
T-zone

— 6.97*104 4.75 — Inside the left side of the positive
T-zone

finII2 0 −322 660 Right side of the
T-zone

— 8.44*105 4.5303 — Inside the right side of the positive
T-zone

100 −216 447 Right side of the
T-zone

— 3.64*105 4.3115 — Inside the right side of the positive
T-zone

200 −162 338 Right side of the
T-zone

— 1.99*105 4.1887 — Inside the right side of the positive
T-zone

300 −130 272 Right side of the
T-zone

— 1.31*105 4.1107 — Inside the right side of the positive
T-zone

500 −93 195 Right side of the
T-zone

— 6.39*104 4.0138 — Inside the right side of the positive
T-zone

(Continued on following page)
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According to the protection scheme proposed in Principle of the
CEEMDAN–Teager Energy Operator Algorithm, the protection
algorithm is written in MATLAB, and the simulation data are
imported. This study uses the CEEMDAN algorithm to
decompose the first IMF component after the fault transient
current; it can be achieved when the center frequency is greater
than the boundary decay frequency. Considering the CEEMDAN
decomposition principle and Shannon’s theorem to engineering
practical impact factors, this study involves simulation sampling
frequency using 20 kHz, and the data window length is 4 ms (Shen
et al., 2021a; Shen et al., 2021b; Shen and Raksincharoensak, 2021a;
Shen and Raksincharoensak, 2021b).

The intra-area fault in the left area of the T-zone is taken as an
example. If the center point of line 1 is metallic ground, the moment
of fault occurrence is 1 s, the fault duration is 0.1 s, and the amount of
line voltage change on both sides of the T-zone is shown in Figure 8.

It can be seen from Figure 8 that when themidpoint of line 1metal
ground fault and line 1 and line 2 voltage are down to reach the
protection of the start value, the protectionprocess is started.According
to the protection process to discriminate the fault direction, line 1 and
line 2 current line mode change amount is as shown in Figure 9.

From Figure 9, it can be seen that when the line 1 of the midpoint
of a metallic ground fault protection A1 detecting the mode change
amount of the current line at the end of line 1 is positive, protection
A2 detecting the mode change amount of the current line at the first
end of line 2 is negative. According to Eq. 18, it can be determined
that the fault occurred on the left side of the T-zone. According to the
protection process, the location can be determined. The mode
components of the fault transient current line for CEEMDAN

decomposition can be obtained for each order IMF component as
shown in Figure 10, and the FFT transform of each order IMF
component to find its spectrum, as shown in Figure 11.

As seen in Figures 10, 11, the mode signal of the fault transient
current line is decomposed by CEEMDAN to obtain
IMF1~IMF5, which is FFT-transformed to find the center
frequency of IMF1 as 5.3 kHz, and the center frequency is
greater than the boundary decay frequency, and the energy
spectrum of IMF1 is calculated by using the Teager energy
operator, and the energy spectrum of IMF1 is shown in Figure 12.

From Figure 12, we can see that the maximum value of the
instantaneous amplitude of the IMF1 component is
2.925 × 105 >Tset1 � 7.82 × 103; this value satisfies the T internal
fault criterion of the left side of T-zone and is judged to be an internal
fault in the left zone of the T-zone, that is, line 1 is faulty. According
to the protection process, we need to determine the pole line of the
fault, that is, the fault pole selection; according to Eq. 21, the pole
selection factor P is calculated as 3.2431; according to Eq. 20, the
fault occurred in the positive pole is determined. In summary, the
fault occurred in the positive T-zone left zone, that is, the positive line
1 fault, and protection A1 issued operation instructions.

In order to verify the impact of different fault locations and
different transition resistances on the protection, (shen et al.,
2020a; shen et al., 2020b) this study selected finl1 ~ finl6,
finlI1 ~ finlI6, and fout1 ~ fout6 where the fault occurred; the
transition resistance is in the value range of 0 ~ 500Ω, and the
simulation results are shown in Tables 2, 3.

From Tables 2, 3, it can be seen that when the fault occurs at
finl1 ~ finl6, finlI1 ~ finlI6, and fout1 ~ fout6, the transition

TABLE 2 | (Continued) Simulation of the positive fault.

Location
of the
fault

Transition
resistance
value/Ω

K1 K2 Direction
of failure

T1 T2 P Judgment
results
of A1

Judgment
results
of A2

finII3 0 −328 569 Right side of the
T-zone

— 7.98*105 6.1925 — Inside the right side of the positive
T-zone

100 −198 354 Right side of the
T-zone

— 4.11*105 5.7473 — Inside the right side of the positive
T-zone

200 −140 254 Right side of the
T-zone

— 2.63*105 5.1994 — Inside the right side of the positive
T-zone

300 −108 198 Right side of the
T-zone

— 1.84*105 4.8146 — Inside the right side of the positive
T-zone

500 −74 137 Right side of the
T-zone

— 1.01*105 4.3354 — Inside the right side of the positive
T-zone

fout3 0 −270 444 Right side of the
T-zone

— 8.94*103 6.3299 — Outside the right side of the positive
T-zone

100 −151 264 Right side of the
T-zone

— 7.72*103 6.357 — Outside the right side of the positive
T-zone

200 −100 182 Right side of the
T-zone

— 7.07*103 5.1923 — Outside the right side of the positive
T-zone

300 −73 138 Right side of the
T-zone

— 6.27*103 4.467 — Outside the right side of the positive
T-zone

500 −47 93 Right side of the
T-zone

— 7.64*103 3.7292 — Outside the right side of the positive
T-zone

fout2 0 −615 −560 T-zone — — 4.3946 — —

100 −282 −244 T-zone — — 4.6647 — —

200 −177 −146 T-zone — — 4.6524 — —

300 −128 −102 T-zone — — 4.7011 — —

500 −83 −63 T-zone — — 4.8375 — —
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TABLE 3 | Simulation of the negative fault.

Location
of the
fault

Transition
resistance
value/Ω

K1 K2 Direction
of fault

T1 T2 P Judgment
results
of A1

Judgment
results
of A2

fout4 0 67 −53 Left side of the
T-zone

2.58*102 — 0.6972 Outside the left zone of the negative
T-zone

—

100 49 −38 Left side of the
T-zone

1.76*102 — 0.7191 Outside the left zone of the negative
T-zone

—

200 38 −28 Left side of the
T-zone

1.67*102 — 0.7415 Outside the left zone of the negative
T-zone

—

300 30 −22 Left side of the
T-zone

1.85*102 — 0.766 Outside the left zone of the negative
T-zone

—

500 21 −15 Left side of the
T-zone

1.46*102 — 0.776 Outside the left zone of the negative
T-zone

—

finI4 0 259 −190 Left side of the
T-zone

2.48*105 — 0.605 Inside the left zone of the negative
T-zone

—

100 123 −91 Left side of the
T-zone

4.30*104 — 0.6435 Inside the left zone of the negative
T-zone

—

200 80 −59 Left side of the
T-zone

1.25*104 — 0.6706 Inside the left zone of the negative
T-zone

—

300 59 −43 Left side of the
T-zone

6.49*103 — 0.6954 Inside the left zone of the negative
T-zone

—

500 38 −28 Left side of the
T-zone

2.28*103 — 0.7447 Inside the left zone of the negative
T-zone

—

finI5 0 455 −235 Left side of the
T-zone

2.97*105 — 0.2953 Inside the left zone of the negative
T-zone

—

100 305 −157 Left side of the
T-zone

1.23*105 — 0.2876 Inside the left zone of the negative
T-zone

—

200 229 −118 Left side of the
T-zone

6.73*104 — 0.2818 Inside the left zone of the negative
T-zone

—

300 183 −94 Left side of the
T-zone

4.61*104 — 0.2765 Inside the left zone of the negative
T-zone

—

500 131 −67 Left side of the
T-zone

2.26*104 — 0.2658 Inside the left zone of the negative
T-zone

—

finI6 0 1,586 −673 Left side of the
T-zone

5.63*105 — 0.2116 Inside the left zone of the negative
T-zone

—

100 810 −317 Left side of the
T-zone

1.96*105 — 0.2169 Inside the left zone of the negative
T-zone

—

200 539 −202 Left side of the
T-zone

1.21*105 — 0.2184 Inside the left zone of the negative
T-zone

—

300 402 −147 Left side of the
T-zone

7.29*104 — 0.2255 Inside the left zone of the negative
T-zone

—

500 266 −94 Left side of the
T-zone

3.74*104 — 0.2415 Inside the left zone of the negative
T-zone

—

finII4 0 −798 1711 Right side of the
T-zone

— 5.15*105 0.2116 — Inside the right zone of the negative
T-zone

100 −393 886 Right side of the
T-zone

— 2.29*105 0.2169 — Inside the right zone of the negative
T-zone

200 −258 594 Right side of the
T-zone

— 1.25*105 0.2184 — Inside the right zone of the negative
T-zone

300 −191 446 Right side of the
T-zone

— 7.54*104 0.2255 — Inside the right zone of the negative
T-zone

500 −126 298 Right side of the
T-zone

— 3.99*104 0.2415 — Inside the right zone of the negative
T-zone

finII5 0 −323 658 Right side of the
T-zone

— 8.13*105 0.2165 — Inside the right zone of the negative
T-zone

100 −216 445 Right side of the
T-zone

— 3.28*105 0.2192 — Inside the right zone of the negative
T-zone

200 −163 337 Right side of the
T-zone

— 1.87*105 0.2222 — Inside the right zone of the negative
T-zone

300 −131 271 Right side of the
T-zone

— 1.27*105 0.2235 — Inside the right zone of the negative
T-zone

500 −94 195 Right side of the
T-zone

— 5.93*104 0.2233 — Inside the right zone of the negative
T-zone

(Continued on following page)
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resistance changes in the range of 0 ~ 500Ω; protection A1 and
protection A2 can correctly determine fault direction and fault
location, correctly determine the fault pole line, and have high
sensitivity in the occurrence of high-resistance ground fault. The
protection method was found to be 100% correct for different fault
locations and transition resistances.

SUMMARY

In this study, a protection scheme for hybridmultiterminal UHVDC
lines based on the CEEMDAN–Teager energy operator is proposed,
which uses the protection principle to discriminate the fault
direction by the polarity of the sudden change in the line mode
component of the fault current when a fault occurs on both sides of
the T-zone, and then according to the rectifier-side boundary or line
end inverter-side boundary on the fault transient current high-
frequency signal attenuation characteristics, to determine the left side
of the T area inside and outside the fault area or the right side of the T
area inside and outside the fault area. The protection principle has
the following advantages:

1) When the fault occurs, because the normal operation of DC
current has a clear direction and size, the current on both sides
of the line will be obvious to sudden changes, and one can use
the polarity of the current line mode component of the sudden
change in the construction of the direction of the criterion.

2) The adaptive nature of CEEMDAN decomposition and
accurate identification ability of the Teager energy operator

are used to determine the faults inside and outside the left side
of the T-zone and the right side of the T-zone, respectively.

3) The method in this study does not require high sampling
frequency and has strong resistance to transition resistance,
and the time window is 4 ms, which can quickly and
accurately determine the faults inside and outside the zone.
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TABLE 3 | (Continued) Simulation of the negative fault.

Location
of the
fault

Transition
resistance
value/Ω

K1 K2 Direction
of fault

T1 T2 P Judgment
results
of A1

Judgment
results
of A2

finII6 0 −326 567 Right side of the
T-zone

— 7.37*105 0.1734 — Inside the right zone of the negative
T-zone

100 −196 353 Right side of the
T-zone

— 4.24*105 0.1832 — Inside the right zone of the negative
T-zone

200 −138 254 Right side of the
T-zone

— 2.73*105 0.2013 — Inside the right zone of the negative
T-zone

300 −106 198 Right side of the
T-zone

— 1.82*105 0.2177 — Inside the right zone of the negative
T-zone

500 −72 137 Right side of the
T-zone

— 1.09*105 0.2438 — Inside the right zone of the negative
T-zone

fout6 0 −270 442 Right side of the
T-zone

— 6.88*103 0.1686 — Outside the right zone of the negative
T-zone

100 −151 263 Right side of the
T-zone

— 6.08*103 0.1622 — Outside the right zone of the negative
T-zone

200 −100 182 Right side of the
T-zone

— 5.26*103 0.1878 — Outside the right zone of the negative
T-zone

300 −74 138 Right side of the
T-zone

— 5.39*103 0.2141 — Outside the right zone of the negative
T-zone

500 −48 92 Right side of the
T-zone

— 5.39*103 0.2518 — Outside the right zone of the negative
T-zone

fout5 0 −617 −246 Inside of the T-zone — — 0.2255 — —

100 −283 −216 Inside of the T-zone — — 0.2143 — —

200 −177 −147 Inside of the T-zone — — 0.2181 — —

300 −129 −103 Inside of the T-zone — — 0.2273 — —

500 −82 −63 Inside of the T-zone — — 0.2434 — —
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Grey Wolf Optimization–Based Deep
Echo State Network for Time Series
Prediction
Xiaojuan Chen* and Haiyang Zhang

School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China

The Echo State Network (ESN) is a unique type of recurrent neural network. It is built atop a
reservoir, which is a sparse, random, and enormous hidden infrastructure. ESN has been
successful in dealing with a variety of non-linear issues, including prediction and
classification. ESN is utilized in a variety of architectures, including the recently
proposed Multi-Layer (ML) architecture. Furthermore, Deep Echo State Network
(DeepESN) models, which are multi-layer ESN models, have recently been proved to
be successful at predicting high-dimensional complicated non-linear processes. The
proper configuration of DeepESN architectures and training parameters is a time-
consuming and difficult undertaking. To achieve the lowest learning error, a variety of
parameters (hidden neurons, input scaling, the number of layers, and spectral radius) are
carefully adjusted. However, the optimum training results may not be guaranteed by this
haphazardly created work. The grey wolf optimization (GWO) algorithm is introduced in this
study to address these concerns. The DeepESN based on GWO (GWODESN) is utilized in
trials to forecast time series, and therefore the results are compared with the regular ESN,
LSTM, and ELMmodels. The findings indicate that the planned model performs the best in
terms of prediction.

Keywords: time series prediction, deep echo state network, grey wolf optimization, network structure optimization,
combined cycle power plant

1 INTRODUCTION

Time series appear in every facet of life, and one of the current research topics is time series
forecasting. Time series predictionmay be aided by the development of newmethodologies. The time
series, on the other hand, is frequently created by a chaotic system and is untidy or non-linear. As a
result, time-series forecasting research is extremely difficult. Furthermore, time series prediction
requires models with high prediction accuracy.

Over the two past decades, several researchers proposed various models for time series forecasting
that involve scientific prediction based on historical time-stamped data. Among these researchers,
Liu (2017) presented a time-series prediction approach based on an online sequential extreme
learning machine (OS-ELM). This approach was later updated to include an adaptive forgetting
factor and a bootstrap to improve the prediction accuracy and stability. Guo et al. (2016) used
differential evolution (DE) to optimize the model parameters in an efficient extreme learning
machine (EELM) that is utilized to anticipate chaotic time series. Lukoseviciute et al. (2018) used
evolutionary algorithms and Bernstein polynomials to develop a short-term time-series prediction
model. For chaotic time series, Ma et al. (2004) suggested a mixed model based on neural networks
and wavelets. Milad et al. (2017) proposed a model of adaptive decayed brain emotional learning
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(ADBEL) to better handle online forecasting of time series
through a neuro-fuzzy network architecture. Miranian and
Abdollahzade (2013) proposed a local neuro-fuzzy (LNF)
scheme combined with least-square support vector machines
(LSSVMs) for non-linear and chaotic modeling and
forecasting. Tang et al. (2020) proposed a LSSVM model to
model NOx emissions. Chai and Lim (2016) constructed a
discriminative model of a neural network architecture
equipped with weighted fuzzy membership functions
(NEWFM) for identifying patterns of economic time series. Li
et al. (2016) proposed an adaptive Volterra-type predictionmodel
with matrix factorization for chaotic time-series analysis. Su and
Yang (2021) proposed a brain emotional network in conjunction
with an adaptive genetic algorithm (BEN-AGA) model for
predicting time series of chaotic behavior. Nevertheless, the
aforementioned methods have several limitations. First, an
adequate structure must be pre-specified for the conventional
neural networks, and the convergence rate of these networks is
slow. Also, the ELM method exhibits weak generalization and
robustness. Also, the LSSVM method is greatly affected by time
delays.

Recently, recurrent neural networks (RNNs) have been
introduced to handle problems with temporal dynamics. The
RNN architectures have been successfully utilized for time-series
detection (Li et al., 2021a) and forecasting (Li et al., 2021b).
However, the overall RNN weights should be learned through
backpropagation, and this imposes a significant computational
burden. To enhance the operational efficiency, Echo State
Networks (ESNs) were proposed by Jaeger and Haas (2004) as
a novel RNN variant that can be efficiently utilized for time series
forecasting. For example, Han et al. (2021) proposed an optimized
ESN model with adaptive error compensation for network traffic
prediction. Liu et al. (2020) proposed a hybrid time-series
prediction approach with the binary grey wolf algorithm and
echo state networks (BGWO-ESN). Beyond time series
forecasting, the echo state networks have also been applied in
other problems, including mainly classification (Stefenon et al.,
2022), detection (Steiner et al., 2021), and image segmentation
(Abdelkerim et al., 2020). However, the conventional ESN
architectures still lack the ability to handle complicated tasks.
To address this limitation, a DeepESN model is introduced in
this paper, where a grey wolf optimization (GWO) algorithm is

used to optimize the DeepESN model parameters. Our proposed
DeepESN architecture is evaluated on the Lorenz system, the
Mackey–Glass (MG) model, and the non-linear autoregressive
moving average (NARMA) model. The proposed method was
evaluated with a real-time series representing full-load electrical
power outputs. The simulations demonstrate promising
performance of the proposed forecasting strategy.

The main contributions of this paper are highlighted as
follows: first, the effort made in the paper represents one of
the first few attempts to construct DeepESN to forecast times
series. Then, compared with ESN, LSTM, and ELM models, the
proposed GWODESN outperforms in terms of forecast
accuracy.

The remainder of this work is arranged as follows. A
detailed overview of the DeepESN and GWO algorithms is
presented in Section 2, while Section 3 provides the details of
the proposed GWODESN model. The simulation outcomes
are analyzed in Section 4. Then, Section 5 gives final
conclusions.

2 METHODOLOGY

2.1 Deep Echo State Networks
Following the conventional ESN model, the DeepESN model is
made up of multiple dynamical reservoir components.
Specifically, the DeepESN reservoir is organized into stacked
repetitive layers. For each layer, the output is the input of the
next layer, as outlined in Figure 1 (Gallicchio and Micheli, 2017).
In our work, NU indicates the number of the input
measurements, NL indicates the reservoir layer count, NR
denotes the number of the recurrent units, and t indicates
time. Moreover, u(t) denotes the model input at time t,
whereas x(i)(t) represents the state for the ith reservoir layer at
time t. The DeepESN reservoir dynamics are mathematically
modeled as follows. The dynamics of the primary DeepESN layer
can be expressed as

x(1)(t) � (1 − a(1)) x(1)(t − 1) + a(1) f (W(1) u(t)
+ Ŵ

(1)
x(1)(t − 1)) (1)

When i > 1, the DeepESN state is computed as

FIGURE 1 | Architecture of a DeepESN.
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x(i)(t) � (1 − a(i)) x(i)(t − 1) + a(i) f (W(i) x(i)(t)
+ Ŵ

(i)
x(i)(t − 1)) (2)

where W(1) indicates the input weight matrix, W(i) indicates the
weights of the connections between the (i − 1)th and ith layers,

Ŵ
(i)

indicates the recurrent weights of the ith layer, a (i) ∈ [0, 1]
indicates the leakage rate of the ith layer, and f represents the
employed activation function (regularly chosen as the tanh
function).

2.2 Grey Wolf Optimizer
GWO could be a nature-inspired algorithm that imitates the
chain of command of administration and daily routine (Mirjalili
et al., 2014). The wolves have four conceivable sorts: alpha, beta,
delta, or omega. The pioneers of the pack (called alphas), which
may be recognized by the leading administration abilities instead
of the most grounded body, make choices almost every day

exercises for the whole pack. The beta wolf helps alpha to
make a choice. The omega wolf position is most reduced
among wolves, but it plays a key part in keeping up a
prevailing structure. The delta wolf is auxiliary to the alpha
and beta, but it has the upper hand over the omega within the
previously mentioned chain of command. The GWO algorithm
can be mathematically represented as follows:

D
→ �

∣∣∣∣∣∣C · Xp
�→(t) − X

→ (t)
∣∣∣∣∣∣ (3)

X
→ (t + 1) � Xp

�→(t) − A · D→ (4)
where t is utilized to mean the current iteration, Xp

��→
to mean the

prey position vector, and X
→
to represent the wolf position vector.

Meanwhile, A and C can be represented as

A � 2a · r1 − a (5)
C � 2 · r2 (6)

FIGURE 2 | A flowchart of the proposed modeling approach.
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where a is diminished in a straight design from 2 to 0. r1, r2 are
haphazardly created from the unit interval [0,1]. Thewolf pack chasing
design is driven by the alpha wolves and frequently by the beta and
delta ones. This design may be scientifically sculptural as takes after

Dα
�→ �

∣∣∣∣∣∣C1 · Xα

�→− X
→∣∣∣∣∣∣

Dβ

�→ �
∣∣∣∣∣∣C2 · Xβ

�→− X
→∣∣∣∣∣∣

Dδ

�→ �
∣∣∣∣∣∣C3 · Xδ

�→− X
→∣∣∣∣∣∣ (7)

X1
�→ � Xα

�→− A1 · Dα

�→
X2
�→ � Xβ

�→− A2 · Dβ

�→
X3
�→ � Xδ

�→− A3 · Dδ

�→
(8)

X
→ (t + 1) � (X1

�→+ X2
�→+ X3

�→)/3 (9)

3 GREY WOLF OPTIMIZER–BASED DEEP
ECHO STATE NETWORK

As the same as simple ESN model, we must appropriately indicate
network parameters of DeepESN for getting palatable comes about.
We might rehash the tests trusting to secure great plan scenarios. Be
that as it may, we can never be sure that the best solution has been
achieved. To address it, the GWO algorithm ought to be utilized to

FIGURE 3 | The real value and the anticipated value for Lorenz x(t).

TABLE 1 | The performance comparison of GWODESN, ESN, ELM, and the
LSTM for Lorenz x(t)

Model MAPE MAE RMSE R2

GWODESN 0.00010737 0.008402 0.012598 1
ESN 0.0018053 0.099649 0.22953 0.99923
LSTM 0.028958 0.36154 0.55374 0.99758
ELM 0.17571 1.0301 1.3047 0.977

FIGURE 4 | The absolute error box diagram for Lorenz x(t).

FIGURE 5 | Relative error distribution for Lorenz x(t).
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optimize a couple of parameters including NR, NL, ρ, and IR. The
spectral radius ρ is one in all the foremost central parameters
characterizing the reservoir’s weight matrix W. And to take care
of the echo state property (ESP), ρ should be scaled to equal or less
than one. Figure 2 shows a flowchart of the proposed GWODESN.
The taking after steps depict the particular modeling strategy:

Step 1. Read time series file as the input data.

Step 2. Initialize the GWO algorithm containing the a, A, and C.

Step 3. Set initial population representing NR, NL, ρ, and IR.

Step 4. Use initial population to establish the DeepESN model.

Step 5.Calculate the mean absolute error of various population as
the corresponding fitness value.

Step 6.Obtain initial optimum value having least fitness values in
population.

Step 7. If the fitness value obtained meets the accuracy
requirements of the model, skip to Step 9. Something else,
proceed.

Step 8. Update the population applying Eq. 9, the number of
iterations t = t+1, and then return to Step 4.

Step 9. Output the best NR, NL, ρ, and IR.

4 EXPERIMENTAL SETUP, RESULTS, AND
DISCUSSION

In this pondering, three benchmark datasets and one real-world
illustration are embraced to confirm the execution of diverse
models. One-step ahead expectation is examined in this segment.
To assess the created demonstration, 4 standard records (Tang
et al., 2020; Li et al., 2021a; Li et al., 2021b) including the mean
absolute error (MAE), the mean absolute percentage error
(MAPE), the root-mean-square error (RMSE), and the
coefficient of determination (R2) are characterized as takes after

MAE � 1
M

∑M
j�1

∣∣∣∣∣yj − ŷj

∣∣∣∣∣ (10)

MAPE � 1
M

∑M
j�1

∣∣∣∣∣yj − ŷj

∣∣∣∣∣
yj

(11)

FIGURE 6 | The real value and the anticipated value for NARMA.

TABLE 2 | Prediction performance comparison for NARMA

Model MAPE MAE RMSE R2

GWODESN 0.016684 0.006208 0.0078925 0.99487
ESN 0.067969 0.024812 0.031407 0.91423
LSTM 0.13112 0.052137 0.067306 0.66642
ELM 0.19488 0.072871 0.093292 0.24624

FIGURE 7 | The absolute error box diagram for NARMA.

FIGURE 8 | Relative error distribution for NARMA.
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RMSE �
�������������
1
M

∑M
j�1
(yj − ŷj)2

√√
(12)

R2 � 1 −
∑M
j�1
(yj − ŷj)2

∑M
j�1
(yj − �yj)2

(13)

Within the equations,M is utilized to represent sample size, yj to
represent the true value, �yj to represent mean true value, and ŷj
to represent the forecast value. All experiments were carried out
inMATLAB on aWindows 10 operating system, with a 2.50-GHz
Intel CPU, and a memory of 8.0 GB. The performance outcomes
of our approach were compared with those based on the
conventional ESN, ELM, and LSTM architectures.

FIGURE 9 | The real value and the anticipated value for MG.

TABLE 3 | Prediction performance comparison for MG

Model MAPE MAE RMSE R2

GWODESN 1.52E−06 1.34E−06 8.74E−06 1
ESN 0.0022983 0.0019566 0.0023502 0.99989
LSTM 0.049911 0.047476 0.059318 0.96962
ELM 0.035191 0.029265 0.03455 0.97677

FIGURE 10 | The absolute error box diagram for MG.

FIGURE 11 | Relative error distribution for MG.
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4.1 Lorenz System
The Lorenz dynamical system (Wu et al., 2021) is a key benchmark of
time series forecasting and is mathematically defined as

dx

dt
� a( − x + y)

dy

dt
� bx − y − xz

dz

dt
� xy − cz

(14)

where t expresses time, while the model coefficients a, b, and c
are respectively chosen as 10, 28, and 8/3. Model training and
testing were carried out with time series lengths of 4,000 and
1,000, respectively. For x-dimensional forecasting, past
information of x(t −1), y(t −1), and z(t −1) is utilized in the
prediction of the present x(t) values. In the arrangement to
assess the viability and preferences of this proposed
GWODESN, the conventional ESN, ELM, and the LSTM are
chosen as benchmarks. The real value and the anticipated value
of GWODESN, ESN, ELM, and the LSTM to begin with
appeared in Figure 3, and the expectation exactness is
recorded in Table 1. It is clear that GWODESN is superior
than others, showing the adequacy of this approach. In
expansion, the yield of ELM cannot coordinate the real
esteem, particularly at a few emphasis focuses. It moreover
outlines the justification of RNN. The expectation mistakes
of GWODESN, ESN, ELM, and the LSTM are advance
compared in Figure 4. Figure 4 shows the box graph of
absolute error recorded for 30 runs of diverse models. It can
be seen that the GWODESN shows superior forecast exactness
and solidness than other models. The absolute error box graph
of the ELM demonstration is long, and it is known that the
supreme mistake values are scattered, showing that the forecast
performance of the ELM model is not as steady as in other

models. The box chart of the GWODESN model is the most
brief. Most of the absolute error values are smaller than other
comparison models. Figure 5 gives the relative error
distribution of the testing information by the GWODESN.
Among the 1,000 testing cases, 93.3% of the relative errors
were less than 1%. In general, the prediction accuracy of the
GWODESN model is relatively high and relatively stable. In
common, the expectation precision of the GWODESN model is
moderately high and generally steady.

4.2 NARMA system
NARMA (Chouikhi et al., 2017), which is featured with a very
high rate of chaos in its behavior, could also be an accepted
studied benchmark. The flow of this benchmark is produced by
Eq. 15:

y(t + 1) � c1y(t) + c2y(t)∑k
i�1
y(t − i) + c3x(t − (k − 1))x(t) + c4

(15)
where y(t) and x(t) are the yield and input of the framework at time t,
separately. The consistent c is set as 0.3, 0.05, 1.5, and 0.1, separately.
The k, which decides the intricacy of NARMA, is set to 10. As the
same as the past simulation, the real value and the anticipated value
of GWODESN are shown in Figure 6, and the desired precision is
recorded in Table 2. It is evident that GWODESN can take after the

FIGURE 12 | Scatter diagram of the real value and the anticipated value
for CCPP.

FIGURE 13 | Relative error distribution for CCPP.

TABLE 4 | Prediction performance comparison for CCPP

Model MAPE MAE RMSE R2

GWODESN 0.0071209 3.2268 4.1052 0.93981
ESN 0.0078012 3.5345 4.4278 0.93013
LSTM 0.0085425 3.8767 4.9317 0.91412
ELM 0.0079702 3.6098 4.4885 0.92832
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real esteem ideally. The desired botches of GWODESN, ESN, ELM,
and the LSTM are developed and compared in Figure 7. It can be
seen in Figure 7 that the GWODESN appears to have a more
predominant estimate precision and solidness than other models.
The absolute error box graph of the ELM is long, and it is known that
the incomparable botch values are scattered, appearing that the
figure execution of the ELM is not as steady as othermodels. The box
chart of the GWODESN show is the foremost brief. Most of the
absolute error values are more diminutive than other comparison
models. Figure 8 gives the relative error dispersion of the testing data
by the GWODESN. Among the 1,000 testing cases, 90.1% of the
relative error distribution were less than 3.5% as appeared in
Figure 8.

4.3 Mackey–Glass System
The MG (Mackey and Glass, 1977) may be a normal chaotic
framework, which is known by its non-linear behavior. Thus,
learning the designs appears to be a troublesome errand. It is
portrayed by Eq. 16.

dx(t)
dt

� 0.2x(t − τ)
1 + x10(t − τ) − 0.1x(t) (16)

where τ is a vital parameter of the MG system, which is regularly
set to 17. In total, 4,000 tests were utilized as training data sets and
1,000 tests were utilized for testing. The forecast that comes about
appears in Figure 9 and Table 3. The conventional utilized ESN
can be seen to have superior forecast execution than the ELM and
the LSTM and can fit the original data well. Be that as it may, the
execution of the GWODESN is superior than that of the
conventional ESN. Figure 10 appears that the GWODESN
show has superior forecast precision and soundness than other
models. Among the 1,000 testing cases, 99% of the relative
mistakes were less than 1% in Figure 11.

4.4 Combined Cycle Power Plants
CCPPs generally contain steam turbines (STs) and gas turbines
(GTs), as well as heat recovery steam generators (HRSGs). For a
CCPP, power generation is jointly performed by the steam and
gas turbines, and is exchanged between each turbine and the
others (Tüfekci, 2014). Here, we use CCPP data to evaluate the
single-step prediction performance. The utilized dataset includes

four input factors and one target variable, where this dataset was
collected from 2006 to 2011. Figure 12 outlines both the
GWODESN-predicted and measured electrical power outputs.
The specked reddish straight line represents the ideal relationship
of the predicted and measured values. The blue line demonstrates
the GWODESN predicted outcomes. Almost all of the
predictions are scattered around the ideal line. Figure 13 gives
the relative error distribution of the GWODESN model on the
test data. Among the 1,000 test samples, 90.3% of the relative
errors are less than 1.6%. Obviously, the GWODESN model
outperforms the other three competing models. The adequacy
of the proposed model is shown by the results in Table 4.

5 CONCLUSION

In this paper, the GWODESN is created for time series expectation.
The four primary parameters of the DESN were optimized by
utilizing the GWO algorithm. Four ordinary time series, counting
Lorenz, MG, NARMA, and CCPP, are chosen as the simulation
objects. Comparative test that comes about on four time-series
forecast assignments clearly illustrates that the proposed
GWODESN outflank the ELM, LSTM, and ESN benchmarks.
The expectation strategy is basic and effective, and has certain
hypothetical centrality and commonsense esteem. Hyper-
parameter optimization and the topology of the networks are all
the common optimization strategies. Within the future, we will
center on progressing the network topology and apply themodel in
other domains, such as wind energy prediction.
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A Multi-Agent Game-Based
Incremental Distribution Network
Source–Load–Storage Collaborative
Planning Method Considering
Uncertainties
Nan Yang1*, Ye He1, BangTian Dong2, Tao Qin1, Li Ding1, XingLei Yang3, JunWei Yao3,
YueHua Huang1, ShuoHao Wang1, Lei Zhang1, BinXin Zhu1, Wei Xiong3 and YuLun Ren4

1Hubei Provincial Engineering Research Center of Intelligent Energy Technology, China Three Gorges University, Collage of
Electrical Engineering and New Energy, Yichang, China, 2Substation Transportation Inspection Branch State Grid Huangshi
Power Supply Company, Huangshi, China, 3State Grid Yichang Electric Power Company, Yichang, China, 4Economic and
Technological Research Institute, State Grid Hubei Electric Power Company, Wuhan, China

How to obtain the optimal decision-making scheme based on the investment behavior of
various stakeholders is an important issue that needs to be solved urgently in incremental
distribution network planning. To this end, this article introduces the virtual player “Nature” to
realize the combination of the game theory and robust optimization and proposes an
incremental distribution network source–load–storage collaborate planning method with a
multi-agent game. First, the planning and decision-making models of a DG investment
operator, a distribution network (DN) company, power consumers, and a distributed
energy storage (DES) investment operator are constructed, respectively. Then the static
game behaviors between the DG investment operator and distribution network company,
as well as the DG investment operator and the DES investment operator, are analyzed based
on the transfer relations between these four participants. At the same time, robust optimization
is used to deal with the uncertainty of the DG output, and the virtual player “Nature” is
introduced to study the dynamic game behavior between the DG investment operator and the
distribution company. Finally, a dynamic–static joint game planning model is proposed. The
simulation results verify the correctness and effectiveness of the proposed method.

Keywords: multi-agent planning, robust optimization, dynamic–static joint game, iterative search method,
collaborative planning

1 INTRODUCTION

With the steady progress of pilot reform, incremental distribution business in China began to
become open to social capital (Liu and Yang, 2021). At the same time, distributed generation (DG)
investors, power consumers participating in demand side response (DSR), and distributed energy
storage (DES) investors, in the role of independent entities, started to participate in the investment
and operation of the distribution network. The diversification of investors has become one of the
most significant characteristics of China’s incremental distribution network (Ma and Wang, 2017;
Liu et al., 2020; Shen and Raksincharoensak, 2021a; Ma et al., 2021). Additionally, more uncertainties
have been injected into it. Therefore, it is of great theoretical and practical significance to study the
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incremental distribution network planning method considering
multiple independent participants and uncertainties (Li et al.,
2020; Li et al., 2021a; Shen and Raksincharoensak, 2021b).

At present, distribution network planning considering multiple
investment entities have attracted increasing research attention
among investment operators and academic communities (Su
et al., 2016; Li et al., 2017; Zhu et al., 2020; Li et al., 2021b). Su
et al. (2016) analyzed the cost–benefit relationship between DG
investment operators and distribution network companies after
the access of DGs, establishing the model of optimizing DG
capacity. Li et al. (2017) proposed a three-layer planning model of
an active distribution network considering the interests of
distribution network companies, DG operators, and consumers.
Although the benefits or costs of different entities are modeled
independently in the aforementioned article, the whole planning
model is based on the overall rationality, aiming for optimizing the
weighted sum, rather than the independent optimization of each
investment entity. This cannot inflect the market mechanism of the
actual incremental distribution network, deteriorating its economic
performance (Liao et al., 2018). Therefore, it is a promising way to
construct an incremental distribution network planning model based
on individual rationality and game theory, improving the planning
decision efficiency (Li and Xu, 2020a; Shen et al., 2022a).

Currently, the game issue in distribution network planning has
been widely studied (Mei et al., 2011; Lu et al., 2014; Wen et al.,
2016). Based on the complete information from the dynamic
game theory, Mei et al. (2011) took photovoltaic, energy storage,
and power grid as game participants, analyzed the game
relationship between them in the market environment, and
established a coordinated planning model of the optical
storage network. According to the possible alliance
relationship between wind power generation, photovoltaic
power generation, and energy storages, Wen et al. (2016)
proposed five non-cooperative and cooperative game planning
modes and obtained the optimal capacity allocation scheme
under them. The aforementioned references analyzed the game
relation between each participant, establishing various game
models from the perspective of dynamic and static and
cooperative and non-cooperative. However, the uncertainties
of distribution network are not considered, and the accuracy
of planning cannot be guaranteed in the large-scale access of
distributed power (Lu et al., 2014).

In this article, the main contributions are summarized as
follows:

(1) By introducing the virtual player “Nature,” the deep integration
of the game theory and robust optimization was realized.

(2) Considering multi-agent dynamic and static game, a
source–load–storage collaborative planning method for
incremental distribution networks was proposed.

(3) The uncertainty of DG output is fully considered. The
network topology is actively changed to enhance
robustness in large fluctuations of the DG output, and the
planning result is more reasonable.

The correctness and effectiveness of the proposed method are
verified in a modified IEEE 33-bus distribution network system.

2 PLANNING MODEL OF EACH
INVESTMENT ENTITY

2.1 DG Investment Operator
2.1.1 Objective
The objective is to maximize the total operation cost of DG investment
operatorswhile satisfying prevailing physical constraints (Shi et al., 2016;
Li and Xu, 2020b). The details can be generally described as follows:

maxCDG(xi,Ni) � CDG
S + CDG

C − (CDG
I + CDG

OM), (1)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDG
S � ∑Ωt

t�1
θes1 · PDG

t +∑Ωt

t�1
θes2 · PDG

qt

CDG
C � ∑Ωt

t�1
θgc · PDG

t

CDG
I � (θsg ·∑Ωi

i�1
xi · PDG

sg ·Ni) · r(1 + r)LT
(1 + r)LT − 1

CDG
OM � ∑Ωt

t�1
θom · PDG

t

. (2)

2.1.2 Constrains
The constraint conditions of the DG investment operator
planning model mainly include the restriction of the number
of nodes to be selected in DG and the constraint of the DG output
(Jin et al., 2017; Shen et al., 2020a; Shen et al., 2020b).

Ni. min ≤Ni ≤Ni. max, (3)
PDG
min ≤P

DG
t ≤PDG

max. (4)

2.2 Distribution Network Company
2.2.1 Objective
The objective is to maximize their income of DN company, and the
mathematical expression of the model can be expressed as follows:

maxCDN(yi) � CDN
S − (CDN

I + CDN
L + CDN

B1 + CDN
B2 + CDES

B3 ). (5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDN
S � ∑Ωt

t�1
ψes · (Pload

t − (Pit
t + Pout

t − Pin
t ))

CDN
I � (ψsg ·∑

Ωj

j�1
yj · lj) · r(1 + r)LT

(1 + r)LT − 1

CDN
L � ∑Ωt

t�1
ψes · Ploss

t

CDN
B1 � ∑Ωt

t�1
ψeb1 · (Pload

t − PDG
t − PDES

t − (Pit
t + Pout

t − Pin
t ))

CDN
B2 � ∑Ωt

t�1
ψeb2 · PDG

t · Tt

CDES
B3 � ∑Ωt

t�1
ψeb3 · PDES

t · Tt

. (6)
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2.2.2 Constrains
The constraint conditions of the distribution network company
planning model mainly include new line investment constraint,
branch flow constraint, and safety constraint.

∑Ωk

k�1
yj,k � 1, (7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pi.t � Ui.t ·∑

j∈i
Uj.t · (Gij · cosθij + Bij · sinθij)

Qi.t � Ui.t ·∑
j∈i

Uj.t · (Gij · sinθij − Bij · cosθij) , (8)

{Ui. min ≤Ui.t ≤Ui. max

Pij.t ≤Pij. max
. (9)

2.3 Power Consumers
2.3.1 Objective
The objective function of the power consumer planning model is
CUS. The details are as follows:

CUS(Pit, Pout, Pin) � CUS
B + CUS

C , (10)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CUS
B � ∑Ωt

t�1
ωeb · (Pit

t + Pout
t − Pin

t )
CUS

C � ∑Ωt

t�1
ωgc · Pit

t

. (11)

2.3.2 Constrains
The constraints of the power consumer planning model
mainly include transfer load power constraints and
interruptible load power constraints according to the
demand-side response mode (Guo and Liu, 2017; Shen
et al., 2021b).

{ λminP
load
t ≤Pout

t ≤ λmaxP
load
t

μminP
load
t ≤Pin

t ≤ μmaxP
load
t

, (12)

∑Ωt

t�1
Pout
t � ∑Ωt

t�1
Pin
t , (13)

Pit
min ≤P

it
t ≤P

it
max. (14)

2.4 DES Investment Operator
2.4.1 Objective
The objective function CDES of distributed energy storage
investment operators mainly includes the profit of energy
price difference CDES

S , government daily subsidy CDES
C , DES

investment cost CDES
I , and energy storage equipment operation

and maintenance cost CDES
OM . The details are as follows:

maxCDES � CDES
S + CDES

C − (CDES
I + CDES

OM ), (15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDES
S � ∑Ωt

t�1
ψeb3P

DES
t Tt −∑Ωt

t�1
θes2P

DG
t Tt −∑Ωt

t�1
λesP

DN
t Tt

CDES
C � CDES

I × 15%/(365 ·N)

CDES
I � (KinCAC + KPPmax) · r(1 + r)LT

(1 + r)LT − 1

CDES
OM � KOPmax +KMEdis.year

Cday � CDES
I /(N · 365) + KO · Pmax/365 +KM · Edis.day

.

(16)

2.4.2 Constrains
The constraint conditions of the DES investment operator planning
modelmainly include the active power output constraint and residual
capacity constraint of energy storage equipment.

{Pcha. min ≤Pcha ≤Pcha. max

Pdis. min ≤Pdis ≤Pdis. max
, (17)

SOCmin ≤ SOC≤ SOCmax. (18)

3 MULTI-AGENT GAME BEHAVIOR IN
INCREMENTAL DISTRIBUTION NETWORK
PLANNING
3.1 Transfer Relation Among Entities
The planning investment entities of this study are the DG
investment operator, DN company, power consumer, and the
DES investment operator. After the access of DG, the uncertainty
of its output would affect the security operation of the DN.
Therefore, the output of DG is considered as a special decision
variable to characterize its uncertainty, and “Nature” is
introduced as a virtual entity (Shen et al., 2017; Wang et al.,
2021; Zhang et al., 2021; Yang et al., 2022a).

The DG investment operator selects the location and capacity
under the current grid structure, transmitting the information to
the DN companies, “Nature,” and the DES investment operator.
Thereby, the DES investment operator would determine its
decision result according to DG’s location and capacity.

The active response measures are formulated by power
consumers after receiving time-of-use price information and
interruptible load incentive information, that is, it determines
the power of transfer load and interruptible load, feeding back to
DN companies in the form of an equivalent load.

After the DN company knowing the location of DG and the
current power grid structure, its planning would be interfered by
“Nature.”Therefore, when the output of DG is transmitted to theDN
company, it would accept the transmission information from other
entities and decide to establish a new line to form a new power grid
structure.
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3.2 Dynamic and Static Combined Game
Analysis
In this study, considering four entities and “Nature,” a
dynamic–static joint game pattern was put forward. The static
game behaviors were formed between the DG investment
operator and distribution network company, as well as the DG
investment operator and the DES investment operator. At the
same time, a dynamic game was formed between the distribution
network company and “Nature.”(Mei et al., 2016).

The final game equilibrium state is described as follows:

⎧⎪⎨⎪⎩
f p � argmaxCDG(f , yp, pp)
yp � argmaxCDN(f p, y, pp)
pp � argmaxCDES(f p, yp, p) , (19)

where f p, yp, and pp are the planning strategies of the DG
investment operator, DN company, and the DES investment
operator under an equilibrium state, respectively, and
argmax(·) represents the set of variables when the objective is
maximized.

4 CASE STUDY

4.1 Instance and Setup
In this study, we test the performance of the proposed approach
using a case study based on the modified IEEE 33-bus distribution
system (Li et al., 2021c; Li et al., 2021d; Yang, 2021; Yang et al.,
2021; Yang et al., 2022b). Its structure is shown in Figure 1. The
system consists of 37 branches. A total load of 3715 kW + 2700
kvar and a reference voltage of 12.66 kV are considered in this
system.

DG is considered as photovoltaic power generation. At the
same time, the optional access position of photovoltaic power
generation is {7, 20, 24, and 32}. Other relevant parameters of DG

are shown in Table 1. Meanwhile, the relevant parameters of DES
are shown in Table 2. No. 33 ~ 37 is the new load node, and the
total capacity is 460 kW. In this study, the planned cycle is 5 years,
and the new capacity of original load nodes is 5% at the planned
level. The solid lines indicate the existing lines, and the dotted line
indicates the line to be selected for new load access. Other relevant
parameters of DN are shown in Table 3. The specific parameters
are as follows.

4.2 Simulation Results and Analysis
4.2.1 Planning Results
The following two cases are studied to validate the effectiveness of
the proposed approach.

Case 1: Incremental distribution network planning without
game theory.
Case 2: Incremental distribution network planning using game
theory without considering the uncertainty of DG output.
Case 3: Incremental distribution network planning using game
theory with considering the uncertainty of DG output, that is,
the game model established in this study.

The planning results under the two cases are shown in Table 4.
The results of the three cases are compared in Table 4. It can

be seen that optimal planning schemes of the DG investment
operator and the DES investment operator are the same in Cases
2 and 3 but different from those in Case 1, and the planning
results of the distribution network company in the three scenarios
are disparate.

4.2.2 Necessity Analysis of Multi-Agent Game
Under Cases 1 and 2, the necessity of considering a multi-agent
game by comparing the costs and benefits of the DG investment
operator, DN company, and DES investment operator is
illustrated. The specific results are shown in Table 5.

As can be seen from Table 5 (A), the DG electricity sale revenue,
DG investment cost, DG operation, maintenance cost, and
government subsidies in Case 2 are, respectively, 140 yuan, 200
yuan, 81,500 yuan, 70,000 yuan, and 70,000 yuan higher than those of
Case 1. The reason is that the installed capacity of DG expands after
considering the multi-agent game, making the investment cost
increase. Meanwhile, with the rapid development of DG output,
other costs and benefits would increase.

As shown in Table 5 (B), in Case 2, the electricity sales revenue,
investment cost, and government subsidy of the DES investment
operator are all increased, compared with Case 1. This is because after
considering the multi-agent game, the DES investment operator can
adjust its investment decision according to the increase in DG
installed capacity to maximize the overall benefit.

From Table 5 (C), compared with Case 1, the increase in
electricity sales revenue is lesser than that enhanced in other costs.
Therefore, Case 2 has no advantage in the net income of the DN
company. The main reason is that after the multi-agent game is
considered in Case 2, the length of new lines is longer, which
makes the investment cost and network loss increase. At the same
time, the installed capacity of DG is increased. Based on the
principle of preferential absorption of DG and DES, the DN

TABLE 1 | DG relevant parameters.

Investment cost per of DG unit capacity(w/kW) 1

Rated capacity of single DG (/kW) 50
Unit selling electricity price of DG(yuan/kW•h) 0.4
Operation and maintenance cost per unit of DG(yuan/kW•h) 0.2
Government subsidy for power generation(yuan/kW•h) 0.2

TABLE 2 | DES relevant parameters.

Rated capacity of single DES/kWh 180

Coefficient of DES investment cost per unit capacity Kin (yuan/kW) 1,200
Coefficient of DES power related cost Kp (yuan/kW) 300
Coefficient of DES maintenance cost Km (yuan/kW) 0.05
Coefficient of DES annual operating cost Ko (yuan/kW) 0.03
Operation and maintenance cost per unit of DES(yuan/kW) 1,200
Government subsidy for power generation(yuan/kW•h) 0.2
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FIGURE 1 | IEEE33 node distribution system.

TABLE 3 | Distribution network relevant parameters.

Cost per unit length of new line(w/km 20

Sell electricity prices of DN company(yuan/kW•h) peak:0.9 flat:0.6 valley:0.3
Electricity price purchased from the main network(yuan/kW•h) peak:0.6 flat:0.4 valley:0.3

TABLE 4 | Planning results of different market participants in the two cases.

DG investment operator DN company DES investment operator

Case 1 7(2),20(0),24(3),32(2) 34–21,35–24,36–10,37–30 7(1),20(0),24(2),32(2)
Case 2 7(2),20(1),24(4),32(1) 34–20,35–24,36–10,37–31 7(2),20(1),24(2),32(1)
Case 3 7(2),20(1),24(4),32(1) 34–19,35–26,36–11,37–32 7(2),20(1),24(2),32(1)

TABLE 5 | Costs, benefits, and net income of each entity.

A. Costs, benefits, and net income of DG investment operator

CDG
S (w) CDG

I (w) CDG
C (w) CDG

OM (w) CDG (w)

Case 1 98.11 57.04 49.06 49.06 41.07
Case 2 112.13 65.19 56.06 56.06 45.73

B. Costs, benefits, and net income of DES investment operator

CDES
S (w) CDES

I (w) CDES
C (w) CDES

OM (w) CDES (w)

Case 1 114.87 57.20 28.08 40.37 45.38
Case 2 129.34 76.27 35.21 37.44 50.84

C. Costs, benefits, and net income of DN company

CDN
S (w) CDN

I (w) CDN
L (w) CDN

E (w) CDN
B1 (w) CDN

B2 (w) CDN
B3 (w) CDN (w)

Case 1 1,437.91 77.51 73.34 2.50 962.30 85.85 52.63 183.78
Case 2 1,443.26 87.69 75.75 2.49 947.46 98.11 67.54 164.22
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company purchases more power from the investment operators
of DG and DES. When the total purchased power is certain, the
purchase power from main network is cut down. Moreover, the
available power supply increases on fault and the expected power
shortage decreases. Therefore, the failure cost is reduced.

From tab 5, the sum of net income of the DG investment
operator, DN company, and DES investment operator in Case 2 is
less than that of Case 1 by 94,400 yuan, but the net income of the
DG investment operator and DES investment operator is more
than that of Case 1 by 46,600 yuan and 54,600 yuan, respectively.
The reason is that in Case 1, the optimization goal of planning is
to maximize the overall benefits of the DG investment operator,
DN company, and DES investment operator. However, the
overall benefit maximization is at the expense of the DG
investment operator and DES investment operator. In Case 2,
the planning scheme is obtained after the continuous game of
multiple entities. The decision combination of each entity forms a
Nash equilibrium point, that is, no participant can obtain better
results by independent strategy change. This approach is more in
line with market mechanisms, as well as the benefits of all market
participants would be taken into account.

4.2.3 The Necessity Analysis of Considering
Uncertainty in Multi-Agent Game Model
The decision of the DN company would only be affected by
considering the uncertainty of the output of the DG. However, the
planning results of the DG investment operator and DES
investment operator in Cases 2 and 3 are the same, as well as
the costs and benefits remained unchanged. Therefore, by
comparing the costs and benefits of the DN company in Cases
2 and 3, it could illustrate the necessity of adopting robust
optimization to deal with the uncertainty of the DG output.

From Table 6, compared with Case 2, the electricity sale
revenue, investment cost, network loss cost, failure cost, and
power purchase cost from the main network increase by 105,700
yuan, 94,800 yuan, 46,400 yuan, 500 yuan, and 146,900 yuan,
respectively. This is because the uncertainty of the DG output is
taken into account in Case 3. As well as the DN company would
make a decision after observing the worst interference in the DG

output. Therefore, the investment decision-making is more
conservative. This leads to a longer length of the new line and
increased investment costs. At the same time, the system load is
bigger in the worst scenario. However, the DG output is smaller,
and more load need to be supplied from the main network. The
load cannot be absorbed locally to the maximum extent, thus
resulting in increased costs.

In order to further verify the robustness of the grid scheme in
Case 3, Monte Carlo simulation is used in this study to randomly
select 10,000 sample data within the uncertain interval of the DG
output. The specific results are shown in Table 7.

It can be seen fromTable 7 that the mean andmaximum value of
the network loss cost in the sample data of Case 2 are higher than
757,500 yuan, and the maximum value of the failure cost is higher
than 24,900 yuan. The situation of flow off-limit ratio accounts for
11.78%. However, the mean andmaximum value of the network loss
cost in the sample data of Case 3 are lower than 8,123,000 yuan, and
the mean and maximum value of the failure cost are lower than
25,600, There is no power flow exceeding the limit.

Since the method in this study is based on robust optimization,
the worst possible scenario of photovoltaic power output is fully
considered. Therefore, the grid scheme in Case 3 could ensure
that the operating cost would not increase and security
constraints would not be violated, when the output of DG
fluctuates within the uncertainty interval.

5 CONCLUSION

In this study, the game theory and the thought of robust
optimization are integrated into the planning of incremental
distribution network, and a multi-agent game based
incremental distribution network source–load–storage
collaborative planning method considering uncertainties is
proposed. The simulation results are as follows:

1) Compared with the traditional method, by accurately
simulating the game behavior of market entities, it can be
ensured to continuously optimize their own decisions in the

TABLE 6 | Costs, benefits, and net income of DN company.

CDN
S (w) CDN

I (w) CDN
L (w) CDN

E (w) CDN
B1 (w) CDN

B2 (w) CDN
B3 (w) CDN (w)

Case 2 1,443.26 87.69 75.75 2.49 947.46 98.11 67.54 164.22
Case 3 1,453.83 97.17 80.39 2.54 962.15 85.85 66.31 152.85

TABLE 7 | Robustness check.

CDN
L (w) CDN

E (w) Flow
off-limit ratio (%)Mean value Maximum value Mean value Maximum value

Case 2 75.75 76.89 2.49 2.56 11.78
Case 3 80.39 81.23 2.54 2.55 0
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process of game, maximizing their own benefits and
improving the market vitality and the effectiveness of
planning decisions.

2) By introducing virtual game player “Nature,” the planning model
based on the game theory can fully consider the influence of
uncertain factors on planning decisions, optimizing the planning
decisions actively to improve the benefits of the system.

The future study mainly focuses on the following two points.
First, the uncertainty of the new energy output is only studied in
this study. However, the safety risk of the power grid and other
important uncertain factors does not consider. How to introduce
the aforementioned uncertain factors into the game planning
model has the value of further research. Second, for energy
storage systems, the lithium battery is only selected as the
energy storage device. Therefore, to improve the overall
economic benefit of new energy stations, the influence of more
types of energy storage device needs to be considered.
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GLOSSARY

CDG objective function of the DG investment operator

CDG
S DG electricity sale income

CDG
I DG investment cost

CDG
OM DG operation and maintenance cost

CDG
C government subsidies for renewable energy generation

θes1 unit electricity price of DG

θes2 unit photovoltaic curtailment electricity price of DG

θgc subsidy cost per unit power generation of renewable energy

θsg investment cost per unit capacity DG

xi variables of 0 or 1, when xi = 0, meaning that the i candidate node does not
access DG. Otherwise, the candidate node i accesses DG

PDG
t total active power for DG at moment t

PDG
qt photovoltaic curtailment of active power for DG at moment t

PDG
sg rated power for a single DG

Ni number of DGs connected to the selected node i

r discount rates

LT life cycle of equipment

θom Unit power generation operation and maintenance costs of DG

CDN objective function of distribution network company

CDN
S income from electricity sales of the distribution network company

CDN
I investment cost of new lines

CDN
L cost of network loss

CDN
B1 cost of electricity purchase from the main network

CDN
B2 operator invested by DG

CDES
B3 operator invested by DES

ψes electricity price of distribution company;

Pload
t primary load at moment t;

Pit
t interruption power of interruptible load at moment t

Pout
t power transferred out of the load at moment t

Pin
t transfer into of the load at moment t

PDES
t total active power for DES at moment t;

ψsg cost per unit length of the new line;

yj variables of 0 or 1, when yj = 0, meaning that the line j to be built is not
selected. Otherwise, the line j to be built is selected.

lj length of the new line.

Ploss
t active power loss at moment t.

ψeb1 electricity price to the higher power grid.

ψeb2 purchase electricity prices from the DG investment operator

ψeb3 purchase electricity prices from the DES investment operator

ωeb electricity price of consumers

ωgc compensation cost of interruptible load

CUS
B reduced electricity cost of interruptible load after participating in the

demand side response.

CUS
C compensation cost of interruptible load after participating in the

demand side response CDES the objective function of distributed energy
storage investment operators

CDES
S profit of energy price difference

CDES
C government daily subsidy

CDES
I investment cost of DES

CDES
OM operation and maintenance cost of energy storage equipment

Kin coefficient of DES investment cost per unit capacity

Kp coefficient of DES power related cost

Km coefficient of DES maintenance cost

Ko coefficient of DES annual operating cost

SOCmin minimum remaining capacity of lithium battery, 20–30% of the
total battery capacity generally

SOCmax maximum remaining capacity of lithium battery, 80–100% of the
total battery capacity generally

f p planning strategies of DG investment operator under
equilibrium state

yp planning strategies of DN company under equilibrium state

pp planning strategies of the DES investment operator under
equilibrium state

arg max(·) set of variables when the objective is maximized
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Energy-Efficiency-Oriented Vision
Feedback Control of QCSP Systems:
Linear ADRC Approach
Shengming Li1,2 and Lin Feng1,2*

1School of Computer Science and Technology, Dalian University of Technology, Dalian, China, 2School of Innovation and
Entrepreneurship, Dalian University of Technology, Dalian, China

How to save the energy of unmanned aerial vehicles (UAVs) and then enable long-distance
transport is a very real and difficult task. However, for UAVs, the classic object detection
algorithm, such as the deep convolutional neural network–based object detection
algorithm and the classic flight control algorithm, such as the PID-based position
control algorithm, require significant energy, which limits the application scenarios of
the UAV system. In view of this problem, this paper proposes a lightweight object detection
network and a linear active disturbance rejection controller (LADRC) for the quadrotor with
the cable-suspended payload (QCSP) system to improve energy efficiency. The system
uses a YOLOV3 network and embeds it into the Jesson NX mobile platform to accurately
detect the target position. Furthermore, a nonlinear velocity controller with a cable-
suspended structure to control the velocity of the payload, a LADRC algorithm is
adopted to achieve fast and accurate control of the payload position. Simulations and
real flight experiments show that the proposed object detection algorithm and the LADRC
control strategy can save the energy of drone effectively.

Keywords: cable-suspended payload, quadrotor UAV, energy efficiency, object detection, linear active disturbance
rejection controller, model compression

1 INTRODUCTION

With the development of unmanned aerial vehicle (UAV) technology (Wu et al., 2018), drone
transport has become an important branch of UAV applications. The quadrotor with the cable-
suspended payload (QCSP) (Lv et al., 2020; Lv et al., 2021) equipped with a camera and an embedded
platform, is of great relevance to the realization of rescue and transport tasks. The QCSP actively
adjusts the UAV’s own attitude to quickly reduce the oscillation of the suspended load and then runs
the vision algorithm through the embedded platform to process the images from the camera to
obtain an accurate target position for the drone. Based on the target position information, the QCSP
needs to reach the target position quickly and stably. However, in the transportation process, in
addition to the energy required for drone flight, the object detection algorithm and the QCSP flight
control strategy also consume great energy. Therefore, by considering the limited battery capacity of
the drone, it is important to improve the energy efficiency of the QCSP systems.

Recent decades witness great progress in object detection with the development of convolutional
neural networks (CNNs). To obtain a powerful network, numerous efforts are made to build large
and complex architecture with high computation and energy consumption, which restricts its
application on embedding devices such as a drone. To get the light network, Z. Liu et al. (Liu et al.,
2017) utilize scaling factors to value the significance of connections and remove these under a
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threshold. This efficient method works well for classification
networks. However, it lacks effectiveness for detection
networks. To make the network compression method suitable
to detection network, Z. Xie et al. (Xie et al., 2020) introduce
location-aware loss for network compression, which helps in
preserving the comprehensive ability of the detection network.
These methods are not optimal for saving energy because they do
not adopt an energy-aware function during compressing.

To realize the path following for the QCSP, Qian, et al. (Qian
and Liu, 2019) propose a controller based on uncertainty and an
interference estimator. Hao, et al. (Hao et al., 2021) propose a
nonlinear, robust, fault-tolerant, position-tracking, control law
for a tilt tri-rotor UAV, thus avoiding rear servo’s stuck fault
together with parametric uncertainties and unknown external
disturbances. To enable a multirotor UAV to achieve static
hovering, Mochida, et al. (Mochida et al., 2021) propose a
geometric method that reveals the relationship between the
position of the center of mass (CoM) and the rotor placement
of a multirotor UAV with upward-oriented rotors. These
methods can effectively help UAVs accomplish their tasks, but
they do not take into account the energy limitation of UAVs; the
algorithm is complex and not applicable to the QCSP.

Although many researchers have done meaningful work and
achieved results, there are still some challenges in vision
processing and position control in the energy-efficiency-
oriented QCSP, mainly as follows: 1) Object detection
technique–based CNNs can obtain accurate target information
for a UAV, but the improved detection performance of deep
neural networks also brings huge energy consumption, which is
not friendly to the QCSP. 2) The QCSP needs to control the load
stably and reach the target position quickly, whereas the
traditional PID controller usually needs a long adjustment
time for the UAV to reach the target position, which is also
not conducive to the QCSP system to save energy for long-
distance transportation.

To improve the energy efficiency of the QCSP systems, we
propose a lightweight object detection algorithm and an LADRC
payload position control strategy for the QCSP. Specifically, the
object detection model is compressed by network scaling factors
and an energy-aware penalty, which enables the YOLOV3
network to run on the Jetson NX embedded platform of the
QCSP with low energy consumption. In addition, an efficient
control strategy in the form of a string stage is used to overcome
the under-actuated characteristics of the QCSP, which includes
attitude, swing angle, load velocity, and load position
subcontrollers. The contributions of this paper to the energy
saving of QCSP mainly include 1) a new QCSP experimental
platform with embedded vision detection is constructed, and a
lightweight object detection network is used to obtain position
information; 2) an LADRC algorithm is used to control the
payload position quickly and efficiently.

The remainder of this paper is structured as follows: Section 2
introduces the dynamic model and object detection algorithm of the
QCSP in detail; controller design, including the LADRC position
control algorithm for the QCSP is introduced in Section 3; in Section
4, the effectiveness of the proposed QCSP system is verified through
experiments. Conclusions are drawn in Section 5.

2 DYNAMIC MODEL AND OBJECT
DETECTION ALGORITHM OF THE QCSP

There are three reference frames to describe the QCSP (Lv
et al., 2020) system (see left of Figure 1): the inertial frame
I {Xi, Yi, Zi}, the quadrotor body frame B{Xb, Yb, Zb}, and the
payload body frame Bp{Xp, Yp, Zp}. What needs to be
mentioned is that the inertial frame follows the North-
East-Down (NED) notation. For the quadrotor body frame,
Zb points down, the Xb toward the front direction, and the Yb

toward the right direction. Based on the reference frames,
some variables are defined. The generalized coordinates
q � [ξ⊤ η⊤ σ⊤]⊤ ∈ R8, where ξ � [x y z]⊤ ∈ R3 denotes the
coordinate of the quadrotor’s CoG under the inertial frame
I ; η � [ϕ θ ψ]⊤ ∈ R3 denotes the attitude angle of the
quadrotor in the Euler coordinate system, and ϕ means the
roll angle, θ means pitch angle, and ψ means yaw angle; σ �
[α β]⊤ ∈ R2 denotes the swing angle of the payload, where α
and β are the roll and pitch angles of the cable, respectively.
The boundaries of the quadrotor attitude and the swing angle
are limited as

ϕ, θ, α, β ∈ −π/2, π/2( ). (1)
The coordinate δ � [xp yp zp]⊤ of the payload’s CoG in

inertial frame I can be given by ξ and σ:

xp � x + lcαsβ, yp � y − lsα, zp � z + lcαcβ, (2)
and the velocity of the payload is expressed by _δ � [ _xp _yp _zp]⊤.
In addition, In and 0m×n represent the n-dimensional identity
matrix and m × n dimensional null matrix, respectively. c· and s·
are used to represent cos · and sin ·, respectively.

Following previous work (Lv et al., 2020), the dynamic model
of the QCSP system is described by the following equations:

€δ � RGFl −mq
€ξ +mqg + Dξ + Dδ( )/mp + g , (3a)

€η � J−1q τη + A − _Jq _η + Dη( ), (3b)
€σ � −M−1

1 M2
€ξ + Vdσ − C − Dσ( ), (3c)

where Ft � RGFl −mq
€ξ +mqg + Dξ is the tensile force of the

cable on the payload.
For dynamic model described by Eq. 3a, mq is the mass of the

quadrotor, mp is the mass of the payload, g is the gravity
acceleration, Dξ and Dδ are the air drag forces that act on the
quadrotor and the payload, respectively. RG is the projection
vector in the inertial frame I of the unit vector on the axis Zb.

For the dynamic submodel described by Eq. (3b), Dη denotes
the aerodynamic drag torque on the quadrotor. What needs to be
mentioned is that A � [Aϕ Aθ 0]⊤ is given in Eq. 12a of (Lv et al.,
2020), and the inertial matrix Jq is given in Eq. 4 of (Lv et al.,
2020).

For the dynamic model described by Eq. 3c, the drag torque
Dσ on the payload is given by

Dσ � I2×3 l × Rbp
i Dσ( ), (4)
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where I2×3 � 1 0 0
0 1 0

[ ], l = [0 0 l]⊤, l is the length of cable. M1 =

mpl
2 diag (1, c2α), M2 � −mpl

sαsβ cα sαcβ
−cαcβ 0 cαsβ

[ ],
Vdσ � [mpglsαcβ mpglcαsβ]⊤, C � [Cα Cβ]⊤, with
Cα � −mpl2sαcα _β

2
, Cβ � 2mpl2sαcα _α _β. To facilitate the

controller design, the dynamic model (see Eq. 3)is rewritten as

€δ � Ft + Dσ( )/mp + g, (5a)
€η � J−1q τη + τηe( ), (5b)

€σ � Mσ
€ξ + Fσe +M−1

1 Dσ , (5c)
where a = 1/mp, τηe � A − _Jq _η + Dη,

Fσe � M−1 C − Vdσ( ) �
−sαcα _β2 − sαsβg/l

2sα/cα _α _β − sαsβg/l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Mσ � −M−1
1 M2 � sαsβ cα sαcβ

−cβ/cα 0 sβ/cα[ ]/l.

It can be found that Mσ, Fδe, and Fσe do not contain a.
Apart from dynamic model controlling the basic attitude of

the quadrotor, the motion of the quadrotor depends on the guide
of the object detection network (ODN). Currently, because of
accuracy and effectiveness, YOLOV3 (Redmon and Farhadi,
2018) is adopted in a growing number of real-world situations.
However, this ODNmethod is computationally expensive; hence,
it creates huge energy consumption, which is not friendly to the
QCSP system. Therefore, compressing the ODN to obtain a
lightweight ODN is essential for deploying YOLOV3 on the
quadrotor. As mentioned, preserving computational
performance and saving energy cost simultaneously are
challenging issues. For preserving performance of the network,
we utilize the sparsity-induced penalty to retrain a sparsity
network indicated by scaling factors. Then, these low-
significance connections distinguished by scaling factors are
removed to achieve network compression. Considering the
energy consumption, we add an energy-aware penalty to
supervise the compression process. Specifically, the retrain
objective is given by

L � ∑
X,Y

l f X,W( ),Y( ) + λ∑
γ∈Γ

‖γ‖1 + α∑
i∈N

E i( )
comp + E i( )

data( ), (6)

where l (·) denotes the supervised training loss; for YOLOV3, l (·)
is the detection loss proposed in (Redmon and Farhadi, 2018). (X,
Y) denote the retrain input and label, W denotes the learnable
weights, ‖ ·‖1 denotes the L1-norm function, γ is a scaling factor
and Γ is the scaling factors set, ‖γ‖1 is used as a sparsity-induced
penalty. In practice, the learnable γ in batch normalization (Ioffe
and Szegedy, 2015) is widely adopted as a scaling factor. E(i)

comp
denotes the energy consumption for computation of the ith layer,
whereas E(i)

data denotes the energy consumption for data access of
the ith layer, N means the whole network consisting of N layers.
E(i)
comp + E(i)

data is utilized as the energy-aware penalty. λ and α
balance three items. Following the principles of (Yang et al.,
2018), the E(i)

comp of the normal convolutional layer is given by

E i( )
comp � eMAC · h′ · w′ · ‖W i( )‖0

h′ � ⌊ h + 2p − r( )/s⌋ + 1
w′ � ⌊ w + 2p − r( )/s⌋ + 1

⎧⎪⎨⎪⎩ , (7)

where eMAC denotes the energy consumption of one systolic array
MAC (Kung, 1982) (a kind of hardware widely used in GPU or
TPU) operation, whereas h andw denote the height and weight of
the convolutional layer input, ‖ ·‖0 denotes the L0-norm function,
p, r, s denote the convolutional arguments, i.e., padding, kernel
size, and stride. Data access energy E(i)

data depends on the
hardware architecture, i.e., systolic array, which is complex
and not helpful for understanding our method. We just
describe it as a function of X(i), h, w, p, r, s: E(i)

data �
E(i)
data(X(i), h, w, p, r, s), where X(i) denotes the input of the ith

convolutional layer. The other omitted items depend on the
specific architecture of the hardware, e.g., bus bandwidth.

Obviously, Eq. 6 gives a meaningful objective. However, it is
hard to optimize because of E(i)

data and E(i)
comp are not functions of

scaling factors γ. To make the energy-aware penalty influence γ,
we redescribe Eq. 6 as

L′ � ∑
X,Y

l f X,W( ),Y( ) + λ∑
i∈N

E i( )
comp + E i( )

data( ) · ‖γ i( )‖1,

where γ(i) is a scaling factor vector of the ith layer. Then, we
optimize the above equation to obtain a sparsity distribution of

FIGURE 1 | The schematic diagram and the control block diagram of the QCSP.
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scaling factors and remove these low-significance connections.
After that, the compact network is fine-tuned for several
iterations to resume.

Finally, a network deployed on a computation and energy-
limited platform could be accessed. We utilize this compact
network to provide location and category information of the
target object to the quadrotor as a basis for flight adjustment.

3 CONTROLLER DESIGN

Because of the underactuated character of the QCSP, the
proposed controller mainly consists of two parts: the cascade
controller for attitude self-stabilization and the active disturbance
rejection controller for position control (see the right subfigure of
Figure 1). Referring to (Lv et al., 2020), the design process of the
cascade controller mainly consists of three parts: inner-loop
attitude, middle-loop swing angle, and outer-loop velocity
subcontrollers.

3.1 Tracking Errors
Errors associated with the dynamics of the QCSP are given as
follows:

eη,pη � eη
⊤ epη

⊤[ ]⊤, (8)
eη � ηd − η, epη � _ηd − _η + Kηeη, (9)

eσ,pσ � eσ
⊤ epσ

⊤[ ]⊤, (10)
eσ � σd − σ, epσ � _σd − _σ + Kσeσ , (11)

e _δ � _δd − _δ, _e _δ � €δd − €δ, (12)
where _δd � [ _xpd _ypd _zpd]⊤, σd � [αd βd]⊤, and ηd �
[ϕd θd ψd]⊤ with the desired attitude ηd, and the desired
position δd, which can be determined by the object detection
algorithm proposed in the above section. The positive definite
diagonal matrixesKσ = diag (kα, kβ) andKη = diag (kϕ, kθ, kψ). The
attitude η in (9) and the velocity _ξ in (12) of the quadrotor are
measured by the IMU integrated in the flight control system. The
payload’s velocity _δ in (12) can be calculated by η and _ξ. From Eq.
9, the attitude error dynamic of the quadrotor is obtained as

_eη � epη − Kηeη, _epη � €ηd − €η + Kη epη − Kηeη( ). (13)
The swing angle error dynamics of the payload are deduced

from Eq. 11:

_eσ � epσ − Kσeσ , _epσ � €σd − €σ + Kσ epσ − Kσeσ( ). (14)

3.2 Load Velocity Controller
3.2.1 Inner-Loop Attitude Controller
Considering the subsystem (see Eq. 5b), the inner-loop
subcontroller (see the right of Figure 1) is used to control the
attitude η of the quadrotor, which is measured by the inertial
measurement unit (IMU) integrated in the flight control system
of the quadrotor. The control torque τη ∈ R3 of the inner-loop
controller is given by

τη � Jq I3 − Kη
2( )eη+ Kη + Kpη( )epη[ ] − τηe, (15)

where Kpη � diag(kpϕ, kpθ, kpψ) denotes a constant positive
definite matrix.

3.2.2 Middle-Loop Swing Angle Controller
Referring to Eq. 16 in (Lv et al., 2020), the adaptive swing angle
controller is applied to make σ follow the desired σd. Noting Eq.
5c, Mσ

€ξ is taken as the visual control input. The desired visual
control input is designed as

Mσ
€ξd � I2 − Kσ

2( )eσ + Kσ + Kpσ( )epσ − Fσe −M−1
1 Dσ , (16)

where Kpσ = diag (kpα, kpβ) is constant positive definite.

3.3.3 Decoupler
For the desired acceleration Mσ

€ξd in Eq. 16 generated by the
aforementioned adaptive swing angle controller, the quadrotor’s
lift force Fl and the desired attitude ϕd can be decoupled byMσ

€ξd
and Ftd. Considering the constraint given in (1) and the
mechanisms of the quadrotor maneuvers, we have Flzd > 0, θd,
ϕd ∈ ( − π/2, π/2). The decoupling result is given by

θd � arctan Flxdcψ + Flydsψ( )/Flzd( ), (17a)
ϕd � −arctan −Flxdsψ + Flydcψ( )cθd/Flzd( ), (17b)

Fl � Flzd/ cϕdcθd( ). (17c)

3.3.4 Outer-Loop Velocity Controller
As illustrated in the outer-loop part of the right subfigure in
Figure 1, the outer-loop velocity controller is utilized to track the
desired velocity _δd for the translational dynamic (see Eq. 5a) of
the payload. The desired tensile force Ftd � [Ftxd, Ftyd Ftzd]⊤ is
designed as

Ftd � K _δe _δ − Fδe −mpg , (18)
with a constant positive definite diagonal matrix
K _δ � diag(k _xp, k _yp

, k _zp). Considering the constraints in (1) and
that the cable is always taut and there is tensile force on the cable,
Ftzd > 0, αd, βd ∈ ( − π/2, π/2). Referring to Eq. 26 in (Lv et al.,
2020), the desired magnitude Ftd of tensile force and the desired
swing angles αd and βd are given by

Ftd � Ftzd/ cαdcβd( ), (19a)
βd � arctan Ftxd/Ftzd( ), (19b)

αd � −arctan Ftydcβd/Ftzd( ). (19c)

3.3 LADRC Based Position Controller
LADRC is utilized for the position control of quadrotors. There
are two parts in the LADRC, including the linear extended state
observer (LESO) and PD controller. The LESO estimates the
internal and external disturbances of the system through an
extended state, which is called total disturbance, and
compensates the control variables. Therefore, the integrator
used in traditional PID to eliminate static error under
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constant disturbance is no longer necessary. The system can be
stabilized by PD controller.

Referring to the controller built by Gao in (Han, 2009) and
taking δd as the expected input of the controller and δ as feedback,
the designed LADRC block diagram is as follows:

3.3.1 LESO
Compared with ESO (Han, 2009), LESO introduces the frequency
domain method. It connects the parameters with the observer
bandwidth, making the parameter tuning more convenient.

The LESO for the position control of the QSCP is designed as

_z � A − LC[ ]z − B, L[ ]uc, (20a)
yc � z, (20b)

where uc = [u δ]⊤ is the input of LESO, and yc is the output.

Besides this, A �
0 1 0
0 0 1
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, B �
0
b0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, C � [1 0 0],

L � [3ω0 3ω2
0 ω3

0]⊤. Here, b0 can be adjusted according to the
step response of the system. ω0 is the observer bandwidth.

3.3.2 PD Controller
Under the action of LESO, the linear PD controller can stabilize
the system. Besides this, the proportional coefficient and
differential time constant are related to the controller
bandwidth, which simplifies the tuning of the controller.

The PD controller is designed as

u0 � kp δd − z1( ) − kdz2 (21)
where δd is the expected input of the controller. z1 and z2 are
observer states from LESO. kp and kd are the parameters of the
controller gain matrix K � [kd kp]⊤ to be designed. We choose
kp � ω2

c , kd � 2ωc with the controller bandwidth ωc.
Finally, the control quantity u0 with the total disturbance z3

has to be compensated, and the control quantity u is u � u0−z3
b ,

where b is the gain factor.
For the position control, it is necessary to obtain the position

coordinates of the target point, but the camera feeds back the
pixel coordinates, which should be compensated by attitude angle
and height information. Besides this, due to the relative
displacement between the quadcopter and the load, the
coordinates of the target point collected by the camera relative
to the quadcopter should be transformed into the coordinates
relative to the load.

4 EXPERIMENT

To verify the effectiveness of the proposed algorithm, a QCSP
experimental platform was created. The payload is connected to
the bottom of the F450 quadcopter by a Cadan joint, and the
Jetson NX board is fixed to the bottom plate with the camera as
shown in Figure 3A.

Before the flight test, we simulated the designed LADRC control
strategy and compared it with the conventional PID algorithm as
shown in Figure 2. The parameters of LADRC and PID are obtained

by many experiments according to overshoot and response time.
Among them, “desired” is the target position curve after
transformation, “fpid” is the position curve of the payload under
PID control. “fladrc” is the position curve of the payload under
LADRC control. It can be seen that, at 20 s, given a target
position of 80 cm, the payload achieved steady state in 7 s without
overshoot under the LADRC control, while the state of the system
oscillated and took more than three times as long to stabilize under
the PID controller.When a sin disturbance signal is added in 80 s, the
LADRC can obviously suppress the disturbance. As a result, it can be
deduced that the LADRC controller is effective in saving QCSP
energy.

The QCSP vision deployment hardware is Jetson NX, which
runs aarch64Ubuntu 18.04 as the operating system. PyTorch (Paszke
et al., 2019) is used as the retraining, fine-tuning, and inference deep
learning software. For efficient inference, popular object detection
model YOLOV3(Redmon and Farhadi, 2018) is adopted, whose
backbone is replaced by MobileNet (Howard et al., 2017) from
DarkNet. The image size requires 416 × 416. The original
network is retrained on a PASCAL VOC data set (Everingham
et al., 2010) for 50,000 iterations and removes the connections whose
scaling factors are lower than the threshold 0.01. Then, the compact
network is fine-tuned for 12,000 iterations. The retraining and fine-
tuning, which cost a large amount of computing power, are carried
out on NVIDIA RTX 2080Ti, and only inference is done on the
embedding Jetson NX platform. The target pattern is the helicopter
landing area-“H”, and the recognition effect is shown in part (b) of
Figure 3, where four objects are detected with confidence 0.89, 0.95,
0.98, and 0.97.

Compression results are reported in Table 1. Through our
method, we saved about 52% energy of the whole network with
only 0.7 mean average precision (mAP) dropping. In addition, we
also demonstrate the necessary of using sparsity-induced and
energy-aware penalties simultaneously. In the case of only the
sparsity-induced penalty used, the energy saved is not satisfactory
(43% saved), but performance drops a lot (1.4) when only the
energy-aware penalty is used.

FIGURE 2 | The comparison results of PID and the LADRC position
controller.
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During the actual flight experiment, the quadcopter flew along the
positive direction of theX axis at the speed of 20 cm/s.When the target
point is identified by Jetson NX, it turn into position control mode as
shown inFigure 3C. From the experiment, it can be seen that theQCSP
system can control the payload stably, and when the target position is
detected, it can reach the destination quickly and remain stable.

5 CONCLUSION

Energy-efficiency plays a crucial role in the development of
UAVs. In this paper, a lightweight YOLOV3 object detection

network with a LADRC-based position controller is proposed
to reduce the energy consumption of the QCSP system. The
experimental results show that the compressed network can
save more than 50% of energy compared with the original
network with little accuracy loss, and the LADRC controller
has three times faster stabilization time and no overshoot
compared with the classic PID controller and has a
suppression effect on disturbing signals. Therefore, the
work done in this paper can effectively save the energy of
the QCSP and improve its range, anti-interference
performance, and robustness.

FIGURE 3 | Experimental platform of QCSP object detection and position control flight test.

TABLE 1 | Object detection performance on PASCAL VOC. “Penalty” denotes the penalty item that we added for training loss. “Energy” denotes the energy cost for
detecting one image. “Energy ↓” denotes the energy saved comparing to original network whose backbone is MobileNet; “mAP” is a common indicator evaluating the
performance of detection network.

Backbone Penalty Energy (J) Energy ↓ mAP

DarkNet Redmon and Farhadi (2018) — 6.61 — 76.1
MobileNet Howard et al. (2017) — 0.21 — 76.8
MobileNet Howard et al. (2017) saprsity-induced Liu et al. (2017) 0.12 43% 75.9
MobileNet Howard et al. (2017) energy-aware Yang et al. (2018) 0.10 52% 75.4
MobileNet Howard et al. (2017) Ours 0.10 52% 76.1
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Multiterminal Hybrid DC Line
Protection Based on Intrinsic Mode
Energy Entropy
Chao Xing1, Pengsong Li1,2, Guihong Bi2, Shilong Chen2*, Junhao Chen1,2 and
Zihang Zhang1,2

1Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming, China, 2School of Electric Power Engineering,
Kunming University of Science and Technology, Kunming, China

In view of the UHVmultiterminal hybrid DC transmission system, the DC line protection with
universal applicability, fast response speed, stability, and reliability is particularly important
for its safe and economic operation. In this article, the boundary frequency characteristics
of the UHV multiterminal hybrid DC transmission system are analyzed by considering the
DC boundary of the rectifier side and inverter side, line frequency variation, and other
factors. According to the fact that the boundary of the fault line has a strong attenuation
effect on the high-frequency component of the transient current, a protection method
based on the intrinsic mode energy entropy is proposed to distinguish the faults inside and
outside. The criterion to initiate the protection is constructed by using the amplitude of the
transient power; the fault direction criterion is constructed by using the positive and
negative characteristics of the transient energy of the fault power detected by power
direction elements on both sides of the T-zone; the fault pole selection criterion is
constructed by using the ratio of low-frequency transient power changes of positive
and negative poles. Finally, the Kun–Liu–Long line UHV three-terminal hybrid DC
transmission system model is built on the PSCAD/EMTDC simulation platform, and a
large number of simulation examples verify that the protection can operate reliably under
different fault poles, fault positions, and transition resistances.

Keywords: the multiterminal hybrid DC, boundary frequency characteristics, the intrinsic mode energy entropy, the
T-zone, the transient power

1 INTRODUCTION

In recent years, large-scale new energy grid connection, regional power grid interconnection, and
central load power supply have become hot issues at home and abroad, and it is urgent to build a DC
network with higher power supply reliability on the basis of existing practical experience and
theoretical research on DC transmission projects (Tang et al., 2013; He et al., 2017). Most of the
traditional direct current transmission systems are two-terminal systems, which can only realize
point-to-point power transmission whose remarkable feature is to realize AC collection–DC
transmission–AC dispersion of electric energy (Wang et al., 2014). Compared with the
traditional two-terminal DC transmission system, the UHV hybrid DC transmission system
contains multiple sending terminals or receiving terminals, which can realize multipower supply
and multi-drop power reception, and the operation mode is more flexible (Xu et al., 2013). The
sending terminal is usually connected with a line-commutated converter (LCC), while the receiver is
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usually connected in parallel with a modular multilevel converter
(MMC) with fault self-clearing capability (He et al., 2020). This
structure makes comprehensive use of the advantages of low loss
and good economy of conventional DC power transmission as
well as flexible and fast control of flexible DC power transmission
without commutation failure, such as Kun–Liu–Long line UHV
multiterminal hybrid DC transmission demonstration project
planned and constructed in China (Li et al., 2019).

The long distance of DC transmission lines and the
complex environment of transmission corridors lead to a
high fault rate (Li et al., 2021; Liu et al., 2020). When the DC
fault occurs, it develops very quickly. The superposition of
fault output of multiple converter stations in the UHV
multiterminal hybrid DC transmission system makes the
fault hazards such as line overcurrent more prominent
(Muniappan, 2021). At present, the main protection widely
used for the DC transmission lines is traveling wave
protection (Shen and Raksincharoensak, 2021a). However,
in actual operation, traveling wave protection is easily
affected by factors such as inaccurate extraction of wave
head information, selection of setting value, and high
resistance ground fault, while its protection reliability is
poor (Zheng et al., 2018). Xia et al. (2018) use the
longitudinal impedance at both ends of the transmission
line to propose a multiterminal line differential current
protection, but there is a problem of too many measured
values, and the communication time required increases when
the line is long. Zhou et al. (2017) put forward a
multiterminal flexible DC line protection scheme based on
the voltage amplitude of a current-limiting reactor by using
the characteristics of DC reactors as line boundary elements.
However, there is a problem of poor transient resistance, and
the multiterminal DC lines are interconnected by DC buses,
and the T-zone structure formed by interconnection can be
used directly with relatively few line boundary elements. Li
et al. (2019) study the unique structure of T-zone in the
parallel multiterminal hybrid DC transmission system and
propose a fault direction discrimination principle based on
the comparison of wavelet energy of fault current on both
sides of T-zone. When applied to the three-terminal hybrid
DC system, there is no need for interstation communication,
but the selection of its setting value depends on the result of
wavelet decomposition. In reference (Zhang Y. et al., 2021),
the transient current fault components at the three ends of
the T-junction bus are measured, and the correlation
coefficient is calculated to serve as the basis for fault zone
identification of the hybrid multiterminal DC transmission
system. No interstation communication is required, but the
noise tolerance is poor. Therefore, it is necessary to further
study the DC line protection which is suitable for the UHV
multiterminal hybrid DC transmission system and has fast
response, stability, and reliability. Yang and Liu (2018) take
the current mutation of each phase in the AC distribution
network as the characteristic quantity, calculate its inherent
modal energy entropy, and use the maximum modal energy
maximum value for fault line selection. It is less affected by
grounding the resistance and system structure and is more

suitable for systems with complex structures. This principle
provides a certain idea for the study of multiterminal hybrid
HVDC transmission line protection.

In this article, the Kun–Liu–Long line UHV three-terminal
hybrid DC transmission system is selected as the research object,
and the boundary frequency characteristics of the rectifier side
and the inverter side are analyzed theoretically. On this basis, a
protection method is proposed to distinguish faults, inside and
outside, based on the intrinsic mode energy entropy. The
amplitude of transient power is used as the criterion to initiate
the protection; the positive and negative characteristics of
transient energy of fault power detected by power direction
elements on both sides of the T-zone are used to identify the
fault direction; the ratio of the variable quantity of low-frequency
transient power of positive and negative poles is used to select the
fault poles. The model of the Kun–Liu–Long line UHV three-
terminal hybrid DC transmission system is built on the PSCAD/
EMTDC simulation platform, and the effectiveness of the
protection scheme is verified by a large number of simulation
examples.

2 THE ANALYSIS OF THE BOUNDARY
FREQUENCY CHARACTERISTICS OF THE
UHV MULTITERMINAL HYBRID DC
TRANSMISSION LINE

Figure 1 shows the simulation model of the Kun–Liu–Long line
UHV three-terminal hybrid DC transmission system. The system
adopts the true bipolar connection mode, with independent
converter equipment, transmission lines, and control systems
for both positive and negative poles. The LCC is used in the
Kunbei Converter Station on the rectifier side, while the bipolar
MMC with fault self-clearing capability is used in the Liubei
Converter Station and Longmen Converter Station on the
inverter side. The sending terminal Kunbei Converter Station
and the receiving terminal Longmen Converter Station are
connected to the bus bar in the receiving terminal Liubei
Converter Station by line L1 and line L2, respectively (Yu et al.,
2020). The T-zone is formed by the DC line L1 and L2 connected in
parallel with the bus bar, and the protection devicesM1 andM2 are
installed on the left and right sides of the T-zone, respectively.

2.1 The Analysis of Boundary Frequency
Characteristics on the Kunbei Side Line
Because the rectifier side of the Kun–Liu–Long line UHV three-
terminal hybrid DC transmission system adopts LCC, during
the normal operation, due to the nonlinear characteristics of the
converter, a large number of harmonic waves will be generated
in the DC transmission line (Shen and Raksincharoensak,
2021b). Therefore, it is necessary to configure two smoothing
reactors and two groups of triple-tuned DC filters at the head of
the DC line L1 to suppress the harmonic current generated by
the converter and injected into the DC line (Shen et al., 2017,
Shen et al., 2020a). The smoothing reactors and DC filters
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together form the physical boundary on the rectifier side, as
shown in Figure 2. The specific parameters of each component
are shown in Table 1.

In Figure 2, the symbol (I1) represents the transient current
outside the protection zone of the DC line L1, while the symbol

(I2) represents the transient current flowing into the DC line L1
after attenuation by the line boundary on the Kunbei side line.
According to the parameters in Table 1, the expressions of
equivalent impedance of the smoothing reactor and DC filter
can be obtained, respectively, as follows:

Z1(jω) � jωLyn; (1)
Z2(jω) � 1

2
( 1
jωC1

+ jωL1 +
jωL2

1 − ω2C2L2
+ jωL3

1 − ω2C3L3
). (2)

In the formula, the symbol (Z2(jω)) represents the equivalent
impedance of the smoothing reactor, while the symbol (Z2(jω))
represents the equivalent impedance of the DC filter. The
expression defining the line boundary transfer function on the
Kunbei side line is as follows (Chen et al., 2021):

FIGURE 1 | Structure diagram of the UHV three-terminal hybrid DC transmission system.

FIGURE 2 | Line boundary on the Kunbei side line.

TABLE 1 | Parameters of the smoothing reactor and DC filter.

Smoothing reactor Lyn 150 mH

DC filter C1 1.0 µF
L1 17.4 mH
C2 3.04 µF
L2 15.7 mH
C3 3.675 µF
L3 3.2 mH

FIGURE 3 | Amplitude frequency characteristics of the line boundary
transfer function on the Kunbei side line.
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G1(jω) � I2(jω)
I1(jω). (3)

According to Eqs 1–3, the expression of the line boundary
transfer function on the north side of Kunming can be further
obtained as:

G1(jω) � Z1(jω) + Z2(jω)
2Z1(jω) + Z2(jω). (4)

In order to quantitatively analyze the characteristics of
G1(jω), the amplitude frequency characteristics of the
boundary transfer function on the Kunbei side line can be
obtained by substituting the parameters of each element in
Table 1, as shown in Figure 3.

It can be seen from Figure 3 that when 0 Hz < f ≤ 32 Hz
|G1(jω)| = 1, and it can be considered that the transient current
has not decayed. When f > 1472 H, |G1(jω)|≪ 1. It can be seen
that the line boundary on the Kunbei side line has a strong
attenuation effect on the high-frequency component of the
transient current.

2.2 The Analysis of Boundary Frequency
Characteristics on the Longmen Side
The MMC is used in the inverter side of the Kun–Liu–Long line
UHV three-terminal hybrid DC transmission system. Because
MMC uses the sub-module cascade to output multilevel stepped
waves and the output wave form is of high quality, then only one
current-limiting reactor is required at the end of theDC line L2 (Shen
et al., 2020b, Shen et al., 2021a, Shen et al., 2021b). Because there is a
ground capacitance between overhead lines and the ground, the
current-limiting reactor and the ground capacitance of an overhead
line at the end of the DC line L2 constitute the realistic boundary on
the Longmen side. The boundary equivalent circuit on the Longmen
side is shown in Figure 4.

In Figure 4, the symbol (I3) represents the transient current
outside the protection zone of the DC line L2, while the symbol
(I4) represents the transient current flowing into the DC line L2
after being attenuated by the line boundary. The expression for
defining the line boundary transfer function on the Longmen side
is as follows:

G2(jω) � I4(jω)
I3(jω) �

Z3(jω) + Z4(jω)
2Z3(jω) + Z4(jω). (5)

In the formula, Z3(jω) � jωLgd and Z4(jω) � 1/jωCL. By
substituting the element parameters Lgd = 150 mH and CL =
0.00124 µF, the amplitude frequency characteristics of the line
boundary transfer function on the Longmen side can be obtained,
as shown in Figure 5.

It can be seen from Figure 5 that when 0Hz＜f ≤ 434 Hz
|G2(jω)| = 1, it can be considered that the transient current has
not decayed. When f > 4,248 Hz, |G2(jω)|≪ 1. Therefore, the
line boundary on the Longmen side has a strong attenuation
effect on the high-frequency component of the transient current.

From the aforementioned analysis of amplitude frequency
characteristics of line boundary transfer functions on rectifier
and inverter sides, it can be seen that high-frequency components
of the transient current passing through boundary elements have
obvious attenuation effect. When the fault occurs outside the DC
line zone, the high-frequency energy of the fault transient current
detected by the protection devices M1 and M2 is small due to the
blocking effect of the line boundary. When the fault occurs in the
DC line zone, the high-frequency signal is transmitted to the
protection installation without obstruction, and the high-
frequency energy of the fault transient current detected by the
protection devices M1 andM2 is large. Therefore, the attenuation
effect of high-frequency components of the transient current can
be fully utilized, and the faults inside and outside the zone can be
effectively distinguished.

3 THE PROTECTION ALGORITHM

3.1 The Complementary Ensemble
Empirical Mode Decomposition
Because a certain wavelet base needs to be selected in the wavelet
transform, the selection of the wavelet base has a great influence
on the whole wavelet analysis result (Yang et al., 2018, Yang et al.,
2019a). Once the wavelet base is determined, it cannot be
replaced in the whole analysis process. Even though the
wavelet base may be the best in the whole situation, it may

FIGURE 4 | Line boundary on the Longmen side.

FIGURE 5 | Amplitude frequency characteristics of the line boundary
transfer function on the Longmen side.
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have poor effect in some parts (Yang et al., 2019b, Yang et al.,
2021a).

In this article, complementary ensemble empirical mode
decomposition (CEEMD) is selected as the signal processing
method. CEEMD decomposes the line mode component of the
fault transient current into several intrinsic mode functions
(IMFs) and a residual margin according to the fluctuation or
trend of different scales, and the intrinsic mode function reflects
the fluctuation characteristics of the fault transient current in
different time scales (Yang et al., 2021c, Yang et al., 2021b). The
residual margin reflects the long-term trend characteristics of the
fault transient current (Yeh et al., 2010). CEEMD does not need to
predetermine or force a given basis function in advance but
depends on the characteristics of the signal itself to decompose
adaptively. The IMF components obtained generally have an
obvious physical meaning, which is very suitable for the feature
extraction of transient signals (Zhao, 2004).

Therefore, CEEMD is used to decompose the line mode
component of the fault transient current inside and outside
the DC line zone, and the decomposition result is shown in
Eq. 6 (Ye and Liu, 2011):

x(t) � ∑n
j�1
cj(t) + rn(t). (6)

In the formula, the symbol x(t) represents the original signal,
cj(t) represents the intrinsic mode function, and rn(t) represents
the residual term. c1(t), c2(t), . . ., and cn(t) are obtained after
multiple decomposition of x(t), which have only a single
frequency component at any time. They respectively represent
n intrinsic mode function components which decrease from high
frequency to low frequency, and the changing trend of rn(t) is
similar to that of the original signal.

3.2 The Intrinsic Mode Energy Entropy
The intrinsic mode energy entropy is a measure that reflects the
degree of energy distribution disorder of signals in various
frequency bands (Zhu et al., 2020). It can be used to extract
fault characteristics of the transient current. For the fault
transient current, after CEEMD decomposition, the intrinsic
mode energy of each frequency band in the decomposition
scale on the i layer can be obtained as Ec � Ec1, Ec2, . . . , Eci,
and the energy of the i layer is defined as:

Eci � ∫
t2

t1

c2i (t)dt. (7)

By dividing the intrinsic mode function of each layer obtained
by decomposition into n parts on the time axis and combining it
with information entropy, we can define the intrinsic mode
energy entropy H as (Ning et al., 2017):

H � −∑n+1
i�1

pi ln pi. (8)

In the formula, pi � Eci/(Ern +∑n
i�1Eci) (i = 1, 2, . . . ,n); pn+1 �

Ern/(Ern +∑n
i�1Eci).

The intrinsic mode energy entropy effectively combines
complementary ensemble empirical mode decomposition,
signal energy, and information entropy and effectively
quantifies the discrete degree of energy distribution of the
fault transient current with frequency (Guan and Zhang,
2011). It can be seen from Eq. 8 that the more uneven the
distribution of energy of the fault transient current with
frequency is, the smaller the intrinsic mode energy entropy is,
and the greater the energy entropy is.

4 The Criterion and Scheme of the
Protection
4.1 The Criterion to Initiate the Protection
When the DC line L1 or the DC line L2 fails, the protection devices
on both sides of the T-zone will detect larger transient current
(Δi) and voltage (Δu); so, the amplitude of the transient power
can be used to initiate the criterion of line protection. Amid the
actual operation of the system, the current oscillation generally is
allowed to be less than 10% of its rated value, and the voltage
oscillation, less than 20% of its rated value. In this context, a
certain margin should be reserved for the starting value of the
protection device. In order to ensure the anti-interference
performance of the protection device, the protection device
operates after continuously detecting that the starting values of
three data points are greater than the setting values since there are
faults. The fault protection device at any position in the zone can
be ensured to initiate. For that to happen, the reliability coefficient
of the system, according to the analysis of the fault simulation
data, is equal to 1.2, and the setting value is equal to 0.0028. By
doing so, the starting is shown in the formula as follows (Zhang
et al., 2016):

ΔPstar � Krel|Δu(i)Δi(i)|>ΔPset . (9)

4.2 The Criterion to Identify the Direction of
the Fault
As there is the T-zone in the Kun–Liu–Long UHV three-terminal
hybrid DC transmission system, protection devices are installed
on the left and right sides of the zone; thus, directional
components need to be added to identify where the faults are
in an effective way. In this article, the power directional element
as well as the positive and negative characteristics of the fault
transient power is applied to identify the direction of faults. We
select the time window of 2 ms after the protection is initiated,
and we sum the transient power in the time window to form the
transient energy. The formula is shown as follows:

ΔEM � ∑N
i�1
ΔP(i). (10)

The positive direction of the current is specified as the DC bus
flowing to the line. It is assumed when a grounding fault emerges
from the line on the left side of the T-zone. That means the faulty
power supply with a reversed polarity is accessed at the fault
point, and the transient current of the line flows to the fault point.
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The transient energy detected by the power directional element at
the protection device (M1) is negative, while the one detected by
the power directional element at the protection device (M2) is
positive. When the grounding fault emerges from the line on the
right side of the T-zone, the transient energy detected at the
protection device (M1) is positive, but the one detected at the
protection device (M2) is negative. Therefore, the specific
discrimination results of the fault direction are as follows:

{ ΔEM1 < 0 ∩ ΔEM2 > 0Faults on the left side of T zone
ΔEM1 > 0 ∩ ΔEM2 < 0Faults on the right side of T zone

. (11)

In the formula mentioned previously, the symbol (ΔEM1)
represents the transient energy detected by the power
directional element at the protection device (M1), while the
symbol (ΔEM2) refers to the transient energy detected by the
power direction element at the protection device (M2).

4.3 The Criterion to Identify Faults Inside
and Outside the Left Side of the T-Zone
According to the analysis of the frequency characteristic at the
boundary on the Kunbei side line in Section 2.1, it shows that
the line boundary has a strong attenuation effect on the high-
frequency component of the transient current. As a fault occurs
outside the DC line L2, the fault transient current reaches where
the protection devices are installed after passing through the
double attenuation of the boundary in the Kunbei side line and
the DC line L1. At this moment, the high-frequency energy of
the fault transient current detected by the protection device M1
is smaller. However, when a fault occurs in the DC line L1, the
fault transient current reaches where the protection devices are
installed only through the attenuation of the DC line. At this
moment, the high-frequency energy of the fault transient
current detected by the protection device (M1) is larger.

As a result, the line mode component of the fault transient
current is decomposed by CEEMD (the Complementary
Ensemble Empirical Mode Decomposition) before the intrinsic
mode energy entropy of each frequency band is calculated,
respectively. The energy entropy can be obtained through Eq.
8. When a fault occurs outside the DC line L1, the intrinsic mode
energy entropy of the fault transient current is smaller. However,
when a fault occurs in the DC line L2, the intrinsic mode energy
entropy of the fault transient current is larger. In order to ensure
the protection of the DC line L1, the minimum intrinsic mode
energy entropy of faults in the zone is supposed to be greater than
themaximum one of faults outside the zone. Thus, the criterion to
identify the faults, inside and outside, on the left side of the
T-zone is as follows:

min{HL(K − (N − 1)), . . . ,HL(K)}>KrelHset1. (12)
In the formula mentioned previously, the letter N represents

the number of sampling points, collected within the 2-ms time
window after the protection is initiated, the letter K stands for the
number of sampling points at the current moment, the symbol
Krel refers to the reliable coefficient, and the symbol Hset1 is the
threshold value of the intrinsic mode energy entropy of the

protection device (M1). Given the interference of the signal
noise and sampling errors, the reliability coefficient is
equivalent to 1.3. In order to distinguish the faults inside and
outside of the zone in a reliable manner, the value of Hset1 is
selected with the most serious situation taken into account. The
setting principle is that the high-resistance grounding fault in the
DC line avoids the metallic grounding fault outside the line. The
analysis of fault simulation data shows that, taking a certain
margin into consideration, the threshold value of the intrinsic
mode energy entropy is reasonably equivalent to 0.0008.

4.4 The Criterion to Identify Faults Inside
and Outside the Right Side of the T-Zone
According to the frequency characteristic analysis of the
boundary of the Longmen side line in Section 2.2, the
boundary has a strong attenuation effect on the high-
frequency component of the transient current. In the same
way mentioned previously, the fault transient current line
mode component on the right side of the T-zone is
decomposed by CEEMD, thus calculating its intrinsic mode
energy entropy. As there are faults emerging in and out of the
DC line L2, the intrinsic mode energy entropy detected by the
protection device (M2) is used to distinguish the faults in and out
of the DC-zone. The criterion to identify faults, inside and
outside, in the right area of the T-zone is expressed in the
following:

min{HR(K − (N − 1)), . . . ,HR(K)}>KrelHset2. (13)
In the formula mentioned previously, the letter N

represents the number of sampling points, collected within
2-ms time window after the protection is initiated, the letter K
stands for the number of sampling points at the current
moment, the symbol Krel refers to the reliable coefficient,
and the sign Hset2 means the threshold value of the intrinsic
mode energy entropy of the protection device (M2). Taking
the interference of the signal noise and sampling errors into
consideration, the reliable coefficient is equivalent to 1.3. In
order to distinguish the faults inside and outside of the zone
in a reliable manner, the value of Hset2 is selected with the
most serious situation taken into account. The setting
principle is that the high-resistance grounding fault in the
DC line L2 avoids the metallic grounding fault outside the
line. The analysis of fault simulation data shows that,
reflecting a certain margin, the threshold value of the
natural modal energy entropy is reasonably equivalent
to 0.001.

4.5 The Criterion of Fault Pole Selection
Normally, the positive and negative poles of the DC power
transmission system operate symmetrically. When a fault
occurs in the line, a protection device is needed to quickly
and accurately identify the fault line as a way of ensuring that
the non-fault pole line can normally transmit power without
interference from it. Due to the electromagnetic coupling
between the positive and negative poles of the line, the non-
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fault pole will produce an induced current when the grounding
fault of the single pole occurs in the DC line. Amid the increase
of the high-frequency component of the fault transient, the
coupling effect between line poles is enhanced, narrowing the
divide of high-frequency components between non-fault poles
and fault ones. Therefore, the low-frequency component of the
fault transient must be the option for the criterion of fault pole
selection (Chu et al., 2017).

In this article, the fault transient power signal with a frequency
below 1,000 Hz is extracted in a time window of 2 ms after the
protection is operated. Also, the variation of the positive and
negative transient power is viewed as the criterion of pole
selection, and it is expressed in the following:

K � ∑N
i�1

∣∣∣∣∣∣∣∣ΔP1(i)
ΔP2(i)

∣∣∣∣∣∣∣∣. (14)

In the formula mentioned previously, the letter N
represents the number of sampling points, collected within
the time window of 2 ms after the protection is initiated (the
letter i is equal to 1, 2, and so on.). The symbols ΔP1(i) and
ΔP2(i) stand for the amplitude variation of the fault transient
power with positive and negative frequency below 1,000 Hz,
respectively.

The analysis of fault simulation data suggests that, in order to
make the protection devices against faults at any position in the
zone, they can accurately select the poles; so, the setting value
(Kset1) of the fault positive pole is equivalent to 150, while the

value of the fault negative pole is equivalent to 60. Comparing the
ratio (K) of the positive transient power variation to the negative
one with both setting values Kset1 and Kset2, the result of the
criterion is as follows:

⎧⎪⎨⎪⎩
K >Kset1 Positive pole fauls
K <Kset2 Negative pole fauls
Kset2 ≤K ≤Kset1 Faults between poles

. (15)

4.6 The Protection Scheme
According to the aforementioned analysis, the transient scheme to
protect the UHVmultiterminal hybrid DC transmission line based
on intrinsic mode energy entropy is introduced, by virtue of the
criterion to initiate the protection, identify the direction of faults, to
protect the criterion of fault pole selection inside and outside the
zone. The scheme is shown in Figure 6. First, the protection device
detects the transient current (Δi) and voltage (Δu) of the DC lines
on both sides of the T-zone, which are substituted into Eq. 9 to
calculate the transient power. As the result, when (ΔPstar) is greater
than its setting value (ΔPset), the protection device works. By doing
so, the power directional element is used to further identify the
fault direction according to the positive and negative characteristics
of the transient energy of the fault power:

1) Assuming that the transient energy detected by the power
directional element at the protection device (M1) is negative
and the one detected by the power directional element at the
protection device M2 is positive, and there is a malfunction
emerging on the left side of the T-zone. The line mode
component of the fault transient current on the left side of
the T-zone has undergone the decomposition through
CEEMD as it seeks to calculate the intrinsic mode energy
entropy of the fault transient current. The moment the
minimum intrinsic mode energy entropy of the fault in the
DC line L1 is greater than the threshold value (Hset1), there is a
fault occurring on the left side of the T-zone. That means the
protection device (M1) works. On the contrary, when the
maximum intrinsic mode energy entropy of the fault outside
the DC line L1 is less than the threshold value (Hset1), there is a
fault outside the left side of the T-zone. Under this condition,
the protection device (M1) does not operate.

2) Provided that the transient energy detected by the power
directional element at the protection device (M1) is positive,
and the one detected by the power direction element at the
protection device (M2) is negative, and a fault must occur on
the right side of the T-zone. The line mode component of the
fault transient current on the right side of the T-zone is
decomposed by CEEMD as a way of calculating its
intrinsic mode energy entropy. When the minimum
intrinsic mode energy entropy of potential faults in DC
line L2 is greater than the threshold value (Hset2), the right
side of the T-zone is dysfunctional. That makes the protection
device M2 to operate. On the contrary, when the maximum
intrinsic mode energy entropy of the fault outside the DC line
L2 is less than the threshold value (Hset2), the fault occurs
outside the right side of the T-zones. In this context, the
protection device M2 does not operate.

FIGURE 6 | Flow chart of the protection.
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In the final analysis, the low-frequency component
of the fault transient power is extracted to identify in
which pole the malfunction appears through the ratio
(K) of the positive transient power variation to the
negative one.

5 THE SIMULATION MODEL AND
VERIFICATION

5.1 The Simulation Model
In light of the engineering parameters of the Kun–Liu–Long line
UHV three-terminal hybrid DC transmission system, the
simulation model of the system as shown in Figure 1 is
established in the simulation platform PSCAD/EMTDC
(Power Systems Computer-Aided Design/Electromagnetic
Transients including DC). The main parameters of the
simulation model are shown in Table 2.

In the Kunbei Converter Station, the main connection
mode, featured by two unipolar 12-pulse converter units in
series, is adopted. Each converter unit bears 400 kV voltage,
and the unipolar series voltage is distributed according to
(400 plus 400) kV. The constant current control is handled.
The Liubei and Longmen converter stations are connected in
series with two MMC units in a single pole. The two units

are connected in series to form high- and low-valve groups,
and the single-pole series voltage is distributed according to
(400 plus 400) kV. Each converter chain unit inside
the MMC applies the main connection mode that is
mixing and cascading half-bridge and full-bridge in
proportion. The upper and lower bridge arms are
connected to 200 sub-modules at any time, with some left
behind. The output voltage of a single converter valve is
maintained at 400 kV.

In Figure 1, the total length of the DC line L1 is 932 km,
with an average soil resistivity of 1,750 along the line, whereas
the total length of the DC line L2 is 554 km, with an average
soil resistivity of 2,500 along the line. Those where both adopt
the frequency-dependent (Phase) model options f1, f3, f5, and
f7 stand for the location of faults on the positive and negative
DC line L1 and the DC line L2, the location of faults falls
outside the positive and negative DC lines. The protection
range of the protection device M1 includes the whole line L1,
whereas the protection device M2 responses to the whole
line L2.

5.2 The Simulation Verification
Under the amplitude frequency characteristics of the
boundary transfer function gained from Sections 2.1,
2.2, in this article, the sampling frequency of 50 kHz is

TABLE 2 | Main parameters of the simulation model.

Parameter Yunnan side Guangxi side Guangdong side

Rated voltage of the AC system 525 kV 525 kV 525 kV
Systematic rated power 8000 MW 3000 MW 5000 MW
Converter transformer ratio 525/172 525/216 525/243
Short-circuit impedance of the converter transformer 20% 16% 18%
Rated voltage of the converter station ±800 kV ±800 kV ±800 kV
Rated current of the converter station 5 kA 1.875 kA 3.125 kA
Converter valve type Thyristor IGBT IGBT
Capacitance value of the sub-module / 12 mF 18 mF
Rated voltage of the sub-module / 4.5 kV 4.5 kV
Number of bridge arm sub-modules / 200 200

FIGURE 7 | Graph of intrinsic mode energy entropy changing with time. (A) Grounding fault of the point f1 in the DC line L1; and (B) grounding fault of the point f2
outside the DC line L2.
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adopted, and the time window of 2 ms is taken after the
protection is started. The fault appears at 1.1 s and lasts
for 0.1 s.

The faults, inside and outside of the zone, can be distinguished
by the value of intrinsic mode energy entropy in an effective way.
For that to happen, the grounding fault at the point f1, 932 km

TABLE 3 | Result of protecting the positive pole from faults.

Fault
location

Transition
resistance

(Ω)

K ΔEM1 ΔEM2 HL HR M1 operation
result

M2 operation
result

0 km from M1 0.01 5,190.8 Negative Positive 9.52e-2 / Operation No operation
300 5,372.1 Negative Positive 2.33e-2 / Operation No operation
500 5,421.3 Negative Positive 1.03e-2 / Operation No operation

466 km from M1 0.01 18,543 Negative Positive 2.76e-2 / Operation No operation
300 19,098 Negative Positive 4.9e-3 / Operation No operation
500 17,316 Negative Positive 2.3e-3 / Operation No operation

932 km from M1 0.01 2,624.1 Negative Positive 1.88e-2 / Operation No operation
300 627.8 Negative Positive 2.4e-3 / Operation No operation
500 576.2 Negative Positive 1.1e-3 / Operation No operation

f2 outside the zone 0.01 / Negative Positive 5.24e-4 / No operation No operation
300 / Negative Positive 2.62e-4 / No operation No operation
500 / Negative Positive 1.21e-4 / No operation No operation

0 km from M2 0.01 7,337.3 Positive Negative / 5.05e-2 No operation Operation
300 7,308.7 Positive Negative / 2.37e-2 No operation Operation
500 7,400.5 Positive Negative / 1.58e-2 No operation Operation

277 km from M2 0.01 1,539.0 Positive Negative / 1.75e-2 No operation Operation
300 12,672 Positive Negative / 5.5e-3 No operation Operation
500 19,963 Positive Negative / 4.9e-3 No operation Operation

554 km from M2 0.01 15,375 Positive Negative / 1.03e-2 No operation Operation
300 14,063 Positive Negative / 4.5e-3 No operation Operation
500 5,963.3 Positive Negative / 3.3e-3 No operation Operation

f4 outside the zone 0.01 / Positive Negative / 7.29e-4 No operation No operation
300 / Positive Negative / 4.2e-4 No operation No operation
500 / Positive Negative / 3.13e-4 No operation No operation

TABLE 4 | Result of protecting the negative pole from faults.

Fault
location

Transition
resistance

(Ω)

K ΔEM1 ΔEM2 HL HR M1 operation
result

M2 operation
result

0 km from M1 0.01 2.12 Negative Positive 2.96e-1 / Operation No operation
300 1.99 Negative Positive 1.68e-2 / Operation No operation
500 1.95 Negative Positive 9.2e-3 / Operation No operation

466 km from M1 0.01 10.35 Negative Positive 5.64e-2 / Operation No operation
300 10.73 Negative Positive 7.2e-3 / Operation No operation
500 10.83 Negative Positive 4.1e-3 / Operation No operation

932 km from M1 0.01 19.95 Negative Positive 3.13e-2 / Operation No operation
300 26.38 Negative Positive 2.6e-3 / Operation No operation
500 26.86 Negative Positive 1.1e-3 / Operation No operation

f6 outside the zone 0.01 / Negative Positive 6.07e-4 / No operation No operation
300 / Negative Positive 1.62e-4 / No operation No operation
500 / Negative Positive 1.17e-4 / No operation No operation

0 km from M2 0.01 1.72 Positive Negative / 7.58e-2 No operation Operation
300 1.61 Positive Negative / 3.32e-2 No operation Operation
500 1.56 Positive Negative / 2.11e-2 No operation Operation

277 km from M2 0.01 4.55 Positive Negative / 3.57e-2 No operation Operation
300 4.55 Positive Negative / 8.6e-3 No operation Operation
500 4.67 Positive Negative / 5.1e-3 No operation Operation

554 km from M2 0.01 6.65 Positive Negative / 1.62e-2 No operation Operation
300 6.59 Positive Negative / 5.4e-3 No operation Operation
500 6.84 Positive Negative / 3.0e-3 No operation Operation

f8 outside the zone 0.01 / Positive Negative / 6.86e-4 No operation No operation
300 / Positive Negative / 4.3e-4 No operation No operation
500 / Positive Negative / 2.9e-4 No operation No operation

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 9 | Article 8206119

Xing et al. Intrinsic Mode Energy Entropy

371

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


away from the protection device on the left side of the T-zone, and
another one at the point f2, outside the DC line L1 on the left side
of the T-zone, are viewed as typical examples in this article. The
intrinsic mode energy entropy that is calculated is made to slide in
the sampling window of 2 ms. By doing so, the curve, showed in
Figure 7, in which the intrinsic mode energy entropy changes
with time, is accessible.

From Figure 7, the intrinsic mode energy entropy responses to
the overall amplitude of the signal in a less sensitive manner. If
faults occur inside and outside the DC line L1, the intrinsic mode
energy entropy at the position where the protection devices are
installed will suddenly change. Due to the attenuation effect of the
line boundary on the high-frequency component of the fault
transient, the intrinsic mode energy entropy in the DC line is
obviously larger than that of outside the line.

With regard to the transient protection scheme of the UHV
multiterminal hybrid DC transmission line based on intrinsic
mode energy entropy, the simulation verification of the protective
principle is conducted, taking different positions of the fault
anode and cathode (the points f2 and f6 outside the DC line L1, the
points f1 and f5 at 932, 466, and 0 km away from the protection
device on the left of the T-zone, the points f3 and f7 at 0, 277, and
554 km away from the protection device on the right side of the
T-zone, and the points f4 and f8 outside the DC line L2) as well as
various transition resistances (0.01 Ω, 300 Ω, and 500 Ω) into
account. The setting values of the protection are shown as follows:
Kset1 is equivalent to 150, Kset2, 60, Hset1, 0.0008, and Hset2, 0.001.

From the simulation results in Tables 3, 4, the location of faults
and the transition resistance are expanding, and the energy entropy
of the natural mode is decreasing. The entropy values, however, of
faults inside and outside the zone are still quite different. That said,
the protection is not affected and resistant to the transition resistance
to some extent. In this article, the transient protection scheme of the
UHV multiterminal hybrid DC transmission line based on the
intrinsic mode energy entropy boasts a good performance on
protection and high reliability. That means the protection devices
(M1) and (M2) can operate in a reliable way as they are in face of
different fault poles, positions, and transition resistances.

6 CONCLUSION

Regarding to the analysis and summary of boundary frequency
characteristics of the Kun–Liu–Long UHV three-terminal hybrid
DC transmission line, and on the basis of the complementary
ensemble empirical mode decomposition (CEEMD), the intrinsic
mode energy entropy, and the transient power polarity, a
transient protection scheme, suitable for the UHV
multiterminal hybrid DC transmission system, is put forward
in this article. The protection scheme handles the positive and
negative characteristics of transient energy of the fault power
detected by power directional elements on both sides of the

T-zone to identify the fault direction. As the boundary of
the fault line is capable of reducing the high-frequency
component of the transient current in a strong manner, the
value of the intrinsic mode energy entropy is applied to further
distinguish the faults inside and outside the zone. After the
analysis mentioned previously, the following conclusions are
attainable:

1) The transient current high-frequency component has
obviously attenuated as it passes through the line boundary
element, but the potential of the attenuation is supposed to be
fully tapped to effectively distinguish the faults in and out of
the zone.

2) The attenuation characteristics of high-frequency
components of the transient current has limitation as it
distinguishes the fault on the left and right sides of the
T-zone of the UHV multiterminal hybrid DC transmission
system; so, the power directional components can be used for
identifying the direction of faults.

3) The protection scheme can quickly remove faults, without
exchanging synchronous current information between
converter stations.

4) A large amount of the simulation results show that the transient
protection of UHV multiterminal hybrid DC transmission lines
based on intrinsic mode energy entropy can operate reliably
under different fault poles, fault positions, and transition
resistances. That empowers it a fine value for practical
application.
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Mechanism of Power Quality
Deterioration Caused byMultiple Load
Converters for the MVDC System
Heming Huang, Fei Liu* and Xiaoming Zha

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

Medium-voltage direct current (MVDC) systems are widely used to ship power-distributed
systems, wind farms, and photovoltaic power plants. With the increase of load converters
interfacing into the MVDC system, the power quality deteriorates. Few research studies
focused on the factors affecting the MVDC power quality, and effects caused by multiple
load converters are often neglected. In this study, the mechanism of power quality
deterioration caused by interfacing multiple load converters on the MVDC system has
been discussed. The impedance model of the MVDC system is developed with the state-
space averaging method and the small-signal analysis method. A three-level H-bridge DC/
DC converter is employed as the load converter. The results by the analysis of the
impedance model show that the more the load converters connect to the MVDC system,
the more fragile the MVDC system is to background harmonics. Simulation cases are
implemented to verify this conclusion.

Keywords: MVDC, impedance modeling, multiple load converters, power quality, mechanism analysis

1 INTRODUCTION

In recent years, medium-voltage direct current (MVDC) systems have been gradually applied to
ship power-distributed systems (Su et al., 2016; Mo and Li, 2017). The rated voltage levels of the
MVDC system include 1.5, 3, 6, 12, 18, 24, and 30 kV. The power quality of the MVDC system
starts to receive attention. The research on this field mainly focused on the measurement and
evaluation of the power quality (Crapse et al., 2007; Ouyang and Li, 1646; Shin et al., 2004) and the
way to improve it (Xie and Zhang, 2010; Puthalath and Bhuvaneswari, 2018; Arcidiacono et al.,
2007). Few references discuss the factors that degrade the power quality. The reference by Steurer
et al., (2007) explored the impact of the pulsed power charging loads on power quality. This study
used high-precision modeling and simulation to analyze the problem without a deeper theoretical
analysis. The reference by Sulligoi et al., (2017) mentioned that the multi-load converter connected
to the MVDC system may lead to unstable bus voltage and deteriorate the power quality, yet the
impact mechanism was not explained in detail. On this basis, this study discusses the mechanism
of the multi-load converter’s influence on power quality. In addition to the influence of the
number of load converters on the power quality, the characteristics of the load converter itself are
also considered.

At present, there are mainly three types of converters used in MVDC systems: the modular
multilevel converter (MMC), three-level DC converter, and dual active bridge (DAB) converter.
The power switches in the MMC structure withstand less voltage stress and generate less
electromagnetic interference (Mo et al., 2015; Kenzelmann et al, 2011; Ferreira, 2013), which
is conducive to better power quality. The application of wide bandgap devices such as SiC
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MOSFETs can reduce the stages of the MMC, thereby reducing
the complexity of the MVDC system (Zhao et al., 2020; Zhao
et al., 2021). The DAB has a good soft-switching performance
and can achieve higher efficiency (Yanhui Xie et al., 2010; Zhao
et al., 2017). The circuit topology of the three-level DC
converter is relatively simple, easy to control, and more
stable (Xiao et al., 2014; Xinbo Ruan et al., 2008). These
three types of converters have their own characteristics. As
for load converters, they can all be regarded as constant power
loads with negative resistance, which introduce the system
instability concern.

In prior to analyzing the influence of the network formed by
the connection of multiple load converters on power quality, a
suitable system model should be established. Many
[references] have proposed modeling methods for MVDC
systems. The reference by Khan et al., (2017) divided the
MVDC system into three parts, including the power system,
load system, and energy storage system, and established a
detailed transient simulation model. The reference by Ji et al.,
(2018) described the system with an adjacency matrix and
proposed a hierarchical control based on the system matrix.
The reference by Tan et al., (2017) proposed a convex model
for MVDC systems to study the transmission losses. The
modeling methods mentioned in the studies by Khan et al.,
(2017); Tan et al., (2017); and Ji et al., (2018) were all for
specific research purposes and could not be used to analyze the
system state in general. References by Shi et al., (2015); Bosich
et al., (2017); and Sulligoi et al., (2017) used the state-space
averaging model and the small-signal analysis method to
analyze the dynamic process of the system and then
proposed a corresponding control strategy to maintain the
stability of the bus voltage. Among them, the load converter
model was taken as a constant power load model with a
controlled current source connected in parallel with a
capacitor. The parallel connection of multiple constant
power load models is equivalent to a constant power load
model, while this model is not appropriate for investigating the
interactions of different load converters. The reference by Liu
et al., (2017) utilized impedance modeling to analyze the
stability and harmonics of the MVDC system including the
power generation system and the motor drive system, while
the influence of multiple load converters is also ignored.
Although the models in references by Shi et al., (2015);
Bosich et al., (2017); Liu et al., (2017); Sulligoi et al., (2017)

cannot be used to describe the effects of multi-load converters,
the modeling method can be used to analyze the system state.

In view of the above problems, this study explores the
mechanism of the multi-load converter affecting the power
quality based on the impedance network analysis method. An
MVDC system with four load regions is taken as an example. A
three-level H-bridge DC converter is used as the load converter.
The state-space averaging method and the small-signal analysis
method are used to establish the impedance model of the load
converter; then, the impedance network of the system is
established. Through comparing the system impedance
spectrum under different numbers of load converters, the
influence of the number of load converters on power quality is
revealed.

The contribution of this study is as follows.

(1) This study reveals for the first time that an increase in the
number of load converters will increase the probability of
background harmonics being amplified in the MVDC system
and make the system more susceptible to low-frequency
background harmonics.

(2) The impedance model of the MVDC system is established by
using the state-space averaging method and the small-signal
analysis method to analyze the spectrum change of the
system resonance point, and the mechanism of the power
quality deterioration of the MVDC system caused by the
multi-load converter is revealed.

The rest of this study is organized as follows. A modeling
method of MVDC systems is proposed in Section 2. In Section 3,
the input impedance model of the three-level H-bridge DC
converter is introduced. On the basis, the influence of load
converters on power quality is analyzed in Section 4, and the
mechanism of the influence is verified in Section 5. Section 6
concludes the full text.

2 MODELING OF AN MVDC SYSTEM

Figure 1 shows the network architecture of the MVDC system.
Its configuration includes the following parts: 1) one power
generation module (PGM); 2) one MVDC system bus; and 3)
one to four load areas. The PGM is connected to the bus
through a three-phase rectifier bridge, and the load area is
connected to the bus through a three-level H-bridge DC
converter. It is assumed that there are background
harmonics on the output side of the three-phase rectifier

FIGURE 1 | MVDC distribution system network.

FIGURE 2 | Small-signal model of the MVDC system.
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bridge, which affects the power quality of the DC bus. To
simplify the analysis, the output impedance of the PGM is
ignored, and the load on the output side of the three-level
H-bridge is replaced by a pure resistance. Finally, the small-
signal model of the MVDC system shown in Figure 2 is
obtained. The inductance and the resistance are represented
by a series of Zline in Figure 2. The input impedance of the load
converter can be derived from equations 3 and (4).

3 INPUT IMPEDANCE MODEL OF THE
THREE-LEVEL H-BRIDGE DC CONVERTER

The topology of the three-level H-bridge DC converter is
shown in Figure 3. Cg is the voltage equalizing capacitor on
the output side. RC is the equivalent resistance of the voltage
equalizing capacitor. S1~S8 are the switching tubes on the
inverter side. Dc1~Dc4 are the clamping diodes. The
transformation ratio of the intermediate frequency

transformer Tm is 1:NT. L and C are the output filter
parameters, and R is the load. ud is the input voltage, and id
is the input current. iL is the current on L. uo is the output
voltage. uP is the voltage of the upper-end equalizing capacitor.
uN is the voltage of the lower-end equalizing capacitor. uT1 is
the primary side voltage of the transformer, and its direction is
specified as the direction shown in Figure 3.

In this model, it is assumed that the frequency of the
equalizing control loop is high; the influence of the control
loop can be ignored. As a result, the switch devices in the
figure are all ideal devices, and the transformer is an ideal
transformer. Through the analysis, the working waveforms of
the converter can be obtained, as shown in Figure 4, and the
simplified model of Figure 3 can be obtained, as shown in
Figure 5 (Zhao et al., 2017).

According to Figures 4, 5, the state equations for the eight
operating states (a~h) of the three-level H-bridge converter can
be listed in Table 1.

Based on the previous assumptions, it can be obtained
that

uP � uN � ud

2
− RCCg

duP

dt
. (1)

Assuming that the converter is controlled by a single voltage
loop, the relationship between the conduction angle dα and the
output voltage uo can be expressed as

dα � kp(up
o − uo) + ki ∫(up

o − uo)dt, (2)

where kp and ki are the parameters of the PI controller, and upo is
the reference of the output voltage. With the state-space
averaging method and the small-signal analysis method, the
transfer function from the input voltage to the input current
can be obtained.

Gt(s) � Cgs

2(RCCgs + 1)
+ 4CD2

αNTRs2 + (4NTD2
α − 4ILNTRkpDα)s − 4DαILNTRki

RLCs3 + Ls2 + (R + 2NTUdkpR)s + 2NTRUdki
.

(3)

FIGURE 3 | Topology of the three-level H-bridge DC/DC converter.

FIGURE 4 |Working waveforms of three-level H-bridge with phase-shift
control.
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Therefore, the input impedance of a three-level H-bridge
converter can be expressed as

Zt(s) � 1
Gt(s). (4)

4 INFLUENCE OF THE LOAD CONVERTER
ON POWER QUALITY

In order to analyze the influence of multi-load converters on
power quality, the input voltage ut and input current it of the load
area closest to the PGM (hereinafter referred to as load area 1) are
taken as an example for analysis. It is denoted that the equivalent
input impedance of n load regions is Zn. Thus, it can be deduced
from Figure 2 that the expression of Zn is

Zn(s) �
⎧⎪⎪⎨⎪⎪⎩

Zt(s) n � 1

1
1/Zt(s) + 1/(Zn−1(s) + Zline(s)) n≥ 2

. (5)

ut and it can be expressed as

ut(s) � Zn(s)
Zn(s) + Zline(s)ug, (6)

it(s) � Zn(s)
Zt(s)(Zn(s) + Zline(s))ug(s), (7)

where ug is the background harmonic, and n ranges from 1 to 4.
Equations 6 and 7 reflect that the input voltage and current in

load region 1 are affected by its self-impedance, impedance of
other load regions, and the background harmonics. The transfer
function from ug to ut is denoted by TU(s), and the transfer
function from ug to it is denoted by TI(s). Then, their expressions
are shown in the following formulas.

TU(s) � ut(s)
ug(s) �

Zn(s)
Zn(s) + Zline(s), (8)

TI(s) � it(s)
ug(s) �

Zn(s)
Zt(s)(Zn(s) + Zline(s)). (9)

The spectral changes of TU(s) and TI(s) reflect the influence
degree of multi-load converters on power quality. With different
n, two transfer functions are calculated, and their Bode plots are
shown in Figure 6. The parameters of the converter are listed in
Table 2.

It can be seen from Figure 6 that with the increase of the load
converter number, the resonance point in the Bode diagram
increases, and the original resonance peak frequency becomes
lower. The resonance peak in the figure indicates that the
background harmonics are amplified at this resonance point.
The increase of resonance points means that the system is more
susceptible to the influence of background harmonics. Lower
resonant peak frequencies mean that the system is more
susceptible to low-frequency disturbances, which are often
difficult or expensive to filter out.

FIGURE 5 | Simplified circuit of the three-level H-bridge DC/DC converter. (A) Left half equivalent circuit (B) Right half equivalent circuit.

TABLE 1 | The equation of state for the converter.

Mode Time Equation of state

A (1/2-dθ)Ts Cg
duP
dt

� id Cg
duN
dt

� id − NT iL

L
diL
dt

� NT
ud
2

− uo C
duo
dt

� iL − uo
R

B dαTs Cg
duP
dt

� id − NT iL Cg
duN
dt

� id − NT iL

L
diL
dt

� 2NT
ud
2

− uo C
duo
dt

� iL − uo
R

C (1/2-dθ)Ts Cg
duP
dt

� id − NT iL Cg
duN
dt

� id

L
diL
dt

� NT
ud
2

− uo C
duo
dt

� iL − uo
R

d (dα-dθ)Ts Cg
duP
dt

� id Cg
duN
dt

� id

L
diL
dt

� −uo C
duo
dt

� iL − uo
R

e (1/2-dθ)Ts same as Mode a
f dαTs same as Mode b
g (1/2-dθ)Ts same as Mode c
h (dα-dθ)Ts same as Mode d
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5 CASE STUDY

In order to verify the above analysis results, a simulation
model of the MVDC system based on the MATLAB/
Simulink platform is established with an architecture shown

in Figure 1. The PGM is replaced by an ideal voltage source,
and a broad-spectrum white noise is superimposed on the ideal
voltage source as background harmonics. The number of load
zones varies from 1 to 4. The voltage and current on the input
side of load area 1 are measured, and the measured data are
subjected to fast Fourier transform (FFT) analysis (Li, 2021a;
Li, 2021b; Li, 2022). The analysis results are shown in
Figures 7,8.

It can be seen from Figures 7,8 that the high content of the
ripple frequency in the simulation results is basically
consistent with the resonance point frequency in the Bode
plot obtained from TU(s) and TI(s). When one load zone is
connected to the system, the ripple content at the frequency
of 470 Hz is the highest. When two load areas are connected
to the system, there are two frequencies with higher ripple
content, and their frequencies are 270 and 750 Hz,
respectively. As the number of load zones increases, the

FIGURE 6 | Bode diagrams of TU(s) and TI(s) under different numbers of load zones (A) Bode diagrams of TU(s) (B) Bode diagrams of TI(s).

TABLE 2 | Parameters of the converter.

Parameters Value unit

Equalizing capacitor Cg 10 mF
Transformer ratio 1:NT 1:4 —

Filter capacitor C 10 MF
Filter inductor L 250 H
Load resistance R 0.5 —

Integration parameters ki 0.01 —

Scale parameter kp 0.001
Input voltage Ud 5,000 V
Output voltage Uo 1,000 V

FIGURE 7 | FFT result of the input voltage for load zone 1 (A) n=1 (B) n=2 (C) n=3 (D) n=4.
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types of ripples with higher content gradually increase, while
the frequency of high-content ripples becomes lower.

6 CONCLUSION

This study analyzes the mechanism of power quality deterioration
caused by the multi-load converter connected to the MVDC
system. In this study, the load converter is modeled and analyzed
by the state-space average method and the small-signal analysis
method, and then, the impedance network model of the MVDC
system is established. When the number of load converters
changes, voltage and current on the input side of load area 1
are affected by the background harmonics. Finally, the influence
of the number of load converters on power quality is analyzed.
Two main conclusions are drawn:

(1) As the number of load converters increases, background
harmonics are amplified in the MVDC system.

(2) The increase of load converters makes the MVDC system
more susceptible to low-frequency background harmonics.
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Fuzzy-Weighted Echo State Networks
Zhao Yao1,2 and Yingshun Li2*

1Army Academy of Armored Forces, Changchun, China, 2Dalian University of Technology, Dalian, China

A novel echo state network (ESN), referred to as a fuzzy-weighted echo state network
(FWESN), is proposed by using the structural information of data sets to improve the
performance of the classical ESN. The information is incorporated into the classical ESN via
the concept of Takagi–Sugeno (TS) models/rules. We employ the fuzzy c-mean clustering
method to extract the information based on the given data set. The antecedent part of the
TS model is determined by the information. Then, we obtain new fuzzy rules by replacing
the affine models in the consequent part of each TS rule with a classical ESN.
Consequently, the output of the proposed FWESN is calculated through inferring these
new fuzzy rules by a fuzzy-weighted mechanism. The corresponding reservoir is consisted
of the sub-reservoirs of the new fuzzy rules. Furthermore, we prove that the FWESN has an
echo state property by setting the largest spectrum radium of all the internal weight
matrices in the sub-reservoirs less than one. Finally, a nonlinear dynamic system and five
nonlinear time series are employed to validate the FWESN.

Keywords: echo state network, Takagi–Sugeno model, fuzzy, reservoir, time series prediction

1 INTRODUCTION

1.1 Summary of the Echo State Network
The recurrent network model describes the change process of the states of research object with
time and space. Since the complexity of the problem increases and the computing power
enhances, various recurrent networks have been successfully applied to different application
fields, such as echo state networks in time series prediction (Jaeger and Haas, 2004), Boolean
networks in games (Le et al., 2021; Le et al., 2020), and optimal control (Chen et al., 2019; Toyoda
and Wu, 2021; Wu et al., 2021).

Echo state networks (ESNs) are a special case of recurrent neural networks (RNNs) proposed
by Jaeger and Haas (2004). Unlike the traditional RNN, the recurrent layer of ESN uses a large
number of neurons, and the connection weights between neurons are randomly generated and
sparse. In an ESN, the recurrent layer is called a reservoir. The input signals drive the reservoir,
and the trainable output neurons combine the output of the reservoir to generate task-special
temporal patterns. This new RNN paradigm is referred to as reservoir computing. Similar to
ESNs, liquid state machines (Maass et al., 2002), temporal recurrent neural networks (Steil,
2006), and decorrectation–backpropagation learning (LukošAevicius and Jaeger, 2009), and
convolution and deep echo state networks (Ma et al., 2021; Wang et al., 2021) are all the instances
of reservoir computing. The difference between ESNs and them is that the former employs
analog neurons. The problem of traditional RNN is the lack of an effective supervised training
algorithm. This problem is largely overcome by ESNs since only output weights are trained.
ESNs have been successfully applied in a wide range of temporal tasks (Jaeger and Haas, 2004;
Holzmann and Hauser, 2010; Song and Feng, 2010; Babinec and Pospichal, 2012; Xu et al., 2019;
Yang and Zhao, 2020), especially in the prediction of nonlinear chaotic time series (Jaeger and
Haas, 2004; Wang et al., 2021).
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1.2 Summary of the Related Work and
Motivation
The random and sparse connection weights between neurons in
the reservoir bring much convenience for ESN applications.
However, just simply creating at random is unsatisfactory for
a specific modeling task (LukošAevicius and Jaeger, 2009).
Recently, one of main streams for ESN research has been
focused on developing a suitable reservoir to improve its
performance (Jaeger, 2007; Holzmann and Hauser, 2010; Song
and Feng, 2010; Babinec and Pospichal, 2012; Sheng et al., 2012).
The fact shows that a specific architectural variant of the standard
ESN leads to better results than that of a naive random creation.
For examples, a new ESN with arbitrary infinite impulse response
filter neurons is proposed for the task of learning multiple
attractors or signal with different time scales. Then, the
trainable delays in the synapse connection of output neurons
are added to improve the memory capacity of ESNs (Holzmann
and Hauser, 2010). Inspired by the simulation results of some
nonlinear time series prediction, a complex ESN is proposed, in
which the connection process of its reservoir is determined by five
growth factors (Song and Feng, 2010). A complex prediction
system is created by combining the local expert ESN with
different memory length for solving the troubles of ESN with
fixed memory length in applications (Babinec and Pospichal,
2012). A hierarchical architecture of ESN is presented for
multi-scale time series. Its core ingredient of each layer is
an ESN. This architecture as a whole is trained by a stochastic
error gradient descent (Jaeger, 2007). An improved ESN is
proposed to predict the noisy nonlinear time series, in which
the uncertainties from internal states and outputs are
meanwhile considered in accordance with the industrial
practice (Sheng et al., 2012).

Note that uncertain information, noises, and structure
information often exist in the systems (Liu and Xue, 2012;
Shen et al., 2020; Shen and Raksincharoensak, 2021a,b). Thus,
an extensive work has been carried out on designing a specific
reservoir for a given modeling task as mentioned previously.
However, the structure information for the input/output data is
ignored when the reservoir is designed or revised. In fact, for
many temporal tasks and pattern recognition problems, the data
sets appear in homogenous groups, and this structural
information can be exploited to facilitate the training process,
so that the prediction accuracy can be further improved (Wang
et al., 2007; Liu and Xue, 2012). Thus, it becomes a necessary
requirement to consider the effects of data structure information
on the ESN and then to design a suitable reservoir for a specific
modeling task.

1.3 Main Idea and Contributions
This study aims at constructing a new type of ESN, referred to as a
fuzzy-weighted echo state network (FWESN). The FWESN is able
to incorporate the structural information of data sets into the
classical ESN via the TS model. Actually, the FWESN can be
regarded as a certain ESN, in which the output is calculated by a
fuzzy-weighted mechanism, and the corresponding reservoir
consists of sub-reservoirs corresponding to TS rules. Similar to
the ESN, the echo state property for the FWESN is obtained when

all weighted matrices of sub-reservoirs satisfy that their
spectrums are less than one.

The contribution of this article lies in the following aspects:
first, the structural information of the data set is incorporated
into the classical ESN to enhance its performance in
applications.

Second, the structure of FWESN is parallel, which is
distinguished from the hierarchical architecture of ESN. The
FWESN is trained efficiently by a linear regression problem,
which is the same as the training algorithms of the ESN and TS
model. Thus, the FWESN avoids the problem of vanishing
gradients, as the hierarchical ESN, deep feedforward neural
networks, and fully trained recurrent neural networks based
on gradient-descent methods.

The remaining article is structured as follows: preliminaries
are given in Section 2. The architecture, echo state property, and
training algorithm of FWESN are discussed in Section 3.
Experiments are performed by comparing FWESN with the
ESN and TS model in Section 4. Finally, conclusions are
drawn in Section 5.

2 PRELIMINARIES

In this section, we give a brief introduction to typical ESNs and TS
models. A more thorough treatments concerning them can be
referred to Takagi and Sugeno (1985), Jaeger and Haas (2004),
and Holzmann and Hauser (2010).

2.1 Echo State Networks
An ESN can be represented by state update and output equations.
We formulate the ESN as shown in Figure 1.

The activation of internal units in a reservoir is updated
according to the following equations:.

x n( ) � f Winu n( ) +Wx n − 1( ) +Wbacky n − 1( )( ). (1)

Here, x(n) � (x1(n), . . . , xN(n))T is a state vector of the
reservoir, u(n) � (u1(n), . . . , uNin(n))T ∈ RNin is an input
vector, y(n − 1) � (y1(n − 1), . . . , yNout(n − 1))T ∈ RNout is an
output vector, and Win ∈ RN×Nin , W ∈ RN×N, and
Wback ∈ RN×Nout are the input, internal, connection weight,
and feedback matrices, respectively. R is the real number. f(·) �
(f1, . . . , fN)T stands for an activation function vector. For
example, fi (·) � tanh (·), i � 1, 2, . . ., N. The full connection

FIGURE 1 | Architecture of the echo state network.
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of internal units in the reservoir is shown in Figure 2. The output
y(n) can be expressed as

y n( ) � WoutS n( ), (2)

where

S n( ) � uT n( ), xT n( ), yT n − 1( )[ ]T ∈ RNin+N+Nout ,

and

Wout ∈ RNout× Nin+N+Nout( )

is the output weight matrix.
There are several notions of stability relevant to ESNs, where

the echo state property is the most basic stability property (Jaeger
and Haas, 2004).

Let (u(n))n∈J ∈ UJ represent input sequences, where U is
compact. �u±∞, �u+∞, �u−∞, and �uh denote left-right-infinite
J ∈ Z, right-infinite J � k, k + 1, . . . for some k ∈ Z, left-
infinite, and finite h input sequences, respectively. Z is the
integer. The network state update operator G is defined as
follows (Jaeger and Haas, 2004):

x n + h( ) � G x n( ), y n( ), �uh( ) (3)

to denote the network state that results from an iterated
application of Eq. 1. If the input sequence �uh �
(u(n + 1), . . . , u(n + h)) is fed into the network, the network
is in state x(n) and has output y(n) at time n. In the network
without output feedback, Eq. 3 is simplified to

x n + h( ) � G x n( ), �uh( ).
Definition 1: Assume that the inputs are drawn from a

compact input space U , network states lie in a compact set A,
and the network has no output feedback connections. Let N be
the natural numbers. Then, the network has echo states, if the
network state x(n) is uniquely determined by any left-infinite
input sequences �u∞. More precisely, this means that for every
input sequence . . . , u(n − 1), u(n) ∈ U−N, for all state
sequences . . ., x (n − 1), x(n) and ~x(n − 1), ~x(n) ∈ A−N

where x(i) � G (x (i − 1), u(i)) and ~x(i) � G(~x(i − 1), u(i)),
and it holds that x(n) � ~x(n).

The condition of Def. 1 is hard to check in practice.
Fortunately, a sufficient condition is given in Jaeger and Haas
(2004), which is easily checked.

Proposition 1: Assume a sigmoid network with unit output
functions fi � tanh. Let the weight matrixW satisfy σmax � ∧ < 1,
where σmax is the largest singular value of W. Then,
d(G(x, u)), G(~x, u)<∧ d(x, ~x) for all inputs u, for all states
x, ~x ∈ [−1, 1]N, where d is an Euclidean distance on RN. This
implies the echo states for all inputs u, for all states
x, ~x ∈ [−1, 1]N.

2.2 Takagi–Sugeno Models
Among various fuzzy modeling themes, the TS model (Takagi
and Sugeno, 1985) has been one of the most popular modeling
frameworks. A general TS model employs an affine model in the
consequent part for every fuzzy rule. We formulate the TS model
as shown in Figure 3.

A TS model can be represented with r fuzzy rules and each
fuzzy rule has the following form:

If u1 n( ) is Mi
1 and . . . and uNin n( ) is Mi

Nin

then y n( ) � hi u n( )( ), i � 1, 2, . . . , r
, (4)

where u(n) � [u1(n), . . . , uNin]T ∈ RNin is the input vector of the
antecedent part of the fuzzy rule at time n. r is the number of the
rule. Mi

j are fuzzy sets.

y n( ) � hi u n( )( ) � aiu n( )
is the output from the ith fuzzy rule, where ai � (ai1, . . . , aiNin

) is
the vector of consequent parameters of the ith fuzzy rule.

Given an input u(n), the final output of the fuzzy system is
inferred as follows:

y n( ) � ∑r
i�1

βi u n( )( )hi u n( )( ), (5)

where βi(u(n)) � ∏Nin
j�1M

i
j(uj(n))/∑r

i�1∏Nin
j�1M

i
j(uj(n)),

Mi
j(uj(n)) is the membership grade of uj(n) in Mi

j and i � 1,
2, . . ., r, j � 1, 2, . . ., Nin.

3 FUZZY-WEIGHTED ECHO STATE
NETWORKS

In this section, we propose a new framework based on the ESN
and TS model, which is referred to as a fuzzy-weighted echo state
network (FWESN). We further prove that an FWESN has the

FIGURE 2 | Full connection of internal units in a reservoir.

FIGURE 3 | Architecture of the TS model.
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echo state property. Finally, we discuss the training algorithm of
FWESN.

3.1 Architecture of Fuzzy-Weighted Echo
State Networks
FWESNs are designed by taking advantage of TS models to
improve ESN (1). The basic idea is to replace the affine model
of each fuzzy rule (4) with ESN (1). FWESN is formulated as
shown in Figure 4.

The FWESN can be represented by the fuzzy rules as follows:

If u1 n( ) is Mi
1 and . . . and uNin is M

i
Nin

,
then y n( ) � Wout

i Si n( ), i � 1, 2, . . . , r
, (6)

where y(n) is the output for the ith fuzzy rule (6). y(n) is
determined by the following state update equations:

xi n( ) � fi Win
i u n( ) +Wix

i n − 1( ) +Wback
i y n − 1( )( ). (7)

Here, Si(n) � (uT(n), (xi(n))T, yT(n − 1))T, xi(n) ∈ RNi is
the state vector of the reservoir, Win

i ∈ RNi×Nin , Wi ∈ RNi×Ni ,
Wback

i ∈ RNi×Nout , and Wout
i ∈ RNout×(Nin+Ni+Nout) are internal

input, internal connection weight, and output weight
matrices for the ith fuzzy rule (6), respectively. fi(·) ∈ RNi

is the neuron activation function vector, applied element-wise
for the ith fuzzy rule (6). Then, the corresponding output of
FWESN is inferred by the fuzzy-weighted mechanism. From
Eqs. 5, 6, it follows that

y n( ) � ∑r
i�1

βi u n( )( )Wout
i Si n( ). (8)

Let

Win � Win
1 ,W

in
2 , . . . ,W

in
r( )T ∈ R

∑r

i�1Ni( )×Nin ,

Wback � Wback
1 ,Wback

2 , . . . ,Wback
r( )T ∈ R

∑r

i�1Ni( )×Nout ,

F � f1, f2 . . . , fr( )T ∈ R
∑r

i�1Ni ,

W � diag W1,W2, . . . ,Wr( ) ∈ R
∑r

i�1Ni( )× ∑r

i�1Ni( ),
X n( ) � x1 n( )( )T, x2 n( )( )T, . . . , xr n( )( )T[ ] ∈ R

∑r

i�1Ni .

By Eq. 6, a new reservoir can be reformulated, where the state
update equations are written as

X n( ) � F Winu n( ) +WX n − 1( ) +Wbacky n − 1( )( ). (9)

Additionally, the same shorthand is used for the FWESN and
ESN. Thus, from Eqs. 3, 9, it follows that

X n + h( ) � G X n( ), y n( ), �uh( ), (10)

which denotes the network state resulting from an iterated
applications. For an FWESN without feedback, Eq. 10 is
simplified as

X n + h( ) � G x n( ), �uh( ). (11)

For clarity, we use (β, Win, W, Wback, Wout) to denote an
FWESN, where β � (β1, β2, . . . , βr)T. We use (Win, W, Wback) to
denote an untrained ESN.

3.2 Discussion on Several Special Cases for
Fuzzy-Weighted Echo State Networks
Case 1: From the architecture of FWESN, the classical ESN can be
regarded as a special case of FWESN. That is, let r � 1 and

M1
j uj n( )( ) � 1, uj � uj n( ),

0, else,
{ j � 1, 2, . . . , Nin (12)

in Eq. 6. Then, the final output of FWESN (8) is rewritten as

y n( ) � β1 u n( )( )Wout
1 S1 n( ) � Wout

1 S1 n( ).
The corresponding update Eq.7 is expressed as

x1 n( ) � f1 Win
1 u n( ) +W1x n − 1( ) +Wback

1 y n − 1( )( ),
which is the same as ESN (1).

Case 2: The TS model (4) can be regarded as a special case of
FWESN (6). That is, let fi � (1,0,. . .,0)T in Eq. 6. It follows that

xi n( ) � fi � 1, 0, . . . , 0( )T

and

Si n( ) � uT n( ), 1, 0, . . . , 0, yT n − 1( )( )T.
Let

Wout
i � ai1, . . . , a

i
Nin

, ai0, 0, . . . , 0, 0, . . . , 0( ).
Then, we have the output of the ith fuzzy rule (6) as follows:

y n( ) � Wout
i Si n( ) � ai0 + ai1u1 n( ) +/ + aiNin

uNin n( ).
It is obvious that the fuzzy rule (6) has the same form as that of

the fuzzy rule (4) based on the aforementioned conditions. Thus,
the FWESN degrades into the TS model (4).

3.3 Echo State Property of Fuzzy-Weighted
Echo State Networks
In this section, we will prove that the FWESN has the echo state
property for the case of the network without output feedback.

FIGURE 4 | Architecture of FWESN.
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Similar to Proposition 1, we give a sufficient condition for the
echo state property of the FWESN.

Proposition 2: Let U and X be two compact sets. ‖ · ‖2 is the
operator norm on the space of matrices corresponding to 2-
norms for vectors. Assume a sigmoid network (β,Win,W,Wback,
Wout) with unit output functions fi

j � tanh, i � 1, 2, . . .,Nin, j � 1,
2, . . ., Nout. Let σ(Wi) < 1 for i � 1, 2, . . ., r, where W � diag (W1,
W2, . . ., Wr). Then,

‖G X, u( ), G ~X, u( )‖2 < σ W( )‖X − ~X‖2,∀u ∈ U , X, ~X ∈ X .

This implies the echo states for all inputs u ∈ U and states
X, ~X ∈ X .

Proof: ConsideringW � diag (W1,W2, . . .,Wr) and σ(Wi) < 1,
we have

σ W( ) � λmax WTW( )( )1/2
� λmax diag WT

1W1, . . . ,W
T
rWr( )( )[ ]1/2

� max1≤i≤r σ WT
i Wi( )1/2( )< 1

. (13)

Here, λmax (·) is the largest absolute value of an eigenvector of
matrix. For two different statesX(n) and ~X(n), byEqs. 9, 10, we have
‖X n( ) − ~X n( )‖2 � ‖G X n − 1( ), u n( )( ) − G ~X n − 1( ), u n( )( )‖2

� ‖F Winu n( ) +WX n − 1( )( )
−F Winu n( ) −W ~X n − 1( )( )‖2

.

(14)

For fi
j � tanh, it follows that

‖X n( ) − ~X n( )‖2 ≤ ‖Winu n( ) +WX n − 1( ) −Winu n( ) −W ~X n − 1( )‖2
≤ ‖W‖2‖X n − 1( ) − ~X n − 1( )‖2
� δ W( )‖X n − 1( ) − ~X n − 1( )‖2,

where

‖W‖2 � supX≠0
‖WX‖2
‖X‖2 � δ W( ).

That is, the Lipschitz condition obviously results in echo states for
the FWESN.

Remark 1: From the proof of Proposition 2, we select that the
updated Eq. 1 is a special form based on the conditions σ(Wi) < 1
for i � 1, 2, . . ., r.

3.4 Training Algorithm of Fuzzy-Weighted
Echo State Networks
We state the training algorithm of FWESN based on the given
training input/output pairs (u(n), z(n)) (n � 0, 1, 2, . . ., k). First,
we employ a subtractive clustering approach (Bezdek, 1981) to
determine the membership gradeMi

j(uj(n)) for the ith fuzzy rule
(6), where i � 1, 2, . . ., r. Second, we randomly generate the
untrained networks (Win

i ,Wi,Wback
i ), which satisfy the echo state

property. Third, we update the network states xi(n) by Eq. 7 and
collect the concatenated input/reservoir/previous-output states
(u(n), xi(n), y (n − 1)), i � 1, 2, . . ., r. Fourth, we calculate
Wout

i (i � 1, 2, . . . , r) using the output y(n) of FWESN (8) to
approximate z(n) (n � 0, 1, 2, . . ., k) by the mean square error.
That is, the trained FWESN is obtained.

The procedure of the proposed training algorithm is described
by four steps as follows:

Step 1 Calculate βi (u(n)) (i � 1, 2, . . ., r) in Eq. 8 by the fuzzy
c-mean clustering approach.

Step 2 Procure the untrained network (Win
i ,W

i,Wback
i ) for i �

1, 2, . . ., r.

1) Suppose the dimension of the state vector is N for r reservoirs
corresponding to r fuzzy rules (5).

2) Initiate i � 1.
3) Randomly generate an input weight matrix Win, an output

backpropogation weight matrix Wback, and a matrix
W0 ∈ RN×N. Normalize W0 to a matrix W1 by letting
W1 � 1

ρW0, where ρ is the spectral radius of W0. Scale W1 to
W2 � γW1 (γ < 1).

4) Let W2 � Wi,Win
Q � Win

i ,W
back
Q � Wback

i ; i � i + 1.
5) If i > r, end. Else go to Step 3.

Step 3 Sample network training dynamics for each fuzzy
rule (4).

1) Let i � 1. Initial the state of the untrained network
(Win

i ,W
i,Wback

i ) arbitrarily, typically xi (0) � 0 and y (0) � 0.
2) Drive the network (Win

i ,W
i,Wback

i ) for time n � 1, 2, . . . , T ,
by presenting the teacher input u(n), by presenting the teacher
output y (n − 1), and by computing xi(n) � fi(Win

i u(n) +
Wix(n − 1) +Wback

i y(n − 1)) for time n � 1, 2, . . . , T .
3) For each time equal or larger than an initial washout time T 1,

collect xi(n), u(n), and y(n) for T 1 ≤ n≤ T . One has obtained
Si(n) � (xT

i , u
T(n), yT(n − 1))T, T 1 ≤ n≤ T .

4) i � i + 1, if i > r, end; else go to Step 2.

Step 4 Calculate the output weights.

1) Let

Y � y T 1( ), y T 1 + 1( ), . . . , y T( )( )T ∈ RNout× T −T 1+1( ),

Wout � Wout
1 ,Wout

2 , . . . ,Wout
r( ) ∈ RNout× r Nin+N+Nout( )[ ].

Collect βi (u(n))Si(n) as a state matrix S for
n � T 1, T 1 + 1, . . . , T , where S ∈ R[r(Nin+N+Nout)]×(T −T 1+1).
From Eq. 8, we have y � ∑r

i�1W
out
i [βiu(n)Si(n)].

2) By the least square method, the output weight Wout is
calculated by Wout � (SST)YST.

Remark 2: By Step 2, we obtain untrained networks
(Win

i ,W
i,Wback

i ) for i � 1, 2, . . ., r. Note that we limit the spectral
radius of the internal weight matrix Wi(i � 1, 2, . . ., r) less than one,
which guarantees that the network has the echo state property.

4 EXPERIMENTS

We have performed some experiments to validate the FWESN in
this study. We have shown that the FWESN has better
performance than the ESN owing to the incorporation of
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structural information of data sets. The following terms are used
in the experiments:

Data sets: A nonlinear dynamic system (Juang, 2002) and five
nonlinear time series, i.e., Mackey-Class, Lorenz, ESTSP08(A),
ESTSP08(B), and ESTSP08(C), are used in the experiments. Here,
the nonlinear dynamic system is

yp k + 1( ) � g yp k( ), yp k − 1( ), yp k − 2( ), u k( ), u k − 1( )( ),
(15)

where

u k( ) �

sin πk/25( ), k< 250,
1.0, 250≤ k≤ 500,
−1.0, 500≤ k< 750,

0.3 sin
πk

25
( ) + 0.1 sin

πk

32
( ) + 0.6 sin

πk

10
( ), 750≤ k< 1000,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g x1, x2, x3, x4( ) � x1x2x3 x3 − 1( ) + x4

1 + x2
2 + x2

3

.

yp(k) and u(k) are the output and input, respectively. In the
experiment, (u(k), yp (k − 1)) and yp(k) are the inputs and outputs
of algorithms, respectively. The generate method of samples are
the same with that in Juang (2002).

Algorithms: Three algorithms, i.e., FWESN, ESN, and TS
model, are used in the experiments. The neurons in the form of
hyperbolic tangent functions are used for the ESN and FWESN.

Parameters: r is the number of fuzzy rules. The main
parameters of the reservoir are the scale of the reservoir N, the
sparseness of the reservoir SD, the spectrum radium of the
internal weight matrices in the reservoir SR, the input-unit
scale IS, and shifting IT. In the experiments, FWESN and ESN
use the same scale N, where N � rNi for FWESN, where Ni

represents the scales of sub-reservoirs corresponding to Eq. 6,
where i � 1, 2, . . ., r. Moreover, N1 � N2 � . . . � Nr. Additionally,
SR, IS, IT, and SD in all sub-reservoirs of FWESN and the
reservoir of ESN are the same. Thus, from Eq. 13, it follows
that the spectra radius ofW in Eq. 9) is the same as that in Eq. 1.

Finally for the FWESN and TS model, both the parameters in the
antecedent part and the total number of fuzzy rules are the same.

Performance Indices: We choose the training and test errors
as the performance indices. All the errors refer to the mean square
errors in the experiment.

Experimental Results: The simulation results are summarized
in Table 1.

From Table 1, the FWESN achieves better performance than
the ESN and TS model under same conditions. The bold values in
Table 1 highlight the minimal test errors for each data set. For
example, by the FWESN and dynamic system Eq. 1, the training
and test errors are, respectively, 6.7 014e-6 and 0.001 3, which are
far less than the errors based on the ESN and TS model. Thus, the

TABLE 1 | Experiment results for FWESN, ESN, and TS model.

Data set Algorithm Training error Test error

Dynamic system (13) FWESN 6.7 014e-6 0.001 3
ESN 1.9 444e-4 0.217 3
TS model 0.036 7 0.186 3

Mackey-Class FWESN 3.7 599e-5 3.6 374e-5
ESN 0.001 5 0.000 6
TS model 0.035 7 0.032 8

Lorenz FWESN 0.017 9 0.021 4
ESN 0.189 6 0.226 7
TS model 0.194 4 0.264 5

ESTSP08 (A) FWESN 0.100 2 0.288 4
ESN 0.420 0 0.610 0
TS model 0.210 0 0.991 0

ESTSP08(B) FWESN 0.254 9 0.331 2
ESN 0.158 2 0.420 0
TS model 0.865 8 1.112 8

ESTSP08(C) FWESN 0.200 4 0.227 6
ESN 0.425 9 0.852 3
TS model 0.450 0 1.256 0

The bold values highlight the minimal test errors for each data set.

FIGURE 5 | Training and test errors for FWESN, ESN, and TS model.
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learning ability and generalization ability are obviously better
than the ESN and TS model. The similar results are obtained for
the five nonlinear time series from Figure 5. On the one hand, the
test errors of FWESN are less than those of ESN. The scale of
FWESN and ESN are the same. The comparison indicates that the
FWESN enhances the performance of ESN since we incorporate
the structural information of the data sets into the ESN via the
form of fuzzy weight. Additionally, the FWESN has better
prediction ability, especially for nonlinear time series, than the
TS model while their total number of fuzzy rules and the
antecedent part of each fuzzy rule are the same.

5 CONCLUSION

In this work, a novel framework with the advantages of the
ESN and TS model is proposed. As a generalization of both
ESN and TS model, the ESN and TS model are improved and
extended. Similar to the classical ESN, we prove that if the
largest spectrum radium of the internal unit weight matrix is
less than one, the FWESN has the echo state property. The
FWESN shows higher accuracy than the TS model and ESN.
For future work, we plan to continuously investigate the
underlying theory problem of FWESN, such as the tighter
stability conditions and approximation capability to a
dynamical system or static function. We attempt to more
different applications, for e.g., remaining useful life
predictions. Additionally, we will consider hardware, for
e.g., field-programmable gate array (FPGA) and

implementation of FWESN oriented to real-time
applications. Actually, with the development of computing
power and access to big data, the convolutional neural
networks are very popular owing to their obvious
advantages. Thus, one further research will focus on the
deep ESN based on the structural information of big data.
We believe that some better results will be obtained through
incorporating FWESN and deep-learning methods.
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Simulation Study on Lightning Impulse
Characteristics of Flexible Graphite
Composite Grounding Materials
Applied to Grounding Grid of Power
System
Yuanchao Hu1, Tao Huang2, Yunzhu An1*, Jianyuan Feng1, Meng Cheng2, Hongping Xie2,
Wentao Shen2 and Changqing Du2

1School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China, 2Construction Branch of State
Grid Jiangsu Electric Power Co., Ltd, Nanjing, China

The flexible graphite composite grounding electrode is a non-metallic grounding electrodewith
good electrical conductivity, corrosion resistance and non-ferromagnetic properties. In order
to analyze the impulse characteristics of the graphite composite grounding electrode, this
paper builds a frequency domain electrical network model and an equivalent radius iterative
algorithm, considering skin effect, inductance effect, capacitance effect and spark discharge
effect. The impulse characteristics of typical metal grounding electrodes and graphite
composite grounding electrodes are analyzed by simulation. The research results show
that: Compared with the traditional metal grounding electrode, the graphite composite
grounding electrode has a smaller skin and inductance effect under the action of the
impulse current, and a better current flowing capability; as the soil resistivity increases, the
inductance effect and the skin effect are weakened, while the spark discharge effect is
gradually enhanced and dominates. The spark discharge effect can effectively decrease the
grounding resistance. The obtained critical value of the normalized parameter of 412 kAΩ, can
be taken as the threshold to discriminate the conditions with dominate inductance effect from
the conditions with dominant spark discharge effect.

Keywords: power system grounding electrode, graphite composite grounding electrode, impulse characteristics,
spark discharge effect, inductance effect, electrical network model

INTRODUCTION

The grounding grid is the most basic lightning protection device in power system. Good impulse
grounding performance is an important prerequisite for ensuring safe and reliable operation of power
system. The grounding resistance of grounding device generated by lightning current is called impulse
grounding impedance (Deng et al., 2013; He and Zhang, 2015; Zhang, 2018). Different from the power
frequency current, the lightning current flows through the grounding electrode in a pulse manner in a
very short time, resulting in that the impulse grounding impedance is different from the power frequency
grounding resistance (Grcev, 2009a) (Tao et al., 2018). The lightning current flowing through grounding
electrode and soil is a complex electromagnetic transient process accompanied by various physical effects
such as inductance effect and spark discharge effect (Grcev, 2009b; Visacro and Rosado, 2009; Deng et al.,
2012;Wen et al., 2016). The CDEGS, an international general grounding simulation software, can be used
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to calculate the impulse grounding impedance of grounding
electrode. However, the calculation results of CDEGS do not
consider the influence of soil ionization, which is called spark
discharge effect in this paper, leading to a large error between
the calculation results and the actual grounding impedance of the
grounding electrode (Yang et al., 2021; Feng et al., 2015). At present,
the numerical simulation algorithms for impulse characteristics of
grounding devices considering the effect of soil spark discharge
mainly include transmission linemodelingmethod (TLM) and finite
element method (FEM). The impulse response of grounding devices
using TLM is equivalent to the wave propagation of transmission
line. This method cannot consider the coupling between conductors
(de Lima and Portela, 2007; Gazzana et al., 2014). The FEMmethod
is more efficient, but the change of soil resistivity will lead to the
occurrence of ill-conditionedmatrix in the calculation, thus affecting
the calculation accuracy (Nekhoul et al., 1996). It is difficult to
consider all the physical processes like skin effect, inductance effect
and spark discharge process when impulse current flew through the
grounding electrode.

In recent years, flexible graphite composite groundingmaterial as
a new type of non-magnetic grounding electrode has been applied to
the grounding grids of power system (Huang et al., 2019; Hu et al.,
2014). Compared with traditional metal grounding materials,
flexible graphite composite grounding materials have good
electrical conductivity and natural corrosion resistance (Gong
et al., 2016; Hu et al., 2016; Xiao et al., 2017). In order to study
the impulse characteristics of graphite composite grounding
electrode under the influence of skin effect, inductance effect and
capacitance effect, the frequency domain electrical network model is
established by MATLAB to simulate the current flow process of
tower grounding electrode. Moreover, the iterative algorithm of
equivalent radius is used to consider the influence of soil nonlinear
ionization around the grounding electrode. The influences of various
physical effects on the impulse characteristics of graphite composite
grounding electrode are obtained by simulation. The research results
can provide theoretical reference for optimizing the length of
graphite composite grounding electrode.

SIMULATION MODELING METHOD

Frequency Domain Electrical Network
Model of Grounding Electrode
In this section, the impulse process of grounding electrode in Earth is
considered by frequency domain electrical network model. A simple
horizontal grounding electrode is applied. In order to describe the

grounding electrode more intuitively, this paper adopts the circuit
modeling with lumped parameters. Firstly, the grounding electrode
is gridded and each segment is equivalent to a circuit model
composed of resistance, inductance, grounding capacitance and
grounding conductance (Mentre and Grcev, 1994) (Lorentzou
et al., 2003). The equivalent electrical network model of
horizontal grounding rod is shown in Figure 1.

Suppose there are a total of r branches, n nodes, so that the
branches i = 1, 2, ···, r, nodes j = 1, 2, ···, n, where Ri, Li,Mi, Ci and
Gi are the resistance, self-inductance, mutual-inductance,
grounding capacitance, and grounding conductance of each
branch after the grounding electrode meshing; _Ui and _Vj are
the ground potential rises (GPR) of each segment of branch and
each node relative to infinity; _IF is the external injection impulse
current; _Ii and _INj are the currents flowing into the Earth for each
branch and each node.

Assuming that the GPR of each segment of the branch is equal
to the average value of the GPR at both ends, as shown in Eq. 1.

_U i �
_Vi + _Vi+1

2
(1)

According to Eq. 1, the matrix relation between GPR vector _U
of branch and GPR vector _V of node can be obtained.

_U � K _V (2)
where K is the relationship matrix between the branch and the
node. When branch i is associated with node j, the corresponding
value is 0.5, otherwise the value is 0.

Assuming that the current distribution on each branch is
uniform, and the current at each node is equal to the average
value of the branch current connected to it. Similarly, the vector
relation of the current flowing into the Earth on nodes and
branches can be obtained, as shown in Eq. 3.

_IN � KT _I (3)
where K T is the transposed matrix of K.

The vector _I of branch current flowing into the Earth and the
vector _U of branch GPR have the constraint relationship of Eq. 4.

_U � Z _I (4)
where Z is the impedance matrix of conductor grounding branch.
The elements in Z are composed of the self-impedance of each
branch and the mutual impedance between branches.

Inverse matrix Z and get Eq. 5.

_I � YB
_U (5)

According to the node voltage equation, Eq. 6 is obtained.

_IF − _IN � YN
_V (6)

where YN is the node admittance matrix composed of the
resistance and inductance of each branch.

Eq. 7 can be obtained by Eqs 2, 3, 5, and 6.

_IF � (KTYBK + YN) _V (7)

FIGURE 1 | Equivalent electrical network model of grounding electrode.
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According to Eq. 7, the vector _V of node GPR can be obtained,
and the vector _U of branch GPR and the vector _I of branch
current flowing into the Earth are obtained by Eqs 2, 5.

It is required to solve the impulse response curve of
grounding electrode in the time domain. Firstly, the pulse
current in the time domain is decomposed into a plurality of
sinusoidal alternating currents with different frequencies by fast
Fourier transform (FFT). Under the action of current with
different frequencies, the corresponding branch admittance
matrix YB and node admittance matrix YN can be solved,
thereby obtaining vector values of voltage and current.
Finally, the frequency domain response is transformed into
the corresponding time domain response through the inverse
Fourier transform, and the impulse response curve of
parameters such as branch GPR and current flowing into
Earth can be obtained.

Iterative Algorithm Considering Spark
Discharge Effect
In order to consider the influence of spark discharge effect on the
impulse characteristics of grounding electrode, it is assumed that the
spark discharge area generated around each branch of the grounding
electrode is a cylinder with uniform ionization. The equivalent
model of grounding electrode during discharge is shown in
Figure 2 (Shen and Raksincharoensak, 2021a; Shen and
Raksincharoensak, 2021b).

Under the influence of sinusoidal alternating current at
different frequencies, the grounding electrode surface and the
surrounding soil will produce different electric field intensities
Ei(ω) and current densities Ji(ω), as shown in Eq. 8.

Ji(ω) � Ei(ω)
ρ

+ jωεEi(ω) (8)

where ρ is the soil resistivity; ω is the angular frequency of the
sinusoidal alternating current; ε is the dielectric constant of
the soil.

The current density of the grounding electrode surface can be
determined by the branch current flowing into the Earth.
According to Eq. 8, the relationship between the electric field
intensity Ei (ω) and the equivalent radius r of spark discharge can
be obtained as shown in Eq. 9 (Shen et al., 2022).

Ei(ω) � Ii(ω)
2πrl(1/ρ + jωε) (9)

The instantaneous value of electric field intensity in time
domain is calculated by inverse Fourier transform of soil
electric field intensity Ei (ω) around grounding electrode in
frequency domain. By simplifying, the relationship between
the equivalent radius ri(t) of the grounding electrode spark
discharge and its surrounding soil electric field intensity Ei (t)
in the time domain is shown in Eq. 10.

ri(t)
r

� Ei(t)
EC

(10)

where ri(t) is the equivalent radius of the branch i; r is the real
radius of the grounding electrode; Ec is the critical breakdown
field strength of soil. If Ei (t)>Ec, the soil around the grounding
electrode is broken down, resulting in spark discharge. The
equivalent radius of the branch is calculated by Eq. 10. If Ei
(t)≤Ec, it is calculated according to the real radius r.

With the change of equivalent radius ri(t), the self-
admittance parameter in the grounding branch admittance
matrix YB changes, thereby affecting the change of branch
current flowing into the Earth. At the same time, the flowing
current will change the value of the equivalent radius. The two
interact, and the change of its value is an iterative process. The
simulation calculation process is shown in Figure 3. The k(t) is
the ratio of the estimated branch GPR vector _U, which can be
solved by the constraint condition that the sum of the currents _I
flowing into the Earth at each moment is equal to the sum of the
node impulse currents _IF. The e is the convergence criterion of
the iterative algorithm, namely the difference Δrimax(t) of the
maximum radius between the equivalent radius ri(t) mth

FIGURE 2 | Physical model of spark discharge field of soil around
grounding electrode.

FIGURE 3 | Equivalent radius iterative algorithm flow chart.
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iteration and the (m-1)th iteration. If the equivalent radius
converges, the calculation result is directly output. Otherwise,
the branch current variation ΔIi(t) and node current variation
ΔINj(t) are obtained by the equivalent radius. The frequency
domain value ΔINj(ω) is obtained by Fourier transform and
superimposed into the reduction of external impulse current on
the impulse current of the previous iteration. The simulation is
continuously iteratively calculated until the equivalent radius
converges.

VERIFICATION OF SIMULATION RESULTS

In order to verify the effectiveness of the frequency domain
electrical network model and its iterative algorithm simulation
results, the calculation results of this paper are compared with the
calculation results of CDEGS grounding simulation software and
the experimental results in the literature. Both simulations and
experiments adopt round steel grounding electrodes. The
grounding electrode radius is 10 mm, the length of grounding
electrode is 20 m, the buried depth is 0.8 m, the impulse current
waveform is 2.6/50 μs, the amplitude is 10 kA, the relative
dielectric constant of sold is 9, and the soil critical breakdown
field strength Ec is 400 kV/m (Mousa, 1994).

Without considering the effect of spark discharge, the
variation curve of impulse grounding impedance Rch of
grounding electrode under different soil resistivities is obtained
by frequency domain electrical network model simulation. The
calculation results are compared with the simulation results of
CDEGS, as shown in Figure 4.

The simulation results in this paper are basically consistent
with the laws of CDEGS calculations, and the maximum error is
less than 4%. Figure 5 shows the time-domain voltage response
curve of the grounding electrode when the soil resistivity ρ is
500Ωm. It can be seen that the proposed method has good
consistency with the calculation results of CDEGS, indicating that

the calculation method of frequency domain electrical network
model proposed in this paper is correct.

Moreover, this paper uses the equivalent radius iterative
algorithm to simulate the soil discharge process, and compares
its calculation results with the simulation results in literature
(He et al., 2003), as shown in Figure 6. Affected by different
soil resistivity, the impulse grounding impedance calculated by
the equivalent radius iterative algorithm proposed in this paper
is similar to the simulation experiment in literature (He et al.,
2003), and the maximum error is less than 6%.

The calculated results of 20 m horizontal grounding
electrode in soil with resistivity of 1,000 Ωm are compared
with the results obtained from the full-scale experiments by
Wen et al (Yang et al., 2022) in Table 1, where α is the impulse

FIGURE 4 | Impulse grounding impedance curve without considering
spark discharge effect.

FIGURE 5 | Voltage response curve of grounding electrode when ρ is
500 Ω m.

FIGURE 6 | Impulse grounding impedance curve considering spark
discharge effect.
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coefficient, which is equal to the ratio of impulse grounding
impedance Rch to power frequency grounding resistance Rg. It
can be seen that the calculated results are in good agreement
with the experiment results of Wen et al (Yang et al., 2022). In
general, the proposed simulation models and algorithms are
correct, and the results are credible.

EFFECT OF VARIOUS PHYSICAL EFFECTS
ON IMPULSE CHARACTERISTICS OF
GRAPHITE COMPOSITE GROUNDING
ELECTRODES

Under the action of high frequency lightning current and fault
current, the grounding grid presents impedance characteristics,
including resistance component and reactance component.
Therefore, in order to analyze the grounding characteristics of
graphite composite grounding materials, the grounding
impedance characteristics should be analyzed under the action
of alternating current. The physical processes affecting the
grounding impedance include skin effect, inductance effect,
capacitance effect and spark discharge effect. In this paper, the
influence of four physical effects on graphite composite
grounding materials is analyzed and calculated. The results are
compared with traditional metal grounding materials (galvanized
steel). The physical picture and measured parameters of
grounding electrode of two materials are shown in Figure 7
and Table 2.

In the simulation, the length of grounding electrode is 10, 30,
60 m, the buried depth is 0.8m, the critical breakdown field
strength of soil is 400 kV/m, the lightning current parameter is
2.6/50 μs, and the amplitude is 30 kA. In Table 2, Φ is the
diameter of grounding electrode; δ is the grounding material
resistivity, Ω·m; εr is the relative permeability of grounding
material.

Capacitance Effect
When only capacitance effect is considered, inductance effect,
skin effect and spark discharge effect should be ignored. That is,
in the simulation calculation process, the grounding electrode
inductance, high frequency resistance and iterative algorithm are
not involved in the simulation calculation. The αC is defined as
the impulse coefficient of different soil resistivity. It is found that
the impulse coefficients αC of both materials are less than the
value 1, and the maximum error between αC and value 1 is not
more than 0.6%. It shows that capacitance effect can reduce
impulse grounding impedance under the impulse current, but the
effect is very small.

The capacitance effect will not only reduce the impulse
grounding impedance, but also cause the grounding potential
rise waveform on the grounding electrode lagging behind the
impulse current waveform. Figure 8 shows the impulse current
waveform and grounding potential rise waveform of graphite
composite grounding electrode with soil resistivity ρ of 4,000Ωm
and length l of 10 m.

TABLE 1 | Comparison with the impulse coefficient α of the experiment.

Impulse current 2 kA 4 kA 6 kA 8 kA

He et al. (2003) 0.63 0.59 0.57 0.55
Wen et al. (Yang et al., 2022) 0.68 0.59 0.55 0.52
calculated data 0.72 0.62 0.56 0.52

FIGURE 7 | Physical picture of the grounding electrode.

TABLE 2 | Material parameters of the steel and graphite grounding electrode.

Material Diameter Φ(mm) Resistivity δ(Ω·m) Relative permeability εr

Steel 12 1.92 × 10−6 636
Graphite 28 3.25 × 10−5 1

FIGURE 8 | Waveform of grounding potential rise when capacitance
effect is dominant.
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Skin Effect
Finite element numerical calculation method is used to compare
and analyze the skin effect of grounding electrodes of different
materials in the flow of high frequency current. Galvanized steel
grounding electrode of diameter Φ = 12 mm and graphite
composite grounding electrode of diameter Φ = 28 mm are
applied during simulation according to practical grounding
engineering. The current frequency is 100 kHz, and the length
l of grounding electrode is 1 m. The simulation results are shown
in Figure 9.

It can be seen that the current density distribution of
galvanized steel grounding electrode is extremely uneven due
to skin effect, and the current is mostly concentrated on the
external surface of the grounding electrode. This results in a
significant reduction in the actual area of current flowing through
the grounding electrode. On the contrary, the current density
distribution of graphite composite grounding electrode is
relatively uniform.

Due to the influence of high frequency current, the cross-
sectional area of the actual current flowing through the grounding
electrode decreases, thereby increasing the resistance of the
grounding electrode. In order to compare and analyze the
influence of skin effect on the grounding characteristics of two
grounding materials, the resistance R of grounding electrode
under different frequencies is used as the influencing factor of
skin effect, which can be calculated according to Eq. 11.

R �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l
πσr2

, δ ≥ r

l
πσδ(2r − δ), δ < r

(11)

where σ is the conductivity of the conductor; δ is the radial depth
that the current flowing through the grounding electrode can
reach due to the skin effect, and is calculated by Eq. 12.

δ �
						

2
ωμrμ0σ

√
(12)

where μ0 is vacuum permeability; μr the relative permeability of
grounding material. The actual lightning current frequency is

mostly concentrated in 0–200 kHz. The resistance R of graphite
composite grounding electrode and galvanized steel grounding
electrode in the unit length can be obtained by calculation. As
shown in Figure 10, as the frequency increases, the resistance R of
galvanized steel grounding electrode increases greatly. In
contrast, the increase in resistance of graphite composite
grounding electrode is small, which indicates that the graphite
composite grounding electrode has less affected by the skin effect
under the action of high frequency current.

Considering the capacitance effect, the impulse coefficient αsc
and αc of the grounding electrode at different materials are
calculated with and without the skin effect. In order to
facilitate the analysis of the influence of skin effect on the
grounding electrode impulse characteristics, the influence rate
ηs of skin effect on the impulse coefficient is defined. The effect of
skin effect on the impulse characteristics of grounding electrode
can be solved by Eq. 13.

ηs � (αSC − αC) × 100% (13)

FIGURE 9 | Skin effect of grounding electrodes. (A)Current density ofΦ12 mm galvanized steel grounding electrode cross section. (B)Current density ofΦ28 mm
graphite composite grounding electrode cross section.

FIGURE 10 | Effect of frequency on grounding electrode resistance.
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The effect rate of skin effect on the grounding electrodes is
shown in Table 3. It can be seen that the change of impulse
coefficient of galvanized steel grounding electrode is greater than
that of graphite composite grounding electrode affected by
lightning current. The influence of graphite composite
grounding electrode is less than 1%.

On the whole, the resistance R of the grounding electrode is
related to its length l, and the longer the length l, the larger the
resistance R. Therefore, when the length of the grounding
electrode is long, the skin effect has a great influence. In high
soil resistance area, the lightning grounding current flows
through the grounding electrode, and the current flowing to
the surrounding soil is small, resulting in large impulse
grounding impedance. At this time, the proportion of GPR of
grounding electrode in the total GPR is small, so the skin effect
is weak.

Inductance Effect
In order to fully consider the influence of the inductance effect,
this paper divides the inductance of the grounding electrode into
self-inductance and mutual inductance, and the mutual
inductance can be obtained by the Neumann equation (Ma
et al., 2015). Since the magnetic flux generated by the current
through the conductor is respectively closed inside and outside
the conductor, the self-inductance is equal to the sum of external
self-inductance and inner self-inductance. The external self-
inductance Le can ignore the influence of frequency and it is
calculated by Eq. 14.

Le � μ0l
2π

(ln 2l
r
− 1) (14)

where μ0 is vacuum permeability; l is the length of grounding
electrode; r is the radius of the grounding electrode. The internal
self-inductance Li is calculated by the low frequency current, as
shown in Eq. 15.

Li � μrμ0l
8π

(15)

where μ0 is vacuum permeability; μr the relative permeability of
grounding material; l is the length of grounding electrode. When
the current frequency is high, the internal self-inductance of
grounding electrode changes due to skin effect, and is solved
according to Eq. 16.

Li � l
2πr

				
μrμ0

2ωσ

√
(16)

where μ0 is vacuum permeability; μr the relative permeability of
grounding material; l is the length of grounding electrode; r is the
radius of the grounding electrode; σ is the conductivity of the
grounding electrode. As the sinusoidal alternating current at
different frequencies changes, the self-inductance and
inductive reactance per unit length of graphite composite
grounding electrode and galvanized steel grounding electrode
are shown in Figure 11.

Under the influence of 0–200 kHz AC current, the inductive
reactance of graphite composite grounding electrode is smaller
than that of galvanized steel grounding electrode. This is because
the galvanized steel grounding electrode is the paramagnetic
material, and its magnetic permeability is much larger than
that of the graphite composite grounding electrode, resulting
in a larger inductance of galvanized steel grounding electrode.

Considering the capacitance effect, skin effect and inductance
effect simultaneously, the impulse coefficient αSLC of grounding
electrode is calculated, and the influence rate ηL of inductance
effect is obtained by Eq. 17.

ηL � (αSLC − αSC) × 100% (17)

TABLE 3 | Influence rate ηs of skin effect (%).

Soil resistivity
ρ (Ω·m)

Galvanized steel grounding electrode Graphite composite grounding electrode

10 m 30 m 60 m 10 m 30 m 60 m

50 7.07 42.91 90.68 0.05 0.36 0.92
200 1.81 14.09 41.65 0.01 0.11 0.34
500 0.73 5.88 20.12 0.01 0.04 0.16
1,000 0.35 2.93 10.54 0 0.02 0.06
2000 0.18 1.43 5.22 0 0.01 0.06
4,000 0.02 0.56 2.44 0 0 0.01

FIGURE 11 | Effect of frequency on the inductance of the grounding
electrode.
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As shown in Table 4, the galvanized steel grounding electrode
is more affected than graphite composite grounding electrode due

to the inductance effect. Overall, the longer the length l of
grounding electrode, the stronger the inductance effect, and
the greater the obstruction of current flowing to the far
position of grounding electrode. With the increase of soil
resistivity, the proportion of GPR generated by the inductance
of grounding electrode in total GPR decreases. Therefore, the
inductance effect of grounding electrode has little effect on its
impulse grounding characteristics in the areas with high soil
resistivity.

Without considering the spark discharge effect, the variation
of impulse coefficient of calculated graphite composite
grounding electrode with soil resistivity is shown in
Figure 12. In most cases, the impulse coefficient αSLC is
greater than the value 1. As skin effect has little effect on
graphite composite grounding material, it is mainly caused
by the inductive effect of grounding electrode. Figure 13
shows the impulse response curve when the soil resistivity ρ
is 50Ωm and the grounding electrode length l is 60 m. It can be
seen that the grounding impedance of grounding electrode
presents inductance characteristics, and the GPR waveform is
ahead of the impulse current. When the grounding electrode is
short or the soil resistivity is high, the impulse coefficient αSLC
appears to be less than the value 1. This is because the
conductivity of soil is poor, and the influence of inductance
effect and skin effect are small. At this time, the grounding
capacitance of grounding electrode is involved in the diffusion
of high frequency current, resulting in significant capacitance
characteristic of impulse grounding impedance, and the impulse
grounding impedance is less than power frequency grounding
resistance.

Spark Discharge Effect
Under the effect of the impulse current, when the electric field
intensity E of the soil around the grounding electrode reaches the
critical breakdown electric field intensity Ec of the soil, the soil
ionization occurs due to the breakdown. The soil resistivity
around the grounding electrode is greatly reduced. An iterative
algorithm of equivalent radius of grounding electrode is used to
simulate the spark discharge process and calculate the impact
grounding impedance of grounding electrode. The influence rate
ηD of spark discharge effect is calculated by Eq. 18, as shown in
Table 5 and Table 6.

ηD � (α − αSC) × 100% (18)

TABLE 4 | Influence rate ηL of inductance effect (%).

Soil resistivity
ρ (Ω·m)

Galvanized steel grounding electrode Graphite composite grounding electrode

10 m 30 m 60 m 10 m 30 m 60 m

50 22.83 117.88 194.07 12.51 107.19 164.29
200 1.69 55.6 126.42 0.12 44.53 114.74
500 0.43 18.49 78.21 0.1 8.17 67.76
1,000 0.26 3.56 46.05 0.05 0.22 35.89
2000 0.18 1.02 17.22 0.02 0.08 8
4,000 0.1 0.38 1.88 0.01 0.02 0.13

FIGURE 12 | Impulse coefficient of graphite composite grounding
electrode without spark discharge effect.

FIGURE 13 | Waveform of grounding potential rise when inductance
effect is dominant.
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Where the impulse coefficient αSLC considering capacitance effect,
skin effect and inductance effect; the impulse coefficient α
considering capacitance effect, skin effect, inductance effect and
spark discharge. The spark discharge effect of galvanized steel
grounding electrode is slightly better than that of graphite
composite grounding electrode, but graphite composite
grounding electrode is less affected by inductance effect and skin
effect, so it has better current flowing capability. Comparing the
impulse grounding impedance, the inductance effect is less affected
when the soil resistivity is high and the grounding electrode length is
short, and the galvanized steel grounding electrode is greatly affected

by the spark discharge effect, resulting in its impulse grounding
impedance Rch is smaller than graphite. But as a whole, the impulse
grounding impedance of graphite composite grounding electrode is
mostly smaller than that of steel. In the actual engineering design of
tower grounding engineering, large-size square grounding electrodes
with elongated conductors are usually used. The grounding electrode
is more affected by inductance effect and skin effect. Therefore, the
impulse grounding characteristic of graphite composite grounding
electrode is better than that of galvanized steel grounding electrode.

In summary, the inductance effect and skin effect will increase the
grounding impedance of the grounding electrode. Conversely, the
capacitance effect and sparking discharge effect can reduce the
impulse grounding impedance. For graphite composite grounding
electrode, the capacitance effect and skin effect have little effect, so this
paper only analyzes the influence of inductance effect and spark
discharge effect. It can be seen from Figure 14 that in the low soil
resistivity area and the grounding electrode is long, the grounding
electrode impulse coefficient α is greater than the value 1. The GPR
generated by inductance effect accounts for a large proportion of the
total GPR, leading to the inductance effect being dominant. However,
as the soil resistivity ρ increases, the impulse coefficient α decreases
and the spark discharge effect increases.When α is less than the value
1, the spark discharge effect is more dominant than inductance effect.

OPTIMIZATION OF LENGTH OF FLEXIBLE
GRAPHITE COMPOSITE GROUNDING
ELECTRODE
In practical engineering applications, in order to improve the
current dispersion characteristics of tower grounding grid, the
effect of inductance effect should be minimized or the effect of
spark discharge effect should be increased to make the spark
discharge effect of grounding electrode dominant. According to

TABLE 5 | Influence rate ηD of spark discharge effect (%).

Soil resistivity
ρ (Ω·m)

Galvanized steel grounding electrode Graphite composite grounding electrode

10 m 30 m 60 m 10 m 30 m 60 m

50 −33.22 −56.54 −76.1 −19.8 −28.63 −33.33
200 −51.42 −50.36 −75.16 −47.51 −33.37 −45.94
500 −64.68 −43.97 −66.04 −60.51 −31.82 −46.03
1,000 −72.04 −48.11 −58.40 −68.64 −43.44 −44.28
2000 −77.95 −61.24 −50.08 −75.32 −60.52 −40.17
4,000 −82.42 −71.89 −53.09 −79.8 −67.98 −51.8

TABLE 6 | Impulse grounding impedance Rch of different material grounding electrodes (Ω).

Soil resistivity
ρ (Ω·m)

Galvanized steel grounding electrode Graphite composite grounding electrode

10 m 30 m 60 m 10 m 30 m 60 m

50 6.77 6.2 5.95 5.96 5.56 5.45
200 14.48 13.9 13.12 13.26 12.32 11.79
500 25.26 23.22 21.82 24.77 20.6 19.53
1,000 39.4 33.6 32.05 39.25 30.34 28.48
2,000 61.35 47.28 46.96 61.58 41.92 41.47
4,000 95.44 66.23 66.01 99.23 67.53 58.34

FIGURE 14 | Curve of impulse coefficient of graphite composite
grounding electrode.
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the field measurement results of lightning current, this paper
selects three kinds of the most common lightning current, the
waveforms are shown in Table 7.

Waveform 1 is a typical initial waveform of lightning impulse
current, which is mainly used to simulate the significant inductance
effect. Waveform 2 is the standard lightning current waveform
recommended for lightning protection calculation. Waveform 3 is
a typical secondary waveform of lightning impulse current, which is
mainly used to simulate the significant spark discharge effect.

The impulse coefficient α of graphite composite grounding
electrode is calculated under different lightning current waveforms.

According to the fitting of the result curve, the soil resistivity
critical value ρc was estimated, which is the soil resistivity when
the pulse characteristic is converted from the dominance of
inductance effect to the dominance of spark discharge effect.
As shown in Table 8, the inductance effect dominates when the
soil resistivity is less than the corresponding critical value,
otherwise the spark discharge effect dominates.

In order to facilitate the optimal design of grounding electrode,
it is necessary to make a general quantitative description of the
dominant range of inductance effect and spark effect. Therefore,
the normalization parameter S is defined as the quantitative
criterion of conversion, which can be calculated by Eq. 19.

S � ρCIm
l

(19)

According toTable 9, when the soil resistivity ρ and the lightning
impulse current front waveform time T1 and the peak value Im are

known, the appropriate grounding electrode length l can be selected
to ensure that the impulse characteristics are always dominated by
spark discharge effect, so as to reduce the impulse impedance. For
example, when the soil resistivity ρ is 500Ωm and the lightning
current is waveform 2, the grounding electrode length l is selected as
40 m, and the corresponding normalized parameter S is 375 kAΩ,
which is larger than the 321 kAΩ in Table 9. The spark discharge
effect dominates, and the impulse grounding impedance Rch is
smaller than the power frequency grounding resistance Rg.
Meanwhile, in order to facilitate engineers to conservatively
estimate the impulse characteristics of graphite composite
grounding electrode, the maximum value of 412 kAΩ in Table 9
is taken as the critical value of normalized parameter for converting
inductance effect into spark discharge effect. It should be pointed out
that the above conclusion is determined according to the soil critical
breakdown field strength Ec of 400 kV/m, which has a certain
deviation from the actual Ec value. When Ec>400 kV/m, the
corresponding normalized parameter S is larger than the values
listed in Table 9, and when Ec<400 kV/m, S is smaller than the
values in Table 9.

CONCLUSION

This paper presents a frequency domain electrical network analysis
method to simulate the impulse characteristics of grounding
electrodes. The impulse characteristics of typical metal grounding
electrode and graphite composite grounding electrode are calculated,
and the following conclusions are obtained.

1) Compared with the galvanized steel grounding electrode, the
graphite composite grounding electrode has little effect on
skin effect and inductance effect, and the graphite composite
grounding electrode has better current dispersion ability
under the impulse current.

2) The inductance effect and skin effect can increase the
grounding impedance of grounding electrode, while the
capacitance effect and spark discharge effect can reduce it.
However, the capacitance effect is very small compared with
the spark discharge effect, which can be ignored.

3) The longer the grounding electrode length, the more obvious
the effect of inductance and skin effect. However, with the
increase of soil resistivity, the influence of the two decreases,
and the spark discharge effect increases and gradually
dominates.

4) The normalized parameter S is defined to quantitatively
distinguish the influence range of inductance effect and

TABLE 7 | Computation parameters of lightning current impulse waveform.

Waveform parameter Front time T1 (μs) Time to half value
T2 (μs)

Peak value Im (kA)

Waveform 1 0.8 48 12
Waveform 2 2.6 50 30
Waveform 3 8 69 30

TABLE 8 | Soil resistivity critical value on which dominant inductance effect switch
to spark discharge effect.

Waveform parameter Critical value of soil resistivity ρc (Ω·m)

10 m 20 m 30 m 40 m 50 m 60 m

Waveform 1 144 455 824 1,237 1,638 2039
Waveform 2 41 138 263 428 624 824
Waveform 3 12 53 97 164 238 318

TABLE 9 | Critical value of normalized parameters on which dominant inductance
effect switch to dominant spark discharge effect.

Waveform parameter Normalized parameters S (kA·Ω)

10 m 20 m 30 m 40 m 50 m 60 m

Waveform 1 173 273 330 371 393 408
Waveform 2 122 207 263 321 374 412
Waveform 3 35 80 97 123 143 159
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spark discharge effect. The length of graphite composite
grounding electrode can be optimized by critical value S, so
as to ensure that the impulse characteristics are always
dominated by spark effect, and finally the purpose of
reducing impulse grounding impedance is achieved. To
conservatively estimate the impulse characteristics of
grounding electrode, the recommended S value is 412 kAΩ
as the critical value to convert inductive effect into spark
discharge effect (Shen and Raksincharoensak, 2021b).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YH: conceptualization, writing-original draft preparation,
software; TH: software; YA: funding acquisition, validation;
JF: Simulation and figures; MC: project administration; HX:
supervision; WS: supervision; CD: validation.

FUNDING

This manuscript was supported in part by the Natural Science
Foundation of China under Grant 51807113, in part by the
Natural Science Foundation of Shandong Province under
Grant ZR202103040796 and the Natural Science Foundation
of Jiangsu Province under Grant SBK2020042717.

REFERENCES

de Lima, A. C. S., and Portela, C. (2007). Inclusion of Frequency-dependent Soil
Parameters in Transmission-Line Modeling. IEEE Trans. Power Deliv. 22 (1),
492–499. doi:10.1109/tpwrd.2006.881582

Deng, C., Yang, Y., Tong, X., Dong, X., and Peng, Q. (2012). Impulse
Characteristics Analysis of Grounding Devices. High Voltage Eng. 38 (9),
1–8. doi:10.3969/j.issn.1003-6520.2012.09.044

Deng, C., Yang, Y., Dong, X., Ma, S., Peng, Q., and Wang, X. (2013).
Development of Impulse High Current Testing System of Grounding
Devices and Testing of tower Grounding Impulse Characteristics. High
Voltage Eng. 39 (6), 1527–1535. doi:10.3969/j.issn.1003-6520.2013.06.035

Feng, Z., Wen, X., Tong, X., Lu, H., Lan, L., and Xing, P. (2015). Impulse
Characteristics of Tower Grounding Devices Considering Soil Ionization by
the Time-Domain Difference Method. IEEE Trans. Power Deliv. 30 (4),
1906–1913. doi:10.1109/tpwrd.2015.2425419

Gazzana, D. S., Bretas, A. S., Dias, G. A. D., Telló, M., Thomas, D. W. P., and
Christopoulos, C. (2014). The Transmission Line Modeling Method to
Represent the Soil Ionization Phenomenon in Grounding Systems. IEEE
Trans. Magn. 50 (2), 103–107. doi:10.1109/tmag.2013.2283714

Gong, R., Ruan, J., Hu, Y., Wu, Y., and Jin, S. (2016). “Research on Flexible
Graphite-Copper Composited Electrical Grounding Material,” in
Proceeding of the 12th IET International Conference on AC and DC
Power Transmission (ACDC 2016), Beijing, China (IEEE), 1–6. doi:10.
1049/cp.2016.0403

Grcev, L. (2009). Time- and Frequency-dependent Lightning Surge Characteristics
of Grounding Electrodes. IEEE Trans. Power Deliv. 24 (4), 2186–2196. doi:10.
1109/tpwrd.2009.2027511

Grcev, L. (2009). Impulse Efficiency of Ground Electrodes. IEEE Trans. Power
Deliv. 24 (1), 441–451. doi:10.1109/tpwrd.2008.923396

He, J., Zeng, R., Tu, Y., Zou, J., Guan, S., and Guan, Z. (2003). Laboratory
Investigation of Impulse Characteristics of Transmission tower Grounding
Devices. IEEE Trans. Power Deliv. 18 (3), 994–1001. doi:10.1109/tpwrd.2003.
813802

He, J., and Zhang, B. (2015). Progress in Lightning Impulse Characteristics of
Grounding Electrodes with Soil Ionization. IEEE Trans. Ind. Applicat. 51 (6),
4924–4933. doi:10.1109/tia.2015.2427124

Hu, Y., An, Y., Xian, R., Li, H., Ruan, J., Huang, D., et al. (2016). “Study on
Magnetic Properties of Flexible Graphite Composite Grounding Material,”
in Proceeding of the 2016 IEEE International Conference on
High Voltage Engineering and Application, Chengdu, China, Sept. 2016
(IEEE), 1–4. doi:10.1109/ICHVE.2016.7800753

Hu, Y., Ruan, J., Gong, R., Liu, Z., Wu, Y., and Wen, W. (2014). Flexible
Graphite Composite Electrical Grounding Material and its Application in
tower Grounding Grid of Power Transmission System. Power Syst. Technol. 38
(10), 2851–2857. doi:10.13335/j.1000-3673.pst.2014.10.037

Huang, D., Xia, J., Ruan, J., Wu, Y., and Quan, W. (2019). Characteristics of the
Flexible Graphite Grounding Material and its Engineering Application.
IEEE Access 7, 59780–59787. doi:10.1109/access.2019.2913558

Lorentzou, M. I., Hatziargyriou, N. D., and Papadias, B. C. (2003). Time Domain
Analysis of Grounding Electrodes Impulse Response. IEEE Trans. Power Deliv.
18 (2), 517–524. doi:10.1109/tpwrd.2003.809686

Ma, Z., Zhou, X., Shang, Y., and Zhou, L. (2015). Form and Development Trend of
Future Distribution System. Proc. CSEE 35 (6), 1289–1298. doi:10.13334/j.
0258-8013.pcsee.2015.06.001

Mentre, F. E., and Grcev, L. (1994). EMTP-based Model for Grounding
System Analysis. IEEE Trans. Power Deliv. 9 (4), 1838–1849. doi:10.
1109/61.329517

Mousa, A. M. (1994). The Soil Ionization Gradient Associated with Discharge of
High Currents into Concentrated Electrodes. IEEE Trans. Power Deliv. 9 (3),
1669–1677. doi:10.1109/61.311195

Nekhoul, B., Labie, P., Zgainski, F. X., Meunier, G., Morillon, F., and Bourg, S.
(1996). Calculating the Impedance of a Grounding System. IEEE Trans. Magn.
32 (3), 1509–1512. doi:10.1109/20.497536

Shen, X., Ouyang, T., Khajorntraidet, C., Li, Y., Li, S., and Zhuang, J. (2022).
Mixture Density Networks-Based Knock Simulator. Ieee/asme Trans.
Mechatron. 27, 159–168. doi:10.1109/TMECH.2021.3059775

Shen, X., and Raksincharoensak, P. (2021a). Pedestrian-aware Statistical Risk
Assessment. IEEE Trans. Intell. Transport. Syst., 1–9. doi:10.1109/TITS.2021.
3074522

Shen, X., and Raksincharoensak, P. (2021b). Statistical Models of Near-Accident
Event and Pedestrian Behavior at Non-signalized Intersections. J. Appl. Stat.,
1–21. doi:10.1080/02664763.2021.1962263

Tao, S., Zhang, X., Wang, Y., and Yang, J. (2018). Transient Behavior Analysis of
Offshore Wind Turbines during Lightning Strike to Multi-Blade. IEEE Access 6,
22070–22083. doi:10.1109/access.2018.2828043

Visacro, S., and Rosado, G. (2009). Response of Grounding Electrodes to
Impulsive Currents: An Experimental Evaluation. IEEE Trans. Electromagn.
Compat. 51 (1), 161–164. doi:10.1109/temc.2008.2008396

Wen, X., Feng, Z., Lu, H., Tong, X., Lan, L., Chen, W., et al. (2016). Sparkover
Observation and Analysis of the Soil under the Impulse
Current. IET Sci. Meas. Tech. 10 (3), 228–233. doi:10.1049/iet-smt.2015.
0082

Xiao, W., Hu, Y., Ruan, J., Zhan, Q., and Huang, D. (2017). Flexible Graphite
Composite Electrical Grounding Material and its Grounding Application
Features. Power Syst. Technol. 32 (2), 85–94. doi:10.19595/j.cnki.1000-6753.
tces.2017.02.010

Yang, N., Yang, C., Xing, C., Ye, D., Jia, J., Chen, D., et al. (2021). Deep Learning-
based SCUC Decision-making: An Intelligent Data-driven Approach with Self-
learning Capabilities. IET Generation Trans. Dist 16, 629–640. doi:10.1049/
gtd2.12315

Yang, N., Yang, C., Wu, L., Shen, X., Jia, J., Li, Z., et al. (2022). Intelligent Data-
Driven Decision-Making Method for DynamicMultisequence: An

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 86585611

Hu et al. Impulse Characteristics of FGCGM Underground

399

https://doi.org/10.1109/tpwrd.2006.881582
https://doi.org/10.3969/j.issn.1003-6520.2012.09.044
https://doi.org/10.3969/j.issn.1003-6520.2013.06.035
https://doi.org/10.1109/tpwrd.2015.2425419
https://doi.org/10.1109/tmag.2013.2283714
https://doi.org/10.1049/cp.2016.0403
https://doi.org/10.1049/cp.2016.0403
https://doi.org/10.1109/tpwrd.2009.2027511
https://doi.org/10.1109/tpwrd.2009.2027511
https://doi.org/10.1109/tpwrd.2008.923396
https://doi.org/10.1109/tpwrd.2003.813802
https://doi.org/10.1109/tpwrd.2003.813802
https://doi.org/10.1109/tia.2015.2427124
https://doi.org/10.1109/ICHVE.2016.7800753
https://doi.org/10.13335/j.1000-3673.pst.2014.10.037
https://doi.org/10.1109/access.2019.2913558
https://doi.org/10.1109/tpwrd.2003.809686
https://doi.org/10.13334/j.0258-8013.pcsee.2015.06.001
https://doi.org/10.13334/j.0258-8013.pcsee.2015.06.001
https://doi.org/10.1109/61.329517
https://doi.org/10.1109/61.329517
https://doi.org/10.1109/61.311195
https://doi.org/10.1109/20.497536
https://doi.org/10.1109/TMECH.2021.3059775
https://doi.org/10.1109/TITS.2021.3074522
https://doi.org/10.1109/TITS.2021.3074522
https://doi.org/10.1080/02664763.2021.1962263
https://doi.org/10.1109/access.2018.2828043
https://doi.org/10.1109/temc.2008.2008396
https://doi.org/10.1049/iet-smt.2015.0082
https://doi.org/10.1049/iet-smt.2015.0082
https://doi.org/10.19595/j.cnki.1000-6753.tces.2017.02.010
https://doi.org/10.19595/j.cnki.1000-6753.tces.2017.02.010
https://doi.org/10.1049/gtd2.12315
https://doi.org/10.1049/gtd2.12315
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


E-Seq2Seq-Based SCUC Expert System. IEEE Trans. Ind. Inf. 18, 3126–3137.
doi:10.1109/TII.2021.3107406

Zhang, X. (2018). Computation of Lightning Transients in Large Scale
Multiconductor Systems. IEEE Access 6, 76573–76585. doi:10.1109/access.
2018.2883385

Conflict of Interest: TH, MC, HX, WS and CD are employed by Construction
Branch of State Grid Jiangsu Electric Power Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of the
publisher, the editors and the reviewers. Any product that may be evaluated in this
article, or claim that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Copyright © 2022 Hu, Huang, An, Feng, Cheng, Xie, Shen and Du. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 86585612

Hu et al. Impulse Characteristics of FGCGM Underground

400

https://doi.org/10.1109/TII.2021.3107406
https://doi.org/10.1109/access.2018.2883385
https://doi.org/10.1109/access.2018.2883385
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Data-Driven Traction Substations’
Health ConditionMonitoring via Power
Quality Analysis
Jingyi Xie*

College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China

Electrified railway traction substations are an important part of the transportation system,
the health of its operation condition indirectly affects the national economy. Generally,
traction substations’ conditions are studied from their power quality, while the nonlinearity
of loads and effects from the outside environment are factors mainly affecting the accuracy
of condition monitoring. In order to recognize the status of traction substations intelligently
and govern themwith fast measurements, this paper proposed a data-driven approach for
recognizing types of power quality problems, and developed a system with intelligent
governance strategies. The proposed approach contains two parts. Firstly, a double
discrete Fourier transform (DDFT) algorithm was developed to extract valid feature vectors
from power data. Then, a well-known data-driven method, support vector machine (SVM),
was applied to build classifiers. Finally, based on classification results, a strategy library for
power quality problems was built. Industrial data of a real traction substation in Wuhan,
China, was tested for the experiment. Compared with traditional methods, the proposed
approach is validated to be useful in improving the classification performance of power
quality problems, and fast and effective for governance in traction substations.

Keywords: data-driven, condition monitoring, traction substation system, power quality analysis, DDFT

INTRODUCTION

As the major infrastructure in transportation systems, electrified railway traction substations are
a powerful guarantee for national economic development and social progress (Hu et al., 2017).
Due to the electric locomotive being a type of nonlinear load, it has nonlinearity, impact, and
asymmetric distribution features in three phases of power electricity. Currently, there are serious
challenges in the process of maintaining the power quality traction substation, guaranteeing the
safe and stable operation of electrified railway (Hu et al., 2016). For example, the major power
quality problems faced by traction substations include harmonics, voltage fluctuations, flicker, as
well as negative-sequence current (Bitoleanu et al., 2016). These problems seriously reduced the
power quality of both traction substations and superior power systems, and subsequently impact
the safety and economic operation of the power system (Liu and Hu, 2017). Therefore, to ensure
the stable power supply of traction substation systems and the safe operation of electrified
railway, monitoring their health status and making targeted compensation measures are very
important.

Power quality problems are dangerous not only to the traction power system but also to other
power systems. Currently, the study of power quality problem analyses in literature are mainly
based on voltage signals (Khadkikar et al., 2017), for example, voltage analysis via Fourier
transformation, wavelet analysis, and so on. Considering the particularity of traction
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substations, higher computation speed is required to guarantee
the real-time decision-making. It is not feasible to analyze the
entire signal sequence as the object. Currently, according to
global research, mathematical transformations were
commonly used in power quality detection, such as the
short-time Fourier transform, wavelet transform,
s-transform, and bilinear time-frequency transform (De
Yong et al., 2015; Mahela et al., 2015; Shen et al., 2022).
Then, the transformed features have been utilized for fast
and effective analysis. These transformation methods
achieve some positive results to a certain extent. However,
taking the actual requirements of rapid compensation in
traction power quality into account, these methods still
have some restrictions in practical applications, e.g. their
complex calculations. On the other hand, according to the
results of power quality analysis, how to make timely and
effective control measures is also essential to traction
substation systems. In power quality governance measures,
the mixed compensation methods are usually applied, namely
the coordinated control of fixed units and dynamic
compensation devices (Mikkili and Panda, 2015; Lam et al.,
2017). However, the power quality governance of traction
substations is different from that of traditional power
systems. It has something to do with the real-time
operation status, and is related to factors such as weather,
geographical distribution and so on, so it is a typical non-
stationary random process. As the intelligent scheduling
requirements have been proposed in recent years, when and
what types of compensation methods are the major questions.
Therefore, an intelligent governance system for a traction
substation is required to solve power quality problems.

Aiming to tackle the mentioned issues above, in order to
solve power quality problems in electrified railway traction
substations intelligently, fast, and effectively, an intelligent
system for substations’ power quality problems is proposed
based on data-driven method in this paper. It is mainly based
on Double Discrete Fourier Transform (DDFT) with a sliding
window and intelligent classification methods. Contributions
of the proposed method are summarized as follows. First,
considering power quality problems vary with time, only the
latest period of data is used to analyze the power quality
problem in this paper, instead of using a long sequence of
historic data to extract features in traditional transformation
methods. Meanwhile, a sliding window is proposed to
guarantee the analysis process in real time. Second, in
order to ensure less information is lost in the sliding
window, DDFT is applied in the features analysis. DDFT
can not only extract the basic physical characteristics of
power quality at the first level as other transformation
methods do, but also analyze the historical variation
characteristics at the second level. In this way, less
information will be lost, and the dimension of analyzed
variables will not be increased dramatically. So DDFT
could facilitate the rapid detection of power quality
problems in traction substations. Third, advanced machine
learning models are built for multi-category classification,
they can be used to establish the power quality governance

system combined with the expert system model. Then, in the
power quality governance of real traction substations, the
proposed system could analyze the power quality problems
rapidly, then make a fast decision automatically based on the
strategies library, and finally realize the effective governance
of traction substation’s power quality problems intelligently.

FRAMEWORK OF THE PROPOSED
APPROACH

According to the description above, to maintain the safe and
stable operation of electrified railway, the main purpose
existing in a traction substation’s power quality problems is
to build a system for rapid analysis and intelligent governance.
This paper proposed an intelligent system based on DDFT and
machine learning (ML) algorithms, which mainly consists of
two parts: fast detection of power quality problems based on a
DDFT algorithm, and intelligent control and targeted
governance based on ML. The framework of the main idea
of the proposed approach is shown in Figure 1.

It can be seen from Figure 1 that the intelligent governance
system can be divided into two parts: the training part and
testing part. In the training part, in order to achieve the
intelligent and rapid governance system for traction
substation, some typical signals of power quality problems
are generated firstly based on their mathematical definition
models. The frequency-domain features of these power quality
samples are extracted through the DDFT algorithm. On the
other hand, based on the classes of different power quality
problems, the expert system is used to determine their effective
control measures or governance strategies, and these strategies
consist of the governance library. Finally, taking the extracted
features as inputs and the strategies library as the outputs,
classification models are built based on ML algorithms. The
optimal classifier is applied for the intelligent governance of
power quality problems. In the testing part, the application

FIGURE 1 | The framework of intelligent governance system.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8736022

Xie Traction Substations’ Health Condition Monitoring

402

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


objects are practical electric railways. The industrial data is
often voltage signals of traction substation. The same as the
training process, the frequency-domain features of industrial
data should be extracted by DDFT at first. Then the feature
vectors are input as the optimal classifier for decision-making.
The results are the effective strategies based on the classifier
and strategies library. Ignoring the classification process of
determining what exact types of power quality problems the
industrial signal belongs to, the optimal governance strategies
can be given out directly according to the proposed system. In
this way, it realizes intelligent governance of the traction
substation’s power quality problems, and keeps the safe
operation of electric railways.

INTELLIGENT SYSTEM AND
METHODOLOGY

Notion of Power Quality Problems
The operation of electric railway causes several power quality
problems to traction substations and outlet substations of
power systems, including voltage fluctuation, voltage
unbalance, voltage harmonics, and so on (Shen et al., 2021).
In order to quantify these problems in practice, models of some
common power quality problems including voltage rise,
voltage drop, voltage flicker, and transient impact are
defined (Singh et al., 2014; Wong et al., 2014; Shi et al.,
2016), as expressed in (1–3).

1) Signal of voltage rise and drop

f(t) � { sin(ωt)
α sin(ωt)

t< t1, t> t2
t1 < t< t2

(1)

Where, t1 and t2 represent the start and end time of disturbance
respectively; ω is the angle frequency of carrier voltage on power
frequency; α is the normalized voltage amplitude, when α> 1, f(x)
represents the voltage rise signal, when α< 1, f(x) represent the
voltage drop signal.

2) Signal of voltage flicker

f(t) � { sin(ωt)
(A +m cosΩt) sin(ωt)

t< t1, t> t2
t1 < t< t2

(2)

Where, m is the amplitude of amplitude-modulated (AM) wave,
Ω is the angle frequency of AM wave.

3) Signal of transient voltage

f(t) �
⎧⎪⎪⎨⎪⎪⎩

sin(ωt)
sin(ωt) +∑N

i�2
Ai sin(iωt + φi) + Ae−λt

t< t1, t> t2
t1 < t< t2

(3)
It can be seen that the transient voltage consists of multi-

frequency signals, such as mutations with damping attenuation
Ae−λt and transient high-frequency signals ∑N

i�2Ai sin(iωt + φi),
A represents the amplitude and φi represents the phase deviation
of the ith high-frequency signal. All these components lead to the
power quality problems.

Double Discrete Fourier Transformation
According to the analysis of formula (1-3), the definition of
power quality problems mainly considers the harmonics in the
frequency domain and amplitude characteristics of the time
domain. Conventional Fourier transform mainly analyzes
signal characteristics from the perspective of frequency
domain (Boashash, 2015). However, it has limitation in
rapid detection of the traction substation’s power quality
problems in real-time. Wavelet transformation has the
ability to express both time-domain and frequencydomain
characteristics (Shen et al., 2020), but it is not easy to
choose a suitable mother wavelet. After a comprehensive
comparison, on the basis of discrete Fourier transform
(DFT), this paper proposed the double discrete Fourier
transform (DDFT) as the major tool to solve the electric
power quality detection problems of traction substations.

To satisfy the real-time analysis of traction power quality,
the DDFT algorithm is developed based on sliding-window
iterative DFT (Zhan et al., 2016). Results of DFT usually
reflect real-time information in the frequency domain, but
they cannot distinguish all the power quality problems, which
have an impact on the amplitude of fundamental frequency
signals, e.g. voltage rise, voltage drop, and voltage flicker.
Therefore, the proposed DDFT algorithm tries to extract
fundamental sequences {X (k,t)} from the historical results
of DFT transformation. The sequence is then used for Fourier
transform for the second time. The purpose of this process is
to obtain fundamental frequency information, which can be
used to distinguish between temporary voltage rise, drop, and
flicker problems.

Figure 2 shows the technological process of DDFT. It can be
seen that the original signal is analyzed based on Fourier
transformation by taking sliding windows as units. In this
way, the computational cost is reduced, and the calculation is
speeded up for real-time analysis. After that, the fundamental
sequence in the historical windows is extracted at the same size
of sliding window, and processed with DFT algorithm once
again. Therefore, the DDFT algorithm can not only extract the
variation of the fundamental signal and other frequency
information, but also maintain the real-time signal analysis,
both of which are essential for the power quality analysis in
traction substations.

Multi-Classes Classification Based on
Machine Learning Models
For a given voltage signal in the traction substation {xn}, a
series of transformed features are obtained through the
DDFT algorithm. To determine the class that the power
quality signal belongs to is a must for the decision-making
of selecting appropriate control strategies and power
compensation devices. This paper generated some typical
power quality signals, and extracted their characteristics by
DDFT. By regarding the mechanism of identifying power
quality problems as the process of choosing a classifier, and
collecting feature samples to be used to train the classifier, the
classifier would complete the recognition of power quality
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problems. According to the above analysis, this paper applied
ML-based algorithms to build the classifier.

EXPERIMENTS AND DISCUSSION

Training Part
1) synthetic power quality signals.

To train an optimal mechanism for power quality governance
in a traction substation, the first task is to obtain the training
dataset. In this paper, the training data is generated through the
definitions of typical power quality problems. According to the
definitions in (1-3), 10 sets of power quality signals with different
parameters are constructed based on each mathematical
definition.

2) Features extraction.
For different types of power quality problems, it is subjective

and not applicable to determine the classes that each power
quality signal belongs to through by observation directly. It
absolutely does not work in the analysis of actual operation of
electric railways. In order to discriminate different types of power
quality problems quantitatively, the DDFT algorithm is proposed
to extract features of voltage signal for fast analysis, instead of the

original signal sequences. Due to the amplitude of high-frequency
harmonics always being low, to reduce the dimension and
computation cost, only the DC component and 5–50 Hz
harmonic components are taken as the main feature variables.
Table 1 gives out the feature values of four typical power quality
signals.

In Table 1, feature values of four typical power quality signals
are presented, features of the corresponding original signals are
also extracted and displayed. Here, X0 represents the DC
component, and X1-X5 represent the 5–50 Hz harmonic
components, respectively. It is seen that voltage rise and drop
signals mainly reflect difference with other signals on the DC
component and 5 Hz harmonics component. The voltage flicker
signals mainly have some influence on the 10 Hz harmonics
component. For more thorough feature analysis, a nonlinear
model is required.

3) Establishing classifiers and strategies library.
To build a suitable classification model for analyzing power

quality problems, the DDFT algorithm is applied to extract
feature vectors xi at first. Taking feature vectors xi = [X (0,t),
X (1,t), /X (N-1,t)] as inputs, the class labels of power quality
problems as outputs, different ML classification models are
established, such as SVM, ELM, NN (Ouyang, 2021; Ouyang

FIGURE 2 | The technological flow of double discrete Fourier transform algorithm.

TABLE 1 | Feature values of different power quality signals.

Feature label Normal voltage Voltage rise
(20%)

Voltage drop
20%

Voltage flicker Transient voltage

X0 19.9848 22.4087 17.5729 19.6173 19.9848
X1 0.0194 1.2042 1.2085 0.4559 0.0194
X2 0.0265 0.3623 0.3821 1.2708 0.0265
X3 0.0115 0.2228 0.2498 0.5574 0.0115
X4 0.0195 0.2696 0.2423 0.2507 0.0195
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et al., 2021; Tang et al., 2021). Finally, the optimal ML model is
selected. The essence of the proposed method is to construct
classifiers based on ML algorithms, and to the constructed
classifier to distinguish power quality problems automatically.

Testing and Validation Part
According to the above description, some typical power quality
signals are generated as training data, and used to build
classification models. Meanwhile, the governance strategies are
given out according to expert systems and form the strategies
library. Then, the intelligent governance system for traction
substations’ power quality problems is completed by
combining classifiers and strategies libraries. In order to
validate performance of the proposed system, including how
effective it is to use the DDFT algorithm to extract features of
power quality problems, the performance of using ML to classify
different power quality problems, and the effectiveness and
feasibility of the intelligent governance system in traction
substation are discussed.

For analyzing the effectiveness of the proposed approach
quantitatively, this paper introduces the confusion matrix
(Xiong et al., 2017) in performance evaluation. Here, four
commonly used indicators are defined in (4), such as Recall
(R), Precision (P), Accuracy (Acc), and Error Rate (ER) (Ohsaki
et al., 2017).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Acc � TP + TN
TP + FP + TN + FN

R � TP/(TP + FN)
P � TP/(TP + FP)
ER � 1 − Acc

(4)

In this paper, taking an actual traction substation in Wuhan
China as an example, there are in total 1,000 voltage signals
collected as the testing dataset. The frequency of these signals is
50Hz, and each signal has a period of 50 ms. First, necessary data
preprocessing is needed, and the dataset is normalized. Then the
power quality problems of the collected signals are tested
according to the given intelligent governance system.
According to the records of operators in traction substations,
the distribution of these signals is displayed as 43 voltage

variation, 16 voltage flicker, 19 voltage transient singles and
922 other signals. In other signals, most of the signals are
normal signals, and a few of the signals are other undefined
signals in this paper. Two typical signals collected from actual
traction substations are shown in Figure 3.

In Figure 3, the variation of voltage signals for two typical
power quality problems are shown. Figure 3A shows the signal of
voltage flicker, and Figure 3B shows the impact of transient
voltage signal. It is known that it is difficult for operators to
determine what power quality problems a collected signal belongs
to, and the period of a set of signals is too fast to capture. This is
also the reason why an intelligent system is required to be
developed for governing the power quality problems in
traction substations.

To evaluate the performance of the proposed approach in the
classification of power quality problems, 120 sets of actual signals
are used for validation. Since normal signals take up more than
90% of the testing datasets, for classifying different types of power
quality problems effectively, only 42 sets of normal signals are
selected, and combined with other typical signals as the validation
dataset. According to the description in Figure 1, the validation
data is processed by DDFT to extracted feature vectors, then
feature vectors are input into the obtained classifier. Based on the
classification results, the suitable governance strategies could be
determined according to the strategies library to control the
harmful effects of power quality problems. In other words, the
performance of classifying power quality problems of voltage
signals of traction substation is directly related to the
performance of the proposed intelligent governance system.
Therefore, statistical analysis is completed to discuss the
performance of the proposed approach. According to the
definitions in (Eq. 4), values of four indicators are shown in
Table 2.

In Table2, the performance of four indicators are presented.
For comparison, three ML models using feature vectors extracted
from DFT are also analyzed. From the results of Table 2, it is seen
that all these methods have values of almost 85% on Recall,
Precision, and Accuracy indicators, and the classifier based on
ELM in power quality problems classification performs the best.
Therefore, ELM could be selected for the construction of final
intelligent system. On the other hand, comparing the feature
vectors from DFT and DDFT, it is seen that the performance has

FIGURE 3 | Two signals with typical power quality problems in an actual traction substation.
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been improved. Therefore, it is validated that the proposed
approach has better performance on classification of power
quality problems. While, for the governance of traction
substations in the real world, the proposed system combined
the advanced approach with the control strategies library,
therefore it not only achieves a fast and accurate identification
of power quality problems, but also makes a fast decision to
govern traction substations’ power quality by taking the
corresponding measures from the strategies library. In this
way, the proposed system can realize the intelligent
governance of power quality in traction substations and
guarantee the safety operation of electrified railways.

CONCLUSION

In this paper, an intelligent system based on data-driven and
DDFT is proposed to govern the power quality problems of
traction substations. First, definitions of several typical power
quality problems are given out, and synthetic voltage signals
based on these definitions are generated. By using the proposed
DDFT algorithm to extract feature vectors of these signals, it
shows that DDFT has advantages at extract features
distinguishing different power quality problems. Using the
extracted feature vectors as inputs, three ML-based classifiers

are built to discriminate three types of power quality problems,
and finally ELM is selected. Combined with the control strategies
library from an expert system, the intelligent governance of power
quality problems in traction substation is completed. The
industrial data of actual traction substations were tested with
the proposed approach and traditional approach, the numerical
results validated the proposed approach improved the
performance of classifying power quality problems. It is
validated that the proposed system can realize the intelligent
and fast governance of power quality problems in traction
substations, and can guarantee the safe operation of electricity
railways.
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Two-Stage Optimal Location
Allocations of DPFC Considering Wind
and Load Uncertainty
Xuedong Zhu, Liu Dichen and Jun Wu*

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

Distributed power flow controller (DPFC) has a considerable potential to regulate the power
flow and generator rescheduling continuously. This study presents a novel two-stage
stochastic model for optimal location allocations of the DPFC coupled with the interactions
of DPFC to search for the optimal solutions. The Benders decomposition is utilized to
reformulate the two-stage problem into the master problem and the subproblem. The
optimal solution can be easily obtained with the master problem and subproblem
iteratively. The relaxed DC power flow with a DPFC in the master problem accelerates
the efficiency of optimal locations under a base condition. Slack variables are incorporated
in the subproblem to check the feasibility of relaxed AC power flow. The optimal
compensation levels of DPFC at different load/wind scenarios are optimized in the
subproblem. The IEEE 118 bus system is conducted to verify the performance of the
proposed procedure. The DPFC has positive impacts on unit costs, voltage performance,
wind absorption, and power losses. Detailed simulation results illustrate the effect of the
proposed approach.

Keywords: distributed power flow controller, relaxed AC-SOCP, Benders decomposition, uncertainty, optimal
FACTS

1 INTRODUCTION

The existing transmission network can be challenging under the increasing growth of load. There is a
congestion problem of power flow that should be mitigated because of the transfer capability limit of
transmission lines (Hemmati et al., 2013). Transmission expansion planning (TEP) is one of the
effective ways to alleviate congestions (Jabr, 2013). However, there are the characteristics of higher
investment and occupation of transmission corridors (Ugranli et al., 2016). It is well known that the
flexible AC transmission system (FACTS) can significantly influence the performance of power flow.
With the rapid development of electronic technology, the FACTS is considered a strongly effective
device to manage power flow (Yuan et al., 2010). It has the capability to control the voltage
magnitude or phase angle and provide controllable active or reactive power compensation
independently (Khanchi and Garg, 2013). The DPFC (Dai et al., 2019; Tang et al., 2020; Li
et al., 2021; Zhang et al., 2021) is derived from the UPFC, which has the same external
characteristics, such as voltage support, control of real power flow, and other functions.
Compared to the UPFC device, the DPFC shows a great superiority in economy and reliability.

The optimal location and allocations of FACTS have been studied extensively. This research
focused on three topics: equivalent injection model, optimization goals, and solution approach. The
equivalent injection model is the key to implementing control strategies and improving the solution
efficiency. Many exertions have been made in the last few years to establish effective injection models
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of FACTS. Based on the voltage source model of unified power
flow controller (UPFC), two approaches have been proposed to
solve the optimal problem combined with the power injection
model (Orfanogianni and Bacher, 2003; Tripathy et al., 2006;
Shen et al., 2021a; Shen and Raksincharoensak, 2021a; Shen et al.,
2021b; Shen and Raksincharoensak, 2021b), sensitivity
analysis–based methods are the first choice to be employed to
obtain the candidate of location, and another choice is the
optimal power flow (OPF) method. Muwaffaq (Alomoush,
2004) proposed the Π-model of UPFC to maintain the
diagnose features of Jacobian matrix based on the port
equivalent. A direct model has been proposed (Bhowmick
et al., 2008) to simplify the difficulties of UPFC, the existing
power system–installed UPFC is transformed into an augmented
equivalent network without any UPFC, and the difficulty of
Newton Raphson power flow diminishes dramatically due to
the absence of UPFC. Many optimization goals with the FACTS
injected have been researched intensively. Alomoush (2003),
Alomoush (2004), Yang et al. (2021a), Yang et al. (2021b),
Yang et al. (2021c), and Yang (2021) leveraged DC power flow
to minimize the operating cost with the injection Π-model of
UPFC. Sarker and Goswami (2014) minimized the operating cost
combined with sensitivity analysis–based methods, and the
control values of UPFC and SVC can be directly obtained
under the location of PI sensitivity. Several researchers (Verma
and Gupta, 2006; Tiwari and Sood, 2012; Tiwari and Sood, 2013;
Dawn and Tiwari, 2016) optimized the location allocations of
FACTS into social welfare; this goal is to maximize the benefits of
all anticipants, that is, to maximize the benefit of power sales and
minimize the operating cost of the generator. Furthermore, some
researchers use the FACTS to improve the performance of power
flow, such as voltage stability (Singh, 2016; Zhang et al., 2020),
power loss (Tripathy and Mishra, 2007; Sarker and Goswami,
2014), and transfer capability enhancement (Prasad et al., 2011;
Rajabi-Ghahnavieh et al., 2015).

The mathematical formulations of FACTS location allocation
are originally non-linear and non-convex because of its mixed
integer non-linear programming (MINLP) model. The OPF
method is the first approach to solving the MINLP problem. It
can be solved by MATPOWER iteratively with the changing
Jacobian matrix based on matrix block decompose technology
and the injection model of FACTS. Noroozian et al. (1997)
reconstructed the modified Jacobian matrix by correlating
Jacobian’s matrix elements with the control variables of the
UPFC load injection model. Pereira and Zanetta (2012)
proposed the OPF approach with the control modes based on
the voltage source model and power injection model of UPFC.
Ebeed et al. (2019) and Vo Tien et al. (2019) established the
modified matrix with installing variables of STATCOM or TCSC
based on its shunt or series reactance model. The speed of the
OPF method is questionable because of iteratively updating the
Jacobian matrix. Another popular procedure is the heuristic
method of solving the MINLP problem. Saravanan et al.
(2007) presented the particle swarm optimization (PSO)
technique to search the optimal solution of MINLP with a
minimum investment cost of FACTS devices. Hooshmand
et al. (2015) proposed a hybrid method that combines the

bacterial foraging algorithm with a Nelder–Mead method to
solve the MINLP problem. Ranganathan et al. (2016) proposed
the self-adaptive firefly algorithm (SAFA) to optimize the power
flow performance, such as voltage stability and power loss.
However, the difficulties of FACTS injected into the system
still exist, and its solving accuracy is difficult to guarantee
because of the non-linear and non-convex characteristics of
AC power flow. Linear approximation of AC power flow also
has been utilized for the MISOCP problem of FACTS.
Nikoobakht et al. (2018) proposed a PWL approximation
method to transform the MISOCP problem to the MILP
problem. Ding et al. (2015), Sahraei-Ardakani and Hedman
(2015), and Sang and Sahraei-Ardakani (2017) developed an
MILP model due to the robustness and high speed efficiency
of the DC power flow. Second-order conic programming (SOCP)
(Tang et al., 2018) is another method to solve the MISOCP
problem, and the optimal solution of convex optimization is
easily obtained despite its non-linearity. However, the
characteristic of reactive power is ignored in the DC power
flow, whereas the SOCP model (Tang et al., 2018) with the
DPFC hardly obtains the optimal solution whose decision
variables belong to the open interval.

This article develops an equivalent power injection model
(PIM) of DPFC considering its active compensation, which not
only holds the external characteristic but also can be easily
injected to the system. A two-stage MISOCP problem
consisting of the operating cost and investment of DPFC is
formulated to optimize the location and compensation level of
DPFC. The main contributions of this paper can be summarized
as follows:

1) The optimization method holds the internal characteristics of
DPFC, maintaining the interactions and increasing the
consistent performance of scheduling planning.

2) A nested method consisting of the reactive model and the PIM
has been developed to optimize the locations and allocations
of DPFC simultaneously, where the efficiency and accuracy
have been increased.

We demonstrate the effectiveness of the proposed two-stage
stochastic problem in the IEEE 118 bus system and insight into
the influence on the performance of DPFC. This paper is
organized as follows. Section 2 introduces the equivalent
reactive model of DPFC and its operating principle. Section 3

FIGURE 1 | Configuration and principle of the DPFC.
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presents the two-stage stochastic model of optimal location-
allocation problem. Section 4 describes the two-stage
procedure of Benders decomposition method. Section 5 shows
the results and discussion, while the conclusion is presented in
Section 6.

2 DPFC STEADY-STATE MODEL

A. DPFC Configuration and Principle
The general configuration of the DPFC device includes a shunt
converter and multiple series converters, as shown in Figure 1.
The shunt converter is similar to the shunt component of UPFC,
injection power flow into the linked bus. Unlike the unified series
component of UPFCwith a larger rated capacity, the independent
distributed lower capacity series converters of DPFC can provide
similar effects based on the superposition theorem. Furthermore,
there is a huge difference between the third harmonic
characteristics of DPFC and the fundamental wave of UPFC
on the principle of power flow control. The UPFC absorbs the
fundamental frequency power flow on the shunt side and directly
injects it into the series side through VSC1 and VSC2. However,
the shunt converter of DPFC absorbs the fundamental frequency
power flow and converts it into the third harmonic and then
converts it back to the fundamental frequency power flow
through the series converters, injected into the system.

Based on the configuration and principle of DPFC, the
independent capacity of a single series converter is small, and
only after multiple series converters are added, power system
requirements can be satisfied. A simplified DPFC circuit diagram
can be derived, composed of a shunt inverter and multiple series
inverters, as shown in Figure 2.

Figure 3 illustrates the cascade series inverters of DPFC
superimposed into equivalent unified inverters based on the
superposition theorem. The cascade DPFC on the series side
can be modeled as an independent voltage source. The third
harmonic power is nested in the operating condition, and only
the base power flow is reflected in the static perspective. Referring
to the equivalent voltage source model of UPFC, the following
equation describes the equivalent process clearly for the DPFC
series side:

VT∠θse � VT1∠θse1 +/VTn∠θsen � ∑n
i�1
VTi∠θsei. (1)

As shown in Figure 3, the equivalent variables �VT, �Im, �IT are
the injected series voltage, the series current, and the shunt
current. They can be decomposed into an in-phase voltage/
current and quadrature voltage/current as follows:

�VT � (Vp + jVq)ejθm ,
�IT � (Ip + jIq)ejθk . (2)

For the KCL and KVL, the terminal voltage and current can be
explained as follows:

�Vm � �Vk + �VT � Vke
jθk + Vpe

jδm + Vqe
jδ0 ,

�Im � �Ik − �IT � Ike
jδk − Ipe

jθk − Iqe
jθk .

(3)

The complex power of both DPFC series inverters and shunt
inverts from Figure 3 is illustrated in Eqs 6–7:

Sse � �VT · �Ipm � Vp · Im + jVq · Im,
Ssh � �Vk · �IpT � Vk · Ip + jVk · Iq,

(4)

where Sse and Ssh are the complex power of series/shunt side of
the DPFC device.

There is a common similarity between UPFC and DPFC with
its external feature of active power balance (Dai et al., 2019), and
the active power flow from the shunt side to the series side holds
conservation characteristics, as shown by

VkIp � VpIm. (5)
Together with Eqs (4), (5).
Combined with the complex power of the DPFC, in both the

shunt and the series side with conservative characteristics,
reactive power complies with the following equation, reflecting
that the DPFC may generate or absorb reactive power after its
injection into the power system.

FIGURE 2 | Simplified DPFC circuit diagram.

FIGURE 3 | Simplified DPFC model.

FIGURE 4 | PIM of the DPFC.
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Ssh − Sse � j(VkIq − VqIm). (6)
Due to the conservation characteristic of active power in the

DPFC device, a power injectionmodel (PIM) can be conducted as
depicted in Figure 4:

Pp
ij � Pij − PDPFC

ij ,

Pp
j,rev � Pij,rev + PDPFC

ij ,
(7)

where Pij, Pij,rev are the line power and reverse line power and
PDPFC
ij is the DPFC compensation level.

3 PROBLEM FORMULATION

A. The Relaxed AC-SOCP Model
The AC power flow model can be represented as

Pij(θ, V) � V2
i gij − ViVj(gij cos(θi − θj) + bij sin(θi − θj)),

Qij(θ, V) � −V2
i bij − VmVn(gij sin(θi − θj) − bij cos(θi − θj)).

(8)
The above traditional model is non-linear. Therefore, the

equivalent transformation is introduced to cope with the
difficulties of the non-linear problem. Several variables are
defined in the following equations:

Ui � V2
i ;Uj � V2

j , (9)
Rij � UiUjcos(θi − θj);Rij ≥ 0, (10)

Tij � UiUjsin(θi − θj). (11)
The combined AC power flow model with Eqs 8, 9–11 is

relaxed as follows:

Pij � gijUi − gijRij − bijTij,
Qij � −bijUi − gijTij + bijRij,
Pij,rev � gijUj − glRij + bijTij,
Qij,rev � −bijUj + gijTij + bijRij.

(12)

According to Eqs 10–11, a constraint between Rij and Tij

must be satisfied as follows:

R2
ij + T2

ij � V2
i V

2
j � UiUj. (13)

The above equation is still non-linear due to the quadratic
form, and we relax the equality constraint to inequality format
which can be transformed into an SOCP form:

�����������
2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj. (14)

Thus, the relaxed AC-SOCP model is transformed into an
SOCP model with Eqs 12, 14, which can be solved by the
commercial solvers such as CPLEX.

B. Two-Stage Stochastic MISOCP Model
The power system planners aim to determine the location allocations
of DPFC, which can enhance the management efficiency of power
flow and decrease the investment of DPFC. However, the operators
desire to minimize the operation cost of injected DPFCs. Therefore,
optimal location allocations of DPFC in the power system must
consider the operational cost and investment of installing DPFCs.
The optimal model is represented by

min ∑
i∈G(i)

ciP
G
i +∑

ij

πDPFC
ij PDPFC

ij , (15)

∑
i∈WG

PWi + ∑
i∈Gm

PGi + ∑
j∈ξ(i)

PDPFC
ij − ∑

j∈ψ(i)
PDPFC
ij − ∑

i∈GD

PDi

� ∑Pij(θ, V, λ), (16)
0.95p ∑

i∈WG

PWi + ∑
i∈Gm

QGi − ∑
i∈GD

QDi � ∑Qij(θ, V, λ), (17)

Pmin
Gi ≤PGi ≤Pmax

Gi , (18)
Qmin

Gi ≤QGi ≤Qmax
Gi , (19)

Vmin
i ≤Vi ≤Vmax

i , (20)
θmin
i ≤ θi ≤ θmax

i , (21)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pij � gijUi − gijRij − bijTij,
Qij � −bijUi − gijTij + bijRij,
Pij,rev � gijUj − glRij + bijTij,
Qij,rev � −bijUj + gijTij + bijRij,

T ≈ θi − θj,�����������
2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj,

(22)

��������Pij − PDPFC
ij

Qij

��������2≤ Sij, (23)
��������Pij,rev + PDPFC

ij

Qij,rev

��������2≤ Sij, (24)

0≤PDPFC
ij ≤ δijPDPFC

ij,max, (25)
NDPFC ∈ αL. (26)

The objective function is to minimize the generation cost and
investment cost of DPFC in Eq. 15. Equations 16, 17 hold the bus
balance of active and reactive power. Equations 18–21 represent
the upper bound and lower bound of active power, reactive power,
voltage magnitude, voltage angle, and line power, respectively. The
active power and reactive power of line with relaxed SOCP power
flow are reformulated in Eq. 22, and we set the line apparent power
constraints with the DPFC in Eqs 23, 24. Equations 25, 26
constrain the installation capacity and number of DPFCs.

The formulated MISOCP problem aims to optimize the
location and ratings of DPFC under the base level. Once the
DPFC is injected into the grid, the device should offer functions
under different load–wind conditions with its fixed locations, and
the above MISOCP model must cover different scenarios. We
develop a two-stage stochastic approach to determine the optimal
locations and ratings with a hybrid model of DPFC to accelerate
its efficiency.
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4 SOLUTION APPROACH

A. DC Power FlowWith Reactance Model of
DPFC
Based on the conservation of active power and unbalance of
reactive power in the DPFC, a reactance model of DPFC can be
shown in Figure 5.

The equivalent reactance xDPFC
ij can be transformed into a

function of the connected line’s reactance where the DPFC is
located:

x•
ij � xij + xDPFC

ij , (27)
xDPFC
ij � γijxij, (28)

where γij is the compensation level of line between buses i and j
and γij � λij/(1 − λij). Therefore, the reactance with DPFC
between buses i and j can be updated as follows:

x•
ij � xij/(1 − λij). (29)

According to Eq. 6, the DPFC can absorb or generate reactive
power, and the equivalent compensation level of the series
reactance of the DPFC bounds the value between −0.2 and
0.7. Consequently, the corresponding linear interval is between
−0.17 and 2.33.

The DC power flow approximation is widely used in power
planning, which supposes voltage magnitude equal to 1 p.u. and
ignores reactive power and resistance of lines because of rij ≪xij.
This can be shown as

Pij � θij/xij. (30)
Once the DPFC is injected to the system, the reactance of two

adjacent buses is changed from xij to x•
ij. Furthermore, all the

phase angles θ and injected compensation level λ are decision
variables; once x•

ij is substituted to form the DC active power with
DPFCs, both θ and xij/ are incorporated in a multiplied form,
which is still non-linear.

The active power of the transmission line can be varied with
DPFC injection with the updated reactance x•

ij. The DC power
flow with the DPFC is illustrated as follows:

Pij(θ, λ, δ) � θij/x•
ij � θij/xij − δijλijθij/xij, (31)

λmin
ij ≤ λij ≤ λmax

ij . (32)
There is a non-linear variable term δijλijθij/xij in Eq. 31, and a

virtual variable ϕij is introduced to linearize the non-linear term:

ϕij � δijλijθij/xij. (33)
The active power in Eq. 31 can be rewritten as

Pij(θ, λ, δ) � θij/xij − ϕij. (34)
Combining Eqs 32, 33, we multiply both sides of the equation

with a voltage angle difference of δij:

δijλ
min
ij ≤ ϕijxij/θij � δijλij ≤ δijλmax

ij . (35)
The feasible range of variables ϕij is only valid when a phase

angle difference θij is positive. A binary variable yij is used to
depict the direction of power flow, and a big-M relax constraint is
introduced to linearize Eq. 35:

−Mijyij + δijλ
min
ij θij ≤ ϕijxij ≤ δijλmax

ij θij +Mijyij, (36)
−Mij(1 − yij) + δijλ

max
ij θij ≤ ϕijxij ≤ δijλmin

ij θij +Mij(1 − yij).
(37)

In the optimization process, one of Eqs 36, 37 is valid, and
another one is always useful because of the large number Mij.

Note that the bilinear term δijθij is still non-linear and another
dummy variable Uij is introduced and linearized by applying the
big-M method repeatedly as follows:

Uij � δijθij, (38)
−δijθmax

ij ≤Uij ≤ δijθ
max
ij , (39)

θij − (1 − δij)θmax
ij ≤Uij ≤ θij + (1 − δij)θmax

ij . (40)
Combining Eqs 36–37with the dummy variableUij, the active

power of line can be replaced as follows:

−Mijyij + Uijλ
min
ij ≤ ϕijxij ≤Uijλ

max
ij +Mijyij,

−Mij(1 − yij) + Uijλ
max
ij ≤ ϕijxij ≤Uijλ

min
ij +Mij(1 − yij). (41)

Hence, the DC power flow with the DPFC, including Eqs 31,
39–41, is reformulated into an MILP problem.

B. Two-Stage Stochastic Optimal Location
Allocations of DPFC
Due to the unrepeated features of DPFC planning, we develop
a two-stage optimization method based on Benders
decomposition to solve the MISOCP problem under
different wind–load scenarios. The original MISOCP
problem can be decomposed into an MILP master problem
and an SOCP subproblem. The MILP problem is to solve the
optimal locations of DPFC under the baseload case, and the
relaxed DC power flow based on the reactance model of DPFC
accelerates its efficiency. In contrast, the optimal ratings of
DPFC with various scenarios are obtained in the SOCP
subproblem.

FIGURE 5 | Reactance model of the DPFC.
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The master problem is represented as

minΦdown � ∑
i∈G(i)

ciP
G
i + α

⎧⎪⎪⎨⎪⎪⎩
(18) − (26)
α≥ z +∑

ij

μij(δij − δpij) +∑NG

i�1
σ i(PGi − PG,p

i )
(42)

Equation 42 is the objective function of master problem,
which is explicitly reflected in the lower bound. In the
objective function, the first term is the generation cost, while
the latter is the investment cost of DPFC. The relax DC active
power balance is constrained in the second column of Eq. 42,
whose non-linearized term is linearized using the big-M method.
The second column in Eq. 42 is the Benders cuts generated in the
subproblem to accelerate the solution efficiency.

The active power balance of the SOCP subproblem may be
challenging because of wind–load uncertainty. Slack variables are
incorporated into the power balance equations to relax and
ensure the feasibility of the subproblem. The stochastic SOCP
subproblem is represented by Eq. 44.

The subproblem is as follows:

min z � ∑
s

ρs
⎡⎢⎢⎣∑

ij

πDPFC
ij PDPFC

ij,s + ci ∑
i∈G(i)

(Δk+p,ij + Δk−p,ij)⎤⎥⎥⎦, (43)

∑
i∈G(i)

PG
i,s − ∑

i∈D(i)
PD
i,s + ∑

j∈ξ(i)
PDPFC
ij,s − ∑

j∈ψ(i)
PDPFC
ij,s + Δk+p,ij

− Δk−p,ij � ∑
j∈δ(i)

Pij(θ, V, λ),

∑
i∈G(i)

QG
i,s − ∑

i∈D(i)
QD

i,s � ∑
j∈δ(i)

Pij(θ, V, λ),
PG,min
i − Δk−p,ij ≤P

G
i,s ≤P

G,max
i + Δk+p,ij,

QG,min
i ≤QG

i,s ≤Q
G,max
i ,

Δk+p,ij ≥ 0,Δk
−
p,ij ≥ 0,∀l ∈ Ωl,

(16) − (17),
(20 − 24),
0≤PDPFC

ij,s ≤ δijPDPFC
max ,

PG
is � PG,p

i : μij,s,

δij,s � δpij : σ i,s.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Equation 44 represents the subproblem objective function,
which consists of the investment cost of DPFC and the sum of
relaxing slack variables. The constraints are updated under
various scenarios, and some slack variables are introduced into
the power flow constraints to ensure the convergence of power
flow. Hence, the constraints of active and reactive power are also
rewritten with the slack variables. The dual of Benders cuts is
obtained from the latter columns of Eq. 44. However, the duals of
cuts need to be reconstructed because of load/wind uncertainty.
We reformulate the expected value of duals associated with
numerous scenarios, as shown in the following equations:

μij � ∑
s

ρsμij,s, (45)

σ i � ∑
s

ρsσ i,s. (46)

Based on the Benders decomposition method, the two-stage
problem has a lower bound and upper bound. The Benders cuts
accelerate the optimization efficiency iteratively and move the
solution toward optimality. A stop criterion is justified as the
optimal solution to the original problem. The upper bound of
MISOCP and stop criterion is established, as shown in the
following equations:

Φup � z + ∑
i∈G(i)

ciP
G
i , (47)

∣∣∣∣Φup − Φdown
∣∣∣∣∣∣∣∣Φdown

∣∣∣∣ ≤ ε. (48)

The flowchart of two-stage stochastic optimization is depicted
in Figure 6.

For a given gap ε, the complete procedure of solving the two-
stage stochastic can be described as follows:

Step 1: Let Φdown � −∞, Φup � +∞, iter=0;
Step 2: Solve the MP which is modeled in Eq. 42,

FIGURE 6 | Flowchart of the Benders decomposition procedure.
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Obtain the output of generators PGp
i and location of DPFC δpij

under the base case,
Update the lower bound Φdown;

Step 3: Fix the location of DPFC and output of thermal units and
solve the SP considering various wind–load scenarios,

Obtain compensation levels PDPFC
ij,s and slack variables

Δk+p,ij,Δk−p,ij under each scenario,
Update the upper bound Φup;

Step 4: If |Φup−Φdown|
|Φdown| ≤ ε, return the optimal solutions and stop.

Otherwise, add the Benders cut into amaster problem and
go to step 2.

5 CASE STUDY

A. Verification of the Relaxed AC-SOCP
Model
In this section, several power flow cases are utilized to illustrate
the effectiveness of the proposed model. The numerical cases are
tested on the IEEE 118 bus system. The data of IEEE 118 are
obtained from MATPOWER 6.0.

Case 1: the proposed relaxed DC power flow in Section 3.1A,
which is solved by GAMS/CPLEX.

Case 2: the traditional non-linear power flow in Eq. 8, which is
solved by GAMS/CONOPT.

Case 3: the proposed SOCPmodel in Eq. 22, which is solved by
GAMS/CPLEX.

As for the power flow analysis, we only consider the
original power flow without DPFC. Compared to Case 2
and Case 3, Case 1 cannot simulate the AC power
characteristic. Figure 7 depicts apparent power of lines in

Case 2 and Case 3, and the difference of the two solutions is
less than 1%. Figure 8 also compares the bus voltage
performance between Case 2 and Case 3, and the voltage
magnitude of the two cases is fairly close. Figure 9 shows
significant differences of generation output in the three cases.
The generation dispatch solution of Case 1 shows a different
trend because of ignoring reactive power constraints, whereas
the dispatch solutions show highly consistent characteristics
between Case 2 and Case 3.

To illustrate the accuracy of the relaxed AC-SOCP model, we
define a deviation index stated in (), which depicts the gap of line
constraints between the non-linear AC power flow and the
relaxed AC-SOCP model. Figure 10 shows the gap
performance, which is almost zero for all lines:

DI � UiUj − R2
ij − T2

ij. (49)

FIGURE 7 | Comparison of apparent power. FIGURE 8 | Comparison of voltage.

FIGURE 9 | Comparison of generator output.
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B. Effect of the Optimal DPFC With High
Penetration of Wind Power
To verify the proposed method, we conducted case studies on the
modified IEEE 118 bus system. The baseload is 4242 MW, and the
capacity of the total generator is 5,859.2 MW. The load
uncertainty is statistically based on the Latin hypercube
sampling (LHS) (Le and Wu, 2021) and K-means clustering
method (Toyoda and Wu, 2021; Wu, 2021), as shown in
Table 1. There is an artificially decreased capacity to create
congestion with the thermal limits of transmission lines.
GAMS implements the procedure, the MILP master problem

is solved by GAMS/CPLEX, and GAMS/CPLEXD solves the
SOCP subproblem. The threshold values of the stop criterion
are set to be 1e-4.

A. The PerformanceWith Different Numbers
and Ratings of DPFCs
There are three huge impacts with different numbers of optimal
DPFCs’ planning. Table 2 shows the total operation cost with
different numbers of optimal location allocation. The operating
cost of power systems shows a downward trend as the numbers of
installed DPFCs increase because of their power flow
management of DPFC. Compared to the optimal locations,
there is a continuous trend, which verifies the robustness of
the optimal planning program and overcomes the drawbacks of
the iterative planning method. The level of wind absorption has
also been improved. However, the increment level is not obvious
between the two-DPFC and three-DPFC planning, which closely
achieves the extreme in the system (Table 3):

Vvio � ∑
i∈G(i)

����Vi − Vref

����. (50)

With different installing numbers of DPFCs, the voltage violation
and power loss of the system are shown in Figure 11. The system
voltage fluctuations gradually decrease as the number of DPFCs
increases, whereas the increment of power loss has a
positive trend.

Figure 12 shows a great advantage of voltage stability with
three DPFCs installed over the others.

FIGURE 10 | Derivation performance.

TABLE 1 | Load and wind scenarios and probabilities.

Scenarios PW,s PD,s ρs Scenarios PW,s PD,s ρs

s1 0.3023 0.4858 0.0555 s11 0.7927 0.5323 0.0406
s2 0.8007 0.6916 0.0446 s12 0.1858 0.8558 0.0231
s3 0.6263 0.7338 0.0412 s13 0.5018 0.6266 0.0773
s4 0.0825 0.5919 0.0788 s14 0.4203 0.4948 0.0529
s5 0.1846 0.4796 0.064 s15 0.5088 0.9065 0.0137
s6 0.5815 0.487 0.0516 s16 0.4031 0.7437 0.0483
s7 0.26 0.7026 0.0468 s17 0.2117 0.5897 0.0938
s8 0.3488 0.6036 0.0868 s18 0.1213 0.7087 0.0502
s9 0.0844 0.4701 0.0574 s19 0.184 1 0.0001
s10 0.653 0.5936 0.0732 s20 0.867 0.4915 0.0001

TABLE 2 | Solution of optimal location allocations of DPFC.

DPFC number Optimal DPFC planning Wind output (MW) Generation cost
value

Wind penetration

Location Capacity (MW) 5 26 61 95

0 - - 2 3.25 2.39 1.20 60070 27.6%
1 L147 0.45 2.28 3.25 2.86 1.61 57722 32.9%
2 L89 45.5 2.27 3.46 3.03 1.76 58623 35.19%

L147 0.6
3 L89 42.5 2.26 3.44 2.99 1.89 56124 35.33%

L147 3.03
L150 86.5

A voltage violation index is established to evaluate the stability, as is shown.
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To evaluate the effects of DPFC on generator rescheduling, the
output of generators under a loading operation with scenario s15
is shown in Figure 13. The generator dispatch has a considerable
difference from the DPFC under the load level. Comparing the
no-DPFC and one-DPFC solutions, the absorption of wind power
in this scenario has little change. However, the output of thermal
unit is significantly different because more economical units
participate in more dispatch plans, which verifies the
management efficiency of DPFC to the dispatch solution of
thermal generators. Once two or three DPFCs are injected
into the system, the wind absorption has an obvious
increment, which illustrates the power flow shiftable capability
of DPFC.

The Performance With Certain
Compensation Level of DPFC
When the compensation level of DPFC is equal to 5 MW, the
performance is different from that in Table 2. It is observed that
the expected cost decreases slightly as the number of DPFCs
increases. The wind penetration also shows little changes. This
result also confirms the superiority of the planning method, in
which the location and allocation are optimized simultaneously.

TABLE 3 | Solution of optimal DPFC with the constant capacity of DPFC.

DPFC number Optimal DPFC planning Wind output (MW) Generation cost
value

Wind penetration

Location Capacity (MW) 5 26 61 95

0 - 2 3.25 2.39 1.20 60070 27.6%
1 L147 2.01 3.24 2.41 1.22 59830 27.7%
2 L89 2.01 3.24 2.47 1.19 59902 27.9%

L147
3 L89 2.01 3.24 2.44 1.22 59589 27.9%

L147
L150

FIGURE 11 | Performance of power flow w/o DPFC.

FIGURE 12 | Voltage profile w/o DPFC under s15 scenario.

FIGURE 13 | Output of generators w/o DPFC.
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C. The Performance With Variable Wind
Location With Optimal DPFC
To assess the impact of optimal DPFC solutions with varied wind
locations, we transfer the wind location to bus [3,50,80,118].
Comparing Tables 2, 4, the overall decline in wind power
penetration is relatively obvious, which only can illustrate the
manage ability of DPFC is subjected to the structure of
generators. At the same time, it can be observed that the
operating cost and wind penetration also show a positive
trend when DPFC numbers increased.

6 CONCLUSION

This work presents a novel two-stage stochastic optimization
model, which simultaneously optimizes the location and
compensation level of DPFCs considering various wind–load
scenarios. Case studies are performed to demonstrate the
effectiveness of the proposed method. The conclusions are
summarized as follows:

1) The relaxed AC-SOCP model can easily simulate the non-
linear AC power flow and has an advantage of solving speed
and difficulties.

2) The proposed two-stage method has a consistent scheduling
plan of DPFC, which maintains the non-linear internal
characteristics of DPFC and overcomes the drawback of
iterative scheduling planning.

3) The power flow management of DPFC on the network side
plays an important role in system operation. The

operating cost, power flow performance, and wind
absorption have a positive trend as the numbers of
DPFCs increased.

In addition, the methodology proposed in this paper is
applicable to the areas of strengthening the management
efficacy on the network side. Also in the future work, we
will test the DPFC in more scenarios to check its control
capability.
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GLOSSARY

Sets and indices

i/j Bus index

ij Line index connected bus i and j

s Load scenario index

G(i) Sets of generator located bus i

D(i) Sets of load located bus i

δ(i) Sets of lines connected bus i DPFC variables

VT/VTi Unified/distributed series voltage magnitude of DPFC

θse/θsei Unified/distributed series voltage angle phase of DPFC

Sse/Ssh Complex power of series or shunt side

xDPFC
ij Equivalent reactance of DPFC located line ij

πDPFC
ij Amortized cost of DPFC located line ij

λij Compensation level of DPFC

NDPFC Total numbers of DPFC Variables

rij/xij Resistance or reactance of line ij

PG
i /Q

G
i Active or reactive power of generator located at bus i

PD
i /Q

D
i Active or reactive load located at bus i

Δk+p,ij/Δk−p,ij Positive slack variable

δij Binary variable indicating DPFC located

yij Binary variable indicating the direction of power flow of line ij

ci Coefficient of generator cost located bus i

Pij Active power of line ij

Vi Voltage magnitude of bus i

θi Voltage angle of bus i

θij Angle difference between bus i and j

αL Constant variable

Pmax
ij Thermal limit of line ij

λmin
ij /λmax

ij Lower or upper bound of compensation level

θmin
i /θmax

i Lower or upper bound of voltage angle

Vmin
i /Vmax

i Lower or upper or lower bound of voltage magnitude

PG,min
i /PG,max

i Lower or upper and lower bound of active power supplied
by generator

QG,min
i / QG,max

i Lower or upper bound of reactive power

Φdown Lower bound of original problem

Φup Upper bound of original problem

Mij Penalty coefficient

ρs probability of scenarios.
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This study researches on the Wudongde hybrid multi-terminal Ultra High-Voltage Direct
Current Transmission (UHVDC) project (referred to as Wudongde transmission project in
short) from the electromagnetic transient model and simulation and establishes an
accurate simulation model of the hybrid multi-terminal UHVDC transmission system
with the Power Systems Computer-Aided Design (PSCAD). The hybrid multi-terminal
UHVDC transmission system consists of the primary system and the control system. The
simulation model of the primary system adopts the parameters of the Wudongde
transmission project, and the simulation model of the control system refers to the
control system benchmark model of HVDC transmission and 9-terminal DC grid in the
International Council on Large Electric Systems (CIGRE). According to the characteristics
of the hybrid multi-terminal UHVDC control system, the benchmark model of HVDC
transmission and 9-terminal DC grid control system in the CIGRE is modified accordingly,
and a simulation model of the control system applicable to the hybrid multi-terminal
UHVDC transmission system is established. The accuracy and credibility of the model are
verified through the comparison of the recording waveform and the simulating waveform of
the steady-state and transient operation. The simulating and field recording waveforms
show that the model can accurately simulate the Wudongde transmission project and be
used as an effective tool for further studying the electromagnetic transient characteristics of
the hybrid multi-terminal UHVDC transmission system.

Keywords: PSCAD/EMTDC, hybrid multi-terminal UHVDC, CIGRE, accurate simulation model, recording waveform
classification

INTRODUCTION

With the implementation of the strategy of “West-East electricity transmission and nationwide
interconnection” (Dan et al., 2020; He et al., 2020; Huaqiang et al., 2020; Zehong et al., 2021), several
UHVDC projects have been put into operation. UHVDC is an important means to solve the problem
of hydropower transmission in Southwest China and the collection and transmission of new energy
in Northwest China (Benfeng et al., 2021; Xichun et al., 2021; Yuankang et al., 2021). As the world’s
first hybrid multi-terminal UHVDC to solve the outward transmission of hydropower from
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southwest China, the Wudongde hybrid multi-terminal UHVDC
transmission project has been completed and put into operation
(Hong et al., 2017), which is a significant breakthrough of
UHVDC technology in China. The Wudongde transmission
project combines the advantages of traditional high-voltage
direct current (HVDC) and flexible DC (Chao et al., 2017; Liu
et al., 2020; Li et al., 2021; Muniappan, 2021), with the Kunbei
converter station using the Line commutated converter (LCC)
and the converter station of Liubei and Longmen using the
Modular multilevel converter (MMC) of the Voltage source
converter (VSC). Meanwhile, the half-bridge submodule
(HBSM) and full-bridge submodule (FBSM) of the MMC are
mixed in proportional cascade, which makes the structure of the
whole system more complex and the control mode more flexible
and brings difficulties to the modeling of the hybrid multi-
terminal UHVDC transmission system.

As for DC transmission technologies, there is much research
on traditional DC and flexible DC, and the findings are also
very rich. On the contrary, there is some research on hybrid
multi-terminal DC, although some findings have been made,
and they are mainly focusing on topology, control strategy,
modeling simulation, and line protection. A few studies have
been conducted specifically on hybrid multi-terminal UHVDC
(Shan et al., 2018). Shan et al. (2018) studied the topology of the
DC system combined with LCC, VSC, overhead line, and cable
and proposed a control strategy suitable for the system.
Weihuang et al. (2017) designed a control strategy for the
hybrid multi-terminal UHVDC to achieve the purpose of
coordinating the control of each terminal. Song et al. (2019)
and Zhi-da and Qing-song (2019) studied the topology and
working principle of the hybrid multi-terminal DC and
designed a control strategy suitable for the system. A general
small-signal modeling method of hybrid multi-terminal DC is
proposed in Anran et al. (2019), and the simulation results are
compared in MATLAB and PSCAD. Weihuang et al. (2020)
studied the parameters of hybrid multi-terminal HVDC and
proposed an optimization method of small-disturbance
stability parameters. In Yuansheng et al. (2021), taking the
three-section hybrid DC line as the research object, the
equivalent circuit of transient traveling wave is derived, and
a line protection scheme using traveling wave phase is
proposed. Although the above-mentioned references have
made some achievements in the study of hybrid multi-
terminal DC, it is not entirely for the hybrid multi-terminal
UHVDC system, and the parameters of the simulation model
are not the actual engineering one, which makes the credibility
of the research findings applied to the actual engineering in
need for further verification.

The current DC transmission system modeling is mainly
studied based on the standard DC test system published by the
International Council on Large Electric Systems (CIGRE), but
the system lacks a standard simulation model for hybrid DC
transmission. In the standard test system, LCC-HVDC is a
unipolar structure, the converter valve is composed of one 12-
pulse converter, and the output DC voltage level is +500 kV.
MMC-HVDC has true and pseudo bipolar structures, the
single converter station or unipolar converter valve has only

one MMC converter, and the converter bridge arm is
composed of a single bridge sub-module. There are two
modulation modes for the control of the converter valve:
the Pulse Width Modulation (PWM) and the Nearest Level
Control (NLC). The output DC voltage level of PWM-MMC-
HVDC is ±320 kV, and the output DC voltage level of NLC-
MMC-HVDC is ±400 kV. While the output DC voltage of the
Wudongde transmission project is ±800 kV. The LCC
converter station is composed of double 12-pulse converters
in series, and VSC converter station is composed of double
MMC converters in series (Yan et al., 2017). It can be seen that
the primary system structure of LCC-HVDC and MMC-
HVDC in CIGRE is no longer applicable to the hybrid
multi-terminal UHVDC transmission system, while the
control systems of LCC-HVDC and MMC-HVDC are also
different, which needs to be modified on the basis of the
standard test system to construct a suitable hybrid multi-
terminal UHVDC control system and primary system
structure in order to build an accurate simulation model of
hybrid multi-terminal UHVDC for the study of
electromagnetic transient characteristics (Shen et al., 2017;
Shen et al., 2020a; Shen et al., 2020b; Shen and
Raksincharoensak, 2021a; Shen and Raksincharoensak,
2021b; Shen et al., 2021a).

This research studies the Wudongde transmission project and
establishes an accurate simulation model of the hybrid multi-
terminal UHVDC transmission system with the PSCAD/
EMTDC simulation software (Yang et al., 2018; Yang et al.,
2019a; Yang et al., 2019b; Shen et al., 2021b; Yang et al.,
2021a; Yang et al., 2022). Based on the actual parameters of
the Wudongde transmission project, a detailed simulation model
of the primary system is established. Based on the LCC-HVDC
and NLC-MMC-HVDC control systems in CIGRE, the control
system is modified, and the necessary additional control links are
added to establish a suitable simulation model of the control
system. The primary and the control systems are combined to
build an accurate simulation model of the hybrid multi-terminal
UHVDC transmission system. Compared with the recording
waveforms, the simulating waveforms show that the model
can simulate the Wudongde transmission project accurately
and can be used as an effective tool for further studying the
electromagnetic transient characteristics of the hybrid multi-
terminated UHVDC transmission system (Yang et al., 2021b;
Zhang et al., 2021; Zhu et al., 2020).

SIMULATION MODEL OF THE PRIMARY
SYSTEM

An accurate simulation model of the hybrid multi-terminal
UHVDC system directly determines the accuracy of the actual
engineering simulation. This study takes the Wudongde
transmission project as the research object and establishes the
primary equipment simulation model of the hybrid multi-
terminal UHVDC transmission system based on the actual
design parameters and primary system structure of the
Wudongde transmission project, which fully reflects the actual
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parameters of the primary system of the Wudongde transmission
project and has high accuracy and credibility.

Simulation Model of the AC System Module
Simulation Model of the AC System
In this study, according to the AC system voltage and maximum
three-phase short-circuit current of the Wudongde transmission
project, Thevenin’s equivalent models of AC systems at Kunbei-
side, Liubei-side, and Longmen-side are established, respectively.
The rated voltages of the AC systems at Kunbei-side, Liubei-side,
and Longmen-side are 535, 525, and 500 kV, respectively, and the
maximum three-phase short-circuit currents of the AC systems at
all three sides are 63 kA. The maximum short-circuit capacity and
Thevenin’s equivalent impedance of the AC systems can be
calculated according to the following equations:

SC � �
3

√
× U × I, (1)

Zst � V2
C

SC
. (2)

SC is the maximum short-circuit capacity of the AC
system, U is the rated voltage of the converter bus, I is the
maximum three-phase short-circuit current of the AC
system, and Zst is Thevenin’s equivalent impedance of the
AC system. The parameters of the AC system at each terminal
of the Wudongde transmission project are brought in to
obtain the equivalent parameters of the AC system at each
terminal. Simultaneously, the simulation models established
by the AC system on the Kunbei-side, Liubei-side, and
Longmen-side are shown in Figure 1.

Simulation Model of the AC Filter
As LCC converter is adopted at the Kunbei converter station, in
order to ensure that reactive power compensation and harmonic

level meet engineering requirements, six groups of type A filters
DT 11/24, six groups of type B filters TT 3/13/36, and eight
groups of type C filters SC are configured, with a total of 20
groups. The wiring diagrams of types A, B, and C of filters are
shown in Figure 2. The 20 groups are divided into four groups.
The grouping scheme is as follows:

ACF1: 2DT 11/24 + TT 3/13/36 + 2SC,
ACF2: DT 11/24 + 2TT 3/13/36 + 2SC,
ACF3: 2DT 11/24 + TT 3/13/36 + 2SC,
ACF4: DT 11/24 + 2TT 3/13/36 + 2SC.

For Liubei and Longmen converter stations, MMC converter is
adopted, and the harmonic content of the introduced system is
lower than the standard of configuring AC filter (Zheng, 2016). At
the same time, an MMC converter can be used as a STATCOM
device, capable of emitting and absorbing reactive power.
Therefore, the AC filter only needs to be configured at the
Kunbei converter station.

Simulation Model of the Converter Station
Module
The converter station module contains converter transformer,
converter valve, smoothing reactor, DC filter, current limiting
reactor, and converter valve control module, whose function is to
realize the mutual conversion of AC and DC, which is the core
part of the whole DC transmission system, among which the
simulation model of converter valve control module is described
in the next section.

Simulation Model of the Converter Transformer
The parameters of the converter transformer of the Wudongde
transmission project are shown in Table 1. It shows the
parameters of a single-phase two-winding transformer
(Lingyun et al., 2018). The actual project usually combines
three single-phase transformers to form a three-phase
transformer, and the simulation model can use a three-phase

FIGURE 1 | Thevenin’s equivalent circuit of the AC system.

FIGURE 2 | Grouping wiring diagram of the AC filter.
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two-winding transformer instead, but the capacity is changed.
The capacity of the Kunbei-side becomes 1,217.4 MVA, that of
Liubei-side becomes 870 MVA, and that of Longmen-side
becomes 1440 MVA, while other parameters and wiring
methods remain unchanged.

Simulation Model of the Converter Valve
The rated voltage of the hybrid multi-terminal UHVDC is
±800 kV. In order to make the output voltage of the converter
station reach the design value, two 12-pulse converter units are
connected in series to form the simulation model of the unipolar
converter valve of the Kunbei converter station, two LCCs are
connected in series to form the high-low valve, each converter
unit is subjected to 400kV, and the voltage is distributed
according to (400 + 400) kV. Two MMC converter units are
connected in series to form a simulation model of unipolar
converter valve at the Liubei and Longmen converter stations.
Two MMCs are connected in series to form a high-low valve, a
single MCC converter is subjected to 400 kV, and the series
voltage is distributed according to (400 + 400) kV. The single
MMC is composed of half-bridge submodules and full-bridge
submodules in a mixed cascade of 3:7 to form each bridge arm,
with a total of 200 submodules conducting at any moment in the

upper and lower bridge arms with some redundancy. The output
voltage of the single MMC converter is maintained at 400 kV. The
sub-module topology is shown in Figure 3A, and the simulation
model of the full-bridge sub-module is shown in Figure 3B.

Simulation Model of DC Filter
Among the three converter stations, the MMC voltage source
converter is adopted in Liubei and Longmen converter station,
and the harmonic content of output direct flow satisfies the
specifications. Therefore, a DC filter is not required, but only
in the Kunbei converter station. The Kunbei converter station is
configured with unipolar two groups of three tuned filters, and its
parameters are as follows: C1 = 1.0 μF, L1 = 17.4 mH, C2 =
3.04 μF, L2 = 15.7 mH, C3 = 3.675 μF, and L3 = 3.2 mH.

Simulation Model of Smoothing Reactor and Current
Limiting Reactor
Two 75 mH smoothing reactors are installed at the unipolar
neutral bus and DC pole, respectively, in the Kunbei Converter
Station, with a total of four.

One 200 mH current limiting reactor is installed at the
unipolar neutral bus of the Liubei converter station, and two
50 mH current limiting reactors are installed at the DC pole line,

TABLE 1 | Converter transformer parameters.

Items Yunnan-side Guangxi-side Guangdong-side

Network side rated voltage of winding (kV) 525 525 525
Valve-side rated voltage of winding (kV) 172.2 196 217
Wiring form Y0/Y and Y0/△ Y0/Y Y0/Y
Rated capacity (MVA) 405.8 290 480
Short circuit impedance 0.2 0.16 0.18

FIGURE 3 | MMC submodule topology and full-bridge power module simulation model.
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with a total of three. One 150 mH current limiting reactor is
installed at each unipolar neutral bus and DC pole at Longmen
converter station, two in total.

Simulation Model of Transmission Line
Module
Wudongde transmission project starts from Kunbei converter
station in Kunming, Yunnan province in the west, to the Liubei
converter station in Liuzhou, Guangxi province, and Longmen
converter station in Huizhou, Guangdong province in the East,
with a total length of 1,489 km, of which the length of the Kunbei-
Liubei section is 932 km, and the average soil resistivity along the
line is 1750Ω · m. The length of the Liubei Longmen section is
557 km, and the average soil resistivity along the line is 2,500Ω ·
m. The parameters of the line tower are shown in Figure 4.

CONTROL SYSTEM MODELING

A CIGRE standard HVDC test system has been published, which
is an effective and convenient research tool to study HVDC
technology. At present, two types of simulation models of LCC-
HVDC and VSC-HVDC are provided in the system. Among
them, the MMC-HVDC control system of VSC-HVDC has two
modulation modes of PWM and NLC to choose from. However,
CIGRE does not provide a standard HVDCmodel for mixing the
LCC converter station with VSC converter stations. Moreover,
the Wudongde transmission project adopts constant DC and
constant α control at the Kunbei-side, constant active and reactive
power control at the Liubei-side, and constant DC voltage and
reactive power control at the Longmen-side.

Therefore, based on the LCC-HVDC and NLC-MMC-HVDC
control systems in CIGRE, this study establishes a simulation
model of the control system suitable for hybrid multi-terminal
UHVDC transmission by making necessary modifications to the
control system and adding some auxiliary control links.

Control System Model of LCC Converter
Station
The LCC-HVDC in CIGRE is a unipolar system. The converter
station is connected in series with two 6-pulse converters to
form a single 12-pulse converter, with rated DC, voltage, and
power of 2 kA, 500 kV, and 1000 MW, respectively. While the
Wudongde transmission project is a bipolar system. The Kunbei
converter station adopts the LCC converter, and the single-pole
consists of high-low valves through two 12-pulse converter in
series. The output rated DC, voltage, and power are 5 kA,
800 kV, and 4000 MW, respectively (Jingjing et al., 2018).
The output of voltage, DC, and DC power of the whole
converter station is ±800 kV DC, ±5 kA, and 8000 MW,
respectively. It can be seen that the existing control system in
CIGRE cannot meet the actual needs of the project. For this
reason, the standard control system of LCC-HVDC is modified
to meet the control requirements of the converter valve in the
Kunbei converter station, and the modified control system is
shown in Figure 5A.

As can be seen from Figure 5A, the main modifications are as
follows:

1) The same measured voltage and current values are selected as
the control signals for the unipolar converter valve at the
Kunbei converter station.

2) The same triggering angle α generated by constant current
control is used to control the conduction of all converters of
the unipolar converter valve simultaneously.

3) The measurement links at the Kunbei-side and Longmen-side
are simulated with the first-order inertial link. The measured
current gain of the Kunbei-side is modified to 0.2, and the
measured current and voltage gains of the Longmen-side are
modified to 0.32 and 0.00125, respectively. Then, the
measured current of the Longmen-side after the first-order
inertia link is multiplied by 0.04 and adds with the measured
voltage of the Longmen-side after the first-order inertia link as
the voltage value at the midpoint of the line, which is

FIGURE 4 | Model and parameters of transmission line towers of Wudongde transmission project.

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8201375

Xing et al. Hybrid Multi-Terminal UHVDC Transmission System

425

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


converted to current value after the limiting link, and the
inertia time constant is not modified.

In addition, the unipolar converter valve adds a forced phase-
shifting and unlocking control module to realize the purpose
of unlocking conduction after establishing a stable DC voltage at
the MMC side and forced phase-shifting after DC system fault.
The control models of the positive electrode and the negative
electrode are basically the same. After multiplying the measured
voltage at the gantry side by−1, it can be used as the input value of the
measured voltage of the negative electrode control system at the
Kunbei-side.

Control System Model of MMC
The NLC-MMC-HVDC in CIGRE has both true and pseudo-
bipolar structures. However, a single converter station or unipolar
converter valve has only one MMC converter, and the output
rated DC voltage is ±400 kV. In contrast, the Wudongde
transmission project is a true bipolar multi-terminal system,
with MMC converters at Liubei and Longmen converter
station and a unipolar converter valve with two MMCs
connected in series to form a high-low valve. The output rated
DC, voltage, and power are ±1.875 kA, ±800 kV, and 3000 MW at

the Liubei converter station and ±3.125 kA, ±800 kV, and
5000 MW at the Longmen converter station. In addition, the
MMC converter of the standard flexible DC test system in CIGRE
has a single bridge structure, while the MMC converter of the
Wudongde transmission project has a hybrid bridge structure,
which shows that the existing control system cannot meet the
actual needs of the project. Therefore, the standard control
system of NLC-MMC-HVDC is modified to meet the
converter valve control requirements of the Liubei and
Longmen converter station. The MMC converter has two
kinds of controllers, the outer loop and the inner loop (Ligang
et al., 2017), and the combination of the two constitutes the
control system of the MMC. The inner loop controller and the
mathematical model are shown in Figure 5B, and the outer loop
controller is shown in Figure 5C and Figure 5D.

Based on the MMC converter control system, the main
modifications are as follows:

1) The same measured current value and the measured voltage
values of both high-low valves are selected as the control
signals for the unipolar converter valves at the Liubei and
Longmen converter stations.

2) The same active or reactive command value is adopted as the
input command signal for both unipolar high-low valves.

3) An unlocking module on failure is added to achieve transient
fault self-clearing capability for the full-bridge submodule.

Moreover, the MMC submodule of the Wudongde
transmission project adopts a hybrid bridge structure, so the
full-bridge submodule is added to the half-bridge type MMC to
form a hybrid bridge structure, using the same measured signal as
the input signal of the full-bridge and half-bridge submodule
control systems, the output signal of the half-bridge submodule
control system controls the on/off of the half-bridge submodule,
and the output signal of the full-bridge submodule control system
controls the on/off of the full-bridge module. The simulation
models of the half-bridge submodule and the full-bridge
submodule control system are shown in Figure 6 and Figure 7.

SIMULATION MODEL OF HYBRID
MULTI-TERMINAL UHVDC

According to the parameters, the main wiring diagram, the
simulation model of each component, and the control system
of the Wudongde transmission project, the simulation model of
the Wudongde transmission system is established as shown in
Figure 8.

The Wudongde transmission project is designed with a rated
voltage of ±800 kV, the Kunbei converter station is designed to
output ±5 kA rated current and 8000MW rated DC power, the
Liubei converter station is designed to output ±1.875 kA rated
current and 3000MW rated DC power, and the Longmen
converter station is designed to output ±3.125 kA rated current
and 5000MW rated DC power. The Kunbei-side is controlled with
constant current, the Liubei-side is controlled with constant active
and reactive power, and the Longmen-side is controlled with

FIGURE 5 | Control system.
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constant DC voltage and constant reactive power. The rated voltage
of the AC system is 535, 525, and 500 kV at Kunbei, Liubei, and
Longmen converter station, respectively, and the maximum short-
circuit current of all three phases is 63 kA. Four large groups of AC
filters are installed at theACbus of the Kunbei converter station, two
groups of triple tuned filters at the positive and negative electrode
outlet of the converter station, and two sets of 75 mH smoothing
reactors are installed at the positive and negative neutral bus and the
DC pole, respectively. At the positive and negative neutral bus of the
Liubei converter station, one 200mH current limiting reactor is
installed, respectively, and two 50mH current limiting reactors are
installed, respectively, at the DC pole. A 150mH current limiting
reactor is installed at the positive and negative neutral bus and DC
pole, respectively, in the Longmen converter station. The
transformer adopts a three-phase double-winding structure, with
the capacity of a single set of 1,217.4 MVA at the Kunbei-side, wired
in two ways, Y0/Y and Y0/△; 870 MVA at the Liubei-side, wired in
Y0/Y; and 1440 MVA at the Longmen-side, wired in Y0/Y. The
unipolar converter valve of the Kunbei converter station uses two
12-pulse LCC converters connecting in series to form a high-low
valve, the voltage distribution is according to (400 + 400) kV, the two
MMC converter units are connecting in series to form the unipolar
converter valve of the Liubei converter station and Longmen
converter station, and the voltage distribution is according to
(400 + 400) kV. The MMC converter valve bridge arm is
composed of a half-bridge submodule and full-bridge submodule

in amixed cascade ratio of 3:7. The upper and lower bridge arms are
connected to 200 submodules at any time with certain redundancy,
and the output voltage of a single converter is maintained at 400 kV.
The total length of the Wudongde transmission project is 1,489 km,
of which the Kunming–Liuzhou section is 932 km, the average soil
resistivity along the line is 1750Ω · m, the Liuzhou–Longmen
section is 557 km, and the average soil resistivity along the line is
2,500Ω · m. The frequency correlation model is adopted. Based on
the LCC-HVDC and NLC-MMC-HVDC control systems in
CIGRE, modifications are made to add some necessary auxiliary
control links to establish a simulation model of the control system
applicable to the Wudongde transmission project.

SIMULATION RUNNING

In this study, a simulation model of hybrid multi-terminal
UHVDC transmission is established in PSCAD/EMTDC with
the Wudongde transmission project as the object. Under the
full-voltage ground return operation mode, steady-state
simulation experiments are conducted for three basic DC
operation modes, namely, positive, negative, and bipolar
operation, and the transient process of faults occurring on the
DC line during bipolar operation is simulated to verify the accuracy
and credibility of the simulation model built in this study, in which
the measurement points are located at the outlet of the smoothing

FIGURE 6 | Simulation model of half-bridge power module control system.
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FIGURE 7 | Simulation model of full-bridge power module control system.

FIGURE 8 | Simulation model of the Wudongde transmission project.
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reactor of Kunbei converter station and the outlet of the current
limiting reactor of Liubei and Longmen converter station outlet.

Steady-State Operation
Simulation of Positive Full-Voltage Ground Return
Operation
The DC, voltage, and power waveforms at the outlet of the
positive smoothing reactor of the Kunbei converter station and
the outlet of the positive limit current reactor of the Liubei and
Longmen converter station under the positive full-voltage ground
return operation are shown in Figure 9.

From Figure 9, it can be seen that the DC, voltage, and power
at the outlet of the smoothing reactor of Kunbei converter
station are +5 kA, +800 kV, and 4000 MW, respectively; the
DC, voltage, and power at the outlet of the current limiting
reactor at Liubei converter station are around +1.875 kA,
+780 kV, and 1445 MW, respectively; and the DC at the
outlet of the current limiting reactor at the Longmen
converter station are around +3.125 kA, +765 kV, and
2375 MW, respectively. The DC, voltage, and power at the
Kunbei-side are consistent with the design rating of the
Wudongde transmission project, and the DC at the Liubei-
side and Longmen-side are consistent with the design rating of
the project, while the DC voltage and power are lower than the
design rating, which is caused by the transmission line losses. It
can be seen that the output DC, voltage, and power of the hybrid
multi-terminal UHVDC transmission system established in this
study for positive full-voltage operation are basically the same as

the design values of rated current, voltage, and power during the
positive operation of the Wudongde transmission project.

Simulation of Negative Ground Return Operation
Mode in Full Voltage
Under the negative ground return operation mode in full voltage,
the DC, voltage, and power waveforms at the outlet of the
negative smoothing reactor of the Kunbei converter station,
the DC, voltage, and power waveforms at the outlet of the
negative limiting current reactor of the Liubei converter
station and the DC, voltage, and power waveforms at the
outlet of the negative limiting current reactor of Longmen
converter station are shown in Figure 10.

From Figure 10, it can be seen that the DC, voltage, and power
at the outlet of the smoothing reactor at Kunbei converter station
are −5 kA, −800 kV, and 4000 MW, respectively; the DC, voltage,
and power at the outlet of the current limiting reactor at the
Liubei converter station are around −1.875 kA, −780 kV, and
1445 MW, respectively; and the DC, voltage, and power at the
outlet of the current limiting reactor at the Longmen converter
station are around −3.125 kA, −765 kV, and 2375 MW,
respectively. The DC, voltage, and power at the Kunbei-side
are highly consistent with the design rating of the Wudongde
transmission project; the DC at the Liubei-side and Longmen-
side are consistent with the design rating of the Wudongde
transmission project; and the DC voltage and power are lower
than the design rating, which is caused by the transmission line
losses. It can be seen that the output DC, voltage, and power of the

FIGURE 9 | Simulated waveform of positive full voltage ground return operation.
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hybrid multi-terminal UHVDC transmission system established
in this study for negative full-voltage operation are basically the
same as the design values of rated current, voltage, and power for
negative operation of the Wudongde transmission project.

Simulation of Bipolar Ground Return Operation Mode
in Full Voltage
TheDC, voltage, and power waveforms at the outlet of the smoothing
reactors of the positive electrode and the negative electrode at the
Kunbei converter station; the DC, voltage, and power waveforms at
the outlet of the limiting current reactors of the positive electrode and
the negative electrode at the Liubei converter station; and the DC,
voltage, and power waveforms at the outlet of the limiting current
reactors of the positive electrode and the negative electrode at the
Longmen converter station under the bipolar ground return operation
mode in full voltage are shown in Figure 11.

From Figure 11, it can be seen that the DC, voltage, and
power at the outlet of the smoothing current reactor of the
positive electrode at the Kunbei converter station are +5 kA,
+800 kV, and 4000 MW, respectively, and the DC, voltage, and
power at the outlet of the smoothing current reactor of the
negative electrode are −5 kA, −800 kV, and 4000 MW,
respectively. The DC, voltage, and power at the outlet of the
limiting reactor of the positive electrode at the Liubei converter
station are around +1.875 kA, +780 kV, and 1445 MW,
respectively. The DC, voltage, and power at the outlet of the
limiting reactor of the negative electrode are around −1.875 kA,

−780 kV, and 1445 MW, respectively. The DC, voltage, and
power at the outlet of the limiting reactor of the positive
electrode at the Longmen converter station are around
+3.125 kA, +765 kV, and 2375 MW, respectively. The DC,
voltage, and power at the outlet of the limiting reactor of the
negative electrode are around −3.125 kA, −765 kV, and
2375 MW, respectively. The DC, voltages, and powers of the
positive electrode and the negative electrode at the Kunbei-side
are consistent with the design rating of the Wudongde
transmission project; the DC of the positive electrode and the
negative electrode at the Liubei-side and Longmen-side are
consistent with the design rating of the Wudongde
transmission project; and the DC voltages and powers are
lower than the design rating, which is caused by the
transmission line losses. It can be seen that the output DC,
voltage, and power of the bipolar operation in full voltage of the
hybrid multi-terminal UHVDC transmission system established
in this study are basically the same as the design rated current,
voltage, and power of the bipolar operation in full-voltage of the
Wudongde transmission project.

Waveform Comparison in Steady-State
Operation
The simulating and recording waveforms of the Wudongde
transmission project are shown in Figure 12 under the
operations of bipolar ground return in full voltage.

FIGURE 10 | Simulated waveform of negative full voltage ground return operation.
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FIGURE 11 | Simulation waveform of full voltage bipolar ground loop operation mode.

FIGURE 12 | Comparison of simulated waveforms and recorded waveforms in steady-state operation.
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From Figure 12, it can be seen that the output DC, voltage, and
power simulation waveforms at the outlet of the smoothing reactor
of the Kunbei converter station of the hybrid multi-terminal
UHVDC transmission system are highly consistent with the
recording waveforms under the operations of bipolar ground
return in full voltage. Moreover, the output DC, voltage, and
power simulating waveforms at the outlet of the limiting reactor
of the Liubei and Longmen converter stations are highly consistent
with the recording waveforms, which shows that the simulation
model of the hybrid multi-terminal UHVDC transmission system
built in this study can accurately simulate the steady-state
operation of the Wudongde DC transmission project.

Waveform Comparison of Transient
Operation
Overhead DC transmission lines are prone to failure due to
complex terrain and climate, and transient response is an
important means to test the accuracy of the simulation model.
Therefore, taking the grounding fault of the transmission line
as an example, this study compared the simulating waveforms
with the actual recording waveforms to further verify the
accuracy and credibility of the simulation model of the hybrid
multi-terminated UHVDC transmission system built in
this study.

Midpoint Fault of the Negative Electrode of the DC
Line From Liuzhou to Longmen Converter Station
Assume that the grounding fault of the negative electrode occurs
at the midpoint of the Liuzhou–Longmen transmission line, with
the grounding resistance of 0.4Ω and the fault duration of 0.1 s. A
comparison of the simulating and recording waveforms of the DC
and voltage is shown in Figure 13.

From Figure 13, it can be seen that when a grounding fault occurs
at the negative electrode midpoint of the transmission line of the
Wudongde transmission project, the DC at the fault pole of the
Kunbei-side increases rapidly to 1.7 times the rated value and then
gradually decreases to 0. The DC at the non-fault pole increases
slightly, fluctuates sharply, and then tends to normal values. The fault
pole voltage rapidly decreases, increases anyway, and then gradually
decreases to 0, and the non-fault pole voltage fluctuates violently and
then tends to normal value. At the Liubei-side, the fault pole DC
rapidly decreases and increases in reverse to near the rated value and
then gradually decreases to 0. The non-fault pole current fluctuates
violently and then gradually tends to normal value. The fault pole
voltage decreases rapidly and then gradually tends to 0, and the non-
fault pole voltage fluctuates and then gradually tends to the normal
value. The fault pole DC at the Longmen-side decreases rapidly and
increases in reverse to near the rated value and then gradually
decreases to 0. The non-fault pole current fluctuates violently and
then gradually tends to the normal value. The fault pole voltage
decreases rapidly and then gradually tends to 0. The non-fault pole
voltage fluctuates and then gradually tends to the normal value. The
trend of the simulating waveform at the three terminals after the fault
is basically the same as that of the recording waveform, especially in
the first 5ms after the fault and after a period of time. The incomplete
consistency between the recording and the simulatingwaveforms after
the fault is caused by the difference in control strategies between the
CIGRE standard control system and the actual engineering control
system during the fault.

Fault at 25% of the Positive Electrode of the DC
Transmission Line From Liuzhou to Longmen
Converter Station
Assume that the grounding fault occurs at 25% of the positive
electrode of the transmission line from Liuzhou to Longmen, with

FIGURE 13 | Comparison of transient waveforms of negative electrode midpoint faults in the DC line from Liuzhou to Longmen.
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a ground resistance of 0.4Ω and a fault duration of 0.1 s. A
comparison of the simulating and recording waveforms of the DC
and voltage is shown in Figure 14.

From Figure 14, it can be seen that when a ground fault occurs
at the positive electrode of the transmission line of theWudongde
transmission project, the DC at the fault pole of the Kunbei-side
increases rapidly to 1.7 times the rated value and then gradually
decreases to 0. The DC at the non-fault pole fluctuates after a
slight increase and then tends to the normal value. The voltage at
the fault pole rapidly decreases and increases anyway and then
gradually decreases to 0. The non-fault pole voltage fluctuates
drastically and then tends to a normal value. The DC of the fault
pole at the Liubei-side rapidly decreases, increases in reverse to
near the rated value, and then gradually decreases to 0. Non-fault
pole current fluctuates violently and then gradually tends to
normal value. The fault pole voltage decreases rapidly and
then gradually tends to 0. The non-fault pole voltage fluctuates
and then gradually tends to the normal value. The fault pole DC
of the Longmen-side decreases rapidly, increases in reverse to
near the rated value, and then gradually decreases to 0. The non-
fault pole current fluctuates violently and then gradually tends to
the normal value. The fault pole voltage decreases rapidly and
then gradually tends to 0. The non-fault pole voltage fluctuates
and then gradually tends to the normal value. The trend of the
simulating waveforms at the three terminals after the fault is
basically the same as that of the recording waveforms, especially
in the first 5 ms after the fault and after a period of time. The
incomplete consistency between the recording and simulating
waveforms after the fault is caused by the difference in control
strategies between the CIGRE standard control system and the
actual engineering control system during the fault.

From the above analysis, it can be seen that the DC, voltage,
and power of the simulated model of the hybrid multi-terminal

UHVDC transmission system in full-voltage operation are
consistent with the design rating of the Wudongde
transmission project, and the simulating waveforms of DC,
voltage, and power in steady-state operation of the model are
highly consistent with the actual recording waveforms of the
project. The trends of DC and voltage waveforms during the
transient process are basically consistent with the trends of
recording waveforms, especially in the first 5 ms after the fault
occurs, and the simulating and recording waveforms are highly
consistent. It can be seen that the simulation model of the hybrid
multi-terminal UHVDC transmission system established in this
study can accurately simulate the operation of the Wudongde
transmission project.

CONCLUSION

This research studied the Wudongde transmission project. Based
on the design parameters and system control mode of the
Wudongde transmission project, a detailed simulation model
of the hybrid multi-terminal UHVDC transmission system is
built by PSCAD/EMTDC. The steady-state operation simulation
of the positive electrode, negative electrode, and bipolar DC
power transmission is carried out under full-voltage ground
return operation mode, and the steady-state simulation
waveform of bipolar full-voltage operation mode is compared
with the actual recording waveforms. The grounding fault of the
DC line is simulated, and the trend of simulating waveform and
recording waveform in the transient process is compared. Results
show the following:

1) The hybrid multi-terminal UHVDC transmission system
simulation model established based on the primary system

FIGURE 14 | Comparison of transient waveforms at the positive electrode 25% of the DC line from Liuzhou to Longmen.
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parameters of the Wudongde transmission project has high
accuracy and reliability.

2) The control system model modified based on the HVDC
transmission and 9-terminal DC grid control benchmark
model of the CIGRE is suitable for the Wudongde
transmission project.

3) Under the steady-state operation, the simulating waveforms of
the hybrid multi-terminal UHVDC transmission system are
highly consistent with those at the same points during the
steady-state operation of the actual project.

4) Under transient operation, the trend of simulated waveforms
of the hybrid multi-terminal UHVDC transmission system is
consistent with the trend of recording waveforms at the
Wudongde transmission project.

5) It provides accurate, credible, and effective tools for the study
of the electromagnetic transient characteristics in the hybrid
multi-terminal UHVDC transmission system.

6) It provides accurate and credible fault simulation data for the
research of the hybrid multi-terminal UHVDC transmission
line protection.

7) It provides some guidance for the inversion analysis of the
Wudongde transmission project accident.
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A novel method for the prediction of three-dimensional (3D) spatial distribution of NOx in a
furnace is proposed and evaluated. Computational fluid dynamics (CFD) simulations are
conducted to generate the data sets of 3D NOx spatial distribution. The data sets are
partitioned based on NOx generation mechanisms to improve the model accuracy.
Combining the Pearson coefficient and mutual information (PMI), the model input
variables are optimized by feature selection. The prediction model of 3D NOx spatial
distribution in the furnace is established based on extreme learning machine (ELM). The
experiments are conducted considering a 350MW coal-fired boiler with a change in the
burner tilt angles under a rated load. The experimental results show that the data-driven
method based on PMI-ELM can realize the rapid prediction of the 3D spatial distribution of
NOx in the furnace with 12.84% mean absolute percentage error.

Keywords: three dimensional(3D) distribution of NOx, computational fluid dynamics simulation, coal-fired boiler,
Pearson coefficient and mutual information, extreme learning machine

1 INTRODUCTION

Nitrogen oxides (NOx), released by coal-fired power plants, are one of the most harmful air
pollutants that tend to seriously impact the air quality and human health. New NOx emission
standards in coal-fired power plants list them to be below 100 mg of NO2/Nm3 at 6% O2 (dry-basis)
(Ministry of Environmental Protection of the PRC, 2011). There are two primary methods to
decrease NOx emissions: 1) flue gas denitration and 2) low nitrogen combustion (Fang Wang et al.,
2018). Flue gas denitration is a post-treatment method that is performed by adding denitration
devices at the tail flue. On the other hand, the low nitrogen combustion method utilizes low NOx
burners or fuel/air at the combustion stage. The essence of low nitrogen combustion is to change the
temperature field and component distribution in the furnace to reduce NOx formation. However, a
lack of means for effective on-line observation of temperature and component distribution hinders
the understanding of NOx formation. Rapid and accurate prediction of 3D spatial distribution of
NOx has become a necessity in order to control NOx emissions and optimize the combustion
process.

Two methods are usually used to obtain the NOx concentration in emissions of the coal-fired
power plants: 1) the mechanism-based method and 2) the data-driven method. Computational fluid
dynamics (CFD), a mechanism-based method, involves solving the partial differential equations
governing the combustion process to simulate it under the given boundary and initial conditions
(Dindarloo and Hower, 2015; Boyd and Kent, 1988; Xu et al., 2001). The calculation of NOx
emissions through CFD can be divided into two stages. The first stage includes evaluating the 3D
spatial distribution of the temperature field, velocity field, and products of combustion in the furnace.

Edited by:
Tinghui Ouyang,

National Institute of Advanced
Industrial Science and Technology,

Japan

Reviewed by:
Jun Zhang,

Civil Aviation University of China, China
Yuan Yuan,

Shenyang Aerospace University,
China

*Correspondence:
Jianping Zhao

zjp@cust.edu.cn

†ORCID ID:
Manli Lv

orcid.org/0000-0003-0824-538X

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 04 January 2022
Accepted: 24 January 2022
Published: 18 March 2022

Citation:
LvM, Zhao J, Cao S and Shen T (2022)
Prediction of the 3D Distribution of NOx

in a Furnace via CFD Data Based
on ELM.

Front. Energy Res. 10:848209.
doi: 10.3389/fenrg.2022.848209

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8482091

ORIGINAL RESEARCH
published: 18 March 2022

doi: 10.3389/fenrg.2022.848209

436

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.848209&domain=pdf&date_stamp=2022-03-18
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848209/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848209/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.848209/full
http://creativecommons.org/licenses/by/4.0/
mailto:zjp@cust.edu.cn
https://doi.org/10.3389/fenrg.2022.848209
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.848209


The second stage involves NOx distribution evaluation by means
of post-processing the already obtained combustion product data.
CFD simulations with regards to the NOx spatial distribution
mostly investigate the effects of a certain change in the working
conditions of a furnace. This may include variations in boiler
loads (Dindarloo and Hower, 2015; Boyd and Kent, 1988), swirl
arrangements and coal injection modes (Choi et al., 2020), air
staging combustion (Zhang et al., 2015; Wang and Zhou, 2020),
separated over-fire air (SOFA) ratio and location (Ma et al., 2015),
and tilt angles of the burner (Tan et al., 2017). CFD methods can
analyze the change in NOx spatial distribution based on different
input conditions and the relationships between various
parameters. There have also been some improvements over
the years with regards to the CFD combustion simulation
methods .Zhang et al. (2019) proposed a semi-empirical
modeling strategy with the large eddy simulation in which the
concentration of CO + H2 substituted CHi, which is difficult to
calculate to quantify NO homogenous reduction. The new model
can accurately predict different NOx evolution characteristics
under various conditions. Secco et al. (2015) coupled a genetic
algorithm with CFD calculations to automatically generate
optimal boiler configurations for minimizing NOx emissions.
CFD simulations can also be used to optimize the combustion
process. A drawback of using CFD simulations, however, is that
they involve a plethora of complicated calculations which
consume a large amount of time.

Another method to predict the NOx distribution is the data-
drivenmethod. This method is mainly focused on the NOx emission
of the exhaust gas. In this regard, numerous algorithms, including
statistical regression (Li et al., 2004; Chunlin Wang et al., 2018),
support vector machine (Wei et al., 2013; Zhou et al., 2012; Ahmed

et al., 2015; Lv et al., 2013), artificial neural network (ANN) (Chu
et al., 2003; Ilamathi et al., 2013; Preeti and Sharad, 2013; Jacob and
Tuttll, 2019), and deep learning (Li and Hu, 2020; Yang et al., 2020;
Tan et al., 2019; Xie et al., 2020; Kang et al., 2017; Wang et al., 2017)
are often used to predict the NOx concentration. Although
remarkable achievements have been obtained in this area, the
time complexity of support vector machines increases
exponentially as the sample size increases. This problem may be
attributed to quadratic programming problems.Moreover, the ANN
is easy to fall into the local minimum and has the risk of over-fitting.
The required data of data-drivenmodeling are usually collected from
the operation and experimental data of power plants. In this regard,
scholars have tried to combine CFD techniques with experimental
data to predict the NOx distribution in engineering applications
(Fang Wang et al., 2018; Yan et al., 2019). Currently, CFD data are
mainly used as the supplement of operation data, or it is combined
with historical data to obtain comprehensive data on the working
conditions. However, it is a challenge to analyze a huge amount of
3D data obtained from CFD simulation. On the other hand, simple
NOx prediction of the exhaust gas is not conducive to optimizing
combustion parameters and fault analysis.

In this study, a data-driven method is proposed to obtain the
3D NOx distribution based on the extreme learning machine
(ELM)method. Then, NOx distribution in the furnace is obtained
using CFD simulation. The obtained data are partitioned based
on the formation mechanism of NOx in the furnace. Meanwhile,
the Pearson coefficient and mutual information (PMI) is used to
obtain optimal inputs. Finally, the ELM is applied to establish a
3D NOx distribution model in the furnace, and the feasibility of
the method is verified through experiments. The proposed model
is expected to obtain the 3D distribution of NOx at any burner tilt
angle quickly and accurately and provide a guideline for
combustion optimization and NOx emission reduction.

2 DESCRIPTION OF THE PROPOSED
SYSTEM

2.1 Boiler Description
In the present study, a 350 MW once-through supercritical boiler
is selected as the research object. Figure 1 illustrates the
schematic layout of the boiler. The boiler is 58,300 mm high
and has a 14,627 × 14.627 mm cross section. Moreover, the depth
of the horizontal and tail flue gas duct is 53,200 mm and

FIGURE 1 | Schematic structure and burner arrangement of the studied
350 MW boiler. (A) Boiler structure (B) Arrangement of the burner and the
secondary wind.

TABLE 1 | Main boiler operating parameters at the rated power.

Parameter unit Values

Pulverized coal kg/s 53.75
Total air kg/s 370.64
Average excess air coefficient — 1.20
Primary air kg/s 110.07
Second air kg/s 260.54
SOFA kg/s 111.18
Primary air temperature °C 65.0
Secondary air temperature °C 356.0
Ambient temperature °C 30
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68,200 mm, respectively. The boiler adopts a new type of
tangential combustion. The main combustion area contains six
layers of pulverized coal air chambers and eight layers of auxiliary
air chambers. Each pulverized coal–air chamber has four nozzles,
which are arranged on the four planes of the water-cooled wall.
Four secondary air nozzles are arranged in each auxiliary air
chamber to surround it. Moreover, four SOFA layers are installed
in the corner above the main combustion area to replenish the
required air in the next stage of combustion.

Themain operating parameters at the rated power of the boiler
are shown in Table 1. Table 2 shows the chemical composition of
the coal.

2.2 Overall Modeling of Modeling
Obtaining the 3D distribution of NOx concentration in the
furnace mainly consists of four steps, including CFD

simulation, data preprocessing, feature selection, and ELM
modeling. The overall modeling process is shown in Figure 2.

Step 1: Input parameters and boundary conditions are set
according to the type of the boiler and unit load, and
then, CFD simulation is carried out.

Step 2: The 3D distribution data obtained from CFD simulation are
preprocessed; then, the data are partitioned into multiple
subsets based on the formation mechanism of NOx.

Step 3: Primary data are selected based on the formation
mechanism; then, the PMI is combined for feature
selection. Finally, variables with high correlation are
selected as modeling inputs.

Step 4: Predictionmodels of the NOx distribution of each subset are
established based on the ELM concept. It is worth noting
that different subsets have different optimal inputs.
Accordingly, multiple NOx prediction models can be
obtained for different conditions. Hence, all partial
models should be integrated into the final prediction model.

3 COMPUTATIONAL FLUID DYNAMICS
SIMULATION

Generally, CFD simulation consists of three steps, including pre-
processing, solving governing equations, and post-processing. The
main objective of pre-processing is to prepare the computational
domain and generate an appropriate mesh. Figure 1 shows that the
calculation domain includes the furnace and horizontal and rear
passes. In the present study, structured hexahedral meshes are used

TABLE 2 | Proximate and ultimate analyses of pulverized coal.

Coal properties Parameter Value

Ultimate analysis (%) Carbon 44.82
Hydrogen 2.68
Oxygen 10.26
Nitrogen 0.52
Sulfur 0.13

Proximate analysis (%) Moisture 31.75
Ash 9.84
Volatile 24.78
Fixed carbon 33.63

Low calorific value (kJ/kg) Qnet 16,310

FIGURE 2 | Modeling framework to obtain the 3D NOX distribution in the furnace.
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for the furnace body, while refined unstructured meshes are used in
the combustion zone to ensure the accuracy of calculations. Three
mesh resolutions, containing 2.82*106, 3.18*106, and
3.43*106 meshes, are used to perform the grid independence test.
Trading off between simulation accuracy and the computational
expense, 3.18*106 meshes are used in all simulations.

In this article, Fluent 15.0 software is used to study the
behavior of gas-solid two-phase flow and coal combustion.
Moreover, the k−ε model is used to solve the gas-phase
turbulent equations. Meanwhile, the stochastic tracking model
is used in the Euler–Lagrange method to simulate the two-phase
flow. In the combustion model, the volatile pyrolyzation model
adopts the two-step competitive reaction model, and the
diffusion/kinetics model is used to describe char combustion.
The discrete ordinates (DO) model is selected to model radiant
heat transfer in the furnace. The load, excess air coefficient, coal
quality, primary and secondary air distribution, and SOFA are
important and affecting parameters in the furnace. The imposed
boundary conditions are presented in Table 2.

To verify the CFD model, the simulation results of the 0°tilt
angle are compared with plant data at the rated point. Table 3
reveals that the absolute error of the outlet gas temperature (T1) is
6°C, which is equivalent to a relative error of less than 1%.
Furthermore, the absolute error of the gas temperature of the
platen superheater bottom is 32°C, which is equivalent to a relative
error of less than 3%. The relative error of O2 concentration at the
boiler outlet is 5.5%. The performed analyses demonstrate that the
CFD model can be applied to simulate combustion accurately.

CFD simulations are carried out for constant operating
conditions and different burner tilt angles. In this regard,
seven tilt angles (−30°, −20°, −10°, 0°, 10°, 20°, and 30°) are
considered, and the concentration of combustion products and
the flow field are obtained.

4 3D NOX EMISSION PREDICTION USING
EXTREME LEARNING MACHINE

4.1 Data Preprocessing
4.1.1 Data Acquisition and Normalization
First, the outliers should be processed. Based on the physical
mechanism, when an abnormal value of temperature or species
concentration is achieved, it is set to zero. On the other hand, when
an individual node has an extremely higher or lower value than the
surrounding nodes, the mean value of surrounding nodes is used
for it.

Meanwhile, different variables have different orders of
magnitude. The influence of data with high orders can be

highlighted in the modeling process, while other data with low
numerical values but great influence, such as O2 concentration,
may be ignored. In order to ensure the reliability of the model and
training speed, it is necessary to perform a Min-Max data
normalization process. This can be mathematically expressed
as follows:

x*i �
xi − xmin

xmax − xmin
, (1)

where xi is the original value, x*
i is the normalized value, and xmax

and xmin denote maximum and minimum values, respectively.

4.1.2 Data Partition Based on the NOx Formation
Mechanism
The formation of NOx in the furnace is a complex process that
involves numerous chemical reactions and thermal phenomena.
In a large-scale coal-fired boiler, more than 90% of the total NOx
originates from NO (Diez et al., 2017). On the other hand, NO
can be divided into three categories, including thermal NOx, fuel
NOx, and prompt NOx, according to different formation
mechanisms. Studies show that the concentration of prompt
NO in conventional burners and furnaces is very low so that
it can be ignored in calculations.

Thermal NOx refers to the nitrogen oxide generated by the
oxidation of N2 molecules of the combustion air at high
temperatures. In this reaction, NOx is created based on the
extended Zeldovich mechanism. The net formation rate of NO
can be calculated from the following expression:

d[NO]
dt

� k1[O][N2] + k2[N][O2] + k2[N][OH] − k−1[NO][N]
− k−2[NO][O] − k−3[NO][H].

(2)
To calculate the formation rate of NOx, the concentrations

of affecting radicals such as N, O, H, and OH should be
determined first. The partial equilibrium method can be
used to determine the concentrations of these radicals
(United States: Fluent Inc., 2006). In this method, it is
assumed that the generation rate and dissipation rate of
radicals in a short period of time are equal.

Fuel NOx refers to the oxidation of molecular nitrogen that
exists in the fuel structure (e.g., coal here). In this regard, the De
Soete mechanism is widely used to determine the formation and
depletion of fuel NOx. According to this mechanism, fuel-based
N can be classified into volatile N and char N. The formation of
fuel NOx is presented in Figure 3. It should be indicated that
HCN and NH3 are the main intermediates of volatile N and char
N. It is observed that the formation of fuel NOx is mainly affected
by the O2 concentration, fuel type, and char surface density.

The origin of coordinates of the geometric model is located at
the center of the furnace bottom. Axes of coordinates are shown
in Figure 1. In order to improve the accuracy of the results and
reduce the computational expenses, the data were divided into 11
subsets along the y-direction according to the combustion
mechanism. Table 4 indicates that subset 1 refers to the cold
ash hopper area. There are two main combustion areas, which are

TABLE 3 | The comparison between CFD results and experimental plant values.

CFD prediction Plant values Relative error

T1 (°C) 1,000 994 0.6%
T2 (°C) 1,297 1,329 −2.4%
O2 (%) 4.35 4.12 5.5%

T1: Furnace outlet gas temperature, T2: gas temperature of platen superheater bottom.
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divided into seven burner subsets. Subsets 9 and 10 denote the
transition zone and SOFA area, respectively. Moreover, subset 11
refers to the furnace top and the horizontal and tail flue heat
transfer zone.

4.2 Feature Selection Based on the Pearson
Correlation and MI
The selection of input variables directly affects the prediction
accuracy, computational expenses, and generalization of the
model. In the present study, 21 relevant variables are
preselected from CFD simulation data according to the NOx
formation mechanism. The input variables of 11 subsets are
reselected from 21 relevant variables based on the Pearson
coefficient and mutual information (PMI).

In the first step, the PMI variables are determined using Eq. 3.
When the correlation coefficient between the two variables is
ρxi,xj > 0.9, one of them can be removed to reduce the dimension
of input variables.

ρxi ,xj �
∑xi, xj − 1

n∑xi∑xj���������������������������������
(∑(xi)2 − 1

n(∑xi)2)(∑(xj)2 − 1
n(∑xj)2)

√ . (3)

The MI-based feature selection method can be applied to
obtain the optimal feature by maximizing the joint MI between
the input features and the target variable. The joint MI of NOx
and related inputs can be defined as follows:

I(x1, x2,/, xm; NOx) �
∑
x∈X

∑
y∈Y

p(x1, x2,/, xm; NOx)log p(x1, x2,/, xm,NOx)
p(x1, x2,/, xm)p(NOx),

(4)

where p(x1, x2,/, xm,NOx) is the variable joint distribution,
p(x1, x2,/, xm) is the marginal distribution of input variables,
and p(NOx) denotes the marginal distribution of NOx.

According to the PMI feature selection, except for three
variables (x-, y-, and z-coordinates), seven variables have a
relatively high correlation with NOx concentration. These
variables are listed in Table 5, according to the correlation
intensity. In addition to three coordinate variables, 10 CFD
variables of each subset are retained.

4.3 Obtaining the NOX Distribution
4.3.1 Extreme Learning Machine
ELM (Huang et al., 2017) is a single hidden layer feedforward
neural network (SLFN), which has remarkable properties such as
simple structure, fast learning, and superior generalization
performance. Accordingly, ELM is widely used in different
kinds of dimensional reduction or regression problems.
Figure 4 shows the structural block diagram of the ELM network.

In an ELM model, (Xi, ti), Xi � [xi1, xi2,/, xim]T ∈ Rn, and
ti � [ti1, ti2,/, tim]T ∈ Rm, are train sets, and g(x) is the
activation function. The output of the ELM can be expressed
as follows:

∑L

i�1βigi(ωi · xj + bi) � oj, (5)
where j � 1, 2,/, L, and L refers to hidden nodes; ωi is the
connection weight between the hidden and the input layers; βi is
the connection weight between the hidden and output layers; bi
denotes the offset of the ith hidden layer, and ωi · xj is the inner
product. When the optimal β, ω, and b, are optimized, then the
error reaches zero (∑N

j�1oj − tj � 0). Consequently, Eq. 5 can be
rewritten in the form below:

FIGURE 3 | Chemical reactions that lead to the formation of fuel NOx.

TABLE 4 | Partitioned data in the furnace.

Subset y-coordinate (m) Number of
meshes

Subset y-coordinate (m) Number of
meshes

1 [6.5, 19.5) 77,631 7 [27.0,28.3) 286,240
2 [19.5, 21.0) 345,750 8 [28.3,29.8) 356,409
3 [21.0, 22.4) 305,256 9 [29.8,34.2) 326,907
4 [22.4, 23.7) 311,906 10 [34.2,40.0) 275,240
5 [23.7, 25.5) 250,035 11 [40.0,64.8) 265,371
6 [25.5, 27.0) 383,153
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∑L

i�1βig i(ωi · xj + bi) � tj. (6)
Eq. 6 can also be expressed in the following matrix form:

Hβ � T, (7)
where H is the neuron output matrix, β is the output weight, and
T is the output of the neural network. In the ELM algorithm,
minimum norm least-squares (LS) are used to solve the SLFN.
When the activation function g(x) is infinitely differentiable, the
input weight ωi and hidden layer bias bi can be randomly set to t
(Huang et al., 2017). The training process of ELM consists of two
steps, including random feature mapping and linear parameter
solution. In ELM, the hidden layer is initialized randomly
through nonlinear mapping functions, and the data are
mapped to the feature space. Accordingly, the output weight
matrix β̂ can be obtained based on the least-squares regression.

β̂ � H+T, (8)
where H+ is the Moore–Penrose generalized inverse of the
matrix H.

4.3.2 Computational Environment and Parameter Setting
All calculations are carried out in the Python 3.5 environment,
installed. Configurations of the PC o Sun program are Windows7

(64 bit) and an Intel Core i5-9400F processor with 2.9 GHz
processor speed.

The input weight and bias value are randomly selected
according to the performed ELM analysis. “tanh” function is
selected as the activation function of ELM, and 100 neurons are
considered in the hidden layer.

4.3.3 Description of the Data Set
In this section, CFD simulation is carried out to study variations
of the tilt angle of a typical burner at rated power. In order to
investigate the NOx distribution at an arbitrary angle, training
and test data sets should be constructed. According to PMI
correlation analysis, NOx distribution is mainly affected by
seven factors. Moreover, there are 22 variables as the inputs of
the training set.

TABLE 5 | Feature selection of each subject.

Correlation rank Subsets 1 Subset2- subset 9 Subsets 10 Subsets 11

1 velocity-magnitude temperature molef-o2 molef-o2
2 y-velocity molef-o2 velocity-magnitude molef-n2
3 temperature molef-co temperature pressure
4 molef-o2 molef-n2 y-velocity y-velocity
5 heat-of-reaction velocity-magnitude molef-n2 temperature
6 dpm-concentration y-velocity molef-co molef-co
7 dpm-burnout pressure pressure z-velocity

FIGURE 4 | Structural diagram of the ELM network.

TABLE 6 | Construction of the training set and test set.

Data set Data set of
the input variables

Data set of
the output variable

Training set 1 −30°, −10° −20°

Training set 2 −20°, 0° −10°

Training set 3 −10°, 10° 0°

Training set 4 10°, 30° 20°

Test set 0°, 20° 10°
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The construction rules of the data set are shown in Table 6.
Four cases are combined to train the model, and one is used to test
it. In this study, the NOx distribution of the upward 10° tilt angle
will be predicted.

4.3.4 Performance Metrics
In order to evaluate the prediction performance of models, the
mean absolute percentage error (MAPE), root-mean-squared error
(RMSE), and correlation coefficient R-square (R2) are used as
evaluation indicators. These indicators are defined as follows:

MAPE � 1
m
∑m

i�1

∣∣∣∣∣∣∣∣
yp(i) − yc(i)

yc(i)
∣∣∣∣∣∣∣∣ × 100%, (9)

RMSE �
�������������������
1
m
∑m

i�1(yp(i) − yc(i))2
√

, (10)

R2 � 1 −
[∑m

i�1(yp(i) − yc(i))2]/m
[∑m

i�1(�yp(i) − yc(i))2]/m
, (11)

where m is the number of samples in the test set, and �yp(i)
denotes the average value of NOX distribution. Furthermore, yc

and yp are the calculated and predicted NOx concentrations,
respectively.

4.3.5 Prediction of NOx Distribution Based on Extreme
Learning Machine
3D distribution of NOx in 11 subsets are modeled respectively
adopting the aforementioned ELM model and then are tested by
the working condition of the upward 10° burner tilt angle. The
predicted results are shown in Table 6.

In this section, it is intended to model the NOx distribution in
11 subsets adopting the ELMmodel. Then, the results are verified
by the experimental data of the upward 10° burner tilt angle. The
performance indicators of the predicted results are shown in
Table 7.

Considering the required computational time for CFD
simulation, ELM can be applied to rapidly model the flow
and obtain the NOx distribution at an arbitrary tilt angle.

Compared with other subsets, R2 of subset 1 is relatively
small, indicating that the predicted value deviates from the real
value. This subset locates in the cold hopper area. Accordingly,
the NOx distribution is mainly affected by the ash fall and the
combustion in the upper zones. Meanwhile, cold air blowing to
the bottom of the furnace affects the field distribution and
species concentration. Accordingly, it is an enormous
challenge to predict the NOx distribution in this region.

TABLE 7 | Performance indicators in different subsets.

R2 MAPE RMSE Train Time
(s)

Test Time(s)

Subset1 0.49 8.19 36.20 3.03 0.22
Subset2 0.79 18.85 46.68 14.36 1.18
Subset3 0.82 20.55 61.25 15.35 1.37
Subset4 0.81 22.52 59.35 15.46 1.40
Subset5 0.73 12.12 58.35 12.18 1.09
Subset6 0.86 10.51 42.88 18.61 1.56
Subset7 0.85 20.24 51.59 14.12 1.18
Subset8 0.67 10.20 47.46 14.73 1.45
Subset9 0.75 4.62 25.39 13.48 1.13
Subset10 0.73 4.89 23.92 11.38 0.95
Subset11 0.86 2.56 10.23 11.27 0.91
Mean 0.76 12.29 40.49 13.00 1.00

FIGURE 5 | Contour of 3D distribution of NOX. (A) NOX concentration obtained from CFD simulation (B) NOX concentration obtained from ELM prediction (C)
Prediction error
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Table 7 indicates that theMAPE of subsets 3, 4, and 7 is about
20%, which is much larger than that of other subsets. These three
subsets locate in burner B, burner C, and burner E, respectively.
When the burner tilt angle is 10° upward, the combustion center
of the lower main combustion zone locates in subsets 3 and 4, and
the combustion center of the upper main combustion zone
locates in subset 7. Under this circumstance, large turbulent
flow and flame fluctuation decreases the prediction accuracy.
Figure 5 shows the overall contours of NOx distribution in the
studied furnace. It is observed that the NOx concentration in the
main combustion zone is relatively high, and the range of
variation is large. Consequently, the prediction error is
relatively large.

In subsets 9, 10, and 11, theMAPE and RMSE of the model are
small. This is because at the top of the furnace and the horizontal

flue, the combustion reaction has ended, and the turbulence
disappears. As a result, the distribution of the material
composition is stable.

5 VERIFICATION OF THE ALGORITHM

5.1 Analysis of Feature Selection
To verify the influence of PMI feature selection on the modeling
accuracy and efficiency, a comparative study is carried out on the
NOx distribution of 11 subspaces. There are 42 input variables before
feature selection, including 3 coordinates (x-, y-, and z-coordinates),
19 variables in each known working condition and the burner tilt
angle of an unknown working condition. The output is NOx
distribution in the desired working condition. Furthermore, there
are 22 input variables after PMI feature selection. Three evaluation
indicators are used to analyze the modeling effect.

Table 8 shows the mean index indicators of 11 subspaces. It is
observed that after feature selection, the mean R2 (MR2) increases by
14.5%, while the mean MAPE (MMAPE) and mean RMSE
(MRMSE) decrease by 20.9% and 17.2%, respectively. Moreover,
mean training time decreases by 3.9 s. It is concluded that predicting

TABLE 8 | Statistical indicators of the prediction using different methods.

MR2 MMAPE MRMSE Mean Train Time (s)

PMI-ELM 0.76 12.29 40.49 13.09
ELM 0.65 15.55 48.89 16.99

FIGURE 6 | Contours of NOX concentration along the height of the furnace obtained from different methods.
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the NOx distribution using the PMI feature decreases the prediction
data dimension and improves the prediction performance.

Considering the high temperature in the combustion zone and
the high-temperature gradient around the flame, it is a challenge to
simulate the flow accurately. The flue gas flow at the top and tail of
the furnace is relatively steady, so the predicted value of NOx
distribution is relatively accurate. Figure 6 shows the NOx
distribution in the horizontal cross section at four heights of the
furnace with an upward burner tilt angle of 10°. It is observed that at
the height of 22 m (burner region B), firing circles appear clearly, and
the predicted values using the feature extraction are more consistent
with the experimental data. At the height of 29m, airflow rotates and
the deviation of the NOx concentration in the furnace center is
smaller than that of the case where this feature is not selected. For the
SOFA area at 35m, the prediction accuracy of PMI-ELM is high. At
the top of the furnace, the NOx distribution can be accurately
predicted regardless of the feature selection. It is inferred that
prediction errors mainly appear in the high-temperature zone
and the bottom of the furnace. Except for the top region, the
prediction performance can be significantly improved using
feature extraction.

5.2 Comparative Analysis of Different
Algorithms
To verify the effectiveness of the ELM algorithm on predicting the
NOx distribution in the studied furnace, 11 subsets are modeled

using different algorithms, including the deep belief network
(DBN), deep neural network (DNN), multiple linear regression
(MLR), and echo state network (ESN). The average prediction
performances of different algorithms are compared in Table 9. It
is observed that the smallest prediction error and the largest R2

can be achieved from the ELM model. Moreover, the ELM has a
higher prediction speed than DBN and DNN models. The
comparison of error evaluation indices demonstrates that the
ELM model outperforms other models in predicting the NOx
distribution in the studied furnace.

Figure 7 shows the absolute error boxplot of the studied
algorithms. It is observed that the lowest absolute error can be
achieved from the ELM algorithm, while it has a tighter variation
bandwidth than the other algorithms. The variation of the
predicted results using the ELM algorithm is consistent with
that of the CFD simulation. It is concluded that the ELM-based
model has a reasonable fitting effect and prediction ability.

6 CONCLUSION

The ELM model has been established to predict the 3D NOx
distribution in the furnace using CFD simulation data at different
burner tilt angles. Based on the obtained results and performed
analyses, the main conclusions of this research can be
summarized as follows:

The mean R2, MAPE, and RMSE of the ELM-based data-
driven method are 0.76, 12.29%, and 40.49, respectively,
indicating that the proposed method can be used to accurately
predict the NOx distribution in the furnace.

1) Due to a large amount of CFD data, the data are partitioned
based on the combustion mechanism. PMI feature extraction
is used to select optimal variables of each subset. This
technique increased MR2 and MMAPE by 14.5 and 20.9%,
respectively, while reducing the MRMSE by 17.2%. It is

TABLE 9 | Mean performance indices of different algorithms.

DNN DBN MLR ESN ELM

R2 0.70 0.65 0.51 0.59 0.76
MAPE 17.09 15.28 22.28 20.75 12.30
RMSE 47.08 50.71 48.36 48.64 42.12
Average Train Time (s) 25684.97 7919.24 0.46 24.81 13.22

FIGURE 7 | Absolute error box plot of different algorithms.
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concluded that data partition and PMI feature selection can
effectively improve the prediction performance.

2) CFD simulation results at typical burner tilt angles are
used as the training set. Then, NOx distributions are
predicted at arbitrary tilt angles. It is found that the
proposed data-driven method can predict the NOx
distribution in the furnace online based on offline
modeling Xu et al., 2001.
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Parameters of Tunnel Fire
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With the continuous expansion of urban cable scale and the increase in service time, the
fire accident risk of cable tunnels also increases. Defects in the configuration of fire
prevention measures lead to many fire accidents and seriously affect the reliability of power
supply. First, the detection data of a typical tunnel fire accident are analyzed in this study.
The results show that the main problems are the unreasonable installation position of fire
extinguishers, the lack of fire prevention measures between intermediate joints, and the
insufficient fire prevention performance of interlayer fire barriers. Then, the field test of cable
tunnel fire is carried out in a cable tunnel to be put into operation. The test data show that
the high-temperature area is mainly concentrated on the top of the tunnel, and the
insufficient suspension height of the fire extinguisher will affect the trigger time. The energy
of a short circuit accident is large, the cable burns and spreads rapidly, and the delayed
triggering may lead to large fire to extinguish effectively. Comparing the simulation and test
results of abnormal characteristic parameters in fire, the temperature error is less than 4%.
The fire power development curve is obtained through simulation, and the burner power is
set to test the fire prevention and extinguishing devices. Finally, the optimal configuration
scheme of the fire anomaly data detection equipment and fire-extinguishing products is
proposed. The temperature drop rate increases by 135%.

Keywords: power cable tunnel, fire accident, anomaly detection, field test, detection data analysis, fire development

INTRODUCTION

In recent years, the cable utilization rate in the core area of megacities has reached 100%. Cables of
multiple transmission circuits in key areas are laid in the same tunnel. If one cable is on fire, other
lines will be directly exposed to the fire. Even flame-retardant cables will produce insulation
deterioration and breakdown under long-term burning and then become a new fire source (Yan
et al., 2018). At the same time, non-flame-retardant distribution power cables or optical cables are
often laid in the main cable tunnels. It will also be ignited and cause the fire to burn continuously.
Therefore, in case of fire in the tunnel, it is very easy to cause all cables and optical cables in the same
channel to burn. The load of the whole transmission channel is lost, which may lead to large-scale
power failure in the city. In order to monitor the tunnel fire, optical fiber temperature measurement,
smoke sensor, and other detection devices are installed. Some new important cable tunnels are also
equipped with intelligent inspection devices and video monitoring (Shen et al., 2021; Yang et al.,
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2021a; Yang et al., 2021b). With the application of the artificial
intelligence algorithm in the power system, some fire prediction
methods have also been proposed. The cable tunnel is long and
narrow, the entrance is small, and the space is sealed. In case of
fire, firefighters cannot enter to carry out routine firefighting.
Therefore, firefighting products such as fire extinguishers, fire
barriers, and fireproof tapes are used in cable tunnels. However,
due to the lack of research on the combustion characteristics of
tunnel fire, the configuration of some tunnel firefighting products
built in the early stage is unreasonable. Moreover, the short circuit
energy of high-voltage cables is huge, the fire develops rapidly,
and the performance of some firefighting products is not enough
to deal with it. It is necessary to analyze the abnormal data of
typical tunnel fire accidents to determine the causes of accidents
and the deficiencies of fire prevention and extinguishing
measures, and to further put forward improvement schemes.

The main causes of fire in cable tunnels are high temperature
caused by excessive line load or excessive short circuit current;
partial insulation damage and discharge arc ignition caused by
overvoltage; and the fault of cable grounding system leads to
sheath suspension potential breakdown and long-term small
current discharge (Dong et al., 2017). After the fire accident in
the cable tunnel, due to the long and narrow seal and the
accumulation of a large amount of toxic smoke, it is difficult
for personnel to enter and extinguish the fire from the outside
(Wang et al., 2017; Liang et al., 2019; Song et al., 2020). It is easy to
spread and causes great economic losses. The alarm time of
different detectors is obtained by tests (Liu X et al., 2021). The
alarm characteristics of fire detectors with different sensitivities
are simulated and analyzed, which provide a reference for
selecting sensors with extra sensitivity and designing fire-
monitoring systems in cable tunnels. Zhang and Zhao (2020)
combined test and simulation and concluded that closing the fire
door after a fire and adopting mechanical ventilation can
effectively control the fire. The establishment of a test
platform confirmed the feasibility of liquid nitrogen fire
extinguishing in a cable tunnel (Guo et al., 2020). Liu Y et al.
(2021) conducted water mist fire-extinguishing tests and found
that the greater the flow or velocity, the stronger the inhibition
effect on the total firepower of cable tunnel. Li et al. (2018)
analyzed the fire development law of cable tunnels under different
fire spacing and found that a fire spacing of nomore than 500 m is
conducive to controlling the fire development and ventilation
after fire extinguishing. Mi et al. (2020) simulated different
combinations of ventilation modes, automatic fire-
extinguishing systems, and fire doors to effectively control the
smoke propagation in the tunnel and help people evacuate
immediately. However, the aforementioned studies mostly
analyzed a single fire prevention measure and did not consider
the characteristics of a high-voltage cable channel. Due to the lack
of comprehensive configuration of various fire-extinguishing
measures, the fire risk of the high-voltage cable tunnel is still high.

In order to configure fire prevention and extinguishing
measures more reasonably, it is necessary to obtain the
development characteristics of high-voltage cable tunnel fire.
The research of tunnel fire is mostly simulation analysis.
However, because it is difficult to determine the relevant

combustion parameters, there are some differences between
the simulated data and the actual combustion data of the
high-voltage cable tunnel. The research on the fire prevention
effect of fire prevention and extinguishing measures needs
experimental verification. Zhu et al. (2019) conducted the fire
test of reduced size cable tunnels. It was found that within
200–600 s, the combustion time of the cable was 23%, the
mass loss was 75%, and the transverse temperature
distribution in the range of 0–90 degrees of the tunnel was
obtained. An et al. (2020) studied the effects of layer spacing
and cable spacing on flame characteristics and the risk of
multilayer cables. It was found that the flame height increased
with the increase in layer spacing, and the flame width decreased
with the increase in cable spacing. Fire tests were carried out in a
reduced cable tunnel under different oxygen concentrations (Xu
et al., 2021). It was found that different combustion parameters
changed under different oxygen concentrations, and there were
two temperature peaks on the section, which were directly above
the fire source. It is found that in the case of fire in a cable tunnel,
the highest position of ceiling temperature has nothing to do with
the cable inclination (An et al., 2021). When the cable inclination
is less than 15°, the highest ceiling temperature further increases.
However, the aforementioned research is mostly carried out in a
laboratory or a reduced scale platform, which is different from the
actual high-voltage cable tunnel. If the test is carried out in a
typical actual tunnel, more reference test data can be provided.

First, combined with the monitoring data of typical cable
tunnel fire accidents, this study analyzes the causes and
development of fire. More targeted studies pointed out the
shortcomings of fire prevention and extinguishing measures of
high-voltage cable tunnels. Then, in order to obtain the
characteristics of cable combustion spread and detection data
in the cable tunnel, the field test of cable fire is carried out in a
cable tunnel to be put into operation. The obtained data are more
real and effective, and the simulation model can be verified and
modified. At the same time, the fire test of firefighting products
such as fire extinguishers and fire barriers were carried out in the
tunnel. Finally, the optimal configuration scheme of fire anomaly
data detection equipment and firefighting products is proposed
according to the test and simulation data. The comprehensive
effects of various fire prevention and extinguishing products are
considered.

ABNORMAL DATA ANALYSIS OF TUNNEL
FIRE ACCIDENTS
Cause Analysis of Fire Accident in Cable
Tunnel
According to incomplete statistics, about 200 cable lines have
been tripped due to cable tunnel fires in the past 4 years. Most of
the tunnel fires are caused by joint failure. In particular, cables
with a voltage of 110 kV and above cause huge economic losses
after failure. This study takes a fire accident caused by a 220 kV
intermediate joint fault as an example. The scene of the cable
combustion accident is shown in Figure 1. In case of breakdown,
the copper shell of the intermediate joint has burst and the
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intermediate joint has been seriously burnt. Although the outer
sheaths of the other two phases of cables in the same circuit
adjacent to them are flame-retardant materials, they are still
seriously ablated, and the aluminum sheaths of the inner layer
are exposed to varying degrees. The cross-linked polyethylene
material inside the failed intermediate joint started to melt after
combustion and dropped onto the 220 kV cable of another circuit
below, which damaged the outer sheath, but did not cause open
fire, and the inner aluminum sheath was not exposed and

damaged. The fire barrier above the intermediate joint was
burnt out for about 6 m, and all the communication cables
laid inside were burnt out. The fire barrier has not played its
due role, and the fireproof performance needs to be tested.

The cable intermediate joint is disassembled for analysis.
There are 33-cm-long cracks in the copper shell of the cable
intermediate joint. The exposed insulating rubber parts have
obvious breakdown holes. After the metal copper shell was cut
off, it was found that the insulating rubber parts were ablated
in a large area, and the length of the ablation area was up to
50 cm. The insulating rubber parts are cut to observe the
breakdown position of the cable body and the breakdown
position of the corresponding insulating rubber parts. The
fault breakdown is the radial breakdown of insulating rubber
parts, and the starting position of high voltage is the end of the
wire core shield. After the semiconductive tape outside the
shield at the cable core is stripped, obvious ablation can be
found at the edge of the shield. When insulating rubber part is
cut along the axial direction of the fault breakdown position,
the breakdown path can be observed. It can be seen that the
diameter of the breakdown hole is about 10 mm, and the
position of the breakdown path is consistent with the
position of the mold joint of the semiconductive layer in
the insulating rubber part. There are impurities on the
surface of the semiconductive layer in some insulating
rubber parts, which may cause partial discharge.

According to the statistical analysis of similar faults, there have
been 13 breakdown faults of silicone rubber intermediate joints of
110 kV and above voltage levels of the same manufacturer since
2014. There are 11 breakdown faults during power transmission
and closing, and 2 breakdown faults during voltage withstand

FIGURE 1 | Field conditions of cable tunnel with fire accident (A) accident intermediate joint (B) adjacent phase cables in the same circuit (C) another circuit cable in
the lower layer (D) fire barrier above.

FIGURE 2 | Statistical analysis of operation time of typical accident
cables.
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tests. The causes of the breakdown faults were analyzed. There are
10 failures caused by the breeding of electric trees in insulating
rubber parts. There are 2 failures caused by construction quality
problems. The cause of another accident is unknown. The operation
time of cable joints in these 13 accidents is counted, as shown in
Figure 2. The operation time of the 69.2% faulty cable is 3 years.
This is consistent with the development law of actual cable
insulation defects. During the initial operation of 1–2 years,
insulation defects continue to develop. To a certain extent in the
third year, breakdown accidents are prone to occur with
overvoltage. For cables without obvious defects, the insulation
aging does not gradually produce defects until 6 years of
operation, resulting in breakdown. The investigation and analysis
show that the cable intermediate joint faults all occur in the power
transmission and closing stage. The main reasons are insulation
defects of insulating rubber parts, insufficient insulation margin,
and breakdown caused by operating overvoltage during closing. It is
necessary to improve the process of intermediate joints of similar
manufacturers to avoid insulation defects of intermediate joints.

Analysis of Monitoring Data in Tunnel
First, the fault time is determined according to the voltage and
current waveform of fault recording. The fault is a phase C short
circuit fault, which occurred at 12:08:51 and lasted for 0.04 s.
During the fault, the phase C voltage drops to 16.61 kV and the
maximum fault current is 13.37 kA. The system returns to normal
after an oscillation of 0.04 s. Due to the short fault duration, the
monitoring system did not collect the grounding current value at
the time of fault occurrence. The grounding current of each phase
of the fault circuit collected by the monitoring system before and
after the fault is within 13 A. According to the simulation
calculation of the induced current of the metal sheath of
220 kV double circuit cable, the grounding current is about
10 A under different loads and laying methods. The monitored
grounding current data are normal.

The optical fiber temperature data within 5 h before and after
the fault are shown in Figure 3. The sampling rate of the optical
fiber temperature measurement on-line monitoring system is
about 5 min/time. The system does not collect the
instantaneous temperature rise process at the time of fault
discharge (12:08). The temperature before (12:05) and after
(12:10) the time of fault is 35°C, and the measured
temperature data are normal. From the time of failure (12:08)
to the starting time of temperature rise displayed by optical fiber
temperature measurement (12:15), the temperature
measurement data are normal. It is judged that this stage is
the ignition stage of the phase C cable, and the phase B cable has
not been ignited. The temperature measurement optical fiber is
arranged in the phase B cable, so the temperature data are
unchanged. During the period when the optical fiber
temperature measurement data increased from 34.97°C (12:15)
to 515.01°C (13:01), the temperature value generally showed a
sharp upward trend. It is judged that this stage is the combustion
stage of the phase C cable, and the peaks occurred successively
during this stage. In the following 156 min (to 15:36), the optical
fiber temperature measurement value was maintained at 360°C,
and it was judged that the combustion of the phase C cable was
extinguished at this time. Combined with the field analysis, the
upper fireproof slot box of the cable is ignited during the cable
combustion, and the high temperature measured by the optical
fiber is caused by the slot box combustion. After 15:36, the oxygen
content in the tunnel space was insufficient to maintain the
continuous combustion of the tank box, all the flames in the
tunnel were extinguished, and the temperature measurement data
returned to normal. The two temperature drop areas are due to
the action of fire extinguishers separated by a certain distance,
which has a certain cooling effect. However, due to the long
trigger time of fire extinguishers and insufficient distance, the
flame is not completely extinguished. The area near the middle
joint of the cable is reignited. This indicates that the layout of fire
extinguishers needs to be optimized.

FIELD TEST OF SIMULATED FIRE IN CABLE
TUNNEL

Test Equipment Layout and Test Method
A tunnel to be put into operation was selected for the cable fire
test. The tunnel section is 2.1 m high and 2 m wide. The cable

FIGURE 3 |Optical fiber temperature measurement data of cable tunnel
fire accident.

FIGURE 4 | Tunnel structure and overall layout for field test.
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tunnel area for testing is between two cable tunnel shafts, with a
total length of 140 m, and there is a ventilation shaft in the
middle, as shown in Figure 4. The fire source is arranged 30 m to
the south of the ventilation shaft. It mainly tests the monitoring
data of intermediate joint in case of fire. Four monitoring points
are set at 3 m and 6 m on both sides of the fire source for the
measurement of CO, CO2, and flue gas concentration data. The
temperature data need to analyze the difference in different
heights. Four monitoring points are arranged on both sides of
the fire source, and the height of the monitoring points is from 1.5
to 1.9 m. The specific layout inside the tunnel is shown in
Figure 5. It can also be seen that there are six layers of
supports in the tunnel, including 220 kV cables placed for the
second time and 110 kV cables placed on the third and fourth
layers. The left side of the figure shows the test layout without fire
prevention measures. On the right side is a comparative test
arrangement with fire barriers.

The main equipment of the test includes a simulated fire
source system and characteristic data monitoring system.
Combined with relevant standards, a set of fire source device
with remote control ignition and adjustable power is developed in
this study. The fire source system mainly includes propane gas
supply device, flowmeter, control valve, anti-backfire device,
fireproof metal pipe, burner, and wireless ignition device. The
power regulation of fire source is feedback controlled by a
flowmeter and control valve. At the same time, the ignition
source can be controlled off after the cable ignition is
completed. In order to ensure the signal acceptance of the
wireless ignition device in the underground tunnel, signal
repeaters are installed at the tunnel shaft and in the tunnel.
The characteristic data of cable combustion mainly include
temperature, CO, CO2, and flue gas concentration. CO
concentration in gas is one of the effective characteristic
quantities of fire gas in fire detection. CO2 is the main
product of most polymer combustion, and its concentration
can characterize the scale of fire. The fire smoke particles vary
in size, and the diameter range generated by complete

combustion is concentrated below 1 um. Here, the cable
combustion is incomplete combustion, and the particles are
large. The PM10 sensor is used to monitor the smoke
concentration. The main technical parameters of the sensor
used are as follows: CO sensor, range 0–1000 ppm, resolution
0.1 ppm; CO2 sensor, range 0–5000 ppm, resolution 50 ppm; and
PM10 sensor, range 0–1999 ug/m3, resolution 0.3–10 um. CO,
CO2, and PM10 sensors are integrated. Three prevention
treatments and sheet metal shells are installed to adapt to the
harsh environment of the cable tunnel. The shell opening channel
can effectively collect tunnel data. There are many temperature
acquisition points, and the K-type thermocouple matrix is used
for acquisition. All collected characteristic data are monitored
online through the RS485 communication module and uploaded
to supporting software. All data can be displayed and stored in
real time.

Considering the fire caused by the simulated cable discharge
fault, the test method is as follows: the burner is placed under the
lowest support, the cable is cut off, the insulating layer is exposed;
the ventilation is adjusted to simulate different arc power to ignite
the cable; the fire source is turned off after igniting for a period of
time, the cable continues to burn; the combustion situation is
video-recorded; the characteristic parameters such as
temperature and gas are collected and recorded through a
monitoring device; the tunnel is filled with dry ice to
extinguish the fire after completing the combustion test, and
air extraction and tail gas treatment are carried out to ensure that
the air in the tunnel meets the entry requirements of personnel
before going down the well.

Monitoring Data Analysis of Tunnel Fire Test
The development of cable combustion in the tunnel is shown in
Figure 6. After the burner is ignited, the 220 kV cable on the
second layer support is ignited within 5S. The outer sheath begins
to undergo pyrolysis under the influence of high temperature,
resulting in a variety of gas products such as alkanes, olefins, and
chlorinated products. These products are mixed with air for

FIGURE 5 | Specific layout inside the tunnel.

FIGURE 6 | Development of cable combustion in tunnel.
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combustion, and the flame height increases rapidly. The
insulating layer is cut and exposed to simulate the joint
breakdown fault. The insulating layer is made of XLPE, which
is flammable. At high temperature, the XLPE will melt and fall,
resulting in obvious flame on the ground. A large amount of heat
and flue gas are generated by combustion and gradually diffused.
After the 220 kV cable is completely burned, the 110 kV cable on
the upper layer is further ignited. Finally, the test cables are fully
burned to form a stable flame area.

The relevant data of the fire test are collected in real time. The
gas monitoring data of two monitoring points, which are 3 m
away from the fire source, are analyzed as an example. The
variation curve of CO and CO2 concentration is shown in
Figure 7. The CO2 gas concentration increased continuously
in the initial stage and exceeded 5,000 ppm in 55 s. CO2 in the
initial stage is mainly produced by a propane burner. After the
220 kV cable is ignited, the burner is closed. At this time, CO2 is
mainly generated by the combustion of the cable. In the initial
stage, oxygen is sufficient, and the propane burner burns
completely to produce very little CO. CO is mainly produced
by pyrolysis combustion of the cable outer sheath and insulating
layer. After the cable is ignited, insufficient initial pyrolysis will
produce a large amount of CO. The CO content increased to
20 ppm in 15 s. Then the temperature increases rapidly, the
pyrolysis of CO is fully burnt, and the CO content enters the
slow growth stage. The combustion range expanded in about 45 s,
more cables were not fully pyrolyzed, and the CO content
increased rapidly again, reaching 90 ppm in 60 s. The variation
curve of flue gas particle concentration is shown in Figure 8. In
the first 10 s, the combustion causes the temperature in the fire
source area to increase sharply, forming a local high-temperature
area. With the acceleration of air flow, some stationary particles
begin to diffuse under the action of thermal convection. The
flame-retardant characteristics of the cable sheath led to a large
number of smoke particles, the diameter of which is greater than
2.5 μm accounting for the main proportion. These particles form
a layer of hot smoke at the top of the tunnel. The measured

concentration quickly exceeds 1800 ug/m, and the smoke
3concentration reaches themaximum range of the sensor within 45 s.

The temperature variation curve at different heights of each
monitoring point is shown in Figure 9. The temperature of
monitoring points 2 and 3, 3 m away from the fire source,
began to increase from 18 s. There are obvious differences in
the maximum temperature at different heights. For example, the
temperature at the height of 1.9 m of measuring point 2 can reach
more than 160°C, while the temperature at the height of 1.5 m is
about 100°C. The monitoring temperature of measuring point 3 is
higher than that of measuring point 2. Since measuring point 3 is
close to the side of the ventilation shaft, the air flow is easier to
supplement oxygen, burn more fully, and generate more heat. As
shown in the monitoring data of measuring point 1, it can be seen
that the temperature difference between different heights below
1.8 m height is greater than that of measuring point 2. However,
the temperature data of 1.8 m height and 1.9 m height are close.
This indicates that the hot gas flow diffuses at the top, and the
farther away from the fire point, the more the temperature is
concentrated at the top of the tunnel. The maximum temperature
at the height of 1.5 at measuring point 1 is only about 70°C, so the
fire extinguisher may not be triggered. In the accident analyzed
before, the fire extinguisher was placed on the cable support near
the middle of the channel. The suspension height is about 1.6 m
and is not in the area directly above the fire source but in the
middle of the tunnel. It is placed about 3m away from the ignition
point. This leads to the late triggering time, and the limited fire-
extinguishing range of the fire extinguisher also limits the fire-
extinguishing effect. The layout of the fire extinguisher
equipment needs to be optimized.

Fire Performance Test Results of Fire
Barrier
As shown in Figure 5, a fire barrier is arranged on the support on
the right side of the tunnel for test. The area with the fire barrier

FIGURE 7 | Variation curve of CO and CO2 concentration.

FIGURE 8 | Variation curve of flue gas particle concentration.
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protects the upper cable from ignition, as shown in Figure 6.
When the fire barrier is tested, the fire source power of the
burner needs to be set based on the actual cable tunnel fire.
However, the fire source power of the actual cable tunnel
cannot be obtained directly. The simulation analysis of cable
fire needs to be used and then compared with the experimental
temperature monitoring data. A high-voltage XLPE cable is
composed of multilayer materials. The complex pyrolysis
method is used to simulate the combustion spread of the
multilayer cable structure. The reaction rate formula of
combustion is as given follows:

Wi � Ai(ρi(x, t)
ρo

)N

exp( − Ei

RTS(x, t))X
n02 ,i
O2

, (1)

where Wi is the i-th pyrolysis reaction rate; Ai is the i-th pre-
exponential factor; Ei is the activation energy of the i-th reaction;
R is the general gas constant, with a value of 8.314 kJ/kmol•K; Ts
is the reaction temperature (K); N is the reaction order; ρi is the
mass concentration of the current solid phase type; ρo is the initial
density of the solid surface at the boundary; and XO2 is a
simulated reaction rate, which is affected by local oxygen
concentration.

During the combustion process of the power cable, the
combustion of the outer sheath and insulating layer needs to
be determined according to the test. Combined with the
combustion calorific value of solid materials obtained from the

test, the mass of gas fuel required for the corresponding gas-phase
reaction is converted. According to the ratio of the outer sheath
and insulating layer of the high-voltage cable, the gas-phase
reaction equation is shown in formula 2.

FIGURE 9 | Temperature variation curve at different heights of each monitoring point (A) 1, (B) 2, (C) 3, and (D) 4

FIGURE 10 | Temperature comparison of test and simulation above fire
source.
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C2H3.6Cl0.4 + 2.39O2 → 1.42CO2 + 0.34CO + 1.6H2O + 0.4HCI + 0.24C.

(2)
The simulation model is established based on the field test

cable and tunnel structure size. Simulation is carried out with the
previous settings. The comparison between the monitoring data
of the temperature sensor above the fire source and the simulation
data is shown in Figure 10. After the cable is ignited, the
temperature increases rapidly. After about 40 s, the
temperature oscillates around 840°C, and the oscillation
amplitude of the simulation value is slightly higher than that
of the test value. The change trend of temperature is very close
between the test and simulation. Themaximum error is about 4%.
The effectiveness of the simulation model is verified.

Comparative tests were carried out on the type A fire barrier
(using the pultrusion process) and the type B fire barrier (using
new high-flame-retardant molding plastic process). The
temperature sensor is used to measure the temperature at
three different positions of the fireproof partition sample. The
layout of the measuring points is shown in Figure 11. The flame
temperature is about 1,000°C, and the combustion time is 6 min.
The test results are shown in Table 1.

In the first 1.5 min, neither sample was ignited. The
temperature of sample B was up to 66.6°C and that of the
sample A was up to 150°C. At 3 min, sample A begins to burn
obviously, and the maximum temperature of the measuring point
reaches 291°C. At 3.5 min, sample B began to burn sporadically.
At 4 min, the combustion fire of sample A becomes larger, the
smoke is thick and black, and the combustion fire of sample B is
smaller. At 6 min, the combustion fire and smoke of sample A are
very large. The temperature in the tank box reaches more than
500°C, while the maximum temperature of sample B is only
147°C.When the fire source is turned off, the combustion flame of
sample B will extinguish itself within 5 s, while the combustion

flame of sample A will not extinguish for 40 s. It will not be
extinguished until it is sprayed many times by the fire-
extinguishing device. The fire barrier in the accident is type A.
Its fire protection performance obviously cannot meet the fire
protection requirements of the high-voltage cable tunnel. The
type A fire barrier in the existing high-voltage cable tunnel needs
to be replaced. Type B fire barrier can meet the fire isolation
requirements at the joint.

OPTIMAL CONFIGURATION SCHEME OF
FIRE PREVENTION AND EXTINGUISHING
PRODUCTS
Based on the aforementioned accident data analysis and field fire test,
the existing firefightingmeasures for cable joints in high-voltage cable
tunnels mainly have the following problems: 1) The trigger time of
fire-extinguishing bomb from fire to action is long, resulting in longer
fire development time and expanded influence range; 2) in case of
severe fire, the fire extinguisher can temporarily suppress the fire
situation after spraying fire-extinguishing agent, but then it will
rekindle; 3) fire will spread to the part outside the protection area
of the fire protection tape, and the flame will directly burn the cable
body, resulting in cable damage; and 4) when the cable intermediate
joint is arranged in the middle, the molten medium caused by high
temperature will drip to the lower cable after the failure of the cable
intermediate joint, affecting the normal operation of the lower cable.
In view of the aforementioned problems, improvements are made
from the layout position and configuration quantity of fire
extinguishers, the winding range of fireproof tapes, and the
optimization of fireproof diaphragms.

Through tests, when the fire extinguisher is placed at the top of
the middle of the tunnel, about 30 s after the fire source is turned

FIGURE 11 | Layout of the temperature measuring points.

TABLE 1 | Comparative combustion test data of two kinds of fire barrier.

Temperature (°C) 0.5 min State 1 min State 1.5 min State 3 min State 5 min State

Point 1 40.2 Intact 45.4 Intact 54.1 Intact 72 Ignite 104.6 Ignite
Point 2 48.4 Intact 101.7 Intact 150 Intact 291 Ignite 556 Violent

combustion
Point 3 39.6 Intact 45.9 Intact 57.1 Intact 70 Ignite 90 Ignite
Point 4 33.7 Intact 36.4 Intact 40.1 Intact 44 Intact 47.5 Ignite
Point 5 42.5 Intact 54.4 Intact 66.6 Intact 92 Intact 147 Ignite
Point 6 44.1 Intact 42.8 Intact 50.2 Intact 61 Intact 80.6 Ignite
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on, the temperature at the temperature-sensing glass ball of the
fire extinguisher reaches the trigger temperature of the fire
extinguisher, the fire extinguisher starts to act, ejects fire-
extinguishing agent, and the fire is controlled. When the fire
extinguisher is placed on the uppermost support directly above
the cable joint, the fire-extinguishing conditions can be triggered
earlier, and the fire can be extinguished before the fire develops
completely. The optimized trigger time is about 20 s, which is
about 30°C lower at the maximum temperature. At the same time,
the ignition point is uncertain due to the long middle joint of the
high-voltage cable. The actual fire-extinguishing device may not
be directly above the intermediate joint. The test is conducted at 1
and 1.5 m on both sides of the center line of the cable joint of the
upper support. When the distance is 1.5 m, it reaches the trigger
temperature of the fire extinguisher in about 33 s. However, due
to the late start-up time and the spread of the fire, the cables
outside the fire envelope are still ablated. When the distance is
1 m, the trigger temperature of the fire extinguisher is reached in
about 25 s. After the combustion test, there are slight ablation
marks on the outer sheath of the cable, and the fire prevention
effect is better than the that in aforementioned methods, but it is
still possible to damage the upper cable in extreme fire. Consider
arranging one fire extinguisher on both sides of the intermediate
joint. The test results show that the trigger temperature is reached
in about 25 s. The ultra-fine dry powder in the fire area maintains
a high concentration, and oxygen is seriously insufficient, so it
cannot be reignited. The temperature drop rate is about 135%
faster than that of a single fire extinguisher.

In the current fire protection layout scheme for the middle
joint area of the high-voltage cable tunnel, the cables on both
sides of the joint of the whole line are wrapped with the fireproof
tape about 3 m. The test results show that the cable 3 m away
from the burning place of the middle joint of the cable is still
ablated, and the length of the cable body not covered with the
fireproof tape is not more than 1 m. The length of the cable
covered with the fireproof tape is optimized to be 4 m.

The optimized configuration of fire protection measured at the
intermediate joint of the high-voltage cable is shown in Figure 12.
The installation position and dosage of ultra-fine dry powder fire-
extinguishing device have an obvious influence on the extinguishing
effect. According to the comparative analysis of the test, a 4-kg
ultra-fine dry powder fire-extinguishing device is installed at the top

support 0.8~1m from both sides of the center line of the cable joint.
In order to prevent the high-temperature molten medium in the
faulty joint from affecting the lower cable, the high-flame-retardant,
non-toxic, and low-smoke plastic cable fireproof partition is
installed at the lower part of the cable intermediate joint. In
order to prevent the fault arc or open fire from affecting the
surrounding cables, the cables on both sides of the cable
intermediate joint and within 4 m on both sides are wrapped
with the fireproof wrapping tape. The fire test was carried out
after improving the layout of fire-extinguishing measures. After the
fire is formed at 19 s, the fire-extinguishing bomb acts, and the fire
extinguishing is completed when the fire is not fully developed. At
the same time, fire barriers and fire belts also effectively inhibit the
development of cable fire.

CONCLUSION

The abnormal monitoring data of typical high-voltage cable
tunnel fire accidents are analyzed in this study. Combined
with the field tunnel fire test, the shortcomings of the existing
fire prevention and extinguishing measures are analyzed. The
optimal configuration scheme of the fire anomaly data detection
equipment and fire-extinguishing products is proposed. The
main conclusions are as follows:

1) The statistical data of typical accidents show that the joint
breakdown fault is the main cause of cable tunnel fire. The
main problems existing in the existing tunnel fire prevention
measures are the unreasonable installation position of fire
extinguishers, the lack of fire prevention measures between
intermediate joints, and the insufficient fire prevention
performance of interlayer fire barriers.

2) The field test shows that the high temperature of the high-
voltage cable is mainly concentrated at the top of the tunnel
near the ignition point. If the layout is unreasonable, it is
difficult to trigger the fire extinguisher in time. The melting
drop of the insulating layer is easy to cause fire below.
Comparing the simulation and test results of abnormal
characteristic parameters in fire, the temperature error is
less than 4%. The fire power curve of the cable tunnel is
obtained through simulation, and then the burner power is
set. It can conveniently and effectively test the performance of
different fire prevention and extinguishing devices.

3) The fire prevention and extinguishing configuration of the
cable tunnel is improved from the aspects of the layout
position and configuration quantity of fire extinguishers,
winding range of the fireproof tape, and optimization of
fireproof partition. The temperature drop rate increased by
about 135%, and can effectively prevent re-ignition.
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Research on Battery Energy Storage
STATCOM Suppressing HVDC
Commutation Failure
Chao Xing1, Junhao Chen1,2, Zhi Xu1, Xinze Xi1, Xin He1 and Shilong Chen2*

1Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming, China, 2School of Electric Power Engineering,
Kunming University of Science and Technology, Kunming, China

Due to the poor performance of traditional STATCOM in DC engineering, a compensation
method using battery energy storage STATCOM (STATCOM/BESS) to suppress
commutation failure of the weak receiving-end high voltage direct current
transmission system is proposed, and its effect is better than traditional STATCOM.
First, the mechanism and influencing factors of commutation failure are analyzed; the
extinction angle of the converter valve is taken as the decision index of commutation
failure; the relationship between various electrical parameters and extinction angle is
studied under the condition of the single-phase grounding fault on the inverter side.
Second, according to the differences between the positive and negative sequence
reactive current output by STATCOM/BESS when a fault occurs in single-phase
grounding, a compensation method is proposed to suppress commutation failure by
STATCOM/BESS, which increases the proportion of positive sequence reactive current
output by STATCOM/BESS under the condition of constant output so as to reduce the
probability of commutation failure. At last, STATCOM/BESS is added into the standard
model of LCC-HVDC for the simulation experiment and compared with conventional
running characteristics of STATCOM in order to verify the effect of STATCOM/BESS in
suppressing commutation failure.

Keywords: high voltage direct current (HVDC) transmission, battery energy storage STATCOM, commutation failure,
positive and negative sequence reactive current, single-phase grounding fault

INTRODUCTION

High voltage direct current (HVDC) transmission technology can not only meet the demand of
large capacity and long distance transmission of electric energy but also reduce the loss of
electric energy in transmission lines; (Shen et al., 2021) thus, it becomes an important means of
electric energy transmission between long distance and large area power grids (Peng et al.,
2017). When the power at the receiving end of the HVDC transmission system is weak, the AC
system at the inverter side breaks down, which easily leads to the commutation failure of the
HVDC system, resulting in the increase of DC current amplitude, the decrease of DC voltage
amplitude, and voltage waveform distortion, etc., which seriously threatens the safety and
reliability of the power grid (Huang, 2006). The fundamental condition of inverter
commutation failure is that the extinction angle γ of a certain commutation valve is less
than its intrinsic limit extinction angle γmin (Zhao et al., 2015). The factors causing converter
commutation failure include internal factors and external factors of the inverter system,
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(Zhenhua et al., 2021) among which one of the most common
factors of commutation failure is caused by commutation
voltage drop raised by AC grid fault.

At present, in order to support the grid voltage and restrain the
commutation failure of the HVDC system, reactive compensation
equipment has been put into many weak receiving-end system
inverter stations, among which the dynamic response of
STATCOM is pretty fast during operation, and the effect of
restraining commutation failure is remarkable. Guo et al. (2013)
has modeled the whole connection of STATCOM into the
doubly-fed HVDC system and pointed out that STATCOM
can effectively support the receiving-end bus of the doubly-fed
system within a reasonable electrical distance so as to improve the
system performance and avoid commutation failure within a
certain range. In Zhang (2011), the apparent short-circuit ratio
increment (ASCRI) is defined to reflect the change of the strength
of the receiving-end system after adding STATCOM. The
theoretical and simulation results show that the ASCRI index
of the system after adding STATCOM is greater than 0, and the
ASCRI is positively correlated with the capacity of the added
STATCOM within a certain range, which indicates that
STATCOM can support the voltage of the receiving-end AC
power grid, and can avoid the commutation failure of the HVDC
system to a certain extent. However, when traditional STATCOM
performs large-capacity reactive power compensation, it will
affect the control accuracy of DC side voltage and lead to
large fluctuations of DC side voltage. The energy storage
STATCOM combining energy storage technology with reactive
power compensation technology makes up for the shortcomings
of traditional STATCOM in HVDC system application. In
Virtanen et al. (2013), energy storage STATCOM is used to
increase the voltage of the parallel connection point with an
electric arc furnace load, and the voltage drop of the parallel
connection point was reduced from 15% to 2%. In Liang (2014),
the whole switch function model of STATCOM/BESS is
established, and the power feedforward control is introduced,
and a prototype of STATCOM/BESS with a capacity of 10kVA is
built. The simulation and experiment show that the proposed
topology and control method can enhance the stability of the
system and restrain the power fluctuation of the wind farm.

Compared with traditional STATCOM, (Guobing et al., 2020)
STATCOM/BESS has more advantages in improving the stability
of the power system. The traditional way to maintain the stability
of the power system is to strengthen the network structure,
improve the performance of the prime mover and the
excitation system, cut off the machine, cut the load, and use
the STATCOM device to provide dynamic reactive power to
support the system voltage, but it cannot perform active power
regulation to dampen. Apart from the power oscillation of the
system, these methods inevitably have their own limitations. As a
new type of FACTS device, STATCOM/BESS is composed of a
high-power power electronic converter and an energy storage
system. He et al. (2020) A large-capacity energy storage device is
added to the DC side of the converter and is connected to the
power grid in parallel. It absorbs and releases active and reactive
power quickly and has the ability of four-quadrant operation. At
present, there is less application research in the field of DC

transmission, especially in the suppression of commutation
failure. Therefore, this article studies the commutation failure
suppression of the HVDC system and puts forward the
compensation method to suppress commutation failure by
STATCOM/BESS under single-phase grounding fault. The
STATCOM/BESS is added in the HVDC system during the
experiment, which shows that the effect of STATCOM/BESS
on suppression of commutation failure is better than that of
traditional STATCOM.

HVDC COMMUTATION FAILURE AND ITS
INFLUENCING FACTORS

HVDC Commutation Failure
Thyristor converter valves are used in the HVDC
transmission system. During the process of commutation, if
the process is not completed or the blocking ability is not
restored within a period of time under the action of reverse
voltage, the commutated valves will switch phases to the
valves scheduled to be turned off when the voltage on the
valve side becomes positive. This phenomenon is called
commutation failure. Lei et al. (2021) From the thyristor
device level, it takes a certain time for the thyristor to
complete the carrier recombination and restore the
blocking ability. γmin represents the recovery time of the
thyristor valve, expressed by the electrical angle, which is
about 10. It reflects the shortest time for the thyristor to bear
the reverse voltage when restoring the blocking ability. When
the extinction angle γ < γmin is calculated, the commutation
is considered to be failed.

Figure 1 is the topology of the inverter, in which T1~T6 are
thyristors, and Xa ~ Xc are commutation reactive resistances of
each phase. Id represents direct current; and va, vb, and vc are the
three-phase voltages of the AC system bus. Eq. 1 represents the
extinction angle-related commutation (Cai et al., 2019):

γ � arccos(
�
2

√
kIdXc

E
+ cos β). (1)

FIGURE 1 | Inverter Grez bridge structure.
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If the fault causes commutation voltage asymmetry, the offset
of this voltage crossing the zero point should be considered in the
aforementioned formula, then the offset of commutation voltage
crossing the zero point should be written as φ, and the expression
of γ at this time can be shown (Li et al., 2017) as:

γ � arccos(
�
2

√
kIdXc

E
+ cos β) − φ. (2)

In Eqs 1, 2, k represents the commutation ratio, Id represents
the direct current, Xc represents the commutation reactive
resistance, E represents the effective value of the commutation
bus line voltage, and β represents the leading trigger angle.

The Influencing Factors of Commutation
Failure
It can be seen from Eq. 2 that the occurrence of commutation
failure depends on many factors, including electrical factors such
as AC bus voltage, DC current, commutation reactive resistance,
and commutation voltage offset angle, and control factors such as
trigger angle. The following mainly analyzes the influence of AC
bus voltage and DC current on commutation failure when the AC
system at the receiving end fails.

The Influence of Bus Voltage Amplitude Drop on
Commutation Failure
When a short-circuit fault occurs in an AC system, it is assumed
that the leading trigger angle β and the change ratio k are
unchanged in a short time. Mitsuru and Yuhu (2021) In order
to analyze the influence of the AC bus voltage Ull on the
commutation failure on the inverter side, the sensitivity of its
extinction angle γ can be used. The deviation of γ on the bus
voltage Ull can be obtained by using Eq. 2:

MU11 ,γ �
zγ

zU11
� 1�����������������

1 − ( �
2

√
kIdXc

U11
+ cos β)2√ �

�
2

√
kIdXc

U2
11

. (3)

When other parameters are unchanged, the relationship
between bus voltage and sensitivity of the extinction angle is
shown in Figure 2. The smaller the converter bus voltage is, the
greater its sensitivity to extinction angle is, that is, the smaller the
converter bus voltage is, the faster the extinction angle decreases,
and the more likely it is to have commutation failure.

FIGURE 2 | Sensitivity of Ull to γ. FIGURE 3 | Sensitivity of Id to γ.

FIGURE 4 | Fault voltage phasor diagram.
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The Influence of DC Current Surge on Commutation
Failure
The AC voltage drop usually causes the DC current to rise, and
the DC current rise will have a certain limit. When the AC voltage
on the valve side drops to a certain value, the system will start the
link of “low voltage and current limit,” thus controlling the
continuous rise of DC current, and ensuring the stable
operation of the DC transmission system (Zhu, 2008). In
order to analyze the influence of DC current Id on the
extinction angle, the deviation of extinction angle γ on DC
current Id is calculated according to Eq. 2:

MId,γ � zγ

zId
� −1�����������������

1 − ( �
2

√
kIdXc

U11
+ cos β)2√

�
2

√
kXc

U11
. (4)

Under other conditions unchanged, the relationship
between DC current and sensitivity of the extinction angle
is shown in Figure 3. Yang (2021) The sensitivity of DC
current Id to extinction angle γ is negative, and the greater
the Id is, the greater its sensitivity to γ will be, so the increase of
Id will also lead to the decrease of extinction angle γ, and the
greater the Id is, the faster the γ will decrease, which will easily
lead to commutation failure.

Analysis of the Single-Phase Grounding
Fault in the AC System on the Inverter Side
A single-phase grounding fault is the most common asymmetric
fault in the power system, characterized by the voltage drop, and
phase shift of one phase on the bus line after the fault, which will
affect the other two phases in the weak receiving end of the AC
system, and the influence on the extinction angle is relatively
complex. Take the single-phase grounding short-circuit fault in
phase A of the AC power grid as an example, and the fault phase
voltage is shown in Figure 4 (Mohan, 2021).

It can be seen from Figure 4 that when the grounding short-
circuit fault occurs in phase A and the amplitude of phase voltage
decreases by ΔUA, the amplitude of line voltagesUAB andUCAwill
decrease then the zero point of line voltage will shift. According to
the trigonometric function theorem (all expressed in standard
values) (Muniappan, 2021):

U′L �
���������������
1 − �

3
√

ΔUA + ΔU2
A

√
; (5)

φ � arctan
ΔUA����������

3(2 − ΔUA)
√ . (6)

Therefore, when an asymmetric fault occurs on the AC side of
the system, the calculation formula of the extinction angle γ
becomes:

γ � arccos(
�
2

√
kIdXc

U′L
+ cos β) − φ. (7)

In the formula, U′L represents the voltage value of the
commutation line after the fault, and φ represents the angle
value of zero crossing point of commutation line voltage caused
by the asymmetric fault. Shen and Raksincharoensak (2021) It

can be seen that when an asymmetric fault occurs in the AC
system on the inverter side, the change of commutation voltage
affects the extinction angle, and the phase shift caused by the zero
crossing of commutation line voltage also changes the extinction
angle. In addition, (Yu et al., 2020) the influence of the single-
phase fault on different line voltages is different. Taking the
A-phase short-circuit fault as an example, the influence of the
single-phase fault on the valve commutation process among
A-phase, B-phase, and C-phase bridge arms will be discussed
as follows:.

1) Valve 1 commutates to valve 3, and valve 4 commutates to valve
6, that is, the valve on the A-phase bridge arm commutates to
the valve on the B-phase bridge arm. When A-phase is
grounded in a single phase, the extinction angle γ is:

γ′ � arccos⎛⎜⎜⎜⎝
�
2

√
kIdXc���������������

1 − �
3

√
ΔUA + ΔU2

A

√ + cos β⎞⎟⎟⎟⎠

− arctan
ΔUA�

3
√ (2 − ΔUA). (8)

It can be seen from Eq. 8 that under the condition of certain
system parameters, the change of the evalve extinction angle is
related to the degree of voltage drop of A-phase. According to
CIGRE standard system parameters (Table 1 below), the function
graph of the extinction angle can be drawn in MATLAB as shown
in Figure 5.

It can be seen from the aforementioned figure that when
A-phase is grounded in a single phase, (Yuhu et al., 2021) the
extinction angles of valves 1 and 4 decrease monotonously
with the increase of ΔUA. When ΔUAmax = 0.10pu, γ < γmin, it
is judged that commutation failure occurs, while when ΔUA <
ΔUAmax, it is considered that commutation failure will not
occur.

2) Valve 2 commutates to valve 4, and valve 5 commutates to valve
1, that is, the valve on the C-phase bridge arm commutates to
the valve on the A-phase bridge arm. When the A-phase is
grounded in a single phase, the function image of the extinction
angle γ is also obtained in MATLAB as shown in Figure 6.

It can be seen from the variation curve in Figure 6 that the
extinction angle of valves 2 and 5 is not monotonic with ΔUA. It
can be obtained from the intersection point with the straight line
γmin = 10° that when A-phase is grounded in a single phase, the
interval of commutation failure of valves 2 and 5 is 0.18pu < ΔUA

< 0.46pu. In other intervals, it is considered that commutation
failure will not occur.

3) Valve 3 commutates to valve 5, and valve 6 commutates to valve
2, that is, the valve on the B-phase bridge arm commutates to the
valve on the C-phase bridge arm. It can be seen from Figure 5
that the single-phase grounding of A-phase has no effect on the
line voltage between B-phase and C-phase, so it has no effect on
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the extinction angles of valves 3 and 6. Theoretically, it is
considered that the γ values of the two valves are unchanged
in this type of the single-phase grounding fault.

Similarly, the influence of single-phase grounding of phases B
and C on the commutation process can be analyzed.

COMPENSATION METHOD OF STATCOM/
BESS SUPPRESSION COMMUTATION
FAILURE UNDER THE SINGLE-PHASE
GROUNDING FAULT

According to the analysis of the single-phase grounding fault
in the previous section, the short-circuit fault of A-phase has
the least influence on the commutation voltage between
B-phase and C-phase, (Yang et al., 2021b) while it has the
greatest negative influence on the commutation voltage
between A-phase and B-phase, and the probability of
commutation failure is also the largest. Therefore, under

TABLE 1 | CIGRE standard system parameters.

System-rated parameter

500 kV, 100 MW, 50 Hz
Rectifier side
AC system Reactive power compensation capacity Single converter transformer
382.87 kV 626Mvar 603.7 MV A
47.65∠84°Ω XT = 0.18p.u.
SCR = 2.5 345/213.5 kV
Inverter side
DC system Reactive power compensation capacity Single converter transformer
215.05 kV 626Mvar 591.8 MV A
21.2∠75°Ω XT = 0.18p.u.
SCR = 2.5 230/209.2kV

DC side
Rd = 2.5Ω, Ld = 0.6H

FIGURE 5 | Function diagram of the extinction angle of valves 1 and 4.

FIGURE 6 | Function diagram of the extinction angle of valves 2 and 5.

FIGURE 7 | Schematic diagram of the LCC-HVDC receiving-end system
with STATCOM/BESS.
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the single-phase fault condition, the ratio and capacity of
positive and negative sequence components of STATCOM/
BESS reactive current are controlled to reduce the
probability of commutation failure.

The Influence of STATCOM/BESS Positive
and Negative Sequence Reactive Power
Compensation Components on the
Extinction Angle
Figure 7 shows the schematic diagram of the LCC-HVDC
receiving-end system including STATCOM/BESS. Le et al.
(2021) In the figure, Idc represents DC current of the
inverter station, Ihvdc represents output current of the
inverter station, Ut represents phase voltage of the
converter bus, Ist represents reactive current output by
STATCOM/BESS, Is represents AC grid current, Zs

represents line resistance, and Es represents AC power
supply voltage. STATCOM/BESS adopts an angular chain
structure, and each phase includes three H-bridge sub-
modules, as shown in Figure 8.

For the convenience of analysis, taking the voltage phasor of
the converter bus as the reference coordinate, (Shen et al., 2022)
according to the circuit principle, the voltage coordinates of each
phase of the converter bus can be obtained when the system is in
stable operation (assuming that STATCOM/BESS does not
output reactive current at this time):

⎧⎪⎨⎪⎩
Uta,0 � (U, 0)
Utb,0 � (U cos 240°,Usin 240°)
Utc,0 � (U sin 120°,Ucos 240°)

. (9)

Ut0 represents the steady-state phasor before fault, and U
represents the voltage amplitude before fault. According to Eq. 9,
the commutation voltages corresponding to the converter
valves are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Utab0 � Uta0 − Utb0 � (3
2
U,

�
3

√
U

2
)

Utbc0 � Utb0 − Utc0 � (0, �
3

√
U)

Utca0 � Utc0 − Uta0 � ( − 3
2
U,

�
3

√
U

2
)
. (10)

When the A-phase short-circuit fault occurs in the AC
system at the receiving end, the phase voltage Uta of the
converter bus becomes the original (1-d), (Yang et al., 2019)
and the reactive current output by STATCOM is Ist = Istp + Istn,
where Istp and Istn are positive and negative reactive currents,
respectively. Assuming that the phasor of positive and negative
sequence reactive current is perpendicular to the phasor of

FIGURE 8 | STATCOM/BESS topology.

FIGURE 9 | Schematic diagram of decomposition of positive and
negative sequence reactive current.

FIGURE 10 | Feasible region of STATCOM/BESS output current.
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converter bus voltage, the positional relationship of Istp and Istn
is shown in Figure 9.

The corresponding commutation voltage is Yang et al. (2022):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Utab �
�
3

√ ����������������������������������������������
(U+XIstp)2 +(XIstp −dU)[X(Istn +Istp)+U]+(dU)2/3

√

δtab � arctan
�
3

√ [U+X(Istn +Istp)]
(3−2d)U+3X(Istn + Istp)

Utab �
�
3

√ [U+X(Istn +Istp)]
δtab �−90°
Utcb �

�
3

√ ����������������������������������������������
(U+XIstp)2 +(XIstn −dU)[X(Istn + Istp)+U]+(dU)2/3

√

δtca � 180°−arctan
�
3

√ [U+X(Istn − Istp)]
(3−2d)U+3X(Istn + Istp)

. (11)

By substituting Eq. 11 into the calculation formula of the
extinction angle, the extinction angle of each converter valve after

STATCOM/BESS that compensates positive and negative
reactive power is:

γm � arccos(
�
2

√
IdcXt

Utm
+ cos βo) − (δtm − δtm0), (12)

where m = (ab,bc,ca), in which Xt represents the reactance of the
commutation transformation phase, δtm represents the voltage
phase after fault, and δtm0 represents the voltage phase
before fault (Yang et al., 2021a).

The reference capacity SB of the LCC-HVDC system with
STATCOM/BESS is taken as 1000 MVA; the reference voltage VB

is taken as 230 kv, and the rated power of STATCOM/BESS is
taken as 100 MVA. Xun and Pongsathorn (2021) In order to
prevent reactive power compensation equipment from burning
out due to over-current, the output current of each phase of
STATCOM/BESS should not exceed its rated current. According
to Figure 9, the output current of STATCOM/BESS needs to
meet the following constraints:

TABLE 2 | Comparison of commutation failure suppression effects.

t Istp:Istn 1.001 s (H) 1.002 s (H) 1.003 s (H) 1.004 s (H) 1.005 s (H)

1:1 0.86 0.78 0.75 0.70 0.65
2:1 0.77 0.75 0.70 0.68 0.60
1:0 0.68 0.67 0.63 0.60 0.51

FIGURE 11 | LCC-HVDC standard model with STATCOM/BESS.

TABLE 3 | Main parameters of the CIGRE HVDC model simulation circuit.

Electrical parameter Parameter on the
rectifier side

Parameter on the
inverter side

Rated value of AC voltage 345 kV 230 kV
Capacity of the commutation transformer 603.7 MVA 591.8 MVA
Ratio of the commutation transformer 345:213.5 230:209.2
Leakage reactance of the commutation transformer 0.18p.u. 0.18p.u.
Connection type of the commutation transformer Y-△/Y-Y △-Y/Y-Y
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FIGURE 12 | Control structure of the three-module angle chain energy storage STATCOM.

FIGURE 13 | Simulation waveform diagram after installing conventional STATCOM. (A) AC voltage on the inverter side; (B) inverter current of the converter valve.

FIGURE 14 | Experimental waveform diagram of installing STATCOM/BESS. (A) AC voltage on the inverter side; (B) inverter current of the converter valve.
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⎧⎨⎩
∣∣∣∣Istp∣∣∣∣ + |Istn|≤ Im�������������������
I2stp + I2stn − IstpIstn ≤ Im

√ . (13)

In the formula, Im is rated current of STATCOM/BESS and
Im = 0.1p.u. According to Eq. 13, the feasible region of reactive
current can be obtained as shown in the yellow area in
Figure 10.

Substituting the positive and negative sequence reactive
current values in the feasible region into Eqs 12, 13 (Xun et
al., 2017), it can be concluded that there is a larger positive
gradient between the minimum value in the extinction angle of
each converter valve and the positive sequence reactive current,
that is, the positive sequence current compensated by
STATCOM/BESS has a more obvious effect on increasing the
extinction angle.

Therefore, after a single-phase grounding fault, (Shen et al.,
2020a) in order to get better suppression effect of commutation
failure, the compensation component of STATCOM/BESS
positive sequence reactive current should be increased.

Simulation of Suppression Effect of Positive
and Negative Sequence Reactive Power
Compensation Components on
Commutation Failure
In order to verify the theoretical analysis in Section 3.1, (Shen et al.,
2020b) this section compares the effects of STATCOM/BESS on
suppressing commutation failure under different positive and
negative sequence reactive current compensation ratios based
on the CIGRE HVDC standard test model. Starting from 1.0 s,
the A-phase-inductive grounding fault is set at the inverter side
converter bus at 1 ms intervals so as to simulate the single-phase
fault at different closing angles of the receiving-end power grid in
practical engineering. Yang et al. (2018) When STATCOM/BESS
compensates the positive and negative sequence currents by 1:1, 2:
1, and 1:0, respectively, after detecting the fault (the sum of the
positive and negative sequence output currents is 0.1pu), the

critical inductance value of commutation failure of the inverter
station is shown inTable 2. InTable 2, when the fault occurs at the
same time, the green frame to the red frame sequentially indicate
that the critical fault inductance gradually increases, that is, the
commutation failure suppression effect gradually weakens. With
the increase of the proportion of positive sequence reactive power
commands, the number of green frames gradually increases,
indicating that the commutation failure suppression effect is
enhanced, (Zhu et al., 2020) which is consistent with the
theoretical analysis in Section 3.1.

STATCOM/BESS SIMULATION
EXPERIMENT

Figure 11 shows the LCC-HVDC standard model with
STATCOM/BESS built in this article. The rectifier converter
station and inverter converter station contain high and low
valve sets, respectively. The rated DC voltage of the CIGRE
HVDC model is ±500 kV, and the rated transmission capacity
is 1000MW. Other main circuit parameters are shown in Table 3.

The control system adopts double-loop control, in which the
inner loop is current control and the outer loop reactive power
control can be selected as constant AC voltage control and
constant reactive power control, and the active control part
can be selected as active control or constant DC voltage
control. The control block diagram is shown in Figure 12.

In order to compare the commutation failure suppression
effect between STATCOM/BESS and conventional
STATCOM, a serious single-phase grounding fault is set at
1s in this experiment. Figure 13A and Figure 13B show the
AC voltage and inverter current at the inverter side of the
HVDC system when a A-phase at the inverter side suddenly
has a grounding fault after a period of normal operation. At
this time, the system is equipped with conventional
STATCOM. After the fault occurred, the A-phase voltage
begin to drop, and the AC voltage on the inverter side is
greatly distorted. The inverter current dropped to 0 at the

FIGURE 15 | Comparison diagram of the system transmission power and extinction angle. (A) Comparison diagram of extinction angle; and (B) Comparison
diagram of transmission power.
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same time in the vicinity of 1s, indicating that commutation
failure occurred.

When STATCOM/BESS is installed in the system, the
grounding fault occurs in A-phase in 1s. It can be seen from
Figure 14A and Figure 14B that the AC voltage distortion on the
inverter side is relatively small, and the phenomenon that the
three-phase current is zero at the same time during the fault
period does not occur, which indicates that STATCOM/BESS has
restrained the occurrence of commutation failure under the
single-phase fault condition.

Comparing the extinction angle and system transmission
power under the two conditions; it can be seen from
Figure 15A that the extinction angle drops to 0 after the
fault occurs when installing conventional STATCOM and
never drops below 10 after installing STATCOM/BESS, which
effectively inhibits the commutation failure at the inverter
side. It can be seen from Figure 15B that STATCOM/BESS
compensates active power and reactive power at the same
time in case of failure. Compared with conventional
STATCOM, the transmission power oscillation of the
system is smaller, which can quickly stabilize the
transmission of system power in case of failure.

CONCLUSION

The purpose of this article is to suppress commutation failure at
the weak receiving end of the LCC-HVDC system and propose a
compensation method for STATCOM/BESS to suppress
commutation failure under the single-phase grounding fault.
The design and comparison simulation verify the ability of
STATCOM/BESS to suppress commutation failure and draw
the following conclusions:

(1) Under the single-phase grounding condition of the AC
system on the inverter side, the commutation failure
conditions of each phase of the converter valve are different.

(2) Increasing the proportion of the positive sequence reactive
power compensation component of STATCOM/BESS
output under the single-phase grounding fault of the AC
system on the inverter side can better restrain commutation
failure.

(3) The STATCOM/BESS device is installed in the single-pole
12-pulse HVDC transmission system, and a single-phase
ground fault was set, and a comparison experiment was
carried out with the traditional STATCOM system; by
comparing the four typical electrical quantities of AC
voltage, inverter current, turn-off angle, and system
transmission power, which verifies the effectiveness of the
STATCOM/BESS designed in this article in suppressing
commutation failure.
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In this article, the numerical model of the multi-span iced eight-bundle conductor is
established using the nonlinear finite element method, the galloping of the line under
different parameters is simulated, and the tension in the galloping process is analyzed.
Based on the aerodynamic characteristics and galloping characteristics of conductors, the
galloping modes, frequency characteristics, vibration amplitudes, and galloping orbits of
multi-span lines under different wind velocities, span lengths, ice shape, and number of
spans are analyzed, compared with those of single-span lines. It is demonstrated that
there are differences in galloping characteristics between multi-span transmission lines
and single-span lines. Each span of the transmission line is different, so it should be fully
considered in the research of galloping prevention and control technology.

Keywords: iced eight-bundle conductors, multi-span transmission line, galloping characteristic, numerical
simulation, conductor tension

INTRODUCTION

Aiming at solving the problem of unbalanced power supply and demand, the 1,000 kV ultra-high
voltage (UHV) bundle conductor transmission line has been launched (Jafari et al., 2020; Cai et al.,
2019a). The so-called galloping refers to the phenomenon of self-excited vibration of low frequency
and large amplitude generated by the wind load when the conductor forms an asymmetric circular
section after freezing in winter (Li et al., 2021a; Min et al., 2021). Conductor galloping usually occurs
for an extended period. Therefore, it is harmful for the operation of the power transmission system,
and it is liable to cause major accidents such as alternating flashover, power failure, failure of
conductors or even conductor disconnection, metal damage, and tower toppling (Liu et al., 2021a). In
recent years, serious cases of iced transmission tower lines collapsing under wind load have been
reported in Hunan and Anhui provinces, China (Liu et al., 2019). Therefore, anti-galloping is a hot
issue in the field of electrical and civil engineering.

In recent years, many experts have studied the problem of galloping transmission lines. Yan et al.
(2016) proposed the numerical method to investigate the galloping characteristics of iced-quad
bundle conductors. Cai et al. (2015) studied the variation of aerodynamic coefficients varying with
angle of wind attack by the finite element method (FEM). The effectiveness of the aerodynamic
coefficients determined by numerical simulation in the study of galloping characteristics and anti-
galloping technology of overhead transmission lines is verified. By using ABAQUS software, Hu et al.
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(2012) defined a new unit by the pneumatic loading unit for ice
conductors, the being studied by the numerical method under
different wind velocities and line structure parameters of quad-
bundle conductor ice galloping. Lu et al. (2019) simulated the
galloping of the iced quad-bundle conductor according to the
wind tunnel test results. They concluded the impact of wind
velocity, ice thickness, conductor type, bundle spacing, and
bundle number on the aerodynamic parameters and conductor
galloping. Matsumiya et al. (2018) conducted aeroelastic tests in a
wind tunnel by using a rigid-body section model of quad-bundle
conductors. Liu et al. (2020a) and Liu X. H. et al. (2021) obtained
the aerodynamic coefficients of the conductor through a wind
tunnel test and studied the stability and galloping characteristics
of the iced quad-bundle conductor. Cai et al. (2019b) used
nonlinear FEM to analyze the galloping of the sector-shape
iced eight-bundle conductor under different wind velocities,
span length, and angles of wind attack. Zhou et al. (2018)
studied the effects of interphase spacer on the galloping of the
iced eight-bundle conductor. Zhou et al. (2016) conducted wind
tunnel tests to simulate the galloping of iced eight-bundle
conductor segment and studied the galloping behaviors under
different parameters. Cai et al. (2020) numerically simulated the
galloping behaviors of a D-shape iced six-bundle conductor in the
test line under a random wind field. Lou et al. (2021) studied the
effects of ice shape and roughness on iced conductors galloping.
Liu et al. (2009) studied the nonlinear numerical simulation
method of galloping of iced conductors, proved the
effectiveness of this method, and found a new possible
galloping mode. Liu et al. (2020) compared and analyzed the
stability of the iced conductor under the action of uniform and
turbulent wind. Kim and Sohn. (2018) simulated the galloping of
elliptical and triangular iced sections through wind tunnel tests.
Talib et al. (2019) proposed a new dynamic model for the
simulation of power-transmission-line galloping. Due to the
continual presence of the galloping phenomenon and the great
harm which could cause, Oh and Sohn. (2020) analyzed
conductor galloping through the study of stability of
transmission line. Furthermore, because of the complex
aerodynamic characteristics of the eight-bundle conductor and
the high cost of the tests required to simulate the galloping, there
is no research on the multi-span eight-bundle conductor in the
available literature.

In this article, the galloping law of a 1000 kV multi-span iced
eight-bundle conductor and the characteristics of the galloping
are analyzed. The difference between a multi-span iced eight-
bundle conductor and a single-span iced eight-bundle conductor
is compared. The research results provide the important basis for
the research of transmission line anti-galloping technology.

TYPICAL LINE SECTION AND FINITE
ELEMENT MODEL

Wind-driven wet snow may pack onto the windward sides of
conductors, forming a hard, tenacious deposit with a fairly sharp
leading edge. The resulting ice shape may permit galloping.
Combined with actual observation, a crescent shape can be

generalized with respect to the great variety of the natural
heavy ice shape (Hu et al., 2012; Yan et al., 2016). The
aerodynamic forces of bundle conductors are the foundations
of the analysis of the galloping of transmission lines (Liu et al.,
2009). Herein, the aerodynamic coefficients of crescent-shape
iced eight-bundle conductors are experimentally measured by
wind tunnel tests.

The three-span and five-span iced eight-bundle lines are the
main research objects. The two lines with the span length of 200
and 400 m and the sub-spans of each span are the same. The
conductor model is 8 × LGJ-400/50, and the diameter of the sub-
conductor is 30 mm. The model of the spacer is FJZ-400, each
with a mass of 8.5 kg. The length of the suspension insulator
string is set to be 3 m. Assuming that the conductor ice is a 12 mm
crescent-shape ice, the initial angle of wind attack is 60°.

The physical parameters of conductors and ice are listed in
Supplementary Table S1. The cross section of the iced
conductor is simplified as a circular section when the
galloping of the iced conductor is simulated by ABAQUS
software. It is noted that the axial rigidity, torsional rigidity,
mass per unit length, moment of inertia of the equivalent
cable and those of the original cable should be equal, which
can be expressed as follows:

E′πd′2/4 � EA; G′πd′2/32 � GI

ρ′πd′2/4 � μ; ρ′πd′4/32 � J
(1)

where E′, G′, ρ′, and d′ are, respectively, the elastic modulus, the
shear modulus, the density, and the diameter of the equivalent
cable, which can be obtained by solving Eq. 1 whose right hands
are the corresponding quantities of the original iced conductor.
The physical parameters of the conductors and ice are listed in
Supplementary Table S1.

In the FEM model, according to the previous research results
(Hu et al., 2012), the accuracy requirement can be met when the
length of the conductor element is about 0.5 m, and the conductor
is selected as the cable element, which is obtained by releasing the
bending degrees of freedom of the nodes of the spatial Euler beam
element (Yan et al., 2016). The spacer can be simplified into a
regular octagonal frame, simulated by spatial beam elements, and
the suspension insulator string is also simulated by beam
elements.

The upper end of the suspension insulator string in the model
is suspended on the tower, and the lower end of the suspension
insulator string is connected only to the sub-conductor. The
influence of the tower on the suspension insulator string is
ignored. Meanwhile, the constraints of three rotational degrees
of freedom and sets of three planes are released by the upper end
of the suspension insulator string. A fixed constraint with six
degrees of freedom is set at both ends of the conductor. The
established FEM model of the three-span and five-span iced
eight-bundle conductor of 200 m span lines is shown in
Supplementary Figure S1. For the convenience of comparison
and analysis, the galloping characteristics of single-span lines are
also simulated and analyzed.

The influence of the initial axial tension in the main and side
cables on the element stiffness matrix cannot be ignored. In
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addition, the cable sags due to its own weight, resulting in a
certain decrease or loss of its elastic modulus. In order to consider
the influence of cable sag, the concept of equivalent elastic
modulus is used to modify the elastic modulus of cable. The
equivalent modulus of elasticity generally adopts the EErnst
formula:

EErnst � E

1 + (ql)2
12T3 AE

(2)

where EErnst is the equivalent elastic modulus of the material; E is
the elastic modulus of the material; q is the weight of the unit
length of the cable; l is the projection length of the cable element
in the horizontal direction; A is the cross-sectional area of the
cable, and T is cable tension.

The numerical simulations were carried out on a personal
computer Dell Studio Desktop D540, and each job took about
5 hours to arrive at a steady result. To speed up the efficiency,
several jobs were submitted simultaneously. The dynamic
implicit analysis is used in the numerical method. The
dynamic responses of the transmission line with different
damping ratios in different directions are analyzed by
ABAQUS with the user-defined cable element. The damping
ratios ξz1, ξy1, and ξθ1, in horizontal, vertical, and torsional
directions, are set to 0, 0.5, and 2%, respectively, determined
and verified by Zhou et al. (2018). Considering the efficiency of
the numerical simulation, the time step is set to 0.01.

ANALYSIS OF DYNAMIC
CHARACTERISTICS OF ICED
CONDUCTORS
For the sake of understanding the galloping characteristics of the
iced conductor, the ABAQUS software is used to calculate the
dynamic characteristics of each line. The vibration directions are
the frequencies corresponding to the low-order modes in the
vertical, horizontal, and torsional directions. The typical low-
order modes of the three-span iced eight-bundle conductor with a
span length of 200 m are shown in Supplementary Figure S2.
The low-order natural frequency values summarized by the
modes and corresponding frequencies are listed in
Supplementary Tables S2, S3. From Supplementary Figure
S2, it can be found that the multi-span line has the
phenomenon of double frequency, and the wave number of
conductors increases with the increasing of frequency.

The galloping characteristics depend on the mode and natural
frequency of the transmission line, which can be obtained from
the results in Supplementary Tables S2, S3. Compared with the
single-span line, the natural frequency of the multi-span line is
lower, which is less than or equal to the natural frequency of the
single-span line, and the phenomenon of repeated frequency
appears. In addition, the low-order natural frequencies of the
third span and the fifth span multi-span line are very close. In
addition, it can be found from Supplementary Table S3 that the
vertical galloping of the 400 m single-span line starts directly
from the double half-wave, which is related to the structure of

the conductor. Based on the results of the dynamic
characteristics of multi-span line, combined with spectrum
response analysis, the galloping mode of the multi-span lines
can be judged.

ANALYSIS OF GALLOPING
CHARACTERISTICS OF MULTI-SPAN ICED
CONDUCTORS
This section studies the characteristic analysis of multi-span iced
conductors-galloping. Firstly, a theoretical analysis of the
galloping of the line is carried out. Because the iced
conductors are mostly of irregular shapes, not only resistance
but also lift and moment are generated by the wind load. The
force FD, lift FL, and moment M acting on a unit length of the
non-circular cross section iced conductor can be determined by
the following formula (Cai et al., 2020b):

FD � 1
2
CD(α)ρU2d; FL � 1

2
CL(α)ρU2d; M � 1

2
CM(α)ρU2d2

(3)
where ρ is the air density, U is the wind velocity, and d is the
diameter of the conductor. CD(α) is the drag coefficient,
CL(α) is lift coefficient, and CM(α) is moment coefficient of
the iced conductor, which are related to the angle of wind attack
α. The change of angle of wind attack during the movement of the
iced conductor can be determined by the following formula:

α ≈ θ − (R _θ + _V

U
) (4)

where θ, R, _θ, and _V are, respectively, the torsion angle,
characteristic radius, torsion angular velocity, and vertical
velocity of the iced conductor. In the numerical simulation of
this article, the aerodynamic coefficients of each sub-conductor of
the iced eight-bundle conductor measured by the wind tunnel test
varies with the angle of wind attack.

Galloping Characteristics of the Conductor
The wind velocity of 8 m/s, the thickness of crescent-shaped ice is
12 mm, the initial angle of wind attack is 60°, and each span length
is 200 m. The corresponding numerical simulation of the
galloping process of the three-span iced eight-bundle
conductor is carried out. The motion state of the three-span
multi-span iced eight-bundle conductor at different times is shown in
Supplementary Figure S3. According to Supplementary Figure S3,
the three-span iced eight-bundle conductor with a span of 200m has a
single-half-wave galloping model for each sub-span, and galloping
occurs in each sub-span.

The displacement time and galloping trace of the midpoint of
sub-conductor 1 in each span are shown in Supplementary
Figures S4, S5. The galloping amplitude is listed in
Supplementary Table S4. It can be seen from Supplementary
Figure S4 that the galloping displacement of each span is
different and slight fluctuations. Referring to Supplementary
Figure S5, the traces of the midpoints of each span are close
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to an elliptical limit cycle. In the 200 m multi-span line, the
vibration of the conductors of each span under the wind velocity
of 8 m/s is all vertical galloping. It can be seen intuitively from
Supplementary Table S4 that there are also significant
differences in the galloping amplitudes of the conductors in
each span in the 200 m span multi-span line. The third span
of vertical displacement is the largest, but the middle span of the
torsional angle is the largest (Hung et al., 2014).

Galloping Mode and Frequency
Characteristics
The galloping mode and frequency characteristics of the
conductor in the galloping process are important parameters
for the research of galloping prevention and control technology.
Through the displacement response spectrum of the conductor,
combined with the mode and natural frequency of the line
(Supplementary Tables S2, S3), the vibration mode and frequency
characteristics of galloping are analyzed. The displacement spectrum
analysis is carried out according to the displacement time history
response of Supplementary Figure S4, and the data results are shown
in Supplementary Figure S6. It can be seen that the spectra of vertical
displacement, horizontal displacement, and torsional angle of each
conductor all have peaks at the first-order natural frequency of
0.286Hz, in which the vibration frequency of torsion angle has
four peaks, which are close to 0.286, 0.411, 0.697, 0.858Hz, which
correspond to the low-order natural frequencies of (Supplementary
Table S2) the 200m multi-span and single-span iced eight-bundle
conductors.

THE INFLUENCE OF DIFFERENT
PARAMETERS ON THE GALLOPING OF
MULTI-SPAN ICED CONDUCTOR
Effect of Span on Galloping
In this section, the effect of galloping of the iced eight-bundle
conductor under different span lengths is studied. The span
condition of conductors in Galloping Characteristics of the
Conductor is changed to 400 m. The remaining parameters are
in accordance with those of the previous conductors. The
galloping of the three-span iced eight-bundle conductor is
numerically simulated. The galloping shape of an iced eight-
bundle conductor of three-span at different times with a span
length of 400 m is shown in Supplementary Figure S7.
Compared with the motion state of Section 4.1 200 m three-
span iced eight-bundle conductor, the conductor galloping mode
has changed, and the whole span galloping and sub-span
vibration have taken place on the line. The three-span iced
eight-bundle galloping with a span of 400 m has a double half-
wave, which is no longer a single half-wave galloping mode.

The time history of midpoint displacement of each sub-
conductor 1 is shown in Supplementary Figure S8, and the
galloping amplitude is listed in Supplementary Table S5. As can
be seen from Supplementary Figure S8, the horizontal
displacement of the midpoint of each sub-conductor 1
remains basically unchanged, and the vertical displacement of

the middle span is larger than that of both sides, indicating that
the galloping of the middle span is more intense. Compared with
Supplementary Figure S4, the galloping of the conductor with
span length of 400 m is not as stable as that of 200 m. As can be
seen from the results in Supplementary Table S5, the vertical
amplitude, horizontal amplitude, and torsional angle are all large
in the middle span, and the galloping amplitudes of the first span
and the third span are similar.

It shows the mid-point displacement spectrum of the wind
velocity of 8 m/s span 400 m three-span iced eight-bundle
conductor 1 in Supplementary Figure S9. Combined with the
results of Supplementary Table S3 and Supplementary Figure
S9, it can be found that the in-plane vibration frequency and out-
of-plane vibration frequency of each span have a peak near the
natural frequency 0.153 Hz of one half-wave, it is indicated that
the vibration mode is one half-wave. The torsional vibration
frequency of each span has the maximum peak near the natural
frequency 0.269 Hz of the single half-wave; that is, the vibration
mode is dominated by the one half-wave. Moreover, there is also a
small peak value in the plane of the two spans, which is close to
the natural frequency of 0.285 Hz, and its corresponding mode is
double half-wave. According to the motion form of conductor
galloping, the galloping mode on both sides of the three 400 m
multi-span transmission line is mainly double half-wave, and
there is an obvious single half-wave, while the middle span is
mainly one half-wave. It is galloping mode has changed
compared with the 200 m three-span line, which indicates that
the larger the span, the more complex the conductor galloping
mode. As can be seen from Supplementary Figure S9C, the
horizontal angle spectrum is more complex, and the galloping will
excite multiple frequencies.

Effect of Wind Velocity on Galloping
Wind excitation is the direct cause of conductor galloping, which
will cause galloping under the stable action of wind velocity of
4 m/s~20 m/s. In this section, the influence of wind velocity on
galloping is studied, and the galloping response of the 200 m
three-span iced eight-bundle conductor at wind velocity 12 m/s is
simulated and compared with the galloping response at 8 m/s
wind velocity given in Galloping Characteristics of the Conductor.

The galloping pattern of the three-span iced eight-bundle
conductor with a wind velocity of 12 m/s and a span of 200 m
at different times is given in Supplementary Figure S10.
Compared with Supplementary Figure S3 in Galloping
Characteristics of the Conductor, the galloping mode of the
conductor has changed. The galloping mode on both sides of
the 200 mmulti-span changes from a single half-wave to one half-
wave or double half-wave, while the middle span is still one half-
wave.

Supplementary Figure S11 shows the time history of
midpoint displacement of each sub-conductor of the three-
span iced eight-bundle conductor with span length of 200 m
in 12 m/s. Compared to the lower wind velocity length of 8 m/s, it
is obvious that the galloping is unstable, and there are wave in the
upper and lower limits of vertical amplitude, horizontal
amplitude, and torsion angle of each span, which
demonstrates that the galloping of the conductor is more
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unstable with the increasing of wind velocity. In addition, it can
be seen that the greater the wind velocity, the greater the vertical
amplitude, horizontal amplitude, and torsion angle of the
conductor, which shows that the effect of wind velocity on
galloping is very significant and intense.

The spectrum at the midpoint displacement of each span at
12 m/s wind velocity is illustrated in Supplementary Figure S12.
The peak value of the displacement spectrum of each span
appears near 0.358 Hz, and there are multiple peaks.
According to the results of Supplementary Table S2, the wind
velocity is changed, and the galloping is still dominated by a single
half-wave. However, the increasing of wind velocity will increase
the galloping amplitude and make the circuit more unstable.

Effect of Initial Angle of Wind Attack on
Galloping
Wind excitation is another necessary condition for
transmission line galloping. Different wind velocities will
affect the aerodynamic state, thus affecting the conductor
galloping. Meanwhile, the size and shape of the galloping of
a section of the line are also determined by the angle between
the wind and the conductor axis, that is, the initial angle of wind
attack. The galloping amplitudes of a 200 m three-span iced
eight-bundle conductor under several typical angles of wind
attack are depicted in Supplementary Table S6. It can be seen
from the table that, with the increasing of angle of wind attack,
the greater the galloping amplitude, the greater the vertical
displacement, horizontal displacement, and torsional angle.
When the included angle is 0°, that is, when the wind
direction is parallel to the axis of the conductor, the
possibility of galloping is the least, and there is basically no
vibration. When the initial angle of wind attack is 90°, the lift
coefficient of the conductor decreases and tends to 0, so it is
difficult to cause galloping. The difference between the
amplitudes of 30°and 60°is obvious. Therefore, the initial
angle of wind attack has a great influence on the galloping of
the conductor. Referring to the aerodynamic curve of an iced
eight-bundle conductor obtained in reference (Hartog, 1932;
Nigol et al., 1977), it is known that galloping may occur in the
range of 60° using Den Hartog theory.

Effect of the Number of Spans on Galloping
This section studies the effect of the number of spans on
galloping, simulates the galloping of the five-span iced eight-
bundle conductor with 200 m at the wind velocity of 8 m/s, and
compares it with the galloping of the three-span iced conductor
with the span length of 200 m in Galloping Characteristics of the
Conductor.

Supplementary Figure S13 shows the galloping pattern of the
five-span iced eight-bundle conductor under wind velocity of
8 m/s at different times. Compared with the results of the three
consecutive spans in Galloping Characteristics of the Conductor,
the galloping pattern of the conductor is the same, and each span
is a single half-wave.

Supplementary Figure S14 shows the time history of the mid-
point displacement of each sub-conductor 1 of the five-span iced

eight-bundle conductor with a wind velocity of 8 m/s and a span
of 200 m, and the displacement spectrum of the middle point of
each sub-conductor 1 is shown in Supplementary Figure S15.
From this, we can know that the vibration amplitude of the five-
span transmission line is slightly smaller than that of the third
span transmission line. Compared with the displacement time
history of the third span, it can be seen clearly that the vibration
amplitude of the fifth span is more unstable, the upper and lower
limits are unstable, and there are slight fluctuations. Meanwhile,
the vertical displacement of the middle span is larger than that of
the two sides. It can be seen clearly from the displacement
spectrum that the vertical displacement of each span has many
peaks, which are concentrated near 0.286 Hz. Compared with the
third span, the fifth span is still dominated by a one half-wave, but
the galloping is more chaotic.

Supplementary Figure S16 shows the galloping trace of the
midpoint of each sub-conductor 1. It can be seen that the motion
trace is still close to the oval limit cycle, and the ellipse trace on
both sides is fuller, indicating that the horizontal galloping on
both sides is larger, and the galloping trace in the middle span is
slender, indicating that the galloping in the middle span is more
complex. The vertical displacement of the middle span is also
larger.

Effect of Ice Shape on Galloping
Different ice types will cause aerodynamic differences. When the
temperature is low (−8°C ~ −11°C) and the rainfall is low (Liu
et al., 2020b), the typical crescent-shape ice is easy to form
because the small water droplets coagulate upon contact with
the conductor surface. When the temperature is high and the
rainfall is high, the water droplets cannot reach the contact point
when they reach the surface of the conductor. In this case, if the
wind velocity is low, it is easy to form typical sector-shape ice.

In order to investigate the galloping of iced eight-bundle
conductors under different ice shapes, the wind velocity is
8 m/s, the sector-shape ice thickness is 18 mm, the initial angle
of attack of ice is 140° (Cai et al., 2020b), the 200 m three-span
conductor is discussed, and the galloping characteristics are
numerically simulated. The galloping state of a 200 m three-
span iced eight-bundle conductor at different times is shown in
Supplementary Figure S17. Compared with the motion state of a
200 m three-span crescent-shape ice eight-bundle conductor in
Galloping Characteristics of the Conductor, the galloping mode of
the conductor is mainly single half-wave, and there are double
half-waves. There are galloping among each span of sub-
conductors, and the galloping form is also different, which
demonstrates that the sector-shape ice galloping under the
same conditions is more disordered.

The time history of displacement and the response spectrum
of the midpoint of each span of sub-conductor 1 are shown in
Supplementary Figures S18, S19. Compared with the crescent
crescent-shape, the galloping tends to be stable. However, the
upper and lower limits of the vertical amplitude, horizontal
amplitude, and torsional angle of each span fluctuate slightly,
which is not as regular as the galloping amplitude of the crescent-
shape shape. Compared with the crescent-shape ice eight-bundle
conductors, it can be found that the vertical amplitude, horizontal
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amplitude, and torsional angle of the sector-shape ice conductor
are larger than those of crescent-shape ice, and the torsional angle
changes violently. It can also be seen from the spectrum that the
frequency of torsional angle excites multiple peaks, which shows
that sector-shape ice is more prone to galloping than crescent-
shape ice, and the destructive force of galloping is stronger.

The galloping trace of the midpoint of each span sub-
conductor 1 is presented in Supplementary Figure S20. It can
be seen that the galloping trace is still close to the elliptical limit
cycle. The change of the three-span galloping trace is the same as
that of the crescent-shape, but it can be clearly compared that the
sector-shape trace is rougher, and there is no smoothness of the
crescent-shape, which also shows that the sector-shape ice
galloping is more intense and irregular. In addition, the
difference in galloping amplitude between sub-conductors of
each span is small, which is due to the whole span oscillation
of the line due to the reinforcement of spacers during conductor
galloping.

The existing research on iced conductor galloping shows that
the wind velocity has an obvious influence on conductor
galloping. In this section, the FEM is used to compare the
influence of wind velocity on the galloping of the sector-shape
ice eight-bundle conductor. Supplementary Table S7 compares
in detail the galloping amplitude at the midpoint of the span line
under the different wind velocities (4 m/s and 8 m/s) of the
sector-shape ice eight-bundle conductor with angle of wind
attack 140° under the 200 m span (Cai et al., 2020a). It can be
seen from the table that, with the increasing of wind velocity, the
galloping mode of the conductor changes significantly, and the
vertical amplitude and horizontal vibration amplitude increase
gradually. This is consistent with the conclusion of crescent-
shape under the influence of wind velocity. The greater the wind
velocity, the greater the galloping amplitude and the more
complex the galloping mode.

ANALYSIS OF CONDUCTOR TENSION

Tension Change in the Process of
Conductor Galloping
Conductor galloping seriously threatens the safe and stable
operation of transmission lines. The main threats of galloping to
the transmission lines are mechanical damage and electrical faults of
the line, which are closely related to the mechanical strength and
electrical performance of the line itself (Zhang et al., 2000). In terms
of mechanical strength, the additional tension caused by galloping
on the conductor must be tested. Therefore, the study of dynamic
tension important to include in the study of galloping.

The tension analysis of the two terminals of the three-span
iced eight-bundle conductor under the 8 m/s wind velocity is
shown in Supplementary Table S8. Because the position of
each sub-conductor has a certain offset, there is a slight
difference in the tension of the eight sub-conductors.
Meanwhile, the tension of each conductor at the left and
right ends is not the same but also has a certain deviation.
The longitudinal comparison shows little difference in the
average value of the eight sub-conductors between the left and

right ends, indicating that the tension between the two ends is
balanced. Supplementary Figure S21 shows the tension analysis of
each sub-conductor at the left end in different periods. It can also be
seen from the figure that the tension of the eight sub-conductors in
different periods is very similar, with slight changes, but the overall
difference is small. This shows that the damage of line galloping to the
tower comes from long-term fatigue damage.

Adaptability Analysis of Simplified Formula
for Galloping Amplitude Traverse
This section contains a comparative analysis and analyzes the
existing theoretical simplification and formula correction for
calculating the galloping amplitude of conductors based on the
results of numerical simulation (Liu et al., 2021c). The
comparison between the calculated values of the vertical
amplitude of the improved formula and the results of
numerical simulation are illustrated in Supplementary Table S9.

Based on the energy balance method, Hunt and Richards gave
a simplified formula for calculating the amplitude (peak-peak) of
conductor galloping (Hunt and Richards, 1969):

Amax � 0.26V
f

(5)

where V is the wind velocity and f is the natural frequency of the
conductor.

Equation 5 shows that the galloping amplitude of the
conductor is directly proportional to the wind velocity.
However, it is inversely proportional to the natural frequency
of the conductor. The natural frequency of the conductor
decreases with the increasing of the number and length of the
span, so the result shows that, in Supplementary Table S8, the
vertical amplitude of the conductor with the span length of 400 m
is larger than that of the conductor with the span length of 200 m.
The modified formula of reference is defined as (Zhao, 2014)

Amax � 0.18V
f

+ 0.34 (6)

As can be seen from the table below (Supplementary
Table S9), the modified formula greatly improves the
calculated value of the vertical amplitude of the conductor
galloping (Rossi et al., 2020). However, from the relative error,
it can be seen that there is still a big gap between the amplitude
calculated by the individually modified formula and the
numerical simulation. As the galloping of transmission lines is
very complex and there are many factors affecting galloping (Liu
et al., 2021d; Liu et al., 2021e), it is very difficult to obtain a
formula to accurately calculate the vertical amplitude of galloping
in order to be consistent with the actual numerical simulation (Li
et al., 2021b).

CONCLUSION

In this article, the galloping process of the conductor is simulated
and analyzed under different span lengths, span numbers, wind
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velocities, and initial angle of wind attacks using FEM. Finally, the
tension at both ends of the conductor is numerically simulated.
Based on the dynamic analysis and dynamic response results of
the line, the galloping mode, frequency characteristic, vibration
amplitude, galloping trace, and tension analysis of the line are
studied, and the following conclusions are obtained. Those
conclusions are as follows:

1) Compared with single-span transmission lines, the natural
frequency of multi-span transmission lines is lower, and the
number of span has less effects on the natural frequency.
The initial angle of wind attack has a significant influence
on the conductor galloping, and the large amplitude
galloping is most likely to occur under the angle of wind
attack of 60°.

2) As span length increasing the galloping half-wave number of
the multi-span line increases, the galloping becomes more
complex. The galloping mode of the two sides of the multi-
span line changes, with the wind velocity increasing, in which
the galloping amplitude also increases.

3) With the increasing of the number of spans, the difference
of the galloping mode between each span decreases, the
vertical displacement has multiple peaks, and the galloping
is more disordered. The vertical vibration amplitude of the
middle span of the multi-span transmission line is larger
than that of the two sides, and the horizontal displacement
and torsion angle of each span has little difference.

4) Under the same conditions, sector-shape ice conductors are
more prone to galloping than crescent-shape ice conductors.
Because the tension at both ends of the conductor is similar,
the galloping modes on both sides of the multi-span line are
similar.
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Traction Network Protection Based on
Similarity of Transient Current
Waveform
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In this paper, a protection scheme for the traction network of the penetrating co-phase
traction direct power supply system based on the waveform similarity at both ends of line is
proposed. Besides, research on the transmission characteristics of fault current is also
carried out. This article, from the perspectives of the reflection and refraction process,
attenuation degree, and polarity of fault current, analyzes the correlation and difference of
current waveforms at both ends when interior line faults and adjacent line faults emerge.
The correlation of waveforms can be proved by cosine similarity after the process of
synchronous squeezes wavelet transformation of fault current. The conclusions are as
follows: when the interior line faults occur, the sequence, reflection and refraction process,
and attenuation degree reaching both ends are roughly the same, the polarity change
direction is the same, and the waveform similarity is high; when the adjacent line faults
occur, the sequence, reflection and refraction process, and attenuation degree reaching at
both ends are greatly different, the polarity change direction is opposite, and the waveform
similarity is low. When a protection scheme is based on using cosine similarity, it can
quickly and accurately identify internal or external current faults. Simulation results show
that the proposed algorithm canmeet the requirements of rapidity, selectivity, and reliability
and is not affected by transition resistance and fault inception angles, so it has an
application prospect to a certain degree.

Keywords: penetrating co-phase traction direct power supply system, synchronous squeezed wavelet
transformation, cosine similarity, traction network, transient protection

1 INTRODUCTION

The traction direct power supply system is a unique branch of the power system, but suffers high
failure frequency due to its complicated deployment environment, such as bad geographic
environment, complex weather conditions, locomotive load, and lightning stroke. At the same
time, traction network has high requirements for power supply reliability. For this reason, its relay
protection scheme must have specific capabilities to quickly and accurately identify the faults.

Relay protection schemes and fault location methods based on traveling wave and transient signals
have achieved great success in the deployment of transmission and distribution lines. Deng et al. (2018),
Biswas andMilanfar, (2016) and Li et al. (2019) based on time–frequency correlation of fault waveform
characteristics put forward a time–frequency matrix constructed by fault waveform of continuous
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wavelet transform and S-transform, and by it, they believe that the
internal and external faults of transmission line could be
distinguished; Wang et al. (2019) and Zhen et al. (2019), with

the help of cosine similarity of transient current waveform to
construct a flexible DC distribution system, give a scheme for
outgoing feeder protection of new energy station. Based on the
correlation characteristics of fault waveforms, Li Z. et al. (2018) and
Hongchun et al. (2012) propose using waveform coefficient to
distinguish internal and external faults; Li et al. (2019), based on the
waveform similarity of forward and reverse differential currents,
state that the fault location information can be accessed by analysis
of the Pearson coefficient. In recent years, many researchers in this
field have analyzed the propagation characteristics of fault traveling
wave in the traction network line and appealed that the research of
fault traveling wave and fault located of traction network should be
conducted as a whole (Xue et al., 2012; Xiong et al., 2019; Pan et al.,
2014). However, fault traveling wave and fault transient signal have
not been widely used in the protection of traction network. As
transient protection is of the advantages of stability, reliability, and
rapidity, it would be a new attempt to apply it to traction network.

The penetrating co-phase traction direct power supply system and
capacitance are paralleled at every outlet of traction substations for
filtering, and the paralleled capacitance would create wave impedance
discontinuity. The waveform detected at the relay location is the
transient signal generated by the fault point, and after repeated folding,
reflection, (Shen et al., 2021; Shen and Raksincharoensak, 2021a) and
refraction, it is superimposed according to a certain time sequence.
The traction network and line boundary exert a certain attenuation
effect on the fault transient signal, which is why the amplitude of
waveform (Shen et al., 2020a; Shen et al., 2020b; Zhang et al., 2021) at
both ends of the line is different when the fault location is different.
The polarity of the signal detected at both ends of the device is different
(Shen and Raksincharoensak, 2021b; Shen et al., 2022) when the fault

FIGURE 1 | Penetrating co-phase traction direct power supply system.

FIGURE 2 | Connection method of co-phase traction substation and
traction network.

FIGURE 4 | Schematic diagram of the traction network line structure.

FIGURE 3 | Amplitude–frequency characteristics of the traction network
boundary.
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location is different. The cosine similarity is used to represent the
difference of waveform at both ends of the line.When the information
about the reflection and refraction, arrival time sequence, attenuation
degree, polarity, and other relevant factors of waveforms at both ends
of the line are roughly the same, the waveform similarity is high, and
the cosine similarity is large. Otherwise, the cosine similarity is small.
Taking advantage of the (Han et al., 2016; Li B. et al., 2018)
abovementioned characteristics, the pilot protection of traction
network in the traction direct power supply system could be
constructed on the basis of the similarity of current waveform.

Synchronous squeeze wavelet transform (SWT) compresses the
time–frequencymap after wavelet transform in the frequency domain
direction (Li et al., 2021; Liu et al., 2020), and its time–frequency curve
is clearer and the decomposition result remains approximately
unchanged, which is conducive to solving the mode mixing
problem and is more accurate than taking wavelet transform,
S-transform, and other methods (Duan et al., 2019; Yu et al., 2017a).

This study studies the unique structure of the traction direct
power supply system. Based on the transmission characteristics and
attenuation function of transient waveform, it analyzed the similarity
of the current waveforms at both ends of the traction network
interior line faults and adjacent line faults and proposed a new
method of the line protection based on synchronous squeeze wavelet
and waveform similarity, whereby the internal and external faults
can be quickly and accurately identified. The scheme uses cosine
similarity of waveform at both ends of the line to form the protection
criterion, making effective use of the waveform characteristics and
making the protection more reliable, and is not affected by the
transition resistance and the initial angle of the fault. It is the first
time this method and the traction system have been combined.With
the help of simulation software PSCAD/EMTDC, the model of the
penetrating co-phase traction direct power supply system could be
constructed for effective algorithm verification.

2 STRUCTURE AND BOUNDARY OF THE
PENETRATING CO-PHASE TRACTION
DIRECT POWER SUPPLY SYSTEM
2.1 Penetrating Co-Phase Traction Direct
Power Supply System
The structure of the penetrating co-phase traction direct power
supply system is shown in Figure 1. The system is mainly

composed of public power grid, traction substation, traction
network, and electric locomotive. The three-phase alternating
current of the public power grid outputs a single-phase
alternating current with equal amplitude and same phase
through rectifier operation and inverter operation of traction
substation (Li, 2014). Usually, the length of the line between two
traction substations is 30–35 km. In this study, 35 km is adopted.

2.2 Boundary of Traction Network
Connection method of co-phase traction substation and traction
network is shown in Figure 2. The capacitors at the outlet are
connected in parallel with the traction network to reduce the
harmonic content entering the traction network and improve the
power quality of the traction network lines.

The capacitance connected in parallel with traction network
shows low impedance to high frequency current. Thus, it is of
certain boundary characteristics. When the fault current passes
through the boundary of the traction network, a part of the fault
current flows into the capacitors, which leads to a sharp difference
with the fault current detected at the relay location where internal
and external fault appears. According to themethod from Song et al.,
2014, the capacitance at the outlet of traction substation plus-2
meters contact line is set as the line boundary.

According to the composition of traction network boundary of
co-phase traction power supply system, the frequency
characteristics are analyzed, as shown in Figure 3.

It can be seen from Figure 3 that fault signals with different
frequencies show unequal passage characteristics after passing
through the boundary. When the signal frequency is greater than

FIGURE 5 | Line mode waveform in M and N at the fault in the zone (f2).
(A) Forward zone out of fault (f3). (B) Reverse zone out of fault (f1).

FIGURE 6 | Line mode waveform in M and N at the fault outside
the zone.
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600Hz, the amplitude of amplitude–frequency characteristic is far
less than 1, which indicates that the boundary has a strong
attenuation effect on high frequency signal (Shen et al., 2017;
Yang et al., 2018; Song et al., 2020).

3 THE ANALYSIS OF THE FAULT CURRENT
OF THE PENETRATING CO-PHASE
TRACTION DIRECT POWER SUPPLY
SYSTEM

Figure 4 is the typical schematic diagram of the traction
network line structure, and P、Q、M、N is where the
traction substation is located, also known as the fault
detecting point. In this study, the traction network between
M,N is taken as the research object, which is also in the zone.
The faults are set in f1, f2, and f3. After the fault occurs in the
traction network, the fault transient current signal propagates
along the line at the fault point at high speed to both sides, and
produces reflection and refraction where the wave impedance
is discontinuous. The transient signal detected by the detecting
point, M,N, is related to attenuation function, reflection and
refraction coefficient and fault location. The positive
directions of M、N are shown in Figure 3.

3.1 Internal Line Fault
When the fault occurs inf2 (in the zone), the transient current from
the fault point flows to both ends of the line, and the traction
network has an attenuation effect on the transient signal of the fault.
The polarity changes of the transient current detected by the
protection devices at both ends of the line are the same, and the
transient current only passes through the line, so the attenuation
characteristics, reflection process, and transmission sequence are
basically consistent, and the waveform shape of the transient current
is basically the same. However, when the fault point is relatively far
from themidpoint of the line, the waveform shape is different due to
the different arrival time sequence of the fault transient current; at
the same time, due to the attenuation effect of the traction network
on the fault transient signal, the attenuation degree of the transient
current with different frequency is different in the transmission
process, so the amplitude is different.

When a metallic short-circuit fault occurs, a distance of
15 km form M, its mode component is obtained by
decoupling and transforming the fault transient current of M
and N, as shown in Figure 5.

It can be seen from Figure 5 that the waveform of mode
component of fault transient current at both ends of the line is
basically the same when the fault occurs in the zone.

3.2 Adjacent Line Fault
In case of fault occurring in f1 (outside the reverse zone) and f3

(outside the forward zone), the transient current will flow through
the boundary of the traction network line, and the waveform of the
transient current will be reflected, and the high frequency
component will be strongly attenuated when passing through the
boundary. The polarity change direction of the current waveform
detected by the detecting point,M,N, will be opposite; the reflection
and refraction process, attenuation degree, and transmission
sequence of the transient current waveform will be completely
different. Therefore, the waveform of fault transient current will
be completely different.

When a metallic short-circuit fault occurs, a distance of 35 km
forms the forward zone of N, that is f3, its mode component is
obtained by decoupling and transforming the fault transient
current of M and N, as shown in Figure 6A. When a metallic
short-circuit fault occurs, a distance of 20 km forms the reverse
zone ofM, that is f1, its mode component is shown in Figure 6B.

It can be seen from Figure 6 that the waveform of mode
component of fault transient current at both ends of the line is
opposite and in sharp differencewhen the fault occurs outside the zone.

To sum up, the waveform of fault current is related to
transmission characteristics (refraction and reflection process,
attenuation degree, arrival time sequence, change direction) and
transmission function. When the fault occurs in the zone, the
refraction and reflection process and attenuation characteristics of
the transient current are basically the same, the polarity change
direction is the same, and the transmission sequence is slightly
different, all resulting in local differences in waveform. But generally
speaking, the fault transient current waveforms detected at both ends
of the line are basically similar. When the fault occurs outside the
area, the transient current attenuates through the boundary, the

FIGURE 7 | Protection scheme flowchart.
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frequency components are different, the refraction and reflection
process, the transmission sequence are completely different, and the
polarity change direction is opposite. Thewaveformof fault transient
current detected at both ends of the line is significantly different.

4 THE PILOT PROTECTION BASED ON
SYNCHRONOUS SQUEEZED WAVELET
AND WAVEFORM SIMILARITY
Based on the above analysis, this article puts forward the
transmission line protection principle based on the theoretical
basis of the change characteristics of current waveform at both
ends and the similarity of transient current waveform.

4.1 Similarity Theory
Cosine similarity is widely applied for information retrieval and
data mining. In recent years, many scholars have studied, with
cosine similarity, the fault line detection, fault location, and line
protection (Li B. et al., 2019; Wang et al., 2019; Li Z. et al., 2018).
The cosine value of the angle between two vector inner spaces is
used to characterize their similarity, which is known as the
follows:

cos(θ) � �a• �b
‖a‖×‖b‖ (1)

From Eq. 1, it can be concluded that when the direction of two
vectors, a→ and �b are same, cosine similarity is 1; when a→ and �b
are vertical, cosine similarity is 0; when the direction of two
vectors, a→ and �b, are opposite, cosine similarity is -1.

If x � {x1, x2,/, xn} and y � {y1, y2,/, yn} are two
independent variables, and n is sampling point, their cosine
similarity can be expressed as follows:

R(x, y) � ∑n
i�1xiyi������∑n

i�1x
2
i

√ ������∑n
i�1y

2
i

√ . (2)

In the formula, R(x, y) represents cosine similarity, and xi, yi

(i � 1, 2,/, n) are the No. i element of independent variable, x
and y, respectively.

The value range of R(x, y) is [- 1,1], and the sign indicates
the relevant direction. For R(x, y), the higher the value, higher
the similarity of the waveform of the two signals. When
R(x, y) � −1, it means that the two signals are completely
negatively correlated; when R(x, y) � 1, it means that the
two signals are completely positively correlated; when
R(x, y) � 0, the two signals are quite different and
uncorrelated (Deng et al., 2018; Li Z. et al., 2018).

4.2 The Method Based on Synchronous
Squeezed Wavelet Transformation
4.2.1 Basic Principles of SWT
Daubechies et al., 2011 and Thakur et al., 2013 proposed when
obtained by SWT, the time–frequency curve is of higher clearness,
the component precision is higher, and the time–frequency energy is
more concentrated (Duan et al., 2019; Yu et al., 2017a). In this case,
the composite signal, f(t), is as follows:

f(t) � ∑n
k�1

fk(t) � ∑n
k�1

Ak(t)e−λt cos(2πωkt + φk). (3)

TABLE 1 | Cosine similarity at different fault locations.

Fault location Fault distance/km K Result

f2 in the zone 0 0.9097 In the zone
5 0.9214 In the zone
10 0.9880 In the zone
15 0.9960 In the zone
20 0.9967 In the zone
25 0.9826 In the zone
30 0.8996 In the zone
35 0.8749 In the zone

f3outside the forward zone 0 −0.8343 Outside the zone
5 −0.9011 Outside the zone
10 −0.9816 Outside the zone
15 −0.9927 Outside the zone
20 −0.9955 Outside the zone
25 −0.9965 Outside the zone
30 −0.9964 Outside the zone
35 −0.9974 Outside the zone

f1 outside the reverse zone 0 −0.7751 Outside the zone
5 −0.8349 Outside the zone
10 −0.9455 Outside the zone
15 −0.9683 Outside the zone
20 −0.9763 Outside the zone
25 −0.9821 Outside the zone
30 −0.9885 Outside the zone
35 −0.9867 Outside the zone
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The synchronous squeezed wavelet changes on the basis of
continuous wavelet, andf(t) is the change of continuous wavelet
transforms into Wf(a, b), in which a, b are the scale and shift
factor. The initial estimated instantaneous frequency ofWf(a, b),
as a result, is

ωf(a, b) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−i
Wf(a, b) ·

z(Wf(a, b))
zb

≠ 0Wf(a, b) ≠ 0Wf(a, b) � 0

Wf(a, b) � 0

(4)
After synchronous squeezing of wavelet coefficient,

Wf(a, b), where ~ε is the threshold value and accuracy is δ,
the result is

Sδ
f,~ε
(b,ω) � ∫

A
~ε,f

(b)
Wf(a, b) 1

δ
h(ω − ωf(a, b)

δ
)a−3/2da. (5)

In this formula, ~ε � 1.4826
�����
2 lnN

√
•MAD(|Wf|nv) and N are

the signal length. MAD(|Wf|nv) is the median value of wavelet
coefficients in the minimum scale layer; A~ε,f(b) �
{a ∈ R+; |Wf(a, b)|> ~ε}.

If Zk � {(a, b): |aω′
k(b) − 1|<Δ}, when (a, b) ∈ Zk, there

would be ∣∣∣∣ωf(a, b) − ω′
k(b)

∣∣∣∣≤ ~ε. (6)
After the reconstruction of the component, fk(t) turns into

~fk(b), and the result is as follows:

~fk(b) � lim
δ→0

⎛⎜⎜⎜⎜⎜⎜⎝R−1
ψ ∫
|ω−ω’(b)< ~ε|

Sδ
f,~ε
(b,ω)dω⎞⎟⎟⎟⎟⎟⎟⎠. (7)

For constant C, if ∀b ∈ R, there would be

TABLE 2 | Cosine similarity under different transition resistances.

Fault location Transition resistances/ Ω Fault distance/km K Result

f2 in the zone 0.1 0 0.9097 In the zone
15 0.9960 In the zone
35 0.8749 In the zone

10 0 0.9010 In the zone
15 0.9954 In the zone
35 0.8130 In the zone

50 0 0.8721 In the zone
15 0.9926 In the zone
35 0.7980 In the zone

100 0 0.7542 In the zone
15 0.9826 In the zone
35 0.7827 In the zone

f3 outside of forward zone 0.1 0 −0.9943 Outside the zone
15 −0.9927 Outside the zone
35 −0.9974 Outside the zone

10 0 −0.9078 Outside the zone
15 −0.9437 Outside the zone
35 −0.9790 Outside the zone

50 0 −0.7193 Outside the zone
15 −0.6853 Outside the zone
35 −0.6828 Outside the zone

100 0 −0.7033 Outside the zone
15 −0.6615 Outside the zone
35 −0.6553 Outside the zone

f1 outside the reverse zone 0.1 0 −0.9751 Outside the zone
15 −0.9683 Outside the zone
35 −0.9867 Outside the zone

10 0 −0.7438 Outside the zone
15 −0.8475 Outside the zone
35 −0.8359 Outside the zone

50 0 −0.5858 Outside the zone
15 −0.5486 Outside the zone
35 −0.6437 Outside the zone

100 0 −0.4599 Outside the zone
15 −0.4235 Outside the zone
35 −0.4373 Outside the zone

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8656026

Chen et al. Traction Network Protection

481

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


∣∣∣∣∣~fk(b) − Ak(b)e−λb cos(2πωkb + φk)∣∣∣∣∣≤C~ε. (8)
According to (8), the SWT reconstructed component, ~fk(b),

is very accurately close to composite signal (f(t)) ’s k th

component, fk(t).
4.2.2 The Signal of Synchronous Squeezed Wavelet
Transformation Processing
When SWT is used to process fault transient signal, the steps are
as follows:

(1) The result of the continuous wavelet transform processing for
composite (Yang et al., 2021a; Yang et al., 2021b; Yang et al.,
2022) signal, f(t)is as follows:

Wf(a, b) � ∫
+∞

−∞
f(t)a−1

2 �ψ(t − b

a
)dt. (9)

(2) Division of frequency interval: if the length of f(t) is
n � 2L+1, the sampling interval is Δt, nv is taken as 32.
We assume na � Lnv, Δω � 1

na−1log2(n2), and dividing f(t)
into different frequency intervals, the lth frequency
component of center frequency (ωl) is as shown in
formula (10).

(2) Division of frequency interval: if the length of f(t) is
n � 2L+1, the sampling interval is Δt, nv takes 32,
na � Lnv, Δω � 1

na−1log2(n2) and f(t) is divided into
different frequency intervals, as shown in formula (10),
the lth frequency component of center frequency (ωl)
would be

Wl � (ωl−1 + ωl

2
,
ωl + ωl+1

2
). (10)

.

(3) Computing the coefficient of synchronous squeezed
wavelet (Tf(a, b)),

Tf(ωl, b) � (Δω)−1 ∑
ak : |ωf(a,b)−ωl|≤ Δω

2

Wf(a, b)a−
3
2

k (Δa)k, (11)

where ωl represents the l
th central frequency. ak is the discrete value

of wavelet changing scale, a. (Δa)k � ak − ak−1; Δω � ωl − ωl−1.

(4) After inverse transform, the reconstructed signal, f(t), can
be achieved by

f(t) � Re[C−1
ψ ( ∫

+∞

0

Wf(a, b)a−3/2da)]

� Re⎡⎢⎢⎣C−1
ψ
⎛⎝∑

i

Wf(a, b)a−3/2i (Δa)i⎞⎠⎤⎥⎥⎦

� Re⎡⎢⎢⎣C−1
ψ
⎛⎝∑

i

Tf(ωl, b)(Δω)⎞⎠⎤⎥⎥⎦ (12)

where C−1
ψ � ∫+∞

0
φp(ξ) dξξ and φp(ξ) are the conjugated Fourier

transform of wavelet function; ai is the discrete scale; and i is the
scale of discreteness.

4.3 Protection Scheme
The basic flow chart of traction network protection algorithm
using synchronous squeezed wavelet transformation and
waveform similarity is shown in Figure 7.

(1) Start
(2) After the procedure has started, the fault transient current under

the data window at both ends of the line is collected and
decoupled. Selecting a mode component, the reconstructed
signal f(t) can be collected after preprocessing of line mode
component of current by synchronous squeezed wavelet
transformation and then the similarity of waveform at both
ends,k is calculated by using the reconstructed signal.

(3) If the similarity between the two ends is greater than the set
threshold, k> kset, an internal line fault occurs, and protective
measures is adopted immediately; otherwise, it is an external
line fault and no action is required.

Considering the influence of test error, communication delay,
noise and other factors, the constant is set as 0.6, that is, kset � 0.6.

5 SIMULATION VERIFICATION AND
ANALYZING

With the help of simulation software PSCAD/EMTDC, the model
of the penetrating co-phase traction direct power supply system
can be constructed, as shown in Figure 1.

The line between No.1 and two of traction substation, that is
the section ofM、N in Figure 4, is taken as the research object.
As the traction network schematic diagram shown in Figure 4,
the fault of f2 (in the zone), f1 (outside the reverse zone) andf3,
the adjacent line fault (outside the forward zone), are taken into
consideration, and the simulation test is carried out,
respectively, at different fault locations, different transition

FIGURE 8 | Similarity under different transition resistances.
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resistances, and different fault inception angles. The sampling
frequency is set at 50 KHz and the data window, 5 ms.

5.1 The Analysis of Internal and External
Faults in Different Locations
In order to simulate and analyze the effectiveness of the protection
scheme at different fault locations, assuming metal grounding short-
circuit faults occur at f1 (outside the reverse zone),f2 (in the zone),
and f3 (outside the forward zone), respectively, with the initial fault
angle of 60+. Among them, for f2, starting from 0km, simulated
fault points are set every 5 km away from the positive direction ofM;
for f3, the right exit ofN end is taken as the reference point outside
the positive zone, and starting from 0km, simulated fault points are
set every 5 km from the positive direction ofN; forf1, the left exit of
Mend is taken as the reference point outside the negative zone, and
starting from 0km, simulated fault points are set every 5 km from the

negative direction of M. After computing the current waveform
similarity of M、N at both ends, the results are shown in Table 1.

As shown in Table 1, in case of fault in the zone, the waveform
similarity of both sides of the line is close to 1, indicating that the
current waveform on both sides of the line is highly correlated; when
the fault occurs outside the zone, value of waveform similarity is
close to -1, indicating that the current waveform on both sides is
negatively correlated. It can be seen from Table 1 that the internal
and external faults can be accurately identified by the calculation
results of cosine similarity.

5.2 The Identification of Internal and
External Faults Under Different Transition
Resistances
As simulated analysis of effectiveness of the protection scheme, the
transition resistances are 0.1Ω, 10Ω, 10Ω, and 100Ω,respectively,

TABLE 3 | Cosine similarity under different fault initial angles.

Fault location Fault initial angle/(+) Fault distance/km K Result

f2 in the zone 5 0 0.8078 In the zone
15 0.9709 In the zone
35 0.8940 In the zone

30 0 0.8088 In the zone
15 0.9920 In the zone
35 0.8931 In the zone

45 0 0.8191 In the zone
15 0.9955 In the zone
35 0.8630 In the zone

90 0 0.9051 In the zone
15 0.9975 In the zone
35 0.8935 In the zone

f3 outside the forward zone 5 0 −0.9893 Outside the zone
15 −0.9950 Outside the zone
35 −0.9854 Outside the zone

30 0 −0.9544 Outside the zone
15 −0.9942 Outside the zone
35 −0.9919 Outside the zone

45 0 −0.8802 Outside the zone
15 −0.9928 Outside the zone
35 −0.9903 Outside the zone

90 0 −0.8810 Outside the zone
15 −0.9780 Outside the zone
35 −0.9902 Outside the zone

f3 outside the forward zone 5 0 −0.8670 Outside the zone
15 −0.9976 Outside the zone
35 −0.9666 Outside the zone

30 0 −0.8596 Outside the zone
15 −0.9879 Outside the zone
35 −0.9978 Outside the zone

45 0 −0.8995 Outside the zone
15 −0.9642 Outside the zone
35 −0.9919 Outside the zone

90 0 −0.8862 Outside the zone
15 −0.9176 Outside the zone
35 −0.9680 Outside the zone
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and the initial fault angle is θ � 60+. The setting of fault point is the
same as that in Section 5.1. The fault current in and outside the
zone is detected, and the mode component after phase-mode
transformation is taken for synchronous squeezed wavelet
transformation, and the similarity of the reconstructed signal
can be calculated. Due to limited space, this article provides
only the calculation results of waveform similarity at the
beginning, midpoint, and end of outside the reverse zone, in the
zone, and outside of forward zone under different transition
resistance in Table 2.

The waveform similarity calculation results of different fault
locations under different transition resistances are shown in
Figure 8.

In Figure 8, the abscissa is the distance from the fault point to
the protection device, M, and the negative sign indicates the
reverse fault; the ordinate is the calculation result of the current
waveform similarity of M、N at both ends; the calculation
results under different transition resistances are represented by
different line types; those parallel to the abscissa are the
thresholds (kset) set in this article. It can be seen from
Table 2 and Figure 8 that under different transition
resistances, the similarity of current waveforms at both ends is
greater than 0.6 in the case of internal fault, and much less than
0.6 in the case of external fault.

5.3 The Identification of Internal and
External Faults at Different Fault Inception
Angles
The effectiveness of the protection scheme is analyzed when the
fault inception angles are5+,30+,45+, and 90+, respectively, and
the transition resistance is 5Ω. Due to limited space, this article
only gives the calculation results of waveform similarity at the
beginning, midpoint, and end of outside the reverse zone, in the
zone, and outside of forward zone at different fault inception
angles, as shown in Table 3.

The waveform similarity calculation results of different fault
locations at different fault inception angles are shown in Figure 9.

It can be seen from Table 3 and Figure 8 that, at different fault
inception angles, the similarity of current waveforms at both ends
is greater than 0.6 in the case of internal fault, and much less than
0.6 in the case of external fault.

It can be seen from Figures 8, 9 that the similarity value of
the fault in the zone is greater than the threshold value, and that
of the fault outside the zone is less than the threshold value.
When the fault occurs at different initial fault angles, faults can
be correctly identified by the protection scheme, which shows
that the protection scheme is less affected by the initial
fault angle.

From the above simulation results, it can be seen that this
protection scheme based on synchronous squeezed wavelet and
waveform similarity can accurately identify the internal and
external faults when they occur at different fault locations,
under different transition resistances, and at different fault
initial angles, so as to reliably protect the line.

6 CONCLUSION

In this article, the propagation characteristics of fault transient
current in the penetrating co-phase traction power supply system
during internal and external faults are analyzed, and a protection
scheme for the co-phase traction direct power supply system
based on synchronous squeezed wavelet transformation and
waveform similarity is proposed. The theoretical analysis and
simulation results show the following:

(1) The scheme has the advantages of short time window, easy
calculation, and good rapidity

(2) The waveform of fault transient current detected at both ends
is basically the same and the polarity change direction is the
same as well in the case of internal fault; as for external fault,
the waveform of fault transient current detected at both ends
is quite different, and the polarity change direction is
opposite

(3) The synchronous squeezed wavelet transform can achieve
lossless and invertible transformation, and the processed
fault transient current can accurately represent the fault
information

(4) A large number of simulation experiments show that the
protection scheme based on synchronous squeezed
wavelet transform and waveform similarity can quickly
and accurately distinguish the internal and external faults
and can act reliably at different fault locations, under
different transition resistances and at different initial
fault angles
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Improved Electrogeometric Model of
UHV Transmission Line Based on Long
Gap Discharge and Its Application
Yuanchao Hu1, Minghao Yang1, Lu Qu2, Yunzhu An1*, Jing Wang1, Yan Cheng1, Xiao Sha1,
Qingchen Wang1, Chenghui Ma3, Bingchen An3 and Dan Chen3

1School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China, 2Electric Power Research
Institute, China Southern Power Grid, Guangzhou, China, 3Jining Huayuan Thermal Power Plant, Jining, China

Based on long air gap discharge test data and lightning return stroke observation data, an
improved electrogeometric model (EGM) considering terrain conditions is established and
verified to analyze the lightning shielding performance of UHV transmission lines. The
striking distance formula is modified as rs = 0.13 (I2 + 40I)0.814. In this paper, the lightning
shielding failure rate of three-phase conductors of EHV and UHV transmission lines
calculated by the improved EGM model is consistent with the lightning observation
data of actual transmission lines in Japan and the scaled lightning discharge simulation
experimental results of UHV transmission lines in plains and mountainous areas of China,
which verifies the applicability of the improved EGM model to evaluate the lightning
shielding performance of large-scale UHV transmission lines. The improved EGM
model is applied to evaluate the influence of tower type and slope steepness on the
shielding failure tripping rate of UHV transmission lines. The shielding failure tripping rate of
the SZ322 tower is higher than that of the SZT1 tower, and the shielding failure tripping rate
of UHV transmission lines is greatly affected by slope gradient and increases with the
increase of slope gradient.

Keywords: UHV transmission line, lightning shielding, electrogeometric model, striking distance formula, long air
gap discharge

1 INTRODUCTION

In the context of achieving the goal of carbon peaking and carbon neutralization, China is
accelerating the construction of UHV to meet the needs of large-scale development and
consumption of clean energy such as wind and solar energy. Large-scale transmission lines are
exposed to the natural environment and are vulnerable to lightning strike during thunderstorm
season (Hengxin et al., 2016). The lightning shielding failure of Durong line of the 1,000 kV
transmission line in China occurred in 2015 and 2017. In addition, the lightning shielding failure of
Binjin line, Fufeng line, and Jinsu line of the ±800 kV transmission line in China has occurred more
than 10 times since 2010 (Chongyu et al., 2015). The UHV transmission line has large transmission
capacity and low loss, but it is more prone to lightning shielding failure than 220 kV and below
transmission lines, and the harm and loss caused by the accident are even greater. The operation
experience of relevant industries has also shown that the current lightning tripping fault of UHV
transmission lines is mainly caused by lightning shielding failure (Shen et al., 2021; Shen and
Raksincharoensak, 2021). One of the reasons is that the current design of the lightning shielding
system of UHV transmission lines draws on the calculation model of low-voltage transmission lines,
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resulting in large calculation errors. Therefore, it is necessary to
study the lightning shielding performance evaluation model for
large-scale UHV transmission lines.

The electrogeometric model (EGM) method is mainly used to
study the shielding failure performance of transmission lines,
which is widely used by power enterprises IEC and IEEE. Since
Wagner proposed the concept of lightning return stroke model in
1961 (Wagner and Hileman, 1961), many scholars have tried to
improve the striking distance formula in various ways. In 1968,
Whitehead and Armstrong firstly proposed the typical EGM
model by using the 1–3 m gap discharge test (Armstrong and
Whitehead, 1968). Since then, many scholars have further
improved the typical EGM model on this basis to make the
evaluation of lightning shielding performance of transmission
lines more applicable. In 1985, the IEEE working group proposed
the general striking distance formula and the striking distance
coefficient based on various factors (Grant et al., 1985). These
improved striking distance formulas based on the discharge test
data of 1–4 m gap distance played an important guiding role in
the lightning shielding performance of low-voltage transmission
lines. With the improvement of the voltage level of transmission
lines, especially the rapid development of UHV AC and DC
transmission technology, the air gap is further lengthened, and
the shielding failure of UHV transmission lines is too high and
some fully shielded lines in the theoretical model cannot be well
explained by the typical EGM model method.

In recent years, scholars have begun to try to combine the
practical operation experience of transmission lines with the
experimental data of longer gap discharge to improve the
striking distance formula and striking distance coefficient in
the EGM model (Wang et al., 2014; Yu et al., 2017). The
striking distance formula of the EGM model is derived from
the gap discharge test results and lightning observation empirical
formula. Thus, the accuracy of the lightning empirical formula
also affects the accuracy of the model. Taniguchi et al. conducted
the gap discharge test with the maximum gap distance of 6 m in
2008, and improved the EGM model combined with the
probability formula of return stroke velocity (Taniguchi et al.,
2010). In 2014,Wang et al. carried out negative impulse discharge
tests on 1–10 m long air gaps with two kinds of voltage waveforms
of −20/2,500 μs and −80/2,500 μs (Wang et al., 2014; Yu et al.,
2014). Then, they conducted lightning shielding simulation tests
of UHVAC transmission lines with a scale of 1:12.5, and obtained
the lightning shielding performance of scaled UHV transmission
lines (Yunzhu, 2015). The above large-scale discharge test
provides basic data for the correction of the striking distance
formula and the striking distance coefficient in the EGM model
suitable for UHV transmission lines. In addition, the relationship
between the primary lightning stroke current I and the primary
lightning discharge speed v1 is the empirical formula I = 2,400v1

3

estimated by a large number of theoretical analysis (Shen et al.,
2021). In 1984, Idone et al. found that the speed of subsequent
return strokes had a good nonlinear correlation with the peak
lightning current through an artificial lightning experiment
(Idone et al., 1984). Yu et al. (2017) combined the large-scale
long air gap discharge data with the probability distribution of the
return stroke velocity of the artificial lightning pilot channel of

Idone, and proposed an improved stroke distance formula related
to the lightning return stroke velocity. Since the striking distance
formula is related to the dispersion probability of the return
stroke velocity, the striking distance formula is a dispersion form
related to the return stroke velocity. However, the actual lightning
process is random, and the lightning return stroke speed does not
only consist the limited lightning return stroke speed considered
in its dispersion form. The relevant research by Idone et al. (1984)
shows that the probability distribution law of Idone’s return
stroke velocity in the pilot channel of an artificially induced
mine conforms to the relationship between return stroke velocity
and current peak recommended by Lundholm (1957). Since the
relationship between return stroke velocity and lightning current
peak value proposed by Lundholm can be verified with the
experimental data of artificial lightning induction in
laboratory, the formula of striking distance in the EGM model
can be modified to a formula only related to the amplitude of
return stroke current (Yang et al., 2021a; Yang et al., 2021b).

In this paper, the data of large-scale long air gap negative
discharge characteristics with the relationship between return
stroke velocity and lightning current peak proposed by Lundholm
(1957) modify the striking distance formula and the striking
distance coefficient in the EGM model and use a calculation
method to consider the incidence angle of lightning leader. The
lightning shielding failure rate of ultra-high-voltage transmission
lines in Japan is calculated by the improved EGM model in this
paper, and the results are compared with the lightning
observation data to verify the adaptability of the improved
EGM model to the evaluation of lightning shielding failure
rate of large-scale transmission lines. Combined with the
simulation test of lightning shielding performance of UHV
transmission lines, the influence of terrain conditions on the
lightning shielding performance of UHV transmission lines is
analyzed and compared with the calculation results of the
improved EGM model in this paper. Finally, considering that
the tower structure of 1,000 kV transmission lines in China is
diverse, and the lightning shielding performance of transmission
lines is greatly affected by terrain conditions, the improved EGM
model is used to calculate and analyze the influence of tower
structure and slope gradient on the lightning shielding
performance of UHV transmission lines.

2 IMPROVED ELECTROGEOMETRIC
MODELBASEDONLONGGAPDISCHARGE
RESULTS AND NATURAL LIGHTNING
DATA

2.1 Relationship Between Natural Lightning
Return Stroke Current and Return Stroke
Velocity
At the beginning of the 1950s, some researchers found that the
lightning return stroke speed was not stable (Lundholm, 1957).
When the lightning leader falls, the leader head potential Vs is
proportional to the primary lightning current I, and inversely
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proportional to the primary lightning speed v1. In 1963, Wagner
established the relationship between lightning current amplitude
I and lightning leader head potential Vs as shown in Eq. 1
(Wagner, 1963):

Vs � 60(I/v1) × ln(2r′/d′) (1)
where I is the primary lightning current, kA; v1 is the lightning
discharge speed with the speed of light as the unit value, p.u.; r′ is
the distance between the lightning leader head and the ground at
the last jump, m; d′ is the corona radius of the leader head, m. The
long-term observation results show that r′ and d′ increase with
lightning current I, while the variation of logarithm ln(2r′/d′) is
small. Taking ln(2r′/d′) as 4.6, Eq. 2 can be obtained.

Vs � 276(I/v1) (2)
Idone et al. (1984) found that there is a good nonlinear

correlation between the speed of the subsequent return stroke
and the peak lightning current through the artificial lightning
experiment. Their research results basically verify the relationship
between the return stroke speed recommended by Lundholm and
the peak current as shown in Eq. 3 (Lundholm, 1957):

vrs � c(1 +W/Ip)−0.5 (3)
where vrs is the pilot return stroke speed, km/s. c is the speed of
light, km/s. Ip is the peak return stroke current, kA. W is a
constant. Idone et al. used the least square method to fit the
experimental data and got W = 40.

2.2 Striking Distance Formula Based on
Long Gap Discharge Results
The relationship between 50% negative switching impulse
breakdown voltage (U50%) of the 1–10 m rod–rod gap and
gap distance d is shown in Eq. 4.

U50% � 0.9667d0.614 (4)
where U50% is 50% negative switching impulse breakdown
voltage, kV; d is gap distance, m.

By substituting Eq. 3 into Eq. 2, the relationship between
lightning current I and lightning leader tip potential Vs can be
obtained as Eq. 5.

Vs � 276I(1 + 40/I)0.5 (5)
Assuming that the U50% of the rod–rod gap is equal to the tip

potential of the lightning leader, the striking distance formula can
be derived as Eq. 6.

rs � 0.13(I2 + 40I)0.814 (6)
Comparison of different striking distance is shown in

Figure 1. As the peak lightning current is less than 40 kA, the
present striking distance in this paper is less than that of most
scholars. When the peak lightning current exceeds 80 kA, the
present striking distance is larger.

2.3 Striking Distance Coefficient
In the typical EGM model, the striking distances between
lightning leader tip and the lightning conductor, each phase
conductor, and the earth are the same (Anderson et al., 1993).
However, factors such as terrain condition, operation voltage, and
the upward leader process of the earth surface object will affect
the striking distance. Subsequent scholars introduced the concept
of striking distance coefficient to distinguish the striking distance
difference between lightning leader tip and phase conductors,
lightning conductor, and earth (Golde, 1977), as shown in
Eqs 7, 8.

rg � Kgrc (7)
rgw � Kgwrc (8)

where rc, rgw, and rg are the striking distances of lead to
conductor, ground line, and earth, respectively. Kg and Kgw are
respectively the striking distance coefficient against ground and
the striking distance coefficient against ground line.

Since the U50% of the 1–4 m rod–plane gap is slightly higher
than that of the rod–rod gap, previous scholars believe that the
ground striking distance coefficientKg should be less than 1 (Qian
et al., 2010;Wenxia et al., 2015). Experimental results of longer air
gap negative switching impulse discharge show that the U50% of
the rod-plane gap is lower than that of the rod–rod gap as gap
distance exceeds 4 m (Grant et al., 1985). Thus, the coefficientKgw

was revised to 1.1. However, optical observation results of the
physical discharge process (Wang et al., 2014) show that the
downward streamer-leader discharge process of rod-plane gap is
more obvious than that of rod–rod gaps under the negative
switching impulse as the gap distance exceeds 4 m. It indicates
that the final discharge length of rod–plane gaps is smaller than
that of rod–rod gaps. Hence, taking the coefficient Kgw as 1.1 may
overestimate the lightning attractive ability of the earth. In the
present study, the striking distance coefficient Kg = 1.05 and
Kgw = 1.

FIGURE 1 | Comparison of different striking distance formulas.
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2.4 Calculation Method of the Improved
Electrogeometric Model
In the EGM model, it is considered that the development of the
lightning downward leader is stochastic before reaching the
critical striking distance of the stroke object. Hence, the
probability distribution of lightning leader incidence in the
range of −π/2 to π/2 angle has been considered as Eq. 9.

p(ψ) � 0.75 cos3 ψ (9)
A schematic diagram of the EGM model under plains and

mountainous terrain conditions is shown in Figure 2.
As shown in Figure 2A, arcs are made with the center of the

lightning conductor and the three-phase conductor,
respectively, and the radius of their respective striking
distances. At this point, a curved surface is formed by arc
AB, arc BC, arc CD, arc DE, and line EE′ along the direction
of the transmission line. Only when the lightning downward
leader falls into the positioning surface of the corresponding
object is it believed that the lightning will strike the object. Thus,
the arc BC, arc CD, and arc DE are also called the shielding arc.
As the lightning return stroke current varies, the grounding
conductors, phase conductors, and earth will be changed. For
transmission lines in mountainous areas, as shown in
Figure 2B, the shielding arc of the lines on both sides of the
tower is not symmetrical due to the angle of the hillside. This is
due to the inclination of the striking distances of earth line DE,
which makes the shielding arc of the line facing the slope side
decrease, while the other side increases. Besides, only when the
lightning return stroke leader current exceeds the lightning
current withstand level of transmission line Imin can
insulation flashover occur on the transmission line.

The detailed calculation method of the EGM model used in
this paper is shown in Figure 3. At a certain angle θ and ψ, the
unit area of the shielding arc per unit length of the line
perpendicular to the leading incident direction dA is

dA � rsdθ cos θ3 � rsdθ sin(θ + ψ) (10)
The corresponding exposure area of a lightning leader with a

certain amplitude and incident angle perpendicular to the
incident direction of the leader is

FIGURE 2 | Diagram of the EGM model for transmission lines in plains and mountainous areas. (A) Plains area. (B) Mountain area.

FIGURE 3 | Diagram of the EGM model calculation method.
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X � ∫
θ1

−θ2
∫
ψ1

−ψ2

rs sin(θ + ψ)g(ψ)dψdθ (11)

where g(ψ) is the probability density function of the incident
direction of the lightning leader, −π/2< ψ <π/2.

The number of unit length line shielding strike fault is

n � N ∫
rmax

rmin

Xp(rs)drs � N ∫
Imax

Imin

Xp(I)dI (12)

where N is the number of falling thunders per year per unit area,
strokes/km2/a; p(rs) and p(I) are the probability distribution
density function of rs and I, respectively; rmax is the maximum
striking distance that can cause shielding failure; rmin is the

minimum striking distance that can cause shielding failure
tripping, m; Imax is the maximum shielding current; Imin is the
minimum shielding trip lightning current, namely, line lightning
withstand level, kA. The calculation process of the present EGM
model is shown in Figure 4. It is mainly used to calculate the
maximum and minimum shielding trip lightning current of the
line, and then according to Eqs 11, 12, concurrency points in
turn, the angle of lightning incident and lightning incident
position and amplitude of lightning current are circulated.
Finally, the total projection width is calculated and the
shielding tripping rate is obtained.

3 VERIFICATION AND ANALYSIS OF THE
IMPROVED EGM MODEL WITH
OBSERVATION AND EXPERIMENTAL
RESULTS

3.1 Comparison With Observation Data of
500 kV and UHV Transmission Lines in
Japan
In order to verify the applicability of the present EGMmodel, the
present EGM model in this paper is applied to calculate the
lightning stroke rate to power lines of 500 kV and UHV
transmission lines in Japan. The specific parameters of 500 kV
and UHV double-circuit transmission lines on the same tower in
Japan are shown in Table 1.

For the lightning density Ng, the typical EGM model is 3.0
strokes/km2/a, the 500 kV line area in Japan is 4.9 strokes/km2/a,
and the UHV line area is 5.2 strokes/km2/a (Taniguchi et al.,
2010).

The probability density of lightning current amplitude is

P(i) � 0.0475e−
i
20 + 0.001e−

i
50 (13)

In this paper, the improved EGM model results are compared
with the typical EGM model results, Taniguchi et al. (2010) and
Yu et al. (2017) improved EGM model results, and long-term
lightning observation results in Japan (Taniguchi et al., 2009) are
shown in Figure 5.

In order to facilitate accurate comparison, the lightning stroke
rate of each phase pA, pB, pC in each model is divided by their total
P to obtain the proportion of each phase PA, PB, PC in each model
as shown in Eq. 14.

PA � pA

P
, PB � pB

P
, PC � pC

P
, (14)

As shown in Figure 5A, for 500 kV transmission lines, the
total lightning stroke rate of the improved EGM model in this
paper and the improved EGM model in Taniguchi et al. (2010)
is slightly different from the actual observation data, which is
7% larger and 6% smaller, respectively, and the lightning
stroke rate of each phase calculated by the two models is
45%:30%:25% and 30%:32%:38%, respectively. Compared with
the typical EGM model and the improved EGM model in Yu
et al. (2017), the two models are closer to the 36%:40%:24% of

FIGURE 4 | Improved EGM model calculation flow chart.
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the actual operation observation results in Japan (Taniguchi
et al., 2009).

As shown in Figure 5B, for UHV transmission lines, the
lightning stroke rate calculated by the present EGM model is
closer to the observation results in Japan with a deviation of
−0.73%. The calculated shielding failure ratio of each phase is 43:
33:24, which is closest to the 38:39:23 observed in Japan
(Taniguchi et al., 2009) compared to the other three models.
This also reflects that the improved EGM model in this paper is
more suitable for the calculation of lightning shielding
performance of large-scale UHV transmission lines.

3.2 Comparison With Lightning Discharge
Simulation Test Results With Scaled UHV
Transmission Line
In the past few years, a series of lightning discharge tests of scaled
UHV transmission line have been carried out under different
terrain conditions in China (Yu, 2012; Wang et al., 2014; Yu et al.,
2014; Yunzhu et al., 2014; Yunzhu, 2015; Zongxi et al., 2016; Yu
et al., 2017). In these tests, a 10-m-long steel rod with a spherical

tip was applied to simulate the downward leader. The scaled ratio
of UHV transmission line was 1:12.5. In Yunzhu (2015), Yu et al.
(2017), Yunzhu et al. (2014), and Zongxi et al. (2016), the gap
distance between the high voltage rod tip and the scaled line was
5 m. According to the ratio of 1:12.5, the striking distance of the
actual line can be calculated to be 62.5 m. According to the
improved striking distance formula as Eq. 6, the lightning return
stoke current can be deduced as 28.7 kA.

To compare calculation results of the present EGMmodel with
lightning discharge simulation test results, the ratio of each phase
line effective shielding arcs la, lb, lc to total effective shielding arc
L under a lightning current of 28.7 kA is calculated by the present
EGM model as shown in Eq. 15.

Pa � la
L
, Pb � lb

L
, Pc � lc

L
(15)

In the calculation, the tower type is SZ322, which is the same as
that in simulation tests in Yunzhu (2015), Yu et al. (2017),
Yunzhu et al. (2014), and Zongxi et al. (2016). The protection
angle of UHV transmission line is 1.5°. The slope angle of
mountain ground is 30°. The ratio of each phase line shielding

TABLE 1 | Size parameters of double-circuit AC transmission lines on the same tower in Japan.

Voltage level of
transmission line (kV)

Lines Average height (m) Horizontal distance (m)

500 Phase A 64.00 8.00
Phase B 53.00 8.40
Phase C 42.00 8.80
Grounding line 93.33 11.30

1,000 Phase A 94.67 15.50
Phase B 75.67 16.00
Phase C 56.67 16.50
Grounding line 128.00 19.00

FIGURE 5 | Comparison of different lightning stroke rate calculation methods with actual observation data. (A) 500 kV transmission lines. (B) UHV
transmission lines.
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failure calculated by the improved EGM model is compared with
the lightning discharge test results of UHV transmission lines
(Yunzhu, 2015), as shown in Figure 6.

As shown in Figure 6, in a plains area, the ratio of the ABC
three-phase line shielding failure rate calculated by the improved
EGMmodel in this paper is 63%:37%:0, and the probability of the
ABC three-phase conductor being attacked in the test is 52%:35%:
12%. Both show that the shielding failure probability of phase A is
the highest, followed by phase B and phase C. Considering the
dispersion of the discharge direction in the lightning discharge
simulation experiment, there is a certain deviation between the
improved EGM model and the test data. In mountainous areas,
the ratio of the ABC three-phase line shielding failure calculated
by the improved EGM model is 28%:38%:34%, which is in good
agreement with those results in lightning discharge tests of the
scaled UHV transmission line of 25%:44%:31%.

According to the comparison results in Section 2.1 and
Section 2.2, the calculation results of shielding failure ratio of
three-phase lines of large-scale transmission lines by the present
improved EGM model in this paper are consistent with
observation results of lightning shielding failure of EHV and
UHV transmission lines in Japan and the lightning discharge tests
of scaled UHV transmission lines in plains and mountainous
areas in China. The above results indicate that the present EGM
model proposed in this paper is more appropriate for lightning
shielding performance evaluation of large-scale
transmission lines.

4 THE EFFECT OF TERRAIN AND TOWER
STRUCTURE ON LIGHTNING SHIELDING
PERFORMANCE OF UHV TRANSMISSION
LINES

To study the effect of terrain and tower structure on lightning
shielding performance of UHV transmission lines, two tower

structures, SZT1 and SZ322, are applied to calculate the
lightning shielding failure tripping out rate of UHV
transmission lines in plains and mountainous areas. The
terrain slope angle is set between 0° and 70° to simulate
different terrains. The two tower structures, SZT1 and
SZ322, are shown in Figure 7. The detailed transmission
line parameters are shown in Table 2.

The calculation lightning shielding failure tripping out rate
by the present EGM model is shown in Figure 8. The lightning
shielding failure tripping out rate of UHV transmission lines
increases with the terrain slope angle. Because the terrain slope
angle is 0°, the shielding failure tripping out rate of the line is
close to 0. Because the terrain slope angle is 30°, the shielding
failure tripping out rates of the SZT1-type tower line and the
SZ322-type tower line are 0.12 strokes/(100 km·a) and 0.13
strokes/(100 km·a), respectively. When the terrain slope
reaches 70°, the shielding failure trip rates of the two tower
lines reach 0.38 strokes/(100 km·a) and 0.41 strokes/
(100 km·a), respectively. Besides, under the same terrain
condition, the shielding failure tripping out rate of the
SZ322 tower line is higher than that of the SZT1 tower line.
It is due to the fact that the height of the SZ322 tower line is
significantly higher than that of the SZT1 tower line. The
grounding line of the SZ322 tower line is much higher than
that of the SZT1 tower line, but the height of the C phase
conductor is not much different. The lightning protection
effect of grounding line in the SZ322 tower line on the
conductor is weaker than that of the SZT1 tower line.
Therefore, the probability of lightning shielding failure
tripping out rate of the SZ322 tower line is higher than that
of SZT1 in a mountainous area.

FIGURE 6 | Comparison chart of shielding failure proportion of each
phase line.

FIGURE 7 | Structure diagram of SZT1 and SZ322 double-circuit tower
on the same tower. (A) SZ322 tower, (B) SZT1 tower.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8627957

Hu et al. EGM-UHV-Lightning Shielding

493

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


5 CONCLUSION

In order to analyze the lightning shielding performance of
UHV transmission line more accurately, based on the long gap
discharge test data and the lightning current return stroke
current formula verified by researchers, this paper modifies
the existing striking distance formula and uses the improved
EGM model and the lightning simulation test of UHV
transmission lines to analyze the influence of topography
on the lightning tripping out rate of large-scale
transmission lines.

(1) Based on the long air gap discharge test data of rod–rod gaps
and lightning current return stroke velocity formula, the
proposed striking distance formula is rc = 0.13 (I2 + 40I)
0.814, the earth striking distance coefficient is 1.05, and the
ground wire striking distance correction coefficient is 1.0.

(2) The calculation results of lightning shielding failure rate of
UHV transmission lines by the present EGM model consist
of the lightning observation data of the UHV transmission
line in Japan and the lightning discharge simulation test
results of scaled UHV transmission lines in plains and
mountainous areas in China. which verifies the
applicability of the improved EGM model in large-scale
transmission lines.

(3) The tower configuration and terrain steepness have a
significant impact on the shielding failure tripping out
rate of 1,000 kV lines in China. The shielding failure
tripping rate of the SZ322 tower UHV line is higher
than that of the SZT1 tower line. With the increase of
terrain steepness, line shielding failure trip rate is also
increasing rapidly.
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TABLE 2 | Practical size parameters of SZT1 and SZ322 tower lines.

Tower type Lines Average height (m) Horizontal distance (m)

SZ322 Phase A 83.7 17.6
Phase B 62.2 19.1
Phase C 41 18.1
Grounding line 104 21.78

SZT1 Phase A 68.17 14
Phase B 48.37 15.5
Phase C 38.67 15.5
Grounding line 85.2 18

FIGURE 8 | Influence of slope steepness under different tower models
on shielding failure tripping out rate of 1,000 kV lines in China.
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Robust Unit Commitment for
Minimizing Wind Spillage and Load
Shedding With Optimal DPFC
Xuedong Zhu, Jun Wu* and Dichen Liu*

School of Electrical Engineering and Automation, Wuhan University, Wuhan, China

The distributed power flow controller (DPFC) has a positive effect of UC problem on the
network side based on its ability to manage capacity of power flow. This study presents a
novel two-stage robust model to optimize the status of the generator and
location–allocation of the DPFC, while simultaneously considering wind and load
uncertainties. The column-and-constraint generation (CCG) method is utilized to solve
the two-stage problem into the master problem and the subproblem iteratively. The
optimal status of the generator and location of the DPFC can be easily obtained with the
master problem, and the dispatch solution and compensation level of the DPFC are solved
in the subproblem. We conduct the IEEE 24 bus system to verify the performance of the
proposed procedure. There are effects on wind spillage/load shedding and generator
dispatch scheduling planning once the DPFC is injected. Detailed simulation results
illustrate the effect of the proposed approach.

Keywords: column-and-constraint generation (CCG) algorithm, optimal FACTS planning, distributed power flow
controller, relaxed AC-SOCP2, robust optimization

1 INTRODUCTION

Over the last decade, the penetration of wind power is gradually increasing as the load diversity
changes (Yang et al., 2021a). However, the inherent fluctuation of wind power and load also
constrains the operating economy and safety of the unit commitment problem (UC) with the long-
distance power transmission (Milligan et al., 2009). On the other hand, the flexible AC transmission
system (FACTS) device can enhance the flexibility of the network side, which also affects the
operating conditions (Yuan et al., 2010). The DPFC is derived from the UPFC, which will be the most
powerful tools in the FACTS. It has the same external characteristics as that of the UPFC and has
advantage over the transmission corridors, investment, and replaceability (Khanchi and Garg, 2013;
Dai et al., 2019; Tang et al., 2020).

Generally, the flexible operating principle of the major UC problem is divided into three
categories: source side, demand side, and network side. In the source and demand sides, various
research methods have been studied in the UC problem to enhance the operating flexibility by
tackling uncertain parameters such as stochastic optimization (SO), robust optimization (RO), and
information gap decision theory (IGDT). All these methods focus on tackling the uncertainty
parameters such as wind or load uncertainties. The SO optimizes the dispatch problem with various
scenarios considering uncertainty samples, which can enforce the dispatch scheduling feasibility.
Wang et al. (2012) and Nandi et al. (2022a) present a stochastic UC model considering the
uncertainty of demand response (DR) to improve the overall social welfare, where the uncertainty of
DR is functioned as the chance constrained form. Zhao et al. (2014); Nandi and Kamboj (2021);
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Nandi et al. (2022b); and Kamboj et al. (2022) evaluate the wind
utilization in the UC problems, where the wind uncertainty is also
solved by the stochastic chance constraint. Wu et al. (2019)
formulated a two-stage dispatch model considering network
congestion with the chance-constrained forms of wind and DR
uncertainties. Dvorkin et al. (2014) presented a stochastic rolling
UC model to evaluate the operating cost, considering wind
spillage and load not served, where the wind is constrained by
the chance-constrained form and the load is depicted as its
stochastic interval form. Obviously, there are two drawbacks:
the computational efficiency decreases rapidly as the scenarios
increase, and the probability distribution function (PDF) is hard
to obtain accurately (Shen and Raksincharoensak, 2021a; Shen
and Raksincharoensak, 2021b; Shen et al., 2021; Shen et al., 2022).
There is no need to obtain the exact PDF of uncertain parameters
in the ROmethod, and only its uncertainty boundary is offered to
describe the fluctuation of the uncertain parameters. An and Zeng
(2014) explore the wind uncertainty by formulating a
“min–max–min” robust model to research the dispatch
problem, and the result verifies the effectiveness of optimal
scheduling to incorporate the wind. In the work carried out by
Gangammanavar et al. (2015), the worst scenarios of uncertain
wind is well-distinguished with the deterministic load. In the
study by Zhang et al. (2017), the authors researched the
coordination of DG and elastic-price DR scheduling with
uncertainty in the microgrid, which is solved by the CCG
algorithm. Wang et al. (2016) propose an adjustable robust
model of the building energy system to optimize the social
welfare, where the PV output and load demands are uncertain.
Zhao et al. (2013) assumed that the connection between elastic
electricity price and load demand fluctuates within a certain
range, derived the uncertainty set for demand response, and
then proposed a two-stage robust model with interval sets to
depict the uncertain parameters. Zhang et al. (2016) developed a
robust model coordinating the energy storage system and direct-
load control (DLC) considering uncertainties, which the
generation/wind/PV/ESS and DLC scheduling planning satisfy
for any realization of uncertainty. Based on the aforementioned
research, the two-stage model for the ROmethod to deal with the
uncertainty is mainly important in two directions. On the one
hand, the reserve capacity in the first stage is optimized to adapt
to the fluctuation of the uncertain parameters in the second stage,
and on the other hand, the uncertain parameters are directly
optimized in the second stage to ensure power balance. The
conservation of the RO method challenges the operating cost of
the system dispatch, where the extreme worst scenario hardly
appears (Yang et al., 2021a; Yang et al., 2021b; Li et al., 2021; Yang
et al., 2022a; Yang et al., 2022b). The IGDTmethod aims to search
for the adjustable bound of uncertain parameters based on its
stochastic model and robust model, which satisfy the objective
function in the predefined interval. The IGDT overcomes the
difficulties of acquiring distribution function in the SO problem
and reduces the conservation of the RO problem. Thus, the
computational time of IGDT is much lower than that of the
RO and SO methods, and the conservation is also improved
obviously. This approach is widely used in dealing with the
uncertainty of renewable energy (Nikoobakht and Aghaei,

2017; Ahmadi et al., 2018), energy system (Ahmadi et al.,
2019; Khajehvand et al., 2021), electrical vehicles (Rabiee et al.,
2014), and other loads (Ahrabi et al., 2021). Nikoobakht and
Aghaei (2017 present a robust model to solve the SCUC problem
considering wind uncertainty; the wind absorption is optimized
with flexible resources. Ahmadi et al. (2019) formulate the UC
problems with the ESS uncertainty to improve the optimal
capacity of ESS. A linear model by Rabiee et al. (2014); Ahrabi
et al. (2021) is established to evaluate the effect of load uncertainty
to the dispatch scheduling based on its stochastic model.

Although the FACTS has an advantage over the flexibility of
the network side, few studies have been proposed to investigate its
impacts on operating performance. Ziaee et al. (2017) optimized
the TCSC device to improve the absorption of wind based on the
stochastic method, evaluating the positive effect of wind spillage
and considering optimal location and allocation of TCSC
simultaneously. Nasri et al. (2014) formulate a two-stage
model to minimize wind spillage and load shedding
considering optimal TCSC with a fixed scenario. All these
research studies focus on a single-time phase sample, which
only indicates the aspects of improving operating safety
considering the optimization of the FACTS. There are several
studies which focus on the areas of the UC problem, where the
FACTS location is predefined. Li et al. (2018) investigate the effect
of the UPFC to the operating cost with a fixed wind scenario. Sang
et al. (2017) reduced the wind spillage by optimizing the
location–allocation of TCSC considering various wind
scenarios. Considering the past research studies, there is no
evidence of evaluating the inter-connection between the
generator status and optimal FACTS. At the same time, there
is no research study on the robust UC problem considering the
optimal FACTS, which may be the best way to locate the FACTS
successfully.

This study develops a two-stage robust model with optimal
DPFC based on its PIM model considering wind and load
uncertainties, which can not only hold the internal
characteristics of multiple DPFCs but also enforce the feasible
horizon with the uncertain parameters. We solve the status of
generators and location of the DPFC in the master problem and
obtain the dispatch solution and compensation level of the DPFC
in the subproblem. The main contribution in this study can be
summarized as follows:

1) The DPFC scheduling planning maintains the consistence,
which is easy to adopt for the uncertain environments based
on the proposed model.

2) A robust UCmodel with a flexible FACTS on the network side
is presented, which is solved by the CCG algorithm.

3) A detailed experiment with different numbers of DPFCs has
been presented to evaluate the impacts of the DPFC to the
generator scheduling, wind absorption, and load supplies.

We demonstrate the effectiveness of the proposed two-stage
robust dispatch problem in the IEEE 24 bus system and provide
insight into the influence on the performance of the DPFC. This
article is organized as follows: Section 2 introduces the power
injection model of the DPFC and a relaxed AC-SOCP power flow
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model. Section 3 presents the two-stage robust model of the
optimal location–allocation problem. Section 4 describes the
procedure of the CC&G method. Section 5 shows the results
and discussion, while the conclusion is represented in Section 6.

2 POWER INJECTION MODEL OF
DISTRIBUTED POWER FLOW
CONTROLLER

2.1 Distributed Power Flow Controller
Configuration and Principle
The general structure of theDPFC device includes the series side and
shunt side. In the series side, there are many distributed converters
cascaded to offer its control capabilities tomanage the power flow on
the network side. There are huge capacity shunt converters injected
in the bus. There is power flow exchange by the fundamental wave
and third harmonic wave through the series/shunt converters. The
structure and operating principle is shown in Figure 1.

There is high similarity in the external characteristics between
the UPFC and DPFC. However, the DPFC involves only active
power transferable from the shunt side to the series side, which can
reduce the power loss. Thus, a power injectionmodel (PIM), which
is introduced by the UPFC, can bemodified as depicted in Figure 2

Pp
ij � Pij − PDPFC

ij ,

Pp
ij,rev � Pij,rev + PDPFC

ij ,

QDPFC
ij,sh � 0; QDPFC

ij,se � 0;
(1)

where Pij, Pij,rev is the line power or reverse line power and PDPFC
ij

is the DPFC compensation level.

2.2 Relaxed AC-SOCP Model
The traditional line flow (Le et al., 2021; Toyoda and Wu*,
2021; Wu et al., 2021) is modeled as shown in Eq. 2. Obviously,
the nonlinear model is nonconvex.

Pij(θ, V) � V2
i gij − ViVj(gij cos(θi − θj) + bij sin(θi − θj)).

Qij(θ, V) � −V2
i bij − VmVn(gij sin(θi − θj) − bij cos(θi − θj)).

(2)
To tackle the nonconvex and nonlinear difficulties of the

traditional model, we introduce several relax variables to the
convex model, which are shown in Eqs 3–5

Ui � V2
i ; Uj � V2

j . (3)
Rij � UiUjcos(θi − θj);Rij ≥ 0. (4)

Tij � UiUjsin(θi − θj). (5)
Hence, the traditional model can be rewritten as shown in Eq.

6, which is a linear model and easily solved.

Pij � gijUi − gijRij − bijTij

Qij � −bijUi − gijTij + bijRij

Pij,rev � gijUj − glRij + bijTij

Qij,rev � −bijUj + gijTij + bijR.ij

(6)

However, there are connections between Rij and Tij in the
original model, which can represented as

R2
ij + T2

ij � V2
i V

2
j � UiUj. (7)

There are bilinear variable terms in the aforementioned
equation, which is still nonlinear. By relaxing the tight equality
constraint into an inequality one, we can transform the
representation into an SOCP form.�����������

2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj. (8)

An SOCP power flow model can be easily constructed by
Eqs 6, 8, which can be easily solved by CPLEX due to its
convexity.

FIGURE 1 | Configuration and principle of the DPFC

FIGURE 2 | PIM model of the DPFC.
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3 ROBUST MODEL WITH THE OPTIMAL
DISTRIBUTED POWER FLOW
CONTROLLER
The power system planners aim to determine the
location–allocation of the DPFC considering wind and load
uncertainties, which can enhance the management efficiency
of power flow and decrease the investment of the DPFC.
However, the operators desire to minimize the operation
cost of injected DPFCs and improve the operating level of the
system. Therefore, optimal location–allocation of the DPFC
in the power system must consider the operational cost,
investment of installing the DPFC, curtailment of wind
spillage, and load shedding. The optimal model is represented
by Eqs 9–23

min ∑
t

∑
i∈Gi

[SUi + SDi + cg,iP
G
i,t] +∑

t

∑
ij∈Gij

πDPFCPDPFC
ij

+∑
t

∑
i∈Gw

MCurtPW,curt
i,t +∑

t

∑
i∈Gnb

MshedPD,shed
i,t

(9)

{ SUi ≥Csu
i ui,t

SDi ≥Csd
i vi,t

(10)

{ ui,t − vi,t � Ii,t − Ii,t−1
ui,t + vi,t ≤ 1

(11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑Ton
i +h−1

h�0
Ii,t ≥Ton

i (Ii,t − Ii,t−1)
∑T

off
i +h−1

h�0
Ii,t ≥Toff

i (Ii,t−1 − Ii,t)
(12)

Ii,tP
G,min
i,t ≤PG

i,t ≤ Ii,tP
G,max
i,t

Ii,tQ
G,min
i,t ≤QG

i,t ≤ Ii,tQ
G,max
i,t

(13)
PG
i,t − PG

i,t−1 ≤ (2 − Ii,t − Ii,t−1)Ii,tPG,min
i,t + (1 + Ii,t−1 − Ii,t)RUi

PG
i,t−1 − PG

i,t ≤ (2 − Ii,t − Ii,t−1)Ii,tPG,min
i,t + (1 − Ii,t−1 + Ii,t)RDi

(14)
PG
i,t − ∑

j∈ψ(i)
Pij − ∑

j∈ϕ(i)
Pij,rev + ∑

l∈ψ(i)
PDPFC
ij − ∑

l∈ϕ(i)
PDPFC
ij − PW,shed

i,t

+PD,curt
i,t � PD

i,t + PD,u
i,t − PW

i,t QG
i,t − ∑

j∈ψ(i)
Qij − ∑

j∈ϕ(i)
Qij,rev − QW,curt

i,t

+QD,curt
i,t � QD

i,t + QD,u
i,t − QW

i,t (15)
0≤PD,shed

i,t ≤PD
i,t + PD,u

i,t

0≤QD,shed
i,t ≤QD

i,t + QD,u
i,t

(16)

0≤PW,curt
i,t ≤PW

i,t

0≤QW,curt
i,t ≤ 0.95 pPW

i,t (17)

0≤PDPFC
ij,t ≤ δij,tPmax

DPFC∑
ij

δij,t ≤ αL (18)
��������Pij − PDPFC

ij

Qij

��������2≤ Sij (19)

��������Pij,rev + PDPFC
ij

Qij,rev

��������2≤ Sij (20)
Tij ≈ θi − θj⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pij � gijUi − gijRij − bijTij

Qij � −bijUi − gijTij + bijRij

Pij,rev � gijUj − glRij + bijTij

Qij,rev � −bijUj + gijTij + bijRij�����������
2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj

(21)

θmin
i ≤ θi ≤ θmax

i (22)

(Vmin
i )2 ≤Ui ≤ (Vmax

i )2. (23)
The objective function is to minimize the generation cost,

investment cost of the DPFC, and curtailment of wind spillage
and load shedding as shown in Eq. 9. Eq. 10 constrains the start-
up and shut down cost of the thermal unit; Eq. 11 distinguishes
the operating state from the start-up and shut down state of
generators. The minimum ON/OFF time limits are shown in Eq.
12, the active and reactive output of generators is limited in Eqs
13, 14 and shows the ramp-up and ramp-down limitation of
thermal units. The active and reactive power balance is depicted
in Eq. 15. Eqs 16–18 constrain wind spillage, load shedding, and
location–allocation of the DPFC. The transmission network
security constraint is formulated in Eqs 19–20 with line

FIGURE 3 | Flowchart of CCG procedure.
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forward and reverse power flow. The relaxed AC-SOCP power
flow model is introduced in Eqs 21–23.

The formulated MISOCP problem aims to improve the
operating level with optimal location and ratings of the DPFC.
However, there are uncertainties of wind and load, as shown in
Eqs 24–25.

PDR
i,t � {PDR

i,t

∣∣∣∣PDR
i,t ∈ [PDR,F

i,t − μDR
i,t △PDR

i,t , P
DR,F
i,t

+ μDR
i,t △PDR

i,t ], μDR
i,t ∈ {0, 1}}. (24)

PW
i,t � {PW

i,t

∣∣∣∣PW
i,t ∈ [PW,F

i,t − μWi,t△PW
i,t , P

W,F
i,t

+ μWi,t△PW
i,t ], μWi,t ∈ {0, 1}}. (25)

Once the DPFC is injected into the grid, the device should
offer its functions considering the uncertainty circumstance of

wind-load with fixed locations. We developed a two-stage robust
approach to obtain the robust dispatch solutions with the PIM
model of the DPFC, which can easily adapt to the uncertain
environment. The robust model is shown as

min ∑
t

∑
i∈Gi

[SUi,t + SDi,t] +maxmin[∑
t

∑
i∈Gi

cg,iP
G
i,t +∑

t

∑
i∈Gi

πDPFCPDPFC
ij .

+∑
t

∑
i∈Gi

MCurtPW,curt
i,t +∑

t

∑
i∈Gi

MshedPD,shed
i,t ].

s.t.{ (10) − (23)
(24) − (25) (26)

4 TWO-STAGE ROBUST UNIT
COMMITMENT AND
COLUMN-AND-CONSTRAINT
GENERATION METHOD

The column-and-constraint generation method is introduced to
solve the proposed two-stage robust problem (Zeng and Zhao,
2013). For simplicity, the robust problem can be reformulated in
the following compact matrix form:

min
x

cTx +max
λ

min
y

dTy + eTλ.

s.t. Ax≤ b, x ∈ {0, 1}.

Y �
⎧⎪⎪⎪⎨⎪⎪⎪⎩y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cy≤f
Gx +Dy≤g
Ey � λ����Qiy + qi

����2≤ hiy + di, i � 1, ..., n

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(27)

The objective described in (27) corresponds to constraint
(26), which is modeled in a “min–max–min” optimization
form. The outer “min” is to minimize the start-up and shut
down costs of generators considering the optimal locations of
the DPFC; the decision variable {x} is a binary variable, which

FIGURE 4 | Comparison of apparent power.

FIGURE 5 | Comparison of voltage.

FIGURE 6 | Comparison of generator output.
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represents the state variables including the thermal generator
operating state and optimal locations of the DPFC. The
“max” is to find the worst uncertainty scenario under the
uncertainty circumstance; the decision variable {λ} refers the
wind and load operating level, which is shown in Eqs 24–25.
The inner “min” is to obtain the solutions under the worst
uncertainty case; the decision variable {y} represents the
continuous variables in the second stage, which is
described in Eqs 13–23. It can be observed that the
decision variable {λ} is optimized in the second stage by
maximizing the minimal second stage costs, which can
easily improve the robustness.

The details of the CC&G method are shown as follows:

Master Problem

min
x

cTx + η.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ax≤ b
η≥ dTyp

l + eTλpl .
Cyp

l ≤f
Dyp

l ≤g − Gxp

Eyp
l � λpl����Qiy

p
l + qi

����2≤ hiy + di, i � 1, ..., n
l ∈ {1, ..., m}

(28)

The master problem is optimized to obtain the first-stage
decision under various worst-case scenarios, which is duplicated
from the subproblem. Obviously, the master problem provides
the lower bound of the original problem.

For a given first-stage decision variable {x}, the subproblem
can be formulated as follows. The SP is aimed to obtain the
optimal dispatch solutions with uncertainty. This can provide an
upper bound of the original problem.

Subproblem

max
λ

min
y

dTy + eTλ.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cy≤f (γ1)
Gx +Dy≤g (γ2)
Ey � λ (γ3)����Qiy + qi

����2≤ hiy + di, i � 1, ..., n (γ4, γ5)
.

(29)

The aforementioned “max–min” problem can be transformed
by the dualization method, which can be easily solved. The
convert procedure is shown in Eq. 30.

FIGURE 7 | Derivation performance.

FIGURE 8 | Thermal generator state with different numbers of the DPFC.
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max fTγ1 + (gT − GTxp)γ2 + λTγ3 −∑n
i�1
(qTi γ4 + dT

i γ5).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CTγ1 +DTγ2 + ETγ3 +∑n
i�1
(QT

i γ4 + hTi γ5) � d����γ4����2≤ γ5
γ1 ≤ 0; γ2 ≤ 0; γ4 ≤ 0; γ3: free; γ5 ≥ 0;

λ ∈ { di,t

gi,t

∣∣∣∣∣∣∣∣ d
min
i,t ≤ di,t ≤ dmax

i,t

gmin
i,t ≤gi,t ≤gmax

i,t
}

.
(30)

It is clearly observed that there is a bilinear term {λTγ3} in the
subproblem, which is hard to solve. According to Li et al. (2018),
all the optimal solutions with uncertainties can be obtained at its
extreme points. This reminds us to convert the bilinear term to
linear ones by introducing the Big-Mmethod.We can introduce a
binary variable, which can easily convert the uncertainty interval
optimization into boundary point optimization.

The extreme points of uncertainty can be formulated as
follows:

λTγ3 � λmin
i,t γ3 + (λmax

i,t − λmin
i,t )μi,tγ3. (31)

We introduce a dummy variable {ωi,t � μi,tγ3} and based on
the Big-Mmethod, we can obtain the following linear constraints:

(λmax
i,t − λmin

i,t )ωi,t � (λmax
i,t − λmin

i,t )μi,tγ3.−Mμi,t ≤ωi,t ≤Mμi,t
−M(1 − μi,t) + γ3 ≤ωi,t ≤ γ3 +M(1 − μi,t).

(32)

Combining Eqs 30–32, a linear single-stage model is
successfully reformulated to obtain its maximum solution,
which is easily solved by commercial software such as CPLEX.

The flowchart of two-stage robust optimization is depicted in
Figure 3.

For a given gap ε , the complete procedure of CCG can be
described as

Step 1: Let Φdown � −∞, Φup � +∞, iter = 0;
Step 2: Solve the MP which is modeled in Eq. 28,

Obtain the status of generators Ii,t and location of the DPFC
δij,t with the uncertainty λp,

Update the lower bound Φdown;

Step 3: Fix the location of the DPFC and status of thermal units.
Solve the SP considering wind-load uncertainties.

Obtain decision variable solution
PG
i,t/Q

G
i,t/P

W,curt
i,t /PD,shed

i,t /PDPFC
ij,s and uncertainty parameters

αL, αWunder each scenario.
Update the upper bound Φup;

Step 4: If |Φup−Φdown|
|Φdown| ≤ ε, return the optimal solutions and stop.

Otherwise, duplicate the cuts into the master problem,
update the uncertainty parameters, and go to step.

5 CASE STUDY

5.1 Verification of the Relaxed AC-SOCP
Model
In this section, three cases are presented to check the
characteristics of the power flow to illustrate the effectiveness
of the proposed model. All cases are conducted on the IEEE-118
bus system.

Case 1: DC power flow
Case 2: the nonlinear power flow model
Case 3: the proposed model in Eq. 27

To evaluate the performance of the three power flow models,
we conducted the simulation on apparent power of lines,
generator outputs, and voltage magnitude, as is shown in
Figures 4, 5, 6. We can easily find that the apparent power of
lines has little difference in case 2 and case 3; only four lines have a
little fluctuation. Similarly, voltage magnitude also conforms to
the trend. In the aspect of generator output, there is an obvious

TABLE 1 | Dispatch performance with different numbers of the DPFC.

Case no. Objective value SD/SU cost($)

A 563,219 15889
B NL5 535,301 7,931
C NL5 527,238 8,243

NL15
D NL5 527,176 8,243

NL15
NL26

FIGURE 9 | Objective difference with different numbers of the DPFC.
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difference between case 1 and case 2/3 on the G3/G7/G19, which
is due to the absence of reactive power. Comparing the output of
generators in case 2 and case 3, the dispatch solutions show highly
consistent characteristics (Figures 4, 5, 6, 7).

To quantify the exactness of the relaxed AC-SOCP model, a
deviation index stated in (39) is introduced to describe the gap
difference between case 2 and case 3, as shown in Figure 7. It is
clearly shown that the gap difference is almost zero for the system.

DI � UiUj − R2
ij − T2

ij. (39)

5.2 Effects of the Optimal Distributed Power
Flow Controller With High Penetration of
Wind Power
To verify the proposed method, we conducted case studies on the
modified IEEE-24 bus system. The wind power is located at bus 6/
8. The rating of wind power is 4 MW. There are three loads with
uncertainties, which are located at bus 4/5/6. The interval of wind
and load is 0.2 and 0.1, respectively. The proposed method is
solved by GAMS/CPLEX. The threshold values of the stop
criterion are set to be 1e-4.

In order to evaluate the impacts of optimal DPFC planning,
four cases have been set up to quantify the specific control effects
of the DPFC to the scheduling of the thermal generator.

Case (a): the proposed robust model with no DPFC.
Case (b): the proposed robust model with one optimal DPFC.
Case (c): the proposed robust model with two optimal DPFC.
Case (d): the proposed robust model with three optimal DPFC.

A. Comparison of Unit States With Different
Optimal Distributed Power Flow Controller
Solutions
As shown in Figure 8, there is a huge difference in the start–stop
scheduling planning of the units. Compared to the generator
statuses of case (a), there are huge differences of scheduling

planning with four units; the SD/SU costs have decreased
from 15,889$ to 7,931$, which is shown in Table 1. Once 2/3
DPFC devices are injected into the system, the unit state is exactly
the same, which illustrates that the control capacity of the DPFC
has reached its extreme effects on the scheduling state of the
system. Furthermore, the status of G7 and G11 show a different
planning solution between case (b) and case (c)/(d); the SD/SU
costs have a little increment from 7,931$ to 8,243$. Hence, there is
a positive trend of dispatch state scheduling considering the
optimal DPFC injected.

Table 1 shows the objective performance with different
numbers of the DPFC; the value keeps decreasing as the
number of DPFCs increase. Comparing the performance
between case (c) and case (d) , the objective values change
very little, which indicates that the management of power flow
is approaching its limit.

In order to more clearly depict the performance difference
between the robust model and deterministic model considering
the optimal DPFC, we introduce an index ΔC, which denotes the
objective difference.

ΔC � CRO − CDM,3

CDM,3
, (40)

where CRO is the objective value of the robust model and CDM,3 is
the objective value for the deterministic model with three DPFCs
injected. The differences of objective values for the IEEE 24 bus
system under different wind and load intervals are shown in
Figure 9.

As shown in Table 2 and Figure 9, it is easily observed that the
robust model has a high property improvement, which is due to
the robust conversation of dispatch solution. The system
operators only sacrifice the economy effects to tackle with the
uncertainties of wind/load. Furthermore, the difference ΔC shows
the downward directions as the numbers of DPFC increased.
There is a similar trend with Figure 9. The objective difference
ΔC is almost the same when comparing the 2 and 3
DPFCs injected, which indicates that optimal location and
allocations of 2 DPFC has reached its limitation for the IEEE
24 bus system.

B. Comparison of the Last Worst Wind-Load
Scenario with Different Optimal Distributed
Power Flow Controller Solutions
With the uncertainties of wind and load, the optimal solution is
obtained at the extreme points of uncertain parameters. However,
there is an inconsistent trend while the uncertain parameters
reach its extreme values with different numbers in the last worst
case scenario, as shown in Figure 10. Obviously, there is only one
difference of wind extreme values at a single time phase (t = 23).
However, it can be easily found that the load reaches its upper
values once 1/2/3 DPFC is injected, which indicates that optimal
DPFC planning can enforce the resistance level of power supply
considering the uncertainty.

To evaluate the effects of wind spillage and load shedding
with the optimal DPFC in the last worst-case scenario,

TABLE 2 | Objective values under different intervals considering the optimal
DPFC.

DPFC no. Objective value

?L?W 0 0.05 0.1 0.15

0 0 399,105 405,222 411,648 418,525
0.1 471,743 478,216 484,835 492,136
0.2 547,254 555,226 563,219 570,626

1 0 377,613 383,188 388,956 395,432
0.1 448,383 454,950 461,332 467,730
0.2 521,626 528,422 535,301 542,181

2 0 372,290 377,742 383,399 389,663
0.1 441,059 447,551 453,916 460,283
0.2 513,641 520,407 527,238 534,085

3 0 372,290 377,742 383,350 389,562
0.1 440,885 447,332 453,854 460,210
0.2 513,600 520,356 527,176 534,012
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considering its extreme value inconsistence with wind/load
uncertainties, we conducted the simulation of wind
absorption and actual load supplies, which is shown in
Figure 11. For the wind aspect, the overall trend of wind
absorption is positive, and the amount outputs of wind
absorption are 94.06/96.24/96.32/96.32 MW as the numbers
of DPFC are 0/1/2/3, respectively. For the actual load aspect,
there is a drop difference at time phase (t = 23 h) considering
different numbers of the DPFC optimized. However, the

amounts of actual load supplies are 43.89/44.20/45.13/
45.13 MW from case (a) to case (d). Hence, the dispatch
effects with the DPFC optimized the wind spillage and load
shedding move in a positive direction.

For the consistence of DPFC optimal scheduling planning,
Table 3 shows advantages of the location and allocation of the
optimized DPFC simultaneously. Once the DPFC is injected,
the unit cost has a great positive effect, and the wind spillage
and load shedding also conform to the positive trend with the

FIGURE 10 | Wind/load upper/lower bound and its worst-case scenario with different numbers of the DPFC.
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increased numbers of the DPFC. In cases (c) and (d), the
amounts of load shedding are 0, and the wind spillage also has
no changes, which indicates that the robust planning of the
DPFC has reached its extreme repeatedly.

6 CONCLUSION

This work presents a two-stage robust dispatch method with
optimal location–allocations of the DPFC considering wind-
load uncertainties. In the model, we mainly optimize the
scheduling state of thermal units and location–allocation of
the DPFC to tackle the uncertainties. Case studies are
performed to demonstrate the effectiveness of the
proposed method. The conclusions are summarized as
follows:

1) The relaxed AC-SOCP model can easily simulate the
nonlinear AC power flow and has an advantage of solving
speed and difficulties.

2) The robust dispatch with the optimal DPFC has an economic
advantage and load supplies, which also reduce the wind
spillage and load shedding.

3) The proposed model can be easily solved by the CCGmethod,
which efficiently checks the worst-case scenario, optimizes the
dispatch solution, and DPFC consistent scheduling planning
with uncertainties.

However, the robust dispatch with the optimal DPFCmay face
a conservative challenge because of the overall intervals of
uncertainties. Some studies have developed a distributed robust
optimization to overcome the conservation, which combine the
priorities between stochastic and robust optimization. In addition,
the DPFC has shown great advantages over the management on
the network side. We will conduct more research studies on the
control capabilities of theDPFC in the future. Such advantagesmay
be effective in dispatching and operating the principle of integrated
energy system (IES) due to the electric characteristics; we can
relieve the couple conjunction in the gas turbine (GT) and CCHP
with the energy storage system (ESS) by optimal coordination of

FIGURE 11 | Wind upper/lower bound and its worst-case scenario with different numbers of the DPFC.

TABLE 3 | Optimal dispatch performance with the optimal DPFC under the worst-case scenario.

Case no. Generation cost DPFC investment Wind spillage (MW) Load shedding(MW)

A 249,949 --- 31.15 1.75
b NL5 240,857 2,921 28.97 0.03
c NL5 241,424 6,426 27.76 0

NL15
d NL5 241,185 6,603 27.76 0

NL15
NL26
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the control capabilities of the DPFC. Another coordinate research
on the TEP and DPFC has been in process to tackle the high wind-
load conditions to improve robustness and flexibilities in the
network side, which render more capability of available transfer
power. Obviously, there is an advantage of the DPFC to be adopted
in N-k contingency analysis, whichmay be the best performance in
the application areas of the DPFC.
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GLOSSARY

Indices

i/j Indices of busesIndices of lines

ij Indices of busesIndices of lines

Sets

Gi Sets of generators

Gw Sets of wind generator

Gij Sets of lines

Gnb Sets of buses

Constants

gij/bij Line parameters

Csu
i /C

sd
i Coefficients of start-up/shut down cost of generator i

cg,i Cost coefficient of generator

πDPFC Cost coefficients of DPFC investment

Ton
i /Toff

i
Minimum up-time and down time of generator

PG,min
i /PG,max

i Lower and upper bound of generator active output

QG,min
i /QG,max

i Lower and upper bound of generator reactive output

RUi/RDi Ramp-up and ramp-down values of generator

SUi/SDi Start-up/shut down cost of generator i

Sij Apparent power limitation of line ij

θmin
i /θmax

i Lower and upper bound of voltage angle

Vmin
i /Vmax

i Lower and upper bound of voltage magnitude

MCurt Curtailment coefficient of wind spillage

Mshed Curtailment coefficient of load shedding

Variables

Pij/Qij Active/reactive power flow of line ij

Pij,rev/Qij,rev Reverse active/reactive power flow of line ij

Vi Voltage magnitude

θi Voltage angle

Rij/Tij Slack variables

PG
i,t/Q

G
i,t Active/reactive power of generator

PDPFC
ij Compensation level of the DPFC on line ij

δij,t Binary variables indicating the location of the DPFC

α Scalar indicating the amount of DPFC numbers

PW,curt
i,t Wind spillage value

PD,shed
i,t Load shedding value

ui,t/vi,t/Ii,t Binary variable indicating start-up/shut down/operating state.

PW,curt
i,t /QW,curt

i,t Active/reactive power spillage of wind

PD,shed
i,t /QD,shed

i,t Active/reactive load shedding

PD,u
i,t /QD,u

i,t Active/reactive power of load considering uncertainty.
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Efficient and accurate localization of partial discharge (PD) is of paramount
importance to ensure the safe operation of power transformers. However, the
multi-path propagation effect introduced by the reflection, refraction and
diffraction of the ultrasonic signal may add significant computational complexity to
the localization process and degrade the localization accuracy. This paper proposes
an acoustic- electrical joint method for partial discharge location in the power
transformer with the full consideration of the multi-path propagation impact. Unlike
the conventional error analysis methods, a partial discharge localization model is
proposed for characterizing the multipath propagation impact without the prior
knowledge of the transcendental error probability. Based on the matrix inequality
transformation and relaxation, the high-dimensional nonlinear localization equations
are transformed into a set of second-order convex optimization equations that can be
solved using the convex second-order cone program (SOCP). The proposed solution
can significantly reduce the computational complexity and improve the localization
accuracy as well as avoid the local optimum and slow convergence. The solution is
assessed through extensive experiments based on simulations, testbed and trial
deployment in comparison with the existing solutions with the localization error of
about 0.1 m.

Keywords: power transformer, partial discharge, localization algorithm, convex second-order cone program,
acoustic-electrical joint, acoustic-electrical joint localization

INTRODUCTION

It is well known that the insulation of large transformers is one of the fundamental and stringent
requirements to ensure the safe and reliable operation of electric power substations. In the past decades,
the timely detection and analysis of partial discharge (PD) have been widely investigated for fault
detection and diagnosis of the internal insulation deterioration of power transformers (e.g., Tarimoradi
and Gharehpetian, 2017; Wang et al., 2017; Chen, 2019; Ganguly et al., 2020; Karami et al., 2020). This
enables the determination of fault type and location at the early stage, and hence the field maintenance
can be timely carried out to prevent the power transformers from failures or outages.
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In general, the partial discharge can make the insulation being
destroyed and gradually expand due to the direct bombardment
of the discharge particles, resulting in insulation breakdown; In
addition, the chemical action of the active gases (e.g., heat, ozone
and nitrogen oxide) produced by the discharge can lead to
corrosion of the partial insulation, which increases the
dielectric loss and finally leads to thermal breakdown
(Kallberg, 1980; Naderi et al., 2007). More specifically, the
partial discharge can introduce the following impacts:

1) Partial discharge can lead to the separation and cleavage of
chemical bonds and the destruction of the insulating
material’s molecular structure. This may introduce
discharge at the concentration of the electric field and leads
to dendritic discharge traces and insulation breakdown.

2) The thermal effect of discharge point leads to the thermal
cracking of insulation or promotes oxidative cracking. This
may increase the conductivity and dielectric loss that
accelerates the aging process.

3) The generated ozone and nitrogen oxides during the discharge
can lead to a nitric acid chemical reaction. Such a reaction can
corrode the insulator when meet with the water, resulting in
the deterioration of insulation performance.

In addition, the high-energy radiation phenomenon during
partial discharge can potentially degrade the insulating materials.
The X wax (a waxy substance produced by overheating) deposited
on the solid insulation makes it difficult to dissipate heat,
resulting in overheating and damages to the solid insulation.
The examples of insulation discharge phenomena in the
transformers are illustrated in Figure 1.

At present, the partial discharge localization of power
transformers is mainly based on electrical (mainly in ultra-
high frequency) and ultrasonic detection methods (e.g., (Luo
Yongfen et al., 2006; Moore et al., 2006; Markalous et al., 2008;
Coenen and Tenbohlen, 2012; Tarimoradi and Gharehpetian,
2017)). The electrical method mainly detects the UHF (Ultra
High Frequency) electromagnetic wave generated by partial
discharge sources. Considering that the propagation speed of
the electrical signal is the speed of light, the electrical method
requires a high sampling frequency reaching the nanosecond level
or even sub-nanosecond level. Moreover, the electrical wave
signal is shielded and attenuated by the power trans-former
borne (Kweon et al., 2005).

The ultrasonic detection method detects and analyses the
arrival time of the PD pulse signal to determine the location
of partial discharge sources. Due to the advantages of non-
destructive, robust and high precision, the ultrasonic detection
method is one of the most widely used location technologies of
power transformers (Howells and Norton, 1978; Han-Lee Song,
1994; Cakir et al., 2013; Hekmati and Hekmati, 2017; Wang et al.,
2017; Chen, 2019). The location solutions can be classified into
the pure acoustic-basedmethod, the pure electrical-basedmethod

FIGURE 1 | Insulation discharge phenomena of transformers. (A)
Insulation paperboard at the outer enclosure of transformer (B) Insulation
paperboard at the lower end of the winding (C) Winding cable discharge (D)
Internal discharge of winding.

FIGURE 2 | Diagram of the relationship between measurement distance and real distance.
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and the acoustic electrical joint method (e.g., Markalous et al., 2008;
Coenen and Tenbohlen, 2012; Rubio-serrano et al., 2012). The pure
acoustic localizationmethod and the pure electrical-based localization
method select the arrival time of one ultrasonic sensor or UHF sensor
signal as the reference time and then measure the time delay of other
signals relative to the reference time for partial discharge localization.
The acoustic electrical joint method is considered as the arrival time
of the electric pulse signal of the partial discharge as the reference time
since the electric signal delay is very tiny and can be ignored
compared with the ultrasonic signals. Through using a set of
ultrasonic synchronized sensors to measure the ultrasonic time
delay and multiplying the equivalent sound velocity, the distance
of discharge source to individual sensors can be calculated, as
suggested in (Meka et al., 2018). The ultrasonic wave propagation
speedwithin the transformer is close to that of soundwave speed, and
the electromagnetic wave speed is about two-thirds of that of
lightwave speed. Therefore, the time error of the pure electrical-
based localization method is much larger than other methods. The
existing study (Coenen and Tenbohlen, 2012) confirmed that the
positioning accuracy of the electric acoustic joint method is higher
than that of the pure acoustic method. Since the time arrival time of
the acoustic signal is not easy to be accuratelymeasured, a larger error
can be introduced between the acoustic and acoustic signals.
Moreover, for multiple PD sources, the acoustic-electrical joint
method is expected to provide improved performance in terms of
distinguishing the signals from different PD sources in practical
deployment compared with the acoustic-based method.

The main factors affecting the accuracy of the partial dis-
charge localization are the nonlinear localization equation solving
method and the elimination method of various errors in the
localization process. In the existing studies, many optimization
algorithmic solutions, e.g., the particle swarm optimization and
its extensions (Hooshmand et al., 2013; Wang et al., 2017; Meka
et al., 2018), genetic algorithm (Chang et al., 2014; Li and Luan,
2018), fuzzy clustering (Contin et al., 2002; Homaei et al., 2014),
have been adopted attempting to obtain the optimal solution of
the nonlinear localization problem. However, there are many
problems in the practical application, e.g., falling into local
optimum, slow convergence speed, and premature nature. It is
difficult to ensure the robustness and accuracy of the solved
results. Also, the existing literature mainly focuses on the
influence of sensor measurement error rather than the error
caused by multi-path propagation.

Unlike our previous work (Jia et al., 2021) that presented an
acoustic-based method for PD location, this paper proposes an
acoustic-electrical joint method for locating the partial discharge
sources in a power transformer considering the influence of the
multi-path propagation effect. In this paper, the following
contributions are made:

1) The proposed acoustic-electrical joint localization method
fully considered the impact of multipath propagation errors
to accurately describe the phenomenon of PD signal
propagation in the power transformer.

2) The acoustic-electrical joint localization is formulated as a
second-order cone program (SOCP) that can efficiently obtain
the accurate PD source locations whilst avoiding the local
optimum and slow convergence.

3) The proposed algorithmic solution of PD localization is
extensively assessed and validated by a range of
experiments based on simulations, experimental testbed
and field test against a set of existing solutions.

FIGURE 3 | Simulated power transformer.

FIGURE 4 | Performance comparison of the proposed solution against
the CHAN and PSO algorithms.
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The remainder of this work is as follows: the analysis of the
partial discharge propagation path in the transformer is presented
in Analysis of Partial Discharge Propagation Path in Transformer.
SOCP Localization Model formulates the PD location problem
and adopts the SOCP to solve the localization model.
Performance Evaluation and Numerical Result carries out a
range of experiments to validate the proposed method. Finally,
the conclusions and future work are discussed in Conclusive
Remarks.

ANALYSIS OF PARTIAL DISCHARGE
PROPAGATION PATH IN TRANSFORMER

When the internal medium of the power transformer is
affected by dampness, aging, breakdown, or other reasons,
the power transformer may cause insulation weakness points.
When the applied voltage exceeds the weakness point thresh-
old voltage, it will emit electric and ultrasonic signals. Due to
the complexity of the internal structure of the power
transformer, the propagation process of electric and
ultrasonic signals can be divided into four categories, as
shown in Figure 2.

1) Internal reflection process of power transformer: when the
ultrasonic wave touches the winding or borne, it will be
reflected, thus prolonging the time delay to reach the sensor;

2) The internal refraction process of power transformer: when
the ultrasonic wave travels through the winding or borne, it

will be refracted, thus also prolonging the time delay to reach
the sensor;

3) The diffraction process in power transformer: under the
condition that the ultrasonic wave wavelength is close to
the shelter width, the direction of the ultrasonic wave may
change when it touches the winding;

4) Refraction process of power transformer borne: when the
ultrasonic wave touches the power transformer borne, it will
continue to spread in the borne. However, the wave
propagating in the border decays very fast, it can be
filtered by the threshold method.

SOCP LOCALIZATION MODEL

Suppose synchronized one electric PD sensor and n ultrasonic PD
sensors are arranged around the power transformer. The time
delay between the measurement sensor and the PD source can be
formulated as Eq. 1:

ti � ri
v
� 1
v
(di + ni + ei) (1)

In Eq. 1, ri is the measured distance from the PD to the i th
sensor (i � 1, 2,/, n). v is the ultrasonic wave propagation
velocity within the transformer. di is the real distance between
the i th sensor and the PD source (all variables units in this
paper are in meters). ni denotes the sensor measurement error
that follows the normal distribution N(0, σ2) (Chan and Ho,
1994) with the mean value of 0 and variance of σ2, and |ni|≪di.
ei is the error caused by the velocity affected by the composite
path in the process of signal propagation.

ri � tiv (2)
di � ‖x − si‖ (3)

In Eq. 3, x and si denotes the three-dimensional coordinates
of the PD source and the i th sensor, i.e. (xx, yx, zx) and
(xsi, ysi, zsi), respectively. Here, Figure 2 illustrates the
relationship between measurement distance and real distance.

By square the two sides of Eq. 1 and substituting formulas Eqs 2, 3,

FIGURE 5 | TWCP-0.5/50 transformer and deployment of the installed ultrasonic partial discharge sensors. (A) Front view (B) Back view.

TABLE 1 | Spatial coordinate of ultrasonic sensor of TWCP-0.5/50.

No X Y Z

1 0.850 0.000 0.800
2 1.700 0.225 0.900
3 1.700 0.225 0.300
4 1.700 0.675 0.900
5 0.850 0.900 0.800
6 0.000 0.225 0.900
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r2i − 2riei + e2i − ‖x − si‖2 � 2ni‖x − si‖ + n2i (4)
Considering |ni|≪ di, n2i can be omitted as a high-order small

quantity,

ni ≈
r2i − 2riei + e2i − ‖x − si‖2

2‖x − si‖ (5)

So, the localization model can be formulated as

min
x

max
ei

∑N
i�1
(r2i − 2riei + e2i − ‖x − si‖2

2‖x − si‖ )2

(6)

Eq. 6 can be reformed as:

min
x

∑N
i�1
[max

ei
(r2i − 2riei + e2i − ‖x − si‖2

2‖x − si‖ )]2

(7)

Considering 0≤ ei ≤ ρi, which ρi is the upper bound of ei.

max
ei

(r2i − 2riei + e2i − ‖x − si‖2
2‖x − si‖ )

� max(r2i − ‖x − si‖2
2‖x − si‖ ,

r2i − 2riρi + ρ2i − ‖x − si‖2
2‖x − si‖ )

(8)

Define ξi:

ξ i � r2i − 2riei + e2i − ‖x − si‖2
2‖x − si‖ (9)

So, according to SCOP, Eq. 7 can be rewritten as

min
x,ξ

∑N
i�1
ξi

(r2i − 2riρi + ρ2i − ‖x − si‖2
2‖x − si‖ )2

≤ ξ i

(r2i − ‖x − si‖2
2‖x − si‖ )2

≤ ξi

(10)

Considering ‖x‖2 is a non-convex parameter, the second-
order relaxing parameter is defined as ‖x‖2 ≤y. So ‖x − si‖2 can
be converted to y − 2six + ‖si‖2 and the following can be
obtained:

min
x,ξ

∑N
i�1
ξ i

(r2i − 2riρi + ρ2i − y + 2six − ‖si‖2)2
4(y − 2six + ‖si‖2) ≤ ξ i

(r2i − y + 2six − ‖si‖2)2
4(y − 2six + ‖si‖2) ≤ ξ i

‖x‖2 ≤y

(11)

Here, Eq. 11 is a convex second-order cone program
(SOCP)and the PD source localization can be implemented

FIGURE 6 | The ultrasonic localization result using TWCP-0.5/50 transformer testbed
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FIGURE 7 | Field experiment transformer. (A) Photos of transformer (B) Size and structure.

TABLE 2 | Performance comparison of Pd location algorithm in power transformer of twcp-0.5/50.

No Coordinate CHAN PSO Proposed solution

Location result Error (m) Location result Error (m) Location result Error (m)

1 (0.75, 0.485, 0.81) (0.753, 0.466, 0.937) 0.128 (0.904, 0.45, 0.895) 0.18 (0.754, 0.484, 0.91) 0.101
2 (0.61, 0.485, 0.56) (0.635, 0.516, 0.717) 0.162 (0.572, 0.624, 0.578) 0.145 (0.557, 0.473, 0.588) 0.061
3 (0.66, 0.772, 0.875) (0.716, 0.888, 0.997) 0.177 (0.708, 0.733, 0.992) 0.132 (0.65, 0.737, 0.879) 0.037
4 (0.72, 1.0760, 0.403) (0.841, 1.112, 0.443) 0.132 (0.693, 1.002, 0.524) 0.144 (0.734, 1.079, 0.474) 0.073
5 (0.675, 1.02, 0.610) (0.664, 1.136, 0.698) 0.146 (0.657, 1.021, 0.714) 0.106 (0.686, 1.062, 0.652) 0.06
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through solving Eq. 11 using the toolbox (CVX toolbox) in
MATLAB (ver. R2019b).

PERFORMANCE EVALUATION AND
NUMERICAL RESULT

Simulation Experiment
This section firstly carries out the performance evaluation of the
proposed PD location solution through simulations. The
simulated ODFS-334MVA/500kV transformer (8.6 m × 6.7 m
× 7.6 m) in Figure 3. The propagation process of the ultrasonic
wave within the studied transformer is simulated using the
Edge-diffraction-toolbox (MATLAB ver. R2019b). In
simulations, the ultrasonic wave propagation speed in the
core, winding and oil are set as 5200 m/s, 3750 m/s and
1450 m/s, respectively, as suggested in (Harrold, 1979; Yang
et al., 2021; Yang et al., 2022b). In this work, the errors of
individual sensors follow the normal distribution described as
μ � 0, σ � 3 × 10−5.

Through MATLAB, randomly select the position of discharge
source in different media of core, winding and oil, repeat the
above simulation experiment for 10,000 times, and get the
positioning error statistics of different positioning methods, as
shown in Figure 4.

Figure 4 gives the simulation results of the proposed PD
localization method against the existing CHAN and PSO
algorithmic solutions (Yang et al., 2022a; Shen and
Raksincharoensak, 2021; Xun et al., 2021; Yang, 2021). Since
the refraction and diffraction errors are not considered in the
CHAN algorithm, a significant PD source localization error can
be produced. On the other hand, the PSO algorithm may fall into
the local optimum in the iterative search process. As a result, the
proposed method provides better performance compared with
the comparison benchmarks with the overall positioning error
within the range of 0.05–0.1 M.

Testbed Validation
The TWCP-0.5/50 transformer testbed is used for further
validation (Wu et al., 2017; Han, 2019; Le et al., 2021). In the
testbed, different forms of discharge models, e.g., oil gap
discharge and tip discharge, are implemented. Figure 5

illustrates the TWCP-0.5/50 transformer testbed from both the
front and back view with the deployed ultrasonic partial discharge
sensors as well as the fault setting devices. Table 1 gives the

FIGURE 9 | Discharge models. (A) Suspension discharge model (B)
Analysis simulation of suspension discharge model (C) Tip discharge model
(D) Analysis simulation of tip discharge model (E) Surface discharge model (F)
Analysis simulation of surface discharge model (G) Oil gap discharge
model (H) Analysis simulation of oil gap discharge model.

FIGURE 8 | Schematic diagram of transformer sensor location. (A) Front
view (B) Back view.
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locations of the deployed ultrasonic sensors in terms of spatial
coordinates in the testbed.

In the testbed, the transformer is operated with the rated
voltage. Here, the ultrasonic testing equipment bandwidth is
100 kHz with a sampling frequency of 20 MHz. The ultrasonic
localization result based on the TWCP-0.5/50 transformer
testbed is presented in Figure 6. In addition, the developed
PD localization method is assessed against the existing
solutions in the TWCP-0.5/50 testbed. Table 2 presents the
numerical results.

Table 2 presents the numerical results of the proposed
solution against the CHAN and PSO algorithms.

The numerical results demonstrate that the proposed solution
outperforms the comparison benchmarks, i.e., Chan and PSO
algorithm, in terms of localization accuracy.

Field Test
The specifications and technical parameters of the 110kV
transformer are as follows (Toyoda andWu, 2021;Wu et al., 2021):

1) Type: S10-6300/110
2) Capacity: 6300/6300KVA
3) Rated voltage ratio: 110/35 kV/10.5 kV
4) Insulation level: LI480AC200/LI200AC95-LI75AC25
5) Connection group: YNd11
6) Short circuit impedance: 9%
7) Cooling mode: ONAN

The size of the transformer is 5.8 × 2.300 × 2 m, and the
drawing is shown in Figure 7.

Eight ultrasonic sensors (No. 1–8) and one UHF sensor (No.
x) are arranged around the transformer to form a three-
dimensional sensor array, as shown in Figure 8.

In this work, the suspension discharge, tip discharge, surface
discharge, and oil gap discharge models are developed. The
electrodes at both ends of the model are made of brass, and
the insulating material in the middle is polytetrafluoroethylene.
The corresponding finite element models are established for
analysis, and the electric fields of the discharge models are
simulated, respectively, as illustrated in Figure 9.

The discharge defects in Figure 9 relate to the electrical glue
stick and put into the transformer, and the high voltage line that is
corona free (red wire) and ground wire are appropriately tied to
the electrical glue stick. This can pressurize the two poles of the
discharge point defects to ensure the occurrence of partial
discharge, as illustrated in Figure 10.The acoustic-electrical
joint localization results are presented in Figure 11.

FIGURE 11 | Recording results of ultrasonic localization experiment of Field experiment transformer.

FIGURE 10 | Discharge model in transformer.
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The proposed solution is further assessed in the field
transformer that is operated at the rated voltage. The same
sampling frequency is adopted in this experiment as in the
testbed validation. The performance of the solution is
evaluated against the CHAN algorithm and PSO-based
algorithm. The numerical results are presented in detail in
Table 3.

CONCLUSIVE REMARKS

This work presented an acoustic-electrical joint PD source
localization solution that fully considered the multi-path
propagation effect within the transformers. The SOCP algorithm
is exploited and designed for PD source localization. The developed
method has been extensively assessed and validated through
simulations, testbed and field deployment. The obtained
experimental results clearly demonstrated the effectiveness of the
developedmethod and its benefit over the existing CHAN algorithm
and PSO-based localization solution with the localization error of
about 0.1 m.

For future work, a set of directions are considered worth
further research exploitation. The proposed method needs to be
evaluated through extensive experiments considering the cases of
multiple partial discharge sources. Also, the advanced modeling
techniques need to be further investigated for accurate
characterization of multi-media refraction and diffraction.
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A New Grounding Resistance
Reduction Method for Wind Turbines
by Grounding Grid Connection in
Limited Areas
Yuanchao Hu1, Zhixiang Liu1, Tao Huang2, Yunzhu An1*, Wentao Shen2, Shangmao Hu3,
Chenghui Ma4, Bingchen An4 and Dan Chen4

1School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo, China, 2Construction Branch of State
Grid Jiangsu Electric Power Co., Ltd., Nanjing, China, 3Electric Power Research Institute, China Southern Power Grid,
Guangzhou, China, 4Jining Huayuan Thermal Power Plant, Jining, China

Restricted by cultivated land vegetation, road construction, and land acquisition
compensation costs, the grounding electrode extension method is not applicable for
grounding resistance reduction of some wind turbines in limited areas. A new grounding
resistance reduction method is proposed and verified for wind turbines by connecting
nearby wind turbine grounding grids. To study the efficiency of the proposed method, the
grounding characteristics of connected grounding grids are calculated. Simulation results
indicate that the grounding resistance of connected grounding grids is smaller than that of
box extension grounding grids. The grounding characteristics of the grounding grid
connection are affected by grounding current frequency and material parameters. The
grounding grid connection increases the current dispersion area and reduces the ground
potential rise of the grounding conductor.

Keywords: wind turbine, grounding grid connection, grounding resistance, ground potential rise, grounding
resistance reduction

INTRODUCTION

Lightning discharge is an important factor affecting the stability of power systems. The lightning
back flashover is the main reason for lightning accidents in wind turbines (Zhang et al., 2015; Kuklin,
2016; Shen et al., 2020). Reducing the grounding resistance is an effective measure to improve the
lightning withstanding level of wind turbines and power systems (Wu et al., 2014; Shen et al., 2017;
Taha et al., 2020). However, the grounding construction of a wind turbine is restricted by cultivated
land vegetation, road construction, and land acquisition compensation costs in practical grounding
engineering, which affect the current dissipation and resistance reduction of the grounding grid.

In recent years, a lot of research studies were conducted on the grounding resistance reduction of
grounding grids. Li et al. (2013) conducted a comparison simulation test on the horizontal star grounding
grid with and without spicules. The results show that the local structure change of the grounding grid can
expand the spark discharge area and reduce the impulse grounding impedance. Yuan et al., 2012; Zhu et al.,
2015 conducted a systematic study to analyze the effect of the spicule’s length, the spicule’s location, and the
distance between adjacent spicules on the grounding characteristics of the grounding grid. Caetano et al.
(2018) proposed the arrangement method of connecting the tower foundation to a set of additional
grounding grids by using overhead lines to increase the dispersion length and reduce the grounding
impedance. Alipio et al., 2021 show that when the wind turbine grounding systems are connected by a bare
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conductor, the ground potential rise (GPR) peak reduction is due to
the connecting electrode, and when the connection is made through
an insulated electrode, the GPR reduction is related to the current that
is partly diverted to the adjacent grounding grid, especially for high-
resistivity soils. Gao et al., 2018 conducted a series of calculations based
on a typical tower grounding grid model to study the influence of
length and number of vertical grounding electrodes on grounding
resistance reduction. In recent years, non-metallic grounding material
has been applied to the tower grounding grid (Hu et al., 2016; Shen
and Pongsathorn, 2021; Sun et al., 2021) Compared with galvanized
steel, the flexible graphite composite grounding material can
effectively reduce the grounding resistance under a high-frequency
current.

Currently, there are few studies on the current dispersion and
resistance reduction of the wind turbine grounding grid under a
limited construction area. A new grounding resistance reduction
method is proposed in this article for wind turbines by connecting
nearby wind turbine grounding grids together. Two grounding
resistance reduction methods are compared in detail, including
grounding grids with the traditional extension electrode method
and the proposed grounding grid connection method. Factors
such as extension length, soil resistivity, current frequency, and
grounding material are analyzed to study the grounding
resistance reduction efficiency. Besides, the GPR of the
grounding conductor of the grounding grid connection is
calculated to verify the safety of the proposed method.

DIFFERENT MODELS OF THE WIND
TURBINE GROUNDING GRID

In order to reduce the grounding resistance of nearby wind
turbines under the limited construction area, box extension

grounding grid models are commonly applied in practical
cases. In this article, the nearby grounding grid connection
method is proposed for grounding resistance reduction, as
shown in Figure 1A. To illustrate the effectiveness of the
grounding grid connection method, three models of the wind
turbine grounding grid are established as shown in Figures
1B–D, including the box grounding grid, the box extension
grounding grid, and the grounding grid connection.

In the grounding grid, the edge length L0 of the box grounding
electrode is 10 m. For the traditional box extension grounding
grid model, extended grounding electrodes with a length of L1 are
located at the four corners of the grounding grid. For the
proposed grounding grid connection model, the grounding
grids of two wind turbines are connected by grounding the
electrode with a length of L2. It should be noted that the
connecting electrode in Figure 1B and the extended
grounding electrode in Figure 1D belong to the extended
grounding electrode of the grounding grid. When setting the
simulation parameters, the total length L of extended grounding
electrodes of different grounding grids should be kept equal, that
is, L = L2 = 8*L1. The grounding electrodes are buried in soil with
a depth of 0.8 m. To simulate the practical lightning impulse
grounding characteristics of the abovementioned three
grounding grids, a current of 40 kA is applied to the
grounding grid for the amplitude of most lightning currents in
nature is between 16 and 40 kA.

Metallic materials are commonly applied in the grounding
grid. Owing to their high magnetoconductivity, the skin effect
and inductance effect will be intense, resulting in a high impulse
grounding impedance. Compared with metal grounding
materials, flexible graphite composite materials have stable
physical and chemical properties, low magnetoconductivity,
and good electrical conductivity (Hu et al., 2014). The impulse

FIGURE 1 | Schematic diagram of the nearby wind turbine grounding grid. (A) Nearby wind turbine grounding grid connection. (B) Grounding grid connection. (C)
Box grounding grid. (D) Box extension grounding grid.
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grounding impedance can be smaller. To compare their
grounding characteristics, galvanized steel and flexible graphite
composite grounding materials are selected. The diameter of
galvanized steel and the flexible graphite electrode is 16 and
28 mm, respectively. The relative resistivity of galvanized steel
and the flexible graphite electrode is 109.7 and 1857.1,
respectively, while the relative permeability is 636 and 1,
respectively. As a 10 kHz current flows through the
abovementioned two grounding electrodes, their skin depths
are 0.277 and 28.692 mm, respectively.

SIMULATION AND ANALYSIS ON THE
GROUNDING RESISTANCE REDUCTION
METHOD OF THE WIND TURBINE
The grounding characteristics of the wind turbine grounding grid
are related to many factors, such as the grounding material,
extended grounding electrode length, soil resistivity, and
grounding current frequency. In order to characterize the
influence of a certain factor on wind turbine grounding
resistance, the resistance reduction efficiency η is introduced.
Resistance reduction efficiency η is defined as Eq.1

η � R0 − Ri

R0
× 100%, (1)

where R0 is the primary grounding resistance with no resistance
reduction method, Ω, and Ri is the grounding resistance with the
resistance reduction method, Ω.

The grounding grids of different structures are composed of
galvanized steel or flexible graphite. According to the number of
grounding grids in Figure 1 and the grounding material, the
grounding resistance R and the resistance reduction coefficient η
are expressed in different forms. Among them, the grounding
resistances of the grounding grid connection with galvanized steel
and flexible graphite are respectively represented by Rbs and Rbg,
and the corresponding resistance reduction efficiencies are

represented by ηbs and ηbg; the grounding resistances of the
box grounding grid with galvanized steel and flexible graphite
are respectively represented by Rcs and Rcg, and the
corresponding resistance reduction efficiencies are represented
by ηcs and ηcg; the grounding resistances of the box extension
grounding grid with galvanized steel and flexible graphite are
respectively represented by Rds and Rdg, and the corresponding
resistance reduction efficiencies are represented by ηds and ηdg.

Effect of Extended Grounding Electrode
Length
To study the effect of extended grounding electrode length on
grounding resistance reduction of the wind turbine grounding
grid, the extended grounding electrode length L is taken as
0–100 m. The soil resistivity is 500Ωm, and the grounding
current frequency is 50 Hz. Both the traditional box extension
grounding grid model and the proposed grounding grid
connection model are applied with galvanized steel and the
flexible graphite material. The grounding resistance and
resistance reduction efficiency calculation results are shown in
Figure 2.

The grounding resistances of galvanized steel and the flexible
graphite box grounding grid are 24.75 and 23.72Ω, respectively.
As shown in Figure 3, the wind turbine grounding resistance
decreases gradually with the increase of extended length.With the
same extended length, the grounding resistance of the grounding
grid connection method is smaller.

When the box extension grounding grid scheme is adopted or
the grounding electrode length L2 of the grounding grid
connection is less than 40m, the grounding resistance of the
flexible graphite grounding grid is smaller. However, when the
grounding electrode length L2 of the grounding grid connection is
more than 40 m, the grounding resistance of the galvanized steel
grounding grid is lower. This is because when the size of the
grounding grid is relatively small, the volume of the grounding
conductor occupies a large proportion of the entire grounding
system. A larger-diameter flexible graphite grounding electrode is

FIGURE 2 | Grounding resistance and resistance reduction efficiency
under different extended grounding electrode lengths.

FIGURE 3 | Grounding resistance and resistance reduction efficiency
under different soil resistivities.
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conducive to current dispersion to the soil. In a large grounding
grid, the volume of the grounding conductor accounts for a small
proportion of the entire grounding system, and the low-resistivity
galvanized steel is more conducive to current dispersion to
the soil.

It can also be seen from Figure 2 that the grounding resistance
reduction efficiency of the grounding grid connection method is
higher than that of the box extension grounding grid method.
Besides, the grounding resistance reduction efficiency increases
with the extended grounding electrode length but shows a
saturated tendency. When the connecting grounding electrode
length is 100 m, the resistance reduction efficiency of the
galvanized steel grounding grid and flexible graphite
grounding grid is 70.55 and 66.06%, respectively. However, as
the connecting grounding electrode length is increased from 80 to
100 m, the resistance reduction efficiency of the galvanized steel
grounding grid and flexible graphite grounding grid is increased
by less than 5%. This is mainly because the current dispersion
length of the connecting grounding electrode has a certain limit.
As the effective current dispersion length is reached, a longer
connecting electrode length cannot significantly improve the
resistance reduction efficiency.

Effect of Soil Resistivity
There are great differences in soil resistivity under different
geological terrain areas. The corresponding requirements for
wind turbine grounding resistance are also different (Alipio
et al., 2019; Salarieh et al., 2020). In order to study the effect
of soil resistivity on the grounding resistance reduction of the
wind turbine, the soil resistivity is set to 100–2000Ωm.
Moreover, the extended grounding electrode length L is 80m,
and the current frequency is 50 Hz. The grounding resistance and
resistance reduction efficiency of grounding grids under different
soil resistivities are shown in Figure 3.

As the soil resistivity is 100Ωm, there is little difference
between the grounding resistance of the traditional box
extension grounding grid and the proposed grounding grid
connection for good current dispersion characteristics in the
soil. With the increase of soil resistivity, the current dispersion
in soil becomes difficult. Under the same high-soil resistivity
conditions, the grounding resistance of the grounding grid
connection is about 50% of that of the box extension
grounding grid.

The resistance reduction efficiency of the box extension
grounding grid is constant at about 40%, while the resistance
reduction efficiency of the grounding grid connection increases
from 51 to 68% with a soil resistivity of 100–2000Ωm. Under the
same soil conditions, the resistance reduction efficiency of the
grounding grid connection is obviously higher than that of the
box extension grounding grid.

In the connected grounding grids, the resistance reduction
efficiency of the galvanized steel grounding grid is higher than
that of the flexible graphite grounding grid, but the difference
gradually decreases with the increasing soil resistivity. Under a
soil resistivity of 100–1500Ωm, the grounding grid made of low-
resistivity galvanized steel has a larger current dispersion ability
to the far end. However, high soil resistivity can intensify the end

effect of the grounding electrode, which makes more current tend
to disperse from the far end into the soil. Thus, the effect of the
grounding material on grounding resistance reduction decreases
in areas with high soil resistivity.

Effect of Grounding Current Frequency
In nature, more than 90% of lightning current energy is
concentrated within 20 kHz. In order to study the effect of
grounding current frequency on wind turbine grounding
characteristics (Chen and Du, 2019; Sekioka, 2019), a DC
current, a power frequency current, an AC current of 10 kHz,
and a standard lightning current of 2.6/50 μs were applied. The
current amplitude is 40 kA, the soil resistivity is 500Ωm, and the
extended grounding electrode length L is 80 m. The grounding
resistance of two grounding grids under different grounding
current frequencies is calculated, as shown in Figure 4.

As shown in Figure 4, under different grounding current
frequencies, the grounding resistance of the box grounding grid
composed of galvanized steel and flexible graphite is constant at
24.8 and 23.7Ω, respectively, and the grounding resistance of the
box extension grounding grid composed of galvanized steel and
flexible graphite is constant at 15 and 14.4Ω, respectively. This is
because the size of the grounding grid is relatively small so that
the current at different frequencies can be fully dispersed in the
grounding grid.

With an increase in grounding current frequency, the
grounding resistance of connected ground grids increases.
The flexible graphite grounding grid has lower grounding
resistance than the steel one. It is caused by the weaker
inductance effect, the skin effect, and better dispersion
properties of the flexible graphite grounding electrode with
lower magnetoconductivity.

It can also be seen from Figure 4 that the resistance
reduction efficiency of the box extension grounding grid is
constant at 40% under different grounding current
frequencies. The resistance reduction efficiency of connected
grounding grids varies with the grounding material and

FIGURE 4 | Grounding resistance and resistance reduction efficiency
under different grounding current frequencies.
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grounding current frequency. As the grounding current
frequency increases, the resistance reduction efficiency of
connected grounding grids decreases. Under DC or power
frequency current, the resistance reduction efficiency of the
grounding grid is greater than 62%, which is higher than that
of the box extension grounding grid; under the AC current of
10 kHz, the resistance reduction efficiency of the flexible
graphite grounding grid is higher than that of the
galvanized steel grounding grid; under the standard
lightning current of 2.6/50 μs, the large high-frequency
component of lightning current causes a great inductance
effect and skin effect of the grounding electrode, leading to
a smaller resistance reduction efficiency of connected
grounding grids.

GROUND POTENTIAL RISE OF THE
GROUNDING CONDUCTOR OF THE
GROUNDING GRID CONNECTION
The current dispersion in the grounding grid determines the
potential distribution of the grounding conductor. In order to
analyze the grounding characteristics and GPR of the grounding
conductor of the three grounding grids shown in Figure 1, the
edge length of the grounding grid L0 is 10 m, and the quad-angle
extended grounding electrode L1 is 10 m. The connecting
grounding electrode L2 and the grounding grid spacing d are
80 m. Galvanized steel grounding grids are buried in the soil with
a resistivity of 500Ωm. The power frequency grounding current
of 40 kA is applied to wind turbine A. The grounding resistance
results are shown in Table 1.

As shown in Table 1, with the increasing grounding grid
area, the grounding resistance decreases. The grounding
resistance of the box grounding grid with the smallest
grounding current dispersion area is 24.76 Ω, which is
higher than the standard value of 15 Ω. The grounding
resistance of the box extension grounding grid and the
grounding grid connection is less than the standard value,
and the minimum grounding resistance of the grounding grid
connection is only 8.03 Ω. Due to more current flowing into
the soil, the GPR of the grounding conductor decreases with
the increasing grounding grid area. The maximum GPR of the
box grounding grid is 995 kV. By adding an auxiliary extended
grounding electrode, the maximum GPR value can be reduced
to 598 kV, with a decrease of 39.9%. Meanwhile, the induced
voltage of the wind turbine B grounding grid is 35.7 kV. The
grounding grid connection further increases the current
dispersion area so that the maximum GPR of the wind

turbine A grounding grid is 322 kV, and the maximum GPR
of the wind turbine B grounding grid is 302 kV. Therefore, the
GPR of the wind turbine B grounding grid does not exceed the
insulation level of the wind turbine at the same voltage level.

According to the abovementioned analysis, we can infer that
when the voltage level or insulation level of wind turbines is close,
the current dispersion from the lightning-struck wind turbine will
not cause the back flashover of the connected wind turbine. With
the increase of distance between adjacent wind turbines and the
decrease of soil resistivity, the influence will be further reduced.
Therefore, the grounding grid connection structure is conducive
to reducing the GPR of the grounding grid and the lightning
potential at the wind turbine top.

CONCLUSION

In this article, the grounding characteristics of the grounding grid
connection and the box extension grounding grid are compared.
The current dispersion effect of galvanized steel and the flexible
graphite composite grounding electrode is analyzed. The GPRs of
the grounding grid connection are studied. The conclusions are as
follows:

1) Under the power frequency current, the grounding resistance
of the grounding grid connection is smaller than that of the
box and box extension grounding grid. The grounding
resistance of the grounding grid decreases with the increase
of the extended grounding electrode length and the decrease
of soil resistivity. As the connecting grounding electrode
length L2 exceeds 80m, the resistance reduction of the
grounding grid gradually slows down; as the soil resistivity
exceeds 1000Ωm, the resistance reduction efficiency of the
grounding grid connection is nearly saturated and constant at
about 68%.

2) The higher the grounding current frequency, the more
obvious the advantage of the flexible graphite composite
grounding grid dispersing current to the far end.
Meanwhile, the high-frequency grounding current limits
the grounding reduction efficiency of the grounding grid
connection.

3) The grounding grid connection increases the current
dispersion area, making the GPR of the grounding
conductor lower than that of the box extension grounding
grid. When the voltage level or insulation level of wind
turbines is close, the current dispersion of the lightning-
struck wind turbine will not cause the back flashover of
connected wind turbines.

TABLE 1 | Grounding resistance of three grounding grids.

Grounding grid Power frequency ground
resistance R/Ω

Standard value R/Ω

Box grounding grid 24.76 15
Box extension grounding grid 14.92 15
Grounding grid connection 8.03 15
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Under the excitement of wind loads, UHV transmission lines are subject to two types of
vibration phenomena, namely, sub-span oscillation and galloping. This phenomenon can
easily lead to conductor breakage, interphase flashover, fatigue damage to fittings, and
even lead to tower collapse and disconnection accidents. The numerical analysis method
is used to analyze the sub-span oscillation characteristics of the eight-bundle conductor
during galloping. The results of the numerical simulation are compared to explore the
influence of wind speed, span length, initial angle of wind attack, and turbulence intensity
on the galloping line, looking for movement characteristics between each sub-conductor.
The results provide a reference for research on the galloping principle of UHV transmission
line and anti-oscillation to further improve the resistance of the power grid against disaster
ability.

Keywords: galloping characteristic, iced eight-bundle conductors, multi-span transmission line, numerical
simulation, sub-span oscillation

INTRODUCTION

In recent years, there has been the problem of imbalance between power supply and demand (EPRI
2009; Li et al., 2021a; Li et al., 2021b; Li et al., 2022). Therefore, it is necessary to address ultra-long
distance and cross-regional energy transmission. Of course, the safe operation of UHV transmission
lines will be affected by the working environment. Due to the sudden change and complexity of the
external environment, the normal operation of transmission lines faces serious challenges (Jafari
et al., 2020). Aerodynamic instability of iced conductors with asymmetric cross-section area would
cause iced conductors to gallop. This phenomenon is typical self-excited fluid–solid coupling
vibration, which may cause breakage and short-circuit of transmission lines, or even tower
toppling (Nigol et al., 1977; Cai et al., 2019a; Cai et al., 2019b). Research on the galloping
phenomenon of UHV transmission lines is very limited, which cannot yet meet the actual
engineering needs. In recent years, domestic scholars have begun to study the galloping
mechanism of UHV transmission lines and its prevention and control technology, but much
research work is still in the exploratory stage.

Numerical models for sub-span oscillation analysis of subconductors are usually dependent
on quasi-stationary theory (QST). Since it is very difficult to design a corresponding small-scale
model of transmission lines in a long-span length wind tunnel, numerical simulation is an
effective method for studying wake-induced oscillation phenomena. Most researchers focused
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on the wake-induced oscillation responses of twin bundle
conductors. Rawlins (1976) and Rawlins (1977) expressed the
dynamic properties of twin conductors in the normal
propagation mode using the transfer matrix method. Tsui
and Tsui (1980) used the 2D and 3D finite element method
(FEM) to study sub-span oscillation. Williams and Suaris
(2006) presented an interference model to discuss the
effects of space on aerodynamic response, and they
highlighted that there were three dominant regions: the
proximity interference region, induced sub-span oscillation
region, and wake interference region. With the wide use of
quad-bundle conductors, the sub-span oscillation of quad
bundle conductors attracts the interest of researchers.
Diana et al. (2014a) and Diana et al. (2014b) proposed a
numerical approach to reproduce sub-span oscillation and
investigated the quad spacer damper for controlling sub-span
oscillations using aerodynamic coefficients obtained in wind
tunnel tests. Although there are some studies on the
oscillation of bundle conductors, the effects of complicated

meteorological conditions of sub-span oscillation behaviors of
bundle conductor transmission lines, especially eight-bundle
conductors, require further investigation.

In recent years, lots of experts have studied the problem of
galloping of transmission lines by numerical methods. Cai et al.
(2015) studied the variation of the aerodynamic coefficient
varying with the angle of wind attack by using the finite
element method (FEM). Zhou et al. (2018) carried out a
wind tunnel simulation to simulate the galloping of iced
eight-bundle conductors and investigated different galloping
behaviors of the parameters. Cai et al. (2019b) used the
nonlinear FEM to analyze the galloping morphology of a

TABLE 1 | Parameters of the iced eight-bundle conductor.

Section Size (mm) ρ (kg/M3) E (MPa) G (MPa)

Conductor 30 1735.9 63,000 24,230.7
Ice 18 900 0.6 0.6

FIGURE 1 | Model of the eight-bundle conductor line. (A) Model of the 200-m line. (B) Model of the 400-m line.
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sector-shaped eight-bundle conductor with different wind
speeds, span lengths, and initial angle of wind attack. Talib
et al. (2019) proposed a new dynamic model for the simulation
of transmission line galloping. Liu et al. (2019), Liu et al.
(2020a), Liu et al. (2020b), Liu et al. (2020c), Liu et al.
(2021a), Liu et al. (2021b), Liu et al. (2021c), Liu et al.
(2021d) and Liu et al. (2021e) and Min et al. (2021) obtained
the aerodynamic coefficients of the conductor by applying the
wind tunnel test and examined the stability and galloping
characteristics of the iced conductor. The galloping behaviors
of D-shape six bundles in the random wind test line are
numerically simulated. Due to the continued existence of the
galloping phenomenon and great harm, Oh and Sohn (2020)
analyzed conductor galloping through the study of transmission
line stability. Cai et al. (2020a) analyzed sector-shape eight-
bundle conductor galloping through the FEM; furthermore, Cai
et al. (2020b) analyzed galloping behaviors results of the test
transmission tower-line.

Recently, there is still a lack of the influence of sub-span
oscillation of iced eight-bundle conductors during galloping,
especially the parameter analysis of UHV transmission lines
under different turbulence intensity. In this article, the
conductor galloping process of iced eight-bundle conductors is
simulated by the numerical simulation method, the influence of
wind speed and span length on sub-span oscillation during the

conductor galloping process is analyzed, and the effects of wind
speed, the angle of wind attack and the wind turbulence intensity
are studied. Therefore, the follow-up research on galloping and
anti-galloping characteristics of the frozen eight-bundle
conductor has significant reference meaning.

NUMERICAL METHODS FOR TYPICAL
EIGHT-BUNDLE LINES

Wind-driven wet snow may pack onto the windward sides of
conductors, forming a hard, tenacious deposit with a sharp
leading edge. The resulting ice shape may permit galloping.
Combined with actual observation, the crescent shape can be
generalized with respect to the great variety of natural heavy ice
shapes (Hu et al., 2012; Yan et al., 2016). The aerodynamic forces
of bundle conductors are the foundations of the analysis of the
galloping of transmission lines (Liu et al., 2019). Here, the
aerodynamic coefficients of crescent-shaped iced eight-bundle
conductors are experimentally measured by wind tunnel tests.

Eight-bundle iced transmission lines are major research
objects. The sub-spans of each span are the same. The
conductor model is 8×LGJ-400/50, and the diameter of the
sub-conductor is 30 mm. The model of the sub-spacer is FJZ-
400, each with a mass of 17.5 kg. Its parameters are given in
Table 1, and the model diagrams of 200- and 400-m lines are
shown in Figures 1, 2.

The physical parameters of conductors and ice are listed in
Table 2. The cross section of the iced conductor is simplified as a
circular section when the galloping of the iced conductor is
simulated by ABAQUS software. It is noted that the axial

FIGURE 2 | Typical partial mode 200-m span. (A) f=1.043 Hz. (B) f=1.048 Hz. (C) f=1.078 Hz. (D) f=1.078 Hz. (E) f=1.081 Hz. (F) f=1.097 Hz.

TABLE 2 | Physical and mechanical parameters of the iced conductor.

EA (×106N) GI (N m2/rad) μ (kg/M) J (×10−4 kg m)

31.7 1,057 1.733 2.69
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rigidity, torsional rigidity, mass per unit length, and moment of
inertia of the equivalent cable and those of the original cable
should be equal, which can be expressed as

E′πd′2/4 � EA; G′πd′2/32 � GI

ρ′πd′2/4 � μ; ρ′πd′4/32 � J
, (1)

where E′, G′, ρ′, and d’ are, respectively, the elastic modulus, shear
modulus, density, and diameter of the equivalent cable, which can
be obtained by solving (1) whose right hand sides are the
corresponding quantities of the original iced conductor. The
physical parameters of the conductors and ice are listed in Table 2.

The influence of the initial axial tension in the main cable and
side cable on the element stiffness matrix cannot be ignored. In
addition, the cable sags due to its own weight, resulting in a certain
decrease or loss of its elastic modulus. In order to consider the
influence of cable sag, the concept of equivalent elastic modulus is
used to modify the elastic modulus of the cable. The equivalent
modulus of elasticity generally adopts the EErnst formula:

EErnst � E

1 + (ql)2
12T3 AE

, (2)

where EErnst is the equivalent elastic modulus of the material; E is
the elastic modulus of the material; q is the weight of the unit
length of the cable; l is the projection length of the cable element
in the horizontal direction; A is the cross-sectional area of the
cable; and T is cable tension.

The numerical simulations were carried out on a personal
computer Dell Studio Desktop D540, and each process to arrive at
a steady result took about 5 h. To speed up the efficiency, several
simulations were submitted at the same time. The dynamic
implicit analysis is used in the numerical method. The
dynamic responses of the transmission line with different
damping ratios in different directions are analyzed by
ABAQUS with the user-defined cable element. The damping

ratios ξz1, ξy1, and ξθ1, in the horizontal, vertical, and torsional
directions are set to be 0, 0.5, and 2%, respectively, determined
and verified by the reference (Zhou et al., 2016). The time step is
set to be 0.01; we have already calculated that the step is set to be
0.005, and the error of the vertical amplitude is 2.74%.
Considering the efficiency of the numerical simulation, the
time step is set to be 0.01.

In the research, the aerodynamic parameters of the iced UHV
transmission line are analyzed using the results of wind tunnel
experiments (Yan et al., 2016). The aerodynamic forces are
applied to the conductor to numerically simulate the galloping
of the conductor. In the stiffness and massless user-defined
element, the torsion angle, velocity, and displacement under
the condition of applying aerodynamic force could help obtain
the node of the cable element used in ABAQUS software (Zhou
et al., 2016). The arrangement of the spacers is shown in Table 3.

The Rayleigh attenuation model is general for cable
attenuation, shown in Eq. 3:

C � αG + βK. (3)
C, M, and K are damping matrices, quality matrices, and

stiffness matrices, respectively. α and β is the Rayleigh damping
coefficient, which are determined by the natural frequency and
damping ratio. In order to improve the accuracy of the galloping
characteristics, according to the previous literature (Hu et al.,
2012, Cai et al., 2015) the calculation repetition time step is set
to 0.01.

WHOLE-SPAN AND SUB-SPAN MODELS

When the transmission conductor galloping occurs, the line is
often accompanied by the vibration between the sub-spans in
addition to the whole-span galloping. The natural frequency and
mode affect the characteristics of conductor galloping (Zhang
et al., 2000; Liu et al., 2021e). The natural frequency and whole-
span mode are obtained, shown in Table 4. In the case of a
transmission line with a distance of 200 m, the natural frequency
of the in-plane single and half-wave 0.26 Hz is less than the
natural frequency of the in-plane double half-wave 0.52 Hz, and
the frequency of the in-plane single-half-wave is almost the
natural frequency of the double half-wave; the natural
frequency of the out-of-plane double–half-wave 0.52 Hz is less
than the natural frequency of the out-of-plane four-half wave,
and the natural frequency of the out-of-plane double half-wave is
almost half of the natural frequency of the out-of-plane four-half
wave; the natural frequency of the twist three-half wave is
0.83 Hz. It is nearly equal to the natural frequency of 0.80 Hz
for the out-of-plane three-half-wave; for a line with a span of

TABLE 3 | Spacer arrangement.

Span (m) Spacer number (N) Sub-span length (m)

200 4 31 m–50 m – 47 m–46 m – 26 m
400 7 40 m–50 m – 55 m–55 m – 55 m–55 m – 50 m–40 m

TABLE 4 | Modes and natural frequencies of the iced eight-bundle conductor.

Direction Modal shape Natural frequency (Hz)

200 m 400 m

In-plane One loop 0.26 0.14
Two loops 0.52 0.29
Three loops 0.77 0.37

Out-of-plane Two loops 0.52 0.29
Three loops 0.80 0.43
Four loops 1.02 0.57

Torsion One loop 0.43 0.31
Two loops 0.60 0.36
Three loops 0.83 0.48
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400 m, the natural frequency of the in-plane single half-wave of
0.14 Hz is less than the natural frequency of the in-plane double
half-wave 0.29 Hz, and the frequency of the in-plane single half-
wave is nearly half of the natural frequency of the double half-
wave. The natural frequency of the out-of-plane three-half-wave
0.43 is almost equal to the natural frequency of the torsional
three-half-wave 0.48 Hz. The natural frequency of the in-plane
double half-wave 0.52 Hz is the same as the natural frequency of
the out-of-plane double half-wave 0.52 Hz. It is not difficult to
find that in this case, there are 1:2 and 1:1 internal resonance

conditions by analyzing the modal and natural frequencies of the
200- and 400-m spans.

It can be observed from the figure that a relatively dense natural
frequency is concentrated in the frequency range of
1.043–1.138 Hz, with three directions of in-plane, out-of-plane
and torsion, single half-wave, double half-wave, three-half-wave,
four-half-wave wave, and several other modes [67]. For example: f
= 1.043 Hz and f = 1.045 Hz are single half-waves, f = 1.048 Hz, f =
1.052 Hz, f = 1.138 Hz are double half-waves, f = 1.058 Hz and f =
1.097 Hz are three half-waves, and f = 1.081 Hz is four half-waves.

FIGURE 3 | Time history of midpoint displacement of the iced eight-bundle conductor under a wind velocity of 8 m/s (200 m span).
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THE SUB-SPAN OSCILLATION OF ICED
EIGHT-BUNDLE CONDUCTORS DURING
GALLOPING

The Sub-Span Oscillation of the
Characteristic of Each SubConductor
The galloping process of iced UHV transmission lines under a
given wind velocity is analyzed by numerical simulation. The
time history of the average displacement of the sub-conductor
to iced eight conductors under the wind speed of 8 m/s with a
span length of 200 m has been shown in Figure 3. At a wind

speed of 8 m/s, because of the different aerodynamic forces
between the conductors, the amplitude of the vibration in the
vertical direction is more evident than the amplitude of the
vibration in the horizontal direction. Among them, at a
period of time after the beginning of the galloping, the
galloping of the conductor tends to be stable, and the
efficiency at which the horizontal galloping tends to
stabilize is faster than the efficiency at which the vertical
galloping tends to stabilize.

Compared with the galloping dynamic response analysis
(Table 3), the first prominent peak frequency in the secondary
range is 0.45 Hz, which is close to the 0.52 Hz natural frequency of

FIGURE 3 | Continued.
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the in-plane double half-waves (Figure 4). The second apparent
peak frequency is 0.82 Hz, which is close to the natural frequency of
0.80 Hz of the third out-of-plane half-waves (Table 2).

Research on Sub-Span Vibration of the
Conductor During Galloping Under Different
Wind Velocities
Under different wind velocities the vertical and horizontal
amplitude of each subconductor during the line galloping
process increased, and the amplitude of vertical vibration
increases significantly, reaching 11m. When the wind speed is
8 m/s, the vertical and horizontal displacement between the
subconductors is approximately the same. When the typical
wind speed is 12 m/s, the aerodynamic load of each iced
subconductor is significantly different due to the interference of
the wake. The amplitude of the vibration of each subconductor in
the bundle is obviously different. As shown in Table 5, as the wind
speeds increase, the horizontal vibration amplitude of the
subconductors also increases correspondingly, but the increase
rate is relatively slow compared to the vertical vibration amplitude.

Research on the Sub-Span Oscillation
Conductor During Galloping Under Different
Subconductors
Figure 5 shows the change in the galloping distance of the
subconductor at the intermediate point of the sub-span 3. The

vertical vibration amplitude of the subconductor 5, subconductor
6, conductor 7, and subconductor 8 on the leeward side is greater
than the vertical vibration amplitude of the subconductor 1,
subconductor 2, conductor 3, and subconductor 4 at the
leeward side. In the case of the wind speed of 12 m/s, the
change of the galloping distance between the subconductors in
the middle point of the sub-span 3 is shown in Figure 5. From the
table, it can be found that at 400 s, the interval between the
subconductors reaches the maximum, and then with the passage
of time, the distance between the subconductors fluctuates closer;
among them, conductor 1 and 2, conductor 5 and 6 is relatively
long, and the distance between conductors 6 and 7 is relatively
close.

GALLOPING BEHAVIORS UNDER
DIFFERENT TURBULENT FLOW

In the wind tunnel experiment, it can be found that different
turbulence intensities will lead to different aerodynamic
coefficients of UHV transmission lines, and the Den Hartog
and Nigol coefficients determined by the aerodynamic
coefficients are also different (Den Hartog 1932; Nigol et al.,
1977). The effect of different parameters on the galloping of UHV
transmission lines is discussed, and the law of influence of wind
speed, angle of wind attack, and span length on conductor
galloping under the action of the turbulent wind is obtained.

Effects of Wind Velocity on Galloping
Behaviors Under Turbulent Flow
Based on the aerodynamic coefficients obtained from the wind
tunnel test (Cai et al., 2019b), the finite element method was used
to study the effect of wind speed on the galloping of UHV
transmission lines. Figure 6 compares the movement traces of
each subconductor at the midpoint of the line span under the
action of different wind speeds under the turbulence degree of
8.41% of the 300-m span and angle of wind attack of 20°.

Under higher wind velocity, a shorter time will be needed to
reach the wake-induced oscillation state. It also increases the
amplitude of vertical displacement, indicating that galloping
can occur at high wind speeds (Figure 6). As the wind speed
increases, the amplitude of the galloping vertical amplitude of
the subconductor decreases, but the amplitude of the
horizontal vibration gradually increases.

FIGURE 4 | Displacement spectrum analysis of the midpoint
displacement of the subconductor of the first span of the iced eight-bundle
conductor of 200 m span length.

TABLE 5 | Vibration amplitude of each subconductor during line galloping under different wind velocities.

Wind Velocity Direction Subconductor number

1 2 3 4 5 6 7 8

8 m/s Vertical 2.741 2.741 2.733 2.728 2.730 2.731 2.734 2.734
Horizontal 0.330 0.336 0.333 0.328 0.327 0.319 0.318 0.322

12 m/s Vertical 9.355 9.360 9.390 9.454 9.489 9.461 9.401 9.367
Horizontal 1.631 1.798 1.787 1.718 1.875 1.894 1.868 1.729

16 m/s Vertical 11.267 11.041 11.129 11.469 11.695 11.270 11.126 11.318
Horizontal 4.562 4.486 4.470 4.604 4.881 4.762 4.836 4.876
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Figure 7 is the spectrum analysis diagram of the midpoint of
the subconductor of the UHV transmission line under different
wind speeds. Compared with the vertical displacement response
spectrum analysis part, when the wind speed is 6 m/s, the first
prominent peak frequency is 0.38 Hz, which is close to the natural
frequency of 0.39 Hz of the in-plane single half-wave. The second
prominent peak frequency appears (0.67 Hz), which is close to the

natural frequencies of the in-plane and out-of-plane half-waves.
In this case, the UHV transmission line has in-gear oscillation
during the galloping process. On the other hand, when the wind
speed is 12 m/s, the vertical displacement response spectrum has
a special peak frequency of 0.41 Hz. It can be found that when the
wind speed is high, the high-order vibration modes of the line
vibration will be excited.

FIGURE 5 | Variation of the galloping distance of the respective conductors at the midpoint varying with time when the wind velocity is 12 m/s.
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FIGURE 6 | Galloping traces of the midpoint of eight-bundle conductors under different wind velocities.

FIGURE 7 | Displacement spectrum under different wind velocities.
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Effects of Span Length on Galloping
Behaviors Under Turbulent Flow
According to the relevant research on the influence of span
length on the UHV transmission line, it can be known that the
difference in span length can lead to the change of the
galloping amplitude of the UHV transmission line. Table 6
shows the maximum galloping amplitudes of UHV
transmission lines with 300- and 400-m span length when
the wind speed is 12 m/s; the initial wind angle of attack is
selected to be 20°, and the turbulence intensities are 0 and
8.41%. It can be seen that the galloping amplitude in the
vertical and horizontal directions increases correspondingly
with increase of span length.

Effects of Initial Angle of Wind Attack on
Galloping Behaviors Under Turbulent Flow
According to the existing research on the conductor galloping
phenomenon, it can be known that the difference of the initial
attack of the wind angle will lead to the difference of the
aerodynamic coefficients (Cai et al., 2019b). When the ice of the
UHV transmission line is crescent-shaped, when the initial angle of
wind attack is 15°–60° and 120°–180°, it presents an unstable state,
and in actual conditions, the initial angle of wind attack being
greater than 90° is rare. Table 7 shows the maximum galloping
amplitude of the line when the wind speed is 12 m/s, and the initial
angle of wind attack is 20° and 60°. The comparison shows that the
vertical and horizontal amplitude of the UHV transmission line
when the initial angle of wind attack is 60° is much larger than the
vertical and horizontal amplitude when the initial angle of wind
attack is 20°. Meanwhile, it can also be found that when other
parameters are constant, the greater the turbulence intensity, the
greater its horizontal and vertical amplitude.

CONCLUSION

The sub-span oscillation of iced eight-bundle conductors during
galloping under different wind velocities, span length, initial
angle of wind attack, and turbulence intensity is simulated and
analyzed by using the FEM. The following conclusions can be
obtained as follows:

1) The subconductors of the iced eight-bundle transmission line
gallop in the same direction under different wind velocities,
and the main oscillation direction is the vertical direction.
Meanwhile, there is an oscillation in the sub-span during the

galloping of the iced eight-bundle conductor, which may
cause the subconductor to vibrate.

2) Due to the influence of wake disturbance and aerodynamic
load, the amplitude of the oscillation of each subconductor is
different. Under the same wind velocity, the vertical
oscillation amplitude of the subconductor on the leeward
side is greater than that on the upwind side.

3) The vertical and horizontal amplitudes of line galloping
increase obviously with the increasing of wind velocity and
span length; there are obvious differences in the galloping
amplitude of the conductors, and the difference of the
initial angle of wind attack will lead to a significant
difference.

4) Under the influence of turbulence intensity, the line is more
likely to gallop, the galloping trace of the conductor is
elliptical, and the vibration amplitude of each sub-
conductor has a difference under higher turbulence
intensity. The amplitude of galloping increases significantly
with the increase of wind velocity, and high wind velocity will
excite higher-order vibration modes of line vibration under
higher turbulence intensity.
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TABLE 6 | RMS amplitude of galloping behaviors under different span lengths.

Span length (m) Turbulence Intensity (%) Vamp (m) Hamp (m)

300 0 0.31 0.18
8.41 3.55 2.27

400 0 1.01 0.75
8.41 4.66 5.39

TABLE 7 | RMS amplitude of galloping behaviors under different turbulence
intensity.

Vwind (m/s) Turbulence intensity (%) α (°) Vamp (m) Hamp (m)

12 0 20 4.38 4.46
60 17.35 6.80

8.41 20 4.58 3.29
60 16.76 6.21

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 88832710

Yu et al. Conductors Sub-Span Oscillation During Galloping

534

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


REFERENCES

Cai, M., Yan, B., Lu, X., and Zhou, L. (2015). Numerical Simulation of
Aerodynamic Coefficients of Iced-Quad Bundle Conductors. IEEE Trans.
Power Deliv. 30 (4), 1669–1676. doi:10.1109/TPWRD.2015.2417890

Cai, M., Zhou, L., Lei, H., and Huang, H. (2019a). Wind Tunnel Test Investigation
on Unsteady Aerodynamic Coefficients of Iced 4-Bundle Conductors. Adv.
Civil Eng. 2019, 1–12. doi:10.1155/2019/2586242

Cai,M., Xu, Q., Zhou, L., Liu, X., andHuang, H. (2019b). Aerodynamic Characteristics of
Iced 8-bundle Conductors under Different Turbulence Intensities. KSCE J. Civ Eng.
23 (11), 4812–4823. doi:10.1007/s12205-019-0359-9

Cai, M., Yang, X., Huang, H., and Zhou, L. (2020a). Investigation on
Galloping of D-Shape Iced 6-Bundle Conductors in Transmission
Tower Line. KSCE J. Civ Eng. 24 (6), 1799–1809. doi:10.1007/s12205-
020-0595-z

Cai, M.-q., Zhou, L.-s., Xu, Q., Yang, X.-h., and Liu, X.-h. (2020b). Galloping
Response of Sector-Shape Iced Eight Bundle Conductors. Can. J. Civ. Eng. 47
(10), 1201–1213. doi:10.1139/cjce-2018-0114

Diana, G., Belloli, M., Giappino, S., Manenti, A., Mazzola, L., Muggiasca, S., et al.
(2014a). A Numerical Approach to Reproduce Subspan Oscillations and
Comparison with Experimental Data. IEEE Trans. Power Deliv. 29 (3),
1311–1317. doi:10.1109/TPWRD.2014.2315444

Diana, G., Belloli, M., Giappino, S., Manenti, A., Mazzola, L., Muggiasca, S., et al.
(2014b). Wind Tunnel Tests on Two Cylinders to Measure Subspan Oscillation
Aerodynamic Forces. IEEE Trans. Power Deliv. 29 (3), 1273–1283. doi:10.1109/
TPWRD.2014.2313455

EPRI (2009). Transmission Line Reference Book: Wind-Induced Conductor Motion.
Palo Alto, CA: EPRI.

Hartog, J. P. D. (1932). Transmission Line Vibration Due to Sleet. Trans. Am. Inst.
Electr. Eng. 51 (4), 1074–1076. doi:10.1109/T-AIEE.1932.5056223

Hu, J., Yan, B., Zhou, S., and Zhang, H. (2012). Numerical Investigation on
Galloping of Iced Quad Bundle Conductors. IEEE Trans. Power Deliv. 27 (2),
784–792. doi:10.1109/TPWRD.2012.2185252

Jafari, M., Hou, F., and Abdelkefi, A. (2020). Wind-Induced Vibration of
Structural Cables. Nonlinear Dyn. 100 (1), 351–421. doi:10.1007/s11071-
020-05541-6

Li, H., Deng, J., Feng, P., Pu, C., Arachchige, D. D. K., and Cheng, Q. (2021a).
Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation
and ICEEMDAN Framework. Front. Energ. Res. 9, 780928. doi:10.3389/fenrg.
2021.780928

Li, H., Deng, J., Yuan, S., Feng, P., and Arachchige, D. D. K. (2021b). Monitoring
and Identifying Wind Turbine Generator Bearing Faults Using Deep Belief
Network and EWMAControl Charts. Front. Energ. Res. 9, 799039. doi:10.3389/
fenrg.2021.799039

Li, H., He, Y., Xu, Q., Deng, J., Li, W., and Wei, Y. (2022). Detection and
Segmentation of Loess Landslides via Satellite Images: a Two-phase
Framework. Landslides 19, 673–686. doi:10.1007/s10346-021-01789-0

Liu, X., Hu, Y., and Cai, M. (2019). Free Vibration Analysis of Transmission Lines
Based on the Dynamic Stiffness Method. R. Soc. Open Sci. 6 (3), 181354. doi:10.
1098/rsos.181354

Liu, X., Min, G., Wu, C., and Cai, M. (2020a). Investigation on Influences of Two
Discrete Methods on Galloping Characteristics of Iced Quad Bundle
Conductors. Adv. Civil Eng. 2020, 1–17. doi:10.1155/2020/8818728

Liu, X., Zou, M., Wu, C., Cai, M., Min, G., and Yang, S. (2020b). Galloping Stability
and Wind Tunnel Test of Iced Quad Bundled Conductors Considering Wake
Effect. Discrete Dyn. Nat. Soc. 2020, 1–15. doi:10.1155/2020/8885648

Liu, X., Zou, M., Wu, C., Yan, B., and Cai, M. (2020c). Galloping Stability and
Aerodynamic Characteristic of Iced Transmission Line Based on 3-DOF. Shock
and Vibration 2020, 1–15. doi:10.1155/2020/8828319

Liu, X., Liang, H., Min, G., Wu, C., and Cai, M. (2021a). Investigation on the
Nonlinear Vibration Characteristics of Current-Carrying Crescent Iced
Conductors under Aerodynamic Forces, Ampere’s Forces, and Forced
Excitation Conditions. Discrete Dyn. Nat. Soc. 2021, 1–22. doi:10.1155/2021/
5009209

Liu, X. H., Min, G. Y., Sun, C., and Cai, M. Q. (2021b). Investigation on Stability
and Galloping Characteristics of Iced Quad Bundle Conductor. J. Appl. Fluid
Mech. 14 (1), 117–129. doi:10.47176/jafm.14.01.31417

Liu, X., Min, G., Cai, M., Yan, B., and Wu, C. (2021c). Two Simplified Methods for
Galloping of Iced Transmission Lines. KSCE J. Civ Eng. 25 (1), 272–290. doi:10.
1007/s12205-020-0693-y

Liu, X., Yang, S., Min, G., Cai, M., Wu, C., and Jiang, Y. (2021d). Investigation on
the Accuracy of Approximate Solutions Obtained by Perturbation Method for
Galloping Equation of Iced Transmission Lines. Math. Probl. Eng. 2021, 1–18.
doi:10.1155/2021/6651629

Liu, X., Yang, S., Wu, C., Zou, M., Min, G., Sun, C., et al. (2021e). Planar Nonlinear
Galloping of Iced Transmission Lines under Forced Self-Excitation Conditions.
Discrete Dyn. Nat. Soc. 2021, 1–20. doi:10.1155/2021/6686028

Min, G., Liu, X., Wu, C., Yang, S., and Cai, M. (2021). Influences of Two
Calculation Methods about Dynamic Tension on Vibration Characteristics
of Cable-Bridge Coupling Model. Discrete Dyn. Nat. Soc. 2021, 1–11. doi:10.
1155/2021/6681954

Nigol, O., Clarke, G. J., and Havard, D. G. (1977). Torsional Stability of Bundle
Conductors. IEEE Trans. Power Apparatus Syst. 96 (5), 1666–1674. doi:10.1109/
T-PAS.1977.32496

Oh, Y.-J., and Sohn, J.-H. (2020). Stability Evaluation of the Transmission Line by
Using Galloping Simulation. Int. J. Precis. Eng. Manuf. 21 (11), 2139–2147.
doi:10.1007/s12541-020-00399-5

Rawlins, C. B. (1976). Fundamental Concepts in the Analysis of Wake-Induced
Oscillation of Bundled Conductors. IEEE Trans. Power Apparatus Syst. 95 (4),
1377–1393. doi:10.1109/T-PAS.1976.32233

Rawlins, C. B. (1977). Extended Analysis of Wake-Induced Oscillation of Bundled
Conductors. IEEE Trans. Power Apparatus Syst. 96 (5), 1681–1689. doi:10.1109/
T-PAS.1977.32498

Talib, E., Shin, J.-H., Kwak, M. K., and Koo, J. R. (2019). Dynamic Modeling and
Simulation for Transmission Line Galloping. J. Mech. Sci. Technol. 33 (9),
4173–4181. doi:10.1007/s12206-019-0812-1

Tsui, Y. T., and Tsui, C. C. (1980). Two Dimensional Stability Analysis of Two
Coupled Conductors with One in the Wake of the Other. J. Sound Vibration 69
(3), 361–394. doi:10.1016/0022-460X(80)90478-2

Williams, R. G., and Suaris, W. (2006). An Analytical Approach to Wake
Interference Effects on Circular Cylindrical Structures. J. Sound Vibration
295 (1-2), 266–281. doi:10.1016/j.jsv.2006.01.023

Yan, B., Liu, X., Lv, X., and Zhou, L. (2016). Investigation into Galloping
Characteristics of Iced Quad Bundle Conductors. J. Vibration Control. 22
(4), 965–987. doi:10.1177/1077546314538479

Zhang, Q., Popplewell, N., and Shah, A. H. (2000). Galloping of Bundle Conductor.
J. Sound Vibration 234 (1), 115–134. doi:10.1006/jsvi.1999.2858

Zhou, L., Yan, B., Zhang, L., and Zhou, S. (2016). Study on Galloping Behavior of
Iced Eight Bundle Conductor Transmission Lines. J. Sound Vibration 362,
85–110. doi:10.1016/j.jsv.2015.09.046

Zhou, A. Q., Liu, X. J., Zhang, S. X., Cui, F. J., and Liu, P. (2018). Wind Tunnel Test
of the Influence of an Interphase Spacer on the Galloping Control of Iced Eight-
Bundled Conductors. Cold Regions Sci. Technology 155, 354–366. doi:10.1016/j.
coldregions.2018.08.026

Conflict of Interest: Author ZL is employed by State Grid Sichuan Integrated
Energy Service Co. Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yu, Mengqi, Qingyuan, Linshu, Qian, Shunli, Jun and Chunlin.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 88832711

Yu et al. Conductors Sub-Span Oscillation During Galloping

535

https://doi.org/10.1109/TPWRD.2015.2417890
https://doi.org/10.1155/2019/2586242
https://doi.org/10.1007/s12205-019-0359-9
https://doi.org/10.1007/s12205-020-0595-z
https://doi.org/10.1007/s12205-020-0595-z
https://doi.org/10.1139/cjce-2018-0114
https://doi.org/10.1109/TPWRD.2014.2315444
https://doi.org/10.1109/TPWRD.2014.2313455
https://doi.org/10.1109/TPWRD.2014.2313455
https://doi.org/10.1109/T-AIEE.1932.5056223
https://doi.org/10.1109/TPWRD.2012.2185252
https://doi.org/10.1007/s11071-020-05541-6
https://doi.org/10.1007/s11071-020-05541-6
https://doi.org/10.3389/fenrg.2021.780928
https://doi.org/10.3389/fenrg.2021.780928
https://doi.org/10.3389/fenrg.2021.799039
https://doi.org/10.3389/fenrg.2021.799039
https://doi.org/10.1007/s10346-021-01789-0
https://doi.org/10.1098/rsos.181354
https://doi.org/10.1098/rsos.181354
https://doi.org/10.1155/2020/8818728
https://doi.org/10.1155/2020/8885648
https://doi.org/10.1155/2020/8828319
https://doi.org/10.1155/2021/5009209
https://doi.org/10.1155/2021/5009209
https://doi.org/10.47176/jafm.14.01.31417
https://doi.org/10.1007/s12205-020-0693-y
https://doi.org/10.1007/s12205-020-0693-y
https://doi.org/10.1155/2021/6651629
https://doi.org/10.1155/2021/6686028
https://doi.org/10.1155/2021/6681954
https://doi.org/10.1155/2021/6681954
https://doi.org/10.1109/T-PAS.1977.32496
https://doi.org/10.1109/T-PAS.1977.32496
https://doi.org/10.1007/s12541-020-00399-5
https://doi.org/10.1109/T-PAS.1976.32233
https://doi.org/10.1109/T-PAS.1977.32498
https://doi.org/10.1109/T-PAS.1977.32498
https://doi.org/10.1007/s12206-019-0812-1
https://doi.org/10.1016/0022-460X(80)90478-2
https://doi.org/10.1016/j.jsv.2006.01.023
https://doi.org/10.1177/1077546314538479
https://doi.org/10.1006/jsvi.1999.2858
https://doi.org/10.1016/j.jsv.2015.09.046
https://doi.org/10.1016/j.coldregions.2018.08.026
https://doi.org/10.1016/j.coldregions.2018.08.026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Power Quality Data Compression and
Disturbances Recognition Based on
Deep CS-BiLSTM Algorithm With
Cloud-Edge Collaboration
Xin Xia1†, Chuanliang He1†, Yingjie Lv2, Bo Zhang2, ShouZhi Wang2, Chen Chen3 and
Haipeng Chen4*
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Co., Ltd., Beijing, China, 2Beijing Electric Power Science and Smart Chip Technology Company Limited, Beijing, China, 3College
of Instrumentation and Electrical Engineering, Jilin University, Changchun, China, 4Department of Electrical Engineering,
Northeast Electric Power University, Jilin, China

The current disturbance classification of power quality data often has the problem of low
disturbance recognition accuracy due to its large volume and difficult feature extraction.
This paper proposes a hybrid model based on distributed compressive sensing and a bi-
directional long-short memory network to classify power quality disturbances. A cloud-
edge collaborative framework is first established with distributed compressed sensing as
an edge-computing algorithm. With the uploading of dictionary atoms of compressed
sensing, the data transmission and feature extraction of power quality is achieved to
compress power quality measurements. In terms of data transmission and feature
extraction, the dictionary atoms and measurements uploaded at the edge are analyzed
in the cloud by building a cloud-edge collaborative framework with distributed compressed
sensing as the edge algorithm so as to achieve compressed storage of power quality data.
For power disturbance identification, a new network structure is designed to improve the
classification accuracy and reduce the training time, and the training parameters are
optimized using the Deep Deterministic Policy Gradient algorithm in reinforcement learning
to analyze the noise immunity of the model under different scenarios. Finally, the simulation
analysis of 10 common power quality disturbance signals and 13 complex composite
disturbance signals with random noise shows that the proposed method solves the
problem of inadequate feature selection by traditional classification algorithms, improves
the robustness of the model, and reduces the training time to a certain extent.

Keywords: distributed compressed sensing, power quality disturbance classification, bidirectional long-short
memory network, edge algorithm and cloud edge collaboration, parameter optimization, DDPG algorithm

1 INTRODUCTION

The emergence of new communication technologies has led to an increase in the size and complexity
of the power quality data that must be processed by power companies when implementing
information systems and intelligent interconnection technologies (Jin et al., 2019). Therefore,
advanced technologies and algorithms are needed to provide support for the storage,
transmission, and management of power quality data in the era of the energy Internet (Elphick
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et al., 2017a). However, the existing measuring instruments are
difficult to identify the disturbance accurately, so the power
system’s relay protection and automatic devices may have
false-action, which threatens the stable operation of the power
system. Managing and storing massive power quality data,
digging the intrinsic value contained in the power quality data,
and utilizing the collected power quality data to analyze and
identify the disturbances have become urgent problems to be
solved (Yin et al., 2017). Efficient collection and evaluation of
power quality data are significant to load prediction, operation
status evaluation and early warning, power quality monitoring,
and evaluation, effective operation of the power network, and
distribution network planning (Negnevitsky et al., 2000; Chen,
2003).

When the sampling of power quality data still follows the
Nyquist-Shannon sampling theorem (Elphick et al., 2017b), in
conjunction with the acquisition-compression-storage-
transmission-detection-identification process (Song et al.,
2012), it will naturally result in a large amount of sampled
data, and as the amount of data increases, the processing time
for the data also increases, significantly increasing the cost of
storage and transmission (Noland, 2016). The Fourier transform
method for power quality data acquisition and analysis has
advantages in the frequency domain analysis of signals but
lacks the ability of time-domain analysis (Pei et al., 2006). The
compression performance of the Fourier transform method is
therefore not optimal. Power quality signal compression is
proposed in reference (Bravo-Rodríguez et al., 2020) based on
the One-Class Support Vector Machine (OCSVM) and
normalized distance measure, which has excellent compression
performance and has a low compression ratio for different kinds
of signals. In reference (Berutu and Chen, 2020), the method of
multi-wavelet threshold transformation combined with lossless
and lossy compression is adopted for power-quality data
compression. Meanwhile, the Set Partitioning in Hierarchical
Trees (SPIHT) lossy compression algorithm is used for the
high-frequency wavelet coefficient matrix, and the LZ77
lossless compression algorithm is used for the low-frequency
part of the wavelet coefficient matrix. However, wavelet
transforms have a problem selecting a wavelet basis, and the
algorithm is not particularly adaptable. The Compressed Sensing
(CS) method (Li et al., 2020) can sample the signal with much
fewer observations than the Nyquist sampling theorem and
preserve the original characteristics as much as possible.
However, the basic compressed sensing theory can only
handle a single signal; it cannot exploit correlations between
signals to optimize the reconstruction accuracy or speed of the
compression model. To take advantage of the correlation between
data and within data, the distributed compressed sensing (DCS)
theory is proposed based on CS theory. DCS can be regarded as a
theory that combines distributed source coding (DSC) and
compressed sensing (Pei et al., 2006). This theory compresses
different signals separately but performs joint reconstruction.
When the same parts of different signals account for a large
proportion, DCS can significantly reduce the number of
observations, so the complexity of recovering signals on the
decoding side is significantly reduced. This feature is essential

for distributed applications with low complexity requirements at
the decoder. DCS theory has been widely used in the fields of
audio and video processing, image fusion, and multi-transmitter
multi-receiver channel estimation (von Gladiß et al., 2015), laying
a good research foundation for its application in the field of
electrical engineering data processing.

The power quality disturbance classification method extracts
feature of power quality signal as the input of a recognizer
through digital signal processing methods and machine
learning algorithms (Gibbon et al., 2009). Currently, the
recognition methods mainly include: neural network (Cai
et al., 2019), support vector machine (Tang et al., 2020),
decision tree (Zhao et al., 2019) etc. (Xin et al., 2020) converts
the input of Power Quality Disturbances (PQDs) data into a two-
dimensional matrix which is similar to image data, and then uses
a two-dimensional Convolutional Neural Network (CNN) to
identify the type of PQDs. However, PQDs data is a one-
dimensional time series, and two-dimensional CNN is made
for image recognition. Therefore, it is not completely
appropriate for PQDs. In (Lu et al., 2020), several common
CNNs and RNNs are examined in the context of PQDs
classification, but the training time, parameter numbers, model
size, and anti-noise ability of these CNNs are not considered.
PQDs classification by deep learning neural network is prone to
long network training time and limited classification accuracy for
a large amount of power quality data (Uçkun et al., 2020). The
combination of neural networks and compressed sensing
significantly minimizes the amount of processed data,
effectively shortens the recognition time, achieves or even
exceeds the original recognition accuracy, and reduces
hardware performance requirements.

The combination of traditional methods utilizing digital
signal processing to extract features and machine learning as
classifiers to achieve disturbance classification becomes
unsuitable for generalization; For another thing, the rise of
deep learning methods provides new ideas for power quality
disturbance identification by directly utilizing raw data to
extract and classify disturbance signal features. Deep
learning methods combine feature extraction and
classification into a single model, which compensates for
traditional methods’ relatively independent feature
extraction and classification. As a result, the application of
deep learning methods to detect disturbances will gradually
become a research focus for academics. Deep learning methods
automatically extract features from the original signal, and
traditional Nyquist sampling used to obtain electrical energy
signal data is too large, putting excessive strain on
transmission and storage, obtaining the signal via CS
theory and combining it with deep learning methods to
achieve disturbance classification is critical for practical
applications.

Meanwhile, the power system put forward new requirements
for the classification of disturbances that affect the power quality
of the distribution network. The classification of PQDs needs
higher timeliness and accuracy. These conditions serve as a
scenario-based basis for applying the PQD classification
method proposed in this article.
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As a consequence of the advent of new scenarios, the
traditional disturbance recognition method employing digital
signal processing to extract features and machine learning to
recognize disturbances has shown its limitations (Zhang et al.,
2021; Li et al., 2022). Emerging artificial intelligence methods
such as deep learning offer a new direction for PQD classification.
Deep learning methods based on compressed sensing theory can
ensure the safe operation of the system and quickly and accurately
classify PQDs. This is an important step in solving power quality
problems. Through the gradual development of communication
technology, the proposed combination of compressed sensing
and deep learning can also serve as technical support for edge
computing in cloud edge collaborations. The research on PQD
classification based on compressed sensing and deep learning,
therefore, has both theoretical and practical significance.

The main contributions of this paper are as follows: 1) a
distributed compression storage method of power quality is
proposed, which can be used for cloud edge collaboration, and
the design of its dictionary matrix. 2) a combined method of
compressed sensing and deep learning for power quality data
disturbance recognition is proposed, which reduces the model’s
training speed and improves the accuracy of PQD recognition. 3)
The Deep Deterministic Policy Gradient (DDPG) is employed to
optimize the neural network parameters so that the constructed
neural network can maintain good convergence ability in
different scenarios. 4) The proposed method is aimed at a
forward-looking new power system with a high proportion of
renewable energy.

2 DISTRIBUTED COMPRESSED SENSING

2.1 Distributed Compressed Sensing
Theory
DCS is developed to deal with the set of related signals. The model
can take into account the internal correlations among power
quality signals as well as the correlations between signals. When
the signal aggregation is highly correlated, joint sparse and joint
reconstruction can be performed.

Assuming that there are j signals, x represents the joint signal
composed of multiple target signals xj ∈ RN, and y represents the
joint signal composed of the observed values yj ∈ RM

corresponding to each target signal, the joint signal can be
expressed as follows:

x � [x1, x2/xj]T (1)
y � [y1, y2/yj]T (2)

Φ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Φ1 0 / 0
0 Φ2 / 0
..
. ..

.
1 ..

.

0 0 / Φj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Then y can be expressed as:

y � Φx (4)
Due to the fact that compressed sensing is the foundation of

DCS, the premise of both two methods is that the signals must be
sparse. Althoughmany power quality signals do not have sparsity,
the sparsity of these signals can be reflected in a certain sparse
base. Assuming that ψj is a sparse matrix and θj is a sparse
coefficient vector, xj � ψjθj the signal acquisition model of DCS
is as follow:

yj � Φjψjθj (5)

2.2 Construction Steps of Learning
Dictionary for Distributed Compressed
Sensing
DCS of power quality data relies heavily on sparse representation
of the signal, and the key factor is the design of an efficient and
simple sparse matrix. The continuous updating and optimization
of dictionary learning methods is the main reason for the superior
performance of sparse representation in compressive
reconstruction and type recognition. The sparse decomposition
and construction steps of the learning dictionary of distributed
compressed sensing are shown in Figure 1.

1) The model of power quality signals’ training sample set
E ∈ RM1×W1 and G ∈ RM2×W2 are established, where E
means the public sample set, G means the feature sample
set, W stands for the number of training samples and M
denotes the number of sampling points for training sample.
The training sample is expressed as follows:

Ei � [ei1, ei2,/, ein] ∈ RM1×W1 (6)
Gi � [gi1, gi2, ..., gin] ∈ RM2×W2 (7)

Where eij ∈ RM×1 represents class i, j training samples in a
common sample set, gij ∈ RM×1 represents class i, j training
samples in feature sample sets, i � 1, 2, ..., k, j � 1, 2, ..., n,M
represents the sample dimension, R represents the set of real
numbers.

2) Initialize the public and the feature dictionaries, respectively.
For example, in feature dictionary, Q training samples of the
feature sample set G is randomly selected to initialize the
dictionary Dt0 ∈ RM×Q, then two—norm normalization is
executed for each column of Dt0: ‖Dj

t0‖2 � 1, among

FIGURE 1 | Sparse decomposition.
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j � 1, 2, ..., Q, the objective function of dictionary
initialization is:

JDt0 ,T0 � argmin(‖G −Dt0T0‖22 + λ‖T0‖0)
Dt0 ,T0

(8)

GjL

0 G
j
0 � 1 (9)

Where T0 is the sparse representation matrix found by
optimizing the objective function on the initial feature
dictionary Dt0 in the sample set G, and λ is the
regularization parameter to balance the reconstruction error
and the sparsity of the sparse matrix; the iterations’ initial
value is set to L � 1. In terms of the basic atomic characteristics
of the initialized dictionary and the experimental simulation,
the total iteration number m and the tolerance of error Js are
selected.

3) Finally, the KSVD algorithm is employed to optimize the
objective function. It firstly holds the feature dictionary Dti

constant after the ith iteration:

JTi � argmin
Ti

(‖G −DtiTi‖22 + λ‖Ti‖0) (10)

Then, hold the sparse representation matrix Ti constant after
the last iteration and optimize the base atom in the feature

dictionary Dti separately. And the objective function can still
be simplified. The update can be made as follows:

JDti � argmin
Dti

⎛⎝
����������G −∑k

j�1
Gj

i T
jL

i

����������
2

2

⎞⎠

� ⎛⎝
����������⎛⎝G − ∑

j ≠ k

Gj
i T

jL

i
⎞⎠ −Dk

tiT
kL

i

����������
2

2

⎞⎠ � (�����Gk − Gk
i T

kL

i

�����22)
(11)

Where k � 1, 2, ..., N, Gk are real error items, the SVD algorithm
is used to decompose Gk, and the base atom dk that needs to be
updated is the feature vector corresponding to the maximum
eigenvalue, which can be computed by the least-square method.
Then, the optimal feature dictionary Dt is obtained, and the
public dictionary Dg is attained by the same method. The DCS
learning dictionary D is obtained by cascading Dg and Dt

together. Therefore, the DCS learning dictionary can be
expressed as follow:

D �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Dg Dt 0 / 0
Dg 0 Dt /
/ / / / 0
Dg 0 / 0 Dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

FIGURE 2 | Cloud-edge collaboration framework.
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2.3 Data Storage Based on Cloud Edge
Collaboration
Under the cloud-edge collaborative architecture (Ning et al.,
2021), the DCS-OMP edge algorithm is used to compress and
collect the power quality data of s nodes in a distribution system
at the same time, the power quality data of each node in the
distribution system share the same dictionary atoms, set the data
length of each node as n and the number of uploaded dictionary
atoms as τ, the corresponding formula is as follow:

[Ym×s Dτ×n] � DCS−SOMP(Xn×s,Ψm×n,Φn×n, τ, SNRdef? )
(13)

Ym×s is the measured value of each node; Xn×s is the original
signal of each node, Dτ×n is the uploaded dictionary atoms to the
cloud. By reducing the length m of the measurement matrix and
the number τ of the uploaded cloud dictionary atoms, the
memory capacity of the measured values uploaded to the
cloud, and the dictionary atoms can be reduced. In addition,
in order to ensure that cloud data can be called accurately and
quickly, the cloud integrates the dictionary atoms uploaded by
each edge to generate a complete dictionary Dk×n, where k is the
total number of atoms in the complete dictionary. When calling
data in this partition, the sparse representation coefficient
corresponding to the partition data is calculated by the Eq. 13.

θn×s � SOMP(Ym×s,Dk×n,Ψm×n) (14)
Then the original signal X′n×s of the partition is recovered

through Eq. 13 as follow:

X′n×s � real(Φn×nθn×s) (15)
By establishing a complete dictionary in the cloud center, each

edge only needs to upload the measurement values to realize
compression storage of power quality data, which reduces the
storage space of cloud data. The steps for constructing a complete
dictionary are as follows:

1) Calculate the correlation ri,k between the newly uploaded
dictionary atom di of the edge node and the kth atom Dk

in the initial sparse dictionary Dk×n in the cloud. The formula
is as follow:

ri,k � cov(di, Dk)������������
var[di]var[Dk]

√ (16)

Suppose the value of each generated is lower than a certain
threshold. In that case, the overall correlation between the
dictionary atom di uploaded to the cloud and the cloud
dictionary Dk×n is relatively weak. Therefore, the dictionary
atom is added to the sparse cloud dictionary.

2) Combine the dictionary atoms uploaded in each partition into
an over-complete sparse dictionary, and regularization is
performed to reduce the correlation between the
dictionary atoms.

Dk×n � {d1, d2,/, dk} (17)

d′k � dk − dk, d′1
d′1, d′1

d′1 − dk, d′2
d′2, d′2

d′2 −/ − dk, d′k−1
d′k−1, d′k−1

d′k−1 (18)

3) Normalizes the over-complete dictionaries to update
dictionary atoms.

dk � d′k
d′k

(19)

4) Combined with the over-complete sparse dictionary, recover
the original data from the measured values uploaded by the
DCS algorithm to verify the recoverability of the stored data
and the corresponding sparse coefficient θj, j∈[1,s] of each
node is obtained. Finally, the compressed storage of power
quality data of each node is realized.

Cloud computing is a type of technology that enables the
analysis of large amounts of data (Luo, 2022). It is not required to
maintain computing hardware, data storage, or associated
software on-premises. However, because of the physical
separation between the cloud platform and each terminal,
response times are frequently slow.

Edge computing is introduced as a novel technique for
augmenting cloud computing systems (Ma et al., 2021).
Because the edge is located close to the terminal equipment, it
can reduce not only the network delay associated with data
processing, but also the bandwidth required to transfer the
original data to the storage center. As a result of the cloud
platform and edge platform collaborating, the system’s
performance will be significantly improved.

In this paper, based on the cloud-edge collaboration
framework shown in Figure 2, the edge acquisition algorithm
based on DCS-SOMP algorithm is compiled on the MATLAB
simulation platform to collect the power quality data generated in
PSCAD, and the sparse dictionary atoms and measured values
generated in the reconstruction process are uploaded to the cloud
server by establishing a connection with the remote cloud. There
are three main operations in the cloud: 1) compressed storage of
power quality data of distribution network; 2) Construction of
complete sparse dictionary; 3) Analysis and calculation of power
quality data. The cloud server sends the result of dynamic
partition to the edge in time. The edge algorithm obtains the
new partition information, adjusts the computing resources, and
collects the power quality contained in the new partition, and
uploads it to the cloud server again. So as to realize the mutual
cooperation between “cloud” and “edge”.

3 POWERQUALITYDATACLASSIFICATION

3.1 Classification of Power Quality
Disturbance Signals
The PQD classification model first extracts the characteristics of
the disturbance signals and then designs a classifier to recognize
different disturbances. According to the different characteristics
of amplitude, frequency, and phase of the disturbance signal, the
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single disturbance is defined as voltage sag, voltage swell, short
interruption, harmonic, transient oscillation, pulse, and flicker.
The three disturbances of voltage sag, voltage swell, and short
interruption are short-term root mean square fluctuations. And
the harmonic, transient oscillation, pulse, and flicker are long-
term root mean square fluctuation or high-frequency impact
disturbance. In addition to the above single disturbance,
disturbance usually occurs simultaneously in the actual
situation, which is called composite disturbance. The
composite disturbance is compounded by two or more single
disturbances, which is difficult to analyze. Referring to the IEEE
standard and previous literature, six types of single disturbances
and four types of composite disturbances are analyzed in
this paper.

3.2 Basic Principle of Power Disturbance
Classification Based on CS-DL
3.2.1 The Framework of CS-DL Network
A Deep Neural Network (DNN) is the basis of deep learning,
which is a multi-layer expression algorithm for learning the
implicit distribution of data. Specifically, DNN first employs
unsupervised learning to pre-train each layer to learn the
characteristics of layers. Training one layer at a time, using the
results as the input to the next layer, and then using supervised
learning to fine-tune the model from top to bottom. The feature
learning process is illustrated in Figure 3.

The feature of the constructed CNN is the feature extractor
composed of the convolution layer and the sub-sampling layer.
The CS-DL network uses a local connection, which only connects
one neuron with a few peripheral neurons. The convolution layer
of CNN contains multiple differentiated feature planes, each of
which consists of some rectangularly arranged neurons, and the
neurons on the same feature plane share weight with each other.
CNN sub-sampling is a special convolution process and reduces
the number of model parameters. In summary, CNN uses the
convolution layer and sub-sampling layer, as well as the
corresponding local connection and weight sharing rules to

enhance feature extraction’s self-learning and characterization
capacity and finally realizes the classification of direct power
quality signal inputs.

3.2.2 Structures of CNN-BiLSTM and CS-BiLSTM
Networks
PQD signal is a typical time-series signal, but CNN does not
consider the timing characteristics of the signals in the process of
feature extraction. Meanwhile, the bidirectional long short-term
memory (BiLSTM) model is a kind of Recurrent Neural Network
(RNN) suitable for time-series signal analysis. Therefore, a mixed
CNN-BiLSTM model based on the classification of PQD signals
by the CNN model is proposed. Firstly, features of disturbing
signals are extracted automatically by CNN. Then, the features
are further processed by BiLSTM. The proposed CNN-BiLSTM
model enhances the feature extraction ability of the model, speeds
up the convergence rate of training, further improves the
accuracy of disturbance classification, and has high noise
immunity. In order to deal with the time-consuming defect
and classification problem of composite disturbance, an
improved CS-BiLSTM is proposed, which utilizes the CS
method to transmit signal characteristics quickly, accurately,
and effectively so as to improve the efficiency and timeliness
of the PQD classification process.

The Structures of CS-BiLSTM Networks are illustrated in
Figure 4.

3.3 Parameter Optimization Based on DDPG
3.3.1 Concept of Reinforcement Learning
Reinforcement learning achieves global optimization of the
objective function through the feedback of the reward
function. The main parts of the DDPG reinforcement learning
algorithm are as follows:

Agent: The agent that needs to be controlled, corresponding to
the parameter optimizer in this paper.

State s: The agent’s current state, corresponding to the current
value of the key parameters such as learning rate, minibatch
number, etc.

FIGURE 3 | Structure of CS-DL network.
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Action a: The actions that the agent can take, corresponding to
the variation of the parameters.

Reward r: The feedback value of the environment, and the
evaluation value of the previous action, corresponding to the
accuracy in this paper.

π The agent’s action to move from the current state to the
next state.

Value: The reward value of the agent’s long-term actions, as
distinguished from the short-term reward represented by
Reward r.

Environment: The environment in which the agent is placed.

3.3.2 Concept of Deterministic Policy Gradient
Deterministic Policy Gradient (DPG) is an improved
algorithm based on AC (Action and Critic) structure. It
utilizes the PG (Policy Gradient)’s advantage in
continuous space and changes the randomized strategy to a
deterministic strategy. The corresponding formula is shown
in (20):

at ~ πθ(st∣∣∣θπ) (20)
The DPG method can reduce the sampling size of data. For

randomized strategy, policy gradient needs to integrate state and
action simultaneously, and determine strategy only needs to
integrate the state, which greatly improves the algorithm’s
efficiency. The formulas of deterministic strategy and the
gradient expression are as follows:

Jβ(μ) � ES~ρβ[Qμ(s, μ(s))] (21)
∇θJ(μθ) � ES~ρβ[∇θμθ(s)Qμ(s, a)∣∣∣∣a�μθ] (22)

Where: μ represents the determined strategy adopted by DDPG,
ρβ represents the distribution of a balanced exploration and
utilization process. In the DPG algorithm, the Critic network

is a linear function approximator, and the Actor updates the
parameters in the direction of the Critic’s action-value function.

The DDPG algorithm is improved by the following details: the
updating methods of the target network’s parameters, the
regularization method of the samples, and the exploration
noise of action. Compared with DQN (Deep Q network),
which updates the parameters of the target network at regular
time intervals, DDPG adopts a soft update method, which
transfers the parameters both before and after updating to the
target network. In order to prevent gradient disappearance or
exploding gradient, the input and output of ANN are normalized
in batches. Moreover, the DDPG algorithm adds a Gaussian noise
to the determined action to improve the diversity of samples.

3.4 CS-BILSTM Model Based on DDPG
Optimization
The complexity of PQD classification is prone to result in no
convergence and poor training effects for the classificationmodel.
Therefore, the DDPG method is introduced to optimize the
parameters during the training process. The DDPG algorithm
based on artificial intelligence has the characteristics of self-
organization, self-adaptation, and self-learning, has high
robustness, and is easy to parallel. The detailed parameter of
the DDPG network is set as follows. The inputs of the Actor
network are normally N × 2 sequences with two hidden layers
which has 256 and 32 neurons respectively. The activation
function of the Actor network is tanh, the loss function is
MSE, and the optimization method RMSprop is introduced
here. The input of Critic network consists of two parts: the
first part is the state observed by the agent; The second part is
the corresponding actions taken by the agent. The hidden layer
includes two layers, the number of neurons is 256 and 32
respectively, and the number of neurons in the output layer is
1, which indicates the Q value obtained by the critical network

FIGURE 4 | Structure of CS-BiLSTM.
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taking some action in this state. Except for the output layer, other
activation functions use tanh, and the activation function of the
output layer is Relu. After obtaining the Q value, the probability
of generating random action is ε Strategy, i.e., probability 1- ε
chooses πp(s) � argmaxQ(s, a). Meanwhile, the value of
random action follows the normal distribution ,
σ � (Q(s, a) − argmax(Q(s, a)))2. The related Param-eter
setting and description of DDPG algorithm is shown in
APPENDIX part.

It is widely used in the optimization of multimodal functions.
The traditional stacked denoising autoencoder adopts SGD in the
fine-tuning stage. The SGD updates each sample with a fast
update rate, which can automatically pick out the inferior local
optimtbal points. However, on account of the many update times,
the cost function may experience acute fluctuation with inferior
convergence performance, which affects the classification effect of
the encoder. Therefore, this paper improves the traditional DAE.
Adam is used to updating the network weights and bias during
the fine-tuning stage instead of SGD. The flow chart of PQD
classification by the improved CS-BiLSTM algorithm based on
DDPG parameter optimization is illustrated in Figure 5.

4 SIMULATION RESULTS AND ANALYSIS

The proposed power quality signal compression technique and
PQD classification are evaluated in this section via the
comparative experiments with four simulation tests. The
simulation software are respectively Matlab2019b and

Python3.6.5 with its advanced tool pytorch1.2.0. As for the
computer configuration, the Intel Core CPU i3-8100 and
internal storage 16G with the 1T hard disk storage device.

This paper uses theWAMS (Wide AreaMeasurement System)
data collected from the actual power grid in a province of China
in 2020 to form a data set. The data set is the power quality data
that has been manually verified, including 2000 pieces of data. In
order to form the enough training set, some power quality data is
generated with the MATLAB simulation.

A series of power quality signals are generated by
mathematical modeling simulation, and the sampling
frequency is set to 3200 Hz based on the actual sampling
frequency of power equipment in the power system. Also,
the power quality signal sampling length is 18 cycles.

Then, the Gaussian white noise is added in the generation of
the PQD signal to simulate the random noise in the power
system. The signal-to-noise ratio (SNR) ranges from 20 dB to
40 dB.

The generated power quality signals include six categories of
single disturbance and four types of composite disturbance such
as voltage sag, harmonic, voltage flicker, harmonic with voltage
sag, harmonic with voltage interruption, voltage sag with voltage
flicker, etc. They are all labeled with the number from 1 to 10,
respectively.

MATLAB is used to generate 20,000 sets of PQD signals,
where 18,000 sets are chosen as the training set, and the last 2000
sets are selected as the testing set. The 10-fold cross-validation is
adopted to select the suitable training set and validation set in this
step. Figure 7 demonstrates the experiment result.

FIGURE 5 | Schematic diagram of the CS-BILSTM model optimized by DDPG algorithm.
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4.1 Comparison Results of Reconstruction
Algorithms
As shown in Figure 6, Orthogonal Matching Pursuit, Generalized
Orthogonal Matching Pursuit (Generalized OMP, GOMP),
Regularized Matching Pursuit (Regularized OMP, ROMP), and
Stage Orthogonal Matching Pursuit (StagewiseOMP, StOMP),
Compressive Sampling Matching Pursuit
(CompressiveSamplingMP, CoSaMP), and DCS-SOMP
algorithms are adopted to perform compressive sampling of
PQD signals in the power grid, while the sparsity of the PQD
signal of each node is assumed as 10. The comparison of the signal-
to-noise ratios (SNR) of reconstructed power quality signals under
different compression ratios is carried out between the above
algorithms. Figure 5 demonstrates that except for the DCS-
SOMP algorithm, the signal-to-noise ratio of other algorithms’
reconstructed power quality signals decreases with the increase of
compression ratio. In the subfigure (a) of Figure 5, the reconstructed
power quality signals of the ROMP and CoSaMP algorithms show
distortion when the compression ratio rises to 40. Additionally, in
the process of power quality data compression and storage, the
sparsity of PQD signals under the sparse dictionary has an important
impact on the power quality data’s upload speed to the cloud. The
sparser the data, the fewer sparse dictionary atoms, thus, the smaller
data sizes. By contrast, the DCS-SOMP reconstruction algorithm
overperform other algorithms, like OMP, ROMP, etc. It is clearly
more accurate for the compressed acquisition of power quality data.

4.2 Reconstruction and Demonstration of
Different Power Quality Disturbances
After determining the transform domain, themeasurementmatrix,
and the reconstruction algorithm, the compression-reconstruction
simulation of 6 types of PQD signals is carried out, and the
compression rate represents the ratio of the observation points’
number to the signal length, which is set as 25%. In order to reduce
the reconstruction error, the sparsity value of different disturbance
signals in Table 1 is determined through a large number of
experiments. Moreover, Table 1 shows the error values between
the original signal and the reconstructed PQD signal obtained by

compressed sensing and reconstructing of randomly generated
PQD signals. Figure 7 shows the simulation diagrams of the
original signals, the reconstruction signals, and the error
waveform of the two kinds of PQD signals. Finally, we use
mean square error to evaluate the reconstruction signals.

4.3 Comparison of Application of CS-DL in
Power Quality Disturbance Classification
4.3.1 Results of Power Quality Disturbance
Classification
It can be seen from Figure 8 that the classification accuracy of
PQD signals is still relatively low in the initial stage of training.
Then, the loss value is quickly reduced to less than 0.1 after about
850 epochs of training. Also, the classification accuracy is
improved to about 94% and remains stable, which indicates
that the network converges after about 850 training epochs.
Moreover, the training accuracy and test accuracy are almost
equal after about 950 epochs of training, and the total
classification accuracy of PQD signals in the test set is 99.7%.
In order to obtain better network performance, the setting of the
network parameters is necessary, in which the setting of the
learning rate is critical. In this paper, the dynamic setting method
of learning rate is adopted. The initial learning rate is set to 0.001;
after 200 iterations, it drops to 0.0001. This setting can further
improve the classification accuracy of PQD signals.

It can be seen from Figure 9, Figure 10, and Table 2 that the
CS-BiLSTM method we proposed has a superior performance

FIGURE 6 | Comparison of reconstruction effects. (A) Compression ratio of 10 dB, (B) Compression ratio of 20 dB, and (C) Compression ratio of 30 dB.

TABLE 1 | Reconstruction error of power quality disturbance signal.

Power quality disturbance Sparsity (K) Reconstruction error (%)

Voltage sag 10 1.12
Voltage swell 10 1.47
Harmonic 10 3.29
Voltage flicker 10 3.99
Pulse 10 1.02
Transient oscillation 10 6.15
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compared with the CNN-BiLSTM method in the classification of
PQD. Although the CS-BiLSTM model has lower classification
accuracy for voltage flicker and transient oscillation than the
CNN-BiLSTM model, the CS-BiLSTM has higher classification
accuracy in the other eight types of PQD and average
classification accuracy. Meanwhile, the CS-BiLSTM model’s
training time is only 59.12% of the CNN-BiLSTM model’s
training time. Since the voltage sags, voltage swells, and

harmonics account for more than 70% of the PQD types, in
reality, the ten types of PQD samples are also created in
proportion.

In the case of identifying 1,000 groups of voltage sag
disturbance data, 730 groups are classified as voltage sags, 80
groups are identified as oscillation with voltage sags, 20 groups
are identified as voltage flicker with voltage sags, and 180 groups
are identified as harmonic with voltage sags. Furthermore, we
analyze the 180 groups of signals that are identified as composite

FIGURE 7 | Simulation waveform of the original signal and reconstructed signal.

FIGURE 8 | Training loss and classification accuracy of CS-
BiLSTM model.

FIGURE 9 | Comparison of training time.
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disturbances of harmonic with voltage sags. The analysis shows
that there exist harmonic components in these signals, which
meet the requirements of IEEE standard for harmonic definition.
In addition, it indicates that the label of some original data is
inaccurate. Meanwhile, the result demonstrates that the proposed
method has high classification accuracy for composite
disturbances, which is normally neglected in the previous
study. The total classification time of the CS-BiLSTM model
for the 1,000 groups of voltage sags data is 15 s, with an average
classification time of 0.15 s per sample.

4.3.2 Results of Parameter Optimization Based on
DDPG Method
Three Gaussian white noises were added to the initial signal to
verify the noise immunity of the algorithm before training, and the
SNR is 20 dB, 30 dB, and 40 dB, respectively, after adding the

Gaussian noise. As shown in Figure 11, the accuracy rate of PQD
classification increases rapidly in the initial stage of training. After
about 400 rounds of training and learning, the loss value decreases
rapidly to less than 0.2. The classification accuracy rate increases to
about 95% and then remains stable, indicating that the network has
converged. Compared with the traditional method, the proposed
method has a superior performance of PQD classification both
under simple situations and in the case of complex PQD.

It can be seen from Figure 12 and Table 3 that with the increase
of noise, the average classification accuracy of the two methods for
PQD is gradually reduced. When the noise intensity is 40 and
30 dB, the average classification accuracy of the CS-BiLSTMmodel

FIGURE 10 | Classification results of non-noise power quality
disturbance signals.

TABLE 2 | Classification accuracy of the reconstructed signal.

Power quality disturbance Classification accuracy (%)

CNN-BiLSTM CS-BiLSTM

Voltage sag 96.0 96.8
Voltage swell 96.0 98.4
Harmonic 94.4 98.4
Voltage flicker 98.4 96.8
Pulse 98.4 100
Transient oscillation 98.4 96.8
Harmonic + voltage sag 96.0 97.6
Harmonic + voltage swell 94.2 96.8
Voltage flicker + transient oscillation 96.8 98.4
Voltage flicker + voltage sag 96.0 98.4
Average value 96.43 97.6

FIGURE 11 | Training loss and classification accuracy of the optimized
CS-BiLSTM model.

FIGURE 12 | Classification results of power quality disturbance signals
with 20 dB compression ratio.
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is 97.49 and 96.76%, respectively. When the noise intensity is
further strengthened to 20 dB, the classification accuracy is
significantly reduced to 96.07% but remains high. Compared
with the CNN-BiLSTM model, the CS-BiLSTM hybrid model
performs a higher classification accuracy obviously for all types
of PQDs. The experimental results fully prove that the proposed
hybrid model possesses a good classification ability of PQD signals
and has promising anti-noise capability.

5 CONCLUSION

This paper presents a power quality disturbance classification and
classification method based on DCS and deep learning. Through
this method, the efficient compression and accurate
reconstruction of power quality data of each node in the
power grid can be realized. Moreover, the identification and
classification of PQDs in the power grid can be realized,
which provides a new reference for the governance of power
grid harmonics and the storage of power quality data. The main
conclusions of this paper are as follows:

1) Based on the SOMP algorithm and K-SVD dictionary learning
algorithm, a DCS algorithm called DCS-OMP is proposed,
which realizes efficient compression and accurate
reconstruction of power quality data in distribution network
under low measurement value and high compression ratio.

2) Based on the CNN-BiLSTM model, a CS-BiLSTM hybrid
model is built, and a comparison is carried out between the
two models. The average recognition rate of CS-BiLSTM
hybrid model is 97.85% without noise, and 97.49, 96.76,
and 96.07% with 40, 30, and 20 dB noise, respectively.
Compared with the CNN-BiLSTM model, the recognition
rate of the CS-BiLSTM hybrid model is increased by 10.15,
10.30, 10.00, and 9.23% in the case of no noise, 40 dB noise,
30 dB noise, and 20 dB noise, respectively. The recognition
rate in high-intensity noise interference is improved
significantly. According to the results, the proposed CS-

BiLSTM hybrid model has a higher recognition rate and
better noise immunity.

3) DDPG algorithm is employed to optimize the parameters in
the training process of the CS-BiLSTM hybrid model, which
ensures the convergence of training and the effectiveness of
results.

The proposed method CS-BiLSTM is more efficient to solve the
problems of high sampling rate, high cost of hardware
implementation when performing the disturbance recognition of
power quality data. It helps improve the related theory and
algorithm of power quality analysis and detection. However, the
application of parameters optimization via reinforcement learning
will inevitably encounter spending much time training the
network. In the future, we would like to further adjust the
parameters to make the experiment converge, speed up the
convergence speed of the network, reduce the time spent on
training and improving the computing efficiency of the algorithm.
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TABLE 3 | Classification results of multiple disturbances.

Power quality disturbance SNR

20 dB 30 dB 40 dB Non-noise

Voltage interruption and harmonic 96 (88) 97 (86) 97 (87) 98 (88)
Voltage swell and harmonic 94 (81) 94 (80) 93 (83) 95 (81)
Voltage sag and transient oscillation 100 (88) 100 (89) 99 (90) 100 (88)
Pulse and harmonic 95 (89) 99 (86) 97 (87) 97 (89)
Transient oscillation and harmonic 95 (89) 96 (88) 93 (82) 95 (89)
Voltage flicker and harmonic 91 (82) 93 (81) 95 (82) 93 (82)
Transient oscillation and pulse 100 (88) 98 (89) 100 (90) 100 (88)
Voltage flicker and pulse 92 (87) 98 (88) 100 (90) 100 (87)
Voltage flicker and transient oscillation 98 (82) 96 (89) 100 (88) 100 (82)
Harmonic and transient oscillation and pulse 98 (87) 96 (90) 99 (90) 99 (87)
Harmonic and pulse and voltage flicker 93 (83) 94 (83) 94 (84) 95 (83)
Transient oscillation and pulse and voltage flicker 97 (86) 99 (89) 100 (89) 100 (86)
Voltage sag and transient oscillation and pulse and voltage Flicker 100 (92) 98 (89) 100 (90) 100 (93)
Average value 96.07 (86.15) 96.76 (86.77) 97.49 (87.15) 97.85 (87.69)

(The recognition rate of traditional methods in parentheses).
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APPENDIX

TABLE A1 | Parameter setting and description of DDPG algorithm.

Parameter Definition Value

Tau1 Smoothing coefficient of target network in the actor and critic networks 0.001
Tau2 The smoothing coefficient of exploring network 0.002
α1 Learning rate of actor and critic network 0.001
α2 Learning rate of ε control network 0.002
Batch_size Number of samples drawn from the experience pool per training 64
Capacity Size of experience pool 10,000
Σ Control the initial value of the variance of the exploration range 1
Γ Discount factor 95
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Power Grid Material Demand
Forecasting Based on Pearson
Feature Selection and Multi-Model
Fusion
Zhou Dai1,2, Gang Wang1*, Ruien Bian2 and Chaozhi Deng2

1School of Electric Power Engineering, South China University of Technology, Guangzhou, China, 2China Southern Power Grid
Materials Co., Ltd, Guangzhou, China

The demand projection of power grid materials can furnish an effective support for the
management of power grid materials. Due to variations in the data distribution of individual
districts and diversity of materials, a single forecasting model is incapable of accurately
predicting the demand for all types of materials. Moreover, for the data-driven network
model, the effect of the model has a strong correlation with the quality of its input
parameters. To address these problems, this study proposes a power grid material
demand forecasting model based on feature selection and multi-model fusion. The first
step in this regard is the usage of Pearson coefficient in the selection of main characteristic
parameters from original parameters and using them as the input of the network model.
Then, stacking fusion algorithm is used to fuse multiple basic models. At last, the proposed
method mentioned in this study is tested on a real dataset. The results depict that the
proposed method can fully integrate the advantages of various basic models with higher
accuracy and generalization ability.

Keywords: power grid materials, demand prediction, feature selection, fusion algorithm, gradient boosting decision
tree, eXtreme gradient boosting tree, long- and short-term memory network

INTRODUCTION

A power grid system is one of the preeminent pillars for national economic development. Any sort of
issue in power equipment might cause large-scale power outage of the power grid, thus leading to
huge negative impacts. At present, the material management of power grid has several problems
including “the material data fragmentation, material reserves mechanization, and main
responsibility ambiguity.” The accuracy, correctness, and integrity problems existing in most of
the historical demand data of electric power materials, which leads to the demand of material, cannot
be predicted (Lai et al., 2016; Oliveira et al., 2021),. thereby causing inadequate refinement of material
management. Therefore, in order to achieve higher efficiency and precision of material management,
the material demand forecasting has been researched deeply throughout the world.

According to the references (Pan et al., 2016; Wang and Gu, 2016; Zhao et al., 2017; Wang et al.,
2019; Dong et al., 2020; Ming et al., 2021), most of the prediction models for power grid materials are
presently using a single model structure having the problem of either over-fitting or under-fitting and
also have poor generalization for different scenarios. However, the data model requires a high quality
of input parameter information. As a result, the input parameter information should be screened.
According to the reference (Yang et al., 2022a), this research is a pioneer study for SCUC problems
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that proposes an expanded sequence-to-sequence (E-Seq2Seq)
based data-driven SCUC expert system for dynamic multiple-
sequence mapping samples; it can accommodate the mapping
samples of SCUC and consider the various input factors that
affect SCUC decision-making, possessing strong generality, high
solution accuracy, and efficiency over the traditional method.

Aiming at the aforementioned problems, this study proposes a
power grid material prediction model based on feature selection
and multi-model fusion. First, the Pearson coefficient will be used
to calculate the relevant characteristic parameters. After
removing the irrelevant parameters, the important
characteristic parameters related to the problem will be
extracted as the input of the subsequent network model.
Afterward, the multiple base models will be fused using
stacking fusion. The basic model will utilize gradient boosting
decision tree (GBDT), extreme gradient boosting tree (XgBoost),
and long- and short-term memory network (LSTM), portraying
excellent regression learning ability. The multi-model fusion
network is able to fulfill the advantages of each basic model,
through high prediction accuracy as well as improvement in the
generalization ability.

STATISTICAL ANALYSIS OF POWER GRID
MATERIAL FAULTS AND DEFECTS

First of all, this study presents a statistical analysis of the defect
levels of a certain bureau of China Southern Power Grid
Corporation from 2015 to 2019. The defect levels can be
categorized into four types: emergency, major, general, and
others accounting for 46, 9, 42, and 3%, respectively. Based on
various types of defects, the current material demand can be
bifurcated into three categories, namely, daily materials (defect
level is general), major defect materials, and emergency defect
materials (Gong, 2013; Ke et al., 2017; Dong, 2018; Chai, 2020;
Shen and Raksincharoensak, 2021; Yang et al., 2022b).

The main factors responsible for these defects include the
quality of the product design, the quality of construction, the
quality of operation and maintenance, the service time of
products, the overload state of equipment, and the natural
environment.

THE MODEL OF POWER GRID MATERIAL
DEMAND

Gradient Boosting Decision Tree Algorithm
The gradient boosting decision is made to superimpose M sub-
trees to achieve regression prediction:

F(x, w) � ∑M
m�0

αmhm(x, wm) � ∑M
m�0

fm(x, wm). (1)

In the formula shown previously, x represents the input
sample, wm represents the model parameter, h represents the
classification regression tree, and α signifies the weight of each
tree. The core concept of GBDT algorithm is based on the

weighted sum of multiple weak learners (Chen et al., 2015;
Son et al., 2015; Sheridan et al., 2016; Rao et al., 2019; Wu
et al., 2020; Yang et al., 2021a; Yang et al., 2021b; Shen et al.,
2021). This study initializes several weak learners in the
beginning:

F0(x) � argmin
c

∑N
i�1
L(yi, c). (2)

Then, building M trees, m � 1, 2, . . . ,M:

1) For the sample i � 1, 2, . . . , N, the negative gradient
corresponding to the number M tree is calculated by
pseudo-residual:

rm,i � −[zL(yi, F(xi))
zF(x) ]

F(x)�Fm−1(x)
. (3)

2) For the sample i � 1, 2, . . . , N, the number M regression tree
is obtained by using data (xi, rm,i), and its corresponding leaf
node region is Rm,j, and j � 1, 2, . . . , Jm.

3) For Jm leaf nodes region j � 1, 2, . . . , Jm, the best fitting value
is calculated as follows:

Cm,j � argmin
c

∑
xi∈Rm,j

L(yi, Fm−1(xi) + c). (4)

4) Renewing the learner Fm(x), we get:

Fm(x) � Fm−1(x) +∑Jm
j�1

cm,jI(x ∈ Rm,j). (5)

5) The final expression of the strong learner FM(x) is:

FM(x) � F0(x) + ∑m
m�1

∑Jm
j�1

cm,jI(x ∈ Rm,j). (6)

The model of GBDT has many parameters, such as the
number of base learners, the learning rate, the number of
subsamples, and the maximum depth of each base learner
(decision tree). Due to the limited number of defect data
samples, the maximum depth of the tree should not be
too deep.

Extreme Gradient Boosting Tree
Extreme gradient boosting algorithm is an ensemble learning
algorithm based on gradient boosting. It calculates the final
regression result by integrating multiple basic trees. It has
advantages pertaining to high efficiency and accuracy in
regression tasks. On the basis of GBDT, XgBoost
introduces the loss function of the second derivative of the
predicted results. It adds the tree model complexity into the
objective function as a regular term. This can prevent over-
fitting and improve the generalization performance of the
model. In this study, the XgBoost prediction function is
constructed as follows (Malhotra et al., 2015; Sikora and
Al-Laymoun, 2015; Xu et al., 2015):
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ŷi � ϕ(xi) � ∑K
k�1

fk(xi), fk ∈ F. (7)

Since the model is additive, the current prediction results need
to be added to calculate in each iteration.

L(t) � ∑n
i�1
l(yi, ŷ

t−1
i + ft(xi)) +Ω(ft). (8)

The overall objective function is:

Lϕ � ∑
i

l(ŷi, yi) +∑
k

Ω(fk). (9)

The Ω(f) is the regular term, which is expressed as:

Ω(f) � γT + 1
2
λ‖w‖2. (10)

.

Taylor expansion of L(t)is:

�L
t � ∑n

i�1
[gift(xi) + 1

2
hif

2
t(xi)] + γT + 1

2
λ∑T
j�1
w2

j

� ∑T
j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij

gj
⎞⎠wj + 1

2
⎛⎝∑

i∈Ij

hj + λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + γT.

(11)

Then, the ideal weight of leaf node j in round t should be

wp
j � −

∑
i∈Ij

gi

∑
i∈Ij

hi + λ
. (12)

The quality score of the tree in round t is marked by the
following formula:

�Lt(q) � −1
2
∑T
j�1

⎛⎝ ∑
i ∈ Ij

gi
⎞⎠2

∑
i∈Ij

hi + λ
+ γT. (13)

For all leaf nodes to be split in this round, IL and IR represent
the set of assumed leaf nodes after splitting, so the loss reduction
after splitting can be measured by the following formula
illustrated as:

Lsplit � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( ∑

i ∈ IL

gi)
2

∑
i∈IL

hi + λ
+
( ∑

i ∈ IR

gi)
2

∑
i∈IR

hi + λ
−
( ∑

i ∈ I
gi)

2

∑
i∈I
hi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− γ. (14)

Compared to GBDT, XgBoost algorithm is a further
optimization design, which can reduce model variance through
row sampling. Also, it reduces over-fitting through learning rate
setting. Moreover, it controls the tree growth through early
stopping to avoid over-fitting.

Long- and Short-Term Memory Network
Figure 1 illustrates the unit structure of LSTM. At every
moment t, the weight calculated by LSTM is linked back to
itself. The input to the LSTM unit is the previous state ht−1 and
the current input xt. The function of storing and forgetting
information is realized through four fully connected neurons,
namely, ft, it, ~ct, and ot. Specifically, the forgetting gate ft

determines how much previous information is transmitted
forward; input gate it controls the input information level;
the forgetting gate ot determines the output of this time step
(Singh, 2017; Hu et al., 2018). The formula for calculation is
described as follows:

1) Input the sequence value xt at time t and the hidden layer state
ht−1 at time t-1, and determine the discarded information
through activation function. At this time, the output is as
follows:

ft � σ(Wf · ht−1 +Wf · xt + bf). (15)
In the previously stated formula, ft is the result of the

forgetting gate state, and Wf and bf are the residual weight
matrix and bias, respectively. σ is the activation function, usually
the tanh or sigmoid function.

2) The input gate state formula is illustrated as follows:

Confirm that the Data Availability statement is accurate. Note
that we have used the statement provided at Submission. If this is
not the latest version, please let us know

it � σ(Wi · ht−1 +Wi · xt + bi); (16)
~ct � tanh(Wc × ht−1 +Wc × xt + bc); (17)

ct � it+~ct + ft+ct−1. (18)
In the aforementioned formula, it is the result of the input gate

state, and ~ct is the input unit state at time t.Wi andWc are input
gate weight matrix and input unit state weight matrix, repectively,
and bi and bc are the corresponding input gate bias and input unit
state bias, respectively. tanh is activation function, and + stands
for multiplying by elements.

FIGURE 1 | Unit structure of LSTM.
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3) Output information of LSTM is determined by the output gate
and unit state as shown in the following equation:

ot � σ(Wo · ht−1 +Wo · xt + bo); (19)
ht � ot+tanh(ct). (20)

In the formula, ot is the output gate state result, andWo and bo
are the weight matrix and output bias, respectively.

Stacking Fusion Algorithm
Stacking fusion algorithm reduces the generalization error of
the whole model and improves the classification accuracy of
the model via building a two-layer learner. This makes the
second-layer model to learn the classification results of the
first-layer model. Among them, T basic classification models
are first used in the first layer. After inputting the original data,
a result with the same data size is outputted as the input of the
second-layer network. The output of each basic learner is used
as input when training the second-layer learner, and the
function of the second-layer learner is to integrate the
output of the basic learner.

Power Grid Material Prediction Based on
Pearson Feature Selection and Multi-Model
Fusion
In this study, the integrated feature scoring model is used to
evaluate, and the total score is averaged to avoid the
limitations of single feature selection and finally optimizes
the effect of feature selection. With the help of classical
Pearson correlation coefficient analysis and selecting high
linear correlation attributes, we can roughly find out the
relevant attribute categories that have a great impact on
material defects. The Pearson correlation coefficient
formula is shown in Eq. 21 and Eq. 22. Through this
formula, Pearson correlation coefficient can be obtained by
dividing the covariance by the standard deviation of two
related variables, which is used to make up for the weak
performance of the covariance value in the correlation
degree of random variables.
.

cov(x, y) � ∑i�1
n (xi − x)(yi − y)

n − 1
; (21)

Pearson � corr(x, y) � cov(x, y)
σxσy

� E[(x − μx)(y − μy)]
σxσy

.

(22)
The range of the Pearson coefficient is [−1, 1]. The larger the

absolute value is, the more linearly related the two random
variables are. Pearson � 1 means that the random variables are
completely positively correlated, Pearson � −1 means that the
random variables are completely negatively correlated, and
Pearson � 0 means that there is almost no linear correlation

between the two variables [Feng et al., 2019; Li et al., 2021a; Li et
al., 2021b].

EXAMPLES ANALYSIS

The sample dataset provided by the power supply bureau of
China Southern Power Grid Corporation was selected for training
and testing. The defect data from 2015 to 2019 were initially used
to train the model, and then the data from 2020 were tested to
verify the prediction effect of the model.

The Method of Model Evaluation
In order to comprehensively evaluate the validity and accuracy of
the proposed method in power grid material forecasting, the
following two evaluation indexes are selected:

The value of the root mean square error (RMSE) between the
real value of the test set and the predicted value of the model is
expressed as follows:

RMSE �
�����������∑T

i�1(~xi − xi)2
T

√
. (23)

The average relative error between the real value and the
predicted value, Err, is expressed as:

Err � 1
T
∑T
i�1

∣∣∣∣∣∣∣~xi − xi

xi

∣∣∣∣∣∣∣ × 100%. (24)

The Result of Examples Analysis
In this study, the prediction results of emergency defect materials
are compared and analyzed, taking overhead wire as an example.

The number of sub-trees of XgBoost is set at 300, and the
learning rate is kept at 0.04, while the penalty factors γ and λ
of tree model complexity are taken as 0.01 and 0.9,
respectively. Furthermore, the number of sub-trees of
GBDT too is set at 300 along with the learning rate at
0.04. The network layers of four kinds of LSTM networks
(LSTM-1, LSTM-2, LSTM-3, and LSTM-4) are set at 3, 3, 4,
and 4, respectively; the number of corresponding neurons is
set to 128, 128, 256, and 256, respectively, and the learning
rate is set at 0.01.

TABLE 1 | Comparison of different basic models and fusion model algorithms for
emergency defective material prediction.

Model and method RMSE Err (%)

XgBoost 11.2 41.2
GBRT 8.9 33.4
LSTM-1 13.4 29.9
LSTM-2 15.6 38.4
LSTM-3 9.7 43.1
LSTM-4 7.8 40.7
Multi-model fusion 6.6 27.5
Multi-model fusion with feature optimization 4.7 18.3
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Table 1 shows the prediction results of different base models,
multi-model fusion, and multi-model fusion with feature
optimization for emergency materials. The results of the basic
model are obtained directly from their own network without the
second layer fusion of the proposed network.

The results of the evaluation index reveal that a single model
cannot achieve the best effects. After using the multi-model
fusion algorithm, it can make full use and give full play to the
prediction advantages of each basic model in one aspect.
Moreover, it improves the overall prediction accuracy of the
algorithm. It also avoids the phenomenon of over-fitting along
with enhanced stability of prediction. On the basis of multi-model
fusion, this study also uses Pearson coefficient to optimize the
input parameters and selects the most important characteristic
parameters as the input of the network. Therefore, after the
feature optimization of the original input parameters, the main
influencing feature parameters can be selected. Following this, the
feature parameters of irrelevant factors can be eliminated, so that
the subsequent learning model can better fit the historical data.
Therefore, based on the aforementioned observations, it can be
concluded that the multi-model fusion algorithm of feature
optimization proposed in this study has high accuracy in the
prediction of power grid materials.

CONCLUSION

Focusing at the problem of material prediction in the power
system, a prediction method based on feature selection and

multi-model fusion is proposed in this study. Starting by
calculating the Pearson coefficient, the irrelevant parameters
are removed from the original parameters. The main
characteristic parameters are then selected as the input of
the subsequent network model. Furthermore, three excellent
data-driven models are identified as the basic model followed
by the application of the stacking method for fusion. The
fusion algorithm can not only make full use of the advantages
of each basic model to improve the prediction accuracy but
also improve the generalization ability of the model. Hence,
the predicted power grid material demand can provide an
effective data support for the management of power grid
materials.
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Recognition of Bird Nests on Power
Transmission Lines in Aerial Images
Based on Improved YOLOv4
Zhaoyun Zhang* and Guanfeng He

School of Electronic Engineering and Intelligence, Dongguan University of Technology, Dongguan, China

Bird nests on transmission line towers pose a serious threat to the safe operation of power
systems. Exploring an effective method to detect bird nests taken by drone inspection is
crucial. However, the images taken by drones have problems such as drastic changes in
the size of the object, occlusion of the object, and inconsistency in the characteristics of the
object in relation to the background. The original YOLOv4model has difficulty solving these
problems. Therefore, this article improves the original YOLOv4 model by adding a Swin
transformer block to its backbone network, fusing the attention mechanism into the neck
of the original model, implementing classification and regression tasks for head
decoupling, and using an anchor-free frame strategy and the SimOTA sample
allocation method. The improved model was trained and tested on a bird nest dataset,
and the detection accuracy reached 88%. Finally, the method was compared and
evaluated against Faster R-CNN, RetinaNet, SSD, and the original YOLOv4, four of the
other mainstream object detectionmodels. The results showed that the accuracy obtained
by the algorithm was better than the other models; the algorithm could effectively detect
difficult objects such as multiple angles, occlusions, and small objects, and the detection
speed could meet the real-time requirements.

Keywords: bird nest, YOLO, object detection, power inspection, smart grid

INTRODUCTION

Birds are indispensable and important members of nature. They play a vital role in the global
ecosystem and directly affect the human health, economic development, and food production, as well
as millions of other species. However, their nesting behavior has always been one of the main sources
of transmission line faults (Li et al., 2020a). Bird nests on the transmission lines can easily cause the
lines to trip or insulators to be broken down, causing major losses to the operation of the distribution
network. To ensure the safe operation of the transmission network and reduce the potential safety
hazards to the transmission lines caused by bird activities, it is necessary to monitor the behavior of
bird nests on the overhead line towers.

Traditional manual inspection methods are labor-intensive and have low inspection efficiency
and personal safety. In some dangerous terrains, inspections cannot even be carried out (Ding et al.,
2021). To this end, power grid companies have introduced new technologies at a large scale in recent
years, using robots, drones, and helicopters to perform fault inspection on the overhead lines (Dai
et al., 2020). With the popularization of a new generation of inspection methods, the difficulty of field
inspections has been greatly reduced, but massive amounts of visualized data have been produced.
Faced with a large number of inspection images and videos, the use of naked eyes to detect the
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inspection images is not efficient and has greatly increased the
burden on the staff (Li et al., 2020b). As a result, currently, the
analysis and the processing of power inspection images mainly
involve uploading all the inspection data to the backend server
through network transmission, using the powerful computing
power of the server to store and perform object detection. Chen
et al. performed CenterNet-based bird nest detection of overhead
lines in power grids and introduced the anchor-free mechanism
to overcome the disadvantages of excessive preselection frame
calculations in the existing object detection algorithms. Wang
et al., (2019) used the Faster R-CNN algorithm to detect a bird
nest on a tower, with a multiscale algorithm alleviating the
difficult detection problem under a complex background. Ding
et al., (2021) proposed a dual-scale bird nest detection algorithm
based on YOLOv3, which not only took into account the accuracy
and efficiency of the detection algorithm but also had strong
antinoise performance and improved the robustness of the
detection algorithm. Liu et al., (2020) proposed an algorithm
based on RetinaNet, which improved the detection accuracy of
small-sized bird nests by increasing the number of feature layers
and expanding the range of the network’s receptive field. Liu et al.,
(2020) improved the spatial pyramid module of YOLOv4 to
reduce the loss of object information due to pooling. It also

improved the loss function to enhance the model’s ability to
distinguish similar objects.

However, most of the existing object detection algorithms have
been designed for images of natural scenes. Because of the
randomness of the position of bird nests, it is impossible to shoot
at a fixed position, in contrast to the fixed position of the insulator on
the overhead line. The direct application of an existing detection
algorithm to deal with the object detection task in the UAV capture
scene has the following main problems (Li et al., 2021). First, drastic
changes in the flying height of the drones drastically change the
proportion of the detected bird nests. Second, the overhead line
images taken by the drones contain high-density objects (such as
towers), which can cause the bird nests to be obscured (Tian et al.,
2021). Third, due to the large coverage area, images taken by the
drones always contain confusing geographic elements, forming the
illusion that bird nests blend with the background (Zhang et al.,
2021). The abovementioned three problems make the automatic
detection of bird nests based on drone photography very challenging.
In terms of the problems of the original YOLOv4model for detecting
small and dense objects, it requires a strong prior knowledge to set the
size of the preselection box (Wang et al., 2021); the Swin transformer
block (Wang et al., 2020) module is added to the backbone network,
and the Swin transformer block is used. Themodulemakes up for the
lack of global information extraction capabilities of the convolutional
network and further improves the feature extraction capabilities of
the model. The Swin transformer block module and convolutional
block attentionmodule (CBAM) are also added to the neck to further
strengthen the neck multiscale feature map spatial information and
semantic information fusion ability and convert the information
output by the backbone network into a feature map with a more
contextual information input to the detection head. A decoupled head
operation is performed in the detection head part, and the
classification and regression tasks are processed separately. This
enables the model to achieve better accuracy and convergence
speed during the classification and regression and introduces an

FIGURE 1 | Architecture of the improved YOLOv4 model.

FIGURE 2 | Ghost module structure.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8702532

Zhang and He Power Transmission Line Recognition

557

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


anchor-free framemechanism, eliminating the need for design. It can
obtain the detection accuracy comparable to an anchor-based
mechanism and uses SimOTA for positive and negative sample
matching, while determining the priori box step, which greatly
alleviates the problem of the positive and negative sample
mismatch. The improved model architecture is shown in
Figure 1. Our contributions are listed as follows:

• We integrated the ghost module into YOLOv4, which can
significantly decrease the amount of model parameters and
computation.

• We integrated the decoupled head into YOLOv4, which can
slightly accelerate the training speed.

• We integrated the CBAM into YOLOv4, which can help the
network to find the region of interest in images that have a
large region coverage.

• We integrated the Swin transformer block into YOLOv4,
which can accurately localize the objects in high-density
scenes.

BACKBONE

The backbone network is used as a feature extraction network to
extract the image information for generating a feature map and
then detecting the location and the category of the object. The
existing object detection models often use classification networks

with powerful feature extraction capabilities such as ResNet,
MobileNet, EfficientNet, and Darknet as the backbone
network, but the parameters of the backbone network need to
be fine-tuned according to specific detection tasks. Based on the
original YOLOv4 backbone network CSPDarknet, the CSP
module is replaced with a ghost module, the original
convolutional downsampling layer is replaced with a ghost
convolution, and finally, the Swin transformer block is added
to the end of the backbone network.

Ghost Module
Based on the YOLOv4 backbone network CSPDarknet-53, the
original backbone network of CSPDarknet is optimized. First,
three ghost layer modules and four ghost convolutional
downsampling modules are added to the backbone network.
Each ghost layer module is based on the residual module of
Darknet53 and is produced by the improvement of the structure
of CSPNet (Han et al., 2020). It consists of three ghost
convolution modules and n ghost bottleneck modules that are
superimposed. A ghost module first uses a small number of
convolution kernels to extract the features of the input feature
map, then further performs cheaper linear change operations on
this part of the feature map, and generates the final feature map
through the splicing operation, as shown in Figure 2.

Dosovitskiy et al., (2020) pointed out that rich feature
information could be captured by stacking the convolutional
layers containing redundant information, which would be
conducive to a more comprehensive understanding of the data
by the network. Therefore, the rich feature information is
extracted through the conventional convolution operation, and
the redundant feature information is generated by a cheaper
linear transformation operation. This can effectively reduce the
computing resources required by the model, and the design is
simple and easy to implement, allowing for a plug-and-play
execution.

Swin Transformer Block
Inspired by the vision transformer (ViT) (Liu et al., 2021), the last
CSP module in the original YOLOv4 version of CSPDarknet is
replaced with a transformer encoder block. Compared with the
original CSP module, the transformer encoder block can capture
global information and richer contextual information. However,
the introduction of the transformer module greatly increases the
number of calculations and parameters of the model. In contrast
to the direct multi-head self-attention of the global feature map in
the ViT, the Swin transformer uses the concept of window multi-
head self-attention (W-MSA) to divide the feature map into
multiple disjoint windows. As shown in Figure 3. Multi-head
self-attention is performed only within each window. It can
reduce the amount of calculation significantly, especially when
the shallow feature map is large. Although this reduces the
amount of calculation, it also isolates the transfer of
information between different windows, thereby giving rise to
the shifted window multi-head self-attention (SW-MSA)
operation in the Swin transformer. Since W-MSA and SW-
MSA are used in pairs, this solves the problem of information
exchange between different windows.

FIGURE 3 | Two successive Swin transformer blocks.
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The Swin transformer block increases the ability to capture
different local information while using the self-attention
mechanism to explore the potential of feature representation.
In addition, it performs better on the high-density occluded
objects. Due to the trade-off among the amount of calculation,
the number of parameters, and the accuracy, the Swin
transformer block is applied only to the neck and the end of
the backbone network based on YOLOv4. Because the resolution
of the feature map at the end of the network is low, applying the
Swin transformer block to the low-resolution feature map can
reduce the expensive calculation and storage costs, while allowing
the model to pay more attention to the extraction of bird nest
features.

NECK

To make better use of the features extracted by the backbone
network, the feature maps of different stages extracted by the
backbone are reprocessed and used rationally. The following
three main improvements are made: 1) the ghost module

replaces the CSPLayer module; 2) the convolution block
attention module is added to the upsampling and
downsampling path of the neck; and 3) the Swin
transformer block is added to the output of the neck
module. The ghost module is the same as that in the
backbone network. Therefore, no special introduction is
given in this section.

CBAM
The convolutional block attention module is simple but effective.
It is a lightweight module that can be integrated and is used for
plug-and-play execution in any convolutional neural network
and thus can be trained end-to-end. Given an intermediate
feature map, the convolutional block attention module
sequentially infers the attention map along the two
independent dimensions of channel and space and then
multiplies the attention map with the input feature map to
perform the adaptive feature optimization. The structure of
the convolution block attention module is shown in Figure 4.
According to the experiment in (Woo et al., 2018), after
integrating the convolution block attention module into
different models on different classification and detection
datasets, the performance of the model is greatly improved.
This proves the effectiveness of this module. According to the
images taken by drones, large coverage areas always contain
complex background elements. Using the convolution block
attention module, we can extract the attention regions, help
the model resist chaotic information, and focus on the
detection of bird nests.

Swin Transformer Block
The fusion of multiscale features has always been difficult in
object detection. The image contains rich visual semantic
information in space and scale. This semantic information is
continuously obtained through the convolution operations, and
only the information within the size range of the convolution

FIGURE 4 | Convolutional block attention module.

FIGURE 5 | Comparison between the decoupled head and the
coupled head.
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kernel can be extracted each time. To obtain global information, it
is necessary to stack multiple convolutional layers. In this regard,
some researchers have proposed a nonlocal neural network
(NLN), which matches the nonlocal information in the
convolutional layer. Wang et al., (2018) believed that the NLN
does not cross-scale and only extracts information across space,
unable to capture the nonlocal context of objects at different
scales. Because the neck itself is a multiscale feature fusion
module, the cross-scale feature interaction can effectively
locate and identify the local details of semantics. Zhang et al.,
(2020) believed that the existing methods cannot achieve the
cross-scale feature interaction and have proposed the feature
pyramid transformer (FPT) to make full use of the mutual fusion
of the cross-space and cross-scale features. The advantage of
introducing the Swin transformer block module is to connect the
low-resolution, high-semantic information and low-level features
of the high-resolution, low-semantic information output from the
different stages of the backbone network, from top to bottom and
vice versa. Therefore, the features at different scales’ output by the
neck have rich semantic information.

HEAD

As a classification network, the backbone network cannot
complete the positioning task, and the head is responsible for
detecting the location and the category of the object through

the feature map extracted from the backbone network.
Detectors are generally divided into two categories: one-
stage object detectors and two-stage object detectors. The
two-stage detector has long been the dominant method in
the field of object detection, and the most representative one is
the RCNN series. In contrast to the two-stage detector, the
one-stage detector can predict the boundary regression and
the object category at the same time. The single-stage detector
has obvious advantages in speed but has a lower accuracy. To
improve the capabilities to detect and position small objects,
based on the original YOLOv4 detection head, the
classification and regression tasks are decoupled, the
anchor-free mechanism is introduced, and the SimOTA
sample allocation algorithm is used.

Decoupled Head
In object detection, the conflict between classification tasks
and regression tasks is a long-standing problem. However, the
coupled heads for classification and positioning are widely
used in most one- and two-stage detectors. Song et al., (2020)
proposed that the positioning and classification tasks of object
detection have a spatial misalignment problem. In other
words, the two tasks have different focuses and places of
interest, and the classification pays more attention to the
similarity between the extracted features and the existing
categories, while the positioning pays more attention to the
coordinate position of the real frame. Therefore, to make the

FIGURE 6 | Positive sample candidate area.

TABLE 1 | SimOTA algorithm.

SimOTA algorithm process

1. Identify positive sample candidate areas.
2. The regression loss and category loss of each sample and the GT are calculated to generate the cost matrix M.
3. According to the sum of the IoU values of the top ten samples of the current GT, the number of positive samples k is determined.
4. In M, the first K samples with the minimum loss are taken for each GT as positive samples.
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detection head more efficient, the method of decoupling the
head is introduced, that is, the detection head is changed from
one branch to three branches using a convolution operation,
as shown in Figure 5. Decoupling the head leads to an
improved detection accuracy of the model and a faster
convergence speed. Although the 1 × 1 convolutional
dimensionality reduction operation is performed on the
feature map output by the neck, decoupling the head does
slightly slow the inference speed of the model. In general,
however, head decoupling has more advantages than
disadvantages.

Anchor-Free Mechanism
Due to the variation in the shooting angle and the distance of
drones and the size of bird nests, the sizes of bird nests in
different images are quite varied, and artificially set anchor
frames cannot always match the real frames in the dataset. The
anchor frame mechanism needs to set the size and the scale
parameters in advance, which requires a strong prior
knowledge. To address this problem, the traditional YOLO
series uses the K-means method to cluster the dataset and
calculate the size of the anchor frame. The use of K-means
does increase the detection performance, but the generated
anchor frame can only apply to a specific dataset, and it
increases the complexity of the detection head and the
number of potential object predictions. In addition, the

traditional anchor-free frame method uses only the center
position of each grid as a positive sample (the red dot in
Figure 6), ignoring other high-quality prediction samples
away from the center. Optimizing those high-quality
prediction samples is not only beneficial to the convergence
speed but also alleviates the imbalance of the positive and
negative samples during the training (Ge et al., 2021). In
addition, for discontinuous objects such as bird nests, only a
positive sample is taken at the center of the object, which is
likely to cause errors and affect the final detection
performance. Therefore, multiple samples of the 3 × 3 area
in the object center are selected as the positive sample
candidates (the red and yellow dots in Figure 6).

SimOTA
The traditional object detection algorithm allocates the
positive and negative samples according to the IoU of the
anchor frame and the real frame. However, the division of the
positive and negative samples under different sizes, shapes,
and occlusion conditions should be different, and the context
information also needs to be considered. An excellent sample
matching algorithm can effectively solve the dense object
detection problem and optimize the detection effect when
there are extreme proportions of objects or imbalanced
positive samples of extreme size objects (Tian et al., 2019).
Therefore, SimOTA treats sample matching as an optimal

FIGURE 7 | Loss curve and AP curve during the training.

TABLE 2 | Test results of the different detection algorithms.

Model Precision (%) Recall (%) AP@0.5 (%) Params (M) Flops (G) Fps (rtx3090)

Faster R-CNN 52.80 77.09 74.49 28 473 25f/s
RetinaNet 93.94 67.93 76.19 36 81 49f/s
SSD 93.47 74.10 83.32 23 136 67f/s
YOLOv4 86.34 83.07 87.31 63 70 43f/s
Proposed 92.11 83.67 88.56 30 40 43f/s
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transportation problem in a linear programming problem.
The specific process is shown in Table 1.

EXPERIMENT

The experiment selected a real UAV line patrol dataset
containing bird nests. The proposed model and the four
mainstream models of YOLOv4, Faster R-CNN, SSD, and

RetinaNet were trained, tested, compared, and evaluated on
the selected dataset.

Description
The bird nest dataset comes from the data obtained by a power
grid company conducting live-line inspections with
unmanned aerial vehicles on its overhead lines. The dataset
for this study had a total of 4,514 bird nest pictures, and the
original dataset was divided into non-test and test sets at a

FIGURE 8 | Test results of different detection models.
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ratio of 9:1. The non-test set was divided 9:1 into training and
validation sets. The training set, the validation set, and the test
set included 3,655, 407, and 452 images, respectively. Because
the bird nest detection model requires a large number of data
samples to train the network, this study performed random
mosaic data enhancement and a series of random processing
of color gamut and size before inputting each picture in the
original dataset.

Training and testing on the experimental data were carried
out on the same deep learning server with the Ubuntu 18.04
operating system, an Intel Xeon W-2245 CPU, a single
GeForce RTX 3090 24 GB GPU, and 64-GB DDR4 RAM.
The training and testing were implemented using the
PyTorch 1.8.0 framework, and the detection effect of a
single picture or a video was visualized through the
OpenCV tool library.

Analysis
At the beginning of the training, the weights of the model
were randomly initialized, and the coco dataset was used to
pre-train the model and to let the model learn the ability to
extract features. This can extract the potential features or
common structures between the original problem dataset and
the object dataset, thereby accelerating the training and
improving the performance of the model. The training
process was optimized by batch normalization. Each batch
has trained 16 samples, and each iteration has trained 228
batches. Since the bird nest dataset was relatively small, only
100 epochs were trained. The initial learning rate of the model
was set to the cosine annealing learning rate, the Adam
optimizer was used, the weight attenuation was 0.0005, and
the size of the input image was 640 × 640. The parameters of
the backbone network were not updated in the first 50 epochs,
and the entire parameters of the network were updated in the
rest of the 50 epochs. The training results are shown in
Figure 7.

Result
To verify the effectiveness of the improved model, Faster
R-CNN, RetinaNet, SSD, YOLOv4, and the improved
model were evaluated experimentally on the same bird nest
dataset, and the experimental results were compared (all the
models were trained under the same conditions). Evaluation
indicators included the calculation accuracy (precision),
average precision (AP) with a detection threshold of 0.5
(IoU), model parameters (Params), model calculations
(Flops), and detection speed (FPS). Among them, AP is an

important indicator for evaluating the detection effect, which
can be obtained by calculating the area enclosed by the curves
for the accuracy rate P and recall rate R. Table 2 shows the test
results of the five models. Among them, the improved model
had an AP value of 88.56% and a detection speed of 43 f/s
when the threshold was 0.5. The analysis is as follows: the
improved model was superior to the other models in detection
accuracy and recall rate. Among the models, RetinaNet
achieved the highest accuracy due to the lower regression
rate. However, overall, the detection effect of the improved
model was better than the other types of detection. In
addition, while the introduction of head decoupling into
the improved model resulted in a slower detection speed
than that of the SSD algorithm and RetinaNet, it still met
the requirements of real-time detection.

Figure 8 shows the detection results of the improved model
and the four other mainstream detection models on the test
set. The test set included a small-sized bird nest object,
multiple bird nest objects in a single image, a bird nest
being severely obscured by a tower, and a bird nest
blending with the background. These are the common
situations for a variety of power inspections. The improved
model maintained a good detection performance under the
above mentioned conditions. Other models had good
detection capabilities for bird nests (as shown in
Figure 8A). However, the following situations were also
observed. 1) Insufficient detection capabilities for the small
objects: as shown in Figures 8B,E, the SSD algorithm,
RetinaNet algorithm, Faster R-CNN algorithm, and
YOLOv4 algorithm failed to detect the third bird nest at
the bottom right. Each of the above mentioned algorithms
also missed the detections in Figures 8C,D,F,G. 2) They were
prone to false detection: as shown in Figure 8C, YOLOv4
recognized the bamboo frame on the left as a bird nest. As
shown in Figure 8F, Faster R-CNN recognized the tower on
the right as a bird nest. 3) The detection capability for complex
backgrounds was insufficient. As shown in Figure 8H, all the
four mainstream models missed the detection. The
aforementioned results show that the improved model can
maintain the detection accuracy and robustness in different
scenarios and is suitable for the power inspection of the UAV
aerial photography.

Ablation Study
The importance of each proposed component was analyzed
on the test set. The impact of each component is listed in
Table 3.

TABLE 3 | Ablation study result.

Model AP@0.5 (%) Params (M) Flops (G) Fps (rtx3090)

YOLOv4 87.31 63 70 43f/s
YOLOv4+ghost 82.54 35 39 65f/s
YOLOv4+ghost + decoupled head 80.22 29 42 51f/s
YOLOv4+ghost + decoupled head + CBAM 84.54 29 42 47f/s
Proposal (previous + Swin transformer) 88.56 30 40 43f/s
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CONCLUSION

The classic object detection algorithm is not suitable for the
detection of aerial images, and it has disadvantages such as
poor detection accuracy, high rates of missed detection, and
excessive model scale. Based on YOLOv4, improvements
were made from the backbone network, neck, and
detection head. The ghost module, the CBAM module, the
transform module, the anchor-free mechanism, and
SimOTA were added based on YOLOv4 to form an
improved bird nest detection algorithm of drone aerial
photography. The improved model was tested on a bird
nest dataset from the aerial photographs of an electric
power inspection drone. The experiments showed that
compared with the other mainstream algorithms, the
improved algorithm had advantages in the recall rate and
simultaneously obtained a higher accuracy rate. Therefore,
the improved model can help power inspectors to obtain a
better experience in UAV power inspection. Although the
proposed algorithm presently meets the requirements for

real-time bird nest detection, the detection speed still needs
to be improved compared with the SSD algorithm. In the
future, by reducing the scale of the weight parameters of the
network, the model will be lightened, and the detection speed
will be improved.
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An Improved Solution to Generation
Scheduling Problem Using Slime Mold
Algorithm
Zixuan Zhu*

China Three Gorges University, Yichang, China

The slime mold algorithm (SMA) is a novel meta-heuristic search that replicates the
characteristics of slime mold during oscillation. This is presented in a novel
mathematical formulation that employs changeable weights to modify the sequence of
both negative and positive propagation waves in order to build a mechanism for linking
food availability with intensive exploration capacity and exploitation affinity. The study
demonstrates how to solve a non-convex and cost-effective load dispatch issue (ELD) in
an electric power system using the SM method. The efficacy of SMA is explored for a
single-area economic load dispatch on small-scale power systems, using 3-, 5-, and 6-unit
test systems, and the results are validated by comparing the results to those of other well-
known meta-heuristic algorithms.

Keywords: slime mold algorithm, non-convex optimization, electric power system, metaheuristic algorithms, load
dispatch

INTRODUCTION

In the actual functioning of power systems, economic load dispatch (ELD) is a crucial problem to
solve. The role of the power system is to deliver continuous power to the consumers at an affordable
price which is its main feature (Panigrahi et al., 2006), (Jadoun et al., 2015). The objective is to reduce
energy-generating costs while fulfilling load needs and ensuring equality and in-quality constraints.
This fact results in a higher degree of pollution awareness in thermal plants and a lower cost of
diagnosing the problem. Because they operate in conjunction with a collection of viable alternatives,
evolutionary methods are now perfectly suited for discovering answers to optimization problems. All
optimization approaches, including evolutionary ones, are known to be influenced by constraints
(Salcedo-Sanz, 2009). Since the traditional procedure of an evolutionary approach, employing
operators for individuals in a population may violate the constraint rules. The way evolutionary
approaches deal with constraint rules of challenges is a significant aspect that is directly connected to
the quality of solutions created for such problems. By converting the present solution that opposes
the constraints into a viable one, a redesigned method eliminates unattainable solutions.

Wind, solar, thermal, nuclear, renewable, hydro, and other power-producing facilities are used in
most power generation systems. In the case of renewable energy systems, the operational cost will not
change as much as the production. In thermal systems, however, the running cost varies with the
total power output. As a result, the ELD issue, which includes the use of thermal systems as
generators, is considered a critical optimization issue in electric power systems. Maintaining an
economical operation is a difficult challenge for both traditional and smart grid systems. When
power systems are exposed to operational and a transmission imperative, the ELD limits the optimal
outcome for an electric power generation to sustain the load demand with a minimum generation
price. The ELD problem is usually solved by sophisticated computerized approaches that meet the
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operational and power system imperatives via minute-to-minute
monitoring. A little increase in the ELD demonstrates its long-
term reaction to the declining price of the total power output. As a
result, a variety of optimization methods have been developed to
address cost-effective load dispatch issues while producing high-
quality results. Traditional optimization approaches were the sole
option to address ELD concerns for many years. Because of the
limitations of conventional methods, system operators have a
chance to fail to notice the realistic and technological imperatives
of the system’s units. There are two types of simplifications in this
category: first, combined with the accuracy of the generating
unit’s pricing model, particularly for different types of fuels or
taking the valve-point loading impact into account (Cai et al.,
2012; Zhong et al., 2013). Multi-valve steam turbines are widely
seen in real-world generating units. The valve point of the
generating unit is drawn when the steam turbine’s intake valve
opens abruptly, pushing the energy consumption curve upward.

LITERATURE SURVEY

The economic load dispatch problem is a major concern for
the cost-effective operation of electric power systems as it
concentrates on basically assembling the power outputs of the
units by establishing time intervals to decrease generating
costs while still meeting other system requirements. In
general, the traditional ELD problem is reduced to solve the
convex quadratic programming problem (Reid and Hasdorff,
1973), which may now be handled effectively using MOSEK
(Babonneau et al., 2019). Furthermore, the system becomes
non-smoothed, non-convex, and non-continuous when the
valve-point loading effect, transmission loss, and prohibited
operating zones are considered. The objective function arises
as multiples of the local minimum because of these features,
making global minima exceedingly difficult to attain. Aside
from that, the non-smooth nature of the function makes the
derivate-based mathematical programming technique
challenging to apply directly.

Traditional optimization techniques often look at linear,
piece-wise linear, and price functions of generators in
quadratic functions, with just network loss being considered.
These classic techniques include lambda iteration (Zhan et al.,
2014), gradient descent method (Dibangoye et al., 2015), linear
programming (Torreglosa et al., 2016), Newton’s technique
(Wang et al., 2014), dynamic programming (Al-Kalaani, 2009),
gradient search (Subathra et al., 2015), and the Lagrangian
relaxation algorithm (Li et al., 2013; Mohammadi-Ivatloo
et al., 2013). Because of the persistence of severe non-linear
characteristics in real-world practical networks, while dealing
with high-dimensional economic dispatch difficulties, these suffer
disadvantages such as failure to meet imperatives and lengthy
time calculations.

This time-consuming calculation in optimization methods
prompted researchers to develop meta-heuristic optimization
strategies to solve large-scale problems. The meta-heuristic
method (Gjorgiev and Čepin, 2013) takes into consideration
non-convex pricing functions and non-smooth operating

functions as well as other imperatives. This includes
techniques such as synergic predator–prey optimization
(SPPO) (Singh et al., 2016), seeker optimization algorithm
(SOA) (Shaw et al., 2012), genetic algorithm (GA) (Amjady
and Nasiri-Rad, 2010), (Elsayed et al., 2014), evolutionary
programming (EP) (Sinha et al., 2003), firefly algorithm (FA)
(Yang et al., 2012), particle swarm optimization (PSO) (Neyestani
et al., 2010), (Safari and Shayeghi, 2011), (Wang and Singh, 2009),
artificial bee colony (ABC) (Aydın and Özyön, 2013), colonial
competitive differential algorithm (CCDE) (Ghasemi et al., 2016),
bacterial foraging algorithm (BFA) (Farhat and El-Hawary,
2010), improved Tabu search algorithm (ITS) (Whei-Min Lin
et al., 2002), ant colony optimization (ACO) (Pothiya et al., 2010),
group search optimizer (GSO) (Zare et al., 2012), harmony search
algorithm (HAS) (Jeddi and Vahidinasab, 2014), biogeography-
based optimization (BBO) (Bhattacharya and Chattopadhyay,
2010), and differential evolution (DE) (Jiang et al., 2013).
Many researchers used slime mould algorithm to bring better
results and few such algorithms are Dispersed Foraging Slime
Mould Algorithm (DFSMA) (Hu et al., 2022), Chaos-opposition-
enhanced slime mould algorithm (CO-SMA) (Rizk, 2022),
Opposition based learning slime mould algorithm (OBLSMA)
(Houssein et al., 2022), Multi-objective slime mould algorithm
(MOSMA) (Houssein et al., 115870), Equilibrium optimizer slime
mould algorithm (EOSMA) (Yin et al., 2022). In this work, SMA is
used to identify solutions to economic load dispatch problems on a
variety of test systems. Other new and popular approaches
outcomes are compared to analyze the results.

MATHEMATICAL FORMULATION FOR
SINGLE-AREA ECONOMIC LOAD
DISPATCH
The goal of the ELD problem is to lower the entire fuel cost of
power systems by finding the optimum combination of power
outputs from all generating units while congregating load
demand and operational constraints (Dubey et al., 2013).

Single-Area Economic Load Dispatch
The fuel cost for unit generation is represented as a quadratic
function, with the assumption that the collective cost curves of the
generating units develop as linear functions over time. The
mathematical equation for the single-area ELD for an hour is
as follows in Eq. 1:

fc(pg) � ∑ng
n�1

[an(pg
n)2 + bnp

g
n + cn], (1)

where n ∈ ng.
The dispatching of power-generating units for “Hr” hours can

be represented as follows:

fc(pg) � ∑Hr

hr�1
∑ng
n�1

[an(pg
n)2 + bnp

g
n + cn], (2)

where n ∈ ng; hr ∈ Hr.
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The right mathematics for ED is Eq. 2. Because the load
demand changes over time, “hr” is changed from a single hour
to “Hr” hours.

The aforementioned objective functions are subjected to the
following equality and inequality constraints:

Power Balance Constraint
The total power generation is equal to total power demand plus
system power loss.

∑ng
n�1

pg
n � pd + pl, (3)

where pd indicates the requirement of power, and the power loss
pl can be written as follows:

pl � ∑ng
n�1

∑ng
m�1

pg
nBnmP

g
m, (4)

In presence of loss coefficients Bi10 and B010 matrices, Eq. 4
can be written as follows:

pl � pg
nBnmP

g
m +∑ng

n�1
pg
n × Bi0 + B00. (5)

The extension of Eq. 5 is as follows:

pl � [p1p2........png]⎡⎢⎢⎢⎢⎢⎣B11 B12 B1n

B21 B22 B2n

Bn1 Bn2 Bnn

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎣ p1

p2

png

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + [p1 p2 png ]
⎡⎢⎢⎢⎢⎢⎣ B01

B02

B0ng

⎤⎥⎥⎥⎥⎥⎦ + B. (6)

Generator Limit Constraint
The true power output of each generator is controlled by the
upper and lower operational limits.

py
n(min imum) ≤p

y
n ≤p

y
n(max imum), n � 1, 2, 3, ., ng (7)

where py
n(min imum) implies the lowest real power allocated at unit

and py
n(max imum) announces the highest real power allotted at

until n.

Ramp Rate Limits
The output power of the generating unit is boosted between the
lower and higher limits of active power generation.

1) By increasing the generated power,

pg
n ≤p

g0
0 ≤ urn, n � 1, 2, 3, .., ng (8)

2) By reducing the amount of generated power

pg
n ≤p

g0
0 ≤ urn, n � 1, 2, 3, . . . . . . , ng (9)

Therefore, the generator ramp rate is shown in the following
equation:

max imum[max imum[pg
n(max imum), (urn − pg

n)]
≤min imum[pg

n(min imum), (pg0
n − drn)], (10)

where n = 1,2, 3, . . ., ng, andpg0
n is the current active power of the

nth generation unit.

Prohibited Operating Zones
Prohibited operating zones (POZ) are allocated to the graph
for input–output powers in the generating unit, which may be
discontinuous due to functional constraints of the generator
produced by a defective mistake in the machine parts or the
machine itself. The discontinuous input–output power
limitations are as follows in Eq. 11:

⎧⎪⎪⎨⎪⎪⎩
pn(min imum) ≤pn ≤ppoz

n (min imum), 1
ppoz
n(max imum),m−1 ≤pn ≤ppoz(min imum), m

ppoz
n(max imum),m ≤ ni ≤pn(max imum);m � npoz

. (11)

SLIME MOLD ALGORITHM

It is known that the behavior of the organism can be imitated
and molded to tackle the mathematics of unconstrained and
non-convex characteristics. Researchers have framed to
imitate the guiding principles to develop computations and
algorithms. The slime molds have received significant
courteousness for the past few years. Scientifically, slime
mold is titled as Physarum polycephalum (Howard, 1931).
The slime mold undergoes few changes in its structure, that
is, it repositions its front position into a fan-shaped model, and
its interconnected venous network allows the cytoplasm to
flow inside at some level in relocation series. This stretchable
venous network helps in searching for food in multiple places
and grabs the food from food points. The slime mold has the
ability to creep up to 900 sq.m if it finds rich food points in the
environment.

Mathematical Modeling of Slime Mold
Algorithm
The mathematical modeling of SMA is discussed in three stages,
namely, approaching food, wrapping food, and food grabble (Li
et al., 2020).

Technique of Approaching Food
Step 1: The slime mold identifies the food based on the smell
present in the air. The mathematics to explicate the
contraction phase and update its position during the food
search process is presented in the following expression which
depends on x and p:

Y(τ + 1)���������→ � Yb(τ)�����→+ vb
→

× ( �w × YA(τ)������→− YB(τ)�����→), x>p (12)

Y(τ + 1)���������→ � vc→ × Y(τ), x>p, (13)
where vb

→
is the parameter which ranges from [−d, d].
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The maximum limit p is as follows:

p � tanh
∣∣∣∣F(t) − bf

∣∣∣∣, (14)
where t = 1, 2,.n, F(t) is the fitness of the slime mold’s location
and bf is the fitness value from all the steps. Eq. 4 describes the
range of the parameter vb

→
.

vb
→ � [−d, d], (15)

d � arctan h[ − ( τ

maxτ
) + 1]. (16)

The equation �W is expressed as follows:

W[Stenchindex(τ)]������������������������→ �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + x log(OpF − F(t)
OpF − lF

+ 1)
1 − x log(OpF − F(t)

OpF − lF
+ 1)

, (17)

Stenchindex � sort(F), (18)
where F(t) ranks first half of the population and random value x
lies in the interval [0,1].

Technique of Wrapping Food
The slime mold’s updated location is numerically given as
follows:

Yl
→

�
⎧⎪⎪⎪⎨⎪⎪⎪⎩

rand × (Uub − Ulb) + Uub, rand< z
Yb(τ)�����→ + vb

→
× ( �W×YA(τ)

������→

− ×YB(τ),
������→

x>p)vc→×YA(τ),
������→

x>p.

(19)
The upper and lower bounds of search ranges are given as Uub

and Ulb, respectively, and rand and x indicate the random values
in the interval [0,1].

Technique of Food Grabble
The slimemold’s location gets upgraded in the search process and
the value varies within the limits and fluctuates between [-1, 1]
and falls to zero. The flowchart of the proposed optimizer is
shown in Figure 1.

TEST SYSTEM RESULTS AND
DISCUSSIONS

In this section of the article, the IEEE bus systems in small size test
systems were considered, and comparison was done with other
methods, to see how well the slime mold optimization algorithm
performed on the ELD issue.

FIGURE 1 | Flow Chart of SMA Algorithm.
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Case Study
The input test data and loss coefficient matrices were obtained
from Sharma and Moses (2016), which shows a three-generator
test system with a power requirement of 150 MW assessed. The
input test data are displayed in appendix. In this case, the ELD
issue was cracked without a valve-point effect. Table 1 indicates
that the slime mold algorithm’s fuel price is 1590.627083 Rs./h,

which was the lowest of all the algorithms satisfying the system
constraints. The convergence curve of the SMA obtained by
simulation which was stable is shown in Figure 2A.

Case Study
With a power demand of 730MW, a five-unit test system with a
valve-point loading effect was used, and its input test information

TABLE 1 | (Case I) Slime mold algorithm results for economic dispatch of 3-unit system (without valve-point effect).

Method Transfer of Power Generating units

Fuel price
(Rs./hr)

Required power
in demand(MW)

G1 G2 G3 Loss in
power, PLoss(MW)

Grey Wolf optimizer (Kamboj et al. (2016)) 1597.4815 150 30.4998 64.6208 54.8994 2.3444
Quadratic programming (Zaraki and Othman (2009)) 1596 150 32.8116 64.5973 54.9329 2.3419
Lambda method (Sharma and Moses (2016)) 1599.98 150 33.4701 64.0974 55.1011 2.6686
Particle swarm optimization 1597.48 150 32.8101 64.595 54.9369 2.342
(Sharma and Moses (2016))
Genetic algorithm (Sharma and Moses (2016)) 1600 150 34.4895 64.0299 54.1534 2.6728
Slime mold algorithm 1590.627083 150 10 76.42812 64.24508 0.336600019

Bold values represent the best cost.

FIGURE 2 | Convergence curve for 3 and 5-generating units system.

TABLE 2 | Slime mold algorithm results for economic dispatch of 5-unit system (with valve-point effect).

Method Transfer of power-generating units

Fuel
price
(Rs./h)

Required
power

in demand
(MW)

G1 G2 G3 G4 G5 Loss in
power,
PLoss

(MW)

Genetic algorithm (Coelho and Lee
(2008))

2412.538 730 218.0184 109.0092 147.5229 28.37844 227.0275 NR

Particle swarm optimization (Coelho and
Lee (2008))

2252.572 730 229.5195 125 175 75 125.4804 NR

Lambda (Coelho and Lee (2008)) 2412.709 730 218.028 109.014 147.535 28.380 272.042 NR
APSO (Coelho and Lee (2008)) 2140.97 730 225.3845 113.020 109.4146 73.11176 209.0692 NR
Slime mold algorithm 2034.972427 730 229.5195832 102.9830227 112.6813882 74.9999977 209.816008 0

Bold values represent the best cost.
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was taken from Coelho and Lee (2008) with the loss coefficient
matrix set to zero, which is given in appendix. Table 2 shows that
the slime mold algorithm obtained a fuel price of 2034.972427 R/
h, satisfying all the constraints and was the best fuel price among
all algorithms. The convergence curve of SMA obtained by
simulation which was stable is shown in Figure 2B.

In order to intuitively analyze the location and fitness changes
of the slime mold during foraging, the qualitative analysis
findings of the SMA in lowering the fuel cost in ELD are
provided in Figures 2A,B. During the iteration phase, the
convergence curve reveals the ideal fitness value of the slime
mold. The convergence curve shows how the average fitness of
the slime mold’s ideal fitness value changes over time. We can see
the slime mold’s convergence rate and the moment when it
transitions between exploration and exploration gradation by
looking at the decline of the curve.

CONCLUSION

In this study, the slime mold optimization approach was used
to solve economic load dispatch problems in electric power
networks. This method’s effectiveness was tested on
conventional IEEE bus systems with 3 and 5 producing

units in small, medium, and large power systems.
According to the statistics, the slime mold optimizer was
clearly the best choice for dealing with economic load
dispatch issues since it contributes reduced fuel costs and
less transmission loss. It has a higher rate of convergence than
other well-known optimizers. By establishing a balance
between exploration and exploitation, the slime mold
optimizer achieved maximal avoidance in the local
optimum. As a result, this algorithm provided improved
solutions for load dispatch difficulties that were cost-
effective.
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Bad data is required to be detected and removed from the microgrid data stream because
it misleads the decision-making of the Energy Management Systems (EMS) and puts the
microgrid at risk of instability. In this paper, the authors propose a sequential detection
method that combines three data mining algorithms, that is the Online Sequential Extreme
Learning Machine (OSELM), statistical analysis within a sliding time window, and the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN). After sequential
data training, OSELM is used to construct an online updated error-filtering map to extract
the electrical feature of themicrogrid data sequence. Meanwhile, the statistical features, i.e.
the surge of the variance and the corresponding correlation coefficients under a sliding
time window are first proposed as another two complementary feature dimensions. The
three-dimensional features are finally analyzed by DBSCAN to discriminate the bad data.
The detection performance of this approach is verified by the data sequence collected from
a four-terminal ring-shaped DC microgrid prototype. Compared with bad data detection
using a single electrical feature or only statistical features, this approach shows the best
performance. Moreover, it can be further applied to the online detection of microgrid bad
data in the future.

Keywords: bad data detection, microgrid anomaly, OSELM, DBSCAN, statistical analysis

1 INTRODUCTION

In the concept of the future smart grid, the information and communication system should be
highly integrated with the energy distribution infrastructure in the microgrid. Data is the key
element between these two layers of the infrastructure. The reliability of the microgrid electrical
data is the premise of many energy dispatching and system control functions of the EMS, such as
real-time operation plan adjustment, operating mode switching, and emergency response to
large disturbances. With the application of big data in the smart grid, data quality becomes much
more important in improving both the economy and sustainability of the energy utilization in
the microgrid (Rana et al., 2015; Rana and Li., 2015). However, due to the uncertainties of the
microgrid data acquisition system, such as sensor failure, asynchronous measurement,
communication interruption, error coding, storage exception, the abnormal shutdown of the
data acquisition program, data injection attack from the external network, etc. (Zhao et al., 2014;
Anwar et al., 2017; Wu et al., 2017), normal data is mixed with a small amount of outliers, known
as bad data. Bad data misleads the EMS in decision-making on economic operation when the
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microgrid is in a steady state. It also impacts the emergency
decision on system security when the microgrid is under large
disturbances. These factors further affect the economy of
microgrid operation, even causes disastrous consequences
such as system collapse (Shahnia et al., 2010). Therefore, it
is particularly necessary to detect and eliminate these bad data.
With the future integration of the information system and the
physical infrastructure as well as the high penetration of power
electronic devices, the 4V (volume, velocity, variety, and
veracity) features of the microgrid data are becoming more
and more obvious. As a result, the types and contents of bad
data in the microgrid are more complicated than that of the
utility grid (Qiu et al., 2017), which calls for a more rapid and
effective bad data detection method.

Power system bad data detection has been researched for
over 40 years. Most of the research aims at the utility grid.
Through the survey of much-related literature, bad data
detection is divided into two steps, features extraction, and
features analysis. The first task is to obtain the quantitative
features containing the differences between the normal data and
the bad data from single or multiple dimensions. The next step is
to analyze the features and approximate the dividing boundary
between normal data and bad data. Traditional bad data
detection methods use electrical features to identify bad data,
based on the idea that bad data stems from various uncertainties
and does not comply with the electrical mechanism of the power
system. The electrical features can be obtained from either the
power system model or the vast historical data. According to
these two feature-acquiring means, the research methods of bad
data detection are divided into the traditional method based on
the power system analytical model and the modern method
based on the data-driven model.

The traditional power system analytical model based on the
bad data detection method relies on either the estimation or
prediction of the operating state of the power system. According
to the features differences, it is mainly divided into the residual
method and surge method. The residual method uses the state
estimator to estimate the real-time power flow of the power
system and extracts the residual (the difference between the
measured value and the estimation of the true value) as the
feature. Next, based on the probability distribution of the
residuals, the outliers located outside of certain confidence
intervals are detected as bad data (Bretas and Bretas, 2015;
Zhao et al., 2017). This method is limited by the huge
computational cost because the state estimation process should
be repeated many times to avoid the residual pollution and
residual flooding effect (Liu et al., 2011). The surge method
(Huang and Lin, 2004; Do Coutto Filho and de Souza, 2009)
treats the power system as a dynamic model and takes the surge
(difference between the present measured value and the predicted
value at the previous sampling time) as the feature. Next, the bad
data is detected based on the statistical hypothesis test of the
surge. This method overcomes the formerly mentioned
disadvantage of huge computational cost. But it assumes that
the topology and the parameters of the utility grid are not
changed during the adjacent sampling time, which restricts its
application.

Traditional bad data detection methods have a long way to go
before being applied in themicrogrid. Due to the high penetration
of Distributed Energy Resources (DERs) in the microgrid, the
operating modes and operating states are more complicated than
that of the utility grid (Hu et al., 2011). At the same time, as a
hybrid AC-DC multi-converter system, the static operating point
of the microgrid often migrates. It is difficult to establish a
dynamic analytical model for the microgrid (Xia et al., 2016),
while the analytical model is the basis of the traditional bad data
detection methods. Reference (Gu et al., 2017) proposed a state
estimation method based on a dynamic large-signal model of the
microgrid to realize the distributed control of microgrid voltage.
However, the influence of the inter-converter coordinated control
scheme on the model parameters is not considered. Authors in
(Beg et al., 2017) proposed a bad data detection method based on
the hybrid numeral and physical simulation model of the
microgrid. The main idea is the use of a microgrid dynamic
simulation model to verify whether the data conforms with the
electrical laws. This method is very instructive, but the traditional
power system analytical model is not used.

On the contrary, the modern bad data detection methods
based on data-driven models do not need to analyze the power
system model (Wu et al., 2013; Huang et al., 2016). They use the
machine learning method to extract the electrical features out of
the vast historical data, which are used for the prediction of the
measurement error. Next, clustering analysis is used to
automatically assort normal data and bad data in different
clusters (Shyh-Jier and Jeu-Min, 2002; Cramer et al., 2015;
Yang et al., 2017). In our previous work (Huang et al., 2018),
the machine learning algorithm ELM is used to extract the
electrical feature, and the feature is analyzed by the clustering
algorithm DBSCAN to realize the fast and effective detection of
the bad data in the microgrid. To the best of our knowledge, this
method is the first application of bad data detection in microgrids
based on the data-driven model. The combining of ELM and
DBSCAN can achieve faster and more accurate detection than the
previous methods (Shyh-Jier and Jeu-Min, 2002; Cramer et al.,
2015; Yang et al., 2017). However, there are still some drawbacks.
The research adopts the idea of offline training, the prediction
model is only trained once, and its accuracy depends on the
completeness of the information contained in the historical data.
Inspired by the sequential detection idea in reference (Li et al.,
2015), we introduce the OSELM algorithm to improve our
previous work. Using the method of online training to update
the prediction model sequentially is more conducive to the
realization of the online detection of bad data in the future.
However, there is still a problem in the sequential learning of
OSELM. The accuracy and generalization ability of such
supervised machine learning models still heavily depend on
prior knowledge. They are not sensitive enough to some
unfamiliar operating modes or states. Therefore, it is necessary
to introduce some other dimensions of features together with a
new unsupervised detection method to complement the
shortcomings of the single electrical feature extracted by the
supervised OSELM algorithm.

Recently, bad data detection methods based on statistical
analysis have been widely used in the field of network security

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8615632

Huang et al. Micro-Grid Sequential Bad Data Detection

573

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


(Bosman et al., 2017; Ren et al., 2017). Its main idea is to use the
statistical property of the continuous data stream to determine
whether an observation value is beyond the statistical range of
normal data (Almalawi et al., 2014; Mohammadpourfard et al.,
2017). The external appearance of bad data is an outlier that is too
large or too small. So, it has a statistically significant surge feature,
and lower correlation with other normal data. Therefore, the
surge of variance and the correlation coefficient of the
measurement data sequence within a sliding time window
[inspired by (Araya et al., 2017)] can be used as two feature
dimensions to distinguish the bad data. As mentioned earlier, the
operating conditions of the microgrid are more complex than that
of the utility grid. Due to the lack of prior knowledge of the
intrinsic electrical relationship between the data, the statistical
features of microgrid measurement data can be flooded by the
noise of the data itself. Therefore, a single statistical method is not
sufficient for the microgrid bad data detection. On the contrary,
the electrical features of microgrid measurement data use prior
knowledge of the microgrid electrical laws. The combining of the
above two supervised and unsupervised methods, i.e. the use of
both electrical features and statistical features, can achieve a better
detection performance of bad data.

Guided by the above idea, this paper presents a sequential
detection method of microgrid bad data based on machine
learning and statistical analysis. Based on our previous
research work, this paper takes the microgrid simulation
data as the prior knowledge and builds the error-filtering
map in the training process of the OSELM algorithm which
has the sequential learning ability. The online updated error-
filtering map is used to obtain the electrical feature of the
microgrid measurement. Meanwhile, the statistical analysis
method is used to obtain the surge of the variance and the
correlation coefficient of the microgrid measurement data
sequence in a sliding time window. Finally, we use the
clustering algorithm DBSCAN to analyze the features in the
above three dimensions and identify the bad data. The
contribution of this paper is as follows.

1) On the basis of our previous bad data detection method ELM
+ DBSCAN, an online training and sequential detection
method for microgrid bad data via the combination of
OSELM and DBSCAN is proposed for the first time.

2) A statistical method that uses the surge of the variance and the
correlation coefficient of the data sequence in a sliding time
window is first proposed and applied in microgrids for bad
data detection.

3) The above two types of methods are combined by using
electrical features and statistical features at the same time.
This hybrid method can not only avoid being flooded by
system noise but also recognize the sudden change of the
microgrid operating states. The detection performance is
better than that of the OSELM + DBSCAN method using
the single electrical feature or the statistical method using only
statistical features. More importantly, it can realize the
sequential detection of bad data (both point anomaly and
contextual anomaly), while the existing methods can only
achieve the detection of point anomaly.

The rest of this paper is organized as follows. The basic theory
and our new idea of microgrid bad data detection are introduced
in section 2. In section 3, the sequential detection method
combining the OSELM, statistical analysis, and DBSCAN
algorithm is proposed. And the detection performance of the
method is verified by the data sequence from a real microgrid
prototype in section 4. Section 5 concludes the full text.

2 BASIC THEORY AND NEW IDEA

Figure 1 shows the entire path of data from measuring to
transmission to processing in the microgrid which adopts the
commonly used hierarchical control structure. Data in the
microgrid are mainly divided into two categories, the upward
system status information, and downward control commands.
The status information includes voltage, current, active and
reactive power, switch status, port status, protection action
instructions, etc. Among them, the electrical measurements,
i.e. the voltage, current, and power are the objects for bad data
detection in this paper.

The electrical data on each Distributed Energy Resource
(DER) port, grid port, and load port of the microgrid are
collected by the sensors and finally enter the local controller
and the host computer via the communication network. These
electrical data are used to guide the host computer to issue
control commands including the operating mode of each port,
input control command value of the converter, and switch on/
off command, to realize energy dispatching and system
control of the microgrid. However, due to the uncertainties
of the data acquisition and communication systems, this
electrical data is inevitably mixed with noise and even
gross error. In order to improve the reliability of the data,
state estimation is needed to reduce noise. At the same time,
the bad data detection method is required to clear out the
gross error.

2.1 Bad Data in Microgrid
“ An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism” By Douglas M. Hawkins in 1980. The
appearance of abnormal data can be seen as a random,
sporadic phenomenon relative to the large amount of normal
data present, which is largely deviated from normal data and
comes from different mechanisms. Therefore, abnormal data
often does not have a strong correlation with normal data.
This correlation is reflected in two aspects, one is the
relevance of the data attribute, the other is the correlation of
the data structure. The normal data generally comes from the
same mechanism, and the structure is relatively compact, often
showing a spherical or band-like structure. The abnormal data
does not conform to the intrinsic structure of normal data, and
the structural correlation is weak.

According to these characteristics of bad data and normal
data, there are two premises in detecting bad data.

Premise 1: Normal data instances occur in dense neighborhoods,
while anomalies occur far from their closest neighbors.
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Premise 2: Normal data is the majority and is relevant because
it arises from the expected mechanism. While abnormal data is
generated by sporadic mechanisms and is therefore partially or
completely uncorrelated.

Based on the above two premises, the data attributes in the
microgrid are shown in Figure 2.

We can see from Figure 2 that there are four kinds of
attributes of microgrid data, i.e. spatial attribute, graph
attribute, sequential attribute, and profile attribute.

1) Spatial attribute refers to different electrical features of the
discrete electrical data points formed by the readings of the
sensors. As a single data point in the network topology, the
data itself contains noise.

2) Graph attribute refers to the neighbor relationship of the sensor
in space. At each time interval, the electrical measurements in
each column conform to the microgrid measurement equation z
= h (x)+v. The electrical data is spatially correlated.

3) Sequential attribute refers to the neighbor relationship of the
data sequence in time series. When the topology and
parameters of the microgrid keep unchanged, the microgrid
is a dynamic time-invariant system. The electrical data
sequence z conforms to the state transition equation zk+1 =
f (xk)+qk, and the data is also time-dependent.

4) Profile attribute is the scene feature of anomaly defined at the
system level in the dimensions of time, space, etc. In the space-
time dimension, because different operating scenarios often
change periodically, there is a similarity between data sequences.

Based on these four kinds of attributes, three kinds of the
anomaly are classified.

1) Point anomaly refers to bad data points in the spatial
dimension.

2) Contextual anomaly refers to bad data points or sequences in
the time dimension.

3) Collective anomaly refers to abnormal states or patterns in the
space-time dimension.

The microgrid bad data discussed in this paper belong to both
point anomaly and contextual anomaly, as a result, both spatial
correlation and timing correlation can be used to distinguish
good data and bad data.

1) bad data in spatial correlation.

The electrical measurements in the microgrid can be expressed
as a linear combination of the true values and the measurement

FIGURE 1 | Data measuring, transmission, and processing in microgrid.
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errors, as shown in Eq. 1. Note that all the variables are in matrix
form.

z � h(x) + v (1)
where z is the measurement, h(x) is the true value, x is the state
variable which ensures the observability of the microgrid, h (·) is
the equation expression of the microgrid model, v is the
measurement error.

Rewrite Eq. 1 into the time series form.

z(t) � h[x(t)] + v (2)
where, t is the time stamp, z(t), x(t), and v are all in vector form.

When z(t) only contains normal data, the corresponding v
stands for the Gaussian white noise.

v ~ N(0, σ) (3)
where σ is the standard deviation of the measurement error v.

When z(t) contains bad data zb(t),

z(t) � [ zg(t)
zb(t) ] � h[x(t)] + [ vg

vb
] (4)

where vb is the gross error, which deviates beyond a certain
statistical confidence interval of the normal measurement errors.
The confidence interval is usually determined as ±(6–7) σ in
industrial applications (Clewer Bernard, 1986).

2) bad data in timing correlation.

The microgrid electrical data sequence in time series can also
be expressed as

zk+1 � f(xk) + qk (5)

where k is the time stamp, f (·) is the equation expression of the
microgrid model mapping in time series, and qk is the surge of
electrical measurement.

When qk, i.e. the difference between the present measured
value and the predicted value at the previous sampling time, is
very big, there comes an outlier. This outlier may represent bad
data. It can also be caused by the sudden change of the microgrid
operating state. A further timing correlation method is needed to
distinguish the two situations, which will be described later in
section 3.

The key to bad data detection lies in the processing of data
features. The process is divided into two main steps.

1) Features extraction: the procedure of estimating or predicting
the features of bad data. The features include both electrical
features and statistical features. The electrical features
represent the distance between the measurement z and the
true value h(x). The statistical features represent the distance
between the measurement zk+1 in sampling time k+1 and the
true value f(xk) in sampling time k.

2) Features analysis: using mathematical statistics, data
clustering, or other unsupervised methods to approach the
interface between normal data and bad data in certain feature
dimensions.

The traditional bad data detection method is based on State
Estimation.

The diagram of bad data detection based on State Estimation is
shown in Figure 3.

When the model of the power system can be analytically
resolved as expression h (·), the estimated values X̂ of x can be
obtained through a State Estimator according to the
measurement vector z and the prior knowledge σ from the

FIGURE 2 | Data attribute in microgrid.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8615635

Huang et al. Micro-Grid Sequential Bad Data Detection

576

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


data acquisition system. The electrical features, i.e., residuals r �
z − h(X̂) are obtained.

Then, the probability distribution f (rrT) of the residuals r is
used as a hypothesis test to detect bad data. The existence of
bad data zb can affect the results of the State Estimation,
i.e., residuals r, leading f (rrT) to change. Therefore, in the
vicinity of the boundary where the threshold γ is located, a
false or miss detection may occur.

2.2 Bad Data Detection Based on Online
Sequential Machine Learning
The electrical features of microgrid measurements have the most
abundant prior knowledge for bad data detection. The analytical
model h(·) of the microgrid can be approximately fitted as ĥ(·) by
supervised online sequential machine learning, as long as plenty of
microgrid historical measurements and simulation data (e.g. data
from the SIMULINKmodel of themicrogrid in (Beg et al., 2017)) are
given. The schematic of the online sequential machine learning
based bad data detection is shown in Figure 4.

Learning from historical data, the online sequential machine
learning based bad data detection method constructs an online
updating error-filtering map between the historical electrical data
sequence and the historical power flow first and then the updated
map predicts the true value ĥ(x) out of the present measurement
z. Subsequently, the electrical feature z − ĥ(x) can be obtained.

Since it is hard to discover the statistical properties of the
prediction of the machine learning method, the analysis of the
feature z − ĥ(x) cannot be carried out by statistical hypothesis
testing. Thus, the unsupervised machine learning method,
clustering is used to do the job. Based on the similarity of the
data itself, clustering analysis can automatically sort normal data and
bad data in different clusters without any prior knowledge. Due to
the uncertainty of the boundary between normal data and bad data, a
false or missed detection will occur in the vicinity of the interface.

2.3 Bad Data Detection Based on Statistical
Analysis in Time Series
Micro-grid is a strong nonlinear time-varying system. Every
measurement of the microgrid is not independent but restricted
to the electrical mechanism. Therefore, the statistical features of the
data in time series indirectly reflect the electrical features and can be
used for bad data detection. The schematic of the bad data detection
based on the statistical analysis in time series is illustrated in
Figure 5.

When an outlier (data point p+1) occurs in themicrogrid electrical
data series, the variance and correlation coefficient of the data
sequence in a sliding window with enough width N shows
different degrees of the surge. Note that the surge of the variance
is ΔD(p + 1) and the surge of the correlation coefficient is
Δρ(p + 1). The ΔD(p + 1) reflects the continuity of a single-
dimensional data sequence, which can be used to recognize
outliers. But the outliers can not only be caused by the bad data,
but also by the sudden change of themicrogrid operating state.When
there exists a sudden change of the microgrid operating state, the
ΔD(p + 1) is also significant. Under such a situation, the Δρ(p + 1),

reflecting the correlation between the multi-dimensional data
sequences, can be used to further distinguish the bad data based
on the correlation between different electrical measurements.

Since the operating state of the microgrid changes very often,
the threshold of ΔD(p + 1) and Δρ(p + 1) cannot be determined
by a fixed statistical hypothesis testing. So, clustering is used to
analyze the two statistical features and sort normal data, outliers,
and bad data in different clusters. A false or missed detection can
also happen near the boundary of different clusters.

2.4 OSELM Algorithm
A combination of two machine learning algorithms, the
supervised ELM and unsupervised DBSCAN, is used for bad
data detection in our previous work. Compared to other
machine learning algorithms, ELM is well known for its
unmatched training speed and great potential for algorithm
evolution. Detailed information on ELM and DBSCAN can be
referred to (Huang et al., 2018). The OSELM (Liu et al., 2015)
which is used in this paper is briefly introduced on the basis of
ELM. The network structure and parameters of ELM are
shown in Figure A1 in the appendix. Through sequential
learning, OSELM can update the machine learning model
online, which makes the model more adaptive in the
application of time-series data.

3 SEQUENTIAL DETECTION VIA
DATA-DRIVEN APPROACH

According to section 2, OSELM is a brand-new online
sequential machine learning algorithm that can quickly
approximate and update the error-filtering map between the
measurements and the true values by recursive linear
regression. DBSCAN is very suitable for distinguishing
outliers with non-Gaussian distributions, e.g. bad data.

FIGURE 3 | Bad data detection based on state estimation.
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Therefore, the combination of OSELM and DBSCAN can
quickly realize the sequential detection of the micro-grid
bad data. But such a supervised machine learning method,
relying on data training, is not sensitive enough to some
unfamiliar operating modes or states.

The unsupervised statistical analysis in the time series
method, which uses the statistical features (the surge of the
variance and the correlation coefficient) in a sliding time

window, is proposed to recognize the sudden change of the
microgrid operating states.

On this basis, a sequential bad data detection method is
proposed by using both the electrical features and the
statistical features. The proposed sequential bad data detection
method is described as follows. The application details of the
proposed statistical analysis in the time series method are
explained later.

FIGURE 4 | Bad data detection based on online sequential machine learning.

FIGURE 5 | Bad data detection based on statistical analysis in time series.
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3.1 Sequential Bad Data Detection
Guided by the previously mentioned two detection ideas, a
sequential detection method using a data-driven approach is
proposed. It combines the OSELM, the statistical analysis in
time series, and the DBSCAN. The flow chart of this method
is illustrated in Figure 6.

The process of the method is mainly divided into the following
steps.

1) Data acquisition and preprocessing.

Collect, screen, and normalize the measurement data of the
microgrid prototype and the simulation data of the
corresponding microgrid simulation model to form an electrical
data series. Next, this processed data series is split into the sequential
training data chunks Xi and Ti, (i = 1, 2, . . . ) and the testing data
series z. The sequential training data chunks, input matrix Xi come
from the old measurement data, and the other sequential training
data chunks, target matrix Ti is from the simulation data
corresponding to Xi. Meanwhile, the testing data series z is
acquired from the current measurement data.

2) Features extraction.

Based on the recursive training method of the OSELM
algorithm, the OSELM model is trained by Xi and Ti, (i = 1,
2, . . . ) to build an online updating error-filtering map. Using the
updated error-filtering map to predict the testing data series z,
the output matrix ĥ(x) is obtained, and then |z − ĥ(x)| is
extracted as the electrical feature, i.e. the error (including the
gross error) in z.

At the same time, the statistical analysis method is developed
to calculate the variance surge matrix ΔQ (p+1) of the testing data
series z in a sliding time window, where p+1 is the time stamp.
The surge of the variance Δq(p + 1) and the surge of the pseudo-
correlation coefficient Δρ̂(p + 1) are extracted as the statistical
features sequentially.

3) Features analysis.

The aforementioned three features are clustered by DBSCAN
to obtain normal clusters and outliers. Outliers with large
|z − ĥ(x)|, large Δq(p + 1) , and small Δρ̂(p + 1) are identified

FIGURE 6 | Flow chart of the proposed method.
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FIGURE 7 | Topology of the DC microgrid prototype.

FIGURE 8 | Control structure of the DC microgrid prototype.
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as bad data. The other outliers are recognized as the change of the
microgrid operating state.

3.2 Statistical Analysis in Time Series
1) Statistical property of data sequence.

Take the data sequence zM×N(p) out of the microgrid
measurement matrix z within the fixed time window width N
at the pth sampling time. According to Eq. 2, we can see

zM×N(p) � h[x(t)] + v(t), t � p −N + 1, p −N + 2, ..., p (6)
where t is the time stamp, M is the dimension of the electrical
measurements in z.

Calculate the covariance matrix Q(p) of the data
sequence zM×N(p).

Q(p) � Cov(zM×N(p)) � E{[zM×N(p)][zM × N(p)]T} (7)
where E is the expectation function.

The entries of matrix Q(p) are

{ qii(p) � E[zi(p) − �zi(p)]2
qij(p) � E{[zi(t) − �zi(p)][zj(t) − �zj(p)]}

i, j � 1, 2, ...,M; i ≠ j; t � p −N + 1, p −N + 2, ..., p
(8)

where zi(t) is the ith electrical measurement at sampling time t,
�zi(p) is the average of the ith electrical measurement sequence
over the time window of width N, the diagonal entry qii(p) is the
variance of the ith electrical measurement in the data sequence at
the sampling time p, qij(p) is the covariance of the ith electrical
measurement and the jth electrical measurement,
and qij(p) � qji(p).

2) Statistical features in sliding time window.

Slide the time window with fixed width N forward by one data
point. During this process, the surge of the variance matrix Q is

ΔQ(p + 1) � Q(p + 1) − Q(p) (9)
The entries of ΔQ (p+1), i.e. the surge of the variance

Δqii(p + 1) and covariance Δqij(p + 1) at the (p+1)th
sampling time is derived as Eq. 10 under the approximation
that �zi(p + 1) ≈ �zi(p) (marked as �zi) when N is large enough. At
the same time, we assume that the surges before the sampling
time (p+1) have been already detected and eliminated. That is to
say, zi(p −N + 1) ≈ �zi. Under such conditions, the following
equation can be deprived.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δqii(p + 1) � qii(p + 1) − qii(p) ≈ 1

N
[zi(p + 1) − �zi]2

Δqij(p + 1) � qij(p + 1) − qij(p) ≈ 1
N

{[zi(p + 1) − �zi][zj(p + 1) − �zj]}
i, j � 1, 2, ...,M; i ≠ j

(10)
According to Eq. 10, if the new arrived electrical

measurement zi(p + 1) is a normal data, it is in the vicinity
of �zi, and then Δqii(p + 1)will be quite small. On the contrary,
if zi(p + 1) is an outlier, Δqii(p + 1) is large enough to be
defined as a surge. So, Δqii(p + 1) can be used for outlier
detection. The outlier may be caused by the bad data. But, it
can also be caused by the sudden change of the microgrid
operating state. Therefore, the single statistical feature
Δqii(p + 1) is not enough for bad data detection.

When the outlier zi(p + 1) is bad data, the other statistical
feature Δqij(p + 1) is also obvious to be defined as a surge. And
it is quite smaller than Δqii(p + 1), because zj(p + 1) is very
close to �zj. But, when the outlier zi(p + 1) is caused by the
sudden change of the microgrid operating state, the change of
zi(p + 1) will result in the change of other electrical
measurements zj(p + 1) because they have strong electrical
relationships with each other. Thus, some of zj(p + 1) are

FIGURE 9 | Partial components display of the DC microgrid prototype.

TABLE 1 | Operation modes of the DC microgrid prototype.

Mode Grid-Connected Converter Battery Energy Storage
Terminal

Photovoltaic Terminal

1 Voltage control Droop control Lockout
2 Lockout Voltage control MPPT
3 Voltage control Droop control MPPT
4 Constant power control Voltage control MPPT
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much larger than �zj, which makes these Δqij(p + 1) very close
to Δqii(p + 1).

Concerning the concept of the correlation coefficient
ρij(p + 1) � qij(p+1)�����

qii(p+1)
√ ������

qjj(p+1)
√ , we define Δρ̂ij(p + 1) the surge

of the pseudo-correlation coefficient as Eq. 11.

Δρ̂ij(p + 1) � Δqij(p + 1)
Δqii(p + 1) �

zj(p + 1) − �zj
zi(p + 1) − �zi

, i ≠ j (11)

If the outlier zi(p + 1) is caused by the bad data,
Δρ̂ij(p + 1) → 0. If it is caused by the sudden change of the
microgrid operating state, zj(p + 1) has an electrical relationship
with zi(p + 1), |Δρ̂ij(p + 1)| ∈[0, 1].

For the application of |Δρ̂ij(p + 1)|, we average it in the
dimension j as follows.

∣∣∣∣Δρ̂i(p + 1)∣∣∣∣ � 1
M − 1

∑M
j�1,i ≠ j

∣∣∣∣∣Δρ̂ij(p + 1)∣∣∣∣∣ (12)

So, |Δρ̂ij(p + 1)| can be used as another statistical feature to
further distinguish bad data from outliers caused by the sudden
change of microgrid operating states.

4 CASES STUDY

4.1 Acquisition and Preprocessing of Data
The data sequence of the microgrid is obtained from a four-
terminal ring-shaped DC microgrid prototype and its
simulation model. The topology, control structure, and
partial components of the prototype are illustrated
respectively in Figures 7–9.

According to its control strategy, the microgrid has four
operation modes, which are shown in Table 1.

There are 24 kinds of electrical measurements collected from
the microgrid prototype, namely: terminal voltage and terminal
current of the four terminals [Up1,Up2,Up3,Up4, Ip1, Ip2, Ip3, Ip4],
four DC buses voltage [Udc1, Udc2, Udc3, Udc4], the current
flowing through the four positive DC bus [Idc1, Idc2, Idc3,
Idc4], the power output of the four terminals [P1, P2, P3, P4],
the active power and reactive power of the grid side [Pgrid,Qgrid],
the active power and reactive power of the load side [Pload,
Qload].

The microgrid prototype can be switched between the four
operating modes in Table 1 by issuing control commands from
the host computer. The data sequence is obtained from the
microgrid prototype and its SIMULINK simulation program in
the above four control models in a month’s operation. Six sets
of testing data were randomly selected. The sampling
frequency was 10 Hz, and the sampling time was 13 min
20 s. The Transient processes between different operating
modes are removed. The reasons are as follows. First, the
physical mechanism of the transient process is clear, rather
than caused by uncertainty or unfamiliar mechanisms. Second,
the transient process can be detected by the microgrid
operation mode switching control signal to know the time
of its occurrence, and according to the end of the wide
fluctuation of the data to know the time of its end.
Therefore, it is not the target of point anomaly detection
and contextual anomaly detection in this paper. Each row
of the testing data matrix is sorted by electrical quantities order
[P1, P2, P3, P4, Pgrid, Pload, Qgrid, Qload, Udc1, Udc2, Udc3, Udc4,
Uline1, Uline2, Uline3, Uline4, Idc1, Idc2, Idc3, Idc4, Iline1, Iline2, Iline3,
Iline4].

All testing data input and output are scaled,
taking the reference value p = 6 kW, Q = 0.5 kVar, U = 550 V,
I = 10 A.

4.2 Simulation Cases Design
Parameters Design.

1) The number k of hidden layer nodes in OSELM is set to
80, and the excitation function g (·) is the sigmoid
function.

2) The neighborhood radius Eps and the density threshold
MinPts of the neighborhood in DBSCAN are set to 0.005
and 4, respectively.

TABLE 2 | Confusion matrix.

Observation Total

1 0

Classification 1 TP FP Positive
0 FN TN Negative

Total Positive Negative NN = TP + FP + TN + FN

TABLE 3 | Detection Performance Comparison between the Three Methods in case 1.

Testing Data Method A Method B Method C Performance Sorting

Rr (%) Time (s) Rr (%) Time (s) Rr (%) Time (s) Rr Time

Dataset 1 76.4 7.4 68.7 16.3 84.5 21.7 B < A < C A < B < C
Dataset 2 72.6 6.9 69.0 15.2 83.4 20.3 B < A < C A < B < C
Dataset 3 78.2 8.3 71.2 14.6 85.3 21.1 B < A < C A < B < C
Dataset 4 73.0 7.5 66.3 15.4 79.8 20.6 B < A < C A < B < C
Dataset 5 74.3 7.8 74.5 15.9 88.6 22.4 A < B < C A < B < C
Dataset 6 78.6 6.2 72.7 14.7 85.9 19.3 B < A < C A < B < C
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Simulation Environment.

1) The simulation software is MATLAB R2018b.

2) The computer configuration for simulation is core i5
processor with 2.4 GHz frequency plus DDRⅢ memory
bank with 8 Gbps memory

4.2.1 Simulation Cases
According to the normal distribution characteristics of the
measurement error, the bad data with a gross error of
7–10 times the standard deviation of the measurement
error were randomly preset in the six sets of testing data
with a content of 5%. The measurement accuracies of the
voltage Halls (Type: VSM500D) and the current Halls (Type:
LA150-P) used in the micro-grid prototype in the simulation
section of this paper are 0.008 and 0.01 respectively. The
formula for calculating the standard deviation of errors can
be found in reference (Huang et al., 2018).

The bad data preset in this paper includes cases of
amplitude jumps (point anomalies), amplitude deviations,
and amplitude shifts (contextual anomalies) (Xu et al., 2021).
The simulation cases verify the effectiveness of the proposed
method by comparing the detection performances of the
three algorithms, including the OSELM + DBSCAN
method, the ST (statistical analysis) + DBSCAN method,
and the OSELM + ST + DBSCAN method. For point
anomaly, the detection performance indicators include the
right detection rate and calculation time. The right detection
rate Rr is calculated by the correct detection times Nr, false
detection times Nf, and missed detection times Nm. Rr = Nr/
(Nr + Nf + Nm). Nr, Nf, and Nm are confirmed by contrasting
the detection results of bad data with the preset location of
bad data. For contextual anomaly, the detection performance
is quantified by the confusion matrix in Table 2 (Hu et al.,
2020; Li et al., 2021a; Li et al., 2021b; Hu et al., 2021; Jung,
2022).

In Table 2, TP (True Positive) represents true positive
events, FN (False Negative) represents false negative events,
FP (False Positive) represents false positive events, TN (True
Negative) represents true negative events, and NN represents
all events. Based on these events, indicators such as Recall (R),
Precision (P), Accuracy (Acc), and Error (Err) are chosen to
evaluate the detection performance. Their definitions are
shown below

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R � card(TP)/card(TP + FN)
P � card(TP)/card(TP + FP)
Acc � card(TP + TN)/card(NN)
Err � 1 − Acc

(13)

where card (•) is the counting function. Large values of R, P, and
Acc with a small value of Err represent good detection
performance.

The OSELM +DBSCANmethod, ST + DBSCANmethod, and
OSELM + ST + DBSCAN method are denoted respectively as
methods A, B, and C. The bad data detection results are carried
out by using methods A, B, and C for simulation in each case.
Each simulation case repeats 10 times, and the average detection
performances are calculated.

FIGURE 10 | Amplitude jumps detection.
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4.3 Simulation Results and Analysis
1) Case 1: amplitude jumps (point anomaly).

The amplitude jumps are those discrete data points that
deviate far from normal data. The detection performances are
shown in Table 3.

As can be seen from Table 3, for point anomalies, the three
methods have good detection results (Rr is between 66% and
89%). Except for Dataset 5, the detection accuracy of Method C is
better than that of Method A and Method B, but the calculation
time is sacrificed. Relatively speaking, Method B has the worst
detection performance.

Randomly select an electrical measurement Udc2 from Dataset
four in Case 1 to visually display the detection effects of the three
methods as shown in Figure 10.

Through Figure 10, it is seen that all three methods can detect
point anomaly quite well with a few false detections and missed
detections. Method C shows the best performance.

2) Case 2: amplitude deviations (contextual anomaly).

The amplitude deviations are those data sequences that deviate
far from normal data series in a stepwise way. The detection
performances are shown in Table 4.

In Table 4, the indicators corresponding to the best
detection performance in each dataset are bolded. It can be
seen that Method C shows the best performance when
detecting the amplitude deviations, except for R in Dataset
1 and Dataset 4.

Randomly select the electrical measurement P4 from Dataset 1
in Case 2 to visually display the detection effects of the three
methods as shown in Figure 11.

Through Figure 11, it is seen that all three methods can
detect the amplitude deviation quite well with a few false
detections and missed detections. Method C shows the best
performance.

3) Case 3: amplitude shifts (contextual anomaly).

The amplitude shifts are those data sequences that slowly shift
and continuously deviate from normal data series. The detection
performances are shown in Table 5.

Through Table 5, it can be seen that Method C shows the best
performance when detecting the amplitude shifts, except for R
and P in Dataset 4.

Randomly select the electrical measurement Iline1 fromDataset
5 in Case 3 to visually display the detection effects of the three
methods as shown in Figure 12.

Through Figure 12, it is seen that all three methods can
detect the amplitude shift quite well with a few false
detections and missed detections. Method C shows the best
performance.

TABLE 5 | Detection Performance Comparison between the Three
Methods in case 3. The bold values mean the best detection
performance among the three detection methods (Method A, Method B,
and Method C).

Testing Data Methods R P Acc Err

Dataset 1 Method A 0.952 0.738 0.717 0.283
Method B 0.954 0.769 0.746 0.254
Method C 0.957 0.819 0.793 0.207

Dataset 2 Method A 0.974 0.677 0.675 0.325
Method B 0.976 0.731 0.728 0.272
Method C 0.977 0.775 0.770 0.230

Dataset 3 Method A 0.961 0.695 0.684 0.316
Method B 0.964 0.764 0.749 0.251
Method C 0.967 0.823 0.805 0.195

Dataset 4 Method A 0.964 0.677 0.669 0.331
Method B 0.969 0.776 0.754 0.246
Method C 0.968 0.775 0.772 0.228

Dataset 5 Method A 0.993 0.723 0.733 0.267
Method B 0.993 0.801 0.807 0.193
Method C 0.994 0.856 0.859 0.141

Dataset 6 Method A 0.931 0.687 0.656 0.344
Method B 0.936 0.744 0.710 0.290
Method C 0.940 0.798 0.761 0.239

TABLE 4 | Detection Performance Comparison between the Three
Methods in case 2. The bold values mean the best detection
performance among the three detection methods (Method A, Method B,
and Method C).

Testing Data Methods R P Acc Err

Dataset 1 Method A 0.983 0.736 0.734 0.236
Method B 0.962 0.823 0.810 0.190
Method C 0.980 0.845 0.838 0.162

Dataset 2 Method A 0.959 0.701 0.692 0.308
Method B 0.958 0.768 0.747 0.253
Method C 0.982 0.808 0.803 0.197

Dataset 3 Method A 0.961 0.732 0.717 0.283
Method B 0.965 0.813 0.794 0.206
Method C 0.966 0.841 0.821 0.179

Dataset 4 Method A 0.959 0.694 0.687 0.313
Method B 0.971 0.770 0.759 0.241
Method C 0.966 0.804 0.792 0.208

Dataset 5 Method A 0.976 0.746 0.742 0.258
Method B 0.979 0.844 0.835 0.165
Method C 0.980 0.895 0.883 0.117

Dataset 6 Method A 0.949 0.692 0.673 0.327
Method B 0.954 0.767 0.744 0.256
Method C 0.957 0.812 0.787 0.213
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FIGURE 11 | Amplitude deviations detection.
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5 CONCLUSION

In this paper, the statistical surge feature (ST) is first used for
bad data detection, including point anomaly detection and

contextual anomaly detection. On this basis, a sequential
detection method that combines OSELM, ST, and DBSCAN
is proposed for micro-grid bad data detection. The performance
of this method is verified by a four-terminal ring-shaped DC

FIGURE 12 | Amplitude shifts detection.
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micro-grid prototype. By comparing with the existing OSELM +
DBSCAN method and the ST + DBSCAN method, it is
demonstrated that the proposed OSELM + ST + DBSCAN
method has the best detection performance. To be more
specific, 1) The OSELM + ST + DBSCAN can detect both
point anomaly and contextual anomaly, such as amplitude
jumps, amplitude deviations, and amplitude shifts. 2) The
OSELM + ST + DBSCAN method can realize the best bad
data detection accuracy at the cost of a small increase of
computation.
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Series Arc Fault Diagnosis Based on
Variational Mode Decomposition and
Random Forest
Luyao Zhao1, Changchun Chi1*, Qiangqiang Zhao1 and Haifeng Mao2

1School of Electrical Engineering, Shanghai Dianji University, Shanghai, China, 2Suzhou Future Electric Co., Ltd., Suzhou, China

In order to improve the accuracy of series arc fault detection and prevent fire accidents
caused by series arc fault, a series arc fault simulation experiment circuit was built to obtain
the low-frequency and high-frequency current waveform of series arc fault under different
loads. The kurtosis, waveform factor, crest factor, pulse factor, and margin factor of low-
frequency current waveform are extracted in the time domain. In the frequency domain, a
method based on variational mode decomposition and energy entropy is proposed to
extract the characteristic quantity of series arc faults. It was found that the energy entropy
of the intrinsic mode function component with the largest variance contribution ratio will
increase when a series of arc faults occur, and it was used as a characteristic quantity.
Characteristic vectors were constructed based on time–frequency characteristic
quantities, and the characteristic vector was trained based on the random forest
algorithm to obtain the diagnosis model and analyze the series arc fault diagnosis. The
analysis showed that the diagnostic accuracy of the model trained by the proposed
method was above 97%, and the fault recognition effect was remarkable, which provides
an important reference for the improvement of the series arc fault detection technology.

Keywords: series arc fault, IMF component, variational modal decomposition, energy entropy, random forest
algorithm

1 INTRODUCTION

According to the Fire Statistics Annual Report of China Fire Protection Association (CFPA) Shao
(2020), the number of electrical fires in China has been on the rise in recent years, and the proportion
of electrical fires ranks first among all types of fires, accounting for about 30%. Arc faults are one of
the leading causes of electrical fires. In low-voltage distribution lines, series of arc faults may occur
due to aging and damage of insulation of wires, poor connection of wires, or loose connection of
electrical equipment (Xiong et al., 2016). A large amount of heat will be generated when the series of
arc faults occurs in the line, which is easy to ignite combustible materials and lead to fire [Liu G. et al.
(2017), Lin et al. (2021), Liu G. G. et al. (2017)]. In serious cases, explosions will occur, endangering
personal safety. Therefore, in order to protect the safety of production and the safety of residents,
effectively solving low-voltage series of arc faults has become a research hotspot for scholars at home
and abroad.

The current series of arc fault detection technology has the problems of low detection ratio and
ineffective identification under mixed loads. In the field of series arc fault detection and diagnosis, the
detection methods for low-voltage series arc are mainly divided into two categories: 1) the arc is
detected by the radiation, energy, and temperature changes of the arc. 2) Detect series arc faults by
current and voltage waveform changes. Wang et al. (2019) and Xiong et al. (2017) used third-order

Edited by:
Yahui Zhang,

Yanshan University, China

Reviewed by:
Srete Nikolovski,

Josip Juraj Strossmayer University of
Osijek, Croatia

Ahmad Farid Abidin,
Faculty of Electrical Engineering UiTM,

Malaysia

*Correspondence:
Changchun Chi

changchun_chi@126.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 04 March 2022
Accepted: 02 May 2022
Published: 17 June 2022

Citation:
Zhao L, Chi C, Zhao Q and Mao H
(2022) Series Arc Fault Diagnosis

Based on Variational Mode
Decomposition and Random Forest.

Front. Energy Res. 10:889273.
doi: 10.3389/fenrg.2022.889273

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8892731

METHODS
published: 17 June 2022

doi: 10.3389/fenrg.2022.889273

589

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.889273&domain=pdf&date_stamp=2022-06-17
https://www.frontiersin.org/articles/10.3389/fenrg.2022.889273/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.889273/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.889273/full
http://creativecommons.org/licenses/by/4.0/
mailto:changchun_chi@126.com
https://doi.org/10.3389/fenrg.2022.889273
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.889273


and fourth-order Hilbert fractal antennas to detect
electromagnetic radiation (EMR) signals generated by DC arcs.
The experimental results show that EMR can be used as a
characteristic quantity to characterize a series of arc faults.
The Hilbert transform can parse the signal into an analytic
signal containing the instantaneous frequency and amplitude,
but the disadvantage is that the Hilbert transform is only suitable
for part of the frequency band of the electromagnetic radiation
signal, and the method is greatly affected by environmental
factors, and the positioning range is limited. Lala and Subrata,
(2020), Jiang et al. (2021), Chen et al. (2015), Jingjing and
Zhihong (2019), Miao et al. (2019) and Liu et al. (2019) took
the empirical mode decomposition (EMD) energy entropy as the
characteristic quantity of series arc fault. Although good results
are obtained, the EMD energy entropy is used as a characteristic
quantity, and there are end-point effects and modal aliasing. The
methods of arc fault detection using radiation, temperature, and
energy have great limitations, so the mainstream research
methods are still based on current and voltage waveforms for
arc identification. In the article by Chen et al. (2019),Qi et al.
(2017),Yu et al. (2020),Ma et al. (2021), Zhang et al. (2018), and
Gao et al. (2021), the wavelet transform is used to decompose the
current and voltage waveform, and the energy in different
frequency bands, the maximum value of detail signal in each
frequency band, and the low-frequency approximation coefficient
of adjacent periodic current are calculated as the characteristic
quantities of series arc faults. The wavelet transform is based on
the Fourier transform to refine the signal at multiple scales, and at
the same time overcomes the shortcomings such as the window
does not change with the frequency during local refinement;
however, the wavelet transform is not ideal for the situation where
the frequency bands of the useful signal and the noise overlap
each other, and the problem of spectral aliasing is prone to occur.
Karakose et al. (2018) and Cui and Tong. (2021) used S-transform
and generalized S-transform to detect pantograph–catenary
system arc faults and aviation arc faults, respectively. The
S-transform uses a Gaussian window function, and the
window width is proportional to the inverse of the frequency
and do not need to select window functions. The selection of the
function improves the defect of fixed window width, but the
feature quantity extracted by S-transform has the problem of
insensitivity to noise. This method is inaccurate in the frequency
domain resolution in the higher frequency range, and the
resolution is lower than that of the Fourier transform. The
series current is an electrical parameter that is easily obtained
in the traditional distribution line protection system. The
currents in the series loop are equal in magnitude. In
principle, the arc detection device can be installed at any point
in the loop, and the sampling position is not restricted by the
position of the arc in the loop. However, when the load terminal
voltage is used as the detection signal, the power terminal voltage
and the load terminal voltage are likely to introduce harmonic
interference, resulting in misjudgment. So most scholars abandon
the voltage and use the current signal as the target quantity for
feature extraction. In the article by Syafi’i et al. (2018),Zhang et al.
(2016), Karakose et al. (2018), Khafidli et al. (2018) and Wang et
al. (2017), characteristic quantities in the frequency domain are

extracted by fast Fourier transform, and the amplitude of the
harmonic component and the all-phase spectrum is taken as
characteristic quantities. However, the disadvantage is that the
amount of calculation is large, and the Fourier transform has
defects in the analysis of non-stationary time-varying signals,
extracting feature quantities in the time domain is good for fault
arc diagnosis of a single load line but not very good for circuits
with mixed loads. In the article by Lin et al. (2020) and Cui et al.
(2021), the series arc fault current waveform is analyzed in the
time domain, and the periodic amplitude, the correlation, and the
continuity between adjacent periodic current samples, the zero-
rest time of the current, and the zero-rest time proportional
coefficient of the two periodic currents are calculated as the
characteristic quantity. However, it is not good to extract
characteristic quantities in the time domain for circuits with
different load mixtures. EMD energy entropy as a characteristic
quantity has a modal aliasing problem.

In view of the above shortcomings and considering the actual
low-voltage series arc fault detection requirements and the
realization of the method application in the protection device,
this article proposes an arc fault detection method based on
time–frequency feature fusion. The specific contributions are as
follows:

1) Simulate the series arc fault of different load types and mixed
load types, and extract the low-frequency and high-frequency
current waveforms when the load is working normally and
when the series arc fault occurs. Feature quantities are
extracted for low-frequency current components in the
time domain.

2) Aiming at the extraction of high-frequency current
component features, a series of arc fault feature extraction
method based on VMD and energy entropy is studied.

3) Use the random forest algorithm to train and diagnose the
extracted feature quantities.

4) Optimize the random forest algorithm to train the diagnostic
model to improve its recognition rate and correct rate.

This article is organized as follows: Section 2 conducts low-
voltage series arc fault experiments, collects low-voltage AC
current data, and performs waveform analysis; Section 3
introduces the extraction method of arc time-domain feature
quantity and the feature extraction method based on VMD to
extract energy entropy; in Section 4, we build a random forest
algorithm training diagnosis model, propose an arc fault
diagnosis algorithm, and conduct sum simulation verification;
the final conclusions are summarized in Section 5.

2 SERIES ARC FAULT SIMULATION
EXPERIMENT

2.1 Experimental Environment
It is difficult to obtain the current waveform of series arc faults
from actual distribution wires because of the uncertainty of the
occurrence time and location of series arc faults. This article sets
up a series of arc fault simulation experiment environments,
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which are composed of a power supply, series arc generator,
signal acquisition module, and loads inspection (General
Administration of Quality Supervision, 2014). The schematic
diagram of the series arc fault simulation experiment is shown
in Figure 1.

In this article, an arc generator is chosen to simulate the
generation of arc faults. The series of arc generator is mainly
composed of two electrodes. One electrode which is regarded as
a mobile electrode is a carbon-graphite rod with a diameter of 6 ±
0.5 mm. The arc burning end of the electrode is made into a tip and
equipped with a sliding block. The clearance between the two
electrodes can be controlled by adjusting the horizontal adjusting
knob. The other can be a 6 ± 0.5-mm-diameter copper rod set as a
fixed electrode. The arc ends of both electrodes should be kept clean

to allow for repeatability of arcing. The two electrodes are
connected in series by wire, with one end connected to a load
and the other to the power supply. A stable arc can be formed by
adjusting the horizontal adjustment knob so that the two electrodes
are separated at proper distances. The schematic diagram of the
device is shown in Figure 2. The physical map is shown in Figure 3.

The signal acquisition module is composed of a current
transformer and a filter amplifying circuit and is responsible for
collecting arc current signals. The current is converted into a
voltage signal through a current transformer and a sampling
resistor, then filtered and amplified by the circuit, and finally,
the current signal is sampled using an oscilloscope. For the
acquisition of the current signal, the low-frequency and high-
frequency mutual inductors are used to collect the low-frequency
and high-frequency current waveforms, respectively. The low-
frequency mutual inductor collects the low-frequency current
and outputs the low-frequency current component signal
through the low-pass filtering and amplifying circuit. The low-
pass filtering circuit consists of an RC low-pass filter. The cut-off
frequency is configured according to 1/2πRC to about 1 kHz. The
high-frequency mutual inductor collects the high-frequency
current and outputs the high-frequency current component
signal through the high-pass filtering and amplifying circuit.
The high-pass filtering circuit consists of an RC high-pass filter,
and the cut-off frequency is configured to be about 1 kHz.

According to GB/T31143-2014 “General Requirements for
Series Arc Fault Detection Device (AFDD)" issued by the
General Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China in 2014, it is
stipulated that AFDD must meet the inhibitory load shielding
test. Seven shielded loads are specified in the standard; they are
vacuum cleaners, switching power supplies, motor loads with
capacitive start (such as vacuum cleaners and compressors),
electronic light regulators, resistive loads, electric drill loads, and
halogen lamps. Therefore, resistance, electric kettle, electric drill,
and vacuum cleaner are taken as the loads. The main hardware
configuration required for the experiment is shown in Table 1.

2.2 Experimental Process
Experiments were carried out at room temperature, the power
supply is connected to the arc generator through the isolated power
supply, the other end of the arc generator is connected to the load,

FIGURE 1 | Schematic diagram of the series arc fault simulation
experiment circuit.

FIGURE 2 | Schematic diagram of the series arc fault generator.

FIGURE 3 | Physical map of the arc fault generator.

TABLE 1 | Main hardware configuration of the series arc fault experiment.

Name Model and parameter

The power supply 220 AC
The base 70 cm*60 cm*5 cm
Copper rod φ6 mm
Low-frequency current transformer DL-CT1005 APL 2000/1
High-frequency current transformer (custom) Ratio 2000/1
Resistance 220 V/0–50 Ω
Vacuum cleaner ZL100-TA 220 V/1000 W
Electric kettle 220 V 1500 W
Electric drill 220 V/700 W 50/60 Hz
Oscilloscope Tektronix/TBS2000B
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and the wire of the load end passes through the mutual inductor.
The current signal enters the signal acquisitionmodule through the
sampling resistor, and the output end of the signal acquisition
module is connected to the oscilloscope. The waveform displayed
by the oscilloscope is the voltage value, which actually reflects the
current waveform in the line. The field diagram of the series arc
fault simulation experiment is shown in Figure 4.

The horizontal adjustment knob of the arc generator is adjusted
to control the generation of the arc. The sampling frequency of the
oscilloscope is set at 62.5 kHz, and the sampling time of each group
of waveforms is 320 ms, with a total of 16 cycles. The experiment
obtains the low-frequency and high-frequency current waveforms

of resistors, electric kettles, electric drills, and vacuum cleaners
during normal operation and arc faults, as well as the current
waveforms of switching power supplies and electric drills at the

FIGURE 4 | Field diagram of the series arc fault simulation experiment.

FIGURE 5 | Current waveform of the electric kettle: (A) low-frequency
waveform. (B) High-frequency waveform.

FIGURE 6 | Current waveform of the resistance: (A) low-frequency
waveform. (B) High-frequency waveform.

FIGURE 7 | Current waveform of the vacuum cleaner: (A) low-frequency
waveform. (B) High-frequency waveform.
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moment of startup. For the convenience of subsequent data
analysis, the collected data are normalized in MATLAB. Figures
5–8 show the low-frequency and high-frequency arc current
waveform of four cycles under different loads.

At 0.04 s, the series arc generator simulates the occurrence of
series arc faults, that is, the waveform of the first two cycles is in a
normal working state, and the series arc faults occur in the last two
cycles. It can be seen from the waveform figure that when the electric
kettle and resistance work normally, the low-frequency current
waveform is a sine wave of 50 Hz, and the high-frequency current
signal waveform has a small number of high-frequency pulses.When
a series of arc faults occurs, the low-frequency waveform appears and
has burrs at the peak, while the high-frequency waveform changes
obviously and there are a large number of high-frequency pulses.
When the electric drill and vacuum cleaner work normally, the low-
frequency current waveform has the “flat shoulder,” which is similar

to the low-frequency waveform when the series arc fault occurs
between the electric kettle and the resistance. At the same time, the
high-frequency current signal waveform also has a small number of
high-frequency pulses. When a series of arc faults occurs, the low-
frequency waveform changes dramatically, burrs increase, waveform
amplitude decreases, waveform distortion is serious, the high-
frequency waveform amplitude increases, and there are a large
number of high-frequency pulses.

3 CHARACTERISTIC EXTRACTION OF
SERIES ARC FAULTS
3.1 Analysis of Time Domain Characteristics
of Series Arc Faults
Time domain characteristics refer to the description of signal
waveform with time as a variable, which is an important indicator

FIGURE 8 | Current waveform of the electric drill: (A) low-frequency
waveform. (B) High-frequency waveform.

TABLE 2 | Time-domain characteristic expressions.

time-domain
characteristic quantity

Expression

Kurtosis X1 � E(xi−μ)4
σ4

Waveform factor
X2 � 1

N

�������
1
N∑N

i�1 |xi |2
√
∑N

i�1 |xi |
Crest factor X3 � xmax−xmin�������

1
N∑N

i�1 |xi |2
√

Pulse factor X4 � 1
N
xmax−xmin∑N

i�1 |xi |
Margin factor X5 � xmax−xmin

(1N
��
|xi |

√
)2

TABLE 3 | Average time-domain characteristic values of low-frequency current
waveform.

Load State X1 X2 X3 X4 X5

Electric kettle Normal 1.493 1.111 2.912 3.237 3.556
Fault 1.463 1.102 3.065 3.387 3.697

Resistance Normal 1.533 1.125 3.065 3.450 3.902
Fault 1.541 1.119 3.336 3.728 4.181

Electric drill Normal 4.516 1.349 6.467 7.943 12.151
Fault 3.680 1.327 6.676 8.845 12.353

Vacuum cleaner Normal 1.995 1.213 4.062 4.590 4.990
Fault 2.297 1.151 5.213 6.062 6.725

FIGURE 9 | High-frequency current component of the electric kettle: (A)
normal. (B) Series arc fault.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8892735

Zhao et al. Arc Fault Diagnosis

593

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


to measure signal characteristics. Characteristic quantities in the
time domain are usually divided into dimensionless and
dimensional characteristic quantities. Dimensionless
characteristics are not sensitive to the change of load and can
more intuitively represent the status information of normal
operation and fault of load. Kurtosis is often used in the field
of bearing fault diagnosis. It has nothing to do with bearing speed

and size, etc. It is sensitive to impact signals and is suitable for the
description of surface damage faults. It can be seen from the arc
fault current waveform diagram in Figures 3–6 that the current
waveform will be distorted and high-frequency pulses will appear
when an arc fault occurs. These signals are similar to impulse

FIGURE 10 | (Continued).
FIGURE 10 | (Continued). VMD decomposition results of normal high-
frequency current waveform: (A) IMF1 component. (B) Spectrum of IMF1. (C)
IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F) Spectrum
of IMF3. (G) IMF4 component. (H) Spectrum of IMF4.
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signals. Therefore, this article uses kurtosis as a waveform time
domain feature to calculate. The waveform factor is the ratio of
the effective value to the rectified average value.When an arc fault
occurs, the waveform of the low-frequency current component
will be distorted, the periodicity will be destroyed, and both the
effective value and the rectified average value will change, so its
shape factor can be calculated. The crest factor is defined as the
ratio of the peak-to-peak value to the effective value of a signal.

When an arc fault occurs, the low-frequency current component
will appear “burr,” and its peak-to-peak value will become larger,
so the arc fault can be described by calculating the change in the
value of the crest factor. The impulse factor refers to the ratio of
the peak value of the signal to the rectified average value. Similar

FIGURE 11 | (Continued).
FIGURE 11 | (Continued). VMD decomposition results of high-frequency
current components of series arc fault: (A) IMF1 component. (B) Spectrum of
IMF1. (C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F)
Spectrum of IMF3. (G) IMF4 component. (H) Spectrum of IMF4.
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to the crest factor, arc faults can also be described by the pulse
factor. The margin factor is the ratio of the peak value of the
signal to the rms amplitude. Crest factor, impulse factor, and
margin factor, like kurtosis, are all indicators used to detect
whether there is a shock in a signal. In this article, kurtosis,
waveform factor, crest factor, pulse factor, and margin factor are
selected as five dimensionless indexes for time domain
characteristic extraction. Low-frequency current waveform of
two cycles, i.e., 20 ms, and 2,500 points of sampling points N

were selected as an analysis sample. Kurtosis, waveform factor,
crest factor, pulse factor, and margin factor of low-frequency
current waveform were calculated in the time domain, and the
five characteristic quantities were marked as X1, X2, X3, X4, and

FIGURE 12 | (Continued). FIGURE 12 | EMD decomposition results of high-frequency current
components of series arc fault: (A) IMF1 component. (B) Spectrum of IMF1.
(C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3 component. (F)
Spectrum of IMF3. (G) IMF4 component. (H) Spectrum of IMF4. (I) IMF5
component. (J) Spectrum of IMF5. (K) IMF6 component. (L) Spectrum of
IMF6. (M) IMF7 component. (N) Spectrum of IMF7. (O) IMF8 component. (P)
Spectrum of IMF8. (Q) IMF9 component. (R) Spectrum of IMF9.
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X5 in turn. The expression of each time domain characteristic
quantity is shown in Table 2.

InTable 2, xi represents the current sample at the ith sampling
point, i = 1,2,3..., N; μ is the mean of xi, σ is the standard deviation
of xi, and E represents the mathematical expectation. The time
domain characteristic quantities of 100 samples were calculated
for each load. Table 3 shows the average time domain
characteristics values of different loads.

It can be seen from Table 2 that the crest factor, pulse factor,
and margin factor of each load increase when a series of arc faults

occurs compared with normal operation. The value of the
waveform factor decreases when a series of arc faults occurs.
For kurtosis, the values of electric kettles and electric drills will
decrease in the event of a series of arc faults, and the values of
resistance and vacuum cleaners will increase. Under the condition
of a single load, the threshold value can be set to determine
whether the series of arc faults occurs. But in the actual line, load
condition cannot be determined in advance, and threshold setting
will be difficult. It can be seen that the high-frequency current
waveform changes dramatically when series arc faults occur, and
more series arc fault characteristics can be obtained in the high-
frequency waveform, so it is necessary to analyze the high-
frequency current waveform.

3.2 Analysis of Frequency Domain
Characteristics of Series Arc Faults
It is impossible to calculate the characteristic values of the high-
frequency current waveform in the time domain because the
waveform of the high-frequency current waveform is very drastic.

FIGURE 12 | (Continued).

FIGURE 12 | (Continued).
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Therefore, characteristic extraction is carried out in the frequency
domain.

VMD is a novel adaptive and completely non-recursive signal
analysis method provided by Dragomiretskiy and Zosso. (2014) for
EMD’s sensitivity to noise and signal sampling. To establish and
solve the variational problem as the core, based on the classical
Wiener filter, Hilbert transform and mixes as the basis of expansion
solution, intrinsic mode function, and their respective central
frequencies are obtained through each intrinsic mode function to
reconstruct the signal. The reconstructed signal can smoothly
reproduce the input signal. VMD is the sum of the input signal

f(t) decomposed into K sub-signals (i.e., IMF components) and the
remainder:

f(t) � ur(t) +∑K

k�1uk(t), (1)
where uk(t) is the kth IMF component, and ur(t) is the remainder.

The IMF component is a function of amplitude and frequency
modulation:

uk(t) � Ak(t) cos(φk(t)), (2)
where φk(t) is a non-decreasing function, that is, φ′k(t)≥0,k ≤ K;
Ak(t) represents the envelope Ak(t) ≥ 0; k ≤ K.

The VMD algorithm requires the bandwidth and minimum of
all IMF components. The solution of the constrained variational
problem is constructed as follows:

min
{uk(t)},{ωk}

⎧⎨⎩∑K

k�1

�������zt[(δ(t) + j

πt
) p uk(t)]e−jωkt

�������
2

2

⎫⎬⎭, (3)

where ωk is the central frequency of the kth IMF component, ωk =
φ′k(t); δ(t) is the Dirac function.

In Formula (3), quadratic penalty term and Lagrange
multiplier are introduced to solve the variational problem,
making it unconstrained. The augmented Lagrange function is
obtained as follows:

L{[uk(t)], [ωk], λ(t)} � α∑K

k�1

�������zt[(δ(t) + j

πt
) p uk(t)]e−jωkt

�������
2

2

+
�����f(t) −∑K

k�1 uk(t)
�����22 + 〈λ(t), f(t)

−∑K

k�1 uk(t)〉,
(4)

where λ(t) is the Lagrange multiplier and α is the penalty factor.
The detailed iterative solution steps of modal components

uk(t), central frequency ωk, and λk(t) in Formula (4) can be
referred to as the solution steps in the article by Dragomiretskiy K
and Zosso D (2014). According to the aforementioned principle,
the VMD algorithm is used in MATLAB for waveform
decomposition. According to the study of K and α in an
article by Ma et al. (2020), the number of decomposition and
the penalty factors were set at K = 4 and α = 2000, respectively.
Other parameters in the VMD algorithm are set as the default
values of the algorithm in an article by Liu et al. (2021). The
high-frequency current waveform is taken as an example when
an electric kettle works normally and a series of arc faults occurs.
For the convenience of analysis, the waveform data were

FIGURE 12 | (Continued). EMD decomposition results of high-
frequency current components of series arc fault: (A) IMF1 component. (B)
Spectrum of IMF1. (C) IMF2 component. (D) Spectrum of IMF2. (E) IMF3
component. (F) Spectrum of IMF3. (G) IMF4 component. (H) Spectrum
of IMF4. (I) IMF5 component. (J) Spectrum of IMF5. (K) IMF6 component. (L)
Spectrum of IMF6. (M) IMF7 component. (N) Spectrum of IMF7. (O) IMF8
component. (P) Spectrum of IMF8. (Q) IMF9 component. (R) Spectrum of
IMF9.

TABLE 4 | Central frequencies of IMF components.

IMF component Central frequency (kHz)

Normal Series arc fault

IMF1 0.075 0.675
IMF2 1.050 1.425
IMF3 2.175 2.725
IMF4 4.450 4.450
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normalized, and then VMD decomposition was carried out to
obtain four IMF components, and the corresponding spectrum
of each component was obtained by Fast Fourier
Transformation in MATLAB. The decomposition results are
shown in Figures 9–11. At the same time, the EMD algorithm
was used for the same series arc fault waveform to obtain each

IMF component and its spectrum after decomposition, as
shown in Figure 12.

Figure 9 shows the original current waveform when the
electric kettle is in normal operation and series arc fault
occurs; Figure 10 shows the decomposition result of VMD
algorithm when the electric kettle is in normal operation;
Figures 11, 12, respectively, show the decomposition result of
VMD and EMD algorithms of the same high-frequency
component of the series arc fault. As can be seen from
Figure 12, the EMD algorithm decomposes the high-frequency
signal into nine components, and the IMF1–9 components are
arranged according to the central frequency from large to small.
Among them, both IMF1 and IMF2 appear in the frequency band
around 5 kHz, with an over-decomposition phenomenon. The
center frequency distribution of the IMF2 component is not
obvious, including the frequency band [5000 Hz and
10000 Hz], and there is the phenomenon of mode aliasing. In
addition, it can be seen from the amplitude–frequency diagram of
IMF5–9 components that the component is lower than 1kHz,
which is due to the frequency band attenuation of the RC high-
pass filter, but it is not needed for the high-frequency component
analysis in this article. It can be seen from Figure 11 that the high-
frequency current component is decomposed into four IMF
components by the VMD algorithm, which are independent of
each other without modal aliasing, and the decomposition effect
is significantly better than that of the EMD algorithm. The center
frequency of each IMF based on the VMD algorithm is shown in
Table 4.

TABLE 5 | Energy entropy and variance contribution ratio.

IMF component Normal Series arc fault

Energy entropy Variance contribution ratio Energy entropy Variance contribution ratio

IMF1 0.115 22.753 0.128 25.155
IMF2 0.112 19.142 0.155 22.099
IMF3 0.101 15.769 0.148 18.548
IMF4 0.101 15.858 0.123 11.618

FIGURE 13 | Energy entropy of normal operation and series arc fault.

TABLE 6 | Characteristic vectors of some experimental samples.

X1 X2 X3 X4 X5 X6 X7

1.457 1.103 2.910 3.210 3.699 0.159 1
1.484 1.105 3.995 4.417 4.828 0.157 1
1.464 1.105 2.893 3.198 3.600 0.157 1
1.495 1.112 2.878 3.201 3.520 0.118 0
1.490 1.110 2.878 3.197 3.509 0.111 0
1.653 1.105 3.976 4.397 4.740 0.159 1
1.591 1.125 3.291 3.703 4.143 0.159 1
1.521 1.105 3.274 3.621 3.975 0.157 1
1.498 1.112 2.964 3.298 3.634 0.140 0
1.500 1.114 3.103 3.458 3.836 0.129 0
7.919 1.648 5.409 8.915 12.354 0.157 1
8.482 1.654 5.901 9.761 13.624 0.154 1
7.035 1.494 6.430 9.610 12.305 0.153 1
3.601 1.258 5.744 7.230 8.6078 0.143 0
3.256 1.214 7.293 8.855 10.028 0.137 0
1.677 1.138 4.328 4.929 5.444 0.158 1
3.675 1.209 9.878 11.94 13.518 0.156 1
16.951 1.238 9.686 16.956 19.847 0.158 1
1.891 1.119 3.740 4.189 4.520 0.136 0
1.886 1.118 3.815 4.269 4.607 0.142 0

FIGURE 14 | Diagnostic flow chart of random forest algorithm.
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FIGURE 15 | Diagnostic results of different types of loads based on random forest algorithm. (A) Effect of random forest algorithm on electric kettle arc fault
diagnosis. (B) Effect of random forest algorithm on resistance arc fault diagnosis. (C) Effect of random forest algorithm on electric drill arc fault diagnosis. (D) Effect of
random forest algorithm on switching power supply arc fault diagnosis. (E) Effect of random forest algorithm on vacuum cleaner arc fault diagnosis. (F) Effect of random
forest algorithm on hair dryer arc fault diagnosis.
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Energy entropy can measure the regularity of time series and
the energy characteristics of signals in different frequency bands
(Jin et al., 2021). When the series arc fault occurs, the current will
change and the energy will also change. The energy entropy of
mth IMF component is calculated as:

HEm � ∑N
i�1(xm(i))2∑K

m�1∑N
i�1(xm(i))2

lg
∑N

i�1(xm(i))2∑K
m�1∑N

i�1(xm(i))2
, (5)

where xm(i) is the value of the ith point of the mth IMF
component, m = 1,2,3, . . . ,K.

sm � varm
varr + ∑K

k�1vark
, (6)

where varm is the variance of mth IMF component, m = 1,2,3, . . . ,
K and varr is the variance of the remainder.

The energy entropy and variance contribution ratio of each
IMF in Figures 8, 9 were calculated according to the
aforementioned formula. Table 5 shows the calculation results.

It can be seen from Tables 4, 5 that the IMF1 component has a
center frequency of less than 1 kHz, which is due to the frequency
band attenuation of the high-pass filter, but it is not needed for the
high-frequency waveform analysis in this article. The frequency of
the high-frequency current waveform in this article is set above
1 kHz, so only the IMF component larger than 1 kHz needs to be
studied. When the center frequency of the IMF component is
greater than 1KHZ, the IMF2 variance contribution rate of the
normal operating current is the largest, and the energy entropy is
0.122. When a series of arc faults occur, the variance contribution
ratio of IMF1 is the largest, and the energy entropy is 0.155, which
increases obviously. The corresponding energy entropy of IMF
with the largest variance contribution ratio was calculated for 100
groups of normal working and 100 groups of series arc fault
samples, as shown in Figure 13.

As can be seen from Figure 11, the corresponding energy
entropy of IMF with the largest variance contribution ratio in

normal operation is less than 0.15, and the corresponding energy
entropy of IMF with the largest variance contribution ratio in
series arc fault is greater than 0.15. Therefore, the energy entropy
corresponding to IMF with the largest variance contribution ratio
can be taken as a characteristic value and denoted as X6.

4 SERIES ARC FAULT DIAGNOSIS

4.1 Construction of a Series Arc Fault
Characteristic Vector
In order to improve the diagnosis ratio of series arc fault and
realize the diagnosis under different load conditions, the load
working state is marked as X7, “0” means normal operation, “1”
means series arc fault, and the series arc fault characteristic vector
is constructed with the six time–frequency characteristic
quantities in this article. The characteristic vectors of some
experimental samples are shown in Table 6.

4.2 Series Arc Fault Diagnosis Based on
Random Forest
Random forest algorithm is an algorithm that integrates multiple
decision trees through the idea of ensemble learning (Li et al., 2020).
Its basic unit is the decision tree. In this article, the decision tree
algorithm selects CART [Jiang et al. (2021), Ali et al. (2012)], and the
Gini coefficient minimization criterion is used for characteristic
selection in CART. The series arc fault diagnosis flow chart based on
random forest algorithm is shown in Figure 14:

In this article, 1000 training samples were selected with 250 for
each load, including 100 normal samples and 150 series of arc
fault samples. Characteristic quantities n = 6. The number of
decision trees is T = 100. The diagnosis model was trained, and
the untrained load samples were tested. Figures 15A–F shows the
diagnostic results of different types of loads based on the random

TABLE 7 | Detection accuracy of the random forest diagnostic model.

Load Number of samples Correct ratio

Normal Fault Normal sample (%) Fault sample (%) Comprehensive testing (%)

Electric kettle 100 300 100 98.67 99
Electric drill 208 320 98.56 96.88 97.53
Vacuum cleaner 176 240 99.43 97.08 98.08
Resistance 160 208 96.88 99.04 98.64

TABLE 8 | Diagnostic results of switching power supply, hair dryer, and mixed load.

Load Original sample diagnostic model New sample diagnostic model

Number of samples Correct ratio (%) Number of samples Correct ratio (%)

Switching power supply 432 94.91 282 98.93
Hair dryer 464 92.67 214 97.66
Electric kettle + electric drill 448 93.75 198 97.47
Switching power supply + electric drill 400 92.50 150 98.67
Resistance + vacuum cleaner 480 91.67 230 97.82
Resistance + hair dryer 496 91.13 246 97.56
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forest algorithm. From Figures 15A–F, the information shown in
Table 7 can be obtained. The random forest algorithm has ideal
fault diagnosis effects and high diagnosis accuracy for electric
kettles, hair dryers, electric drills, switching power supplies, and
vacuum cleaners.

It can be seen from Table 7 that in the series arc fault detection
model based on random forest, the accuracy ratio of load
detection under a normal working state is higher than 96%.
The fault detection accuracy of load in a series arc fault state is
higher than 96%. The comprehensive detection ratio was above
97%. The detection effect is very good.

In the actual distribution lines, the loads are varied and mixed.
In order to verify the validity of the aforementioned diagnostic
model, series arc fault simulation experiments of switching power
supply, hair dryer, and mixed load are added in this article.
Switching power supply parameters: BSD-36 P-60W, input 220
VAC 50 Hz, and output 36 VDC 60W. Hair dryer parameters:
220 VAC 1600W. According to the time domain and frequency
domain characteristic extraction methods proposed in this article,
the time–frequency characteristic values are extracted, the
characteristic vector is constructed, and a new load training
sample diagnosis model is added based on the random forest
algorithm training, and then the fault diagnosis is carried out. The
diagnosis results are shown in Table 8.

As can be seen from Table 8, in the diagnosis of the new loads
and mixed load types, the accuracy of the original diagnosis model
decreases to 94.91% and 91.13%, respectively, and the detection
effect is lower than that of the original four loads. Therefore, new
loads and mixed loads were added to the original training samples
to optimize the diagnostic model. The results in Table 8 show that
the recognition efficiency of the new diagnostic model has reached
more than 97%, and the recognition effect is significant. For more
load cases, new training samples can be added to improve the
diagnosis model for diagnosis.

5 CONCLUSION

Aiming at the problem of low-voltage series arc faults that are
difficult to identify and cause great harm, this article proposes
a series of arc fault feature extraction method based on VMD
and energy entropy. First, a series arc fault simulation
experimental circuit is built, and the series of arc fault
current waveform data under different loads are obtained,
and the arc characteristic quantity is extracted by VMD

decomposition and Fourier transform. Then, the random
forest algorithm model for training is established, and the
random forest algorithm is used to train the diagnostic model
to identify arc faults. Finally, the feasibility of the method is
verified by MATLAB simulation, and the conclusions of this
article are as follows:

1) The energy entropy corresponding to the IMF component
with the largest variance contribution rate extracted based on
VMD decomposition can effectively characterize the arc fault
feature quantity.

2) The random forest algorithm training diagnosis model based
on five time-domain feature quantities and one IMF
component corresponding to energy entropy as the
frequency-domain feature quantity has good generalization
performance for arc fault identification.

3) The training process of random forest uses a decision tree as
the basic unit to perform simple two-class classification. The
training results show that the recognition rate of series arc
faults has reachedmore than 97%, and the recognition effect is
remarkable, which can provide analytical ideas for the
improvement of series arc fault diagnosis algorithms and
the research on the safety of people’s livelihood.
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NOMENCLATURE

X1 kurtosis

X2 waveform factor

X3 crest factor

X4 pulse factor

X5 margin factor

X6 energy entropy

X7 arc fault status

xi current sampling sample

E expectation

σ standard deviation

λ(t) Langrange multiplier

α penalty factor

δ(t) Dirac delta function

ωk IMF component center frequency

uk(t) modal components

K the number of modal decompositions

HEm energy entropy

Sm variance contribution rate

varm variance of IMF components

varr variance of remainder

Abbreviations
EMD empirical mode decomposition

IMF intrinsic modal function

CART classification and regression tree

VMD variational mode decomposition
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Research on the STATCOM
Mathematical Model of Battery
Storage in HVDC Transmission
System
Chao Xing1, Junhao Chen1,2, Xinze Xi1, Zhi Xu1, Xin He1, Shengnan Li1 and Shilong Chen2*

1Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, China, 2School of Electric Power Engineering,
Kunming University of Science and Technology, Kunming, China

When traditional STATCOM (Static Synchronous Compensator) performs large-capacity
reactive power compensation, the control accuracy of the DC side voltage will be affected
and the DC side voltage will fluctuate greatly. Therefore, this study proposes to use battery
energy storage STATCOM (STATCOM/BESS) and gives the main circuit topology of
STATCOM/BESS. By analyzing the working principle of STATCOM/BESS, the
mathematical model and control method are derived and modeled, in which the
Shepherd model is used as the energy storage battery in STATCOM/BESS. Aiming at
the possible imbalance of the battery state of charge (SOC) in STATCOM/BESS, the
phase-to-phase SOC balance control and phase control are proposed. At last, in PSCAD/
EMTDC simulation software, STATCOM/BESS is tested for dynamic response and
steady-state response performance of active power control, reactive power control,
and transformation failure suppression test, which verifies the effectiveness and
superiority of STATCOM/BESS commutation failure.

Keywords: HVDC, STATCOM/BESS, mathematical model, commutation failure, SOC

INTRODUCTION

High Voltage Direct Current (HVDC) plays an important role in China’s strategy of “West-East electricity
transmission project and national network” by virtue of its advantages in long-distance and large-capacity
power transmission and grid interconnection (Zhang et al., 2010). In HVDC transmission projects put into
operation in China, the characteristics of “strong HVDC and weak AC, multi-infeed DC” are increasingly
prominent, which leads to the safety, stability, and reliability of the power grid (Wang et al., 2018). When a
fault occurs at the receiving end of theHVDC system, it is easy to cause the voltage sag of theACbusbar at the
inverter side, leading to commutation failure of the HVDC system. STATCOM can realize dynamic reactive
power compensation, suppress the bus voltageflicker, and improve the voltage transient stability of the system.
When the traditional STATCOMperforms high-capacity reactive power compensation, the control accuracy
of the outer DC side voltage will be affected, leading to the DC side voltage oscillation and large amounts of
harmonic components in the output current. At this time, the traditional STATCOM only compensates for
the reactive power, and its supporting effect on the grid voltage will be not ideal (Li et al., 2014).

STATCOM by itself has no ability to control and compensate active power, and the energy-
storage STATCOM combined with reactive power compensation technology can make up for the
deficiency of traditional STATCOM in HVDC system applications (Authors Anonymous, 2016). At
present, the energy storage in the field of power systems mainly includes pumped storage, flywheel
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energy storage, supercapacitor, and battery energy storage
(Cheng et al., 2007). In the study of Castaneda et al. (2010),
energy-storage STATCOM was applied to the grid-connected
wind power planning, which effectively avoids voltage collapse in
case of sudden failure and shorts the voltage recovery time. Yang
et al. (2001) proposed a STATCOM/BESS device with parallel
batteries on the DC side of STATCOM to improve the dynamic
and transient stability and power transmission capacity of the
system. Xie et al. (2009) studied the effect of energy-storage
STATCOM on suppressing voltage phase change in the weak
power grid. Through experiments and simulations, it is found
that when the system fails, compared with traditional
STATCOM, energy-storage STATCOM can suppress voltage
phase transformation and reduce voltage sag by 7%. For the
study of the topology and control method of energy storage type
STATCOM, a static reactive generator/battery energy storage
(STATCOM/BESS) integrated system consisting of high-
pressure-resistant, high-power, and low-switching switching
devices such as GTO, IGBT, and so on is designed (Fei et al.,
2005), which can compensate for the power loss of the system
itself while improving the system’s compensation capacity, thus
damping oscillation and improving the system’s temporary
stability. Compared with traditional STATCOM, STATCOM/
BESS integrated system can effectively reduce fault voltage
landing and significantly suppress oscillations during voltage
recovery.

In this study, according to the existing research results and the
actual system requirements, a STATCOM/BESS with an angle
cascaded H-bridge structure is carried out, and the performance
of the designed STATCOM/BESS is verified by simulation.

STATCOM/BESS TOPOLOGY AND
MATHEMATICAL MODEL

DC/DC Section
Energy storage batteries are connected to the DC side in direct
parallel connection, non-isolated two-way DC/DC connection,

isolated two-way DC/DC connection, and so on. Isolated two-
way DC/DC connection requires a low- or high-frequency
transformer for boost, which is large in volume and high in
cost (Fei et al., 2005; Xie et al., 2009; He, 2016). The non-isolated
bi-directional DC/DC connection has a simple structure, is of low
cost, and has good energy conversion efficiency. Its disadvantages
are that the adjustment range of input and output is small and
there is no electrical isolation between the battery pack and the
power grid (Li et al., 2021).

The actual STATCOM/BESS phase contains 36/42 cascade H
bridge modules, which is a large number. Therefore, considering
the cost and technical difficulty of the device, the parallel
capacitor of the energy storage battery is directly connected to
the DC side of STATCOM, in which the parallel capacitor plays
the role of energy buffer and flattens the power difference
between the H bridge module and energy storage battery module.

DC/AC Section
In the conventional low-voltage distribution network, the DC/AC
part of STATCOM usually adopts the low-voltage two-level
topology. However, due to its low-voltage grade, high
switching device frequency, and large loss, the multi-level
topology is usually adopted in the HVDC transmission system
(Shen and Raksincharoensak, 2021a). STATCOM/BESS uses the
multilevel topology to make the output waveform have a better
harmonic spectrum, and the voltage stress borne by each
switching device is smaller, effectively reducing the capacity
and voltage level of each battery pack (Li et al., 2014).

Figure 1 shows the angle-cascaded H-bridge STATCOM/
BESS topology (Shen et al., 2022). There is a zero-sequence
current in the angle structure, which can exchange active

FIGURE 1 | STATCOM/BESS topology.

FIGURE 2 | Schematic diagram of power regulation.
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power between three-phase bridge chains. Several H-bridge
submodules are cascaded to form a bridge chain. Each
H-bridge submodule can output three levels of voltage, and
the bridge chain series reactor can be directly integrated into
the grid and withstand the gridline voltage. When the number of
H-bridge sub-modules is n, 2n+1 levels can be output through
modulation, and the AC side output of the converter is a multi-
level waveform, so changing the number of H-bridge sub-
modules can change the output voltage of the converter (He,
2016). Compared with the diode clamp three-level topology and
capacitor clamp three-level topology, the cascaded H-bridge
topology has a simple structure and convenient maintenance,
requiring only the minimum number of components in the case
of the same number of output levels (Cui et al., 2011), and
avoiding the problem of unbalanced charge and discharge
when multiple battery groups are connected in series.

Based on the above considerations, this study adopts the
angle-cascaded H-bridge topology.

STATCOM/BESS Working Principle
The H-bridge-cascaded STATCOM/BESS each phase bridge
chain can be directly integrated into the power grid after
series reactor L. The network between each phase bridge chain
and the connection point is equivalent to the two-terminal
network as shown in Figure 2A; Yang et al., 2022. Each phase
bridge chain can be regarded as a controllable voltage source, with
output voltage UA, connection point grid US, and internetwork
current IA. By controlling the amplitude and phase angle of the
output voltage UA, mutual compensation of the active and
reactive power between STATCOM/BESS and the power grid
is realized.

In Figure 2B, the grid voltage at the US grid-connected
point controls UA and US in the same direction and makes UA

amplitude greater than US amplitude. At this point,
STATCOM/BESS sends perceptual reactive power to the
grid. In Figure 2C, the UA is controlled in the same

direction as the US, and the UA amplitude is smaller than
the US amplitude. At this time, the STATCOM/BESS sends
capacitive reactive power to the grid. In Figure 2D, the UA

phase is controlled to lead the US phase, and the STATCOM/
BESS sends active power to the grid at this time. In Figure 2E,
the UA phase is controlled to lag BEHIND US phase, at which
time STATCOM/BESS absorbs active power from the grid. By
controlling the amplitude and phase angle of the output
voltage UA, STATCOM/BESS, and the power grid can
complement each other with active and reactive power.

The STATCOM/BESS Mathematical Model
Assuming that the parameters of each phase of the angle cascade
STATCOM/BESS are completely consistent, one three-phase
STATCOM can be decomposed into three single-phase
STATCOM to facilitate the analysis and derivation of the
mathematical model. Taking the AB phase as an example, its
single-phase equivalent circuit is shown in Figure 3; Shen et al.,
2020.

According to Kirchhoff’s voltage theorem, The single-
phase bridge chain voltage drop under the angle-cascaded
structure is the grid-connected point line voltage us, uab is the
bridge chain output voltage, and iab is the grid-connected
phase current.

uab � us − L
diab
dt

− Riab (1)

The H-bridge sub-module is composed of four switching
devices in parallel with a DC capacitor( Yang et al., 2019).
Suppose that the switch state of Gj1 is 1 when it is on and 0
when it is off. The same is true for Gj3. At this time, the difference
between the switch states of Gj1 and Gj3 is used to define the
switch state Hj of the entire H-bridge module; then Hj is

Hj �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 Gj1 � 1,Gj3 � 0
0 Gj1 � 0,Gj3 � 0

Gj1 � 1,Gj3 � 1
−1 Gj1 � 0,Gj3 � 1

(j � 1 . . . n) (2)

Eq. 3 can be used to obtain the current icj of the DC container
in parallel with the jth H bridge sub-module:

icj � Hjiab (j � 1 . . . n) (3)
According to Eq. 3, the state equation of the capacitor voltage

can be obtained, where udabj is the capacitor voltage of the jth H
bridge module on the AB bridge chain:

C
dudabj

dt
� icj � Hjiab (j � 1 . . . n) (4)

Define the sum of the switching states of the H bridge at all
levels as the switching state N of the phase converter, then

N � H1 +H2 +/ +Hj +/ +Hn (5)
Using Eq. 6, one can obtain the output voltage of the jth H

bridge sub-module uabj:

uabj � Hjudabj (6)

FIGURE 3 | Single-phase circuit structure diagram.
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Assume that the capacitor voltages of all modules in the bridge
chain are equal; then, udab is the sum of capacitor voltages of all
modules in the bridge chain, and the output voltage uab of the
bridge chain can be obtained by combining Eq. 5:

uab � ∑n
j�1
Hjudabj � N

udab

n
(7)

Combining Eq. 4, we can get

C
dudab

dt
� ∑n

j�1
Hjiab � Niab (8)

After substituting Eq. 7 into Eq. 1, we can get

L
diab
dt

� usab − Riab − N
udab

n
(9)

Assume that the grid-connected current iab and the total
capacitor voltage udab are state variables, and establish their
state equation by combining Eqs 8 and 9; Shen and
Raksincharoensak, 2021b. After discretization, the discrete
state equation can be obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

iab(k + 1) � (1 − RTk

L
)iab(k) − Tk

nL
N(k)udab(k)

+Tk

L
usab(k)

udab(k + 1) � udab(k) + Tk

C
N(k)iab(k)

(10)

where iab(k+1) and udab(k+1) indicate the AB-phase grid-
connected current and bridge-chain capacitor voltage value at
time (k+1), and N(k) and usab(k) indicate the AB bridge-chain
switch at time k and state and grid-connected point line voltage,
respectively and, Tk is the sampling period (Shen et al., 2021).

ENERGY STORAGE ELEMENT AND SOC
EQUALIZATION CONTROL
Parameter Extraction of the Shepherd
Model
The Shepherd model directly describes the electrochemical
behavior of batteries including the port voltage, open-circuit
voltage, internal resistance, discharge current, and state of
charge (SOC) through an equation. The model can be used to
describe the charging and discharging process of the battery. The
circuit diagram of the Shepherd model is shown in Figure 4,
where Eb is the no-load voltage of the battery, Ub is the output
voltage of the battery, Rb is the internal resistance of the battery
and ib is the output current of the battery.

The nonlinear function shown in Eq. 11 describes the
relationship between battery no-load voltage and output
current (Zhu et al., 2020):

Eb � f (ib) � E0 − K
Q

Q − it
+ Ae(−B·it) (11)

In Eq. 11, E0 is the voltage constant (V), K is the polarization
voltage (V), Q is the battery capacity (Ah), A is the voltage
constant in the exponential discharge zone (V), B is the time
constant in the exponential discharge zone (Ah−1) (Zhou et al.,
2016), and it = ∫ibdt is the actual cumulative output charge of the
battery.

Figure 5 shows the charge and discharge waveform of the
battery( Shen et al., 2017). It can be seen that the change in the
battery terminal voltage can be roughly divided into three areas:
exponential change area, relatively stable area, and rapid change
area. The terminal voltage of the battery in the area of exponential
change rises or falls with the change of charge in the form of
exponential, and the corresponding voltage value of the battery in
the state of full charge is Efull. When the battery runs in the
relatively stable region, the terminal voltage changes slowly with
the charge quantity, and the critical voltage corresponding to the
transition from the exponential changing region to the relatively
stable region is Eexp. In the rapidly changing region, the battery
terminal voltage changes rapidly with the amount of charge, and

FIGURE 4 | Shepherd model circuit diagram.

FIGURE 5 | Typical charge and discharge waveform of a battery.
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the critical voltage corresponding to the transition from the
relatively stable region to the rapidly changing region is Enom.

Estimation of battery internal resistance R: The internal
resistance R affects the output voltage of the battery and then
affects the working efficiency of the battery. Therefore, the
internal resistance of the battery can be estimated by
measuring the working efficiency of the battery. The working
efficiency of the battery η can be easily calculated as follows (Liu et
al., 2020):

η � 1 − I2nomR
VnomInom

� 1 − RInom
Vnom

(12)

where Inom is the nominal discharge current of the battery and
Vnom is the nominal voltage. Typical values of the working
efficiency of batteries can be obtained by statistical methods in
the practical project, and the calculation equation of internal
resistance R can be obtained from Eq. 13:

R � Vnom
1 − η

Inom
(13)

To determine the remaining parameters of the model, three
sets of data can be obtained from the measured discharge curve
given by the manufacturer: full charge voltage Efull, exponential

area boundary voltage Eexp, discharge capacity Qexp, stable
discharge area boundary voltage Enom ,and boundary
capacity Qnom.

The exponential zone discharge voltage time constantA can be
determined by Eq. 14:

A � Efull − Eexp (14)
The exponential zone discharge voltage time constant B can be

determined by Eq. 15:

B � 3
Qexp

(15)

After extracting the parameters A and B, the polarization
voltageK can substitute the first group of data and the third group
of data in Eq. 11 to obtain Eq. 16:

K � Efull − Enom + A(e−B·Qnom−1)
Qnom

· (Q − Qnom) (16)

Finally, the voltage time constant E0 can be derived from the
full charge voltage Efull to obtain Eq. 17:

E0 � Efull + K + Ri − A (17)

SOC Equalization Control
There are many chained STATCOM/BESS modules, which may
lead to different charge and discharge times of each phase energy
storage battery and sub-module batteries in the phase. Especially
when the grid-connected voltage is not symmetrical, the
disequilibrium of charge and discharge between energy storage
batteries will be more serious, reducing the efficiency of energy
storage batteries. Therefore, a state of charge (SOC) equalization
control strategy for STATCOM/BESS is proposed, as shown in
Figure 6; Yang et al., 2021a.

In Figure 6A, SOCab-SOCca is the SOC of each phase, SOC0 is
the average SOC of the phase, and are calculated using Eqs 18 and
19, respectively:

SOCm � ∑ SOCmi (m � ab, bc, ca) (18)
SOC0 � SOCab + SOCbc + SOCca

3
(19)

The basic idea of phase-to-phase SOC equalization control is
as follows: the difference between each phase SOCm and the phase
average SOC0 passes through the PI controller Gsoc(s) to obtain the
phase SOC equalization active current command Isocm (Yang et
al., 2021b), which is then sent to the current inner loop control. If
the SOCm is less than SOC0, a positive active power command is
obtained, and the energy storage battery of this phase is in the
state of charge as a whole so that the SOCm increases and the SOC
balance of the phase is achieved, and vice versa.

In Figure 6B, SOCmi is the SOC of the sub-module battery in
the phase and SOCm0 is the average SOC of the sub-module
battery in the phase. The basic idea of SOC control of sub-module
in phase is as follows (Yang et al., 2018): If SOCmi is greater than
SOCm0, then the difference value is proportionally controlled to

FIGURE 6 | STATCOM/BESS SOC equalization control: (A) phase-to-
phase SOC equalization control and (B) in-phase sub-module SOC
equalization control.
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obtain the submodule SOC to adjust the additional modulation
signal vsocmi. Since vsocmi is ahead of the line voltage corresponding
to the link, the submodule will output active power to the grid and
SOCmi decreases so as to achieve the SOC balance of the
submodule, and vice versa.

SYSTEM CONTROL STRATEGY

The goal of the STATCOM/BESS control system is to maintain a
stable phase transformation voltage and reduce the probability of
its occurrence when it detects that the commutation failure of the

FIGURE 7 | Power coordinated control system.

FIGURE 8 | LCC-HVDC simulation system.

TABLE 1 | LCC-HVDC system parameters.

Parameter Rectifier side Inverter side

AC system voltage 525 kV 525 kV
Volume 1500 MW 1500 MW
SCR 3 2.5
Transformer 890MVA, XT = 0.16pu, 525/209 kV 869 MVA, XT = 0.16 pu, 525/204 kV
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DC transmission system may occur (Zhang et al., 2021). In order
to suppress commutation failure of the DC transmission system,
after STATCOM/BESS detects the AC system failure, it switches
the corresponding control strategy according to the severity of the
failure and proposes the STATCOM/BESS power coordinated
control method. When the AC system fails, STATCOM/BESS
performs fast with reasonable compensation of reactive and active
power, provides effective voltage support to the receiving end
power grid, and effectively suppresses the occurrence of
commutation failure. The power coordination control system
is shown in Figure 7, Feng et al., 2021.

On the basis of receiving the upper active power command, the
active power control module adds active power adjustment
control based on frequency deviation, which can enhance the
damping of the interconnected system and suppress power
oscillation (Qi et al., 2006); the active power command is set
to 0 under fault conditions and reactive power control The
module starts to work, including steady-state constant reactive
power control and constant AC voltage control, while the
transient voltage control mode is based on the dynamic

FIGURE 9 | Power output response diagram: (A) active power output
response diagram and (B) reactive power output response diagram.

FIGURE 10 | Typical characteristic quantities of single-phase faults. (A)
Effective value of AC voltage on inverter side in single-phase fault. (B)
Extinction angle of commutation failure in single-phase fault. (C) System
transmission power in single-phase fault. (D) System DC current in
single-phase fault.
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reactive power support based on voltage sag, with additional DC
transmission system inverter station shutting-off the angle
control.

It can provide more reactive power compensation for the grid
under fault conditions to ensure the normal progress of the phase
transformation process. The dynamic reactive powerQT injected into
the grid by STATCOM/BESS should track the voltage changes at the
grid-connected point in real time, and satisfy the following equation
(Oghorada et al., 2021):

⎧⎪⎨⎪⎩
QT ≥ kT1(vmax − v)INv(vmin ≤ v ≤ vmax)
QT ≥ INv(v < vmin)
QT � 0(v > vmax)

(20)

In the equation, v represents the STATCOM/BESS grid-
connected point voltage per unit value, IN represents the
STATCOM/BESS rated current, vmax and vmin, respectively,
represent the upper and lower limits of the bus voltage at the
grid-connected point during the dynamic reactive power support
process, and kT1 represents the reactive power proportional
coefficient in the process of dynamic reactive power
compensation.

SIMULATION ANALYSIS

In this study, PSCAD/EMTDC software is used to build the
electromagnetic transient simulation model. The overall
framework of the electromagnetic transient model is shown in
Figure 8. In the model, the main circuit of the LCC-HVDC
system adopts the single-pole 12 pulse structure, and the main
parameters are selected by referring to Yongfu DC Project, as
shown in Table 1. The DC control system is the same as the
controller in the CIGRE standard model.

Limited by the simulation speed, the STATCOM/BESS
electromagnetic transient simulation model in this article is
equipped with three H-bridge modules per phase, with a total
capacity of 150 Mvar, which is connected to the LCC-HVDC
inverter side AC bus through a 35/525 kV transformer.

Active and Reactive Power Control
The response performance of STATCOM/BESS is simulated.
The STATCOM output active power instruction is set as 60 MW
and reactive power instruction as 60 Mvar, respectively, and the
output power changes are observed. Figure 9A shows the
constant active power control power response graph. During
the dynamic response process, the active power output by
STATCOM quickly follows the active command; the rise
time is about 0.18 s, the maximum output is 66 MW, and the
overshoot is less than 11%. In the steady-state process, the active
power output by STATCOM fluctuates between 59 and
61.5 MW, and the steady-state response error is less than 3%.
Figure 9B shows the power response diagram of constant
reactive control. Its dynamic response process is also good,
with a rising time of 0.178 s, a maximum output value of
67.6 Mvar, and an overshoot of less than 13%. It enters the

FIGURE 11 | Typical Characteristic quantities of three-phase fault. (A)
Effective value of the AC voltage on the inverter side in three-phase fault. (B)
Extinction angle of commutation failure in three-phase fault. (C) System
transmission power in three-phase fault. (D) System DC in three-
phase fault.
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steady state at 0.24 s. The STATCOM output reactive power
fluctuates between 58 Mvar and 62.5, and the steady-state
response error is less than 5%. The simulation results show
that the STATCOM/BESS used in this study has good output
performance and can respond quickly to a given power
command.

Single-Phase Ground Fault
When the setting is 2 s, a single-phase ground fault occurs in the
AC system on the inverter side and the fault lasts for 0.2 s.
Figure 10 shows the effective value of the AC voltage on the
inverter side before and after the fault, the extinction angle of
commutation failure, the transmission power of the system, and
the DC. In Figure 10A, when STATCOM is not connected, the
AC voltage on the inverter side drops to 0.7 pu after the fault
occurs and basically recovers to 0.96 pu after 2.5 s. After
STATCOM is connected, the voltage sag is reduced to 0.83 pu,
and the recovery is increased to 0.96 pu, reducing the impact of
faults on the AC system. In Figure 10B, when STATCOM is not
connected, the extinction-angle γ decreases to 0° after the fault
occurs, indicating that the first commutation failure occurs. After
STATCOM access, the extinction-angle γ is about 10°, and
commutation failure is inhibited. In Figures 10C,D, when

STATCOM is not connected, the power transmitted by the
system drops dramatically and the DC increases sharply,
seriously affecting the system operation and equipment safety.
After STATCOM is connected, the transmission power and DC
voltage of the system are less affected by the fault and will be
stabilized in a short time. According to this group of simulation,
when a single-phase grounding short-circuit occurs on the
inverter side, voltage sag will occur, which will lead to
commutation failure. After STATCOM/BESS is connected, the
terminal voltage can be effectively supported, constant-
extinction-angle can be improved, and the commutation
failure and subsequent chain reaction caused by the fault can
be inhibited.

Three-Phase Ground Fault
When the setting is 2 s, a three-phase ground fault occurs in
the AC system on the inverter side, and the fault lasts for 0.2 s.
Figure 11 shows the effective value of the AC voltage on the
inverter side before and after the fault, the extinction angle of
commutation failure, the transmission power of the system,
and the DC current. As shown in Figure 11A, when
STATCOM is not connected, AC voltage sag on the inverter

FIGURE 12 | Simulation waveform diagram after installing conventional STATCOM: (A) AC voltage on the inverter side and (B) inverter current of the
converter valve.

FIGURE 13 | Experimental waveform diagram of installing STATCOM/BESS: (A) AC voltage on the inverter side and (B) inverter current of the converter valve.
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side is obvious after the fault occurs, and the lowest drops to
0.5 pu, which basically recovers to 0.96 pu after 2.5 s. After
STATCOM is connected, the voltage sag is reduced to 0.7 pu,
and the power supply is restored more quickly. As shown in
Figure 11B, when STATCOM is not connected, the extinction-
angle γ decreases to 0° after the fault occurs and the first
commutation failure occurs, and again to 0° at 2.15 s,
indicating that continuous commutation failure occurs
during the fault process.

With/Without BESS Simulation Verification
In order to compare the commutation failure suppression effect
between STATCOM/BESS and conventional STATCOM, a
serious single-phase grounding fault is set at 1 s in this
experiment. Figures 12A,B show the AC voltage and inverter
current at the inverter side of the HVDC system when an A-phase
at the inverter side suddenly has a grounding fault after a period
of normal operation. At this time, the system is equipped with
conventional STATCOM. After the fault occurred, the A-phase
voltage begin to drop, and the AC voltage on the inverter side is
greatly distorted. The inverter current dropped to 0 at the same
time in the vicinity of 1 s, indicating that commutation failure
occurred.

When STATCOM/BESS is installed in the system, the
grounding fault occurs in A-phase in 1 s. It can be seen from
Figures 13A,B that the AC voltage distortion on the inverter side
is relatively small, and the phenomenon that the three-phase
current is zero at the same time during the fault period does not
occur, which indicates that STATCOM/BESS has restrained the
occurrence of commutation failure under the single-phase fault
condition.

CONCLUSION

In this study, the mathematical model of STATCOM/BESS is
established, a suitable battery model is selected as its energy
storage element, and a SOC equilibrium control strategy is put
forward. The model is built in PSCAD/EMTDC simulation
software and its function is tested and the following
conclusions are obtained:

1) STATCOM/BESS adopts coordinated power control, which is
divided into two modules: active power control and reactive

power control. It can compensate active power and reactive
power quickly and reasonably in case of fault.

2) Shepherd model is selected as the energy storage element, and
the SOC equilibrium control strategy is proposed to improve
the working efficiency of the energy storage battery.

3) Compared with the traditional STATCOM that can only
compensate for reactive power, STATCOM/BESS can track
active power commands and respond quickly when the active
power output is required. At the same time, it can also
compensate reactive power quickly when a serious fault
occurs, thereby supporting the grid voltage by suppressing
the commutation failure, which is of great significance in
improving the operation stability of the AC/DC system with a
weak receiving end.

4) The STATCOM/BESS device is installed in the single-pole 12-
pulse HVDC transmission system, a single-phase ground fault
is set, and a comparison experiment is carried out with the
traditional STATCOM system; by comparing the two typical
electrical quantities of AC voltage and inverter current, the
effectiveness of the STATCOM/BESS designed in this study is
verified in suppressing commutation failure.
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